WO2013078586A1 - Standing wave detection method and device - Google Patents

Standing wave detection method and device Download PDF

Info

Publication number
WO2013078586A1
WO2013078586A1 PCT/CN2011/083033 CN2011083033W WO2013078586A1 WO 2013078586 A1 WO2013078586 A1 WO 2013078586A1 CN 2011083033 W CN2011083033 W CN 2011083033W WO 2013078586 A1 WO2013078586 A1 WO 2013078586A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power spectrum
standing wave
self
transmitting
Prior art date
Application number
PCT/CN2011/083033
Other languages
French (fr)
Chinese (zh)
Inventor
黄伟
叶四清
周键
王文祺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/083033 priority Critical patent/WO2013078586A1/en
Priority to CN201180002718.9A priority patent/CN102511139B/en
Publication of WO2013078586A1 publication Critical patent/WO2013078586A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/103Reflected power, e.g. return loss

Abstract

The present invention relates to the field of data detection. Provided in an embodiment of the present invention are a standing wave detection method and device, comprising: generating a linear frequency modulation signal; transmitting a transmission signal via a transmitting channel, the transmission signal being the linear frequency modulation signal in an offline test, or being a superimposed signal of a service signal and the linear frequency modulation signal in an online test; receiving a reflected signal generated by the transmission signal during the transmission process; preprocessing the reflected signal; conjugating and multiplying the linear frequency modulation signal and the preprocessed reflected signal to obtain an auto beat signal; performing power spectrum estimation for the auto beat signal, and determining the amplitude and the frequency of the power spectrum peak, the amplitude of the power spectrum peak corresponding to the strength of the standing wave, and the frequency of the power spectrum peak corresponding to the position of the standing wave. The present invention uses the linear frequency modulation signal as an injected signal to detect the standing wave, and converts the delay difference between the transmission signal and the reflected signal into a frequency difference through conjugation and multiplication, thus finally detecting the strength and position of the standing wave.

