WO2013108331A1 - Two-line dimmer switch - Google Patents

Two-line dimmer switch Download PDF

Info

Publication number
WO2013108331A1
WO2013108331A1 PCT/JP2012/007762 JP2012007762W WO2013108331A1 WO 2013108331 A1 WO2013108331 A1 WO 2013108331A1 JP 2012007762 W JP2012007762 W JP 2012007762W WO 2013108331 A1 WO2013108331 A1 WO 2013108331A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch element
auxiliary
power supply
switch
Prior art date
Application number
PCT/JP2012/007762
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 潔
工藤 弘行
修次 松浦
平田 聡
麻衣 佐々木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280067041.1A priority Critical patent/CN104041188B/en
Priority to KR1020147018426A priority patent/KR101626694B1/en
Publication of WO2013108331A1 publication Critical patent/WO2013108331A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a two-wire dimmer switch for adjusting the brightness of a lighting load.
  • FIG. 8 shows a basic circuit configuration (first conventional example) of the two-wire dimmer switch 50 using the triac 51.
  • the two-wire dimmer switch 50 is connected in series to the AC power source 2 and the illumination load (incandescent light bulb) 3.
  • the two-wire dimming switch 50 is connected to the triac 51, the gate electrode of the triac 51, and for example, a diac (trigger diode) 52 for inputting a gate drive signal, and a variable connected to an operation member operated by a user. It comprises a resistor 53, a fixed resistor 54, a capacitor 55, a filter element 56, and the like.
  • the capacitor 55 is charged from the AC power supply 2 through the variable resistor 53, and when the voltage across the capacitor 55 reaches the breakover voltage of the diac 52, the triac 51 Is conducted.
  • the triac 51 is extinguished at the voltage zero cross point of the AC power supply. That is, the trigger (conduction) and self-extinguishing (non-conduction) of the triac 51 by the diac 52 are repeated every half cycle of the AC power supply.
  • the illumination load 3 can be dimmed by adjusting the resistance value of the variable resistor 53 and controlling the phase of the firing period of the triac 51.
  • the two-wire dimming switch 50 of the first conventional example adjusts the lighting load 3 by changing the resistance value of the variable resistor 53, the loss due to the variable resistor 53 is large. Further, since the voltage of the AC power supply 2 is directly applied to the variable resistor 53, the variable resistor 53 itself cannot be downsized, and downsizing of the two-wire dimmer switch 50 has a limit. Furthermore, when other devices connected to the same AC power supply 2 operate, a voltage change occurs in the AC power supply 2 and the brightness of the illumination load 3 changes instantaneously.
  • Japanese Patent Application Laid-Open No. 11-67479 discloses a timing for turning on a semiconductor switch element, that is, a timing for outputting a gate drive signal.
  • a dimmer switch that is controlled using a computer or the like has been proposed.
  • this dimmer switch is a three-wire type
  • FIG. 9 shows a circuit configuration (second conventional example) in which it is applied to a two-wire dimmer switch.
  • the secondary side phototriac 63 of the phototriac coupler 62 is connected to the gate electrode of the triac 61.
  • a rectifier circuit 65 is connected between the other electrodes of the triac 61, and the power that has been full-wave rectified by the rectifier circuit 65 is input to the power supply unit 66.
  • the control unit 67 is driven by DC power converted by the power supply unit 66.
  • the voltage of the AC power supply 2 for example, AC (AC) 100 V is applied to the rectifier circuit 65.
  • the controller 67 is driven with, for example, direct current (DC) 3 to 6V.
  • the phototriac coupler 62 optically isolates the control unit 67 and the semiconductor switch element 61.
  • the control unit 67 makes the transistor 69 conductive at a timing stored in advance in the look-up table according to the resistance value of the variable resistor 68 connected to the operation member operated by the user.
  • a current flows through the light emitting diode 64 on the primary side of the phototriac coupler 62, and the secondary side phototriac 63 is turned on.
  • the secondary side phototriac 63 of the phototriac coupler 62 becomes conductive, the load current starts to flow and the gate voltage of the triac 61 increases.
  • the triac 61 When the gate voltage of the triac 61 exceeds the threshold value, the triac 61 becomes conductive, and the current flowing from the AC power supply 2 to the lighting load 3 is commutated from the phototriac 63 to the triac 61 in the two-wire dimming switch 60, and the phototriac 63 becomes non-conductive.
  • the LED drive circuit 70 includes a rectifier circuit 71 that rectifies AC power, an inductor 72, a buffer capacitor 73 for storing power, an LED array 77, a capacitor 76 connected in parallel to the LED array 77, an LED It comprises an FET (Field (Effect Transistor) 75 for supplying a constant current to the array 77 and its driving IC 74.
  • FET Field (Effect Transistor
  • the LED bulb is an electronic circuit composed of a diode or an IC as a load.
  • Fig.11 (a) shows the waveform of the load voltage and load current of an incandescent lamp in the 1/2 cycle of AC power supply
  • FIG.11 (b) shows the waveform of the load voltage and load current of an LED bulb.
  • An incandescent bulb has a power factor of 1, and the voltage and current show almost the same waveform.
  • the load current is mainly for charging the capacitor 73, and instantaneously shows a large value simultaneously with the conduction of the triac, but soon decreases.
  • FIG. 12 shows a problem when the LED bulb is dimmed and controlled by the two-wire dimmer switch 50 of the first conventional example.
  • the triac 51 when the triac 51 is turned on, a large load current flows instantaneously, but immediately decreases.
  • the value of the load current becomes less than the holding current of the triac 51, the triac 51 is self-extinguished and becomes non-conductive.
  • the voltage of the capacitor 73 decreases, and the drive IC 74 controls to reduce the current flowing through the FET 75.
  • the electric current which flows into the LED array 77 will decrease, and the brightness of an LED bulb will fall. Further, the load current temporarily decreases due to the influence of noise superimposed on the AC power supply 2, or the voltage is applied to the AC power supply 2 by the operation of other devices connected to the same AC power supply 2 as shown in FIG. When the fluctuation occurs, the brightness of the LED bulb decreases.
  • the two-wire dimmer switch 60 of the second conventional example if a current is continuously supplied to the phototriac 63 on the secondary side of the phototriac coupler 62, a load current can be continuously supplied.
  • a current of several mA to several tens of mA flows through the phototriac 63, a large amount of power is consumed to maintain the conduction for a long time.
  • the LED bulb is substantially the electronic circuit itself as described above and consumes little power, if a large amount of power is consumed on the two-wire dimmer switch 60 side, it may become uncontrollable.
  • the present invention has been made to solve the above-described problems of the conventional example, and even when an LED bulb is connected as an illumination load, the brightness of the LED bulb is stabilized, and there is little flickering or fluctuation 2
  • An object is to provide a linear dimmer switch.
  • the two-wire dimmer switch according to the present invention is connected in series to an AC power source and a lighting load, A first connection terminal and a second connection terminal to which AC power is input; A main switching circuit connected between the first connection terminal and the second connection terminal and having the first semiconductor switch element as a main switch element; A rectifier circuit connected between the first connection terminal and the second connection terminal; A power supply circuit connected to the DC side of the rectifier circuit and securing an internal power supply of the two-wire dimmer switch; A frequency detection circuit connected to the DC side of the rectifier circuit and outputting a predetermined detection signal for detecting the frequency of the AC power supply; Connected to the DC side or AC side of the rectifier circuit, the second semiconductor switch element is used as an auxiliary switch element, and a load current flows when the main switch element is not conducting, and the main switch element or other semiconductor An auxiliary switching circuit for outputting a gate drive signal for conducting the switch element; A dimming amount setting circuit for setting a dimming amount to be adjusted by the user to adjust the brightness of
  • auxiliary switching circuit it is turned on by the gate drive signal output from the auxiliary switching circuit, and after the auxiliary switching circuit is turned on, a load current is passed when the main switch element is not turned on, and the main switch element is turned on. It is preferable to further include a quasi-main switching circuit that outputs a drive signal for the purpose.
  • the main switch element is a triac
  • the auxiliary switching circuit preferably uses a thyristor connected to the DC side of the rectifier circuit as an auxiliary switch element.
  • the main switch element is a triac
  • the auxiliary switching circuit includes two thyristors that are connected to the AC side of the rectifier circuit and are alternately turned on according to the polarity of the AC power supply as auxiliary switch elements.
  • the quasi-main switching circuit has a phototriac coupler as a switch element, a phototriac on the secondary side of the phototriac coupler is connected in parallel with the main switch element, and one terminal is a gate of the main switch element.
  • a light emitting diode on the primary side of the phototriac coupler is connected in series with the auxiliary switching circuit;
  • the holding current value of the phototriac is preferably smaller than the holding current value of the triac.
  • control circuit When the control circuit starts dimming control of the illumination load, it preferably outputs an initial drive signal for conducting the auxiliary switching circuit at a predetermined timing near the estimated voltage zero-cross point. .
  • the auxiliary switching circuit that outputs a gate drive signal to flow the load current when the main switch element is not conductive and to conduct the main switch element or other semiconductor switch elements.
  • a drive signal for conducting the auxiliary switching circuit is determined based on the dimming amount set by the dimming amount setting circuit and the voltage zero cross point, and a predetermined time before the next voltage zero cross point. The output continues until the second timing until the auxiliary switching circuit is maintained in the conductive state. Therefore, it is assumed that the lighting load is an LED bulb, and the load current becomes less than the holding current of the main switch element after the load current is commutated from the auxiliary switch circuit to the main switch circuit, and the main switch circuit becomes non-conductive. However, the load current can continue to flow through an auxiliary switching circuit or the like. As a result, the brightness of the LED bulb can be stabilized, and flicker and fluctuation can be reduced.
  • FIG. 1 is a circuit diagram showing a configuration of a two-wire dimmer switch according to a first embodiment of the present invention.
  • assistant switch circuit in 1st Embodiment conduct.
  • assistant switch circuit which show the influence of the load current by another apparatus become conductive.
  • the circuit diagram which shows the structure of the two-wire dimmer switch which concerns on 2nd Embodiment of this invention.
  • FIG. 1 shows a circuit configuration of a two-wire dimmer switch 1A according to the first embodiment.
  • the two-wire dimmer switch 1 ⁇ / b> A is connected in series to the AC power source 2 and the illumination load 3.
  • a switch 5 that controls lighting and extinction of the illumination load 3 may be provided integrally with the dimming variable resistor 4 of the two-wire dimming switch 1A, or the switch 5 may be provided separately. In the following description, a case where the switch 5 is provided separately from the two-wire dimmer switch 1A is illustrated.
  • the first connection terminal 1a and the second connection terminal 1b of the two-wire dimmer switch 1A are connected to the AC power source 2 or the lighting load 3 and the switch 5.
  • a main switching circuit 10 Connected between the first connection terminal 1a and the second connection terminal 1b is a main switching circuit 10 having a first semiconductor switch element such as a triac as a main switch element 11.
  • a rectifier circuit 12 is connected between the first connection terminal 1a and the second connection terminal 1b.
  • the rectifier circuit 12 receives the internal power of the two-wire dimmer switch 1A.
  • a power supply circuit 13 for securing is connected.
  • the power supply circuit 13 includes a switching circuit composed of a first transistor element 13a and a second transistor element 13b connected in Darlington, a Zener diode 13c and a resistor 13d connected to the base of the second transistor element 13b, and the like.
  • a constant voltage circuit (such as a three-terminal regulator) 14 and a buffer capacitor 15 for supplying DC constant voltage power to a control circuit 16 constituted by a processor or the like are included.
  • the switch 5 When the switch 5 is turned on, the pulsating current rectified by the rectifier circuit 12 is input to the power supply circuit 13, and the power whose output voltage is governed by the Zener voltage of the Zener diode 13c is output from the power supply circuit.
  • the electric power charges the buffer capacitor 15 and is stepped down to a predetermined voltage (for example, 3 V) by the constant voltage circuit 14 and is supplied to the control circuit 16.
  • a predetermined voltage for example, 3 V
  • the resistance value of the resistor 13d of the power supply circuit 13 is set to a value high enough to allow the current necessary for the operation of the second transistor element 13b to flow, the value of the current flowing to the ground via the Zener diode 13c is obtained. Therefore, the power loss can be reduced.
