WO2013108784A1 - Resin paste and method for producing solar cell - Google Patents

Resin paste and method for producing solar cell Download PDF

Info

Publication number
WO2013108784A1
WO2013108784A1 PCT/JP2013/050677 JP2013050677W WO2013108784A1 WO 2013108784 A1 WO2013108784 A1 WO 2013108784A1 JP 2013050677 W JP2013050677 W JP 2013050677W WO 2013108784 A1 WO2013108784 A1 WO 2013108784A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
heat
resistant resin
polar solvent
heat resistant
Prior art date
Application number
PCT/JP2013/050677
Other languages
French (fr)
Japanese (ja)
Inventor
利泰 秋吉
精吾 横地
卓也 今井
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2013108784A1 publication Critical patent/WO2013108784A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a resin paste, a solar cell including a resin film formed from the resin paste, and a manufacturing method thereof.
  • Resins such as polyimide resins having excellent heat resistance and mechanical properties are used in the field of electronics as surface protective films, interlayer insulating films, or stress relaxation materials for semiconductor elements.
  • screen printing methods that do not require complicated processes such as exposure, development or etching have attracted attention as image forming methods for resin films used in these applications.
  • a resin paste having a thixotropic property including a base resin, a filler, and a solvent as constituent components is used.
  • silica fine particles or polyimide fine particles are often used as a filler for imparting thixotropy.
  • Patent Document 1 a resin pattern is formed using a resin paste in which an organic filler (soluble filler) compatible with a base resin and a solvent during heating is mixed with the base resin and the solvent. It is disclosed. Patent Document 2 also discloses a technique of adding a low elastic filler, liquid rubber, or the like to impart characteristics such as low elasticity to the resin paste.
  • the interaction of the filler weakens and the viscosity of the resin paste decreases as the number of times of screen printing increases, and the printed shape may bleed or sag.
  • it becomes difficult to maintain a predetermined shape size by flowing the resin paste and there is a limit to the number of times of printing when the resin paste is used for continuous printing.
  • an object of the present invention is to provide a resin paste excellent in shape retention and continuous printability, a solar cell including a resin film formed from the resin paste, and a method for manufacturing the solar cell.
  • the present invention provides a mixed solvent containing the first polar solvent (A1) and the second polar solvent (A2), a heat-resistant resin (B) soluble in the mixed solvent at room temperature, and the first solvent at room temperature.
  • a heat-resistant resin (C) that is soluble in the polar solvent (A1), insoluble in the second polar solvent (A2), and insoluble in the mixed solvent.
  • the heat resistant resin (C) is an organic filler having an average particle size of 0.1 to 5.0 ⁇ m, and the heat resistant resin (B) and Resin paste having a weight average molecular weight of 10,000 to 100,000, a viscosity of 30 to 500 Pa ⁇ s at 25 ° C., and a thixotropic coefficient of 2.0 to 10.0. I will provide a.
  • the resin paste is less likely to sag and fluidity with extremely high printing workability can be obtained. Thereby, it is possible to obtain a resin paste that is excellent in screen printability and excellent in shape retainability so that a predetermined shape can be retained even in continuous screen printing a plurality of times.
  • the solubility of the heat-resistant resin (C) acting as a filler in the resin paste is increased when the resin film is formed, it is possible to form a resin film having excellent surface flatness. it can.
  • the heat resistant resin (B) and the heat resistant resin (C) are each independently at least one selected from the group consisting of a polyamide resin, a polyimide resin, a polyamideimide resin, a polyimide resin precursor, and a polyamideimide resin precursor.
  • a resin film excellent in heat resistance and mechanical properties can be obtained.
  • the present invention also includes a step of screen-printing the resin paste of the present invention on the electrode-forming surface of the substrate having an electrode formed on at least one surface so that the electrode is exposed, and heat-curing the screen-printed resin paste. And the manufacturing method of a solar cell including the process of forming a resin film is provided.
  • the present invention further provides a solar cell comprising a resin film formed from the resin paste. Since the solar cell according to the present invention is provided with the resin film, wiring plating abnormality, disconnection, and the like are reduced, and the reliability is excellent.
  • the present invention it is possible to provide a resin paste excellent in shape retention and continuous printability, a solar cell including a resin film formed from the resin paste, and a method for manufacturing the solar cell.
  • (A) is a schematic cross section of the resin paste immediately after screen-printing on a base material
  • (b) is a schematic cross section of the resin film obtained by heating the resin paste on a base material. It is a top view which shows typically the process of producing a photovoltaic cell. It is sectional drawing which shows typically the process of producing a photovoltaic cell.
  • the resin paste according to this embodiment includes a mixed solvent including a first polar solvent (A1) and a second polar solvent (A2), and a first polar solvent (A1) and a second polar solvent (at room temperature).
  • a heat-resistant resin (B) that is soluble in a mixed solvent with A2), at room temperature, soluble in the first polar solvent (A1), insoluble in the second polar solvent (A2), and And a heat resistant resin (C) that is insoluble in a mixed solvent of the first polar solvent (A1) and the second polar solvent (A2).
  • “room temperature” is 25 degreeC.
  • soluble in a solvent means a phenomenon in which a resin dissolves in a solvent at 25 ° C.
  • insoluble means that the resin does not dissolve in the solvent at 25 ° C. It means a phenomenon that remains in the solvent.
  • the heat resistant resin (B) is soluble in a mixed solvent of the first polar solvent (A1) and the second polar solvent (A2) at room temperature, and the heat resistant resin (C) is the first at room temperature. Insoluble in the mixed solvent of the polar solvent (A1) and the second polar solvent (A2). Therefore, in the resin paste, the heat resistant resin (C) is dispersed in a mixed solvent of the first polar solvent (A1), the second polar solvent (A2), and the heat resistant resin (B), and acts as a filler. . Thereby, in particular, the thixotropy value of the resin paste can be adjusted so that the screen printability of the resin paste and the shape retention of the resin film are improved. Furthermore, when the resin paste is heated to a temperature at which the heat resistant resin (C) is dissolved, the heat resistant resin (C) is dissolved and the filler disappears. Thereby, the flatness of the surface of the resin film can be improved.
  • first polar solvent (A1) and the second polar solvent (A2) include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether, Polyether alcohol solvents such as tetraethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dipropyl ether, triethylene Glycol dibutyl ether Ether solvents such as tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol dipropyl ether, tetraethylene glycol dibutyl ether, sulfur-containing solvents such as dimethyl sulfoxide,
  • the first polar solvent and the second polar solvent are different solvents.
  • the combination of the first polar solvent (A1) and the second polar solvent (A2) is appropriately selected from these solvents according to the types of the heat resistant resin (B) and the heat resistant resin (C). Use it.
  • the first polar solvent (A1) is preferably N-methylpyrrolidone, dimethylacetamide, dimethylformamide, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3- Nitrogen-containing solvents such as dimethyl-2-imidazolidinone, sulfur-containing solvents such as dimethyl sulfoxide, diethyl sulfoxide, dimethyl sulfone, sulfolane, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -heptalactone, ⁇ -Lactone solvents such as acetyl- ⁇ -butyrolactone, ⁇ -caprolactone, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone, alcohol solvents such as butanol, octyl alcohol, ethylene glycol
  • the second polar solvent (A2) is preferably diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dipropyl ether, triethylene glycol diester.
  • Ether solvents such as butyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol dipropyl ether, tetraethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether
  • Polyether alcohol solvents such as triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether, tetraethylene glycol monoethyl ether, ester solvents such as ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyrocellosolve acetate, etc.
  • the first polar solvent (A1) a nitrogen-containing solvent such as 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone is used as the first polar solvent (A1)
  • the second polar solvent (A2 ) Can also be combined with a lactone solvent such as ⁇ -butyrolactone.
  • the boiling points of both the first polar solvent (A1) and the second polar solvent (A2) are preferably 100 ° C. or higher from the viewpoint of increasing the pot life of the resin paste during screen printing. More preferably, the temperature is 150 ° C. or higher. The upper limit of the boiling point is not particularly limited, but is about 450 ° C.
  • the heat resistant resin (B) and the heat resistant resin (C) are each independently at least one selected from the group consisting of a polyamide resin, a polyimide resin, a polyamideimide resin, a polyimide resin precursor, and a polyamideimide resin precursor. It is preferable.
  • the polyamide resin, polyimide resin, polyamideimide resin, polyimide resin precursor and polyamideimide resin precursor include aromatic, aliphatic or alicyclic diamine compounds and polyvalent carboxylic acids having 2 to 4 carboxyl groups. What is obtained by reaction with is mentioned.
  • the polyimide resin precursor and the polyamideimide resin precursor mean polyamic acid (polyamide acid) which is a substance immediately before dehydration ring closure, which forms a polyimide resin or polyamideimide resin by dehydration ring closure.
  • the heat-resistant resin (C) is preferably soluble in the above mixed solvent when heated at, for example, 60 ° C. or higher (preferably 60 to 200 ° C., more preferably 100 to 180 ° C.).
  • an aromatic, aliphatic or alicyclic diamine compound an arylene group or an alkylene group which may have an unsaturated bond, a cycloalkylene group which may have an unsaturated bond, or a combination thereof
  • diamine compounds having a group These groups may be bonded via a carbon atom, an oxygen atom, a sulfur atom, a silicon atom, or a group obtained by combining these atoms.
  • a hydrogen atom bonded to the carbon skeleton of the alkylene group may be substituted with a fluorine atom. From the viewpoints of heat resistance and mechanical strength, aromatic diamines are preferred.
  • Examples of the polyvalent carboxylic acid having 2 to 4 carboxyl groups include dicarboxylic acid or a reactive acid derivative thereof, tricarboxylic acid or a reactive acid derivative thereof, and tetracarboxylic dianhydride. These compounds are dicarboxylic acids, tricarboxylic acids, or reactive acid derivatives thereof in which a carboxyl group is bonded to an aryl group or a cycloalkyl group that may have a bridged structure or an unsaturated bond in the ring.
  • it may be a tetracarboxylic dianhydride in which a carboxyl group is bonded to an aryl group or a cycloalkyl group that may have a crosslinked structure or an unsaturated bond in the ring.
  • the dicarboxylic acid, tricarboxylic acid or a reactive acid derivative thereof, and tetracarboxylic dianhydride are bonded through a single bond, or a carbon atom, an oxygen atom, a sulfur atom, a silicon atom, or a combination thereof. It may be bonded via a group.
  • a hydrogen atom bonded to the carbon skeleton of the alkylene group may be substituted with a fluorine atom.
  • tetracarboxylic dianhydride is preferable from the viewpoint of heat resistance and mechanical strength.
  • the combination of the aromatic, aliphatic or alicyclic diamine compound and the polyvalent carboxylic acid having 2 to 4 carboxyl groups can be appropriately selected depending on the reactivity and the like.
  • the reaction can be carried out without using a solvent or in the presence of an organic solvent.
  • the reaction temperature is preferably 25 ° C. to 250 ° C., and the reaction time can be appropriately selected depending on the scale of the batch, the reaction conditions employed, and the like.
  • a thermal ring closure method in which dehydration ring closure is performed by heating under normal pressure or reduced pressure
  • a chemical ring closure method using a dehydrating agent such as acetic anhydride in the presence or absence of a catalyst, and the like can be used.
  • the thermal ring closure method is preferably performed while removing water generated by the dehydration reaction from the system.
  • the reaction solution is heated to 80 to 400 ° C., preferably 100 to 250 ° C.
  • a solvent that azeotropes with water such as benzene, toluene, xylene or the like may be used in combination to remove water azeotropically.
  • the reaction is preferably carried out at 0 to 120 ° C., preferably 10 to 80 ° C. in the presence of a chemical dehydrating agent.
  • a chemical dehydrating agent for example, acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, and benzoic acid, and carbodiimide compounds such as dicyclohexylcarbodiimide are preferably used.
  • a substance that promotes the cyclization reaction such as pyridine, isoquinoline, trimethylamine, triethylamine, aminopyridine, imidazole.
  • the chemical dehydrating agent is used in an amount of 90 to 600 mol% based on the total amount of the diamine compound, and the substance that accelerates the cyclization reaction is used in an amount of 40 to 300 mol% based on the total amount of the diamine compound.
  • a dehydration catalyst such as triphenyl phosphite, tricyclohexyl phosphite, triphenyl phosphate, phosphorus compounds such as phosphoric acid and phosphorus pentoxide, and boron compounds such as boric acid and boric anhydride may be used.
  • the reaction solution that has been imidized by the dehydration reaction is compatible with a large excess of the first polar solvent (A1) and the second polar solvent (A2), and has a heat resistant resin ( Pour into lower alcohol such as methanol, water, or a mixture thereof, which is a poor solvent for B) and (C), to obtain a resin precipitate, filter this, and dry the solvent
  • a polyimide resin or a polyamideimide resin can be obtained.
  • the thermal ring closure method is preferable.
  • suitable types of the first polar solvent (A1) and the second polar solvent (A2) can be determined.
  • suitable combinations (mixed solvents) of the first polar solvent (A1) and the second polar solvent (A2) include the following three types (a), (b) and (c).
  • First polar solvent Nitrogen-containing solvent such as N-methylpyrrolidone and dimethylacetamide; Sulfur-containing solvent such as dimethyl sulfoxide; Lactone solvent such as ⁇ -butyrolactone; Xylenol and the like
  • the phenolic solvent, Second polar solvent (A2): the ether solvent such as diethylene glycol dimethyl ether; the ketone solvent such as cyclohexanone; the ester solvent such as butyl cellosolve acetate; the alcohol solvent such as butanol; the aromatic carbon such as xylene. Combination with hydrogen solvent.
  • first polar solvent the ether solvent such as tetraethylene glycol dimethyl ether; the ketone solvent such as cyclohexanone; Second polar solvent (A2): ester solvents such as butyl cellosolve acetate and ethyl acetate; alcohol solvents such as butanol; polyether alcohol solvents such as diethylene glycol monoethyl ether; aromatic hydrocarbons such as xylene Combination with system solvents.
  • first polar solvent such as tetraethylene glycol dimethyl ether
  • the ketone solvent such as cyclohexanone
  • Second polar solvent ester solvents such as butyl cellosolve acetate and ethyl acetate
  • alcohol solvents such as butanol
  • polyether alcohol solvents such as diethylene glycol monoethyl ether
  • aromatic hydrocarbons such as xylene Combination with system solvents.
  • first polar solvent (A1) the above nitrogen-containing solvent such as 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone
  • Second polar solvent (A2) Combination with the above lactone solvent such as ⁇ -butyrolactone.
  • heat resistant resin (B) and the heat resistant resin (C) applied to the (a) type mixed solvent include the following.
  • Examples of the heat resistant resin (B) include resins having structural units represented by the following formulas (1) to (10).
  • X is —CH 2 —, —O—, —CO—, —SO 2 —, or a group represented by the following formulas (a) to (i):
  • p is an integer of 1 to 100.
  • R 1 and R 2 are each a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different from each other.
  • X is the same as X in formula (1).
  • M is a group represented by the following formula (c), (h), (i) or (j), and in formula (i), p is an integer of 1 to 100. .
  • X is the same as X in formula (1).
  • X is the same as X in formula (1).
  • R 3 and R 4 are each a methyl group, an ethyl group, a propyl group, or a phenyl group, and may be the same or different from each other, and X is the same as X in formula (1). is there.
  • x is 0 or 2
  • X is the same as X in formula (1).
  • Examples of the heat resistant resin (C) include resins having structural units represented by the following formulas (11) to (19).
  • Y is a group represented by the following formula (a), (c) or (h).
  • Y is the same as Y in formula (11).
  • the part of * has couple
  • Z is —CH 2 —, —O—, —CO—, —SO 2 —, or a group represented by the following formula (a) or (d).
  • Z is the same as Z in formula (14).
  • X is the same as X in formula (1), m is an integer of 20 to 70, and n is an integer of 30 to 80.
  • a lactone solvent or a nitrogen-containing solvent is used as the first polar solvent (A1)
  • an ether solvent or an ester solvent is used as the second polar solvent (A2)
  • the heat resistant resin (B) is used. It is preferable to use the resin represented by the formula (20) or the formula (16) as the heat-resistant resin (C) as the resin represented by the formula (1).
  • Examples of the heat resistant resin (B) and the heat resistant resin (C) applied to the (b) type mixed solvent include the following.
  • the heat resistant resin (B) for example, a resin having a structural unit represented by the following formulas (21) and (22) or a polysiloxane imide represented by the above formula (6) is used.
  • Z 1 is —O—, —CO—, or a group represented by the following formula (d), (e), (k) or (l).
  • R 5 and R 6 are groups represented by the following formula (m) or (n), and may be the same or different from each other.
  • p is an integer of 1 to 100.
  • heat-resistant resin (C) for example, polyetheramideimide having a structural unit when X in the above formula (1) is a group represented by the following formula (a) or (b), or the above Polyimides represented by the formulas (5) to (9) (except that the X in the above formulas (5), (6) and (8) is the following formula (i)).
  • p is an integer of 1 to 100.
  • Raw material supply order in preparing the resin paste is not particularly limited.
  • the resin paste raw materials may be mixed together.
  • the heat-resistant resin (B) is mixed with a mixed solvent obtained by mixing the first polar solvent (A1) and the second polar solvent (A2), and then the first polar solvent (A1),
  • the heat resistant resin (C) may be added to the mixed solution of the second polar solvent (A2) and the heat resistant resin (B).
  • the resin paste raw material mixture is heated to a temperature at which the heat resistant resin (C) is sufficiently dissolved in the mixed solution of the first polar solvent (A1), the second polar solvent (A2) and the heat resistant resin (B). Heat and mix well with stirring.
  • the resin paste obtained as described above has a heat resistant resin (C) in a solution containing the first polar solvent (A1), the second polar solvent (A2) and the heat resistant resin (B) at room temperature.
  • a heat resistant resin (C) in a solution containing the first polar solvent (A1), the second polar solvent (A2) and the heat resistant resin (B) at room temperature.
  • the heat resistant resin (C) is present as a filler in the resin paste, and the thixotropic property suitable for screen printing can be imparted to the resin paste.
  • the heat resistant resin (C) dispersed in the resin paste is an organic filler having an average particle size of 0.1 to 5.0 ⁇ m.
  • the average particle diameter of the organic filler is preferably 0.5 to 4.5 ⁇ m, more preferably 0.6 to 4.0 ⁇ m.
  • the maximum particle diameter of the organic filler is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • SALD-2200 particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the mixing ratio of the first polar solvent (A1) and the second polar solvent (A2) is the kind of the heat resistant resin (B) and the heat resistant resin (C), the first polar solvent (A1) and the second polar solvent (A2).
  • the mixing ratio is preferably from 3: 7 to 9: 1, and from 1: 2 to The ratio is more preferably 8.5: 1.5, and particularly preferably 7: 3 to 8: 2.
  • the first polar solvent (A1) and the second polar solvent (A2) with respect to 100 parts by mass of the total amount of the heat resistant resin (B) and the heat resistant resin (C). 100 to 3500 parts by mass, more preferably 150 to 1000 parts by mass, and even more preferably 200 to 500 parts by mass.
  • the mixing ratio of the heat-resistant resin (B) and the heat-resistant resin (C) is not particularly limited and may be any compounding amount, but the heat-resistant resin (C) is added to 100 parts by mass of the total amount of the heat-resistant resin (B). On the other hand, it is preferable to add 10 to 300 parts by mass, more preferably 10 to 200 parts by mass, and more preferably 20 to 150 parts by mass.
  • the amount of the heat resistant resin (C) used is 10 parts by mass or more, the thixotropic property of the obtained heat resistant resin paste tends to be good, and when it is 300 parts by mass or less, the physical properties of the obtained resin film are There is a tendency to improve.
  • the resin paste according to the present embodiment has a viscosity at 25 ° C. of 30 to 500 Pa ⁇ s, preferably 30 to 400 Pa ⁇ s, from the viewpoint of slipping from the printing plate, resolution of the resin film, and shape retention. More preferably, it is 30 to 350 Pa ⁇ s. If the viscosity at 25 ° C. is less than 30 Pa ⁇ s, the shape cannot be maintained at the time of printing and the resolution of the resin film is lowered, and if it exceeds 500 Pa ⁇ s, the removability from the screen printing plate is lowered.
  • the viscosity is adjusted by adjusting the nonvolatile content concentration of the resin paste (hereinafter referred to as NV), the content of the first polar solvent (A1), the molecular weight of the heat resistant resin (B) or the heat resistant resin (C), etc. Can be controlled.
  • NV nonvolatile content concentration of the resin paste
  • A1 the content of the first polar solvent
  • B the molecular weight of the heat resistant resin
  • C heat resistant resin
  • the molecular weight of a resin obtained by mixing a heat-resistant resin (B) and a heat-resistant resin (C), measured in terms of standard polystyrene using gel permeation chromatography is 10,000 to 100,000, preferably 15,000 to It may be 90000, more preferably 20000 to 80000, and even more preferably 30000 to 60000.
  • the resin paste according to this embodiment has a thixotropic coefficient of 2.0 to 10.0, preferably 2.0 to 6.0, more preferably 2.5 to 5.5, and still more preferably It is 2.5 to 5.0, particularly preferably 3.0 to 4.5. If the thixotropy coefficient is less than 2.0, the printability is lowered, and if it exceeds 10.0, the workability is lowered, and it becomes difficult to produce a resin paste.
  • the nonvolatile content concentration (NV) of the resin paste is preferably 20 to 28% by mass, more preferably 21 to 27% by mass, and further preferably 22 to 26.5% by mass.
  • the NV of the resin paste in this specification is a value calculated from the weight after drying a predetermined amount of the resin paste at 150 ° C. for 1 hour and 250 ° C. for 2 hours and the weight before drying.
  • the resin paste according to this embodiment satisfies high heat resistance and insulation, and can be used for insulating films such as semiconductor devices and electrochemical devices. Further, for example, by adding a silane coupling agent or the like, it can be used as an adhesive for connecting a semiconductor device or the like.
  • the elasticity of the resin paste at 25 ° C. is 30 to 500 Pa ⁇ s and the thixotropic coefficient is 2.0 to 10.0 depending on the application.
  • a low elastic filler having Although there is no restriction
  • the surface of the filler can be chemically modified with a functional group such as an epoxy group, amino group, acrylic group, vinyl group, phenyl group, etc. preferable.
  • the low-elasticity filler having rubber elasticity is preferably finely divided into a spherical shape or an irregular shape.
  • the average particle size of the low elastic filler is preferably 0.1 to 6 ⁇ m, more preferably 0.2 to 5 ⁇ m, and still more preferably 0.3 to 4 ⁇ m. When the average particle size is 0.1 ⁇ m or more, aggregation between particles hardly occurs and tends to disperse. When the average particle size is 6 ⁇ m or less, a filtration step can be introduced, and the surface flatness of the obtained coating film Tend to improve.
  • the particle size distribution of the low elastic filler having rubber elasticity is preferably 0.01 to 15 ⁇ m, more preferably 0.02 to 15 ⁇ m, and further preferably 0.03 to 15 ⁇ m. If particles of less than 0.01 ⁇ m are present, aggregation between particles tends to occur and tends to be difficult to disperse sufficiently. If particles of more than 15 ⁇ m are present, it becomes difficult to introduce a filtration step, and the surface flatness of the resin film Tends to decrease.
  • the blending amount of the low elastic filler having rubber elasticity is 5 to 900 mass with respect to 100 mass parts of the total amount of the heat resistant resin (B) and the heat resistant resin (C). Part, preferably 5 to 800 parts by weight.
  • additives such as a colorant and a coupling agent, and a resin modifier may be further added.
  • Coloring agents include carbon black, dyes, pigments and the like.
  • Examples of the coupling agent include silane, titanium, and aluminum coupling agents, and the silane coupling agent is most preferable.
  • the silane coupling agent is not particularly limited, and examples thereof include vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and ⁇ -methacrylate.
  • the titanium-based coupling agent is not particularly limited.
  • isopropyl trioctanoyl titanate isopropyl dimethacrylisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, Isopropyltricumylphenyl titanate, isopropyltris (dioctylpyrophosphate) titanate, isopropyltris (n-aminoethyl) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2, 2-Diallyloxymethyl-1-butyl) bis (ditridecyl) phos
  • the aluminum coupling agent is not particularly limited.
  • Aluminum chelate compound, aluminum isopropylate, mono-sec-butoxyaluminum diisopropylate, aluminum-sec can be used butyrate, aluminum alcoholates of aluminum ethylate and the like. These 1 type (s) or 2 or more types can also be used together.
  • the above additives are preferably blended in an amount of 50 parts by mass or less based on 100 parts by mass of the total amount of the heat resistant resin (B) and the heat resistant resin (C).
  • the physical property of resin films such as heat resistance and mechanical strength
  • the resin film according to the present embodiment is produced by a forming method including a step of screen-printing the resin paste according to the present invention on a substrate and a step of heating the resin paste after screen printing at 100 to 450 ° C. be able to.
  • FIG. 1 is a cross-sectional view schematically showing the state of the resin film in each step in the method for forming a resin film according to this embodiment.
  • the resin paste 10 which concerns on the said embodiment is screen-printed.
  • the resin paste 10 has a heat resistant resin (C) 3 dispersed in a solution 2 containing a first polar solvent (A1), a second polar solvent (A2), and a heat resistant resin (B) at room temperature. It is in a state.
  • the substrate 1 is, for example, silicon, and an emulsion layer may be formed on the substrate surface.
  • the mesh plate and squeegee used for the screen printing machine can be used without particular limitation, but a rubber squeegee is suitable for application of the resin paste according to the present embodiment.
  • the resin paste 10 after screen printing is heated at 100 to 450 ° C.
  • the heating method can be performed by a known method.
  • the heat-resistant resin (C) 3 is dissolved in the solution 2 containing the first polar solvent (A1), the second polar solvent (A2), and the heat-resistant resin (B).
  • the polar solvent (A2) and the first polar solvent (A1) are volatilized and the resin film 4 is formed.
  • the heating temperature is preferably 150 ° C to 400 ° C, more preferably 150 to 350 ° C.
  • the heat-resistant resin (C) 3 includes a first polar solvent (A1), a second polar solvent (A2), and a heat-resistant resin (B). 2 often does not dissolve, and the surface flatness of the resulting resin film tends to decrease.
  • voids may occur in the resin film 4 due to outgassing.
  • the heat resistant resin (B) and the heat resistant resin (C) contains a polyimide resin precursor
  • it is heated at 350 ° C. or more, specifically 350 to 450 ° C., in order to advance imidization.
  • it is preferable to cure the resin. If it is 350 ° C. or lower, the reaction speed of imidization tends to be slow.
  • the resin film 4 has extremely high flatness and a surface roughness of 2 ⁇ m or less.
  • the surface roughness of the resin film in this embodiment refers to arithmetic mean roughness Ra.
  • Arithmetic average roughness Ra is extracted from the roughness curve only the reference length (L) in the direction of the average line, the X-axis in the direction of the average line of the extracted portion, the Y-axis in the direction of the vertical magnification,
  • the value obtained by the following formula is represented by micrometers ( ⁇ m). That is, Ra is a value represented by the following mathematical formula (1).
  • the glass transition temperature Tg of the resin film is preferably 180 ° C. or higher and the thermal decomposition temperature is 300 ° C. or higher from the viewpoint of the usage mode. Is preferred.
  • the resin film 4 has a sputtering resistance, a plating resistance, and an alkali resistance required in the process of forming the rewiring, and is therefore preferably used for a semiconductor device. Further, since the amount of warpage of the silicon wafer can be reduced by using the resin film 4, it is possible to expect an improvement in yield in the manufacture of semiconductor devices, and an improvement in productivity is possible.
  • a resin substrate according to the present invention is screen-printed on a semiconductor substrate on which a plurality of wirings of the same structure are formed, heated to form a resin film, and an electrode on the semiconductor substrate is formed on the resin film as necessary. And a protective film is formed on the wiring or resin film, an external electrode terminal is formed on the protective film, and dicing is performed.
  • a silicon wafer etc. are mentioned.
  • the resin film 4 is excellent in insulation, it is preferably used for an insulating film and a protective film of a solar cell. It is particularly useful for back contact type solar cells.
  • the back contact type structure include MWT (Metal Wrap Through), EWT (Emitter Wrap Through), IBC (Interdigitated Back Contact), and the like.
  • the back contact type solar cell has a structure in which the positive electrode and the negative electrode are concentrated on the back surface of the light receiving surface and are close to each other for the purpose of improving electric conversion efficiency.
  • the method for manufacturing a solar cell according to the present embodiment includes a step of screen-printing the electrode so that the electrode is exposed on an electrode-forming surface of a substrate on which an electrode is formed on at least one surface, and a screen-printed resin paste And heat curing to form a resin film. That is, the solar cell according to the present embodiment includes a resin film formed from the resin paste of the present invention.
  • the thickness of the resin film 4 can be adjusted according to the purpose and is not particularly limited, but is preferably 0.1 to 30 ⁇ m when used as an insulating film of a solar cell.
  • the insulating film and the protective film of the solar cell are obtained by screen-printing and heating the resin paste according to the present invention on a substrate formed with a plurality of positive electrodes and negative electrodes interspersed so as to remove the electrodes. It can be manufactured by forming a resin film.
  • a resin film there is no restriction
  • FIG. 2 is a top view schematically showing a process for manufacturing the solar cell according to the present embodiment
  • FIG. 3 is a cross-sectional view schematically showing a process for manufacturing the solar cell according to the present embodiment.
  • FIG. 3 schematically shows a cross section taken along line AB in FIG.
  • a substrate 20 having a plurality of positive electrodes 13 and a plurality of negative electrodes 14 formed with aluminum wirings 12 on the back surface of the silicon wafer 11 and formed at a predetermined interval is prepared ((a) in FIGS. 2 and 3). reference).
  • the plus electrode 13 is formed on the back surface of the silicon wafer 11, and the minus electrode 14 is formed so as to penetrate from the light receiving surface of the silicon wafer 11 to the back surface.
  • the negative electrode 14 and the aluminum wiring 12 are not in contact with each other, and there is a gap between the negative electrode 14 and the aluminum wiring 12.
  • the plus electrode 13 and the aluminum wiring 12 are in contact with each other.
  • a resin paste is screen printed so that the negative electrode 14 is exposed on the aluminum wiring 12, and heated to form the resin film 4 (see FIGS. 2 and 3B).
  • the resin film 4 is filled between the aluminum wiring 12 and the negative electrode 14.
  • a Tab wiring 15 is formed on the negative electrode 14 and the positive electrode 13 so as to cover a part of the resin film 4 (see FIGS. 2 and 3C). Since the tab wiring 15 formed on the negative electrode 14 has the resin film 4, it does not contact the aluminum wiring 12 on the positive electrode 13 side, and no electron loss occurs between the two electrodes.
  • the positive electrode 13 and the negative electrode 14 are preferably formed from a material mainly containing silver.
  • a conductive adhesive can be used for the electrode part and the wiring connection part.
  • the conductive adhesive include a conductive paste containing conductive particles such as silver particles and solder particles and a thermosetting resin, and a conductive film in which conductive particles such as Ni are dispersed.
  • the weight average molecular weight (Mw) in this example is a value measured by gel permeation chromatography (GPC) and converted using a calibration curve based on standard polystyrene.
  • GPC gel permeation chromatography
  • the measurement conditions in GPC are as follows. Detector: JASCO Corporation UV detector 875-UV Column: Shodex solvent displacement separation column GPC KD-806M manufactured by Showa Denko K.K. Eluent: NMP containing H 3 PO 4 (0.06 mol / L) Temperature: 25 ° C Flow rate: 1.0 mL / min
  • the average particle diameter of the heat resistant resin (C) was measured under the following conditions.
  • BAPP 1,3-bis (3-aminopropyl) tetramethyldisiloxane
  • NMP N-methyl-2-pyrrolidone
  • Polyamideimide resin powder (PAIF-2) was obtained in the same manner as in Synthesis Example 2, except that 25.49 g (121.1 mmol) of TAC and 26.15 g (81.2 mmol) of BTDA were used. Mw of the obtained polyamideimide resin (PAIF-2) was 31,000.
  • Polyamideimide resin powder (PAIF-3) was obtained in the same manner as in Synthesis Example 2, except that 24.61 g (116.9 mmol) of TAC and 25.02 g (77.7 mmol) of BTDA were used. Mw of the obtained polyamideimide resin (PAIF-3) was 52,000.
  • Polyamideimide resin powder (PAIF-4) was obtained in the same manner as in Synthesis Example 2 except that 24.16 g (114.8 mmol) of TAC and 24.57 g (76.3 mmol) of BTDA were used. Mw of the obtained polyamideimide resin (PAIF-4) was 70000.
  • Polyamideimide resin powder (PAIF-5) was obtained in the same manner as in Synthesis Example 2 except that 23.87 g (113.4 mmol) of TAC and 24.35 g (75.6 mmol) of BTDA were used. Mw of the obtained polyamideimide resin (PAIF-5) was 95,000.
  • Example 1 In a 0.5 liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube and a cooling tube, 92.4 g of ⁇ -BL as a first polar solvent (A1) and a second polar solvent ( 39.6 g of triethylene glycol dimethyl ether (hereinafter referred to as DMTG) as A2), 30.8 g of the polyamideimide resin powder (PAI-1) obtained in Synthesis Example 1 as heat resistant resin (B), and heat resistant resin (C ) And 13.2 g of the polyimide resin powder (PAIF-1) obtained in Synthesis Example 2 were added and heated to 180 ° C. while stirring. After stirring at 180 ° C.
  • A1 first polar solvent
  • DMTG triethylene glycol dimethyl ether
  • a filter KST-47 manufactured by Advantech Co., Ltd. was filled, a silicon rubber piston was inserted, and pressure filtration was performed at a pressure of 3.0 kg / cm 2 to obtain a resin paste (P-1).
  • Example 2 Resin paste (P-2) was obtained in the same manner as in Example 1 except that the amount of solvent added at 60 ° C. after cooling was changed to 10.7 g of ⁇ -BL and 4.6 g of DMTG.
  • Example 3 In a 0.5 liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube and a cooling tube, under a nitrogen stream, 312.3 g of ⁇ -BL as the first polar solvent (A1), the second polar solvent (DMTG 133.7 g as A2), polyamideimide resin powder (PAI-1) 102.7 g obtained in Synthesis Example 1 as heat resistant resin (B), and polyimide resin obtained in Synthesis Example 2 as heat resistant resin (C) Powder (PAIF-1) 84.1g was added and it heated up to 180 degreeC, stirring. After stirring at 180 ° C.
  • a filter KST-47 manufactured by Advantech Co., Ltd. was filled, a silicon rubber piston was inserted, and pressure filtration was performed at a pressure of 3.0 kg / cm 2 to obtain a resin paste (P-3).
  • Example 4 A heat-resistant resin solution obtained in Synthesis Example 11 as a heat-resistant resin (B) in a 1-liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, and a cooling tube with an oil / water separator under a nitrogen stream ( PI-1) 300 g and heat-resistant resin (C) 400 g of heat-resistant resin filler solution (PIF-1) obtained in Synthesis Example 12 were charged and stirred at 50 to 70 ° C. for 2 hours to dissolve the heat-resistant resin. A resin paste (P-4) in which the heat-resistant resin filler was dispersed was obtained.
  • Example 5 Other than using the polyamideimide resin powder (PAI-2) obtained in Synthesis Example 3 as the heat resistant resin (B) and the polyimide resin powder (PAIF-2) obtained in Synthesis Example 4 as the heat resistant resin (C) Obtained a resin paste (P-5) in the same manner as in Example 1.
  • Example 6 Other than using the polyamideimide resin powder (PAI-3) obtained in Synthesis Example 5 as the heat resistant resin (B) and the polyimide resin powder (PAIF-3) obtained in Synthesis Example 6 as the heat resistant resin (C) was similar to Example 1 to obtain a resin paste (P-6).
  • Example 7 Other than using the polyamideimide resin powder (PAI-4) obtained in Synthesis Example 7 as the heat resistant resin (B) and the polyimide resin powder (PAIF-4) obtained in Synthesis Example 8 as the heat resistant resin (C) Gave a resin paste (P-7) in the same manner as in Example 1.
  • Resin paste (P-8) was obtained in the same manner as in Example 1 except that the amount of solvent added at 60 ° C. after cooling was changed to 38.9 g of ⁇ -BL and 16.7 g of DMTG.
  • a filter KST-47 manufactured by Advantech Co., Ltd. was filled, a silicon rubber piston was inserted, and pressure filtration was performed at a pressure of 3.0 kg / cm 2 to obtain a resin paste (P-9).
  • Non-volatile content (weight of resin paste after heat drying (g) / weight of resin paste before heat drying (g)) ⁇ 100
  • Viscosity and thixotropy coefficient The viscosity and thixotropy coefficient (TI value) of the resin pastes obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were measured with a high viscosity viscometer “RE-80U” (manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured at a rotational speed of 0.5 rpm (min ⁇ 1 ), and the TI value was calculated as the ratio of the measured viscosity value at a rotational speed of 10 rpm to the measured viscosity value at a rotational speed of 1 rpm.
  • the hole in the printed part of the resin paste corresponding to the circular emulsion opening having an emulsion thickness of 5 ⁇ m and a diameter of 300 ⁇ m at the time of the first screen printing was measured with a microscope.
  • the shape retention is the average value of the diameters (hole diameters) of the five holes in the printed part of the resin paste, and the presence or absence of blurring occurs when blurring occurs around the hole and looks like a double hole shape. Judged that blurring occurred.
  • Tables 1 and 2 show the compositions of the resin pastes obtained in Examples 1 to 4 and Comparative Examples 1 to 4 and the evaluation results thereof.
  • PAIF-1 produced in Synthesis Example 2 was used as the heat resistant resin (C), but the particle size was controlled to be different depending on the NV when the resin paste was prepared. ing.
  • the present invention it is possible to provide a resin paste excellent in shape retention and continuous printability, a solar cell including a resin film formed from the resin paste, and a method for manufacturing the solar cell.
  • SYMBOLS 1 Base material, 2 ... Solution containing 1st polar solvent (A1), 2nd polar solvent (A2), and heat resistant resin (B), 3 ... Heat resistant resin (C), 4 ... Resin film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a resin paste comprising the following: a mixed solvent of a first polar solvent and a second polar solvent; a heat-resistant resin (B) that is soluble in the mixed solvent at room temperature; and a heat-resistant resin (C) that, at room temperature, is soluble in the first polar solvent, insoluble in the second polar solvent, and insoluble in the mixed solvent. The resin paste is configured as follows: the heat-resistant resin (C) is dispersed in a solution containing the mixed solvent and the heat-resistant resin (B); the heat-resistant resin (C) is an organic filler having an average particle diameter between 0.1 and 5.0 µm; the weight-average molecular weight of the resin that is a mixture of the heat-resistant resin (B) and the heat-resistant resin (C) is between 10,000 and 100,000; viscosity at 25ºC is between 30 and 500 Pa·s; and the coefficient of thixotropy is between 2.0 and 10.0.

