WO2013111447A1 - Coordinate input device and coordinate input system - Google Patents

Coordinate input device and coordinate input system Download PDF

Info

Publication number
WO2013111447A1
WO2013111447A1 PCT/JP2012/080855 JP2012080855W WO2013111447A1 WO 2013111447 A1 WO2013111447 A1 WO 2013111447A1 JP 2012080855 W JP2012080855 W JP 2012080855W WO 2013111447 A1 WO2013111447 A1 WO 2013111447A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
coordinate input
guide plate
input device
Prior art date
Application number
PCT/JP2012/080855
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 訓明
謙一郎 三上
藤原 恒夫
直樹 芝
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013111447A1 publication Critical patent/WO2013111447A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03542Light pens for emitting or receiving light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0428Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by sensing at the edges of the touch surface the interruption of optical paths, e.g. an illumination plane, parallel to the touch surface which may be virtual

Definitions

  • the present invention relates to an optical coordinate input device and a coordinate input system using a detected object such as a finger or a stick-shaped operation member pen such as a touch pen and a stylus pen, and more specifically, a plurality of detected objects. It relates to identification when using the body simultaneously.
  • An optical coordinate input device or position detection device comprising a bar-shaped operation member (hereinafter referred to as “pen”) such as a touch pen or a stylus pen, or a light guide member that receives coordinate input by a finger or the like, and a coordinate input device or
  • An input system such as a tablet or a touch panel in which a position detection device and a display panel are combined is known.
  • the coordinate input device or the position detection device obtains the coordinates of the approached or touched position of the pen or finger by bringing the pen or finger close to or in contact with the coordinate input area of the coordinate input device.
  • the obtained coordinates are for displaying an object such as a point image or a straight line image on a display screen such as a liquid crystal display separate from the coordinate input device or a liquid crystal panel integrally laminated on the coordinate input device. Used for etc.
  • the position detection device 100 disclosed in Patent Document 1 includes a light guide plate 101 made of a translucent material, and X and Y directions from the side surface of the light guide plate 101.
  • Each light source 102 such as a semiconductor infrared laser, in which light is incident in a plurality of rows in the direction
  • a lighting control unit 103 that controls lighting by sequentially scanning each light source 102, and when the light guide plate 101 is touched,
  • the touch pen 110 is brought into contact with the light guide plate 101 to introduce light that guides light inside the light guide plate 101, and the introduction portion 111 introduces the touch pen 110.
  • the coordinate position where the touch pen 110 contacts the light guide plate 101 is calculated.
  • the light sources 102 are sequentially controlled to light from left to right and from bottom to top of the light guide plate 101.
  • the introduction part 111 of the touch pen 110 is brought into close contact with the light guide plate 101, whereby the total reflection condition of the light totally reflected on the surface of the light guide plate 101 is satisfied. It collapses and is introduced into the introduction part 111.
  • the light introduced into the introduction unit 111 is detected by the detection unit 112 and outputs a detection signal. Based on this output, the coordinate calculation unit 113 calculates the coordinates of the contact point.
  • the two-dimensional coordinate position on the light guide plate 101 can be calculated by calculating from which light source 102 the detected light beam is detected from the detection signal output from the detection unit 112. .
  • the calculated two-dimensional coordinate position is generated by the identification signal generation unit 114 so that a different signal frequency is generated for each of the touch pens 110 and 110, and is transmitted from the transmission unit 115 to a receiving device (not shown) at the signal frequency. It has become.
  • two types of touch pens 110 and 110 can be used, and the identification is performed by transmission using different signal frequencies.
  • the coordinate detection apparatus 200 includes two types of stylus pens 210a and 210b each having a light emitting unit 211 to touch a position on the touch panel 201, and light emitting units of the stylus pens 210a and 210b.
  • Detectors 231a and 232a for the stylus pen 210a that detect light emitted from the stylus pen and detect respective positions based on the triangulation method, and detectors 231b and 232b for the stylus pen 210b. .
  • the light emitting unit 211 emits red light and the detection unit 231a.
  • -232a is provided with a red light transmission filter 221a that transmits red light and cuts blue light.
  • the light emitting unit 211 emits blue light
  • the detection units 231b and 232b transmit blue light and cut red light. Is provided.
  • two types of stylus pens 210a and 210b can simultaneously identify and detect two coordinates.
  • the touch panel 300 disclosed in Patent Document 3 includes a light guide plate 301, a light source 302 that makes light incident on the light guide plate 301, and a side surface of the light guide plate 301.
  • the light from the light source 302 scattered by the detected object 310 is imaged on the light receiving elements 304 and 305 between the light receiving elements 304 and 305 arranged in part and the side surface of the light guide plate 301 and the light receiving elements 304 and 305.
  • light absorbing means 308 is disposed on the side surface of the light guide plate 301 on which the light receiving elements 304 and 305 are disposed, and the light receiving elements 304 and 305 are outside the irradiation range of the light source 302 as shown in FIG. Has been placed.
  • the coordinate detection principle of the touch panel 300 is as follows.
  • the light emitted from the light source 302 disposed on the side surface of the light guide plate 301 propagates while repeating total reflection inside the light guide plate 301.
  • the light receiving elements 304 and 305 are arranged outside the irradiation range of the light source 302, they do not receive propagating light propagating through the light guide plate 301.
  • the detection object 310 such as a finger is touched on the transparent light guide plate 301, the propagation light is disturbed and scattered light is generated.
  • a part of the scattered light also propagates in the direction of the light receiving elements 304 and 305 and is received by the light receiving elements 304 and 305 as shown in FIG. In FIG.
  • the vertical axis represents the signal intensity
  • the horizontal axis represents the pixel numbers of the light receiving elements 304 and 305, respectively.
  • JP 2008-158616 A (published July 10, 2008) JP 2003-256123 A (published on September 10, 2003) JP 2009-258967 A (published on November 5, 2009)
  • the position detection apparatus 100 of the method disclosed in Patent Document 1 identifies the two types of touch pens 110 and 110 by transmitting at different signal frequencies. There is no problem with the interference. However, since a plurality of light sources corresponding to each coordinate and a plurality of light receiving units that receive light from the light sources are required on the two side surfaces of the light guide plate 101, the cost of the light sources and the light receiving units is increased.
  • each light emitted from the pen tips of a plurality of pens that emit light of different wavelengths propagates in space.
  • An optical filter is provided in front of the imaging device that images the propagation light, and each imaging device calculates the incident angle of the propagation light by imaging light of a single wavelength. Find the coordinate position of.
  • two pens are lined up in the line-of-sight direction of the image sensor, light emitted from a pen located behind the image sensor is blocked by a pen in front or a finger / hand holding the pen. The position cannot be detected.
  • the coordinate detection apparatus 200 includes two types of detection units: a pair of detection units 231a and 232a for the stylus pen 210a and a pair of detection units 231b and 232b for the stylus pen 210b.
  • Each of the detection units 231a and 232a and the detection units 231b and 232b is provided with a different light transmission film in front of a detector such as a CCD.
  • a CCD a detector
  • the present invention has been made in view of the above-described conventional problems, and its object is to use each detected object without being affected by each other detected object when a plurality of detected objects are used simultaneously. It is an object of the present invention to provide a coordinate input device and a coordinate input system that perform simple and reliable identification and avoid an increase in cost.
  • a coordinate input device includes a plate-shaped light guide member, at least two light receiving portions that receive propagating light propagating through the light guide member, and a surface of the light guide member.
  • Detecting means for obtaining coordinates of a contact position on the surface of the light guide member in the detected body based on an output of the light receiving unit that detects propagation light based on the contact when the detected body is contacted
  • the detection object includes at least two first detection objects and a second detection object, and the first propagation light based on the contact of the first detection object and the above detection object
  • the second propagating light based on the contact of the second object to be detected has a wavelength different from that of the second propagating light, and the light guide member linearly transmits the first propagating light or the second propagating light to the two light receiving portions.
  • An optical path changing unit that emits light is provided, and the light guide member and each light receiving member
  • the first filter corresponding to the wavelength of the first propagating light and the second filter corresponding to the wavelength of the second propagating light are emitted in the linear form, and It is characterized by being arranged side by side so as to traverse the outgoing light of the second propagation light.
  • the coordinate input device includes a plate-shaped light guide member, at least two light receiving portions that receive propagating light propagating through the light guide member, and a detected object on the surface of the light guide member.
  • Detecting means for obtaining coordinates of a contact position of the detected body with respect to the surface of the light guide member based on an output of the light receiving unit that detects propagation light based on the contact.
  • the detection objects are in the line-of-sight direction of the light receiving unit.
  • the image of the detected object located in the back as viewed from the light receiving unit and the image of the detected object in the front overlap each other, which causes a problem that the position cannot be detected by the triangulation method.
  • a pair of first light receiving unit and second light receiving unit that generate light of different wavelengths for two detected objects and are indispensable for each detected object. If two sets are prepared, the number of parts of the apparatus increases and the cost increases.
  • the light receiving unit is provided with only at least one pair of the first light receiving unit and the second light receiving unit that are essential in the triangulation method. Not. And in order to identify each to-be-detected body in a 1st light-receiving part and a 2nd light-receiving part, it has the following structures.
  • the first propagation light based on the contact of the first detection object and the second propagation light based on the contact of the second detection object have different wavelengths.
  • the light guide member is provided with an optical path conversion unit that emits the first propagation light or the second propagation light to the two light receiving units in a linear manner.
  • a first filter corresponding to the wavelength of the first propagation light and a second filter corresponding to the wavelength of the second propagation light are emitted linearly between the optical paths of the light guide member and each light receiving unit.
  • the first propagation light and the emission light of the second propagation light are arranged side by side so as to cross each other.
  • the emitted light of the first propagation light based on the contact of the first detection object is emitted linearly to the two light receiving units through the optical path changing unit and the first filter.
  • the emitted light of the second propagation light based on the contact of the second detection object is also emitted linearly to the two light receiving parts via the optical path changing part and the second filter, respectively.
  • the 1st filter and the 2nd filter are arranged side by side so that the outgoing light of the 1st propagation light and the 2nd propagation light emitted in the shape of a line may be crossed, respectively.
  • two images of a linear image of the outgoing light of the first propagation light and a linear image of the outgoing light of the second propagation light appear as parallel lines in the light receiving unit.
  • the two lines appear in a staggered manner corresponding to the passage of the first filter and the second filter.
  • the first detection body is positioned in front of the light receiving section in the light receiving section.
  • the first propagating light based on the contact and the first propagating light based on the contact of the second detected object located in the back as viewed from the light receiving unit are respectively divided into the same line on the same line. appear.
  • each light receiving part one side and both angles between the light receiving parts in the first detected object and the second detected object can be obtained, and the first detected object and the second detected object are obtained by triangulation.
  • the plane coordinates of the position on the light guide member in contact with the detection target can be detected.
  • the third filter is disposed on the first filter and the second filter, and the third propagation light based on the contact of the third detected body is further emitted. Since the incident light also crosses the third filter, similarly, the contact position of the third detected object can be easily measured. The same applies even when there are four or more detected objects.
  • the first propagating light based on the contact of the first detected body and the second propagating light based on the contact of the second detected body do not use the air above the light guide member as an optical path.
  • the inside of the light guide member is used as an optical path.
  • a coordinate input device that can easily and reliably identify each detected object and avoid an increase in cost without being affected by each other detected object. can do.
  • the first detection body and the second detection body each have a light emitting unit that makes light of different wavelengths incident on the light guide member by contacting the surface of the light guide member.
  • a light-emitting pen, and the light-receiving portion is incident on the light guide member from the light-emitting portions of the first detection body and the second detection body and propagates through the light guide member. Light emitted from the light guide member in the first propagation light and the second propagation light is received.
  • the 1st to-be-detected body and the 2nd to-be-detected body each have the light emission part which has a light emission part which injects light of a mutually different wavelength into this light guide member by contacting the surface of a light guide member. It is made up of.
  • first light receiving portion and second light receiving portion that generate light of different wavelengths for two light emitting pens and are essential for each light emitting pen. If two sets are prepared, the number of parts of the apparatus increases and the cost increases.
  • the light receiving unit includes at least one set of the first light receiving unit and the first light receiving unit essential for triangulation. Only the second light receiving part is provided. And in order to identify the light emission from each light emission pen in a 1st light-receiving part and a 2nd light-receiving part, it has the following structures.
  • each light emitting pen makes light of a different wavelength enter the light guide member by contacting the surface of the light guide member.
  • an optical path changing unit that emits the first propagating light or the second propagating light that is incident from each light-emitting pen and guides the inside of the light guiding member to the two light receiving units, respectively, in a linear shape.
  • a first filter corresponding to the wavelength of the first propagation light and a second filter corresponding to the wavelength of the second propagation light are emitted linearly between the optical paths of the light guide member and each light receiving unit.
  • the first propagation light and the emission light of the second propagation light are arranged side by side so as to cross each other.
  • the emitted light of the first propagation light emitted from one light-emitting pen and guided through the light guide member is linearly transmitted to the two light receiving units via the optical path conversion unit and the first filter.
  • the emitted light of the second propagating light emitted from the other light-emitting pen and guided through the light guide member is linearly connected to the two light receiving units via the optical path changing unit and the second filter.
  • the 1st filter and the 2nd filter are arranged side by side so that the outgoing light of the 1st propagation light and the 2nd propagation light emitted in the shape of a line may be crossed, respectively.
  • two images of a linear image of the outgoing light of the first propagation light and a linear image of the outgoing light of the second propagation light appear as parallel lines in the light receiving unit.
  • the two lines appear in a staggered manner corresponding to the passage of the first filter and the second filter.
  • the light receiving unit receives light emitted from one light emitting pen located in front of the light receiving unit, and from the light receiving unit.
  • Lights emitted from other light-emitting pens that are located at the back of the screen appear simultaneously and on the same line as divided lines.
  • one light-emitting pen and another light-emitting pen in each light-receiving unit can determine one side and both angles between the light-receiving units, and triangulation method can be used in one light-emitting pen and another light-emitting pen.
  • the plane coordinates of the position on the light guide member in contact with the light-emitting pen can be detected. If there are three light-emitting pens, the third filter is disposed on the first filter and the second filter, and the light emitted from other light-emitting pens crosses the third filter.
  • the contact position of another light-emitting pen can be easily measured. The same applies even when there are four or more light emitting pens.
  • the light emitted from the light emitting unit from the light emitting pen does not use the air above the light guide member as an optical path, but uses the inside of the light guide member as an optical path. For this reason, since the light path of the light-emitting pen is shielded by a finger or the like having the light-emitting pen and no interpolation processing is performed to obtain the coordinate position of the light-emitting pen, detection can be performed reliably and accurately. Furthermore, since the number of light receiving parts is not increased, each light emitting pen is easily identified, and there is no increase in cost.
  • each light-emitting pen is easily, reliably, and accurately identified without being affected by each other's light-emitting pens or fingers operating the light-emitting pen, thereby increasing costs.
  • a coordinate input device to avoid can be provided.
  • a light scattering member for allowing diffused light to enter the light guide member is provided at the tip of each light emitting pen.
  • each light emitting pen when the light emitted from the light emitting portion of each light emitting pen is incident on the light guide member, the diffused light can be incident on the light scattering member. As a result, light is guided radially from the contact position of each light-emitting pen to the light guide member inside the light guide member, and a sufficient amount of received light can be obtained in any light receiving part.
  • the intensity of the light emitted from the light emitting unit of each light emitting pen is adjusted so that each detection sensitivity becomes the same according to the light receiving sensitivity in the wavelength region of the light receiving unit.
  • each detection sensitivity becomes the same according to the light receiving sensitivity in the wavelength region of the light receiving unit.
  • it is.
  • the light receiving sensitivity tends to decrease as it goes to the long wavelength side. For this reason, a short wavelength signal may be detected strongly.
  • the intensity of the light emitted from the light emitting unit of each light emitting pen is adjusted so that the respective detection sensitivities are the same according to the light receiving sensitivity in the wavelength region of the light receiving unit. As a result, it is possible to avoid the strong detection of a signal having a specific wavelength and to make the detection sensitivity uniform.
  • the wavelength of the light emitted from the light emitting unit of each light emitting pen is such that the interval between the peak wavelengths of each light is farther than the peak half-value width in the light having the larger peak width.
  • the wavelength of the light emitted from the light emitting portion of each light emitting pen is such that the interval between the peak wavelengths of each light is separated from the peak half-value width in the light having the larger peak width. Are different from each other. As a result, the wavelength of each light emitted from the light emitting unit of each pen can be sufficiently separated and identified.
  • a light source that allows illumination light to enter from an end portion of the light guide member
  • the first detected body contacts the surface of the light guide member, whereby the light guide member has a light source.
  • the second detected body is made of a light emitting pen having a light emitting part that makes light having a wavelength different from that of the illumination light incident upon contact with the surface of the light guide member.
  • the light receiving unit is illumination light propagating in the light guide member and the first propagating light that is the scattered light by the first detected body and the light from the light emitting unit by the second detected body.
  • the position of contact with the surface of the light guide member in the detected body The coordinates of the contact position of the second detected body with respect to the surface of the light guide member based on the output of the light receiving unit that receives the second propagation light due to the contact of the second detected body with the light guide member It is characterized by seeking.
  • the first detected body scatters the illumination light propagating through the light guide member by contacting the surface of the light guide member, while the second detected body is the light guide member. It comprises a light-emitting pen having a light-emitting portion that makes light having a wavelength different from that of the illumination light incident upon contact with the surface of the light.
  • the second object to be detected is composed of a light-emitting pen having a light-emitting portion that makes light incident upon contact with the surface of the light guide member.
  • the coordinates of the contact position of the light-emitting pen can be obtained based on the detection principle of the light-emitting pen described above.
  • the light receiving unit receives the second propagation light that is light from the light emitting unit by the second detection target.
  • the detecting means detects the position of the contact of the second detected body with the surface of the light guide member based on the output of the light receiving unit that receives the second propagation light due to the contact of the second detected body with the light guiding member. Find the coordinates.
  • the first detected body scatters the illumination light propagating through the light guide member by coming into contact with the surface of the light guide member, and corresponds to a detected body such as a finger.
  • a light source for making illumination light incident from the end of the light guide member is provided.
  • the light receiving unit receives the illumination light propagating in the light guide member and the first propagation light which is the scattered light from the first detected body.
  • the detecting means detects a change in the output intensity of the light receiving unit based on the scattering of the illumination light due to the contact of the first detected body with the light guiding member, and moves to the surface of the light guiding member in the first detected body. Find the coordinates of the contact position.
  • Patent Document 3 the idea is changed with respect to Patent Document 3, and in Patent Document 3, the light receiving peak of scattered light due to the presence of the detected object is detected, whereas in the present invention, the light receiving means is used. In a state where a certain amount of received light is given, a change in output intensity at the light receiving unit is detected based on light scattering due to the presence of the detection target.
  • an optical coordinate input device using a light guide member can provide a coordinate input device that can detect the coordinate position of a detection object such as a finger even when applied to a large touch panel.
  • the first detected body made of a finger or the like and the second detected body made of a light emitting pen are used at the same time, and the first detected body and the second detected body are detected.
  • the image of the detection object located in the back as viewed from the light receiving unit and the image of the object to be detected in front of each other overlap, so that there is a problem that the position cannot be detected by the triangulation method.
  • the two first detection objects and the second detection object In order to solve this problem, for example, light having different wavelengths is used for the two first detection objects and the second detection object, and the first detection object and the second detection object are used.
  • Providing two essential pairs of the first light receiving part and the second light receiving part increases the number of parts of the apparatus and increases the cost.
  • the light receiving section is at least one set of the first light receiving section and the second light receiving section essential in the triangulation method. It is only provided. And in order to identify a 1st to-be-detected body and a 2nd to-be-detected body in a 1st light-receiving part and a 2nd light-receiving part, it has the following structures.
  • the second object to be detected is composed of a light-emitting pen having a light-emitting portion that makes light having a wavelength different from the illumination light from the light source incident upon contact with the surface of the light guide member.
  • a first filter corresponding to the wavelength of the first propagation light and a second filter corresponding to the wavelength of the second propagation light are disposed between the optical paths between the light guide member and each of the light receiving units. Are arranged side by side so as to cross the emitted light of the first propagation light and the second propagation light emitted in a shape.
  • the emitted light of the first propagation light based on the contact of the first detection object is emitted linearly to the two light receiving units through the optical path changing unit and the first filter.
  • the emitted light of the second propagation light based on the contact of the second detection object is also emitted linearly to the two light receiving parts via the optical path changing part and the second filter, respectively.
  • the first filter and the second filter are arranged side by side so as to cross the emitted light of the first propagation light and the second propagation light, which are emitted linearly.
  • the light receiving unit has a linear image of the emitted light of the first propagation light and the emitted light of the second propagation light.
  • Two images with a linear image appear as parallel lines. The two lines appear in a staggered manner corresponding to the passage of the first filter and the second filter.
  • each image appears as an image of a line radially extending around the center of the fan shape.
  • the light receiving section of the first detected body positioned in front of the light receiving section
  • the first propagating light based on the contact and the second propagating light based on the contact of the second detected object located in the back as viewed from the light receiving unit appear as divided lines on the same line at the same time.
  • each light receiving part one side and both angles between the light receiving parts in the first detected object and the second detected object can be obtained, and the first detected object and the second detected object are obtained by triangulation.
  • the plane coordinates of the position on the light guide member in contact with the detection target can be detected.
  • the third filter is disposed on the first filter and the second filter, and the third propagation light based on the contact of the third detected body is further emitted. Since the incident light also crosses the third filter, similarly, the contact position of the third detected object can be easily measured. The same applies even when there are four or more detected objects.
  • the first propagating light based on the contact of the first detected body and the second propagating light based on the contact of the second detected body do not use the air above the light guide member as an optical path.
  • the inside of the light guide member is used as an optical path.
  • a coordinate input device that can easily and reliably identify each detected object and avoid an increase in cost without being affected by each other detected object. can do.
  • the intensity of each light emitted from the light source and the light emitting part of the second detected object has the same detection sensitivity according to the light receiving sensitivity in the wavelength region of the light receiving part. It is preferable that the adjustment is performed.
  • the light receiving sensitivity tends to decrease as it goes to the long wavelength side. For this reason, a short wavelength signal may be detected strongly.
  • the intensity of each light emitted from the light source and the light emitting part of the second object to be detected is equal to each other depending on the light receiving sensitivity in the wavelength region of the light receiving part. It has been adjusted. As a result, it is possible to avoid the strong detection of a signal having a specific wavelength and to make the detection sensitivity uniform.
  • the wavelength of each light emitted from the light source and the light emitting part of the second detected object is the peak half-value width in the light having the larger peak width in the interval between the peak wavelengths of each light. It is preferred that they are different from each other so that they are farther apart.
  • the wavelength of each light emitted from the light source and the light emitting part of the second detection object is such that the interval between the peak wavelengths of each light is larger than the peak half-value width in the light having the larger peak width. As they are apart, they are different from each other. As a result, the wavelength of each light emitted from the light source and the light emitting part of the second detected object can be sufficiently separated and identified.
  • the first filter and the second filter are provided continuously and integrally.
  • the boundary between the first filter and the second filter is an arc.
  • the shape of the optical path conversion part provided in the light guide member can be made into a shape in which the corner part of the light guide member is cut obliquely with a conical surface or a hyperboloid, the optical path conversion part can be easily formed. Can be formed.
  • a coordinate input system is a coordinate input system including the coordinate input device described above, and is characterized by including an image display panel.
  • the coordinate input device can function as a touch panel for pen input and finger input while viewing an image on the image display panel. Therefore, for example, when a plurality of light-emitting pens and fingers are used, coordinates that easily and reliably identify each light-emitting pen and finger without being affected by the light-emitting pens and fingers and avoid an increase in cost.
  • a coordinate input system including an input device can be provided.
  • the detection target includes at least two first detection target and second detection target, and the first detection target is based on the contact of the first detection target.
  • the propagating light and the second propagating light based on the contact of the second object to be detected have different wavelengths, and the light guide member transmits the first propagating light or the second propagating light to the two light receiving portions.
  • An optical path conversion unit that emits in a linear shape is provided, and a first filter corresponding to the wavelength of the first propagation light and the second propagation light are disposed between the light paths of the light guide member and the light reception units.
  • the second filter corresponding to the wavelength is arranged side by side so as to cross the outgoing light of the first propagation light and the second propagation light emitted in the above-described linear shape.
  • the coordinate input system of the present invention is a coordinate input system including the coordinate input device described above, and includes an image display panel.
  • the coordinate input device can easily and reliably identify each object to be detected without being affected by each other object to be detected, and avoid an increase in cost. And there is an effect that a coordinate input system is provided.
  • FIG. 3 shows an overall configuration of the coordinate input system, and is a cross-sectional view taken along line AA in FIG. 2. It is a top view which removes and shows the housing
  • FIG. 7 is a perspective view showing an overall configuration of a coordinate input system including a coordinate input device according to another embodiment of the coordinate input device and the coordinate input system of the present invention.
  • FIG. 11 shows an overall configuration of the coordinate input system, and is a cross-sectional view taken along line BB in FIG. 10.
  • (A) is a top view which shows the output image of an image pick-up element when a finger is not contacting the light guide plate
  • (b) is a top view which shows the output image of an image pick-up element when a finger is contacted to the light guide plate It is.
  • (A) is a perspective view which shows the imaging condition in the imaging unit in the said coordinate input device
  • (b) is a top view which shows the image in the image pick-up element of the said imaging unit.
  • (A) is a perspective view which shows the whole structure at the time of using a finger and a touch pen together simultaneously in the said coordinate input device
  • (b) is an output of an image pick-up element when a finger and a touch pen are contacted with the light-guide plate.
  • FIG. 10 is a perspective view showing an overall configuration of a coordinate input device according to another embodiment of the coordinate input device of the present invention.
  • the modification of the said coordinate input device is shown, Comprising: It is a top view which shows the whole structure of a coordinate input device.
  • (A) is a top view which shows the structure of the position detection apparatus as a conventional coordinate input device
  • (b) is sectional drawing which shows the structure of the said position detection apparatus
  • (c) is the housing
  • (A) is a top view which shows the structure of the coordinate detection apparatus as another conventional coordinate input device
  • (b) is sectional drawing which shows the structure of the said coordinate detection apparatus.
  • (A) is a perspective view which shows the structure of the position detection apparatus as another conventional coordinate input device
  • (b) is a top view which shows the structure of the principal part of the said position detection apparatus.
  • (A) is a top view which shows the detection principle of the said conventional position detection apparatus
  • (b) is a wave form diagram which shows the optical signal of the light receiving element in the said position detection apparatus.
  • FIG. 2 is a perspective view showing the configuration of the coordinate input system.
  • the coordinate input system 1 of the present embodiment includes a liquid crystal display panel 2 as an image display panel, and a pen input device 3A as a coordinate input device provided on the upper side of the liquid crystal display panel 2. It has.
  • the liquid crystal display panel 2 has a liquid crystal layer sandwiched between a pair of substrates (not shown), and each substrate is provided with at least various electrodes for changing the orientation of liquid crystal molecules of the liquid crystal layer by applying a voltage. . Then, by changing the orientation of the liquid crystal molecules by applying a voltage, the amount of light transmitted through the liquid crystal layer of each pixel is adjusted to perform a desired display.
  • a conventionally known liquid crystal display panel can be used as the configuration of the liquid crystal display panel 2.
  • a pen and a touch pen as a detection object are placed on a light guide plate 10 described later of a pen input device 3 ⁇ / b> A provided on the upper side of the liquid crystal display panel 2.
  • a pen and a touch pen as a detection object are placed on a light guide plate 10 described later of a pen input device 3 ⁇ / b> A provided on the upper side of the liquid crystal display panel 2.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • the pen input device 3A includes a light guide plate 10 as a rectangular transparent light guide member, imaging units 20 and 30 disposed at both ends of one side of the light guide plate 10, and a light guide plate. 10 and a touch pen 40 as a light emitting pen.
  • the light guide plate 10 is made of a single flat plate made of a translucent material, and is disposed so as to overlap the display surface side of the liquid crystal display panel 2.
  • the size of the light guide plate 10 is a quadrangle having substantially the same size as the liquid crystal display panel. Specifically, as shown in FIG. 2, one side where the imaging units 20 and 30 are disposed is configured to be larger than the liquid crystal display panel 2. Accordingly, at least a part of the imaging units 20 and 30 can be disposed on the back side of the light guide plate 10. As a result, an increase in size of the pen input device 3A in the direction of spreading along the contact surface to the light guide plate 10 in the touch pen 40 is suppressed, contributing to the realization of a compact size of the pen input device 3A.
  • notches 11 as concave conical surface optical path conversion portions are formed at two corners of the light guide plate 10 where the imaging units 20 and 30 are disposed, respectively.
  • the angle ( ⁇ shown in FIG. 3) formed by the conical surface of the notch 11 and the back surface of the light guide plate 10 is 45 degrees or less, and 30 degrees or 45 degrees is selected.
  • the conical notch 11 is provided with a mirror coating 11a.
  • the optical path of light propagating through the inside of the light guide plate 10 to the notch 11 is changed by the notch 11 below the light guide plate 10, that is, toward the back surface of the light guide plate 10.
  • the optical path can be changed below the light guide plate 10 by the conical surface of the notch 11. That is, the light guide plate 10 does not have to be a perfect quadrangle, and may be a substantial quadrangle such that corners are notched or corners are curved as described above.
  • the light conversion member is provided as the notch 11 in the corner portion of the light guide plate 10, the light conversion member is prevented from protruding from the light guide plate 10.
  • the thickness of the light guide plate 10 is mainly 1 to 3 mm. However, it may be thicker than this. In the present embodiment, the thickness is, for example, 2 mm.
  • a material of the light guide plate 10 for example, acrylic is used, and polycarbonate or glass may be used.
  • the size of the quadrilateral of the light guide plate 10 can be, for example, about 1 m square, but is not limited thereto.
  • the imaging units 20 and 30 are disposed immediately below the conical cutout 11 in the light guide plate 10. In other words, the imaging units 20 and 30 are disposed at two locations separated from each other at the end of the light guide plate 10. In addition, the imaging units 20 and 30 do not protrude above the surface of the light guide plate 10.
  • the imaging unit 20 includes a lens 21, a filter 22, and an imaging element 23 as a light receiving unit.
  • the imaging unit 30 includes a lens 31, a filter 32, and an imaging element 33 as a light receiving unit.
  • the light receiving surfaces of the image sensors 23 and 33 are arranged so as to be parallel to the surface of the light guide plate 10.
  • the image sensors 23 and 33 are two-dimensional image sensors.
  • the imaging units 20 and 30 are connected to the light guide plate 10 and have a structure in which light that does not propagate through the light guide plate 10 is not coupled to the imaging elements 23 and 33.
  • the notch 11 is configured in a conical surface shape, but the present invention is not limited to this, and may be configured in a polygonal surface shape.
  • FIG. 4 is a plan view showing the configuration of the touch pen 40 of the present embodiment.
  • FIG. 5 is a cross-sectional view showing the configuration of the light scattering member provided at the tip of the touch pen.
  • the touch pen 40 is an operation member called a so-called touch pen or stylus pen.
  • the touch pen 40 introduces light emitted from the light emitting element 42 a into the light guide plate 10 through the light emitting element 42 a that emits light and the light emitted from the light emitting element 42 a into the outer casing 41.
  • the light-emitting part 42 which has the introduction part 42b to make, the power supply device 43, and the control apparatus 44 are stored.
  • a light scattering member 45 that diffuses light is fixedly attached to the introduction portion 42b on the light emitting tip side of the touch pen 40.
  • the light scattering member 45 is made of a resin containing a light diffusing material. Glass beads can be used as the light diffusion material. Moreover, as said resin, fluororesins, such as polytetrafluoroethylene, or a silicon rubber can be used, for example, and it is preferable to have elasticity.
  • the elastic material when the tip of the touch pen 40, that is, the light scattering member 45 is used in contact with the light guide plate 10 of the pen input device 3A, the surface of the light guide plate 10 is not damaged, and the contact portion is slightly touched by the contact. Can be deformed to increase the contact area with the surface of the light guide plate 10. As a result, as shown in FIG. 5, the amount of light introduced to the surface of the light guide plate 10 can be increased. That is, light from the touch pen 40 can be incident in a plurality of radial directions with respect to the depth direction inside the light guide plate 10.
  • the light exit surface of the light scattering member 45 has a curved surface as shown in FIG. That is, the light scattering member 45 is generally hemispherical and has a diameter of, for example, 2.5 to 5.5 mm. When the diameter is smaller than 2.5, there is a possibility that the sufficiently diffused light cannot be formed. Further, when the light scattering member 45 is used in contact with the light guide plate 10 of the pen input device 3A, there is a possibility that light that can ensure a sufficient contact area is not sufficiently introduced into the surface of the light guide plate 10. On the other hand, when the diameter exceeds 5.5 mm, the diffused light may be excessively spread and it may be difficult to perform accurate position detection.
  • the curved surface does not need to be configured with a uniform curvature, and the curvature may be different between the region that is the most distal end portion of the touch pen 40 and the region that surrounds the region.
  • the curved surface may be provided with a fine uneven shape on the surface. Light can be diffused by this fine uneven shape.
  • the contact area with the light guide plate 10 is reduced by this fine uneven shape, and the frictional force when sliding is reduced. Therefore, a smooth writing taste, that is, a touch feeling can be realized.
  • the light scattering member 45 is constituted by a single resin without including a light diffusing material, and the fine concavo-convex shape in the region facing the light guide plate 10 in the resin.
  • a light diffusion effect By providing the light diffusion effect, a light diffusion effect can be achieved. In other words, if a fine uneven shape is formed in addition to including the light diffusion material, the light diffusion effect can be further enhanced.
  • the fine uneven shape can be formed by molding, but is not limited to this method.
  • the light emitting surface of the light scattering member 45 is subjected to wear resistance processing. This is unnecessary when the light scattering member 45 is made of a fluororesin such as polytetrafluoroethylene, but when the light scattering member 45 itself is made of another material that is not excellent in wear resistance. It is effective to subject the light emitting surface to wear-resistant processing.
  • wear resistance processing there is no restriction
  • limiting in particular with an abrasion-resistant process For example, the process which coats fluororesins, such as polytetrafluoroethylene, on the light-projection surface of the light-scattering member 45 is mentioned.
  • the light scattering member 45 is configured to be detachable from the touch pen 40. Thereby, even if the light scattering member 45 is damaged for some reason or is deteriorated with time, the use of the touch pen 40 can be continued only by replacing the light scattering member 45. Moreover, compared with the structure which replace
  • the light emitting element 42a may be, for example, an LED (light emitting diode) or an LD (laser diode) that emits light such as infrared light. Note that the number of LEDs or LDs is not limited to one provided for one touch pen 40, and a plurality of LEDs or LDs may be mounted.
  • the power supply device 43 may be configured to include a battery, for example, or may be configured to be rechargeable.
  • the control device 44 controls the light emission of the light emitting element 42a.
  • a mechanism that emits light only when the light emitting element 42a contacts the light guide plate 10 is included.
  • This mechanism is configured by using a pressure-sensitive switch or the like, and can control the light emission time, thereby reducing power consumption and extending battery life.
  • the light emitting element 42a that receives power from the power supply device 43 emits light of a predetermined wavelength.
  • the light emitted from the light emitting element 42a enters the light scattering member 45 through the introducing portion 42b, and is irregularly reflected by the light diffusing material of the light scattering member 45 and the fine uneven shape. Then, the light is emitted as diffused light from the light emitting surface of the light scattering member 45.
  • the touch pen 40 is provided with the light emitting unit 42 that emits light, and the light is diffused and emitted from the pen tip. Therefore, when the pen tip of the touch pen 40 contacts the light guide plate 10, part of the infrared light emitted from the pen tip is coupled to the light guide plate 10 and propagates through the light guide plate 10. Since the touch pen 40 diffuses and emits light from the pen tip, the light coupled to the light guide plate 10 is guided and propagated through the light guide plate 10 while diffusing and radiating.
  • propagating light 10 a, 10 b light propagating through the light guide plate 10 enters the imaging units 20, 30 through the notches 11.
  • propagating light 10 a, 10 b an angle formed with the imaging units 20 and 30 in the two-dimensional plane of the light guide plate 10 at a location where the touch pen 40 contacts is obtained from each image obtained from the imaging element 13.
  • FIG. 6A is a perspective view illustrating an imaging state of the imaging unit 20 in the pen input device 3 ⁇ / b> A
  • FIG. 6B is a plan view illustrating an image of the imaging unit 23 of the imaging unit 20.
  • the infrared light emitted from the touch pen 40 is diffused radially with respect to the two-dimensional plane of the light guide plate 10 around the pen tip and propagates in the light guide plate 10.
  • a part of the propagation light 10a and 10b of the luminous flux is also guided to the end face of the conical cutout 11, and the reflected light of the end face is received by the imaging units 20 and 30.
  • the reflected light of the end face of the notch 11 is collected by the lenses 21 and 31, subsequently passes through the filters 22 and 32, and is finally received by the image sensors 23 and 33.
  • the filters 22 and 32 transmit light in the wavelength band emitted from the touch pen 40 and play a role of blocking light in other wavelength bands. Filters 22 and 32 block sunlight, stray light such as liquid crystal display panel backlight light, and increase the SN ratio.
  • the light incident on the imaging units 20 and 30 passes through the lenses 21 and 31 to form a linear image 25 on the imaging elements 23 and 33.
  • the position of the linear image 25 changes depending on the position of the touch pen 40, and the angles ⁇ and ⁇ formed by the propagation light 10a and 10b and one side of the light guide plate 10 are obtained by analyzing the acquired image of the imaging unit. Then, with the angles ⁇ and ⁇ , the position coordinates of the point where the pen tip serving as the light emission source is in contact with each other can be obtained using the triangulation method.
  • FIG. 6 (a) the case where the touch pen 40 is in the position of point P 1, as shown in FIG. 6 (b), the linear image 25 is formed. Also, the touch pen 40 when moved to the position of the point P 2, the image 27 of the line shape is formed.
  • the position of the linear image 25 shown in FIG. 6B changes depending on the position of the contact point at the pen tip of the touch pen 40, and when the position of the contact point of the pen tip is changed, the linear image 25 becomes It changes like a linear image 27.
  • the trajectories of the linear images 25 and 27 have a fan shape 26 indicated by a one-dot chain line.
  • the inclination angle ⁇ 1 ′ of the line segment connecting the fan-shaped center and the linear image 25 (with the center of the arc as the rotation center) is the above-described certain value of the light guide plate 10 and the line segment connecting the touch pen 40 and the image sensor 23.
  • the angle is the same as the angle ⁇ 1 formed by one side.
  • the inclination angle ⁇ 1 ′ is obtained from the acquired image of the image sensor, and the angle ⁇ 1 is obtained from the inclination angle ⁇ 1 ′.
  • the touch pen 40 moves to the position of the point P 2, a linear image 27 is formed, and the angle ⁇ 2 is obtained by obtaining the inclination angle ⁇ 2 ′ of the linear image 27.
  • the position of the light emitting point is specified from the analysis of the acquired image, and the angle ⁇ formed by the line segment connecting the touch pen 40 and the image sensor 23 and the certain side of the light guide plate 10 is obtained.
  • the distance between the image sensor 23 and the image sensor 33 is L
  • the angle of the bright spot obtained by reading the image from the image sensor 23 is ⁇
  • the angle of the bright spot obtained by reading the acquired image from the image sensor 23 is
  • the coordinates (X, Y) of the bright spot are the following relational expressions (1) and (2).
  • Y (tan ⁇ ⁇ tan ⁇ ) ⁇ L / (tan ⁇ + tan ⁇ ) (4)
  • the coordinates X and Y of the point where the pen tip contacts are obtained from the angles ⁇ and ⁇ obtained as described above and the interval L that can be obtained in advance.
  • interval L is a space
  • the interval L between the image sensor 23 and the image sensor 33 is a distance between the optical axis center of the lens 21 and the optical axis center of the lens 31.
  • the coordinate input system 1 is provided with a position coordinate detection unit (not shown).
  • the position coordinate detection unit can be provided in the pen input device 3A.
  • a control unit (not shown) that controls driving of the liquid crystal display panel 2 may acquire information on the position coordinates obtained by the position coordinate detection unit and drive the liquid crystal display panel 2 based on the information.
  • FIG. 1 (a) (b), FIG.7, and FIG.8 are a perspective view showing the configuration of the pen input device 3A
  • FIG. 1B is a plan view showing the configuration of the filters 22A and 32A of the pen input device 3A.
  • FIG. 7 is a chart showing the separation distance between the peak wavelengths of the lights emitted from the two touch pens 40A and 40B.
  • FIG. 8 is a chart showing the sensitivity wavelength dependency of the image sensors 23 and 33.
  • FIG. 1A in this embodiment, a case where two touch pens 40A and 40B are used as a plurality of touch pens 40 will be described.
  • the operation and effect thereof are the same as those when the three touch pens 40A and 40B are used.
  • the light emitting units 42 of the touch pens 40A and 40B emit light having different wavelengths. Specifically, as shown in FIG. 7, the wavelengths of the two lights are separated from the peak half-value width of the light having the larger peak width by the interval between the peak wavelengths of the lights. Are different from each other.
  • the wavelength of each light emitted from the light emitting units 42 and 42 of each touch pen 40A and 40B is such that the interval between the peak wavelengths of each light is a peak half of the light having the larger peak width. They are different from each other so that they are separated from the price range.
  • the wavelength range of light may be visible light such as infrared light, red light or blue light, or ultraviolet light.
  • the image sensors 23 and 33 as the light receiving units are provided only with the image sensors 23 and 33 provided at both ends of one side of the light guide plate 10 as in the case of the single touch pen 40. Absent.
  • the present invention is not necessarily limited to this, and for example, three or more image sensors can be provided, but two are appropriate in view of member costs. For example, a configuration in which three image sensors are provided and one of them is used as an auxiliary camera may be used.
  • CMOS Complementary Metal Oxide Semiconductor
  • the intensity of light emitted from the light emitting units 42 and 42 of the touch pens 40A and 40B depends on the light receiving sensitivity in the wavelength region of the imaging devices 23 and 33.
  • the detection sensitivity is adjusted to be the same. Specifically, for example, when the wavelengths of light emitted from the light emitting units 42 and 42 of the touch pens 40A and 40B are 650 nm and 850 nm, the light receiving sensitivity, that is, the quantum efficiency is 50% and 20% according to FIG. Yes, it is 2.5 times.
  • the intensity of the light emitted from the light emitting unit 42 of the touch pen 40A that emits light with a wavelength of 850 nm is relative to the intensity of the light emitted from the light emitting unit 42 of the touch pen 40B that emits light with a wavelength of 650 nm. It is adjusted to 2.5 times.
  • the filters 22A and 32A include the first filter F1 corresponding to the wavelength of the first propagation light L1 from the touch pen 40A and the touch pen 40B.
  • the second filter F2 corresponding to the wavelength of the second propagating light L2 from the first and second propagating lights L1 and L2 emitted in a linear manner and stacked so as to cross the outgoing light of the second propagating light L2 respectively.
  • the first filter F1 and the second filter F2 are continuously and integrally provided.
  • the thicknesses of the first filter F1 and the second filter F2 are each 5 mm, for example.
  • the light emitted from the touch pen 40A appears as a linear image 25A in the emitted light of the first propagation light L1.
  • the light emitted from the touch pen 40B appears as a linear image 25B in the emitted light of the second propagation light L2.
  • an image of two parallel lines appears as parallel lines. The two lines appear in a staggered manner corresponding to the passage of the first filter F1 and the second filter F2.
  • the image sensor 23 emits light emitted from the touch pen 40A positioned in front of the image sensor 23 and the image pickup As shown in FIG. 1B, the light emitted from the touch pen 40B located behind the element 23 appears as a divided linear image 25A / 25B on the same line at the same time. .
  • the pens in the touch pens 40A and 40B are obtained by triangulation.
  • the plane coordinates of the position on the light guide plate 10 in contact can be detected.
  • the third filter is disposed on the first filter F1 and the second filter F2, and the light emitted from the third pen crosses the third filter.
  • the contact position of the third pen can be easily measured. The same applies even when there are four or more touch pens 40.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention.
  • the boundary between the first filter F1 and the second filter F2 is a straight line.
  • the present invention is not particularly limited to this.
  • the pen input device 3A includes the light guide plate 10 and the touch pens 40A and 40B including the light emitting units 42 and 42 that make light incident on the light guide plate 10 by contacting the surface of the light guide plate 10.
  • the first propagation light L1 that is incident on the light guide plate 10 from the light emitting units 42 and 42 of the touch pens 40A and 40B and propagates inside the light guide plate 10 and the light emitted from the light guide plate 10 in the second propagation light L2 are received 2
  • the image pickup devices 23 and 33 are provided, and the plane coordinates of the position on the light guide plate 10 where the touch pens 40A and 40B are in contact are detected.
  • the touch pens 40A and 40B are provided with at least two light emitting portions 42 and 42, and each touch pen 40A and 40B is in contact with the surface of the light guide plate 10 so that light of different wavelengths enters the light guide plate 10.
  • the first propagating light L1 or the second propagating light L2 incident on the light guide plate 10 from each touch pen 40A or the touch pen 40B and guiding the inside of the light guide plate 10 is linearly supplied to the two image sensors 23 and 33, respectively. Is provided with a notch 11 that emits light.
  • a first filter F1 corresponding to the wavelength of the first propagation light L1 and a second filter F2 corresponding to the wavelength of the second propagation light L2 are provided between the optical paths of the light guide plate 10 and the imaging elements 23 and 33. Are arranged side by side so as to cross the emitted light of the first propagation light L1 and the second propagation light L2 emitted linearly.
  • the light emitted from the light emitting units 42 and 42 from the touch pens 40A and 40B does not use the air above the light guide plate 10 as an optical path, but uses the inside of the light guide plate 10 as an optical path. Yes.
  • the optical path of the touch pens 40A and 40B is shielded by a finger or the like having the touch pens 40A and 40B, and no interpolation processing is performed to obtain the coordinate positions of the touch pens 40A and 40B. Therefore, detection can be performed reliably and accurately.
  • the image pickup devices 23 and 33 are not increased, the touch pens 40A and 40B are easily identified, and the cost is not increased.
  • the touch pens 40A and 40B can be easily and reliably identified without being affected by the fingers operating the touch pens 40A and 40B or the touch pens 40A and 40B. Further, it is possible to provide the pen input device 3A that is performed accurately and avoids an increase in cost.
  • light scattering members 45 and 45 that allow diffused light to enter the light guide plate 10 are provided at the tips of the touch pens 40A and 40B, respectively.
  • the intensity of light emitted from the light emitting units 42 and 42 of the touch pens 40A and 40B depends on the light receiving sensitivity in the wavelength region of the two image sensors 23 and 33.
  • the detection sensitivities are adjusted to be the same. Thereby, it is possible to avoid the strong detection of a signal of a specific wavelength and to align the detection sensitivity.
  • the wavelength of each light emitted from the light emitting units 42 and 42 of each touch pen 40A and 40B is such that the interval between the peak wavelengths of each light is larger in peak width. They are different from each other so that they are separated from the peak half-width in light. This makes it possible to sufficiently separate and identify the wavelengths of the light beams emitted from the light emitting units 42 and 42 of the touch pens 40A and 40B.
  • the first filter F1 and the second filter F2 are provided continuously and integrally. Therefore, since the image by the image pick-up element 23 * 33 in several touch pen 40A * 40B does not shift
  • the boundary between the first filter F1 and the second filter F2 can be assumed to be an arc shape.
  • the shape of the notch 11 serving as the optical path changing portion provided in the light guide plate 10 can be changed to a shape in which the corner portion of the light guide plate 10 is cut obliquely with a conical surface or a hyperboloid.
  • the optical path conversion unit can be easily formed.
  • the coordinate input system 1 is a coordinate input system including the pen input device 3A according to the present embodiment, and includes a liquid crystal display panel 2.
  • the pen input device 3 ⁇ / b> A can function as a touch panel that performs pen input while viewing an image on the liquid crystal display panel 2. Therefore, when a plurality of touch pens 40A and 40B are used, each touch pen 40A and 40B is easily and reliably identified without being affected by the touch pens 40A and 40B or the fingers operating the touch pens 40A and 40B.
  • the coordinate input system 1 including the pen input device 3A that avoids an increase in cost can be provided.
  • the detected object uses two touch pens 40A and 40B.
  • the coordinate input device 3B and the coordinate input system 1 according to the present embodiment are different in that a finger and one touch pen 40 can be used simultaneously as a detection target.
  • FIG. 10 is a perspective view showing the configuration of the coordinate input system.
  • the coordinate input system 1 includes a liquid crystal display panel 2 as an image display panel and a coordinate input device 3B provided on the upper side of the liquid crystal display panel 2 as shown in FIG.
  • the liquid crystal display panel 2 has a liquid crystal layer sandwiched between a pair of substrates (not shown), and each substrate is provided with at least various electrodes for changing the orientation of liquid crystal molecules of the liquid crystal layer by applying a voltage. . Then, by changing the orientation of the liquid crystal molecules by applying a voltage, the amount of light transmitted through the liquid crystal layer of each pixel is adjusted to perform a desired display.
  • a conventionally known liquid crystal display panel can be used as the configuration of the liquid crystal display panel 2.
  • a finger 6 as a detection object is placed on a light guide plate 10 (to be described later) of a coordinate input device 3 ⁇ / b> B provided on the upper side of the liquid crystal display panel 2 while watching the screen displayed on the liquid crystal display panel 2.
  • a coordinate input device 3 ⁇ / b> B provided on the upper side of the liquid crystal display panel 2 while watching the screen displayed on the liquid crystal display panel 2.
  • FIG. 11 is a cross-sectional view taken along line BB in FIG.
  • the coordinate input device 3B includes a light guide plate 10 as a rectangular transparent light guide member, imaging units 20 and 30 respectively disposed at both ends of one side of the light guide plate 10, and a light guide plate.
  • 10 has a light source unit 4 as a light source provided around three sides and a detection unit 5 as detection means.
  • the coordinate input device 3B of the present embodiment is different from the pen input device 3A described in the first embodiment in that the light source unit 4 is provided around the light guide plate 10.
  • a light source as a light source in which a plurality of LEDs (light emitting diodes) 4a that allow light to enter the light guide plate 10 are arranged around the three sides of the light guide plate 10.
  • a unit 4 is provided along the three sides. These three sides are three sides different from one side of the light guide plate 10 provided with the imaging units 20 and 30 at both ends.
  • the light source unit 4 on the three sides of the light guide plate 10 faces the imaging units 20 and 30, and the imaging units 20 and 30 are provided within the illumination range of the illumination light from the light source unit 4. It will be.
  • it is not necessarily limited to the periphery of the three sides of the light guide plate 10, for example, the periphery of another side different from the one side of the light guide plate 10 provided with the imaging units 20 and 30 at both ends. Good.
  • a plurality of LEDs 4a arranged in the light source unit 4 emit light such as infrared light. However, it is not necessarily limited to infrared light, and may be visible light or ultraviolet light. However, the wavelength of the light of the LED 4a is different from the wavelength of the light emitted from the light emitting unit 42 of the touch pen 40 described in the first embodiment. Further, it is not always necessary to use the LED 4a, and an LD (laser diode) or the like can also be used.
  • LD laser diode
  • the coordinate input device 3B is provided with a detection unit 5 as detection means.
  • the detection unit 5 detects a change in output intensity of the imaging elements 23 and 33 based on light scattering by the finger 6 and obtains coordinates of a contact position of the finger 6 on the surface of the light guide plate 10. Specifically, it consists of a CPU.
  • the finger 6 is used as the detected object.
  • the detection target is not necessarily limited to the finger 6 and may be a detection target such as a stick-shaped touch pen.
  • FIGS. 12A is a plan view showing an output image of the image sensor 23 when the finger 6 is not in contact with the light guide plate 10
  • FIG. 12B is a view when the finger 6 is in contact with the light guide plate 10.
  • 3 is a plan view showing an output image of an image sensor 23.
  • light is incident on the light guide plate 10 from a plurality of LEDs 4 a provided along the periphery of at least one side of the light guide plate 10.
  • the light incident on the light guide plate 10 is guided through the inside of the light guide plate 10 as propagating light, and is emitted to the image pickup devices 23 and 33 provided in at least two locations via the notches 11.
  • the image pick-up element 23 as shown to Fig.12 (a)
  • the output image of the fan-shaped bright part 23a based on the shape of the notch 11 is obtained.
  • FIG. 12A only the output image of the image sensor 23 is shown, but the output image of the image sensor 33 is the same.
  • infrared light enters a light guide plate 10 having a refractive index N from one LED 4 a provided at an end portion of the light guide plate 10 whose surrounding is air.
  • the propagation angle ⁇ P in the light guide plate 10 is sin (90 ° ⁇ P )> 1 / N
  • the light beam satisfying the condition (total reflection condition) is confined in the light guide plate 10, is repeatedly reflected on the front and back surfaces of the light guide plate 10, and travels in the light guide plate 10.
  • the total reflection condition is: sin (90 ° ⁇ P )> Nm / N Therefore, a part of the light cannot satisfy the total reflection condition and is not confined in the light guide plate 10, and a part of the light is incident on the material side having the refractive index Nm.
  • the refractive index of human skin is about 1.37, the amount of light trapped in the light guide plate 10 is reduced when the finger 6 contacts the light guide plate 10.
  • the detection unit 5 can obtain the coordinates of the contact position of the finger 6 on the surface of the light guide plate 10.
  • FIG. 12B only the output image of the image sensor 23 is shown, but the output image of the image sensor 33 is the same.
  • FIG. 13A is a perspective view showing an imaging state in the imaging unit 20 in the coordinate input device 3B
  • FIG. 13B is a plan view showing an image in the imaging element 23 of the imaging unit 20.
  • triangulation is performed using the angle formed by the imaging units 20 and 30 and the distance between the imaging elements 23 and 33 in the two-dimensional plane of the light guide plate 10 at the place where the finger 6 is in contact.
  • the two-dimensional coordinate position at the location where the finger 6 is in contact is calculated by the method.
  • infrared light enters the light guide plate 10 having a refractive index N from one LED 4 a provided at the end of the light guide plate 10.
  • the propagation angle ⁇ P in the light guide plate 10 is sin (90 ° ⁇ P )> 1 / N
  • the light flux that satisfies the conditions shown in FIG. 5 is confined in the light guide plate 10, and is repeatedly reflected on the front and back surfaces of the light guide plate 10, and travels in the light guide plate 10.
  • the propagation lights 10 a and 10 b in a part of the light flux are guided to the end faces of the conical cutouts 11 and 11, and the reflected light from the end faces is reflected by the imaging unit 20.
  • Light is received at 30.
  • the reflected light of the end faces of the notches 11 and 11 is collected by the lenses 21 and 31, subsequently passed through the filters 22 and 32, and finally received by the image sensors 23 and 33.
  • the filters 22 and 32 transmit light in the wavelength band emitted by the LED 4a and play a role of blocking light in other wavelength bands. Filters 22 and 32 block sunlight, stray light such as liquid crystal display panel backlight light, and increase the SN ratio.
  • the light incident on the image pickup unit 20 forms a linear image on the image pickup device 23 via the lens 21.
  • a plurality of LEDs 4a ... Exist and enter the light guide plate 10 from a wide range of angles.
  • a plurality of linear images are gathered on the image sensor 23 to form a fan shape, and as shown in FIG. It appears as an output image of the part 23a.
  • the finger 6 when moved to the position of the point P 2, the image of the linear dark portion BL 2 is formed.
  • the positions of the linear dark portions BL 1 and BL 2 shown in FIG. 13B change depending on the position of the contact point on the finger 6. If the position of the contact point of the finger 6 is changed, the linear dark portion BL is changed. 1 of the image changes as the image of the linear dark portion BL 2.
  • the locus of the images of the linear dark portions BL 1 and BL 2 exists inside the fan-shaped bright portion 23a indicated by the alternate long and short dash line.
  • the inclination angle ⁇ 1 ′ of the line segment connecting the fan-shaped center and the image of the linear dark part BL 1 is the line segment connecting the finger 6 and the image sensor 23 and the light guide plate 10.
  • the angle is the same as the angle ⁇ 1 formed by one side of the imaging units 20 and 30 side. Therefore, the inclination angle ⁇ 1 ′ is obtained from the acquired image of the image sensor 23, and the angle ⁇ 1 is obtained from the inclination angle ⁇ 1 ′. Similarly, when the finger 6 is moved to the position of the point P 2, the image of the linear dark portion BL 2 is formed, by obtaining the inclination angle alpha 2 'in its linear dark portion BL 2 of the image, the angle alpha 2 Is required.
  • the position of the contact point of the finger 6 is specified from the analysis of the acquired image, and a line segment connecting the finger 6 and the image sensor 23 is formed by one side of the light guide plate 10 on the image pickup unit 20 or 30 side. An angle ⁇ is determined.
  • the coordinates X ⁇ Y of the point where the finger 6 touches are obtained from the angles ⁇ ⁇ ⁇ obtained as described above and the interval L that can be obtained in advance.
  • interval L is a space
  • the interval L between the image sensor 23 and the image sensor 33 is a distance between the optical axis center of the lens 21 and the optical axis center of the lens 31.
  • a control unit (not shown) that controls driving of the liquid crystal display panel 2 may acquire information on the position coordinates obtained by the position coordinate detection unit and drive the liquid crystal display panel 2 based on the information.
  • the coordinate input device 3B of the present embodiment includes the plate-shaped light guide plate 10, the light source unit 4 that makes the illumination light incident from the end of the light guide plate 10, and the illumination light that propagates in the light guide plate 10. Based on the outputs of the imaging units 20 and 30 that detect light scattering by the finger 6 when the finger 6 comes into contact with the surface of the light guide plate 10 and at least two imaging units 20 and 30 that receive light, the light guide plate 10 in the finger 6. And a detection unit 5 for obtaining coordinates of a position of contact with the surface.
  • the imaging units 20 and 30 as light receiving means are provided within the illumination light irradiation range, and the detection unit 5 includes the imaging units 20 and 30 based on light scattering by the finger 6. A change in output intensity is detected, and coordinates of the contact position of the finger 6 on the surface of the light guide plate 10 are obtained.
  • the imaging units 20 and 30 are provided within the illumination light irradiation range, the imaging units 20 and 30 are constantly given a constant amount of received light, and in that state, far from the imaging units 20 and 30. Due to the light scattering caused by the contact of the finger 6 at this point, the intensity is reduced in the constant amount of received light. For this reason, by detecting this strength reduction, the coordinates of the contact position of the finger 6 on the surface of the light guide plate 10 can be obtained by the detection unit 5.
  • the coordinate input device 3B that can detect the coordinate position of the detection target such as the finger 6 can be provided. .
  • the imaging units 20 and 30 have a two-dimensional image sensor, and the light guide plate 10 receives illumination light propagating through the light guide plate 10 as an imaging unit. Cutouts 11 are respectively provided in a linear shape to 20 and 30.
  • the illumination light propagating in the light guide plate 10 and the attenuated light by the finger 6 are respectively emitted to the outside of the light guide plate 10 through the notches 11, and are respectively supplied to the image pickup devices 23 and 33 of the image pickup units 20 and 30. It is emitted linearly.
  • the detection unit 5 can obtain the coordinates of the contact position of the finger 6 with the light guide plate 10 by triangulation.
  • the coordinate input device 3B uses the light guide plate 10 and obtains the coordinates of the contact position of the finger 6 with the light guide plate 10 by triangulation by light scattering due to the contact of the finger 6 with the light guide plate 10. be able to.
  • the coordinate input system 1 is a coordinate input system including the coordinate input device 3B according to the present embodiment, and includes a liquid crystal display panel 2.
  • the coordinate input device 3B can be made to function as a touch panel for inputting with a detected body such as the finger 6 while viewing the image of the liquid crystal display panel 2. Therefore, in the optical coordinate input device 3B using the light guide plate 10, even when applied to a large touch panel, the coordinate input system provided with the coordinate input device 3B that can detect the coordinate position of the detected object such as the finger 6 or the like. 1 can be provided.
  • the coordinate input device 3B can detect the coordinates of the contact position of the finger 6 by bringing the finger 6 into contact with the light guide plate 10, and the pen for the touch pen 40. Only the light source unit 4 is added to the input device 3A. Therefore, the finger 6 and the touch pen 40 can be used simultaneously.
  • FIG. 14A is a perspective view showing the overall configuration when the finger 6 and each touch pen 40 are used together in the coordinate input device 3B, and FIG. 14B shows the light guide plate with the finger 6 and each touch pen 40.
  • 10 is a plan view showing an output image of the image sensor 23 when being in contact with the image sensor 10.
  • the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 of the present embodiment emit light having different wavelengths.
  • the wavelengths of the two lights are equal to each other in which the interval between the peak wavelengths of each light is larger. They are different from each other so that they are separated from the full width at half maximum of the peak light.
  • the wavelength of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 is the peak in the light having the larger peak width in the interval between the peak wavelengths of each light. They are different from each other so that they are separated from the full width at half maximum.
  • the wavelengths of the light emitted from the LEDs 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 can be sufficiently separated and identified.
  • the wavelength range of light may be visible light such as infrared light, red light or blue light, or ultraviolet light.
  • the image sensors 23 and 33 as the light receiving units are the image sensors 23 and 33 provided at both ends of one side of the light guide plate 10 as in the case of one touch pen 40 and one finger 6. Only 33 are provided.
  • the present invention is not necessarily limited to this, and for example, three or more image sensors can be provided, but two are appropriate in view of member costs.
  • a configuration in which three image sensors are provided and one of them is used as an auxiliary camera may be used.
  • the imaging devices 23 and 33 such as a CMOS (Complementary Metal Oxide Semiconductor) camera or the like, as shown in FIG. Accordingly, the light receiving sensitivity, that is, the quantum efficiency tends to decrease. For this reason, a short wavelength signal may be detected strongly.
  • CMOS Complementary Metal Oxide Semiconductor
  • the intensity of light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 depends on the light receiving sensitivity in the wavelength region of the imaging devices 23 and 33.
  • the detection sensitivity is adjusted to be the same. Specifically, for example, when the wavelengths of light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 are 650 nm and 850 nm, the light receiving sensitivity, that is, the quantum efficiency is 50% and 20% according to FIG. It is 2.5 times.
  • the intensity of light emitted from the LED 4a of the light source unit 4 that emits light with a wavelength of 850 nm is 2 with respect to the intensity of light emitted from the light emitting unit 42 of the touch pen 40 that emits light with a wavelength of 650 nm. It is adjusted to 5 times.
  • the filters 22A and 32A have a first wavelength corresponding to the wavelength of the first propagation light L1 from the finger 6.
  • the first filter F1 and the second filter F2 corresponding to the wavelength of the second propagation light L2 from the touch pen 40 are linearly emitted so as to cross the emitted light of the first propagation light L1 and the second propagation light L2, respectively.
  • the first filter F1 and the second filter F2 are continuously and integrally provided.
  • the thicknesses of the first filter F1 and the second filter F2 are each 5 mm, for example.
  • the boundary between the first filter F1 and the second filter F2 can be arcuate.
  • the image when the finger 6 is in contact with the light guide plate 10 is the linear dark portion BL in the emitted light of the first propagation light L1. It appears.
  • the light emitted from the touch pen 40 appears as a linear bright portion 23b in the emitted light of the second propagation light L2. Both appear as an image of a line extending radially in the radial direction around the center of the fan shape. The two lines appear in a staggered manner corresponding to the passage of the first filter F1 and the second filter F2.
  • the image sensor 23 has an image from the finger 6 positioned in front of the image sensor 23 and the image sensor 23. Images of light emitted from the touch pen 40 located at the back of the screen appear as divided linear dark portions BL and bright portions 23b on the same radial line, respectively. Note that when the finger 6 and the touch pen 40 overlap in the direction of the line of sight from the image sensor 33, the same phenomenon appears in the image sensor 33.
  • the finger 6 and the touch pen 40 it is possible to obtain one side and both corners of the finger 6 and the touch pen 40 between the image pickup devices 23 and 33 by the respective image pickup devices 23 and 33, and the finger 6 and the touch pen 40 are contacted by the triangulation method.
  • the plane coordinates of the position on the light guide plate 10 can be detected.
  • the third filter is disposed so as to be stacked on the first filter F1 and the second filter F2, and the emitted light of the third detected object is also the first. Since the three filters are crossed, similarly, the contact position of the third object to be detected can be easily measured. The same applies even when there are four or more detected objects.
  • the light source unit 4 is provided as a light source that makes the illumination light incident from the end of the light guide plate 10, and the finger 6 as the first detected body is the light guide plate.
  • the illumination light propagating through the light guide plate 10 is scattered by contacting the surface of the light guide 10.
  • the touch pen 40 as the second object to be detected is composed of a light emitting pen having a light emitting unit 42 that makes light having a wavelength different from that of illumination light incident upon contact with the surface of the light guide plate 10.
  • the imaging elements 23 and 33 as light receiving parts are illumination light propagating through the light guide plate 10 and first propagation light L3 that is scattered light by the finger 6, and light from the light emitting part 42 by the touch pen 40.
  • the detection unit 5 as detection means detects a change in the output intensity of the imaging elements 23 and 33 based on scattering of illumination light due to contact of the finger 6 with the light guide plate 10 to detect the surface of the light guide plate 10 on the finger 6.
  • the position of the touch position on the surface of the light guide plate 10 in the touch pen 40 based on the output of the image sensors 23 and 33 that receive the second propagation light L4 due to the touch pen 40 contacting the light guide plate 10. Find the coordinates of.
  • the finger 6 scatters illumination light propagating through the light guide plate 10 by contacting the surface of the light guide plate 10, while the touch pen 40 illuminates by contacting the surface of the light guide plate 10.
  • the light-emitting pen includes a light-emitting unit 42 that allows light having a wavelength different from that of light to enter.
  • the touch pen 40 is a light-emitting pen having a light-emitting portion 42 that makes light incident upon contact with the surface of the light guide plate 10. For this reason, the coordinates of the contact position of the touch pen 40 can be obtained based on the detection principle of the touch pen 40 which is the light-emitting pen described in the first embodiment. Specifically, the image sensors 23 and 33 receive the second propagation light L4 that is light from the light emitting unit 42 by the touch pen 40. Then, the detection unit 5 determines the coordinates of the contact position of the touch pen 40 on the surface of the light guide plate 10 based on the outputs of the imaging elements 23 and 33 that receive the second propagation light L4 due to the touch pen 40 contacting the light guide plate 10. Ask.
  • the finger 6 scatters the illumination light propagating through the light guide plate 10 by contacting the surface of the light guide plate 10.
  • the light source unit 4 that allows illumination light to enter from the end of the light guide plate 10 is provided.
  • the imaging elements 23 and 33 receive the illumination light propagating in the light guide plate 10 and the first propagation light L3 that is the scattered light from the finger 6. And the detection part 5 detects the change of the output intensity of the image pick-up element 23 * 33 based on the scattering of the illumination light by the contact to the light guide plate 10 of the finger
  • the first detected body made of the finger 6 and the like and the second detected body such as the touch pen 40 made of the light emitting pen are used simultaneously, and the finger 6 and the touch pen 40 are detected.
  • the image of the detection object positioned in the back as viewed from the image pickup devices 23 and 33 are arranged in the line-of-sight direction of the image pickup devices 23 and 33.
  • the image of the object to be detected in front of each other overlap, so that there is a problem that the position cannot be detected by the triangulation method.
  • the image sensors 23 and 33 are at least one pair of the first light receiving unit and the second light receiving unit that are essential in the triangulation method. Only the image pickup devices 23 and 33 are provided. And in order to identify the finger
  • the touch pen 40 is a light-emitting pen having a light-emitting portion 42 that makes light having a wavelength different from the illumination light from the LED 4a of the light source unit 4 come into contact with the surface of the light guide plate 10.
  • a first filter F1 corresponding to the wavelength of the first propagation light L3 and a second filter F2 corresponding to the wavelength of the second propagation light L4 are arranged side by side so as to cross the emitted light of the first propagation light L3 and the second propagation light L4 emitted linearly.
  • the emitted light of the first propagation light L3 based on the contact of the finger 6 is emitted linearly to the two image pickup devices 23 and 33 via the notch 11 and the first filter F1 as the optical path changing unit. Is done.
  • the emitted light of the second propagation light L4 based on the touch of the touch pen 40 is similarly emitted linearly to the two image pickup devices 23 and 33 through the notch 11 and the second filter F2.
  • the first filter F1 and the second filter F2 are arranged side by side so as to cross the emitted light of the first propagation light L3 and the second propagation light L4 emitted linearly.
  • the imaging elements 23 and 33 have dark portions that are linear images of the emitted light of the first propagation light L3.
  • Two images of BL and the bright portion 23b, which is a linear image of the emitted light of the second propagation light L4 appear as images of lines extending radially in the radial direction around the center of the fan shape. The two lines appear in a staggered manner corresponding to the passage of the first filter F1 and the second filter F2. Note that when the boundary between the first filter F1 and the second filter F2 is not a circular arc but a straight line, the images appear in parallel.
  • the image sensor 23 causes the first propagating light based on the contact of the finger 6 located in front of the image sensor 23.
  • the second propagating light L4 based on the contact of the touch pen 40 positioned at the back as viewed from L3 and the image sensor 23 appears as a divided line on the same line at the same time.
  • the finger 6 and the touch pen 40 it is possible to obtain one side and both corners of the finger 6 and the touch pen 40 between the image pickup devices 23 and 33 by the respective image pickup devices 23 and 33, and the finger 6 and the touch pen 40 are contacted by triangulation.
  • the plane coordinates of the position on the light guide plate 10 can be detected.
  • the third filter is disposed on the first filter and the second filter, and the third propagation light based on the contact of the third detected body is further emitted. Since the incident light also crosses the third filter, similarly, the contact position of the third detected object can be easily measured. The same applies even when there are four or more detected objects.
  • the first propagation light L3 based on the contact of the finger 6 and the second propagation light L4 based on the contact of the touch pen 40 do not use the air above the light guide plate 10 as an optical path.
  • the inside of the optical plate 10 is an optical path. For this reason, since the optical path of the touch pen 40 is shielded by a finger or the like having the touch pen 40 and no interpolation processing is performed to obtain the coordinate position of the touch pen 40, detection can be performed reliably and accurately. Further, since the image pickup devices 23 and 33 are not increased, the finger 6 and the touch pen 40 are easily identified, and the cost is not increased.
  • a coordinate input device can be provided.
  • the intensity of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 depends on the light receiving sensitivity in the wavelength region of the image sensors 23 and 33.
  • the detection sensitivities are adjusted to be the same.
  • the light receiving sensitivity tends to decrease as it goes to the long wavelength side. For this reason, a short wavelength signal may be detected strongly.
  • the intensity of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 depends on the light receiving sensitivity in the wavelength region of the image sensors 23 and 33. Are adjusted to be the same. As a result, it is possible to avoid the strong detection of a signal having a specific wavelength and to make the detection sensitivity uniform.
  • the wavelength of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 is such that the interval between the peak wavelengths of each light is larger in peak width. They are different from each other so that they are separated from the full width at half maximum of the peak light.
  • the wavelength of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 is the peak in the light having the larger peak width in the interval between the peak wavelengths of each light. They are different from each other so that they are separated from the full width at half maximum. As a result, the wavelengths of the light emitted from the LEDs 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 can be sufficiently separated and identified.
  • the first filter F1 and the second filter F2 are provided continuously and integrally. Therefore, since the image by the image pick-up element 23 * 33 in the finger
  • the boundary between the first filter F1 and the second filter F2 has an arc shape.
  • the coordinate input system 1 of the present embodiment is a coordinate input system 1 including the coordinate input device 3B of the present embodiment, and includes a liquid crystal display panel 2 as an image display panel.
  • the coordinate input device 3B can function as a touch panel for pen input and finger input while viewing the image on the liquid crystal display panel 2. Therefore, when the finger 6 and the touch pen 40 are used at the same time, the coordinates for easily and surely identifying each finger 6 and the touch pen 40 without being influenced by the mutual finger 6 and the touch pen 40 and avoiding an increase in cost.
  • a coordinate input system 1 including the input device 3B can be provided.
  • Embodiment 3 The following will describe another embodiment of the present invention with reference to FIGS.
  • the configurations other than those described in the present embodiment are the same as those in the first embodiment and the second embodiment.
  • members having the same functions as those shown in the drawings of Embodiment 1 and Embodiment 2 are given the same reference numerals, and explanation thereof is omitted.
  • two image pickup units 20 and 30 are provided.
  • the coordinate input device 3C of the present embodiment is different in that three or more imaging units 20, 30, 50 are provided as shown in FIG. As a result, it is possible to detect the fingers 6A and 6B as the two detection objects.
  • each finger 6 ⁇ / b> A, 6 ⁇ / b> B uses each imaging unit 20, 30, 50 with two optical paths that do not overlap each other. 6 contact positions can be obtained.
  • the imaging unit 50 includes a lens 51, a filter 52A, and an imaging element 53.
  • the finger 6B when the finger 6B is present at point P 3, it overlaps the optical path of the finger 6B finger 6A to the imaging unit 20.
  • two imaging units 30 and 50 are used to detect the finger 6A, while the imaging units 20 and 50 are used to detect the finger 6B.
  • the optical paths do not overlap.
  • the position coordinates of the contact points of the fingers 6A and 6B can be reliably specified regardless of where the two fingers 6A and 6B are in contact with the light guide plate 10.
  • N M + 1 It becomes.
  • the imaging units 20, 30, 50, and 60 having the light receiving portions can be disposed at the four corners of the rectangular light guide plate 10.
  • the four image pickup units 20, 30, 50, 60 having the light receiving portions are arranged at the respective corner portions of the rectangular light guide plate 10, a light source as a light source as shown in FIG. It is preferable that the units 4... Be arranged at the end of the entire periphery of the light guide plate 10 and the light source units 4... Be a coordinate input device 3D that allows illumination light to enter from the end of the entire periphery of the light guide plate 10. .
  • a light source exists at a position opposite to the imaging units 50 and 60.
  • the four imaging units 20, 30, 50, and 60 having the light receiving units are provided with the entire range in the light guide plate 10 within the illumination light irradiation range. Therefore, it is possible to reliably specify the position coordinates of the contact point of the finger 6A, regardless of where the finger 6A is in contact with the light guide plate 10.
  • the degree of freedom of arrangement of the imaging units 20, 30, 50, 60 is increased.
  • the number of image pickup units 20, 30, 50, 60 can be easily increased, and simultaneous detection of the contact of a large number of fingers 6A, 6B... Is possible, resulting in a decrease in signal quality when applied to a large touch panel. hard.
  • any two of the four image pickup units 20, 30, 50, 60 are used for detecting the finger 6A. can do.
  • the imaging units 20 and 30 are arranged along one side of the light guide plate 10, the signal quality is deteriorated when the contact point of the finger 6A is far from the imaging units 20 and 30. Therefore, when the contact point of the finger 6A is far from the imaging units 20 and 30, by increasing the number of imaging units 50 and 60 as light receiving means around the light guide plate 10, the imaging units 50 and 60 adjacent to the finger 6A can be increased. By detecting this, it is possible to detect without degrading the signal quality.
  • At least three light receiving units are provided as the imaging elements 23, 33, and 53 of the imaging units 20, 30, and 50.
  • each finger 6A, 6B it is possible to obtain the contact position of each finger 6A, 6B by using the imaging units 30, 50 and the imaging units 20, 50 with two optical paths that do not overlap.
  • the finger 6A can be brought into contact with any position of the light guide plate 10 without causing a blind spot. It is possible to reliably specify the position coordinates of the point.
  • the light source unit 4 is configured to allow illumination light to enter from the entire peripheral edge of the light guide plate 10.
  • the imaging units 20, 30, 50, and 60 have the entire range of the light guide plate 10 within the illumination light irradiation range.
  • the imaging units 20, 30 and 50 have the filters 22A, 32A and 52A.
  • the present invention can be used for an optical coordinate input device and a coordinate input system that simultaneously use a plurality of detection objects such as fingers or a bar-shaped operation member pen such as a touch pen or a stylus pen.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided are a coordinate input device and a coordinate input system with which, when simultaneously using a plurality of bodies to be detected, identification of each of the bodies to be detected is easily and reliably carried out without being affected by the respective bodies to be detected, and cost increases are avoided. A light emitting part of each touch pen (40A, 40B) inputs into a light guide plate (10), by making contact with the surface of the light guide plate (10), either a first propagation light (L1) or a second propagation light (L2) with respectively differing wavelengths. Notches (11, 11), through which either the first propagation light (L1) or the second propagation light (L2) is discharged linearly to at least two image capture elements (23, 33) respectively, are disposed in the light guide plate (10). Between the light paths from the light guide plate (10) and each of the image capture elements (23, 33), a first filter (F1) which corresponds to the wavelength of the first propagation light (L1) and a second filter (F2) which corresponds to the wavelength of the second propagation light (L2) are arrayed to traverse the respective discharge lights which are linearly discharged.

