WO2013087026A1 - Locating method and locating device for iris - Google Patents

Locating method and locating device for iris Download PDF

Info

Publication number
WO2013087026A1
WO2013087026A1 PCT/CN2012/086665 CN2012086665W WO2013087026A1 WO 2013087026 A1 WO2013087026 A1 WO 2013087026A1 CN 2012086665 W CN2012086665 W CN 2012086665W WO 2013087026 A1 WO2013087026 A1 WO 2013087026A1
Authority
WO
WIPO (PCT)
Prior art keywords
iris
iris image
module
positioning
sub
Prior art date
Application number
PCT/CN2012/086665
Other languages
French (fr)
Chinese (zh)
Inventor
张祥德
王琪
单成坤
周军
Original Assignee
北京天诚盛业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天诚盛业科技有限公司 filed Critical 北京天诚盛业科技有限公司
Publication of WO2013087026A1 publication Critical patent/WO2013087026A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor

Definitions

  • the present invention relates to the field of iris localization, and in particular to an iris positioning method and a positioning device based on a two-dimensional circular Gabor filter and a circular weighted calculus detection operator.
  • biometrics With the development of biological science, biometrics has attracted more and more people's attention because of its high security and reliability. , has become a cross-cutting topic in the study of applied mathematics, image processing and pattern recognition. Biometrics are combined by high-tech means such as computers, biosensors, and biostatistics to identify and certify a person's identity using the inherent physiological and behavioral characteristics of the person.
  • biometric recognition technologies mainly include fingerprint recognition, iris recognition, face recognition and speech recognition.
  • the international iris recognition market has maintained rapid growth and is expected to reach $1,481 million in revenue by 2015. Iris recognition has good prospects and has been widely used in customs, airports, banking, access control and information security.
  • the iris is a circular pigmented membrane around the pupil of the eye.
  • the iris-rich texture pattern is the basis of iris recognition. Iris recognition technology extracts, analyzes and matches these textures. The uniqueness and stability of the iris texture make the iris an excellent biometric for human identification.
  • the iris recognition system first collects the iris image, then divides the iris region in the acquired iris image, and finally extracts features on the normalized iris image for matching, and compares the similarities of the two iris images to determine whether they are from the same personal.
  • the iris is a ring-shaped tissue that is outside the pupil (black part of the eye) and inside the sclera (white part of the eye). Compared with other biometrics, the iris has many obvious advantages as an identification feature, including:
  • the iris has highly unique and complex texture features, the iris texture has more than one hundred degrees of freedom, and there are almost no irises with the same texture features; 2. Good stability: The iris is formed in the embryonic stage. Due to the protection of the cornea, the iris is less affected by the external environment and the texture features are stable.
  • Non-invasive iris The image is acquired without physical contact and can be obtained within a certain distance without causing discomfort to the human body. Iris positioning is a key part of the iris recognition system. The accuracy of positioning is related to the feature extraction and matching of the iris. Therefore, the accuracy of the iris positioning results directly affects the accuracy and efficiency of the iris recognition system.
  • the human eye image obtained by the iris image acquisition system includes the eyelids, eyelashes, sclera, pupils, etc. of the human eye.
  • the iris positioning is a process of detecting the inner and outer boundaries of the iris and separating the iris from other parts of the human eye.
  • the iris has a good ring structure, and from the pupil to the iris to the sclera, the gray scale of the image rises stepwise. This good edge structure facilitates the positioning and segmentation of the iris.
  • the eyelids and eyelashes may block the iris area.
  • proper pre-processing can eliminate interference and improve the stability and accuracy of the overall positioning algorithm.
  • the size of the pupil changes with the illumination environment.
  • the eyelids and eyelashes block the iris area.
  • the distance between the human eye and the acquisition device is also uncertain, and there is still a certain angle between them.
  • the present invention provides a new iris positioning method and positioning device.
  • the positioning method and the positioning device are based on iris positioning of a two-dimensional circular Gabor filter and a circular weighted calculus detection operator, and the iris image is determined.
  • An iris positioning method includes the following steps: Step 1.
  • the spot detection of the iris image specifically includes the following sub-steps: Step 1.1: Perform image acquisition on the iris in the human eye through the camera device, and smooth the obtained iris image by using a median filtering method; Step 1.2: Filter the smoothed iris image by using a two-dimensional circular Gabor filter Action, then select the binarization threshold, use the binarization method to determine the spot area; Step 2, determine whether the iris image is shaken: For the spot area detected in step 1.2, use the least squares ellipse fitting to calculate the spot area boundary The determined ellipse, if the ratio of the ellipse length to the half axis is greater than 1.55, the iris image is sloshing, otherwise it is a non-sloshing iris image; Step 3, initial positioning
  • Step 4.5 Positioning the outer boundary of the iris: Calculating the circular weighted calculus of the outer boundary Sub-value, taking the largest 10 of all values as possible candidate boundaries. Then, using the clustering method, iteratively excludes the noise points in the boundary points, and calculates the circular weighted calculus detection operator value after eliminating the noise point, and takes the boundary parameter corresponding to the maximum gradient after eliminating the noise point as the outer boundary of the iris. Position the results.
  • the smoothed iris image is convoluted by a two-dimensional circular Gabor filter, and the maximum value is the position of the spot, and the maximum value of the convolution result M_max is greater than 0.6*M_max.
  • the median filtering method is a 5*5 median filtering method.
  • an iris positioning device comprising: a detecting module for detecting a spot of an iris image; a determining module for determining whether an iris image is shaken; and a first positioning module Initial positioning of the pupil; and a second positioning module for positioning the iris.
  • the detecting module includes: a collecting sub-module, configured to perform image capturing on the iris in the human eye by the imaging device; and a first smoothing processing sub-module, configured to perform smoothing processing on the collected iris image by using a median filtering method;
  • the filtering sub-module is configured to filter the smoothed iris image by using a two-dimensional circular Gabor filter; and a binarization sub-module for selecting a binarization threshold, and determining a spot area by using a binarization method.
  • the determining module includes: a calculating sub-module, configured to calculate, by using a least square method, a ellipsoid determined by a boundary of the spot area, and a determining sub-module for determining a ratio of the length of the ellipse to the half-axis of the ellipse; Among them, if the ratio of the ellipse length to the half axis is greater than 1.55, the iris image is swaying, otherwise it is a clearer iris image.
  • the first positioning module includes: a scaling sub-module for reducing a clear iris image to an original 0.2 times; a second smoothing processing sub-module for using the median filtering method to reduce the reduced iris image Performing a smoothing process; and determining a sub-module for filtering the smoothed image by using a two-dimensional circular Gabor filter, and taking the coordinate of the maximum value of the filtered result as the estimated center of the pupil.
  • the second positioning module comprises: an eyelid positioning sub-module, configured to position the upper and lower eyelids by using the parabola to obtain the iris image obtained by the second smoothing processing sub-module; and the eyelash positioning sub-module is configured to obtain the second smoothing processing sub-module
  • the iris image is normalized, and the normalized gradient value of the iris image is subtracted from the normalized gray value, and the difference is greater than 0.1 for the eyelash region, less than 0.1 for the non-eyelash region; a module for removing eyelashes and eyelids in an iris image obtained by the second smoothing processing sub-module; and a boundary positioning sub-module for positioning the inner and outer boundaries of the iris image obtained by deleting the sub-module by using a weighted calculus operator .
  • an iris positioning method comprising the steps of: detecting a spot of an iris image; determining whether the iris image is shaken; initial positioning of the pupil; and positioning the iris, since determining the spot area before performing iris positioning And determine whether the iris image is shaking.
  • the invention has the following beneficial effects: the two-dimensional circular Gabor filter and the circular weighted calculus detection operator are used to locate the inner boundary of the iris, thereby reducing the interference of the noise information on the iris recognition system, and the iris can be quickly and accurately located.
  • the inner boundary of the image, in the outer boundary of the iris uses the clustering method to eliminate noise and abnormal pixels, which improves the stability and accuracy of the iris localization algorithm.
  • FIG. 2 is a schematic diagram of an image containing an iris
  • FIG. 3 is a schematic diagram of a two-dimensional circular Gabor filter
  • 4 is a schematic diagram showing the result of filtering the smoothed iris image by a two-dimensional circular Gabor filter
  • FIG. 5 is a schematic diagram showing the result of the spot region detection
  • FIG. 6 is a schematic diagram showing the result of reducing and smoothing the iris image
  • Figure 8 is a schematic diagram showing the results of the positioning of the eyelashes
  • Figure 9 is a schematic diagram of the results of the iris positioning
  • Figure 10 is a schematic block diagram of an iris positioning device according to an embodiment of the present invention
  • the center of the eye is a black pupil
  • the annular tissue between the outer edges of the pupil is the iris, which presents interlaced texture features similar to spots, filaments, stripes, and crypts.
  • the iris of the same person will hardly change in a person's life.
  • the iris of different people is completely different.
  • Definition 2 Binarization threshold. The grayscale threshold used when binarizing the image.
  • Definition 3 Binarization. Converting all values of the entire image into a process with only two values, typically two values of 0 and 1 or 0 and 255.
  • the value of the point is binarized to 1 (or 255); when the value on the image is less than the binarization threshold, the value of the point is binarized to 0. .
  • Definition 4 Least squares ellipse fit. Firstly, the ellipse-based algebraic distance-based least squares method is used to obtain the preliminary estimate of the ellipse parameter. Then, the geometric distance-based least squares method is used to iterate to give the optimal estimate of the ellipse parameter, and combined with the detection of the sphere, Constraints on multiple elliptical parameters achieve high detection accuracy.
  • the ellipse fitting method based on least squares is applicable to various complex object models, and can intuitively give a measure of a certain fitting error, achieving a high fitting accuracy.
  • Definition 5 Median filtering.
  • the median filtering method is a nonlinear processing method that suppresses noise. For a given n values ⁇ al, a2, ..., an ⁇ , they are arranged in order of size. When n is an odd number, the value at the middle position is called the median of the n values. When n is an even number, the average of the two values at the intermediate position is referred to as the median of the n values.