Description

樹脂ペースト及び太陽電池の製造方法Resin paste and method for manufacturing solar cell
 本発明は、樹脂ペースト、当該樹脂ペーストから形成した樹脂膜を備える太陽電池及びその製造方法に関する。 The present invention relates to a resin paste, a solar cell including a resin film formed from the resin paste, and a manufacturing method thereof.
 耐熱性及び機械的性質に優れたポリイミド系樹脂等の樹脂は、エレクトロニクスの分野において、半導体素子の表面保護膜、層間絶縁膜、又は応力緩和材として用いられている。近年、これらの用途に用いられる樹脂膜の像形成方法として、露光、現像又はエッチング等の繁雑な工程を必要としないスクリーン印刷法が着目されている。 Resins such as polyimide resins having excellent heat resistance and mechanical properties are used in the field of electronics as surface protective films, interlayer insulating films, or stress relaxation materials for semiconductor elements. In recent years, screen printing methods that do not require complicated processes such as exposure, development or etching have attracted attention as image forming methods for resin films used in these applications.
 スクリーン印刷法には、例えば、ベース樹脂、フィラー及び溶媒を構成成分としたチキソトロピー性を持つ樹脂ペーストが用いられる。樹脂ペーストには、チキソトロピー性を付与するためのフィラーとして、シリカ微粒子又はポリイミド微粒子が用いられることが多い。 In the screen printing method, for example, a resin paste having a thixotropic property including a base resin, a filler, and a solvent as constituent components is used. In the resin paste, silica fine particles or polyimide fine particles are often used as a filler for imparting thixotropy.
 しかし、これらのフィラーを含む樹脂ペーストを加熱して乾燥すると、フィラー界面に多数の空隙又は気泡が残留してしまう。そのため、当該樹脂ペーストにより形成された樹脂膜の膜強度又は電気絶縁性は十分ではない。 However, when the resin paste containing these fillers is heated and dried, many voids or bubbles remain at the filler interface. Therefore, the film strength or electrical insulation of the resin film formed from the resin paste is not sufficient.
 このような問題に鑑み、例えば特許文献1においては、加熱時にベース樹脂及び溶媒に相溶する有機フィラー(可溶型フィラー)をベース樹脂及び溶媒に混合した樹脂ペーストを用い、樹脂パターンを形成することが開示されている。また、特許文献2には、上記樹脂ペーストに低弾性化等の特性を付与させるため、低弾性フィラー、液状ゴム等を添加する技術も開示されている。 In view of such a problem, for example, in Patent Document 1, a resin pattern is formed using a resin paste in which an organic filler (soluble filler) compatible with a base resin and a solvent during heating is mixed with the base resin and the solvent. It is disclosed. Patent Document 2 also discloses a technique of adding a low elastic filler, liquid rubber, or the like to impart characteristics such as low elasticity to the resin paste.
特開平2-289646号公報JP-A-2-289646 国際公開第01/66645号International Publication No. 01/66645
 しかしながら、従来の樹脂ペーストでは、スクリーン印刷の回数が増えるたびに、フィラーの相互作用が微弱化し、樹脂ペーストの低粘度化が進行するため、印刷形状ににじみ又はダレが生じることがある。また、樹脂ペーストが流れ込むことにより所定の形状サイズを保持することができ難くなり、樹脂ペーストを連続的な印刷に使用する場合の印刷回数には制限がある。 However, in the conventional resin paste, the interaction of the filler weakens and the viscosity of the resin paste decreases as the number of times of screen printing increases, and the printed shape may bleed or sag. Moreover, it becomes difficult to maintain a predetermined shape size by flowing the resin paste, and there is a limit to the number of times of printing when the resin paste is used for continuous printing.
 そこで本発明は、形状保持性及び連続印刷性に優れる樹脂ペースト、当該樹脂ペーストから形成した樹脂膜を備える太陽電池及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a resin paste excellent in shape retention and continuous printability, a solar cell including a resin film formed from the resin paste, and a method for manufacturing the solar cell.
 すなわち本発明は、第一の極性溶媒(A1)及び第二の極性溶媒(A2)を含む混合溶媒と、室温において、混合溶媒に可溶な耐熱性樹脂(B)と、室温において、第一の極性溶媒(A1)に可溶であり、第二の極性溶媒(A2)に不溶であり、かつ、混合溶媒に不溶である耐熱性樹脂(C)とを含み、混合溶媒及び耐熱性樹脂(B)を含む溶液中に耐熱性樹脂(C)が分散されており、耐熱性樹脂(C)が、平均粒子径0.1~5.0μmの有機フィラーであり、耐熱性樹脂(B)及び耐熱性樹脂(C)を混合した樹脂の重量平均分子量が10000~100000であり、25℃における粘度が30~500Pa・sであり、かつ、チキソトロピー係数が2.0~10.0である樹脂ペーストを提供する。 That is, the present invention provides a mixed solvent containing the first polar solvent (A1) and the second polar solvent (A2), a heat-resistant resin (B) soluble in the mixed solvent at room temperature, and the first solvent at room temperature. A heat-resistant resin (C) that is soluble in the polar solvent (A1), insoluble in the second polar solvent (A2), and insoluble in the mixed solvent. B) is dispersed in a solution containing B), the heat resistant resin (C) is an organic filler having an average particle size of 0.1 to 5.0 μm, and the heat resistant resin (B) and Resin paste having a weight average molecular weight of 10,000 to 100,000, a viscosity of 30 to 500 Pa · s at 25 ° C., and a thixotropic coefficient of 2.0 to 10.0. I will provide a.
 上記構成を備えることにより、樹脂ペーストにダレが生じ難く、印刷の作業性が極めて高い流動性が得られる。これにより、スクリーン印刷性に優れ、かつ、複数回数の連続的なスクリーン印刷においても所定の形状を保持できるような形状保持性に優れた樹脂ペーストを得ることができる。同時に、当該樹脂ペーストによれば、樹脂ペースト中でフィラーとして作用している耐熱性樹脂(C)の溶解度が樹脂膜の形成時に上昇するため、表面の平坦性に優れる樹脂膜を形成することができる。 By providing the above configuration, the resin paste is less likely to sag and fluidity with extremely high printing workability can be obtained. Thereby, it is possible to obtain a resin paste that is excellent in screen printability and excellent in shape retainability so that a predetermined shape can be retained even in continuous screen printing a plurality of times. At the same time, according to the resin paste, since the solubility of the heat-resistant resin (C) acting as a filler in the resin paste is increased when the resin film is formed, it is possible to form a resin film having excellent surface flatness. it can.
 耐熱性樹脂(B)及び耐熱性樹脂(C)が、それぞれ独立に、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂前駆体及びポリアミドイミド樹脂前駆体からなる群より選ばれる少なくとも一つであると、耐熱性及び機械的性質に優れた樹脂膜を得ることができる。 The heat resistant resin (B) and the heat resistant resin (C) are each independently at least one selected from the group consisting of a polyamide resin, a polyimide resin, a polyamideimide resin, a polyimide resin precursor, and a polyamideimide resin precursor. Thus, a resin film excellent in heat resistance and mechanical properties can be obtained.
 本発明はまた、少なくとも一方の面に電極が形成された基板の電極形成面に、上記本発明の樹脂ペーストを電極が露出するようにスクリーン印刷する工程と、スクリーン印刷された樹脂ペーストを加熱硬化して、樹脂膜を形成する工程とを含む太陽電池の製造方法を提供する。 The present invention also includes a step of screen-printing the resin paste of the present invention on the electrode-forming surface of the substrate having an electrode formed on at least one surface so that the electrode is exposed, and heat-curing the screen-printed resin paste. And the manufacturing method of a solar cell including the process of forming a resin film is provided.
 本発明さらに、上記樹脂ペーストから形成された樹脂膜を備える太陽電池を提供する。本発明に係る太陽電池は、上記樹脂膜を備えているので配線のめっき異常、断線等が低減されており、信頼性に優れる。 The present invention further provides a solar cell comprising a resin film formed from the resin paste. Since the solar cell according to the present invention is provided with the resin film, wiring plating abnormality, disconnection, and the like are reduced, and the reliability is excellent.
 本発明によれば、形状保持性及び連続印刷性に優れる樹脂ペースト、当該樹脂ペーストから形成した樹脂膜を備える太陽電池及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a resin paste excellent in shape retention and continuous printability, a solar cell including a resin film formed from the resin paste, and a method for manufacturing the solar cell.
(a)は、基材上にスクリーン印刷した直後の樹脂ペーストの模式断面図であり、(b)は、基材上の樹脂ペーストを加熱して得られた樹脂膜の模式断面図である。(A) is a schematic cross section of the resin paste immediately after screen-printing on a base material, (b) is a schematic cross section of the resin film obtained by heating the resin paste on a base material. 太陽電池セルを作製する工程を模式的に示す上面図である。It is a top view which shows typically the process of producing a photovoltaic cell. 太陽電池セルを作製する工程を模式的に示す断面図である。It is sectional drawing which shows typically the process of producing a photovoltaic cell.
 以下、場合により図面を参照しながら、本発明の好適な実施形態について説明するが、本発明はこれに限定されるものではない。なお、図面の寸法比率は実際の寸法比率と異なっていてもよい。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as the case may be, but the present invention is not limited thereto. The dimensional ratio in the drawing may be different from the actual dimensional ratio.
<樹脂ペースト>
 まず、本実施形態に係る樹脂ペーストを構成する成分について説明する。本実施形態に係る樹脂ペーストは、第一の極性溶媒(A1)及び第二の極性溶媒(A2)を含む混合溶媒と、室温において、第一の極性溶媒(A1)と第二の極性溶媒(A2)との混合溶媒に可溶である耐熱性樹脂(B)と、室温において、第一の極性溶媒(A1)に可溶であり、第二の極性溶媒(A2)に不溶であり、かつ、第一の極性溶媒(A1)と第二の極性溶媒(A2)との混合溶媒に不溶である耐熱性樹脂(C)と、を含む。ここで、本明細書中、「室温」とは、25℃である。また、本明細書において、溶媒に「可溶」とは、25℃で樹脂が溶剤に溶解する現象を意味し、「不溶」とは、25℃で樹脂が溶剤に溶けずに、固形分が溶剤中に残存する現象を意味する。
<Resin paste>
First, components constituting the resin paste according to the present embodiment will be described. The resin paste according to this embodiment includes a mixed solvent including a first polar solvent (A1) and a second polar solvent (A2), and a first polar solvent (A1) and a second polar solvent (at room temperature). A heat-resistant resin (B) that is soluble in a mixed solvent with A2), at room temperature, soluble in the first polar solvent (A1), insoluble in the second polar solvent (A2), and And a heat resistant resin (C) that is insoluble in a mixed solvent of the first polar solvent (A1) and the second polar solvent (A2). Here, in this specification, "room temperature" is 25 degreeC. In this specification, “soluble” in a solvent means a phenomenon in which a resin dissolves in a solvent at 25 ° C., and “insoluble” means that the resin does not dissolve in the solvent at 25 ° C. It means a phenomenon that remains in the solvent.
 耐熱性樹脂(B)は、室温において、第一の極性溶媒(A1)と第二の極性溶媒(A2)との混合溶媒に可溶であり、耐熱性樹脂(C)は、室温において第一の極性溶媒(A1)と第二の極性溶媒(A2)との混合溶媒に不溶である。そのため、樹脂ペースト中、耐熱性樹脂(C)は、第一の極性溶媒(A1)、第二の極性溶媒(A2)及び耐熱性樹脂(B)との混合溶媒に分散し、フィラーとして作用する。これにより、特に、樹脂ペーストのチキソトロピー値を、樹脂ペーストのスクリーン印刷性及び樹脂膜の形状保持性が向上するように調整することができる。さらに、耐熱性樹脂(C)が溶解する温度まで樹脂ペーストを加熱すると、耐熱性樹脂(C)は溶解して、フィラーは消失する。これにより、樹脂膜の表面の平坦性を向上させることができる。 The heat resistant resin (B) is soluble in a mixed solvent of the first polar solvent (A1) and the second polar solvent (A2) at room temperature, and the heat resistant resin (C) is the first at room temperature. Insoluble in the mixed solvent of the polar solvent (A1) and the second polar solvent (A2). Therefore, in the resin paste, the heat resistant resin (C) is dispersed in a mixed solvent of the first polar solvent (A1), the second polar solvent (A2), and the heat resistant resin (B), and acts as a filler. . Thereby, in particular, the thixotropy value of the resin paste can be adjusted so that the screen printability of the resin paste and the shape retention of the resin film are improved. Furthermore, when the resin paste is heated to a temperature at which the heat resistant resin (C) is dissolved, the heat resistant resin (C) is dissolved and the filler disappears. Thereby, the flatness of the surface of the resin film can be improved.
 第一の極性溶媒(A1)及び第二の極性溶媒(A2)としては、例えば、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノエチルエーテル等のポリエーテルアルコール系溶媒、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジプロピルエーテル、トリエチレングリコールジブチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールジプロピルエーテル、テトラエチレングリコールジブチルエーテル等のエーテル系溶媒、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、スルホラン等の含硫黄系溶媒、酢酸エチル、酢酸ブチル、酢酸セロソルブ、エチルセロソルブアセテート、ブチロセロソルブアセテート等のエステル系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノン等の含窒素系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-ヘプタラクトン、α-アセチル-γ-ブチロラクトン、ε-カプロラクトン等のラクトン系溶媒、ブタノール、オクチルアルコール、エチレングリコール、グリセリン等のアルコール系溶媒、及び、フェノール、クレゾール、キシレノール等のフェノール系溶媒が挙げられる。 Examples of the first polar solvent (A1) and the second polar solvent (A2) include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether, Polyether alcohol solvents such as tetraethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dipropyl ether, triethylene Glycol dibutyl ether Ether solvents such as tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol dipropyl ether, tetraethylene glycol dibutyl ether, sulfur-containing solvents such as dimethyl sulfoxide, diethyl sulfoxide, dimethyl sulfone, sulfolane, ethyl acetate, acetic acid Ester solvents such as butyl, cellosolve acetate, ethyl cellosolve acetate, butyrocellosolve acetate, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, 1,3-dimethyl -3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3-dimethyl-2-imidazolidinone Nitrogen-containing solvents, aromatic hydrocarbon solvents such as toluene and xylene, lactones such as γ-butyrolactone, γ-valerolactone, γ-caprolactone, γ-heptalactone, α-acetyl-γ-butyrolactone, and ε-caprolactone Examples thereof include alcohol solvents such as system solvents, butanol, octyl alcohol, ethylene glycol, and glycerin, and phenol solvents such as phenol, cresol, and xylenol.
 第一の極性溶媒と、第二の極性溶媒とは異なる溶媒である。第一の極性溶媒(A1)及び第二の極性溶媒(A2)の組み合わせは、これらの溶媒のうちから、耐熱性樹脂(B)及び耐熱性樹脂(C)の種類に応じて適宜選択して使用すればよい。 The first polar solvent and the second polar solvent are different solvents. The combination of the first polar solvent (A1) and the second polar solvent (A2) is appropriately selected from these solvents according to the types of the heat resistant resin (B) and the heat resistant resin (C). Use it.
 第一の極性溶媒(A1)として好ましくは、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、1,3-ジメチル-2-イミダゾリジノン等の含窒素系溶媒、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、スルホラン等の含硫黄系溶媒、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-ヘプタラクトン、α-アセチル-γ-ブチロラクトン、ε-カプロラクトン等のラクトン系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒、ブタノール、オクチルアルコール、エチレングリコール、グリセリン等のアルコール系溶媒などが挙げられる。 The first polar solvent (A1) is preferably N-methylpyrrolidone, dimethylacetamide, dimethylformamide, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 1,3- Nitrogen-containing solvents such as dimethyl-2-imidazolidinone, sulfur-containing solvents such as dimethyl sulfoxide, diethyl sulfoxide, dimethyl sulfone, sulfolane, γ-butyrolactone, γ-valerolactone, γ-caprolactone, γ-heptalactone, α -Lactone solvents such as acetyl-γ-butyrolactone, ε-caprolactone, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone, alcohol solvents such as butanol, octyl alcohol, ethylene glycol, glycerin, etc. .
 第二の極性溶媒(A2)として好ましくは、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジプロピルエーテル、トリエチレングリコールジブチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールジプロピルエーテル、テトラエチレングリコールジブチルエーテル等のエーテル系溶媒、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノエチルエーテル等のポリエーテルアルコール系溶媒、酢酸エチル、酢酸ブチル、酢酸セロソルブ、エチルセロソルブアセテート、ブチロセロソルブアセテート等のエステル系溶媒などが挙げられる。また、第一の極性溶媒(A1)として1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン等の含窒素系溶媒を用いる場合、第二の極性溶媒(A2)としてγ-ブチロラクトン等のラクトン系溶媒を組み合わせることもできる。 The second polar solvent (A2) is preferably diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dipropyl ether, triethylene glycol diester. Ether solvents such as butyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol dipropyl ether, tetraethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether Polyether alcohol solvents such as triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether, tetraethylene glycol monoethyl ether, ester solvents such as ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyrocellosolve acetate, etc. Is mentioned. When a nitrogen-containing solvent such as 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone is used as the first polar solvent (A1), the second polar solvent (A2 ) Can also be combined with a lactone solvent such as γ-butyrolactone.
 また、第一の極性溶媒(A1)と、第二の極性溶媒(A2)の双方の沸点は、スクリーン印刷時の樹脂ペーストの可使時間を長くできる観点から、100℃以上であることが好ましく、150℃以上であることがより好ましい。沸点の上限は特に限定されないが、450℃程度である。 Further, the boiling points of both the first polar solvent (A1) and the second polar solvent (A2) are preferably 100 ° C. or higher from the viewpoint of increasing the pot life of the resin paste during screen printing. More preferably, the temperature is 150 ° C. or higher. The upper limit of the boiling point is not particularly limited, but is about 450 ° C.
 耐熱性樹脂(B)及び耐熱性樹脂(C)は、それぞれ独立に、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂前駆体及びポリアミドイミド樹脂前駆体からなる群より選ばれる少なくとも一つであることが好ましい。ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂前駆体及びポリアミドイミド樹脂前駆体としては、例えば、芳香族、脂肪族又は脂環式ジアミン化合物と、カルボキシル基を2~4つ有する多価カルボン酸との反応により得られるものが挙げられる。ポリイミド樹脂前駆体及びポリアミドイミド樹脂前駆体とは、脱水閉環してポリイミド樹脂又はポリアミドイミド樹脂を形成する、脱水閉環直前の物質であるポリアミック酸(ポリアミド酸)を意味する。なお、耐熱性樹脂(C)は、例えば60℃以上(好ましくは60~200℃、より好ましくは100~180℃)で加熱した場合に、上記混合溶媒に可溶であることが好ましい。 The heat resistant resin (B) and the heat resistant resin (C) are each independently at least one selected from the group consisting of a polyamide resin, a polyimide resin, a polyamideimide resin, a polyimide resin precursor, and a polyamideimide resin precursor. It is preferable. Examples of the polyamide resin, polyimide resin, polyamideimide resin, polyimide resin precursor and polyamideimide resin precursor include aromatic, aliphatic or alicyclic diamine compounds and polyvalent carboxylic acids having 2 to 4 carboxyl groups. What is obtained by reaction with is mentioned. The polyimide resin precursor and the polyamideimide resin precursor mean polyamic acid (polyamide acid) which is a substance immediately before dehydration ring closure, which forms a polyimide resin or polyamideimide resin by dehydration ring closure. The heat-resistant resin (C) is preferably soluble in the above mixed solvent when heated at, for example, 60 ° C. or higher (preferably 60 to 200 ° C., more preferably 100 to 180 ° C.).