Description

一种驻波检测方法和装置 技术领域  Standing wave detection method and device
本发明涉及数据检测领域, 特别涉及一种驻波检测方法和装置。 背景技术  The present invention relates to the field of data detection, and in particular, to a standing wave detection method and apparatus. Background technique
在发射机中, 驻波检测可以测量说驻波强度, 发现馈线中的驻波反射点, 并测量其位置, 对故障定位与监测发射机工作状态有重要意义。  In the transmitter, the standing wave detection can measure the standing wave strength, find the standing wave reflection point in the feeder, and measure its position, which is important for fault location and monitoring the working state of the transmitter.
传统的驻波检测方法, 是将发射信号经过下行通道处理后, 通过天线发送出去, 由于 系统故障等原因, 在发射信号发送过程中会产生反射信号, 分别统计发射信号的功率和反 书  The traditional standing wave detection method is to transmit the transmitted signal through the downlink channel and then send it out through the antenna. Due to system failure, etc., a reflected signal is generated during the transmission of the transmitted signal, and the power of the transmitted signal and the reverse book are separately counted.
射信号的功率, 并根据发射信号的功率与反射信号的功率比值计算得到系统的驻波强度。 The power of the signal is measured, and the standing wave strength of the system is calculated according to the ratio of the power of the transmitted signal to the power of the reflected signal.
在实现本发明的过程中, 发明人发现现有技术只能检测系统中驻波的强度, 不能检测 驻波位置, 不利于故障定位和发射机工作状态监测。 发明内容  In the process of implementing the present invention, the inventors have found that the prior art can only detect the intensity of the standing wave in the system, and cannot detect the standing wave position, which is disadvantageous for fault location and transmitter working state monitoring. Summary of the invention
为了检测驻波的强度和位置, 本发明实施例提供了一种驻波检测方法和装置。 所述技 术方案如下:  In order to detect the strength and position of the standing wave, the embodiment of the invention provides a standing wave detecting method and device. The technical solution is as follows:
一种驻波检测方法, 所述方法包括:  A standing wave detecting method, the method comprising:
生成线性调频信号;  Generating a chirp signal;
将发射信号经过发射通道发送出去, 当离线测试时所述发射信号是所述线性调频信号, 当在线测试时所述发射信号是业务信号和所述线性调频信号叠加后的信号;  Transmitting the transmitted signal through the transmitting channel, and when the offline test is performed, the transmitting signal is the chirp signal, and when the line is tested, the transmitting signal is a signal after the service signal and the chirp signal are superimposed;
接收所述发射信号在发送过程中产生的反射信号;  Receiving a reflected signal generated by the transmitting signal during transmission;
对所述反射信号进行预处理;  Pre-processing the reflected signal;
将所述线性调频信号和预处理后的反射信号共轭相乘, 得到自差拍信号;  Multiplying the chirp signal and the pre-processed reflected signal by a conjugate to obtain a self-timer signal;
对所述自差拍信号进行功率谱估计, 确定功率谱峰值的幅度和频率, 功率谱峰值的幅 度对应驻波的强度, 功率谱峰值的频率对应驻波的位置。  The power spectrum estimation is performed on the self-timer signal to determine the amplitude and frequency of the power spectrum peak. The amplitude of the power spectrum peak corresponds to the intensity of the standing wave, and the frequency of the power spectrum peak corresponds to the position of the standing wave.
一种驻波检测装置, 所述装置包括:  A standing wave detecting device, the device comprising:
信号产生模块, 用于生成线性调频信号;  a signal generating module, configured to generate a chirp signal;
发送模块, 用于将发射信号经过发射通道发送出去, 当离线测试时所述发射信号是所 述线性调频信号, 当在线测试时所述发射信号是业务信号和所述线性调频信号叠加后的信 号; a sending module, configured to send the transmitted signal through the transmitting channel, and when the offline test is performed, the transmitting signal is The chirp signal, when the online test is the signal after the service signal and the chirp signal are superimposed;
接收模块, 用于接收所述发射信号在发送过程中产生的反射信号;  a receiving module, configured to receive a reflected signal generated by the transmitting signal during transmission;
预处理模块, 用于对所述反射信号进行预处理;  a preprocessing module, configured to preprocess the reflected signal;
计算模块, 用于将所述线性调频信号和预处理后的反射信号共轭相乘, 得到自差拍信 号;  a calculation module, configured to multiply the chirp signal and the pre-processed reflected signal to obtain a self-beat signal;
以及功率谱估计模块, 用于对所述自差拍信号进行功率谱估计, 确定功率谱峰值的幅 度和频率, 功率谱峰值的幅度对应驻波的强度, 功率谱峰值的频率对应驻波的位置。  And a power spectrum estimation module, configured to perform power spectrum estimation on the self-beat signal, determine an amplitude and a frequency of a peak of the power spectrum, and the amplitude of the peak of the power spectrum corresponds to the intensity of the standing wave, and the frequency of the peak of the power spectrum corresponds to the position of the standing wave .