Description

座標入力装置、及び座標入力システムCoordinate input device and coordinate input system
 本発明は、指、又はタッチペン、スタイラスペン等の棒状の操作部材ペン等の被検出体を使用する光学式の座標入力装置、及び座標入力システムに関するものであり、詳細には、複数の被検出体を同時使用する場合の識別に関する。 The present invention relates to an optical coordinate input device and a coordinate input system using a detected object such as a finger or a stick-shaped operation member pen such as a touch pen and a stylus pen, and more specifically, a plurality of detected objects. It relates to identification when using the body simultaneously.
 タッチペン、スタイラスペン等の棒状の操作部材(以下、「ペン」と記載する)又は指等による座標入力を受け付ける導光部材とからなる光学式の座標入力装置又は位置検出装置、並びに座標入力装置又は位置検出装置と表示パネルとを組み合わせたタブレット、タッチパネル等の入力システムが知られている。 An optical coordinate input device or position detection device comprising a bar-shaped operation member (hereinafter referred to as “pen”) such as a touch pen or a stylus pen, or a light guide member that receives coordinate input by a finger or the like, and a coordinate input device or An input system such as a tablet or a touch panel in which a position detection device and a display panel are combined is known.
 上記入力システムでは、上記ペン又は指を座標入力装置の座標入力領域に接近又は接触させることにより、座標入力装置又は位置検出装置が該ペン又は指における接近又は接触した位置の座標を求める。求められた座標は、例えば座標入力装置とは別体の液晶ディスプレイ、又は該座標入力装置に一体的に積層されている液晶パネル等の表示画面に点画像又は直線画像等のオブジェクトを表示するため等に用いられる。 In the above input system, the coordinate input device or the position detection device obtains the coordinates of the approached or touched position of the pen or finger by bringing the pen or finger close to or in contact with the coordinate input area of the coordinate input device. The obtained coordinates are for displaying an object such as a point image or a straight line image on a display screen such as a liquid crystal display separate from the coordinate input device or a liquid crystal panel integrally laminated on the coordinate input device. Used for etc.
 例えば、特許文献1に開示されている位置検出装置100は、図17(a)(b)に示すように、透光性材料からなる導光板101と、導光板101の側面からX方向及びY方向に複数個列状に光を入射させる半導体赤外線レーザー等の各光源102…と、これら各光源102…を順次走査して点灯制御する点灯制御部103と、導光板101に接触したときにその接触位置を検出するタッチペン110とを備えている。また、上記タッチペン110は、図17(c)に示すように、導光板101に接触させることにより、導光板101の内部を導光する光を導入する導入部111と、導入部111が導入した光を検知して検知信号を出力する検知部112と、該検知部112から出力される検知信号と点灯制御部103による走査位置とに基づいてタッチペン110が導光板101と接触する座標位置を演算する座標演算部113と、識別信号生成部114と、送信部115とを有している。 For example, as shown in FIGS. 17A and 17B, the position detection device 100 disclosed in Patent Document 1 includes a light guide plate 101 made of a translucent material, and X and Y directions from the side surface of the light guide plate 101. Each light source 102, such as a semiconductor infrared laser, in which light is incident in a plurality of rows in the direction, a lighting control unit 103 that controls lighting by sequentially scanning each light source 102, and when the light guide plate 101 is touched, A touch pen 110 for detecting a contact position. In addition, as shown in FIG. 17C, the touch pen 110 is brought into contact with the light guide plate 101 to introduce light that guides light inside the light guide plate 101, and the introduction portion 111 introduces the touch pen 110. Based on the detection unit 112 that detects light and outputs a detection signal, and the detection signal output from the detection unit 112 and the scanning position by the lighting control unit 103, the coordinate position where the touch pen 110 contacts the light guide plate 101 is calculated. A coordinate calculation unit 113, an identification signal generation unit 114, and a transmission unit 115.
 上記位置検出装置100では、各光源102…が導光板101の左から右へ、及び下から上へ順次点灯制御される。このとき、導光板101のある位置にタッチペン110を押し当てると、タッチペン110の導入部111が導光板101に密着することによって、導光板101の表面で全反射していた光の全反射条件が崩れて導入部111に導入される。導入部111に導入された光は、検知部112が検知して検知信号を出力する。この出力に基づいて、座標演算部113が、接触点の座標を演算する。具体的には、検知部112の出力した検知信号から検知した光束がどの光源102からの検出タイミングで検出したかを計算することにより導光板101上での2次元座標位置を演算することができる。そして、演算された2次元座標位置は、識別信号生成部114にてタッチペン110・110毎に異なる信号周波数が発生され、その信号周波数にて送信部115から図示しない受信装置に送信されるようになっている。 In the position detection device 100, the light sources 102 are sequentially controlled to light from left to right and from bottom to top of the light guide plate 101. At this time, when the touch pen 110 is pressed against a certain position of the light guide plate 101, the introduction part 111 of the touch pen 110 is brought into close contact with the light guide plate 101, whereby the total reflection condition of the light totally reflected on the surface of the light guide plate 101 is satisfied. It collapses and is introduced into the introduction part 111. The light introduced into the introduction unit 111 is detected by the detection unit 112 and outputs a detection signal. Based on this output, the coordinate calculation unit 113 calculates the coordinates of the contact point. Specifically, the two-dimensional coordinate position on the light guide plate 101 can be calculated by calculating from which light source 102 the detected light beam is detected from the detection signal output from the detection unit 112. . The calculated two-dimensional coordinate position is generated by the identification signal generation unit 114 so that a different signal frequency is generated for each of the touch pens 110 and 110, and is transmitted from the transmission unit 115 to a receiving device (not shown) at the signal frequency. It has become.
 このように、上記位置検出装置100では、2種類のタッチペン110・110を用いることができると共に、その識別を異なる信号周波数を用いた送信によって行っている。 Thus, in the position detection device 100, two types of touch pens 110 and 110 can be used, and the identification is performed by transmission using different signal frequencies.
 また、他の複数のペンを同時に検出可能な光学式座標検出装置として、例えば特許文献2に開示された座標検出装置が知られている。 Also, as an optical coordinate detection device capable of simultaneously detecting a plurality of other pens, for example, a coordinate detection device disclosed in Patent Document 2 is known.
 上記座標検出装置200は、図18(a)に示すように、タッチパネル201上の位置をタッチすべく発光部211を有する2種類のスタイラスペン210a・210bと、このスタイラスペン210a・210bの発光部から出射される光を受光して三角測量法に基づいてそれぞれの位置を検出するスタイラスペン210aのための検出部231a・232a、及びスタイラスペン210bのための検出部231b・232bとを備えている。 As shown in FIG. 18A, the coordinate detection apparatus 200 includes two types of stylus pens 210a and 210b each having a light emitting unit 211 to touch a position on the touch panel 201, and light emitting units of the stylus pens 210a and 210b. Detectors 231a and 232a for the stylus pen 210a that detect light emitted from the stylus pen and detect respective positions based on the triangulation method, and detectors 231b and 232b for the stylus pen 210b. .
 上記座標検出装置200では、2種類のスタイラスペン210a・210bを識別するために、図18(b)に示すように、スタイラスペン210aでは、発光部211は赤色光を出射すると共に、検出部231a・232aには、赤色光を透過し、かつ青色光をカットする赤色光透過フィルタ221aが設けられている。 In the coordinate detection apparatus 200, in order to identify the two types of stylus pens 210a and 210b, as shown in FIG. 18B, in the stylus pen 210a, the light emitting unit 211 emits red light and the detection unit 231a. -232a is provided with a red light transmission filter 221a that transmits red light and cuts blue light.
 一方、スタイラスペン210bでは、図示しないが、発光部211は青色光を出射するようになっていると共に、検出部231b・232bには、青色光を透過し、赤色光をカットする青色光透過フィルタが設けられている。 On the other hand, in the stylus pen 210b, although not shown, the light emitting unit 211 emits blue light, and the detection units 231b and 232b transmit blue light and cut red light. Is provided.
 この構成により、2種類のスタイラスペン210a・210bにて、2箇所の座標を同時に識別して検出できるようになっている。 With this configuration, two types of stylus pens 210a and 210b can simultaneously identify and detect two coordinates.
 また、最近では、タッチペンの代わりに、指をタッチパネルにタッチする座標入力装置が開示されている。 Recently, a coordinate input device for touching a touch panel with a finger instead of a touch pen has been disclosed.
 例えば、特許文献3に開示されているタッチパネル300は、図19(a)(b)に示すように、導光板301と、導光板301に光を入射する光源302と、導光板301の側面の一部に配置された受光素子304・305と、導光板301の側面と受光素子304・305との間に被検出体310により散乱した光源302からの光を受光素子304・305に結像する結像手段307とを備えている。また、受光素子304・305が配置された導光板301の側面には光吸収手段308が配置され、受光素子304・305は、図19(b)に示すように、光源302の照射範囲外に配置されている。 For example, as shown in FIGS. 19A and 19B, the touch panel 300 disclosed in Patent Document 3 includes a light guide plate 301, a light source 302 that makes light incident on the light guide plate 301, and a side surface of the light guide plate 301. The light from the light source 302 scattered by the detected object 310 is imaged on the light receiving elements 304 and 305 between the light receiving elements 304 and 305 arranged in part and the side surface of the light guide plate 301 and the light receiving elements 304 and 305. And an imaging means 307. Further, light absorbing means 308 is disposed on the side surface of the light guide plate 301 on which the light receiving elements 304 and 305 are disposed, and the light receiving elements 304 and 305 are outside the irradiation range of the light source 302 as shown in FIG. Has been placed.
 上記タッチパネル300の座標検出原理は、以下のとおりである。 The coordinate detection principle of the touch panel 300 is as follows.
 導光板301の側面に配置された光源302から照射された光は導光板301の内部で全反射を繰り返しながら伝播する。通常の状態では、受光素子304・305は光源302の照射範囲外に配置されているため、導光板301の内部を伝搬する伝搬光を受光しない。ここで、透明の導光板301上に指等の被検出体310がタッチされると、伝搬光が乱され、散乱光が発生する。散乱光の一部は受光素子304・305の方向にも伝搬し、図20(a)に示すように、受光素子304・305で受光される。図20(b)の縦軸は信号強度、横軸はそれぞれ受光素子304・305の画素番号を示す。I304、I305として示す信号強度の強い各受光素子の画素番号G304、G305を特定することにより、その方位角が測定され、三角測量法により散乱光が発生した点、つまり、指等の被検出体310がタッチされたポイントが特定される。 The light emitted from the light source 302 disposed on the side surface of the light guide plate 301 propagates while repeating total reflection inside the light guide plate 301. In a normal state, since the light receiving elements 304 and 305 are arranged outside the irradiation range of the light source 302, they do not receive propagating light propagating through the light guide plate 301. Here, when the detection object 310 such as a finger is touched on the transparent light guide plate 301, the propagation light is disturbed and scattered light is generated. A part of the scattered light also propagates in the direction of the light receiving elements 304 and 305 and is received by the light receiving elements 304 and 305 as shown in FIG. In FIG. 20B, the vertical axis represents the signal intensity, and the horizontal axis represents the pixel numbers of the light receiving elements 304 and 305, respectively. By specifying the pixel numbers G304 and G305 of the light receiving elements having strong signal intensities shown as I304 and I305, the azimuth angle is measured, and the point where the scattered light is generated by the triangulation method, that is, the detected object such as a finger The point where 310 is touched is specified.
特開2008-158616号公報(2008年7月10日公開)JP 2008-158616 A (published July 10, 2008) 特開2003-256123号公報(2003年9月10日公開)JP 2003-256123 A (published on September 10, 2003) 特開2009-258967号公報(2009年11月5日公開)JP 2009-258967 A (published on November 5, 2009)
 しかしながら、上記従来の座標入力装置及び座標入力システムでは、以下の問題点を有している。 However, the conventional coordinate input device and coordinate input system have the following problems.
 すなわち、複数のペンを使用する場合に、特許文献1に開示された方式の位置検出装置100では、2種類のタッチペン110・110のその識別を異なる信号周波数での送信によって行っているので、両者の干渉に関する問題は発生しない。しかし、導光板101の2側面に各座標に対応する複数の光源とその光源からの光を受光する複数の受光部とが必要となるので、光源及び受光部のコスト増大を招く。 That is, when using a plurality of pens, the position detection apparatus 100 of the method disclosed in Patent Document 1 identifies the two types of touch pens 110 and 110 by transmitting at different signal frequencies. There is no problem with the interference. However, since a plurality of light sources corresponding to each coordinate and a plurality of light receiving units that receive light from the light sources are required on the two side surfaces of the light guide plate 101, the cost of the light sources and the light receiving units is increased.
 一方、特許文献2に開示された座標算出に三角測量法を用いる座標検出装置200では、異なる波長の光を発する複数のペンのペン先から発せられた各光は、空間を伝搬する。そして、これら伝搬光を撮像する撮像素子の手前には光学フィルタが設けられており、それぞれの撮像素子が単一の波長の光を撮像することによって伝搬光の入射角度を算出し、個々のペンの座標位置を求める。しかしながら、撮像素子の視線方向にペンが2本並んだとき、撮像素子から見て奥に位置するペンから発せられた光は、手前にあるペン、又はペンを持つ指・手によって遮断されるため、位置検出ができない。 On the other hand, in the coordinate detection apparatus 200 that uses the triangulation method for coordinate calculation disclosed in Patent Document 2, each light emitted from the pen tips of a plurality of pens that emit light of different wavelengths propagates in space. An optical filter is provided in front of the imaging device that images the propagation light, and each imaging device calculates the incident angle of the propagation light by imaging light of a single wavelength. Find the coordinate position of. However, when two pens are lined up in the line-of-sight direction of the image sensor, light emitted from a pen located behind the image sensor is blocked by a pen in front or a finger / hand holding the pen. The position cannot be detected.
 これを防止するために、上記座標検出装置200では、スタイラスペン210aのための一対の検出部231a・232aと、スタイラスペン210bのための一対の検出部231b・232bとの2種類の検出部を設けている。また、各検出部231a・232a及び検出部231b・232bにおいては、CCD等の検出器の手前に異なる光透過フィルを設けている。また、手前にあるペン、又はペンを持つ指・手によって遮断される場合には、補間処理を行うことにより対応している。 In order to prevent this, the coordinate detection apparatus 200 includes two types of detection units: a pair of detection units 231a and 232a for the stylus pen 210a and a pair of detection units 231b and 232b for the stylus pen 210b. Provided. Each of the detection units 231a and 232a and the detection units 231b and 232b is provided with a different light transmission film in front of a detector such as a CCD. Moreover, when it is blocked by a pen in front or a finger / hand holding a pen, it is dealt with by performing an interpolation process.
 この結果、特許文献2に開示された座標検出装置200では、2種類のスタイラスペン210a・210bを使用するために、一対の検出器を2種類、合計4個の検出器を備える必要がある。また、補間処理が必要となるので、位置検出が煩雑かつ不精度であり、コスト高になるという問題点を有している。 As a result, in the coordinate detection device 200 disclosed in Patent Document 2, in order to use the two types of stylus pens 210a and 210b, it is necessary to provide two types of detectors and a total of four detectors. Further, since interpolation processing is required, there is a problem that position detection is complicated and inaccurate, and costs are increased.
 また、特許文献3に開示されているタッチパネル300では、ペンと指との同時使用はできない。 Also, with the touch panel 300 disclosed in Patent Document 3, a pen and a finger cannot be used simultaneously.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、複数の被検出体を同時に使用する場合に、互いの被検出体の影響を受けずに、各被検出体の識別を簡易かつ確実に行い、コストの増大を回避する座標入力装置、及び座標入力システムを提供することにある。 The present invention has been made in view of the above-described conventional problems, and its object is to use each detected object without being affected by each other detected object when a plurality of detected objects are used simultaneously. It is an object of the present invention to provide a coordinate input device and a coordinate input system that perform simple and reliable identification and avoid an increase in cost.
 本発明の座標入力装置は、上記課題を解決するために、板状の導光部材と、上記導光部材内を伝搬する伝搬光を受光する少なくとも2つの受光部と、上記導光部材の表面に被検出体を接触したときの該接触に基づく伝搬光を検知した上記受光部の出力に基づいて、上記被検出体における導光部材の表面への接触位置の座標を求める検出手段とを備えた座標入力装置であって、上記被検出体は、少なくとも2つの第1被検出体と第2被検出体とからなっており、上記第1被検出体の接触に基づく第1伝搬光と上記第2被検出体の接触に基づく第2伝搬光とは互いに波長が異なっていると共に、上記導光部材には、上記第1伝搬光又は第2伝搬光を上記2つの受光部へそれぞれ線状に出射する光路変換部が設けられ、上記導光部材と上記各受光部との光路間には、上記第1伝搬光の波長に対応した第1フィルタと上記第2伝搬光の波長に対応した第2フィルタとが、上記線状に出射された、第1伝搬光及び第2伝搬光の出射光をそれぞれ横切らせるように並べて配設されていることを特徴としている。 In order to solve the above problems, a coordinate input device according to the present invention includes a plate-shaped light guide member, at least two light receiving portions that receive propagating light propagating through the light guide member, and a surface of the light guide member. Detecting means for obtaining coordinates of a contact position on the surface of the light guide member in the detected body based on an output of the light receiving unit that detects propagation light based on the contact when the detected body is contacted In the coordinate input device, the detection object includes at least two first detection objects and a second detection object, and the first propagation light based on the contact of the first detection object and the above detection object The second propagating light based on the contact of the second object to be detected has a wavelength different from that of the second propagating light, and the light guide member linearly transmits the first propagating light or the second propagating light to the two light receiving portions. An optical path changing unit that emits light is provided, and the light guide member and each light receiving member The first filter corresponding to the wavelength of the first propagating light and the second filter corresponding to the wavelength of the second propagating light are emitted in the linear form, and It is characterized by being arranged side by side so as to traverse the outgoing light of the second propagation light.
 上記の発明によれば、座標入力装置は、板状の導光部材と、上記導光部材内を伝搬する伝搬光を受光する少なくとも2つの受光部と、上記導光部材の表面に被検出体を接触したときの該接触に基づく伝搬光を検知した上記受光部の出力に基づいて、上記被検出体における導光部材の表面への接触位置の座標を求める検出手段とを備えている。 According to the above invention, the coordinate input device includes a plate-shaped light guide member, at least two light receiving portions that receive propagating light propagating through the light guide member, and a detected object on the surface of the light guide member. Detecting means for obtaining coordinates of a contact position of the detected body with respect to the surface of the light guide member based on an output of the light receiving unit that detects propagation light based on the contact.
 このような座標入力装置において、複数の被検出体を同時に使用し、かつ各被検出体の検出にそれぞれ同じ波長領域の光を用いている場合には、受光部の視線方向に被検出体が2つ並んだとき、受光部から見て奥に位置する被検出体の像と手前にある被検出体の像とが重なるため、三角測量法では位置検出ができないという問題が発生する。 In such a coordinate input device, when a plurality of detection objects are used at the same time and light in the same wavelength region is used for detection of each detection object, the detection objects are in the line-of-sight direction of the light receiving unit. When two of them are arranged, the image of the detected object located in the back as viewed from the light receiving unit and the image of the detected object in the front overlap each other, which causes a problem that the position cannot be detected by the triangulation method.
 この問題を解決するために、例えば、2つの被検出体に対して、それそれ異なる波長の光を発生させ、かつ各被検出体に対して必須の一対の第1受光部と第2受光部とを2組用意するのでは、装置の部品点数が増大し、コスト高になる。 In order to solve this problem, for example, a pair of first light receiving unit and second light receiving unit that generate light of different wavelengths for two detected objects and are indispensable for each detected object. If two sets are prepared, the number of parts of the apparatus increases and the cost increases.
 そこで、本発明では、まず、被検出体が2つ以上の複数同時に使用される場合でも、受光部は、三角測量法において必須の少なくとも1組の第1受光部及び第2受光部しか設けられていない。そして、第1受光部及び第2受光部にて各被検出体を識別するために、以下の構成を有している。 Therefore, in the present invention, first, even when two or more objects to be detected are used at the same time, the light receiving unit is provided with only at least one pair of the first light receiving unit and the second light receiving unit that are essential in the triangulation method. Not. And in order to identify each to-be-detected body in a 1st light-receiving part and a 2nd light-receiving part, it has the following structures.
 まず、上記第1被検出体の接触に基づく第1伝搬光と上記第2被検出体の接触に基づく第2伝搬光とは互いに波長が異なっている。次に、導光部材には、上記第1伝搬光又は第2伝搬光を上記2つの受光部へそれぞれ線状に出射する光路変換部が設けられる。また、導光部材と各受光部との光路間には、第1伝搬光の波長に対応した第1フィルタと第2伝搬光の波長に対応した第2フィルタとが、線状に出射された、第1伝搬光及び第2伝搬光の出射光をそれぞれ横切らせるように並べて配設されている。 First, the first propagation light based on the contact of the first detection object and the second propagation light based on the contact of the second detection object have different wavelengths. Next, the light guide member is provided with an optical path conversion unit that emits the first propagation light or the second propagation light to the two light receiving units in a linear manner. In addition, a first filter corresponding to the wavelength of the first propagation light and a second filter corresponding to the wavelength of the second propagation light are emitted linearly between the optical paths of the light guide member and each light receiving unit. The first propagation light and the emission light of the second propagation light are arranged side by side so as to cross each other.
 これにより、例えば、第1被検出体の接触に基づく第1伝搬光の出射光は、光路変換部及び第1フィルタを介して2つの受光部へ線状にそれぞれ出射される。また、第2被検出体の接触に基づく第2伝搬光の出射光についても同様に、光路変換部及び第2フィルタを介して2つの受光部へ線状にそれぞれ出射される。ここで、第1フィルタと第2フィルタとは、線状に出射された、第1伝搬光及び第2伝搬光の出射光をそれぞれ横切らせるように並べて配設されている。 Thereby, for example, the emitted light of the first propagation light based on the contact of the first detection object is emitted linearly to the two light receiving units through the optical path changing unit and the first filter. Similarly, the emitted light of the second propagation light based on the contact of the second detection object is also emitted linearly to the two light receiving parts via the optical path changing part and the second filter, respectively. Here, the 1st filter and the 2nd filter are arranged side by side so that the outgoing light of the 1st propagation light and the 2nd propagation light emitted in the shape of a line may be crossed, respectively.
 このため、受光部には、第1伝搬光の出射光の線状の像と、第2伝搬光の出射光の線状の像との2本の像が平行線として現れる。また、その2本の線は、第1フィルタと第2フィルタとのそれぞれの通過に対応して、千鳥状に現れる。 For this reason, two images of a linear image of the outgoing light of the first propagation light and a linear image of the outgoing light of the second propagation light appear as parallel lines in the light receiving unit. The two lines appear in a staggered manner corresponding to the passage of the first filter and the second filter.
 この結果、仮に、1つの受光部の視線方向に第1被検出体及び第2被検出体が2つ並んだ場合、その受光部では、受光部から見て手前に位置する第1被検出体の接触に基づく第1伝搬光、及び受光部から見て奥に位置する第2被検出体の接触に基づく第1伝搬光は、それぞれ、同時かつ同一線上に、分割された線状となって現れる。 As a result, if two first detection bodies and two second detection bodies are arranged in the line-of-sight direction of one light receiving section, the first detection body is positioned in front of the light receiving section in the light receiving section. The first propagating light based on the contact and the first propagating light based on the contact of the second detected object located in the back as viewed from the light receiving unit are respectively divided into the same line on the same line. appear.
 したがって、それぞれの受光部にて第1被検出体及び第2被検出体における、該受光部間の一辺とその両角を求めることができ、三角測量法にて、第1被検出体及び第2被検出体が接触した導光部材上の位置の平面座標を検出することができる。尚、被検出体が3つである場合には、第3フィルタが、第1フィルタ及び第2フィルタに積層して配設され、さらに第3被検出体の接触に基づく第3伝搬光の出射光も第3フィルタを横切るので、同様に、さらに第3被検出体の接触位置も容易に測定することができる。被検出体が4つ以上であっても同様である。 Therefore, in each light receiving part, one side and both angles between the light receiving parts in the first detected object and the second detected object can be obtained, and the first detected object and the second detected object are obtained by triangulation. The plane coordinates of the position on the light guide member in contact with the detection target can be detected. When there are three detected bodies, the third filter is disposed on the first filter and the second filter, and the third propagation light based on the contact of the third detected body is further emitted. Since the incident light also crosses the third filter, similarly, the contact position of the third detected object can be easily measured. The same applies even when there are four or more detected objects.
 また、本発明では、第1被検出体の接触に基づく第1伝搬光及び第2被検出体の接触に基づく第2伝搬光は、導光部材の上方の空気中を光路とするのではなく、導光部材の内部を光路としている。このため、被検出体を持つ指等で被検出体の光路が遮蔽されて被検出体の座標位置を求めるために補間処理をすることもないので、確実、かつ精度よく検出できる。さらに、受光部を増加することもないので、各被検出体の識別を簡易に行い、コスト増大もない。 In the present invention, the first propagating light based on the contact of the first detected body and the second propagating light based on the contact of the second detected body do not use the air above the light guide member as an optical path. The inside of the light guide member is used as an optical path. For this reason, since the optical path of the detected object is shielded by a finger or the like having the detected object and no interpolation processing is performed to obtain the coordinate position of the detected object, detection can be performed reliably and accurately. Further, since the number of light receiving parts is not increased, each detected object can be easily identified and there is no cost increase.
 したがって、複数の被検出体を同時に使用する場合に、互いの被検出体の影響を受けずに、各被検出体の識別を簡易かつ確実に行い、コストの増大を回避する座標入力装置を提供することができる。 Therefore, when using a plurality of detected objects at the same time, a coordinate input device is provided that can easily and reliably identify each detected object and avoid an increase in cost without being affected by each other detected object. can do.
 本発明の座標入力装置では、前記第1被検出体及び第2被検出体は、それぞれ前記導光部材の表面に接触することによって該導光部材に互いに異なる波長の光を入射させる発光部を有する発光ペンからなっていると共に、前記受光部は、上記第1被検出体及び第2被検出体の各発光部から上記導光部材にそれぞれ入射して該導光部材の内部を伝搬する第1伝搬光及び第2伝搬光における該導光部材からの出射光を受光することを特徴としている。 In the coordinate input device of the present invention, the first detection body and the second detection body each have a light emitting unit that makes light of different wavelengths incident on the light guide member by contacting the surface of the light guide member. A light-emitting pen, and the light-receiving portion is incident on the light guide member from the light-emitting portions of the first detection body and the second detection body and propagates through the light guide member. Light emitted from the light guide member in the first propagation light and the second propagation light is received.
 上記の発明によれば、第1被検出体及び第2被検出体は、それぞれ導光部材の表面に接触することによって該導光部材に互いに異なる波長の光を入射させる発光部を有する発光ペンからなっている。 According to said invention, the 1st to-be-detected body and the 2nd to-be-detected body each have the light emission part which has a light emission part which injects light of a mutually different wavelength into this light guide member by contacting the surface of a light guide member. It is made up of.
 このような座標入力装置において、2本以上の発光ペンを同時に使用し、かつ各発光ペンがそれぞれ同じ波長領域の光を用いている場合には、受光部の視線方向に発光ペンが2本並んだとき、受光部から見て奥に位置する発光ペンから発せられた光は、手前にある発光ペンよって遮断されるため、三角測量法では位置検出ができないという問題が発生する。 In such a coordinate input device, when two or more light emitting pens are used at the same time and each light emitting pen uses light of the same wavelength region, two light emitting pens are arranged in the line-of-sight direction of the light receiving unit. At this time, since the light emitted from the light-emitting pen located behind the light-receiving unit is blocked by the light-emitting pen in front, there is a problem that the position cannot be detected by the triangulation method.
 この問題を解決するために、例えば、2本の発光ペンに対して、それそれ異なる波長の光を発生させ、かつ各発光ペンに対して必須の一対の第1受光部と第2受光部とを2組用意するのでは、装置の部品点数が増大し、コスト高になる。 In order to solve this problem, for example, a pair of first light receiving portion and second light receiving portion that generate light of different wavelengths for two light emitting pens and are essential for each light emitting pen. If two sets are prepared, the number of parts of the apparatus increases and the cost increases.
 そこで、本発明では、まず、光を導光部材に入射させる発光ペンが2本以上の複数同時に使用される場合でも、受光部は、三角測量法において必須の少なくとも1組の第1受光部及び第2受光部しか設けられていない。そして、第1受光部及び第2受光部にて各発光ペンからの発光を識別するために、以下の構成を有している。 Therefore, in the present invention, first, even when two or more light emitting pens that allow light to enter the light guide member are used at the same time, the light receiving unit includes at least one set of the first light receiving unit and the first light receiving unit essential for triangulation. Only the second light receiving part is provided. And in order to identify the light emission from each light emission pen in a 1st light-receiving part and a 2nd light-receiving part, it has the following structures.
 まず、各発光ペンの発光部は、導光部材の表面に接触することによって該導光部材にそれぞれ異なる波長の光を入射させる。次に、導光部材には、各発光ペンから入射されて該導光部材の内部を導光する第1伝搬光又は第2伝搬光を2つの受光部へそれぞれ線状に出射する光路変換部が設けられる。また、導光部材と各受光部との光路間には、第1伝搬光の波長に対応した第1フィルタと第2伝搬光の波長に対応した第2フィルタとが、線状に出射された、第1伝搬光及び第2伝搬光の出射光をそれぞれ横切らせるように並べて配設されている。 First, the light emitting portion of each light emitting pen makes light of a different wavelength enter the light guide member by contacting the surface of the light guide member. Next, an optical path changing unit that emits the first propagating light or the second propagating light that is incident from each light-emitting pen and guides the inside of the light guiding member to the two light receiving units, respectively, in a linear shape. Is provided. In addition, a first filter corresponding to the wavelength of the first propagation light and a second filter corresponding to the wavelength of the second propagation light are emitted linearly between the optical paths of the light guide member and each light receiving unit. The first propagation light and the emission light of the second propagation light are arranged side by side so as to cross each other.
 これにより、例えば、1つの発光ペンから発光され、導光部材を導光して出射された第1伝搬光の出射光は、光路変換部及び第1フィルタを介して2つの受光部へ線状にそれぞれ出射される。また、他の発光ペンから発光され、導光部材を導光して出射された第2伝搬光の出射光についても同様に、光路変換部及び第2フィルタを介して2つの受光部へ線状にそれぞれ出射される。ここで、第1フィルタと第2フィルタとは、線状に出射された、第1伝搬光及び第2伝搬光の出射光をそれぞれ横切らせるように並べて配設されている。 Thereby, for example, the emitted light of the first propagation light emitted from one light-emitting pen and guided through the light guide member is linearly transmitted to the two light receiving units via the optical path conversion unit and the first filter. Respectively. Similarly, the emitted light of the second propagating light emitted from the other light-emitting pen and guided through the light guide member is linearly connected to the two light receiving units via the optical path changing unit and the second filter. Respectively. Here, the 1st filter and the 2nd filter are arranged side by side so that the outgoing light of the 1st propagation light and the 2nd propagation light emitted in the shape of a line may be crossed, respectively.
 このため、受光部には、第1伝搬光の出射光の線状の像と、第2伝搬光の出射光の線状の像との2本の像が平行線として現れる。また、その2本の線は、第1フィルタと第2フィルタとのそれぞれの通過に対応して、千鳥状に現れる。 For this reason, two images of a linear image of the outgoing light of the first propagation light and a linear image of the outgoing light of the second propagation light appear as parallel lines in the light receiving unit. The two lines appear in a staggered manner corresponding to the passage of the first filter and the second filter.
 この結果、仮に、1つの受光部の視線方向に発光ペンが2本並んだ場合、その受光部では、受光部から見て手前に位置する1つの発光ペンから発せられた光、及び受光部から見て奥に位置する他の発光ペンから発せられた光は、それぞれ、同時かつ同一線上に、分割された線状となって現れる。 As a result, if two light emitting pens are arranged in the line-of-sight direction of one light receiving unit, the light receiving unit receives light emitted from one light emitting pen located in front of the light receiving unit, and from the light receiving unit. Lights emitted from other light-emitting pens that are located at the back of the screen appear simultaneously and on the same line as divided lines.
 したがって、それぞれの受光部にて1つの発光ペン及び他の発光ペンにおける、該受光部間の一辺とその両角を求めることができ、三角測量法にて、1つの発光ペン及び他の発光ペンにおける該発光ペンが接触した導光部材上の位置の平面座標を検出することができる。尚、発光ペンが3本である場合には、第3フィルタが、第1フィルタ及び第2フィルタに積層して配設され、さらに他の発光ペンの出射光も第3フィルタを横切るので、同様に、さらに他の発光ペンの接触位置も容易に測定することができる。発光ペンが4本以上であっても同様である。 Therefore, one light-emitting pen and another light-emitting pen in each light-receiving unit can determine one side and both angles between the light-receiving units, and triangulation method can be used in one light-emitting pen and another light-emitting pen. The plane coordinates of the position on the light guide member in contact with the light-emitting pen can be detected. If there are three light-emitting pens, the third filter is disposed on the first filter and the second filter, and the light emitted from other light-emitting pens crosses the third filter. In addition, the contact position of another light-emitting pen can be easily measured. The same applies even when there are four or more light emitting pens.
 また、本発明では、発光ペンからの発光部から発光された光は、導光部材の上方の空気中を光路とするのではなく、導光部材の内部を光路としている。このため、発光ペンを持つ指等で発光ペンの光路が遮蔽されて発光ペンの座標位置を求めるために補間処理をすることもないので、確実、かつ精度よく検出できる。さらに、受光部を増加することもないので、各発光ペンの識別を簡易に行い、コスト増大もない。 Further, in the present invention, the light emitted from the light emitting unit from the light emitting pen does not use the air above the light guide member as an optical path, but uses the inside of the light guide member as an optical path. For this reason, since the light path of the light-emitting pen is shielded by a finger or the like having the light-emitting pen and no interpolation processing is performed to obtain the coordinate position of the light-emitting pen, detection can be performed reliably and accurately. Furthermore, since the number of light receiving parts is not increased, each light emitting pen is easily identified, and there is no increase in cost.
 したがって、複数の発光ペンを同時に使用する場合に、互いの発光ペン又は発光ペンを操作する指の影響を受けずに、各発光ペンの識別を簡易、確実、かつ精度よく行い、コストの増大を回避する座標入力装置を提供することができる。 Therefore, when using a plurality of light-emitting pens simultaneously, each light-emitting pen is easily, reliably, and accurately identified without being affected by each other's light-emitting pens or fingers operating the light-emitting pen, thereby increasing costs. A coordinate input device to avoid can be provided.
 本発明の座標入力装置では、前記各発光ペンの先端には、導光部材に拡散光を入射させる光散乱部材がそれぞれ設けられていることが好ましい。 In the coordinate input device of the present invention, it is preferable that a light scattering member for allowing diffused light to enter the light guide member is provided at the tip of each light emitting pen.
 これにより、各発光ペンの発光部にて発光された光を導光部材に入射させるときに、光散乱部材にて拡散光を入射させることができる。この結果、導光部材の内部では、各発光ペンの導光部材への接触位置から放射状に光が導光され、どの受光部においても充分な受光光量を得ることが可能となる。 Thereby, when the light emitted from the light emitting portion of each light emitting pen is incident on the light guide member, the diffused light can be incident on the light scattering member. As a result, light is guided radially from the contact position of each light-emitting pen to the light guide member inside the light guide member, and a sufficient amount of received light can be obtained in any light receiving part.
 本発明の座標入力装置では、前記各発光ペンの発光部から出射される光の強度は、前記受光部における波長域での受光感度に応じて、各検出感度が同一になるように調整されていることが好ましい。 In the coordinate input device of the present invention, the intensity of the light emitted from the light emitting unit of each light emitting pen is adjusted so that each detection sensitivity becomes the same according to the light receiving sensitivity in the wavelength region of the light receiving unit. Preferably it is.
 すなわち、例えばCMOS(Complementary Metal Oxide Semiconductor:相補形金属酸化膜半導体)カメラ等の受光部では、長波長側に向かうに伴って受光感度が低下する傾向にある。このため、短波長の信号が強く検出される可能性がある。この点、本発明では、各発光ペンの発光部から出射される光の強度は、受光部における波長域での受光感度に応じて、各検出感度が同一になるように調整されている。この結果、特定の波長の信号が強く検出されるのを回避して検出感度を揃えることができる。 That is, for example, in a light receiving part of a CMOS (Complementary Metal Oxide Semiconductor) camera or the like, the light receiving sensitivity tends to decrease as it goes to the long wavelength side. For this reason, a short wavelength signal may be detected strongly. In this regard, in the present invention, the intensity of the light emitted from the light emitting unit of each light emitting pen is adjusted so that the respective detection sensitivities are the same according to the light receiving sensitivity in the wavelength region of the light receiving unit. As a result, it is possible to avoid the strong detection of a signal having a specific wavelength and to make the detection sensitivity uniform.
 本発明の座標入力装置では、前記各発光ペンの発光部から出射される光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっていることが好ましい。 In the coordinate input device of the present invention, the wavelength of the light emitted from the light emitting unit of each light emitting pen is such that the interval between the peak wavelengths of each light is farther than the peak half-value width in the light having the larger peak width. Thus, it is preferable that they are different from each other.
 すなわち、ピーク半値幅の広い光同士では、光学フィルタを用いても完全に波長分離することができない虞がある。このため、完全に分離検出するためには、光のピーク半値幅を考慮して波長を選択する必要がある。この点、本発明では、各発光ペンの発光部から出射される光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっている。この結果、各ペンの発光部から出射される各光の波長を、充分に分離識別することが可能となる。 That is, there is a possibility that light having a wide peak half width cannot be completely wavelength-separated even if an optical filter is used. For this reason, in order to perform complete separation detection, it is necessary to select a wavelength in consideration of the half-value width of the light peak. In this regard, in the present invention, the wavelength of the light emitted from the light emitting portion of each light emitting pen is such that the interval between the peak wavelengths of each light is separated from the peak half-value width in the light having the larger peak width. Are different from each other. As a result, the wavelength of each light emitted from the light emitting unit of each pen can be sufficiently separated and identified.