 芳香族、脂肪族又は脂環式ジアミン化合物としては、アリーレン基若しくは不飽和結合を有していてもよいアルキレン基、不飽和結合を有していてもよいシクロアルキレン基、又は、これらを組み合わせた基を有するジアミン化合物が挙げられる。これらの基は、炭素原子、酸素原子、硫黄原子、珪素原子又はこれらの原子を組み合わせた基を介して結合していてもよい。また、アルキレン基の炭素骨格に結合する水素原子がフッ素原子で置換されていてもよい。耐熱性及び機械的強度の観点から、芳香族ジアミンが好ましい。 As an aromatic, aliphatic or alicyclic diamine compound, an arylene group or an alkylene group which may have an unsaturated bond, a cycloalkylene group which may have an unsaturated bond, or a combination thereof Examples thereof include diamine compounds having a group. These groups may be bonded via a carbon atom, an oxygen atom, a sulfur atom, a silicon atom, or a group obtained by combining these atoms. In addition, a hydrogen atom bonded to the carbon skeleton of the alkylene group may be substituted with a fluorine atom. From the viewpoints of heat resistance and mechanical strength, aromatic diamines are preferred.
 カルボキシル基を2~4つ有する多価カルボン酸としては、ジカルボン酸又はその反応性酸誘導体、トリカルボン酸又はその反応性酸誘導体、テトラカルボン酸二無水物が挙げられる。これらの化合物は、アリール基、又は、環内に架橋構造若しくは不飽和結合を有していてもよいシクロアルキル基に、カルボキシル基が結合したジカルボン酸、トリカルボン酸、又は、それらの反応性酸誘導体、あるいは、アリール基、又は、環内に架橋構造若しくは不飽和結合を有していてもよいシクロアルキル基に、カルボキシル基が結合したテトラカルボン酸二無水物であってもよい。当該ジカルボン酸、トリカルボン酸又はそれらの反応性酸誘導体、並びに、テトラカルボン酸二無水物が、単結合を介して、又は、炭素原子、酸素原子、硫黄原子、珪素原子、若しくはこれらの原子を組み合わせた基を介して、結合していてもよい。また、アルキレン基の炭素骨格に結合する水素原子がフッ素原子で置換されていてもよい。これらの化合物のうち、耐熱性及び機械的強度の観点から、テトラカルボン酸二無水物が好ましい。芳香族、脂肪族又は脂環式ジアミン化合物と、カルボキシル基を2~4つ有する多価カルボン酸との組み合わせは、反応性等に応じて適宜選択することができる。 Examples of the polyvalent carboxylic acid having 2 to 4 carboxyl groups include dicarboxylic acid or a reactive acid derivative thereof, tricarboxylic acid or a reactive acid derivative thereof, and tetracarboxylic dianhydride. These compounds are dicarboxylic acids, tricarboxylic acids, or reactive acid derivatives thereof in which a carboxyl group is bonded to an aryl group or a cycloalkyl group that may have a bridged structure or an unsaturated bond in the ring. Alternatively, it may be a tetracarboxylic dianhydride in which a carboxyl group is bonded to an aryl group or a cycloalkyl group that may have a crosslinked structure or an unsaturated bond in the ring. The dicarboxylic acid, tricarboxylic acid or a reactive acid derivative thereof, and tetracarboxylic dianhydride are bonded through a single bond, or a carbon atom, an oxygen atom, a sulfur atom, a silicon atom, or a combination thereof. It may be bonded via a group. In addition, a hydrogen atom bonded to the carbon skeleton of the alkylene group may be substituted with a fluorine atom. Of these compounds, tetracarboxylic dianhydride is preferable from the viewpoint of heat resistance and mechanical strength. The combination of the aromatic, aliphatic or alicyclic diamine compound and the polyvalent carboxylic acid having 2 to 4 carboxyl groups can be appropriately selected depending on the reactivity and the like.
 反応は、溶媒を使用せずに、又は、有機溶媒の存在下で行うことができる。反応温度は、25℃~250℃とすることが好ましく、反応時間は、バッチの規模、採用される反応条件などにより適宜選択することができる。 The reaction can be carried out without using a solvent or in the presence of an organic solvent. The reaction temperature is preferably 25 ° C. to 250 ° C., and the reaction time can be appropriately selected depending on the scale of the batch, the reaction conditions employed, and the like.
 ポリイミド樹脂前駆体又はポリアミドイミド樹脂前駆体を脱水閉環してポリイミド樹脂又はポリアミドイミド樹脂とする方法も特に制限はなく、一般的な方法を使用することができる。例えば、常圧又は減圧下において加熱によって脱水閉環する熱閉環法、触媒の存在下又は非存在下、無水酢酸等の脱水剤を使用する化学閉環法などを使用することができる。 There is no particular limitation on the method of dehydrating and ring-closing the polyimide resin precursor or the polyamideimide resin precursor to obtain a polyimide resin or polyamideimide resin, and a general method can be used. For example, a thermal ring closure method in which dehydration ring closure is performed by heating under normal pressure or reduced pressure, a chemical ring closure method using a dehydrating agent such as acetic anhydride in the presence or absence of a catalyst, and the like can be used.
 熱閉環法は、脱水反応で生じる水を系外に除去しながら行うことが好ましい。このとき80~400℃、好ましくは100~250℃に反応液を加熱することにより行う。この際、ベンゼン、トルエン、キシレン等のような水と共沸するような溶剤を併用し、水を共沸除去してもよい。 The thermal ring closure method is preferably performed while removing water generated by the dehydration reaction from the system. At this time, the reaction solution is heated to 80 to 400 ° C., preferably 100 to 250 ° C. At this time, a solvent that azeotropes with water such as benzene, toluene, xylene or the like may be used in combination to remove water azeotropically.
 化学閉環法は、化学的脱水剤の存在下、0~120℃、好ましくは10~80℃で反応させることが好ましい。化学的脱水剤としては、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水安息香酸等の酸無水物、ジシクロヘキシルカルボジイミド等のカルボジイミド化合物等を用いるのが好ましい。このとき、ピリジン、イソキノリン、トリメチルアミン、トリエチルアミン、アミノピリジン、イミダゾール等の環化反応を促進する物質を併用することが好ましい。化学的脱水剤はジアミン化合物の総量に対して90~600モル%、環化反応を促進する物質はジアミン化合物の総量に対して40~300モル%使用される。また、トリフェニルホスファイト、トリシクロヘキシルホスファイト、トリフェニルホスフェート、リン酸、五酸化リン等のリン化合物、ホウ酸、無水ホウ酸等のホウ素化合物などの脱水触媒を用いてもよい。 In the chemical ring closure method, the reaction is preferably carried out at 0 to 120 ° C., preferably 10 to 80 ° C. in the presence of a chemical dehydrating agent. As the chemical dehydrating agent, for example, acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, and benzoic acid, and carbodiimide compounds such as dicyclohexylcarbodiimide are preferably used. At this time, it is preferable to use together a substance that promotes the cyclization reaction, such as pyridine, isoquinoline, trimethylamine, triethylamine, aminopyridine, imidazole. The chemical dehydrating agent is used in an amount of 90 to 600 mol% based on the total amount of the diamine compound, and the substance that accelerates the cyclization reaction is used in an amount of 40 to 300 mol% based on the total amount of the diamine compound. Further, a dehydration catalyst such as triphenyl phosphite, tricyclohexyl phosphite, triphenyl phosphate, phosphorus compounds such as phosphoric acid and phosphorus pentoxide, and boron compounds such as boric acid and boric anhydride may be used.
 脱水反応によりイミド化を終了した反応液を、大過剰の、上記の第一の極性溶媒(A1)及び第二の極性溶媒(A2)に対して相溶性を有し、かつ、耐熱性樹脂(B)及び(C)に対して貧溶媒であるメタノール等の低級アルコール、水、又はこれらの混合物等の溶媒に注ぎ、樹脂の沈殿物を得て、これをろ別し、溶媒を乾燥することによって、ポリイミド樹脂又はポリアミドイミド樹脂を得ることができる。残存するイオン性不純物の低減化等の観点から、熱閉環法が好ましい。 The reaction solution that has been imidized by the dehydration reaction is compatible with a large excess of the first polar solvent (A1) and the second polar solvent (A2), and has a heat resistant resin ( Pour into lower alcohol such as methanol, water, or a mixture thereof, which is a poor solvent for B) and (C), to obtain a resin precipitate, filter this, and dry the solvent Thus, a polyimide resin or a polyamideimide resin can be obtained. From the viewpoint of reducing the remaining ionic impurities, the thermal ring closure method is preferable.
 耐熱性樹脂(B)及び耐熱性樹脂(C)の種類に応じて、好適な第一の極性溶媒(A1)及び第二の極性溶媒(A2)の種類を決めることができる。第一の極性溶媒(A1)及び第二の極性溶媒(A2)の好適な組み合わせ(混合溶媒)としては、例えば、下記(a)、(b)及び(c)の三種類が挙げられる。 Depending on the types of the heat-resistant resin (B) and the heat-resistant resin (C), suitable types of the first polar solvent (A1) and the second polar solvent (A2) can be determined. Examples of suitable combinations (mixed solvents) of the first polar solvent (A1) and the second polar solvent (A2) include the following three types (a), (b) and (c).
 (a)第一の極性溶媒(A1):N-メチルピロリドン、ジメチルアセトアミド等の上記含窒素系溶媒;ジメチルスルホキシド等の上記含硫黄系溶媒;γ-ブチロラクトン等の上記ラクトン系溶媒;キシレノール等の上記フェノール系溶媒と、
 第二の極性溶媒(A2):ジエチレングリコールジメチルエーテル等の上記エーテル系溶媒;シクロヘキサノン等の上記ケトン系溶媒;ブチルセロソルブアセテート等の上記エステル系溶媒;ブタノール等の上記アルコール系溶媒;キシレン等の上記芳香族炭化水素系溶媒との組み合わせ。
 (b)第一の極性溶媒(A1):テトラエチレングリコールジメチルエーテル等の上記エーテル系溶媒;シクロヘキサノン等の上記ケトン系溶媒と、
第二の極性溶媒(A2):ブチルセロソルブアセテート、酢酸エチル等の上記エステル系溶媒;ブタノール等の上記アルコール系溶媒、ジエチレングリコールモノエチルエーテル等の上記ポリエーテルアルコール系溶媒;キシレン等の上記芳香族炭化水素系溶媒との組み合わせ。
 (c)第一の極性溶媒(A1):1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン等の上記含窒素系溶媒と、
第二の極性溶媒(A2):γ-ブチロラクトン等の上記ラクトン系溶媒との組み合わせ。
 (a)型の混合溶媒に適用される耐熱性樹脂(B)及び耐熱性樹脂(C)としては、例えば、以下のものが挙げられる。耐熱性樹脂(B)としては、例えば、下記式(1)~(10)で表わされる構造単位を有する樹脂が挙げられる。
(A) First polar solvent (A1): Nitrogen-containing solvent such as N-methylpyrrolidone and dimethylacetamide; Sulfur-containing solvent such as dimethyl sulfoxide; Lactone solvent such as γ-butyrolactone; Xylenol and the like The phenolic solvent,
Second polar solvent (A2): the ether solvent such as diethylene glycol dimethyl ether; the ketone solvent such as cyclohexanone; the ester solvent such as butyl cellosolve acetate; the alcohol solvent such as butanol; the aromatic carbon such as xylene. Combination with hydrogen solvent.
(B) first polar solvent (A1): the ether solvent such as tetraethylene glycol dimethyl ether; the ketone solvent such as cyclohexanone;
Second polar solvent (A2): ester solvents such as butyl cellosolve acetate and ethyl acetate; alcohol solvents such as butanol; polyether alcohol solvents such as diethylene glycol monoethyl ether; aromatic hydrocarbons such as xylene Combination with system solvents.
(C) first polar solvent (A1): the above nitrogen-containing solvent such as 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone,
Second polar solvent (A2): Combination with the above lactone solvent such as γ-butyrolactone.
Examples of the heat resistant resin (B) and the heat resistant resin (C) applied to the (a) type mixed solvent include the following. Examples of the heat resistant resin (B) include resins having structural units represented by the following formulas (1) to (10).
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Xは、-CH-、-O-、-CO-、-SO-、又は、下記式(a)~(i)で表される基であり、式(i)中、pは、1~100の整数である。
Figure JPOXMLDOC01-appb-C000001
In the formula (1), X is —CH 2 —, —O—, —CO—, —SO 2 —, or a group represented by the following formulas (a) to (i): In the formula, p is an integer of 1 to 100.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 式(2)中、R及びRは、それぞれ水素原子又は炭素数1~6の炭化水素基であり、互いに同じでも異なっていてもよい。Xは、式(1)のXと同じである。
Figure JPOXMLDOC01-appb-C000003
In formula (2), R 1 and R 2 are each a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different from each other. X is the same as X in formula (1).
Figure JPOXMLDOC01-appb-C000004
 式(3)中、Mは、下記式(c)、(h)、(i)又は(j)で表される基であり、式(i)中、pは、1~100の整数である。
Figure JPOXMLDOC01-appb-C000004
In formula (3), M is a group represented by the following formula (c), (h), (i) or (j), and in formula (i), p is an integer of 1 to 100. .
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 式(4)中、Xは、式(1)のXと同じである。
Figure JPOXMLDOC01-appb-C000006
In formula (4), X is the same as X in formula (1).
Figure JPOXMLDOC01-appb-C000007
 式(5)中、Xは、式(1)のXと同じである。
Figure JPOXMLDOC01-appb-C000007
In formula (5), X is the same as X in formula (1).
Figure JPOXMLDOC01-appb-C000008
 式(6)中、R及びRは、それぞれメチル基、エチル基、プロピル基、又はフェニル基であり、互いに同じでも異なっていてもよく、Xは、式(1)のXと同じである。
Figure JPOXMLDOC01-appb-C000008
In formula (6), R 3 and R 4 are each a methyl group, an ethyl group, a propyl group, or a phenyl group, and may be the same or different from each other, and X is the same as X in formula (1). is there.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 式(8)中、xは、0又は2であり、Xは、式(1)のXと同じである。
Figure JPOXMLDOC01-appb-C000010
In formula (8), x is 0 or 2, and X is the same as X in formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 耐熱性樹脂(C)としては、例えば、下記式(11)~(19)で表わされる構造単位を有する樹脂が挙げられる。 Examples of the heat resistant resin (C) include resins having structural units represented by the following formulas (11) to (19).
Figure JPOXMLDOC01-appb-C000013
 式(11)中、Yは、下記式(a)、(c)又は(h)で表される基である。
Figure JPOXMLDOC01-appb-C000013
In formula (11), Y is a group represented by the following formula (a), (c) or (h).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 式(12)中、Yは、式(11)のYと同じである。なお、*の部分は、互いに結合している(以下、同様)。
Figure JPOXMLDOC01-appb-C000015
In formula (12), Y is the same as Y in formula (11). In addition, the part of * has couple | bonded together (hereinafter the same).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 式(14)中、Zは、-CH-、-O-、-CO-、-SO-、又は、下記式(a)若しくは(d)で表される基である。
Figure JPOXMLDOC01-appb-C000017
In the formula (14), Z is —CH 2 —, —O—, —CO—, —SO 2 —, or a group represented by the following formula (a) or (d).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式(16)中、Zは、式(14)のZと同じである。
Figure JPOXMLDOC01-appb-C000020
In formula (16), Z is the same as Z in formula (14).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 式(20)中、Xは、式(1)のXと同じであり、mは、20~70の整数であり、nは、30~80の整数である。
Figure JPOXMLDOC01-appb-C000024
In formula (20), X is the same as X in formula (1), m is an integer of 20 to 70, and n is an integer of 30 to 80.
 上記組み合わせの中でも、第一の極性溶媒(A1)としてラクトン系溶媒又は含窒素系溶媒を、第二の極性溶媒(A2)としてエーテル系溶媒又はエステル系溶媒を用い、耐熱性樹脂(B)として式(1)で表される樹脂を、耐熱性樹脂(C)として式(20)又は式(16)で表される樹脂を用いることが好ましい。 Among the above combinations, a lactone solvent or a nitrogen-containing solvent is used as the first polar solvent (A1), an ether solvent or an ester solvent is used as the second polar solvent (A2), and the heat resistant resin (B) is used. It is preferable to use the resin represented by the formula (20) or the formula (16) as the heat-resistant resin (C) as the resin represented by the formula (1).
 (b)型の混合溶媒に適用される耐熱性樹脂(B)及び耐熱性樹脂(C)としては、例えば、以下のものが挙げられる。耐熱性樹脂(B)としては、例えば、下記式(21)及び(22)で表わされる構造単位を有する樹脂、又は、上記式(6)で表わされるポリシロキサンイミドが用いられる。 Examples of the heat resistant resin (B) and the heat resistant resin (C) applied to the (b) type mixed solvent include the following. As the heat resistant resin (B), for example, a resin having a structural unit represented by the following formulas (21) and (22) or a polysiloxane imide represented by the above formula (6) is used.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 式(22)中、Zは、-O-、-CO-、又は、下記式(d)、(e)、(k)若しくは(l)で表される基である。R及びRは、それぞれ下記式(m)又は(n)で表される基であり、互いに同じでも異なっていてもよい。pは、1~100の整数である。
Figure JPOXMLDOC01-appb-C000026
In the formula (22), Z 1 is —O—, —CO—, or a group represented by the following formula (d), (e), (k) or (l). R 5 and R 6 are groups represented by the following formula (m) or (n), and may be the same or different from each other. p is an integer of 1 to 100.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 耐熱性樹脂(C)としては、例えば、上記式(1)のXが、下記式(a)又は(b)で表される基である場合の構造単位を有するポリエーテルアミドイミド、又は、上記式(5)~(9)で表わされるポリイミド(但し、上記式(5)、(6)、(8)中のXが、下記式(i)である場合を除く。)が挙げられる。 As the heat-resistant resin (C), for example, polyetheramideimide having a structural unit when X in the above formula (1) is a group represented by the following formula (a) or (b), or the above Polyimides represented by the formulas (5) to (9) (except that the X in the above formulas (5), (6) and (8) is the following formula (i)).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 式(i)中、pは、1~100の整数である。
Figure JPOXMLDOC01-appb-C000030
In the formula (i), p is an integer of 1 to 100.
 樹脂ペーストを調製する際の原料の投入順序は特に制限されない。例えば、上記樹脂ペーストの原料をまとめて混合してもよい。また、最初に、第一の極性溶媒(A1)及び第二の極性溶媒(A2)を混合した混合溶媒に耐熱性樹脂(B)を混合し、その後、第一の極性溶媒(A1)、第二の極性溶媒(A2)及び耐熱性樹脂(B)の混合溶液に対して、耐熱性樹脂(C)を添加してもよい。 原料 Raw material supply order in preparing the resin paste is not particularly limited. For example, the resin paste raw materials may be mixed together. First, the heat-resistant resin (B) is mixed with a mixed solvent obtained by mixing the first polar solvent (A1) and the second polar solvent (A2), and then the first polar solvent (A1), The heat resistant resin (C) may be added to the mixed solution of the second polar solvent (A2) and the heat resistant resin (B).
 上記樹脂ペーストの原料混合物は、第一の極性溶媒(A1)、第二の極性溶媒(A2)及び耐熱性樹脂(B)の混合溶液に、耐熱性樹脂(C)が十分に溶解する温度まで加熱し、攪拌等しながら十分に混合するとよい。 The resin paste raw material mixture is heated to a temperature at which the heat resistant resin (C) is sufficiently dissolved in the mixed solution of the first polar solvent (A1), the second polar solvent (A2) and the heat resistant resin (B). Heat and mix well with stirring.
 上述のようにして得られた樹脂ペーストは、室温において、第一の極性溶媒(A1)、第二の極性溶媒(A2)及び耐熱性樹脂(B)を含む溶液中に耐熱性樹脂(C)が分散している。すなわち、耐熱性樹脂(C)が樹脂ペースト中においてフィラーとして存在することとなり、樹脂ペーストに対して、スクリーン印刷に好適なチキソトロピー性を付与することができる。 The resin paste obtained as described above has a heat resistant resin (C) in a solution containing the first polar solvent (A1), the second polar solvent (A2) and the heat resistant resin (B) at room temperature. Are dispersed. That is, the heat resistant resin (C) is present as a filler in the resin paste, and the thixotropic property suitable for screen printing can be imparted to the resin paste.
 樹脂ペースト中に分散された耐熱性樹脂(C)は、平均粒子径0.1~5.0μmの有機フィラーである。有機フィラーの平均粒子径は、0.5~4.5μmであることが好ましく、0.6~4.0μmであることがより好ましい。また、有機フィラーの最大粒子径は、好ましくは10μm以下、より好ましくは5μm以下である。耐熱性樹脂(C)の平均粒子径及び最大粒子径は、(株)島津製作所製の粒度分布測定装置「SALD-2200」を用いることにより測定することができる。 The heat resistant resin (C) dispersed in the resin paste is an organic filler having an average particle size of 0.1 to 5.0 μm. The average particle diameter of the organic filler is preferably 0.5 to 4.5 μm, more preferably 0.6 to 4.0 μm. The maximum particle diameter of the organic filler is preferably 10 μm or less, more preferably 5 μm or less. The average particle size and the maximum particle size of the heat resistant resin (C) can be measured by using a particle size distribution measuring device “SALD-2200” manufactured by Shimadzu Corporation.