  • the output of a pixel after image median filtering is equal to the median value of the gray level of each pixel in the pixel.
  • /(_y,x) represents the gray value of the pixel point (_y, x).
  • W r . indicates that (j., x.) is the center, r.
  • the weighted curve of the gray value / (_y, x) is integrated, and in the discrete state, the weighted sum of the gray values of the pixel points on the circumference.
  • G r) is a smoothing function, using a normal distribution function, ⁇ is a weight, varies with s.
  • Definition 8 Two-dimensional circular Gabor filter filtering.
  • the two-dimensional circular Gabor filter function used in this embodiment is as follows:
  • an iris positioning method includes the following steps: after collecting an iris in a human eye, performing spot detection on the collected iris image, determining a spot area, and then determining according to the determined The spot area determines whether the iris image is shaken. When the iris image is shaken, no processing is performed. The step ends.
  • the iris When the iris image is a non-sloshing iris image, the iris is initially positioned, that is, the position of the pupil is determined, and finally, according to the determined
  • the pupil position locates the iris and, when performing iris positioning, includes detection of the eyelashes and eyelids and positioning of the iris boundary.
  • the iris positioning method provided by the embodiment, before the iris positioning, the spot area is first determined, and the iris image is determined to be shaken.
  • the spot area is first determined, and the iris image is determined to be shaken.
  • the iris When the iris is positioned, only the non-sloshing iris image is iris-positioned, thereby avoiding shaking the iris.
  • the accuracy of iris positioning caused by image positioning is poor, and the method of iris positioning only for non-sloshing iris images improves the accuracy of iris positioning.
  • the iris positioning method provided by this embodiment can be implemented by the following preferred steps.
  • Step 1. Detecting the spot of the iris image, specifically including the following sub-steps: Step 1.1: Perform image acquisition on the iris in the human eye through the camera device, and the acquired iris image is as shown in FIG. 2, using a median filtering method. The obtained iris image is smoothed; Step 1.2: The smoothed iris image is filtered by a two-dimensional circular Gabor filter (as shown in FIG. 3), and the filtering result is shown in FIG. 4, and then the binarization threshold is selected. The binarization method is used to determine the spot area, and the image of the obtained spot area is as shown in FIG. 5; Step 2.
  • the threshold value can be determined by setting a threshold value, and the threshold value can be any value in the interval [1.30, 1.80], preferably, When the threshold is selected to be 1.55, that is, when the ratio of the ellipse length to the half axis is greater than 1.55, it is determined that the iris image is swaying.
  • This method is also effective for iris images taken by other devices, and the threshold can be set by the same experiment.
  • Step 3 Initially positioning the pupil, specifically including the following sub-steps: Step 3.1, reducing the clear iris image obtained in step 2 to 0.2 times, wherein when step 2 determines that the iris image is a shaking iris image The iris image is blurred due to shaking.
  • Step 3.2 Smoothing the reduced iris image in step 3.1 by using the median filtering method, and the obtained iris image is as shown in FIG. 6;
  • Step 3.3 the result obtained in step 3.2, that is, the smoothed iris image is used.
  • the two-dimensional circular Gabor filter is filtered again, and the maximum value of the filtering result is taken to perform initial positioning of the pupil, and the position of the pupil is determined.
  • Step 4.2 Normalize the iris image obtained in step 3.2, and subtract the normalized gradient value of the iris image from the normalized gray value. The difference is greater than 0.1 for the eyelash region, and less than 0.1 for the non-eyelash.
  • the area, the lash area positioning result is shown in Figure 8;
  • Step 4.3 removing the eyelashes and eyelids in the iris image obtained in step 3.2;
  • Step 4.4 using the weighted calculus operator to the iris image obtained in step 4. 3)
  • the inner and outer boundaries are positioned.
  • Step 4.4 specifically includes: using the circular weighted calculus detection operator to locate the inner boundary of the iris for the image obtained in step 4.3, and then using the circular weighted calculus detection operator to calculate the outer boundary of the iris image obtained in step 4.3)
  • the weighted calculus detection operator value is taken as the boundary corresponding to the N largest circular weighted calculus detection operator values, and the noise point and other abnormal points are respectively deleted by clustering, and then the circular weighted micro after the exclusion point is calculated.
  • the integral detection operator value and finally takes the boundary corresponding to the maximum value of the N values as the final result of the outer boundary position of the iris, wherein the abnormal points include: a spot, an eyelash, an eye boundary, an upper and lower eyelid, and the like.
  • the largest 10 ⁇ G, I. 1 ; 2 i0.
  • the largest 10 ⁇ G, I. 1 ; 2 i0.
  • the non-noise partial pixel point set ⁇ ⁇ , ⁇ : on the corresponding iris boundary. make Calculate the grayscale mean 3 ⁇ 4 and the grayscale variance ⁇ ⁇ of the pixels in the F ⁇ collection :
  • i i refers to the number of elements in the set.
  • the step 1.2 is specifically: convolving the smoothed iris image by using a two-dimensional circular Gabor filter, where the maximum value is the position of the spot, and the maximum value of the convolution result M_max is greater than k*M_max. Part of it is the spot area.
  • the embodiment of the present invention further provides an iris positioning device.
  • the iris positioning device provided by the embodiment of the present invention is introduced below. It should be noted that the iris positioning method in the embodiment of the present invention can be performed by the iris positioning device provided by the embodiment of the present invention, and the iris positioning device in the embodiment of the present invention can also be used to execute the iris provided by the embodiment of the present invention. Positioning method.
  • FIG. 10 is a schematic block diagram of an iris positioning device according to an embodiment of the present invention.
  • the positioning device includes a detecting module, a determining module, a first positioning module, and a second positioning module.
  • the detecting module is configured to detect a spot of the iris image to obtain a spot area;
  • the determining module is configured to determine whether the iris image is shaken according to the determined spot area, and when the iris image is a non-sloshing iris image, the first positioning module is used to The pupil is initially positioned to determine the position of the pupil, and the second positioning module is used to position the iris according to the position of the pupil to determine the boundary of the iris.
  • the determination module determines whether the iris image is shaken, and when the first positioning module and the second positioning module perform iris positioning, only the non-sloating iris image is iris-positioned, thereby avoiding shaking the iris
  • the accuracy of iris positioning caused by image positioning is poor, and the method of iris positioning only for non-sloshing iris images improves the accuracy of iris positioning.
  • 11 is a schematic block diagram of another iris positioning device according to an embodiment of the present invention. As shown in FIG.
  • the positioning device includes a detecting module, a determining module, a first positioning module, and a second positioning module, where the detecting module includes collecting a submodule, a first smoothing submodule, a filtering submodule, and a binarization submodule, the judging module includes a computing submodule and a judging submodule, and the first positioning module includes a scaling submodule, a second smoothing processing submodule, and a determining submodule
  • the second positioning module includes an eyelid positioning sub-module, an eyelash positioning sub-module, a deletion sub-module, and a boundary positioning sub-module.
  • the collecting sub-module is used for image capturing of the iris in the human eye by the camera device to obtain an iris image; the first smoothing processing sub-module is used for smoothing the collected iris image by using a median filtering method; the filtering sub-module is used for The smoothed iris image is filtered by a two-dimensional circular Gabor filter; the binarization sub-module is used to select the binarization threshold, and the binarization method is used to determine the spot area.
  • the calculation sub-module is used for the spot area detected by the detection module, and the least-squares method is used to fit and calculate the ellipse determined by the boundary of the spot area; the judgment sub-module is used to determine the iris by determining whether the ratio of the ellipse length and the half-axis is greater than a preset value. Whether the image is a shaking iris image, wherein if the ratio of the length of the ellipse to the long axis is larger than the preset value, the iris image is swaying, otherwise it is a clearer, ie, non-sloshing iris image, where The preset value is preferably 1.55.
  • the scaling sub-module is used to reduce the clearer iris image to the original 0.2 times; the second smoothing processing sub-module is used to smooth the reduced iris image by the median filtering method;
  • the dimension circular Gabor filter filters the image processed by the second smoothing processing sub-module, and performs initial positioning of the pupil according to the filtering result, and determines the position of the pupil. Specifically, the coordinate of the maximum value of the filtered result is taken as the pupil. Estimate the center.
  • the eyelid positioning sub-module is configured to locate the upper and lower eyelids by using the parabola to obtain the iris image obtained by the second smoothing processing sub-module; the eyelash positioning sub-module is used for normalizing the iris image obtained by the second smoothing processing sub-module, and the iris image is
  • the normalized gradient value is subtracted from the normalized gradation value, and the result of the subtraction is compared with 0.1, the lash area is greater than 0.1, and the non-lash area is less than 0.1.
  • the sub-module is configured to remove the eyelashes and the eyelids in the iris image obtained by the second smoothing processing sub-module; the boundary positioning sub-module is configured to locate the inner and outer boundaries of the iris image obtained by the deleting sub-module by using the weighted calculus operator.
  • the boundary positioning sub-module comprises an inner boundary positioning unit and an outer boundary positioning unit.
  • the inner boundary locating unit locates the inner boundary of the iris by using the circular weighted calculus detection operator to delete the image obtained by the submodule.
  • the outer boundary locating unit uses the circular weighted calculus detection operator to calculate the circular weighted calculus detection operator value for the outer boundary of the iris image obtained by the deletion submodule, and takes the N largest circular weighted calculus detection operator values. Corresponding boundaries are used to delete the noise points and other abnormal points respectively, and then calculate the circular weighted calculus detection operator value after the exclusion point, and finally take the boundary corresponding to the maximum value of the N values as the outer boundary of the iris. The final result.
  • the value of the N value can be set according to the calculation capability of the positioning device and the calculation accuracy. Preferably, N is 10, and the outer boundary positioning method described in the method embodiment is used, and details are not described herein again.
  • Blocks, or a plurality of modules or steps in them, are implemented as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Collating Specific Patterns (AREA)

