WO2013114599A1 - Radiation measuring device - Google Patents

Radiation measuring device Download PDF

Info

Publication number
WO2013114599A1
WO2013114599A1 PCT/JP2012/052334 JP2012052334W WO2013114599A1 WO 2013114599 A1 WO2013114599 A1 WO 2013114599A1 JP 2012052334 W JP2012052334 W JP 2012052334W WO 2013114599 A1 WO2013114599 A1 WO 2013114599A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
detection
signal
detection signal
input
Prior art date
Application number
PCT/JP2012/052334
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 公貴
加藤 國彦
貴信 海上
Original Assignee
株式会社タカラトミー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タカラトミー filed Critical 株式会社タカラトミー
Priority to JP2013556150A priority Critical patent/JP5760100B2/en
Priority to PCT/JP2012/052334 priority patent/WO2013114599A1/en
Publication of WO2013114599A1 publication Critical patent/WO2013114599A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry

Definitions

  • This invention relates to a radiation measuring apparatus.
  • a radiation measuring apparatus that measures radiation dose by directly detecting radiation such as gamma rays or X-rays using a semiconductor detection element such as a photodiode or phototransistor, or indirectly by converting the radiation into visible light using a scintillator or the like.
  • a semiconductor detection element such as a photodiode or phototransistor
  • photoexcitation occurs in the depletion layer on the PN junction surface due to incident electromagnetic waves, and an amount of electrons and holes approximately proportional to the amount of light are generated in pairs.
  • electrons and holes generated by the semiconductor detection element flow as a pulse current to the charge amplifier and are converted into voltage changes, and the incidence of radiation is detected by detecting this voltage change.
  • One technique for improving the detection capability is to increase the sensitivity of the semiconductor detection element.
  • the semiconductor detection element by increasing the volume of the depletion layer, more charge pairs are generated with respect to radiation having the same amount of incident light, so that sensitivity is increased.
  • the detection voltage with respect to the same incident light quantity is decreased in inverse proportion to the junction area, so that there is a problem that the influence of noise becomes relatively large. Therefore, conventionally, a technique has been developed in which a plurality of semiconductor detection elements are arranged in parallel to detect radiation independently, and the detection results are added together (for example, Patent Documents 1 and 2).
  • Patent Document 3 includes a non-coincidence counting circuit, and when radiation detection waveforms are simultaneously input from a plurality of semiconductor detectors, noise due to other factors (for example, vibration of the radiation detection apparatus). It is disclosed about the technique considered to be excluded from the count.
  • JP 2009-139346 A Japanese Patent No. 4643809 Japanese Patent No. 3750924
  • Patent Document 3 the noise determination technique disclosed in Patent Document 3 is different from a signal detection operation of a predetermined threshold value or more performed based on an analog signal waveform output from each radiation detection unit arranged in parallel.
  • the determination operation of the asymmetry of the detection timing by the semiconductor detector is collectively performed as needed. Therefore, there is a problem that the configuration and operation are complicated, leading to an increase in size and an increase in power consumption.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a radiation measurement apparatus that can be easily manufactured at low cost and has high sensitivity and high noise removal accuracy.
  • a plurality of semiconductor sensors that detect the incidence of radiation and output a predetermined detection signal;
  • Signal reading means for acquiring the detection signal output from each of the semiconductor sensors;
  • the signal reading means is When the detection signal is input from any one of the plurality of semiconductor sensors, whether or not the detection signal is input from another semiconductor sensor at the timing when the detection signal is input.
  • the detection signal is determined to be noise, and from at least one of the plurality of signal means, the
  • the radiation measurement apparatus is characterized in that it is determined that the detection signal is a result of correctly detecting radiation.
  • the invention according to claim 2 is the radiation measuring apparatus according to claim 1,
  • the signal reading unit performs the determination process as an interrupt process triggered by the input of the detection signal.
  • the invention according to claim 3 is the radiation measuring apparatus according to claim 1 or 2,
  • the plurality of semiconductor sensors are: When radiation is incident, a radiation detection unit that generates and outputs a signal corresponding to the radiation, and And a noise identifying unit that outputs a pulse signal having a predetermined width as the detection signal when the wave height of the signal output from the radiation detection unit exceeds a predetermined threshold.
  • the invention according to claim 4 is the radiation measuring apparatus according to claim 3,
  • the signal reading means counts the number of input pulse signals output from the plurality of noise identifying units at the timing when the detection signal is input in the determination processing, and the number of inputs is the plurality of semiconductor sensors. It is characterized in that the determination is performed depending on whether or not the number is equal.
  • the invention described in claim 5 A plurality of semiconductor sensors that detect the incidence of radiation and output a predetermined detection signal; Signal reading means for acquiring the detection signal output from each of the semiconductor sensors; With The signal reading means counts the number of the input detection signals every predetermined time interval, When the counted value is equal to or larger than a preset reference value, it is determined that noise is mixed in the counted value.
  • a sixth aspect of the present invention is the radiation measuring apparatus according to the fifth aspect, A display unit for displaying information;
  • the signal reading unit causes the display unit to display an error when it is determined that the noise is mixed in the counted value continuously for a predetermined reference number or more. It is a feature.
  • FIG. 1 is a block diagram showing an overall configuration of a radiation measuring apparatus according to an embodiment of the present invention.
  • the radiation measuring apparatus 1 of the present embodiment includes four semiconductor sensors 11 to 14 and a control unit 31 (signal reading means) provided in parallel.
  • the semiconductor sensor 11 includes a radiation detection unit 21 and a detection discrimination unit 26 (noise identification unit), and the semiconductor sensor 12 includes a radiation detection unit 22 and a detection discrimination unit 27.
  • the semiconductor sensor 13 includes a radiation detection unit 23 and a detection discrimination unit 28, and the semiconductor sensor 14 includes a radiation detection unit 24 and a detection discrimination unit 29.
  • FIG. 2 is a circuit block diagram showing an outline of a circuit configuration related to the radiation detection unit 21.
  • the radiation detection unit 21 of this embodiment includes a photodiode D1, a charge amplifier unit OA11, and an amplification unit OA21 connected in series. Since the radiation detection units 22 to 24 have the same configuration as the radiation detection unit 21, description thereof is omitted.
  • the cathode end of the photodiode D1 is connected to the output terminal of the bias voltage Vbias via the resistor R11.
  • the anode end of the photodiode D1 is connected to the inverting input terminal of the operational amplifier OP21 included in the charge amplifier unit OA11.
  • a predetermined reference voltage is input to the non-inverting input terminal of the operational amplifier OP21.
  • a resistor R21 and a capacitor C21 are connected in parallel to the operational amplifier OP21.
  • the operational amplifier OP21, the resistor R21, and the capacitor C21 constitute a charge amplifier unit OA11 that converts the charge generated by the photodiode D1 into an output voltage.
  • the resistor R21 determines the discharge speed of the electric charges that are output in a pulse form from the photodiode D1 and are temporarily stored in the capacitor C21.
  • the resistance value of the resistor R21 is desirably a high value from the relationship with the detection duration, but if it is too high, the resistance value is easily affected by electric field noise, and therefore is set appropriately within a range not exceeding the impedance of the photodiode D1.
  • the operational amplifier OP21 is a low-noise amplifier with particularly low noise, and a slew rate and a gain band corresponding to the width (for example, about 50 ⁇ s) of the detection voltage waveform at the time of gamma ray detection is selected.
  • the amplification unit OA21 is connected to the charge amplifier unit OA11 via a capacitor C31 connected to the output terminal of the operational amplifier OP21 and a resistor R31 connected to the other end of the capacitor C31. Functions as a band filter (mainly a low-pass filter).
  • the amplifier OA21 includes an operational amplifier OP41, a capacitor C41, and a resistor R41 that are connected in parallel to the other end of the resistor R31.
  • the output voltage of the amplifying unit OA21 is output to the detection discriminating unit 26 as an analog voltage waveform Vout via the capacitor C51 and the resistor R51.
  • the detection discriminating units 26 to 29 each generate a pulse signal (detection signal) indicating detection when a voltage equal to or higher than a preset threshold voltage is detected in the voltage waveforms input from the radiation detection units 21 to 24, respectively.
  • a discriminator that outputs to the control unit 31 is included.
  • the signals output from the detection discriminators 26 to 29 are, for example, “0” signal (low level signal) in the normal state, and “1” signal (high level signal) when the detection signal is output.