 第一の極性溶媒(A1)と第二の極性溶剤(A2)との混合比率は、耐熱性樹脂(B)及び耐熱性樹脂(C)の種類、第一の極性溶媒(A1)及び第二の極性溶剤(A2)に対する溶解度、使用量等に依存する。樹脂ペーストの流動性、樹脂膜の解像度、形状保持性、及び、表面の平坦性を高度にバランスする観点から、混合比率は、3:7~9:1であることが好ましく、1:2~8.5:1.5であることがより好ましく、7:3~8:2であることが特に好ましい。 The mixing ratio of the first polar solvent (A1) and the second polar solvent (A2) is the kind of the heat resistant resin (B) and the heat resistant resin (C), the first polar solvent (A1) and the second polar solvent (A2). Depends on the solubility in the polar solvent (A2), the amount used, and the like. From the viewpoint of highly balancing resin paste fluidity, resin film resolution, shape retention, and surface flatness, the mixing ratio is preferably from 3: 7 to 9: 1, and from 1: 2 to The ratio is more preferably 8.5: 1.5, and particularly preferably 7: 3 to 8: 2.
 本実施形態に係る樹脂ペーストにおいては、耐熱性樹脂(B)及び耐熱性樹脂(C)の樹脂総量100質量部に対して、第一の極性溶媒(A1)と第二の極性溶媒(A2)との混合溶媒を、100~3500質量部配合することが好ましく、150~1000質量部配合することがより好ましく、200~500質量部配合することがさらに好ましい。 In the resin paste according to the present embodiment, the first polar solvent (A1) and the second polar solvent (A2) with respect to 100 parts by mass of the total amount of the heat resistant resin (B) and the heat resistant resin (C). 100 to 3500 parts by mass, more preferably 150 to 1000 parts by mass, and even more preferably 200 to 500 parts by mass.
 耐熱性樹脂(B)と耐熱性樹脂(C)の配合比は特に制限されず、任意の配合量でよいが、耐熱性樹脂(C)は、耐熱性樹脂(B)の総量100質量部に対して、10~300質量部配合することが好ましく、10~200質量部であればより好ましく、20~150質量部であればより好ましい。耐熱性樹脂(C)の使用量が10質量部以上であると、得られる耐熱性樹脂ペーストのチキソトロピー性が良好となる傾向があり、300質量部以下であると、得られる樹脂膜の物性が向上する傾向がある。 The mixing ratio of the heat-resistant resin (B) and the heat-resistant resin (C) is not particularly limited and may be any compounding amount, but the heat-resistant resin (C) is added to 100 parts by mass of the total amount of the heat-resistant resin (B). On the other hand, it is preferable to add 10 to 300 parts by mass, more preferably 10 to 200 parts by mass, and more preferably 20 to 150 parts by mass. When the amount of the heat resistant resin (C) used is 10 parts by mass or more, the thixotropic property of the obtained heat resistant resin paste tends to be good, and when it is 300 parts by mass or less, the physical properties of the obtained resin film are There is a tendency to improve.
 本実施形態に係る樹脂ペーストは、印刷版からの抜け性、樹脂膜の解像度及び形状保持性の観点から、25℃における粘度が30~500Pa・sであり、好ましくは30~400Pa・sであり、より好ましくは30~350Pa・sである。25℃での粘度が30Pa・s未満であると印刷時に形状が保持できずに樹脂膜の解像度が低下し、また500Pa・sを超えるとスクリーン印刷版からの抜け性が低下する。粘度は、樹脂ペーストの不揮発分濃度(以下、NVとする)、第一の極性溶媒(A1)の含有量、耐熱性樹脂(B)又は耐熱性樹脂(C)の分子量を調整すること等によって制御できる。例えば、耐熱性樹脂(B)及び耐熱性樹脂(C)を混合した樹脂の分子量を、ゲル浸透クロマトグラフィーを使用して標準ポリスチレン換算で測定した重量平均分子量が、10000~100000、好ましくは15000~90000、より好ましくは20000~80000となるようにすればよく、さらに好ましくは30000~60000となるようにすればよい。 The resin paste according to the present embodiment has a viscosity at 25 ° C. of 30 to 500 Pa · s, preferably 30 to 400 Pa · s, from the viewpoint of slipping from the printing plate, resolution of the resin film, and shape retention. More preferably, it is 30 to 350 Pa · s. If the viscosity at 25 ° C. is less than 30 Pa · s, the shape cannot be maintained at the time of printing and the resolution of the resin film is lowered, and if it exceeds 500 Pa · s, the removability from the screen printing plate is lowered. The viscosity is adjusted by adjusting the nonvolatile content concentration of the resin paste (hereinafter referred to as NV), the content of the first polar solvent (A1), the molecular weight of the heat resistant resin (B) or the heat resistant resin (C), etc. Can be controlled. For example, the molecular weight of a resin obtained by mixing a heat-resistant resin (B) and a heat-resistant resin (C), measured in terms of standard polystyrene using gel permeation chromatography, is 10,000 to 100,000, preferably 15,000 to It may be 90000, more preferably 20000 to 80000, and even more preferably 30000 to 60000.
 本実施形態に係る樹脂ペーストは、チキソトロピー係数が2.0~10.0であり、好ましくは2.0~6.0であり、より好ましくは2.5~5.5であり、さらに好ましくは2.5~5.0であり、特に好ましくは3.0~4.5である。チキソトロピー係数が2.0未満では印刷性が低下し、10.0を超えると作業性が低下し、樹脂ペーストを作製するのが困難となる。 The resin paste according to this embodiment has a thixotropic coefficient of 2.0 to 10.0, preferably 2.0 to 6.0, more preferably 2.5 to 5.5, and still more preferably It is 2.5 to 5.0, particularly preferably 3.0 to 4.5. If the thixotropy coefficient is less than 2.0, the printability is lowered, and if it exceeds 10.0, the workability is lowered, and it becomes difficult to produce a resin paste.
 樹脂ペーストの不揮発分濃度(NV)は、20~28質量%であることが好ましく、21~27質量%であることがより好ましく、22~26.5質量%であることが更に好ましい。なお、本明細書における樹脂ペーストのNVは、所定量の樹脂ペーストを150℃で1時間、250℃で2時間乾燥した後の重量と、乾燥前の重量と、から算出した値である。 The nonvolatile content concentration (NV) of the resin paste is preferably 20 to 28% by mass, more preferably 21 to 27% by mass, and further preferably 22 to 26.5% by mass. The NV of the resin paste in this specification is a value calculated from the weight after drying a predetermined amount of the resin paste at 150 ° C. for 1 hour and 250 ° C. for 2 hours and the weight before drying.
 本実施形態に係る樹脂ペーストは、高い耐熱性及び絶縁性を満足するものであり、半導体装置、電気化学デバイス、等の絶縁膜に使用できる。また、例えばシランカップリング剤等を添加することによって、半導体装置等を接続する接着剤として使用できるなど非常に有用である。 The resin paste according to this embodiment satisfies high heat resistance and insulation, and can be used for insulating films such as semiconductor devices and electrochemical devices. Further, for example, by adding a silane coupling agent or the like, it can be used as an adhesive for connecting a semiconductor device or the like.
 本実施形態に係る樹脂ペーストにおいては、樹脂ペーストの25℃における粘度が30~500Pa・sであり、かつ、チキソトロピー係数が2.0~10.0である範囲において、用途に応じて、ゴム弾性を有する低弾性フィラーを入れてもよい。低弾性フィラーの種類に特に制限はないが、例えば、アクリルゴム、フッ素ゴム、シリコーンゴム、ブタジエンゴム等の弾性体のフィラー、これらの液状ゴム等が挙げられる。これらの中では、樹脂組成物の耐熱性を考慮してシリコーンゴムが好ましい。また、フィラーの表面は、エポキシ基、アミノ基、アクリル基、ビニル基、フェニル基等の官能基で化学的に修飾されたものを使用することができ、中でも、エポキシ基で修飾されたものが好ましい。 In the resin paste according to this embodiment, the elasticity of the resin paste at 25 ° C. is 30 to 500 Pa · s and the thixotropic coefficient is 2.0 to 10.0 depending on the application. A low elastic filler having Although there is no restriction | limiting in particular in the kind of low elastic filler, For example, the filler of elastic bodies, such as an acrylic rubber, a fluorine rubber, silicone rubber, a butadiene rubber, these liquid rubbers, etc. are mentioned. Among these, silicone rubber is preferable in consideration of the heat resistance of the resin composition. The surface of the filler can be chemically modified with a functional group such as an epoxy group, amino group, acrylic group, vinyl group, phenyl group, etc. preferable.
 低弾性フィラーを樹脂ペーストに添加することにより、耐熱性及び密着性を損なうことなく低弾性にでき、また、弾性率をコントロールすることが可能となる。ゴム弾性を有する低弾性フィラーは、球形又は不定形に微粒子化したものが好ましい。低弾性フィラーの平均粒径は好ましくは0.1~6μmであり、より好ましくは0.2~5μmであり、更に好ましくは0.3~4μmである。平均粒径が0.1μm以上であると、粒子間の凝集が起き難く、分散し易い傾向があり、6μm以下であると、ろ過工程を導入することができ、得られる塗膜の表面平坦性が向上する傾向がある。ゴム弾性を有する低弾性フィラーの粒径分布は0.01~15μmであることが好ましく、0.02~15μmであることがより好ましく、0.03~15μmであることが更に好ましい。0.01μm未満のものが存在すると粒子間の凝集が起き、充分分散することが難しい傾向があり、15μmを超えるものが存在すると、ろ過工程を導入することが困難となり、樹脂膜の表面平坦性が低下する傾向がある。 低 By adding a low elastic filler to the resin paste, low elasticity can be achieved without impairing heat resistance and adhesion, and the elastic modulus can be controlled. The low-elasticity filler having rubber elasticity is preferably finely divided into a spherical shape or an irregular shape. The average particle size of the low elastic filler is preferably 0.1 to 6 μm, more preferably 0.2 to 5 μm, and still more preferably 0.3 to 4 μm. When the average particle size is 0.1 μm or more, aggregation between particles hardly occurs and tends to disperse. When the average particle size is 6 μm or less, a filtration step can be introduced, and the surface flatness of the obtained coating film Tend to improve. The particle size distribution of the low elastic filler having rubber elasticity is preferably 0.01 to 15 μm, more preferably 0.02 to 15 μm, and further preferably 0.03 to 15 μm. If particles of less than 0.01 μm are present, aggregation between particles tends to occur and tends to be difficult to disperse sufficiently. If particles of more than 15 μm are present, it becomes difficult to introduce a filtration step, and the surface flatness of the resin film Tends to decrease.
 本実施形態に係る耐熱性樹脂ペーストにおいて、ゴム弾性を有する低弾性フィラーの配合量は、耐熱性樹脂(B)及び耐熱性樹脂(C)の全総量100質量部に対して、5~900質量部であることが好ましく、5~800質量部であることがより好ましい。 In the heat resistant resin paste according to the present embodiment, the blending amount of the low elastic filler having rubber elasticity is 5 to 900 mass with respect to 100 mass parts of the total amount of the heat resistant resin (B) and the heat resistant resin (C). Part, preferably 5 to 800 parts by weight.
 本実施形態に係る樹脂ペーストにおいては、さらに、着色剤、カップリング剤等の添加剤、樹脂改質剤を添加してもよい。 In the resin paste according to the present embodiment, additives such as a colorant and a coupling agent, and a resin modifier may be further added.
 着色剤としては、カーボンブラック、染料、顔料等が挙げられる。 Coloring agents include carbon black, dyes, pigments and the like.
 カップリング剤としては、シラン系、チタン系、アルミニウム系のカップリング剤等が挙げられ、シラン系カップリング剤が最も好ましい。 Examples of the coupling agent include silane, titanium, and aluminum coupling agents, and the silane coupling agent is most preferable.
 シラン系カップリング剤としては、特に制限はなく、例えば、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N‐フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピル-トリス[2-(2-メトキシ-エトキシ)エトキシ]シラン、N-メチル-3-アミノプロピルトリメトキシシラン、トリアミノプロピル-トリメトキシシラン、3-4,5-ジヒドロイミダゾール-1-イル-プロピルトリメトキシシラン、3-メタクリロキシプロピル-トリメトキシシラン、3-メルカプトプロピル-メチルジメトキシシラン、3-クロロプロピル-メチルジメトキシシラン、3-クロロプロピル-ジメトキシシラン、3-シアノプロピル-トリエトキシシラン、ヘキサメチルジシラザン、N,O-ビス(トリメチルシリル)アセトアミド、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリクロロシラン、n-プロピルトリメトキシシラン、イソブチルトリメトキシシラン、アミルトリクロロシラン、オクチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メチルトリ(メタクリロイルオキエトキシ)シラン、メチルトリ(グリシジルオキシ)シラン、N-β(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、オクタデシルジメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、γ-クロロプロピルメチルジクロロシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、トリメチルシリルイソシアネート、ジメチルシリルイソシアネート、メチルシリルトリイソシアネート、ビニルシリルトリイソシアネート、フェニルシリルトリイソシアネート、テトライソシアネートシラン及びエトキシシランイソシアネートを使用することができる。これらの1種又は2種以上を併用することもできる。 The silane coupling agent is not particularly limited, and examples thereof include vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and γ-methacrylate. Roxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxy Silane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropylto Methoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-aminopropyltrimethoxy Silane, 3-aminopropyl-tris [2- (2-methoxy-ethoxy) ethoxy] silane, N-methyl-3-aminopropyltrimethoxysilane, triaminopropyl-trimethoxysilane, 3-4,5-dihydroimidazole -1-yl-propyltrimethoxysilane, 3-methacryloxypropyl-trimethoxysilane, 3-mercaptopropyl-methyldimethoxysilane, 3-chloropropyl-methyldimethoxysilane, 3-chloropropyl-dimethoxy Silane, 3-cyanopropyl-triethoxysilane, hexamethyldisilazane, N, O-bis (trimethylsilyl) acetamide, methyltrimethoxysilane, methyltriethoxysilane, ethyltrichlorosilane, n-propyltrimethoxysilane, isobutyltrimethoxy Silane, amyltrichlorosilane, octyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, methyltri (methacryloyloxyethoxy) silane, methyltri (glycidyloxy) silane, N-β (N-vinylbenzylaminoethyl) -γ- Aminopropyltrimethoxysilane, octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride, γ-chloropropylmethyldichlorosilane, γ-chloropropi Can be used methyl dimethoxy silane, .gamma.-chloropropyl methyl diethoxy silane, trimethylsilyl isocyanate, dimethylsilyl isocyanate, methylsilyl triisocyanate, vinylsilyl triisocyanate, phenyl triisocyanate, a tetraisocyanate silane and ethoxysilane isocyanate. These 1 type (s) or 2 or more types can also be used together.
 チタン系カップリング剤としては、特に制限はなく、例えば、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリス(n-アミノエチル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ジクミルフェニルオキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアエチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタンチリエタノールアミネート、ポリヒドロキシチタンステアレート、テトラメチルオルソチタネート、テトラエチルオルソチタネート、テタラプロピルオルソチタネート、テトライソブチルオルソチタネート、ステアリルチタネート、クレシルチタネートモノマー、クレシルチタネートポリマー、ジイソプロポキシ-ビス(2,4-ペンタジオネート)チタニウム(IV)、ジイソプロピル-ビス-トリエタノールアミノチタネート、オクチレングリコールチタネート、テトラ-n-ブトキシチタンポリマー、トリ-n-ブトキシチタンモノステアレートポリマー及びトリ-n-ブトキシチタンモノステアレートを使用することができる。これらの1種又は2種以上を併用することもできる。 The titanium-based coupling agent is not particularly limited. For example, isopropyl trioctanoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, Isopropyltricumylphenyl titanate, isopropyltris (dioctylpyrophosphate) titanate, isopropyltris (n-aminoethyl) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2, 2-Diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite tita , Dicumylphenyloxyacetate titanate, bis (dioctylpyrophosphate) oxyacetate titanate, tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, titanium acetylacetonate, polytitanium ethyl Acetonate, Titanium octylene glycolate, Titanium lactate ammonium salt, Titanium lactate, Titanium lactate ethyl ester, Titanium chili ethanolamate, Polyhydroxytitanium stearate, Tetramethyl orthotitanate, Tetraethyl orthotitanate, Tetarapropyl orthotitanate, Tetraisobutyl Orthotitanate, stearyl titanate, cresyl titanate monomer, cresyl Titanate polymer, diisopropoxy-bis (2,4-pentadionate) titanium (IV), diisopropyl-bis-triethanolamino titanate, octylene glycol titanate, tetra-n-butoxytitanium polymer, tri-n-butoxy Titanium monostearate polymer and tri-n-butoxy titanium monostearate can be used. These 1 type (s) or 2 or more types can also be used together.
 アルミニウム系カップリング剤としては、特に制限はなく、例えば、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトイス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセテートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、アルミニウム=モノイソプロポキシモノオレオキシエチルアセトアセテート、アルミニウム-ジ-n-ブトキシド-モノ-エチルアセトアセテート、アルミニウム-ジ-イソ-プロポキシド-モノ-エチルアセトアセテート等のアルミニウムキレート化合物、アルミニウムイソプロピレート、モノ-sec-ブトキシアルミニウムジイソプロピレート、アルミニウム-sec-ブチレート、アルミニウムエチレート等のアルミニウムアルコレートを使用することができる。これらの1種又は2種以上を併用することもできる。 The aluminum coupling agent is not particularly limited. For example, ethyl acetoacetate aluminum diisopropylate, aluminum toys (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate), Aluminum tris (acetylacetonate), aluminum = monoisopropoxymonooroxyethyl acetoacetate, aluminum-di-n-butoxide-mono-ethylacetoacetate, aluminum-di-iso-propoxide-mono-ethylacetoacetate, etc. Aluminum chelate compound, aluminum isopropylate, mono-sec-butoxyaluminum diisopropylate, aluminum-sec Can be used butyrate, aluminum alcoholates of aluminum ethylate and the like. These 1 type (s) or 2 or more types can also be used together.
 上記の添加剤は、耐熱性樹脂(B)及び耐熱性樹脂(C)の全総量100質量部に対して、50質量部以下の配合量にすることが好ましい。上記添加剤の配合量が50質量部より多いと、耐熱性、機械強度等の樹脂膜の物性が低下する傾向がある。 The above additives are preferably blended in an amount of 50 parts by mass or less based on 100 parts by mass of the total amount of the heat resistant resin (B) and the heat resistant resin (C). When there are more compounding quantities of the said additive than 50 mass parts, there exists a tendency for the physical property of resin films, such as heat resistance and mechanical strength, to fall.
 次に、本実施形態に係る樹脂ペーストを用いた樹脂膜の形成方法及び得られる樹脂膜について、図1を参照しながら説明する。 Next, a method for forming a resin film using the resin paste according to the present embodiment and the resulting resin film will be described with reference to FIG.
 本実施形態に係る樹脂膜は、上記本発明に係る樹脂ペーストを基材上にスクリーン印刷する工程と、スクリーン印刷後の樹脂ペーストを100~450℃で加熱する工程とを含む形成方法により作製することができる。図1は、本実施形態に係る樹脂膜の形成方法における、各工程での樹脂膜の状態を模式的に表す断面図である。 The resin film according to the present embodiment is produced by a forming method including a step of screen-printing the resin paste according to the present invention on a substrate and a step of heating the resin paste after screen printing at 100 to 450 ° C. be able to. FIG. 1 is a cross-sectional view schematically showing the state of the resin film in each step in the method for forming a resin film according to this embodiment.
(a)スクリーン印刷工程
 基材1上に、上記本実施形態に係る樹脂ペースト10をスクリーン印刷する。樹脂ペースト10は、室温において、第一の極性溶媒(A1)、第二の極性溶媒(A2)及び、耐熱性樹脂(B)を含む溶液2に、耐熱性樹脂(C)3が分散している状態である。基材1は、例えばシリコンであり、基材表面には、乳剤層が形成されていてもよい。
(A) Screen printing process On the base material 1, the resin paste 10 which concerns on the said embodiment is screen-printed. The resin paste 10 has a heat resistant resin (C) 3 dispersed in a solution 2 containing a first polar solvent (A1), a second polar solvent (A2), and a heat resistant resin (B) at room temperature. It is in a state. The substrate 1 is, for example, silicon, and an emulsion layer may be formed on the substrate surface.