  • a frequency detection circuit 17 for detecting the frequency of the AC power supply 2 is connected to the DC output terminal of the rectifier circuit 12, and a predetermined detection signal output from the frequency detection circuit 17 is input to the control circuit 16. Further, the DC side output terminal of the rectifier circuit 12 is a thyristor for passing a current through the illumination load 3 until the main switch element 11 of the main switching circuit 10 is turned on or when the main switch element 11 is not turned on. An auxiliary switching circuit 18 having the second semiconductor switch element as an auxiliary switch element is connected. The control circuit 16 is connected to a dimming amount setting circuit 4 composed of a variable resistor or the like operated by a user. In the following description, the main switch element is referred to as a triac 11 and the auxiliary switching circuit or auxiliary switch element is referred to as a thyristor 18 as necessary.
  • the frequency detection circuit 17 is configured such that the pulsating current output from the rectifier circuit 12 is input to the base of the transistor element 17a, and a predetermined detection signal is transmitted from the frequency detection circuit 17 in accordance with the frequency of the AC power supply 2. 16 is input.
  • the control circuit 16 detects the frequency (50 Hz or 60 Hz) of the AC power supply 2 from the detection signal of the frequency detection circuit 17 and estimates the voltage zero cross point based on the detection. Then, a gate drive signal is input to the gate terminal of the thyristor 18 based on the detected frequency and the estimated voltage zero cross point.
  • FIG. 2 shows respective waveforms of the load voltage, load current, and gate drive signal in a half cycle of the AC power supply 2 when an LED bulb is used as the illumination load 3.
  • the rising edge of the gate drive signal searches a lookup table stored in advance in the control circuit 16 based on the resistance value of the light adjustment amount setting circuit (variable resistor) 4. To be determined.
  • the fall of the gate drive signal (second timing when the thyristor 18 becomes non-conductive) is set to a short time ⁇ t (for example, 1 ms) from the voltage zero cross point of the AC power supply 2.
  • the predetermined time ⁇ t is a time sufficient for the control circuit 16 to estimate the next voltage zero-cross point based on the detection signal from the frequency detection circuit 17, for example.
  • the control circuit 16 starts outputting the gate drive signal at the first timing based on the resistance value of the light control amount setting circuit (variable resistor) 4 (rises the gate drive signal).
  • the gate drive signal is input to the gate terminal of the thyristor 18, the thyristor 18 becomes conductive and current starts to flow through the lighting load 3. Further, since the current flowing through the thyristor 18 also flows through the gate electrode of the triac 11, the triac 11 becomes conductive when the voltage and current exceed the gate voltage threshold value and the turn-on current of the triac 11, and the load current flows from the thyristor 18 to the triac 11. To commutate.
  • the load current instantaneously shows a large value simultaneously with the conduction of the thyristor 18 or the triac 11 as described above, but immediately becomes small.
  • the value of the load current becomes less than the holding current of the triac 11, the triac 11 is self-extinguished and becomes non-conductive.
  • the control circuit 16 stops the output of the gate drive signal (falls the gate drive signal) at a second timing just before the voltage zero cross point of the AC power supply 2 by a predetermined time ⁇ t.
  • the pulsating current output from the rectifier circuit 12 is diverted from the thyristor 18 to the power supply circuit 13 and the frequency detection circuit 17, so that the control circuit 16 is based on the detection signal from the frequency detection circuit 17.
  • the next voltage zero cross point of the AC power supply 2 can be estimated, and the timing of starting the output of the next gate drive signal can be controlled with the estimated voltage zero cross point as a reference.
  • the two-wire dimmer switch 1A allows a current to flow through the illumination load 3 until the main switch element (triac) 11 of the main switching circuit 10 is turned on or when the main switch element 11 is not turned on. Since the auxiliary open / close circuit (thyristor) 18 is provided, the load current value is less than the holding current of the triac 11 and the thyristor 18 is conductive even when the triac 11 is nonconductive. Continues to flow through thyristor 18. As a result, the brightness of the LED bulb is stabilized, and flickering and fluctuation that can be seen with the naked eye hardly occur.
  • the current can be continuously supplied to the load via the auxiliary switching circuit (thyristor) 18. Further, the gate drive signal input to the gate electrode of the thyristor 18 is stopped at the second timing just before the voltage zero cross point of the AC power source 2 by a predetermined time ⁇ t, so that the next voltage zero cross point of the AC power source 2 is accurately determined. Can be estimated. Further, as shown in FIG. 3, even if other devices connected to the same AC power supply 2 operate, the load current continues to flow through the thyristor 18, so that the brightness of the illumination load 3 hardly changes. Also, the load voltage waveform does not change much. Needless to say, a triac 11 having a small holding current value is selected and used.
  • FIG. 4 shows a circuit configuration of a two-wire dimmer switch 1B according to the second embodiment.
  • the two-wire dimmer switch 1B is obtained by adding a phototriac coupler 20 as a quasi-main switching circuit to the two-wire dimmer switch 1A according to the first embodiment.
  • a secondary side phototriac 21 of the phototriac coupler 20 is connected in parallel to a main switching circuit (triac) 11, and a primary side light emitting diode 22 is connected in series to an auxiliary switching unit (thyristor) 18.
  • a main switching circuit triac
  • thyristor auxiliary switching unit
  • the load current is commutated to the phototriac 21.
  • the load current value is small and less than the holding current value of the TRIAC 11 of the main switching circuit, the TRIAC 11 of the main switching circuit is not conducted, and the load current remains as it is in the phototriac 21 that is a quasi-main switching circuit. Flowing through.
  • the load current value is large and exceeds the holding current value of the triac 11 of the main switching circuit, the triac 11 of the main switching circuit becomes conductive, and the load current is commutated to the triac 11.
  • the illumination load 3 is an LED bulb
  • the load current value is less than the holding current of the triac 11
  • the triac 11 is self-extinguished and becomes non-conductive, but the thyristor 18 is conductive and the load current is the thyristor 18.
  • the primary side light emitting diode 22 of the phototriac coupler 20 emits light
  • the secondary side phototriac 21 is turned on, and the load current is commutated to the phototriac 21. Since the holding current value of the phototriac 21 is smaller than the holding current value of the triac 11 as described above, the load current can continue to flow stably.
  • the two-wire dimmer switch 1B according to the second embodiment is slightly different from the two-wire dimmer switch 1A according to the first embodiment in that a phototriac coupler 20 is added as a quasi-main switching circuit.
  • the structure is complicated, which increases the cost.
  • the load current flows exclusively through the phototriac 21 on the upstream side (AC side) of the rectifier circuit 12, that is, the load current does not pass through the diode bridge. Loss due to bridges is eliminated. As a result, the change in the brightness of the LED bulb becomes very small, and there is almost no flickering or fluctuation that can be seen with the naked eye.
  • FIG. 5 shows a circuit configuration of a two-wire dimmer switch 1C according to the third embodiment.
  • the two-wire dimmer switch 1C is provided with two auxiliary open / close circuits (thyristors) 18a and 18b in the two-wire dimmer switch 1A according to the first embodiment, and the anode of each thyristor is an alternating current of the rectifier circuit 12.
  • the cathode is connected to the DC negative terminal of the rectifier circuit 12 on the side.
  • the gate drive signal output from the control circuit 16 is branched by the diodes 25a and 25b and input to the gate terminals of the thyristors 18a and 18b. That is, one of the two thyristors 18a and 18b is used as an auxiliary switching circuit depending on the polarity of the AC power supply 2.
  • Other configurations and operations are the same as those of the two-wire dimmer switch 1A according to the first embodiment.
  • the two-wire dimmer switch 1C according to the third embodiment is added with a thyristor, a resistor, and a capacitor constituting an auxiliary switching circuit, compared to the two-wire dimmer switch 1A according to the first embodiment.
  • the structure is slightly complicated, which increases the cost.
  • the load current does not pass through one diode constituting the rectifier circuit 12 after the triac 11 is turned off, the loss is reduced accordingly.
  • the illumination load 3 is an LED bulb, the load current value is very small. Therefore, the smaller the loss of one diode, the smaller the flickering and fluctuation of the LED bulb.
  • FIG. 6 shows a circuit configuration of a two-wire dimmer switch 1D according to the fourth embodiment.
  • the two-wire dimmer switch 1D is a combination of the features of the two-wire dimmer switch 1B according to the second embodiment and the two-wire dimmer switch 1C according to the third embodiment.
  • a phototriac coupler 20 and two auxiliary switching circuits (thyristors) 18a and 18b are provided.
  • the first to fourth embodiments relate to the structure of the two-wire dimmer switch, but the fifth embodiment relates to a control method in any of the two-wire dimmer switches 1A to 1D.
  • the two-wire dimmer switches 1A to 1D and the LED bulb driving circuit 70 shown in FIG. 10 each have a circuit configuration for converting AC power to DC power and storing the power in a buffer capacitor. Therefore, for example, when the switch 5 is turned off for a long time, it is considered that any buffer capacitor is discharged and no electric power remains.
  • the switch 5 is turned on, the two-wire dimming switches 1A to 1D are activated, and the control circuit 16 outputs a gate drive signal to start supplying power to the illumination load 3.
  • the drive circuit 70 is not activated even when the supply of power is started, and thus the operation and impedance characteristics are different from those during steady lighting. That is, when the supply of power to the LED bulb driving circuit 70 is started, the buffer capacitor 73 is charged first. Therefore, when the LED bulb is started, the capacitance component of the buffer capacitor 73 exhibits dominant impedance characteristics.
  • the voltage of the AC power supply 2 is relatively high, when a current begins to flow through the LED bulb driving circuit 70, the buffer capacitor 73 is rapidly charged, and the two-wire dimmer switches 1A to 1D and the LED bulb driving circuit are charged. A large power factor difference with 70 occurs.
  • the phase of the voltage applied to each of them differs from the phase of the AC power supply 2.
  • the voltage of the AC power supply 2 is 100V and the load voltage is ⁇ 30V
  • the voltage between the connection terminals 1a and 1b of the two-wire dimmer switches 1A to 1D (referred to as an inter-switch voltage) is 130V. That is, the voltage zero cross point of the AC power supply 2 is different from the inter-switch voltage zero cross point of the two-wire dimmer switches 1A to 1D.
  • the two-wire dimmer switches 1A to 1D are originally intended to perform control with reference to the voltage zero cross point of the AC power supply 2, but the control circuit 16 detects the inter-switch voltage zero cross point from the output of the frequency detection circuit 17. Dimming control is performed by estimating. Therefore, if the control is performed at a timing different from the voltage zero cross point of the AC power supply 2 (a gate drive signal is output), there is a possibility that the original stable dimming control cannot be performed.
  • FIG. 7 shows the waveform of each part by the control method according to the fifth embodiment.
  • the phase of the voltage waveform of the AC power supply 2 and the phase of the voltage waveform between the switches of the two-wire dimmer switches 1A to 1D are the same.
  • the first gate drive signal input to the gate terminal from the control circuit 16 to the thyristor 18 of the auxiliary switching circuit is obtained from the output of the frequency detection circuit 17. Output near the estimated inter-switch voltage zero cross point (for example, within ⁇ several ms with respect to the inter-switch voltage zero cross point).
  • the timing for outputting the first gate drive signal does not necessarily need to be before the voltage zero-cross point, and may be after the voltage zero-cross point. By doing so, charging of the buffer capacitor 73 of the LED bulb driving circuit 70 can be started from a low level of the voltage of the AC power supply 2.
  • the impedance change between the two-wire dimmer switches 1A to 1D and the LED bulb drive circuit 70 is abrupt.
  • the half-cycle power of the AC power supply 2 can be shared by the two-wire dimmer switches 1A to 1D and the LED bulb driving circuit 70.
  • stable dimming control can be performed.
  • the triac that is a single bidirectional semiconductor switching element is exemplified as the main switching element.
  • the present invention is not limited to this, and the main switching element is not limited to the triac as long as it has a structure that allows current to flow bidirectionally.
  • an IGBT Insulated Gate Bipolar Transistor
  • an FET connected in antiparallel may be used.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A two-line dimmer switch provided with: a primary open-close circuit (10) having a triac (11) as a primary switch element; a frequency-detecting circuit (17) for detecting the frequency of an AC source (2); an auxiliary open-close circuit (18) for directing load current when the primary switch element is not conducting, using a thyristor as an auxiliary switch element; a dimmer-setting circuit (4) operated by the user; and a control circuit (16) for detecting the frequency of the AC source (2) on the basis of a detection signal from the frequency-detection circuit (17) and estimating a voltage zero cross point, starting output of a drive signal for causing the auxiliary open-close circuit (18) to conduct at a first timing, and stopping output of the drive signal at a second timing before a predetermined time in relation to the next estimated voltage zero cross point; wherein when the load current value is small and the primary open-close circuit (10) is not conducting, the load current is continued on the auxiliary open-close circuit (18). The brightness of the LED bulb is thereby stabilized and flickering and shimmering are minimized, even when the LED bulb is connected as the lighting load.