  • Such a binary signal is used.
  • the detection discriminators 26 to 29 can output a binary signal whose output changes at the timing when a voltage equal to or higher than the threshold voltage is detected, and may have a simple configuration.
  • the discriminator It is good also as including a comparator instead of.
  • the process of converting the voltage waveform data and the detection signal into discrete data (digital data) at a predetermined sampling frequency at this stage increases power consumption due to unnecessary processing, and causes an error in detection timing. Not needed.
  • the control unit 31 controls the operation of each unit of the radiation measuring apparatus 1 and determines whether or not the detection signals input from the detection discriminating units 26 to 29 are caused by noise, as will be described later.
  • the number of detection signals that are determined not to be noise, that is, the detection signal indicating that the radiation has been correctly detected is counted.
  • the control unit 31 converts the count value within the time period into a value (output value) based on a measurement unit for output (for example, dose equivalent (Sv / h)) at predetermined time intervals (for example, 1 minute). Performs conversion processing.
  • the control unit 31 is, for example, a microcomputer, and includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the ROM stores a program for causing the determination processing and calculation processing performed by the control unit 31 to be executed in software. When measuring radiation, this program is read out by the CPU, loaded into the RAM, and executed. Parameters necessary for conversion to an output value, that is, a value such as the detection efficiency of an observation device, or a conversion formula including the detection efficiency is stored in advance in the RAM.
  • the control unit 31 displays an output value calculated by sending a drive control signal to a display unit (not shown) (for example, an LCD (liquid crystal display)), or transmits the output value to an external device via a communication interface.
  • a display unit for example, an LCD (liquid crystal display)
  • the output values can be sequentially stored in the RAM as history data.
  • the operation of the radiation measuring apparatus 1 of the present embodiment will be described.
  • semiconductor sensors 11 to 14 are provided in parallel.
  • the detection signals output from the detection discriminating units 26 to 29 are input to the control unit 31 independently.
  • 3A to 3C are flowcharts showing the control procedure of each process executed by the CPU of the control unit 31 during the radiation measurement operation.
  • the process related to the measurement of radiation is automatically started, for example, when the power of the radiation measurement apparatus 1 is turned on.
  • the CPU of the control unit 31 executes an initial setting process as shown in FIG. 3A.
  • the CPU sets the counter value to “0” and stores it in the RAM (step S101).
  • the CPU sets a conversion to an output value and an output interval of the output value, and operates a timer that generates an interrupt signal for arithmetic processing at each interval (step S102). Then, the initial setting process ends.
  • the CPU of the control unit 31 starts an interrupt process using the detection of the change as a trigger. To do. In this interrupt process, the CPU executes the discrimination counting process shown in FIG. 3B.
  • the CPU determines whether or not a detection signal is also input from three detection discrimination units other than the detection discrimination unit that outputs the detection signal (step S111). Specifically, in the radiation measuring apparatus 1 of the present embodiment, the CPU adds up the values of the input signals from the detection discriminating units 26 to 29, and the total value is the number of the detection discriminating units 26 to 29 (ie, 4). Whether or not is equal.
  • the detection signals are input from all the detection discriminating units 26 to 29. Therefore, the CPU regards the detection signals as noise. Judgment is abandoned, and interrupt processing is terminated as it is.
  • the CPU determines that this detection signal is the one that has detected the radiation correctly, and stores it in the RAM. 1 is added to the counter value (step S112). Alternatively, in the process of step S112, the above total value may be added to the counter value. Then, the interrupt process ends.
  • the CPU of the control unit 31 acquires the counter value stored in the RAM as shown in FIG. 3C (step S121). Then, the CPU converts this counter value into an output value (step S122). The CPU performs an output process of displaying the calculated output value on the display unit or transmitting the output value to the outside (step S123). Thereafter, the CPU resets the counter value stored in the RAM and the timer operation (step S124). Then, the CPU ends the interrupt process.
  • the value output interval can be set shorter than the counter value acquisition interval. For example, when the output interval is 10 seconds with respect to the acquisition interval of 60 seconds, the counter value for every 10 seconds is stored in the latest 6 RAMs, and the output value is calculated based on the 6 total counter values. Conversion can be performed. At this time, the oldest count value data that is no longer necessary is overwritten and updated with the next count value, thereby enabling continuous operation without storing unnecessary data in the RAM.
  • the radiation measuring apparatus 1 includes the plurality of semiconductor sensors 11 to 14 and the control unit 31, and the control unit 31 includes the detection discriminating units 26 to 29 of the semiconductor sensors 11 to 14.
  • the predetermined detection signals respectively output from are acquired.
  • the control unit 31 determines whether or not a detection signal is input from another detection discriminating unit, and from all of the detection discriminating units 26 to 29. If it is determined that the detection signal is input at the same time, the detection signal is determined to be noise and abandoned. If the detection signal is not input simultaneously from at least one of the detection discriminators 26 to 29, the detection signal is valid. It is determined as a detection signal and added to the number of detections.
  • the radiation measuring apparatus 1 can increase the detection sensitivity of the radiation detection unit without reducing the detection voltage.
  • the control unit 31 can easily detect noise by determining the simultaneity of the input signals from the plurality of detection discriminating units 26 to 29 based on the binary data input from any of the detection discriminating units 26 to 29. Make a decision. Therefore, the control unit 31 can easily perform further noise removal and improve the detection accuracy.
  • this radiation measurement apparatus since the detection signal is acquired as an interrupt signal, it is not always necessary to sample input data, and a large load is not constantly applied to the CPU of the control unit 31.
  • the semiconductor sensors 11 to 14 simply detect a voltage waveform that exceeds the threshold by using a discriminator, a comparator, or the like to generate a detection signal, and send it to each control unit 31. Since only the output is required, the labor at the time of manufacture is simplified. In addition, it is not necessary to perform clock synchronization of the operations of the radiation detectors 21 to 24 and the detection discriminators 26 to 29 or to perform data sampling at a high frequency, and noise determination and radiation detection can be easily performed. . That is, the radiation measuring apparatus 1 can be controlled by an inexpensive microcomputer. Therefore, the manufacturing cost of the radiation measuring apparatus 1 can be reduced.
  • the number of semiconductor sensors 11 to 14 arranged in parallel can be easily increased or decreased, so that it can be easily changed based on the required sensitivity, the size of the radiation measuring apparatus 1, and the like. I can do it. Further, since it is easy to determine an input error, it is possible to easily display an error.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • whether or not the detection signals from the detection discriminating units 26 to 29 are all inputted in the same way is determined by software in the control unit 31. It is good also as providing the structure which performs a discrimination
  • the specific configuration of the radiation detectors 21 to 24 is not limited to that shown in the above embodiment.
  • a phototransistor may be used instead of the photodiode, or another form may be used as the charge amplifier.
  • the outputs of the detection discriminating units 26 to 29 may be active low.
  • the number of radiation detection units is not limited to four, and is set to an appropriate value of 2 or more according to sensitivity and circuit scale.
  • the present invention can be used for an apparatus for detecting and measuring radiation.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Provided is a radiation measuring device which can be manufactured easily at low cost and has high sensitivity and high noise removal accuracy. A radiation measuring device is provided with a plurality of semiconductor sensors which each detect incidence of radiation and output a predetermined detection signal, and a signal reading means which acquires the detection signal outputted from each of the semiconductor sensors. When the detection signal has been inputted from any one of the plurality of semiconductor sensors, the signal reading means performs determination processing for, at the timing when the detection signal has been inputted, determining whether or not the detection signals have been inputted from the other semiconductor sensors, and when determining that the detection signals have been inputted from all of the plurality of semiconductor sensors, the signal reading means determines that the detection signal is noise, and when determining that the detection signal has not been detected from at least one of the plurality of signal reading means, the signal reading means determines that the detection signal results from correct detection of radiation.

