WO2013093953A1 - Biometric authentication device, blood vessel image photography device, and method - Google Patents

Biometric authentication device, blood vessel image photography device, and method Download PDF

Info

Publication number
WO2013093953A1
WO2013093953A1 PCT/JP2011/007061 JP2011007061W WO2013093953A1 WO 2013093953 A1 WO2013093953 A1 WO 2013093953A1 JP 2011007061 W JP2011007061 W JP 2011007061W WO 2013093953 A1 WO2013093953 A1 WO 2013093953A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
blood vessel
finger
imaging unit
light
Prior art date
Application number
PCT/JP2011/007061
Other languages
French (fr)
Japanese (ja)
Inventor
友輔 松田
晃朗 長坂
直人 三浦
春美 清水
孝文 宮武
Original Assignee
日立オムロンターミナルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オムロンターミナルソリューションズ株式会社 filed Critical 日立オムロンターミナルソリューションズ株式会社
Priority to JP2013549938A priority Critical patent/JP5923524B2/en
Priority to PCT/JP2011/007061 priority patent/WO2013093953A1/en
Publication of WO2013093953A1 publication Critical patent/WO2013093953A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • G06V40/145Sensors therefor

Definitions

  • the present invention relates to an apparatus and a method for identifying an individual using human biological information, particularly finger blood vessels.
  • biometric authentication using human biometric information is attracting attention.
  • a conventional biometric authentication technique an authentication method using a fingerprint, an iris, a voice, a face, a vein on the back of a hand, or a finger vein is known.
  • vein authentication technology that uses absorption of hemoglobin in the blood of infrared light irradiated to the living body has low psychological resistance because authentication can be performed simply by illuminating the living body, and internal information of the living body is used. Therefore, it has the feature of being excellent in forgery resistance.
  • Biometric authentication is expected to be applied in various fields, and it is necessary to accurately identify tens of thousands to millions of users, and high authentication accuracy is required.
  • Patent Document 1 discloses a method of imaging a vein with imaging units arranged at a plurality of different positions with light from one light source.
  • Patent Document 2 describes a method of taking an image with a plurality of imaging units so as to include the same blood vessel.
  • the device configuration such as the distance between each imaging unit and the light source, the influence of external light, the area of the living body imaged for each imaging unit Since the amount of light received by each imaging unit varies depending on the difference in the amount of light, the ratio of the contribution of the light amount differs in each imaging unit, and it is difficult to determine the light amount of a light source that can simultaneously capture a clear blood vessel by a plurality of imaging units. There was a problem.
  • a finger presenting unit on which a finger is presented a first light source that irradiates light to the finger, and a side on which the finger is presented on the finger presenting unit are defined as upper, the finger is presented below the finger presenting unit, Based on the light from the first light source that has passed through the finger, the first imaging unit that images the blood vessel of the finger, and the first imaging unit that is disposed on the side of the first imaging unit and that has passed through the finger
  • a second imaging unit that captures a part of a blood vessel imaged by the first imaging unit based on light from the light source, the first imaging unit, and the second imaging unit
  • a light amount control unit for controlling the light amount of the first light source, and the calculation unit picks up the image with the first image pickup unit.
  • the luminance value of the partial image of the blood vessel and the luminance value of the partial image of the blood vessel imaged by the second imaging unit are
  • the light quantity control means controls the light quantity so as to obtain a brightness value within the range, and the first imaging unit and the second imaging part are controlled by the first light source whose light quantity is controlled by the light quantity control means.
  • the blood vessel imaging device is characterized in that the first image and the second image are respectively picked up based on the light.
  • the amount of light contributing to each imaging unit can be controlled so that a clear blood vessel can be imaged.
  • the amount of information can be increased.
  • FIG. 5 is a relationship diagram of the light quantity value of an light source and exposure time and the degree of coincidence. An example when an abnormal posture of a finger is photographed from the side. An example of the authentication apparatus which implements this invention. An example of the authentication apparatus which implements this invention. An example of the authentication apparatus which implements this invention. An example of the authentication apparatus which implements this invention.
  • an example of the authentication apparatus 2 that simultaneously captures clear blood vessel images in two image capturing units by controlling exposure of two image capturing units and light amount control of a single light source will be described.
  • FIG. 1 is an example of an authentication device that implements the present invention
  • FIG. 2 is a schematic diagram of the configuration of the authentication device of FIG.
  • the present apparatus configuration by positioning the light source 3 on the upper side surface of the finger presentation unit 6, a configuration in which the finger presentation unit 6 is opened directly can be realized, so that the user can easily place the finger.
  • an imaging unit 4-2 on the side facing the light source 3 and an imaging unit 4-1 arranged just below the finger presentation unit 6 are arranged.
  • auxiliary light source can be used to detect finger presentation in a non-contact manner.
  • the auxiliary light source 19 is disposed so as to irradiate upward from the position of the imaging unit 4-1, so that when the finger is presented above the finger placement guide unit 5, the finger is not touched by the finger. The light of the auxiliary light source 19 hits the light. Therefore, by imaging the finger illuminated brightly by the auxiliary light source 19, it is possible to detect the finger presentation in a non-contact manner.
  • Authentication is performed according to the following procedure. Infrared light is irradiated from the side surface of the finger 1 from the light source 3.
  • the light amount of the light source is controlled by the light amount control unit 17, and the light passes through the finger 1, passes through the finger presentation unit 6 on which the authentication target area of the finger is presented, and passes through the optical filter 7 that transmits only infrared wavelength light.
  • the imaging units 4-1 and 4-2 are reached.
  • the exposure time of the imaging unit 4-1 and the imaging unit 4-2 is controlled by the exposure control unit 18.
  • the light is converted into an electrical signal by the imaging units 4-1 and 4-2, and is taken into the computer 9 as an image via the image input unit 8.
  • the captured image is once stored in the memory 11.
  • the blood vessel image (registration data) of the finger registered in advance is stored in the memory 11 from the storage device 12, and the CPU 13 collates the registered image with the input image by the program stored in the memory 11.
  • a correlation value between images to be compared is calculated, and it is determined whether or not it matches the registered image according to the value.
  • An individual is authenticated in accordance with the result, and when the authentication is correctly performed, a process at the time of authentication is performed on the control target of the authentication system.
  • 1-N authentication is performed to check all registered images, and an ID number is entered to identify the user in advance, or an IC card is presented to the card reader.
  • the 1-N authentication mode authentication is started immediately after the finger is presented to the apparatus, but the authentication is 1-1. Then, after inputting the ID number using the input means 16, the finger is presented and authentication is performed.
  • the CPU, the memory, the storage device, the display unit, the light amount control unit, the exposure control unit, and the like can be stored in a terminal other than the authentication device 2.
  • the finger blood vessel image photographed by the imaging unit 4-1 is an image obtained by capturing blood vessels (finger blood vessels) existing under the skin on the palm side of the finger as a dark shadow pattern. A blood vessel pattern existing under the skin is imaged.
  • the brightness of the blood vessel image to be imaged is determined by the amount of light transmitted from the light source 3 through the finger 1.
  • the amount of light is small, the entire image becomes dark, resulting in a low-contrast and unclear blood vessel image with a small difference in luminance value between the blood vessel pattern and other regions. If the amount of light is too large, the luminance value is saturated at the maximum value, resulting in a white blood vessel image.
  • the light amount of the light source 3 and the exposure time of the image capturing unit 4-1 and the image capturing unit 4-2 are determined.
  • the light quantity control unit 17 and the exposure control unit 18 are controlled.
  • step S100 it is detected using the above-described detection means that a finger is presented to the apparatus, and in step S110, the light source is turned on with an initial light amount, and the luminance value in the image captured by each imaging unit in step S120 is calculated. calculate. Since the calculated luminance value includes the influence of different external light for each imaging unit, the exposure control of the imaging unit is performed so that the luminance values of all the images are close to each other in step S130. Next, light quantity control is performed. In the light amount control process, feedback control is performed so that the luminance value of the captured image becomes a constant value.
  • the brightness value of the image when irradiated with a certain amount of light set in step S140 is calculated in step S150, and if the brightness values of all the images are within the allowable range in step S160, shooting is terminated. (S200). If the luminance value of one image is not within the allowable range, it is determined in step S170 whether or not the luminance value of all the images is likely to be within the allowable range only by adjusting the light amount of the light source. Return to S140 light control. If there is no expectation, the exposure control of each imaging unit is performed in step S180 while keeping the light amount of the light source as it is.
  • the exposure time is set for each imaging unit, the luminance value of the image captured in step S190 is calculated, and if the luminance value of all the images is within the allowable range in step S160, the imaging is terminated (S200). If not within the allowable range, the process returns to step S180, and exposure control of each imaging unit is performed again.
  • a plurality of imaging units shoot the blood vessel of the same finger from different viewpoints by irradiation of one light source. Since the imaging unit 4-2 is farther from the light source 3 than the imaging unit 4-1, the amount of light irradiated to the imaging unit 4-2 is smaller than that of the imaging unit 4-1, and the image becomes dark. is there. Further, the amount of light received by the imaging unit 4-1 and the imaging unit 4-2 varies depending on the shape and size of the finger. Under such circumstances, it is necessary to simultaneously bring the luminance values of the images captured by the imaging unit 4-1 and the imaging unit 4-2 close to the target value by controlling the light amount of one light source.
  • FIG. 4 shows a graph image in which the horizontal axis represents the light amount of the light source, and the vertical axis represents the luminance value of the image of the imaging unit 4-1 and the image of the imaging unit 4-2.
  • FIG. 4 shows a linear graph for explanation, the actual luminance value varies nonlinearly depending on the distance between the light source and the imaging unit, the influence of external light, the movement of the presented finger, and the like. there is a possibility.
  • the light amounts received by the imaging unit 4-1 and the imaging unit 4-2 are not doubled, but are a times and b times, respectively (in the example of FIG. 4A). a> b). Accordingly, the luminance value of the two images cannot be set to the target value at the same time regardless of the light amount value of the light source. Therefore, it is assumed that a target luminance value range (allowable range) is set and the luminance value is within the allowable range.
  • a target luminance value range (allowable range) is set and the luminance value is within the allowable range.
  • the allowable range of the luminance value for example, when the luminance value of the image is expressed by 255 bits of 8 bits, the entire image becomes dark when the luminance value is a small value near 0, and the influence of noise is reduced. The blood vessel cannot be clearly photographed, and if the luminance value is large near 255, the luminance value is saturated and the entire image is overexposed, so that the blood vessel information is lost.
  • the allowable range of the luminance value can be set in the range of 50 to 200.
  • a target luminance value that is particularly suitable for capturing a clear image and controlling the luminance value to be as close as possible to this target luminance value, more accurate light intensity control is possible.
  • As a method for setting the target luminance value it is desirable to set the luminance value so that the influence of noise is small in the blood vessel image and the contrast between the blood vessel and the background is large in the image. That is, it is desirable that the S / N ratio, which is the ratio of the signal and noise when the blood vessel information in the image is a desired signal and the other is noise, is increased.
  • the luminance value at which the calculated SN ratio is maximized or the minimum luminance value at which the SN ratio is saturated is set as the target luminance value. be able to. This will be specifically described with reference to FIG.
  • the luminance value of the image increases, the blood vessel becomes clearer and the influence of noise becomes smaller, so the SN ratio also increases.
  • the luminance value a is reached, the SN ratio becomes almost constant.
  • the influence of noise can be suppressed to the maximum when the luminance value is larger than the luminance value a, as the luminance value approaches the saturated value, the overexposed area increases in the image and the blood vessel area is lost.
  • the target luminance value a it shows that it will be filmed. Therefore, if the vicinity of the luminance value a is set as the target luminance value, it is possible to acquire a clear blood vessel image with no loss of blood vessel information while suppressing the influence of noise to the maximum. Quantitatively, it is desirable to set the target luminance value near 128.
  • the light amount may be controlled so that the luminance value of the blood vessel image in a particularly wide range preferentially approaches the reference value within the allowable range. As a result, a larger amount of information can be acquired for the two images as a whole.
  • the cross-sectional shape of the finger is an ellipse
  • the largest amount of information can be obtained because the finger width is maximized when the ventral side of the finger is photographed. Therefore, even when the finger rotates around the long axis of the finger, the amount of light so that the difference between the luminance value of the image of the imaging unit with a large finger area to be imaged and the target luminance value is smaller than that of the other image. Take control.
  • the CPU 13 measures the widths of the fingers captured by the imaging unit 4-1 and the imaging unit 4-2, determines that the ventral side of the finger is facing the larger imaging unit, and determines the finger width.
  • the outline of the finger or the like may be extracted, and the inside of the outline may be determined as the finger area.
  • blood vessel information may be extracted from an image taken before controlling the light quantity, and the light quantity may be controlled with priority given to an image with more feature information.
  • the exposure is controlled by fixing the exposure of the imaging unit 4-2 with a small amount of received light, and the light intensity value of the light source at which the luminance value of the image of the imaging unit 4-2 becomes a target value.
  • the brightness value of the two images may be set as the target value by adjusting the exposure time of the imaging unit 4-1.
  • the exposure of the imaging unit 4-1 having a large amount of received light may be fixed and the exposure of the imaging unit 4-2 may be adjusted longer.
  • the ratio of the amount of light contributed by each imaging unit differs.
  • the difficulty of determining the amount of light can be eliminated, and a clear blood vessel can be photographed.
  • the method for controlling the light amount and the exposure amount so that the luminance value of the entire image is within the allowable range has been described.
  • this embodiment as another determination criterion when performing the light amount control and the exposure control.
  • a method of controlling the light amount / exposure amount of the common area of the images captured by the image capturing units 4-1, 4-2 will be described.
  • the image capturing units 4-1 and 4-2 are arranged close to each other as shown in FIG. 2, there is a region where the two image capturing units capture images in common. Since the common area in the image captures the same target, for example, if the light intensity is controlled based on the average luminance value of the common area of each image to set the luminance value within the allowable range, the contrast of the target image is It becomes almost the same.
  • the amount of light is controlled based on the average luminance value of the entire image, the target is different, so even if each image has a luminance value within the allowable range, there is a slight difference in the contrast of the target. This makes it difficult to associate images between wide-angle images, which will be described later.
  • blood vessel information can be extracted with higher accuracy by performing light quantity control using the luminance value near the blood vessel in the common region in the image.
  • the CPU 13 extracts a blood vessel from each common area in the two images.
  • the light amount control unit 17 controls the light amount so that the luminance value in the vicinity of the extracted blood vessel or the contrast of the luminance value is within the allowable range, and the luminance of the image is adjusted based on the blood vessel information used for collation.
  • luminance adjustment based on the same blood vessel, that is, the same object, in the common region of the images, it is possible to realize luminance adjustment in which the difference in contrast between the two images becomes smaller.
  • the difference between the luminance values of the same blood vessels included in each of the two images can be further reduced, so that the two images can be associated with each other with high accuracy as well as high-precision matching.
  • the X-axis and Y-axis when the two-dimensional plane of the blood vessel image when the matching degree by the matching of the two blood vessel images is the maximum or the threshold TH2 or more is the X and Y coordinates and the depth direction is the Y coordinate.
  • the positional deviation in the common area is calculated with the position coordinates (S220).
  • the displacement of the entire two images is corrected to create one wide-angle image (S230).
  • blood vessel information can be acquired more accurately by adjusting the amount of light using the luminance value of the image included in the common area of the two images, so that highly accurate authentication is possible.
  • the adjustment of the luminance value based on the blood vessel image in the common region of the two images in the second embodiment focuses on equalizing the contrast of the two images and associating the two images for creating a wide-angle image. Therefore, it is desirable to perform more precise light amount control in order to acquire blood vessel information used for final authentication.
  • the CPU 13 first controls the light amount by the light amount control unit 17 so that the luminance value of the common area of the two images is within the first allowable range. Next, the light amount control is performed so that the luminance value of the image having the wider finger area within the two images falls within the second allowable range set within the first allowable range. As a result, it is possible to acquire a larger amount of blood vessel information used for authentication as two images as a whole.
  • the target image whose luminance value is adjusted to be in the second range can be the entire image with the wider finger area, but it is more accurate if the target finger area in the image is targeted.
  • Blood vessel information can be acquired well. Furthermore, blood vessel information can be acquired with higher accuracy by extracting a blood vessel from the finger region in the image and adjusting the luminance value so that the blood vessel region is the second range.
  • the first range is a permissible range of luminance values to which the blood vessels in the common region can be associated with each other in order to create a wide-angle image by connecting two images
  • the second range is a blood vessel used for authentication. This is an allowable range of the luminance value that requires a stricter setting for extracting information. Therefore, it is desirable that the second range is set in a narrower range within the first range.
  • the first range with a luminance value of 255 gradations, a luminance value of 30 or more and 200 or less is desirable for associating two images. Furthermore, since it is desirable that the variation range of the luminance value be small as described above, the second range is desirably 80 or more and 150 or less.
  • the quantification of the light amount control method and 255 gradation model of this embodiment is merely an example.
  • the second range is set by the difference from the target luminance value as in the first embodiment, or the 255th floor is set depending on the imaging environment or the like. It is also possible to change the range setting by the tone model.
  • the blood vessel images are collated with each other as a collation result.
  • a method of performing light amount control and exposure control based on the degree of coincidence obtained will be described.
  • FIG. 6 shows an example of a processing flow of light amount control and exposure control using the degree of coincidence.
  • step S300 it is detected that a finger has been presented.
  • step S310 the light source is turned on with the initial light amount
  • step S320 the common regions of the blood vessel images photographed by the imaging unit 4-1 and the imaging unit 4-2 are collated to calculate the degree of coincidence.
  • matching means at this time, pattern matching between common areas of the captured multi-value luminance grayscale image, matching between blood vessel patterns extracted from the luminance grayscale image, feature point matching, or the like can be used.
  • step S330 if the degree of coincidence is greater than the threshold value TH1, shooting is terminated (S370).
  • step S340 If the degree of coincidence falls below the threshold value TH1, the light amount control is performed in step S340.
  • step S350 when it is expected that the degree of coincidence exceeds the threshold value TH1 only by the light amount control, the process returns to step S320. If there is no expectation, exposure control of each imaging unit is performed in step S360, and the process returns to step S320.
  • FIGS. 7A and 7B schematically show graphs representing the relationship between the light amount value of the light source and the degree of coincidence and the relationship between the exposure time of the imaging unit and the degree of coincidence.
  • the degree of coincidence is small regardless of whether the light amount is larger or smaller than the light amount value at which the degree of coincidence is maximum.
  • the relationship between the luminance value and the light amount value of the light source as shown in FIG. 4A can be used for the determination for determining the next light amount value. It is considered that the closer the luminance values of the images of the imaging unit 4-1 and the imaging unit 4-2 are to the target range, the clearer the blood vessels can be taken and the closer the brightness of the images, the higher the matching degree. Therefore, if the luminance value of the image of one imaging unit is too small, the light amount is increased, and conversely if the luminance value is too large, the light amount is decreased.
  • the light amount value can be controlled so that the degree of coincidence increases by increasing or decreasing the light amount value so that the difference between the luminance values becomes small.
  • the amount of coincidence with respect to the variation in the light amount value of the light source and the exposure time is estimated to determine the amount of light so that the coincidence is maximized, and the actually calculated coincidence is the threshold TH1. You may set the light quantity value and exposure time when exceeding.
  • a light amount control method it is possible to estimate the graph shape as shown in FIG. 7A from the coincidence degree calculated by irradiating with different light amount values, and to determine the light amount value when the coincidence degree is maximum. is there.
  • the imaging unit 4-1 and the imaging unit 4-2 are arranged so as to capture the common area of the finger or set the imaging range, two images can be obtained by using the matching degree of the blood vessel images in the common area. Can be associated with each other. If the correct association is possible, one wide-angle image in which the periphery of the finger is photographed by combining the two images can be created. Even if the images are not combined, if the correspondence between the positions in the two images is known, the data can be acquired as a single piece of linked data, and matching between images can be efficiently performed. it can.
  • the CPU 13 associates two blood vessel images photographed by the imaging unit 4-1 and the imaging unit 4-2, and performs synthesis.
  • Features extracted from the combined image are registered, and collated with the features extracted from the combined image of the two blood vessel images input at the time of authentication.
  • the input blood vessel image may be used as connection data without being synthesized, and a feature may be extracted from each of the two blood vessel images and collated with a registered feature.
  • a blood vessel pattern, a feature point, or the like used for associating a region to be photographed in common by two adjacent imaging units can be used.
  • two blood vessel images can be used for both the registered image and the input image.
  • two images can be used as registered images, and only one of the two images can be used as an input image. It is also possible to use a registered image as one image and use both two images as input images.
  • the abnormal posture of the finger can be detected by using the blood vessel image taken by the imaging unit and the image taken from the side of the finger.
  • a method for detecting an abnormal posture of a finger using a blood vessel image on the ventral side of the finger imaged by the imaging unit 4-1 and a side image of the finger imaged by the imaging unit 4-2 will be described.
  • Finger abnormal postures that are difficult to detect with only the imaging unit 4-1 that captures the ventral side of the finger include finger pressing, bending, and warping. In the pressing, the finger presentation position is not significantly different from the normal presentation position, the blood flow in the vicinity of the finger surface is inhibited near the position where the device contacts the finger, and blood vessels cannot be imaged.
  • the pressing can be detected to some extent by the amount of blood vessels in the vicinity of the contact position between the finger and the device in the blood vessel image of the imaging unit 4-1, but it is difficult to distinguish from the case where no blood vessel originally exists. Therefore, the pressing can be detected more accurately by the combination of the finger posture known from the finger side surface image captured by the image capturing unit 4-2 and the blood vessel amount in the blood vessel image captured by the image capturing unit 4-1.
  • the finger taken from the side is lower in the contour position of the lower side of the finger than the finger placement guide compared to the case of correctly presenting, and the fingertip from the finger base It tends to be a shape in which the lower contour is convex downward.
  • pressing is detected when the amount of blood vessels at the contact position between the device and the finger is small and the contour position and contour shape of the finger are abnormal.
  • the finger is presented in a bent state or a warped state, it is difficult to detect an abnormality from the blood vessel image captured by the imaging unit 4-1.
  • an abnormality can be detected relatively easily from an abnormality in the position and shape of the upper and lower contours of the finger as shown in FIG.
  • the authentication device 2 in FIG. 9 has a configuration in which a light source is arranged right above a finger to be presented, and two imaging units are arranged on both side surfaces of the finger presentation unit 5. At this time, since the two imaging units are in symmetrical positions when viewed from the finger when correctly presented directly under the light source 3, the received light amounts are equal. Therefore, if light intensity control and exposure control are performed and a clear blood vessel image can be captured in one imaging unit, a clear blood vessel image can be similarly captured in the other imaging unit. For this reason, a clear blood vessel image can be acquired simultaneously from two imaging units by simply performing light amount control and exposure control on one imaging unit.
  • the authentication apparatus 2 in FIG. 10 has a configuration in which one more imaging unit is added to the authentication apparatus 2 in FIG.
  • the light amount control and exposure control methods are basically the same as those in the first embodiment.
  • the light amount control of the light source and each The exposure control of the imaging unit is performed in combination.
  • the authentication device 2 in FIG. 11 has a configuration in which an imaging unit just below the finger is added to the configuration of the authentication device 2 in FIG.
  • the imaging unit 4-2 and the imaging unit 4-3 can be regarded as one imaging unit, and the imaging unit 4-1 and the imaging unit 4-2 or the imaging unit 4-1 and the imaging unit 4-3 are two.
  • FIG. 12 shows an example of a processing flow of light amount control and exposure control in the authentication apparatus of FIG.
  • step S400 it is detected that a finger has been presented.
  • step S410 the light source is turned on with an initial light amount, and in step S420, the luminance value in the image captured by each imaging unit is calculated. Since the calculated luminance value includes the influence of different external light for each imaging unit, the exposure of the imaging unit is controlled in step S430 so that the luminance values of all the images are close to each other.
  • the amount of light is controlled to capture a clear blood vessel in each imaging unit.
  • the amount of light is controlled in step S440 in order to photograph a clear blood vessel by the imaging unit 4-1 alone, and the luminance value of the image of the imaging unit 4-1 is calculated in step S450. If the luminance value is within the allowable range in step S460, the imaging of the imaging unit 4-1 is terminated (S470).
  • step S480 the imaging unit 4-2 and the imaging unit 4-3 perform light amount control for acquiring a clear blood vessel at the same time, and in step S490, the luminance values of the images of the imaging unit 4-2 and the imaging unit 4-3. Calculate If the luminance value is within the allowable range in step S500, the imaging of the imaging unit 4-2 and the imaging unit 4-3 is terminated (S510).
  • the light amount control in step S480 as described above, since the light amounts received by the imaging unit 4-2 and the imaging unit 4-3 are substantially equal, the light amount is adjusted so that blood vessels can be clearly imaged by one imaging unit. All you need to do is control.
  • FIG. 13 shows an authentication device 2 composed of two light sources and three imaging units.
  • blood vessels are imaged by alternately illuminating two light sources 3 arranged on the left and right.
  • the other light source 3 is turned off or turned on with a light amount that is weaker than the light amount of the light source that is turned on.
  • either the imaging unit 4-2 or the imaging unit 4-3 captures an image of a portion where the light emitted from the light source 3 directly hits the finger surface.
  • the received light amount of the part becomes excessive, the luminance value is saturated, and overexposure occurs.
  • the most part of the finger imaged by the image capturing unit 4-3 and the half surface of the finger region imaged by the image capturing unit 4-1 are overexposed to image a blood vessel. Can not do it.
  • the remaining half of the finger region imaged by the image capturing unit 4-1 and most of the finger region imaged by the image capturing unit 4-2 can receive light transmitted through the inside of the finger and image the blood vessel.
  • the image of the image capturing unit 4-2 when the left light source 3 is lit and the image of the image capturing unit 4-3 when the right light source 3 is lit are selected from the six images captured with the left and right light sources 3 turned on. Since the image of the imaging unit 4-1 is selected and blood vessels are photographed for each of the left and right half surfaces, the two images for each of the left and right half surfaces are combined to create one blood vessel image. Therefore, three images are selected as blood vessel images.
  • the light amount of the left light source 3 is controlled based on the blood vessel images photographed by the two imaging units 4-1 and 4-2 that can photograph the blood vessel, and the light amount of the right light source 3 is imaged. Control is performed by the unit 4-1 and the imaging unit 4-3. As a specific light amount control method, the method described in the first embodiment can be used.
  • the image capturing unit 4-3 captures reflected light from the surface of the finger, and whiteout occurs.
  • the overexposure emphasizes the boundary between the outline of the finger and the background as shown in FIG. 14A. If the amount of light is too strong at this time, the overexposure occurs as shown in FIG. Since the area to be exceeded exceeds the actual finger area, the finger is irradiated with a light amount that emphasizes the outline of the finger in order to extract the outline, and the outline position of the finger is obtained.
  • the brightness method contrasts between the finger and the background in the vicinity of the boundary between the finger and the background from the overexposed image by the control method described in the first embodiment.
  • the contour image extracted using whiteout is photographed with a light amount suitable for contour enhancement, and thus has a sharper contour image than the contour of the image obtained by imaging the blood vessel.
  • a method of acquiring a more accurate blood vessel image using this will be described below using an image captured by the imaging unit 4-3 as an example.
  • the imaging unit 4-3 captures an image based on the light emitted from the left light source 3.
  • the image photographed at this time is an image that can generate an overexposed image, and at the same time, an image in which the contour of the finger is emphasized.
  • the imaging unit 4-3 captures an image based on the light emitted from the right light source 3.
  • the image taken at this time is an image including a blood vessel image.
  • the CPU 13 collates the two images or creates a composite image, and exists in the area inside the outline, that is, the finger area, of the image in which the outline is emphasized from the image including the blood vessel image. Extract blood vessel images.
  • blood vessels existing within the contour can be extracted more reliably, so that information that may be erroneously recognized as a blood vessel pattern existing outside the contour, for example, included in an image obtained by photographing the blood vessel pattern is excluded. This makes it possible to extract a more accurate blood vessel image.
  • the CPU 13 uses the blood vessel image in the common region in the two images of the extracted blood vessel image in the contour and the blood vessel image captured by the imaging unit 4-1, in the second and third embodiments.
  • the light amount is controlled so that the luminance value of the blood vessel image in the common region is within the allowable range, and an image used for authentication is captured.
  • Embodiments 1 to 3 using the luminance value of the blood vessel image in the extracted contour and the luminance value of the blood vessel included in the common area of the blood vessel image captured by the imaging unit 4-1.
  • the described light quantity control is performed.
  • the probability of determining the luminance value by recognizing noise or the like as a blood vessel can be suppressed, and the accuracy of the light amount control is further improved. It is increasing.
  • the same processing is performed on the image acquired by the imaging unit 4-2, and the images acquired by the imaging unit 4-1, the imaging unit 4-2, and the imaging unit 4-3 are used as described above.
  • the same processing is performed on the image acquired by the imaging unit 4-2, and the images acquired by the imaging unit 4-1, the imaging unit 4-2, and the imaging unit 4-3 are used as described above.
  • FIGS. 15A and 15B show a configuration example of the input interface of the personal authentication device in which the light source 3 is arranged so that the imaging unit that captures the side surface of the finger captures a clear blood vessel image.
  • FIG. 15 (b) is a view of the input interface (side view) of FIG. 15 (a) from above
  • FIG. 15 (d) is a view of the input interface (side view) of FIG. 15 (c) from above. ).
  • the finger thickness is smaller on the fingertip side than on the finger base side. Therefore, as shown in FIG.
  • the finger presentation unit 5 may be arranged to be inclined and the imaging unit may be arranged to be inclined without changing the position of the light source 3 as shown in FIG.
  • the finger next to the finger to be authenticated contacts and is fixed to the device, and the finger to be authenticated is bent and presented in a non-contact manner.
  • the apparatus is composed of three imaging units and two light sources, and the blood vessel imaging method can be performed in the same manner as in the other embodiments.
  • FIG. 18A, 18B, and 18C are cross-sectional views of the authentication device of FIG.
  • FIG. 18A is an example in which a plurality of light sources are arranged in the longitudinal direction of the finger presentation unit 6, and
  • FIG. 18B is an example in which the light sources are inclined and arranged in accordance with the position of the finger that is bent and presented. is there.
  • FIG. 18C shows an example in which a large number of light sources are arranged and a light source to be lit is selected in accordance with the presented finger position.
  • 18 (d), (e), and (f) are presented by bending a finger, so that each imaging unit in FIGS. 18 (a), (b), and (c) is tilted according to the direction in which the finger is bent. This is an example of arrangement.
  • the blood vessel is described as the biological information.
  • the device is not limited to the blood vessel as long as the device is intended to capture the biological information with a plurality of imaging units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