 本発明の座標入力装置では、前記導光部材の端部から照明光を入射させる光源が設けられ、前記第1被検出体は、前記導光部材の表面に接触することによって上記導光部材内を伝搬する上記照明光を散乱させる一方、前記第2被検出体は、前記導光部材の表面に接触することによって上記照明光とは異なる波長の光を入射させる発光部を有する発光ペンからなっており、前記受光部は、導光部材内を伝搬する照明光及び第1被検出体によるその散乱光である前記第1伝搬光と、上記第2被検出体による発光部からの光である前記第2伝搬光とを受光すると共に、前記検出手段は、第1被検出体の導光部材への接触による上記照明光の散乱に基づく受光部の出力強度の変化を検出して、該第1被検出体における導光部材の表面への接触位置の座標を求めると共に、第2被検出体の導光部材への接触による第2伝搬光を受光する受光部の出力に基づいて該第2被検出体における導光部材の表面への接触位置の座標を求めることを特徴としている。 In the coordinate input device of the present invention, a light source that allows illumination light to enter from an end portion of the light guide member is provided, and the first detected body contacts the surface of the light guide member, whereby the light guide member has a light source. The second detected body is made of a light emitting pen having a light emitting part that makes light having a wavelength different from that of the illumination light incident upon contact with the surface of the light guide member. The light receiving unit is illumination light propagating in the light guide member and the first propagating light that is the scattered light by the first detected body and the light from the light emitting unit by the second detected body. And receiving the second propagating light and detecting the change in the output intensity of the light receiving unit based on the scattering of the illumination light due to the contact of the first detected body with the light guide member. 1 The position of contact with the surface of the light guide member in the detected body The coordinates of the contact position of the second detected body with respect to the surface of the light guide member based on the output of the light receiving unit that receives the second propagation light due to the contact of the second detected body with the light guide member It is characterized by seeking.
 上記の発明によれば、第1被検出体は、前記導光部材の表面に接触することによって導光部材内を伝搬する照明光を散乱させる一方、第2被検出体は、前記導光部材の表面に接触することによって上記照明光とは異なる波長の光を入射させる発光部を有する発光ペンからなっている。 According to the above invention, the first detected body scatters the illumination light propagating through the light guide member by contacting the surface of the light guide member, while the second detected body is the light guide member. It comprises a light-emitting pen having a light-emitting portion that makes light having a wavelength different from that of the illumination light incident upon contact with the surface of the light.
 すなわち、本発明では、第2被検出体は、導光部材の表面に接触することによって光を入射させる発光部を有する発光ペンからなっている。このため、前述の発光ペンの検出原理により、発光ペンの接触位置の座標を求めることができる。具体的には、受光部は、第2被検出体による発光部からの光である第2伝搬光を受光する。そして、検出手段は、第2被検出体の導光部材への接触による第2伝搬光を受光する受光部の出力に基づいて該第2被検出体における導光部材の表面への接触位置の座標を求める。 That is, in the present invention, the second object to be detected is composed of a light-emitting pen having a light-emitting portion that makes light incident upon contact with the surface of the light guide member. For this reason, the coordinates of the contact position of the light-emitting pen can be obtained based on the detection principle of the light-emitting pen described above. Specifically, the light receiving unit receives the second propagation light that is light from the light emitting unit by the second detection target. The detecting means detects the position of the contact of the second detected body with the surface of the light guide member based on the output of the light receiving unit that receives the second propagation light due to the contact of the second detected body with the light guiding member. Find the coordinates.
 一方、第1被検出体は、前記導光部材の表面に接触することによって上記導光部材内を伝搬する上記照明光を散乱させるものであり、例えば、指等の被検出体が該当する。 On the other hand, the first detected body scatters the illumination light propagating through the light guide member by coming into contact with the surface of the light guide member, and corresponds to a detected body such as a finger.
 このような光を発光しない指等の被検出体を受光部にて検出するためには、予め導光部材の端部から照明光を入射させておく必要がある。そこで、本発明では、前記導光部材の端部から照明光を入射させる光源が設けられている。 In order to detect a detection object such as a finger that does not emit such light by the light receiving unit, it is necessary to make illumination light incident from the end of the light guide member in advance. Therefore, in the present invention, a light source for making illumination light incident from the end of the light guide member is provided.
 このような座標入力装置では、受光部は、導光部材内を伝搬する照明光及び第1被検出体によるその散乱光である前記第1伝搬光を受光する。そして、検出手段は、第1被検出体の導光部材への接触による照明光の散乱に基づく受光部の出力強度の変化を検出して、該第1被検出体における導光部材の表面への接触位置の座標を求める。 In such a coordinate input device, the light receiving unit receives the illumination light propagating in the light guide member and the first propagation light which is the scattered light from the first detected body. The detecting means detects a change in the output intensity of the light receiving unit based on the scattering of the illumination light due to the contact of the first detected body with the light guiding member, and moves to the surface of the light guiding member in the first detected body. Find the coordinates of the contact position.
 これにより、指等からなる第1被検出体の導光部材への接触位置を求めることができる。 Thereby, the contact position of the first detected body made of a finger or the like to the light guide member can be obtained.
 ここで、特許文献3のタッチパネルにおいては、受光部の受光量を0に維持した状態において、被検出体の存在による散乱光の受光ピークを検知するものとなっていた。この結果、被検出体による散乱光の受光量は微小であるので、受光手部から遠方での被検出体の接触検出においては信号品質が低下し、大型タッチパネルへの適用は困難であるという問題点を有していた。 Here, in the touch panel of Patent Document 3, in the state where the amount of light received by the light receiving unit is maintained at 0, the light reception peak of the scattered light due to the presence of the detection target is detected. As a result, since the amount of scattered light received by the detected object is very small, the signal quality deteriorates in contact detection of the detected object far from the light receiving hand, and it is difficult to apply to a large touch panel. Had a point.
 この点、本発明では、特許文献3に対して発想の転換を図り、特許文献3では、被検出体の存在による散乱光の受光ピークを検知するのに対して、本発明では、受光手段に一定量の受光量を与えた状態で、被検出体の存在による光散乱に基づいて受光部における出力強度の変化を検知するようになっている。 In this regard, in the present invention, the idea is changed with respect to Patent Document 3, and in Patent Document 3, the light receiving peak of scattered light due to the presence of the detected object is detected, whereas in the present invention, the light receiving means is used. In a state where a certain amount of received light is given, a change in output intensity at the light receiving unit is detected based on light scattering due to the presence of the detection target.
 この結果、受光部には絶えず一定の受光量が与えられており、その状態で受光部から遠方での被検出体の接触による光散乱により、その一定の受光量に強度低下が生じる。このため、この強度低下を検知することにより、検出手段にて被検出体における導光部材の表面への接触位置の座標を求めることができる。 As a result, a constant amount of received light is constantly given to the light receiving portion, and in that state, the intensity of the constant amount of received light decreases due to light scattering caused by contact of the detection object at a distance from the light receiving portion. For this reason, by detecting this decrease in strength, the coordinates of the contact position of the detected body on the surface of the light guide member can be obtained by the detecting means.
 したがって、導光部材を使用する光学式の座標入力装置において、大型タッチパネルに適用した場合においても、指等の被検出体の座標位置を検出し得る座標入力装置を提供することができる。 Therefore, an optical coordinate input device using a light guide member can provide a coordinate input device that can detect the coordinate position of a detection object such as a finger even when applied to a large touch panel.
 ところで、このような座標入力装置において、指等からなる第1被検出体と発光ペンからなる第2被検出体とを同時に使用し、かつ第1被検出体及び第2被検出体の検出にそれぞれ同じ波長領域の光を用いている場合には、受光部の視線方向に第1被検出体及び第2被検出体が並んだとき、受光部から見て奥に位置する被検出体の像と手前にある被検出体の像とが重なるため、三角測量法では位置検出ができないという問題が発生する。 By the way, in such a coordinate input device, the first detected body made of a finger or the like and the second detected body made of a light emitting pen are used at the same time, and the first detected body and the second detected body are detected. When light of the same wavelength region is used, when the first detection object and the second detection object are arranged in the line-of-sight direction of the light receiving unit, the image of the detection object located in the back as viewed from the light receiving unit And the image of the object to be detected in front of each other overlap, so that there is a problem that the position cannot be detected by the triangulation method.
 この問題を解決するために、例えば、2つの第1被検出体及び第2被検出体に対して、それぞれ異なる波長の光を用いると共に、第1被検出体及び第2被検出体に対して必須の一対の第1受光部と第2受光部とを2組用意するのでは、装置の部品点数が増大し、コスト高になる。 In order to solve this problem, for example, light having different wavelengths is used for the two first detection objects and the second detection object, and the first detection object and the second detection object are used. Providing two essential pairs of the first light receiving part and the second light receiving part increases the number of parts of the apparatus and increases the cost.
 そこで、本発明では、第1被検出体及び第2被検出体が同時に使用される場合でも、まず、受光部は、三角測量法において必須の少なくとも1組の第1受光部及び第2受光部しか設けられていない。そして、第1受光部及び第2受光部にて第1被検出体及び第2被検出体を識別するために、以下の構成を有している。 Therefore, in the present invention, even when the first detected body and the second detected body are used at the same time, first, the light receiving section is at least one set of the first light receiving section and the second light receiving section essential in the triangulation method. It is only provided. And in order to identify a 1st to-be-detected body and a 2nd to-be-detected body in a 1st light-receiving part and a 2nd light-receiving part, it has the following structures.
 まず、第2被検出体は、導光部材の表面に接触することによって光源からの照明光とは異なる波長の光を入射させる発光部を有する発光ペンからなっている。次に、導光部材と上記各受光部との光路間には、上記第1伝搬光の波長に対応した第1フィルタと上記第2伝搬光の波長に対応した第2フィルタとが、上記線状に出射された、第1伝搬光及び第2伝搬光の出射光をそれぞれ横切らせるように並べて配設されている。 First, the second object to be detected is composed of a light-emitting pen having a light-emitting portion that makes light having a wavelength different from the illumination light from the light source incident upon contact with the surface of the light guide member. Next, a first filter corresponding to the wavelength of the first propagation light and a second filter corresponding to the wavelength of the second propagation light are disposed between the optical paths between the light guide member and each of the light receiving units. Are arranged side by side so as to cross the emitted light of the first propagation light and the second propagation light emitted in a shape.
 これにより、例えば、第1被検出体の接触に基づく第1伝搬光の出射光は、光路変換部及び第1フィルタを介して2つの受光部へ線状にそれぞれ出射される。また、第2被検出体の接触に基づく第2伝搬光の出射光についても同様に、光路変換部及び第2フィルタを介して2つの受光部へ線状にそれぞれ出射される。 Thereby, for example, the emitted light of the first propagation light based on the contact of the first detection object is emitted linearly to the two light receiving units through the optical path changing unit and the first filter. Similarly, the emitted light of the second propagation light based on the contact of the second detection object is also emitted linearly to the two light receiving parts via the optical path changing part and the second filter, respectively.
 ここで、第1フィルタと第2フィルタとは、線状に出射された、第1伝搬光及び第2伝搬光の出射光をそれぞれ横切らせるように並べて配設されている。このため、例えば、第1フィルタと第2フィルタとの境界が直線である場合には、受光部には、第1伝搬光の出射光の線状の像と、第2伝搬光の出射光の線状の像との2本の像が平行線として現れる。また、その2本の線は、第1フィルタと第2フィルタとのそれぞれの通過に対応して、千鳥状に現れる。尚、第1フィルタと第2フィルタとの境界が直線でなく円弧状である場合には、各像は扇形状の中心の回りに放射状に半径方向に延びる線のそれぞれの像として現れる。 Here, the first filter and the second filter are arranged side by side so as to cross the emitted light of the first propagation light and the second propagation light, which are emitted linearly. For this reason, for example, when the boundary between the first filter and the second filter is a straight line, the light receiving unit has a linear image of the emitted light of the first propagation light and the emitted light of the second propagation light. Two images with a linear image appear as parallel lines. The two lines appear in a staggered manner corresponding to the passage of the first filter and the second filter. When the boundary between the first filter and the second filter is not a straight line but an arc, each image appears as an image of a line radially extending around the center of the fan shape.
 この結果、仮に、1つの受光部の視線方向に第1被検出体と第2被検出体とが並んだ場合、その受光部では、受光部から見て手前に位置する第1被検出体の接触に基づく第1伝搬光、及び受光部から見て奥に位置する第2被検出体の接触に基づく第2伝搬光は、それぞれ、同時かつ同一線上に、分割された線状となって現れる。 As a result, if the first detected body and the second detected body are arranged in the line-of-sight direction of one light receiving section, the light receiving section of the first detected body positioned in front of the light receiving section The first propagating light based on the contact and the second propagating light based on the contact of the second detected object located in the back as viewed from the light receiving unit appear as divided lines on the same line at the same time. .
 したがって、それぞれの受光部にて第1被検出体及び第2被検出体における、該受光部間の一辺とその両角を求めることができ、三角測量法にて、第1被検出体及び第2被検出体が接触した導光部材上の位置の平面座標を検出することができる。尚、被検出体が3つである場合には、第3フィルタが、第1フィルタ及び第2フィルタに積層して配設され、さらに第3被検出体の接触に基づく第3伝搬光の出射光も第3フィルタを横切るので、同様に、さらに第3被検出体の接触位置も容易に測定することができる。被検出体が4つ以上であっても同様である。 Therefore, in each light receiving part, one side and both angles between the light receiving parts in the first detected object and the second detected object can be obtained, and the first detected object and the second detected object are obtained by triangulation. The plane coordinates of the position on the light guide member in contact with the detection target can be detected. When there are three detected bodies, the third filter is disposed on the first filter and the second filter, and the third propagation light based on the contact of the third detected body is further emitted. Since the incident light also crosses the third filter, similarly, the contact position of the third detected object can be easily measured. The same applies even when there are four or more detected objects.
 また、本発明では、第1被検出体の接触に基づく第1伝搬光及び第2被検出体の接触に基づく第2伝搬光は、導光部材の上方の空気中を光路とするのではなく、導光部材の内部を光路としている。このため、被検出体を持つ指等で被検出体の光路が遮蔽されて被検出体の座標位置を求めるために補間処理をすることもないので、確実、かつ精度よく検出できる。さらに、受光部を増加することもないので、各被検出体の識別を簡易に行い、コスト増大もない。 In the present invention, the first propagating light based on the contact of the first detected body and the second propagating light based on the contact of the second detected body do not use the air above the light guide member as an optical path. The inside of the light guide member is used as an optical path. For this reason, since the optical path of the detected object is shielded by a finger or the like having the detected object and no interpolation processing is performed to obtain the coordinate position of the detected object, detection can be performed reliably and accurately. Further, since the number of light receiving parts is not increased, each detected object can be easily identified and there is no cost increase.
 したがって、複数の被検出体を同時に使用する場合に、互いの被検出体の影響を受けずに、各被検出体の識別を簡易かつ確実に行い、コストの増大を回避する座標入力装置を提供することができる。 Therefore, when using a plurality of detected objects at the same time, a coordinate input device is provided that can easily and reliably identify each detected object and avoid an increase in cost without being affected by each other detected object. can do.
 本発明の座標入力装置では、前記光源及び第2被検出体の発光部から出射される各光の強度は、前記受光部における波長域での受光感度に応じて、各検出感度が同一になるように調整されていることが好ましい。 In the coordinate input device of the present invention, the intensity of each light emitted from the light source and the light emitting part of the second detected object has the same detection sensitivity according to the light receiving sensitivity in the wavelength region of the light receiving part. It is preferable that the adjustment is performed.
 すなわち、例えばCMOS(Complementary Metal Oxide Semiconductor:相補形金属酸化膜半導体)カメラ等の受光部では、長波長側に向かうに伴って受光感度が低下する傾向にある。このため、短波長の信号が強く検出される可能性がある。この点、本発明では、前記光源及び第2被検出体の発光部から出射される各光の強度は、受光部における波長域での受光感度に応じて、各検出感度が同一になるように調整されている。この結果、特定の波長の信号が強く検出されるのを回避して検出感度を揃えることができる。 That is, for example, in a light receiving part of a CMOS (Complementary Metal Oxide Semiconductor) camera or the like, the light receiving sensitivity tends to decrease as it goes to the long wavelength side. For this reason, a short wavelength signal may be detected strongly. In this regard, in the present invention, the intensity of each light emitted from the light source and the light emitting part of the second object to be detected is equal to each other depending on the light receiving sensitivity in the wavelength region of the light receiving part. It has been adjusted. As a result, it is possible to avoid the strong detection of a signal having a specific wavelength and to make the detection sensitivity uniform.
 本発明の座標入力装置では、前記光源及び第2被検出体の発光部から出射される各光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっていることが好ましい。 In the coordinate input device of the present invention, the wavelength of each light emitted from the light source and the light emitting part of the second detected object is the peak half-value width in the light having the larger peak width in the interval between the peak wavelengths of each light. It is preferred that they are different from each other so that they are farther apart.
 すなわち、ピーク半値幅の広い光同士では、光学フィルタを用いても完全に波長分離することができない虞がある。このため、完全に分離検出するためには、光のピーク半値幅を考慮して波長を選択する必要がある。この点、本発明では、光源及び第2被検出体の発光部から出射される各光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっている。この結果、光源及び第2被検出体の発光部から出射される各光の波長を、充分に分離識別することが可能となる。 That is, there is a possibility that light having a wide peak half width cannot be completely wavelength-separated even if an optical filter is used. For this reason, in order to perform complete separation detection, it is necessary to select a wavelength in consideration of the half-value width of the light peak. In this regard, in the present invention, the wavelength of each light emitted from the light source and the light emitting part of the second detection object is such that the interval between the peak wavelengths of each light is larger than the peak half-value width in the light having the larger peak width. As they are apart, they are different from each other. As a result, the wavelength of each light emitted from the light source and the light emitting part of the second detected object can be sufficiently separated and identified.
 本発明の座標入力装置では、前記第1フィルタと第2フィルタとは、連続して一体に設けられていることが好ましい。 In the coordinate input device of the present invention, it is preferable that the first filter and the second filter are provided continuously and integrally.
 これにより、複数の被検出体における受光部での像がずれることがないので、座標位置検出精度を向上することができる。 Thereby, since the images at the light receiving portions of the plurality of detection objects are not shifted, the coordinate position detection accuracy can be improved.
 本発明の座標入力装置では、前記第1フィルタと第2フィルタとの境界は円弧状になっていることが好ましい。 In the coordinate input device of the present invention, it is preferable that the boundary between the first filter and the second filter is an arc.
 これにより、導光部材に設けられた光路変換部の形状を、導光部材の隅角部を円錐面又は双曲面にて斜めに切り取った形状にすることができるので、光路変換部を容易に形成することができる。 Thereby, since the shape of the optical path conversion part provided in the light guide member can be made into a shape in which the corner part of the light guide member is cut obliquely with a conical surface or a hyperboloid, the optical path conversion part can be easily formed. Can be formed.
 本発明の座標入力システムは、上記課題を解決するために、前記記載の座標入力装置を備えた座標入力システムであって、画像表示パネルを備えていることを特徴としている。 In order to solve the above problems, a coordinate input system according to the present invention is a coordinate input system including the coordinate input device described above, and is characterized by including an image display panel.
 上記の発明によれば、座標入力装置を、画像表示パネルの画像を見ながらペン入力及び指入力するタッチパネルとして機能させることができる。したがって、例えば、複数の発光ペン及び指を使用する場合に、互いの発光ペン及び指の影響を受けずに、各発光ペン及び指の識別を簡易かつ確実に行い、コストの増大を回避する座標入力装置を備えた座標入力システムを提供することができる。 According to the above invention, the coordinate input device can function as a touch panel for pen input and finger input while viewing an image on the image display panel. Therefore, for example, when a plurality of light-emitting pens and fingers are used, coordinates that easily and reliably identify each light-emitting pen and finger without being affected by the light-emitting pens and fingers and avoid an increase in cost. A coordinate input system including an input device can be provided.
 本発明の座標入力装置は、以上のように、被検出体は、少なくとも2つの第1被検出体と第2被検出体とからなっており、上記第1被検出体の接触に基づく第1伝搬光と上記第2被検出体の接触に基づく第2伝搬光とは互いに波長が異なっていると共に、上記導光部材には、上記第1伝搬光又は第2伝搬光を上記2つの受光部へそれぞれ線状に出射する光路変換部が設けられ、上記導光部材と上記各受光部との光路間には、上記第1伝搬光の波長に対応した第1フィルタと上記第2伝搬光の波長に対応した第2フィルタとが、上記線状に出射された、第1伝搬光及び第2伝搬光の出射光をそれぞれ横切らせるように並べて配設されているものである。 As described above, in the coordinate input device of the present invention, the detection target includes at least two first detection target and second detection target, and the first detection target is based on the contact of the first detection target. The propagating light and the second propagating light based on the contact of the second object to be detected have different wavelengths, and the light guide member transmits the first propagating light or the second propagating light to the two light receiving portions. An optical path conversion unit that emits in a linear shape is provided, and a first filter corresponding to the wavelength of the first propagation light and the second propagation light are disposed between the light paths of the light guide member and the light reception units. The second filter corresponding to the wavelength is arranged side by side so as to cross the outgoing light of the first propagation light and the second propagation light emitted in the above-described linear shape.
 本発明の座標入力システムは、以上のように、前記記載の座標入力装置を備えた座標入力システムであって、画像表示パネルを備えているものである。 As described above, the coordinate input system of the present invention is a coordinate input system including the coordinate input device described above, and includes an image display panel.
 それゆえ、複数の被検出体を同時に使用する場合に、互いの被検出体の影響を受けずに、各被検出体の識別を簡易かつ確実に行い、コストの増大を回避する座標入力装置、及び座標入力システムを提供するという効果を奏する。 Therefore, when using a plurality of objects to be detected at the same time, the coordinate input device can easily and reliably identify each object to be detected without being affected by each other object to be detected, and avoid an increase in cost. And there is an effect that a coordinate input system is provided.
(a)は本発明における座標入力装置の実施の一形態を示すものであって、座標入力装置の構成を示す斜視図であり、(b)は上記座標入力装置のフィルタの構成を示す平面図である。(A) shows one Embodiment of the coordinate input device in this invention, Comprising: It is a perspective view which shows the structure of a coordinate input device, (b) is a top view which shows the structure of the filter of the said coordinate input device. It is. 上記座標入力装置を備えた座標入力システムの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the coordinate input system provided with the said coordinate input device. 上記座標入力システムの全体構成を示すものであって、図2のA-A線矢視断面図である。FIG. 3 shows an overall configuration of the coordinate input system, and is a cross-sectional view taken along line AA in FIG. 2. 上記座標入力装置のタッチペンにおける上面の筐体を取り外して示す平面図である。It is a top view which removes and shows the housing | casing of the upper surface in the touch pen of the said coordinate input device. 上記タッチペンの先端に設けられた光散乱部材の構成を示す断面図である。It is sectional drawing which shows the structure of the light-scattering member provided in the front-end | tip of the said touch pen. (a)は上記ペン入力装置における撮像ユニットでの撮像状況を示す斜視図であり、(b)は上記撮像ユニットの撮像素子での像を示す平面図である。(A) is a perspective view which shows the imaging condition in the imaging unit in the said pen input device, (b) is a top view which shows the image in the imaging device of the said imaging unit. 2つのタッチペンから発光される各光のピーク波長の離間距離を示すチャートである。It is a chart which shows the separation distance of the peak wavelength of each light light-emitted from two touch pens. 上記撮像素子の感度波長依存性を示すチャートである。It is a chart which shows the sensitivity wavelength dependence of the said image pick-up element. 上記座標入力装置のフィルタにおける変形例の構成を示す平面図である。It is a top view which shows the structure of the modification in the filter of the said coordinate input device. 本発明における座標入力装置、及び座標入力システムの他の実施の形態を示すものであって、座標入力装置を備えた座標入力システムの全体構成を示す斜視図である。FIG. 7 is a perspective view showing an overall configuration of a coordinate input system including a coordinate input device according to another embodiment of the coordinate input device and the coordinate input system of the present invention. 上記座標入力システムの全体構成を示すものであって、図10のB-B線矢視断面図である。FIG. 11 shows an overall configuration of the coordinate input system, and is a cross-sectional view taken along line BB in FIG. 10. (a)は指が導光板に接触されていないときの撮像素子の出力像を示す平面図であり、(b)は指が導光板に接触されたときの撮像素子の出力像を示す平面図である。(A) is a top view which shows the output image of an image pick-up element when a finger is not contacting the light guide plate, (b) is a top view which shows the output image of an image pick-up element when a finger is contacted to the light guide plate It is. (a)は上記座標入力装置における撮像ユニットでの撮像状況を示す斜視図であり、(b)は上記撮像ユニットの撮像素子での像を示す平面図である。(A) is a perspective view which shows the imaging condition in the imaging unit in the said coordinate input device, (b) is a top view which shows the image in the image pick-up element of the said imaging unit. (a)は上記座標入力装置において、指とタッチペンとを同時に併用する場合の全体構成を示す斜視図であり、(b)は指とタッチペンとが導光板に接触されたときの撮像素子の出力像を示す平面図である。(A) is a perspective view which shows the whole structure at the time of using a finger and a touch pen together simultaneously in the said coordinate input device, (b) is an output of an image pick-up element when a finger and a touch pen are contacted with the light-guide plate. It is a top view which shows an image. 本発明における座標入力装置の他の実施の形態を示すものであって、座標入力装置の全体構成を示す斜視図である。FIG. 10 is a perspective view showing an overall configuration of a coordinate input device according to another embodiment of the coordinate input device of the present invention. 上記座標入力装置の変形例を示すものであって、座標入力装置の全体構成を示す平面図である。The modification of the said coordinate input device is shown, Comprising: It is a top view which shows the whole structure of a coordinate input device. (a)は従来の座標入力装置としての位置検出装置の構成を示す平面図であり、(b)は上記位置検出装置の構成を示す断面図であり、(c)はタッチペンにおける上面の筐体を取り外して示す平面図である。(A) is a top view which shows the structure of the position detection apparatus as a conventional coordinate input device, (b) is sectional drawing which shows the structure of the said position detection apparatus, (c) is the housing | casing of the upper surface in a touch pen It is a top view which removes and shows. (a)は従来の他の座標入力装置としての座標検出装置の構成を示す平面図であり、(b)は上記座標検出装置の構成を示す断面図である。(A) is a top view which shows the structure of the coordinate detection apparatus as another conventional coordinate input device, (b) is sectional drawing which shows the structure of the said coordinate detection apparatus. (a)は従来のさらに他の座標入力装置としての位置検出装置の構成を示す斜視図であり、(b)は上記位置検出装置の要部の構成を示す平面図である。(A) is a perspective view which shows the structure of the position detection apparatus as another conventional coordinate input device, (b) is a top view which shows the structure of the principal part of the said position detection apparatus. (a)は上記従来の位置検出装置の検出原理を示す平面図であり、(b)は上記位置検出装置における受光素子の光信号を示す波形図である。(A) is a top view which shows the detection principle of the said conventional position detection apparatus, (b) is a wave form diagram which shows the optical signal of the light receiving element in the said position detection apparatus.
  〔実施の形態1〕
 本発明の一実施形態について図1~図9に基づいて説明すれば、以下のとおりである。
[Embodiment 1]
One embodiment of the present invention will be described below with reference to FIGS.
 (座標入力システムの構成)
 本実施の形態の座標入力装置を備えた座標入力システムの構成について、図2に基づいて説明する。図2は、上記座標入力システムの構成を示す斜視図である。
(Configuration of coordinate input system)
A configuration of a coordinate input system including the coordinate input device according to the present embodiment will be described with reference to FIG. FIG. 2 is a perspective view showing the configuration of the coordinate input system.
 本実施の形態の座標入力システム1は、図2に示すように、画像表示パネルとしての液晶表示パネル2と、この液晶表示パネル2の上側に設けられた座標入力装置としてのペン入力装置3Aとを備えている。 As shown in FIG. 2, the coordinate input system 1 of the present embodiment includes a liquid crystal display panel 2 as an image display panel, and a pen input device 3A as a coordinate input device provided on the upper side of the liquid crystal display panel 2. It has.
 上記液晶表示パネル2は、一対の図示しない基板間に液晶層を挟持しており、各基板には、電圧印加によって当該液晶層の液晶分子の配向を変えるための各種電極が少なくとも設けられている。そして、電圧印加によって液晶分子の配向を変化させることによって、各画素の液晶層を透過する光の透過量を調整して所望の表示を行う。液晶表示パネル2の構成は、従来周知の液晶表示パネルを用いることができる。 The liquid crystal display panel 2 has a liquid crystal layer sandwiched between a pair of substrates (not shown), and each substrate is provided with at least various electrodes for changing the orientation of liquid crystal molecules of the liquid crystal layer by applying a voltage. . Then, by changing the orientation of the liquid crystal molecules by applying a voltage, the amount of light transmitted through the liquid crystal layer of each pixel is adjusted to perform a desired display. As the configuration of the liquid crystal display panel 2, a conventionally known liquid crystal display panel can be used.
 上記座標入力システム1では、液晶表示パネル2に表示された画面を見ながら、液晶表示パネル2の上側に設けられたペン入力装置3Aの後述する導光板10上にペン及び被検出体としてのタッチペン40を接触させることにより、そのタッチペン40における接触位置の座標が特定され、所望のデータ入力ができるようになっている。 In the coordinate input system 1, while looking at the screen displayed on the liquid crystal display panel 2, a pen and a touch pen as a detection object are placed on a light guide plate 10 described later of a pen input device 3 </ b> A provided on the upper side of the liquid crystal display panel 2. By touching 40, the coordinates of the contact position on the touch pen 40 are specified, and desired data can be input.
 (ペン入力装置の構成)
 次に、上記座標入力システム1に備えられたペン入力装置3Aの構成について、前記図2、及び図3に基づいて以下に詳述する。図3は、図2のA-A線矢視断面図である。
(Configuration of pen input device)
Next, the configuration of the pen input device 3A provided in the coordinate input system 1 will be described in detail below based on FIG. 2 and FIG. 3 is a cross-sectional view taken along line AA in FIG.
 上記ペン入力装置3Aは、図2に示すように、四角形の透明の導光部材としての導光板10と、導光板10の一辺の両端にそれぞれ配設された撮像ユニット20・30と、導光板10に接触される発光ペンとしてのタッチペン40とを有している。 As shown in FIG. 2, the pen input device 3A includes a light guide plate 10 as a rectangular transparent light guide member, imaging units 20 and 30 disposed at both ends of one side of the light guide plate 10, and a light guide plate. 10 and a touch pen 40 as a light emitting pen.
 導光板10は、透光性材料からなる一枚の平板からなっており、液晶表示パネル2の表示面側に重ねて配設されている。導光板10の大きさは、液晶表示パネルと略同じ大きさの四角形となっている。詳細には、図2に示すように、撮像ユニット20・30を配設する一辺側が液晶表示パネル2よりも大きく構成されている。これにより、撮像ユニット20・30の少なくとも一部分を、導光板10の背面側に配設することができる。この結果、ペン入力装置3Aのタッチペン40における導光板10への接触面に沿って拡がる方向のサイズの大型化を抑制し、ペン入力装置3Aのコンパクトサイズの実現に寄与している。 The light guide plate 10 is made of a single flat plate made of a translucent material, and is disposed so as to overlap the display surface side of the liquid crystal display panel 2. The size of the light guide plate 10 is a quadrangle having substantially the same size as the liquid crystal display panel. Specifically, as shown in FIG. 2, one side where the imaging units 20 and 30 are disposed is configured to be larger than the liquid crystal display panel 2. Accordingly, at least a part of the imaging units 20 and 30 can be disposed on the back side of the light guide plate 10. As a result, an increase in size of the pen input device 3A in the direction of spreading along the contact surface to the light guide plate 10 in the touch pen 40 is suppressed, contributing to the realization of a compact size of the pen input device 3A.
 また、導光板10における撮像ユニット20・30を配設する2箇所の隅角部には、凹型の円錐面状の光路変換部としての切り欠き11がそれぞれ形成されている。この切り欠き11の円錐面と導光板10背面とがなす角度(図3に示すγ)は、45度以下であり、30度又は45度が選ばれる。円錐面状の切り欠き11にはミラーコーティング11aが施されている。これにより、図3に示すように、導光板10の内部を伝搬して切り欠き11に至った光の光路を、切り欠き11によって導光板10の下方、つまり導光板10の背面に向けて変化させる。尚、ミラーコーティング11aが無くても、切り欠き11の円錐面によって、光路を導光板10の下方に変化させることが可能である。すなわち、導光板10は、完全な四角形である必要はなく、上述のように、角が切り欠かれていたり、又は角が曲面加工されていたりする等の実質的な四角形であってよい。 Further, notches 11 as concave conical surface optical path conversion portions are formed at two corners of the light guide plate 10 where the imaging units 20 and 30 are disposed, respectively. The angle (γ shown in FIG. 3) formed by the conical surface of the notch 11 and the back surface of the light guide plate 10 is 45 degrees or less, and 30 degrees or 45 degrees is selected. The conical notch 11 is provided with a mirror coating 11a. As a result, as shown in FIG. 3, the optical path of light propagating through the inside of the light guide plate 10 to the notch 11 is changed by the notch 11 below the light guide plate 10, that is, toward the back surface of the light guide plate 10. Let Even without the mirror coating 11 a, the optical path can be changed below the light guide plate 10 by the conical surface of the notch 11. That is, the light guide plate 10 does not have to be a perfect quadrangle, and may be a substantial quadrangle such that corners are notched or corners are curved as described above.
 また、本実施の形態では、光変換部材を導光板10の隅角部の切り欠き11として設けたため、導光板10から光変換部材が突出するのを回避している。 In the present embodiment, since the light conversion member is provided as the notch 11 in the corner portion of the light guide plate 10, the light conversion member is prevented from protruding from the light guide plate 10.
 導光板10の厚さは1~3mmが主に用いられる。ただし、これより厚くてもよい。本実施の形態では、厚さ例えば2mmとなっている。導光板10の材料としては、例えばアクリルが用いられ、ポリカーボネート又はガラスでもよい。また、導光板10の四角形の大きさは、例えば約1m角とすることができるが、これに制限されるものではない。 The thickness of the light guide plate 10 is mainly 1 to 3 mm. However, it may be thicker than this. In the present embodiment, the thickness is, for example, 2 mm. As a material of the light guide plate 10, for example, acrylic is used, and polycarbonate or glass may be used. Further, the size of the quadrilateral of the light guide plate 10 can be, for example, about 1 m square, but is not limited thereto.
 撮像ユニット20・30は、導光板10における円錐面状の切り欠き11の直下に配置されている。つまり、撮像ユニット20・30は、導光板10の端部における互いに離れた二箇所に配設されている。また、撮像ユニット20・30は、導光板10の表面よりも上方には突出していない。 The imaging units 20 and 30 are disposed immediately below the conical cutout 11 in the light guide plate 10. In other words, the imaging units 20 and 30 are disposed at two locations separated from each other at the end of the light guide plate 10. In addition, the imaging units 20 and 30 do not protrude above the surface of the light guide plate 10.
 上記撮像ユニット20は、レンズ21とフィルタ22と受光部としての撮像素子23とを有している。また、撮像ユニット30も、同様に、レンズ31とフィルタ32と受光部としての撮像素子33とを有している。撮像素子23・33の受光面は、それぞれ、導光板10の表面と平行であるように配設されている。撮像素子23・33は、2次元のイメージセンサからなっている。 The imaging unit 20 includes a lens 21, a filter 22, and an imaging element 23 as a light receiving unit. Similarly, the imaging unit 30 includes a lens 31, a filter 32, and an imaging element 33 as a light receiving unit. The light receiving surfaces of the image sensors 23 and 33 are arranged so as to be parallel to the surface of the light guide plate 10. The image sensors 23 and 33 are two-dimensional image sensors.
 撮像ユニット20・30は、導光板10に接続されており、導光板10を伝搬しない光は撮像素子23・33に結合しない構造になっている。 The imaging units 20 and 30 are connected to the light guide plate 10 and have a structure in which light that does not propagate through the light guide plate 10 is not coupled to the imaging elements 23 and 33.
 尚、本実施の形態では、切り欠き11が円錐面状に構成されているが、本発明はこれに限定されるものではなく、多角面状に構成されていてもよい。 In the present embodiment, the notch 11 is configured in a conical surface shape, but the present invention is not limited to this, and may be configured in a polygonal surface shape.
 (タッチペンの構成)
 次に、本実施の形態のタッチペンの構成について、図4及び図5に基づいて説明する。図4は、本実施の形態のタッチペン40の構成を示す平面図である。尚、図4においては、説明の便宜上、筐体の一部を取り外して、内部構造を露出させている。また、図5は、タッチペンの先端に設けられた光散乱部材の構成を示す断面図である。
(Configuration of touch pen)
Next, the structure of the touch pen of this Embodiment is demonstrated based on FIG.4 and FIG.5. FIG. 4 is a plan view showing the configuration of the touch pen 40 of the present embodiment. In FIG. 4, for convenience of explanation, a part of the housing is removed to expose the internal structure. FIG. 5 is a cross-sectional view showing the configuration of the light scattering member provided at the tip of the touch pen.
 上記タッチペン40は、いわゆるタッチペン又はスタイラスペンと呼ばれる操作部材である。 The touch pen 40 is an operation member called a so-called touch pen or stylus pen.
 タッチペン40は、図4に示すように、外形となる筐体41の内部に、光を出射する発光素子42aと、該発光素子42aから発光された光をタッチペン40の先端から導光板10へ導入させる導入部42bとを有する発光部42と、電源装置43と、制御装置44とを格納している。そして、タッチペン40の光出射先端側には、光を拡散させる光散乱部材45が導入部42bに固定されて取り付けられている。 As shown in FIG. 4, the touch pen 40 introduces light emitted from the light emitting element 42 a into the light guide plate 10 through the light emitting element 42 a that emits light and the light emitted from the light emitting element 42 a into the outer casing 41. The light-emitting part 42 which has the introduction part 42b to make, the power supply device 43, and the control apparatus 44 are stored. A light scattering member 45 that diffuses light is fixedly attached to the introduction portion 42b on the light emitting tip side of the touch pen 40.
 この光散乱部材45は、光拡散材料を含有する樹脂から構成されている。上記光拡散材料としては、ガラスビーズを用いることができる。また、上記樹脂としては、例えばポリテトラフルオロエチレン等のフッ素樹脂、又はシリコンラバーを用いることができ、弾性を有して構成されていることが好ましい。弾性材を用いることによって、ペン入力装置3Aの導光板10にタッチペン40の先端つまり光散乱部材45を接触させて用いる場合に、導光板10表面を傷付けることなく、かつ、接触によって僅かに接触部分が変形して導光板10表面との接触面積を大きくすることができる。この結果、図5に示すように、導光板10表面に導入される光量を多くすることができる。すなわち、導光板10の内部における深さ方向に対して複数の放射状の方向に、タッチペン40からの光を入射させることができるようになっている。 The light scattering member 45 is made of a resin containing a light diffusing material. Glass beads can be used as the light diffusion material. Moreover, as said resin, fluororesins, such as polytetrafluoroethylene, or a silicon rubber can be used, for example, and it is preferable to have elasticity. By using the elastic material, when the tip of the touch pen 40, that is, the light scattering member 45 is used in contact with the light guide plate 10 of the pen input device 3A, the surface of the light guide plate 10 is not damaged, and the contact portion is slightly touched by the contact. Can be deformed to increase the contact area with the surface of the light guide plate 10. As a result, as shown in FIG. 5, the amount of light introduced to the surface of the light guide plate 10 can be increased. That is, light from the touch pen 40 can be incident in a plurality of radial directions with respect to the depth direction inside the light guide plate 10.
 光散乱部材45の光出射面は、図5に示すように、曲面を有している。すなわち、光散乱部材45は概ね半球体であり、直径が例えば2.5~5.5mmとなっている。直径が2.5よりも小さいと、十分に拡散した光を形成することができない虞がある。また、光散乱部材45をペン入力装置3Aの導光板10に接触させて用いる場合に、十分な接触面積を確保することができる光が十分に導光板10表面に導入されない虞がある。一方、直径が5.5mmを超える場合、拡散光が拡がり過ぎて正確な位置検出を行うことが困難になる虞がある。また、光散乱部材45をペン入力装置3Aの導光板10に接触させる場合に、接触面積が広すぎることから摩擦抵抗が大きくなりすぎて操作性を損なう虞がある。この結果、直径を2.5~5.5mmとすれば、光を効率よく拡散させることができつつ、位置座標を精度よく検出することができる。また、滑らかな書き味つまりタッチ感を実現することができる。尚、この曲面は、均一な曲率によって構成されている必要はなく、タッチペン40の最も先端部となる領域とそれを囲む領域とで曲率を異ならせてもよい。 The light exit surface of the light scattering member 45 has a curved surface as shown in FIG. That is, the light scattering member 45 is generally hemispherical and has a diameter of, for example, 2.5 to 5.5 mm. When the diameter is smaller than 2.5, there is a possibility that the sufficiently diffused light cannot be formed. Further, when the light scattering member 45 is used in contact with the light guide plate 10 of the pen input device 3A, there is a possibility that light that can ensure a sufficient contact area is not sufficiently introduced into the surface of the light guide plate 10. On the other hand, when the diameter exceeds 5.5 mm, the diffused light may be excessively spread and it may be difficult to perform accurate position detection. Further, when the light scattering member 45 is brought into contact with the light guide plate 10 of the pen input device 3A, since the contact area is too large, there is a possibility that the frictional resistance becomes too large and the operability is impaired. As a result, if the diameter is 2.5 to 5.5 mm, the position coordinates can be detected with high accuracy while light can be diffused efficiently. In addition, a smooth writing taste, that is, a touch feeling can be realized. Note that the curved surface does not need to be configured with a uniform curvature, and the curvature may be different between the region that is the most distal end portion of the touch pen 40 and the region that surrounds the region.
 さらに、この曲面には、表面に微細な凹凸形状が設けられていてもよい。この微細な凹凸形状によって、光を拡散させることができる。また、光散乱部材45をペン入力装置3Aの導光板10に接触させて用いる場合、この微細な凹凸形状によって導光板10との接触面積が減少し、摺動させたときの摩擦力が低減するので、滑らかな書き味つまりタッチ感を実現することができる。尚、このように、微細な凹凸形状を設ける態様の場合は、光散乱部材45に光拡散材料を含めることなく樹脂単体で構成し、該樹脂における導光板10との対向領域に微細な凹凸形状を設けることによっても、光拡散効果を奏することができる。換言すれば、光拡散材料を含めるのに加えて微細な凹凸形状を形成すれば、光拡散効果をより高めることができる。微細な凹凸形状は、型成形によって形成することができるが、この方法に限定されるものでない。尚、微細な凹凸形状を設けることにより導光板10との接触面積が減少するが、それによる導入光量の減少は5%程度であるため、位置座標の検出に大きな影響は与えない。 Further, the curved surface may be provided with a fine uneven shape on the surface. Light can be diffused by this fine uneven shape. In addition, when the light scattering member 45 is used in contact with the light guide plate 10 of the pen input device 3A, the contact area with the light guide plate 10 is reduced by this fine uneven shape, and the frictional force when sliding is reduced. Therefore, a smooth writing taste, that is, a touch feeling can be realized. In addition, in the case of a mode in which a fine concavo-convex shape is provided in this way, the light scattering member 45 is constituted by a single resin without including a light diffusing material, and the fine concavo-convex shape in the region facing the light guide plate 10 in the resin. By providing the light diffusion effect, a light diffusion effect can be achieved. In other words, if a fine uneven shape is formed in addition to including the light diffusion material, the light diffusion effect can be further enhanced. The fine uneven shape can be formed by molding, but is not limited to this method. Although the contact area with the light guide plate 10 is reduced by providing a fine concavo-convex shape, the reduction in the amount of introduced light is about 5%, so that the position coordinate detection is not greatly affected.
 また、光散乱部材45の光出射面には、耐磨耗加工が施されていることが好ましい。光散乱部材45がポリテトラフルオロエチレン等のフッ素樹脂によって構成されている場合には不要であるが、光散乱部材45自体が耐磨耗に優れていない他の材料から構成されている場合には、その光出射面に耐磨耗加工を施すことは有効である。耐磨耗加工とは、特に制限はないが、例えばポリテトラフルオロエチレン等のフッ素樹脂を光散乱部材45の光出射面にコーティングする加工が挙げられる。 Further, it is preferable that the light emitting surface of the light scattering member 45 is subjected to wear resistance processing. This is unnecessary when the light scattering member 45 is made of a fluororesin such as polytetrafluoroethylene, but when the light scattering member 45 itself is made of another material that is not excellent in wear resistance. It is effective to subject the light emitting surface to wear-resistant processing. Although there is no restriction | limiting in particular with an abrasion-resistant process, For example, the process which coats fluororesins, such as polytetrafluoroethylene, on the light-projection surface of the light-scattering member 45 is mentioned.
 さらに、この光散乱部材45は、タッチペン40に対して着脱可能に構成されている。これにより、光散乱部材45が何らかの理由で損傷した場合又は経時劣化した場合であっても、光散乱部材45を交換するだけでタッチペン40の使用を継続することができる。また、タッチペン40自体を交換する構成に比べて、低コストで使用を継続することができる。さらに、着脱可能であるために、光散乱部材45が取り付けられる側の部材である導入部42bには、光散乱部材45と接触する部分に、溝構造、咬合する構造、又は嵌め合う構造を設ける一方、光散乱部材45には、その構造に合う構造を設けておくことが好ましい。尚、本実施の形態では、導入部42bに光散乱部材45を取り付ける態様となっている。しかし、本発明はこれに限定されるものではなく、筐体41に光散乱部材45を取り付ける態様であってもよく、他の態様であってもよい。 Furthermore, the light scattering member 45 is configured to be detachable from the touch pen 40. Thereby, even if the light scattering member 45 is damaged for some reason or is deteriorated with time, the use of the touch pen 40 can be continued only by replacing the light scattering member 45. Moreover, compared with the structure which replace | exchanges touch pen 40 itself, use can be continued at low cost. Further, since it is detachable, the introduction portion 42b, which is a member to which the light scattering member 45 is attached, is provided with a groove structure, an occlusal structure, or a fitting structure at a portion in contact with the light scattering member 45. On the other hand, the light scattering member 45 is preferably provided with a structure that matches the structure. In the present embodiment, the light scattering member 45 is attached to the introduction portion 42b. However, the present invention is not limited to this, and may be an aspect in which the light scattering member 45 is attached to the housing 41, or another aspect.
 上記発光素子42aは、例えば赤外光等の光を発するLED(light emitting diode)又はLD(laser diode)を用いることができる。尚、LED又はLDは、1つのタッチペン40に対して1つだけ設けられている構成に限らず、複数個を搭載してもよい。 The light emitting element 42a may be, for example, an LED (light emitting diode) or an LD (laser diode) that emits light such as infrared light. Note that the number of LEDs or LDs is not limited to one provided for one touch pen 40, and a plurality of LEDs or LDs may be mounted.
 上記電源装置43は、例えば電池を内蔵する構成とすることができるほか、充電式に構成されていてもよい。 The power supply device 43 may be configured to include a battery, for example, or may be configured to be rechargeable.
 上記制御装置44は、発光素子42aの発光を制御する。例えば、発光素子42aが導光板10に接触したときにのみに発光する仕組み等が盛り込まれる。この仕組みは感圧スイッチ等を用いることにより構成され、発光時間を制御できるため、消費電力を低減し、電池寿命を延ばすことができる。 The control device 44 controls the light emission of the light emitting element 42a. For example, a mechanism that emits light only when the light emitting element 42a contacts the light guide plate 10 is included. This mechanism is configured by using a pressure-sensitive switch or the like, and can control the light emission time, thereby reducing power consumption and extending battery life.
 上記構成のタッチペン40では、電源装置43から電源を受けた発光素子42aは所定波長の光を発光する。この発光素子42aから発光された光は、導入部42bを経て光散乱部材45に入射し、該光散乱部材45の光拡散材料及び上記微細な凹凸形状によって乱反射する。そして、光散乱部材45の光出射面から拡散光となって出射される。 In the touch pen 40 configured as described above, the light emitting element 42a that receives power from the power supply device 43 emits light of a predetermined wavelength. The light emitted from the light emitting element 42a enters the light scattering member 45 through the introducing portion 42b, and is irregularly reflected by the light diffusing material of the light scattering member 45 and the fine uneven shape. Then, the light is emitted as diffused light from the light emitting surface of the light scattering member 45.
 以上のように、タッチペン40には、光を出射する発光部42が設けられており、ペン先から光が拡散放射される構成となっている。したがって、タッチペン40のペン先が導光板10に接触すると、ペン先から放射された赤外光の一部が、導光板10に結合して、導光板10内を伝搬する。タッチペン40は、ペン先から光を拡散放射するため、導光板10に結合した光は、導光板10内を拡散放射しながら導光伝搬される。 As described above, the touch pen 40 is provided with the light emitting unit 42 that emits light, and the light is diffused and emitted from the pen tip. Therefore, when the pen tip of the touch pen 40 contacts the light guide plate 10, part of the infrared light emitted from the pen tip is coupled to the light guide plate 10 and propagates through the light guide plate 10. Since the touch pen 40 diffuses and emits light from the pen tip, the light coupled to the light guide plate 10 is guided and propagated through the light guide plate 10 while diffusing and radiating.
 そして、図2に示すように、導光板10の内部を伝搬する光(以下、「伝搬光10a・10b」と記載する)は、切り欠き11を介して撮像ユニット20・30にそれぞれ入射する。撮像ユニット20・30では、撮像素子13から得られる各画像から、タッチペン40が接触した箇所における導光板10の二次元平面内での撮像ユニット20・30とのなす角度を求める。これにより、以下に述べる2次元座標の算出原理に基づいて、二次元平面内での位置座標を精度よく求めることができる。 Then, as shown in FIG. 2, light propagating through the light guide plate 10 (hereinafter referred to as “propagating light 10 a, 10 b”) enters the imaging units 20, 30 through the notches 11. In the imaging units 20 and 30, an angle formed with the imaging units 20 and 30 in the two-dimensional plane of the light guide plate 10 at a location where the touch pen 40 contacts is obtained from each image obtained from the imaging element 13. Thereby, based on the calculation principle of the two-dimensional coordinate described below, the position coordinate in the two-dimensional plane can be obtained with high accuracy.
 (2次元座標位置の算出)
 上述のようにして求めた、タッチペン40が接触した箇所における導光板10の二次元平面内での撮像ユニット20・30とのなす角度を用いて、タッチペン40が接触した箇所における2次元座標位置の算出方法について、前記図2及び図3、並びに図6(a)(b)に基づいて、以下に説明する。図6(a)はペン入力装置3Aにおける撮像ユニット20での撮像状況を示す斜視図であり、図6(b)は撮像ユニット20の撮像素子23での像を示す平面図である。
(Calculation of 2D coordinate position)
Using the angle formed with the imaging units 20 and 30 in the two-dimensional plane of the light guide plate 10 at the location where the touch pen 40 comes into contact, the two-dimensional coordinate position at the location where the touch pen 40 comes into contact is obtained. The calculation method will be described below based on FIGS. 2 and 3 and FIGS. 6 (a) and 6 (b). FIG. 6A is a perspective view illustrating an imaging state of the imaging unit 20 in the pen input device 3 </ b> A, and FIG. 6B is a plan view illustrating an image of the imaging unit 23 of the imaging unit 20.
 図3に示すように、まず、タッチペン40のペン先がペン入力装置3Aにおける導光板10の表面に接触したとき、タッチペン40から放射される赤外光の一部が屈折率Nの導光板10内に入射する。この入射光のうち、導光板10内の伝搬角θP が、
 sin(90°-θP )>1/N
に示す条件を満たす光束は、導光板10内に閉じ込められ、導光板10の表面、及び裏面での反射を繰り返し、導光板10内を進行する。
As shown in FIG. 3, first, when the pen tip of the touch pen 40 contacts the surface of the light guide plate 10 in the pen input device 3 </ b> A, a part of the infrared light emitted from the touch pen 40 has a refractive index N. Incident in. Of this incident light, the propagation angle θ P in the light guide plate 10 is
sin (90 ° −θ P )> 1 / N
The light flux that satisfies the conditions shown in FIG. 5 is confined in the light guide plate 10, and is repeatedly reflected on the front and back surfaces of the light guide plate 10, and travels in the light guide plate 10.
 ここで、図2に示すように、タッチペン40から発せられた赤外光はペン先を中心にして導光板10の2次元平面に対して放射状に拡散され、導光板10内を伝搬する。そして、その光束のうちの一部の伝搬光10a・10bは、円錐面状の切り欠き11の端面にも導かれ、該端面の反射光が撮像ユニット20・30にて受光される。具体的には、切り欠き11の端面の反射光は、レンズ21・31にて集光され、続いて、フィルタ22・32を通って、最後に撮像素子23・33に受光される。フィルタ22・32は、タッチペン40から放射される波長帯の光を透過し、それ以外の波長帯の光を遮断する役割を果たす。フィルタ22・32により、太陽光や、液晶表示パネル用バックライト光等の迷光が遮断され、SN比を高くすることができる。 Here, as shown in FIG. 2, the infrared light emitted from the touch pen 40 is diffused radially with respect to the two-dimensional plane of the light guide plate 10 around the pen tip and propagates in the light guide plate 10. A part of the propagation light 10a and 10b of the luminous flux is also guided to the end face of the conical cutout 11, and the reflected light of the end face is received by the imaging units 20 and 30. Specifically, the reflected light of the end face of the notch 11 is collected by the lenses 21 and 31, subsequently passes through the filters 22 and 32, and is finally received by the image sensors 23 and 33. The filters 22 and 32 transmit light in the wavelength band emitted from the touch pen 40 and play a role of blocking light in other wavelength bands. Filters 22 and 32 block sunlight, stray light such as liquid crystal display panel backlight light, and increase the SN ratio.
 次に、撮像ユニット20・30の処理について、図6(a)(b)に基づいて説明する。尚、図6(a)(b)においては、撮像ユニット20についてのみ説明するが、撮像ユニット30においても同様の処理が行われる。 Next, processing of the imaging units 20 and 30 will be described based on FIGS. 6 (a) and 6 (b). 6A and 6B, only the imaging unit 20 will be described, but the same processing is performed in the imaging unit 30 as well.
 図2及び図6(a)に示すように、撮像ユニット20・30に入射した光は、レンズ21・31を経て、撮像素子23・33に線状の像25を形成する。線状の像25の位置はタッチペン40の位置によって変化し、撮像ユニットの取得画像を分析することにより、伝搬光10a・10bと導光板10の一辺とがなす角度α・βがそれぞれ求められ。そして、この角度α・βにより、三角測量法を用いて発光源となるペン先が接した点の位置座標が求められる。 As shown in FIGS. 2 and 6A, the light incident on the imaging units 20 and 30 passes through the lenses 21 and 31 to form a linear image 25 on the imaging elements 23 and 33. The position of the linear image 25 changes depending on the position of the touch pen 40, and the angles α and β formed by the propagation light 10a and 10b and one side of the light guide plate 10 are obtained by analyzing the acquired image of the imaging unit. Then, with the angles α and β, the position coordinates of the point where the pen tip serving as the light emission source is in contact with each other can be obtained using the triangulation method.
 詳細には、図6(a)において、タッチペン40が点P1 の位置にあるとき、図6(b)にも示すように、線状の像25が形成される。また、このタッチペン40が点P2 の位置に移動したとき、線状の像27が形成される。 Specifically, in FIG. 6 (a), the case where the touch pen 40 is in the position of point P 1, as shown in FIG. 6 (b), the linear image 25 is formed. Also, the touch pen 40 when moved to the position of the point P 2, the image 27 of the line shape is formed.
 光を照射している状態にあるタッチペン40のペン先が導光板10に接触していないとき、撮像素子23の取得画像には何も現れない。一方、発光部42から光を照射している状態にあるタッチペン40のペン先が導光板10に接触して赤外光が導光板10に結合すると、その光束のうちの一部における伝搬光10aが撮像素子23に導かれ、撮像素子23の撮像面に線状の像が形成され、取得画像上に線状の像25が現れる。 When the pen tip of the touch pen 40 in the state of irradiating light is not in contact with the light guide plate 10, nothing appears in the acquired image of the image sensor 23. On the other hand, when the pen tip of the touch pen 40 that is in the state of irradiating light from the light emitting unit 42 contacts the light guide plate 10 and infrared light is coupled to the light guide plate 10, the propagation light 10a in a part of the light flux. Is guided to the image sensor 23, a linear image is formed on the imaging surface of the image sensor 23, and a linear image 25 appears on the acquired image.
 図6(b)に示す線状の像25の位置は、タッチペン40のペン先における接触点の位置に依存して変化し、ペン先の接触点の位置を変えると、線状の像25は線状の像27のように変化する。その線状の像25・27の軌跡は一点鎖線で示した扇形状26になる。その扇形の中心と線状の像25を結ぶ線分の傾き角度α1 ’(円弧の中心を回転中心とする)は、タッチペン40と撮像素子23を結ぶ線分と導光板10の上記或る一辺とがなす角度α1 と同じ角度になる。したがって、撮像素子の取得画像から傾き角度α1 ’が求められ、この傾き角度α1 ’から角度α1 が求められる。同様に、タッチペン40が点P2 の位置に移動すると、線状の像27が形成され、その線状の像27の傾き角度α2 ’を求めることにより、角度α2 が求められる。 The position of the linear image 25 shown in FIG. 6B changes depending on the position of the contact point at the pen tip of the touch pen 40, and when the position of the contact point of the pen tip is changed, the linear image 25 becomes It changes like a linear image 27. The trajectories of the linear images 25 and 27 have a fan shape 26 indicated by a one-dot chain line. The inclination angle α 1 ′ of the line segment connecting the fan-shaped center and the linear image 25 (with the center of the arc as the rotation center) is the above-described certain value of the light guide plate 10 and the line segment connecting the touch pen 40 and the image sensor 23. The angle is the same as the angle α 1 formed by one side. Therefore, the inclination angle α 1 ′ is obtained from the acquired image of the image sensor, and the angle α 1 is obtained from the inclination angle α 1 ′. Similarly, when the touch pen 40 moves to the position of the point P 2, a linear image 27 is formed, and the angle α 2 is obtained by obtaining the inclination angle α 2 ′ of the linear image 27.
 撮像素子23についても同様に取得画像の分析から発光点の位置が特定され、タッチペン40と撮像素子23とを結ぶ線分と導光板10の上記或る一辺とがなす角度βが求められる。 Similarly, for the image sensor 23, the position of the light emitting point is specified from the analysis of the acquired image, and the angle β formed by the line segment connecting the touch pen 40 and the image sensor 23 and the certain side of the light guide plate 10 is obtained.
 そして、撮像素子23と撮像素子33との間の間隔をL、撮像素子23からの画像を読み取り求めた輝点の角度をα、撮像素子23からの取得画像を読み取り求めた輝点の角度をβとしたとき、輝点の座標(X、Y)は下記の関係式(1)及び関係式(2)
 Y=tanα・X             …関係式(1)
 Y=tanβ・(L-X)         …関係式(2)
を満足する。これを解くと、輝点の座標(X、Y)は、
 X=tanβ・L/(tanα+tanβ)         …式(3)
 Y=(tanα・tanβ)・L/(tanα+tanβ)  …式(4)
と表され、上述のように求めた角度α・βと、予め求めることができる間隔Lとにより、ペン先が接触した地点の座標X・Yが求められる。このうち間隔Lは撮像素子23と撮像素子33との間の間隔であり、固定の値である。角度α・βを求めることにより、ペン入力位置の座標X・Yを求めることができる。
The distance between the image sensor 23 and the image sensor 33 is L, the angle of the bright spot obtained by reading the image from the image sensor 23 is α, and the angle of the bright spot obtained by reading the acquired image from the image sensor 23 is When β is defined, the coordinates (X, Y) of the bright spot are the following relational expressions (1) and (2).
Y = tan α · X (1)
Y = tan β · (L−X) (Formula 2)
Satisfied. Solving this, the coordinates (X, Y) of the bright spot are
X = tan β · L / (tan α + tan β) Equation (3)
Y = (tan α · tan β) · L / (tan α + tan β) (4)
The coordinates X and Y of the point where the pen tip contacts are obtained from the angles α and β obtained as described above and the interval L that can be obtained in advance. Among these, the space | interval L is a space | interval between the image pick-up element 23 and the image pick-up element 33, and is a fixed value. By obtaining the angles α and β, the coordinates X and Y of the pen input position can be obtained.
 尚、撮像素子23と撮像素子33との間の間隔Lとは、レンズ21の光軸中心とレンズ31の光軸中心との間の距離である。 The interval L between the image sensor 23 and the image sensor 33 is a distance between the optical axis center of the lens 21 and the optical axis center of the lens 31.
 タッチペン40の位置座標を以上の方法で求めるために、座標入力システム1には、図示しない位置座標検出部を設けている。位置座標検出部はペン入力装置3Aに設けることができる。 In order to obtain the position coordinates of the touch pen 40 by the above method, the coordinate input system 1 is provided with a position coordinate detection unit (not shown). The position coordinate detection unit can be provided in the pen input device 3A.
 また、以上の方法にて求められたタッチペン40の位置座標に基づいて、液晶表示パネル2の位置座標に対応する位置にある画素を駆動して、ユーザが、タッチペン40のタッチ位置を視認することができるようにすることが可能である。そのためには、液晶表示パネル2の駆動を制御する図示しない制御部が、位置座標検出部で求めた位置座標の情報を取得して、該情報に基づいて液晶表示パネル2を駆動すればよい。 Further, based on the position coordinates of the touch pen 40 obtained by the above method, the pixel at the position corresponding to the position coordinates of the liquid crystal display panel 2 is driven, and the user visually recognizes the touch position of the touch pen 40. Is possible. For this purpose, a control unit (not shown) that controls driving of the liquid crystal display panel 2 may acquire information on the position coordinates obtained by the position coordinate detection unit and drive the liquid crystal display panel 2 based on the information.
 (複数のタッチペンでの座標検出)
 本実施の形態のペン入力装置3A及び座標入力システム1では、複数のタッチペン40を使用する場合においても、簡易な構成にて各タッチペン40の識別を簡易かつ確実に行うことができるようになっている。以下に、その構成について、図1(a)(b)、図7及び図8に基づいて説明する。図1(a)はペン入力装置3Aの構成を示す斜視図であり、図1(b)はペン入力装置3Aのフィルタ22A・32Aの構成を示す平面図である。図7は、2つのタッチペン40A・40Bから発光される各光のピーク波長の離間距離を示すチャートである。図8は、撮像素子23・33の感度波長依存性を示すチャートである。
(Coordinate detection with multiple touch pens)
In the pen input device 3A and the coordinate input system 1 according to the present embodiment, even when a plurality of touch pens 40 are used, each touch pen 40 can be easily and reliably identified with a simple configuration. Yes. Below, the structure is demonstrated based on FIG. 1 (a) (b), FIG.7, and FIG.8. 1A is a perspective view showing the configuration of the pen input device 3A, and FIG. 1B is a plan view showing the configuration of the filters 22A and 32A of the pen input device 3A. FIG. 7 is a chart showing the separation distance between the peak wavelengths of the lights emitted from the two touch pens 40A and 40B. FIG. 8 is a chart showing the sensitivity wavelength dependency of the image sensors 23 and 33.
 図1(a)に示すように、本実施の形態では、複数のタッチペン40として2本のタッチペン40A・40Bが使用されている場合について説明する。尚、本発明では、3本以上のタッチペン40を使用しても、その作用及び効果は3本のタッチペン40A・40Bの使用時と同様である。 As shown in FIG. 1A, in this embodiment, a case where two touch pens 40A and 40B are used as a plurality of touch pens 40 will be described. In the present invention, even when three or more touch pens 40 are used, the operation and effect thereof are the same as those when the three touch pens 40A and 40B are used.
 まず、本実施の形態の各タッチペン40A・40Bの発光部42は、それぞれ異なる波長の光を発光する。具体的には、両者の光の波長は、図7に示すように、両者の光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっている。 First, the light emitting units 42 of the touch pens 40A and 40B according to the present embodiment emit light having different wavelengths. Specifically, as shown in FIG. 7, the wavelengths of the two lights are separated from the peak half-value width of the light having the larger peak width by the interval between the peak wavelengths of the lights. Are different from each other.
 すなわち、ピーク半値幅の広い光同士では、光学フィルタを用いても完全に波長分離することができない虞がある。このため、完全に分離検出するためには、光のピーク半値幅を考慮して波長を選択する必要がある。この点、本実施の形態では、各タッチペン40A・40Bの発光部42・42から出射される各光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっている。この結果、各タッチペン40A・40Bの発光部42・42から出射される各光の波長を、充分に分離識別することが可能となる。尚、光の波長域は、赤外光、赤色光若しくは青色光等の可視光、又は紫外光でもよい。 That is, there is a possibility that light having a wide peak half width cannot be completely wavelength-separated even if an optical filter is used. For this reason, in order to perform complete separation detection, it is necessary to select a wavelength in consideration of the half-value width of the light peak. In this regard, in the present embodiment, the wavelength of each light emitted from the light emitting units 42 and 42 of each touch pen 40A and 40B is such that the interval between the peak wavelengths of each light is a peak half of the light having the larger peak width. They are different from each other so that they are separated from the price range. As a result, the wavelengths of the light beams emitted from the light emitting units 42 and 42 of the touch pens 40A and 40B can be sufficiently separated and identified. The wavelength range of light may be visible light such as infrared light, red light or blue light, or ultraviolet light.
 また、本実施の形態では、受光部としての撮像素子23・33は、一個のタッチペン40の場合と同様に、導光板10の一辺の両端部に設けられた撮像素子23・33しか設けられていない。ただし、必ずしもこれに限らず、例えば、3つ以上の撮像素子を設けることができるが、部材コストを考えれば2つが適切である。例えば、3つの撮像素子を設けると共に、そのうち1つを補助カメラとして用いた構成であってもよい。 In the present embodiment, the image sensors 23 and 33 as the light receiving units are provided only with the image sensors 23 and 33 provided at both ends of one side of the light guide plate 10 as in the case of the single touch pen 40. Absent. However, the present invention is not necessarily limited to this, and for example, three or more image sensors can be provided, but two are appropriate in view of member costs. For example, a configuration in which three image sensors are provided and one of them is used as an auxiliary camera may be used.
 ここで、例えばCMOS(Complementary Metal Oxide Semiconductor:相補形金属酸化膜半導体)カメラ等の撮像素子23・33では、図8に示すように、長波長側に向かうに伴って受光感度つまり量子効率が低下する傾向にある。このため、短波長の信号が強く検出される可能性がある。 Here, for example, in the imaging devices 23 and 33 such as a CMOS (Complementary Metal Oxide Semiconductor) camera or the like, as shown in FIG. Tend to. For this reason, a short wavelength signal may be detected strongly.
 そこで、本実施の形態の撮像素子23・33では、各タッチペン40A・40Bの発光部42・42から出射される光の強度は、撮像素子23・33における波長域での受光感度に応じて、検出感度が同一になるように調整されている。具体的には、例えば、各タッチペン40A・40Bの発光部42・42から出射される光の波長が650nmと850nmとの場合には、図8により受光感度つまり量子効率が50%と20%であり、2.5倍になっている。したがって、この場合、波長850nmの光を発光するタッチペン40Aの発光部42から出射される光の強度は、波長650nmの光を発光するタッチペン40Bの発光部42から出射される光の強度に対して2.5倍に調整されるようになっている。 Therefore, in the imaging devices 23 and 33 according to the present embodiment, the intensity of light emitted from the light emitting units 42 and 42 of the touch pens 40A and 40B depends on the light receiving sensitivity in the wavelength region of the imaging devices 23 and 33. The detection sensitivity is adjusted to be the same. Specifically, for example, when the wavelengths of light emitted from the light emitting units 42 and 42 of the touch pens 40A and 40B are 650 nm and 850 nm, the light receiving sensitivity, that is, the quantum efficiency is 50% and 20% according to FIG. Yes, it is 2.5 times. Therefore, in this case, the intensity of the light emitted from the light emitting unit 42 of the touch pen 40A that emits light with a wavelength of 850 nm is relative to the intensity of the light emitted from the light emitting unit 42 of the touch pen 40B that emits light with a wavelength of 650 nm. It is adjusted to 2.5 times.
 この結果、特定の波長の信号が強く検出されるのを回避して、検出感度を揃えることができる。 As a result, it is possible to avoid the strong detection of a signal of a specific wavelength and to align the detection sensitivity.
 次に、本実施の形態では、フィルタ22A・32Aは、図1(a)(b)に示すように、タッチペン40Aからの第1伝搬光L1の波長に対応した第1フィルタF1と、タッチペン40Bからの第2伝搬光L2の波長に対応した第2フィルタF2とが線状に出射された、第1伝搬光L1及び第2伝搬光L2の出射光をそれぞれ横切るように積層して配設されている。これら第1フィルタF1と第2フィルタF2とは、連続して一体に設けられている。また、第1フィルタF1及び第2フィルタF2の厚さは、それぞれ例えば5mmとなっている。 Next, in the present embodiment, as shown in FIGS. 1A and 1B, the filters 22A and 32A include the first filter F1 corresponding to the wavelength of the first propagation light L1 from the touch pen 40A and the touch pen 40B. The second filter F2 corresponding to the wavelength of the second propagating light L2 from the first and second propagating lights L1 and L2 emitted in a linear manner and stacked so as to cross the outgoing light of the second propagating light L2 respectively. ing. The first filter F1 and the second filter F2 are continuously and integrally provided. The thicknesses of the first filter F1 and the second filter F2 are each 5 mm, for example.
 この結果、撮像素子23・33においては、図1(b)に示すように、タッチペン40Aから発せられた光は、第1伝搬光L1の出射光における線状の像25Aとなって現れる。また、タッチペン40Bから発せられた光は、第2伝搬光L2の出射光における線状の像25Bとなって現れる。両者は、2本の平行線の像が平行線として現れる。また、その2本の線は、第1フィルタF1と第2フィルタF2とのそれぞれの通過に対応して、千鳥状に現れる。 As a result, in the image sensors 23 and 33, as shown in FIG. 1B, the light emitted from the touch pen 40A appears as a linear image 25A in the emitted light of the first propagation light L1. Further, the light emitted from the touch pen 40B appears as a linear image 25B in the emitted light of the second propagation light L2. In both cases, an image of two parallel lines appears as parallel lines. The two lines appear in a staggered manner corresponding to the passage of the first filter F1 and the second filter F2.
 したがって、仮に、1つの撮像素子23の視線方向にタッチペン40A・40Bが2本並んだ場合、その撮像素子23では、撮像素子23から見て手前に位置するタッチペン40Aから発せられた光、及び撮像素子23から見て奥に位置するタッチペン40Bから発せられた光は、図1(b)に示すように、それぞれ、同時かつ同一線上に、分割された線状の像25A・25Bとなって現れる。他の撮像素子33においても同様である。 Therefore, if two touch pens 40A and 40B are arranged in the line-of-sight direction of one image sensor 23, the image sensor 23 emits light emitted from the touch pen 40A positioned in front of the image sensor 23 and the image pickup As shown in FIG. 1B, the light emitted from the touch pen 40B located behind the element 23 appears as a divided linear image 25A / 25B on the same line at the same time. . The same applies to the other imaging elements 33.
 それゆえ、それぞれの撮像素子23・33にてタッチペン40A・40Bにおける、該撮像素子23・33間の一辺とその両角を求めることができ、三角測量法にて、タッチペン40A・40Bにおける該ペンが接触した導光板10上の位置の平面座標を検出することができる。尚、タッチペン40が3本である場合には、第3フィルタが、第1フィルタF1及び第2フィルタF2に積層して配設され、第3のペンの出射光も第3フィルタを横切るので、同様に、第3のペンの接触位置も容易に測定することができる。タッチペン40が4本以上であっても同様である。 Therefore, it is possible to obtain one side and both angles between the image pickup devices 23 and 33 in the touch pens 40A and 40B by the respective image pickup devices 23 and 33, and the pens in the touch pens 40A and 40B are obtained by triangulation. The plane coordinates of the position on the light guide plate 10 in contact can be detected. When there are three touch pens 40, the third filter is disposed on the first filter F1 and the second filter F2, and the light emitted from the third pen crosses the third filter. Similarly, the contact position of the third pen can be easily measured. The same applies even when there are four or more touch pens 40.
 尚、本発明は、上記の実施の形態に限定されるものではなく、本発明の範囲内で種々の変更が可能である。例えば、上記実施の形態では、フィルタ22A・32Aは、図1(b)に示すように、第1フィルタF1と第2フィルタF2との境界は、直線となっていた。しかし、特にこれに限定するものではなく、例えば、図9に示すように、第1フィルタF1と第2フィルタF2との境界を円弧状に形成したフィルタ22B・32Bとすることが可能である。これにより、切り欠き11の形状を曲面ではなく平面にすることができるので、切り欠き11を容易に形成することができる。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. For example, in the above embodiment, in the filters 22A and 32A, as shown in FIG. 1B, the boundary between the first filter F1 and the second filter F2 is a straight line. However, the present invention is not particularly limited to this. For example, as shown in FIG. 9, it is possible to use filters 22B and 32B in which the boundary between the first filter F1 and the second filter F2 is formed in an arc shape. Thereby, since the shape of the notch 11 can be made flat instead of a curved surface, the notch 11 can be easily formed.
 このように、本実施の形態のペン入力装置3Aは、導光板10と、導光板10の表面に接触することによって導光板10に光を入射させる発光部42・42を有するタッチペン40A・40Bと、タッチペン40A・40Bの発光部42・42から導光板10に入射して導光板10の内部を伝搬する第1伝搬光L1及び第2伝搬光L2における導光板10からの出射光を受光する2つの撮像素子23・33とを備え、タッチペン40A・40Bが接触した導光板10上の位置の平面座標を検出する。 As described above, the pen input device 3A according to the present embodiment includes the light guide plate 10 and the touch pens 40A and 40B including the light emitting units 42 and 42 that make light incident on the light guide plate 10 by contacting the surface of the light guide plate 10. The first propagation light L1 that is incident on the light guide plate 10 from the light emitting units 42 and 42 of the touch pens 40A and 40B and propagates inside the light guide plate 10 and the light emitted from the light guide plate 10 in the second propagation light L2 are received 2 The image pickup devices 23 and 33 are provided, and the plane coordinates of the position on the light guide plate 10 where the touch pens 40A and 40B are in contact are detected.
 そして、タッチペン40A・40Bの発光部42・42は、少なくとも2本備えられており、かつ各タッチペン40A・40Bは導光板10の表面に接触することによって導光板10にそれぞれ異なる波長の光を入射させる。また、導光板10には、各タッチペン40A又はタッチペン40Bから入射されて導光板10の内部を導光する第1伝搬光L1又は第2伝搬光L2を2つの撮像素子23・33へそれぞれ線状に出射する切り欠き11が設けられている。さらに、導光板10と各撮像素子23・33との光路間には、第1伝搬光L1の波長に対応した第1フィルタF1と、第2伝搬光L2の波長に対応した第2フィルタF2とが、線状に出射された、第1伝搬光L1及び第2伝搬光L2の出射光をそれぞれ横切らせるように並べて配設されている。 The touch pens 40A and 40B are provided with at least two light emitting portions 42 and 42, and each touch pen 40A and 40B is in contact with the surface of the light guide plate 10 so that light of different wavelengths enters the light guide plate 10. Let Further, the first propagating light L1 or the second propagating light L2 incident on the light guide plate 10 from each touch pen 40A or the touch pen 40B and guiding the inside of the light guide plate 10 is linearly supplied to the two image sensors 23 and 33, respectively. Is provided with a notch 11 that emits light. Further, a first filter F1 corresponding to the wavelength of the first propagation light L1 and a second filter F2 corresponding to the wavelength of the second propagation light L2 are provided between the optical paths of the light guide plate 10 and the imaging elements 23 and 33. Are arranged side by side so as to cross the emitted light of the first propagation light L1 and the second propagation light L2 emitted linearly.
 したがって、それぞれの撮像素子23・33にてタッチペン40A・40Bにおける、撮像素子23・33間の一辺とその両角を求めることができ、三角測量法にて、タッチペン40A・40Bにおける該タッチペン40A・40Bが接触した導光板10上の位置の平面座標を検出することができる。 Therefore, it is possible to obtain one side and both angles between the image pickup devices 23 and 33 in the touch pens 40A and 40B by the respective image pickup devices 23 and 33, and the touch pens 40A and 40B in the touch pens 40A and 40B by the triangulation method. The plane coordinates of the position on the light guide plate 10 in contact with can be detected.
 また、本実施の形態では、タッチペン40A・40Bからの発光部42・42から発光された光は、導光板10の上方の空気中を光路とするのではなく、導光板10の内部を光路としている。このため、タッチペン40A・40Bを持つ指等でタッチペン40A・40Bの光路が遮蔽されてタッチペン40A・40Bの座標位置を求めるために補間処理をすることもないので、確実、かつ精度よく検出できる。さらに、撮像素子23・33を増加することもないので、各タッチペン40A・40Bの識別を簡易に行い、コスト増大もない。 Further, in the present embodiment, the light emitted from the light emitting units 42 and 42 from the touch pens 40A and 40B does not use the air above the light guide plate 10 as an optical path, but uses the inside of the light guide plate 10 as an optical path. Yes. For this reason, the optical path of the touch pens 40A and 40B is shielded by a finger or the like having the touch pens 40A and 40B, and no interpolation processing is performed to obtain the coordinate positions of the touch pens 40A and 40B. Therefore, detection can be performed reliably and accurately. Further, since the image pickup devices 23 and 33 are not increased, the touch pens 40A and 40B are easily identified, and the cost is not increased.
 したがって、複数のタッチペン40A・40Bを同時に使用する場合に、互いのタッチペン40A・40B、又はタッチペン40A・40Bを操作する指の影響を受けずに、各タッチペン40A・40Bの識別を簡易、確実、かつ精度よく行い、コストの増大を回避するペン入力装置3Aを提供することができる。 Therefore, when using a plurality of touch pens 40A and 40B at the same time, the touch pens 40A and 40B can be easily and reliably identified without being affected by the fingers operating the touch pens 40A and 40B or the touch pens 40A and 40B. Further, it is possible to provide the pen input device 3A that is performed accurately and avoids an increase in cost.
 また、本実施の形態のペン入力装置3Aでは、各タッチペン40A・40Bの先端には、導光板10に拡散光を入射させる光散乱部材45・45がそれぞれ設けられている。 Further, in the pen input device 3A of the present embodiment, light scattering members 45 and 45 that allow diffused light to enter the light guide plate 10 are provided at the tips of the touch pens 40A and 40B, respectively.
 これにより、各タッチペン40A・40Bの発光部42・42にて発光された光を導光板10に入射させるときに、光散乱部材45・45にて拡散光を入射させることができる。この結果、導光板10の内部では、各タッチペン40A・40Bの導光板10への接触位置から放射状に光が導光され、どの撮像素子23・33においても充分な受光光量を得ることが可能となる。 Thereby, when the light emitted from the light emitting portions 42 and 42 of the touch pens 40A and 40B is incident on the light guide plate 10, diffused light can be incident on the light scattering members 45 and 45. As a result, inside the light guide plate 10, light is guided radially from the contact positions of the touch pens 40 </ b> A and 40 </ b> B to the light guide plate 10, and a sufficient amount of received light can be obtained in any of the image sensors 23 and 33. Become.
 また、本実施の形態のペン入力装置3Aでは、各タッチペン40A・40Bの発光部42・42から出射される光の強度は、2つの撮像素子23・33における波長域での受光感度に応じて、各検出感度が同一になるように調整されている。これにより、特定の波長の信号が強く検出されるのを回避して検出感度を揃えることができる。 Further, in the pen input device 3A of the present embodiment, the intensity of light emitted from the light emitting units 42 and 42 of the touch pens 40A and 40B depends on the light receiving sensitivity in the wavelength region of the two image sensors 23 and 33. The detection sensitivities are adjusted to be the same. Thereby, it is possible to avoid the strong detection of a signal of a specific wavelength and to align the detection sensitivity.
 また、本実施の形態のペン入力装置3Aでは、各タッチペン40A・40Bの発光部42・42から出射される各光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっている。これにより、各タッチペン40A・40Bの発光部42・42から出射される各光の波長を、充分に分離識別することが可能となる。 Further, in the pen input device 3A of the present embodiment, the wavelength of each light emitted from the light emitting units 42 and 42 of each touch pen 40A and 40B is such that the interval between the peak wavelengths of each light is larger in peak width. They are different from each other so that they are separated from the peak half-width in light. This makes it possible to sufficiently separate and identify the wavelengths of the light beams emitted from the light emitting units 42 and 42 of the touch pens 40A and 40B.
 また、本実施の形態のペン入力装置3Aでは、第1フィルタF1と第2フィルタF2とは、連続して一体に設けられている。これにより、複数のタッチペン40A・40Bにおける撮像素子23・33での像がずれることがないので、座標位置検出精度を向上することができる。 Further, in the pen input device 3A of the present embodiment, the first filter F1 and the second filter F2 are provided continuously and integrally. Thereby, since the image by the image pick-up element 23 * 33 in several touch pen 40A * 40B does not shift | deviate, coordinate position detection accuracy can be improved.
 また、本実施の形態のペン入力装置3Aでは、第1フィルタF1と第2フィルタF2との境界は円弧状になっているとすることができる。 Further, in the pen input device 3A of the present embodiment, the boundary between the first filter F1 and the second filter F2 can be assumed to be an arc shape.
 これにより、導光板10に設けられた光路変換部としての切り欠き11の形状を、導光板10の隅角部を円錐面又は双曲面にて斜めに切り取った形状にすることができる。この結果、光路変換部を容易に形成することができる。 Thereby, the shape of the notch 11 serving as the optical path changing portion provided in the light guide plate 10 can be changed to a shape in which the corner portion of the light guide plate 10 is cut obliquely with a conical surface or a hyperboloid. As a result, the optical path conversion unit can be easily formed.
 また、本実施の形態の座標入力システム1は、本実施の形態のペン入力装置3Aを備えた座標入力システムであって、液晶表示パネル2を備えている。このため、ペン入力装置3Aを、液晶表示パネル2の画像を見ながらペン入力するタッチパネルとして機能させることができる。したがって、複数のタッチペン40A・40Bを使用する場合に、互いのタッチペン40A・40B、又はタッチペン40A・40Bを操作する指の影響を受けずに、各タッチペン40A・40Bの識別を簡易かつ確実に行い、コストの増大を回避するペン入力装置3Aを備えた座標入力システム1を提供することができる。 The coordinate input system 1 according to the present embodiment is a coordinate input system including the pen input device 3A according to the present embodiment, and includes a liquid crystal display panel 2. For this reason, the pen input device 3 </ b> A can function as a touch panel that performs pen input while viewing an image on the liquid crystal display panel 2. Therefore, when a plurality of touch pens 40A and 40B are used, each touch pen 40A and 40B is easily and reliably identified without being affected by the touch pens 40A and 40B or the fingers operating the touch pens 40A and 40B. The coordinate input system 1 including the pen input device 3A that avoids an increase in cost can be provided.
  〔実施の形態2〕
 本発明の他の実施の形態について図10~図14に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. The configurations other than those described in the present embodiment are the same as those in the first embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and explanation thereof is omitted.
 前記実施の形態1におけるペン入力装置3A及び座標入力システム1では、被検出体は、2つのタッチペン40A・40Bを使用するものであった。しかし、本実施の形態の座標入力装置3B及び座標入力システム1では、被検出体として、指と1つのタッチペン40とを同時に使用できる点が異なっている。 In the pen input device 3A and the coordinate input system 1 in the first embodiment, the detected object uses two touch pens 40A and 40B. However, the coordinate input device 3B and the coordinate input system 1 according to the present embodiment are different in that a finger and one touch pen 40 can be used simultaneously as a detection target.
 最初に、被検出体としての指を検出するための構成について説明する。 First, a configuration for detecting a finger as a detection target will be described.
 (座標入力システムの構成)
 本実施の形態の座標入力装置を備えた座標入力システムの構成について、図10に基づいて説明する。図10は、上記座標入力システムの構成を示す斜視図である。
(Configuration of coordinate input system)
A configuration of a coordinate input system including the coordinate input device according to the present embodiment will be described with reference to FIG. FIG. 10 is a perspective view showing the configuration of the coordinate input system.
 本実施の形態の座標入力システム1は、図10に示すように、画像表示パネルとしての液晶表示パネル2と、この液晶表示パネル2の上側に設けられた座標入力装置3Bとを備えている。 The coordinate input system 1 according to the present embodiment includes a liquid crystal display panel 2 as an image display panel and a coordinate input device 3B provided on the upper side of the liquid crystal display panel 2 as shown in FIG.
 上記液晶表示パネル2は、一対の図示しない基板間に液晶層を挟持しており、各基板には、電圧印加によって当該液晶層の液晶分子の配向を変えるための各種電極が少なくとも設けられている。そして、電圧印加によって液晶分子の配向を変化させることによって、各画素の液晶層を透過する光の透過量を調整して所望の表示を行う。液晶表示パネル2の構成は、従来周知の液晶表示パネルを用いることができる。 The liquid crystal display panel 2 has a liquid crystal layer sandwiched between a pair of substrates (not shown), and each substrate is provided with at least various electrodes for changing the orientation of liquid crystal molecules of the liquid crystal layer by applying a voltage. . Then, by changing the orientation of the liquid crystal molecules by applying a voltage, the amount of light transmitted through the liquid crystal layer of each pixel is adjusted to perform a desired display. As the configuration of the liquid crystal display panel 2, a conventionally known liquid crystal display panel can be used.
 上記座標入力システム1では、液晶表示パネル2に表示された画面を見ながら、液晶表示パネル2の上側に設けられた座標入力装置3Bの後述する導光板10上に被検出体としての指6を接触させることにより、その指6における接触位置の座標が特定され、所望のデータ入力ができるようになっている。 In the coordinate input system 1, a finger 6 as a detection object is placed on a light guide plate 10 (to be described later) of a coordinate input device 3 </ b> B provided on the upper side of the liquid crystal display panel 2 while watching the screen displayed on the liquid crystal display panel 2. By making contact, the coordinates of the contact position on the finger 6 are specified, and desired data can be input.
 (座標入力装置の構成)
 次に、上記座標入力システム1に備えられた座標入力装置3Bの構成について、前記図10、及び図11に基づいて以下に詳述する。図11は、図10のB-B線矢視断面図である。
(Configuration of coordinate input device)
Next, the configuration of the coordinate input device 3B provided in the coordinate input system 1 will be described in detail below based on FIG. 10 and FIG. FIG. 11 is a cross-sectional view taken along line BB in FIG.
 上記座標入力装置3Bは、図10に示すように、四角形の透明の導光部材としての導光板10と、導光板10の一辺の両端にそれぞれ配設された撮像ユニット20・30と、導光板10の三辺の周辺に設けられた光源としての光源ユニット4と、検出手段としての検出部5とを有している。 As shown in FIG. 10, the coordinate input device 3B includes a light guide plate 10 as a rectangular transparent light guide member, imaging units 20 and 30 respectively disposed at both ends of one side of the light guide plate 10, and a light guide plate. 10 has a light source unit 4 as a light source provided around three sides and a detection unit 5 as detection means.
 すなわち、本実施の形態の座標入力装置3Bは、前記実施の形態1に記載したペン入力装置3Aとは、導光板10の周辺に光源ユニット4が設けられている点が異なっている。 That is, the coordinate input device 3B of the present embodiment is different from the pen input device 3A described in the first embodiment in that the light source unit 4 is provided around the light guide plate 10.
 すなわち、本実施の形態の座標入力装置3Bには、導光板10における三辺の周辺には、該導光板10に光を入射させる複数のLED(light emitting diode)4aを並べた光源としての光源ユニット4が該三辺に沿って設けられている。この三辺は、両端に撮像ユニット20・30が設けられた導光板10の一辺とは異なる三辺である。この結果、導光板10における三辺の光源ユニット4は、撮像ユニット20・30に対向しており、上記撮像ユニット20・30は、光源ユニット4からの照明光の照射範囲内に設けられていることになる。尚、本発明においては、必ずしも導光板10における三辺の周辺に限らず、例えば、両端に撮像ユニット20・30が設けられた導光板10の一辺とは異なる他の一辺の周辺であってもよい。 That is, in the coordinate input device 3B of the present embodiment, a light source as a light source in which a plurality of LEDs (light emitting diodes) 4a that allow light to enter the light guide plate 10 are arranged around the three sides of the light guide plate 10. A unit 4 is provided along the three sides. These three sides are three sides different from one side of the light guide plate 10 provided with the imaging units 20 and 30 at both ends. As a result, the light source unit 4 on the three sides of the light guide plate 10 faces the imaging units 20 and 30, and the imaging units 20 and 30 are provided within the illumination range of the illumination light from the light source unit 4. It will be. In the present invention, it is not necessarily limited to the periphery of the three sides of the light guide plate 10, for example, the periphery of another side different from the one side of the light guide plate 10 provided with the imaging units 20 and 30 at both ends. Good.
 光源ユニット4に複数並べられたLED4aは、例えば赤外光等の光を発するようになっている。ただし、必ずしも赤外光に限らず、可視光、紫外光であってもよい。しかし、LED4aの光の波長は、前記実施の形態1で説明したタッチペン40の発光部42から出射される光の波長とは異なっている。また、必ずしもLED4aを使用する必要はなく、LD(laser diode)等を用いることもできる。 A plurality of LEDs 4a arranged in the light source unit 4 emit light such as infrared light. However, it is not necessarily limited to infrared light, and may be visible light or ultraviolet light. However, the wavelength of the light of the LED 4a is different from the wavelength of the light emitted from the light emitting unit 42 of the touch pen 40 described in the first embodiment. Further, it is not always necessary to use the LED 4a, and an LD (laser diode) or the like can also be used.
 次に、座標入力装置3Bには、図10に示すように、検出手段としての検出部5が設けられている。この検出部5は、指6による光散乱に基づく撮像素子23・33の出力強度の変化を検知して、指6における導光板10の表面への接触位置の座標を求めるものである。具体的には、CPUからなっている。 Next, as shown in FIG. 10, the coordinate input device 3B is provided with a detection unit 5 as detection means. The detection unit 5 detects a change in output intensity of the imaging elements 23 and 33 based on light scattering by the finger 6 and obtains coordinates of a contact position of the finger 6 on the surface of the light guide plate 10. Specifically, it consists of a CPU.
 ここで、本実施の形態の座標入力システム1では、被検出体として例えば指6が使用される。ただし、必ずしも指6に限らず、棒状のタッチペン等の被検出体であってもよい。 Here, in the coordinate input system 1 of the present embodiment, for example, the finger 6 is used as the detected object. However, the detection target is not necessarily limited to the finger 6 and may be a detection target such as a stick-shaped touch pen.
 (座標入力装置の座標検出原理)
 上記構成の座標入力装置3Bにおける、指6が導光板10に接触されたときの座標検出原理について、図12(a)(b)に基づいて以下に説明する。図12(a)は指6が導光板10に接触されていないときの撮像素子23の出力像を示す平面図であり、図12(b)は指6が導光板10に接触されたときの撮像素子23の出力像を示す平面図である。
(Coordinate detection principle of coordinate input device)
The coordinate detection principle when the finger 6 is brought into contact with the light guide plate 10 in the coordinate input device 3B having the above configuration will be described below with reference to FIGS. 12A is a plan view showing an output image of the image sensor 23 when the finger 6 is not in contact with the light guide plate 10, and FIG. 12B is a view when the finger 6 is in contact with the light guide plate 10. 3 is a plan view showing an output image of an image sensor 23. FIG.
 まず、座標入力装置3Bでは、図10及び図11に示すように、導光板10における少なくとも一辺の周辺に沿って複数設けられたLED4a…から、導光板10に光が入射される。 First, in the coordinate input device 3B, as shown in FIGS. 10 and 11, light is incident on the light guide plate 10 from a plurality of LEDs 4 a provided along the periphery of at least one side of the light guide plate 10.
 導光板10に入射された光は、導光板10の内部を伝搬光として導光し、切り欠き11を介して少なくとも2箇所に設けられた撮像素子23・33へそれぞれ出射される。これにより、撮像素子23では、図12(a)に示すように、切り欠き11の形状に基づく、扇形状の明部23aの出力像が得られる。尚、図12(a)では、撮像素子23の出力像しか示していないが、撮像素子33の出力像も同様である。 The light incident on the light guide plate 10 is guided through the inside of the light guide plate 10 as propagating light, and is emitted to the image pickup devices 23 and 33 provided in at least two locations via the notches 11. Thereby, in the image pick-up element 23, as shown to Fig.12 (a), the output image of the fan-shaped bright part 23a based on the shape of the notch 11 is obtained. In FIG. 12A, only the output image of the image sensor 23 is shown, but the output image of the image sensor 33 is the same.
 この状態において、被検出体としての指6を導光板10の表面に接触させると、その接触位置での伝搬光が乱される。この結果、撮像素子23・33での受光量に強度低下が生じる。具体的には、図12(b)に示すように、明部23aの中に、線状の暗部BLが生じる。したがって、撮像素子23・33におけるこの受光量の強度低下を示す暗部BLを検知することにより、検出部5にて、指6における導光板10の表面への接触位置の座標を求めることができる。 In this state, when the finger 6 as the detection object is brought into contact with the surface of the light guide plate 10, the propagation light at the contact position is disturbed. As a result, the intensity of light received by the image sensors 23 and 33 is reduced. Specifically, as shown in FIG. 12B, a linear dark part BL is generated in the bright part 23a. Therefore, by detecting the dark portion BL indicating the intensity reduction of the amount of received light in the image sensors 23 and 33, the detection unit 5 can obtain the coordinates of the contact position of the finger 6 on the surface of the light guide plate 10.
 この検出原理について、詳述する。 This detection principle will be described in detail.
 図11に示すように、周囲が空気である導光板10の端部に設けられたある1つのLED4aから赤外光が屈折率Nの導光板10内に入射する。この入射光のうち、導光板10内の伝搬角θP が、
 sin(90°-θP )>1/N
に示す条件(全反射条件)を満たす光束は、導光板10内に閉じ込められ、導光板10の表面、及び裏面での反射を繰り返し、導光板10内を進行する。
As shown in FIG. 11, infrared light enters a light guide plate 10 having a refractive index N from one LED 4 a provided at an end portion of the light guide plate 10 whose surrounding is air. Of this incident light, the propagation angle θ P in the light guide plate 10 is
sin (90 ° −θ P )> 1 / N
The light beam satisfying the condition (total reflection condition) is confined in the light guide plate 10, is repeatedly reflected on the front and back surfaces of the light guide plate 10, and travels in the light guide plate 10.
 ここで、導光板の表面に屈折率Nmの物質が接触すると、全反射条件は、
 sin(90°-θP )>Nm/N
となるため、一部の光は全反射条件を満足することができなくなり、導光板10内に閉じ込められなくなって、一部の光は屈折率Nmの物質側に入射する。例えば、人間の皮膚の屈折率は約1.37であるため、指6が導光板10に接触することにより、導光板10内に閉じ込められる光量が減少する。
Here, when a substance having a refractive index Nm contacts the surface of the light guide plate, the total reflection condition is:
sin (90 ° −θ P )> Nm / N
Therefore, a part of the light cannot satisfy the total reflection condition and is not confined in the light guide plate 10, and a part of the light is incident on the material side having the refractive index Nm. For example, since the refractive index of human skin is about 1.37, the amount of light trapped in the light guide plate 10 is reduced when the finger 6 contacts the light guide plate 10.
 すなわち、導光板10に指6が接触しなければ、導光板10内の照明光は、指6の接触位置にてそのまま全反射して、撮像素子23・33に入射されるが、指6の存在による光散乱により、撮像素子23・33に向かう伝搬光の光量が減少する。この結果、図12(b)に示すように、図12(a)に示す扇形状の明部23aとなった出力像に線状の暗部BLが現れる。したがって、この暗部BLに基づいて、後述するように、検出部5にて、指6における導光板10の表面への接触位置の座標を求めることができる。尚、図12(b)では、撮像素子23の出力像しか示していないが、撮像素子33の出力像も同様である。 That is, if the finger 6 does not contact the light guide plate 10, the illumination light in the light guide plate 10 is totally reflected at the contact position of the finger 6 and is incident on the image pickup elements 23 and 33. Due to the light scattering due to the presence, the amount of propagating light toward the image sensors 23 and 33 decreases. As a result, as shown in FIG. 12B, a linear dark portion BL appears in the output image that is the fan-shaped bright portion 23a shown in FIG. Therefore, based on the dark part BL, as described later, the detection unit 5 can obtain the coordinates of the contact position of the finger 6 on the surface of the light guide plate 10. In FIG. 12B, only the output image of the image sensor 23 is shown, but the output image of the image sensor 33 is the same.
 (2次元座標位置の算出方法)
 上述のようにして検知した撮像素子23・33の暗部BLに基づいて、検出部5における指6が接触した箇所における2次元座標位置の算出方法について、前記図10及び図11、並びに図13(a)(b)に基づいて、以下に説明する。図13(a)は座標入力装置3Bにおける撮像ユニット20での撮像状況を示す斜視図であり、図13(b)は撮像ユニット20の撮像素子23での像を示す平面図である。
(Calculation method of 2D coordinate position)
Based on the dark portions BL of the image sensors 23 and 33 detected as described above, the calculation method of the two-dimensional coordinate position at the location where the finger 6 is in contact with the detection unit 5 will be described with reference to FIGS. A description will be given below based on a) and (b). FIG. 13A is a perspective view showing an imaging state in the imaging unit 20 in the coordinate input device 3B, and FIG. 13B is a plan view showing an image in the imaging element 23 of the imaging unit 20. FIG.
 まず、本実施の形態では、指6が接触した箇所における導光板10の2次元平面内での撮像ユニット20・30とのなす角度と撮像素子23・33間の距離とを用いて、三角測量法にて指6が接触した箇所における2次元座標位置を算出する。 First, in the present embodiment, triangulation is performed using the angle formed by the imaging units 20 and 30 and the distance between the imaging elements 23 and 33 in the two-dimensional plane of the light guide plate 10 at the place where the finger 6 is in contact. The two-dimensional coordinate position at the location where the finger 6 is in contact is calculated by the method.
 最初に、指6が導光板10に接触していないときの撮像素子23・33に出力像の検出について説明する。 First, detection of an output image on the image sensors 23 and 33 when the finger 6 is not in contact with the light guide plate 10 will be described.
 まず、図11に示すように、導光板10の端部に設けられたある1つのLED4aから赤外光が屈折率Nの導光板10内に入射する。この入射光のうち、導光板10内の伝搬角θP が、
 sin(90°-θP )>1/N
に示す条件を満たす光束は、導光板10内に閉じ込められ、導光板10の表面、及び裏面での反射を繰り返し、導光板10内を進行する。
First, as shown in FIG. 11, infrared light enters the light guide plate 10 having a refractive index N from one LED 4 a provided at the end of the light guide plate 10. Of this incident light, the propagation angle θ P in the light guide plate 10 is
sin (90 ° −θ P )> 1 / N
The light flux that satisfies the conditions shown in FIG. 5 is confined in the light guide plate 10, and is repeatedly reflected on the front and back surfaces of the light guide plate 10, and travels in the light guide plate 10.
 ここで、図10に示すように、その光束のうちの一部における伝搬光10a・10bは、円錐面状の切り欠き11・11の端面にも導かれ、該端面の反射光が撮像ユニット20・30にて受光される。具体的には、切り欠き11・11の端面の反射光は、レンズ21・31にて集光され、続いて、フィルタ22・32を通って、最後に撮像素子23・33に受光される。フィルタ22・32は、LED4aにて発光される波長帯の光を透過し、それ以外の波長帯の光を遮断する役割を果たす。フィルタ22・32により、太陽光や、液晶表示パネル用バックライト光等の迷光が遮断され、SN比を高くすることができる。 Here, as shown in FIG. 10, the propagation lights 10 a and 10 b in a part of the light flux are guided to the end faces of the conical cutouts 11 and 11, and the reflected light from the end faces is reflected by the imaging unit 20. • Light is received at 30. Specifically, the reflected light of the end faces of the notches 11 and 11 is collected by the lenses 21 and 31, subsequently passed through the filters 22 and 32, and finally received by the image sensors 23 and 33. The filters 22 and 32 transmit light in the wavelength band emitted by the LED 4a and play a role of blocking light in other wavelength bands. Filters 22 and 32 block sunlight, stray light such as liquid crystal display panel backlight light, and increase the SN ratio.
 次いで、図13(a)に示すように、撮像ユニット20に入射した光は、レンズ21を経て、撮像素子23に線状の像を形成する。ここで、LED4a…は複数存在しており、広範囲の角度から導光板10に入射される。このため、図13(b)において一点鎖線で示すように、撮像素子23に線状の複数の像が集合して扇形状になり、図12(a)に示すように、撮像素子23において明部23aの出力像として現れる。 Next, as shown in FIG. 13A, the light incident on the image pickup unit 20 forms a linear image on the image pickup device 23 via the lens 21. Here, a plurality of LEDs 4a... Exist and enter the light guide plate 10 from a wide range of angles. For this reason, as shown by the alternate long and short dash line in FIG. 13B, a plurality of linear images are gathered on the image sensor 23 to form a fan shape, and as shown in FIG. It appears as an output image of the part 23a.
 次に、この状態で、図13(a)に示すように、指6が導光板10における例えば点P1 の位置に接触されたときの撮像素子23・33に出力像の検出について説明する。 Next, in this state, as shown in FIG. 13 (a), the detection will be described of the output image on the imaging element 23, 33 when the finger 6 which is in contact with the position of for example the point P 1 in the light guide plate 10.
 この場合、図11に示すように、指6の導光板10への接触によって、導光板10内の伝搬角θP の光が乱され、この結果、光量が減縮される。光量が減縮された伝搬光10aは、円錐面状の切り欠き11の端面に導かれ、該端面の反射光が撮像ユニット20にて受光される。そして、撮像ユニット20に入射した光は、レンズ21を経て、図13(b)に示すように、撮像素子23において扇形状の明部23aの中に線状の暗部BL1 の像を形成する。 In this case, as shown in FIG. 11, by contact with the light guide plate 10 of the finger 6, the light propagation angle theta P of the light guide plate 10 is disturbed, as a result, amount of light is Genchijimi. The propagating light 10a with the light amount reduced is guided to the end face of the conical cutout 11, and the reflected light of the end face is received by the imaging unit 20. The light incident on the imaging unit 20 via the lens 21, as shown in FIG. 13 (b), to form a linear image of the dark portion BL 1 in the fan-shaped light portion 23a in the image pickup device 23 .
 また、この指6が点P2 の位置に移動したとき、線状の暗部BL2 の像が形成される。 Further, the finger 6 when moved to the position of the point P 2, the image of the linear dark portion BL 2 is formed.
 図13(b)に示す線状の暗部BL・BLの位置は、指6における接触点の位置に依存して変化し、指6の接触点の位置を変えると、線状の暗部BLの像は、線状の暗部BLの像のように変化する。その線状の暗部BL・BLの像の軌跡は一点鎖線で示した扇形状の明部23aの内部に存在する。その扇形の中心と線状の暗部BLの像を結ぶ線分の傾き角度α1 ’(円弧の中心を回転中心とする)は、指6と撮像素子23を結ぶ線分と導光板10における撮像ユニット20・30側の一辺とがなす角度α1 と同じ角度になる。したがって、撮像素子23の取得画像から傾き角度α1 ’が求められ、この傾き角度α1 ’から角度α1 が求められる。同様に、指6が点P2 の位置に移動すると、線状の暗部BLの像が形成され、その線状の暗部BLの像における傾き角度α2 ’を求めることにより、角度α2 が求められる。 The positions of the linear dark portions BL 1 and BL 2 shown in FIG. 13B change depending on the position of the contact point on the finger 6. If the position of the contact point of the finger 6 is changed, the linear dark portion BL is changed. 1 of the image changes as the image of the linear dark portion BL 2. The locus of the images of the linear dark portions BL 1 and BL 2 exists inside the fan-shaped bright portion 23a indicated by the alternate long and short dash line. The inclination angle α 1 ′ of the line segment connecting the fan-shaped center and the image of the linear dark part BL 1 (with the center of the arc as the center of rotation) is the line segment connecting the finger 6 and the image sensor 23 and the light guide plate 10. The angle is the same as the angle α 1 formed by one side of the imaging units 20 and 30 side. Therefore, the inclination angle α 1 ′ is obtained from the acquired image of the image sensor 23, and the angle α 1 is obtained from the inclination angle α 1 ′. Similarly, when the finger 6 is moved to the position of the point P 2, the image of the linear dark portion BL 2 is formed, by obtaining the inclination angle alpha 2 'in its linear dark portion BL 2 of the image, the angle alpha 2 Is required.
 撮像素子23についても同様に取得画像の分析から指6の接触点の位置が特定され、指6と撮像素子23とを結ぶ線分と導光板10における撮像ユニット20・30側の一辺とがなす角度βが求められる。 Similarly, for the image sensor 23, the position of the contact point of the finger 6 is specified from the analysis of the acquired image, and a line segment connecting the finger 6 and the image sensor 23 is formed by one side of the light guide plate 10 on the image pickup unit 20 or 30 side. An angle β is determined.
 そして、撮像素子23と撮像素子33との間の間隔をL、撮像素子23からの画像を読み取り求めた接触点の角度をα、撮像素子23からの取得画像を読み取り求めた接触点の角度をβとしたとき、接触点の座標(X、Y)は下記の関係式(5)及び関係式(6)
 Y=tanα・X             …関係式(5)
 Y=tanβ・(L-X)         …関係式(6)
を満足する。これを解くと、接触点の座標(X、Y)は、
 X=tanβ・L/(tanα+tanβ)         …式(7)
 Y=(tanα・tanβ)・L/(tanα+tanβ)  …式(8)
と表され、上述のように求めた角度α・βと、予め求めることができる間隔Lとにより、指6が接触した地点の座標X・Yが求められる。このうち間隔Lは撮像素子23と撮像素子33との間の間隔であり、固定の値である。したがって、角度α・βを求めることにより、指6の接触位置の座標X・Yを求めることができる。
Then, the interval between the image sensor 23 and the image sensor 33 is L, the angle of the contact point obtained by reading the image from the image sensor 23 is α, and the angle of the contact point obtained by reading the acquired image from the image sensor 23 is obtained. Where β is the coordinate (X, Y) of the contact point, the following relational expression (5) and relational expression (6)
Y = tan α · X (5)
Y = tan β · (L−X) (Formula 6)
Satisfied. Solving this, the coordinates (X, Y) of the contact point are
X = tan β · L / (tan α + tan β) (7)
Y = (tan α · tan β) · L / (tan α + tan β) (8)
The coordinates X · Y of the point where the finger 6 touches are obtained from the angles α · β obtained as described above and the interval L that can be obtained in advance. Among these, the space | interval L is a space | interval between the image pick-up element 23 and the image pick-up element 33, and is a fixed value. Therefore, by obtaining the angles α and β, the coordinates X and Y of the contact position of the finger 6 can be obtained.
 尚、撮像素子23と撮像素子33との間の間隔Lとは、レンズ21の光軸中心とレンズ31の光軸中心との間の距離である。 The interval L between the image sensor 23 and the image sensor 33 is a distance between the optical axis center of the lens 21 and the optical axis center of the lens 31.
 以上の方法にて求められた指6の接触位置座標に基づいて、液晶表示パネル2の位置座標に対応する位置にある画素を駆動して、ユーザが、指6のタッチ位置を視認することができるようにすることが可能である。そのためには、液晶表示パネル2の駆動を制御する図示しない制御部が、位置座標検出部で求めた位置座標の情報を取得して、該情報に基づいて液晶表示パネル2を駆動すればよい。 Based on the contact position coordinates of the finger 6 obtained by the above method, the user can visually recognize the touch position of the finger 6 by driving a pixel at a position corresponding to the position coordinate of the liquid crystal display panel 2. It is possible to make it possible. For this purpose, a control unit (not shown) that controls driving of the liquid crystal display panel 2 may acquire information on the position coordinates obtained by the position coordinate detection unit and drive the liquid crystal display panel 2 based on the information.
 このように、本実施の形態の座標入力装置3Bは、板状の導光板10と、導光板10の端部から照明光を入射させる光源ユニット4と、導光板10内を伝搬する照明光を受光する少なくとも2つの撮像ユニット20・30と、導光板10の表面に指6を接触したときの指6による光散乱を検知した撮像ユニット20・30の出力に基づいて、指6における導光板10の表面への接触位置の座標を求める検出部5とを備えている。 As described above, the coordinate input device 3B of the present embodiment includes the plate-shaped light guide plate 10, the light source unit 4 that makes the illumination light incident from the end of the light guide plate 10, and the illumination light that propagates in the light guide plate 10. Based on the outputs of the imaging units 20 and 30 that detect light scattering by the finger 6 when the finger 6 comes into contact with the surface of the light guide plate 10 and at least two imaging units 20 and 30 that receive light, the light guide plate 10 in the finger 6. And a detection unit 5 for obtaining coordinates of a position of contact with the surface.
 ここで、特許文献3のタッチパネルにおいては、受光手段の受光量を0に維持した状態において、被検出体の存在による散乱光の受光ピークを検知するものとなっていた。この結果、受光手段は光源の照射範囲外に配置されなければ、受光手段の受光量を0に維持することができず、また、被検出体による散乱光の受光量は微小であるので、受光手段から遠方での被検出体における接触検出の信号品質が低下し、大型タッチパネルへの適用は困難であるという問題点を有していた。 Here, in the touch panel of Patent Document 3, in the state where the amount of light received by the light receiving means is maintained at 0, the light reception peak of the scattered light due to the presence of the detection target is detected. As a result, if the light receiving means is not arranged outside the irradiation range of the light source, the amount of light received by the light receiving means cannot be maintained at 0, and the amount of scattered light received by the detected object is very small. The signal quality of the contact detection in the to-be-detected body in the distance from the means is lowered, and there is a problem that it is difficult to apply to a large touch panel.
 そこで、本実施の形態では、受光手段としての撮像ユニット20・30は、照明光の照射範囲内に設けられていると共に、検出部5は、指6による光散乱に基づく撮像ユニット20・30の出力強度の変化を検出して、指6における導光板10の表面への接触位置の座標を求める。 Therefore, in the present embodiment, the imaging units 20 and 30 as light receiving means are provided within the illumination light irradiation range, and the detection unit 5 includes the imaging units 20 and 30 based on light scattering by the finger 6. A change in output intensity is detected, and coordinates of the contact position of the finger 6 on the surface of the light guide plate 10 are obtained.
 すなわち、本実施の形態では、特許文献3に対して発想の転換を図り、特許文献3では、被検出体の存在による散乱光の受光ピークを検知するのに対して、本実施の形態では、撮像ユニット20・30に最初から一定量の受光量を与えた状態で、指6の存在による光散乱に基づいて撮像ユニット20・30における出力強度の変化を検知するようになっている。 That is, in the present embodiment, the idea is changed with respect to Patent Document 3, and in Patent Document 3, the received light peak of scattered light due to the presence of the detected object is detected, whereas in the present embodiment, A change in output intensity in the imaging units 20 and 30 is detected based on light scattering caused by the presence of the finger 6 in a state where a certain amount of received light is given to the imaging units 20 and 30 from the beginning.
 この結果、撮像ユニット20・30は照明光の照射範囲内に設けられているので、撮像ユニット20・30には絶えず一定の受光量が与えられており、その状態で撮像ユニット20・30から遠方での指6の接触による光散乱により、その一定の受光量に強度低下が生じる。このため、この強度低下を検知することにより、検出部5にて指6における導光板10の表面への接触位置の座標を求めることができる。 As a result, since the imaging units 20 and 30 are provided within the illumination light irradiation range, the imaging units 20 and 30 are constantly given a constant amount of received light, and in that state, far from the imaging units 20 and 30. Due to the light scattering caused by the contact of the finger 6 at this point, the intensity is reduced in the constant amount of received light. For this reason, by detecting this strength reduction, the coordinates of the contact position of the finger 6 on the surface of the light guide plate 10 can be obtained by the detection unit 5.
 したがって、導光板10を使用する光学式の座標入力装置3Bにおいて、大型タッチパネルに適用した場合においても、指6等の被検出体の座標位置を検出し得る座標入力装置3Bを提供することができる。 Therefore, even when the optical coordinate input device 3B using the light guide plate 10 is applied to a large touch panel, the coordinate input device 3B that can detect the coordinate position of the detection target such as the finger 6 can be provided. .
 また、本実施の形態の座標入力装置3Bでは、撮像ユニット20・30は、2次元のイメージセンサを有していると共に、導光板10には、導光板10内を伝搬する照明光を撮像ユニット20・30へそれぞれ線状に出射する切り欠き11が設けられている。 Further, in the coordinate input device 3B of the present embodiment, the imaging units 20 and 30 have a two-dimensional image sensor, and the light guide plate 10 receives illumination light propagating through the light guide plate 10 as an imaging unit. Cutouts 11 are respectively provided in a linear shape to 20 and 30.
 これにより、導光板10内を伝搬する照明光及び指6によるその減衰光は切り欠き11を介して導光板10の外部にそれぞれ出射され、各撮像ユニット20・30の撮像素子23・33へそれぞれ線状に出射される。 Thereby, the illumination light propagating in the light guide plate 10 and the attenuated light by the finger 6 are respectively emitted to the outside of the light guide plate 10 through the notches 11, and are respectively supplied to the image pickup devices 23 and 33 of the image pickup units 20 and 30. It is emitted linearly.
 このため、各撮像ユニット20・30では、各撮像ユニット20・30と指6の導光板10への接触位置とを結ぶ三角形における各撮像ユニット20・30間の間隔と2つの角度がわかるので、検出部5は、三角測量法により、指6の導光板10への接触位置の座標を求めることができる。 For this reason, in each imaging unit 20, 30, since the interval between each imaging unit 20, 30 in the triangle connecting each imaging unit 20, 30 and the contact position of the finger 6 to the light guide plate 10 and two angles are known, The detection unit 5 can obtain the coordinates of the contact position of the finger 6 with the light guide plate 10 by triangulation.
 したがって、導光板10を使用し、指6の導光板10への接触による光散乱により、指6の導光板10への接触位置の座標を三角測量法により求める方式の座標入力装置3Bを提供することができる。 Accordingly, the coordinate input device 3B is provided that uses the light guide plate 10 and obtains the coordinates of the contact position of the finger 6 with the light guide plate 10 by triangulation by light scattering due to the contact of the finger 6 with the light guide plate 10. be able to.
 また、本実施の形態の座標入力システム1は、本実施の形態の座標入力装置3Bを備えた座標入力システムであって、液晶表示パネル2を備えている。 The coordinate input system 1 according to the present embodiment is a coordinate input system including the coordinate input device 3B according to the present embodiment, and includes a liquid crystal display panel 2.
 これにより、座標入力装置3Bを、液晶表示パネル2の画像を見ながら指6等の被検出体にて入力するタッチパネルとして機能させることができる。したがって、導光板10を使用する光学式の座標入力装置3Bにおいて、大型タッチパネルに適用した場合においても、指6等の被検出体の座標位置を検出し得る座標入力装置3Bを備えた座標入力システム1を提供することができる。 Thereby, the coordinate input device 3B can be made to function as a touch panel for inputting with a detected body such as the finger 6 while viewing the image of the liquid crystal display panel 2. Therefore, in the optical coordinate input device 3B using the light guide plate 10, even when applied to a large touch panel, the coordinate input system provided with the coordinate input device 3B that can detect the coordinate position of the detected object such as the finger 6 or the like. 1 can be provided.
 (指とタッチペンとの同時併用)
 本実施の形態の座標入力装置3Bは、上述したように、指6を導光板10に接触することによって、指6の接触位置の座標を検出できるようになっていると共に、タッチペン40用のペン入力装置3Aとは、光源ユニット4が付加されているだけである。したがって、指6とタッチペン40とを同時に使用することができる。
(Simultaneous use of finger and touch pen)
As described above, the coordinate input device 3B according to the present embodiment can detect the coordinates of the contact position of the finger 6 by bringing the finger 6 into contact with the light guide plate 10, and the pen for the touch pen 40. Only the light source unit 4 is added to the input device 3A. Therefore, the finger 6 and the touch pen 40 can be used simultaneously.
 このときの処理について、図14(a)(b)に基づいて説明する。図14(a)は座標入力装置3Bにおいて、指6と各タッチペン40とを同時に併用する場合の全体構成を示す斜視図であり、図14(b)は指6と各タッチペン40とが導光板10に接触されたときの撮像素子23の出力像を示す平面図である。 The processing at this time will be described with reference to FIGS. FIG. 14A is a perspective view showing the overall configuration when the finger 6 and each touch pen 40 are used together in the coordinate input device 3B, and FIG. 14B shows the light guide plate with the finger 6 and each touch pen 40. 10 is a plan view showing an output image of the image sensor 23 when being in contact with the image sensor 10.
 まず、本実施の形態の光源ユニット4のLED4aとタッチペン40の発光部42とは、それぞれ異なる波長の光を発光する。具体的には、両者の光の波長は、実施の形態1の説明図である図7に示すように、両者の光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっている。 First, the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 of the present embodiment emit light having different wavelengths. Specifically, as shown in FIG. 7 which is an explanatory diagram of the first embodiment, the wavelengths of the two lights are equal to each other in which the interval between the peak wavelengths of each light is larger. They are different from each other so that they are separated from the full width at half maximum of the peak light.
 すなわち、ピーク半値幅の広い光同士では、光学フィルタを用いても完全に波長分離することができない虞がある。このため、完全に分離検出するためには、光のピーク半値幅を考慮して波長を選択する必要がある。この点、本実施の形態では、光源ユニット4のLED4a及びタッチペン40の発光部42から出射される各光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっている。この結果、光源ユニット4のLED4a及びタッチペン40の発光部42から出射される各光の波長を、充分に分離識別することが可能となる。尚、光の波長域は、赤外光、赤色光若しくは青色光等の可視光、又は紫外光でもよい。 That is, there is a possibility that light having a wide peak half width cannot be completely wavelength-separated even if an optical filter is used. For this reason, in order to perform complete separation detection, it is necessary to select a wavelength in consideration of the half-value width of the light peak. In this regard, in the present embodiment, the wavelength of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 is the peak in the light having the larger peak width in the interval between the peak wavelengths of each light. They are different from each other so that they are separated from the full width at half maximum. As a result, the wavelengths of the light emitted from the LEDs 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 can be sufficiently separated and identified. The wavelength range of light may be visible light such as infrared light, red light or blue light, or ultraviolet light.
 また、本実施の形態では、受光部としての撮像素子23・33は、一個のタッチペン40及び1つの指6の場合と同様に、導光板10の一辺の両端部に設けられた撮像素子23・33しか設けられていない。ただし、必ずしもこれに限らず、例えば、3つ以上の撮像素子を設けることができるが、部材コストを考えれば2つが適切である。例えば、3つの撮像素子を設けると共に、そのうち1つを補助カメラとして用いた構成であってもよい。 Further, in the present embodiment, the image sensors 23 and 33 as the light receiving units are the image sensors 23 and 33 provided at both ends of one side of the light guide plate 10 as in the case of one touch pen 40 and one finger 6. Only 33 are provided. However, the present invention is not necessarily limited to this, and for example, three or more image sensors can be provided, but two are appropriate in view of member costs. For example, a configuration in which three image sensors are provided and one of them is used as an auxiliary camera may be used.
 ここで、例えばCMOS(Complementary Metal Oxide Semiconductor:相補形金属酸化膜半導体)カメラ等の撮像素子23・33では、実施の形態1の説明図である図8に示すように、長波長側に向かうに伴って受光感度つまり量子効率が低下する傾向にある。このため、短波長の信号が強く検出される可能性がある。 Here, for example, in the imaging devices 23 and 33 such as a CMOS (Complementary Metal Oxide Semiconductor) camera or the like, as shown in FIG. Accordingly, the light receiving sensitivity, that is, the quantum efficiency tends to decrease. For this reason, a short wavelength signal may be detected strongly.
 そこで、本実施の形態の撮像素子23・33では、光源ユニット4のLED4aとタッチペン40の発光部42から出射される光の強度は、撮像素子23・33における波長域での受光感度に応じて、検出感度が同一になるように調整されている。具体的には、例えば、光源ユニット4のLED4aとタッチペン40の発光部42から出射される光の波長が650nmと850nmとの場合には、図8により受光感度つまり量子効率が50%と20%であり、2.5倍になっている。したがって、この場合、波長850nmの光を発光する光源ユニット4のLED4aから出射される光の強度は、波長650nmの光を発光するタッチペン40の発光部42から出射される光の強度に対して2.5倍に調整されるようになっている。 Therefore, in the imaging devices 23 and 33 of the present embodiment, the intensity of light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 depends on the light receiving sensitivity in the wavelength region of the imaging devices 23 and 33. The detection sensitivity is adjusted to be the same. Specifically, for example, when the wavelengths of light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 are 650 nm and 850 nm, the light receiving sensitivity, that is, the quantum efficiency is 50% and 20% according to FIG. It is 2.5 times. Therefore, in this case, the intensity of light emitted from the LED 4a of the light source unit 4 that emits light with a wavelength of 850 nm is 2 with respect to the intensity of light emitted from the light emitting unit 42 of the touch pen 40 that emits light with a wavelength of 650 nm. It is adjusted to 5 times.
 この結果、特定の波長の信号が強く検出されるのを回避して、検出感度を揃えることができる。 As a result, it is possible to avoid the strong detection of a signal of a specific wavelength and to align the detection sensitivity.
 次に、本実施の形態においても、フィルタ22A・32Aは、実施の形態1の説明図である図1(b)に示すように、指6からの第1伝搬光L1の波長に対応した第1フィルタF1と、タッチペン40からの第2伝搬光L2の波長に対応した第2フィルタF2とが線状に出射された、第1伝搬光L1及び第2伝搬光L2の出射光をそれぞれ横切るように積層して配設されている。これら第1フィルタF1と第2フィルタF2とは、連続して一体に設けられている。また、第1フィルタF1及び第2フィルタF2の厚さは、それぞれ例えば5mmとなっている。 Next, also in the present embodiment, as shown in FIG. 1B, which is an explanatory diagram of the first embodiment, the filters 22A and 32A have a first wavelength corresponding to the wavelength of the first propagation light L1 from the finger 6. The first filter F1 and the second filter F2 corresponding to the wavelength of the second propagation light L2 from the touch pen 40 are linearly emitted so as to cross the emitted light of the first propagation light L1 and the second propagation light L2, respectively. Are arranged in layers. The first filter F1 and the second filter F2 are continuously and integrally provided. The thicknesses of the first filter F1 and the second filter F2 are each 5 mm, for example.
 ここで、本実施の形態においても、第1フィルタF1と第2フィルタF2との境界は円弧状にすることができる。 Here, also in the present embodiment, the boundary between the first filter F1 and the second filter F2 can be arcuate.
 この結果、撮像素子23・33においては、図14(b)に示すように、指6を導光板10に接触したときの像は、第1伝搬光L1の出射光における線状の暗部BLとなって現れる。また、タッチペン40から発せられた光は、第2伝搬光L2の出射光における線状の明部23bとなって現れる。両者は、扇形状の中心の回りに放射状に半径方向に延びる線の像として現れる。また、その2本の線は、第1フィルタF1と第2フィルタF2とのそれぞれの通過に対応して、千鳥状に現れる。 As a result, in the image sensors 23 and 33, as shown in FIG. 14B, the image when the finger 6 is in contact with the light guide plate 10 is the linear dark portion BL in the emitted light of the first propagation light L1. It appears. Moreover, the light emitted from the touch pen 40 appears as a linear bright portion 23b in the emitted light of the second propagation light L2. Both appear as an image of a line extending radially in the radial direction around the center of the fan shape. The two lines appear in a staggered manner corresponding to the passage of the first filter F1 and the second filter F2.
 したがって、仮に、1つの撮像素子23の視線方向に指6及びタッチペン40が並んだ場合、その撮像素子23では、撮像素子23から見て手前に位置する指6からの像、及び撮像素子23から見て奥に位置するタッチペン40から発せられた光の像は、それぞれ、同一半径方向線上に、分割された線状の暗部BL及び明部23bとなって現れる。尚、撮像素子33からの視線方向に指6とタッチペン40とが重なる場合、撮像素子33において同様の現象が現れる。 Therefore, if the finger 6 and the touch pen 40 are arranged in the line-of-sight direction of one image sensor 23, the image sensor 23 has an image from the finger 6 positioned in front of the image sensor 23 and the image sensor 23. Images of light emitted from the touch pen 40 located at the back of the screen appear as divided linear dark portions BL and bright portions 23b on the same radial line, respectively. Note that when the finger 6 and the touch pen 40 overlap in the direction of the line of sight from the image sensor 33, the same phenomenon appears in the image sensor 33.
 それゆえ、それぞれの撮像素子23・33にて指6及びタッチペン40における、該撮像素子23・33間の一辺とその両角を求めることができ、三角測量法にて、指6及びタッチペン40が接触した導光板10上の位置の平面座標を検出することができる。尚、指6及びタッチペン40が合計3つである場合には、第3フィルタが、第1フィルタF1及び第2フィルタF2に積層して配設され、第3の被検出体の出射光も第3フィルタを横切るので、同様に、第3の被検出体の接触位置も容易に測定することができる。被検出体が4つ以上であっても同様である。 Therefore, it is possible to obtain one side and both corners of the finger 6 and the touch pen 40 between the image pickup devices 23 and 33 by the respective image pickup devices 23 and 33, and the finger 6 and the touch pen 40 are contacted by the triangulation method. The plane coordinates of the position on the light guide plate 10 can be detected. When there are a total of three fingers 6 and touch pens 40, the third filter is disposed so as to be stacked on the first filter F1 and the second filter F2, and the emitted light of the third detected object is also the first. Since the three filters are crossed, similarly, the contact position of the third object to be detected can be easily measured. The same applies even when there are four or more detected objects.
 このように、本実施の形態の座標入力装置3Bでは、導光板10の端部から照明光を入射させる光源としての光源ユニット4が設けられ、第1被検出体としての指6は、導光板10の表面に接触することによって導光板10内を伝搬する照明光を散乱させる。一方、第2被検出体としてのタッチペン40は、導光板10の表面に接触することによって照明光とは異なる波長の光を入射させる発光部42を有する発光ペンからなっている。そして、受光部としての撮像素子23・33は、導光板10内を伝搬する照明光及び指6によるその散乱光である第1伝搬光L3と、タッチペン40による発光部42からの光である第2伝搬光L4とを受光する。また、検出手段としての検出部5は、指6の導光板10への接触による照明光の散乱に基づく撮像素子23・33の出力強度の変化を検出して、指6における導光板10の表面への接触位置の座標を求めると共に、タッチペン40の導光板10への接触による第2伝搬光L4を受光する撮像素子23・33の出力に基づいてタッチペン40における導光板10の表面への接触位置の座標を求める。 As described above, in the coordinate input device 3B of the present embodiment, the light source unit 4 is provided as a light source that makes the illumination light incident from the end of the light guide plate 10, and the finger 6 as the first detected body is the light guide plate. The illumination light propagating through the light guide plate 10 is scattered by contacting the surface of the light guide 10. On the other hand, the touch pen 40 as the second object to be detected is composed of a light emitting pen having a light emitting unit 42 that makes light having a wavelength different from that of illumination light incident upon contact with the surface of the light guide plate 10. The imaging elements 23 and 33 as light receiving parts are illumination light propagating through the light guide plate 10 and first propagation light L3 that is scattered light by the finger 6, and light from the light emitting part 42 by the touch pen 40. 2 propagation light L4 is received. The detection unit 5 as detection means detects a change in the output intensity of the imaging elements 23 and 33 based on scattering of illumination light due to contact of the finger 6 with the light guide plate 10 to detect the surface of the light guide plate 10 on the finger 6. The position of the touch position on the surface of the light guide plate 10 in the touch pen 40 based on the output of the image sensors 23 and 33 that receive the second propagation light L4 due to the touch pen 40 contacting the light guide plate 10. Find the coordinates of.
 上記の構成によれば、指6は、導光板10の表面に接触することによって導光板10内を伝搬する照明光を散乱させる一方、タッチペン40は、導光板10の表面に接触することによって照明光とは異なる波長の光を入射させる発光部42を有する発光ペンからなっている。 According to the above configuration, the finger 6 scatters illumination light propagating through the light guide plate 10 by contacting the surface of the light guide plate 10, while the touch pen 40 illuminates by contacting the surface of the light guide plate 10. The light-emitting pen includes a light-emitting unit 42 that allows light having a wavelength different from that of light to enter.
 すなわち、本実施の形態では、タッチペン40は、導光板10の表面に接触することによって光を入射させる発光部42を有する発光ペンからなっている。このため、実施の形態1にて説明した発光ペンであるタッチペン40の検出原理により、タッチペン40の接触位置の座標を求めることができる。具体的には、撮像素子23・33は、タッチペン40による発光部42からの光である第2伝搬光L4を受光する。そして、検出部5は、タッチペン40の導光板10への接触による第2伝搬光L4を受光する撮像素子23・33の出力に基づいてタッチペン40における導光板10の表面への接触位置の座標を求める。 That is, in the present embodiment, the touch pen 40 is a light-emitting pen having a light-emitting portion 42 that makes light incident upon contact with the surface of the light guide plate 10. For this reason, the coordinates of the contact position of the touch pen 40 can be obtained based on the detection principle of the touch pen 40 which is the light-emitting pen described in the first embodiment. Specifically, the image sensors 23 and 33 receive the second propagation light L4 that is light from the light emitting unit 42 by the touch pen 40. Then, the detection unit 5 determines the coordinates of the contact position of the touch pen 40 on the surface of the light guide plate 10 based on the outputs of the imaging elements 23 and 33 that receive the second propagation light L4 due to the touch pen 40 contacting the light guide plate 10. Ask.
 一方、指6は、導光板10の表面に接触することによって導光板10内を伝搬する照明光を散乱させるものである。 On the other hand, the finger 6 scatters the illumination light propagating through the light guide plate 10 by contacting the surface of the light guide plate 10.
 このような光を発光しない指6等の被検出体を撮像素子23・33にて検出するためには、予め導光板10の端部から照明光を入射させておく必要がある。そこで、本実施の形態では、導光板10の端部から照明光を入射させる光源ユニット4が設けられている。 In order to detect the detection target such as the finger 6 that does not emit such light by the imaging elements 23 and 33, it is necessary to make the illumination light incident from the end of the light guide plate 10 in advance. Therefore, in the present embodiment, the light source unit 4 that allows illumination light to enter from the end of the light guide plate 10 is provided.
 このような座標入力装置3Bでは、撮像素子23・33は、導光板10内を伝搬する照明光及び指6によるその散乱光である第1伝搬光L3を受光する。そして、検出部5は、指6の導光板10への接触による照明光の散乱に基づく撮像素子23・33の出力強度の変化を検出して、指6における導光板10の表面への接触位置の座標を求める。 In such a coordinate input device 3B, the imaging elements 23 and 33 receive the illumination light propagating in the light guide plate 10 and the first propagation light L3 that is the scattered light from the finger 6. And the detection part 5 detects the change of the output intensity of the image pick-up element 23 * 33 based on the scattering of the illumination light by the contact to the light guide plate 10 of the finger | toe 6, and the contact position to the surface of the light guide plate 10 in the finger | toe 6 Find the coordinates of.
 これにより、指6等からなる第1被検出体の導光板10への接触位置を求めることができる。 Thereby, the contact position of the first object to be detected consisting of the finger 6 and the like to the light guide plate 10 can be obtained.
 ところで、このような座標入力装置3Bにおいて、指6等からなる第1被検出体と発光ペンからなるタッチペン40等の第2被検出体とを同時に使用し、かつ指6及びタッチペン40の検出にそれぞれ同じ波長領域の光を用いている場合には、撮像素子23・33の視線方向に指6及びタッチペン40が並んだとき、撮像素子23・33から見て奥に位置する被検出体の像と手前にある被検出体の像とが重なるため、三角測量法では位置検出ができないという問題が発生する。 By the way, in such a coordinate input device 3B, the first detected body made of the finger 6 and the like and the second detected body such as the touch pen 40 made of the light emitting pen are used simultaneously, and the finger 6 and the touch pen 40 are detected. When light in the same wavelength region is used, when the finger 6 and the touch pen 40 are arranged in the line-of-sight direction of the image pickup devices 23 and 33, the image of the detection object positioned in the back as viewed from the image pickup devices 23 and 33. And the image of the object to be detected in front of each other overlap, so that there is a problem that the position cannot be detected by the triangulation method.
 この問題を解決するために、例えば、指6及びタッチペン40に対して、それそれ異なる波長の光を用いると共に、指6及びタッチペン40に対して必須の一対の第1受光部としての撮像素子23と第2受光部としての撮像素子33とを2組用意するのでは、装置の部品点数が増大し、コスト高になる。 In order to solve this problem, for example, light of a different wavelength is used for the finger 6 and the touch pen 40, and the imaging element 23 as a pair of first light receiving units essential for the finger 6 and the touch pen 40. And two sets of the image sensor 33 as the second light receiving unit are prepared, the number of parts of the apparatus increases and the cost increases.
 そこで、本実施の形態では、指6及びタッチペン40が同時に使用される場合でも、まず、撮像素子23・33は、三角測量法において必須の少なくとも1組の第1受光部及び第2受光部である該撮像素子23・33しか設けられていない。そして、撮像素子23・33にて指6及びタッチペン40を識別するために、以下の構成を有している。 Therefore, in the present embodiment, even when the finger 6 and the touch pen 40 are used at the same time, first, the image sensors 23 and 33 are at least one pair of the first light receiving unit and the second light receiving unit that are essential in the triangulation method. Only the image pickup devices 23 and 33 are provided. And in order to identify the finger | toe 6 and the touch pen 40 with the image pick-up elements 23 * 33, it has the following structures.
 まず、タッチペン40は、導光板10の表面に接触することによって光源ユニット4のLED4aからの照明光とは異なる波長の光を入射させる発光部42を有する発光ペンからなっている。次に、導光板10と各撮像素子23・33との光路間には、第1伝搬光L3の波長に対応した第1フィルタF1と第2伝搬光L4の波長に対応した第2フィルタF2とが、線状に出射された、第1伝搬光L3及び第2伝搬光L4の出射光をそれぞれ横切らせるように並べて配設されている。 First, the touch pen 40 is a light-emitting pen having a light-emitting portion 42 that makes light having a wavelength different from the illumination light from the LED 4a of the light source unit 4 come into contact with the surface of the light guide plate 10. Next, between the optical path between the light guide plate 10 and each of the image sensors 23 and 33, a first filter F1 corresponding to the wavelength of the first propagation light L3 and a second filter F2 corresponding to the wavelength of the second propagation light L4, Are arranged side by side so as to cross the emitted light of the first propagation light L3 and the second propagation light L4 emitted linearly.
 これにより、例えば、指6の接触に基づく第1伝搬光L3の出射光は、光路変換部としての切り欠き11及び第1フィルタF1を介して2つの撮像素子23・33へ線状にそれぞれ出射される。また、タッチペン40の接触に基づく第2伝搬光L4の出射光についても同様に、切り欠き11及び第2フィルタF2を介して2つの撮像素子23・33へ線状にそれぞれ出射される。 Thereby, for example, the emitted light of the first propagation light L3 based on the contact of the finger 6 is emitted linearly to the two image pickup devices 23 and 33 via the notch 11 and the first filter F1 as the optical path changing unit. Is done. Similarly, the emitted light of the second propagation light L4 based on the touch of the touch pen 40 is similarly emitted linearly to the two image pickup devices 23 and 33 through the notch 11 and the second filter F2.
 ここで、第1フィルタF1と第2フィルタF2とは、線状に出射された、第1伝搬光L3及び第2伝搬光L4の出射光をそれぞれ横切らせるように並べて配設されている。このため、例えば、第1フィルタF1と第2フィルタF2との境界が円弧状である場合には、撮像素子23・33には、第1伝搬光L3の出射光の線状の像である暗部BLと、第2伝搬光L4の出射光の線状の像である明部23bとの2本の像が、扇形状の中心の回りに放射状に半径方向に延びる線のそれぞれの像として現れる。また、その2本の線は、第1フィルタF1と第2フィルタF2とのそれぞれの通過に対応して、千鳥状に現れる。尚、第1フィルタF1と第2フィルタF2との境界が円弧状でなく直線である場合には、各像は平行に現れる。 Here, the first filter F1 and the second filter F2 are arranged side by side so as to cross the emitted light of the first propagation light L3 and the second propagation light L4 emitted linearly. For this reason, for example, when the boundary between the first filter F1 and the second filter F2 has an arc shape, the imaging elements 23 and 33 have dark portions that are linear images of the emitted light of the first propagation light L3. Two images of BL and the bright portion 23b, which is a linear image of the emitted light of the second propagation light L4, appear as images of lines extending radially in the radial direction around the center of the fan shape. The two lines appear in a staggered manner corresponding to the passage of the first filter F1 and the second filter F2. Note that when the boundary between the first filter F1 and the second filter F2 is not a circular arc but a straight line, the images appear in parallel.
 この結果、仮に、1つの撮像素子23の視線方向に指6とタッチペン40とが並んだ場合、撮像素子23では、撮像素子23から見て手前に位置する指6の接触に基づく第1伝搬光L3、及び撮像素子23から見て奥に位置するタッチペン40の接触に基づく第2伝搬光L4は、それぞれ、同時かつ同一線上に、分割された線状となって現れる。 As a result, if the finger 6 and the touch pen 40 are lined up in the line-of-sight direction of one image sensor 23, the image sensor 23 causes the first propagating light based on the contact of the finger 6 located in front of the image sensor 23. The second propagating light L4 based on the contact of the touch pen 40 positioned at the back as viewed from L3 and the image sensor 23 appears as a divided line on the same line at the same time.
 したがって、それぞれの撮像素子23・33にて指6及びタッチペン40における、該撮像素子23・33間の一辺とその両角を求めることができ、三角測量法にて、指6及びタッチペン40が接触した導光板10上の位置の平面座標を検出することができる。尚、被検出体が3つである場合には、第3フィルタが、第1フィルタ及び第2フィルタに積層して配設され、さらに第3被検出体の接触に基づく第3伝搬光の出射光も第3フィルタを横切るので、同様に、さらに第3被検出体の接触位置も容易に測定することができる。被検出体が4つ以上であっても同様である。 Therefore, it is possible to obtain one side and both corners of the finger 6 and the touch pen 40 between the image pickup devices 23 and 33 by the respective image pickup devices 23 and 33, and the finger 6 and the touch pen 40 are contacted by triangulation. The plane coordinates of the position on the light guide plate 10 can be detected. When there are three detected bodies, the third filter is disposed on the first filter and the second filter, and the third propagation light based on the contact of the third detected body is further emitted. Since the incident light also crosses the third filter, similarly, the contact position of the third detected object can be easily measured. The same applies even when there are four or more detected objects.
 また、本実施の形態では、指6の接触に基づく第1伝搬光L3及びタッチペン40の接触に基づく第2伝搬光L4は、導光板10の上方の空気中を光路とするのではなく、導光板10の内部を光路としている。このため、タッチペン40を持つ指等でタッチペン40の光路が遮蔽されてタッチペン40の座標位置を求めるために補間処理をすることもないので、確実、かつ精度よく検出できる。さらに、撮像素子23・33を増加することもないので、指6及びタッチペン40の識別を簡易に行い、コスト増大もない。 Further, in the present embodiment, the first propagation light L3 based on the contact of the finger 6 and the second propagation light L4 based on the contact of the touch pen 40 do not use the air above the light guide plate 10 as an optical path. The inside of the optical plate 10 is an optical path. For this reason, since the optical path of the touch pen 40 is shielded by a finger or the like having the touch pen 40 and no interpolation processing is performed to obtain the coordinate position of the touch pen 40, detection can be performed reliably and accurately. Further, since the image pickup devices 23 and 33 are not increased, the finger 6 and the touch pen 40 are easily identified, and the cost is not increased.
 したがって、複数の指6及びタッチペン40を同時に使用する場合に、互いの指6又はタッチペン40の影響を受けずに、各指6及びタッチペン40の識別を簡易かつ確実に行い、コストの増大を回避する座標入力装置を提供することができる。 Therefore, when a plurality of fingers 6 and the touch pen 40 are used at the same time, each finger 6 and the touch pen 40 are easily and reliably identified without being affected by each other's finger 6 or the touch pen 40, thereby avoiding an increase in cost. A coordinate input device can be provided.
 また、本実施の形態の座標入力装置3Bでは、光源ユニット4のLED4a及びタッチペン40の発光部42から出射される各光の強度は、撮像素子23・33における波長域での受光感度に応じて、各検出感度が同一になるように調整されている。 Further, in the coordinate input device 3B of the present embodiment, the intensity of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 depends on the light receiving sensitivity in the wavelength region of the image sensors 23 and 33. The detection sensitivities are adjusted to be the same.
 すなわち、例えばCMOS(Complementary Metal Oxide Semiconductor:相補形金属酸化膜半導体)カメラ等の受光部では、長波長側に向かうに伴って受光感度が低下する傾向にある。このため、短波長の信号が強く検出される可能性がある。この点、本実施の形態では、光源ユニット4のLED4a及びタッチペン40の発光部42から出射される各光の強度は、撮像素子23・33における波長域での受光感度に応じて、各検出感度が同一になるように調整されている。この結果、特定の波長の信号が強く検出されるのを回避して検出感度を揃えることができる。 That is, for example, in a light receiving part of a CMOS (Complementary Metal Oxide Semiconductor) camera or the like, the light receiving sensitivity tends to decrease as it goes to the long wavelength side. For this reason, a short wavelength signal may be detected strongly. In this regard, in the present embodiment, the intensity of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 depends on the light receiving sensitivity in the wavelength region of the image sensors 23 and 33. Are adjusted to be the same. As a result, it is possible to avoid the strong detection of a signal having a specific wavelength and to make the detection sensitivity uniform.
 また、本実施の形態の座標入力装置3Bでは、光源ユニット4のLED4a及びタッチペン40の発光部42から出射される各光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっている。 In the coordinate input device 3B of the present embodiment, the wavelength of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 is such that the interval between the peak wavelengths of each light is larger in peak width. They are different from each other so that they are separated from the full width at half maximum of the peak light.
 すなわち、ピーク半値幅の広い光同士では、光学フィルタを用いても完全に波長分離することができない虞がある。このため、完全に分離検出するためには、光のピーク半値幅を考慮して波長を選択する必要がある。この点、本実施の形態では、光源ユニット4のLED4a及びタッチペン40の発光部42から出射される各光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっている。この結果、光源ユニット4のLED4a及びタッチペン40の発光部42から出射される各光の波長を、充分に分離識別することが可能となる。 That is, there is a possibility that light having a wide peak half width cannot be completely wavelength-separated even if an optical filter is used. For this reason, in order to perform complete separation detection, it is necessary to select a wavelength in consideration of the half-value width of the light peak. In this regard, in the present embodiment, the wavelength of each light emitted from the LED 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 is the peak in the light having the larger peak width in the interval between the peak wavelengths of each light. They are different from each other so that they are separated from the full width at half maximum. As a result, the wavelengths of the light emitted from the LEDs 4a of the light source unit 4 and the light emitting unit 42 of the touch pen 40 can be sufficiently separated and identified.
 また、本実施の形態の座標入力装置3Bでは、第1フィルタF1と第2フィルタF2とは、連続して一体に設けられている。これにより、指6及びタッチペン40における撮像素子23・33での像がずれることがないので、座標位置検出精度を向上することができる。 Further, in the coordinate input device 3B of the present embodiment, the first filter F1 and the second filter F2 are provided continuously and integrally. Thereby, since the image by the image pick-up element 23 * 33 in the finger | toe 6 and the touch pen 40 does not shift | deviate, coordinate position detection accuracy can be improved.
 また、本実施の形態の座標入力装置3Bでは、第1フィルタF1と第2フィルタF2との境界は円弧状になっている。これにより、導光板10に設けられた切り欠き11の形状を、導光板10の隅角部を円錐面又は双曲面にて斜めに切り取った形状にすることができるので、切り欠き11を容易に形成することができる。 Further, in the coordinate input device 3B of the present embodiment, the boundary between the first filter F1 and the second filter F2 has an arc shape. Thereby, since the shape of the notch 11 provided in the light guide plate 10 can be made into a shape in which the corner portion of the light guide plate 10 is cut obliquely with a conical surface or a hyperboloid, the notch 11 can be easily formed. Can be formed.
 また、本実施の形態の座標入力システム1では、本実施の形態の座標入力装置3Bを備えた座標入力システム1であって、画像表示パネルとしての液晶表示パネル2を備えている。 Further, the coordinate input system 1 of the present embodiment is a coordinate input system 1 including the coordinate input device 3B of the present embodiment, and includes a liquid crystal display panel 2 as an image display panel.
 このため、座標入力装置3Bを、液晶表示パネル2の画像を見ながらペン入力及び指入力するタッチパネルとして機能させることができる。したがって、指6及びタッチペン40を同時使用する場合に、互いの指6及びタッチペン40の影響を受けずに、各指6及びタッチペン40の識別を簡易かつ確実に行い、コストの増大を回避する座標入力装置3Bを備えた座標入力システム1を提供することができる。 For this reason, the coordinate input device 3B can function as a touch panel for pen input and finger input while viewing the image on the liquid crystal display panel 2. Therefore, when the finger 6 and the touch pen 40 are used at the same time, the coordinates for easily and surely identifying each finger 6 and the touch pen 40 without being influenced by the mutual finger 6 and the touch pen 40 and avoiding an increase in cost. A coordinate input system 1 including the input device 3B can be provided.
  〔実施の形態3〕
 本発明の他の実施の形態について図15及び図16に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1及び実施の形態2と同じである。また、説明の便宜上、前記の実施の形態1及び実施の形態2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
[Embodiment 3]
The following will describe another embodiment of the present invention with reference to FIGS. The configurations other than those described in the present embodiment are the same as those in the first embodiment and the second embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of Embodiment 1 and Embodiment 2 are given the same reference numerals, and explanation thereof is omitted.
 前記実施の形態2の座標入力装置3Bには、2つの撮像ユニット20・30が設けられていた。 In the coordinate input device 3B of the second embodiment, two image pickup units 20 and 30 are provided.
 しかし、本実施の形態の座標入力装置3Cでは、図15に示すように、撮像ユニット20・30・50が3つ又はそれ以上設けられている点が異なっている。そして、これによって、2つの被検出体としての指6A・6Bの検出が可能となっている。 However, the coordinate input device 3C of the present embodiment is different in that three or more imaging units 20, 30, 50 are provided as shown in FIG. As a result, it is possible to detect the fingers 6A and 6B as the two detection objects.
 すなわち、例えば、図15に示すように、被検出体としての指6A・6Bが2つである場合、撮像ユニット20・30が2つしかないときには、2つの指6A・6Bの光路が重なる場合には、線状の暗部BLも重なるので、2つの指6A・6Bのうちのいずれの指6A・6Bが手前に存在するかを特定することができない。 That is, for example, as shown in FIG. 15, when there are two fingers 6A and 6B as detection objects, and there are only two imaging units 20 and 30, the optical paths of the two fingers 6A and 6B overlap. Since the linear dark part BL also overlaps, it cannot be specified which of the two fingers 6A and 6B is present in front.
 しかしながら、図15に示すように、撮像ユニット20・30・50が3つ存在していれば、各指6A・6Bについて、重ならない2つの光路による撮像ユニット20・30・50を用いて各指6の接触位置を求めることが可能となる。尚、撮像ユニット50は、レンズ51、フィルタ52A、撮像素子53から構成されている。 However, as shown in FIG. 15, if there are three imaging units 20, 30, and 50, each finger 6 </ b> A, 6 </ b> B uses each imaging unit 20, 30, 50 with two optical paths that do not overlap each other. 6 contact positions can be obtained. The imaging unit 50 includes a lens 51, a filter 52A, and an imaging element 53.
 詳細には、例えば、図15において、指6Bが点P3 に存在する場合、撮像ユニット20への指6Aの光路と指6Bの光路とが重なる。この場合、指6Aの検出には、撮像ユニット30・50の2つを用いる一方、指6Bの検出には、撮像ユニット20・50を用いる。これにより、光路が重なることはない。 Specifically, for example, in FIG. 15, when the finger 6B is present at point P 3, it overlaps the optical path of the finger 6B finger 6A to the imaging unit 20. In this case, two imaging units 30 and 50 are used to detect the finger 6A, while the imaging units 20 and 50 are used to detect the finger 6B. As a result, the optical paths do not overlap.
 したがって、2つの指6A・6Bが導光板10のいずれの場所に接触されても、指6A・6Bの接触点の位置座標を確実に特定することが可能となる。 Therefore, the position coordinates of the contact points of the fingers 6A and 6B can be reliably specified regardless of where the two fingers 6A and 6B are in contact with the light guide plate 10.
 尚、一般的に、被検出体としての指6がM個存在する場合には、必要な受光手段の数Nは、
 N=M+1
となる。
In general, when there are M fingers 6 as detection objects, the required number N of light receiving means is:
N = M + 1
It becomes.
 一方、撮像ユニット20・30・50を少なくとも3つ設けた場合には、以下に示すメリットも存在する。 On the other hand, when at least three imaging units 20, 30, 50 are provided, there are the following merits.
 すなわち、撮像ユニット20・30の2つである場合、2つの撮像ユニット20・30が設けられた導光板10の辺の近傍に指6Aが接触されると死角になって、2つの撮像ユニット20・30では検知されない虞がある。この場合、受光部が3つ存在していれば、それを例えば三角形の頂点に配設しておけば、死角を発生することなく、指6Aが導光板10のいずれの場所に接触されても、指6Aの接触点の位置座標を確実に特定することが可能となる。 That is, in the case of two imaging units 20 and 30, when the finger 6A comes in contact with the vicinity of the side of the light guide plate 10 provided with the two imaging units 20 and 30, a blind spot is formed, and the two imaging units 20・ There is a possibility that it will not be detected at 30. In this case, if there are three light receiving portions, for example, if they are arranged at the vertices of a triangle, the finger 6A can be brought into contact with any location of the light guide plate 10 without generating a blind spot. The position coordinates of the contact point of the finger 6A can be reliably specified.
 この場合、例えば、図16に示すように、受光部を有する撮像ユニット20・30・50・60を方形の導光板10における4つの隅角部に配設することが可能である。 In this case, for example, as shown in FIG. 16, the imaging units 20, 30, 50, and 60 having the light receiving portions can be disposed at the four corners of the rectangular light guide plate 10.
 ここで、このように受光部を有する4つの撮像ユニット20・30・50・60を、方形の導光板10の各隅角部に配設した場合、図16に示すように、光源としての光源ユニット4…を導光板10の全周囲の端部に配設しておき、光源ユニット4…が、導光板10の全周囲の端部から照明光を入射させる座標入力装置3Dとすることが好ましい。必要条件としては、導光板10の周囲に受光手段としての撮像ユニット50・60を増やした場合、撮像ユニット50・60の対向位置に光源が存在することが好ましい。 Here, when the four image pickup units 20, 30, 50, 60 having the light receiving portions are arranged at the respective corner portions of the rectangular light guide plate 10, a light source as a light source as shown in FIG. It is preferable that the units 4... Be arranged at the end of the entire periphery of the light guide plate 10 and the light source units 4... Be a coordinate input device 3D that allows illumination light to enter from the end of the entire periphery of the light guide plate 10. . As a necessary condition, when the number of imaging units 50 and 60 as light receiving means is increased around the light guide plate 10, it is preferable that a light source exists at a position opposite to the imaging units 50 and 60.
 これにより、受光部を有する4つの撮像ユニット20・30・50・60は、導光板10における全ての範囲が照明光の照射範囲内に設けられていることになる。したがって、指6Aが導光板10のいずれの場所に接触されても、指6Aの接触点の位置座標を確実に特定することが可能となる。 Thus, the four imaging units 20, 30, 50, and 60 having the light receiving units are provided with the entire range in the light guide plate 10 within the illumination light irradiation range. Therefore, it is possible to reliably specify the position coordinates of the contact point of the finger 6A, regardless of where the finger 6A is in contact with the light guide plate 10.
 また、光源ユニット4…と撮像ユニット20・30・50・60とを対向して配置するため、撮像ユニット20・30・50・60の配置の自由度が高くなる。また、撮像ユニット20・30・50・60の数を容易に増加することができ、多数の指6A・6B…の接触の同時検知が可能となり、大型タッチパネルに適用した場合の信号品質低下も生じ難い。 Also, since the light source units 4 and the imaging units 20, 30, 50, 60 are arranged to face each other, the degree of freedom of arrangement of the imaging units 20, 30, 50, 60 is increased. In addition, the number of image pickup units 20, 30, 50, 60 can be easily increased, and simultaneous detection of the contact of a large number of fingers 6A, 6B... Is possible, resulting in a decrease in signal quality when applied to a large touch panel. hard.
 ここで、4つの撮像ユニット20・30・50・60を設けた場合には、指6Aの検出に際しては、4つの撮像ユニット20・30・50・60のうちのいずれか2つの撮像ユニットを使用することができる。 Here, when four image pickup units 20, 30, 50, 60 are provided, any two of the four image pickup units 20, 30, 50, 60 are used for detecting the finger 6A. can do.
 しかしながら、例えば、導光板10の一辺に沿って撮像ユニット20・30を配置した場合、指6Aの接触点が撮像ユニット20・30から遠い場合には、信号品質が劣化する。したがって、指6Aの接触点が撮像ユニット20・30から遠い場合には、導光板10の周囲に受光手段としての撮像ユニット50・60を増やすことにより、指6Aに近接する撮像ユニット50・60にて検出することにより、信号品質の劣化を招くことなく検出することができる。 However, for example, when the imaging units 20 and 30 are arranged along one side of the light guide plate 10, the signal quality is deteriorated when the contact point of the finger 6A is far from the imaging units 20 and 30. Therefore, when the contact point of the finger 6A is far from the imaging units 20 and 30, by increasing the number of imaging units 50 and 60 as light receiving means around the light guide plate 10, the imaging units 50 and 60 adjacent to the finger 6A can be increased. By detecting this, it is possible to detect without degrading the signal quality.
 尚、近接しているかの判断は、信号減衰量が大きいか又は小さいかによって判断できる。すなわち、信号減衰量が大きい程、近接しているといえる。 Note that it is possible to determine whether they are close to each other based on whether the signal attenuation is large or small. In other words, it can be said that the closer the signal attenuation, the closer.
 このように、本実施の形態の座標入力装置3Cでは、受光部は、撮像ユニット20・30・50の撮像素子23・33・53として少なくとも3つ設けられている。 As described above, in the coordinate input device 3C of the present embodiment, at least three light receiving units are provided as the imaging elements 23, 33, and 53 of the imaging units 20, 30, and 50.
 これにより、各指6A・6Bについて、重ならない2つの光路による撮像ユニット30・50及び撮像ユニット20・50を用いて各指6A・6Bの接触位置を求めることが可能となる。 Thereby, for each finger 6A, 6B, it is possible to obtain the contact position of each finger 6A, 6B by using the imaging units 30, 50 and the imaging units 20, 50 with two optical paths that do not overlap.
 また、3つの撮像ユニット20・30・50を三角形の頂点に配設してくことにより、死角を発生することなく、指6Aが導光板10のいずれの場所に接触されても、指6Aの接触点の位置座標を確実に特定することが可能となる。 Further, by arranging the three imaging units 20, 30 and 50 at the apexes of the triangle, the finger 6A can be brought into contact with any position of the light guide plate 10 without causing a blind spot. It is possible to reliably specify the position coordinates of the point.
 さらに、本実施の形態の座標入力装置3Dでは、光源ユニット4は、導光板10の全周囲の端部から照明光を入射させるようになっている。これにより、撮像ユニット20・30・50・60は、導光板10における全ての範囲が照明光の照射範囲内に設けられていることになる。 Furthermore, in the coordinate input device 3D of the present embodiment, the light source unit 4 is configured to allow illumination light to enter from the entire peripheral edge of the light guide plate 10. As a result, the imaging units 20, 30, 50, and 60 have the entire range of the light guide plate 10 within the illumination light irradiation range.
 したがって、指6Aが導光板10のいずれの場所に接触されても、指6Aの接触点の位置座標を確実に特定することが可能となる。 Therefore, it is possible to reliably specify the position coordinates of the contact point of the finger 6A regardless of where the finger 6A is brought into contact with the light guide plate 10.
 そして、このような構成において、撮像ユニット20・30・50は、フィルタ22A・32A・52Aを有している。 In such a configuration, the imaging units 20, 30 and 50 have the filters 22A, 32A and 52A.
 したがって、被検出体としての2つの指6A・6B及びタッチペン40を同時に使用する場合において、それぞれの接触位置を特定することが可能となる。 Therefore, when the two fingers 6A and 6B as the detection target and the touch pen 40 are used at the same time, the respective contact positions can be specified.
 尚、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、他の実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and the technical means disclosed in the other embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention.
 本発明は、指、又はタッチペン、スタイラスペン等の棒状の操作部材ペン等の被検出体を複数同時使用する光学式の座標入力装置、及び座標入力システムに利用することができる。 The present invention can be used for an optical coordinate input device and a coordinate input system that simultaneously use a plurality of detection objects such as fingers or a bar-shaped operation member pen such as a touch pen or a stylus pen.
 1    座標入力システム
 2    液晶表示パネル(画像表示パネル)
 3A   ペン入力装置(座標入力装置)
 3B   座標入力装置
 4    光源ユニット(光源)
 4a   LED
 5    検出部(検出手段)
 6    指(被検出体)
 6A   指(被検出体)
 6B   指(被検出体)
10    導光板(導光部材)
10a   伝搬光
10b   伝搬光
11    切り欠き(光路変換部)
20    撮像ユニット
21    レンズ
22    フィルタ
22A   フィルタ
23    撮像素子(受光部)
23a   明部
23b   明部
25    像
25A   像
27    像
30    撮像ユニット
31    レンズ
32    フィルタ
32A   フィルタ
33    撮像素子(受光部)
40    タッチペン(発光ペン、被検出体)
40A   タッチペン(発光ペン、被検出体)
40B   タッチペン(発光ペン、被検出体)
42    発光部
45    光散乱部材
50    撮像ユニット
60    撮像ユニット
BL    暗部
BL    暗部
BL    暗部
F1    第1フィルタ
F2    第2フィルタ
L     間隔
L1    第1伝搬光(伝搬光)
L2    第2伝搬光(伝搬光)
1 Coordinate input system 2 Liquid crystal display panel (image display panel)
3A Pen input device (coordinate input device)
3B Coordinate input device 4 Light source unit (light source)
4a LED
5 Detection part (detection means)
6 fingers (detected body)
6A finger (object to be detected)
6B Finger (Detected object)
10 Light guide plate (light guide member)
10a Propagating light 10b Propagating light 11 Notch (optical path changing unit)
20 Imaging unit 21 Lens 22 Filter 22A Filter 23 Imaging device (light receiving unit)
23a Bright part 23b Bright part 25 Image 25A Image 27 Image 30 Imaging unit 31 Lens 32 Filter 32A Filter 33 Imaging element (light receiving part)
40 Touch pen (light emitting pen, object to be detected)
40A touch pen (light emitting pen, object to be detected)
40B Touch pen (light emitting pen, object to be detected)
42 Light-Emitting Unit 45 Light Scattering Member 50 Imaging Unit 60 Imaging Unit BL Dark Part BL 1 Dark Part BL 2 Dark Part F1 First Filter F2 Second Filter L Interval L1 First Propagation Light (Propagation Light)
L2 Second propagation light (propagation light)