 スクリーン印刷機に用いるメッシュ版、スキージは特に制限なく用いることができるが、本実施形態に係る樹脂ペーストの塗布には、ゴム製のスキージが適している。 The mesh plate and squeegee used for the screen printing machine can be used without particular limitation, but a rubber squeegee is suitable for application of the resin paste according to the present embodiment.
(b)加熱工程
 スクリーン印刷後の樹脂ペースト10を100~450℃で加熱する。加熱方法は公知の方法によって行うことができる。本工程においては、耐熱性樹脂(C)3が、第一の極性溶媒(A1)、第二の極性溶媒(A2)及び耐熱性樹脂(B)を含む溶液2に溶解し、さらに、第二の極性溶媒(A2)及び第一の極性溶媒(A1)が揮発し、樹脂膜4が形成される。
(B) Heating process The resin paste 10 after screen printing is heated at 100 to 450 ° C. The heating method can be performed by a known method. In this step, the heat-resistant resin (C) 3 is dissolved in the solution 2 containing the first polar solvent (A1), the second polar solvent (A2), and the heat-resistant resin (B). The polar solvent (A2) and the first polar solvent (A1) are volatilized and the resin film 4 is formed.
 加熱温度は、150℃~400であることが好ましく、150~350℃であることがより好ましい。100℃未満であると溶剤が揮発し難く、また、耐熱性樹脂(C)3が、第一の極性溶媒(A1)、第二の極性溶媒(A2)及び耐熱性樹脂(B)を含む溶液2に溶解しないことが多く、得られる樹脂膜の表面平坦性が低下する傾向がある。450℃で加熱するとアウトガスにより樹脂膜4にボイドが発生する可能性がある。 The heating temperature is preferably 150 ° C to 400 ° C, more preferably 150 to 350 ° C. When the temperature is lower than 100 ° C., the solvent is less likely to evaporate, and the heat-resistant resin (C) 3 includes a first polar solvent (A1), a second polar solvent (A2), and a heat-resistant resin (B). 2 often does not dissolve, and the surface flatness of the resulting resin film tends to decrease. When heated at 450 ° C., voids may occur in the resin film 4 due to outgassing.
 耐熱性樹脂(B)及び耐熱性樹脂(C)のうち少なくとも一方が、ポリイミド樹脂前駆体を含む場合には、イミド化を進行させるために350℃以上、具体的には350~450℃で加熱するにより、樹脂を硬化させることが好ましい。350℃以下ではイミド化の反応進行速度が遅くなる傾向がある。 When at least one of the heat resistant resin (B) and the heat resistant resin (C) contains a polyimide resin precursor, it is heated at 350 ° C. or more, specifically 350 to 450 ° C., in order to advance imidization. Thus, it is preferable to cure the resin. If it is 350 ° C. or lower, the reaction speed of imidization tends to be slow.
 樹脂膜4は、平坦性が極めて高く、表面粗さは2μm以下である。なお、本実施形態における樹脂膜の表面粗さとは、算術平均粗さRaを指す。算術平均粗さRaは、粗さ曲線からその平均線の方向に基準長さ(L)だけを抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、次の式によって求められる値をマイクロメートル(μm)で表したものをいう。すなわち、Raは下記数式(1)で表される値である。 The resin film 4 has extremely high flatness and a surface roughness of 2 μm or less. In addition, the surface roughness of the resin film in this embodiment refers to arithmetic mean roughness Ra. Arithmetic average roughness Ra is extracted from the roughness curve only the reference length (L) in the direction of the average line, the X-axis in the direction of the average line of the extracted portion, the Y-axis in the direction of the vertical magnification, When the roughness curve is represented by y = f (x), the value obtained by the following formula is represented by micrometers (μm). That is, Ra is a value represented by the following mathematical formula (1).
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 樹脂膜4は半導体装置又は太陽電池に用いることができるが、当該使用態様の観点から、樹脂膜のガラス転移温度Tgは180℃以上であることが好ましく、熱分解温度は300℃以上であることが好ましい。 Although the resin film 4 can be used for a semiconductor device or a solar cell, the glass transition temperature Tg of the resin film is preferably 180 ° C. or higher and the thermal decomposition temperature is 300 ° C. or higher from the viewpoint of the usage mode. Is preferred.
 樹脂膜4は、再配線を形成する工程で必要とされる耐スパッタ性、耐メッキ性、耐アルカリ性を有することから、半導体装置に好適に用いられる。また、樹脂膜4を用いることにより、シリコンウエハの反り量も低減できるため、半導体装置製造における歩留まりの向上が期待でき、生産性の向上が可能となる。 The resin film 4 has a sputtering resistance, a plating resistance, and an alkali resistance required in the process of forming the rewiring, and is therefore preferably used for a semiconductor device. Further, since the amount of warpage of the silicon wafer can be reduced by using the resin film 4, it is possible to expect an improvement in yield in the manufacture of semiconductor devices, and an improvement in productivity is possible.
 半導体装置は、同一構造の配線が複数形成された半導体基板に、本発明に係る樹脂ペーストをスクリーン印刷し、加熱して樹脂膜を形成し、必要に応じて樹脂膜上に半導体基板上の電極と電気的に導通した配線を形成し、上記配線又は樹脂膜上に保護膜を形成し、上記保護膜に外部電極端子を形成し、ダイシングすることにより製造できる。上記半導体基板としては、特に制限はないが、例えば、シリコンウエハ等が挙げられる。 In a semiconductor device, a resin substrate according to the present invention is screen-printed on a semiconductor substrate on which a plurality of wirings of the same structure are formed, heated to form a resin film, and an electrode on the semiconductor substrate is formed on the resin film as necessary. And a protective film is formed on the wiring or resin film, an external electrode terminal is formed on the protective film, and dicing is performed. Although there is no restriction | limiting in particular as said semiconductor substrate, For example, a silicon wafer etc. are mentioned.
 また、樹脂膜4は絶縁性に優れるため、太陽電池の絶縁膜、保護膜に好適に用いられる。特にバックコンタクトタイプの太陽電池に有用である。バックコンタクトタイプの構造としては、MWT(Metal Wrap Through)、EWT(Emitter Wrap Through)、IBC(Interdigitated Back Contact)等が挙げられる。バックコンタクトタイプの太陽電池は、電気変換効率向上を目的として、受光面の裏面にプラス電極とマイナス電極が集中し、互いに近接する構造を有するため、絶縁膜の存在が必要である。 Further, since the resin film 4 is excellent in insulation, it is preferably used for an insulating film and a protective film of a solar cell. It is particularly useful for back contact type solar cells. Examples of the back contact type structure include MWT (Metal Wrap Through), EWT (Emitter Wrap Through), IBC (Interdigitated Back Contact), and the like. The back contact type solar cell has a structure in which the positive electrode and the negative electrode are concentrated on the back surface of the light receiving surface and are close to each other for the purpose of improving electric conversion efficiency.
 本実施形態の太陽電池の製造方法は、少なくとも一方の面に電極が形成された基板の電極形成面に、上記樹脂ペーストを電極が露出するようにスクリーン印刷する工程と、スクリーン印刷された樹脂ペーストを加熱硬化して、樹脂膜を形成する工程とを含む。すなわち、本実施形態に係る太陽電池は、本発明の樹脂ペーストから形成された樹脂膜を備える。 The method for manufacturing a solar cell according to the present embodiment includes a step of screen-printing the electrode so that the electrode is exposed on an electrode-forming surface of a substrate on which an electrode is formed on at least one surface, and a screen-printed resin paste And heat curing to form a resin film. That is, the solar cell according to the present embodiment includes a resin film formed from the resin paste of the present invention.
 樹脂ペーストのスクリーン印刷及び加熱硬化は、上記(a)スクリーン印刷工程及び(b)加熱工程と同様の方法を用いることができる。樹脂膜4の厚みは、目的に応じて調整することができ特に限定されないが、太陽電池の絶縁膜として用いる場合、0.1~30μmが好ましい。 For the screen printing and heat curing of the resin paste, the same method as the above (a) screen printing step and (b) heating step can be used. The thickness of the resin film 4 can be adjusted according to the purpose and is not particularly limited, but is preferably 0.1 to 30 μm when used as an insulating film of a solar cell.
 太陽電池の絶縁膜及び保護膜は、例えば、プラス電極とマイナス電極とが点在して複数形成された基板に、当該電極を除くように本発明に係る樹脂ペーストをスクリーン印刷し、加熱して樹脂膜を形成することにより製造できる。上記太陽電池基板としては、特に制限はないが、例えば、シリコンウエハ等が挙げられる。 For example, the insulating film and the protective film of the solar cell are obtained by screen-printing and heating the resin paste according to the present invention on a substrate formed with a plurality of positive electrodes and negative electrodes interspersed so as to remove the electrodes. It can be manufactured by forming a resin film. Although there is no restriction | limiting in particular as said solar cell substrate, For example, a silicon wafer etc. are mentioned.
 図2は、本実施形態に係る太陽電池を製造する工程を模式的に示す上面図であり、図3は、本実施形態に係る太陽電池を製造する工程を模式的に示す断面図である。図3は、図2におけるA-B間の断面を模式的に示している。 FIG. 2 is a top view schematically showing a process for manufacturing the solar cell according to the present embodiment, and FIG. 3 is a cross-sectional view schematically showing a process for manufacturing the solar cell according to the present embodiment. FIG. 3 schematically shows a cross section taken along line AB in FIG.
 まず、シリコンウエハ11の裏面上にアルミニウム配線12が形成され、かつ、所定の間隔で形成された複数のプラス電極13及びマイナス電極14を有する基板20を準備する(図2及び3の(a)参照)。ここで、プラス電極13は、シリコンウエハ11の裏面上に形成されており、マイナス電極14は、シリコンウエハ11の受光面から裏面に貫通するように形成されている。また、マイナス電極14とアルミニウム配線12とは接しておらず、マイナス電極14とアルミニウム配線12との間には空隙がある。一方、プラス電極13とアルミニウム配線12とは接している。次いで、アルミニウム配線12上にマイナス電極14が露出するように樹脂ペーストをスクリーン印刷し、加熱して樹脂膜4を形成する(図2及び3の(b)参照)。樹脂膜4は、アルミニウム配線12と、マイナス電極14との間に充填されている。その後、樹脂膜4の一部を覆うようにマイナス電極14上と、プラス電極13上とにTab配線15を形成する(図2及び3の(c)参照)。マイナス電極14上に形成されたTab配線15は、樹脂膜4が存在するため、プラス電極13側のアルミニウム配線12と接することはなく、二電極間での電子の損失が起こらない。プラス電極13及びマイナス電極14は、銀を主に含む材料から形成されることが好ましい。 First, a substrate 20 having a plurality of positive electrodes 13 and a plurality of negative electrodes 14 formed with aluminum wirings 12 on the back surface of the silicon wafer 11 and formed at a predetermined interval is prepared ((a) in FIGS. 2 and 3). reference). Here, the plus electrode 13 is formed on the back surface of the silicon wafer 11, and the minus electrode 14 is formed so as to penetrate from the light receiving surface of the silicon wafer 11 to the back surface. Further, the negative electrode 14 and the aluminum wiring 12 are not in contact with each other, and there is a gap between the negative electrode 14 and the aluminum wiring 12. On the other hand, the plus electrode 13 and the aluminum wiring 12 are in contact with each other. Next, a resin paste is screen printed so that the negative electrode 14 is exposed on the aluminum wiring 12, and heated to form the resin film 4 (see FIGS. 2 and 3B). The resin film 4 is filled between the aluminum wiring 12 and the negative electrode 14. Thereafter, a Tab wiring 15 is formed on the negative electrode 14 and the positive electrode 13 so as to cover a part of the resin film 4 (see FIGS. 2 and 3C). Since the tab wiring 15 formed on the negative electrode 14 has the resin film 4, it does not contact the aluminum wiring 12 on the positive electrode 13 side, and no electron loss occurs between the two electrodes. The positive electrode 13 and the negative electrode 14 are preferably formed from a material mainly containing silver.
 本実施形態の太陽電池には、電極部と配線接続部に導電性接着剤を用いることもできる。導電性接着剤としては、銀粒子、はんだ粒子等の導電性粒子と熱硬化性樹脂とを含む導電性ペースト、Niなどの導電性粒子を分散させた導電性フィルムが挙げられる。 In the solar cell of this embodiment, a conductive adhesive can be used for the electrode part and the wiring connection part. Examples of the conductive adhesive include a conductive paste containing conductive particles such as silver particles and solder particles and a thermosetting resin, and a conductive film in which conductive particles such as Ni are dispersed.
 以下、本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
(重量平均分子量)
 本実施例における重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)により測定し、標準ポリスチレンによる検量線を用いて換算した値である。GPCにおける測定の条件は以下のとおりである。
 検出器:日本分光(株)製UV検出器 875-UV
 カラム:昭和電工(株)製Shodex溶媒置換分離カラムGPC KD-806M
 溶離液:HPO(0.06モル/L)含有NMP
 温度:25℃
 流量:1.0mL/分
(Weight average molecular weight)
The weight average molecular weight (Mw) in this example is a value measured by gel permeation chromatography (GPC) and converted using a calibration curve based on standard polystyrene. The measurement conditions in GPC are as follows.
Detector: JASCO Corporation UV detector 875-UV
Column: Shodex solvent displacement separation column GPC KD-806M manufactured by Showa Denko K.K.
Eluent: NMP containing H 3 PO 4 (0.06 mol / L)
Temperature: 25 ° C
Flow rate: 1.0 mL / min
(平均粒径)
 耐熱性樹脂(C)の平均粒径は、下記の条件で測定した。
(1)試料の調製
 まず、スライドガラス(MATSUNAMI社製、サイズ:76mm×26mm、厚さ:1.2mm)を二枚重ねて、セルホルダに設置し、ブランク測定を行った。次いで、高濃度サンプル測定用セル(セル厚み:1.7mm、測定部深さ:0.3mm)の測定部に約1.0mLの樹脂ペーストを乗せ、樹脂ペーストが濡れ広がるようにスライドガラスで挟み込み、測定部にレーザーが当たるようにセルホルダに設置した。
(2)測定
 レーザー回折式粒度分布測定装置「SALD-2200」((株)島津製作所製、商品名)にて、屈折率1.70-0.20i、測定吸光度範囲最大値0.200、最小値0.010、センサ使用開始位置の設定を‘20’として粒度分布を25℃条件下で測定した。
(3)平均粒径の算出
 粒度分布における積算値50%(体積基準)を、平均粒径とした。
(Average particle size)
The average particle diameter of the heat resistant resin (C) was measured under the following conditions.
(1) Preparation of sample First, two glass slides (manufactured by MATUNAMI, size: 76 mm × 26 mm, thickness: 1.2 mm) were stacked and placed on a cell holder, and blank measurement was performed. Next, about 1.0 mL of resin paste is placed on the measurement part of the high-concentration sample measurement cell (cell thickness: 1.7 mm, measurement part depth: 0.3 mm), and sandwiched between glass slides so that the resin paste spreads wet. And it installed in the cell holder so that a laser might hit a measurement part.
(2) Measurement With a laser diffraction particle size distribution analyzer “SALD-2200” (trade name, manufactured by Shimadzu Corporation), refractive index 1.70-0.20i, maximum measured absorbance range 0.200, minimum The particle size distribution was measured under the condition of a temperature of 25 ° C. with a value of 0.010 and a sensor use start position of “20”.
(3) Calculation of average particle diameter An integrated value of 50% (volume basis) in the particle size distribution was taken as the average particle diameter.
<耐熱性樹脂(B)の合成>
(合成例1)
 温度計、撹拌機、窒素導入管、油水分離機付き冷却管を取り付けた5リットルの4つ口フラスコに窒素気流下、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(以下、BAPPとする)650.90g(1.59モル)及び1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(以下、BY16-871とする)43.80g(0.18モル)を入れ、N-メチル-2-ピロリドン(以下、NMPとする)3609.86gを加えて溶解した。次に20℃を超えないように冷却しながら無水トリメリット酸クロライド(以下、TACとする)384.36g(1.83モル)を加えた。
 室温で1時間撹拌した後、20℃を超えないように冷却しながらトリエチルアミン(以下、TEAとする)215.90g(2.14モル)を加えて、室温で1時間反応させてポリアミック酸ワニスを製造した。得られたポリアミック酸ワニスをさらに180℃で脱水反応を6時間行い、ポリアミドイミド樹脂のワニスを製造した。このポリアミドイミド樹脂のワニスを水に注いで得られる沈殿物を分離、粉砕、乾燥して、ポリアミドイミド樹脂粉末(PAI-1)を得た。得られたポリアミドイミド樹脂(PAI-1)のMwは、77000であった。
<Synthesis of heat resistant resin (B)>
(Synthesis Example 1)
2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter referred to as “nitrogen”) in a 5-liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a cooling tube with an oil / water separator. , BAPP) 650.90 g (1.59 mol) and 1,3-bis (3-aminopropyl) tetramethyldisiloxane (hereinafter referred to as BY16-871) 43.80 g (0.18 mol) N-methyl-2-pyrrolidone (hereinafter referred to as NMP) 3609.86 g was added and dissolved. Next, 384.36 g (1.83 mol) of trimellitic anhydride chloride (hereinafter referred to as TAC) was added while cooling so as not to exceed 20 ° C.
After stirring at room temperature for 1 hour, 215.90 g (2.14 mol) of triethylamine (hereinafter referred to as TEA) was added while cooling so as not to exceed 20 ° C., and the mixture was reacted at room temperature for 1 hour to obtain a polyamic acid varnish. Manufactured. The resulting polyamic acid varnish was further subjected to a dehydration reaction at 180 ° C. for 6 hours to produce a polyamideimide resin varnish. The precipitate obtained by pouring the varnish of polyamideimide resin into water was separated, pulverized and dried to obtain polyamideimide resin powder (PAI-1). Mw of the obtained polyamideimide resin (PAI-1) was 77000.
(合成例3)
 TAC408.5g(1.94モル)を用いた以外は合成例1と同様にして、ポリアミドイミド樹脂粉末(PAI-2)を得た。得られたポリアミドイミド樹脂(PAI-2)のMwは、22000であった。
(Synthesis Example 3)
A polyamideimide resin powder (PAI-2) was obtained in the same manner as in Synthesis Example 1 except that TAC 408.5 g (1.94 mol) was used. Mw of the obtained polyamideimide resin (PAI-2) was 22000.
(合成例5)
 TAC389.9g(1.85モル)を用いた以外は合成例1と同様にして、ポリアミドイミド樹脂粉末(PAI-3)を得た。得られたポリアミドイミド樹脂(PAI-3)のMwは、57000であった。
(Synthesis Example 5)
A polyamide-imide resin powder (PAI-3) was obtained in the same manner as in Synthesis Example 1 except that TAC 389.9 g (1.85 mol) was used. Mw of the obtained polyamideimide resin (PAI-3) was 57000.
(合成例7)
 TAC380.6g(1.81モル)を用いた以外は合成例1と同様にして、ポリアミドイミド樹脂粉末(PAI-4)を得た。得られたポリアミドイミド樹脂(PAI-4)のMwは、85000であった。
(Synthesis Example 7)
A polyamideimide resin powder (PAI-4) was obtained in the same manner as in Synthesis Example 1 except that 380.6 g (1.81 mol) of TAC was used. Mw of the obtained polyamideimide resin (PAI-4) was 85000.
(合成例9)
 TAC371.4g(1.76モル)を用いた以外は合成例1と同様にして、ポリアミドイミド樹脂粉末(PAI-5)を得た。得られたポリアミドイミド樹脂(PAI-5)のMwは、160000であった。
(Synthesis Example 9)
A polyamideimide resin powder (PAI-5) was obtained in the same manner as in Synthesis Example 1 except that 371.4 g (1.76 mol) of TAC was used. Mw of the obtained polyamideimide resin (PAI-5) was 160000.
(合成例11)
 温度計、撹拌機、窒素導入管、油水分離機付き冷却管を取り付けた1リットルの4つ口フラスコに窒素気流下、BTDA 96.7g(0.3モル)、4,4’-ジアミノジフェニルエーテル(以下、DDEとする)55.4g(0.285モル)、BY16-871 3.73g(0.015モル)及び1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン(以下、DMPUとする)363gを仕込み、70~90℃で約6時間撹拌した後、冷却して反応を止め、ポリイミド樹脂前駆体の耐熱性樹脂溶液(PI-1)を得た。得られたポリイミド樹脂前駆体(PI-1)のMwは、15000であった。
(Synthesis Example 11)
Under a nitrogen stream, 96.7 g (0.3 mol) of BTDA, 4,4′-diaminodiphenyl ether (in a 1 liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube with an oil / water separator (Hereinafter referred to as DDE) 55.4 g (0.285 mol), BY16-871 3.73 g (0.015 mol) and 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H)- After charging 363 g of pyrimidinone (hereinafter referred to as DMPU) and stirring at 70 to 90 ° C. for about 6 hours, the reaction was stopped by cooling to obtain a heat resistant resin solution (PI-1) of a polyimide resin precursor. Mw of the obtained polyimide resin precursor (PI-1) was 15000.