本发明实施例提供的技术方案的有益效果是:  The beneficial effects of the technical solutions provided by the embodiments of the present invention are:
通过将线性调频信号作为注入信号进行驻波检测, 并将发射信号与反射信号的时延差 通过共轭相乘转换为频率差, 再通过功率谱估计确定峰值的幅度和频率, 幅度对应驻波的 强度, 频率对应驻波的位置, 从而最终检测出驻波的强度和位置。 附图说明  The standing wave detection is performed by using the chirp signal as an injection signal, and the delay difference between the transmitted signal and the reflected signal is converted into a frequency difference by conjugate multiplication, and then the amplitude and frequency of the peak are determined by power spectrum estimation, and the amplitude corresponds to the standing wave. The intensity, the frequency corresponds to the position of the standing wave, and finally the intensity and position of the standing wave are detected. DRAWINGS
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本 领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的 附图。  In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described. It is obvious that the drawings in the following description are only some embodiments of the present invention. Other drawings may also be obtained from those of ordinary skill in the art in view of the drawings.
图 1是本发明的一个实施例提供的驻波检测方法流程图;  1 is a flowchart of a standing wave detecting method according to an embodiment of the present invention;
图 2是本发明的一个实施例提供的线性调频信号和同步控制信号的参考示意图; 图 3是本发明的一个实施例提供的自差拍信号的分段结果参考示意图;  2 is a schematic diagram of a reference of a chirped signal and a synchronous control signal according to an embodiment of the present invention; FIG. 3 is a schematic diagram of a segmentation result of a self-timer signal according to an embodiment of the present invention;
图 4是本发明的另一实施例提供的驻波检测装置结构示意图;  4 is a schematic structural diagram of a standing wave detecting device according to another embodiment of the present invention;
图 5是本发明的另一实施例提供的驻波检测装置另一结构示意图。 具体实施方式  FIG. 5 is another schematic structural diagram of a standing wave detecting apparatus according to another embodiment of the present invention. detailed description
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。 参见图 1, 本实施例的一方面提供了一种驻波检测方法, 该方法包括:  The embodiments of the present invention will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 1, an aspect of this embodiment provides a standing wave detection method, where the method includes:
101: 生成线性调频信号;  101: generate a chirp signal;
当离线测试时, 可以只生成线性调频信号; 当在线测试时, 除了生成线性调频信号, 还可以生成同步控制信号, 线性调频信号与同步控制信号的周期相同。 线性调频信号和同 步控制信号的参考示意图参见图 2。 When testing offline, only the chirp signal can be generated; when testing online, in addition to generating the chirp signal, It is also possible to generate a synchronous control signal having the same period as the synchronous control signal. See Figure 2 for a schematic diagram of the chirp signal and the synchronous control signal.
线性调频信号可以由扫频控制器配合 NCO (numerical controlled oscillator, 数字控制振 荡器) 生成。 同步控制信号可以由扫频控制器生成。  The chirp signal can be generated by a frequency sweep controller in conjunction with an NCO (numerical controlled oscillator). The synchronization control signal can be generated by a frequency sweep controller.
102: 将发射信号经过发射通道发送出去, 当离线测试时发射信号是线性调频信号, 当 在线测试时发射信号是业务信号和线性调频信号叠加后的信号;  102: transmitting the transmitted signal through the transmitting channel, and when the offline test is performed, the transmitting signal is a chirp signal, and when the online test is performed, the transmitting signal is a signal after the service signal and the chirp signal are superimposed;
本实施例提供的驻波检测可以应用于馈线、 无线发射机等。 当在无线发射机中进行驻 波检测时, 发射信号经过发射通道发送出去的过程为: 发射信号经过下行通道处理, 然后 再通过天线发送出去。 其中, 下行通道处理可以包括 DUC (Digital Up Convert , 数字上变 频)、 或者 DPD (Digital Predistortion, 数字预失真)等处理过程, 本实施例对此不做具体限 定。 其中, 通过天线发送发射信号, 可以通过射频模拟通道的发送部分实现, 即经过数模 转换、 发射通道、 环形器、 双工器等处理后, 通过天线发送发射信号。  The standing wave detection provided by this embodiment can be applied to a feeder, a wireless transmitter, or the like. When standing wave detection is performed in a wireless transmitter, the transmission signal is transmitted through the transmission channel as follows: The transmission signal is processed by the downlink channel and then transmitted through the antenna. The downlink channel processing may include a process such as a DUC (Digital Up Convert) or a DPD (Digital Predistortion), which is not specifically limited in this embodiment. The transmitting signal through the antenna can be realized by the transmitting part of the radio frequency analog channel, that is, after being processed by the digital-to-analog conversion, the transmitting channel, the circulator, the duplexer, etc., the transmitting signal is transmitted through the antenna.