When photographing blood vessels with a plurality of image capture units with respect to one light source, it is difficult to establish the degree of light of the light source with which it is possible for the plurality of image capture units to clearly photograph the blood vessels simultaneously. Additionally, with a plurality of images which are photographed with different quantities of light, the positional relations of the blood vessels which are included in each image is uncertain, and information of the blood vessels overall configured by the plurality of images is uncertain. Provided is a blood vessel image photography device, with which a light quantity is controlled such that, with a first image capture unit which is positioned below a finger presentation unit and captures an image of blood vessels of the finger on the basis of light from a first light source which is transmitted through the finger, and on the basis of light which is transmitted through the finger from the first light source which is positioned to the side of the first image capture unit, a brightness value of an image of a portion of blood vessels which is captured with the first image capture unit and a brightness value of an image of a portion of blood vessels which is captured with a second image capture unit are brightness values within a first range, and the first image capture unit and the second image capture unit respectively capture images on the basis of the light from the first light source, the light quantity for which is controlled.

Description

生体認証装置、血管画像撮影装置、および方法Biometric authentication device, blood vessel imaging device, and method
 本発明は、人間の生体情報、特に指の血管を利用して個人を識別する装置および方法に関する。 The present invention relates to an apparatus and a method for identifying an individual using human biological information, particularly finger blood vessels.
 個人情報や財産を安全に管理するためのセキュリティ技術に対する関心が高まる中、特に人間の生体情報を用いたバイオメトリクス認証が注目されている。従来のバイオメトリクス認証技術として、指紋、虹彩、音声、顔、手の甲の静脈又は指静脈を用いる認証方式が知られている。特に、生体に照射した赤外光の血液中のヘモグロビンによる吸収を利用した静脈認証技術は、生体に光を当てるだけで認証ができるため心理的抵抗感が低く、また生体の内部情報を利用しているため耐偽造性に優れるという特長を持つ。 With the growing interest in security technology for safely managing personal information and property, biometric authentication using human biometric information is attracting attention. As a conventional biometric authentication technique, an authentication method using a fingerprint, an iris, a voice, a face, a vein on the back of a hand, or a finger vein is known. In particular, vein authentication technology that uses absorption of hemoglobin in the blood of infrared light irradiated to the living body has low psychological resistance because authentication can be performed simply by illuminating the living body, and internal information of the living body is used. Therefore, it has the feature of being excellent in forgery resistance.
 生体認証は、様々な分野での応用が期待されており、数万から数百万人規模のユーザを正確に識別する必要があり、高い認証精度が要求される。 Biometric authentication is expected to be applied in various fields, and it is necessary to accurately identify tens of thousands to millions of users, and high authentication accuracy is required.
 そこで、高精度化にむけ、認証に利用できる血管等の情報量を増加させて取得することが求められている。 Therefore, it is required to increase the amount of information such as blood vessels that can be used for authentication for higher accuracy.
 特許文献1では、1つの光源からの光により複数の異なる位置に配置した撮像部で静脈を撮像する方法が開示されている。 Patent Document 1 discloses a method of imaging a vein with imaging units arranged at a plurality of different positions with light from one light source.
 特許文献2には、同一の血管を含むように画像を複数の撮像部にて撮影する方法が記載されている。 Patent Document 2 describes a method of taking an image with a plurality of imaging units so as to include the same blood vessel.
特許第4344876号公報Japanese Patent No. 434476 特開平11-203452号公報JP-A-11-203452
 しかしながら、一つの光源に対して複数の配置の異なる撮像部で血管を撮影する場合、各撮像部と光源の距離などの装置構成や、外光の影響、撮像部ごとの撮影される生体の面積の差によって、各撮像部が受光する光量が変化するため、光量の寄与する割合がそれぞれの撮像部にて異なり、複数の撮像部が同時に鮮明な血管を撮影できる光源の光量決定が困難であるという課題があった。 However, when a blood vessel is imaged with a plurality of imaging units with different arrangements for one light source, the device configuration such as the distance between each imaging unit and the light source, the influence of external light, the area of the living body imaged for each imaging unit Since the amount of light received by each imaging unit varies depending on the difference in the amount of light, the ratio of the contribution of the light amount differs in each imaging unit, and it is difficult to determine the light amount of a light source that can simultaneously capture a clear blood vessel by a plurality of imaging units. There was a problem.
 さらに、異なる光量にて撮影された複数の画像では、画像の夫々に含まれる血管の位置関係が不明確となってしまい、複数の画像によって構成される血管全体の情報を正確に取得できず、情報量を増加させても認証精度が向上しない可能性があるという課題があった。 Furthermore, in a plurality of images taken with different amounts of light, the positional relationship of the blood vessels included in each of the images becomes unclear, and it is impossible to accurately acquire information on the entire blood vessel constituted by the plurality of images. There has been a problem that the authentication accuracy may not be improved even if the amount of information is increased.
 指が提示される指提示部と、指へ光を照射する第一の光源と、前記指提示部に指が提示される側を上方と定義した場合、前記指提示部の下方に配置され、指を透過した前記第一の光源からの光に基づいて、当該指の血管を撮像する第一の撮像部と、前記第一の撮像部の側方に配置され、指を透過した前記第一の光源からの光に基づいて、前記第一の撮像部にて撮像された血管の一部を含むように撮像する第二の撮像部と、前記第一の撮像部及び前記第二の撮像部にて撮像された画像の輝度値を夫々演算する演算部と、前記第一の光源の光量を制御する光量制御手段と、を有し、前記演算部は、前記第一の撮像部にて撮像された前記血管の一部の画像の輝度値と、前記第二の撮像部にて撮像された前記血管の一部の画像の輝度値とが、第一の範囲内の輝度値となるように前記光量制御手段に前記光量を制御させ、前記第一の撮像部及び前記第二の撮像部は、前記光量制御手段によって光量を制御された前記第一の光源からの光に基づいて、第一の画像及び第二の画像を夫々撮像することを特徴とする血管画像撮影装置である。 When a finger presenting unit on which a finger is presented, a first light source that irradiates light to the finger, and a side on which the finger is presented on the finger presenting unit are defined as upper, the finger is presented below the finger presenting unit, Based on the light from the first light source that has passed through the finger, the first imaging unit that images the blood vessel of the finger, and the first imaging unit that is disposed on the side of the first imaging unit and that has passed through the finger A second imaging unit that captures a part of a blood vessel imaged by the first imaging unit based on light from the light source, the first imaging unit, and the second imaging unit And a light amount control unit for controlling the light amount of the first light source, and the calculation unit picks up the image with the first image pickup unit. The luminance value of the partial image of the blood vessel and the luminance value of the partial image of the blood vessel imaged by the second imaging unit are The light quantity control means controls the light quantity so as to obtain a brightness value within the range, and the first imaging unit and the second imaging part are controlled by the first light source whose light quantity is controlled by the light quantity control means. The blood vessel imaging device is characterized in that the first image and the second image are respectively picked up based on the light.
 本発明によれば、一つの光源に対して複数の配置の異なる撮像部で血管を撮影する場合に、各撮像部に寄与する光量を鮮明な血管を撮影できるように制御することができ、血管の情報量を増加させることができる。 According to the present invention, when a blood vessel is imaged with a plurality of imaging units with different arrangements with respect to one light source, the amount of light contributing to each imaging unit can be controlled so that a clear blood vessel can be imaged. The amount of information can be increased.
本発明を実施する認証装置の一例。An example of the authentication apparatus which implements this invention. 本発明を実施する認証装置のシステム構成例。The system configuration example of the authentication apparatus which implements this invention. 本発明を実現する光量制御と露光制御のフローチャートの一例。An example of the flowchart of light quantity control and exposure control which implement | achieves this invention. 光源の光量値と輝度値の関係図。The relationship figure of the light quantity value of a light source, and a luminance value. 光源の光量値と輝度値の関係図。The relationship figure of the light quantity value of a light source, and a luminance value. 本発明を実現する光量制御と露光制御のフローチャートの一例。An example of the flowchart of light quantity control and exposure control which implement | achieves this invention. 光源の光量値および露光時間と一致度の関係図。FIG. 5 is a relationship diagram of the light quantity value of an light source and exposure time and the degree of coincidence. 指の異常姿勢を側面から撮影した場合の一例。An example when an abnormal posture of a finger is photographed from the side. 本発明を実施する認証装置の一例。An example of the authentication apparatus which implements this invention. 本発明を実施する認証装置の一例。An example of the authentication apparatus which implements this invention. 本発明を実施する認証装置の一例。An example of the authentication apparatus which implements this invention. 本発明を実現する光量制御と露光制御のフローチャートの一例。An example of the flowchart of light quantity control and exposure control which implement | achieves this invention. 本発明を実施する認証装置の一例。An example of the authentication apparatus which implements this invention. 白とびを利用して指の輪郭抽出を行う一例。An example of extracting the outline of a finger using whiteout. 本発明を実現する入力インターフェースの一例。An example of the input interface which implement | achieves this invention. 本発明を実現する入力インターフェースの一例。An example of the input interface which implement | achieves this invention. 本発明を実現する認証装置の一例。An example of the authentication apparatus which implement | achieves this invention. 鮮明な血管を撮影するための光源および撮像部の配置の一例。An example of arrangement | positioning of the light source and imaging part for image | photographing a clear blood vessel. 輝度値の許容範囲に関する説明図。Explanatory drawing regarding the tolerance | permissible_range of a luminance value. 目標輝度値に関する説明図。Explanatory drawing regarding a target luminance value. 輝度値調節後の2枚の画像の合成に関するフローチャート。The flowchart regarding the synthesis | combination of two images after luminance value adjustment.
 本実施例では、2つの撮像部の露光制御と単一光源の光量制御により2つの撮像部において鮮明な血管画像を同時に撮影する認証装置2の例を説明する。 In the present embodiment, an example of the authentication apparatus 2 that simultaneously captures clear blood vessel images in two image capturing units by controlling exposure of two image capturing units and light amount control of a single light source will be described.
 図1は本発明を実現する認証装置の一例であり、図2は図1の認証装置の構成の概略図である。本装置構成では光源3を指提示部6の上方側面に位置させることにより、指提示部6の真上を開放的にする構成が実現できるため、ユーザが指を置き易くしている。また、光源3と対向している側面の撮像部4-2と、指提示部6の真下に配置した撮像部4-1を配置している。 FIG. 1 is an example of an authentication device that implements the present invention, and FIG. 2 is a schematic diagram of the configuration of the authentication device of FIG. In the present apparatus configuration, by positioning the light source 3 on the upper side surface of the finger presentation unit 6, a configuration in which the finger presentation unit 6 is opened directly can be realized, so that the user can easily place the finger. In addition, an imaging unit 4-2 on the side facing the light source 3 and an imaging unit 4-1 arranged just below the finger presentation unit 6 are arranged.
 利用者は認証時に指1を認証装置2に提示する。このとき指1は指置きガイド部5におかれる。指1が装置に提示されると図示しないタッチセンサ等の検知手段を用いて指を検知し、認証処理が開始される。指の検知には距離センサや温度センサなどのその他のセンサを用いてもよい。また、非接触に指の提示を検知するために補助光源を用いることもできる。補助光源19は撮像部4-1の位置から上方に向かって照射するように配置することで、指が指置きガイド部5の上方に提示されたとき、指が装置に触れていなくても指に補助光源19の光が当たる。したがって、補助光源19によって明るく照らされた指を撮像することで、指の提示を非接触に検知することができる。 User presents finger 1 to authentication device 2 during authentication. At this time, the finger 1 is placed on the finger placement guide 5. When the finger 1 is presented to the apparatus, the finger is detected using a detection unit such as a touch sensor (not shown), and authentication processing is started. Other sensors such as a distance sensor and a temperature sensor may be used for finger detection. In addition, an auxiliary light source can be used to detect finger presentation in a non-contact manner. The auxiliary light source 19 is disposed so as to irradiate upward from the position of the imaging unit 4-1, so that when the finger is presented above the finger placement guide unit 5, the finger is not touched by the finger. The light of the auxiliary light source 19 hits the light. Therefore, by imaging the finger illuminated brightly by the auxiliary light source 19, it is possible to detect the finger presentation in a non-contact manner.
 認証は次の手順で実行される。光源3より指1の側面から赤外光が照射される。光源は光量制御部17によって光量が制御され、光は指1を透過し、指の認証対象領域が提示される指提示部6を通過し、赤外波長光のみ透過させる光学フィルタ7を透過して撮像部4-1及び4-2に到達する。撮像部4-1及び撮像部4-2は露光制御部18によって露光時間が制御される。光は撮像部4-1及び4-2により電気信号に変換され、画像入力部8を介し画像としてコンピュータ9に取り込まれる。取り込まれた画像は一度メモリ11に蓄えられる。そして、事前に登録されている指の血管画像(登録データ)を記憶装置12よりメモリ11に格納し、メモリ11に格納されたプログラムによりCPU13は登録画像と入力された画像との照合を行う。 Authentication is performed according to the following procedure. Infrared light is irradiated from the side surface of the finger 1 from the light source 3. The light amount of the light source is controlled by the light amount control unit 17, and the light passes through the finger 1, passes through the finger presentation unit 6 on which the authentication target area of the finger is presented, and passes through the optical filter 7 that transmits only infrared wavelength light. As a result, the imaging units 4-1 and 4-2 are reached. The exposure time of the imaging unit 4-1 and the imaging unit 4-2 is controlled by the exposure control unit 18. The light is converted into an electrical signal by the imaging units 4-1 and 4-2, and is taken into the computer 9 as an image via the image input unit 8. The captured image is once stored in the memory 11. Then, the blood vessel image (registration data) of the finger registered in advance is stored in the memory 11 from the storage device 12, and the CPU 13 collates the registered image with the input image by the program stored in the memory 11.
 照合処理では比較する画像間の相関の値を算出し、その値に応じて登録されている画像と一致するかを判定する。この結果に応じて個人を認証し、正しく認証された場合は該認証システムの制御対象に対して認証時の処理を行う。認証のモードとして、全登録画像を対象に照合を行う1-N認証と、事前に利用者本人を識別するためにID番号を入力したり、ICカードをカードリーダーに提示し、ID番号やIC内のID情報に対応した登録画像のみを対象に照合を行う1-1認証のモードを設け、1-N認証モードでは指を装置に提示した直後に認証が開始されるが、1-1認証では入力手段16を用いてID番号を入力した後に指を提示し、認証を行う。 In the collation process, a correlation value between images to be compared is calculated, and it is determined whether or not it matches the registered image according to the value. An individual is authenticated in accordance with the result, and when the authentication is correctly performed, a process at the time of authentication is performed on the control target of the authentication system. As the authentication mode, 1-N authentication is performed to check all registered images, and an ID number is entered to identify the user in advance, or an IC card is presented to the card reader. In the 1-N authentication mode, authentication is started immediately after the finger is presented to the apparatus, but the authentication is 1-1. Then, after inputting the ID number using the input means 16, the finger is presented and authentication is performed.
 また、CPUやメモリ、記憶装置、表示部、光量制御部、露光制御部等は、認証装置2とは別の端末等に格納しておくことも可能であることは言うまでもない。 Needless to say, the CPU, the memory, the storage device, the display unit, the light amount control unit, the exposure control unit, and the like can be stored in a terminal other than the authentication device 2.