Description

放射線測定装置Radiation measurement equipment
 この発明は、放射線測定装置に関する。 This invention relates to a radiation measuring apparatus.
 従来、フォトダイオードやフォトトランジスタといった半導体検出素子を用いてガンマ線やX線などの放射線を直接、又は、シンチレータ等により可視光に変換して間接的に検出し、放射線量を測定する放射線測定装置がある。この放射線測定装置に用いられる半導体検出素子では、入射した電磁波によりPN接合面の欠乏層で光励起が生じ、光量に略比例した量の電子と正孔とが対で生成される。放射線測定装置において、半導体検出素子で生成された電子及び正孔は、パルス電流としてチャージアンプに流れて電圧変化に変換され、この電圧変化が検知されることにより放射線の入射が検出される。 Conventionally, there has been a radiation measuring apparatus that measures radiation dose by directly detecting radiation such as gamma rays or X-rays using a semiconductor detection element such as a photodiode or phototransistor, or indirectly by converting the radiation into visible light using a scintillator or the like. is there. In the semiconductor detection element used in this radiation measuring apparatus, photoexcitation occurs in the depletion layer on the PN junction surface due to incident electromagnetic waves, and an amount of electrons and holes approximately proportional to the amount of light are generated in pairs. In the radiation measuring apparatus, electrons and holes generated by the semiconductor detection element flow as a pulse current to the charge amplifier and are converted into voltage changes, and the incidence of radiation is detected by detecting this voltage change.
 このような放射線測定装置で測定される電圧変化は、非常に微小なレベルとなるので、従来、放射線測定装置では、検出能力を向上させるための種々の改良がなされている。このような検出能力の向上に係る技術の一つとして、半導体検出素子の感度の上昇がある。半導体検出素子では、空乏層の体積を増大させることで、同一入射光量の放射線に対してより多くの電荷対が生成されるので、感度が上昇する。空乏層の体積を増大させるには、PN接合面の面積を増加させることが考えられる。しかしながら、単純にPN接合面を広くすると、接合面積に反比例して同一の入射光量に対する検出電圧が低下するので、ノイズの影響が相対的に大きくなるという問題がある。そこで、従来、複数の半導体検出素子を並列に配置して各々独立に放射線の検出を行わせ、検出結果を合算する技術が開発されている(例えば、特許文献1、2)。 Since the voltage change measured by such a radiation measuring apparatus is at a very small level, various improvements have been conventionally made in the radiation measuring apparatus to improve the detection capability. One technique for improving the detection capability is to increase the sensitivity of the semiconductor detection element. In the semiconductor detection element, by increasing the volume of the depletion layer, more charge pairs are generated with respect to radiation having the same amount of incident light, so that sensitivity is increased. In order to increase the volume of the depletion layer, it is conceivable to increase the area of the PN junction surface. However, when the PN junction surface is simply widened, the detection voltage with respect to the same incident light quantity is decreased in inverse proportion to the junction area, so that there is a problem that the influence of noise becomes relatively large. Therefore, conventionally, a technique has been developed in which a plurality of semiconductor detection elements are arranged in parallel to detect radiation independently, and the detection results are added together (for example, Patent Documents 1 and 2).
 また、微弱な放射線を複数のフォトダイオードを用いて検出する場合には、各フォトダイオードにおける検出は、各々独立、且つ、断続的になる。従って、複数のフォトダイオードで同時に放射線が検出される可能性は、非常に低い。そこで、特許文献3には、非同時計数回路を備え、複数の半導体検出器から同時に放射線の検出波形が入力された場合には、他の要因(例えば、放射線検出装置の振動)によるノイズであるとみなして計数から除外する技術について開示されている。 In addition, when weak radiation is detected using a plurality of photodiodes, detection in each photodiode is independent and intermittent. Therefore, the possibility that radiation is detected simultaneously by a plurality of photodiodes is very low. Therefore, Patent Document 3 includes a non-coincidence counting circuit, and when radiation detection waveforms are simultaneously input from a plurality of semiconductor detectors, noise due to other factors (for example, vibration of the radiation detection apparatus). It is disclosed about the technique considered to be excluded from the count.
特開2009-139346号公報JP 2009-139346 A 特許4643809号公報Japanese Patent No. 4643809 特許3750924号公報Japanese Patent No. 3750924
 しかしながら、上記の特許文献3に開示されたノイズ判定技術では、並列に配置された各放射線検出部から出力されるアナログ信号波形に基づいて行われる予め設定された閾値以上の信号検出動作と、異なる半導体検出器による検出タイミングの非同時性の判別動作とをまとめて随時行っている。従って、構成及び動作が複雑になり、大型化や電力消費の増大に繋がるという課題がある。 However, the noise determination technique disclosed in Patent Document 3 is different from a signal detection operation of a predetermined threshold value or more performed based on an analog signal waveform output from each radiation detection unit arranged in parallel. The determination operation of the asymmetry of the detection timing by the semiconductor detector is collectively performed as needed. Therefore, there is a problem that the configuration and operation are complicated, leading to an increase in size and an increase in power consumption.
 本発明は、上記課題に鑑みてなされたもので、容易に低コストで製造可能であり、且つ、感度及びノイズ除去精度の高い放射線測定装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a radiation measurement apparatus that can be easily manufactured at low cost and has high sensitivity and high noise removal accuracy.
 上記目的を達成するため、請求項1に記載の発明は、
 放射線の入射を検出して所定の検出信号を出力する複数の半導体センサーと、
 当該半導体センサーの各々から出力された前記検出信号を取得する信号読取手段と、
 を備え、
 前記信号読取手段は、
 前記複数の半導体センサーのうち何れか一つから前記検出信号が入力された場合に、当該検出信号が入力されたタイミングで、他の前記半導体センサーから前記検出信号の入力が有ったか否かを判別する判別処理を行い、前記複数の半導体センサーの全てから前記検出信号が入力されたと判別された場合には、前記検出信号をノイズと判断し、前記複数の信号手段のうち少なくとも一つから前記検出信号が検出されていないと判別された場合には、正しく放射線が検出されたことによる検出信号であると判断することを特徴とする放射線測定装置である。
In order to achieve the above object, the invention described in claim 1
A plurality of semiconductor sensors that detect the incidence of radiation and output a predetermined detection signal;
Signal reading means for acquiring the detection signal output from each of the semiconductor sensors;
With
The signal reading means is
When the detection signal is input from any one of the plurality of semiconductor sensors, whether or not the detection signal is input from another semiconductor sensor at the timing when the detection signal is input. When a determination process is performed to determine that the detection signal is input from all of the plurality of semiconductor sensors, the detection signal is determined to be noise, and from at least one of the plurality of signal means, the When it is determined that a detection signal is not detected, the radiation measurement apparatus is characterized in that it is determined that the detection signal is a result of correctly detecting radiation.
 請求項2に記載の発明は、請求項1に記載の放射線測定装置において、
 前記信号読取手段は、前記判別処理を、前記検出信号の入力をトリガーとした割込処理として行うことを特徴としている。
The invention according to claim 2 is the radiation measuring apparatus according to claim 1,
The signal reading unit performs the determination process as an interrupt process triggered by the input of the detection signal.
 請求項3に記載の発明は、請求項1又は2に記載の放射線測定装置において、
 前記複数の半導体センサーは、
 放射線が入射すると、当該放射線に応じた信号が生成されて出力される放射線検出部と、
 当該放射線検出部から出力された信号の波高が所定の閾値を超えた場合に、所定幅のパルス信号を前記検出信号として出力するノイズ識別部と
 をそれぞれ備えることを特徴としている。
The invention according to claim 3 is the radiation measuring apparatus according to claim 1 or 2,
The plurality of semiconductor sensors are:
When radiation is incident, a radiation detection unit that generates and outputs a signal corresponding to the radiation, and
And a noise identifying unit that outputs a pulse signal having a predetermined width as the detection signal when the wave height of the signal output from the radiation detection unit exceeds a predetermined threshold.
 請求項4に記載の発明は、請求項3記載の放射線測定装置において、
 前記信号読取手段は、前記判別処理において、前記検出信号が入力されたタイミングで複数の前記ノイズ識別部から出力されている前記パルス信号の入力数を計数し、当該入力数が前記複数の半導体センサーの数と等しいか否かにより前記判別を行うことを特徴としている。
The invention according to claim 4 is the radiation measuring apparatus according to claim 3,
The signal reading means counts the number of input pulse signals output from the plurality of noise identifying units at the timing when the detection signal is input in the determination processing, and the number of inputs is the plurality of semiconductor sensors. It is characterized in that the determination is performed depending on whether or not the number is equal.