103: 接收发射信号在发送过程中产生的反射信号;  103: receiving a reflected signal generated by the transmitting signal during transmission;
接收反射信号, 可以通过射频模拟通道的反馈部分实现, 即经过反馈通道、 模数转换 之后得到反射信号。  Receiving the reflected signal can be realized by the feedback part of the RF analog channel, that is, after the feedback channel and the analog-to-digital conversion, the reflected signal is obtained.
104: 对反射信号进行预处理;  104: pre-processing the reflected signal;
预处理过程, 是对反射信号进行与发射通道相对应的处理, 并补偿反馈通道对反射信 号的影响。  The pre-processing process is to process the reflected signal corresponding to the transmit channel and compensate the influence of the feedback channel on the reflected signal.
例如, 在无线发射机的发射通道中, 对发射信号进行了下行通道处理, 并且如果下行 通道处理是 DUC, 则与发射通道相对应的预处理过程是 DDC (Digital Down Convert, 数字 下变频)。 补偿反馈信道的不理想因素对反射信号的影响的预处理过程可以是去直流、 或者 幅度调整等。  For example, in the transmit channel of the wireless transmitter, the transmit signal is subjected to downlink channel processing, and if the downlink channel processing is DUC, the preprocessing procedure corresponding to the transmit channel is DDC (Digital Down Convert). The preprocessing process of compensating for the influence of the undesired factors of the feedback channel on the reflected signal may be de-dc, or amplitude adjustment, and the like.
105: 将线性调频信号和预处理后的反射信号共轭相乘, 得到自差拍信号;  105: multiplying the chirp signal and the pre-processed reflected signal by a conjugate to obtain a self-timer signal;
通过共轭相乘, 将线性调频信号和预处理后的反射信号之间的时延差, 转换为频率差。 当离线测试时, 步骤 105之后直接执行步骤 106。  By conjugate multiplication, the delay difference between the chirp signal and the preprocessed reflected signal is converted into a frequency difference. When offline testing, step 106 is performed directly after step 105.
当在线测试时, 还可以对自差拍信号执行以下操作, 然后再执行 106, 即根据同步控制 信号将自差拍信号分段, 并累加各段自差拍信号。 其中, 根据同步控制信号将自差拍信号 分段, 是指分段的起始点和长度受同步控制信号的控制, 分段结果参考示意图参见图 3。 累 加操作可以由累加器实现, 累加器可以由一段自差拍信号大小的缓存和一个加法器组成。  When testing online, the following operations can also be performed on the self-timer signal, and then 106 is executed, that is, the self-timer signal is segmented according to the synchronization control signal, and each segment of the self-timer signal is accumulated. Wherein, the self-timer signal is segmented according to the synchronization control signal, which means that the starting point and length of the segment are controlled by the synchronization control signal, and the reference result of the segmentation result is shown in FIG. The accumulation operation can be implemented by an accumulator, which can consist of a buffer of self-timer signal size and an adder.
由于各段自差拍信号中, 测试信号 (即线性调频信号) 是相干的, 累加 N次, 功率增 加 N2倍, 而其他信号 (如业务信号和噪音)是不相干的, 累加 N次, 功率增加 N倍。 通过 相干积累, 可显著提高自差拍信号的信噪比, 测试信号可以非常小, 不影响业务信号, 以 达到在线检测的目的。 Since each segment of the beat signal from the test signal (i.e., chirp signal) is a coherent, accumulating N times, to increase the power N 2 times, while other signals (e.g., traffic signals and noise) is irrelevant, the accumulated N times, The power is increased by N times. Pass Coherent accumulation can significantly improve the signal-to-noise ratio of the self-timer signal. The test signal can be very small and does not affect the service signal to achieve the purpose of online detection.
106: 对自差拍信号进行功率谱估计, 确定功率谱峰值的幅度和频率, 功率谱峰值的幅 度对应驻波的强度, 功率谱峰值的频率对应驻波的位置。  106: Perform power spectrum estimation on the self-shooting signal to determine the amplitude and frequency of the peak of the power spectrum. The amplitude of the peak of the power spectrum corresponds to the intensity of the standing wave, and the frequency of the peak of the power spectrum corresponds to the position of the standing wave.
需要说明的是, 如果步骤 105 中执行了分段累加操作, 则对分段累加后的自差拍信号 进行功率谱估计。  It should be noted that if the segmentation accumulation operation is performed in step 105, the power spectrum estimation is performed on the segment-accumulated self-timer signal.