 撮像部4-1で撮影する指血管画像は、指の掌側の皮下に存在する血管(指の血管)を暗い影のパターンとして撮像した画像であり、撮像部4-2は指の側面の皮下に存在する血管パターンを撮像している。 The finger blood vessel image photographed by the imaging unit 4-1 is an image obtained by capturing blood vessels (finger blood vessels) existing under the skin on the palm side of the finger as a dark shadow pattern. A blood vessel pattern existing under the skin is imaged.
 血管画像は光源3から照射した光が指1を透過する光量によって撮像する血管画像の明るさが決定する。光量が少ない場合は画像全体が暗くなり、血管パターンとそれ以外の領域との輝度値の差が小さい低コントラストで不鮮明な血管画像となる。また、光量が多すぎる場合は輝度値が最大値で飽和した状態になり、白とびした血管画像になってしまう。このような、光量の不足や過多による血管画像の画質低下を防ぎ、鮮明な血管画像を撮像するために、光源3の光量や撮像部4-1および撮像部4-2の露光時間を決定して光量制御部17や露光制御部18の制御を行う。 For the blood vessel image, the brightness of the blood vessel image to be imaged is determined by the amount of light transmitted from the light source 3 through the finger 1. When the amount of light is small, the entire image becomes dark, resulting in a low-contrast and unclear blood vessel image with a small difference in luminance value between the blood vessel pattern and other regions. If the amount of light is too large, the luminance value is saturated at the maximum value, resulting in a white blood vessel image. In order to prevent such a decrease in the image quality of the blood vessel image due to insufficient or excessive light amount and to capture a clear blood vessel image, the light amount of the light source 3 and the exposure time of the image capturing unit 4-1 and the image capturing unit 4-2 are determined. The light quantity control unit 17 and the exposure control unit 18 are controlled.
 以下、認証装置2における指が提示されてから血管画像を撮像するまでのフローの例を図3に示す。まず、ステップS100で指が装置に提示されたことを上記の検知手段を用いて検知し、ステップS110で光源を初期光量で点灯してステップS120において各撮像部が撮影した画像内の輝度値を計算する。算出した輝度値は撮像部ごとに異なる外光の影響を含んでいるため、ステップS130で全ての画像の輝度値が近い値になるように撮像部の露光制御を行う。次に、光量制御を行う。光量制御処理では、撮影された画像の輝度値が一定値になるようにフィードバック制御を行う。基本的には、ステップS140で設定したある光量で照射したときの画像の輝度値をステップS150で計算し、ステップS160において全ての画像の輝度値が許容範囲内に収まっていれば撮影を終了する(S200)。1つの画像の輝度値でも許容範囲に収まっていない場合はステップS170において光源の光量の調節のみで全ての画像の輝度値が許容範囲に収まる見込みがあるかどうか判断し、見込みがある場合はステップS140の光量制御に戻る。見込みがない場合は光源の光量をそのままに、ステップS180において各撮像部の露光制御を行う。次に、各撮像部について露光時間を設定しステップS190で撮像した画像の輝度値計算を行い、ステップS160で全画像の輝度値が許容範囲内に収まっていれば撮影を終了する(S200)。許容範囲内に収まっていない場合はステップS180に戻り、再び各撮像部の露光制御を行う。 Hereinafter, an example of a flow from when the finger in the authentication device 2 is presented until a blood vessel image is captured is shown in FIG. First, in step S100, it is detected using the above-described detection means that a finger is presented to the apparatus, and in step S110, the light source is turned on with an initial light amount, and the luminance value in the image captured by each imaging unit in step S120 is calculated. calculate. Since the calculated luminance value includes the influence of different external light for each imaging unit, the exposure control of the imaging unit is performed so that the luminance values of all the images are close to each other in step S130. Next, light quantity control is performed. In the light amount control process, feedback control is performed so that the luminance value of the captured image becomes a constant value. Basically, the brightness value of the image when irradiated with a certain amount of light set in step S140 is calculated in step S150, and if the brightness values of all the images are within the allowable range in step S160, shooting is terminated. (S200). If the luminance value of one image is not within the allowable range, it is determined in step S170 whether or not the luminance value of all the images is likely to be within the allowable range only by adjusting the light amount of the light source. Return to S140 light control. If there is no expectation, the exposure control of each imaging unit is performed in step S180 while keeping the light amount of the light source as it is. Next, the exposure time is set for each imaging unit, the luminance value of the image captured in step S190 is calculated, and if the luminance value of all the images is within the allowable range in step S160, the imaging is terminated (S200). If not within the allowable range, the process returns to step S180, and exposure control of each imaging unit is performed again.
 ここで、光量制御の方法について詳細に説明する。本実施例では、図2で示すように、1つの光源の照射によって複数の撮像部が同じ指の血管を別視点から撮影している。光源3に対して撮像部4-1よりも撮像部4-2の方が遠い位置にあるため、撮像部4-1よりも撮像部4-2に照射される光量が少なくなり暗くなることがある。また、指の形状や大きさによっても撮像部4-1と撮像部4-2が受光する光量は変動する。このような状況下で、1つの光源の光量制御によって撮像部4-1と撮像部4-2の撮影する画像の輝度値を同時に目標値に近づける必要がある。 Here, the method of controlling the light amount will be described in detail. In this embodiment, as shown in FIG. 2, a plurality of imaging units shoot the blood vessel of the same finger from different viewpoints by irradiation of one light source. Since the imaging unit 4-2 is farther from the light source 3 than the imaging unit 4-1, the amount of light irradiated to the imaging unit 4-2 is smaller than that of the imaging unit 4-1, and the image becomes dark. is there. Further, the amount of light received by the imaging unit 4-1 and the imaging unit 4-2 varies depending on the shape and size of the finger. Under such circumstances, it is necessary to simultaneously bring the luminance values of the images captured by the imaging unit 4-1 and the imaging unit 4-2 close to the target value by controlling the light amount of one light source.
 図4に横軸を光源の光量、縦軸を撮像部4-1の画像と撮像部4-2の画像の輝度値としたグラフのイメージを示す。尚、図4は説明のために線形グラフにて示しているが、光源と撮像部との距離や、外光の影響、提示される指の動き等により、実際の輝度値は非線形に変動する可能性がある。 FIG. 4 shows a graph image in which the horizontal axis represents the light amount of the light source, and the vertical axis represents the luminance value of the image of the imaging unit 4-1 and the image of the imaging unit 4-2. Although FIG. 4 shows a linear graph for explanation, the actual luminance value varies nonlinearly depending on the distance between the light source and the imaging unit, the influence of external light, the movement of the presented finger, and the like. there is a possibility.
 例えば光源の光量を2倍にしたとき、撮像部4-1と撮像部4-2が受光する光量は2倍にならず、それぞれa倍、b倍になる(図4(a)の例ではa>b)。したがって、光源の光量値をいかなる値にしても同時に2つの画像の輝度値を目標値にすることはできない。そこで、目標とする輝度値の範囲(許容範囲)を設定し、その許容範囲内に輝度値があればよいとする。図4(b)の例では、撮像部4-1の画像が目標輝度値に達する光源の光量値L1と撮像部4-2の画像が目標輝度値に達する光源の光量値L2の平均光量L3で照射したときに、2つの画像の輝度値が両方とも、許容範囲内に収まっていれば撮影を終了する。2つの画像の輝度値のうち、いずれか一方の輝度値でも許容範囲内に収まっていない場合は、光量値の調節のみで2つの画像の輝度値が許容範囲内に収まる見込みがあれば、再び光量制御を行い、光量制御のみで許容範囲内に収まる見込みがない場合は、撮像部4-1および撮像部4-2の露光制御を行う。 For example, when the light amount of the light source is doubled, the light amounts received by the imaging unit 4-1 and the imaging unit 4-2 are not doubled, but are a times and b times, respectively (in the example of FIG. 4A). a> b). Accordingly, the luminance value of the two images cannot be set to the target value at the same time regardless of the light amount value of the light source. Therefore, it is assumed that a target luminance value range (allowable range) is set and the luminance value is within the allowable range. In the example of FIG. 4B, the average light amount L3 of the light amount L1 of the light source where the image of the imaging unit 4-1 reaches the target luminance value and the light amount value L2 of the light source where the image of the imaging unit 4-2 reaches the target luminance value. If the luminance values of the two images are both within the allowable range when irradiating with, photographing is terminated. If any one of the two image luminance values is not within the allowable range, if there is a possibility that the luminance value of the two images will be within the allowable range only by adjusting the light amount value, then again When the light amount control is performed and there is no possibility that the light amount control only falls within the allowable range, the exposure control of the imaging unit 4-1 and the imaging unit 4-2 is performed.
 輝度値の許容範囲を定量的に決める方法としては、例えば画像の輝度値を8ビットの255階調で表現する場合、輝度値が0付近の小さい値では画像全体が暗くなり、ノイズの影響を受けて血管を鮮明に撮影することができず、輝度値が255付近の大きい値では輝度値が飽和し画像全体が白とびしてしまうため、血管情報が欠けてしまうため、血管の情報をより一層多く取得するには、ノイズの影響を受けにくく、かつ輝度値が飽和しない範囲に輝度値の許容範囲を設定することが望ましい。例えば、輝度値の許容範囲を50から200の範囲に設定することができる。 As a method for quantitatively determining the allowable range of the luminance value, for example, when the luminance value of the image is expressed by 255 bits of 8 bits, the entire image becomes dark when the luminance value is a small value near 0, and the influence of noise is reduced. The blood vessel cannot be clearly photographed, and if the luminance value is large near 255, the luminance value is saturated and the entire image is overexposed, so that the blood vessel information is lost. In order to acquire more, it is desirable to set an allowable range of luminance values in a range that is not easily affected by noise and that does not saturate the luminance values. For example, the allowable range of the luminance value can be set in the range of 50 to 200.
 許容範囲の中でも、特に鮮明な画像を撮影するのに適した目標輝度値を設定し、この目標輝度値にできるだけ近くなるように輝度値を制御することで、より正確な光量制御が可能となる。目標輝度値の設定方法としては、血管画像においてノイズの影響が小さく、かつ画像中において血管と背景のコントラストが大きくなるような輝度値に設定することが望ましい。つまり、画像中の血管情報を所望の信号、それ以外をノイズとしたときの信号とノイズの比率であるSN比が大きくなることが望ましい。具体的には撮影した画像中の領域を血管領域と背景領域に分けたときに、算出したSN比が最大となる輝度値、もしくはSN比が飽和する最小の輝度値を目標輝度値に設定することができる。具体的に図20を用いて説明する。画像の輝度値の増加に伴い、血管はより鮮明になり、ノイズの影響が小さくなるため、SN比も増加する。しかし、輝度値aに達するとSN比はほぼ一定となる。このとき、輝度値aより大きい輝度値ではノイズの影響を最大限抑制できているものの、輝度値が飽和する値に近づくにつれ、画像中に白とびする領域が増加し、血管領域が欠損して撮影されてしまうことを示している。従って、輝度値a付近を目標輝度値とすれば、ノイズの影響を最大限抑制しつつ、血管情報の欠損がない、鮮明な血管の画像を取得することができる。定量的には、目標輝度値は128付近にて設定することが望ましい。 Even within the allowable range, by setting a target luminance value that is particularly suitable for capturing a clear image and controlling the luminance value to be as close as possible to this target luminance value, more accurate light intensity control is possible. . As a method for setting the target luminance value, it is desirable to set the luminance value so that the influence of noise is small in the blood vessel image and the contrast between the blood vessel and the background is large in the image. That is, it is desirable that the S / N ratio, which is the ratio of the signal and noise when the blood vessel information in the image is a desired signal and the other is noise, is increased. Specifically, when the region in the captured image is divided into a blood vessel region and a background region, the luminance value at which the calculated SN ratio is maximized or the minimum luminance value at which the SN ratio is saturated is set as the target luminance value. be able to. This will be specifically described with reference to FIG. As the luminance value of the image increases, the blood vessel becomes clearer and the influence of noise becomes smaller, so the SN ratio also increases. However, when the luminance value a is reached, the SN ratio becomes almost constant. At this time, although the influence of noise can be suppressed to the maximum when the luminance value is larger than the luminance value a, as the luminance value approaches the saturated value, the overexposed area increases in the image and the blood vessel area is lost. It shows that it will be filmed. Therefore, if the vicinity of the luminance value a is set as the target luminance value, it is possible to acquire a clear blood vessel image with no loss of blood vessel information while suppressing the influence of noise to the maximum. Quantitatively, it is desirable to set the target luminance value near 128.
 また2つの画像のうち、特に広い範囲の血管の画像の輝度値を、優先的に許容範囲内の基準値に近づけるように光量を制御してもよい。これにより、2つの画像全体として、より多くの情報量を取得することが可能となる。 Further, among the two images, the light amount may be controlled so that the luminance value of the blood vessel image in a particularly wide range preferentially approaches the reference value within the allowable range. As a result, a larger amount of information can be acquired for the two images as a whole.
 例えば、指の断面形状が楕円であると仮定すると、指の腹側を撮影したとき、指幅が最大になるため最も多くの情報が得られる。そこで、指の長軸を中心に指が回転した場合でも撮像する指の面積領域が大きい撮像部の画像の輝度値と、目標輝度値との差が、他方の画像よりも小さくなるように光量制御を行う。 For example, assuming that the cross-sectional shape of the finger is an ellipse, the largest amount of information can be obtained because the finger width is maximized when the ventral side of the finger is photographed. Therefore, even when the finger rotates around the long axis of the finger, the amount of light so that the difference between the luminance value of the image of the imaging unit with a large finger area to be imaged and the target luminance value is smaller than that of the other image. Take control.
 このように、CPU13が撮像部4-1と撮像部4-2が撮影した指の幅をそれぞれ測定し、幅が大きい方の撮像部に指の腹側が向いていると判断し、指幅の大きい画像を優先的に目標輝度値に近づけることにより、情報量の大きい血管情報の取得をより確実なものとし、安定した認証精度を達成することができる。 In this way, the CPU 13 measures the widths of the fingers captured by the imaging unit 4-1 and the imaging unit 4-2, determines that the ventral side of the finger is facing the larger imaging unit, and determines the finger width. By preferentially bringing a large image close to the target luminance value, it is possible to more reliably acquire blood vessel information with a large amount of information and achieve stable authentication accuracy.
 また、指の面積領域の判定は。指の輪郭線等を抽出し、輪郭内を指の領域と判定してもよい。あるいは、光量を制御する前に撮影された画像から血管情報を抽出し、特徴情報の多い方の画像を優先して光量を制御してもよい。 Also, determine the finger area. The outline of the finger or the like may be extracted, and the inside of the outline may be determined as the finger area. Alternatively, blood vessel information may be extracted from an image taken before controlling the light quantity, and the light quantity may be controlled with priority given to an image with more feature information.
 次に、露光制御の方法について説明する。図5(a)のように光源の光量をあらゆる値にしたとしても、2つの画像の輝度値がともに許容範囲内に収まらない場合が考えられる。このようなときは、光量制御のみでは撮像部4-1と撮像部4-2で同時に鮮明な血管画像を撮像することができない。そこで、図5(b)のように撮像部4-1および撮像部4-2の露光を制御して、光源の光量値がある一定の値のときに2つの撮像部の画像の輝度値がともに目標値になるように露光時間を設定する。露光の制御は、図5(c)のように受光量の少ない撮像部4-2の露光を固定し、撮像部4-2の画像の輝度値が目標値になる光源の光量値に対して、撮像部4-1の露光時間を短く調節して、2つの画像の輝度値を目標値にしてもよい。また、図5(d)のように受光量の多い撮像部4-1の露光を固定して撮像部4-2の露光を長く調節してもよい。 Next, an exposure control method will be described. Even if the light quantity of the light source is set to any value as shown in FIG. 5A, there are cases where the luminance values of the two images are not within the allowable range. In such a case, a clear blood vessel image cannot be simultaneously captured by the imaging unit 4-1 and the imaging unit 4-2 only by the light amount control. Therefore, as shown in FIG. 5B, the exposure of the imaging unit 4-1 and the imaging unit 4-2 is controlled, and the luminance values of the images of the two imaging units are obtained when the light amount value of the light source is a certain value. The exposure time is set so that both values become target values. As shown in FIG. 5C, the exposure is controlled by fixing the exposure of the imaging unit 4-2 with a small amount of received light, and the light intensity value of the light source at which the luminance value of the image of the imaging unit 4-2 becomes a target value. The brightness value of the two images may be set as the target value by adjusting the exposure time of the imaging unit 4-1. Further, as shown in FIG. 5D, the exposure of the imaging unit 4-1 having a large amount of received light may be fixed and the exposure of the imaging unit 4-2 may be adjusted longer.
