WO2013073422A1 - Video encoding device - Google Patents

Video encoding device Download PDF

Info

Publication number
WO2013073422A1
WO2013073422A1 PCT/JP2012/078784 JP2012078784W WO2013073422A1 WO 2013073422 A1 WO2013073422 A1 WO 2013073422A1 JP 2012078784 W JP2012078784 W JP 2012078784W WO 2013073422 A1 WO2013073422 A1 WO 2013073422A1
Authority
WO
WIPO (PCT)
Prior art keywords
inter
image
prediction
encoding
screen prediction
Prior art date
Application number
PCT/JP2012/078784
Other languages
French (fr)
Japanese (ja)
Inventor
信博 知原
昌史 高橋
山口 宗明
雅俊 近藤
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Publication of WO2013073422A1 publication Critical patent/WO2013073422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/57Motion estimation characterised by a search window with variable size or shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/43Hardware specially adapted for motion estimation or compensation
    • H04N19/433Hardware specially adapted for motion estimation or compensation characterised by techniques for memory access

Definitions

  • the present invention relates to a technique for encoding a moving image.
  • video coding technology has become an indispensable technology due to the increase in video distribution content due to the development of broadband networks and the use of large-capacity storage media such as DVDs and large-screen video display devices.
  • a technology for encoding at a high resolution in the moving image encoding technology is indispensable.
  • the moving image encoding process is a process of converting an original image (input image) input to the moving image encoding apparatus into a stream having a smaller data amount.
  • the international standard H.264 is available as one of moving image encoding technologies capable of encoding with high resolution and high image quality.
  • the H.264 / AVC standard (Non-Patent Document 1) exists.
  • an input image in a wide transmission band for example, about 1.5 Gbps in HD-SDI (High Definition Serial Digital Interface)
  • a low transmission band for example, about 15 Mbps in terrestrial digital broadcasting.
  • intra prediction a plurality of prediction methods are prepared according to combinations of block sizes and prediction directions serving as prediction units.
  • inter-screen prediction a plurality of prediction methods are prepared according to the size of a block which is a prediction unit.
  • H. in H.264 / AVC an encoding method with high image quality and high compression is realized by dynamically selecting these prediction methods according to the target image quality and code amount.
  • FIG. 1 is a diagram illustrating a configuration of an image encoding device that performs H.264 / AVC encoding processing.
  • the mode selection unit 930 selects the intra prediction unit 910. Then, the stream 91 is obtained from the original image 90 through the intra prediction unit 910, the orthogonal transform unit 940, the quantization unit 950, and the variable length coding unit 980. In the encoding process using inter-screen prediction, the mode selection unit 930 selects the inter-screen prediction unit 920. Then, the stream 91 is obtained from the original image 90 through the inter-screen prediction unit 920, the orthogonal transform unit 940, the quantization unit 950, and the variable length encoding unit 980.
  • the quantization granularity is adjusted using the quantization coefficient D84 determined by the encoding control unit 990. If the quantization granularity is small, the code amount is large, but the image is likely to be closer to the original image, and if the quantization granularity is large, the code amount is small but the image is likely to be separated from the original image.
  • H. In H.264 / AVC encoding encoding with high image quality and high compression efficiency is realized by dynamically selecting the quantization coefficient D84 according to the target image quality and code amount.
  • the in-screen prediction unit 910 receives an original image 90 and a reconstructed image 92 that is a peripheral image.
  • the reconstructed image 92 is an image configured by adding the restored difference image 97 output from the inverse orthogonal transform unit 970 and the predicted image 95 output by the mode selection unit 930, and is the same as the original image (that is, It is an image group of a plurality of past frames including a frame (currently being encoded).
  • the reconstructed image 92 referred to in intra-screen prediction is the same frame as the original image 90.
  • the intra-screen prediction unit 910 selects an appropriate intra-screen prediction mode (intra-screen prediction method) from the original image 90 and the reconstructed image 92 by the intra-screen prediction process, and represents the mode information of the intra-screen prediction mode.