频率谱估计的方法有很多, 可以是 FFT (Fast Fourier Transform, 快速傅立叶变换)、 Chirp-Z变换, 或其他高分辨率谱估计方法, 本实施例对此不做限定。其中, Chirp-Z变换是 Lawrence Rabiner在 1975年对语音信号进行分析时提出来的, 它可以将 z平面的单位圆变 成一个螺旋线逐渐地从单位原点到单位圆内。 信号谱分析可以在 z平面上的螺旋线上实现, 可以开始于任意一点, 结束于另一任意点。  There are many methods for frequency spectrum estimation, which may be FFT (Fast Fourier Transform), Chirp-Z transform, or other high-resolution spectral estimation methods, which is not limited in this embodiment. Among them, the Chirp-Z transform was proposed by Lawrence Rabiner in the analysis of speech signals in 1975. It can transform the unit circle of the z-plane into a spiral gradually from the unit origin to the unit circle. Signal spectrum analysis can be done on a spiral on the z-plane, starting at any point and ending at another arbitrary point.
进一步的, 在功率谱估计之前, 还可以进行填零、 加窗等预处理。  Further, before the power spectrum estimation, pre-processing such as zero-filling and windowing can also be performed.
本实施例通过将线性调频信号作为注入信号进行驻波检测, 并将发射信号与反射信号 的时延差通过共轭相乘转换为频率差, 再通过功率谱估计确定峰值的幅度和频率, 幅度对 应驻波的强度, 频率对应驻波的位置, 从而最终检测出驻波的强度和位置, 有利于故障定 位和监测发射机工作状态。 并且, 通过相干积累, 可显著提高自差拍信号的信噪比, 测试 信号可以非常小,不影响业务信号, 以达到在线检测的目的。另外,仅需要一次 FFT/Chirp-Z 计算, 运算量比较小。 参见图 4, 本实施例提供了一种驻波检测装置, 该装置包括: 信号产生模块 201、 发送 模块 202、 接收模块 203、 预处理模块 204、 计算模块 205、 以及功率谱估计模块 206; 信号产生模块 201, 用于生成线性调频信号;  In this embodiment, the chirp detection is performed by using the chirp signal as an injection signal, and the delay difference between the transmitted signal and the reflected signal is converted into a frequency difference by conjugate multiplication, and then the amplitude and frequency of the peak are determined by power spectrum estimation. Corresponding to the intensity of the standing wave, the frequency corresponds to the position of the standing wave, so that the strength and position of the standing wave are finally detected, which is beneficial to fault location and monitoring the working state of the transmitter. Moreover, through coherent accumulation, the signal-to-noise ratio of the self-timer signal can be significantly improved, and the test signal can be very small, and does not affect the service signal, so as to achieve the purpose of online detection. In addition, only one FFT/Chirp-Z calculation is required, and the amount of calculation is small. Referring to FIG. 4, the embodiment provides a standing wave detecting device, where the device includes: a signal generating module 201, a sending module 202, a receiving module 203, a preprocessing module 204, a calculating module 205, and a power spectrum estimating module 206; a generating module 201, configured to generate a chirp signal;
发送模块 202, 用于将发射信号经过发射通道发送出去, 当离线测试时发射信号是线性 调频信号, 当在线测试时发射信号是业务信号和线性调频信号叠加后的信号;  The sending module 202 is configured to send the transmitted signal through the transmitting channel, and when the offline test is performed, the transmitting signal is a linear frequency modulated signal, and when the online test is performed, the transmitting signal is a signal after the service signal and the chirp signal are superposed;
接收模块 203, 用于接收发射信号在发送过程中产生的反射信号;  The receiving module 203 is configured to receive a reflected signal generated by the transmitting signal during the sending process;
预处理模块 204, 用于对反射信号进行预处理;  a preprocessing module 204, configured to preprocess the reflected signal;
计算模块 205,用于将线性调频信号和预处理后的反射信号共轭相乘,得到自差拍信号; 以及功率谱估计模块 206, 用于对自差拍信号进行功率谱估计, 确定功率谱峰值的幅度 和频率, 功率谱峰值的幅度对应驻波的强度, 功率谱峰值的频率对应驻波的位置。  a calculation module 205, configured to multiply the chirp signal and the pre-processed reflected signal by a conjugate, to obtain a self-beat signal; and a power spectrum estimation module 206, configured to perform power spectrum estimation on the self-beat signal, and determine a power spectrum The amplitude and frequency of the peak, the amplitude of the peak of the power spectrum corresponds to the intensity of the standing wave, and the frequency of the peak of the power spectrum corresponds to the position of the standing wave.
进一步, 信号产生模块 201, 还用于当在线测试时, 生成与线性调频信号周期相同的同 步控制信号; 计算模块 205, 还用于当在线测试时, 根据同步控制信号将自差拍信号分段, 并累加各 段自差拍信号。 Further, the signal generating module 201 is further configured to generate a synchronization control signal with the same period as the chirp signal when testing online; The calculation module 205 is further configured to segment the self-timer signal according to the synchronization control signal when the online test is performed, and accumulate the self-timer signals of the segments.