 以上のような光量制御及び露光制御により、一つの光源に対して複数の配置の異なる撮像部で血管を撮影する場合の、光量の寄与する割合が各撮像部に対して異なることによって生じる光源の光量決定の困難性を解消することができ、鮮明な血管を撮影する事ができる。 With the above light amount control and exposure control, when a blood vessel is imaged with a plurality of imaging units with different arrangements with respect to one light source, the ratio of the amount of light contributed by each imaging unit differs. The difficulty of determining the amount of light can be eliminated, and a clear blood vessel can be photographed.
 実施例1では、画像全体の輝度値が許容範囲内となるように光量及び露光量を制御する方法について説明したが、本実施例では、光量制御や露光制御を行うときの別の判断基準として、撮像部4-1、4-2がそれぞれ撮像する画像の共通領域の光量・露光量を制御する方法について説明する。 In the first embodiment, the method for controlling the light amount and the exposure amount so that the luminance value of the entire image is within the allowable range has been described. However, in this embodiment, as another determination criterion when performing the light amount control and the exposure control. A method of controlling the light amount / exposure amount of the common area of the images captured by the image capturing units 4-1, 4-2 will be described.
 例えば、図2のように撮像部4-1、4-2を近接して配置すると、2つの撮像部が共通に撮影する領域が存在する。画像中の共通領域は同一の対象を撮影しているため、例えば各画像の共通領域の平均輝度値を基に光量を制御して許容範囲内の輝度値とした場合、対象の画像のコントラストはほぼ同一となる。 For example, when the image capturing units 4-1 and 4-2 are arranged close to each other as shown in FIG. 2, there is a region where the two image capturing units capture images in common. Since the common area in the image captures the same target, for example, if the light intensity is controlled based on the average luminance value of the common area of each image to set the luminance value within the allowable range, the contrast of the target image is It becomes almost the same.
 対して、画像全体の平均輝度値を基に光量を制御してしまうと、対象が異なるため、各画像が許容範囲内の輝度値となっても、対象のコントラストに若干の差異が生じてしまい、後述する広角画像作成時の画像間の対応付け等が困難となる。 On the other hand, if the amount of light is controlled based on the average luminance value of the entire image, the target is different, so even if each image has a luminance value within the allowable range, there is a slight difference in the contrast of the target. This makes it difficult to associate images between wide-angle images, which will be described later.
 従って、上述のように画像中の共通領域の輝度値を許容範囲内とすることによって、2つの画像の輝度値の差を小さくすることができ、精度よく血管の情報を抽出することが可能となる。 Therefore, by setting the luminance value of the common area in the image within the allowable range as described above, the difference between the luminance values of the two images can be reduced, and blood vessel information can be extracted with high accuracy. Become.
 さらに、画像中の共通領域における、血管付近の輝度値を用いて光量制御を行えば、より精度よく血管の情報を抽出することができる。CPU13は、2つの画像中の共通領域夫々から、血管を抽出する。この抽出された血管付近の輝度値または輝度値のコントラストが許容範囲内となるように光量制御部17によって光量を制御し、照合に用いる血管情報に基づいて画像の輝度調節を行う。このように画像の共通領域の中でも、同一の血管、つまりは同一の対象に基づいて輝度調節を行うことで、2つの画像のコントラストの差がより小さくなる輝度調節を実現することができる。これにより、2つの画像夫々に含まれる同一の血管の輝度値の差をより小さくできるため、高精度な照合はもとより、2つの画像の対応付けを、精度よく行うことが可能となる。 Furthermore, blood vessel information can be extracted with higher accuracy by performing light quantity control using the luminance value near the blood vessel in the common region in the image. The CPU 13 extracts a blood vessel from each common area in the two images. The light amount control unit 17 controls the light amount so that the luminance value in the vicinity of the extracted blood vessel or the contrast of the luminance value is within the allowable range, and the luminance of the image is adjusted based on the blood vessel information used for collation. As described above, by performing luminance adjustment based on the same blood vessel, that is, the same object, in the common region of the images, it is possible to realize luminance adjustment in which the difference in contrast between the two images becomes smaller. As a result, the difference between the luminance values of the same blood vessels included in each of the two images can be further reduced, so that the two images can be associated with each other with high accuracy as well as high-precision matching.
 2つの画像を対応付け、合成画像を作成する手順を、図21を用いて説明する。まず、撮影終了(S200)後、共通領域に含まれる血管情報を抽出する(S210)。さらに、この共通領域の血管情報を用いて照合を行う。照合手段としては、パターンマッチング、特徴点マッチング等を用いることができる。この時、2つの画像は撮像角度や指と撮像部との距離などの影響によって、位置ずれが生じているため、照合を行うには共通領域の血管の位置を補正する必要がある。 The procedure for associating two images and creating a composite image will be described with reference to FIG. First, after completion of imaging (S200), blood vessel information included in the common area is extracted (S210). Furthermore, collation is performed using the blood vessel information of this common area. As matching means, pattern matching, feature point matching, or the like can be used. At this time, since the two images are misaligned due to the influence of the imaging angle, the distance between the finger and the imaging unit, etc., it is necessary to correct the position of the blood vessel in the common region in order to perform collation.
 そこで、2つの血管画像の照合による一致度が最大、または閾値TH2以上となるときの血管画像の2次元平面を、X,Y座標、奥行き方向をY座標とした場合の、X軸,Y軸,Z軸方向夫々について、共通領域内での位置ずれを位置座標にて算出する(S220)。最後に、この位置座標を基に、2つの画像全体の位置ずれを補正して1枚の広角画像を作成する(S230)。 Therefore, the X-axis and Y-axis when the two-dimensional plane of the blood vessel image when the matching degree by the matching of the two blood vessel images is the maximum or the threshold TH2 or more is the X and Y coordinates and the depth direction is the Y coordinate. , For each of the Z-axis directions, the positional deviation in the common area is calculated with the position coordinates (S220). Finally, based on the position coordinates, the displacement of the entire two images is corrected to create one wide-angle image (S230).
 このように、正確な光量制御により取得された共通領域の血管画像の一致度を用いることにより、より正確に血管の位置関係が対応付けられた広角画像を作成する事が出来る。 As described above, by using the degree of coincidence of the blood vessel images in the common region acquired by the accurate light amount control, it is possible to create a wide-angle image in which the positional relationship of the blood vessels is more accurately associated.
 尚、光量制御、露光制御の具体的な手法、輝度値の範囲の設定方法については実施例1と同様であるのでここでは説明を省略する。 Note that a specific method of light amount control, exposure control, and a method of setting a range of luminance values are the same as those in the first embodiment, and thus description thereof is omitted here.
 以上のように、2つの画像の共通領域に含まれる画像の輝度値を用いて光量を調節することにより、血管の情報をより正確に取得できるため、高精度な認証が可能となる。 As described above, blood vessel information can be acquired more accurately by adjusting the amount of light using the luminance value of the image included in the common area of the two images, so that highly accurate authentication is possible.
 実施例2における2つの画像の共通領域の血管の画像に基づいた輝度値の調節は、2つの画像のコントラストを均一化することと、広角画像の作成のために2つの画像の対応付ける点に重点を置いたものであるため、最終的な認証に用いる血管情報を取得するためには、より精密な光量制御を行う事が望ましい。 The adjustment of the luminance value based on the blood vessel image in the common region of the two images in the second embodiment focuses on equalizing the contrast of the two images and associating the two images for creating a wide-angle image. Therefore, it is desirable to perform more precise light amount control in order to acquire blood vessel information used for final authentication.
 そこで本実施例では、最終的な認証精度をさらに向上させるべく、より多くの血管情報を有する、指領域の広い方の画像の輝度値を、優先的に制御する方法について、図19を用いて詳細を説明する。 Therefore, in this embodiment, in order to further improve the final authentication accuracy, a method for preferentially controlling the luminance value of an image having a larger finger area and having more blood vessel information will be described with reference to FIG. Details will be described.
 CPU13はまず、2つの画像の共通領域の輝度値が第一の許容範囲内となるように光量制御部17によって光量を制御する。次に2つの画像のうち、指の領域の広い方の画像の輝度値を第一の許容範囲内に設定された第二の許容範囲内となるように光量制御を行う。これにより、2つの画像全体として認証に用いる血管の情報量より多く取得することができる。 The CPU 13 first controls the light amount by the light amount control unit 17 so that the luminance value of the common area of the two images is within the first allowable range. Next, the light amount control is performed so that the luminance value of the image having the wider finger area within the two images falls within the second allowable range set within the first allowable range. As a result, it is possible to acquire a larger amount of blood vessel information used for authentication as two images as a whole.
 第二の範囲となるように輝度値を調節する対象の画像は、指の領域の広い方の画像全体とすることも可能であるが、画像中の指の領域を対象とすれば、より精度よく血管情報を取得することができる。さらに、画像中の指の領域から血管を抽出し、当該血管の領域を対象として第二の範囲となるように輝度値を調節すれば、さらに精度よく血管の情報を取得することができる。 The target image whose luminance value is adjusted to be in the second range can be the entire image with the wider finger area, but it is more accurate if the target finger area in the image is targeted. Blood vessel information can be acquired well. Furthermore, blood vessel information can be acquired with higher accuracy by extracting a blood vessel from the finger region in the image and adjusting the luminance value so that the blood vessel region is the second range.
 第一の範囲は、2つの画像をつなぎ合わせて広角画像を作成するために、共通領域の血管同士を対応づけられる程度の輝度値の許容範囲である一方、第二の範囲は認証に用いる血管情報を抽出するためのより厳密な設定を必要とする輝度値の許容範囲である。従って、第二の範囲は、第一の範囲内にて、より狭い範囲で設定されることが望ましい。 The first range is a permissible range of luminance values to which the blood vessels in the common region can be associated with each other in order to create a wide-angle image by connecting two images, while the second range is a blood vessel used for authentication. This is an allowable range of the luminance value that requires a stricter setting for extracting information. Therefore, it is desirable that the second range is set in a narrower range within the first range.
 第一の範囲を輝度値255階調により定量的に示すと、30以上、200以内の輝度値であることが、2つの画像を対応づけるためには望ましい。さらに第二の範囲は上述のようにより輝度値の変動幅が小さくなることが望ましいため、80以上、150以内であることが望ましい。 Quantitatively indicating the first range with a luminance value of 255 gradations, a luminance value of 30 or more and 200 or less is desirable for associating two images. Furthermore, since it is desirable that the variation range of the luminance value be small as described above, the second range is desirably 80 or more and 150 or less.
 本実施例の光量制御方法、255階調モデルの定量化はあくまでも一例であり、例えば第二の範囲を実施例1のように目標輝度値との差によって設定したり、撮像環境等によって255階調モデルによる範囲設定を変更することも可能である。 The quantification of the light amount control method and 255 gradation model of this embodiment is merely an example. For example, the second range is set by the difference from the target luminance value as in the first embodiment, or the 255th floor is set depending on the imaging environment or the like. It is also possible to change the range setting by the tone model.
 また、本実施例では、第一の許容範囲にて2つの画像の共通領域の画像の輝度値を制御した後、指の領域の広い方の画像を第二の許容範囲に制御する方法について述べたが、指の領域の広い方の画像を第二の許容範囲に制御した後、指の領域の狭い方の画像の共通領域の輝度値を第一の許容範囲に制御することも可能である。 Further, in this embodiment, after controlling the luminance value of the image of the common area of the two images within the first allowable range, a method for controlling the image having the wider finger area to the second allowable range will be described. However, it is also possible to control the luminance value of the common area of the narrower image of the finger to the first allowable range after controlling the image of the wider finger area to the second allowable range. .
 本実施例では、実施例2にて説明した共通領域内の血管の画像の輝度値を用いた光量制御方法を用いた別の実施例として、当該血管の画像同士の照合を行い、照合結果として得られる一致度に基づいて光量制御や露光制御を行う方法について説明する。 In this embodiment, as another embodiment using the light amount control method using the luminance value of the blood vessel image in the common area described in the second embodiment, the blood vessel images are collated with each other as a collation result. A method of performing light amount control and exposure control based on the degree of coincidence obtained will be described.
 一致度を利用した光量制御及び露光制御の処理フローの一例を図6に示す。まず、ステップS300で指が提示されたことを検知する。次にステップS310において初期光量で光源を点灯し、ステップS320で撮像部4-1及び撮像部4-2で撮影した血管画像の共通領域同士を照合して一致度を計算する。このときの照合手段としては、撮影した多値の輝度濃淡画像の共通領域同士のパターンマッチングや、輝度濃淡画像から抽出した血管パターン同士のマッチング、特徴点マッチングなどを用いることができる。ステップS330において、一致度が閾値TH1より大きい場合は、撮影を終了する(S370)。一致度が閾値TH1を下回る場合は、ステップS340で光量制御を行う。そして、ステップS350において光量制御のみで一致度が閾値TH1を超える見込みがある場合はステップS320に戻る。見込みがない場合はステップS360において各撮像部の露光制御を行い、ステップS320に戻る。 FIG. 6 shows an example of a processing flow of light amount control and exposure control using the degree of coincidence. First, in step S300, it is detected that a finger has been presented. Next, in step S310, the light source is turned on with the initial light amount, and in step S320, the common regions of the blood vessel images photographed by the imaging unit 4-1 and the imaging unit 4-2 are collated to calculate the degree of coincidence. As matching means at this time, pattern matching between common areas of the captured multi-value luminance grayscale image, matching between blood vessel patterns extracted from the luminance grayscale image, feature point matching, or the like can be used. In step S330, if the degree of coincidence is greater than the threshold value TH1, shooting is terminated (S370). If the degree of coincidence falls below the threshold value TH1, the light amount control is performed in step S340. In step S350, when it is expected that the degree of coincidence exceeds the threshold value TH1 only by the light amount control, the process returns to step S320. If there is no expectation, exposure control of each imaging unit is performed in step S360, and the process returns to step S320.
 ステップS340の光量制御について説明する。図7(a)、(b)に光源の光量値と一致度の関係および撮像部の露光時間と一致度の関係を表すグラフの概形を示す。このグラフのように、光量を徐々に大きくしていくと血管画像が多く出現するため、照合に用いる情報量が増えるため、一致度は上昇する。しかしながら一致度が最大値に達した後、つまり血管の情報量が最も多く出現した後は、画像に白飛びが発生し、血管の情報量が減少するため、一致度は徐々に減少する。従って、図7(a)のように、一致度が最大となる光量値より光量が大きくても小さくても一致度は小さくなる。 The light amount control in step S340 will be described. FIGS. 7A and 7B schematically show graphs representing the relationship between the light amount value of the light source and the degree of coincidence and the relationship between the exposure time of the imaging unit and the degree of coincidence. As shown in this graph, when the amount of light is gradually increased, many blood vessel images appear, and the amount of information used for matching increases, so the degree of matching increases. However, after the coincidence reaches the maximum value, that is, after the largest amount of blood vessel information appears, whiteout occurs in the image, and the amount of blood vessel information decreases, so the degree of coincidence gradually decreases. Accordingly, as shown in FIG. 7A, the degree of coincidence is small regardless of whether the light amount is larger or smaller than the light amount value at which the degree of coincidence is maximum.