Description

2線式調光スイッチ2-wire dimmer switch
 本発明は、照明負荷の明るさを調節するための2線式調光スイッチに関する。 The present invention relates to a two-wire dimmer switch for adjusting the brightness of a lighting load.
 従来から、白熱電球の調光を目的として、トライアックなどの半導体スイッチ素子を用いた調光スイッチが実用化されている。図8は、トライアック51を用いた2線式調光スイッチ50の基本的な回路構成(第1従来例)を示す。この2線式調光スイッチ50は、交流電源2と照明負荷(白熱電球)3に直列に接続される。2線式調光スイッチ50は、トライアック51、トライアック51のゲート電極に接続され、ゲート駆動信号を入力するための、例えばダイアック(トリガダイオード)52、ユーザによって操作される操作部材に接続された可変抵抗器53、固定抵抗体54、コンデンサ55、フィルタ素子56などで構成されている。 Conventionally, a dimmer switch using a semiconductor switch element such as a triac has been put to practical use for the purpose of dimming an incandescent bulb. FIG. 8 shows a basic circuit configuration (first conventional example) of the two-wire dimmer switch 50 using the triac 51. The two-wire dimmer switch 50 is connected in series to the AC power source 2 and the illumination load (incandescent light bulb) 3. The two-wire dimming switch 50 is connected to the triac 51, the gate electrode of the triac 51, and for example, a diac (trigger diode) 52 for inputting a gate drive signal, and a variable connected to an operation member operated by a user. It comprises a resistor 53, a fixed resistor 54, a capacitor 55, a filter element 56, and the like.
 2線式調光スイッチ50では、スイッチ57をオンすると、交流電源2から可変抵抗器53を介してコンデンサ55が充電され、コンデンサ55の両端電圧がダイアック52のブイレークオーバ電圧に達するとトライアック51が導通する。そして、トライアック51は、交流電源の電圧ゼロクロス点で消弧する。すなわち、交流電源の半周期毎に、ダイアック52によるトライアック51のトリガ(導通)と自己消弧(非導通)を繰り返す。可変抵抗器53の抵抗値を調節してトライアック51の点弧期間を位相制御することにより、照明負荷3を調光することができる。 In the two-wire dimmer switch 50, when the switch 57 is turned on, the capacitor 55 is charged from the AC power supply 2 through the variable resistor 53, and when the voltage across the capacitor 55 reaches the breakover voltage of the diac 52, the triac 51 Is conducted. The triac 51 is extinguished at the voltage zero cross point of the AC power supply. That is, the trigger (conduction) and self-extinguishing (non-conduction) of the triac 51 by the diac 52 are repeated every half cycle of the AC power supply. The illumination load 3 can be dimmed by adjusting the resistance value of the variable resistor 53 and controlling the phase of the firing period of the triac 51.
 第1従来例の2線式調光スイッチ50は、可変抵抗器53の抵抗値を変化させることにより照明負荷3を調光しているため、可変抵抗器53による損失が大きい。また、可変抵抗器53に直接交流電源2の電圧が掛かるため、可変抵抗器53自体を小型化することができず、2線式調光スイッチ50の小型化も限界がある。さらに、同じ交流電源2に接続されている他の機器が動作すると、交流電源2に電圧変動が発生し、照明負荷3の明るさが瞬間的に変動する。 Since the two-wire dimming switch 50 of the first conventional example adjusts the lighting load 3 by changing the resistance value of the variable resistor 53, the loss due to the variable resistor 53 is large. Further, since the voltage of the AC power supply 2 is directly applied to the variable resistor 53, the variable resistor 53 itself cannot be downsized, and downsizing of the two-wire dimmer switch 50 has a limit. Furthermore, when other devices connected to the same AC power supply 2 operate, a voltage change occurs in the AC power supply 2 and the brightness of the illumination load 3 changes instantaneously.
 上記第1従来例の2線式調光スイッチ50の問題点を解決すべく、特開平11-67479号公報には、半導体スイッチ素子を導通させるタイミング、すなわちゲート駆動信号を出力するタイミングを、マイクロコンピュータなどを用いて制御する調光スイッチが提案されている。なお、この調光スイッチは3線式であるが、図9は、それを2線式調光スイッチに応用した回路構成(第2従来例)を示す。 In order to solve the problems of the two-wire dimmer switch 50 of the first conventional example, Japanese Patent Application Laid-Open No. 11-67479 discloses a timing for turning on a semiconductor switch element, that is, a timing for outputting a gate drive signal. A dimmer switch that is controlled using a computer or the like has been proposed. Although this dimmer switch is a three-wire type, FIG. 9 shows a circuit configuration (second conventional example) in which it is applied to a two-wire dimmer switch.
 第2従来例の2線式調光スイッチ60では、トライアック61のゲート電極にフォトトライアックカプラ62の二次側フォトトライアック63が接続されている。また、トライアック61の他の電極間には整流回路65が接続され、整流回路65によって全波整流された電力は電源部66に入力される。制御部67は、電源部66によって変換された直流電力によって駆動される。ここで、整流回路65には交流電源2の電圧、例えば交流(AC)100Vが印加される。一方、制御部67は、例えば直流(DC)3~6Vで駆動される。フォトトライアックカプラ62は、制御部67と半導体スイッチ素子61を光絶縁している。制御部67は、ユーザによって操作される操作部材に接続された可変抵抗器68の抵抗値に応じて、あらかじめルックアップテーブルに記憶されているタイミングでトランジスタ69を導通させる。トランジスタ69が導通すると、フォトトライアックカプラ62の一次側の発光ダイオード64に電流が流れ、二次側フォトトライアック63が導通する。フォトトライアックカプラ62の二次側フォトトライアック63が導通すると、負荷電流が流れ始めると共に、トライアック61のゲート電圧が上昇する。トライアック61のゲート電圧が閾値以上になると、トライアック61が導通し、交流電源2から照明負荷3に流れる電流は、2線式調光スイッチ60内でフォトトライアック63からトライアック61に転流し、フォトトライアック63は非導通となる。 In the two-line dimmer switch 60 of the second conventional example, the secondary side phototriac 63 of the phototriac coupler 62 is connected to the gate electrode of the triac 61. Further, a rectifier circuit 65 is connected between the other electrodes of the triac 61, and the power that has been full-wave rectified by the rectifier circuit 65 is input to the power supply unit 66. The control unit 67 is driven by DC power converted by the power supply unit 66. Here, the voltage of the AC power supply 2, for example, AC (AC) 100 V is applied to the rectifier circuit 65. On the other hand, the controller 67 is driven with, for example, direct current (DC) 3 to 6V. The phototriac coupler 62 optically isolates the control unit 67 and the semiconductor switch element 61. The control unit 67 makes the transistor 69 conductive at a timing stored in advance in the look-up table according to the resistance value of the variable resistor 68 connected to the operation member operated by the user. When the transistor 69 is turned on, a current flows through the light emitting diode 64 on the primary side of the phototriac coupler 62, and the secondary side phototriac 63 is turned on. When the secondary side phototriac 63 of the phototriac coupler 62 becomes conductive, the load current starts to flow and the gate voltage of the triac 61 increases. When the gate voltage of the triac 61 exceeds the threshold value, the triac 61 becomes conductive, and the current flowing from the AC power supply 2 to the lighting load 3 is commutated from the phototriac 63 to the triac 61 in the two-wire dimming switch 60, and the phototriac 63 becomes non-conductive.
 近年、白熱電球を置き換えるためにLED(Light Emitting Diode)を用いたLED電球が実用化されている。それに伴って、LED電球の中にも調光可能なものが実用化されている。白熱電球は抵抗体そのものであるのに対し、LED電球は、図10に示すように、複数のLED素子とその駆動回路で構成されている。LED駆動回路70は、交流電力を整流する整流回路71と、インダクタ72と、電力を貯めておくためのバッファコンデンサ73と、LEDアレイ77と、LEDアレイ77に並列接続されたコンデンサ76と、LEDアレイ77に定電流を流すためのFET(Field Effect Transistor)75及びその駆動IC74などで構成されている。すなわち、LED電球は、負荷としてはダイオードやICで構成された電子回路である。図11(a)は、交流電源の1/2周期における白熱電球の負荷電圧と負荷電流の波形を示し、図11(b)はLED電球の負荷電圧と負荷電流の波形を示す。白熱電球は力率が1であり、電圧と電流はほぼ同じ波形を示す。それに対して、LED電球の場合、負荷電流は主にコンデンサ73を充電するためのものであり、トライアックの導通と同時に瞬間的に大きな値を示すが、すぐに小さくなる。 In recent years, LED bulbs using LEDs (Light Emitting Diodes) have been put into practical use to replace incandescent bulbs. Along with this, LED bulbs that can be dimmed have been put into practical use. An incandescent bulb is a resistor itself, whereas an LED bulb is composed of a plurality of LED elements and their drive circuits, as shown in FIG. The LED drive circuit 70 includes a rectifier circuit 71 that rectifies AC power, an inductor 72, a buffer capacitor 73 for storing power, an LED array 77, a capacitor 76 connected in parallel to the LED array 77, an LED It comprises an FET (Field (Effect Transistor) 75 for supplying a constant current to the array 77 and its driving IC 74. That is, the LED bulb is an electronic circuit composed of a diode or an IC as a load. Fig.11 (a) shows the waveform of the load voltage and load current of an incandescent lamp in the 1/2 cycle of AC power supply, and FIG.11 (b) shows the waveform of the load voltage and load current of an LED bulb. An incandescent bulb has a power factor of 1, and the voltage and current show almost the same waveform. On the other hand, in the case of an LED bulb, the load current is mainly for charging the capacitor 73, and instantaneously shows a large value simultaneously with the conduction of the triac, but soon decreases.
 このような特性を示すLED電球を第1従来例の2線式調光スイッチ50で調光制御しようとすると、以下のような問題点が生じる。図12はLED電球を第1従来例の2線式調光スイッチ50で調光制御した場合の問題点を示す。図12に示すように、トライアック51が導通すると、瞬間的に大きな負荷電流が流れるが、すぐに小さくなる。負荷電流の値がトライアック51の保持電流未満になると、トライアック51が自己消弧して非導通となってしまう。トライアック51が非導通になるとコンデンサ73の電圧が下がり、駆動IC74はFET75に流れる電流を小さくするように制御する。そうすると、LEDアレイ77に流れる電流が少なくなり、LED電球の明るさが低下する。また、交流電源2に重畳されるノイズの影響によって一時的に負荷電流が小さくなったり、図13に示すように、同じ交流電源2に接続されている他の機器の動作により交流電源2に電圧変動が生じると、LED電球の明るさが低下したりする。 If the LED light bulb having such characteristics is controlled to be dimmed by the two-line dimming switch 50 of the first conventional example, the following problems occur. FIG. 12 shows a problem when the LED bulb is dimmed and controlled by the two-wire dimmer switch 50 of the first conventional example. As shown in FIG. 12, when the triac 51 is turned on, a large load current flows instantaneously, but immediately decreases. When the value of the load current becomes less than the holding current of the triac 51, the triac 51 is self-extinguished and becomes non-conductive. When the triac 51 becomes non-conductive, the voltage of the capacitor 73 decreases, and the drive IC 74 controls to reduce the current flowing through the FET 75. If it does so, the electric current which flows into the LED array 77 will decrease, and the brightness of an LED bulb will fall. Further, the load current temporarily decreases due to the influence of noise superimposed on the AC power supply 2, or the voltage is applied to the AC power supply 2 by the operation of other devices connected to the same AC power supply 2 as shown in FIG. When the fluctuation occurs, the brightness of the LED bulb decreases.
 一方、第2従来例の2線式調光スイッチ60の場合、フォトトライアックカプラ62の二次側のフォトトライアック63に電流を流し続ければ、負荷電流を流し続けることができる。ところが、フォトトライアック63には数mA~数十mAの電流が流れるため、長時間導通を維持するには多くの電力を消費する。特に、LED電球は実質的に上記のような電子回路そのものであり消費電力が少ないため、2線式調光スイッチ60側で多くの電力を消費すると制御不能に陥る可能性がある。 On the other hand, in the case of the two-wire dimmer switch 60 of the second conventional example, if a current is continuously supplied to the phototriac 63 on the secondary side of the phototriac coupler 62, a load current can be continuously supplied. However, since a current of several mA to several tens of mA flows through the phototriac 63, a large amount of power is consumed to maintain the conduction for a long time. In particular, since the LED bulb is substantially the electronic circuit itself as described above and consumes little power, if a large amount of power is consumed on the two-wire dimmer switch 60 side, it may become uncontrollable.
 本発明は、上記従来例の問題を解決するためになされたものであり、照明負荷としてLED電球が接続された場合であっても、LED電球の明るさを安定させ、ちらつきや揺らぎの少ない2線式調光スイッチを提供することを目的とする。 The present invention has been made to solve the above-described problems of the conventional example, and even when an LED bulb is connected as an illumination load, the brightness of the LED bulb is stabilized, and there is little flickering or fluctuation 2 An object is to provide a linear dimmer switch.
 本発明に係る2線式調光スイッチは、交流電源及び照明負荷に対して直列に接続され、
 交流電力が入力される第1接続端子及び第2接続端子と、
 前記第1接続端子及び前記第2接続端子の間に接続され、第1の半導体スイッチ素子を主スイッチ素子とする主開閉回路と、
 前記第1接続端子及び前記第2接続端子の間に接続された整流回路と、
 前記整流回路の直流側に接続され、前記2線式調光スイッチの内部電源を確保する電源回路と、
 前記整流回路の直流側に接続され、前記交流電源の周波数を検出するための所定の検出信号を出力する周波数検出回路と、
 前記整流回路の直流側又は交流側に接続され、第2の半導体スイッチ素子を補助スイッチ素子として、前記主スイッチ素子が導通していないときに負荷電流を流すと共に、前記主スイッチ素子又はその他の半導体スイッチ素子を導通させるためゲート駆動信号を出力する補助開閉回路と、
 ユーザによって操作され、前記照明負荷の明るさを調節するための調光量を設定するための調光量設定回路と、
 前記周波数検出回路から出力される前記検出信号に基づいて、前記交流電源の周波数を検出し、前記交流電源の電圧ゼロクロス点を推定し、前記調光量設定回路により設定された調光量及び推定された電圧ゼロクロス点に基づいて決定される第1タイミングで前記補助開閉回路を導通させるための駆動信号の出力を開始し、前記推定された電圧ゼロクロス点の次の推定された電圧ゼロクロス点に対して所定時間手前の第2のタイミングで前記駆動信号の出力を停止する制御回路を備えたことを特徴とする。
The two-wire dimmer switch according to the present invention is connected in series to an AC power source and a lighting load,
A first connection terminal and a second connection terminal to which AC power is input;
A main switching circuit connected between the first connection terminal and the second connection terminal and having the first semiconductor switch element as a main switch element;
A rectifier circuit connected between the first connection terminal and the second connection terminal;
A power supply circuit connected to the DC side of the rectifier circuit and securing an internal power supply of the two-wire dimmer switch;
A frequency detection circuit connected to the DC side of the rectifier circuit and outputting a predetermined detection signal for detecting the frequency of the AC power supply;