Abstract

The present invention relates to a locating method and locating device for the iris. The method includes the following steps: step 1, performing facula detection on an iris image; step 2, judging whether the iris image swings; step 3, initially locating the pupils; and step 4, locating the iris. The beneficial effects of the present invention are: locating the edges inside the iris using a 2D circular Gabor filter and a circular weight calculus detection operator, deleting the noise and exception points on the external boundary using a combined method of the circular weight calculus detection operator and clustering to obtain correct external boundary locating, thus reducing the interference to the iris identification system by the noise and exception condition, and improving the stability and accuracy of the iris locating algorithm.

Description

一种虹膜定位方法和定位装置  Iris positioning method and positioning device
技术领域 本发明涉及虹膜定位领域, 尤其涉及一种基于二维圆形 Gabor滤波器和圆形加权 微积分检测算子的虹膜定位方法和定位装置。 背景技术 随着信息技术的发展, 人类进入了一个前所未有的信息时代。 信息安全也成为人 们越来越关注的一个热点问题。 在日常生活中, 我们经常需要验证自己或者其他人的 身份, 可靠的身份识别能使我们的生活避免麻烦, 并且能够保护个人信息的安全, 可 靠的身份识别技术也使得金融和商业交易更加安全有效。 传统的身份认证由于极易伪 造和丢失, 越来越难以满足社会的需求, 随着生物科学的发展, 生物特征识别以其安 全性高、 可靠性好等优点受到越来越多的人们的重视, 成为应用数学、 图像处理和模 式识别等学科研究的交叉前沿课题。 生物特征识别通过计算机、 生物传感器和生物统计学等高科技手段结合, 利用人 体固有的生理特征和行为特征来识别和认证一个人的身份。 目前, 常见的生物特征识 别技术主要包括指纹识别、 虹膜识别、 面相识别和语音识别等。 国际虹膜识别的市场 一直保持着高速的增长, 预计到 2015年, 能够达到 1481百万美元的营业收入。 虹膜 识别具有良好的发展前景, 并且已经广泛的应用于海关、 机场、 银行、 门禁和信息安 全等领域。 随着虹膜识别技术的日趋成熟, 其在保护人们的信息安全方面将扮演越来 越重要的角色。 虹膜是眼睛瞳孔周围的圆形色素隔膜, 虹膜丰富的纹理图案是虹膜识别的基础, 虹膜识别技术就是提取、 分析和匹配这些纹理。 虹膜纹理的独特性和稳定性使得虹膜 成为极好的用于身份识别的人体生物特征。 虹膜识别系统首先采集虹膜图像, 然后在 采集得到的虹膜图像中分割虹膜区域, 最后在归一化后的虹膜图像上提取特征进行匹 配,通过对比两幅虹膜图像的相似性,确定是否来自于同一个人。虹膜是处于瞳孔(眼 睛黑色部分) 以外、 巩膜(眼睛白色部分) 以内的环形组织。 与其他的生物特征相比, 虹膜作为身份识别的特征有许多明显的优势, 主要包括: TECHNICAL FIELD The present invention relates to the field of iris localization, and in particular to an iris positioning method and a positioning device based on a two-dimensional circular Gabor filter and a circular weighted calculus detection operator. BACKGROUND OF THE INVENTION With the development of information technology, human beings have entered an unprecedented information age. Information security has also become a hot issue that people are paying more and more attention to. In daily life, we often need to verify the identity of ourselves or others. Reliable identification can make our lives avoid troubles and protect the security of personal information. Reliable identification technology also makes financial and business transactions safer and more effective. . Traditional identity authentication is more and more difficult to meet the needs of society because it is extremely easy to forge and lose. With the development of biological science, biometrics has attracted more and more people's attention because of its high security and reliability. , has become a cross-cutting topic in the study of applied mathematics, image processing and pattern recognition. Biometrics are combined by high-tech means such as computers, biosensors, and biostatistics to identify and certify a person's identity using the inherent physiological and behavioral characteristics of the person. At present, common biometric recognition technologies mainly include fingerprint recognition, iris recognition, face recognition and speech recognition. The international iris recognition market has maintained rapid growth and is expected to reach $1,481 million in revenue by 2015. Iris recognition has good prospects and has been widely used in customs, airports, banking, access control and information security. As iris recognition technology matures, it will play an increasingly important role in protecting people's information security. The iris is a circular pigmented membrane around the pupil of the eye. The iris-rich texture pattern is the basis of iris recognition. Iris recognition technology extracts, analyzes and matches these textures. The uniqueness and stability of the iris texture make the iris an excellent biometric for human identification. The iris recognition system first collects the iris image, then divides the iris region in the acquired iris image, and finally extracts features on the normalized iris image for matching, and compares the similarities of the two iris images to determine whether they are from the same personal. The iris is a ring-shaped tissue that is outside the pupil (black part of the eye) and inside the sclera (white part of the eye). Compared with other biometrics, the iris has many obvious advantages as an identification feature, including:
1. 唯一性高: 虹膜具有高度独特和复杂的纹理特征, 虹膜纹理具有一百多个自由 度, 几乎没有纹理特征相同的虹膜; 2. 稳定性好: 虹膜形成于胚胎期, 由于受到角膜的保护, 虹膜受到外界环境的影 响较小, 纹理特征稳定; 1. High uniqueness: The iris has highly unique and complex texture features, the iris texture has more than one hundred degrees of freedom, and there are almost no irises with the same texture features; 2. Good stability: The iris is formed in the embryonic stage. Due to the protection of the cornea, the iris is less affected by the external environment and the texture features are stable.
3. 防伪性好: 虹膜随光强变化的缩放特性以及自身有规律的振颤, 提供了对伪造 虹膜的自然测试方法, 改变虹膜的纹理结构几乎是不可能的; 4. 非入侵性: 虹膜图像的获取不需要身体接触, 在一定的距离内就可以获得, 不 会对人体造成不适。 虹膜定位是虹膜识别系统的关键环节, 定位的精确程度关系到虹膜的特征提取和 匹配。 所以, 虹膜定位结果的准确与否直接影响到虹膜识别系统的准确性和高效性。 虹膜图像采集系统得到的人眼图像, 包含人眼的眼睑、 睫毛、 巩膜、 瞳孔等部分, 虹 膜定位就是检测虹膜的内外边界, 把虹膜与人眼的其他部分进行分离的过程。 虹膜具 有良好的环状结构, 而且由瞳孔到虹膜再到巩膜, 图像的灰度呈阶梯状上升, 这种良 好的边缘结构有利于虹膜的定位及分割。 但是眼睑和睫毛可能会遮挡虹膜区域, 在具 体的虹膜定位过程中, 适当的预处理能够很好的排除干扰, 提高整体定位算法的稳定 性和准确性。 另外, 在图像采集过程中, 瞳孔的大小会随着光照环境的变化而变化, 眼睑和睫 毛遮挡虹膜区域, 人眼与采集设备的距离也是不确定的, 而且他们之间还存在着一定 的角度关系, 因此即使是同一个人眼的不同图像, 定位结果也是存在着差异性的。 在 一些经典的虹膜识别系统中, 利用虹膜边界近似于圆形这个特点, 采用非同心圆的双 圆模型定位虹膜的内外边界。 由于形状已知, 可以根据虹膜的边界特点求出相应的圆 形参数。 针对现有技术中低质量虹膜定位准确性差的问题,目前尚未提出有效的解决方案。 发明内容 本发明提出了一种新的虹膜定位方法和定位装置, 该定位方法和定位装置是基于 二维圆形 Gabor滤波和圆形加权微积分检测算子的虹膜定位,对虹膜图像进行了判定, 减少了噪声信息对虹膜识别系统的干扰, 提高了虹膜定位算法的稳定性和准确性。 本发明的目的是通过以下技术方案来实现: 一种虹膜定位方法, 包括以下步骤: 步骤 1、 对虹膜图像的光斑检测, 具体包括以下分步骤: 步骤 1.1、通过摄像装置, 对人眼中的虹膜进行图像采集, 利用中值滤波法对得到 的虹膜图像进行平滑处理; 步骤 1.2、利用二维圆形 Gabor滤波器对平滑处理后的虹膜图像进行滤波作用,然 后选取二值化阈值, 采用二值化的方法确定光斑区域; 步骤 2、判断虹膜图像是否晃动: 对步骤 1.2中检测到的光斑区域, 采用最小二乘 椭圆拟合计算光斑区域边界所确定的椭圆, 如果椭圆长短半轴的比值大于 1.55, 则虹 膜图像是晃动的, 否则是非晃动的虹膜图像; 步骤 3、 对瞳孔进行初定位, 具体包括以下分步骤: 步骤 3.1、 将步骤 2中得到的较清晰的虹膜图像缩小至原来的 0.2倍; 步骤 3.2、 利用中值滤波法对步骤 3.1中缩小的虹膜图像进行平滑处理; 步骤 3.3、 对 3.2结果, 使用二维圆形 Gabor滤波器进行滤波, 滤波结果的最大值 所在坐标作为瞳孔的估计中心; 步骤 4、 对虹膜进行定位, 具体包括以下分步骤: 步骤 4.1、利用抛物线形加权微积分检测算子对步骤 3.2中得到的虹膜图像定位上、 下眼睑; 步骤 4.2、 对步骤 3.2中得到的虹膜图像进行归一化, 将虹膜图像归一化的梯度值 与归一化的灰度值相减, 差大于 0.1的为睫毛区域, 小于 0.1的为非睫毛区域; 步骤 4.3、 去除步骤 3.2中得到的虹膜图像中的眼睫毛和眼睑; 步骤 4.4、 对步骤 4.3中得到的图像, 利用圆形加权微积分检测算子定位虹膜内边 界; 步骤 4.5、定位虹膜外边界: 计算外边界的圆形加权微积分检测算子值, 取所有值 中最大的 10个作为可能的候选边界。然后采用聚类方法,迭代排除边界点中的噪声点, 并计算排除噪声点后的圆形加权微积分检测算子值, 取排除噪声点后的最大梯度所对 应的边界参数作为虹膜外边界的定位结果。 所述步骤 1.2中, 采用二维圆形 Gabor滤波器对平滑处理后的虹膜图像进行卷积, 极大值点即为光斑的位置, 取卷积结果的最大值 M_max, 大于 0.6*M_max的部分为 光斑区域。 所述中值滤波法为 5*5中值滤波法。 根据本发明的另一方面, 提供了一种虹膜定位装置, 该装置用于执行上述本发明 所提供的任一种虹膜定位方法。 根据本发明的另一方面, 提供了一种虹膜定位装置, 该装置包括: 检测模块, 用 于对虹膜图像的光斑进行检测; 判断模块, 用于判断虹膜图像是否晃动; 第一定位模 块, 用于对瞳孔进行初定位; 以及第二定位模块, 用于对虹膜进行定位。 进一步地, 检测模块包括: 采集子模块, 用于通过摄像装置, 对人眼中的虹膜进 行图像采集; 第一平滑处理子模块, 用于利用中值滤波法对采集到的虹膜图像进行平 滑处理; 滤波子模块, 用于利用二维圆形 Gabor滤波器对平滑处理后的虹膜图像进行 滤波; 以及二值化子模块, 用于选取二值化阈值, 采用二值化的方法确定光斑区域。 进一步地, 判断模块包括: 计算子模块, 用于对检测模块检测到的光斑区域, 采 用最小二乘法计算光斑区域边界所确定的椭圆; 以及判断子模块, 用于判断椭圆长短 半轴的比值, 其中, 如果椭圆长短半轴的比值大于 1.55, 则虹膜图像是晃动的, 否则 是较清晰的虹膜图像。 进一步地, 第一定位模块包括: 缩放子模块, 用于将较清晰的虹膜图像缩小至原 来的 0. 2倍; 第二平滑处理子模块, 用于利用中值滤波法对缩小后的虹膜图像进行平 滑处理; 以及确定子模块, 用于采用二维圆形 Gabor滤波器对平滑处理后的图像进行 滤波, 取所滤波结果的最大值所在坐标作为瞳孔的估计中心。 进一步地, 第二定位模块包括: 眼睑定位子模块, 用于利用抛物线对第二平滑处 理子模块得到的虹膜图像定位上、 下眼睑; 睫毛定位子模块, 用于对第二平滑处理子 模块得到的虹膜图像进行归一化,将虹膜图像归一化的梯度值与归一化的灰度值相减, 差大于 0. 1的为睫毛区域, 小于 0. 1的为非睫毛区域; 删除子模块, 用于去除第二平 滑处理子模块得到的虹膜图像中的眼睫毛和眼睑; 以及边界定位子模块, 用于利用加 权微积分算子对删除子模块得到的虹膜图像的内、 外边界进行定位。 通过本发明, 采用包括以下步骤的虹膜定位方法: 对虹膜图像的光斑进行检测; 判断虹膜图像是否晃动; 对瞳孔进行初定位; 以及对虹膜进行定位, 由于在进行虹膜 定位之前, 首先确定光斑区域, 并判断虹膜图像是否晃动, 在进行虹膜定位时, 仅对 非晃动虹膜图像进行虹膜定位, 从而能够避免对晃动虹膜图像进行定位而导致的虹膜 定位准确性差,只针对非晃动虹膜图像进行虹膜定位的方法提高了虹膜定位的准确性。 本发明的有益效果为: 采用二维圆形 Gabor滤波器和圆形加权微积分检测算子对 虹膜内边界进行定位, 减少了噪声信息对虹膜识别系统的干扰, 能够快速、 准确的定 位出虹膜图像中的内边界, 在虹膜外边界定位中, 采用聚类方法排除噪声、异常像素, 提高了虹膜定位算法的稳定性和准确性。 附图说明 3. Good anti-counterfeiting: The zooming characteristics of the iris with the change of light intensity and its regular vibration, provide a natural test method for forged iris, it is almost impossible to change the texture of the iris; 4. Non-invasive: iris The image is acquired without physical contact and can be obtained within a certain distance without causing discomfort to the human body. Iris positioning is a key part of the iris recognition system. The accuracy of positioning is related to the feature extraction and matching of the iris. Therefore, the accuracy of the iris positioning results directly affects the accuracy and efficiency of the iris recognition system. The human eye image obtained by the iris image acquisition system includes the eyelids, eyelashes, sclera, pupils, etc. of the human eye. The iris positioning is a process of detecting the inner and outer boundaries of the iris and separating the iris from other parts of the human eye. The iris has a good ring structure, and from the pupil to the iris to the sclera, the gray scale of the image rises stepwise. This good edge structure facilitates the positioning and segmentation of the iris. However, the eyelids and eyelashes may block the iris area. During the specific iris positioning process, proper pre-processing can eliminate interference and improve the stability and accuracy of the overall positioning algorithm. In addition, during image acquisition, the size of the pupil changes with the illumination environment. The eyelids and eyelashes block the iris area. The distance between the human eye and the acquisition device is also uncertain, and there is still a certain angle between them. Relationship, so even for different images of the same person's eyes, the positioning results are different. In some classic iris recognition systems, the iris boundary is approximated by a circular shape, and the inner and outer boundaries of the iris are located using a non-concentric double circle model. Since the shape is known, the corresponding circular parameters can be obtained according to the boundary characteristics of the iris. In view of the problem of poor accuracy of low-quality iris positioning in the prior art, an effective solution has not yet been proposed. SUMMARY OF THE INVENTION The present invention provides a new iris positioning method and positioning device. The positioning method and the positioning device are based on iris positioning of a two-dimensional circular Gabor filter and a circular weighted calculus detection operator, and the iris image is determined. The interference of the noise information on the iris recognition system is reduced, and the stability and accuracy of the iris localization algorithm are improved. The object of the present invention is achieved by the following technical solutions: An iris positioning method includes the following