 請求項5に記載の発明は、
 放射線の入射を検出して所定の検出信号を出力する複数の半導体センサーと、
 当該半導体センサーの各々から出力された前記検出信号を取得する信号読取手段と、
 を備え、
 前記信号読取手段は、入力された前記検出信号の数を所定の時間間隔毎に計数し、
 前記計数された値が予め設定された基準値以上である場合には、当該計数された値にノイズが混入していると判断することを特徴としている。
The invention described in claim 5
A plurality of semiconductor sensors that detect the incidence of radiation and output a predetermined detection signal;
Signal reading means for acquiring the detection signal output from each of the semiconductor sensors;
With
The signal reading means counts the number of the input detection signals every predetermined time interval,
When the counted value is equal to or larger than a preset reference value, it is determined that noise is mixed in the counted value.
 請求項6に記載の発明は、請求項5記載の放射線測定装置において、
 情報を表示する表示部を備え、
 前記信号読取手段は、前記計数された値に前記ノイズが混入しているとの判断が予め設定された基準回数以上連続してなされた場合には、前記表示部にエラー表示を行わせることを特徴としている。
A sixth aspect of the present invention is the radiation measuring apparatus according to the fifth aspect,
A display unit for displaying information;
The signal reading unit causes the display unit to display an error when it is determined that the noise is mixed in the counted value continuously for a predetermined reference number or more. It is a feature.
 本発明に従うと、放射線の検出感度及びノイズ除去精度の高い放射線測定装置を容易且つ低コストで製造することが出来るという効果がある。 According to the present invention, there is an effect that a radiation measuring apparatus with high radiation detection sensitivity and high noise removal accuracy can be manufactured easily and at low cost.
本発明の実施形態の放射線測定装置の全体構成の概略を示すブロック図である。It is a block diagram which shows the outline of the whole structure of the radiation measuring device of embodiment of this invention. 放射線検出部の回路構成の概略を示す図である。It is a figure which shows the outline of the circuit structure of a radiation detection part. 放射線測定動作における初期設定処理の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the initial setting process in radiation measurement operation | movement. 放射線測定動作における判別計数処理の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the discrimination | determination count process in a radiation measurement operation | movement. 放射線測定動作における演算処理の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the arithmetic processing in a radiation measurement operation | movement.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本発明の実施形態の放射線測定装置の全体構成を示すブロック図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an overall configuration of a radiation measuring apparatus according to an embodiment of the present invention.
 本実施形態の放射線測定装置1は、並列に設けられた4つの半導体センサー11~14と制御部31(信号読取手段)と、を備えている。半導体センサー11は、放射線検出部21及び検出弁別部26(ノイズ識別部)を含み、また、半導体センサー12は、放射線検出部22及び検出弁別部27を含む。半導体センサー13は、放射線検出部23及び検出弁別部28を含み、半導体センサー14は、放射線検出部24及び検出弁別部29を含む。 The radiation measuring apparatus 1 of the present embodiment includes four semiconductor sensors 11 to 14 and a control unit 31 (signal reading means) provided in parallel. The semiconductor sensor 11 includes a radiation detection unit 21 and a detection discrimination unit 26 (noise identification unit), and the semiconductor sensor 12 includes a radiation detection unit 22 and a detection discrimination unit 27. The semiconductor sensor 13 includes a radiation detection unit 23 and a detection discrimination unit 28, and the semiconductor sensor 14 includes a radiation detection unit 24 and a detection discrimination unit 29.
 図2は、放射線検出部21に係る回路構成の概略を示す回路ブロック図である。 FIG. 2 is a circuit block diagram showing an outline of a circuit configuration related to the radiation detection unit 21.
 本実施形態の放射線検出部21は、直列に接続されたフォトダイオードD1と、チャージアンプ部OA11と、増幅部OA21と、を備えている。放射線検出部22~24は、放射線検出部21と同一の構成であるので、説明を省略する。 The radiation detection unit 21 of this embodiment includes a photodiode D1, a charge amplifier unit OA11, and an amplification unit OA21 connected in series. Since the radiation detection units 22 to 24 have the same configuration as the radiation detection unit 21, description thereof is omitted.
 フォトダイオードD1のカソード端は、抵抗R11を介してバイアス電圧Vbiasの出力端子に接続されている。一方、フォトダイオードD1のアノード端は、チャージアンプ部OA11に含まれるオペアンプOP21の反転入力端子に接続されている。また、オペアンプOP21の非反転入力端子には、所定の参照電圧が入力されている。オペアンプOP21には、抵抗R21とキャパシタC21とが並列に接続されている。オペアンプOP21、抵抗R21、及び、キャパシタC21により、フォトダイオードD1で生成された電荷を出力電圧に変換するチャージアンプ部OA11が構成される。 The cathode end of the photodiode D1 is connected to the output terminal of the bias voltage Vbias via the resistor R11. On the other hand, the anode end of the photodiode D1 is connected to the inverting input terminal of the operational amplifier OP21 included in the charge amplifier unit OA11. A predetermined reference voltage is input to the non-inverting input terminal of the operational amplifier OP21. A resistor R21 and a capacitor C21 are connected in parallel to the operational amplifier OP21. The operational amplifier OP21, the resistor R21, and the capacitor C21 constitute a charge amplifier unit OA11 that converts the charge generated by the photodiode D1 into an output voltage.
 このチャージアンプ部OA11で用いられるキャパシタC21の容量が小さいと、変換される電圧が大きくなる一方でノイズが増加し、容量が大きいと、電圧が小さくなる一方でノイズも小さくなるので、これらの容量には、適宜な値が設定される。また、抵抗R21は、フォトダイオードD1からパルス状に出力されてキャパシタC21に一時的に蓄えられた電荷の放出速度を定める。この抵抗R21の抵抗値は、検出持続時間との関係から高い値が望ましいが、高すぎると電場ノイズの影響を受けやすくなるので、フォトダイオードD1のインピーダンスを超えない範囲で適宜設定される。また、オペアンプOP21には、特にノイズの小さい低ノイズアンプであって、ガンマ線検出時の検出電圧波形の幅(例えば、約50μs)に見合ったスルーレイト、及び、利得帯域のものが選択される。 If the capacitance of the capacitor C21 used in the charge amplifier section OA11 is small, the voltage to be converted increases and noise increases. If the capacitance is large, the voltage decreases and noise also decreases. Is set to an appropriate value. Further, the resistor R21 determines the discharge speed of the electric charges that are output in a pulse form from the photodiode D1 and are temporarily stored in the capacitor C21. The resistance value of the resistor R21 is desirably a high value from the relationship with the detection duration, but if it is too high, the resistance value is easily affected by electric field noise, and therefore is set appropriately within a range not exceeding the impedance of the photodiode D1. The operational amplifier OP21 is a low-noise amplifier with particularly low noise, and a slew rate and a gain band corresponding to the width (for example, about 50 μs) of the detection voltage waveform at the time of gamma ray detection is selected.
 増幅部OA21は、オペアンプOP21の出力端子に接続されたキャパシタC31と、キャパシタC31の他端に接続された抵抗R31とを介してチャージアンプ部OA11と接続され、主に、電圧信号の増幅や狭帯域フィルタ(主にローパスフィルタ)として機能する。この増幅部OA21は、抵抗R31の他端に対して並列に接続されたオペアンプOP41、キャパシタC41、及び、抵抗R41を備えている。増幅部OA21の出力電圧は、キャパシタC51及び抵抗R51を介し、アナログ電圧波形Voutとして検出弁別部26に出力される。 The amplification unit OA21 is connected to the charge amplifier unit OA11 via a capacitor C31 connected to the output terminal of the operational amplifier OP21 and a resistor R31 connected to the other end of the capacitor C31. Functions as a band filter (mainly a low-pass filter). The amplifier OA21 includes an operational amplifier OP41, a capacitor C41, and a resistor R41 that are connected in parallel to the other end of the resistor R31. The output voltage of the amplifying unit OA21 is output to the detection discriminating unit 26 as an analog voltage waveform Vout via the capacitor C51 and the resistor R51.