Connected to the DC side or AC side of the rectifier circuit, the second semiconductor switch element is used as an auxiliary switch element, and a load current flows when the main switch element is not conducting, and the main switch element or other semiconductor An auxiliary switching circuit for outputting a gate drive signal for conducting the switch element;
A dimming amount setting circuit for setting a dimming amount to be adjusted by the user to adjust the brightness of the illumination load;
Based on the detection signal output from the frequency detection circuit, the frequency of the AC power supply is detected, the voltage zero cross point of the AC power supply is estimated, and the light control amount and the estimation set by the light control amount setting circuit Output of a driving signal for conducting the auxiliary switching circuit at a first timing determined based on the voltage zero-cross point thus determined, with respect to the estimated voltage zero-cross point next to the estimated voltage zero-cross point And a control circuit for stopping the output of the drive signal at a second timing before a predetermined time.
 また、前記補助開閉回路から出力される前記ゲート駆動信号によって導通され、前記補助開閉回路が導通した後、前記主スイッチ素子が導通していないときに負荷電流を流すと共に、前記主スイッチ素子を導通させるための駆動信号を出力する準主開閉回路をさらに備えたことが好ましい。 In addition, it is turned on by the gate drive signal output from the auxiliary switching circuit, and after the auxiliary switching circuit is turned on, a load current is passed when the main switch element is not turned on, and the main switch element is turned on. It is preferable to further include a quasi-main switching circuit that outputs a drive signal for the purpose.
 また、前記主スイッチ素子はトライアックであり、
 前記補助開閉回路は、前記整流回路の直流側に接続されたサイリスタを補助スイッチ素子とすることが好ましい。
The main switch element is a triac,
The auxiliary switching circuit preferably uses a thyristor connected to the DC side of the rectifier circuit as an auxiliary switch element.
 または、前記主スイッチ素子はトライアックであり、
 前記補助開閉回路は、前記整流回路の交流側に接続され、前記交流電源の極性に応じて交互に導通される2つのサイリスタを補助スイッチ素子とすることが好ましい。
Or the main switch element is a triac;
Preferably, the auxiliary switching circuit includes two thyristors that are connected to the AC side of the rectifier circuit and are alternately turned on according to the polarity of the AC power supply as auxiliary switch elements.
 また、前記準主開閉回路はフォトトライアックカプラをスイッチ素子とし、前記フォトトライアックカプラの二次側のフォトトライアックが前記主スイッチ素子と並列に接続されると共に、一方の端子が前記主スイッチ素子のゲート端子に接続され、前記フォトトライアックカプラの一次側の発光ダイオードが前記補助開閉回路と直列に接続され、
 前記フォトトライアックの保持電流値は前記トライアックの保持電流値よりも小さいことが好ましい。
The quasi-main switching circuit has a phototriac coupler as a switch element, a phototriac on the secondary side of the phototriac coupler is connected in parallel with the main switch element, and one terminal is a gate of the main switch element. A light emitting diode on the primary side of the phototriac coupler is connected in series with the auxiliary switching circuit;
The holding current value of the phototriac is preferably smaller than the holding current value of the triac.
 前記制御回路は、前記照明負荷の調光制御を開始する際、前記補助開閉回路を導通させるための最初の駆動信号を、前記推定された電圧ゼロクロス点付近の所定のタイミングで出力することが好ましい。 When the control circuit starts dimming control of the illumination load, it preferably outputs an initial drive signal for conducting the auxiliary switching circuit at a predetermined timing near the estimated voltage zero-cross point. .
 上記2線式調光スイッチによれば、主スイッチ素子が導通していないときに負荷電流を流すと共に、主スイッチ素子又はその他の半導体スイッチ素子を導通させるためゲート駆動信号を出力する補助開閉回路を備え、補助開閉回路を導通させるための駆動信号が調光量設定回路により設定された調光量及び電圧ゼロクロス点に基づいて決定される第1タイミングから次の電圧ゼロクロス点に対して所定時間手前の第2のタイミングまでの間出力され続け、補助開閉回路は導通状態を維持される。そのため、照明負荷がLED電球であり、負荷電流が補助開閉回路などから主開閉回路に転流した後、負荷電流値が主スイッチ素子の保持電流未満となり、主開閉回路が非導通になったとしても、補助開閉回路などを介して負荷電流を流し続けることができる。その結果、LED電球の明るさを安定させ、ちらつきや揺らぎを小さくすることができる。 According to the above two-wire dimmer switch, the auxiliary switching circuit that outputs a gate drive signal to flow the load current when the main switch element is not conductive and to conduct the main switch element or other semiconductor switch elements is provided. A drive signal for conducting the auxiliary switching circuit is determined based on the dimming amount set by the dimming amount setting circuit and the voltage zero cross point, and a predetermined time before the next voltage zero cross point. The output continues until the second timing until the auxiliary switching circuit is maintained in the conductive state. Therefore, it is assumed that the lighting load is an LED bulb, and the load current becomes less than the holding current of the main switch element after the load current is commutated from the auxiliary switch circuit to the main switch circuit, and the main switch circuit becomes non-conductive. However, the load current can continue to flow through an auxiliary switching circuit or the like. As a result, the brightness of the LED bulb can be stabilized, and flicker and fluctuation can be reduced.
本発明の第1実施の形態に係る2線式調光スイッチの構成を示す回路図。1 is a circuit diagram showing a configuration of a two-wire dimmer switch according to a first embodiment of the present invention. 第1実施形態におけるLED電球の負荷電圧、負荷電流及び補助開閉回路のサイリスタを導通させるためのゲート駆動信号の波形図。The wave form diagram of the gate drive signal for making the thyristor of the load voltage of an LED bulb | bulb, load current, and an auxiliary | assistant switch circuit in 1st Embodiment conduct. 第1実施形態において、他の機器による負荷電流の影響を示すLED電球の負荷電圧、負荷電流及び補助開閉回路のサイリスタを導通させるためのゲート駆動信号の波形図。In 1st Embodiment, the waveform figure of the gate drive signal for making the thyristor of the load voltage of an LED bulb | bulb, load current, and an auxiliary | assistant switch circuit which show the influence of the load current by another apparatus become conductive. 本発明の第2実施の形態に係る2線式調光スイッチの構成を示す回路図。The circuit diagram which shows the structure of the two-wire dimmer switch which concerns on 2nd Embodiment of this invention. 本発明の第3実施の形態に係る2線式調光スイッチの構成を示す回路図。The circuit diagram which shows the structure of the two-wire dimmer switch which concerns on 3rd Embodiment of this invention. 本発明の第4実施の形態に係る2線式調光スイッチの構成を示す回路図。The circuit diagram which shows the structure of the two-wire dimmer switch which concerns on 4th Embodiment of this invention. 本発明の第5実施の形態に係る2線式調光スイッチの制御方法における各部の波形図。The wave form diagram of each part in the control method of the two-wire dimmer switch which concerns on 5th Embodiment of this invention. 第1従来例に係る2線式調光スイッチの構成を示す回路図。The circuit diagram which shows the structure of the two-wire dimmer switch which concerns on a 1st prior art example. 第2従来例に係る2線式調光スイッチの構成を示す回路図。The circuit diagram which shows the structure of the 2 wire type light control switch which concerns on a 2nd prior art example. 一般的なLED電球の駆動回路の構成を示す回路図。The circuit diagram which shows the structure of the drive circuit of a general LED bulb. 白熱電球とLED電球の負荷電圧及び負荷電流の違いを示す図。The figure which shows the difference of the load voltage and load current of an incandescent bulb and an LED bulb. 従来の2線式調光スイッチにおいて、負荷電流値がトライアックの保持電流値未満となったときにトライアックが自己消弧する様子を示す図。The figure which shows a mode that a triac self-extinguishes when the load current value becomes less than the holding current value of a triac in the conventional 2-wire dimmer switch. 従来の2線式調光スイッチにおいて、同じ交流電流に接続されている他の機器の負荷電流によってLED電球の負荷電圧が変動する様子を示す図。The figure which shows a mode that the load voltage of a LED bulb fluctuates with the load current of the other apparatus connected to the same alternating current in the conventional 2-wire dimmer switch.
(第1実施形態)
 本発明の第1実施形態に係る2線式調光スイッチについて説明する。図1は、第1実施形態に係る2線式調光スイッチ1Aの回路構成を示す。2線式調光スイッチ1Aは、交流電源2及び照明負荷3に対して直列に接続される。2線式調光スイッチ1Aの調光用可変抵抗器4と一体的に照明負荷3の点灯及び消灯を制御するスイッチ5を備えていてもよいし、スイッチ5が別に設けられていてもよい。以下の説明においては、スイッチ5を2線式調光スイッチ1Aとは別に設けた場合を例示する。
(First embodiment)
A two-wire dimmer switch according to a first embodiment of the present invention will be described. FIG. 1 shows a circuit configuration of a two-wire dimmer switch 1A according to the first embodiment. The two-wire dimmer switch 1 </ b> A is connected in series to the AC power source 2 and the illumination load 3. A switch 5 that controls lighting and extinction of the illumination load 3 may be provided integrally with the dimming variable resistor 4 of the two-wire dimming switch 1A, or the switch 5 may be provided separately. In the following description, a case where the switch 5 is provided separately from the two-wire dimmer switch 1A is illustrated.
 2線式調光スイッチ1Aの第1接続端子1a及び第2接続端子1bは、交流電源2又は照明負荷3とスイッチ5に接続される。第1接続端子1aと第2接続端子1bとの間には、トライアックなどの第1の半導体スイッチ素子を主スイッチ素子11とする主開閉回路10が接続されている。また、主開閉回路10と並列に、第1接続端子1aと第2接続端子1bとの間には整流回路12が接続され、整流回路12にはこの2線式調光スイッチ1Aの内部電力を確保するための電源回路13が接続されている。電源回路13は、ダーリントン接続された第1トランジスタ素子13a及び第2トランジスタ素子13bと、第2トランジスタ素子13bのベースに接続されたツェナーダイオード13c及び抵抗体13dなどで構成されたスイッチング回路と、マイクロプロセッサなどで構成された制御回路16に直流の定電圧電力を供給するための定電圧回路(三端子レギュレータなど)14及びバッファコンデンサ15などが含まれる。 The first connection terminal 1a and the second connection terminal 1b of the two-wire dimmer switch 1A are connected to the AC power source 2 or the lighting load 3 and the switch 5. Connected between the first connection terminal 1a and the second connection terminal 1b is a main switching circuit 10 having a first semiconductor switch element such as a triac as a main switch element 11. In parallel with the main switching circuit 10, a rectifier circuit 12 is connected between the first connection terminal 1a and the second connection terminal 1b. The rectifier circuit 12 receives the internal power of the two-wire dimmer switch 1A. A power supply circuit 13 for securing is connected. The power supply circuit 13 includes a switching circuit composed of a first transistor element 13a and a second transistor element 13b connected in Darlington, a Zener diode 13c and a resistor 13d connected to the base of the second transistor element 13b, and the like. A constant voltage circuit (such as a three-terminal regulator) 14 and a buffer capacitor 15 for supplying DC constant voltage power to a control circuit 16 constituted by a processor or the like are included.
 スイッチ5がオンされると、整流回路12により整流された脈流が電源回路13に入力され、ツェナーダイオード13cのツェナー電圧により出力電圧が支配された電力が電源回路から出力される。この電力は、バッファコンデンサ15を充電すると共に、定電圧回路14によって所定の電圧(例えば、3V)に降圧され、制御回路16に供給される。ここで、電源回路13の抵抗体13dの抵抗値を、第2トランジスタ素子13bが動作するために必要な電流が流れる程度に高い値とすれば、ツェナーダイオード13cを介してグランドに流れる電流値を低く抑えることができ、電力損失の低減を図ることができる。 When the switch 5 is turned on, the pulsating current rectified by the rectifier circuit 12 is input to the power supply circuit 13, and the power whose output voltage is governed by the Zener voltage of the Zener diode 13c is output from the power supply circuit. The electric power charges the buffer capacitor 15 and is stepped down to a predetermined voltage (for example, 3 V) by the constant voltage circuit 14 and is supplied to the control circuit 16. Here, if the resistance value of the resistor 13d of the power supply circuit 13 is set to a value high enough to allow the current necessary for the operation of the second transistor element 13b to flow, the value of the current flowing to the ground via the Zener diode 13c is obtained. Therefore, the power loss can be reduced.
 整流回路12の直流側出力端子には、交流電源2の周波数を検出するための周波数検出回路17が接続され、周波数検出回路17から出力される所定の検出信号が制御回路16に入力される。また、整流回路12の直流側出力端子には、主開閉回路10の主スイッチ素子11が導通するまでの間又は主スイッチ素子11が導通しないときに照明負荷3に電流を流すためのサイリスタなどの第2の半導体スイッチ素子を補助スイッチ素子とする補助開閉回路18が接続されている。制御回路16には、ユーザによって操作される可変抵抗器等で構成された調光量設定回路4が接続されている。なお、以下の説明において、必要に応じて、主スイッチ素子をトライアック11と、補助開閉回路又は補助スイッチ素子をサイリスタ18と称する。 A frequency detection circuit 17 for detecting the frequency of the AC power supply 2 is connected to the DC output terminal of the rectifier circuit 12, and a predetermined detection signal output from the frequency detection circuit 17 is input to the control circuit 16. Further, the DC side output terminal of the rectifier circuit 12 is a thyristor for passing a current through the illumination load 3 until the main switch element 11 of the main switching circuit 10 is turned on or when the main switch element 11 is not turned on. An auxiliary switching circuit 18 having the second semiconductor switch element as an auxiliary switch element is connected. The control circuit 16 is connected to a dimming amount setting circuit 4 composed of a variable resistor or the like operated by a user. In the following description, the main switch element is referred to as a triac 11 and the auxiliary switching circuit or auxiliary switch element is referred to as a thyristor 18 as necessary.
 周波数検出回路17は、整流回路12から出力された脈流がトランジスタ素子17aのベースに入力されるように構成され、交流電源2の周波数に応じて周波数検出回路17から所定の検出信号が制御回路16に入力される。制御回路16は、周波数検出回路17の検出信号から交流電源2の周波数(50Hz又は60Hz)の検出及びそれに基づいて電圧ゼロクロス点を推定する。そして、検出した周波数及び推定した電圧ゼロクロス点などに基づいてサイリスタ18のゲート端子にゲート駆動信号を入力する。図2は、照明負荷3としてLED電球を用いた場合の交流電源2の1/2周期における負荷電圧、負荷電流及びゲート駆動信号の各波形を示す。ゲート駆動信号の立ち上がり(サイリスタ18が導通する第1のタイミング)は、調光量設定回路(可変抵抗器)4の抵抗値に基づいて、制御回路16にあらかじめ記憶されているルックアップテーブルを検索することによって決定される。ゲート駆動信号の立ち下がり(サイリスタ18が非導通となる第2のタイミング)は、交流電源2の電圧ゼロクロス点から所定時間Δt(例えば1ms)だけ手前に設定されている。この所定の時間Δtは、例えば制御回路16が周波数検出回路17からの検出信号に基づいて次の電圧ゼロクロス点を推定するのに十分な時間である。 The frequency detection circuit 17 is configured such that the pulsating current output from the rectifier circuit 12 is input to the base of the transistor element 17a, and a predetermined detection signal is transmitted from the frequency detection circuit 17 in accordance with the frequency of the AC power supply 2. 16 is input. The control circuit 16 detects the frequency (50 Hz or 60 Hz) of the AC power supply 2 from the detection signal of the frequency detection circuit 17 and estimates the voltage zero cross point based on the detection. Then, a gate drive signal is input to the gate terminal of the thyristor 18 based on the detected frequency and the estimated voltage zero cross point. FIG. 2 shows respective waveforms of the load voltage, load current, and gate drive signal in a half cycle of the AC power supply 2 when an LED bulb is used as the illumination load 3. The rising edge of the gate drive signal (the first timing when the thyristor 18 is turned on) searches a lookup table stored in advance in the control circuit 16 based on the resistance value of the light adjustment amount setting circuit (variable resistor) 4. To be determined. The fall of the gate drive signal (second timing when the thyristor 18 becomes non-conductive) is set to a short time Δt (for example, 1 ms) from the voltage zero cross point of the AC power supply 2. The predetermined time Δt is a time sufficient for the control circuit 16 to estimate the next voltage zero-cross point based on the detection signal from the frequency detection circuit 17, for example.
 次に、第1実施形態に係る2線式調光スイッチ1Aの具体的な動作について説明する。スイッチ5がオフの状態では、バッファコンデンサ15の電荷はほとんど放電されており、制御回路16は機能していないと考えられる。ここで、スイッチ5がオンされると、整流回路12から、例えば全波整流された脈流が出力される。それによって、バッファコンデンサ15が充電されると共に、定電圧回路14から直流電力が制御回路16に供給され、制御回路16が起動する。これと並行して、周波数検出回路17から検出信号が制御回路16に入力されるので、制御回路16は交流電源2の周波数の検出及びその電圧ゼロクロス点を推定する。そして、制御回路16は、調光量設定回路(可変抵抗器)4の抵抗値に基づいて第1のタイミングでゲート駆動信号の出力を開始する(ゲート駆動信号を立ち上げる)。ゲート駆動信号がサイリスタ18のゲート端子に入力されると、サイリスタ18が導通し、照明負荷3に電流が流れ始める。また、サイリスタ18に流れる電流は、トライアック11のゲート電極にも流れるので、その電圧及び電流がトライアック11のゲート電圧閾値及びターンオン電流以上になるとトライアック11が導通し、負荷電流はサイリスタ18からトライアック11に転流する。トライアック11が導通すると、整流回路12にはほとんど電流が流れず、サイリスタ18、電源回路13及び周波数検出回路17にはほとんど電流が流れない。電源回路13に電流が流れなくなると、バッファコンデンサ15から電力の放電が開始され、それによって制御回路16の駆動電力が確保される。このとき、サイリスタ18のゲート電極には、制御回路16からゲート駆動信号が入力され続けているので、サイリスタ18は導通状態にある。 Next, a specific operation of the two-wire dimmer switch 1A according to the first embodiment will be described. In the state where the switch 5 is OFF, the charge of the buffer capacitor 15 is almost discharged, and it is considered that the control circuit 16 is not functioning. Here, when the switch 5 is turned on, for example, a full-wave rectified pulsating flow is output from the rectifier circuit 12. As a result, the buffer capacitor 15 is charged, and DC power is supplied from the constant voltage circuit 14 to the control circuit 16 so that the control circuit 16 is activated. In parallel with this, since a detection signal is input from the frequency detection circuit 17 to the control circuit 16, the control circuit 16 detects the frequency of the AC power supply 2 and estimates its voltage zero-cross point. Then, the control circuit 16 starts outputting the gate drive signal at the first timing based on the resistance value of the light control amount setting circuit (variable resistor) 4 (rises the gate drive signal). When the gate drive signal is input to the gate terminal of the thyristor 18, the thyristor 18 becomes conductive and current starts to flow through the lighting load 3. Further, since the current flowing through the thyristor 18 also flows through the gate electrode of the triac 11, the triac 11 becomes conductive when the voltage and current exceed the gate voltage threshold value and the turn-on current of the triac 11, and the load current flows from the thyristor 18 to the triac 11. To commutate. When the triac 11 is turned on, almost no current flows through the rectifier circuit 12, and little current flows through the thyristor 18, the power supply circuit 13, and the frequency detection circuit 17. When no current flows through the power supply circuit 13, the power starts to be discharged from the buffer capacitor 15, thereby securing the driving power of the control circuit 16. At this time, since the gate drive signal is continuously input from the control circuit 16 to the gate electrode of the thyristor 18, the thyristor 18 is in a conductive state.
 照明負荷3がLED電球の場合、前述のようにサイリスタ18又はトライアック11の導通と同時に、負荷電流は瞬間的に大きな値を示すが、すぐに小さくなる。そして、負荷電流の値がトライアック11の保持電流未満になると、トライアック11が自己消弧して非導通となってしまうが、サイリスタ18が導通しているので、負荷電流はサイリスタ18を通って流れ続ける。そして、制御回路16は、交流電源2の電圧ゼロクロス点から所定時間Δtだけ手前の第2のタイミングでゲート駆動信号の出力を停止する(ゲート駆動信号を立ち下げる)。この段階では、負荷電流はほとんど流れておらず、サイリスタ18が非導通になっても、照明負荷3の明るさの変化はほとんど生じない。サイリスタ18が非導通になると、整流回路12から出力される脈流はサイリスタ18から電源回路13及び周波数検出回路17に転流するので、制御回路16は、周波数検出回路17からの検出信号に基づいて交流電源2の次の電圧ゼロクロス点を推定することができ、推定した電圧ゼロクロス点を基準として、次のゲート駆動信号の出力を開始するタイミングを制御することができる。 When the illumination load 3 is an LED bulb, the load current instantaneously shows a large value simultaneously with the conduction of the thyristor 18 or the triac 11 as described above, but immediately becomes small. When the value of the load current becomes less than the holding current of the triac 11, the triac 11 is self-extinguished and becomes non-conductive. However, since the thyristor 18 is conductive, the load current flows through the thyristor 18. to continue. Then, the control circuit 16 stops the output of the gate drive signal (falls the gate drive signal) at a second timing just before the voltage zero cross point of the AC power supply 2 by a predetermined time Δt. At this stage, almost no load current flows, and even if the thyristor 18 becomes non-conductive, the brightness of the lighting load 3 hardly changes. When the thyristor 18 becomes non-conductive, the pulsating current output from the rectifier circuit 12 is diverted from the thyristor 18 to the power supply circuit 13 and the frequency detection circuit 17, so that the control circuit 16 is based on the detection signal from the frequency detection circuit 17. Thus, the next voltage zero cross point of the AC power supply 2 can be estimated, and the timing of starting the output of the next gate drive signal can be controlled with the estimated voltage zero cross point as a reference.
 このように、2線式調光スイッチ1Aは、主開閉回路10の主スイッチ素子(トライアック)11が導通するまでの間又は主スイッチ素子11が導通していないときに照明負荷3に電流を流すための補助開閉回路(サイリスタ)18を備えているので、負荷電流の値がトライアック11の保持電流未満になり、トライアック11が非導通となっても、サイリスタ18が導通しているので、負荷電流はサイリスタ18を通って流れ続ける。その結果、LED電球の明るさが安定し、肉眼でわかるようなちらつきや揺らぎはほとんど生じない。また、負荷電流の最大値がトライアック11の保持電流未満の場合であっても、補助開閉回路(サイリスタ)18を介して負荷に電流を流し続けることができる。さらに、サイリスタ18のゲート電極に入力するゲート駆動信号を、交流電源2の電圧ゼロクロス点から所定時間Δtだけ手前の第2のタイミングで停止することにより、交流電源2の次の電圧ゼロクロス点を正確に推定することができる。また、図3に示すように、同じ交流電源2に接続されている他の機器が動作したとしても、サイリスタ18を介して負荷電流が流れ続けるので、照明負荷3の明るさはほとんど変化しない。また、負荷電圧波形もあまり変化しない。なお、トライアック11としては、特にその保持電流値が小さいものを選択して使用することはいうまでもない。 In this way, the two-wire dimmer switch 1A allows a current to flow through the illumination load 3 until the main switch element (triac) 11 of the main switching circuit 10 is turned on or when the main switch element 11 is not turned on. Since the auxiliary open / close circuit (thyristor) 18 is provided, the load current value is less than the holding current of the triac 11 and the thyristor 18 is conductive even when the triac 11 is nonconductive. Continues to flow through thyristor 18. As a result, the brightness of the LED bulb is stabilized, and flickering and fluctuation that can be seen with the naked eye hardly occur. Further, even when the maximum value of the load current is less than the holding current of the triac 11, the current can be continuously supplied to the load via the auxiliary switching circuit (thyristor) 18. Further, the gate drive signal input to the gate electrode of the thyristor 18 is stopped at the second timing just before the voltage zero cross point of the AC power source 2 by a predetermined time Δt, so that the next voltage zero cross point of the AC power source 2 is accurately determined. Can be estimated. Further, as shown in FIG. 3, even if other devices connected to the same AC power supply 2 operate, the load current continues to flow through the thyristor 18, so that the brightness of the illumination load 3 hardly changes. Also, the load voltage waveform does not change much. Needless to say, a triac 11 having a small holding current value is selected and used.
(第2実施形態)
 本発明の第2実施形態に係る2線式調光スイッチについて説明する。図4は、第2実施形態に係る2線式調光スイッチ1Bの回路構成を示す。2線式調光スイッチ1Bは、上記第1実施形態に係る2線式調光スイッチ1Aに、準主開閉回路としてフォトトライアックカプラ20を追加したものである。フォトトライアックカプラ20の二次側フォトトライアック21が主開閉回路(トライアック)11に並列接続され、一次側発光ダイオード22が補助開閉部(サイリスタ)18に直列接続されている。その他の構成は同じである。このフォトトライアック21として、その保持電流値が主開閉回路のトライアック11の保持電流値よりも小さいものが選択されている。
(Second Embodiment)
A two-wire dimmer switch according to a second embodiment of the present invention will be described. FIG. 4 shows a circuit configuration of a two-wire dimmer switch 1B according to the second embodiment. The two-wire dimmer switch 1B is obtained by adding a phototriac coupler 20 as a quasi-main switching circuit to the two-wire dimmer switch 1A according to the first embodiment. A secondary side phototriac 21 of the phototriac coupler 20 is connected in parallel to a main switching circuit (triac) 11, and a primary side light emitting diode 22 is connected in series to an auxiliary switching unit (thyristor) 18. Other configurations are the same. As the phototriac 21, one having a holding current value smaller than the holding current value of the triac 11 of the main switching circuit is selected.
 次に、第2実施形態に係る2線式調光スイッチ1Bの具体的な動作について、相違点を中心に説明する。交流電源2の電圧ゼロクロス点においてトライアック11及びフォトトライアック21が消弧すると、整流回路12に電流が流れ、その後所定の第1のタイミングでサイリスタ18のゲート端子にゲート駆動信号が入力され、サイリスタ18が導通し、負荷電流がサイリスタ18を通って流れる。このとき、フォトトライアックカプラ20の一次側発光ダイオード22が発光し、二次側フォトトライアック21のゲート端子にゲート駆動信号が入力され、フォトトライアック21が導通する。フォトトライアック21が導通すると、負荷電流はフォトトライアック21に転流する。ここで、負荷電流値が小さく、主開閉回路のトライアック11の保持電流値未満であるときは、主開閉回路のトライアック11は導通せず、負荷電流はそのまま準主開閉回路であるフォトトライアック21を通って流れる。一方、負荷電流値が大きく、主開閉回路のトライアック11の保持電流値以上になると、主開閉回路のトライアック11が導通し、負荷電流はトライアック11に転流する。照明負荷3がLED電球の場合、負荷電流の値がトライアック11の保持電流未満になると、トライアック11が自己消弧して非導通となってしまうが、サイリスタ18が導通し、負荷電流はサイリスタ18に一時的に転流する。そして、フォトトライアックカプラ20の一次側発光ダイオード22が発光し、二次側フォトトライアック21が導通し、負荷電流はフォトトライアック21に転流する。フォトトライアック21の保持電流値は、上記のようにトライアック11の保持電流値よりも小さいので、負荷電流を安定して流し続けることができる。 Next, the specific operation of the two-wire dimmer switch 1B according to the second embodiment will be described focusing on the differences. When the triac 11 and the photo triac 21 are extinguished at the voltage zero cross point of the AC power supply 2, a current flows through the rectifier circuit 12, and then a gate drive signal is input to the gate terminal of the thyristor 18 at a predetermined first timing. Is conducted, and the load current flows through the thyristor 18. At this time, the primary side light emitting diode 22 of the phototriac coupler 20 emits light, a gate drive signal is input to the gate terminal of the secondary side phototriac 21, and the phototriac 21 becomes conductive. When the phototriac 21 is turned on, the load current is commutated to the phototriac 21. Here, when the load current value is small and less than the holding current value of the TRIAC 11 of the main switching circuit, the TRIAC 11 of the main switching circuit is not conducted, and the load current remains as it is in the phototriac 21 that is a quasi-main switching circuit. Flowing through. On the other hand, when the load current value is large and exceeds the holding current value of the triac 11 of the main switching circuit, the triac 11 of the main switching circuit becomes conductive, and the load current is commutated to the triac 11. When the illumination load 3 is an LED bulb, when the load current value is less than the holding current of the triac 11, the triac 11 is self-extinguished and becomes non-conductive, but the thyristor 18 is conductive and the load current is the thyristor 18. To commutate temporarily. Then, the primary side light emitting diode 22 of the phototriac coupler 20 emits light, the secondary side phototriac 21 is turned on, and the load current is commutated to the phototriac 21. Since the holding current value of the phototriac 21 is smaller than the holding current value of the triac 11 as described above, the load current can continue to flow stably.
 第2実施形態に係る2線式調光スイッチ1Bは、第1実施形態に係る2線式調光スイッチ1Aと比較して、準主開閉回路としてフォトトライアックカプラ20が追加されているため、若干構造が複雑であり、その分コストアップの要因となる。しかしながら、トライアック11が非導通になった後も、負荷電流は、専ら整流回路12よりも上流側(交流側)のフォトトライアック21を流れるため、すなわち、負荷電流はダイオードブリッジを通過しないため、ダイオードブリッジによる損失がなくなる。その結果、LED電球の明るさの変化が非常に小さくなり、肉眼でわかるようなちらつきや揺らぎはほとんど生じない。 The two-wire dimmer switch 1B according to the second embodiment is slightly different from the two-wire dimmer switch 1A according to the first embodiment in that a phototriac coupler 20 is added as a quasi-main switching circuit. The structure is complicated, which increases the cost. However, even after the triac 11 is turned off, the load current flows exclusively through the phototriac 21 on the upstream side (AC side) of the rectifier circuit 12, that is, the load current does not pass through the diode bridge. Loss due to bridges is eliminated. As a result, the change in the brightness of the LED bulb becomes very small, and there is almost no flickering or fluctuation that can be seen with the naked eye.
(第3実施形態)
 本発明の第3実施形態に係る2線式調光スイッチについて説明する。図5は、第3実施形態に係る2線式調光スイッチ1Cの回路構成を示す。2線式調光スイッチ1Cは、上記第1実施形態に係る2線式調光スイッチ1Aにおいて、2つの補助開閉回路(サイリスタ)18a及び18bを設け、それぞれのサイリスタのアノードを整流回路12の交流側に、カソードを整流回路12の直流側マイナス端子に接続したものである。制御回路16から出力されるゲート駆動信号は、ダイオード25a及び25bで分岐されて、各サイリスタ18a及び18bのゲート端子に入力される。すなわち、交流電源2の極性に応じて2つのサイリスタ18a及び18bのいずれかが補助開閉回路として使用される。その他の構成及び動作は第1実施形態に係る2線式調光スイッチ1Aと同じである。
(Third embodiment)
A two-wire dimmer switch according to a third embodiment of the present invention will be described. FIG. 5 shows a circuit configuration of a two-wire dimmer switch 1C according to the third embodiment. The two-wire dimmer switch 1C is provided with two auxiliary open / close circuits (thyristors) 18a and 18b in the two-wire dimmer switch 1A according to the first embodiment, and the anode of each thyristor is an alternating current of the rectifier circuit 12. The cathode is connected to the DC negative terminal of the rectifier circuit 12 on the side. The gate drive signal output from the control circuit 16 is branched by the diodes 25a and 25b and input to the gate terminals of the thyristors 18a and 18b. That is, one of the two thyristors 18a and 18b is used as an auxiliary switching circuit depending on the polarity of the AC power supply 2. Other configurations and operations are the same as those of the two-wire dimmer switch 1A according to the first embodiment.
 第3実施形態に係る2線式調光スイッチ1Cは、第1実施形態に係る2線式調光スイッチ1Aと比較して、補助開閉回路を構成するサイリスタ、抵抗及びコンデンサが追加されているため、若干構造が複雑であり、その分コストアップの要因となる。しかしながら、トライアック11が非導通になった後、負荷電流は、整流回路12を構成するダイオード1個を通過しないので、その分だけ損失が少なくなる。照明負荷3がLED電球の場合、負荷電流値が非常に小さいので、ダイオード1個分の損失でも少ないほど、よりLED電球のちらつきや揺らぎを小さくすることができる。 Since the two-wire dimmer switch 1C according to the third embodiment is added with a thyristor, a resistor, and a capacitor constituting an auxiliary switching circuit, compared to the two-wire dimmer switch 1A according to the first embodiment. The structure is slightly complicated, which increases the cost. However, since the load current does not pass through one diode constituting the rectifier circuit 12 after the triac 11 is turned off, the loss is reduced accordingly. When the illumination load 3 is an LED bulb, the load current value is very small. Therefore, the smaller the loss of one diode, the smaller the flickering and fluctuation of the LED bulb.
(第4実施形態)
 本発明の第4実施形態に係る2線式調光スイッチについて説明する。図6は、第4実施形態に係る2線式調光スイッチ1Dの回路構成を示す。2線式調光スイッチ1Dは、第2実施形態に係る2線式調光スイッチ1Bと第3実施形態に係る2線式調光スイッチ1Cの特徴を組み合わせたものであり、準主開閉回路としてフォトトライアックカプラ20と、2つの補助開閉回路(サイリスタ)18a及び18bを備えている。第4実施形態に係る2線式調光スイッチ1Dでは、第3実施形態に係る2線式調光スイッチ1Cと同様に、負荷電流がサイリスタ18a又は18bを流れる際に整流回路12を構成するダイオード1個を通過しないので、その分だけ損失が少なくなる。そのため、第2実施形態に係る2線式調光スイッチ1Bと比較して、負荷電流がサイリスタ18a又は18bからフォトトライアック21に転流する際の電圧変動が小さくなり、照明負荷3に安定した電力を供給することができる。また、その結果、LED電球の明るさの変化がさらに小さくなり、ちらつきや揺らぎはほとんど生じない。
(Fourth embodiment)
A two-wire dimmer switch according to a fourth embodiment of the present invention will be described. FIG. 6 shows a circuit configuration of a two-wire dimmer switch 1D according to the fourth embodiment. The two-wire dimmer switch 1D is a combination of the features of the two-wire dimmer switch 1B according to the second embodiment and the two-wire dimmer switch 1C according to the third embodiment. A phototriac coupler 20 and two auxiliary switching circuits (thyristors) 18a and 18b are provided. In the two-wire dimming switch 1D according to the fourth embodiment, as in the two-wire dimming switch 1C according to the third embodiment, the diode constituting the rectifier circuit 12 when the load current flows through the thyristor 18a or 18b. Since no one is passed, the loss is reduced accordingly. Therefore, as compared with the two-wire dimmer switch 1B according to the second embodiment, the voltage fluctuation when the load current commutates from the thyristor 18a or 18b to the phototriac 21 is reduced, and stable power is supplied to the lighting load 3. Can be supplied. As a result, the change in brightness of the LED bulb is further reduced, and flickering and fluctuation hardly occur.
(第5実施形態)
 上記第1乃至第4実施形態は2線式調光スイッチの構造に関するものであったが、第5実施形態は、上記いずれかの2線式調光スイッチ1A~1Dにおける制御方法に関する。2線式調光スイッチ1A~1D及び図10に示すLED電球の駆動回路70は、いずれも交流電力を直流電力に変換し、バッファコンデンサに電力を蓄積する回路構成を有している。そのため、例えばスイッチ5が長時間オフされていたときは、いずれのバッファコンデンサも放電されて、電力は残っていないと考えられる。スイッチ5をオンすると、2線式調光スイッチ1A~1Dが起動し、制御回路16がゲート駆動信号を出力することによって照明負荷3に電力の供給が開始される。照明負荷3がLED電球の場合、電力の供給が開始されても駆動回路70が起動していないため、定常点灯時とは異なる動作及びインピーダンス特性を示す。すなわち、LED電球の駆動回路70に電力の供給が開始されると、最初にバッファコンデンサ73が充電される。そのため、LED電球の起動時には、このバッファコンデンサ73の容量成分が支配的なインピーダンス特性を示す。そして、交流電源2の電圧が比較的高いときにLED電球の駆動回路70に電流が流れ始めると、バッファコンデンサ73が急速に充電され、2線式調光スイッチ1A~1DとLED電球の駆動回路70との間で大きな力率違いが発生する。
(Fifth embodiment)
The first to fourth embodiments relate to the structure of the two-wire dimmer switch, but the fifth embodiment relates to a control method in any of the two-wire dimmer switches 1A to 1D. The two-wire dimmer switches 1A to 1D and the LED bulb driving circuit 70 shown in FIG. 10 each have a circuit configuration for converting AC power to DC power and storing the power in a buffer capacitor. Therefore, for example, when the switch 5 is turned off for a long time, it is considered that any buffer capacitor is discharged and no electric power remains. When the switch 5 is turned on, the two-wire dimming switches 1A to 1D are activated, and the control circuit 16 outputs a gate drive signal to start supplying power to the illumination load 3. When the illumination load 3 is an LED bulb, the drive circuit 70 is not activated even when the supply of power is started, and thus the operation and impedance characteristics are different from those during steady lighting. That is, when the supply of power to the LED bulb driving circuit 70 is started, the buffer capacitor 73 is charged first. Therefore, when the LED bulb is started, the capacitance component of the buffer capacitor 73 exhibits dominant impedance characteristics. When the voltage of the AC power supply 2 is relatively high, when a current begins to flow through the LED bulb driving circuit 70, the buffer capacitor 73 is rapidly charged, and the two-wire dimmer switches 1A to 1D and the LED bulb driving circuit are charged. A large power factor difference with 70 occurs.
 力率が大きく異なったインピーダンス間では、それぞれに印加される電圧の位相が交流電源2の位相と異なっており、例えば交流電源2の電圧が100Vのときに負荷電圧が-30Vであったとすると、2線式調光スイッチ1A~1Dの接続端子1aと1bの間の電圧(スイッチ間電圧とする)は130Vとなる。すなわち、交流電源2の電圧ゼロクロス点と2線式調光スイッチ1A~1Dのスイッチ間電圧ゼロクロス点とは異なる。2線式調光スイッチ1A~1Dは、本来交流電源2の電圧ゼロクロス点を基準として制御を行うことを目的としているが、上記制御回路16は、周波数検出回路17の出力からスイッチ間電圧ゼロクロス点を推定して調光制御を行っている。そのため、交流電源2の電圧ゼロクロス点とは異なったタイミングで制御を行う(ゲート駆動信号を出力する)と、本来の安定した調光制御ができなくなる可能性がある。 Between impedances with greatly different power factors, the phase of the voltage applied to each of them differs from the phase of the AC power supply 2. For example, when the voltage of the AC power supply 2 is 100V and the load voltage is −30V, The voltage between the connection terminals 1a and 1b of the two-wire dimmer switches 1A to 1D (referred to as an inter-switch voltage) is 130V. That is, the voltage zero cross point of the AC power supply 2 is different from the inter-switch voltage zero cross point of the two-wire dimmer switches 1A to 1D. The two-wire dimmer switches 1A to 1D are originally intended to perform control with reference to the voltage zero cross point of the AC power supply 2, but the control circuit 16 detects the inter-switch voltage zero cross point from the output of the frequency detection circuit 17. Dimming control is performed by estimating. Therefore, if the control is performed at a timing different from the voltage zero cross point of the AC power supply 2 (a gate drive signal is output), there is a possibility that the original stable dimming control cannot be performed.
 図7は、第5実施形態に係る制御方法による各部の波形を示す。調光を開始するまでは、交流電源2の電圧波形の位相と2線式調光スイッチ1A~1Dのスイッチ間電圧波形の位相は一致している。第5実施形態に係る制御方法では、照明負荷3の調光制御開始に当たり、制御回路16から補助開閉回路のサイリスタ18にゲート端子に入力する最初のゲート駆動信号を、周波数検出回路17の出力から推測したスイッチ間電圧ゼロクロス点付近(例えば、スイッチ間電圧ゼロクロス点に対して±数ms以内)で出力する。最初のゲート駆動信号を出力するタイミングは、必ずしも電圧ゼロクロス点の手前である必要はなく、電圧ゼロクロス点を過ぎてからであってもよい。そうすることによって、交流電源2の電圧の低いレベルからLED電球の駆動回路70のバッファコンデンサ73の充電を開始することができる。このように、LED電球の駆動回路70への電力供給を電圧ゼロクロス点(0V)付近から開始することにより、2線式調光スイッチ1A~1DとLED電球の駆動回路70のインピーダンス変化が急激なものとはならず、交流電源2の1/2周期の電力を2線式調光スイッチ1A~1DとLED電球の駆動回路70とで分け合うことができる。また、2線式調光スイッチ1A~1DとLED電球の駆動回路70との間で大きな力率違いは発生しないので、安定した調光制御を行うことができる。 FIG. 7 shows the waveform of each part by the control method according to the fifth embodiment. Until the dimming is started, the phase of the voltage waveform of the AC power supply 2 and the phase of the voltage waveform between the switches of the two-wire dimmer switches 1A to 1D are the same. In the control method according to the fifth embodiment, when the dimming control of the lighting load 3 is started, the first gate drive signal input to the gate terminal from the control circuit 16 to the thyristor 18 of the auxiliary switching circuit is obtained from the output of the frequency detection circuit 17. Output near the estimated inter-switch voltage zero cross point (for example, within ± several ms with respect to the inter-switch voltage zero cross point). The timing for outputting the first gate drive signal does not necessarily need to be before the voltage zero-cross point, and may be after the voltage zero-cross point. By doing so, charging of the buffer capacitor 73 of the LED bulb driving circuit 70 can be started from a low level of the voltage of the AC power supply 2. Thus, by starting the power supply to the LED bulb drive circuit 70 from around the voltage zero cross point (0 V), the impedance change between the two-wire dimmer switches 1A to 1D and the LED bulb drive circuit 70 is abrupt. In other words, the half-cycle power of the AC power supply 2 can be shared by the two-wire dimmer switches 1A to 1D and the LED bulb driving circuit 70. In addition, since a large power factor difference does not occur between the two-wire dimmer switches 1A to 1D and the LED bulb driving circuit 70, stable dimming control can be performed.
 なお、上記説明において、主スイッチ素子として単一の双方向半導体スイッチ素子であるトライアックを例示したが、それに限定されるものではなく、トライアックと同様に双方向に電流を流せる構造のものであればよく、例えばIGBT(Insulated Gate Bipolar Transistor)やFETを逆並列接続したものなどであってもよい。 In the above description, the triac that is a single bidirectional semiconductor switching element is exemplified as the main switching element. However, the present invention is not limited to this, and the main switching element is not limited to the triac as long as it has a structure that allows current to flow bidirectionally. For example, an IGBT (Insulated Gate Bipolar Transistor) or an FET connected in antiparallel may be used.
 1A~1D 2線式調光スイッチ
 2 交流電源
 3 照明負荷
 4 調光量設定回路(可変抵抗器)
 5 スイッチ
 10 主開閉回路
 11 主スイッチ素子(トライアック)
 12 整流回路
 13 電源回路
 16 制御回路
 17 周波数検出回路
 18、18a、18b 補助開閉回路(補助スイッチ素子、サイリスタ)
 20 準主開閉回路(フォトトライアックカプラ)
 21 フォトトライアック
 22 発光ダイオード
1A to 1D 2-wire dimmer switch 2 AC power supply 3 Illumination load 4 Dimming amount setting circuit (variable resistor)
5 Switch 10 Main switching circuit 11 Main switch element (Triac)
DESCRIPTION OF SYMBOLS 12 Rectifier circuit 13 Power supply circuit 16 Control circuit 17 Frequency detection circuit 18, 18a, 18b Auxiliary switching circuit (auxiliary switch element, thyristor)
20 Quasi-main switching circuit (Phototriac coupler)
21 Phototriac 22 Light-emitting diode

Claims (6)

  1.  交流電源及び照明負荷に対して直列に接続される2線式調光スイッチであって、
     交流電力が入力される第1接続端子及び第2接続端子と、
     前記第1接続端子及び前記第2接続端子の間に接続され、第1の半導体スイッチ素子を主スイッチ素子とする主開閉回路と、
     前記第1接続端子及び前記第2接続端子の間に接続された整流回路と、
     前記整流回路の直流側に接続され、前記2線式調光スイッチの内部電源を確保する電源回路と、
     前記整流回路の直流側に接続され、前記交流電源の周波数を検出するための所定の検出信号を出力する周波数検出回路と、
     前記整流回路の直流側又は交流側に接続され、第2の半導体スイッチ素子を補助スイッチ素子として、前記主スイッチ素子が導通していないときに負荷電流を流すと共に、前記主スイッチ素子又はその他の半導体スイッチ素子を導通させるためゲート駆動信号を出力する補助開閉回路と、
     ユーザによって操作され、前記照明負荷の明るさを調節するための調光量を設定するための調光量設定回路と、
     前記周波数検出回路から出力される前記検出信号に基づいて、前記交流電源の周波数を検出し、前記交流電源の電圧ゼロクロス点を推定し、前記調光量設定回路により設定された調光量及び推定された電圧ゼロクロス点に基づいて決定される第1タイミングで前記補助開閉回路を導通させるための駆動信号の出力を開始し、前記推定された電圧ゼロクロス点の次の推定された電圧ゼロクロス点に対して所定時間手前の第2のタイミングで前記駆動信号の出力を停止する制御回路を備えたことを特徴とする2線式調光スイッチ。
    A two-wire dimming switch connected in series with an AC power source and a lighting load,
    A first connection terminal and a second connection terminal to which AC power is input;
    A main switching circuit connected between the first connection terminal and the second connection terminal and having the first semiconductor switch element as a main switch element;
    A rectifier circuit connected between the first connection terminal and the second connection terminal;
    A power supply circuit connected to the DC side of the rectifier circuit and securing an internal power supply of the two-wire dimmer switch;
    A frequency detection circuit connected to the DC side of the rectifier circuit and outputting a predetermined detection signal for detecting the frequency of the AC power supply;
    Connected to the DC side or AC side of the rectifier circuit, the second semiconductor switch element is used as an auxiliary switch element, and a load current flows when the main switch element is not conducting, and the main switch element or other semiconductor An auxiliary switching circuit for outputting a gate drive signal for conducting the switch element;
    A dimming amount setting circuit for setting a dimming amount to be adjusted by the user to adjust the brightness of the illumination load;
    Based on the detection signal output from the frequency detection circuit, the frequency of the AC power supply is detected, the voltage zero cross point of the AC power supply is estimated, and the light control amount and the estimation set by the light control amount setting circuit Output of a driving signal for conducting the auxiliary switching circuit at a first timing determined based on the voltage zero-cross point thus determined, with respect to the estimated voltage zero-cross point next to the estimated voltage zero-cross point And a control circuit for stopping the output of the drive signal at a second timing before a predetermined time.
  2.  前記補助開閉回路から出力される前記ゲート駆動信号によって導通され、前記補助開閉回路が導通した後、前記主スイッチ素子が導通していないときに負荷電流を流すと共に、前記主スイッチ素子を導通させるための駆動信号を出力する準主開閉回路をさらに備えたことを特徴とする請求項1に記載の2線式調光スイッチ。 To conduct a load current when the main switch element is not conducted after the auxiliary switch circuit is conducted after the gate drive signal outputted from the auxiliary switch circuit is conducted, and to conduct the main switch element The two-wire dimmer switch according to claim 1, further comprising a quasi-main switching circuit that outputs a driving signal of
  3.  前記主スイッチ素子はトライアックであり、
     前記補助開閉回路は、前記整流回路の直流側に接続されたサイリスタを補助スイッチ素子とすることを特徴とする請求項1又は請求項2に記載の2線式調光スイッチ。
    The main switch element is a triac;
    The two-wire dimmer switch according to claim 1 or 2, wherein the auxiliary switching circuit uses a thyristor connected to the DC side of the rectifier circuit as an auxiliary switch element.
  4.  前記主スイッチ素子はトライアックであり、
     前記補助開閉回路は、前記整流回路の交流側に接続され、前記交流電源の極性に応じて交互に導通される2つのサイリスタを補助スイッチ素子とすることを特徴とする請求項1又は請求項2に記載の2線式調光スイッチ。
    The main switch element is a triac;
    3. The auxiliary switch circuit according to claim 1, wherein two auxiliary thyristors are connected to the AC side of the rectifier circuit and alternately turned on according to the polarity of the AC power supply. A two-wire dimmer switch according to 1.
  5.  前記準主開閉回路はフォトトライアックカプラをスイッチ素子とし、前記フォトトライアックカプラの二次側のフォトトライアックが前記主スイッチ素子と並列に接続されると共に、一方の端子が前記主スイッチ素子のゲート端子に接続され、前記フォトトライアックカプラの一次側の発光ダイオードが前記補助開閉回路と直列に接続され、
     前記フォトトライアックの保持電流値は前記トライアックの保持電流値よりも小さいことを特徴とする請求項2、請求項2に従属する請求項3又は請求項2に従属する請求項4に記載の2線式調光スイッチ。
    The quasi-main switching circuit uses a phototriac coupler as a switch element, a phototriac on the secondary side of the phototriac coupler is connected in parallel with the main switch element, and one terminal is connected to the gate terminal of the main switch element. A light emitting diode on the primary side of the phototriac coupler is connected in series with the auxiliary switching circuit;
    The two-wire according to claim 2, subordinate to claim 2, subordinate to claim 2, or subordinate to claim 2, wherein the holding current value of the phototriac is smaller than the holding current value of the triac. Dimmer switch.
  6.  前記制御回路は、前記照明負荷の調光制御を開始する際、前記補助開閉回路を導通させるための最初の駆動信号を、前記推定された電圧ゼロクロス点付近の所定のタイミングで出力することを特徴とする請求項1乃至請求項5のいずれか一項に記載の2線式調光スイッチ。 The control circuit outputs a first drive signal for turning on the auxiliary switching circuit at a predetermined timing near the estimated voltage zero-cross point when the dimming control of the lighting load is started. The two-wire dimmer switch according to any one of claims 1 to 5.
PCT/JP2012/007762 2012-01-17 2012-12-04 Two-line dimmer switch WO2013108331A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280067041.1A CN104041188B (en) 2012-01-17 2012-12-04 Two-wire system dimmer switch
KR1020147018426A KR101626694B1 (en) 2012-01-17 2012-12-04 Two-line dimmer switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007529A JP5975375B2 (en) 2012-01-17 2012-01-17 2-wire dimmer switch
JP2012-007529 2012-01-17