(合成例13)
 BTDA 106.4g(0.33モル)を用いた以外は合成例11と同様にして、ポリイミド樹脂前駆体の耐熱性樹脂溶液(PI-2)を得た。得られたポリイミド樹脂前駆体(PI-2)のMwは、5000であった。
(Synthesis Example 13)
A polyimide resin precursor heat-resistant resin solution (PI-2) was obtained in the same manner as in Synthesis Example 11 except that 106.4 g (0.33 mol) of BTDA was used. Mw of the obtained polyimide resin precursor (PI-2) was 5000.
<耐熱性樹脂(C)の合成>
(合成例2)
 温度計、撹拌機、窒素導入管、油水分離機付き冷却管を取り付けた1リットルの4つ口フラスコに窒素気流下、BAPP69.72g(170.1ミリモル)、及び、BY16-871 4.69g(18.9ミリモル)を入れ、NMP693.52gを加えて溶解した。次に20℃を超えないように冷却しながらTAC25.05g(119.0ミリモル)及び3,4,3’,4’-ベンゾフェノンテトラカルボン酸二無水物(以下BTDAとする)25.47g(79.1ミリモル)を加えた。
 室温で1時間撹拌した後、20℃を超えないように冷却しながらTEA 14.42g(142.8ミリモル)を加えて、室温で1時間反応させてポリアミック酸ワニスを製造した。得られたポリアミック酸ワニスをさらに180℃で脱水反応を6時間行い、ポリイミド樹脂のワニスを製造した。このポリイミド樹脂のワニスを水に注いで得られる沈殿物を分離、粉砕、乾燥してポリイミド樹脂粉末(PAIF-1)を得た。得られたポリイミド樹脂(PAIF-1)のMwは、42000であった。
<Synthesis of heat resistant resin (C)>
(Synthesis Example 2)
In a 1 liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube with an oil / water separator, 69.72 g (170.1 mmol) of BAPP and 4.69 g of BY16-871 (in a nitrogen stream) 18.9 mmol) was added, and 693.52 g of NMP was added and dissolved. Next, 25.05 g (119.0 mmol) of TAC and 25.47 g (79%) of 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) while cooling so as not to exceed 20 ° C. 0.1 mmol) was added.
After stirring at room temperature for 1 hour, 14.42 g (142.8 mmol) of TEA was added while cooling so as not to exceed 20 ° C., and reacted at room temperature for 1 hour to prepare a polyamic acid varnish. The resulting polyamic acid varnish was further subjected to a dehydration reaction at 180 ° C. for 6 hours to produce a polyimide resin varnish. A precipitate obtained by pouring the polyimide resin varnish into water was separated, ground and dried to obtain a polyimide resin powder (PAIF-1). Mw of the obtained polyimide resin (PAIF-1) was 42000.
(合成例4)
 TAC25.49g(121.1ミリモル)、BTDA26.15g(81.2ミリモル)を用いた以外は合成例2と同様にして、ポリアミドイミド樹脂粉末(PAIF-2)を得た。得られたポリアミドイミド樹脂(PAIF-2)のMwは、31000であった。
(Synthesis Example 4)
Polyamideimide resin powder (PAIF-2) was obtained in the same manner as in Synthesis Example 2, except that 25.49 g (121.1 mmol) of TAC and 26.15 g (81.2 mmol) of BTDA were used. Mw of the obtained polyamideimide resin (PAIF-2) was 31,000.
(合成例6)
 TAC24.61g(116.9ミリモル)、BTDA25.02g(77.7ミリモル)を用いた以外は合成例2と同様にして、ポリアミドイミド樹脂粉末(PAIF-3)を得た。得られたポリアミドイミド樹脂(PAIF-3)のMwは、52000であった。
(Synthesis Example 6)
Polyamideimide resin powder (PAIF-3) was obtained in the same manner as in Synthesis Example 2, except that 24.61 g (116.9 mmol) of TAC and 25.02 g (77.7 mmol) of BTDA were used. Mw of the obtained polyamideimide resin (PAIF-3) was 52,000.
(合成例8)
 TAC24.16g(114.8ミリモル)、BTDA24.57g(76.3ミリモル)を用いた以外は合成例2と同様にして、ポリアミドイミド樹脂粉末(PAIF-4)を得た。得られたポリアミドイミド樹脂(PAIF-4)のMwは、70000であった。
(Synthesis Example 8)
Polyamideimide resin powder (PAIF-4) was obtained in the same manner as in Synthesis Example 2 except that 24.16 g (114.8 mmol) of TAC and 24.57 g (76.3 mmol) of BTDA were used. Mw of the obtained polyamideimide resin (PAIF-4) was 70000.
(合成例10)
 TAC23.87g(113.4ミリモル)、BTDA24.35g(75.6ミリモル)を用いた以外は合成例2と同様にして、ポリアミドイミド樹脂粉末(PAIF-5)を得た。得られたポリアミドイミド樹脂(PAIF-5)のMwは、95000であった。
(Synthesis Example 10)
Polyamideimide resin powder (PAIF-5) was obtained in the same manner as in Synthesis Example 2 except that 23.87 g (113.4 mmol) of TAC and 24.35 g (75.6 mmol) of BTDA were used. Mw of the obtained polyamideimide resin (PAIF-5) was 95,000.
(合成例12)
 温度計、撹拌機、窒素導入管、油水分離機付き冷却管を取り付けた1リットルの4つ口フラスコに窒素気流下、BTDA96.7g(0.3モル)、BAPP61.5g(0.15モル)、DDE27.0g(0.135モル)、BY16-871 3.73g(0.015モル)、DMPU133.25g及びγ-BL308.59gを仕込み、70~90℃で5時間撹拌したところ、溶液中にMw24000のポリイミド前駆体フィラーが析出した。その後、冷却して反応を止め、ポリイミド樹脂前駆体の耐熱性樹脂フィラー溶液(PIF-1)を得た。得られたポリイミド樹脂前駆体(PIF-1)のMwは、34000であった。
(Synthesis Example 12)
BTDA 96.7 g (0.3 mol), BAPP 61.5 g (0.15 mol) in a 1 liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a cooling tube with an oil / water separator under a nitrogen stream , DDE 27.0 g (0.135 mol), BY16-871 3.73 g (0.015 mol), DMPU 133.25 g and γ-BL 308.59 g were charged and stirred at 70 to 90 ° C. for 5 hours. A polyimide precursor filler having an Mw of 24000 was deposited. Thereafter, the reaction was stopped by cooling to obtain a heat-resistant resin filler solution (PIF-1) of a polyimide resin precursor. Mw of the obtained polyimide resin precursor (PIF-1) was 34000.
(合成例14)
 BTDA 106.4g(0.33モル)を用いた以外は合成例12と同様にして、ポリイミド樹脂前駆体の耐熱性樹脂フィラー溶液(PIF-2)を得た。得られたポリイミド樹脂前駆体(PIF-2)のMwは、15000であった。
(Synthesis Example 14)
A polyimide resin precursor heat-resistant resin filler solution (PIF-2) was obtained in the same manner as in Synthesis Example 12 except that 106.4 g (0.33 mol) of BTDA was used. Mw of the obtained polyimide resin precursor (PIF-2) was 15000.
<樹脂ペーストの調製>
(実施例1)
 温度計、撹拌機、窒素導入管及び冷却管を取り付けた0.5リットルの4つ口フラスコに窒素気流下、第一の極性溶媒(A1)としてγ-BL92.4g、第二の極性溶媒(A2)としてトリエチレングリコールジメチルエーテル(以下、DMTGとする)39.6g、耐熱性樹脂(B)として合成例1で得られたポリアミドイミド樹脂粉末(PAI-1)30.8g、耐熱性樹脂(C)として合成例2で得られたポリイミド樹脂粉末(PAIF-1)13.2gを加えて攪拌しながら180℃まで昇温した。180℃で2時間攪拌後加熱を停止し、攪拌しながら放冷し、60℃でγ-BL16.8g、DMTG7.2gを加え、1時間攪拌し、冷却後、黄色組成物を得た。ろ過器KST-47(アドバンテック(株)製)に充填し、シリコンゴム製ピストンを挿入し、3.0kg/cmの圧力で加圧ろ過して樹脂ペースト(P-1)を得た。
<Preparation of resin paste>
Example 1
In a 0.5 liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube and a cooling tube, 92.4 g of γ-BL as a first polar solvent (A1) and a second polar solvent ( 39.6 g of triethylene glycol dimethyl ether (hereinafter referred to as DMTG) as A2), 30.8 g of the polyamideimide resin powder (PAI-1) obtained in Synthesis Example 1 as heat resistant resin (B), and heat resistant resin (C ) And 13.2 g of the polyimide resin powder (PAIF-1) obtained in Synthesis Example 2 were added and heated to 180 ° C. while stirring. After stirring at 180 ° C. for 2 hours, heating was stopped, the mixture was allowed to cool with stirring, 16.8 g of γ-BL and 7.2 g of DMTG were added at 60 ° C., stirred for 1 hour, and cooled to obtain a yellow composition. A filter KST-47 (manufactured by Advantech Co., Ltd.) was filled, a silicon rubber piston was inserted, and pressure filtration was performed at a pressure of 3.0 kg / cm 2 to obtain a resin paste (P-1).
(実施例2)
 冷却後60℃時に加える溶剤量をγ-BL10.7g、DMTGを4.6gにした以外は実施例1と同様にして、樹脂ペースト(P-2)を得た。
(Example 2)
Resin paste (P-2) was obtained in the same manner as in Example 1 except that the amount of solvent added at 60 ° C. after cooling was changed to 10.7 g of γ-BL and 4.6 g of DMTG.
(実施例3)
 温度計、撹拌機、窒素導入管及び冷却管を取り付けた0.5リットルの4つ口フラスコに窒素気流下、第一の極性溶媒(A1)としてγ-BL312.3g、第二の極性溶媒(A2)としてDMTG133.7g、耐熱性樹脂(B)として合成例1で得られたポリアミドイミド樹脂粉末(PAI-1)102.7g、耐熱性樹脂(C)として合成例2で得られたポリイミド樹脂粉末(PAIF-1)84.1gを加えて攪拌しながら180℃まで昇温した。180℃で2時間攪拌後加熱を停止し、攪拌しながら放冷し、60℃でγ-BL69.7g、DMTG29.7gを加え、1時間攪拌し、冷却後、黄色組成物を得た。ろ過器KST-47(アドバンテック(株)製)に充填し、シリコンゴム製ピストンを挿入し、3.0kg/cmの圧力で加圧ろ過して樹脂ペースト(P-3)を得た。
(Example 3)
In a 0.5 liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube and a cooling tube, under a nitrogen stream, 312.3 g of γ-BL as the first polar solvent (A1), the second polar solvent ( DMTG 133.7 g as A2), polyamideimide resin powder (PAI-1) 102.7 g obtained in Synthesis Example 1 as heat resistant resin (B), and polyimide resin obtained in Synthesis Example 2 as heat resistant resin (C) Powder (PAIF-1) 84.1g was added and it heated up to 180 degreeC, stirring. After stirring at 180 ° C. for 2 hours, heating was stopped, the mixture was allowed to cool with stirring, 69.7 g of γ-BL and 29.7 g of DMTG were added at 60 ° C., and the mixture was stirred for 1 hour and cooled to obtain a yellow composition. A filter KST-47 (manufactured by Advantech Co., Ltd.) was filled, a silicon rubber piston was inserted, and pressure filtration was performed at a pressure of 3.0 kg / cm 2 to obtain a resin paste (P-3).
(実施例4)
 温度計、撹拌機、窒素導入管、油水分離機付き冷却管を取り付けた1リットルの4つ口フラスコに窒素気流下、耐熱性樹脂(B)として合成例11で得られた耐熱性樹脂溶液(PI-1)300gと耐熱性樹脂(C)として合成例12で得られた耐熱性樹脂フィラー溶液(PIF-1)400gを仕込み、50~70℃で2時間撹拌し、耐熱性樹脂が溶解し、耐熱性樹脂フィラーが分散している樹脂ペースト(P-4)を得た。
(Example 4)
A heat-resistant resin solution obtained in Synthesis Example 11 as a heat-resistant resin (B) in a 1-liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, and a cooling tube with an oil / water separator under a nitrogen stream ( PI-1) 300 g and heat-resistant resin (C) 400 g of heat-resistant resin filler solution (PIF-1) obtained in Synthesis Example 12 were charged and stirred at 50 to 70 ° C. for 2 hours to dissolve the heat-resistant resin. A resin paste (P-4) in which the heat-resistant resin filler was dispersed was obtained.
(実施例5)
 耐熱性樹脂(B)として合成例3で得られたポリアミドイミド樹脂粉末(PAI-2)、耐熱性樹脂(C)として合成例4で得られたポリイミド樹脂粉末(PAIF-2)を用いた以外は実施例1と同様にして、樹脂ペースト(P-5)を得た。
(Example 5)
Other than using the polyamideimide resin powder (PAI-2) obtained in Synthesis Example 3 as the heat resistant resin (B) and the polyimide resin powder (PAIF-2) obtained in Synthesis Example 4 as the heat resistant resin (C) Obtained a resin paste (P-5) in the same manner as in Example 1.
(実施例6)
 耐熱性樹脂(B)として合成例5で得られたポリアミドイミド樹脂粉末(PAI-3)、耐熱性樹脂(C)として合成例6で得られたポリイミド樹脂粉末(PAIF-3)を用いた以外は実施例1と同様にして、樹脂ペースト(P-6)を得た。
(Example 6)
Other than using the polyamideimide resin powder (PAI-3) obtained in Synthesis Example 5 as the heat resistant resin (B) and the polyimide resin powder (PAIF-3) obtained in Synthesis Example 6 as the heat resistant resin (C) Was similar to Example 1 to obtain a resin paste (P-6).
(実施例7)
 耐熱性樹脂(B)として合成例7で得られたポリアミドイミド樹脂粉末(PAI-4)、耐熱性樹脂(C)として合成例8で得られたポリイミド樹脂粉末(PAIF-4)を用いた以外は実施例1と同様にして、樹脂ペースト(P-7)を得た。
(Example 7)
Other than using the polyamideimide resin powder (PAI-4) obtained in Synthesis Example 7 as the heat resistant resin (B) and the polyimide resin powder (PAIF-4) obtained in Synthesis Example 8 as the heat resistant resin (C) Gave a resin paste (P-7) in the same manner as in Example 1.
(比較例1)
 冷却後60℃時に加える溶剤量をγ-BL38.9g、DMTGを16.7gにした以外は実施例1と同様にして、樹脂ペースト(P-8)を得た。
(Comparative Example 1)
Resin paste (P-8) was obtained in the same manner as in Example 1 except that the amount of solvent added at 60 ° C. after cooling was changed to 38.9 g of γ-BL and 16.7 g of DMTG.
(比較例2)
 温度計、撹拌機、窒素導入管及び冷却管を取り付けた0.5リットルの4つ口フラスコに窒素気流下、第一の極性溶媒(A1)としてγ-BL 71.9g、第二の極性溶媒(A2)としてDMTG30.8g、耐熱性樹脂(B)として合成例1で得られたポリアミドイミド樹脂粉末(PAI-1)30.8g、耐熱性樹脂(C)として合成例6で得られたポリイミド樹脂粉末(PAIF-3)13.2gを加えて攪拌しながら180℃まで昇温した。180℃で2時間攪拌後加熱を停止し、攪拌しながら放冷し、冷却後、黄色組成物を得た。ろ過器KST-47(アドバンテック(株)製)に充填し、シリコンゴム製ピストンを挿入し、3.0kg/cmの圧力で加圧ろ過して樹脂ペースト(P-9)を得た。
(Comparative Example 2)
In a 0.5 liter four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube and a condenser tube, 71.9 g of γ-BL as the first polar solvent (A1) under a nitrogen stream, the second polar solvent (A2) 30.8 g of DMTG, 30.8 g of polyamideimide resin powder (PAI-1) obtained in Synthesis Example 1 as the heat resistant resin (B), and polyimide obtained in Synthesis Example 6 as the heat resistant resin (C) 13.2 g of resin powder (PAIF-3) was added and the temperature was raised to 180 ° C. with stirring. After stirring at 180 ° C. for 2 hours, heating was stopped, the mixture was allowed to cool with stirring, and after cooling, a yellow composition was obtained. A filter KST-47 (manufactured by Advantech Co., Ltd.) was filled, a silicon rubber piston was inserted, and pressure filtration was performed at a pressure of 3.0 kg / cm 2 to obtain a resin paste (P-9).
(比較例3)
 耐熱性樹脂(B)として合成例13で得られた耐熱性樹脂溶液(PI-2)、耐熱性樹脂(C)として合成例14で得られた耐熱性樹脂フィラー溶液(PIF-2)を用いた以外は実施例4と同様にして、樹脂ペースト(P-10)を得た。
(Comparative Example 3)
The heat resistant resin solution (PI-2) obtained in Synthesis Example 13 was used as the heat resistant resin (B), and the heat resistant resin filler solution (PIF-2) obtained in Synthetic Example 14 was used as the heat resistant resin (C). A resin paste (P-10) was obtained in the same manner as in Example 4 except that.
(比較例4)
 耐熱性樹脂(B)として合成例9で得られたポリアミドイミド樹脂粉末(PAI-5)、耐熱性樹脂(A)として合成例10で得られたポリイミド樹脂粉末(PAIF-5)を用いた以外は実施例1と同様にして、樹脂ペースト(P-11)を得た。P-11は、ゼリー状であり、粘度及びチキソトロピー係数を測定できず、スクリーン印刷することができなかった。
(Comparative Example 4)
Other than using the polyamideimide resin powder (PAI-5) obtained in Synthesis Example 9 as the heat resistant resin (B) and the polyimide resin powder (PAIF-5) obtained in Synthesis Example 10 as the heat resistant resin (A) Obtained a resin paste (P-11) in the same manner as in Example 1. P-11 was jelly-like and could not measure viscosity and thixotropy coefficient and could not be screen printed.
<樹脂ペーストの評価>
(不揮発分濃度)
 実施例1~7及び比較例1~4で得られた樹脂ペーストを金属シャーレ上に秤量し乾燥する前の重量と、150℃で1時間、250℃で2時間乾燥した後の重量とを測定し、下記式に基づいて不揮発分濃度(以下、NVとする)を算出した。
 NV(%)=(加熱乾燥後の樹脂ペーストの重量(g)/加熱乾燥前の樹脂ペーストの重量(g))×100
<Evaluation of resin paste>
(Non-volatile content)
The resin pastes obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were weighed on a metal petri dish before drying, and the weight after drying at 150 ° C. for 1 hour and at 250 ° C. for 2 hours was measured. The nonvolatile content concentration (hereinafter referred to as NV) was calculated based on the following formula.
NV (%) = (weight of resin paste after heat drying (g) / weight of resin paste before heat drying (g)) × 100
(粘度及びチキソトロピー係数)
 実施例1~7及び比較例1~4で得られた樹脂ペーストの粘度及びチキソトロピー係数(TI値)を、高粘度粘度計「RE-80U」((株)東機産業製)によって測定した。粘度は、回転数0.5rpm(min-1)における測定値とし、TI値は、回転数1rpmにおける粘度の測定値に対する回転数10rpmにおける粘度の測定値の比として算出した。
(Viscosity and thixotropy coefficient)
The viscosity and thixotropy coefficient (TI value) of the resin pastes obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were measured with a high viscosity viscometer “RE-80U” (manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured at a rotational speed of 0.5 rpm (min −1 ), and the TI value was calculated as the ratio of the measured viscosity value at a rotational speed of 10 rpm to the measured viscosity value at a rotational speed of 1 rpm.
(形状保持性及びにじみダレの有無)
 スクリーン印刷の1枚目の時点における、乳剤厚5μm、直径300μmの円形の乳剤開口部に対応する、樹脂ペーストの印刷部におけるホール部を顕微鏡によって測定した。形状保持性は樹脂ペーストの印刷部における5箇所のホール部の直径(ホール径)の平均値とし、にじみダレの有無はホールの周りでにじみダレが生じ、二重のホール形に見えた場合、にじみダレが生じていると判断した。
(Shape retention and presence / absence of bleeding)
The hole in the printed part of the resin paste corresponding to the circular emulsion opening having an emulsion thickness of 5 μm and a diameter of 300 μm at the time of the first screen printing was measured with a microscope. The shape retention is the average value of the diameters (hole diameters) of the five holes in the printed part of the resin paste, and the presence or absence of blurring occurs when blurring occurs around the hole and looks like a double hole shape. Judged that blurring occurred.
(連続印刷性)
 連続的にスクリーン印刷を行い、スクリーン印刷20枚目の時点における、乳剤厚5μm、直径300μmの円形の乳剤開口部に対応する、樹脂ペーストの印刷部における15箇所のホール部の直径(ホール径)の平均値を測定した。
(Continuous printability)
Screen printing is performed continuously, and the diameter (hole diameter) of 15 holes in the printed part of the resin paste corresponding to a circular emulsion opening having an emulsion thickness of 5 μm and a diameter of 300 μm at the 20th screen printed. The average value of was measured.
 実施例1~4及び比較例1~4で得られた樹脂ペーストの組成及びその評価結果を表1及び2に示す。なお、実施例1~3及び比較例1では、耐熱性樹脂(C)として合成例2で作製したPAIF-1を用いているが、樹脂ペーストを調製する際のNVによって異なる粒径に制御されている。 Tables 1 and 2 show the compositions of the resin pastes obtained in Examples 1 to 4 and Comparative Examples 1 to 4 and the evaluation results thereof. In Examples 1 to 3 and Comparative Example 1, PAIF-1 produced in Synthesis Example 2 was used as the heat resistant resin (C), but the particle size was controlled to be different depending on the NV when the resin paste was prepared. ing.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 実施例1~8で作製した樹脂ペーストは、比較例1~4で作製した樹脂ペーストに比べ、形状保持性及び連続印刷性に優れることが確認できた。 It was confirmed that the resin pastes produced in Examples 1 to 8 were superior in shape retention and continuous printability compared to the resin pastes produced in Comparative Examples 1 to 4.
 本発明によれば、形状保持性及び連続印刷性に優れる樹脂ペースト、当該樹脂ペーストから形成した樹脂膜を備える太陽電池及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a resin paste excellent in shape retention and continuous printability, a solar cell including a resin film formed from the resin paste, and a method for manufacturing the solar cell.
 1…基材、2…第一の極性溶媒(A1)、第二の極性溶媒(A2)及び耐熱性樹脂(B)を含む溶液、3…耐熱性樹脂(C)、4…樹脂膜、10…樹脂ペースト、11…シリコンウエハ、12…アルミニウム配線、13…プラス電極、14…マイナス電極、15…Tab配線、20…基板。 DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Solution containing 1st polar solvent (A1), 2nd polar solvent (A2), and heat resistant resin (B), 3 ... Heat resistant resin (C), 4 ... Resin film | membrane, 10 ... resin paste, 11 ... silicon wafer, 12 ... aluminum wiring, 13 ... positive electrode, 14 ... negative electrode, 15 ... Tab wiring, 20 ... substrate.