 検出弁別部26~29は、各々、放射線検出部21~24から入力された電圧波形の中に予め設定された閾値電圧以上の電圧が検出されると、検出を示すパルス信号(検出信号)を制御部31に対して出力するディスクリミネータを含む。ここで、検出弁別部26~29から出力される信号としては、例えば、通常状態では「0」信号(ローレベル信号)であり、検出信号の出力時には、「1」信号(ハイレベル信号)となるような二値信号が用いられる。このように、検出弁別部26~29は、閾値電圧以上の電圧を検出したタイミングで出力の変化する二値信号が出力可能であり、且つ、簡易な構成であればよく、例えば、ディスクリミネータの代わりにコンパレータを含むこととしても良い。また、この段階で電圧波形データや検出信号を所定のサンプリング周波数による離散データ(デジタルデータ)に変換する処理は、不要な処理により電力消費を増大させ、また、検出タイミングに誤差を生じさせるので、必要とされない。 The detection discriminating units 26 to 29 each generate a pulse signal (detection signal) indicating detection when a voltage equal to or higher than a preset threshold voltage is detected in the voltage waveforms input from the radiation detection units 21 to 24, respectively. A discriminator that outputs to the control unit 31 is included. Here, the signals output from the detection discriminators 26 to 29 are, for example, “0” signal (low level signal) in the normal state, and “1” signal (high level signal) when the detection signal is output. Such a binary signal is used. As described above, the detection discriminators 26 to 29 can output a binary signal whose output changes at the timing when a voltage equal to or higher than the threshold voltage is detected, and may have a simple configuration. For example, the discriminator It is good also as including a comparator instead of. In addition, the process of converting the voltage waveform data and the detection signal into discrete data (digital data) at a predetermined sampling frequency at this stage increases power consumption due to unnecessary processing, and causes an error in detection timing. Not needed.
 制御部31は、放射線測定装置1の各部の動作を制御すると共に、後述するように、検出弁別部26~29からそれぞれ入力された検出信号がノイズによるものであるか否かを判別する判別処理を行い、ノイズではないと判別されたもの、即ち、放射線が正しく検出されたことを示す検出信号の入力回数を計数する。また、制御部31は、所定の時間間隔毎(例えば、1分)に、当該時間内のカウント数から出力用の測定単位(例えば、線量当量(Sv/h))による値(出力値)に換算する演算処理を行う。 The control unit 31 controls the operation of each unit of the radiation measuring apparatus 1 and determines whether or not the detection signals input from the detection discriminating units 26 to 29 are caused by noise, as will be described later. The number of detection signals that are determined not to be noise, that is, the detection signal indicating that the radiation has been correctly detected is counted. In addition, the control unit 31 converts the count value within the time period into a value (output value) based on a measurement unit for output (for example, dose equivalent (Sv / h)) at predetermined time intervals (for example, 1 minute). Performs conversion processing.
 この制御部31は、例えば、マイコンであり、CPU(Central Processing Unit)、RAM(Random Access Memory)、及び、ROM(Read Only Memory)を含む。ROMには、制御部31で行われる判別処理や演算処理をソフトウェア的に実行させるためのプログラムが記憶されている。放射線の計測時には、CPUによりこのプログラムが読み出されてRAMに展開され、実行される。出力値への換算に必要なパラメータ、即ち、観測機器の検出効率といった値、又は、検出効率を含む換算式は、予めRAMに記憶されている。 The control unit 31 is, for example, a microcomputer, and includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory). The ROM stores a program for causing the determination processing and calculation processing performed by the control unit 31 to be executed in software. When measuring radiation, this program is read out by the CPU, loaded into the RAM, and executed. Parameters necessary for conversion to an output value, that is, a value such as the detection efficiency of an observation device, or a conversion formula including the detection efficiency is stored in advance in the RAM.
 制御部31は、図示略の表示部(例えば、LCD(液晶ディスプレイ))に駆動制御信号を送ることで算出した出力値を表示させたり、通信インターフェイスを介して外部機器に出力値を送信したり、履歴データとしてRAMに出力値を順次記憶させたりすることが可能となっている。 The control unit 31 displays an output value calculated by sending a drive control signal to a display unit (not shown) (for example, an LCD (liquid crystal display)), or transmits the output value to an external device via a communication interface. The output values can be sequentially stored in the RAM as history data.
 次に、本実施形態の放射線測定装置1の動作について説明する。
 本実施形態の放射線測定装置1では、図1、2に示したように、半導体センサー11~14が並列に設けられている。そして、検出弁別部26~29から出力された検出信号が各々独立に制御部31へと入力される。
Next, the operation of the radiation measuring apparatus 1 of the present embodiment will be described.
In the radiation measurement apparatus 1 of the present embodiment, as shown in FIGS. 1 and 2, semiconductor sensors 11 to 14 are provided in parallel. The detection signals output from the detection discriminating units 26 to 29 are input to the control unit 31 independently.
 図3A~図3Cは、放射線の測定動作の際に制御部31のCPUによって実行される各処理の制御手順を示すフローチャートである。 3A to 3C are flowcharts showing the control procedure of each process executed by the CPU of the control unit 31 during the radiation measurement operation.
 放射線の測定に係る処理は、例えば、放射線測定装置1の電源がオンされることで自動的に開始される。このとき、制御部31のCPUは、図3Aに示すように、初期設定処理を実行する。初期設定処理が開始されると、CPUは、カウンタ値を「0」に設定してRAMに記憶させる(ステップS101)。また、CPUは、出力値への換算及び出力値の出力間隔を設定し、当該間隔ごとに演算処理のための割込信号を発生させるタイマーを動作させる(ステップS102)。そして、初期設定処理を終了する。 The process related to the measurement of radiation is automatically started, for example, when the power of the radiation measurement apparatus 1 is turned on. At this time, the CPU of the control unit 31 executes an initial setting process as shown in FIG. 3A. When the initial setting process is started, the CPU sets the counter value to “0” and stores it in the RAM (step S101). In addition, the CPU sets a conversion to an output value and an output interval of the output value, and operates a timer that generates an interrupt signal for arithmetic processing at each interval (step S102). Then, the initial setting process ends.
 次に、検出弁別部26~29から制御部31に入力される信号のうち何れかが検出を示す信号に変化すると、制御部31のCPUは、当該変化の検出をトリガーとして割込処理を開始する。この割込処理では、CPUは、図3Bに示す判別計数処理を実行する。CPUは、先ず、その検出信号を出力した検出弁別部以外の他の3つの検出弁別部からも検出信号が入力されているか否かを判別する(ステップS111)。具体的には、本実施形態の放射線測定装置1では、CPUは、検出弁別部26~29からの入力信号の値を合算し、合計値が検出弁別部26~29の数(即ち、4)と等しいか否かを判別する。合計値が検出弁別部の数と等しいと判別された場合には、全ての検出弁別部26~29から検出信号が入力されていることになるので、CPUは、この検出信号をノイズによるものと判断して放棄し、そのまま割込処理を終了する。一方、検出弁別部の少なくとも一つから検出信号が入力されていないと判別された場合には、CPUは、この検出信号が正しく放射線を検出したものであると判断して、RAMに記憶させているカウンタ値に1を加算する(ステップS112)。或いは、このステップS112の処理では、カウンタ値に上記の合計値を加算することとしても良い。そして、割込処理を終了する。 Next, when any of the signals input from the detection discriminating units 26 to 29 to the control unit 31 changes to a signal indicating detection, the CPU of the control unit 31 starts an interrupt process using the detection of the change as a trigger. To do. In this interrupt process, the CPU executes the discrimination counting process shown in FIG. 3B. First, the CPU determines whether or not a detection signal is also input from three detection discrimination units other than the detection discrimination unit that outputs the detection signal (step S111). Specifically, in the radiation measuring apparatus 1 of the present embodiment, the CPU adds up the values of the input signals from the detection discriminating units 26 to 29, and the total value is the number of the detection discriminating units 26 to 29 (ie, 4). Whether or not is equal. When it is determined that the total value is equal to the number of detection discriminating units, the detection signals are input from all the detection discriminating units 26 to 29. Therefore, the CPU regards the detection signals as noise. Judgment is abandoned, and interrupt processing is terminated as it is. On the other hand, if it is determined that the detection signal is not input from at least one of the detection discriminating units, the CPU determines that this detection signal is the one that has detected the radiation correctly, and stores it in the RAM. 1 is added to the counter value (step S112). Alternatively, in the process of step S112, the above total value may be added to the counter value. Then, the interrupt process ends.
 また、制御部31のCPUは、タイマー動作により演算処理に係る割込信号が入力されると、図3Cに示すように、RAMに記憶させたカウンタ値を取得する(ステップS121)。それから、CPUは、このカウンタ値を出力値に換算する(ステップS122)。CPUは、算出された出力値を表示部に表示させたり外部に送信したりする出力処理を行う(ステップS123)。その後、CPUは、RAMに記憶させたカウンタ値、及び、タイマー動作をリセットする(ステップS124)。そして、CPUは、割込処理を終了する。 Further, when the interrupt signal related to the arithmetic processing is input by the timer operation, the CPU of the control unit 31 acquires the counter value stored in the RAM as shown in FIG. 3C (step S121). Then, the CPU converts this counter value into an output value (step S122). The CPU performs an output process of displaying the calculated output value on the display unit or transmitting the output value to the outside (step S123). Thereafter, the CPU resets the counter value stored in the RAM and the timer operation (step S124). Then, the CPU ends the interrupt process.
 なお、この放射線測定装置1では、値の出力間隔をカウンタ値の取得間隔より短く設定することができる。例えば、60秒の取得間隔に対し、出力間隔が10秒の場合には、10秒毎のカウンタ値を直近の6個RAMに記憶させ、当該6個の合計カウンタ値に基づいて出力値への換算を行うことが可能である。このとき、不要になった最も古いカウント値データを次のカウント値で上書き更新することで、RAMに不要なデータを記憶させることなく継続的な動作が可能となる。 In the radiation measuring apparatus 1, the value output interval can be set shorter than the counter value acquisition interval. For example, when the output interval is 10 seconds with respect to the acquisition interval of 60 seconds, the counter value for every 10 seconds is stored in the latest 6 RAMs, and the output value is calculated based on the 6 total counter values. Conversion can be performed. At this time, the oldest count value data that is no longer necessary is overwritten and updated with the next count value, thereby enabling continuous operation without storing unnecessary data in the RAM.
 以上のように、本実施形態の放射線測定装置1は、複数個の半導体センサー11~14と、制御部31と、を備え、制御部31は、半導体センサー11~14の検出弁別部26~29からそれぞれ出力される所定の検出信号を取得する。制御部31は、検出弁別部26~29のうち一つから検出信号が入力されると、他の検出弁別部からの検出信号の入力の有無を判別し、検出弁別部26~29の全てから同時に検出信号が入力されたと判別された場合には、当該検出信号をノイズと判断して放棄し、検出弁別部26~29の少なくとも一つから検出信号が同時に入力されていない場合には正当な検出信号であると判断して検出数に加算する。このような構成を備えることで、放射線測定装置1は、検出電圧を下げずに放射線検出部の検出感度を上昇させることが出来る。一方で、制御部31は、検出弁別部26~29の何れかから入力された二値データに基づき、複数の検出弁別部26~29からの入力信号の同時性を判断することで簡便にノイズ判定を行う。従って、制御部31では、容易に更なるノイズ除去を行って検出精度を向上させることが出来る。 As described above, the radiation measuring apparatus 1 according to the present embodiment includes the plurality of semiconductor sensors 11 to 14 and the control unit 31, and the control unit 31 includes the detection discriminating units 26 to 29 of the semiconductor sensors 11 to 14. The predetermined detection signals respectively output from are acquired. When a detection signal is input from one of the detection discriminating units 26 to 29, the control unit 31 determines whether or not a detection signal is input from another detection discriminating unit, and from all of the detection discriminating units 26 to 29. If it is determined that the detection signal is input at the same time, the detection signal is determined to be noise and abandoned. If the detection signal is not input simultaneously from at least one of the detection discriminators 26 to 29, the detection signal is valid. It is determined as a detection signal and added to the number of detections. By providing such a configuration, the radiation measuring apparatus 1 can increase the detection sensitivity of the radiation detection unit without reducing the detection voltage. On the other hand, the control unit 31 can easily detect noise by determining the simultaneity of the input signals from the plurality of detection discriminating units 26 to 29 based on the binary data input from any of the detection discriminating units 26 to 29. Make a decision. Therefore, the control unit 31 can easily perform further noise removal and improve the detection accuracy.
 また、この放射線測定装置1では、検出信号を割込信号として取得するので、常に入力データをサンプリングする必要が無く、制御部31のCPUに対し、定常的に大きな負荷をかけない。 Further, in this radiation measurement apparatus 1, since the detection signal is acquired as an interrupt signal, it is not always necessary to sample input data, and a large load is not constantly applied to the CPU of the control unit 31.
 また、本実施形態の放射線測定装置1において、半導体センサー11~14は、単純にディスクリミネータやコンパレータなどを用いて閾値以上の電圧波形を検知して検出信号を生成し、各々制御部31に出力すればよいだけの構成であるので、製造時の手間が簡略化される。また、放射線検出部21~24や検出弁別部26~29の動作をクロック同期させたり、高周波数でデータサンプリングを行ったりする処理が必要なく、容易にノイズ判定や放射線の検出を行うことが出来る。即ち、この放射線測定装置1は、廉価なマイコンで制御が可能となる。従って、放射線測定装置1の製造コストを低減させることが出来る。 Further, in the radiation measuring apparatus 1 of the present embodiment, the semiconductor sensors 11 to 14 simply detect a voltage waveform that exceeds the threshold by using a discriminator, a comparator, or the like to generate a detection signal, and send it to each control unit 31. Since only the output is required, the labor at the time of manufacture is simplified. In addition, it is not necessary to perform clock synchronization of the operations of the radiation detectors 21 to 24 and the detection discriminators 26 to 29 or to perform data sampling at a high frequency, and noise determination and radiation detection can be easily performed. . That is, the radiation measuring apparatus 1 can be controlled by an inexpensive microcomputer. Therefore, the manufacturing cost of the radiation measuring apparatus 1 can be reduced.
 また、この放射線測定装置1では、容易に並列配置される半導体センサー11~14の数を増減させることが出来るので、必要な感度や放射線測定装置1のサイズなどに基づいて容易に変更することが出来る。また、入力エラーの判別も容易であるので、エラー表示を容易に行うことが出来る。 Further, in this radiation measuring apparatus 1, the number of semiconductor sensors 11 to 14 arranged in parallel can be easily increased or decreased, so that it can be easily changed based on the required sensitivity, the size of the radiation measuring apparatus 1, and the like. I can do it. Further, since it is easy to determine an input error, it is possible to easily display an error.
 なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
 例えば、上記実施の形態では、検出弁別部26~29からの検出信号が全て同一に入力されているか否かについて、制御部31においてソフトウェア的に判別処理を行ったが、例えば、論理積回路を設ける事で容易に判別処理を行う構成を備えることとしても良い。
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, in the above embodiment, whether or not the detection signals from the detection discriminating units 26 to 29 are all inputted in the same way is determined by software in the control unit 31. It is good also as providing the structure which performs a discrimination | determination process easily by providing.
 また、放射線検出部21~24の具体的な構成は、上記実施の形態で示したものに限られない。例えば、フォトダイオードの代わりにフォトトランジスタを用いても良いし、チャージアンプとして他の形態を用いても良い。また、検出弁別部26~29の出力は、アクティブローであっても良い。また、放射線検出部の数は、4に限られず、感度や回路規模に応じて2以上の適宜な値に設定される。 Further, the specific configuration of the radiation detectors 21 to 24 is not limited to that shown in the above embodiment. For example, a phototransistor may be used instead of the photodiode, or another form may be used as the charge amplifier. The outputs of the detection discriminating units 26 to 29 may be active low. The number of radiation detection units is not limited to four, and is set to an appropriate value of 2 or more according to sensitivity and circuit scale.
 また、上記実施形態では、全ての検出弁別部26~29からの検出信号の同時性についてのみノイズの判断基準として示したが、所定の時間内に通常の測定範囲のカウンタ値と比較して非常に多いカウンタ値が得られた場合にもノイズであると判断しても良い。その他、サイズを大型化させず、且つ、回路構成を複雑にしない他の周知のノイズフィルタリング技術、特に、ソフトウェア的に実施可能なものを併用することとしても良い。また、ノイズ判定が連続するような場合には、エラー信号を出力したり、表示部にエラー表示をさせたりすることとしても良い。
 その他、上記実施の形態で示した具体的な数値や細部は、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
In the above embodiment, only the simultaneity of the detection signals from all the detection discriminators 26 to 29 is shown as a criterion for determining the noise. Even when a large number of counter values are obtained, it may be determined that there is noise. In addition, other known noise filtering techniques that do not increase the size and do not complicate the circuit configuration, in particular, those that can be implemented in software may be used in combination. In addition, when noise determination is continuous, an error signal may be output or an error may be displayed on the display unit.
In addition, the specific numerical values and details shown in the above embodiment can be changed as appropriate without departing from the spirit of the present invention.
産業上利用可能な分野Industrially available fields
 本発明は、放射線の検出、及び、測定を行う装置に利用可能である。 The present invention can be used for an apparatus for detecting and measuring radiation.
1     放射線測定装置
11~14    半導体センサー
21~24    放射線検出部
26~29    検出弁別部
31   制御部
C21、C31、C41、C51     キャパシタ
D1   フォトダイオード
OA11、OA21   チャージアンプ部
OP21、OP41   オペアンプ
R11、R21、R31、R41、R51    抵抗
DESCRIPTION OF SYMBOLS 1 Radiation measuring device 11-14 Semiconductor sensor 21-24 Radiation detection part 26-29 Detection discrimination part 31 Control part C21, C31, C41, C51 Capacitor D1 Photodiode OA11, OA21 Charge amplifier part OP21, OP41 Operational amplifier R11, R21, R31 , R41, R51 resistance

Claims (6)

  1.  放射線の入射を検出して所定の検出信号を出力する複数の半導体センサーと、
     当該半導体センサーの各々から出力された前記検出信号を取得する信号読取手段と、
     を備え、
     前記信号読取手段は、
     前記複数の半導体センサーのうち何れか一つから前記検出信号が入力された場合に、当該検出信号が入力されたタイミングで、他の前記半導体センサーから前記検出信号の入力が有ったか否かを判別する判別処理を行い、前記複数の半導体センサーの全てから前記検出信号が入力されたと判別された場合には、前記検出信号をノイズと判断し、前記複数の信号手段のうち少なくとも一つから前記検出信号が検出されていないと判別された場合には、正しく放射線が検出されたことによる検出信号であると判断することを特徴とする放射線測定装置。
    A plurality of semiconductor sensors that detect the incidence of radiation and output a predetermined detection signal;
    Signal reading means for acquiring the detection signal output from each of the semiconductor sensors;
    With
    The signal reading means is
    When the detection signal is input from any one of the plurality of semiconductor sensors, whether or not the detection signal is input from another semiconductor sensor at the timing when the detection signal is input. When a determination process is performed to determine that the detection signal is input from all of the plurality of semiconductor sensors, the detection signal is determined to be noise, and the detection signal is determined from at least one of the plurality of signal means. A radiation measuring apparatus, characterized in that, when it is determined that a detection signal is not detected, it is determined that the detection signal is a result of correctly detecting radiation.
  2.  前記信号読取手段は、前記判別処理を、前記検出信号の入力をトリガーとした割込処理として行うことを特徴とする請求項1記載の放射線測定装置。 2. The radiation measuring apparatus according to claim 1, wherein the signal reading means performs the discrimination process as an interrupt process triggered by an input of the detection signal.
  3.  前記複数の半導体センサーは、
     放射線が入射すると、当該放射線に応じた信号が生成されて出力される放射線検出部と、
     当該放射線検出部から出力された信号の波高が所定の閾値を超えた場合に、所定幅のパルス信号を前記検出信号として出力するノイズ識別部と
     をそれぞれ備えることを特徴とする請求項1又は2に記載の放射線測定装置。
    The plurality of semiconductor sensors are:
    When radiation is incident, a radiation detection unit that generates and outputs a signal corresponding to the radiation, and
    3. A noise identification unit that outputs a pulse signal having a predetermined width as the detection signal when the wave height of the signal output from the radiation detection unit exceeds a predetermined threshold value, respectively. The radiation measuring apparatus described in 1.
  4.  前記信号読取手段は、前記判別処理において、前記検出信号が入力されたタイミングで複数の前記ノイズ識別部から出力されている前記パルス信号の入力数を計数し、当該入力数が前記複数の半導体センサーの数と等しいか否かにより前記判別を行うことを特徴とする請求項3記載の放射線測定装置。 The signal reading means counts the number of input pulse signals output from the plurality of noise identifying units at the timing when the detection signal is input in the determination process, and the number of inputs corresponds to the plurality of semiconductor sensors. The radiation measurement apparatus according to claim 3, wherein the determination is performed based on whether or not the number is equal to the number.
  5.  放射線の入射を検出して所定の検出信号を出力する複数の半導体センサーと、
     当該半導体センサーの各々から出力された前記検出信号を取得する信号読取手段と、
     を備え、
     前記信号読取手段は、入力された前記検出信号の数を所定の時間間隔毎に計数し、
     前記計数された値が予め設定された基準値以上である場合には、当該計数された値にノイズが混入していると判断することを特徴とする放射線測定装置。
    A plurality of semiconductor sensors that detect the incidence of radiation and output a predetermined detection signal;
    Signal reading means for acquiring the detection signal output from each of the semiconductor sensors;
    With
    The signal reading means counts the number of the input detection signals every predetermined time interval,
    When the counted value is equal to or greater than a preset reference value, it is determined that noise is mixed in the counted value.
  6.  情報を表示する表示部を備え、
     前記信号読取手段は、前記計数された値に前記ノイズが混入しているとの判断が予め設定された基準回数以上連続してなされた場合には、前記表示部にエラー表示を行わせることを特徴とする請求項5記載の放射線測定装置。
    A display unit for displaying information;
    The signal reading unit causes the display unit to display an error when it is determined that the noise is mixed in the counted value continuously for a predetermined reference number or more. The radiation measuring apparatus according to claim 5, characterized in that:
PCT/JP2012/052334 2012-02-02 2012-02-02 Radiation measuring device WO2013114599A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013556150A JP5760100B2 (en) 2012-02-02 2012-02-02 Radiation measurement equipment
PCT/JP2012/052334 WO2013114599A1 (en) 2012-02-02 2012-02-02 Radiation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052334 WO2013114599A1 (en) 2012-02-02 2012-02-02 Radiation measuring device