 そこで、ある光量値において算出した一致度が閾値TH1を下回ったとき、次の光量値を上げるか、下げるかの判断が困難となる。そこで、次の光量値の決定のための判断に図4(a)のような輝度値と光源の光量値の関係を利用することができる。撮像部4-1および撮像部4-2の画像の輝度値がともに目標範囲に近いほど、互いに血管が鮮明に撮影できており、かつ画像の明るさも近いため、一致度が高くなると考えられる。したがって、一方の撮像部の画像の輝度値が小さすぎる場合は光量を上げ、反対に輝度値が大きすぎる場合は光量を下げる。また、2つの撮像部の輝度値の差が大きいときは輝度値の差が小さくなるように光量値を上下するなどして一致度が増加するように光量値を制御することができる。また、図7(c)のように光源の光量値と露光時間の変動に対する一致度の変化を推定して一致度が最大になるように光量を決定し、実際に計算した一致度が閾値TH1を超えたときの光量値と露光時間を設定してもよい。また光量制御の方法として、異なる光量値で照射して算出した一致度から図7(a)のようなグラフ形状を推定し、一致度が最大となるときの光量値に決定する方法も可能である。 Therefore, when the degree of coincidence calculated at a certain light amount value is below the threshold value TH1, it is difficult to determine whether to increase or decrease the next light amount value. Therefore, the relationship between the luminance value and the light amount value of the light source as shown in FIG. 4A can be used for the determination for determining the next light amount value. It is considered that the closer the luminance values of the images of the imaging unit 4-1 and the imaging unit 4-2 are to the target range, the clearer the blood vessels can be taken and the closer the brightness of the images, the higher the matching degree. Therefore, if the luminance value of the image of one imaging unit is too small, the light amount is increased, and conversely if the luminance value is too large, the light amount is decreased. Further, when the difference between the luminance values of the two imaging units is large, the light amount value can be controlled so that the degree of coincidence increases by increasing or decreasing the light amount value so that the difference between the luminance values becomes small. Further, as shown in FIG. 7 (c), the amount of coincidence with respect to the variation in the light amount value of the light source and the exposure time is estimated to determine the amount of light so that the coincidence is maximized, and the actually calculated coincidence is the threshold TH1. You may set the light quantity value and exposure time when exceeding. Further, as a light amount control method, it is possible to estimate the graph shape as shown in FIG. 7A from the coincidence degree calculated by irradiating with different light amount values, and to determine the light amount value when the coincidence degree is maximum. is there.
 撮像部4-1と撮像部4-2は、指の共通領域を撮影するような配置、あるいは撮像範囲の設定を行えば、共通領域における血管画像の照合による一致度を利用することによって2枚の画像を対応付けることができる。正しい対応付けができれば、2枚の画像を合成して指の周囲を撮影した1枚の広角画像を作成できる。また、合成しない場合であっても、2枚の画像中の位置の対応付けがわかっていれば、1つの連結データとして取得することができ、画像間にまたがった照合を効率的に行うことができる。 If the imaging unit 4-1 and the imaging unit 4-2 are arranged so as to capture the common area of the finger or set the imaging range, two images can be obtained by using the matching degree of the blood vessel images in the common area. Can be associated with each other. If the correct association is possible, one wide-angle image in which the periphery of the finger is photographed by combining the two images can be created. Even if the images are not combined, if the correspondence between the positions in the two images is known, the data can be acquired as a single piece of linked data, and matching between images can be efficiently performed. it can.
 ここで、本発明における照合処理の一例を説明する。CPU13は、撮像部4-1及び撮像部4-2で撮影した2つの血管画像を対応付け、合成を行う。合成後の画像から抽出した特徴を登録しておき、認証時に入力した2つの血管画像の合成画像から抽出した特徴と照合を行う。あるいは、入力する血管画像を合成せずに連結データとして用い、2つの血管画像のそれぞれから特徴を抽出し、登録してある特徴と照合してもよい。抽出する特徴は、2つの隣接する撮像部が共通で撮影する領域の対応付けに用いた血管パターンや、特徴点などを利用することができる。 Here, an example of collation processing in the present invention will be described. The CPU 13 associates two blood vessel images photographed by the imaging unit 4-1 and the imaging unit 4-2, and performs synthesis. Features extracted from the combined image are registered, and collated with the features extracted from the combined image of the two blood vessel images input at the time of authentication. Alternatively, the input blood vessel image may be used as connection data without being synthesized, and a feature may be extracted from each of the two blood vessel images and collated with a registered feature. As the feature to be extracted, a blood vessel pattern, a feature point, or the like used for associating a region to be photographed in common by two adjacent imaging units can be used.
 また、本実施例では撮像部が2つあり、登録画像、入力画像ともに2つの血管画像が利用できるが、必ずしもすべての画像を照合に用いなくてもよい。例えば、登録画像として2つの画像を利用し、入力画像として2つの画像のうち一方のみを利用することができる。登録画像を1つの画像とし、入力画像として2つの画像を両方とも利用することもできる。 In this embodiment, there are two imaging units, and two blood vessel images can be used for both the registered image and the input image. However, not all images need to be used for collation. For example, two images can be used as registered images, and only one of the two images can be used as an input image. It is also possible to use a registered image as one image and use both two images as input images.
 また本実施例では、撮像部で撮影した血管画像と指を側面から撮像した画像を利用することにより指の異常姿勢を検知することができる。ここでは1つの例として、撮像部4-1が撮像した指の腹側の血管画像と撮像部4-2が撮像した指の側面画像を用いた指の異常姿勢検知方法について説明する。指の腹側を撮影する撮像部4-1だけでは検知しにくい指の異常姿勢として、指の押し付け、曲げ、反りなどがある。押し付けは、指の提示位置は正常に提示した場合と大きく変わらず、装置と指が接触する位置付近で指表面付近の血流が阻害され、血管が撮像できなくなる。押し付けは撮像部4-1の血管画像中の指と装置の接触位置付近の血管量である程度検知できるが、元々血管が存在していない場合との区別がつきにくい。そこで撮像部4-2が撮像する指側面画像からわかる指姿勢と撮像部4-1の撮影した血管画像中の血管量の組み合わせによって、より正確に押し付けを検知することができる。指を装置に押し付けたとき、側面から撮影した指は、正しく提示した場合と比較して、指の下側の輪郭位置が指置きガイド部よりも低い位置にあり、また、指の根元から指先にかけての下側の輪郭が下に凸となる形状になりやすい。このように装置と指の接触位置の血管量が少なく、指の輪郭位置と輪郭形状が異常である場合に押し付けを検知する。また、指が曲がった状態や反り返った状態で提示された場合は、撮像部4-1で撮像した血管画像からは異常の検知が困難である。しかし、撮像部4-2で撮像した指側面の画像からは図8のように指の上下輪郭の位置や形状の異常から比較的容易に異常を検出できる。 In this embodiment, the abnormal posture of the finger can be detected by using the blood vessel image taken by the imaging unit and the image taken from the side of the finger. Here, as an example, a method for detecting an abnormal posture of a finger using a blood vessel image on the ventral side of the finger imaged by the imaging unit 4-1 and a side image of the finger imaged by the imaging unit 4-2 will be described. Finger abnormal postures that are difficult to detect with only the imaging unit 4-1 that captures the ventral side of the finger include finger pressing, bending, and warping. In the pressing, the finger presentation position is not significantly different from the normal presentation position, the blood flow in the vicinity of the finger surface is inhibited near the position where the device contacts the finger, and blood vessels cannot be imaged. The pressing can be detected to some extent by the amount of blood vessels in the vicinity of the contact position between the finger and the device in the blood vessel image of the imaging unit 4-1, but it is difficult to distinguish from the case where no blood vessel originally exists. Therefore, the pressing can be detected more accurately by the combination of the finger posture known from the finger side surface image captured by the image capturing unit 4-2 and the blood vessel amount in the blood vessel image captured by the image capturing unit 4-1. When the finger is pressed against the device, the finger taken from the side is lower in the contour position of the lower side of the finger than the finger placement guide compared to the case of correctly presenting, and the fingertip from the finger base It tends to be a shape in which the lower contour is convex downward. Thus, pressing is detected when the amount of blood vessels at the contact position between the device and the finger is small and the contour position and contour shape of the finger are abnormal. In addition, when the finger is presented in a bent state or a warped state, it is difficult to detect an abnormality from the blood vessel image captured by the imaging unit 4-1. However, an abnormality can be detected relatively easily from an abnormality in the position and shape of the upper and lower contours of the finger as shown in FIG.
 図9の認証装置2は提示する指の真上に光源を配置し、指の提示部5の両側面に2つの撮像部を配置した構成である。このとき2つの撮像部は光源3の真下に正しく提示したときの指から見て左右対称の位置にあるため、受光する光量は等しくなる。したがって、光量制御や露光制御を行い、片方の撮像部において鮮明な血管画像が撮像できれば、もう一方の撮像部でも同様に鮮明な血管画像が撮像できる。このため、1つの撮像部について光量制御や露光制御を行うだけで、同時に2つの撮像部から鮮明な血管画像を取得できる。 The authentication device 2 in FIG. 9 has a configuration in which a light source is arranged right above a finger to be presented, and two imaging units are arranged on both side surfaces of the finger presentation unit 5. At this time, since the two imaging units are in symmetrical positions when viewed from the finger when correctly presented directly under the light source 3, the received light amounts are equal. Therefore, if light intensity control and exposure control are performed and a clear blood vessel image can be captured in one imaging unit, a clear blood vessel image can be similarly captured in the other imaging unit. For this reason, a clear blood vessel image can be acquired simultaneously from two imaging units by simply performing light amount control and exposure control on one imaging unit.
 本実施例では、3つの撮像部の露光制御と単一光源の光量制御により3つの鮮明な血管画像を同時に撮影する認証装置2の例を説明する。 In the present embodiment, an example of the authentication apparatus 2 that simultaneously captures three clear blood vessel images by exposure control of three imaging units and light amount control of a single light source will be described.
 本実施例のように3つの撮像部を用いることにより、より広範囲における血管の画像を取得することが可能となる。 By using three imaging units as in the present embodiment, it is possible to acquire blood vessel images in a wider range.
 図10の認証装置2は図2の認証装置2に撮像部をさらに一つ追加した構成になっている。 The authentication apparatus 2 in FIG. 10 has a configuration in which one more imaging unit is added to the authentication apparatus 2 in FIG.
 撮像部が3つになったとしても、光量制御や露光制御の方法は実施例1と基本的に同じであり、3つの撮像部で同時に鮮明な血管を撮影するために光源の光量制御と各撮像部の露光制御を組み合わせて行う。 Even if the number of imaging units is three, the light amount control and exposure control methods are basically the same as those in the first embodiment. In order to photograph clear blood vessels simultaneously with the three imaging units, the light amount control of the light source and each The exposure control of the imaging unit is performed in combination.
 図11の認証装置2は図9の認証装置2の構成に、指の真下の撮像部を追加した構成である。この構成は、指を提示部5に正しく提示した場合、光源3からの照射光は、光源3と指から見て左右対称に配置した撮像部4-2と撮像部4-3で同じ光量を受光することになる。したがって、撮像部4-2と撮像部4-3を1つの撮像部とみなすことができ、撮像部4-1と撮像部4-2もしくは撮像部4-1と撮像部4-3の2つで同時に鮮明な血管画像を撮像できれば、3つの撮像部で同時に鮮明な血管画像を撮像できることになる。 The authentication device 2 in FIG. 11 has a configuration in which an imaging unit just below the finger is added to the configuration of the authentication device 2 in FIG. In this configuration, when the finger is correctly presented on the presentation unit 5, the irradiation light from the light source 3 is the same amount of light in the imaging unit 4-2 and the imaging unit 4-3 arranged symmetrically when viewed from the light source 3 and the finger. It will receive light. Therefore, the imaging unit 4-2 and the imaging unit 4-3 can be regarded as one imaging unit, and the imaging unit 4-1 and the imaging unit 4-2 or the imaging unit 4-1 and the imaging unit 4-3 are two. Thus, if a clear blood vessel image can be captured simultaneously, clear blood vessel images can be captured simultaneously by the three imaging units.
 図11の認証装置における光量制御及び露光制御の処理フローの一例を図12に示す。まず、ステップS400で指が提示されたことを検知し、ステップS410で光源を初期光量で点灯してステップS420において各撮像部が撮影した画像内の輝度値を計算する。算出した輝度値は撮像部ごとに異なる外光の影響を含んでいるため、ステップS430で全ての画像の輝度値が近い値になるように撮像部の露光を制御する。次に、各撮像部で鮮明な血管を撮影するために光量制御を行う。まず、撮像部4-1単独で鮮明な血管を撮影するためにステップS440で光量制御を行い、ステップS450で撮像部4-1の画像の輝度値を計算する。そしてステップS460において輝度値が許容範囲内にあれば撮像部4-1の撮影を終了する(S470)。次にステップS480で撮像部4-2と撮像部4-3で同時に鮮明な血管を獲得するための光量制御を行い、ステップS490で撮像部4-2と撮像部4-3の画像の輝度値を計算する。そしてステップS500で輝度値が許容範囲内にあれば撮像部4-2および撮像部4-3の撮影を終了する(S510)。ステップS480の光量制御について、上で述べたように、撮像部4-2と撮像部4-3の受光する光量がほぼ等しいため、一方の撮像部で鮮明に血管が撮影できるように光量を調節するだけでよく、制御が容易である。 FIG. 12 shows an example of a processing flow of light amount control and exposure control in the authentication apparatus of FIG. First, in step S400, it is detected that a finger has been presented. In step S410, the light source is turned on with an initial light amount, and in step S420, the luminance value in the image captured by each imaging unit is calculated. Since the calculated luminance value includes the influence of different external light for each imaging unit, the exposure of the imaging unit is controlled in step S430 so that the luminance values of all the images are close to each other. Next, the amount of light is controlled to capture a clear blood vessel in each imaging unit. First, the amount of light is controlled in step S440 in order to photograph a clear blood vessel by the imaging unit 4-1 alone, and the luminance value of the image of the imaging unit 4-1 is calculated in step S450. If the luminance value is within the allowable range in step S460, the imaging of the imaging unit 4-1 is terminated (S470). Next, in step S480, the imaging unit 4-2 and the imaging unit 4-3 perform light amount control for acquiring a clear blood vessel at the same time, and in step S490, the luminance values of the images of the imaging unit 4-2 and the imaging unit 4-3. Calculate If the luminance value is within the allowable range in step S500, the imaging of the imaging unit 4-2 and the imaging unit 4-3 is terminated (S510). Regarding the light amount control in step S480, as described above, since the light amounts received by the imaging unit 4-2 and the imaging unit 4-3 are substantially equal, the light amount is adjusted so that blood vessels can be clearly imaged by one imaging unit. All you need to do is control.
 本実施例では、3つの撮像部の露光制御と2つの光源の光量制御および点灯、消灯制御により3つの撮像部で鮮明な血管画像を撮影する認証装置2の例を説明する。 In this embodiment, an example of the authentication apparatus 2 that captures a clear blood vessel image with three image pickup units by exposure control of three image pickup units, light amount control of two light sources, and turning on / off control will be described.
 本実施例のように2つの光源の光量を夫々制御することにより、より鮮明な画像を広範囲にて撮影することが可能となると共に、各画像の対応付けを正確に行うことが可能となる。 By controlling the light amounts of the two light sources as in the present embodiment, it becomes possible to capture a clearer image over a wide range and to accurately associate each image.
 図13に2つの光源と3つの撮像部から構成される認証装置2を示す。まず、左右に配置された2つの光源3を交互に照射して血管の撮像を行う。一方の光源3を点灯しているとき、もう一方の光源3は消灯もしくは、点灯している光源の光量より弱い光量で点灯する。 FIG. 13 shows an authentication device 2 composed of two light sources and three imaging units. First, blood vessels are imaged by alternately illuminating two light sources 3 arranged on the left and right. When one of the light sources 3 is turned on, the other light source 3 is turned off or turned on with a light amount that is weaker than the light amount of the light source that is turned on.