Publications (1)

Publication Number Publication Date
WO2013108331A1 true WO2013108331A1 (en) 2013-07-25

Family

ID=48798789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007762 WO2013108331A1 (en) 2012-01-17 2012-12-04 Two-line dimmer switch

Country Status (5)

Country Link
JP (1) JP5975375B2 (en)
KR (1) KR101626694B1 (en)
CN (1) CN104041188B (en)
TW (2) TWI581667B (en)
WO (1) WO2013108331A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102984873A (en) * 2012-12-27 2013-03-20 莱得圣智能科技(上海)有限公司 Single-wire system electronic dimming system capable of taking electricity intelligently
CN103957636A (en) * 2014-04-28 2014-07-30 Tcl-罗格朗国际电工(惠州)有限公司 Two-wire dimming circuit
CN111372360A (en) * 2019-12-30 2020-07-03 欧普照明股份有限公司 Phase-cut dimming circuit
CN114025448A (en) * 2021-12-02 2022-02-08 深圳市源立信照明科技有限公司 Flat lamp circuit and control method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015000754T5 (en) * 2014-03-11 2016-11-10 Panasonic Intellectual Property Management Co., Ltd. dimming
KR102075896B1 (en) * 2015-06-08 2020-02-11 파나소닉 아이피 매니지먼트 가부시키가이샤 Dimmer
JP2016001619A (en) * 2015-08-24 2016-01-07 パナソニックIpマネジメント株式会社 Two-line light control switch
JP6994686B2 (en) * 2018-08-10 2022-01-14 パナソニックIpマネジメント株式会社 Power converter
KR102138942B1 (en) * 2019-02-12 2020-07-28 고관수 Triac module
JP7308409B2 (en) * 2019-09-17 2023-07-14 パナソニックIpマネジメント株式会社 load controller
JP7089138B2 (en) * 2020-05-21 2022-06-22 日清紡マイクロデバイス株式会社 Lighting system
CN217789938U (en) * 2022-07-12 2022-11-11 常州市巨泰电子有限公司 Lamp controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167470A (en) * 1997-08-26 1999-03-09 Matsushita Electric Works Ltd Dimming switch
JP2010092776A (en) * 2008-10-09 2010-04-22 Sharp Corp Led driving circuit, led illumination fixture, led illumination equipment, and led illumination system
JP2010118229A (en) * 2008-11-12 2010-05-27 Toshiba Lighting & Technology Corp Illumination system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374904B1 (en) * 2000-08-24 2003-03-06 한국전기연구원 Apparatus and method for diagnosing error of phase-controlled rectifier
CN101594047B (en) * 2009-03-30 2012-12-26 英飞特电子(杭州)股份有限公司 Simple power-on surge suppression circuit
WO2011013906A2 (en) * 2009-07-28 2011-02-03 서울반도체 주식회사 Dimming device for a lighting apparatus
US8344657B2 (en) * 2009-11-03 2013-01-01 Intersil Americas Inc. LED driver with open loop dimming control
CN101784146B (en) * 2010-01-05 2013-03-06 英飞特电子(杭州)股份有限公司 Circuit for improving silicon controlled rectifier (SCR) dimmer to adapt to capacitive load
JP2011254323A (en) * 2010-06-02 2011-12-15 Panasonic Electric Works Co Ltd Two-wire system load control device
JP5662708B2 (en) * 2010-06-18 2015-02-04 パナソニックIpマネジメント株式会社 Light control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167470A (en) * 1997-08-26 1999-03-09 Matsushita Electric Works Ltd Dimming switch
JP2010092776A (en) * 2008-10-09 2010-04-22 Sharp Corp Led driving circuit, led illumination fixture, led illumination equipment, and led illumination system
JP2010118229A (en) * 2008-11-12 2010-05-27 Toshiba Lighting & Technology Corp Illumination system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102984873A (en) * 2012-12-27 2013-03-20 莱得圣智能科技(上海)有限公司 Single-wire system electronic dimming system capable of taking electricity intelligently
CN103957636A (en) * 2014-04-28 2014-07-30 Tcl-罗格朗国际电工(惠州)有限公司 Two-wire dimming circuit
CN111372360A (en) * 2019-12-30 2020-07-03 欧普照明股份有限公司 Phase-cut dimming circuit
CN114025448A (en) * 2021-12-02 2022-02-08 深圳市源立信照明科技有限公司 Flat lamp circuit and control method thereof
CN114025448B (en) * 2021-12-02 2023-10-20 深圳市源立信照明科技有限公司 Flat lamp circuit and control method thereof

Also Published As

Publication number Publication date
TWI504316B (en) 2015-10-11
KR20140102271A (en) 2014-08-21
JP5975375B2 (en) 2016-08-23
TW201336350A (en) 2013-09-01
KR101626694B1 (en) 2016-06-01
JP2013149399A (en) 2013-08-01
TWI581667B (en) 2017-05-01
CN104041188B (en) 2016-06-15
TW201545606A (en) 2015-12-01
CN104041188A (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5975375B2 (en) 2-wire dimmer switch
RU2638958C2 (en) Circuit device and led lamp, containing this circuit device
EP3128815B1 (en) Light-dimming device
JP5822670B2 (en) LED lighting device
JP2012185998A (en) Illumination system
CN111225475B (en) Current driving circuit and method and LED lighting device applying same
KR20120082912A (en) Dimmable lighting system
US10356867B2 (en) Light-dimming device
US10070492B2 (en) Dimming device
AU2004211837B2 (en) Switch mode power converter
JP2014029763A (en) Led lighting device
WO2018055990A1 (en) Protective circuit for light adjusting device, and light adjusting device
EP2547172B1 (en) Dimmer
KR20110037133A (en) Led driving circuit using sumple current source
KR101349516B1 (en) Power device for led lighting
JP2016001619A (en) Two-line light control switch
US10390401B2 (en) Lighting control device having a corrector integrally with a controller thereof for correcting a dimming prescribed range stored therein
KR101027717B1 (en) Dimming assitant apparatus for ac drived light emitted device and dimming apparatus using it
JP2019164935A (en) Led lighting control auxiliary apparatus and led lighting control system
TW201444405A (en) Lighting device and symmetric dimming module thereof
KR20150026347A (en) Apparatus for lighting using light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147018426

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865766

Country of ref document: EP

Kind code of ref document: A1