Claims (4)

  1.  第一の極性溶媒(A1)及び第二の極性溶媒(A2)を含む混合溶媒と、
     室温において、前記混合溶媒に可溶な耐熱性樹脂(B)と、
     室温において、前記第一の極性溶媒(A1)に可溶であり、前記第二の極性溶媒(A2)に不溶であり、かつ、前記混合溶媒に不溶である耐熱性樹脂(C)と、
    を含む樹脂ペーストであり、
     前記混合溶媒及び前記耐熱性樹脂(B)を含む溶液中に前記耐熱性樹脂(C)が分散されており、前記耐熱性樹脂(C)が、平均粒子径0.1~5.0μmの有機フィラーであり、
     前記耐熱性樹脂(B)及び前記耐熱性樹脂(C)を混合した樹脂の重量平均分子量が10000~100000であり、
     25℃における粘度が30~500Pa・sであり、かつ、チキソトロピー係数が2.0~10.0である、樹脂ペースト。
    A mixed solvent comprising a first polar solvent (A1) and a second polar solvent (A2);
    A heat-resistant resin (B) soluble in the mixed solvent at room temperature;
    A heat resistant resin (C) that is soluble in the first polar solvent (A1) at room temperature, insoluble in the second polar solvent (A2), and insoluble in the mixed solvent;
    A resin paste containing
    The heat resistant resin (C) is dispersed in a solution containing the mixed solvent and the heat resistant resin (B), and the heat resistant resin (C) is an organic material having an average particle size of 0.1 to 5.0 μm. A filler,
    The resin obtained by mixing the heat-resistant resin (B) and the heat-resistant resin (C) has a weight average molecular weight of 10,000 to 100,000.
    A resin paste having a viscosity at 25 ° C. of 30 to 500 Pa · s and a thixotropic coefficient of 2.0 to 10.0.
  2.  前記耐熱性樹脂(B)及び前記耐熱性樹脂(C)が、それぞれ独立に、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂前駆体及びポリアミドイミド樹脂前駆体からなる群より選ばれる少なくとも一つである、請求項1に記載の樹脂ペースト。 The heat resistant resin (B) and the heat resistant resin (C) are each independently at least one selected from the group consisting of a polyamide resin, a polyimide resin, a polyamideimide resin, a polyimide resin precursor, and a polyamideimide resin precursor. The resin paste according to claim 1, wherein
  3.  少なくとも一方の面に電極が形成された基板の電極形成面に、請求項1又は2に記載の樹脂ペーストを前記電極が露出するようにスクリーン印刷する工程と、
     スクリーン印刷された前記樹脂ペーストを加熱硬化して、樹脂膜を形成する工程と、
    を含む太陽電池の製造方法。
    A step of screen-printing the resin paste according to claim 1 or 2 on the electrode forming surface of the substrate on which an electrode is formed on at least one surface such that the electrode is exposed;
    Heat-curing the screen-printed resin paste to form a resin film;
    The manufacturing method of the solar cell containing this.
  4.  請求項1又は2に記載の樹脂ペーストから形成された樹脂膜を備える太陽電池。 A solar cell comprising a resin film formed from the resin paste according to claim 1 or 2.
PCT/JP2013/050677 2012-01-17 2013-01-16 Resin paste and method for producing solar cell WO2013108784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-007182 2012-01-17
JP2012007182 2012-01-17