 図13の認証装置2の構成は光源3の照射光が指の表面に直接当たっている部分を撮像部4-2または撮像部4-3のいずれかが撮像することになり、その部分は撮像部の受光量が過多となり、輝度値が飽和して白とびが発生してしまう。図13において左側の光源3を点灯しているとき、撮像部4-3の撮影する指の大部分の領域と、撮像部4-1の撮像する指領域の半面が白とびして血管を撮影することができない。撮像部4-1が撮影する指領域の残り半面と、撮像部4-2が撮影する指領域の大部分は指内部を透過してきた光を受光して血管が撮影できる。右側の光源3の点灯時には撮像部4-3が撮影する指領域の大部分と、撮像部4-1が撮影する指領域の半面において血管が撮影できる。したがって、左右の光源3をそれぞれ点灯して撮影した6つの画像の中から、左の光源3点灯時の撮像部4-2の画像と右の光源3点灯時の撮像部4-3の画像を選択し、撮像部4-1の画像は左右半面ずつ血管が撮影できているため、この左右半面ずつの2つの画像を合成して1枚の血管画像を作成する。従って、血管画像として3つの画像を選択することになる。 In the configuration of the authentication apparatus 2 in FIG. 13, either the imaging unit 4-2 or the imaging unit 4-3 captures an image of a portion where the light emitted from the light source 3 directly hits the finger surface. The received light amount of the part becomes excessive, the luminance value is saturated, and overexposure occurs. In FIG. 13, when the light source 3 on the left side is turned on, the most part of the finger imaged by the image capturing unit 4-3 and the half surface of the finger region imaged by the image capturing unit 4-1 are overexposed to image a blood vessel. Can not do it. The remaining half of the finger region imaged by the image capturing unit 4-1 and most of the finger region imaged by the image capturing unit 4-2 can receive light transmitted through the inside of the finger and image the blood vessel. When the right light source 3 is turned on, blood vessels can be photographed on most of the finger region photographed by the image capturing unit 4-3 and on the half surface of the finger region photographed by the image capturing unit 4-1. Therefore, the image of the image capturing unit 4-2 when the left light source 3 is lit and the image of the image capturing unit 4-3 when the right light source 3 is lit are selected from the six images captured with the left and right light sources 3 turned on. Since the image of the imaging unit 4-1 is selected and blood vessels are photographed for each of the left and right half surfaces, the two images for each of the left and right half surfaces are combined to create one blood vessel image. Therefore, three images are selected as blood vessel images.
 光源の光量制御については、左の光源3の光量は血管が撮影できる2つの撮像部4-1および撮像部4-2の撮影した血管画像に基づいて制御し、右の光源3の光量は撮像部4-1と撮像部4-3によって制御を行う。具体的な光量の制御方法は実施例1にて説明した方法を用いる事が出来る。 Regarding the light amount control of the light source, the light amount of the left light source 3 is controlled based on the blood vessel images photographed by the two imaging units 4-1 and 4-2 that can photograph the blood vessel, and the light amount of the right light source 3 is imaged. Control is performed by the unit 4-1 and the imaging unit 4-3. As a specific light amount control method, the method described in the first embodiment can be used.
 さらに、光源の点灯時に血管が撮影できない撮像部における白とびを利用して指の輪郭を抽出することで、より精度の高い血管の情報を取得することが可能となる。 Furthermore, it is possible to acquire blood vessel information with higher accuracy by extracting the outline of the finger using the overexposure in the imaging unit where the blood vessel cannot be imaged when the light source is turned on.
 図13の例では、左側の光源3の点灯時には、撮像部4-3が指の表面の反射光を撮影するため白とびが生じている。このとき光量を適切に制御することで、図14(a)のように白とびが指の輪郭と背景の境界を強調するこのとき、光量が強すぎると図14(b)のように白とびする領域が実際の指の領域を超えてしまうため、輪郭抽出を行うために指の輪郭を強調する光量にて指を照射し、指の輪郭位置を求める。 In the example of FIG. 13, when the light source 3 on the left side is turned on, the image capturing unit 4-3 captures reflected light from the surface of the finger, and whiteout occurs. At this time, by appropriately controlling the amount of light, the overexposure emphasizes the boundary between the outline of the finger and the background as shown in FIG. 14A. If the amount of light is too strong at this time, the overexposure occurs as shown in FIG. Since the area to be exceeded exceeds the actual finger area, the finger is irradiated with a light amount that emphasizes the outline of the finger in order to extract the outline, and the outline position of the finger is obtained.
 指の輪郭を撮影するための光量制御については、実施例1にて説明した制御方法にて、白飛びしている画像から、指と背景の境界付近において、輝度値のコントラストが指と背景を明確に区別できるほど大きくなるように光量を制御することを、制御条件に加える方法がある。 With respect to the light amount control for photographing the outline of the finger, the brightness method contrasts between the finger and the background in the vicinity of the boundary between the finger and the background from the overexposed image by the control method described in the first embodiment. There is a method of adding to the control condition that the amount of light is controlled so as to be clearly distinguishable.
 また、血管の画像を撮像する他の撮像部での撮像とは別に、輪郭を取得するための許容範囲内の輝度値となるように光量を制御して撮像することも可能である。 In addition to imaging with another imaging unit that captures an image of a blood vessel, it is also possible to control the amount of light so that the luminance value is within an allowable range for acquiring a contour.
 さらに他の輪郭の画像の撮影方法として、図13のように側面に配置した光源が提示する指のやや上方にある場合、指の下側まで直接光が届きにくいことを考慮して、指置きガイド部5の真下に配置した指検知用の補助光源19を利用する方法がある。指の腹側を照射することで、図14(c)のように撮像部4-2及び撮像部4―3で指の側面を撮影したときに指の下側の輪郭位置が白とびし、強調されるため、正確な輪郭抽出が可能となる。 Furthermore, as another image capturing method of the contour, when the light source arranged on the side is slightly above the finger to be presented as shown in FIG. 13, it is difficult to directly reach the lower side of the finger. There is a method of using an auxiliary light source 19 for finger detection arranged directly below the guide unit 5. By irradiating the abdominal side of the finger, when the side surface of the finger is photographed by the imaging unit 4-2 and the imaging unit 4-3 as shown in FIG. Since it is emphasized, accurate contour extraction becomes possible.
 白とびを利用して抽出された輪郭の画像は、輪郭強調に適した光量によって撮影されているため、血管を撮像した画像の輪郭よりも鮮明な輪郭の画像となっている。これを利用し、より正確な血管画像を取得する方法について、撮像部4-3で撮像された画像を例として、以下説明する。 The contour image extracted using whiteout is photographed with a light amount suitable for contour enhancement, and thus has a sharper contour image than the contour of the image obtained by imaging the blood vessel. A method of acquiring a more accurate blood vessel image using this will be described below using an image captured by the imaging unit 4-3 as an example.
 まず撮像部4-3は、左側光源3から照射された光に基づいて、画像を撮影する。上記のように、この時撮影された画像は白飛びの画像を生じ得る画像であると同時に、指の輪郭が強調された画像である。 First, the imaging unit 4-3 captures an image based on the light emitted from the left light source 3. As described above, the image photographed at this time is an image that can generate an overexposed image, and at the same time, an image in which the contour of the finger is emphasized.
 次に撮像部4-3は、右側光源3から照射された光に基づいて、画像を撮影する。上記のように、この時撮影された画像は血管画像を含む画像となっている。 Next, the imaging unit 4-3 captures an image based on the light emitted from the right light source 3. As described above, the image taken at this time is an image including a blood vessel image.
 CPU13は、この2つの画像を照合するか、あるいは合成画像を作成し、上記血管画像を含む画像から、輪郭が強調された画像の、輪郭よりも内側の範囲、つまり指領域の範囲に存在する血管画像を抽出する。 The CPU 13 collates the two images or creates a composite image, and exists in the area inside the outline, that is, the finger area, of the image in which the outline is emphasized from the image including the blood vessel image. Extract blood vessel images.
 これにより、より確実に輪郭内に存在する血管を抽出することができるため、例えば血管パターンを撮影した画像に含まれる、輪郭外に存在する血管パターンと誤認識される可能性のある情報を排除することができ、より正確な血管画像を抽出することが可能となる。 As a result, blood vessels existing within the contour can be extracted more reliably, so that information that may be erroneously recognized as a blood vessel pattern existing outside the contour, for example, included in an image obtained by photographing the blood vessel pattern is excluded. This makes it possible to extract a more accurate blood vessel image.
 さらにCPU13は、この抽出された輪郭内の血管画像と、撮像部4-1にて撮像された血管画像の2つの画像における共通領域の血管画像を用いて、実施例2、実施例3にて説明した光量制御・露光制御方法を用いて、共通領域の血管画像の輝度値が許容範囲内となるように光量を制御し、認証に用いる画像を撮影する。 Further, the CPU 13 uses the blood vessel image in the common region in the two images of the extracted blood vessel image in the contour and the blood vessel image captured by the imaging unit 4-1, in the second and third embodiments. Using the light amount control / exposure control method described above, the light amount is controlled so that the luminance value of the blood vessel image in the common region is within the allowable range, and an image used for authentication is captured.
 以上のように、輪郭内の血管画像を用いて光量制御を行う事で、より鮮明な血管画像を撮影することができ、認証精度を向上させることができる。 As described above, by performing the light amount control using the blood vessel image in the outline, a clearer blood vessel image can be taken and the authentication accuracy can be improved.
 次に、抽出された輪郭内の血管画像の輝度値と、撮像部4-1にて撮像された血管画像との共通領域に含まれる血管の輝度値を用いて、実施例1~3にて説明した光量制御を行う。本実施例では、輪郭内の血管画像を対象として光量制御をおこなっているため、ノイズ等を血管とご認識して輝度値を判定する確率を抑制することができ、光量制御の正確性をさらに高めている。 Next, in Embodiments 1 to 3, using the luminance value of the blood vessel image in the extracted contour and the luminance value of the blood vessel included in the common area of the blood vessel image captured by the imaging unit 4-1. The described light quantity control is performed. In this embodiment, since the light amount control is performed on the blood vessel image in the contour, the probability of determining the luminance value by recognizing noise or the like as a blood vessel can be suppressed, and the accuracy of the light amount control is further improved. It is increasing.
 さらに同様の処理を、撮像部4-2にて取得された画像についても行い、撮像部4-1、撮像部4-2及び撮像部4-3にて取得された画像から、上述のように3つの合成画像の合成画像を作成することにより、輝度値と各画像の対応付けが正確に制御された広角画像を取得することが可能となる。 Further, the same processing is performed on the image acquired by the imaging unit 4-2, and the images acquired by the imaging unit 4-1, the imaging unit 4-2, and the imaging unit 4-3 are used as described above. By creating a composite image of three composite images, it is possible to acquire a wide-angle image in which the association between the brightness value and each image is accurately controlled.
 本実施例では、上述した実施例1~6について、複数の撮像部にて撮像された画像をさらに鮮明なものとするためのインターフェースについて説明する。
図15(a)、(b)は指の側面を撮影する撮像部が鮮明な血管画像を撮影するために光源3を配置した個人認証装置の入力インターフェースの一構成例である。図15(a)の入力インターフェース(側面図)を上から見た図が図15(b)であり、図15(c)の入力インターフェース(側面図)を上から見た図が図15(d)である。指を側面から撮影すると、指の根元側よりも指先側の方が、指の厚みが小さい。したがって、図15(c)のように、複数の光源3を指提示部6の長軸方向に並べて配置すると、光源3の照射光が指に直接当たっており、上方から見ると図15(d)のように白とびする範囲が指先では大きくなり側面から撮影してしまう場合がある。そこで、指先に向かって指の厚みが小さくなることを考慮し、図15(a)のように指提示部6の長軸方向に、一端から指先側の他端に向かうにつれて徐々に光源の配置位置を下げていく。この光源の配置により、指側面を撮影する撮像部が白とびを撮影しにくくなる。また、同等の効果を得るために、図16のように光源3の位置は変えずに指提示部5を傾けて配置したり、撮像部を傾けて配置したりしてもよい。
In this embodiment, an interface for further clarifying images picked up by a plurality of image pickup units in the first to sixth embodiments described above will be described.
FIGS. 15A and 15B show a configuration example of the input interface of the personal authentication device in which the light source 3 is arranged so that the imaging unit that captures the side surface of the finger captures a clear blood vessel image. FIG. 15 (b) is a view of the input interface (side view) of FIG. 15 (a) from above, and FIG. 15 (d) is a view of the input interface (side view) of FIG. 15 (c) from above. ). When a finger is photographed from the side, the finger thickness is smaller on the fingertip side than on the finger base side. Therefore, as shown in FIG. 15C, when a plurality of light sources 3 are arranged side by side in the major axis direction of the finger presentation unit 6, the irradiation light of the light source 3 directly hits the finger. ), The overexposed area may become larger at the fingertips and the image may be taken from the side. Therefore, considering that the thickness of the finger is reduced toward the fingertip, the light source is gradually arranged in the major axis direction of the finger presentation unit 6 from one end to the other end on the fingertip side as shown in FIG. Move down the position. This arrangement of the light sources makes it difficult for the imaging unit that captures the finger side surface to capture overexposure. Further, in order to obtain the same effect, the finger presentation unit 5 may be arranged to be inclined and the imaging unit may be arranged to be inclined without changing the position of the light source 3 as shown in FIG.
 以上のように、光源からの光を的確に指に照射させることにより、指へ透過していない光が指提示部の側方に配置された撮像部へ入射することによって生ずる白飛びを抑制でき、さらに指提示部の下方に配置された撮像部へ入射する、指を透過した光の光量を増加させることができる。 As described above, by appropriately irradiating the finger with the light from the light source, it is possible to suppress whiteout that occurs when light that has not been transmitted to the finger enters the imaging unit disposed on the side of the finger presentation unit. In addition, it is possible to increase the amount of light incident on the imaging unit disposed below the finger presentation unit and transmitted through the finger.
 本実施例では、提示された指のぶれを考慮した、実施例7の別の実施例について説明する。一例として、3つの撮像部の露光制御と2つの光源の光量制御および点灯、消灯制御により3つの撮像部で鮮明な血管画像を撮影する認証装置2に適用した場合について説明する。 In the present embodiment, another embodiment of the embodiment 7 in consideration of the presented finger shake will be described. As an example, a case will be described in which the present invention is applied to an authentication apparatus 2 that captures a clear blood vessel image with three image pickup units by exposure control of three image pickup units, light amount control of two light sources, and turning on / off control.
 図17のように認証する指の両隣の指を装置に接触して固定し、認証する指を曲げて非接触に提示して認証することができる認証装置2の例を説明する。装置は3つの撮像部と2つの光源から装置は構成され、血管の撮影方法は他の実施例と同様に行うことができる。 As shown in FIG. 17, an example of the authentication device 2 is described in which the finger next to the finger to be authenticated contacts and is fixed to the device, and the finger to be authenticated is bent and presented in a non-contact manner. The apparatus is composed of three imaging units and two light sources, and the blood vessel imaging method can be performed in the same manner as in the other embodiments.
 図18(a)、(b)、(c)は図17の認証装置の断面図である。図18(a)は複数の光源を指提示部6の長手方向に並べて配置した例であり、図18(b)は曲がって提示される指の位置に合わせて光源を傾けて配置した例である。また図18(c)は光源を多数配置しておき、提示される指の位置に応じて点灯する光源を選択する例である。また、図18(d)、(e)、(f)は指を曲げて提示するため、図18(a)、(b)、(c)の各撮像部を指が曲がる方向に合わせ、傾けて配置する例である。 18A, 18B, and 18C are cross-sectional views of the authentication device of FIG. FIG. 18A is an example in which a plurality of light sources are arranged in the longitudinal direction of the finger presentation unit 6, and FIG. 18B is an example in which the light sources are inclined and arranged in accordance with the position of the finger that is bent and presented. is there. FIG. 18C shows an example in which a large number of light sources are arranged and a light source to be lit is selected in accordance with the presented finger position. 18 (d), (e), and (f) are presented by bending a finger, so that each imaging unit in FIGS. 18 (a), (b), and (c) is tilted according to the direction in which the finger is bent. This is an example of arrangement.
 このように、提示された指の位置に応じて、指に光を照射する光源を変化させることで、白飛びの影響を抑制し、指からの透過光を安定して撮像することができるため、高精度の認証が可能となる。 In this way, by changing the light source that emits light to the finger according to the presented finger position, it is possible to suppress the influence of overexposure and stably image the transmitted light from the finger. Highly accurate authentication is possible.
 尚、上記実施例1~7については、特に血管を生体情報として説明したが、生体情報を複数の撮像部にて撮像することを目的とした装置であれば血管に限られるものではない。 In the first to seventh embodiments, the blood vessel is described as the biological information. However, the device is not limited to the blood vessel as long as the device is intended to capture the biological information with a plurality of imaging units.
1 指
2 認証装置
3 光源
4 撮像部
5 指置きガイド部
6 指提示部
7 遮光フィルタ
8 画像入力部
9 コンピュータ
10 インターフェース
11 メモリ
12 記憶装置
13 CPU
14 表示部
15 スピーカー
16 入力部
17 光量制御部
18 露光制御部
19 補助光源
DESCRIPTION OF SYMBOLS 1 Finger 2 Authentication apparatus 3 Light source 4 Image pick-up part 5 Finger placement guide part 6 Finger presentation part 7 Shading filter 8 Image input part 9 Computer 10 Interface 11 Memory 12 Storage device 13 CPU
14 Display unit 15 Speaker 16 Input unit 17 Light amount control unit 18 Exposure control unit 19 Auxiliary light source

Claims (15)

  1. 指が提示される指提示部と、
    指へ光を照射する第一の光源と、
    前記指提示部に指が提示される側を上方と定義した場合、
    前記指提示部の下方に配置され、指を透過した前記第一の光源からの光に基づいて、当該指の血管を撮像する第一の撮像部と、
    前記第一の撮像部の側方に配置され、指を透過した前記第一の光源からの光に基づいて、前記第一の撮像部にて撮像された血管の一部を含むように撮像する第二の撮像部と、
    前記第一の撮像部及び前記第二の撮像部にて撮像された画像の輝度値を夫々演算する演算部と、
    前記第一の光源の光量を制御する光量制御手段と、
    を有し、
    前記演算部は、
    前記第一の撮像部にて撮像された前記血管の一部の画像の輝度値と、前記第二の撮像部にて撮像された前記血管の一部の画像の輝度値とが、第一の範囲内の輝度値となるように前記光量制御手段に前記光量を制御させ、
    前記第一の撮像部及び前記第二の撮像部は、
    前記光量制御手段によって光量を制御された前記第一の光源からの光に基づいて、第一の画像及び第二の画像を夫々撮像することを特徴とする血管画像撮影装置。
    A finger presentation unit where the finger is presented;
    A first light source that illuminates the finger;
    When the side on which the finger is presented to the finger presentation unit is defined as upper,
    A first imaging unit that is disposed below the finger presentation unit and images a blood vessel of the finger based on light from the first light source that has passed through the finger;
    Based on the light from the first light source disposed on the side of the first imaging unit and transmitted through the finger, the imaging is performed so as to include a part of the blood vessel imaged by the first imaging unit. A second imaging unit;
    A calculation unit that calculates the luminance values of the images captured by the first imaging unit and the second imaging unit;
    A light amount control means for controlling the light amount of the first light source;
    Have
    The computing unit is
    The luminance value of the partial image of the blood vessel imaged by the first imaging unit and the luminance value of the partial image of the blood vessel imaged by the second imaging unit are the first value. Causing the light amount control means to control the light amount so that the luminance value is within a range;
    The first imaging unit and the second imaging unit are:
    A blood vessel image capturing apparatus that captures a first image and a second image based on light from the first light source, the light amount of which is controlled by the light amount control means.
  2. 前記演算部は、
    前記第一の画像及び前記第二の画像の夫々に含まれる前記血管の一部の画像を照合し、
    前記照合の結果、一致度が所定の値以上となる場合の、前記第一の画像の位置座標と前記第二の画像の位置座標とを夫々算出することを特徴とする請求項1記載の血管画像撮影装置。
    The computing unit is
    Collating an image of a portion of the blood vessel contained in each of the first image and the second image;
    2. The blood vessel according to claim 1, wherein the position coordinates of the first image and the position coordinates of the second image when the degree of coincidence is a predetermined value or more as a result of the collation are calculated. Image shooting device.
  3. 前記演算部は、
    前記第一の画像の位置座標と前記第二の画像の位置座標に基づいて、前記第一の画像と前記第二の画像との合成画像を作成することを特徴とする請求項2記載の血管画像撮影装置。
    The computing unit is
    The blood vessel according to claim 2, wherein a composite image of the first image and the second image is created based on the position coordinates of the first image and the position coordinates of the second image. Image shooting device.
  4. 前記演算部は、
    前記合成画像と予め登録された画像との照合を実行することを特徴とする請求項3記載の血管画像撮影装置。
    The computing unit is
    The blood vessel image capturing apparatus according to claim 3, wherein collation between the synthesized image and an image registered in advance is executed.
  5. 前記演算部は、
    前記第一の撮像部にて撮像された画像と、前記第二の撮像部にて撮像された画像のうち、
    指の領域の面積が大きい方の画像の輝度値が、前記第一の範囲内に設定された第二の範囲内となるように前記光量制御手段に前記光量を制御させることを特徴とする請求項1記載の血管画像撮影装置。
    The computing unit is
    Of the image captured by the first imaging unit and the image captured by the second imaging unit,
    The light quantity control unit controls the light quantity so that a luminance value of an image having a larger finger area falls within a second range set in the first range. Item 1. A blood vessel imaging device according to Item 1.
  6. 前記演算部は、
    前記第一の範囲内の基準値と、前記第一の撮像部にて撮像された画像の輝度値との差を算出し、
    前記基準値と、前記第二の撮像部にて撮像された画像の輝度値との差を算出し、
    前記第一の撮像部にて撮像された画像と、前記第二の撮像部にて撮像された画像のうち、
    指の領域の面積が大きい方の画像の輝度値と前記基準値との差が、他方の画像の輝度値と前記基準値との差よりも小さくなるように、前記光量制御手段によって前記光量を制御させることを特徴とする請求項1記載の血管画像撮影装置。
    The computing unit is
    Calculating a difference between a reference value in the first range and a luminance value of an image captured by the first imaging unit;
    Calculating a difference between the reference value and a luminance value of an image captured by the second imaging unit;
    Of the image captured by the first imaging unit and the image captured by the second imaging unit,
    The amount of light is controlled by the light amount control means so that the difference between the luminance value of the image having the larger area of the finger region and the reference value is smaller than the difference between the luminance value of the other image and the reference value. 2. The blood vessel image photographing device according to claim 1, wherein the blood vessel image photographing device is controlled.
  7. 前記第一の撮像部及び前記第二の撮像部の露光量を制御する露光制御手段をさらに有し、
    前記演算部は、
    前記露光制御手段によって、前記第一の撮像部及び前記第二の撮像部にて撮像された夫々の画像に含まれる前記血管の一部の画像の輝度値が、前記第一の範囲内の輝度値となるように、前記第一の撮像部の露光量及び前記第二の撮像部の露光量を制御させることを特徴とする請求項1記載の血管画像撮影装置。
    Exposure control means for controlling the exposure amount of the first imaging unit and the second imaging unit;
    The computing unit is
    A luminance value of a partial image of the blood vessel included in each of the images captured by the first imaging unit and the second imaging unit by the exposure control unit is a luminance within the first range. The blood vessel image capturing apparatus according to claim 1, wherein the exposure amount of the first imaging unit and the exposure amount of the second imaging unit are controlled so as to be values.
  8. 前記第一の光源は前記指提示部に対して、上方かつ側方に配置され、
    前記第二の撮像部は前記指提示部に対して、下方かつ前記第一の光源と反対側の側方に配置されることを特徴とする請求項1記載の血管画像撮影装置。
    The first light source is disposed above and laterally with respect to the finger presentation unit,
    The blood vessel image capturing apparatus according to claim 1, wherein the second imaging unit is disposed below the finger presentation unit and on a side opposite to the first light source.
  9. 前記指提示部に対して、上方かつ前記第一の光源と反対側の側方に配置される第二の光源をさらに有し、
    前記演算部は、
    前記第二の光源の光量を前記光量制御部に制御させ、
    前記第二の撮像部は、
    前記第二の光源からの光に基づいて、指の輪郭を撮像することを特徴とする請求項8記載の血管画像撮影装置。
    A second light source disposed on the side opposite to the first light source with respect to the finger presentation unit;
    The computing unit is
    Let the light quantity control unit control the light quantity of the second light source,
    The second imaging unit is
    The blood vessel image photographing device according to claim 8, wherein a contour of a finger is imaged based on light from the second light source.
  10. 前記演算部は、
    前記第二の撮像部の撮像部にて撮像された、指の血管の画像と前記指の輪郭の画像との合成画像を作成し、
    前記合成画像から、指の輪郭の内側に含まれる前記血管の一部の画像を抽出し、
    前記抽出された指の輪郭の内側に含まれる血管の一部の画像の輝度値と、前記第一の撮像部にて撮像された画像に含まれる前記血管の一部の画像の輝度値とが、前記第一の範囲内の輝度値となるように、前記光量制御手段によって前記光量を制御させることを特徴とすることを特徴とする請求項9記載の血管画像撮影装置。
    The computing unit is
    Creating a composite image of the finger blood vessel image and the finger contour image captured by the image capturing unit of the second image capturing unit;
    Extracting an image of a part of the blood vessel contained inside the outline of the finger from the composite image,
    A luminance value of a partial image of the blood vessel included inside the extracted finger contour and a luminance value of the partial image of the blood vessel included in the image captured by the first imaging unit. 10. The blood vessel image capturing apparatus according to claim 9, wherein the light amount is controlled by the light amount control means so that the luminance value is within the first range.
  11. 前記第一の光源を含む複数の光源をさらに有し、
    前記複数の光源は、
    前記指提示部における長手方向の一端から他端に向かうにつれて、前記指提示部から上方側への距離が長くなることを特徴とする請求項1記載の血管画像撮影装置。
    A plurality of light sources including the first light source;
    The plurality of light sources are
    The blood vessel image capturing apparatus according to claim 1, wherein a distance from the finger presentation unit to the upper side increases from one end in the longitudinal direction to the other end of the finger presentation unit.
  12. 前記第二の撮像部と前記第一の光源との間の距離が、前記第一の撮像部と前記第一の光源との間の距離よりも長くなるように配置されることを特徴とする請求項1記載の血管画像撮影装置。 The distance between the second imaging unit and the first light source is arranged to be longer than the distance between the first imaging unit and the first light source. The blood vessel image photographing device according to claim 1.
  13. 指が提示される指提示部と、
    前記指提示部に指が提示される側を上方と定義した場合、
    前記指提示部に対して、上方かつ側方に配置される第一の光源と、
    前記指提示部に対して、上方かつ側方に、当該指提示部を介して前記第一の光源と対向するように配置される第二の光源と、
    前記指提示部の下方に配置され、指を透過した前記第一の光源または前記第二の光源からの光に基づいて、指の血管を撮像する第一の撮像部と、
    前記第一の撮像部の側方かつ前記第一の光源の下方に配置され、指を透過した前記第二の光源からの光に基づいて、前記第一の撮像部にて撮像された第一の血管部分を含むように撮像する第二の撮像部と、
    前記大地の撮像部の側方かつ前記第二の光源の下方に配置され、指を透過した前記第一の光源からの光に基づいて、前記第一の撮像部にて撮像された第二の血管部分を含むように撮像する第三の撮像部と、
    前記第一の撮像部、第二の撮像部、及び第三の撮像部にて撮像された画像の輝度値を夫々演算する演算部と、
    前記第一の光源の光量と前記第二の光源の光量を制御する光量制御手段と、
    を有し、
    前記演算部は、
    前記第一の撮像部にて撮像された第一の血管部分の画像の輝度値と、前記第二の撮像部にて撮像された第一の血管部分の画像の輝度値とが、所定範囲内の輝度値となるように、前記光量制御手段によって前記第二の光源からの光量を制御させ、
    前記第一の撮像部にて撮像された第二の血管部分の画像の輝度値と、前記第三の撮像部にて撮像された第二の血管部分の画像の輝度値とが、前記所定範囲内の輝度値となるように、前記光量制御手段によって前記第一の光源からの光量を制御させ、
    前記第一の撮像部及び前記第二の撮像部は
    前記光量制御手段によって光量を制御された前記第二の光源からの光に基づいて、第一の画像及び第二の画像を夫々撮像し、
    前記第一の撮像部及び前記第二の撮像部は、
    前記光量制御手段によって光量を制御された前記第一の光源からの光に基づいて、第三の画像及び第四の画像を夫々撮像することを特徴とする血管画像撮影装置。
    A finger presentation unit where the finger is presented;
    When the side on which the finger is presented to the finger presentation unit is defined as upper,
    A first light source disposed above and laterally with respect to the finger presentation unit;
    A second light source arranged to face the first light source via the finger presenting unit upward and laterally with respect to the finger presenting unit;
    A first imaging unit that is disposed below the finger presentation unit and that images a blood vessel of the finger based on light from the first light source or the second light source transmitted through the finger;
    First imaged by the first imaging unit based on the light from the second light source that is disposed on the side of the first imaging unit and below the first light source and transmitted through the finger. A second imaging unit for imaging so as to include the blood vessel portion of
    The second imaged by the first imaging unit based on the light from the first light source that is disposed beside the second imaging unit and below the second light source. A third imaging unit for imaging so as to include a blood vessel part;
    Arithmetic units for calculating the luminance values of the images captured by the first imaging unit, the second imaging unit, and the third imaging unit, respectively;
    A light amount control means for controlling the light amount of the first light source and the light amount of the second light source;
    Have
    The computing unit is
    The luminance value of the image of the first blood vessel part imaged by the first imaging unit and the luminance value of the image of the first blood vessel part imaged by the second imaging unit are within a predetermined range. The amount of light from the second light source is controlled by the amount of light control means so that the brightness value becomes,
    The luminance value of the image of the second blood vessel part imaged by the first imaging unit and the luminance value of the image of the second blood vessel part imaged by the third imaging unit are within the predetermined range. The amount of light from the first light source is controlled by the light amount control means so that the luminance value is within,
    The first imaging unit and the second imaging unit capture a first image and a second image, respectively, based on light from the second light source whose light amount is controlled by the light amount control unit,
    The first imaging unit and the second imaging unit are:
    A blood vessel image capturing apparatus, wherein a third image and a fourth image are respectively captured based on light from the first light source whose light amount is controlled by the light amount control means.
  14. 前記演算部は、
    前記第一の画像及び前記第二の画像の夫々に含まれる前記第一の血管部分の画像を照合し、
    前記照合の結果、一致度が所定の値以上となる場合の、前記第一の画像の位置座標と前記第二の画像の位置座標とを夫々算出し、
    前記第三の画像及び前記第四の画像の夫々に含まれる前記第二の血管部分の画像を照合し、
    前記照合の結果、一致度が所定の値以上となる場合の、前記第三の画像の位置座標と前記第四の画像の位置座標とを夫々算出し、
    することを特徴とする請求項13記載の血管画像撮影装置。
    The computing unit is
    Collating images of the first blood vessel portion included in each of the first image and the second image;
    As a result of the collation, the position coordinates of the first image and the position coordinates of the second image when the degree of coincidence is a predetermined value or more are calculated,
    Collating images of the second blood vessel portion included in each of the third image and the fourth image;
    As a result of the collation, when the degree of coincidence is a predetermined value or more, the position coordinates of the third image and the position coordinates of the fourth image are respectively calculated,
    The blood vessel image photographing device according to claim 13.
  15. 前記演算部は、
    前記第一の画像の位置座標と前記第二の画像の位置座標に基づいて、前記第一の画像と前記第二の画像との第一の合成画像を作成し、
    前記第三の画像の位置座標と前記第四の画像の位置座標に基づいて、前記第三の画像と前記第四の画像との第二の合成画像を作成することを特徴とする請求項2記載の血管画像撮影装置。
    The computing unit is
    Based on the position coordinates of the first image and the position coordinates of the second image, create a first composite image of the first image and the second image,
    The second composite image of the third image and the fourth image is created based on the position coordinate of the third image and the position coordinate of the fourth image. The blood vessel imaging device described.
PCT/JP2011/007061 2011-12-19 2011-12-19 Biometric authentication device, blood vessel image photography device, and method WO2013093953A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013549938A JP5923524B2 (en) 2011-12-19 2011-12-19 Biometric authentication device, blood vessel imaging device, and method
PCT/JP2011/007061 WO2013093953A1 (en) 2011-12-19 2011-12-19 Biometric authentication device, blood vessel image photography device, and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007061 WO2013093953A1 (en) 2011-12-19 2011-12-19 Biometric authentication device, blood vessel image photography device, and method

Publications (1)

Publication Number Publication Date
WO2013093953A1 true WO2013093953A1 (en) 2013-06-27

Family

ID=48667887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007061 WO2013093953A1 (en) 2011-12-19 2011-12-19 Biometric authentication device, blood vessel image photography device, and method

Country Status (2)

Country Link
JP (1) JP5923524B2 (en)
WO (1) WO2013093953A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2842489A1 (en) * 2013-08-30 2015-03-04 Hitachi-Omron Terminal Solutions, Corp. Biometric authentication apparatus
WO2015064706A1 (en) * 2013-10-31 2015-05-07 マネージメントサービス株式会社 Authentication device, authentication method, and program
CN106203246A (en) * 2014-09-10 2016-12-07 日立欧姆龙金融系统有限公司 Organism authentication apparatus
US10264998B2 (en) 2014-11-28 2019-04-23 Hitachi, Ltd. Blood vessel imaging apparatus and personal authentication system
JP2020103547A (en) * 2018-12-27 2020-07-09 バイオニクス株式会社 Blood flow authentication apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007122237A (en) * 2005-10-26 2007-05-17 Mitsubishi Electric Corp Forgery-deciding imaging device and individual identification device
JP2008097109A (en) * 2006-10-06 2008-04-24 Hitachi Information & Control Solutions Ltd Personal authentication apparatus
JP2010123136A (en) * 2010-01-14 2010-06-03 Hitachi Ltd Personal authentication device
JP2010277611A (en) * 2010-09-03 2010-12-09 Hitachi Ltd Personal authentication device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281379A (en) * 2001-03-21 2002-09-27 Ricoh Co Ltd Image pickup system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007122237A (en) * 2005-10-26 2007-05-17 Mitsubishi Electric Corp Forgery-deciding imaging device and individual identification device
JP2008097109A (en) * 2006-10-06 2008-04-24 Hitachi Information & Control Solutions Ltd Personal authentication apparatus
JP2010123136A (en) * 2010-01-14 2010-06-03 Hitachi Ltd Personal authentication device
JP2010277611A (en) * 2010-09-03 2010-12-09 Hitachi Ltd Personal authentication device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2842489A1 (en) * 2013-08-30 2015-03-04 Hitachi-Omron Terminal Solutions, Corp. Biometric authentication apparatus
JP2015049551A (en) * 2013-08-30 2015-03-16 日立オムロンターミナルソリューションズ株式会社 Biometric authentication device
CN104424479A (en) * 2013-08-30 2015-03-18 日立欧姆龙金融系统有限公司 Biometric authentication apparatus
WO2015064706A1 (en) * 2013-10-31 2015-05-07 マネージメントサービス株式会社 Authentication device, authentication method, and program
CN106203246A (en) * 2014-09-10 2016-12-07 日立欧姆龙金融系统有限公司 Organism authentication apparatus
US10264998B2 (en) 2014-11-28 2019-04-23 Hitachi, Ltd. Blood vessel imaging apparatus and personal authentication system
JP2020103547A (en) * 2018-12-27 2020-07-09 バイオニクス株式会社 Blood flow authentication apparatus

Also Published As

Publication number Publication date
JP5923524B2 (en) 2016-05-24
JPWO2013093953A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
US6813010B2 (en) Personal identification system
CN107004114B (en) Blood vessel image capturing device and personal authentication system
US9118839B2 (en) Personal identification system
JP5923524B2 (en) Biometric authentication device, blood vessel imaging device, and method
JP5982311B2 (en) Blood vessel imaging device
JP2004164652A (en) Individual authentication device
JP2011100317A (en) Personal authentication method and personal authentication system using vein pattern during bending and stretching motion of finger
JP6298838B2 (en) Personal authentication device
JP2018081469A (en) Blood vessel image pickup apparatus and personal authentication system
JP5299528B2 (en) Blood vessel imaging device and personal authentication device
JP5188517B2 (en) Personal authentication device
JP4649833B2 (en) Personal authentication device and blood vessel image extraction device
JP4089533B2 (en) Personal authentication device and blood vessel pattern extraction method
JP5780332B2 (en) Blood vessel imaging device and personal authentication device
JP5924431B2 (en) Blood vessel imaging device and personal authentication device
JP2013080504A (en) Blood vessel image photographic device and personal authentication device
JP2004164651A (en) Individual authentication device
JP2017162493A (en) Personal authentication system
JP2009003710A (en) Individual authentication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877838

Country of ref document: EP

Kind code of ref document: A1