Claims (11)

  1.  板状の導光部材と、上記導光部材内を伝搬する伝搬光を受光する少なくとも2つの受光部と、上記導光部材の表面に被検出体を接触したときの該接触に基づく伝搬光を検知した上記受光部の出力に基づいて、上記被検出体における導光部材の表面への接触位置の座標を求める検出手段とを備えた座標入力装置であって、
     上記被検出体は、少なくとも2つの第1被検出体と第2被検出体とからなっており、
     上記第1被検出体の接触に基づく第1伝搬光と上記第2被検出体の接触に基づく第2伝搬光とは互いに波長が異なっていると共に、
     上記導光部材には、上記第1伝搬光又は第2伝搬光を上記2つの受光部へそれぞれ線状に出射する光路変換部が設けられ、
     上記導光部材と上記各受光部との光路間には、上記第1伝搬光の波長に対応した第1フィルタと上記第2伝搬光の波長に対応した第2フィルタとが、上記線状に出射された、第1伝搬光及び第2伝搬光の出射光をそれぞれ横切らせるように並べて配設されていることを特徴とする座標入力装置。
    A plate-shaped light guide member, at least two light receiving portions for receiving propagation light propagating in the light guide member, and propagation light based on the contact when the detected object comes into contact with the surface of the light guide member A coordinate input device comprising detection means for obtaining coordinates of a position of contact with the surface of the light guide member in the detected body based on the detected output of the light receiving unit;
    The detected object comprises at least two first detected objects and a second detected object,
    The first propagating light based on the contact of the first detected object and the second propagating light based on the contact of the second detected object have different wavelengths, and
    The light guide member is provided with an optical path conversion unit that linearly emits the first propagation light or the second propagation light to the two light receiving units,
    A first filter corresponding to the wavelength of the first propagation light and a second filter corresponding to the wavelength of the second propagation light are linearly provided between the optical paths of the light guide member and the light receiving portions. A coordinate input device, wherein the emitted light of the first propagation light and the second propagation light emitted is arranged side by side so as to cross each other.
  2.  前記第1被検出体及び第2被検出体は、それぞれ前記導光部材の表面に接触することによって該導光部材に互いに異なる波長の光を入射させる発光部を有する発光ペンからなっていると共に、
     前記受光部は、上記第1被検出体及び第2被検出体の各発光部から上記導光部材にそれぞれ入射して該導光部材の内部を伝搬する第1伝搬光及び第2伝搬光における該導光部材からの出射光を受光することを特徴とする請求項1記載の座標入力装置。
    The first detected body and the second detected body are each composed of a light emitting pen having a light emitting portion that makes light of different wavelengths incident on the light guide member by contacting the surface of the light guide member. ,
    The light receiving unit is configured to transmit the first propagation light and the second propagation light that are incident on the light guide member from the light emitting units of the first detection body and the second detection body, respectively, and propagate through the light guide member. The coordinate input device according to claim 1, wherein light emitted from the light guide member is received.
  3.  前記各発光ペンの先端には、導光部材に拡散光を入射させる光散乱部材がそれぞれ設けられていることを特徴とする請求項2記載の座標入力装置。 3. A coordinate input device according to claim 2, wherein a light scattering member for allowing diffused light to enter the light guide member is provided at the tip of each light emitting pen.
  4.  前記各発光ペンの発光部から出射される光の強度は、前記受光部における波長域での受光感度に応じて、各検出感度が同一になるように調整されていることを特徴とする請求項2又は3記載の座標入力装置。 The intensity of light emitted from the light emitting unit of each light emitting pen is adjusted so that each detection sensitivity is the same according to the light receiving sensitivity in the wavelength region of the light receiving unit. The coordinate input device according to 2 or 3.
  5.  前記各発光ペンの発光部から出射される光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっていることを特徴とする請求項2,3又は4記載の座標入力装置。 The wavelengths of the light emitted from the light emitting portions of the light emitting pens are different from each other such that the interval between the peak wavelengths of the light is separated from the peak half width of the light having the larger peak width. The coordinate input device according to claim 2, 3 or 4.
  6.  前記導光部材の端部から照明光を入射させる光源が設けられ、
     前記第1被検出体は、前記導光部材の表面に接触することによって上記導光部材内を伝搬する上記照明光を散乱させる一方、
     前記第2被検出体は、前記導光部材の表面に接触することによって上記照明光とは異なる波長の光を入射させる発光部を有する発光ペンからなっており、
     前記受光部は、導光部材内を伝搬する照明光及び第1被検出体によるその散乱光である前記第1伝搬光と、上記第2被検出体による発光部からの光である前記第2伝搬光とを受光すると共に、
     前記検出手段は、第1被検出体の導光部材への接触による上記照明光の散乱に基づく受光部の出力強度の変化を検出して、該第1被検出体における導光部材の表面への接触位置の座標を求めると共に、第2被検出体の導光部材への接触による第2伝搬光を受光する受光部の出力に基づいて該第2被検出体における導光部材の表面への接触位置の座標を求めることを特徴とする請求項1記載の座標入力装置。
    A light source for allowing illumination light to enter from an end of the light guide member;
    The first detected body scatters the illumination light propagating through the light guide member by contacting the surface of the light guide member,
    The second object to be detected is composed of a light emitting pen having a light emitting unit that makes light having a wavelength different from the illumination light incident by contacting the surface of the light guide member,
    The light receiving unit is illumination light propagating in the light guide member, the first propagation light that is the scattered light by the first detected body, and the second light that is the light from the light emitting unit by the second detected body. While receiving the propagating light,
    The detection means detects a change in the output intensity of the light receiving unit based on the scattering of the illumination light due to the contact of the first detected body with the light guiding member, and moves to the surface of the light guiding member in the first detected body. And determining the coordinates of the contact position of the second detected object to the surface of the light guide member on the second detected object based on the output of the light receiving unit that receives the second propagation light due to the contact of the second detected object with the light guide member The coordinate input device according to claim 1, wherein coordinates of the contact position are obtained.
  7.  前記光源及び第2被検出体の発光部から出射される各光の強度は、前記受光部における波長域での受光感度に応じて、各検出感度が同一になるように調整されていることを特徴とする請求項6記載の座標入力装置。 The intensity of each light emitted from the light source and the light emitting part of the second object to be detected is adjusted so that the respective detection sensitivities are the same according to the light receiving sensitivity in the wavelength region of the light receiving part. The coordinate input device according to claim 6.
  8.  前記光源及び第2被検出体の発光部から出射される各光の波長は、各光のピーク波長同士の間隔が、ピーク幅の大きい方の光におけるピーク半値幅よりも離れているように、互いに異なっていることを特徴とする請求項6又は7記載の座標入力装置。 The wavelength of each light emitted from the light source and the light emitting part of the second object to be detected is such that the interval between the peak wavelengths of each light is separated from the peak half-value width in the light having the larger peak width, The coordinate input device according to claim 6 or 7, wherein the coordinate input devices are different from each other.
  9.  前記第1フィルタと第2フィルタとは、連続して一体に設けられていることを特徴とする請求項1~8のいずれか1項に記載の座標入力装置。 The coordinate input device according to any one of claims 1 to 8, wherein the first filter and the second filter are continuously provided integrally.
  10.  前記第1フィルタと第2フィルタとの境界は円弧状になっていることを特徴とする請求項1~9のいずれか1項に記載の座標入力装置。 The coordinate input device according to any one of claims 1 to 9, wherein a boundary between the first filter and the second filter has an arc shape.
  11.  請求項1~10のいずれか1項に記載の座標入力装置を備えた座標入力システムであって、
     画像表示パネルを備えていることを特徴とする座標入力システム。
    A coordinate input system comprising the coordinate input device according to any one of claims 1 to 10,
    A coordinate input system comprising an image display panel.
PCT/JP2012/080855 2012-01-27 2012-11-29 Coordinate input device and coordinate input system WO2013111447A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-015748 2012-01-27
JP2012015748 2012-01-27
JP2012-044612 2012-02-29
JP2012044612A JP2013175142A (en) 2012-01-27 2012-02-29 Coordinate input device and coordinate input system

Publications (1)

Publication Number Publication Date
WO2013111447A1 true WO2013111447A1 (en) 2013-08-01

Family

ID=48873188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080855 WO2013111447A1 (en) 2012-01-27 2012-11-29 Coordinate input device and coordinate input system

Country Status (2)

Country Link
JP (1) JP2013175142A (en)
WO (1) WO2013111447A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423731A (en) * 2013-08-21 2015-03-18 株式会社理光 Coordinate detecting apparatus, method of detecting coordinate, and electronic information board system
JP2015133061A (en) * 2014-01-15 2015-07-23 株式会社リコー Coordinate detection system, coordinate detection device, and light intensity adjustment method
JP2015207260A (en) * 2014-04-23 2015-11-19 株式会社リコー Coordinate input system, light emission intensity control method in coordinate input system, information processing device and program
US9582117B2 (en) 2014-04-28 2017-02-28 Qualcomm Incorporated Pressure, rotation and stylus functionality for interactive display screens
EP3056975A4 (en) * 2013-10-08 2017-06-21 Hitachi Maxell, Ltd. Projection type image display device, manipulation detection device and projection type image display method
JPWO2016171166A1 (en) * 2015-04-20 2018-02-22 株式会社リコー Coordinate detection device, electronic blackboard, image display system, coordinate detection method
US10116868B2 (en) 2014-04-28 2018-10-30 Qualcomm Incorporated Display-integrated user-classification, security and fingerprint system
CN109287124A (en) * 2017-05-23 2019-01-29 深圳市汇顶科技股份有限公司 It is sensed for display and the optical touch of other application
CN109416606A (en) * 2016-05-23 2019-03-01 拉普特知识产权公司 Using optical touch sensing device, detect contact instrument associated with active instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111589A (en) 2015-12-16 2017-06-22 株式会社リコー Coordinate detection device, display system, projection system and coordinate detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421520A (en) * 1987-07-17 1989-01-24 Fujitsu Ltd Coordinate input device
JPH096521A (en) * 1995-06-15 1997-01-10 Nec Corp Pen input device
JP2009223535A (en) * 2008-03-14 2009-10-01 Sega Corp Position input device, contact object, position input method and position input program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421520A (en) * 1987-07-17 1989-01-24 Fujitsu Ltd Coordinate input device
JPH096521A (en) * 1995-06-15 1997-01-10 Nec Corp Pen input device
JP2009223535A (en) * 2008-03-14 2009-10-01 Sega Corp Position input device, contact object, position input method and position input program

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2840470A3 (en) * 2013-08-21 2015-03-18 Ricoh Company, Ltd. Coordinate detecting apparatus, method of detecting coordinate, and electronic information board system
US9436318B2 (en) 2013-08-21 2016-09-06 Ricoh Company, Ltd. Coordinate detecting apparatus, method of detecting coordinate, and electronic information board system
CN104423731B (en) * 2013-08-21 2017-09-01 株式会社理光 Apparatus of coordinate detecting, the method for coordinate measurement and electronic information plate system
CN104423731A (en) * 2013-08-21 2015-03-18 株式会社理光 Coordinate detecting apparatus, method of detecting coordinate, and electronic information board system
US10025430B2 (en) 2013-10-08 2018-07-17 Maxell, Ltd. Projection type image display device, manipulation detection device and projection type image display method
US10719171B2 (en) 2013-10-08 2020-07-21 Maxell, Ltd. Projection type image display device, manipulation detection device and projection type image display method
EP3056975A4 (en) * 2013-10-08 2017-06-21 Hitachi Maxell, Ltd. Projection type image display device, manipulation detection device and projection type image display method
JP2015133061A (en) * 2014-01-15 2015-07-23 株式会社リコー Coordinate detection system, coordinate detection device, and light intensity adjustment method
JP2015207260A (en) * 2014-04-23 2015-11-19 株式会社リコー Coordinate input system, light emission intensity control method in coordinate input system, information processing device and program
US10116868B2 (en) 2014-04-28 2018-10-30 Qualcomm Incorporated Display-integrated user-classification, security and fingerprint system
US9582117B2 (en) 2014-04-28 2017-02-28 Qualcomm Incorporated Pressure, rotation and stylus functionality for interactive display screens
EP3287879A4 (en) * 2015-04-20 2018-04-25 Ricoh Company, Ltd. Coordinate detection device, electronic blackboard, image display system, and coordinate detection method
CN107835975A (en) * 2015-04-20 2018-03-23 株式会社理光 Coordinate detecting device, electronic blackboard, image display system and coordinate detection method
JPWO2016171166A1 (en) * 2015-04-20 2018-02-22 株式会社リコー Coordinate detection device, electronic blackboard, image display system, coordinate detection method
CN109416606A (en) * 2016-05-23 2019-03-01 拉普特知识产权公司 Using optical touch sensing device, detect contact instrument associated with active instrument
CN109287124A (en) * 2017-05-23 2019-01-29 深圳市汇顶科技股份有限公司 It is sensed for display and the optical touch of other application
EP3519928A4 (en) * 2017-05-23 2020-02-12 Shenzhen Goodix Technology Co., Ltd. Optical touch sensing for displays and other applications

Also Published As

Publication number Publication date
JP2013175142A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
WO2013111447A1 (en) Coordinate input device and coordinate input system
US8581892B2 (en) Optical position detecting device and display device with position detecting function
JP2014021790A (en) Coordinate input device, coordinate detection method and coordinate input system
CN107250855A (en) Optical component for optical coupling
JP2009295318A (en) Lighting system and electro-optical device
WO2013094376A1 (en) Input system
JP2013250815A (en) Coordinate input device and coordinate input system
JP5944255B2 (en) Operation member having light emitting unit and coordinate input system having the same
JP2014099139A (en) Coordinate input device and coordinate input system
JP5886080B2 (en) Input device and input system including the input device
JP2013190980A (en) Coordinate input device, coordinate input system, and coordinate input method
JP2013156861A (en) Coordinate input device, coordinate correcting method of coordinate input device and coordinate input system
JP2013210943A (en) Coordinate input device, coordinate input system, and coordinate input method
WO2013132925A1 (en) Input device and input system provided therewith
JP2013250817A (en) Coordinate input device and coordinate input system
JP2013250816A (en) Coordinate input device, and coordinate input system
JP5813533B2 (en) Input device and input system
JP5823283B2 (en) Operation member having a light emitting unit, and input system including the operation member
JP5856357B1 (en) Non-contact input device and method
JP2013232095A (en) Coordinate input device and coordinate input system
JP2013196486A (en) Coordinate input device, coordinate input system and coordinate input method
WO2013094378A1 (en) Light guide member, and input device equipped with same
JP2013250813A (en) Coordinate input device, and coordinate input system
JP2014021789A (en) Input device, and input system including the same
JP2013250812A (en) Coordinate input device, coordinate detection method, and coordinate input system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866937

Country of ref document: EP

Kind code of ref document: A1