Publications (1)

Publication Number Publication Date
WO2013114599A1 true WO2013114599A1 (en) 2013-08-08

Family

ID=48904675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052334 WO2013114599A1 (en) 2012-02-02 2012-02-02 Radiation measuring device

Country Status (2)

Country Link
JP (1) JP5760100B2 (en)
WO (1) WO2013114599A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10679146B2 (en) 2014-07-11 2020-06-09 Microsoft Technology Licensing, Llc Touch classification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303787A (en) * 1991-03-31 1992-10-27 Shimadzu Corp Radiation position detector
JP2003057354A (en) * 2001-08-13 2003-02-26 Mitsubishi Electric Corp Radiation monitor
JP2004301601A (en) * 2003-03-31 2004-10-28 Hitachi Ltd alpha-RAY MEASURING DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303787A (en) * 1991-03-31 1992-10-27 Shimadzu Corp Radiation position detector
JP2003057354A (en) * 2001-08-13 2003-02-26 Mitsubishi Electric Corp Radiation monitor
JP2004301601A (en) * 2003-03-31 2004-10-28 Hitachi Ltd alpha-RAY MEASURING DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10679146B2 (en) 2014-07-11 2020-06-09 Microsoft Technology Licensing, Llc Touch classification

Also Published As

Publication number Publication date
JP5760100B2 (en) 2015-08-05
JPWO2013114599A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
US7592603B2 (en) Combined radiation dosimeter and rate meter
JP5611357B2 (en) Radiation measurement equipment
JP5681765B2 (en) Radiation measurement equipment
US20080191128A1 (en) Method of Identifying the Energy Range of Radiation from Radioactive Material and System for Detecting the Same
US20070262251A1 (en) Method of resolving ambiguity in photon counting-based detectors
CN107450092B (en) For measuring the device of photon information
JP5760100B2 (en) Radiation measurement equipment
US11204429B2 (en) Electronic radiation dosimeter
JP2013519889A (en) Online measurement method of ionizing radiation
US11635531B2 (en) Apparatus for measuring photon information and photon measurement device
JP2000162366A (en) Reactor startup monitor and core power monitor
Rahman et al. Arduino based radiation survey meter
CN102457268B (en) Implementation method for 32-bit capture register
JP7120608B2 (en) Radiation measuring device
US20040200968A1 (en) Apparatus and method for detecting alpha-ray
EP3226037B1 (en) An xrf analyzer with improved resolution by using micro-reset
JP6718284B2 (en) Signal processing circuit, coulomb counter circuit, electronic device
JP2007187682A (en) Radiation measuring apparatus
JP6325343B2 (en) Radiation measurement equipment
US11194061B2 (en) Optical detector and optical detection device
JP2001194460A (en) Radiation monitor
CN112987070A (en) Detection signal processing method, device and circuit
US10353081B2 (en) Gamma system count loss correction with virtual pulse injection
JP2000098038A (en) Radiation detector and radiation monitor
KR101198953B1 (en) The simultaneous measuring method and equipment of neutron and gamma-ray dosage using one PIN diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867711

Country of ref document: EP

Kind code of ref document: A1