预处理模块 204, 具体用于对反射信号进行与发射通道相对应的处理, 并补偿反馈通道 对反射信号的影响。  The pre-processing module 204 is specifically configured to perform processing corresponding to the transmit channel on the reflected signal, and compensate the influence of the feedback channel on the reflected signal.
功率谱估计模块 206, 具体用于采用快速傅立叶变换 (FFT)、 或者 Chirp-Z, 对自差拍 信号进行功率谱估计。  The power spectrum estimation module 206 is specifically configured to perform power spectrum estimation on the self-timer signal by using a fast Fourier transform (FFT) or a Chirp-Z.
参见图 5, 为驻波检测装置的另一结构示意图, 信号产生模块 201由 NCO和扫频控制 器组成, 线性调频信号可以由扫频控制器配合 NCO生成。 同步控制信号可以由扫频控制器 生成。 当离线测试时, 计算模块 205包括共轭相乘单元, 当在线测试时, 计算模块 205包 括共轭相乘单元和分段累加单元。 共轭相乘单元用于将线性调频信号和预处理后的反射信 号共轭相乘, 得到自差拍信号。 分段累加单元用于当在线测试时, 根据同步控制信号将自 差拍信号分段, 并累加各段自差拍信号。 当在无线发射机中进行驻波检测时, 发送模块 202 包括用于对发射信号进行下行通道处理的下行通道处理单元、 用于进行数字转模拟处理的 数模转换单元、 发射通道、 环形器、 双工器、 天线。 接收模块 203 包括反馈信道、 用于进 行模拟转数字处理的模数转换单元。  Referring to FIG. 5, which is another schematic structural diagram of the standing wave detecting device, the signal generating module 201 is composed of an NCO and a frequency sweep controller, and the chirp signal can be generated by the sweep controller together with the NCO. The sync control signal can be generated by the sweep controller. When tested offline, the calculation module 205 includes a conjugate multiplication unit, and when tested online, the calculation module 205 includes a conjugate multiplication unit and a segmentation accumulation unit. The conjugate multiplying unit is used to multiply the chirp signal and the preprocessed reflected signal to obtain a self-timer signal. The segment accumulating unit is used to segment the self-timer signal according to the synchronous control signal when the online test is performed, and accumulate the self-timer signals of each segment. When performing standing wave detection in the wireless transmitter, the transmitting module 202 includes a downlink channel processing unit for performing downlink channel processing on the transmitted signal, a digital-to-analog conversion unit for performing digital-to-analog processing, a transmitting channel, a circulator, Duplexer, antenna. The receiving module 203 includes a feedback channel and an analog to digital conversion unit for performing analog to digital processing.
本实施例通过将线性调频信号作为注入信号进行驻波检测, 并将发射信号与反射信号 的时延差通过共轭相乘转换为频率差, 再通过功率谱估计确定峰值的幅度和频率, 幅度对 应驻波的强度, 频率对应驻波的位置, 从而最终检测出驻波的强度和位置, 有利于故障定 位和监测发射机工作状态。 并且, 通过相干积累, 可显著提高自差拍信号的信噪比, 测试 信号可以非常小,不影响业务信号, 以达到在线检测的目的。另外,仅需要一次 FFT/Chirp-Z 计算, 运算量比较小。  In this embodiment, the chirp detection is performed by using the chirp signal as an injection signal, and the delay difference between the transmitted signal and the reflected signal is converted into a frequency difference by conjugate multiplication, and then the amplitude and frequency of the peak are determined by power spectrum estimation. Corresponding to the intensity of the standing wave, the frequency corresponds to the position of the standing wave, so that the strength and position of the standing wave are finally detected, which is beneficial to fault location and monitoring the working state of the transmitter. Moreover, through coherent accumulation, the signal-to-noise ratio of the self-timer signal can be significantly improved, and the test signal can be very small, and does not affect the service signal, so as to achieve the purpose of online detection. In addition, only one FFT/Chirp-Z calculation is required, and the amount of calculation is small.
以上所描述的装置实施例仅仅是示意性的, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式。 各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物 理存在, 也可以两个或两个以上单元集成在一个单元中。 上述集成的单元既可以采用硬件 的形式实现, 也可以采用软件功能单元的形式实现。  The device embodiments described above are merely illustrative, only one logical function partitioning, and may be further divided in actual implementation. Each functional unit may be integrated in one processing unit, or each unit may be physically present, or two or more units may be integrated into one unit. The above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完 成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。  A person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium. The storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。  The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc., which are within the spirit and scope of the present invention, should be included in the protection of the present invention. Within the scope.

Claims

权 利 要 求 书 Claim
1、 一种驻波检测方法, 其特征在于, 所述方法包括: A standing wave detecting method, the method comprising:
生成线性调频信号;  Generating a chirp signal;
将发射信号经过发射通道发送出去, 当离线测试时所述发射信号是所述线性调频信号, 当在线测试时所述发射信号是业务信号和所述线性调频信号叠加后的信号;  Transmitting the transmitted signal through the transmitting channel, and when the offline test is performed, the transmitting signal is the chirp signal, and when the line is tested, the transmitting signal is a signal after the service signal and the chirp signal are superimposed;
接收所述发射信号在发送过程中产生的反射信号;  Receiving a reflected signal generated by the transmitting signal during transmission;
对所述反射信号进行预处理;  Pre-processing the reflected signal;
将所述线性调频信号和预处理后的反射信号共轭相乘, 得到自差拍信号;  Multiplying the chirp signal and the pre-processed reflected signal by a conjugate to obtain a self-timer signal;
对所述自差拍信号进行功率谱估计, 确定功率谱峰值的幅度和频率, 功率谱峰值的幅度 对应驻波的强度, 功率谱峰值的频率对应驻波的位置。  The power spectrum estimation is performed on the self-timer signal to determine the amplitude and frequency of the peak of the power spectrum. The amplitude of the peak of the power spectrum corresponds to the intensity of the standing wave, and the frequency of the peak of the power spectrum corresponds to the position of the standing wave.
2、 根据权利要求 1所述的方法, 其特征在于, 所述对所述自差拍信号进行功率谱估计之 前, 所述方法还包括: 2. The method according to claim 1, wherein the method further comprises: before the power spectrum estimation of the self-beat signal, the method further comprising:
当在线测试时, 生成与所述线性调频信号周期相同的同步控制信号, 根据所述同步控制 信号将所述自差拍信号分段, 并累加各段自差拍信号。  When in-line testing, a synchronization control signal having the same period as the chirp signal is generated, the self-timer signal is segmented according to the synchronization control signal, and each segment of the self-timer signal is accumulated.
3、 根据权利要求 1所述的方法, 其特征在于, 所述对所述反射信号进行预处理, 包括: 对所述反射信号进行与所述发射通道相对应的处理, 并补偿反馈通道对所述反射信号的 影响。 The method according to claim 1, wherein the pre-processing the reflected signal comprises: performing processing corresponding to the transmitting channel on the reflected signal, and compensating for a feedback channel pair The effect of the reflected signal.
4、 根据权利要求 1所述的方法, 其特征在于, 所述对所述自差拍信号进行功率谱估计, 包括: The method according to claim 1, wherein the performing power spectrum estimation on the self-timer signal comprises:
采用快速傅立叶变换 (FFT)、 或者 Chirp-Z变换, 对所述自差拍信号进行功率谱估计。  The power spectrum estimation is performed on the self-beat signal using a fast Fourier transform (FFT) or a Chirp-Z transform.
5、 一种驻波检测装置, 其特征在于, 所述装置包括: 5. A standing wave detecting device, wherein the device comprises:
信号产生模块, 用于生成线性调频信号;  a signal generating module, configured to generate a chirp signal;
发送模块, 用于将发射信号经过发射通道发送出去, 当离线测试时所述发射信号是所述 线性调频信号, 当在线测试时所述发射信号是业务信号和所述线性调频信号叠加后的信号; 接收模块, 用于接收所述发射信号在发送过程中产生的反射信号; 预处理模块, 用于对所述反射信号进行预处理; a transmitting module, configured to send the transmitting signal through the transmitting channel, where the transmitting signal is the chirp signal when offline testing, and the transmitting signal is a signal after the service signal and the chirp signal are superimposed when testing in an online manner a receiving module, configured to receive a reflected signal generated by the transmitting signal during transmission; a preprocessing module, configured to preprocess the reflected signal;
计算模块, 用于将所述线性调频信号和预处理后的反射信号共轭相乘, 得到自差拍信号; 以及功率谱估计模块, 用于对所述自差拍信号进行功率谱估计, 确定功率谱峰值的幅度 和频率, 功率谱峰值的幅度对应驻波的强度, 功率谱峰值的频率对应驻波的位置。  a calculation module, configured to multiply the chirp signal and the pre-processed reflected signal by a conjugate, to obtain a self-beat signal; and a power spectrum estimation module, configured to perform power spectrum estimation on the self-beat signal, determine The amplitude and frequency of the peak of the power spectrum, the amplitude of the peak of the power spectrum corresponds to the intensity of the standing wave, and the frequency of the peak of the power spectrum corresponds to the position of the standing wave.
6、 根据权利要求 5所述的装置, 其特征在于, 信号产生模块, 还用于当在线测试时, 生 成与所述线性调频信号周期相同的同步控制信号; The device according to claim 5, wherein the signal generating module is further configured to generate a synchronization control signal having the same period as the chirp signal when testing in an online manner;
所述计算模块, 还用于当在线测试时, 根据所述同步控制信号将所述自差拍信号分段, 并累加各段自差拍信号。  The calculation module is further configured to segment the self-timer signal according to the synchronization control signal when the online test is performed, and accumulate each segment of the self-timer signal.
7、 根据权利要求 5所述的装置, 其特征在于, 所述预处理模块, 具体用于对所述反射信 号进行与所述发射通道相对应的处理, 并补偿反馈通道对所述反射信号的影响。 The device according to claim 5, wherein the preprocessing module is specifically configured to perform processing corresponding to the transmitting channel on the reflected signal, and compensate a feedback channel for the reflected signal influences.
8、 根据权利要求 5所述的装置, 其特征在于, 所述功率谱估计模块, 具体用于采用快速 傅立叶变换 (FFT)、 或者 Chirp-Z变换, 对所述自差拍信号进行功率谱估计。 The device according to claim 5, wherein the power spectrum estimation module is specifically configured to perform power spectrum estimation on the self-timer signal by using a fast Fourier transform (FFT) or a Chirp-Z transform. .
PCT/CN2011/083033 2011-11-28 2011-11-28 Standing wave detection method and device WO2013078586A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/083033 WO2013078586A1 (en) 2011-11-28 2011-11-28 Standing wave detection method and device
CN201180002718.9A CN102511139B (en) 2011-11-28 2011-11-28 Standing wave detection method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083033 WO2013078586A1 (en) 2011-11-28 2011-11-28 Standing wave detection method and device

Publications (1)

Publication Number Publication Date
WO2013078586A1 true WO2013078586A1 (en) 2013-06-06

Family

ID=46222783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083033 WO2013078586A1 (en) 2011-11-28 2011-11-28 Standing wave detection method and device

Country Status (2)

Country Link
CN (1) CN102511139B (en)
WO (1) WO2013078586A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033329B (en) * 2012-12-24 2015-09-23 北京工业大学 A kind of spatial mesh structure frequency discrimination methods improving spectrum peak method
CN104254093A (en) * 2013-06-27 2014-12-31 中兴通讯股份有限公司 Method and device for detecting standing wave reflection points
CN103809081B (en) * 2014-02-27 2016-09-14 武汉虹信通信技术有限责任公司 A kind of feeder line standing wave Fault Locating Method and detection device thereof
CN106487461B (en) * 2015-08-28 2019-02-26 大唐移动通信设备有限公司 A kind of standing wave peak value determines method and apparatus
CN106771666A (en) * 2016-12-21 2017-05-31 中国电子科技集团公司第二十研究所 A kind of many standing wave point positioning systems of anti-interference high accuracy antenna-feedback system
CN108601045B (en) * 2018-02-28 2021-06-18 海能达通信股份有限公司 Standing wave detection method and device with storage function
CN110581741B (en) * 2019-08-28 2021-06-29 三维通信股份有限公司 Standing wave abnormal position detection method, equipment and medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238261A (en) * 2005-02-28 2006-09-07 Nec Engineering Ltd Wireless data carrier writing/reading system
JP2006270764A (en) * 2005-03-25 2006-10-05 Toshiba Tec Corp Leaky transmission line antenna
EP1892534A1 (en) * 2006-08-25 2008-02-27 Instrument Manufacturing Company (IMCORP) Diagnostic method for electrical cables utilizing axial tomography technique
CN101174816A (en) * 2006-11-01 2008-05-07 中兴通讯股份有限公司 Digital predistortion linearized processing equipment and power detecting method thereof
CN101958756A (en) * 2010-02-11 2011-01-26 华为技术有限公司 Standing wave detection method, standing wave detection device and base station
CN101959217A (en) * 2010-02-11 2011-01-26 华为技术有限公司 Standing wave detection method, standing wave detection device and base station

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238261A (en) * 2005-02-28 2006-09-07 Nec Engineering Ltd Wireless data carrier writing/reading system
JP2006270764A (en) * 2005-03-25 2006-10-05 Toshiba Tec Corp Leaky transmission line antenna
EP1892534A1 (en) * 2006-08-25 2008-02-27 Instrument Manufacturing Company (IMCORP) Diagnostic method for electrical cables utilizing axial tomography technique
CN101174816A (en) * 2006-11-01 2008-05-07 中兴通讯股份有限公司 Digital predistortion linearized processing equipment and power detecting method thereof
CN101958756A (en) * 2010-02-11 2011-01-26 华为技术有限公司 Standing wave detection method, standing wave detection device and base station
CN101959217A (en) * 2010-02-11 2011-01-26 华为技术有限公司 Standing wave detection method, standing wave detection device and base station

Also Published As

Publication number Publication date
CN102511139B (en) 2014-06-04
CN102511139A (en) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2013078586A1 (en) Standing wave detection method and device
US9755933B2 (en) Method and system for measuring audio transmission delay
CN100460834C (en) Method for determining a level of material with a two-wire radar sensor and a two-wire radar sensor
US9002291B2 (en) Standing wave detection method, standing wave detection apparatus and base station
KR101654637B1 (en) Cable fault diagnostic method and system
KR102077000B1 (en) Apparatus and Method for compensating refection loss of antenna for Radar, and Radar Apparatus using the same
CN104345303A (en) Radar calibration system for vehicles
US10436832B2 (en) Method of analyzing a cable, based on an auto-adaptive correlation, for the detection of soft defects
WO2009115818A3 (en) Remote detection and measurement of objects
CN103777178B (en) A kind of synchronous error compensation method, equipment and system
KR101525475B1 (en) Cable fault diagnostic apparatus and method for thereof
US20160054266A1 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6283769B2 (en) Method and apparatus for detecting standing wave ratio
CN101799545A (en) Ultrasonic based dynamic distance measurement method and system
CN103869334B (en) The automatic identification of GNSS spacing wave distortion and disposal route
JP2013137268A (en) Fmcw radar system
KR101561832B1 (en) System for analyzing reflected wave comparing initial value of the state and method therefor
CN203037849U (en) Ultrasonic thickness gauge
JP2013152112A (en) Time difference orientation detection device
CN102707157B (en) A kind of pure-tone polse signal parameter estimation method based on power spectrum
CN103916198A (en) Timing-synchronization estimation error testing method and system
CN108132460B (en) Pulse compression compensation algorithm based on frequency domain channel equalization
CN107860465B (en) Method for detecting inherent frequency of magnetostrictive guided wave longitudinal wave pipeline
CN115436908B (en) Target detection method, device and medium based on radar frequency agile signal
CN106352821A (en) Method and device for measuring length of steel wire rope based on low frequency ultrasonic wave

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002718.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876679

Country of ref document: EP

Kind code of ref document: A1