Publications (1)

Publication Number Publication Date
WO2013108784A1 true WO2013108784A1 (en) 2013-07-25

Family

ID=48799209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050677 WO2013108784A1 (en) 2012-01-17 2013-01-16 Resin paste and method for producing solar cell

Country Status (3)

Country Link
JP (1) JP2013166925A (en)
TW (1) TW201335261A (en)
WO (1) WO2013108784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124414A1 (en) * 2017-12-20 2019-06-27 日立化成株式会社 Polyamide imide resin, polyamide imide resin composition, and semiconductor device using polyamide imide resin and polyamide imide resin composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672815B2 (en) * 2015-04-14 2020-03-25 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP6780501B2 (en) * 2015-04-15 2020-11-04 東レ株式会社 A heat-resistant resin composition, a method for producing a heat-resistant resin film, a method for producing an interlayer insulating film or a surface protective film, and a method for producing an electronic component or a semiconductor component.
SE543901C2 (en) * 2017-08-10 2021-09-21 Showa Denko Materials Co Ltd Semiconductor device and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248001A (en) * 2004-03-04 2005-09-15 Hitachi Chem Co Ltd Heat-resistant resin paste and manufacturing method therefor
JP2007246897A (en) * 2006-02-15 2007-09-27 Hitachi Chem Co Ltd Heat-resistant resin paste, method for producing heat-resistant resin paste and semiconductor device having insulation film or protection film derived from heat-resistant resin paste
JP2008280509A (en) * 2007-04-13 2008-11-20 Hitachi Chem Co Ltd Heat resistant resin paste

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697215B2 (en) * 1988-12-29 1998-01-14 日立化成工業株式会社 Heat resistant resin paste and IC using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248001A (en) * 2004-03-04 2005-09-15 Hitachi Chem Co Ltd Heat-resistant resin paste and manufacturing method therefor
JP2007246897A (en) * 2006-02-15 2007-09-27 Hitachi Chem Co Ltd Heat-resistant resin paste, method for producing heat-resistant resin paste and semiconductor device having insulation film or protection film derived from heat-resistant resin paste
JP2008280509A (en) * 2007-04-13 2008-11-20 Hitachi Chem Co Ltd Heat resistant resin paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124414A1 (en) * 2017-12-20 2019-06-27 日立化成株式会社 Polyamide imide resin, polyamide imide resin composition, and semiconductor device using polyamide imide resin and polyamide imide resin composition
JPWO2019124414A1 (en) * 2017-12-20 2021-01-14 昭和電工マテリアルズ株式会社 Polyamide-imide resin and polyamide-imide resin composition, and semiconductor devices using them.
JP7298480B2 (en) 2017-12-20 2023-06-27 株式会社レゾナック Polyamideimide resin, polyamideimide resin composition, and semiconductor device using them

Also Published As

Publication number Publication date
JP2013166925A (en) 2013-08-29
TW201335261A (en) 2013-09-01

Similar Documents

Publication Publication Date Title
JP6254274B2 (en) Polyimide film having voids and method for producing the same
JP6413434B2 (en) Polyimide precursor composition, method for producing polyimide precursor, polyimide molded body, and method for producing polyimide molded body
EP3730536B1 (en) Polyamide imide resin, polyamide imide resin composition, and semiconductor device using polyamide imide resin and polyamide imide resin composition
JP2018522105A (en) Polyamide-imide precursor, polyamide-imide film, and display element including the same
KR20130121090A (en) Polyimide resin composition for use in forming insulation film in photovoltaic cell and method of forming insulation film in photovoltaic cell used therewith
CN101796105A (en) Polyimide film
WO2013108784A1 (en) Resin paste and method for producing solar cell
JP5343562B2 (en) Heat resistant resin paste
JP4748155B2 (en) Resin composition and semiconductor device using the same
JP2007246897A (en) Heat-resistant resin paste, method for producing heat-resistant resin paste and semiconductor device having insulation film or protection film derived from heat-resistant resin paste
CN114015233B (en) Polyimide material and preparation method and application thereof
WO2012133415A1 (en) Resin paste, solar cell, method for manufacturing solar cell, resin film, and semiconductor device
TW201446779A (en) Siloxane dianhydride, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6496993B2 (en) Polyimide precursor composition, method for producing polyimide precursor, polyimide molded body, and method for producing polyimide molded body
JP2008138159A (en) Resin composition and semiconductor device using the same
JP4725124B2 (en) Resin composition and semiconductor device using the same
JP7342355B2 (en) Resin composition and semiconductor device
JP2020113597A (en) Circuit board, manufacturing method thereof, and semiconductor device
US20090227714A1 (en) Resin composition and semiconductor device using the same
JP2008280509A (en) Heat resistant resin paste
JP2005239862A (en) Manufacturing method of resin composition and semiconductor device using it
JP2023034978A (en) Polyimide precursor solution, porous polyimide film, and insulated wire
TW202119679A (en) Active material having surface coat layer, electrode comprising same, and electricity storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738732

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13738732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE