WO2013103099A1 - Method for separating and recovering rare-earth element - Google Patents

Method for separating and recovering rare-earth element Download PDF

Info

Publication number
WO2013103099A1
WO2013103099A1 PCT/JP2012/083256 JP2012083256W WO2013103099A1 WO 2013103099 A1 WO2013103099 A1 WO 2013103099A1 JP 2012083256 W JP2012083256 W JP 2012083256W WO 2013103099 A1 WO2013103099 A1 WO 2013103099A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
chloride
acid chloride
liquid
recovering
Prior art date
Application number
PCT/JP2012/083256
Other languages
French (fr)
Japanese (ja)
Inventor
宮田 素之
山本 浩貴
佐々木 洋
俊夫 安田
克佳 古澤
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US14/370,666 priority Critical patent/US9376736B2/en
Priority to JP2013552407A priority patent/JP5835349B2/en
Priority to CN201280066044.3A priority patent/CN104053801B/en
Publication of WO2013103099A1 publication Critical patent/WO2013103099A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • C01F17/17Preparation or treatment, e.g. separation or purification involving a liquid-liquid extraction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/259Oxyhalides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/271Chlorides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for separating and collecting rare earth elements, and more particularly to a method for separating and collecting rare earth elements from a composition containing a plurality of types of rare earth elements.
  • High-efficiency rotating electrical machines are the main devices used in these environmentally compatible systems and products.
  • a magnet containing a rare earth element (so-called rare earth magnet) is used.
  • a rare earth magnet used in a high-efficiency rotating electric machine of a hybrid vehicle is required to have a high coercive force even in a high temperature environment, and contains a rare earth element such as neodymium (Nd) or dysprosium (Dy).
  • Rare earth magnets are used. Rare earth magnets are indispensable for high-efficiency rotating electrical machines, and demand is expected to increase further in the future.
  • Patent Document 1 discloses neodymium (Nd) and dysprosium (Dy). Separation using the difference in solubility of sulfate is described.
  • Patent Document 2 describes a technique of acid leaching sludge and then solvent extraction.
  • Patent Document 3 discloses a method of separating by utilizing the difference in properties between a divalent rare earth halide and a trivalent rare earth halide by halogenating a rare earth element in a mixture containing a plurality of rare earth elements or compounds thereof. Are listed.
  • Patent Document 4 describes a method of separating and recovering rare earth elements as chlorides by reacting iron chloride with sludge or waste magnets.
  • JP 2010-285680 A JP 2009-249664 A JP 2001-303149 A Japanese Patent Laid-Open No. 2003-73754
  • Patent Document 1 and Patent Document 2 an extremely high concentration of strong acid or highly volatile solvent is used, and thus the influence on the global environment is not limited.
  • the method described in Patent Document 2 requires a multi-stage separation because a single separation rate is not sufficient.
  • the methods described in Patent Document 3 and Patent Document 4 have a problem that the rare earth separation rate is small.
  • An object of the present invention is to provide a method for separating and recovering rare earth elements, which has little influence on the global environment and can further increase the separation rate.
  • the rare earth element separation and recovery method has the following features.
  • the method for separating and collecting rare earth elements according to the present invention can also have the following features.
  • a method for separating and recovering a plurality of types of rare earth elements which is a mixture including a first rare earth acid chloride and a second rare earth acid chloride, and a rare earth element constituting the second rare earth acid chloride, Obtaining a liquid in which the first rare earth acid chloride is dissolved by putting the mixture in which the first rare earth acid chloride is composed of different types of rare earth elements into the liquid; and A step of recovering the first rare earth acid chloride from the liquid in which the rare earth acid chloride is dissolved; and a step of recovering the second rare earth acid chloride from the insoluble material not dissolved in the liquid.
  • a rare earth element can be separated and recovered from a rare earth composition with a high separation rate with little influence on the global environment. For example, it becomes possible to regenerate and use rare earth elements with a high separation rate from sludge generated in the manufacturing process of rare earth magnets and used waste magnets. For this reason, resources on the earth can be used effectively, and it can contribute to sustainable global environmental conservation.
  • FIG. 3 is a diagram showing the amount of Dy contained in a liquid in Example 1.
  • separation rate of an insoluble substance when the mixing ratio of the neodymium chloride and dysprosium acid chloride in Example 3 is changed.
  • FIG. The figure which shows the Nd amount and Dy amount of a solution at the time of changing the ethanol amount in a liquid in Example 6.
  • FIG. 6 The figure which shows the Dy isolation
  • FIG. 7 The figure which shows the relationship between the particle size of NdOCl and the amount of Nd of a solution in Example 7, and the relationship between the particle size of DyOCl and the amount of Dy of a solution.
  • FIG. The figure which shows the Nd amount and Dy amount of a solution when the kind of liquid in Example 8 is changed.
  • a rare earth composition a rare earth magnet (NdFeB magnet) containing neodymium (Nd), dysprosium (Dy) or the like will be taken as an example, and a method for separating and recovering Nd and Dy from this rare earth magnet will be described as an example.
  • NdFeB magnet neodymium
  • Dy dysprosium
  • the present invention is not limited to this example, and can be applied to, for example, a method for separating and recovering rare earth elements used in phosphors and cathode-ray tubes.
  • rare earth elements such as lanthanum (La), cerium (Ce), and praseodymium (Pr) can be separated and recovered.
  • La lanthanum
  • Ce cerium
  • Pr praseodymium
  • an example of separating and recovering two (Nd, Dy) rare earth elements contained in a rare earth composition will be described.
  • the present invention includes three or more rare earth elements contained in the rare earth composition. Also, each rare earth element can be separated and recovered.
  • the basic principle for separating and collecting rare earth elements is a method for separating and collecting Nd and Dy from a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl), and neodymium.
  • a method for separating and recovering Nd and Dy from a mixture of acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) will be described as an example.
  • NdCl 3 neodymium chloride
  • DyOCl dysprosium chloride
  • neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl)
  • the present invention does not limit method for generating neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl), product neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl) in this way You don't have to.
  • FIG. 1A is an Nd—O—Cl chemical potential diagram
  • FIG. 1B is a Dy—O—Cl chemical potential diagram
  • 1A and 1B the horizontal axis represents the chlorine potential
  • the vertical axis represents the oxygen potential
  • 1A and 1B show chemical potential diagrams at 1000 K as an example of typical temperatures.
  • the oxide (Nd 2 O 3 , Dy 2 O 3 ) is stable in the region where the oxygen potential is high and the chlorine potential is low, and trivalent chloride is used in the region where the chlorine potential is high and the oxygen potential is low.
  • the metal (Nd, Dy) is stable in the region where (NdCl 3 , DyCl 3 ) is stable and both the oxygen potential and the chlorine potential are low.
  • a divalent chloride state NdCl 2 , DyCl 2
  • a stable region of acid chloride (NdOCl, DyOCl) exists between the oxide region and the chloride region.
  • neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) are fixed at a point A where the potential (partial pressure) of chlorine and oxygen is fixed.
  • NdCl 3 ) and dysprosium chloride (DyOCl) coexist, and it is possible to produce a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) from a rare earth composition containing Nd and Dy become.
  • neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl) By placing the mixture of the thus generated neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl) in the liquid, it is separated and recovered neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl) it can.
  • FIG. 2 is a schematic diagram of a process of separating and recovering neodymium chloride (NdCl 3 ) and dysprosium oxychloride (DyOCl) with a liquid.
  • NdCl 3 neodymium chloride
  • DyOCl dysprosium oxychloride
  • neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl) can be separated and recovered.
  • NdOCl neodymium acid chloride
  • DyOCl dysprosium acid chloride
  • neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) will be described.
  • the present invention does not limit the method for producing neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl)
  • neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) are produced by this method. You don't have to.
  • neodymium chloride is fixed by fixing the potential (partial pressure) of chlorine and oxygen in a region where neodymium chloride (NdOCl) and dysprosium chloride (DyOCl) are stable.
  • NdOCl and DyOCl coexist and it becomes possible to produce a mixture of neodymium chloride (NdOCl) and dysprosium chloride (DyOCl) from a rare earth composition containing Nd and Dy. .
  • the mixture of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) produced in this way is put into a liquid, and the difference in solubility in the liquid is utilized to make use of the neodymium acid chloride (NdOCl) and dysprosium acid chloride.
  • the product (DyOCl) can be separated and recovered.
  • FIG. 3 is a schematic diagram of a process for separating and recovering neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) using the difference in solubility in liquid.
  • NdOCl neodymium acid chloride
  • DyOCl dysprosium acid chloride
  • the solubility of the two is different. Due to the difference in solubility between the two, the amount of Dy and the amount of Nd in the liquid 50 are different. For example, as shown in FIG.
  • the amount of Dy in the liquid 50 is extremely larger than the amount of Nd. That is, in this case, dysprosium acid chloride (DyOCl) is dissolved in a large amount in the liquid 50, and neodymium acid chloride (NdOCl) is not so much dissolved (insoluble material 60).
  • DyOCl dysprosium acid chloride
  • NdOCl neodymium acid chloride
  • DyOCl dysprosium acid chloride
  • DyOCl dysprosium acid chloride
  • rare earth magnets mainly composed of neodymium (Nd), dysprosium (Dy), iron (Fe), and boron (B) (NdFeB magnets)
  • Nd neodymium
  • Dy dysprosium
  • Fe iron
  • B boron
  • the raw material is preferably in powder form.
  • separated from the powder of sludge is shown.
  • Examples of the method for separating rare earth elements from other elements include, but are not limited to, the following examples.
  • the sludge is heated to oxidize, water is added to the slurry to form a slurry, acid or alkali is added to the slurry, pH is adjusted, and components other than rare earth elements are precipitated as hydroxides. It is a method to make it.
  • the second method is a method in which sludge powder is dissolved with sulfuric acid or the like and then components other than rare earth elements are separated by an oxalic acid precipitation method.
  • the sludge powder is heated in a chlorine atmosphere to form mixed chlorides, and then heated under reduced pressure, whereby the vapor pressure of each chloride (rare earth chloride, iron chloride, etc.).
  • This is a method for separating rare earth elements from other elements by utilizing the difference between them.
  • the fourth method is a method in which sludge powder is placed in a molten salt such as magnesium chloride or zinc iodide, and a rare earth element is chlorinated or iodinated and immersed to separate iron, boron, and the like.
  • rare earth elements are recovered in the form of rare earth oxides, rare earth oxalates, rare earth carbonates, rare earth iodides, rare earth chlorides, rare earth sulfates, and the like by the above separation method.
  • desired rare earth chlorides and rare earth acid chlorides can be obtained.
  • neodymium chloride (NdCl 3 ) and dysprosic acid are prepared by adjusting the chlorine partial pressure and the oxygen partial pressure at point A shown in FIGS. 1A and 1B and heat-treating the starting material in a chlorine atmosphere.
  • Chloride (DyOCl) can be obtained.
  • the starting material is heated in a chlorine atmosphere by adjusting the chlorine partial pressure and the oxygen partial pressure in a region where neodymium chloride (NdOCl) and dysprosium chloride (DyOCl) shown in FIGS. 1A and 1B are stable. By doing so, neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) can be obtained.
  • NdOCl neodymium acid chloride
  • Dy dysprosium acid chloride
  • the liquid pure water, a solution obtained by mixing an organic solvent in pure water, and an organic solvent can be used.
  • organic solvent alcohol is preferably used, and methanol or ethanol is particularly preferably used among the alcohols.
  • Dy and Nd can be separated by putting a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) into a liquid, or neodymium chloride (NdOCl) and dysprosium chloride ( DyOCl) is put into the liquid.
  • a stirring bar, a stirring blade, or ultrasonic vibration can be used.
  • the agitation be performed in order to prevent the liquid from volatilizing.
  • Elution into the liquid can be promoted by heating at the time of stirring.
  • the temperature at the time of stirring is preferably not more than the boiling point of the liquid.
  • Dy separation rate the ratio of Dy contained in insoluble matter that does not dissolve in the liquid.
  • Dy separation rate the ratio of Dy contained in the liquid (solution) is referred to as Dy separation rate.
  • These Dy separation rates are represented by M D / (M N + M D ) ⁇ 100, where the mass of Dy is M D and the mass of Nd is M N.
  • the Dy separation rate is preferably 90% or more in one separation, and more preferably 95%.
  • Nd can be recovered as a powder of neodymium chloride by spraying it in a heated atmosphere using a spray dryer. Or after adjusting pH with respect to a neodymium chloride solution, a slightly soluble neodymium salt is produced
  • the precipitation material examples include ammonium carbonate ((NH 4 ) 2 CO 3 ), ammonium hydrogen carbonate (NH 4 HCO 3 ), sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), oxalic acid (( COOH) 2 ), sodium oxalate ((COONa) 2 ), ammonium hydroxide (NH 4 OH), or the like can be used.
  • Dy can be recovered as dysprosium chloride by drying the dysprosium chloride obtained as a solid insoluble matter.
  • an acid for example, hydrochloric acid or nitric acid
  • Dy can be recovered as dysprosium chloride by drying the dysprosium chloride obtained as a solid insoluble matter.
  • Dy can be recovered as dysprosium chloride by drying the dysprosium chloride obtained as a solid insoluble matter.
  • an acid for example, hydrochloric acid or nitric acid
  • neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) When the mixture is put into a liquid, a solution in which they are dissolved is obtained.
  • neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) those not dissolved in the liquid precipitate as solid insolubles.
  • the solution and the solid insoluble matter can be separated by a general method such as filtration or centrifugation.
  • the solution mainly containing Dy can be recovered as a powder of dysprosium oxychloride by spraying it in a heated atmosphere using a spray dryer. Or after adjusting pH with respect to the solution mainly containing Dy, the insoluble matter of a hardly soluble dysprosium salt is produced
  • the acid chloride containing Nd can be recovered by drying it.
  • the insoluble matter produced by the two methods described above is filtered and dried, and then roasted at about 900 ° C. in the atmosphere, whereby Dy can be recovered as dysprosium oxide and Nd as neodymium oxide.
  • the precipitation material include ammonium carbonate ((NH 4 ) 2 CO 3 ), ammonium hydrogen carbonate (NH 4 HCO 3 ), sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), oxalic acid (( COOH) 2 ), sodium oxalate ((COONa) 2 ), ammonium hydroxide (NH 4 OH), or the like can be used.
  • Examples 1 to 5 an example of a method for separating and recovering Nd and Dy from a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) will be described, and then Examples 6 to 9 will be described.
  • An embodiment of a method for separating and recovering Nd and Dy from a mixture of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) will be described.
  • neodymium chloride (NdCl 3 ) was used as the rare earth chloride, and dysprosium acid chloride (DyOCl) was used as the rare earth acid chloride.
  • neodymium chloride As the sample neodymium chloride (NdCl 3 ), neodymium chloride powder having a purity of 3N manufactured by Kojundo Chemical Laboratory Co., Ltd. was used.
  • a sample dysprosium acid chloride (DyOCl) was prepared by the following method. 3N purity dysprosium oxide and 3N purity dysprosium manufactured by Kojundo Chemical Laboratory Co., Ltd. were weighed and mixed in a glove box with an atmospheric pressure Ar gas atmosphere, and sealed in a stainless steel reaction vessel. This reaction vessel was placed in an electric furnace, and heat treatment was performed by adjusting the oxygen partial pressure and the chlorine partial pressure at point A in the chemical potential diagrams shown in FIGS. 1A and 1B. The heating temperature is 800 ° C. and the holding time is 6 hours. The powder was recovered from the reaction vessel after the heat treatment. An X-ray diffraction test was performed on the obtained powder, and it was confirmed that the crystal phase of the powder was only DyOCl.
  • the dissolution test was performed as follows.
  • the produced neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) are each put in 0.25 g (total amount 0.5 g) in a glass container (60 cc), mixed with 50 cc of liquid, and stirred with a stirrer for 20 hours. did.
  • a dissolution test using pure water as a liquid and a dissolution test using ethanol were performed.
  • the temperature of the liquid is 25 ° C.
  • the stirring speed is 500 rpm.
  • the liquid and insoluble matter after stirring were analyzed by high frequency inductively coupled plasma optical emission spectrometry (ICP-AES) to quantitatively analyze the amount of Dy and the amount of Nd.
  • ICP-AES inductively coupled plasma optical emission spectrometry
  • FIG. 4 shows the amount of Dy contained in each liquid.
  • Dy is contained at 800 mg / L
  • Dy is contained at 32 mg / L. Therefore, when the liquid is ethanol, elution of DyOCl into the liquid is suppressed as compared with the case where the liquid is pure water. That is, it can be seen that when the liquid is ethanol, the amount of DyOCl recovered as an insoluble matter is large.
  • M D is the mass of Dy
  • MN is the mass of Nd
  • FIG. 6 shows an approximate curve of the obtained data. The amount of ethanol is expressed as a ratio of ethanol in the liquid.
  • the sample preparation method and dissolution test method are the same as in Example 1.
  • the Dy separation rate tended to improve as the amount of ethanol in the liquid increased. From the above, it was found that in a liquid in which pure water and ethanol were mixed, the Dy separation rate of insoluble matter was high when the amount of ethanol was large.
  • the dissolution test was performed by changing the mixing ratio of the sample neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl).
  • the sample preparation method and dissolution test method are the same as in Example 1, but only the mixing ratio of neodymium chloride and dysprosium oxychloride is different from Example 1.
  • FIG. 7 shows the Dy separation rate when the liquid is pure water (ethanol amount is 0 mass%) and ethanol (ethanol amount is 100 mass%).
  • the Dy separation rate of Example 1 is also shown for the case where the liquid is pure water and ethanol.
  • the mixing ratio of dysprosium chloride was made smaller than that in Example 1.
  • the horizontal axis in FIG. 7 represents the amount of Dy in the sample (the ratio of Dy in the sample).
  • the amount of Dy is 13.3 mass% in this example, and 57.6 mass% in Example 1.
  • the Dy separation rate of insoluble matter was lower than that in Example 1.
  • the Dy separation rate greatly decreased from 94.5 mass% to 85.4 mass%.
  • the Dy separation rate was only a small decrease from 98.8 mass% to 95.7 mass%.
  • the decrease in the Dy separation rate was not as great as when the liquid was pure water.
  • Example 2 a dissolution test was performed by changing the type of liquid.
  • the sample preparation method and dissolution test method are the same as in Example 1, but only the type of liquid is different from Example 1.
  • the liquids used in this example are pure water, ethanol, methanol, 2-propanol, acetone, and tetrahydrofuran.
  • a rare earth magnet sludge was used as the rare earth composition, and the rare earth elements were separated and recovered from the sludge.
  • the rare earth magnet used in this example is an NdFeB magnet containing neodymium (Nd), dysprosium (Dy), or the like.
  • the mass composition of the sludge used was 61.2% for iron (Fe), 23.1% for Nd, 3.5% for Dy, 2.0% for praseodymium (Pr), and 1.1 for boron (B). 0%.
  • rare earth elements were precipitated with oxalic acid to remove components other than the rare earth elements (oxalic acid precipitation method).
  • the oxalate obtained by the oxalic acid precipitation method was heat-treated to obtain a rare earth mixed oxide.
  • the obtained rare earth mixed oxide is heat-treated at 800 ° C. in a chlorine atmosphere, adjusted to the oxygen partial pressure and the chlorine partial pressure shown at point A in the chemical potential diagrams shown in FIGS. 1A and 1B.
  • Neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) were obtained.
  • the insoluble material may be further subjected to a treatment in ethanol under the same conditions. Since there is a possibility that impurities are mixed in the insoluble material, the impurities can be further removed by this treatment.
  • the insoluble matter was again stirred in ethanol under the same conditions, and the Dy separation rate was calculated. As a result, the Dy separation rate was 99.8%, and an extremely high value was obtained.
  • Dy could be separated from the rare earth composition with a high Dy separation rate of 90% or more in one separation.
  • Nd can be recovered from a liquid (ethanol solution of neodymium chloride) as described in “(4) Recovery of Dy and Nd”.
  • the Dy separation rate of insolubles is high, that is, the amount of Dy contained in the liquid is small, so the Nd separation rate is inevitably high.
  • the sample preparation method and dissolution test method are described below.
  • neodymium acid chloride uses neodymium oxide with a purity of 3N and neodymium chloride with a purity of 3N manufactured by Kojundo Chemical Laboratory Co., Ltd., and oxidation with a purity of 3N for dysprosium acid chloride (DyOCl).
  • DyOCl dysprosium acid chloride
  • the following methods were used. A mixed powder of neodymium oxide and neodymium chloride and a mixed powder of dysprosium oxide and dysprosium chloride were weighed and mixed in a glove box in an atmospheric pressure Ar gas atmosphere, and each was sealed in a stainless steel reaction vessel.
  • reaction vessels are put in an electric furnace, and under the conditions of generating NdOCl and DyOCl (oxygen partial pressure and chlorine partial pressure in a region where NdOCl and DyOCl are stable) in the chemical potential diagrams shown in FIGS. 1A and 1B, respectively.
  • Heat treatment was performed.
  • the heating temperature is 800 ° C. and the holding time is 6 hours.
  • the powder was recovered from the reaction vessel after the heat treatment.
  • An X-ray diffraction test was performed on the obtained two types of powders to examine the crystal phase of the powders.
  • FIG. 9 and 10 show X-ray diffraction patterns of these powders as a result of the X-ray diffraction test of the powders obtained by this heat treatment.
  • FIG. 9 is an X-ray diffraction pattern of a powder obtained by heat treatment of a mixed powder of neodymium oxide and neodymium chloride.
  • FIG. 10 is an X-ray diffraction pattern of a powder obtained by heat-treating a mixed powder of dysprosium oxide and dysprosium chloride.
  • 9 shows an X-ray diffraction pattern of NdOCl by ICDD (International Center for Diffraction Data), which is a standard collection of powder X-ray diffraction
  • FIG. 10 shows an X-ray diffraction pattern of DyOCl by ICDD. It is written together below the X-ray diffraction pattern obtained in the test.
  • NdOCl was produced from the mixed powder of neodymium oxide and neodymium chloride.
  • DyOCl was produced from the mixed powder of dysprosium oxide and dysprosium chloride.
  • the evaluation method is as follows.
  • the produced acid chlorides (NdOCl and DyOCl) were each put in 0.25 g (total amount 0.5 g) into a glass container (60 cc), and 50 cc of the liquid was mixed.
  • the rotor placed in this glass container was stirred with a stirrer at a rotation speed of 500 rpm for 20 hours.
  • the stirred solution is filtered through a filter paper (particle holding capacity 2.5 ⁇ m) and a syringe filter (pore diameter 0.2 ⁇ m), and then the filtrate (hereinafter referred to as a solution) is subjected to high frequency inductively coupled plasma emission spectroscopy (ICP ⁇ ).
  • ICP ⁇ high frequency inductively coupled plasma emission spectroscopy
  • FIG. 11 is a diagram showing the Nd amount and Dy amount of the solution when the amount of ethanol in the liquid is changed.
  • the amount of ethanol is expressed as a ratio of ethanol in the liquid.
  • the amount of ethanol is 100 mass%, the liquid is only ethanol, and when the amount of ethanol is 0 mass%, the liquid is pure water.
  • the amount of Nd decreased as the amount of ethanol increased, and when the liquid was ethanol alone, it decreased to about 1/1000 of that when the liquid was pure water.
  • the amount of Dy gradually decreased with the increase in the amount of ethanol up to about 60 mass%, but decreased significantly when the amount of ethanol exceeded about 60 mass%. Shows a value of about 1/150 in the case of pure water.
  • FIG. 12 is a diagram showing the Dy separation rate calculated from the Nd amount and Dy amount of the solution. As shown in FIG. 12, the Dy separation rate increased as the amount of ethanol increased, and showed a maximum value when the amount of ethanol was around 60%. Further, the Dy separation rate was 80% or more when the amount of ethanol was 30% or more, and particularly 90% or more when the amount of ethanol was in the range of 50% to 80%.
  • the Dy separation rate shows a value of 90% or more.
  • dissolution tests were performed by changing the particle sizes of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) as samples.
  • the sample preparation method and dissolution test method were the same as in Example 6. However, the particle diameters of NdOCl and DyOCl were changed by changing the heat treatment conditions.
  • As the liquid a mixed solution in which 50% ethanol was mixed with pure water was used.
  • FIG. 13 is a diagram showing the relationship between the particle size of NdOCl and the Nd amount of the solution, and the relationship between the particle size of DyOCl and the Dy amount of the solution.
  • an approximate curve of the obtained data is displayed.
  • both NdOCl and DyOCl showed a tendency that the Nd amount and Dy amount of the solution respectively decreased as the particle size increased.
  • elution behavior is different between NdOCl and DyOCl.
  • NdOCl when the particle size was 3 ⁇ m or more, the Nd content of the solution was below the detection limit of high frequency inductively coupled plasma optical emission spectrometry (ICP-AES).
  • ICP-AES inductively coupled plasma optical emission spectrometry
  • Dy Dy was detected from the solution even with a particle size of 10 ⁇ m.
  • the Dy separation rate was 90% or more when the particle size was in the range of about 0.5 ⁇ m to about 8 ⁇ m.
  • the Dy separation rate showed a high value of 95% or more.
  • the Dy separation rate showed a high value of 95% or more when the particle diameters of NdOCl and DyOCl were in the range of 1 ⁇ m to 5 ⁇ m.
  • a dissolution test was performed by changing the type of liquid.
  • the sample preparation method and dissolution test method are the same as in Example 6, but only the type of liquid is different from Example 6.
  • the liquid used in this example is pure water and a mixed liquid in which 50% of various organic solvents are mixed with pure water.
  • the organic solvent methanol, ethanol, 2-propanol, acetone, and tetrahydrofuran were used.
  • FIG. 15 is a diagram showing the Nd amount and Dy amount of the solution when the type of liquid is changed.
  • the Dy amount of the solution when the liquid is pure water, the Dy amount of the solution is smaller than the Nd amount, but when the liquid is a mixed solution of pure water and an organic solvent, the Dy amount of the solution is smaller than the Nd amount. Increased.
  • the liquid when the liquid was a mixed liquid, it was found that the difference between the Dy amount and the Nd amount of the solution was large, and the difference in solubility between the two in the liquid appeared remarkably. For this reason, when the liquid is a mixed liquid of pure water and an organic solvent, it is expected that the Dy separation rate of the solution increases.
  • M D is the mass of Dy
  • M N Is a diagram showing the mass of Nd.
  • any mixed solution showed a higher Dy separation rate than pure water.
  • the Dy separation rate is 90% or more.
  • the Dy separation rate is 95% or more. High value.
  • the Dy separation rate showed a value of 90% or more.
  • a rare earth magnet sludge was used as the rare earth composition, and the rare earth elements were separated and recovered from the sludge.
  • the rare earth magnet used in this example is an NdFeB magnet containing neodymium (Nd), dysprosium (Dy), or the like.
  • the mass composition of the sludge used was 61.2% for iron (Fe), 23.1% for Nd, 3.5% for Dy, 2.0% for praseodymium (Pr), and 1.1 for boron (B). 0%.
  • the sludge powder was dissolved in sulfuric acid, rare earth elements were precipitated with oxalic acid to remove components other than the rare earth elements (oxalic acid precipitation method).
  • the oxalic oxide obtained by the oxalic acid precipitation method was heat-treated to obtain a rare earth mixed oxide.
  • the neodymium oxychloride (NdOCl) and dysprosium oxychloride (DyOCl) are stable in the chlorine atmosphere.
  • the oxygen partial pressure and the chlorine partial pressure were adjusted, and heat treatment was performed at 800 ° C. to obtain neodymium acid chloride and dysprosium acid chloride.
  • Dy could be separated from the rare earth composition with a high Dy separation rate of 90% or more in one separation.
  • Nd can be recovered from a solid insoluble matter.
  • the Dy separation rate of the solution is high, that is, the amount of Dy contained in the liquid is large, so that the Nd separation rate is inevitably high.
  • the rare earth composition contains two types of rare earth elements.
  • the separation and recovery method similar to the above may be repeated to separate and collect the rare earth elements one by one. In this manner, each rare earth element can be separated and recovered from the rare earth composition containing a plurality of types of rare earth elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A method for separating and recovering a plurality of rare-earth elements, wherein the method comprises: a step for introducing into a liquid a mixture of a rare-earth oxychloride and rare-earth oxychloride, the rare-earth oxychloride constituted from a rare-earth element of a different type from a rare-earth element constituting the rare-earth chloride, thereby yielding an insoluble substance containing the rare-earth oxychloride and a liquid in which the rare-earth chloride is dissolved; a step for recovering the rare-earth oxychloride from the insoluble substance; and a step for recovering the rare-earth chloride from the liquid in which the rare-earth chloride is dissolved.

Description

希土類元素の分離回収方法Rare earth element separation and recovery method
 本発明は、希土類元素を分離回収する方法に関し、より詳細には、複数種の希土類元素を含む組成物から希土類元素を分離回収する方法に関する。 The present invention relates to a method for separating and collecting rare earth elements, and more particularly to a method for separating and collecting rare earth elements from a composition containing a plurality of types of rare earth elements.
 近年、持続的な地球環境保全の重要性が認識され、化石燃料の使用を最小化できる産業システム、交通システム、及び製品等の開発が精力的に行われている。このような環境適合型のシステムや製品としては、例えば、風力発電システム、鉄道システム、ハイブリッド自動車、及び電気自動車が挙げられる。 In recent years, the importance of sustainable global environmental conservation has been recognized, and the development of industrial systems, transportation systems, and products that can minimize the use of fossil fuels has been vigorously conducted. Examples of such environmentally compatible systems and products include wind power generation systems, railway systems, hybrid vehicles, and electric vehicles.
 これらの環境適合システムや製品に用いられる主要なデバイスとして、高効率回転電機(モータや発電機)がある。この高効率回転電機には、希土類元素を含む磁石(いわゆる希土類磁石)が用いられている。例えば、ハイブリッド自動車の高効率回転電機で用いられている希土類磁石には、高温環境でも高い保磁力を有することが要求されており、ネオジム(Nd)やジスプロシウム(Dy)などの希土類元素を含んだ希土類磁石が用いられている。希土類磁石は、高効率回転電機には今やなくてはならない存在となっており、今後ますます需要の拡大が予想される。 High-efficiency rotating electrical machines (motors and generators) are the main devices used in these environmentally compatible systems and products. In this high-efficiency rotating electric machine, a magnet containing a rare earth element (so-called rare earth magnet) is used. For example, a rare earth magnet used in a high-efficiency rotating electric machine of a hybrid vehicle is required to have a high coercive force even in a high temperature environment, and contains a rare earth element such as neodymium (Nd) or dysprosium (Dy). Rare earth magnets are used. Rare earth magnets are indispensable for high-efficiency rotating electrical machines, and demand is expected to increase further in the future.
 一方、希土類原料資源の地理的な偏在に伴う希土類原料の価格高騰により、希土類磁石での希土類成分の使用量の低減や、使用した希土類磁石から希土類元素を分離回収する方法が検討されている。この分離回収方法の一例として、希土類磁石の製造工程において発生する削り粉(スラッジ)や使用済みの廃磁石から希土類元素を分離回収する方法が挙げられる。 On the other hand, due to soaring prices of rare earth raw materials due to the geographical uneven distribution of rare earth raw materials, methods for reducing the amount of rare earth components used in rare earth magnets and separating and recovering rare earth elements from used rare earth magnets are being studied. As an example of this separation and recovery method, there is a method of separating and recovering rare earth elements from shavings (sludge) generated in the manufacturing process of rare earth magnets or used waste magnets.
 希土類磁石のように複数種の希土類元素を含む組成物(以下、「希土類組成物」と称する)から希土類元素を分離回収する方法として、特許文献1には、ネオジム(Nd)とジスプロシウム(Dy)の硫酸塩の溶解度差を利用した分離が記載されている。特許文献2には、スラッジを酸浸出し、次いで溶媒抽出法を行う手法が記載されている。特許文献3には、複数の希土類元素またはその化合物を含む混合物中の希土類元素をハロゲン化することにより、2価希土類ハロゲン化物と3価希土類ハロゲン化物の性質の違いを利用して分離する方法が記載されている。また、特許文献4には、スラッジや廃磁石などと鉄塩化物を反応させて、希土類元素を塩化物として分離回収する方法が記載されている。 As a method for separating and recovering rare earth elements from a composition containing multiple types of rare earth elements such as rare earth magnets (hereinafter referred to as “rare earth composition”), Patent Document 1 discloses neodymium (Nd) and dysprosium (Dy). Separation using the difference in solubility of sulfate is described. Patent Document 2 describes a technique of acid leaching sludge and then solvent extraction. Patent Document 3 discloses a method of separating by utilizing the difference in properties between a divalent rare earth halide and a trivalent rare earth halide by halogenating a rare earth element in a mixture containing a plurality of rare earth elements or compounds thereof. Are listed. Patent Document 4 describes a method of separating and recovering rare earth elements as chlorides by reacting iron chloride with sludge or waste magnets.
特開2010-285680号公報JP 2010-285680 A 特開2009-249674号公報JP 2009-249664 A 特開2001-303149号公報JP 2001-303149 A 特開2003-73754号公報Japanese Patent Laid-Open No. 2003-73754
 特許文献1や特許文献2に記載の方法では、極めて高濃度の強酸や揮発性の高い溶媒を使用するため、地球環境に与える影響が少なくない。特許文献2に記載の方法は、一回の分離率が十分でないため、多段での分離を要する。特許文献3や特許文献4に記載の方法には、希土類の分離率が小さいという課題がある。 In the methods described in Patent Document 1 and Patent Document 2, an extremely high concentration of strong acid or highly volatile solvent is used, and thus the influence on the global environment is not limited. The method described in Patent Document 2 requires a multi-stage separation because a single separation rate is not sufficient. The methods described in Patent Document 3 and Patent Document 4 have a problem that the rare earth separation rate is small.
 本発明は、これらの課題に対して、地球環境に与える影響が少なく、分離率をさらに高めることが可能な、希土類元素の分離回収方法を提供することを目的とする。 An object of the present invention is to provide a method for separating and recovering rare earth elements, which has little influence on the global environment and can further increase the separation rate.
 本発明による希土類元素の分離回収方法は、以下のような特徴を備える。複数種の希土類元素を分離回収する方法であって、希土類酸塩化物と希土類塩化物とを含む混合物であり、前記希土類塩化物を構成する希土類元素とは異なる種類の希土類元素から前記希土類酸塩化物が構成されている前記混合物を液体に入れることにより、前記希土類酸塩化物を含む不溶物と、前記希土類塩化物が溶解した液体とを得る工程と、前記不溶物から前記希土類酸塩化物を回収する工程と、前記希土類塩化物が溶解した前記液体から前記希土類塩化物を回収する工程とを有する。 The rare earth element separation and recovery method according to the present invention has the following features. A method for separating and recovering a plurality of types of rare earth elements, comprising a rare earth oxychloride and a rare earth chloride, wherein the rare earth element is formed from a rare earth element different from the rare earth elements constituting the rare earth chloride. A step of obtaining an insoluble matter containing the rare earth acid chloride and a liquid in which the rare earth chloride is dissolved by adding the mixture comprising the material into the liquid; and the rare earth acid chloride from the insoluble matter. A step of recovering, and a step of recovering the rare earth chloride from the liquid in which the rare earth chloride is dissolved.
 本発明による希土類元素の分離回収方法は、以下のような特徴を備えることもできる。複数種の希土類元素を分離回収する方法であって、第1の希土類酸塩化物と第2の希土類酸塩化物とを含む混合物であり、前記第2の希土類酸塩化物を構成する希土類元素とは異なる種類の希土類元素から前記第1の希土類酸塩化物が構成されている前記混合物を液体に入れることにより、前記第1の希土類酸塩化物が溶解した液体を得る工程と、前記第1の希土類酸塩化物が溶解した液体から前記第1の希土類酸塩化物を回収する工程と、前記液体に溶解しなかった不溶物から前記第2の希土類酸塩化物を回収する工程とを有する。 The method for separating and collecting rare earth elements according to the present invention can also have the following features. A method for separating and recovering a plurality of types of rare earth elements, which is a mixture including a first rare earth acid chloride and a second rare earth acid chloride, and a rare earth element constituting the second rare earth acid chloride, Obtaining a liquid in which the first rare earth acid chloride is dissolved by putting the mixture in which the first rare earth acid chloride is composed of different types of rare earth elements into the liquid; and A step of recovering the first rare earth acid chloride from the liquid in which the rare earth acid chloride is dissolved; and a step of recovering the second rare earth acid chloride from the insoluble material not dissolved in the liquid.
 本発明によると、地球環境に与える影響が少なく、高い分離率で、希土類組成物から希土類元素を分離回収することが可能となる。例えば、希土類磁石の製造工程で発生するスラッジや使用済みの廃磁石から、高い分離率で希土類元素を再生して使用することが可能となる。このため、地球上の資源を有効に利用することができ、持続可能な地球環境保全に貢献できる。 According to the present invention, a rare earth element can be separated and recovered from a rare earth composition with a high separation rate with little influence on the global environment. For example, it becomes possible to regenerate and use rare earth elements with a high separation rate from sludge generated in the manufacturing process of rare earth magnets and used waste magnets. For this reason, resources on the earth can be used effectively, and it can contribute to sustainable global environmental conservation.
1000KにおけるNd-O-Cl化学ポテンシャル図。Nd—O—Cl chemical potential diagram at 1000K. 1000KにおけるDy-O-Cl化学ポテンシャル図。Dy-O-Cl chemical potential diagram at 1000K. 液体により、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)を分離回収する工程の模式図。The liquid, schematic view of a step of separating and recovering neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl). 液体により、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)を分離回収する工程の模式図。The schematic diagram of the process of isolate | separating and recovering neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) with a liquid. 実施例1における、液体中に含まれるDy量を示す図。FIG. 3 is a diagram showing the amount of Dy contained in a liquid in Example 1. 実施例1における、不溶物のDy分離率を示す図。The figure which shows the Dy-separation rate of an insoluble matter in Example 1. FIG. 実施例2における、液体中のエタノール量と不溶物のDy分離率との関係を示す図。The figure which shows the relationship between the amount of ethanol in the liquid in Example 2, and Dy isolation | separation rate of an insoluble matter. 実施例3における、ネオジム塩化物とジスプロシウム酸塩化物の混合割合を変えたときの、不溶物のDy分離率を示す図。The figure which shows the Dy isolation | separation rate of an insoluble substance when the mixing ratio of the neodymium chloride and dysprosium acid chloride in Example 3 is changed. 実施例4における、液体の種類を変えたときの、不溶物のDy分離率を示す図。The figure which shows the Dy isolation | separation rate of an insoluble matter when the kind of liquid in Example 4 is changed. 実施例6における、酸化ネオジムと塩化ネオジムの混合粉末の熱処理で得られた粉末のX線回折パターン。The X-ray-diffraction pattern of the powder obtained by heat processing of the mixed powder of neodymium oxide and neodymium chloride in Example 6. 実施例6における、酸化ジスプロシウムと塩化ジスプロシウムの混合粉末の熱処理で得られた粉末のX線回折パターン。The X-ray-diffraction pattern of the powder obtained by heat processing of the mixed powder of the dysprosium oxide and dysprosium chloride in Example 6. FIG. 実施例6における、液体中のエタノール量を変えた場合の、溶液のNd量とDy量を示す図。The figure which shows the Nd amount and Dy amount of a solution at the time of changing the ethanol amount in a liquid in Example 6. FIG. 実施例6における、液体中のエタノール量を変えた場合の、溶液のDy分離率を示す図。The figure which shows the Dy isolation | separation rate of a solution at the time of changing the amount of ethanol in the liquid in Example 6. FIG. 実施例7における、NdOClの粒径と溶液のNd量との関係、及びDyOClの粒径と溶液のDy量との関係を示す図。The figure which shows the relationship between the particle size of NdOCl and the amount of Nd of a solution in Example 7, and the relationship between the particle size of DyOCl and the amount of Dy of a solution. 実施例7における、NdOClとDyOClの粒径を変化させた場合の、溶液のDy分離率を示す図。The figure which shows the Dy isolation | separation rate of a solution at the time of changing the particle size of NdOCl and DyOCl in Example 7. FIG. 実施例8における、液体の種類を変えたときの、溶液のNd量とDy量を示す図。The figure which shows the Nd amount and Dy amount of a solution when the kind of liquid in Example 8 is changed. 実施例8における、液体の種類を変えたときの、溶液のDy分離率を示す図。The figure which shows the Dy separation rate of a solution when the kind of liquid in Example 8 is changed.
 以下、本発明による希土類元素の分離回収方法の実施形態について、詳細に説明する。以下では、希土類組成物として、ネオジム(Nd)やジスプロシウム(Dy)などを含有する希土類磁石(NdFeB磁石)を例にとり、この希土類磁石からNdやDyを分離回収する方法を例にとって説明する。 Hereinafter, embodiments of the method for separating and recovering rare earth elements according to the present invention will be described in detail. Hereinafter, as a rare earth composition, a rare earth magnet (NdFeB magnet) containing neodymium (Nd), dysprosium (Dy) or the like will be taken as an example, and a method for separating and recovering Nd and Dy from this rare earth magnet will be described as an example.
 但し、本発明は、この例に限定されるものではなく、例えば、蛍光体やブラウン管に使用されている希土類を分離回収する方法等にも適用することができる。また、NdやDyだけでなく、ランタン(La)、セリウム(Ce)、及びプラセオジム(Pr)をはじめとする、他の希土類元素を分離回収する方法にも適用可能である。以下では、希土類組成物に含まれている2種(Nd、Dy)の希土類元素を分離回収する例を説明するが、本発明は、希土類組成物に3種以上の希土類元素が含まれていても、それぞれの希土類元素を分離回収することができる。 However, the present invention is not limited to this example, and can be applied to, for example, a method for separating and recovering rare earth elements used in phosphors and cathode-ray tubes. In addition to Nd and Dy, other rare earth elements such as lanthanum (La), cerium (Ce), and praseodymium (Pr) can be separated and recovered. In the following, an example of separating and recovering two (Nd, Dy) rare earth elements contained in a rare earth composition will be described. However, the present invention includes three or more rare earth elements contained in the rare earth composition. Also, each rare earth element can be separated and recovered.
 (1)希土類元素を分離回収する基本原理
 希土類元素を分離回収する基本原理を、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法と、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法を例にとって、説明する。
(1) Basic principle for separating and collecting rare earth elements The basic principle for separating and collecting rare earth elements is a method for separating and collecting Nd and Dy from a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl), and neodymium. A method for separating and recovering Nd and Dy from a mixture of acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) will be described as an example.
 まず、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法の例を説明する。 First, an example of a method for separating and recovering Nd and Dy from a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) will be described.
 初めに、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の生成方法について説明する。但し、本発明は、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の生成方法については限定しないので、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)をこの方法で生成しなくてもよい。 First, a method for producing neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) will be described. However, the present invention does not limit method for generating neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl), product neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl) in this way You don't have to.
 図1Aは、Nd-O-Cl化学ポテンシャル図であり、図1Bは、Dy-O-Cl化学ポテンシャル図である。図1Aと図1Bにおいて、横軸は塩素ポテンシャルを表し、縦軸は酸素ポテンシャルを表している。また、図1Aと図1Bでは、代表的な温度の一例として、1000Kにおける化学ポテンシャル図を示している。 FIG. 1A is an Nd—O—Cl chemical potential diagram, and FIG. 1B is a Dy—O—Cl chemical potential diagram. 1A and 1B, the horizontal axis represents the chlorine potential, and the vertical axis represents the oxygen potential. 1A and 1B show chemical potential diagrams at 1000 K as an example of typical temperatures.
 いずれの化学ポテンシャル図でも、酸素ポテンシャルが高く塩素ポテンシャルの低い領域では、酸化物(Nd、Dy)が安定、塩素ポテンシャルが高く酸素ポテンシャルの低い領域では、三価の塩化物(NdCl、DyCl)が安定、酸素ポテンシャルと塩素ポテンシャルのいずれも低い領域では、金属(Nd、Dy)が安定となっている。さらに、塩化物の状態のうち塩素ポテンシャルが低い領域では、金属の状態との間に二価の塩化物の状態(NdCl、DyCl)が見られる。また、酸化物の領域と塩化物の領域の間に、酸塩化物(NdOCl、DyOCl)の安定領域が存在する。 In any chemical potential diagram, the oxide (Nd 2 O 3 , Dy 2 O 3 ) is stable in the region where the oxygen potential is high and the chlorine potential is low, and trivalent chloride is used in the region where the chlorine potential is high and the oxygen potential is low. In the region where (NdCl 3 , DyCl 3 ) is stable and both the oxygen potential and the chlorine potential are low, the metal (Nd, Dy) is stable. Furthermore, in the region of the chloride state where the chlorine potential is low, a divalent chloride state (NdCl 2 , DyCl 2 ) is observed between the metal state and the metal state. Further, a stable region of acid chloride (NdOCl, DyOCl) exists between the oxide region and the chloride region.
 図1Aと図1Bの化学ポテンシャル図において、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)が安定な点Aに塩素と酸素のポテンシャル(分圧)を固定することにより、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)とが共存し、NdとDyを含む希土類組成物からネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物を生成することが可能となる。 In the chemical potential diagrams of FIGS. 1A and 1B, neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) are fixed at a point A where the potential (partial pressure) of chlorine and oxygen is fixed. (NdCl 3 ) and dysprosium chloride (DyOCl) coexist, and it is possible to produce a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) from a rare earth composition containing Nd and Dy Become.
 このように生成したネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物を液体に入れることで、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)を分離回収することができる。 By placing the mixture of the thus generated neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl) in the liquid, it is separated and recovered neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl) it can.
 図2は、液体により、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)を分離回収する工程の模式図である。図2に示すように、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物10を液体20に入れると、ネオジム塩化物(NdCl)は液体20に溶解し、ジスプロシウム酸塩化物(DyOCl)は液体20に溶解せず不溶物30となる。このようにして、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物10から、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)を分離回収することができる。 FIG. 2 is a schematic diagram of a process of separating and recovering neodymium chloride (NdCl 3 ) and dysprosium oxychloride (DyOCl) with a liquid. As shown in FIG. 2, when a mixture 10 of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) is put in the liquid 20, the neodymium chloride (NdCl 3 ) dissolves in the liquid 20, and the dysprosium chloride is (DyOCl) does not dissolve in the liquid 20 but becomes an insoluble material 30. In this way, a mixture 10 of neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl), neodymium chloride (NdCl 3) and dysprosium acid chloride (DyOCl) can be separated and recovered.
 次に、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法の例を説明する。 Next, an example of a method for separating and recovering Nd and Dy from a mixture of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) will be described.
 初めに、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の生成方法について説明する。但し、本発明は、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の生成方法については限定しないので、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)をこの方法で生成しなくてもよい。 First, a method for producing neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) will be described. However, since the present invention does not limit the method for producing neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl), neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) are produced by this method. You don't have to.
 図1Aと図1Bの化学ポテンシャル図において、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)が安定な領域に塩素と酸素のポテンシャル(分圧)を固定することにより、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)とが共存し、NdとDyを含む希土類組成物からネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物を生成することが可能となる。 In the chemical potential diagrams of FIGS. 1A and 1B, neodymium chloride is fixed by fixing the potential (partial pressure) of chlorine and oxygen in a region where neodymium chloride (NdOCl) and dysprosium chloride (DyOCl) are stable. (NdOCl) and dysprosium chloride (DyOCl) coexist and it becomes possible to produce a mixture of neodymium chloride (NdOCl) and dysprosium chloride (DyOCl) from a rare earth composition containing Nd and Dy. .
 このように生成したネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物を液体に入れることで、液体に対する溶解度の差を利用して、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)を分離回収することができる。 The mixture of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) produced in this way is put into a liquid, and the difference in solubility in the liquid is utilized to make use of the neodymium acid chloride (NdOCl) and dysprosium acid chloride. The product (DyOCl) can be separated and recovered.
 図3は、液体に対する溶解度の差を利用して、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)を分離回収する工程の模式図である。図3に示すように、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物40を液体50に入れると、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)は液体50に溶解するが、両者の溶解度は異なる。両者の溶解度の違いにより、液体50中のDy量とNd量は異なる。例えば、後述する図15に示すように、液体50が純水に有機溶媒を50%混合した混合液である場合には、液体50中のDy量はNd量よりも極めて大きくなる。すなわち、この場合には、ジスプロシウム酸塩化物(DyOCl)は液体50に大量に溶解し、ネオジム酸塩化物(NdOCl)はあまり溶解しない(不溶物60)。このように液体に対する溶解度の差を利用して、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物から、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)を分離回収することができる。 FIG. 3 is a schematic diagram of a process for separating and recovering neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) using the difference in solubility in liquid. As shown in FIG. 3, when a mixture 40 of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) is placed in liquid 50, neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) are liquid 50. However, the solubility of the two is different. Due to the difference in solubility between the two, the amount of Dy and the amount of Nd in the liquid 50 are different. For example, as shown in FIG. 15 described later, when the liquid 50 is a mixed liquid in which 50% of an organic solvent is mixed with pure water, the amount of Dy in the liquid 50 is extremely larger than the amount of Nd. That is, in this case, dysprosium acid chloride (DyOCl) is dissolved in a large amount in the liquid 50, and neodymium acid chloride (NdOCl) is not so much dissolved (insoluble material 60). Thus, by utilizing the difference in solubility in liquid, neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) are separated and recovered from the mixture of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl). can do.
 (2)希土類組成物から希土類元素とその他の元素との分離
 ネオジム(Nd)、ジスプロシウム(Dy)、鉄(Fe)、及びホウ素(B)を主成分とする希土類磁石(NdFeB磁石)から、希土類元素と他の元素を分離する方法について述べる。ここで、分離に供する原料(希土類組成物)としては、希土類磁石の廃棄物、例えば、不用品、不良品、または磁石作製時の切削等の加工屑(スラッジ)などを用いることが好ましい。化学反応のしやすさの観点から、原料は粉末状であることが好ましい。以下では、スラッジの粉末から分離する例を示す。
(2) Separation of rare earth elements and other elements from rare earth compositions From rare earth magnets mainly composed of neodymium (Nd), dysprosium (Dy), iron (Fe), and boron (B) (NdFeB magnets) A method for separating elements from other elements will be described. Here, as the raw material (rare earth composition) used for separation, it is preferable to use rare earth magnet waste, for example, waste, defective products, or processing scraps (sludge) such as cutting during magnet production. From the viewpoint of easy chemical reaction, the raw material is preferably in powder form. Below, the example isolate | separated from the powder of sludge is shown.
 希土類元素と他の元素の分離方法としては、以下に述べるような例が挙げられるが、これらに限定されるものではない。第1の方法は、スラッジを加熱して酸化し、これに水を加えてスラリー状にし、このスラリーに酸やアルカリを添加してpHを調整し、希土類元素以外の成分を水酸化物として沈殿させる方法である。第2の方法は、スラッジの粉末を硫酸などで溶解した後、シュウ酸沈殿法により、希土類元素以外の成分を分離する方法である。第3の方法は、スラッジ粉末を塩素雰囲気中で加熱して混合塩化物とした後、これを減圧しながら加熱することにより、各々の塩化物(希土類塩化物や鉄塩化物など)の蒸気圧の差を利用して、希土類元素とその他の元素を分離する方法である。第4の方法は、塩化マグネシウムやヨウ化亜鉛などの溶融塩中にスラッジの粉末を入れ、希土類元素を塩化またはヨウ化して浸漬させ、鉄やホウ素等を分離する方法である。 Examples of the method for separating rare earth elements from other elements include, but are not limited to, the following examples. In the first method, the sludge is heated to oxidize, water is added to the slurry to form a slurry, acid or alkali is added to the slurry, pH is adjusted, and components other than rare earth elements are precipitated as hydroxides. It is a method to make it. The second method is a method in which sludge powder is dissolved with sulfuric acid or the like and then components other than rare earth elements are separated by an oxalic acid precipitation method. In the third method, the sludge powder is heated in a chlorine atmosphere to form mixed chlorides, and then heated under reduced pressure, whereby the vapor pressure of each chloride (rare earth chloride, iron chloride, etc.). This is a method for separating rare earth elements from other elements by utilizing the difference between them. The fourth method is a method in which sludge powder is placed in a molten salt such as magnesium chloride or zinc iodide, and a rare earth element is chlorinated or iodinated and immersed to separate iron, boron, and the like.
 また、希土類元素は、上記の分離方法によって、希土類酸化物、希土類シュウ酸塩、希土類炭酸塩、希土類ヨウ化物、希土類塩化物、及び希土類硫酸塩などの形態で回収される。これらを出発原料として、塩素雰囲気中で塩素分圧と酸素分圧を調整して加熱処理を行うことにより、所望の希土類塩化物と希土類酸塩化物を得ることができる。上記の例では、図1Aと図1Bに示す点Aに塩素分圧と酸素分圧を調整して、出発原料を塩素雰囲気中で加熱処理することにより、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)を得ることができる。また、図1Aと図1Bに示すネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)が安定な領域に塩素分圧と酸素分圧を調整して、出発原料を塩素雰囲気中で加熱処理することにより、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)を得ることができる。 Further, rare earth elements are recovered in the form of rare earth oxides, rare earth oxalates, rare earth carbonates, rare earth iodides, rare earth chlorides, rare earth sulfates, and the like by the above separation method. By using these as starting materials and adjusting the chlorine partial pressure and oxygen partial pressure in a chlorine atmosphere and performing heat treatment, desired rare earth chlorides and rare earth acid chlorides can be obtained. In the above example, neodymium chloride (NdCl 3 ) and dysprosic acid are prepared by adjusting the chlorine partial pressure and the oxygen partial pressure at point A shown in FIGS. 1A and 1B and heat-treating the starting material in a chlorine atmosphere. Chloride (DyOCl) can be obtained. Further, the starting material is heated in a chlorine atmosphere by adjusting the chlorine partial pressure and the oxygen partial pressure in a region where neodymium chloride (NdOCl) and dysprosium chloride (DyOCl) shown in FIGS. 1A and 1B are stable. By doing so, neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) can be obtained.
 (3)Dy、Ndの分離
 ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物を液体に入れると、図2に示すように、ネオジム塩化物(NdCl)は液体に溶解し、ジスプロシウム酸塩化物(DyOCl)は液体に溶解せず不溶物となるので、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)とを分離回収することができる。また、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物を液体に入れると、液体に対するネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の溶解度の違いを利用して、NdとDyを分離することができる。液体としては、純水、純水に有機溶媒を混合した溶液、及び有機溶媒を用いることができる。有機溶媒には、アルコールを用いることが好ましく、アルコールのなかでも特にメタノールやエタノールを用いることが好ましい。これらの有機溶媒は、特許文献1や特許文献2などで用いられている有機溶媒などに比べて揮発性が少なく、地球環境に与える影響が小さい。
(3) Separation of Dy and Nd When a mixture of neodymium chloride (NdCl 3 ) and dysprosium acid chloride (DyOCl) is put into the liquid, as shown in FIG. 2, the neodymium chloride (NdCl 3 ) dissolves in the liquid. Since dysprosium chloride (DyOCl) does not dissolve in the liquid and becomes insoluble, neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) can be separated and recovered. Moreover, when a mixture of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) is put into a liquid, the difference in solubility between neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) in the liquid is utilized. , Nd and Dy can be separated. As the liquid, pure water, a solution obtained by mixing an organic solvent in pure water, and an organic solvent can be used. As the organic solvent, alcohol is preferably used, and methanol or ethanol is particularly preferably used among the alcohols. These organic solvents are less volatile than the organic solvents used in Patent Document 1, Patent Document 2, and the like, and have little influence on the global environment.
 DyとNdの分離は、上述したように、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物を液体に入れること、または、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物を液体に入れることで行う。ここで、液体の量や入れる混合物の量に応じて、液体を撹拌することが好ましい。撹拌には、例えば、撹拌子、撹拌羽根、または超音波振動などを用いることができる。また、撹拌に際しては、液体の揮発を防止するため、密閉することが好ましい。撹拌時に加熱することで、液体への溶出を促進することができる。但し、加熱温度が液体の沸点より高くなると液体の量が減少するため、撹拌する際の温度は、液体の沸点以下であることが好ましい。 As described above, Dy and Nd can be separated by putting a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) into a liquid, or neodymium chloride (NdOCl) and dysprosium chloride ( DyOCl) is put into the liquid. Here, it is preferable to stir the liquid according to the amount of the liquid and the amount of the mixture to be added. For stirring, for example, a stirring bar, a stirring blade, or ultrasonic vibration can be used. In addition, it is preferable that the agitation be performed in order to prevent the liquid from volatilizing. Elution into the liquid can be promoted by heating at the time of stirring. However, since the amount of the liquid decreases when the heating temperature becomes higher than the boiling point of the liquid, the temperature at the time of stirring is preferably not more than the boiling point of the liquid.
 ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法において、液体に溶解しない不溶物に含まれるDyの割合をDy分離率と称する。また、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法において、液体(溶液)に含まれるDyの割合をDy分離率と称する。これらのDy分離率は、Dyの質量をM、Ndの質量をMと表すと、M/(M+M)×100で表される。Dy分離率が大きいと、Dyを効率的に分離することができる。Dy分離率は、1回の分離にて90%以上であることが好ましく、95%であればより好ましい。 In the method of separating and recovering Nd and Dy from a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl), the ratio of Dy contained in insoluble matter that does not dissolve in the liquid is referred to as Dy separation rate. In the method of separating and recovering Nd and Dy from a mixture of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl), the ratio of Dy contained in the liquid (solution) is referred to as Dy separation rate. These Dy separation rates are represented by M D / (M N + M D ) × 100, where the mass of Dy is M D and the mass of Nd is M N. When the Dy separation rate is large, Dy can be separated efficiently. The Dy separation rate is preferably 90% or more in one separation, and more preferably 95%.
 (4)Dy、Ndの回収
 上述したように、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法では、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物を液体に入れると、ネオジム塩化物が溶解した溶液が得られるとともに、固体の不溶物としてジスプロシウム酸塩化物が得られる。なお、不溶物には、ジスプロシウム酸塩化物の他に、不純物として他の成分が含まれることがある。ネオジム塩化物が溶解した溶液とジスプロシウム酸塩化物を含む不溶物は、濾過や遠心分離などの一般的な方法で、分離することができる。
(4) Recovery of Dy and Nd As described above, in the method of separating and recovering Nd and Dy from a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl), neodymium chloride (NdCl 3 ) and dysprosium When a mixture of acid chlorides (DyOCl) is put into a liquid, a solution in which neodymium chloride is dissolved is obtained, and dysprosium acid chloride is obtained as a solid insoluble matter. In addition, insoluble matter may contain other components as impurities in addition to dysprosium chloride. A solution in which neodymium chloride is dissolved and an insoluble matter containing dysprosium chloride can be separated by a general method such as filtration or centrifugation.
 ネオジム塩化物溶液に対しては、これをスプレードライヤを用いて加熱雰囲気中に噴霧することで、Ndをネオジム酸塩化物の粉末として回収することができる。または、ネオジム塩化物溶液に対して、pH調整を行った後、沈殿材を添加することにより、難溶性のネオジム塩を生成させる。この不溶物を濾過し、乾燥させた後、大気中にて900℃程度で焙焼することにより、Ndを酸化ネオジムとして回収することができる。沈殿材には、例えば、炭酸アンモニウム((NHCO)、炭酸水素アンモニウム(NHHCO)、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)、シュウ酸((COOH))、シュウ酸ナトリウム((COONa))、または水酸化アンモニウム(NHOH)等を用いることができる。 With respect to the neodymium chloride solution, Nd can be recovered as a powder of neodymium chloride by spraying it in a heated atmosphere using a spray dryer. Or after adjusting pH with respect to a neodymium chloride solution, a slightly soluble neodymium salt is produced | generated by adding a precipitation material. Nd can be recovered as neodymium oxide by filtering and drying the insoluble matter and then baking at about 900 ° C. in the air. Examples of the precipitation material include ammonium carbonate ((NH 4 ) 2 CO 3 ), ammonium hydrogen carbonate (NH 4 HCO 3 ), sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), oxalic acid (( COOH) 2 ), sodium oxalate ((COONa) 2 ), ammonium hydroxide (NH 4 OH), or the like can be used.
 固体の不溶物として得られたジスプロシウム酸塩化物に対しては、これを乾燥させることで、Dyをジスプロシウム酸塩化物として回収することができる。または、ジスプロシウム酸塩化物を酸(例えば、塩酸や硝酸など)で溶解して水和物を得て、この水和物に対して、pH調整を行った後、沈殿材を添加することにより、難溶性のジスプロシウム塩の不溶物を生成させる。 Dy can be recovered as dysprosium chloride by drying the dysprosium chloride obtained as a solid insoluble matter. Alternatively, by dissolving dysprosium acid chloride with an acid (for example, hydrochloric acid or nitric acid) to obtain a hydrate, adjusting the pH of the hydrate, and then adding a precipitation material, A slightly soluble insoluble substance of dysprosium salt is formed.
 また、上述したように、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法では、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物を液体に入れると、これらが溶解した溶液が得られる。ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)のうち、液体に溶解しなかったものは、固体の不溶物として沈殿する。溶液と固体の不溶物は、濾過や遠心分離などの一般的な方法で、分離することができる。 Further, as described above, in the method of separating and recovering Nd and Dy from a mixture of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl), neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) When the mixture is put into a liquid, a solution in which they are dissolved is obtained. Of the neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl), those not dissolved in the liquid precipitate as solid insolubles. The solution and the solid insoluble matter can be separated by a general method such as filtration or centrifugation.
 ここでは、一例として、液体として純水に有機溶媒を50%混合した混合液を用いた場合、すなわち、溶液には主にDyが含まれ、不溶物には主にNdが含まれる場合について説明する。液体として純水を用いた場合などで、溶液には主にNdが含まれ、不溶物には主にDyが含まれる場合についても、以下で述べる方法と同様にして、溶液からNdを回収し、不溶物からDyを回収することができる。 Here, as an example, a case where a mixed solution in which 50% of an organic solvent is mixed with pure water is used as a liquid, that is, a case where the solution mainly contains Dy and an insoluble matter mainly contains Nd will be described. To do. Even when pure water is used as the liquid and the solution mainly contains Nd and the insoluble matter mainly contains Dy, Nd is recovered from the solution in the same manner as described below. Dy can be recovered from insoluble matter.
 Dyを主に含んだ溶液に対しては、これをスプレードライヤを用いて加熱雰囲気中に噴霧することで、Dyをジスプロシウム酸塩化物の粉末として回収することができる。または、Dyを主に含んだ溶液に対して、pH調整を行った後、沈殿材を添加することにより、難溶性のジスプロシウム塩の不溶物を生成させる。 The solution mainly containing Dy can be recovered as a powder of dysprosium oxychloride by spraying it in a heated atmosphere using a spray dryer. Or after adjusting pH with respect to the solution mainly containing Dy, the insoluble matter of a hardly soluble dysprosium salt is produced | generated by adding a precipitation material.
 固体の不溶物からは、これを乾燥させることで、Ndを含んだ酸塩化物を回収することができる。 From the solid insoluble matter, the acid chloride containing Nd can be recovered by drying it.
 上述の2つの方法で生成した不溶物を濾過し、乾燥させた後、大気中にて900℃程度で焙焼することにより、Dyを酸化ジスプロシウム、Ndを酸化ネオジムとして回収することができる。沈殿材には、例えば、炭酸アンモニウム((NHCO)、炭酸水素アンモニウム(NHHCO)、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)、シュウ酸((COOH))、シュウ酸ナトリウム((COONa))、または水酸化アンモニウム(NHOH)等を用いることができる。 The insoluble matter produced by the two methods described above is filtered and dried, and then roasted at about 900 ° C. in the atmosphere, whereby Dy can be recovered as dysprosium oxide and Nd as neodymium oxide. Examples of the precipitation material include ammonium carbonate ((NH 4 ) 2 CO 3 ), ammonium hydrogen carbonate (NH 4 HCO 3 ), sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), oxalic acid (( COOH) 2 ), sodium oxalate ((COONa) 2 ), ammonium hydroxide (NH 4 OH), or the like can be used.
 以下、本発明の具体的な実施例について述べる。初めに、実施例1~5で、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法の実施例について述べ、次に、実施例6~9で、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の混合物からNdとDyを分離回収する方法の実施例について述べる。 Hereinafter, specific examples of the present invention will be described. First, in Examples 1 to 5, an example of a method for separating and recovering Nd and Dy from a mixture of neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) will be described, and then Examples 6 to 9 will be described. An embodiment of a method for separating and recovering Nd and Dy from a mixture of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) will be described.
 本実施例では、希土類塩化物としてネオジム塩化物(NdCl)を用い、希土類酸塩化物としてジスプロシウム酸塩化物(DyOCl)を用いた。これらのサンプルで溶解試験を行い、液体中に含まれるDy量と不溶物のDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を求めた。サンプルの作製方法と溶解試験方法を以下に述べる。 In this example, neodymium chloride (NdCl 3 ) was used as the rare earth chloride, and dysprosium acid chloride (DyOCl) was used as the rare earth acid chloride. Perform dissolution testing these samples, Dy separation rate (= M D / (M N + M D) × 100, M D is the mass of Dy in the amount of Dy and insoluble matter contained in the liquid, M N is the mass of Nd ) The sample preparation method and dissolution test method are described below.
 サンプルのネオジム塩化物(NdCl)には、株式会社高純度化学研究所製の純度3Nの塩化ネオジム粉末を用いた。サンプルのジスプロシウム酸塩化物(DyOCl)は、以下の方法で作製した。株式会社高純度化学研究所製の純度3Nの酸化ジスプロシウムと純度3Nの塩化ジスプロシウムを、大気圧のArガス雰囲気のグローブボックス中で秤量して混合し、ステンレス製の反応容器中に密閉した。この反応容器を電気炉中に入れ、図1Aと図1Bに示した化学ポテンシャル図の点Aに酸素分圧と塩素分圧を調整して、熱処理を行った。加熱温度は800℃、保持時間は6時間である。熱処理後の反応容器から粉末を回収した。得られた粉末に対してX線回折試験を行い、粉末の結晶相はDyOClのみであることを確認した。 As the sample neodymium chloride (NdCl 3 ), neodymium chloride powder having a purity of 3N manufactured by Kojundo Chemical Laboratory Co., Ltd. was used. A sample dysprosium acid chloride (DyOCl) was prepared by the following method. 3N purity dysprosium oxide and 3N purity dysprosium manufactured by Kojundo Chemical Laboratory Co., Ltd. were weighed and mixed in a glove box with an atmospheric pressure Ar gas atmosphere, and sealed in a stainless steel reaction vessel. This reaction vessel was placed in an electric furnace, and heat treatment was performed by adjusting the oxygen partial pressure and the chlorine partial pressure at point A in the chemical potential diagrams shown in FIGS. 1A and 1B. The heating temperature is 800 ° C. and the holding time is 6 hours. The powder was recovered from the reaction vessel after the heat treatment. An X-ray diffraction test was performed on the obtained powder, and it was confirmed that the crystal phase of the powder was only DyOCl.
 溶解試験は、以下のように行った。生成したネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)を各々0.25gずつ(総量0.5g)ガラス製容器(60cc)に入れ、液体を50cc混合して、スターラで20時間撹拌した。本実施例では、液体に純水を用いた溶解試験と、エタノールを用いた溶解試験を行った。液体の温度は25℃、撹拌速度は500rpmである。撹拌後の液体及び不溶物を、高周波誘導結合プラズマ発光分光分析法(ICP―AES)で分析して、Dy量とNd量を定量分析した。 The dissolution test was performed as follows. The produced neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) are each put in 0.25 g (total amount 0.5 g) in a glass container (60 cc), mixed with 50 cc of liquid, and stirred with a stirrer for 20 hours. did. In this example, a dissolution test using pure water as a liquid and a dissolution test using ethanol were performed. The temperature of the liquid is 25 ° C., and the stirring speed is 500 rpm. The liquid and insoluble matter after stirring were analyzed by high frequency inductively coupled plasma optical emission spectrometry (ICP-AES) to quantitatively analyze the amount of Dy and the amount of Nd.
 図4に、それぞれの液体中に含まれるDy量を示す。液体が純水の場合には、Dyが800mg/L含まれており、液体がエタノールの場合には、Dyが32mg/L含まれている。従って、液体がエタノールの場合は、液体が純水の場合に比べて、DyOClの液体への溶出が抑制されていた。すなわち、液体がエタノールであると、不溶物として回収するDyOClの量が多いことが分かる。 FIG. 4 shows the amount of Dy contained in each liquid. When the liquid is pure water, Dy is contained at 800 mg / L, and when the liquid is ethanol, Dy is contained at 32 mg / L. Therefore, when the liquid is ethanol, elution of DyOCl into the liquid is suppressed as compared with the case where the liquid is pure water. That is, it can be seen that when the liquid is ethanol, the amount of DyOCl recovered as an insoluble matter is large.
 図5に、不溶物のDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を示す。液体が純水の場合には、Dy分離率が94.5mass%程度であり、液体がエタノールの場合には、Dy分離率が98.8mass%である。従って、液体がエタノールの場合は、液体が純水の場合に比べて、Dy分離率が向上していることが分かる。 FIG. 5 shows the Dy separation rate (= M D / (M N + M D ) × 100, M D is the mass of Dy, and MN is the mass of Nd) of the insoluble matter. When the liquid is pure water, the Dy separation rate is about 94.5 mass%, and when the liquid is ethanol, the Dy separation rate is 98.8 mass%. Therefore, it can be seen that when the liquid is ethanol, the Dy separation rate is improved as compared with the case where the liquid is pure water.
 以上より、液体がエタノールの場合は、液体が純水の場合に比べて、DyOClが液体中に溶けずに沈殿しやすいことと、不溶物のDy分離率が高いことが分かった。 From the above, it was found that when the liquid was ethanol, DyOCl was more likely to precipitate without dissolving in the liquid and the insoluble matter Dy separation rate was higher than when the liquid was pure water.
 図6は、純水にエタノールを混合した液体を用いた場合の、液体中のエタノール量と不溶物のDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)との関係を示す図である。図6では、得られたデータの近似曲線を示している。エタノール量は、液体中のエタノールの割合で表している。サンプルの作製方法及び溶解試験方法は、実施例1と同様である。 FIG. 6 shows the amount of ethanol in the liquid and the Dy separation rate of insoluble matter (= M D / (M N + M D ) × 100, where M D is the mass of Dy when a liquid in which ethanol is mixed with pure water is used. , MN is a diagram showing a relationship with the mass of Nd). FIG. 6 shows an approximate curve of the obtained data. The amount of ethanol is expressed as a ratio of ethanol in the liquid. The sample preparation method and dissolution test method are the same as in Example 1.
 図6に示すように、液体中のエタノール量の増加に伴い、Dy分離率は向上する傾向を示した。以上より、純水とエタノールが混合した液体では、エタノール量が多いと、不溶物のDy分離率が高いことが分かった。 As shown in FIG. 6, the Dy separation rate tended to improve as the amount of ethanol in the liquid increased. From the above, it was found that in a liquid in which pure water and ethanol were mixed, the Dy separation rate of insoluble matter was high when the amount of ethanol was large.
 本実施例では、サンプルであるネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)の混合割合を変えて、溶解試験を行った。サンプルの作製方法及び溶解試験方法は実施例1と同様であるが、ネオジム塩化物とジスプロシウム酸塩化物の混合割合のみが実施例1と異なる。 In this example, the dissolution test was performed by changing the mixing ratio of the sample neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl). The sample preparation method and dissolution test method are the same as in Example 1, but only the mixing ratio of neodymium chloride and dysprosium oxychloride is different from Example 1.
 図7は、ネオジム塩化物とジスプロシウム酸塩化物の混合割合を変えたときの、不溶物のDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を示す図である。図7には、液体が純水(エタノール量が0mass%)の場合とエタノール(エタノール量が100mass%)の場合のDy分離率を示した。また、本実施例と比較するために、実施例1のDy分離率も、液体が純水の場合とエタノールの場合について示した。本実施例では、実施例1よりも、ジスプロシウム酸塩化物の混合割合を小さくした。図7の横軸は、サンプル中のDy量(サンプル中のDyの割合)である。Dy量は、本実施例では13.3mass%であり、実施例1では、57.6mass%である。 7, when changing the mixing ratio of neodymium chloride and dysprosium acid chlorides, Dy separation rate of insoluble matter (= M D / (M N + M D) × 100, M D is the mass of Dy, M N Is a diagram showing the mass of Nd). FIG. 7 shows the Dy separation rate when the liquid is pure water (ethanol amount is 0 mass%) and ethanol (ethanol amount is 100 mass%). For comparison with this example, the Dy separation rate of Example 1 is also shown for the case where the liquid is pure water and ethanol. In this example, the mixing ratio of dysprosium chloride was made smaller than that in Example 1. The horizontal axis in FIG. 7 represents the amount of Dy in the sample (the ratio of Dy in the sample). The amount of Dy is 13.3 mass% in this example, and 57.6 mass% in Example 1.
 図7に示すように、サンプル中のDy量を少なくした本実施例では、実施例1に比べて、不溶物のDy分離率が低下している。液体が純水の場合には、Dy分離率は、94.5mass%から85.4mass%へと大きく低下した。これに対し、液体がエタノールの場合には、Dy分離率は、98.8mass%から95.7mass%への小さな低下にとどまった。液体がエタノールの場合は、液体が純水の場合ほど大きなDy分離率の低下は見られなかった。 As shown in FIG. 7, in this example in which the amount of Dy in the sample was reduced, the Dy separation rate of insoluble matter was lower than that in Example 1. When the liquid was pure water, the Dy separation rate greatly decreased from 94.5 mass% to 85.4 mass%. In contrast, when the liquid was ethanol, the Dy separation rate was only a small decrease from 98.8 mass% to 95.7 mass%. When the liquid was ethanol, the decrease in the Dy separation rate was not as great as when the liquid was pure water.
 以上より、液体がエタノールの場合は、液体が純水の場合に比べて、ネオジム塩化物とジスプロシウム酸塩化物の混合物においてDy量が少なくても、Dy分離率の低下が小さく、高いDy分離率を示した。 From the above, when the liquid is ethanol, even when the amount of Dy is small in the mixture of neodymium chloride and dysprosium oxychloride compared with the case where the liquid is pure water, the decrease in the Dy separation rate is small, and the high Dy separation rate. showed that.
 本実施例では、液体の種類を変えて溶解試験を行った。サンプルの作製方法及び溶解試験方法は実施例1と同様であるが、液体の種類のみが実施例1と異なる。本実施例で用いた液体は、純水、エタノール、メタノール、2-プロパノール、アセトン、及びテトラヒドロフランである。 In this example, a dissolution test was performed by changing the type of liquid. The sample preparation method and dissolution test method are the same as in Example 1, but only the type of liquid is different from Example 1. The liquids used in this example are pure water, ethanol, methanol, 2-propanol, acetone, and tetrahydrofuran.
 図8は、液体の種類を変えたときの、不溶物のDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を示す図である。図8に示すように、液体が純水の場合には、Dy分離率は94.5mass%である。一方、液体がエタノール、メタノール、2-プロパノール、アセトン、またはテトラヒドロフランという有機溶媒の場合には、Dy分離率は、いずれも97mass%を超えている。 FIG. 8 is a diagram showing the Dy separation rate (= M D / (M N + M D ) × 100, M D is the mass of Dy, and MN is the mass of Nd) when the type of liquid is changed. It is. As shown in FIG. 8, when the liquid is pure water, the Dy separation rate is 94.5 mass%. On the other hand, when the liquid is an organic solvent such as ethanol, methanol, 2-propanol, acetone, or tetrahydrofuran, the Dy separation rate exceeds 97 mass%.
 以上より、液体が有機溶媒の場合は、液体が純水の場合に比べて、Dy分離率が高いことが分かった。 From the above, it was found that the Dy separation rate is higher when the liquid is an organic solvent than when the liquid is pure water.
 本実施例では、希土類組成物として希土類磁石のスラッジを用い、このスラッジから希土類元素の分離回収を行った。本実施例で用いた希土類磁石は、ネオジム(Nd)やジスプロシウム(Dy)などを含有するNdFeB磁石である。用いたスラッジの質量組成は、鉄(Fe)が61.2%、Ndが23.1%、Dyが3.5%、プラセオジム(Pr)が2.0%、及びホウ素(B)が1.0%である。 In this example, a rare earth magnet sludge was used as the rare earth composition, and the rare earth elements were separated and recovered from the sludge. The rare earth magnet used in this example is an NdFeB magnet containing neodymium (Nd), dysprosium (Dy), or the like. The mass composition of the sludge used was 61.2% for iron (Fe), 23.1% for Nd, 3.5% for Dy, 2.0% for praseodymium (Pr), and 1.1 for boron (B). 0%.
 スラッジの粉末を硫酸で溶解した後、希土類元素をシュウ酸で沈殿させて、希土類元素以外の成分を除去した(シュウ酸沈殿法)。次に、シュウ酸沈殿法で得られたシュウ酸塩を加熱処理して、希土類混合酸化物とした。得られた希土類混合酸化物に対して、塩素雰囲気中で、図1Aと図1Bに示した化学ポテンシャル図の点Aに示す酸素分圧と塩素分圧に調整して、800℃で熱処理を行い、ネオジム塩化物(NdCl)とジスプロシウム酸塩化物(DyOCl)を得た。 After the sludge powder was dissolved with sulfuric acid, rare earth elements were precipitated with oxalic acid to remove components other than the rare earth elements (oxalic acid precipitation method). Next, the oxalate obtained by the oxalic acid precipitation method was heat-treated to obtain a rare earth mixed oxide. The obtained rare earth mixed oxide is heat-treated at 800 ° C. in a chlorine atmosphere, adjusted to the oxygen partial pressure and the chlorine partial pressure shown at point A in the chemical potential diagrams shown in FIGS. 1A and 1B. Neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) were obtained.
 得られたネオジム塩化物とジスプロシウム酸塩化物の混合物50gをエタノール中(約5L)に入れ、撹拌羽根で20時間撹拌した。液体の温度は約25℃、撹拌速度は200rpmである。撹拌後の不溶物を110℃で12時間乾燥させた後、高周波誘導結合プラズマ発光分光分析法(ICP―AES)により、Dy量とNd量を定量分析した。得られたDy量とNd量とから不溶物のDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を算出したところ、98.5%であった。このように、本実施例では、95%を超える高いDy分離率を得ることができた。 50 g of the resulting mixture of neodymium chloride and dysprosium chloride was placed in ethanol (about 5 L) and stirred with a stirring blade for 20 hours. The temperature of the liquid is about 25 ° C., and the stirring speed is 200 rpm. The insoluble matter after stirring was dried at 110 ° C. for 12 hours, and then the amount of Dy and the amount of Nd were quantitatively analyzed by high frequency inductively coupled plasma emission spectroscopy (ICP-AES). When the Dy separation rate (= M D / (M N + M D ) × 100, M D is the mass of Dy, and MN is the mass of Nd) is calculated from the obtained Dy amount and Nd amount, 98 .5%. Thus, in this example, a high Dy separation rate exceeding 95% could be obtained.
 この不溶物には、さらに、エタノール中で同様の条件で撹拌する処理を行ってもよい。不溶物には不純物が混ざっている可能性があるので、この処理により、さらに不純物を除去することができる。本実施例では、この不溶物に対し、再度、エタノール中で同様の条件で撹拌する処理を行い、Dy分離率を算出した。この結果、Dy分離率は99.8%であり、極めて高い値が得られた。 The insoluble material may be further subjected to a treatment in ethanol under the same conditions. Since there is a possibility that impurities are mixed in the insoluble material, the impurities can be further removed by this treatment. In this example, the insoluble matter was again stirred in ethanol under the same conditions, and the Dy separation rate was calculated. As a result, the Dy separation rate was 99.8%, and an extremely high value was obtained.
 以上のようにして、1回の分離にて90%以上という高いDy分離率で、希土類組成物からDyを分離することができた。Ndは、「(4)Dy、Ndの回収」で述べたように、液体(ネオジム塩化物のエタノール溶液)から回収することができる。本実施例では、不溶物のDy分離率が高い、すなわち液体に含まれるDyの量が少ないので、Ndの分離率も、必然的に高くなる。 As described above, Dy could be separated from the rare earth composition with a high Dy separation rate of 90% or more in one separation. Nd can be recovered from a liquid (ethanol solution of neodymium chloride) as described in “(4) Recovery of Dy and Nd”. In this example, the Dy separation rate of insolubles is high, that is, the amount of Dy contained in the liquid is small, so the Nd separation rate is inevitably high.
 本実施例では、希土類酸塩化物としてネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)を用いた。これらのサンプルに溶解試験を行い、溶液に含まれるNd量とDy量、及び溶液のDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を求めた。サンプルの作製方法と溶解試験方法を以下に述べる。 In this example, neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) were used as rare earth acid chlorides. Perform dissolution tests on these samples, Nd amount and the amount of Dy contained in the solution, and the solution Dy separation rate (= M D / (M N + M D) × 100, M D is the mass of Dy, M N is Nd Mass). The sample preparation method and dissolution test method are described below.
 サンプルとして、ネオジム酸塩化物(NdOCl)には、株式会社高純度化学研究所製の純度3Nの酸化ネオジムと純度3Nの塩化ネオジムを用い、ジスプロシウム酸塩化物(DyOCl)には、純度3Nの酸化ジスプロシウムと純度3Nの塩化ジスプロシウムを用い、以下の方法でそれぞれ作製した。酸化ネオジムと塩化ネオジムの混合粉末、及び酸化ジスプロシウムと塩化ジスプロシウムの混合粉末を、それぞれ大気圧のArガス雰囲気のグローブボックス中で秤量して混合し、それぞれをステンレス製の反応容器中に密閉した。これらの反応容器を電気炉中に入れ、図1Aと図1Bに示した化学ポテンシャル図にてそれぞれNdOClとDyOClが生成する条件(NdOClとDyOClが安定な領域の酸素分圧と塩素分圧)で熱処理を行った。加熱温度は800℃、保持時間は6時間である。熱処理後の反応容器から粉末を回収した。得られた2種類の粉末に対して、X線回折試験を行い、粉末の結晶相を調べた。 As a sample, neodymium acid chloride (NdOCl) uses neodymium oxide with a purity of 3N and neodymium chloride with a purity of 3N manufactured by Kojundo Chemical Laboratory Co., Ltd., and oxidation with a purity of 3N for dysprosium acid chloride (DyOCl). Using dysprosium and dysprosium chloride having a purity of 3N, the following methods were used. A mixed powder of neodymium oxide and neodymium chloride and a mixed powder of dysprosium oxide and dysprosium chloride were weighed and mixed in a glove box in an atmospheric pressure Ar gas atmosphere, and each was sealed in a stainless steel reaction vessel. These reaction vessels are put in an electric furnace, and under the conditions of generating NdOCl and DyOCl (oxygen partial pressure and chlorine partial pressure in a region where NdOCl and DyOCl are stable) in the chemical potential diagrams shown in FIGS. 1A and 1B, respectively. Heat treatment was performed. The heating temperature is 800 ° C. and the holding time is 6 hours. The powder was recovered from the reaction vessel after the heat treatment. An X-ray diffraction test was performed on the obtained two types of powders to examine the crystal phase of the powders.
 図9と図10には、この熱処理により得られた粉末のX線回折試験の結果として、これらの粉末のX線回折パターンを示す。図9は、酸化ネオジムと塩化ネオジムの混合粉末を熱処理して得られた粉末のX線回折パターンである。図10は、酸化ジスプロシウムと塩化ジスプロシウムの混合粉末を熱処理して得られた粉末のX線回折パターンである。図9には、粉末X線回折の標準データ集であるICDD(International Centre for Diffraction Data)によるNdOClのX線回折パターンを、図10には、ICDDによるDyOClのX線回折パターンを、X線回折試験で得られたX線回折パターンの下にそれぞれ併記している。 9 and 10 show X-ray diffraction patterns of these powders as a result of the X-ray diffraction test of the powders obtained by this heat treatment. FIG. 9 is an X-ray diffraction pattern of a powder obtained by heat treatment of a mixed powder of neodymium oxide and neodymium chloride. FIG. 10 is an X-ray diffraction pattern of a powder obtained by heat-treating a mixed powder of dysprosium oxide and dysprosium chloride. 9 shows an X-ray diffraction pattern of NdOCl by ICDD (International Center for Diffraction Data), which is a standard collection of powder X-ray diffraction, and FIG. 10 shows an X-ray diffraction pattern of DyOCl by ICDD. It is written together below the X-ray diffraction pattern obtained in the test.
 図9に示すように、酸化ネオジムと塩化ネオジムの混合粉末からは、NdOClのみが生成していた。また、図10に示すように、酸化ジスプロシウムと塩化ジスプロシウムの混合粉末からは、DyOClのみが生成していた。 As shown in FIG. 9, only NdOCl was produced from the mixed powder of neodymium oxide and neodymium chloride. Further, as shown in FIG. 10, only DyOCl was produced from the mixed powder of dysprosium oxide and dysprosium chloride.
 これらの酸塩化物を液体に入れ、液体に対する溶解性を評価する溶解試験を行った。評価方法は、以下の通りである。生成した酸塩化物(NdOClとDyOCl)を各々0.25gずつ(総量0.5g)ガラス製容器(60cc)に入れ、液体を50cc混合した。このガラス製容器に入れた回転子をスターラで、回転速度500rpmで20時間撹拌した。撹拌後の溶液を、濾紙(粒子保持能2.5μm)及びシリンジフィルタ(孔径0.2μm)で濾過した後、濾過液(以下、溶液と記載)を高周波誘導結合プラズマ発光分光分析法(ICP―AES)で分析して、液体中に溶解したDy量とNd量を定量分析した。なお、本実施例では、液体に純水を用いた場合の溶解試験と、純水とエタノールの混合液を用いた場合の溶解試験を行った。 These acid chlorides were placed in a liquid and a dissolution test was performed to evaluate the solubility in the liquid. The evaluation method is as follows. The produced acid chlorides (NdOCl and DyOCl) were each put in 0.25 g (total amount 0.5 g) into a glass container (60 cc), and 50 cc of the liquid was mixed. The rotor placed in this glass container was stirred with a stirrer at a rotation speed of 500 rpm for 20 hours. The stirred solution is filtered through a filter paper (particle holding capacity 2.5 μm) and a syringe filter (pore diameter 0.2 μm), and then the filtrate (hereinafter referred to as a solution) is subjected to high frequency inductively coupled plasma emission spectroscopy (ICP−). AES) and the amount of Dy and the amount of Nd dissolved in the liquid were quantitatively analyzed. In this example, a dissolution test using pure water as a liquid and a dissolution test using a mixed solution of pure water and ethanol were performed.
 図11は、液体中のエタノール量を変えた場合の、溶液のNd量とDy量を示す図である。図11では、得られたデータの近似曲線を表示している。エタノール量は、液体中のエタノールの割合で表している。エタノール量が100mass%のとき、液体はエタノールのみであり、エタノール量が0mass%のとき、液体は純水である。Nd量は、エタノール量の増加に伴い減少していき、液体がエタノールのみの場合には、液体が純水の場合の約1/1000まで減少した。Dy量は、エタノール量が約60mass%まではエタノール量の増加に伴い緩やかに減少したが、エタノール量が約60mass%を超えると大幅に減少していき、液体がエタノールのみの場合には、液体が純水の場合の約1/150の値を示した。 FIG. 11 is a diagram showing the Nd amount and Dy amount of the solution when the amount of ethanol in the liquid is changed. In FIG. 11, an approximate curve of the obtained data is displayed. The amount of ethanol is expressed as a ratio of ethanol in the liquid. When the amount of ethanol is 100 mass%, the liquid is only ethanol, and when the amount of ethanol is 0 mass%, the liquid is pure water. The amount of Nd decreased as the amount of ethanol increased, and when the liquid was ethanol alone, it decreased to about 1/1000 of that when the liquid was pure water. The amount of Dy gradually decreased with the increase in the amount of ethanol up to about 60 mass%, but decreased significantly when the amount of ethanol exceeded about 60 mass%. Shows a value of about 1/150 in the case of pure water.
 図11に示すように、エタノール量に対して、NdOClとDyOClでは溶解挙動が異なっている。図11に示した溶液のNd量とDy量とから、溶液のDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を算出した。 As shown in FIG. 11, NdOCl and DyOCl have different dissolution behavior with respect to the amount of ethanol. From the Nd amount and Dy amount of the solution shown in FIG. 11, the Dy separation rate of the solution (= M D / (M N + M D ) × 100, M D is the mass of Dy, and MN is the mass of Nd) did.
 図12は、溶液のNd量とDy量とから算出したDy分離率を示す図である。図12に示すように、Dy分離率は、エタノール量の増加に伴い上昇していき、エタノール量が60%近傍で最大値を示した。また、Dy分離率は、エタノール量が30%以上の場合に80%以上を示し、特にエタノール量が50%から80%の範囲では90%以上の値を示した。 FIG. 12 is a diagram showing the Dy separation rate calculated from the Nd amount and Dy amount of the solution. As shown in FIG. 12, the Dy separation rate increased as the amount of ethanol increased, and showed a maximum value when the amount of ethanol was around 60%. Further, the Dy separation rate was 80% or more when the amount of ethanol was 30% or more, and particularly 90% or more when the amount of ethanol was in the range of 50% to 80%.
 以上より、液体中のエタノール量(液体中のエタノールと純水の割合)が50%から80%の範囲では、Dy分離率が90%以上の値を示すことが分かった。 From the above, it was found that when the amount of ethanol in the liquid (ratio of ethanol and pure water in the liquid) is in the range of 50% to 80%, the Dy separation rate shows a value of 90% or more.
 本実施例では、サンプルであるネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)の粒径を変えて、溶解試験を行った。サンプルの作製方法及び溶解試験方法は実施例6と同様であるが、熱処理条件を変えることにより、NdOClとDyOClの粒径を変化させた。なお、液体には、純水にエタノールを50%混合した混合液を用いた。 In this example, dissolution tests were performed by changing the particle sizes of neodymium acid chloride (NdOCl) and dysprosium acid chloride (DyOCl) as samples. The sample preparation method and dissolution test method were the same as in Example 6. However, the particle diameters of NdOCl and DyOCl were changed by changing the heat treatment conditions. As the liquid, a mixed solution in which 50% ethanol was mixed with pure water was used.
 図13は、NdOClの粒径と溶液のNd量との関係、及びDyOClの粒径と溶液のDy量との関係を示す図である。図13では、得られたデータの近似曲線を表示している。図13に示すように、NdOClとDyOClのどちらも、粒径が大きくなるに従い、溶液のNd量とDy量がそれぞれ減少する傾向を示した。但し、NdOClとDyOClでは、溶出挙動が異なる。NdOClの場合、粒径3μm以上では、溶液のNd量は、高周波誘導結合プラズマ発光分光分析法(ICP―AES)の検出限界以下であった。これに対し、DyOClでは、粒径10μmでも溶液からDyが検出された。 FIG. 13 is a diagram showing the relationship between the particle size of NdOCl and the Nd amount of the solution, and the relationship between the particle size of DyOCl and the Dy amount of the solution. In FIG. 13, an approximate curve of the obtained data is displayed. As shown in FIG. 13, both NdOCl and DyOCl showed a tendency that the Nd amount and Dy amount of the solution respectively decreased as the particle size increased. However, elution behavior is different between NdOCl and DyOCl. In the case of NdOCl, when the particle size was 3 μm or more, the Nd content of the solution was below the detection limit of high frequency inductively coupled plasma optical emission spectrometry (ICP-AES). In contrast, with DyOCl, Dy was detected from the solution even with a particle size of 10 μm.
 図14は、NdOClとDyOClの粒径を変化させた場合の、溶液のNd量とDy量とから算出したDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を示す図である。図14において、粒径3μm以上の場合は、溶液のNd量として、ICP―AESの検出限界値を用いた。 14, when changing the particle size of the NdOCl and DyOCl, Dy separation rate was calculated from the Nd amount and Dy of the solution (= the M D / (M N + M D) × 100, M D is Dy It is a figure which shows mass and MN is the mass of Nd). In FIG. 14, when the particle size is 3 μm or more, the detection limit value of ICP-AES was used as the Nd amount of the solution.
 図14に示すように、粒径が約0.5μmから約8μmの範囲で、Dy分離率は90%以上の値を示した。特に、粒径が1μmから5μmの範囲では、Dy分離率は95%以上の高い値を示した。 As shown in FIG. 14, the Dy separation rate was 90% or more when the particle size was in the range of about 0.5 μm to about 8 μm. In particular, when the particle size was in the range of 1 μm to 5 μm, the Dy separation rate showed a high value of 95% or more.
 以上より、NdOClとDyOClの粒径が1μmから5μmの範囲では、Dy分離率が95%以上の高い値を示すことが分かった。 From the above, it was found that the Dy separation rate showed a high value of 95% or more when the particle diameters of NdOCl and DyOCl were in the range of 1 μm to 5 μm.
 本実施例では、液体の種類を変えて溶解試験を行った。サンプルの作製方法及び溶解試験方法は実施例6と同様であるが、液体の種類のみが実施例6と異なる。本実施例で用いた液体は、純水、及び純水に各種の有機溶媒を50%混合した混合液である。有機溶媒には、メタノール、エタノール、2-プロパノール、アセトン、及びテトラヒドロフランを用いた。 In this example, a dissolution test was performed by changing the type of liquid. The sample preparation method and dissolution test method are the same as in Example 6, but only the type of liquid is different from Example 6. The liquid used in this example is pure water and a mixed liquid in which 50% of various organic solvents are mixed with pure water. As the organic solvent, methanol, ethanol, 2-propanol, acetone, and tetrahydrofuran were used.
 図15は、液体の種類を変えたときの、溶液のNd量とDy量を示す図である。図15に示すように、液体が純水の場合には、溶液のDy量はNd量より少ないが、液体が純水と有機溶媒の混合液の場合には、溶液のDy量はNd量より多くなった。また、液体が混合液の場合は、溶液のDy量とNd量の差が大きく、液体に対する両者の溶解度の差が顕著に表れることが分かった。このため、液体が純水と有機溶媒の混合液の場合には、溶液のDy分離率が大きくなることが予想される。 FIG. 15 is a diagram showing the Nd amount and Dy amount of the solution when the type of liquid is changed. As shown in FIG. 15, when the liquid is pure water, the Dy amount of the solution is smaller than the Nd amount, but when the liquid is a mixed solution of pure water and an organic solvent, the Dy amount of the solution is smaller than the Nd amount. Increased. Moreover, when the liquid was a mixed liquid, it was found that the difference between the Dy amount and the Nd amount of the solution was large, and the difference in solubility between the two in the liquid appeared remarkably. For this reason, when the liquid is a mixed liquid of pure water and an organic solvent, it is expected that the Dy separation rate of the solution increases.
 図16は、液体の種類を変えたときの、溶液のNd量とDy量とから算出したDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を示す図である。図16に示すように、いずれの混合液でも、純水に比べて高いDy分離率を示した。有機溶媒としてメタノール、エタノール、2-プロパノール、またはアセトンを用いた混合液では、Dy分離率は90%以上の値を示し、特に、メタノールを用いた混合液では、Dy分離率が95%以上と高い値になった。 FIG. 16 shows the Dy separation rate (= M D / (M N + M D ) × 100 calculated from the Nd amount and Dy amount of the solution when the type of liquid is changed, where M D is the mass of Dy, M N Is a diagram showing the mass of Nd). As shown in FIG. 16, any mixed solution showed a higher Dy separation rate than pure water. In a mixed solution using methanol, ethanol, 2-propanol, or acetone as an organic solvent, the Dy separation rate is 90% or more. In particular, in a mixed solution using methanol, the Dy separation rate is 95% or more. High value.
 以上より、純水に有機溶媒を50%混合した混合液を液体として用いると、Dy分離率が90%以上の値を示すことが分かった。 From the above, it was found that when a mixed solution in which 50% of an organic solvent was mixed with pure water was used as a liquid, the Dy separation rate showed a value of 90% or more.
 本実施例では、希土類組成物として希土類磁石のスラッジを用い、このスラッジから希土類元素の分離回収を行った。本実施例で用いた希土類磁石は、ネオジム(Nd)やジスプロシウム(Dy)などを含有するNdFeB磁石である。用いたスラッジの質量組成は、鉄(Fe)が61.2%、Ndが23.1%、Dyが3.5%、プラセオジム(Pr)が2.0%、及びホウ素(B)が1.0%である。 In this example, a rare earth magnet sludge was used as the rare earth composition, and the rare earth elements were separated and recovered from the sludge. The rare earth magnet used in this example is an NdFeB magnet containing neodymium (Nd), dysprosium (Dy), or the like. The mass composition of the sludge used was 61.2% for iron (Fe), 23.1% for Nd, 3.5% for Dy, 2.0% for praseodymium (Pr), and 1.1 for boron (B). 0%.
 スラッジの粉末を硫酸で溶解した後、希土類元素をシュウ酸で沈殿させて、希土類元素以外の成分を除去した(シュウ酸沈殿法)。次に、シュウ酸沈殿法で得られたシュウ酸化物を加熱処理して、希土類混合酸化物とした。得られた希土類混合酸化物に対して、塩素雰囲気中で、図1Aと図1Bに示した化学ポテンシャル図に基づき、ネオジム酸塩化物(NdOCl)とジスプロシウム酸塩化物(DyOCl)が安定な領域の酸素分圧と塩素分圧に調整して、800℃で熱処理を行い、ネオジム酸塩化物とジスプロシウム酸塩化物を得た。 After the sludge powder was dissolved in sulfuric acid, rare earth elements were precipitated with oxalic acid to remove components other than the rare earth elements (oxalic acid precipitation method). Next, the oxalic oxide obtained by the oxalic acid precipitation method was heat-treated to obtain a rare earth mixed oxide. Based on the chemical potential diagrams shown in FIG. 1A and FIG. 1B, the neodymium oxychloride (NdOCl) and dysprosium oxychloride (DyOCl) are stable in the chlorine atmosphere. The oxygen partial pressure and the chlorine partial pressure were adjusted, and heat treatment was performed at 800 ° C. to obtain neodymium acid chloride and dysprosium acid chloride.
 得られたネオジム酸塩化物とジスプロシウム酸塩化物の混合物50gを、純水にエタノールを50%混合した混合液(約5L)に入れ、撹拌羽根で20時間撹拌した。液体の温度は約25℃、撹拌速度は200rpmである。撹拌後の溶液を実施例6と同様の手順で濾過して、高周波誘導結合プラズマ発光分光分析法(ICP―AES)により、Nd量とDy量を定量分析した。得られたNd量とDy量とから溶液のDy分離率(=M/(M+M)×100、MはDyの質量、MはNdの質量)を算出したところ、95.6%であった。このように、本実施例では、95%を超える高いDy分離率を得ることができた。 50 g of a mixture of the obtained neodymium acid chloride and dysprosium acid chloride was placed in a mixed solution (about 5 L) in which pure water was mixed with 50% ethanol, and stirred with a stirring blade for 20 hours. The temperature of the liquid is about 25 ° C., and the stirring speed is 200 rpm. The stirred solution was filtered in the same manner as in Example 6, and the Nd amount and Dy amount were quantitatively analyzed by high frequency inductively coupled plasma emission spectroscopy (ICP-AES). The Dy separation rate (= M D / (M N + M D ) × 100, M D is the mass of Dy, and MN is the mass of Nd) is calculated from the obtained Nd amount and Dy amount. It was 6%. Thus, in this example, a high Dy separation rate exceeding 95% could be obtained.
 以上のようにして、1回の分離にて90%以上という高いDy分離率で、希土類組成物からDyを分離することができた。Ndは、「(4)Dy、Ndの回収」で述べたように、固体の不溶物から回収することができる。本実施例では、溶液のDy分離率が高い、すなわち液体に含まれるDyの量が多いので、Ndの分離率も、必然的に高くなる。 As described above, Dy could be separated from the rare earth composition with a high Dy separation rate of 90% or more in one separation. As described in “(4) Recovery of Dy and Nd”, Nd can be recovered from a solid insoluble matter. In this embodiment, the Dy separation rate of the solution is high, that is, the amount of Dy contained in the liquid is large, so that the Nd separation rate is inevitably high.
 以上の実施例では、希土類組成物に2種の希土類元素が含まれている場合について説明した。希土類組成物に3種以上の希土類元素が含まれている場合には、上記と同様の分離回収方法を繰り返して、1種ずつ希土類元素を分離回収していけばよい。このようにして、複数種の希土類元素を含む希土類組成物から、それぞれの希土類元素を分離回収することができる。 In the above embodiment, the case where the rare earth composition contains two types of rare earth elements has been described. When three or more kinds of rare earth elements are contained in the rare earth composition, the separation and recovery method similar to the above may be repeated to separate and collect the rare earth elements one by one. In this manner, each rare earth element can be separated and recovered from the rare earth composition containing a plurality of types of rare earth elements.

Claims (18)

  1.  複数種の希土類元素を分離回収する方法であって、
     希土類酸塩化物と希土類塩化物とを含む混合物であり、前記希土類塩化物を構成する希土類元素とは異なる種類の希土類元素から前記希土類酸塩化物が構成されている前記混合物を液体に入れることにより、前記希土類酸塩化物を含む不溶物と、前記希土類塩化物が溶解した液体とを得る工程と、
     前記不溶物から前記希土類酸塩化物を回収する工程と、
     前記希土類塩化物が溶解した前記液体から前記希土類塩化物を回収する工程と、
    を有することを特徴とする希土類元素の分離回収方法。
    A method for separating and recovering multiple types of rare earth elements,
    A mixture containing a rare earth acid chloride and a rare earth chloride, and the liquid mixture containing the rare earth acid chloride from a rare earth element of a type different from the rare earth element constituting the rare earth chloride. Obtaining an insoluble matter containing the rare earth acid chloride and a liquid in which the rare earth chloride is dissolved;
    Recovering the rare earth acid chloride from the insoluble matter;
    Recovering the rare earth chloride from the liquid in which the rare earth chloride is dissolved;
    A method for separating and recovering rare earth elements, comprising:
  2.  複数種の希土類元素を分離回収する方法であって、
     希土類酸塩化物と希土類塩化物とを含む混合物であり、前記希土類塩化物を構成する希土類元素とは異なる種類の希土類元素から前記希土類酸塩化物が構成されている前記混合物を、有機溶媒を含む液体に入れることにより、前記希土類酸塩化物を含む不溶物と、前記希土類塩化物が溶解した液体とを得る工程と、
     前記不溶物から前記希土類酸塩化物を回収する工程と、
     前記希土類塩化物が溶解した前記液体から前記希土類塩化物を回収する工程と、
    を有することを特徴とする希土類元素の分離回収方法。
    A method for separating and recovering multiple types of rare earth elements,
    A mixture comprising a rare earth acid chloride and a rare earth chloride, wherein the rare earth acid chloride is composed of a rare earth element different from the rare earth element constituting the rare earth chloride, and includes an organic solvent. Obtaining an insoluble material containing the rare earth acid chloride and a liquid in which the rare earth chloride is dissolved by placing the liquid in a liquid;
    Recovering the rare earth acid chloride from the insoluble matter;
    Recovering the rare earth chloride from the liquid in which the rare earth chloride is dissolved;
    A method for separating and recovering rare earth elements, comprising:
  3.  複数種の希土類元素を分離回収する方法であって、
     第1の希土類酸塩化物と第2の希土類酸塩化物とを含む混合物であり、前記第2の希土類酸塩化物を構成する希土類元素とは異なる種類の希土類元素から前記第1の希土類酸塩化物が構成されている前記混合物を液体に入れることにより、前記第1の希土類酸塩化物が溶解した液体を得る工程と、
     前記第1の希土類酸塩化物が溶解した液体から前記第1の希土類酸塩化物を回収する工程と、
     前記液体に溶解しなかった不溶物から前記第2の希土類酸塩化物を回収する工程と、
    を有することを特徴とする希土類元素の分離回収方法。
    A method for separating and recovering multiple types of rare earth elements,
    The first rare earth acid chloride is a mixture containing a first rare earth acid chloride and a second rare earth acid chloride from a rare earth element different from the rare earth element constituting the second rare earth acid chloride. Obtaining a liquid in which the first rare earth acid chloride is dissolved by putting the mixture in which the product is composed into a liquid;
    Recovering the first rare earth acid chloride from the liquid in which the first rare earth acid chloride is dissolved;
    Recovering the second rare earth acid chloride from the insoluble matter not dissolved in the liquid;
    A method for separating and recovering rare earth elements, comprising:
  4.  複数種の希土類元素を分離回収する方法であって、
     第1の希土類酸塩化物と第2の希土類酸塩化物とを含む混合物であり、前記第2の希土類酸塩化物を構成する希土類元素とは異なる種類の希土類元素から前記第1の希土類酸塩化物が構成されている前記混合物を、有機溶媒を含む液体に入れることにより、前記第1の希土類酸塩化物が溶解した液体を得る工程と、
     前記第1の希土類酸塩化物が溶解した液体から前記第1の希土類酸塩化物を回収する工程と、
     前記液体に溶解しなかった不溶物から前記第2の希土類酸塩化物を回収する工程と、
    を有することを特徴とする希土類元素の分離回収方法。
    A method for separating and recovering multiple types of rare earth elements,
    The first rare earth acid chloride is a mixture containing a first rare earth acid chloride and a second rare earth acid chloride from a rare earth element different from the rare earth element constituting the second rare earth acid chloride. A step of obtaining a liquid in which the first rare earth acid chloride is dissolved by putting the mixture in which the product is constituted into a liquid containing an organic solvent;
    Recovering the first rare earth acid chloride from the liquid in which the first rare earth acid chloride is dissolved;
    Recovering the second rare earth acid chloride from the insoluble matter not dissolved in the liquid;
    A method for separating and recovering rare earth elements, comprising:
  5.  請求項2または4記載の希土類元素の分離回収方法において、前記有機溶媒はアルコールである希土類元素の分離回収方法。 5. The method for separating and collecting rare earth elements according to claim 2 or 4, wherein the organic solvent is an alcohol.
  6.  請求項1または2記載の希土類元素の分離回収方法において、前記希土類酸塩化物は、ジスプロシウムを含む酸塩化物である希土類元素の分離回収方法。 3. The method for separating and collecting rare earth elements according to claim 1 or 2, wherein the rare earth oxychloride is an acid chloride containing dysprosium.
  7.  請求項1または2記載の希土類元素の分離回収方法において、前記希土類塩化物は、ネオジムを含む塩化物である希土類元素の分離回収方法。 3. The method for separating and collecting rare earth elements according to claim 1 or 2, wherein the rare earth chloride is a chloride containing neodymium.
  8.  請求項3または4記載の希土類元素の分離回収方法において、前記第1の希土類酸塩化物は、ジスプロシウムを含む酸塩化物である希土類元素の分離回収方法。 5. The method for separating and collecting rare earth elements according to claim 3 or 4, wherein the first rare earth oxychloride is an acid chloride containing dysprosium.
  9.  請求項3または4記載の希土類元素の分離回収方法において、前記第2の希土類酸塩化物は、ネオジムを含む酸塩化物である希土類元素の分離回収方法。 5. The method for separating and collecting rare earth elements according to claim 3 or 4, wherein the second rare earth acid chloride is an acid chloride containing neodymium.
  10.  複数種の希土類元素を分離回収する方法であって、
     前記複数種の希土類元素を含む組成物を塩素雰囲気中で加熱することにより、希土類酸塩化物と希土類塩化物とを含む混合物であり、前記希土類塩化物を構成する希土類元素とは異なる種類の希土類元素から前記希土類酸塩化物が構成されている前記混合物を生成する工程と、
     前記混合物を液体に入れることにより、前記希土類酸塩化物を含む不溶物と、前記希土類塩化物が溶解した液体とを得る工程と、
     前記不溶物から前記希土類酸塩化物を回収する工程と、
     前記希土類塩化物が溶解した前記液体から前記希土類塩化物を回収する工程と、
    を有することを特徴とする希土類元素の分離回収方法。
    A method for separating and recovering multiple types of rare earth elements,
    By heating the composition containing a plurality of types of rare earth elements in a chlorine atmosphere, the mixture includes a rare earth oxychloride and a rare earth chloride, and the rare earth elements different from the rare earth elements constituting the rare earth chloride Producing the mixture comprising the rare earth acid chloride from an element;
    Obtaining the insoluble matter containing the rare earth acid chloride and the liquid in which the rare earth chloride is dissolved by placing the mixture in a liquid;
    Recovering the rare earth acid chloride from the insoluble matter;
    Recovering the rare earth chloride from the liquid in which the rare earth chloride is dissolved;
    A method for separating and recovering rare earth elements, comprising:
  11.  複数種の希土類元素を分離回収する方法であって、
     前記複数種の希土類元素を含む組成物を塩素雰囲気中で加熱することにより、希土類酸塩化物と希土類塩化物とを含む混合物であり、前記希土類塩化物を構成する希土類元素とは異なる種類の希土類元素から前記希土類酸塩化物が構成されている前記混合物を生成する工程と、
     前記混合物を有機溶媒を含む液体に入れることにより、前記希土類酸塩化物を含む不溶物と、前記希土類塩化物が溶解した液体とを得る工程と、
     前記不溶物から前記希土類酸塩化物を回収する工程と、
     前記希土類塩化物が溶解した前記液体から前記希土類塩化物を回収する工程と、
    を有することを特徴とする希土類元素の分離回収方法。
    A method for separating and recovering multiple types of rare earth elements,
    By heating the composition containing a plurality of types of rare earth elements in a chlorine atmosphere, the mixture includes a rare earth oxychloride and a rare earth chloride, and the rare earth elements different from the rare earth elements constituting the rare earth chloride Producing the mixture comprising the rare earth acid chloride from an element;
    Placing the mixture in a liquid containing an organic solvent to obtain an insoluble matter containing the rare earth acid chloride and a liquid in which the rare earth chloride is dissolved;
    Recovering the rare earth acid chloride from the insoluble matter;
    Recovering the rare earth chloride from the liquid in which the rare earth chloride is dissolved;
    A method for separating and recovering rare earth elements, comprising:
  12.  複数種の希土類元素を分離回収する方法であって、
     前記複数種の希土類元素を含む組成物を塩素雰囲気中で加熱することにより、第1の希土類酸塩化物と第2の希土類酸塩化物とを含む混合物であり、前記第2の希土類酸塩化物を構成する希土類元素とは異なる種類の希土類元素から前記第1の希土類酸塩化物が構成されている前記混合物を生成する工程と、
     前記混合物を液体に入れることにより、前記第1の希土類酸塩化物が溶解した液体を得る工程と、
     前記第1の希土類酸塩化物が溶解した液体から前記第1の希土類酸塩化物を回収する工程と、
     前記液体に溶解しなかった不溶物から前記第2の希土類酸塩化物を回収する工程と、
    を有することを特徴とする希土類元素の分離回収方法。
    A method for separating and recovering multiple types of rare earth elements,
    A composition containing a first rare earth acid chloride and a second rare earth acid chloride by heating the composition containing the plurality of rare earth elements in a chlorine atmosphere, and the second rare earth acid chloride. Forming the mixture in which the first rare earth acid chloride is constituted from a rare earth element different from the rare earth element constituting
    Obtaining a liquid in which the first rare earth acid chloride is dissolved by placing the mixture in a liquid;
    Recovering the first rare earth acid chloride from the liquid in which the first rare earth acid chloride is dissolved;
    Recovering the second rare earth acid chloride from the insoluble matter not dissolved in the liquid;
    A method for separating and recovering rare earth elements, comprising:
  13.  複数種の希土類元素を分離回収する方法であって、
     前記複数種の希土類元素を含む組成物を塩素雰囲気中で加熱することにより、第1の希土類酸塩化物と第2の希土類酸塩化物とを含む混合物であり、前記第2の希土類酸塩化物を構成する希土類元素とは異なる種類の希土類元素から前記第1の希土類酸塩化物が構成されている前記混合物を生成する工程と、
     前記混合物を有機溶媒を含む液体に入れることにより、前記第1の希土類酸塩化物が溶解した液体を得る工程と、
     前記第1の希土類酸塩化物が溶解した液体から前記第1の希土類酸塩化物を回収する工程と、
     前記液体に溶解しなかった不溶物から前記第2の希土類酸塩化物を回収する工程と、
    を有することを特徴とする希土類元素の分離回収方法。
    A method for separating and recovering multiple types of rare earth elements,
    A composition containing a first rare earth acid chloride and a second rare earth acid chloride by heating the composition containing the plurality of rare earth elements in a chlorine atmosphere, and the second rare earth acid chloride. Forming the mixture in which the first rare earth acid chloride is constituted from a rare earth element different from the rare earth element constituting
    Obtaining a liquid in which the first rare earth acid chloride is dissolved by placing the mixture in a liquid containing an organic solvent;
    Recovering the first rare earth acid chloride from the liquid in which the first rare earth acid chloride is dissolved;
    Recovering the second rare earth acid chloride from the insoluble matter not dissolved in the liquid;
    A method for separating and recovering rare earth elements, comprising:
  14.  請求項11または13記載の希土類元素の分離回収方法において、前記有機溶媒はアルコールである希土類元素の分離回収方法。 14. The method for separating and collecting rare earth elements according to claim 11 or 13, wherein the organic solvent is an alcohol.
  15.  請求項10または11記載の希土類元素の分離回収方法において、前記希土類酸塩化物は、ジスプロシウムを含む酸塩化物である希土類元素の分離回収方法。 12. The method for separating and collecting rare earth elements according to claim 10 or 11, wherein the rare earth oxychloride is an acid chloride containing dysprosium.
  16.  請求項10または11記載の希土類元素の分離回収方法において、前記希土類塩化物は、ネオジムを含む塩化物である希土類元素の分離回収方法。 12. The method for separating and collecting rare earth elements according to claim 10 or 11, wherein the rare earth chloride is a chloride containing neodymium.
  17.  請求項12または13記載の希土類元素の分離回収方法において、前記第1の希土類酸塩化物は、ジスプロシウムを含む酸塩化物である希土類元素の分離回収方法。 14. The method for separating and collecting rare earth elements according to claim 12 or 13, wherein the first rare earth oxychloride is an acid chloride containing dysprosium.
  18.  請求項12または13記載の希土類元素の分離回収方法において、前記第2の希土類酸塩化物は、ネオジムを含む酸塩化物である希土類元素の分離回収方法。 14. The method for separating and collecting rare earth elements according to claim 12 or 13, wherein the second rare earth acid chloride is an acid chloride containing neodymium.
PCT/JP2012/083256 2012-01-06 2012-12-21 Method for separating and recovering rare-earth element WO2013103099A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/370,666 US9376736B2 (en) 2012-01-06 2012-12-21 Method for separating and recovering rare-earth elements
JP2013552407A JP5835349B2 (en) 2012-01-06 2012-12-21 Rare earth element separation and recovery method
CN201280066044.3A CN104053801B (en) 2012-01-06 2012-12-21 The separation and recovery method of rare earth element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012000963 2012-01-06
JP2012000961 2012-01-06
JP2012-000963 2012-01-06
JP2012-000961 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013103099A1 true WO2013103099A1 (en) 2013-07-11

Family

ID=48745161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083256 WO2013103099A1 (en) 2012-01-06 2012-12-21 Method for separating and recovering rare-earth element

Country Status (4)

Country Link
US (1) US9376736B2 (en)
JP (1) JP5835349B2 (en)
CN (1) CN104053801B (en)
WO (1) WO2013103099A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057922A1 (en) * 2012-10-10 2014-04-17 日立金属株式会社 Method and device for separating rare earth elements
WO2015118621A1 (en) * 2014-02-05 2015-08-13 株式会社日立製作所 Method and apparatus for separating rare earth elements
JP2018538125A (en) * 2015-10-19 2018-12-27 サントル・ナシオナル・ド・ラ・ルシェルシュ・シアンティフィックCentre National De La Recherche Scientifique Method and apparatus for recovering rare earth elements from within an object

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014110A1 (en) * 2014-07-21 2016-01-28 Iowa State University Research Foundation, Inc. Recovering heavy rare earth metals from magnet scrap
CN109112317B (en) * 2018-10-16 2020-02-18 内蒙古科技大学 Reduction-oxidation separation of rare earth mixture La2O3-RE2O3Method (2)
US10988386B1 (en) 2020-05-27 2021-04-27 Winston-Salem State University Separation and purification of rare-earth elements by chemical reduction in aqueous solutions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204554A (en) * 1997-01-22 1998-08-04 Dowa Mining Co Ltd Method for refining zirconium and/or hafnium compound
JPH10510879A (en) * 1994-12-20 1998-10-20 ヴアルタ バツテリー アクチェンゲゼルシヤフト Method for recovering metals from used nickel-metal hydride storage batteries
JP2011001584A (en) * 2009-06-17 2011-01-06 Shin-Etsu Chemical Co Ltd Method for extracting and separating rare earth elements
JP2011074408A (en) * 2009-09-29 2011-04-14 Akita Univ Method for separating metal element, and separating device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680055A (en) * 1986-03-18 1987-07-14 General Motors Corporation Metallothermic reduction of rare earth chlorides
JP2001303149A (en) 2000-04-24 2001-10-31 Tetsuya Uda Method for separating rare earth element and composition for separating rare earth element
JP2003073754A (en) 2001-08-30 2003-03-12 Tetsuya Uda Method for recovering rare-earth element
JP5146658B2 (en) 2008-04-04 2013-02-20 信越化学工業株式会社 Recovery method of rare earth elements
JP5398369B2 (en) 2009-06-15 2014-01-29 株式会社東芝 Rare metal production method and system
AU2010202408B2 (en) 2009-06-17 2014-12-18 Shin-Etsu Chemical Co., Ltd. Method for extracting and separating rare earth elements
CN101638731B (en) * 2009-07-10 2011-05-11 沈阳工业大学 Method for separating rare earth oxides from rare earth ore by using ammonium chloride-potassium chloride gas phase transmission
JP5401497B2 (en) * 2011-04-08 2014-01-29 株式会社日立製作所 Rare earth element separation and recovery method
JP5792079B2 (en) 2012-01-06 2015-10-07 株式会社日立製作所 Rare earth element separation and recovery method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510879A (en) * 1994-12-20 1998-10-20 ヴアルタ バツテリー アクチェンゲゼルシヤフト Method for recovering metals from used nickel-metal hydride storage batteries
JPH10204554A (en) * 1997-01-22 1998-08-04 Dowa Mining Co Ltd Method for refining zirconium and/or hafnium compound
JP2011001584A (en) * 2009-06-17 2011-01-06 Shin-Etsu Chemical Co Ltd Method for extracting and separating rare earth elements
JP2011074408A (en) * 2009-09-29 2011-04-14 Akita Univ Method for separating metal element, and separating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057922A1 (en) * 2012-10-10 2014-04-17 日立金属株式会社 Method and device for separating rare earth elements
JP5967210B2 (en) * 2012-10-10 2016-08-10 日立金属株式会社 Rare earth element separation method and separation apparatus
US9435009B2 (en) 2012-10-10 2016-09-06 Hitachi Metals, Ltd. Method and system for separating rare earth elements
WO2015118621A1 (en) * 2014-02-05 2015-08-13 株式会社日立製作所 Method and apparatus for separating rare earth elements
CN106062222A (en) * 2014-02-05 2016-10-26 株式会社日立制作所 Method and apparatus for separating rare earth elements
JPWO2015118621A1 (en) * 2014-02-05 2017-03-23 株式会社日立製作所 Rare earth element separation method and separation apparatus
CN106062222B (en) * 2014-02-05 2017-09-26 株式会社日立制作所 The separation method and separator of rare earth element
JP2018538125A (en) * 2015-10-19 2018-12-27 サントル・ナシオナル・ド・ラ・ルシェルシュ・シアンティフィックCentre National De La Recherche Scientifique Method and apparatus for recovering rare earth elements from within an object

Also Published As

Publication number Publication date
JP5835349B2 (en) 2015-12-24
US9376736B2 (en) 2016-06-28
CN104053801A (en) 2014-09-17
US20140356258A1 (en) 2014-12-04
CN104053801B (en) 2016-10-26
JPWO2013103099A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5835349B2 (en) Rare earth element separation and recovery method
Önal et al. Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery
Riaño et al. Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets
JP5598631B2 (en) Recovery method of rare earth elements
JP5967210B2 (en) Rare earth element separation method and separation apparatus
WO2012137727A1 (en) Method for separating and recovering rare earth elements
JP5499353B2 (en) Extraction and separation method of rare earth elements
JP5792079B2 (en) Rare earth element separation and recovery method
CN107848832A (en) The manufacture method of the manufacture method of vfanadium compound, the manufacture method of vanadium solution and redox flow battery electrolyte
JP5440569B2 (en) Recovery method for heavy rare earth elements
CN103509952A (en) Technology for recovering rare earth from permanent magnet waste of electronic waste
Yu et al. Recovery of rare earth metal oxides from NdFeB magnet leachate by hydrophobic deep eutectic solvent extraction, oxalate stripping and calcination
JP2015057505A (en) Rare earth metal extractant and rare earth metal extraction method
JP5905592B2 (en) Rare earth element separation method and separation apparatus
JP6197051B2 (en) Rare earth element separation method and separation apparatus
Gergoric Hydrometallurgical Treatment of Neodymium Magnet Waste
JP5677345B2 (en) Rare earth separation and recovery method and apparatus using the same
JP2014077169A (en) Method and apparatus for separating rare earth element
Shibata et al. Development of adavanced separation technology of rare metals using extraction and crystallization stripping
KR101395052B1 (en) Method for extraction of rare earth metals
BR102013032773B1 (en) Recycling ndfeb magnets in acidic medium
JP7044082B2 (en) Method for producing acidic slurry and method for recovering rare earth elements
WO2015087845A1 (en) Method for fractional precipitation of rare metal in aqueous system utilizing coordination polymerization
JP7151916B2 (en) Method for producing acidic slurry and method for recovering rare earth elements
JP2019173071A (en) Method of separation and collection of molybdenum and/or zirconium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552407

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14370666

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864450

Country of ref document: EP

Kind code of ref document: A1