steps: Step 1. The spot detection of the iris image specifically includes the following sub-steps: Step 1.1: Perform image acquisition on the iris in the human eye through the camera device, and smooth the obtained iris image by using a median filtering method; Step 1.2: Filter the smoothed iris image by using a two-dimensional circular Gabor filter Action, then select the binarization threshold, use the binarization method to determine the spot area; Step 2, determine whether the iris image is shaken: For the spot area detected in step 1.2, use the least squares ellipse fitting to calculate the spot area boundary The determined ellipse, if the ratio of the ellipse length to the half axis is greater than 1.55, the iris image is sloshing, otherwise it is a non-sloshing iris image; Step 3, initial positioning of the pupil, specifically including the following substeps: Step 3.1, step 2 The obtained clear iris image is reduced to 0.2 times; Step 3.2: The reduced iris image in step 3.1 is smoothed by the median filtering method; Step 3.3, 3.2 results, using a two-dimensional circular Gabor filter Filtering, the coordinate of the maximum value of the filtering result is used as the estimated center of the pupil; Step 4 Positioning the iris specifically includes the following sub-steps: Step 4.1: Using the parabolic weighted calculus detection operator to position the upper and lower eyelids of the iris image obtained in step 3.2; Step 4.2, returning the iris image obtained in step 3.2 The gradient value normalized by the iris image is subtracted from the normalized gray value, and the difference is greater than 0.1 for the eyelash region, and less than 0.1 for the non-eyelash region; Step 4.3, removing the iris image obtained in step 3.2 Eyelashes and eyelids in the middle; Step 4.4. Using the circular weighted calculus detection operator to locate the inner boundary of the iris for the image obtained in step 4.3; Step 4.5: Positioning the outer boundary of the iris: Calculating the circular weighted calculus of the outer boundary Sub-value, taking the largest 10 of all values as possible candidate boundaries. Then, using the clustering method, iteratively excludes the noise points in the boundary points, and calculates the circular weighted calculus detection operator value after eliminating the noise point, and takes the boundary parameter corresponding to the maximum gradient after eliminating the noise point as the outer boundary of the iris. Position the results. In the step 1.2, the smoothed iris image is convoluted by a two-dimensional circular Gabor filter, and the maximum value is the position of the spot, and the maximum value of the convolution result M_max is greater than 0.6*M_max. For the spot area. The median filtering method is a 5*5 median filtering method. According to another aspect of the present invention, there is provided an iris positioning apparatus for performing any of the iris positioning methods provided by the present invention described above. According to another aspect of the present invention, an iris positioning device is provided, the device comprising: a detecting module for detecting a spot of an iris image; a determining module for determining whether an iris image is shaken; and a first positioning module Initial positioning of the pupil; and a second positioning module for positioning the iris. Further, the detecting module includes: a collecting sub-module, configured to perform image capturing on the iris in the human eye by the imaging device; and a first smoothing processing sub-module, configured to perform smoothing processing on the collected iris image by using a median filtering method; The filtering sub-module is configured to filter the smoothed iris image by using a two-dimensional circular Gabor filter; and a binarization sub-module for selecting a binarization threshold, and determining a spot area by using a binarization method. Further, the determining module includes: a calculating sub-module, configured to calculate, by using a least square method, a ellipsoid determined by a boundary of the spot area, and a determining sub-module for determining a ratio of the length of the ellipse to the half-axis of the ellipse; Among them, if the ratio of the ellipse length to the half axis is greater than 1.55, the iris image is swaying, otherwise it is a clearer iris image. Further, the first positioning module includes: a scaling sub-module for reducing a clear iris image to an original 0.2 times; a second smoothing processing sub-module for using the median filtering method to reduce the reduced iris image Performing a smoothing process; and determining a sub-module for filtering the smoothed image by using a two-dimensional circular Gabor filter, and taking the coordinate of the maximum value of the filtered result as the estimated center of the pupil. Further, the second positioning module comprises: an eyelid positioning sub-module, configured to position the upper and lower eyelids by using the parabola to obtain the iris image obtained by the second smoothing processing sub-module; and the eyelash positioning sub-module is configured to obtain the second smoothing processing sub-module The iris image is normalized, and the normalized gradient value of the iris image is subtracted from the normalized gray value, and the difference is greater than 0.1 for the eyelash region, less than 0.1 for the non-eyelash region; a module for removing eyelashes and eyelids in an iris image obtained by the second smoothing processing sub-module; and a boundary positioning sub-module for positioning the inner and outer boundaries of the iris image obtained by deleting the sub-module by using a weighted calculus operator . By the present invention, an iris positioning method comprising the steps of: detecting a spot of an iris image; determining whether the iris image is shaken; initial positioning of the pupil; and positioning the iris, since determining the spot area before performing iris positioning And determine whether the iris image is shaking. When performing iris positioning, only The non-sloshing iris image is used for iris positioning, so that the iris positioning accuracy caused by the positioning of the shaking iris image can be avoided, and the method of iris positioning only for the non-sloshing iris image improves the accuracy of iris positioning. The invention has the following beneficial effects: the two-dimensional circular Gabor filter and the circular weighted calculus detection operator are used to locate the inner boundary of the iris, thereby reducing the interference of the noise information on the iris recognition system, and the iris can be quickly and accurately located. The inner boundary of the image, in the outer boundary of the iris, uses the clustering method to eliminate noise and abnormal pixels, which improves the stability and accuracy of the iris localization algorithm. DRAWINGS
构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的 示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在 附图中: 图 1是本发明实施例所述的一种虹膜定位方法的流程图; 图 2是采集到的含有虹膜的图像的示意图; 图 3是二维圆形 Gabor滤波器的示意图; 图 4是二维圆形 Gabor滤波器对平滑处理后的虹膜图像进行滤波作用的结果示意 图; 图 5是光斑区域检测结果示意图; 图 6是虹膜图像缩小平滑后的结果示意图; 图 7是眼睑定位结果示意图; 图 8是睫毛区域定位结果示意图; 图 9是虹膜定位结果示意图; 图 10是本发明实施例所述的一种虹膜定位装置的原理框图; 图 11是本发明实施例所述的另一种虹膜定位装置的原理框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 为了方便地描述本发明内容, 首先对一些术语进行定义。 定义 1 : 虹膜。 眼珠的中心是黑色的瞳孔, 瞳孔外缘间的环形组织即为虹膜, 其 呈现出相互交错的类似于斑点、 细丝、 条纹、 隐窝的纹理特征。 同一个人的虹膜在人 的一生中几乎不会发生改变, 不同人的虹膜是完全不一样的。 定义 2: 二值化阈值。 对图像进行二值化时所选用的灰度门限值。 定义 3 : 二值化。 把整幅图像的所有值转化成只有两种值的过程, 一般这两种值 为 0和 1或者 0和 255。 当图像上的值大于等于二值化阈值的时候, 该点的值二值化 为 1 (或 255 ); 当图像上的值小于二值化阈值的时候, 该点的值二值化为 0。 定义 4: 最小二乘椭圆拟合。 首先运用椭圆约束的基于代数距离的最小二乘方法 给出椭圆参数的初步估计值, 然后使用基于几何距离的最小二乘方法迭代给出椭圆参 数的优化估计值, 并结合对球体的检测, 通过对多个椭圆参数的约束实现高的检测精 度。 基于最小二乘的椭圆拟合方法适用于各种复杂的对象模型, 并能直观地给出关于 某种拟合误差的测度, 达到很高的拟合精度。 定义 5 : 中值滤波法。 中值滤波法是一种抑制噪声的非线性处理方法, 对于给定 的 n个数值 { al, a2, …, an}, 将它们按照大小有序排列。 当 n为奇数时, 位于中间 位置的那个数值称为这 n个数值的中值。 当 n为偶数时, 位于中间位置的两个数值的 平均值称为这 n个数值的中值。 图像中值滤波后某像素的输出等于该像素临域中各像 素灰度的中值。 定义 6: 抛物线形加权微积分检测算子。 设抛物线方程为 y = a(x - bf + c, 求使得下式取值最大的参数 b, c):
Figure imgf000008_0001
即求 arg max v ia, b, c)所得到的抛物线作为最后检测结果 < 其中, 表示像素点( ,x)的灰度值。 c{ ^ ^i^fe表示在抛物线
The accompanying drawings, which are incorporated in the claims of the claims 1 is a flow chart of an iris positioning method according to an embodiment of the present invention; FIG. 2 is a schematic diagram of an image containing an iris; FIG. 3 is a schematic diagram of a two-dimensional circular Gabor filter; 4 is a schematic diagram showing the result of filtering the smoothed iris image by a two-dimensional circular Gabor filter; FIG. 5 is a schematic diagram showing the result of the spot region detection; FIG. 6 is a schematic diagram showing the result of reducing and smoothing the iris image; Figure 8 is a schematic diagram showing the results of the positioning of the eyelashes; Figure 9 is a schematic diagram of the results of the iris positioning; Figure 10 is a schematic block diagram of an iris positioning device according to an embodiment of the present invention; A schematic block diagram of an iris positioning device. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. In order to conveniently describe the present invention, some terms are first defined. Definition 1: Iris. The center of the eye is a black pupil, and the annular tissue between the outer edges of the pupil is the iris, which presents interlaced texture features similar to spots, filaments, stripes, and crypts. The iris of the same person will hardly change in a person's life. The iris of different people is completely different. Definition 2: Binarization threshold. The grayscale threshold used when binarizing the image. Definition 3: Binarization. Converting all values of the entire image into a process with only two values, typically two values of 0 and 1 or 0 and 255. When the value on the image is greater than or equal to the binarization threshold, the value of the point is binarized to 1 (or 255); when the value on the image is less than the binarization threshold, the value of the point is binarized to 0. . Definition 4: Least squares ellipse fit. Firstly, the ellipse-based algebraic distance-based least squares method is used to obtain the preliminary estimate of the ellipse parameter. Then, the geometric distance-based least squares method is used to iterate to give the optimal estimate of the ellipse parameter, and combined with the detection of the sphere, Constraints on multiple elliptical parameters achieve high detection accuracy. The ellipse fitting method based on least squares is applicable to various complex object models, and can intuitively give a measure of a certain fitting error, achieving a high fitting accuracy. Definition 5: Median filtering. The median filtering method is a nonlinear processing method that suppresses noise. For a given n values { al, a2, ..., an}, they are arranged in order of size. When n is an odd number, the value at the middle position is called the median of the n values. When n is an even number, the average of the two values at the intermediate position is referred to as the median of the n values. The output of a pixel after image median filtering is equal to the median value of the gray level of each pixel in the pixel. Definition 6: Parabolic weighted calculus detection operator. Let the parabolic equation be y = a(x - bf + c, find the parameter b, c) that makes the value of the following formula the largest :
Figure imgf000008_0001
That is, the parabola obtained by arg max v ia, b, c) is taken as the final detection result < where, the gray value of the pixel point ( , x) is represented. c{ ^ ^i^fe indicates parabola
J  J
J = S(X - b)2 + C上, 对灰度值 / y,x)的加权曲线积分, N是有效的抛物线上离散 像素点个数。 在离散状态下, 为圆周上像素点灰度值的加权求和。 G c)是一个平滑 函数, 采用正态分布函数, 是权值, 随 s变化。 定义 7: 圆形加权微积分检测算子。 设圆的方程为 ϊ — ;2: + ^:— Xs := , 求使得下式取值最大的参数 (y0, x0, r0) t
Figure imgf000009_0001
艮卩求 arg max vc (yl
J = S(X - b) 2 + C, the weighted curve integral of the gray value / y, x), N is the effective parabolic dispersion The number of pixels. In the discrete state, it is the weighted summation of the gray values of the pixel points on the circumference. G c) is a smoothing function, using a normal distribution function, which is a weight, which varies with s. Definition 7: Circular weighted calculus detection operator. Let the equation of the circle be ϊ - ; 2: + ^: - X s := , find the parameter that gives the largest value of the following formula (y 0 , x 0 , r 0 ) t
Figure imgf000009_0001
Request arg max v c (y l
I(y, x) I(y, x)
其中, /(_y,x)表示像素点 (_y,x)的灰度值。 W r. 表示以(j。,x。)为圆 心, r。为半径的圆周上, 灰度值 /(_y,x)的加权曲线积分, 在离散状态下, 为圆周上像 素点灰度值的加权求和。 G r)是一个平滑函数, 采用正态分布函数, ^是权值, 随 s变化。 定义 8: 二维圆形 Gabor滤波器滤波。 本实施例中所采用的二维圆形 Gabor滤波器函数如下: Where /(_y,x) represents the gray value of the pixel point (_y, x). W r . indicates that (j., x.) is the center, r. On the circumference of the radius, the weighted curve of the gray value / (_y, x) is integrated, and in the discrete state, the weighted sum of the gray values of the pixel points on the circumference. G r) is a smoothing function, using a normal distribution function, ^ is a weight, varies with s. Definition 8: Two-dimensional circular Gabor filter filtering. The two-dimensional circular Gabor filter function used in this embodiment is as follows:
G (x, y) = cos (ω (χ - χ0 ) )β 设图像为/ C¾j), 则上述滤波器函数对图像进行卷积运算, 即: G (x, y) = cos (ω (χ - χ 0 ) ) β Let the image be / C3⁄4j), then the above filter function convolves the image, namely:
上述过程即对图像 f( ')进行二维圆形 Gabor滤波, 就是得到的二维 Gabor 滤波结果。 如图 1所示, 本发明实施例所述的一种虹膜定位方法, 包括以下步骤: 在采集人 眼中的虹膜后, 对采集到的虹膜图像进行光斑检测, 确定光斑区域, 然后根据确定的 光斑区域判断虹膜图像是否晃动, 当虹膜图像晃动时, 不做任何处理, 步骤结束, 当 虹膜图像为非晃动的虹膜图像时, 对虹膜进行初定位, 也即确定瞳孔的位置, 最后根 据确定的瞳孔位置对虹膜进行定位, 在进行虹膜定位时, 包括眼睫毛和眼睑的检测以 及虹膜边界的定位。 采用该实施例提供的虹膜定位方法, 在进行虹膜定位之前, 首先确定光斑区域, 并判断虹膜图像是否晃动, 在进行虹膜定位时, 仅对非晃动虹膜图像进行虹膜定位, 从而能够避免对晃动虹膜图像进行定位而导致的虹膜定位准确性差, 只针对非晃动虹 膜图像进行虹膜定位的方法提高了虹膜定位的准确性。 优选地, 该实施例所提供的虹膜定位方法可采用如下各优选的步骤实现。 步骤 1、 对虹膜图像的光斑进行检测, 具体包括以下分步骤: 步骤 1.1、通过摄像装置, 对人眼中的虹膜进行图像采集, 采集到的虹膜图像如图 2所示, 利用中值滤波法对得到的虹膜图像进行平滑处理; 步骤 1.2、利用二维圆形 Gabor滤波器(如图 3所示)对平滑处理后的虹膜图像进 行滤波, 滤波结果如图 4所示, 然后选取二值化阈值, 采用二值化的方法确定光斑区 域, 得到的光斑区域的图像如图 5所示; 步骤 2、判断虹膜图像是否晃动: 对步骤 1.2中检测到的光斑区域, 采用最小二乘 椭圆拟合计算光斑区域边界所确定的椭圆, 如果椭圆长短半轴的比值较大, 则虹膜图 像是晃动的, 否则是非晃动的虹膜图像; 需要说明的是, 经过统计, 3000张正常拍摄得到的虹膜图像中, 光斑边缘拟合得 到的椭圆长短半轴比值范围约为 1到 1.30; 晃动虹膜图像中光斑边缘拟合得到的椭圆 长短半轴比值大于 1.80; 因此, 在判断虹膜图像是否晃动时, 可通过设置阈值的方式 进行判断, 该阈值可选为 [1.30, 1.80]区间中的任意值, 优选地, 该阈值选为 1.55, 也 即椭圆长短半轴的比值大于 1.55时, 确定虹膜图像是晃动的。 本方法对其它设备拍摄 的虹膜图像也同样有效, 阈值只要通过相同的实验即可设定。 步骤 3、 对瞳孔进行初定位, 具体包括以下分步骤: 步骤 3.1、 将步骤 2中得到的较清晰的虹膜图像缩小至原来的 0.2倍, 其中, 当步 骤 2判断虹膜图像为晃动的虹膜图像时, 该虹膜图像因晃动而模糊, 当虹膜图像为非 晃动的虹膜图像时, 该虹膜图像是较清晰的, 因而, 在步骤 3.1 中较清晰的虹膜图像 也即非晃动的虹膜图像; 步骤 3.2、 利用中值滤波法对步骤 3.1中缩小的虹膜图像进行平滑处理, 得到的虹 膜图像如图 6所示; 步骤 3.3、对步骤 3.2得到的结果,也即平滑处理后的虹膜图像,用二维圆形 Gabor 滤波器再次进行滤波,取该次滤波结果的最大值进行瞳孔的初定位,确定瞳孔的位置, 优选地, 以滤波结果的最大值所在坐标作为瞳孔的估计中心; 步骤 4、 对虹膜进行定位, 具体包括以下分步骤: 步骤 4.1、 对步骤 3.2中得到的虹膜图像定位, 利用抛物线形加权微积分检测算子 定位上、 下眼睑, 眼睑定位结果如图 7所示; 优选地, 根据步骤 3.3 中确定的瞳孔的估计中心确定抛物线参数, 设估计得到的 瞳孔中心为 (XQ,yQ), 为了快速得到抛物线的位置, 将抛物线的函数形式设为 yQ=a(x- xo)2+b, 减小了参数的搜索范围。 步骤 4.2、 对步骤 3.2中得到的虹膜图像进行归一化, 将虹膜图像归一化的梯度值 与归一化的灰度值相减, 差大于 0.1的为睫毛区域, 小于 0.1的为非睫毛区域, 睫毛区 域定位结果如图 8所示; 步骤 4.3、 去除步骤 3.2中得到的虹膜图像中的眼睫毛和眼睑; 步骤 4.4、利用加权微积分算子对步骤 4. 3)中得到的虹膜图像的内、外边界进行定 位。 步骤 4.4具体包括:对步骤 4.3中得到的图像,利用圆形加权微积分检测算子定位 虹膜内边界,然后利用圆形加权微积分检测算子对步骤 4.3 )得到的虹膜图像的外边界 计算圆形加权微积分检测算子值, 取 N个最大的圆形加权微积分检测算子值所对应的 边界, 分别采用聚类删除噪声点和其它异常点, 再计算排除点后的圆形加权微积分检 测算子值, 最后取 N个值中最大值所对应的边界, 作为虹膜外边界定位的最后结果, 其中, 异常点包括: 光斑、 眼睫毛、 眼睛边界、 上下眼皮等。 优选地, 在外边界定位中, 取全部圆形加权微积分检测算子值中, 最大的 10 个 {G , I. = 1;2 i0。 对每一个 , 进行如下过程: 取 所对应的虹膜边界上非噪声部分像素点集合 ί ^·,^·: 。 令
Figure imgf000012_0001
计算 F\集合中像素点的灰度均值 ¾和灰度方差 σί:
The above process is to perform two-dimensional circular Gabor filtering on the image f( '), which is the obtained two-dimensional Gabor filtering result. As shown in FIG. 1 , an iris positioning method according to an embodiment of the present invention includes the following steps: after collecting an iris in a human eye, performing spot detection on the collected iris image, determining a spot area, and then determining according to the determined The spot area determines whether the iris image is shaken. When the iris image is shaken, no processing is performed. The step ends. When the iris image is a non-sloshing iris image, the iris is initially positioned, that is, the position of the pupil is determined, and finally, according to the determined The pupil position locates the iris and, when performing iris positioning, includes detection of the eyelashes and eyelids and positioning of the iris boundary. According to the iris positioning method provided by the embodiment, before the iris positioning, the spot area is first determined, and the iris image is determined to be shaken. When the iris is positioned, only the non-sloshing iris image is iris-positioned, thereby avoiding shaking the iris. The accuracy of iris positioning caused by image positioning is poor, and the method of iris positioning only for non-sloshing iris images improves the accuracy of iris positioning. Preferably, the iris positioning method provided by this embodiment can be implemented by the following preferred steps. Step 1. Detecting the spot of the iris image, specifically including the following sub-steps: Step 1.1: Perform image acquisition on the iris in the human eye through the camera device, and the acquired iris image is as shown in FIG. 2, using a median filtering method. The obtained iris image is smoothed; Step 1.2: The smoothed iris image is filtered by a two-dimensional circular Gabor filter (as shown in FIG. 3), and the filtering result is shown in FIG. 4, and then the binarization threshold is selected. The binarization method is used to determine the spot area, and the image of the obtained spot area is as shown in FIG. 5; Step 2. Determine whether the iris image is shaken: Calculate the spot area detected in step 1.2 by least squares ellipse fitting calculation The ellipse determined by the boundary of the spot area, if the ratio of the length of the ellipse to the long axis is large, the iris image is swaying, otherwise it is a non-sloshing iris image; it should be noted that, after counting, 3000 images of the iris image obtained by normal shooting are The ratio of the length of the ellipse to the edge of the spot is about 1 to 1.30; the edge of the spot in the iris image is swayed. The ratio of the length of the ellipse to the length of the ellipse is greater than 1.80. Therefore, when judging whether the iris image is shaken, the threshold value can be determined by setting a threshold value, and the threshold value can be any value in the interval [1.30, 1.80], preferably, When the threshold is selected to be 1.55, that is, when the ratio of the ellipse length to the half axis is greater than 1.55, it is determined that the iris image is swaying. This method is also effective for iris images taken by other devices, and the threshold can be set by the same experiment. Step 3: Initially positioning the pupil, specifically including the following sub-steps: Step 3.1, reducing the clear iris image obtained in step 2 to 0.2 times, wherein when step 2 determines that the iris image is a shaking iris image The iris image is blurred due to shaking. When the iris image is a non-sloshing iris image, the iris image is relatively clear, and thus the clear iris image in step 3.1 is a non-sloshing iris image; Step 3.2: Smoothing the reduced iris image in step 3.1 by using the median filtering method, and the obtained iris image is as shown in FIG. 6; Step 3.3, the result obtained in step 3.2, that is, the smoothed iris image is used. The two-dimensional circular Gabor filter is filtered again, and the maximum value of the filtering result is taken to perform initial positioning of the pupil, and the position of the pupil is determined. Preferably, the coordinate of the maximum value of the filtering result is used as the estimation center of the pupil; Step 4 Positioning the iris specifically includes the following sub-steps: Step 4.1: Positioning the iris image obtained in step 3.2, using the parabolic weighted calculus detection operator to position the upper and lower eyelids, and the eyelid positioning result is as shown in FIG. 7; Determine the parabola parameter according to the estimated center of the pupil determined in step 3.3, and set the estimated pupil center to ( XQ , y Q ). To get the position of the parabola quickly, set the function of the parabola to y Q = a(x- Xo) 2 +b, which reduces the search range of the parameters. Step 4.2: Normalize the iris image obtained in step 3.2, and subtract the normalized gradient value of the iris image from the normalized gray value. The difference is greater than 0.1 for the eyelash region, and less than 0.1 for the non-eyelash. The area, the lash area positioning result is shown in Figure 8; Step 4.3, removing the eyelashes and eyelids in the iris image obtained in step 3.2; Step 4.4, using the weighted calculus operator to the iris image obtained in step 4. 3) The inner and outer boundaries are positioned. Step 4.4 specifically includes: using the circular weighted calculus detection operator to locate the inner boundary of the iris for the image obtained in step 4.3, and then using the circular weighted calculus detection operator to calculate the outer boundary of the iris image obtained in step 4.3) The weighted calculus detection operator value is taken as the boundary corresponding to the N largest circular weighted calculus detection operator values, and the noise point and other abnormal points are respectively deleted by clustering, and then the circular weighted micro after the exclusion point is calculated. The integral detection operator value, and finally takes the boundary corresponding to the maximum value of the N values as the final result of the outer boundary position of the iris, wherein the abnormal points include: a spot, an eyelash, an eye boundary, an upper and lower eyelid, and the like. Preferably, in the outer boundary positioning, among the total circular weighted calculus detection operator values, the largest 10 {G, I. = 1 ; 2 i0. For each one, proceed as follows: Take the non-noise partial pixel point set ί ^·, ^·: on the corresponding iris boundary. make
Figure imgf000012_0001
Calculate the grayscale mean 3⁄4 and the grayscale variance σ ί of the pixels in the F\ collection :
Figure imgf000012_0002
Figure imgf000012_0002
这里, i i是指 集合中的元素个数。  Here, i i refers to the number of elements in the set.
(3)令^; = {( ^yy): fix^y^e O -\.5δ, +1.5S]}。  (3) Let ^; = {( ^yy): fix^y^e O -\.5δ, +1.5S]}.
(4)对集合 内的所有元素 e 计算这些点的灰度值与标准灰度值的距 离:  (4) Calculate the distance between the gray value of these points and the standard gray value for all elements in the set e:
d l/(w' - 3^,. 当 d > 1时,表示 /(χφ3^:与样本集不是同一类,将 0^,3 )从1^集合中删除; 当4≤1时, 表示 /(xi;,yijf;)与样本集是同一类, 不做任何变化。 Dl / (w' - 3^,. When d > 1, it means / (χ φ 3^: not the same class as the sample set, 0^, 3) is removed from the 1^ set; when 4≤1, The representation /(x i; , y ijf ;) is the same class as the sample set and does not change anything.
(5)重复步骤 (2)-(4), 直到 不再变化, 边界点的筛选过程结束。 (5) Repeat steps (2)-(4) until the change is no longer performed, and the screening process of the boundary points ends.
(6)将所有在上述过程中删除的边界点, 标记为噪声点。 然后重新计算 10种情况 下, 所有非噪声点的加权微积分算子值 j = 1,2...10。  (6) Mark all the boundary points deleted in the above process as noise points. Then, in 10 cases, the weighted calculus operator values of all non-noise points are calculated as j = 1, 2...10.
10  10
替换页 (细则第 26条) 最后, 取最优值 W = wi x ¾}所对应的虹膜外边界参数 d^ ^i^i;), 作 为虹膜外边界的定位结果。 虹膜的最后定位结果如图 9所示。 所述步骤 1.2具体为, 采用二维圆形 Gabor滤波器对平滑处理后的虹膜图像进行 卷积, 极大值点即为光斑的位置, 取卷积结果的最大值 M_max, 大于 k*M_max的部 分为光斑区域。 所述中值滤波法为 5*5中值滤波法, 该处的 k为无量纲系数, k取值 范围优选为 0.1~1, 更优选地, k=0.6。 本发明实施例还提供了虹膜定位装置, 以下对本发明实施例所提供的虹 膜定位装置进行介绍。 需要说明的是, 在本发明实施例的虹膜定位方法可以 通过本发明实施例所提供的虹膜定位装置来执行, 本发明实施例的虹膜定位 装置也可以用于执行本发明实施例所提供的虹膜定位方法。 Replacement page (Article 26) Finally, the iris outer boundary parameter d^^i^i;) corresponding to the optimal value W = wi x 3⁄4} is taken as the localization result of the outer boundary of the iris. The final positioning result of the iris is shown in Fig. 9. The step 1.2 is specifically: convolving the smoothed iris image by using a two-dimensional circular Gabor filter, where the maximum value is the position of the spot, and the maximum value of the convolution result M_max is greater than k*M_max. Part of it is the spot area. The median filtering method is a 5*5 median filtering method, where k is a dimensionless coefficient, and k is preferably in the range of 0.1 to 1, more preferably k = 0.6. The embodiment of the present invention further provides an iris positioning device. The iris positioning device provided by the embodiment of the present invention is introduced below. It should be noted that the iris positioning method in the embodiment of the present invention can be performed by the iris positioning device provided by the embodiment of the present invention, and the iris positioning device in the embodiment of the present invention can also be used to execute the iris provided by the embodiment of the present invention. Positioning method.
图 10是本发明实施例所述的一种虹膜定位装置的原理框图, 如图 10所 示, 该定位装置包括检测模块、 判断模块、 第一定位模块和第二定位模块。 检测模块用于对虹膜图像的光斑进行检测, 以得到光斑区域; 判断模块用于根据 确定的光斑区域判断虹膜图像是否晃动, 当虹膜图像为非晃动的虹膜图像时, 第一定 位模块用于对瞳孔进行初定位, 确定瞳孔的位置, 第二定位模块用于根据瞳孔位置对 虹膜进行定位, 确定虹膜的边界。 采用该实施例提供的虹膜定位装置, 通过判断模块判断虹膜图像是否晃动, 在第 一定位模块和第二定位模块进行虹膜定位时, 仅对非晃动虹膜图像进行虹膜定位, 从 而能够避免对晃动虹膜图像进行定位而导致的虹膜定位准确性差, 只针对非晃动虹膜 图像进行虹膜定位的方法提高了虹膜定位的准确性。 图 11是本发明实施例的另一种虹膜定位装置的原理框图, 如图 11所示, 该定位 装置包括检测模块、 判断模块、 第一定位模块和第二定位模块, 其中, 检测模块包括 采集子模块、 第一平滑处理子模块、 滤波子模块和二值化子模块, 判断模块包括计算 子模块和判断子模块, 第一定位模块包括缩放子模块、 第二平滑处理子模块和确定子 模块, 第二定位模块包括眼睑定位子模块、 睫毛定位子模块、 删除子模块和边界定位 子模块。 采集子模块用于通过摄像装置, 对人眼中的虹膜进行图像采集, 得到虹膜图像; 第一平滑处理子模块用于利用中值滤波法对采集到的虹膜图像进行平滑处理; 滤波子 模块用于利用二维圆形 Gabor滤波器对平滑处理后的虹膜图像进行滤波; 二值化子模 块用于选取二值化阈值, 采用二值化的方法确定光斑区域。 计算子模块用于对检测模块检测到的光斑区域, 采用最小二乘法拟合计算光斑区 域边界所确定的椭圆; 判断子模块用于通过判断椭圆长短半轴的比值是否大于预设值 来确定虹膜图像是否为晃动的虹膜图像, 其中, 如果椭圆长短半轴的比值较大, 大于 预设值时, 则虹膜图像是晃动的, 否则是较清晰的、 也即非晃动的虹膜图像, 该处的 预设值优选为 1.55。 缩放子模块用于将较清晰的虹膜图像缩小至原来的 0. 2倍; 第二平滑处理子模块 用于利用中值滤波法对缩小后的虹膜图像进行平滑处理; 确定子模块用于使用二维圆 形 Gabor滤波器对第二平滑处理子模块处理后的图像进行滤波, 并根据滤波结果进行 瞳孔的初定位, 确定瞳孔的位置, 具体地, 取所滤波结果的最大值所在坐标作为瞳孔 的估计中心。 眼睑定位子模块用于利用抛物线对第二平滑处理子模块得到的虹膜图像定位上、 下眼睑; 睫毛定位子模块用于对第二平滑处理子模块得到的虹膜图像进行归一化, 将 虹膜图像归一化的梯度值与归一化的灰度值相减, 并将相减的结果与 0. 1相比较, 大 于 0. 1的为睫毛区域, 小于 0. 1的为非睫毛区域; 删除子模块用于去除第二平滑处理 子模块得到的虹膜图像中的眼睫毛和眼睑; 边界定位子模块用于利用加权微积分算子 对删除子模块得到的虹膜图像的内、 外边界进行定位。 优选地, 边界定位子模块包括内边界定位单元和外边界定位单元。 其中, 内边界 定位单元对删除子模块得到的图像, 利用圆形加权微积分检测算子定位虹膜内边界。 外边界定位单元利用圆形加权微积分检测算子对删除子模块得到的虹膜图像的外边界 计算圆形加权微积分检测算子值, 取 N个最大的圆形加权微积分检测算子值所对应的 边界, 分别采用聚类删除噪声点和其它异常点, 再计算排除点后的圆形加权微积分检 测算子值, 最后取 N个值中最大值所对应的边界, 作为虹膜外边界定位的最后结果。 该处的 N值可根据定位装置的计算能力以及计算精度的需要进行取值, 优选地, N取 10, 并且采用方法实施例中所述的外边界定位方法, 此处不再赘述。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 FIG. 10 is a schematic block diagram of an iris positioning device according to an embodiment of the present invention. As shown in FIG. 10, the positioning device includes a detecting module, a determining module, a first positioning module, and a second positioning module. The detecting module is configured to detect a spot of the iris image to obtain a spot area; the determining module is configured to determine whether the iris image is shaken according to the determined spot area, and when the iris image is a non-sloshing iris image, the first positioning module is used to The pupil is initially positioned to determine the position of the pupil, and the second positioning module is used to position the iris according to the position of the pupil to determine the boundary of the iris. With the iris positioning device provided by the embodiment, the determination module determines whether the iris image is shaken, and when the first positioning module and the second positioning module perform iris positioning, only the non-sloating iris image is iris-positioned, thereby avoiding shaking the iris The accuracy of iris positioning caused by image positioning is poor, and the method of iris positioning only for non-sloshing iris images improves the accuracy of iris positioning. 11 is a schematic block diagram of another iris positioning device according to an embodiment of the present invention. As shown in FIG. 11, the positioning device includes a detecting module, a determining module, a first positioning module, and a second positioning module, where the detecting module includes collecting a submodule, a first smoothing submodule, a filtering submodule, and a binarization submodule, the judging module includes a computing submodule and a judging submodule, and the first positioning module includes a scaling submodule, a second smoothing processing submodule, and a determining submodule The second positioning module includes an eyelid positioning sub-module, an eyelash positioning sub-module, a deletion sub-module, and a boundary positioning sub-module. The collecting sub-module is used for image capturing of the iris in the human eye by the camera device to obtain an iris image; the first smoothing processing sub-module is used for smoothing the collected iris image by using a median filtering method; the filtering sub-module is used for The smoothed iris image is filtered by a two-dimensional circular Gabor filter; the binarization sub-module is used to select the binarization threshold, and the binarization method is used to determine the spot area. The calculation sub-module is used for the spot area detected by the detection module, and the least-squares method is used to fit and calculate the ellipse determined by the boundary of the spot area; the judgment sub-module is used to determine the iris by determining whether the ratio of the ellipse length and the half-axis is greater than a preset value. Whether the image is a shaking iris image, wherein if the ratio of the length of the ellipse to the long axis is larger than the preset value, the iris image is swaying, otherwise it is a clearer, ie, non-sloshing iris image, where The preset value is preferably 1.55. The scaling sub-module is used to reduce the clearer iris image to the original 0.2 times; the second smoothing processing sub-module is used to smooth the reduced iris image by the median filtering method; The dimension circular Gabor filter filters the image processed by the second smoothing processing sub-module, and performs initial positioning of the pupil according to the filtering result, and determines the position of the pupil. Specifically, the coordinate of the maximum value of the filtered result is taken as the pupil. Estimate the center. The eyelid positioning sub-module is configured to locate the upper and lower eyelids by using the parabola to obtain the iris image obtained by the second smoothing processing sub-module; the eyelash positioning sub-module is used for normalizing the iris image obtained by the second smoothing processing sub-module, and the iris image is The normalized gradient value is subtracted from the normalized gradation value, and the result of the subtraction is compared with 0.1, the lash area is greater than 0.1, and the non-lash area is less than 0.1. The sub-module is configured to remove the eyelashes and the eyelids in the iris image obtained by the second smoothing processing sub-module; the boundary positioning sub-module is configured to locate the inner and outer boundaries of the iris image obtained by the deleting sub-module by using the weighted calculus operator. Preferably, the boundary positioning sub-module comprises an inner boundary positioning unit and an outer boundary positioning unit. The inner boundary locating unit locates the inner boundary of the iris by using the circular weighted calculus detection operator to delete the image obtained by the submodule. The outer boundary locating unit uses the circular weighted calculus detection operator to calculate the circular weighted calculus detection operator value for the outer boundary of the iris image obtained by the deletion submodule, and takes the N largest circular weighted calculus detection operator values. Corresponding boundaries are used to delete the noise points and other abnormal points respectively, and then calculate the circular weighted calculus detection operator value after the exclusion point, and finally take the boundary corresponding to the maximum value of the N values as the outer boundary of the iris. The final result. The value of the N value can be set according to the calculation capability of the positioning device and the calculation accuracy. Preferably, N is 10, and the outer boundary positioning method described in the method embodiment is used, and details are not described herein again. It should be noted that the steps shown in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions, and, although the logical order is shown in the flowchart, in some cases, The steps shown or described may be performed in an order different than that herein. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into respective integrated circuit modules. Blocks, or a plurality of modules or steps in them, are implemented as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 、 一种虹膜定位方法, 其特征在于, 包括以下步骤: The claim request method and an iris positioning method are characterized in that the method comprises the following steps:
步骤 1 : 对虹膜图像的光斑进行检测;  Step 1: detecting the spot of the iris image;
步骤 2: 判断虹膜图像是否晃动;  Step 2: Determine whether the iris image is shaken;
步骤 3 : 对瞳孔进行初定位; 以及  Step 3: Initial positioning of the pupil;
步骤 4: 对虹膜进行定位。 、 根据权利要求 1所述的虹膜定位方法, 其特征在于, 所述步骤 1进一步包括: 步骤 1. 1): 通过摄像装置, 对人眼中的虹膜进行图像采集, 利用中值滤波 法对得到的虹膜图像进行平滑处理;  Step 4: Position the iris. The iris positioning method according to claim 1, wherein the step 1 further comprises: Step 1. 1): performing image acquisition on the iris in the human eye through the imaging device, and using the median filtering method to obtain the image The iris image is smoothed;
步骤 1. 2):利用二维圆形 Gabor滤波器对平滑处理后的虹膜图像进行滤波, 然后选取二值化阈值, 采用二值化的方法确定光斑区域。 、 根据权利要求 2所述的虹膜定位方法, 其特征在于, 在所述步骤 2中, 对步骤 1. 2)中检测到的光斑区域, 采用最小二乘法计算光斑区域边界所确定的椭圆, 如果椭圆长短半轴的比值较大, 则虹膜图像是晃动的, 否则是较清晰的虹膜图 像。 、 根据权利要求 3所述的虹膜定位方法, 其特征在于, 所述步骤 3进一步包括: 步骤 3. 1): 将步骤 2中得到的较清晰的虹膜图像缩小至原来的 0. 2倍; 步骤 3. 2): 利用中值滤波法对步骤 3. 1)中缩小的虹膜图像进行平滑处理; 步骤 3. 3): 使用二维圆形 Gabor滤波器取步骤 3. 2)中滤波结果的最大值进 行瞳孔的初定位, 确定瞳孔的位置。 、 根据权利要求 4所述的虹膜定位方法, 其特征在于, 所述步骤 4进一步包括: 步骤 4. 1): 利用抛物线对步骤 3. 2)中得到的虹膜图像定位上、 下眼睑; 步骤 4. 2): 对步骤 3. 2)中得到的虹膜图像进行归一化, 将虹膜图像归一化 的梯度值与归一化的灰度值相减, 并将相减的结果与 0. 1相比较, 大于 0. 1的 为睫毛区域, 小于 0. 1的为非睫毛区域;  Steps 1. 2): The smoothed iris image is filtered by a two-dimensional circular Gabor filter, and then the binarization threshold is selected, and the spot area is determined by binarization. The iris positioning method according to claim 2, wherein in the step 2, the ellipse determined by the boundary of the spot area is calculated by a least square method for the spot area detected in the step 1.2), If the ratio of the length of the ellipse to the long axis is large, the iris image is swaying, otherwise it is a clearer iris image. 2倍; Steps: Step 2: The step of the clear iris image obtained in step 2 is reduced to the original 0.2 times; 3. 2): Use the median filtering method to smooth the reduced iris image in step 3. 1); Step 3. 3): Use the two-dimensional circular Gabor filter to take the step 3. 2. The maximum filtering result The value is the initial position of the pupil to determine the position of the pupil. The iris positioning method according to claim 4, wherein the step 4 further comprises: step 4. 1): positioning the upper and lower eyelids by using the parabola to obtain the iris image obtained in the step 3.2. 2): Normalize the iris image obtained in step 3. 2), subtract the normalized gradient value of the iris image from the normalized gray value, and subtract the result with 0.1约为非睫毛的范围内。 Compared with the eyelash area, less than 0.1 is a non-lash area;
步骤 4. 3 ): 去除步骤 3. 2)中得到的虹膜图像中的眼睫毛和眼睑; 步骤 4. 4): 利用加权微积分算子对步骤 4. 3)中得到的虹膜图像的内、 外边 界进行定位, 准确识别内、 外边界不是圆形的虹膜图像。 、 根据权利要求 3所述的虹膜定位方法, 其特征在于, 如果椭圆长短半轴的比值 大于 1.55, 则虹膜图像是晃动的。 、 根据权利要求 6所述的虹膜定位方法, 其特征在于, 所述步骤 3进一步包括: 步骤 3.1 ): 将步骤 2中得到的较清晰的虹膜图像缩小至原来的 0.2倍; 步骤 3.2): 利用中值滤波法对步骤 3.1 ) 中缩小的虹膜图像进行平滑处理; 步骤 3.3 ): 对步骤 3.2得到结果, 用二维圆形 Gabor滤波器滤波, 取滤波 结果最大值所在坐标作为瞳孔的估计中心。 、 根据权利要求 7所述的虹膜定位方法, 其特征在于, 所述步骤 4进一步包括: 步骤 4.1 ):利用抛物线形加权微积分检测算子对步骤 3.2)中得到的虹膜图 像定位上、 下眼睑; Step 4. 3): removing the eyelashes and eyelids in the iris image obtained in step 3. 2); Step 4. 4): Use the weighted calculus operator to locate the inner and outer boundaries of the iris image obtained in step 4. 3), and accurately identify the iris image whose inner and outer boundaries are not circular. The iris positioning method according to claim 3, wherein if the ratio of the elliptical length to the minor axis is greater than 1.55, the iris image is shaken. The iris positioning method according to claim 6, wherein the step 3 further comprises: step 3.1): reducing the clear iris image obtained in step 2 to 0.2 times; step 3.2): utilizing The median filtering method smoothes the reduced iris image in step 3.1); Step 3.3): The result obtained in step 3.2 is filtered by a two-dimensional circular Gabor filter, and the coordinate of the maximum value of the filtering result is taken as the estimated center of the pupil. The iris positioning method according to claim 7, wherein the step 4 further comprises: step 4.1): locating the upper and lower eyelids of the iris image obtained in step 3.2) by using a parabolic weighted calculus detection operator. ;
步骤 4.2): 对步骤 3.2)中得到的虹膜图像进行归一化, 将虹膜图像归一化 的梯度值与归一化的灰度值相减,差大于 0.1的为睫毛区域,小于 0.1的为非睫 毛区域;  Step 4.2): Normalize the iris image obtained in step 3.2), and subtract the normalized gradient value of the iris image from the normalized gray value. The difference is greater than 0.1 for the eyelash region, and less than 0.1 is Non-lash area;
步骤 4.3 ): 去除步骤 3.2) 中得到的虹膜图像中的眼睫毛和眼睑; 步骤 4.4): 对步骤 4.3 )中得到的图像, 利用圆形加权微积分检测算子定位 虹膜内边界;  Step 4.3): Remove the eyelashes and eyelids in the iris image obtained in step 3.2); Step 4.4): For the image obtained in step 4.3), use the circular weighted calculus detection operator to locate the inner boundary of the iris;
步骤 4.5 ):利用圆形加权微积分检测算子对步骤 4.3 )得到的虹膜图像的外 边界计算圆形加权微积分检测算子值,取 10个最大的圆形加权微积分检测算子 值所对应的边界, 分别采用聚类删除噪声点和其它异常点, 再计算排除点后的 圆形加权微积分检测算子值,最后取 10个值中最大值所对应的边界,作为虹膜 外边界定位的最后结果。 、 根据权利要求 2-8任一项所述的虹膜定位方法, 其特征在于: 所述步骤 1. 2)中, 采用二维圆形 Gabor滤波器对平滑处理后的虹膜图像进行卷积, 极大值点即为 光斑的位置, 取卷积结果的最大值为 M_max, 大于 k*M_max的部分认为是光 斑区域。 、 根据权利要求 9所述的虹膜定位方法, 其特征在于: k为 0.6。 、 一种虹膜定位装置, 其特征在于, 包括: Step 4.5): Calculate the circular weighted calculus detection operator value by using the circular weighted calculus detection operator on the outer boundary of the iris image obtained in step 4.3), and take the 10 largest circular weighted calculus detection operator values. Corresponding boundaries are used to delete the noise points and other abnormal points respectively, and then calculate the circular weighted calculus detection operator value after the exclusion point, and finally take the boundary corresponding to the maximum value of the 10 values as the outer boundary of the iris. The final result. The iris positioning method according to any one of claims 2-8, wherein: in the step 1. 2), the smoothed iris image is convoluted by a two-dimensional circular Gabor filter, The large value point is the position of the spot, and the maximum value of the convolution result is M_max, and the part larger than k*M_max is considered to be the spot area. The iris positioning method according to claim 9, wherein k is 0.6. An iris positioning device, comprising:
检测模块, 用于对虹膜图像的光斑进行检测;  a detecting module, configured to detect a spot of the iris image;
判断模块, 用于判断虹膜图像是否晃动;  a judging module, configured to determine whether the iris image is shaken;
第一定位模块, 用于对瞳孔进行初定位; 以及  a first positioning module for initial positioning of the pupil;
第二定位模块, 用于对虹膜进行定位。 、 根据权利要求 11所述的虹膜定位装置, 其特征在于, 所述检测模块包括: 采集子模块, 用于通过摄像装置, 对人眼中的虹膜进行图像采集; 第一平滑处理子模块, 用于利用中值滤波法对采集到的虹膜图像进行平滑 处理;  The second positioning module is configured to position the iris. The iris positioning device according to claim 11, wherein the detecting module comprises: a collecting sub-module, configured to perform image capturing on an iris in a human eye by an imaging device; and a first smoothing processing sub-module, The collected iris image is smoothed by a median filtering method;
滤波子模块, 用于利用二维圆形 Gabor滤波器对平滑处理后的虹膜图像进 行滤波; 以及  a filtering submodule for filtering the smoothed iris image using a two-dimensional circular Gabor filter;
二值化子模块, 用于选取二值化阈值, 采用二值化的方法确定光斑区域。 、 根据权利要求 12所述的虹膜定位装置, 其特征在于, 所述判断模块包括: 计算子模块, 用于对所述检测模块检测到的光斑区域, 采用最小二乘法计 算光斑区域边界所确定的椭圆; 以及  The binarization sub-module is used to select the binarization threshold, and the binarization method is used to determine the spot area. The iris positioning device according to claim 12, wherein the determining module comprises: a calculating sub-module configured to calculate a spot area detected by the detecting module by using a least squares method to calculate a spot area boundary Ellipse;
判断子模块, 用于判断所述椭圆长短半轴的比值, 其中, 如果椭圆长短半 轴的比值大于 1.55, 则虹膜图像是晃动的, 否则是较清晰的虹膜图像。 、 根据权利要求 13所述的虹膜定位装置, 其特征在于, 所述第一定位模块包括: 缩放子模块, 用于将所述较清晰的虹膜图像缩小至原来的 0. 2倍; 第二平滑处理子模块, 用于利用中值滤波法对缩小后的虹膜图像进行平滑 处理; 以及  The judging sub-module is configured to determine a ratio of the ellipse length and the minor axis, wherein if the ratio of the ellipse length to the semi-axis is greater than 1.55, the iris image is swaying, otherwise it is a clear iris image. The second positioning module is configured to reduce the sharper iris image to the original 0.2 times; the second smoothing a processing sub-module for smoothing the reduced iris image by a median filtering method;
确定子模块, 用于采用二维圆形 Gabor滤波器对平滑处理后的图像进行滤 波, 取所滤波结果的最大值所在坐标作为瞳孔的估计中心。 、 根据权利要求 14所述的虹膜定位装置, 其特征在于, 所述第二定位模块包括: 眼睑定位子模块, 用于利用抛物线对所述第二平滑处理子模块得到的虹膜 图像定位上、 下眼睑; 睫毛定位子模块, 用于对所述第二平滑处理子模块得到的虹膜图像进行归 一化, 将虹膜图像归一化的梯度值与归一化的灰度值相减, 差大于 0. 1的为睫 毛区域, 小于 0. 1的为非睫毛区域; The determining sub-module is configured to filter the smoothed image by using a two-dimensional circular Gabor filter, and take the coordinate of the maximum value of the filtered result as the estimated center of the pupil. The iris positioning device according to claim 14, wherein the second positioning module comprises: an eyelid positioning sub-module for positioning the iris image obtained by the second smoothing processing sub-module with a parabola Eyelid The eyelash locating sub-module, wherein the iris image obtained by the second smoothing sub-module is normalized, and the normalized gradient value of the iris image is subtracted from the normalized gray value, and the difference is greater than 0.1. The area of the eyelashes, less than 0.1 is a non-lash area;
删除子模块, 用于去除所述第二平滑处理子模块得到的虹膜图像中的眼睫 毛和眼睑; 以及  Deleting a sub-module for removing eyelashes and eyelids in the iris image obtained by the second smoothing sub-module;
边界定位子模块, 用于利用加权微积分算子对所述删除子模块得到的虹膜 图像的内、 外边界进行定位。  The boundary locating sub-module is configured to locate the inner and outer boundaries of the iris image obtained by the deleting sub-module by using a weighted calculus operator.
PCT/CN2012/086665 2011-12-16 2012-12-14 Locating method and locating device for iris WO2013087026A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2011104222341A CN102521576A (en) 2011-12-16 2011-12-16 Iris location method
CN201110422234.1 2011-12-16
CN2012104106684A CN102902970A (en) 2011-12-16 2012-10-24 Iris location method
CN201210410668.4 2012-10-25

Publications (1)

Publication Number Publication Date
WO2013087026A1 true WO2013087026A1 (en) 2013-06-20

Family

ID=46292487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086665 WO2013087026A1 (en) 2011-12-16 2012-12-14 Locating method and locating device for iris

Country Status (2)

Country Link
CN (2) CN102521576A (en)
WO (1) WO2013087026A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537342A (en) * 2014-12-24 2015-04-22 福州大学 Quick lane line detection method combined with ridge boundary detection and Hough transformation
CN109657531A (en) * 2018-09-18 2019-04-19 深圳先牛信息技术有限公司 A kind of human face in-vivo detection method and detection device based on hot spot on eyeball
CN110619272A (en) * 2019-08-14 2019-12-27 中山市奥珀金属制品有限公司 Iris image segmentation method
CN111724381A (en) * 2020-06-24 2020-09-29 武汉互创联合科技有限公司 Microscopic image cell counting and posture identification method based on multi-view cross validation
CN112101199A (en) * 2020-09-15 2020-12-18 西安艾瑞生物识别科技有限公司 Long-distance iris recognition method based on deep learning
CN113255657A (en) * 2020-12-31 2021-08-13 深圳怡化电脑股份有限公司 Method and device for detecting scratch on surface of bill, electronic equipment and machine-readable medium
CN113762077A (en) * 2021-07-19 2021-12-07 沈阳工业大学 Multi-biological-characteristic iris template protection method based on double-hierarchical mapping
CN114582008A (en) * 2022-03-03 2022-06-03 北方工业大学 Living iris detection method based on two wave bands
CN115840231A (en) * 2023-02-20 2023-03-24 深圳市欢创科技有限公司 Distance measuring method and laser radar

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521576A (en) * 2011-12-16 2012-06-27 北京天诚盛业科技有限公司 Iris location method
CN103198484B (en) * 2013-04-07 2015-11-18 山东师范大学 Based on the iris segmentation algorithm of Nonlinear Scale Space Theory
CN104850823B (en) * 2015-03-26 2017-12-22 浪潮软件集团有限公司 Quality evaluation method and device for iris image
CN105141938B (en) * 2015-08-18 2017-12-01 深圳先进技术研究院 Sight positioner
IL283014B (en) * 2015-08-21 2022-07-01 Magic Leap Inc Eyelid shape estimation
CN106326825B (en) * 2015-08-26 2019-08-06 北京巴塔科技有限公司 Iris edge localization method and iris authentication system
CN105631407B (en) * 2015-12-18 2018-12-11 电子科技大学 Woods musk deer iris locating method
CN107871322B (en) * 2016-09-27 2020-08-28 北京眼神科技有限公司 Iris image segmentation method and device
CN110647787A (en) * 2018-06-27 2020-01-03 厦门本能管家科技有限公司 Private key generation and decryption method and system based on iris recognition
CN110084789B (en) * 2019-04-15 2021-11-09 广西释码智能信息技术有限公司 Quality evaluation method of iris image and computing equipment
CN112580413A (en) * 2019-09-30 2021-03-30 Oppo广东移动通信有限公司 Human eye region positioning method and related device
CN111144413A (en) * 2019-12-30 2020-05-12 福建天晴数码有限公司 Iris positioning method and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426760A (en) * 2001-12-18 2003-07-02 中国科学院自动化研究所 Identity discriminating method based on living body iris
CN1543908A (en) * 2003-11-18 2004-11-10 清华大学 Iris image collecting method
CN1836454A (en) * 2003-07-10 2006-09-20 奥奎蒂有限公司 Autostereoscopic display apparatus
CN101893858A (en) * 2010-07-15 2010-11-24 华中科技大学 Method for controlling distance between eyes of user and screen of electronic equipment
CN102521576A (en) * 2011-12-16 2012-06-27 北京天诚盛业科技有限公司 Iris location method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756301B2 (en) * 2005-01-26 2010-07-13 Honeywell International Inc. Iris recognition system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426760A (en) * 2001-12-18 2003-07-02 中国科学院自动化研究所 Identity discriminating method based on living body iris
CN1836454A (en) * 2003-07-10 2006-09-20 奥奎蒂有限公司 Autostereoscopic display apparatus
CN1543908A (en) * 2003-11-18 2004-11-10 清华大学 Iris image collecting method
CN101893858A (en) * 2010-07-15 2010-11-24 华中科技大学 Method for controlling distance between eyes of user and screen of electronic equipment
CN102521576A (en) * 2011-12-16 2012-06-27 北京天诚盛业科技有限公司 Iris location method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537342A (en) * 2014-12-24 2015-04-22 福州大学 Quick lane line detection method combined with ridge boundary detection and Hough transformation
CN104537342B (en) * 2014-12-24 2017-08-11 福州大学 A kind of express lane line detecting method of combination ridge border detection and Hough transformation
CN109657531A (en) * 2018-09-18 2019-04-19 深圳先牛信息技术有限公司 A kind of human face in-vivo detection method and detection device based on hot spot on eyeball
CN110619272A (en) * 2019-08-14 2019-12-27 中山市奥珀金属制品有限公司 Iris image segmentation method
CN111724381B (en) * 2020-06-24 2022-11-01 武汉互创联合科技有限公司 Microscopic image cell counting and posture identification method based on multi-view cross validation
CN111724381A (en) * 2020-06-24 2020-09-29 武汉互创联合科技有限公司 Microscopic image cell counting and posture identification method based on multi-view cross validation
CN112101199A (en) * 2020-09-15 2020-12-18 西安艾瑞生物识别科技有限公司 Long-distance iris recognition method based on deep learning
CN113255657A (en) * 2020-12-31 2021-08-13 深圳怡化电脑股份有限公司 Method and device for detecting scratch on surface of bill, electronic equipment and machine-readable medium
CN113255657B (en) * 2020-12-31 2024-04-05 深圳怡化电脑股份有限公司 Method and device for detecting scratch on bill surface, electronic equipment and machine-readable medium
CN113762077A (en) * 2021-07-19 2021-12-07 沈阳工业大学 Multi-biological-characteristic iris template protection method based on double-hierarchical mapping
CN113762077B (en) * 2021-07-19 2024-02-02 沈阳工业大学 Multi-biological feature iris template protection method based on double-grading mapping
CN114582008A (en) * 2022-03-03 2022-06-03 北方工业大学 Living iris detection method based on two wave bands
CN115840231A (en) * 2023-02-20 2023-03-24 深圳市欢创科技有限公司 Distance measuring method and laser radar

Also Published As

Publication number Publication date
CN102902970A (en) 2013-01-30
CN102521576A (en) 2012-06-27

Similar Documents

Publication Publication Date Title
WO2013087026A1 (en) Locating method and locating device for iris
JP6599421B2 (en) Feature extraction and matching and template update for biometric authentication
Ali et al. Recognition of human iris patterns for biometric identification
JP5107045B2 (en) Method for identifying a pixel representing an iris in an image acquired for the eye
Rankin et al. Iris recognition failure over time: The effects of texture
JP2009523265A (en) Method for extracting iris features in an image
CN102844766A (en) Human eyes images based multi-feature fusion identification method
JP2007188504A (en) Method for filtering pixel intensity in image
Huang et al. A novel iris segmentation using radial-suppression edge detection
Hilal et al. Hough transform and active contour for enhanced iris segmentation
Zhou et al. Multimodal eye recognition
Liu et al. Iris segmentation: state of the art and innovative methods
Hajari et al. A review of issues and challenges in designing Iris recognition Systems for noisy imaging environment
Trabelsi et al. A new multimodal biometric system based on finger vein and hand vein recognition
Srivastava Personal identification using iris recognition system, A Review
Gupta et al. Iris recognition system using biometric template matching technology
Alvarez-Betancourt et al. A fast iris location based on aggregating gradient approximation using QMA-OWA operator
TW201447625A (en) Palm vein recognition method using adaptive Gabor filter
Francese et al. Are IoBT services accessible to everyone?
Annapoorani et al. Accurate and fast iris segmentation
Swati et al. Iris recognition using Gabor
Ibrahim Iris recognition using Haar wavelet transform
Mohammed et al. Conceptual analysis of Iris Recognition Systems
Radman et al. Iris segmentation: A review and research issues
Mahameed et al. Iris recognition method based on segmentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856929

Country of ref document: EP

Kind code of ref document: A1