  • An intra-screen prediction information D81, an intra-screen prediction image 93 which is a prediction result, and an intra-screen prediction error representing a difference between the original image 90 and the intra-screen prediction image 93 are generated.
  • the inter-screen prediction unit 920 receives the input of the original image 90 and the reconstructed image 92 generated from the original image before and after (past or future), and receives the inter-screen prediction information D82, the inter-screen prediction image 94, and the original image An inter-screen prediction error representing a difference between 90 and the inter-screen prediction image 94 is generated.
  • the mode selection unit 930 uses the intra-screen prediction error input from the intra-screen prediction unit 910 and the inter-screen prediction error input from the inter-screen prediction unit 920 according to the encoding mode selection algorithm, and performs intra-screen prediction and inter-screen prediction. Determine any coding mode of prediction.
  • the intra prediction image 93 is output as the prediction image 95
  • the inter prediction image 94 is output as the prediction image 95.
  • the encoding mode selection algorithm greatly affects the code amount and image quality of the stream 91, and therefore there are various methods depending on the content of the original image 90 to be encoded and the purpose of video encoding.
  • the orthogonal transform unit 940 generates a frequency component D83 from the difference image 96 that is a difference between the original image 90 and the predicted image 95 by orthogonal transform processing.
  • the unit of prediction (block) and the unit of orthogonal transformation are not necessarily the same, and the difference image 96 may be further divided and orthogonally transformed.
  • the quantization unit 950 performs a quantization process from the quantization coefficient D84 input from the encoding control unit 990 and the frequency component D83 input from the orthogonal transform unit 940, and generates a quantized value D85 with a reduced amount of information. Output.
  • the inverse quantization unit 960 performs an inverse quantization process on the quantized value D85 to generate a restored frequency component D86.
  • the inverse orthogonal transform unit 970 performs an inverse orthogonal transform process on the reconstructed frequency component D86 to generate a reconstructed difference image 97. Then, the generated restored differential image 97 and the predicted image 95 output by the mode selection unit 930 are added together in the same block, and stored as a reconstructed image 92 in a storage device such as a memory.
  • variable length encoding unit 980 encodes the quantized value D85 and the intra-screen prediction information D81 or the inter-screen prediction information D82 into a data string having a smaller data amount, and outputs it as a stream 91.
  • the stream buffer 1000 once buffers the stream 91, and then outputs it to the transmission path or a subsequent decoder.
  • the code amount of the buffered stream 91 is output to the encoding control unit 990 as code amount information D87.
  • the encoding control unit 990 determines the quantization coefficient D84 according to the rate control algorithm using the code amount information D87 input from the stream buffer 1000, and outputs this to the quantization unit 950.
  • Patent Document 1 discloses a method for improving objective image quality by referring to a predicted image closer to an original image, in which the quantization coefficient is reduced in inter-screen prediction by managing the reference relationship in inter-screen prediction in units of pictures. Is disclosed. Further, in Patent Document 1, when a sharp image and a dull image are repeatedly displayed every other frame, a visual characteristic called “repetitive illusion of a dull image” that looks like a sharp image as a whole by human vision is utilized. A method for improving subjective image quality is also disclosed.
  • FIG. 22 is a diagram for explaining a method for improving the encoding efficiency using the “repetitive illusion of a sharp image” in the image encoding technique described in Patent Document 1.
  • FIG. 22 when alternately displaying a high-quality image with a reduced quantization coefficient and a low-quality image with a reduced quantization amount by increasing the quantization coefficient every other frame, “sharpness” is displayed. Due to the “repetitive illusion of images”, the entire moving image appears to be equivalent to a high-quality moving image with a small quantization coefficient in human vision.
  • the code output from the moving image encoding device is input to the moving image decoding device, and a decoding process is executed to display the same image.
  • the time difference from display to display is the delay time, and in a general moving picture encoding apparatus and moving picture decoding apparatus, the delay is about several hundred milliseconds to several seconds.
  • image data is transmitted at a fixed bit rate determined from the data amount of the entire image data, and the transmitted image data is stored and processed in a buffer.
  • code data having a bit rate or higher
  • data in the buffer is insufficient for processing in this area, and waiting for transmission of code data to the buffer occurs. If all processing is not completed for this area, this area cannot be displayed, resulting in an increase in delay time in displaying the entire image.
  • the delay time is determined by the time for processing the assumed maximum code generation amount, and this delay time is greatly influenced by the difference between the bit rate and the maximum code generation amount, that is, the variation amount of the generated code amount.
  • FIG. 23 is a diagram for explaining a code amount variation by quantization control in units of pictures in the image coding technique described in Patent Document 1.
  • the present invention provides a moving image coding capable of performing high-quality and low-delay coding processing by suppressing fluctuations in the code amount while improving the image quality in the moving image coding processing.
  • An object is to provide an apparatus, a moving image encoding method, and a moving image encoding program.
  • a moving image encoding apparatus that encodes a moving image including a plurality of images arranged in time series by intra prediction or inter prediction.
  • a plurality of images are divided into a reference region that is a region that refers to a pixel value in the intra prediction or the inter-screen prediction and a non-reference region that is a region that does not refer to a pixel value, and
  • a reference control unit that determines the reference region and the non-reference region in the plurality of images so that the reference region and the non-reference region in the plurality of images are switched at a predetermined interval in FIG.
  • a quantization unit that performs quantization with a width (gradation) coarser than the reference region for the non-reference region when the image is encoded.
  • the reference control unit may be configured such that a ratio of the reference area to the non-reference area in a certain unit area in any of the certain unit areas included in the image.
  • the reference area and the non-reference area may be determined so as to be the same.
  • the video encoding device further includes an intra-screen prediction unit that performs the encoding by the intra-screen prediction on the plurality of images, and the intra-screen prediction unit includes: In the image, the encoding is performed with reference to only the pixels in the reference area according to the positional relationship between the current macroblock that is the macroblock to be encoded and the reference area or the non-reference area. It may be.
  • the video encoding device further includes an inter-screen prediction unit that performs the encoding by the inter-screen prediction on the plurality of images, and the inter-screen prediction unit includes:
  • the motion vector search range may refer to at least one of the plurality of images serving as the reference region.
  • FIG. 1 shows an example of a structure of the moving image encoder which concerns on one Embodiment of this invention.
  • H The figure which shows the kind of prediction direction in the prediction in a screen with respect to 4x4 block in a H.264 / AVC specification.
  • limiting information The schematic diagram which shows a response
  • limiting information The schematic diagram which shows a response
  • Conventional H.264 The block diagram of the image coding apparatus which performs a H.264 / AVC encoding process. The figure explaining the improvement method of the encoding efficiency using the conventional "repetitive illusion of a sharp image”. The figure explaining the code amount fluctuation
  • FIG. 1 is a diagram illustrating an example of a configuration of a video encoding apparatus according to the present embodiment.
  • the video encoding apparatus 1 includes an intra-screen prediction unit 110, an inter-screen prediction unit 120, a mode selection unit 130, an orthogonal transform unit 140, a quantization unit 150, an inverse quantization unit 160, and an inverse orthogonal transform.
  • LSI Large Scale Integration
  • FPGA Field-Programmable Gate Array
  • various image processing for performing moving image encoding processing is possible. It can be applied to equipment. Further, for example, it can be realized by a configuration similar to that of a general computer such as a memory (not shown) such as a CPU (Central Processing Unit) and a RAM (Random Access Memory), a storage device such as a hard disk, and a network interface. That is, the function of each component of the moving image encoding device 1 can be realized by, for example, the CPU reading and executing a program stored in a hard disk or the like.
  • the intra-screen prediction unit 110 acquires the original image 10, the reconstructed image 12 that is an image located around the original image 10, and intra-screen prediction restriction information D11 (described later) output from the reference control unit 210. Then, the intra-screen prediction information D1, the intra-screen prediction image 13 that is the prediction result of the intra-screen prediction, and the intra-screen prediction error representing the difference between the original image 10 and the intra-screen prediction image 13 are generated.
  • the intra-screen prediction information D1 includes an intra-screen prediction block type that is information indicating the block size for which intra-screen prediction has been performed, and intra-screen prediction mode information indicating the direction of intra-screen prediction.
  • the inter-screen prediction unit 120 includes the original image 10 and a past original image (on the time axis, an original image located in front of the original image 10. The same applies hereinafter) or a future original image (on the time axis,
  • the reconstructed image 12 generated from the original image located after the original image 10 (the same applies hereinafter) and the inter-screen prediction restriction information D12 (described later) output from the reference control unit 210 are acquired, and the inter-screen is acquired.
  • the prediction information D2, the inter-screen prediction image 14 which is the prediction result of the inter-screen prediction, and the inter-screen prediction error representing the difference between the original image 10 and the inter-screen prediction image 14 are generated.
  • the inter-screen prediction information D2 includes an inter-screen prediction block type indicating a block size when inter-screen prediction is performed, and motion vector information as a result of motion compensation.
  • the mode selection unit 130 selects a prediction mode (intra-screen prediction) according to the mode selection algorithm from the intra-screen prediction error output from the intra-screen prediction unit 110 and the inter-screen prediction error output from the inter-screen prediction unit 120. Or, prediction between screens) is determined.
  • a prediction mode intra-screen prediction
  • the intra-screen prediction image 13 is output as the predicted image 15.
  • inter-screen prediction image 14 is output as the predicted image 15.
  • the orthogonal transform unit 140 generates a frequency component D3 from the difference image 16 that is a difference between the original image 10 and the predicted image 15 by orthogonal transform processing.
  • the quantization unit 150 performs a quantization process from the quantization coefficient D4 output from the encoding control unit 190 and the frequency component D3 output from the orthogonal transform unit 140, and obtains a quantization value D5 with a reduced amount of information. Output.
  • the inverse quantization unit 160 performs an inverse quantization process on the quantization value D5 output from the quantization unit 150 to generate a restored frequency component D6.
  • the inverse orthogonal transform unit 170 performs an inverse orthogonal transform process on the restoration frequency component D6 output from the inverse quantization unit 160 to generate the restoration difference image 17.
  • the restored difference image 17 and the predicted image 15 selected by the mode selection unit 130 are added together and stored as a reconstructed image 12 in a storage device such as a memory.
  • a storage device such as a memory.
  • the inverse quantization unit 160 and the inverse orthogonal transform unit 170 may stop processing.
  • variable length encoding unit 180 encodes the quantized value D5 and the intra-screen prediction information D1 or the inter-screen prediction information D2 into a data string having a smaller data amount, and outputs the data stream 11 as a stream 11.
  • the stream buffer 200 acquires the stream 11 output from the variable-length encoding unit 180, buffers the stream 11, and then puts the stream 11 in a first-in first-out manner in a transmission path connected to the moving image encoding apparatus 1, or a subsequent decoder. Output in the method.
  • the code amount (accumulated amount) of the buffered stream 11 is output to the encoding control unit 190 as code amount information D7.
  • the encoding control unit 190 acquires the code amount information D7 from the stream buffer 200, and calculates the quantization coefficient D4 according to the rate control algorithm. Further, if the region determination result D13 (described later) of the current MB (macroblock, the same applies hereinafter) output from the reference control unit 210 indicates “reference region”, the region is left with the quantization coefficient unchanged. If the determination result D13 indicates “non-reference region”, the offset value is added to the quantization coefficient (or quantization parameter), and the result is output to the quantization unit 150.
  • the “reference area” is an area that is permitted to be referred to by others, that is, when performing a macroblock prediction process in inter-screen prediction or intra-screen prediction, inter-screen prediction is searched for inter-screen reference.
  • An area that is a range means an area that is the target of pixel reference within the screen in intra prediction, and ⁇ non-reference area '' is an area that is prohibited from being referred to by others.
  • An area that is not used as a search range refers to an area that is not subject to pixel reference within the screen in the intra prediction.
  • the reference control unit 210 determines the positions of the reference area and the non-reference area for each picture, holds the position management information, and includes the current MB, which is the macro block targeted for prediction processing, in either the non-reference area or the reference area Judge whether or not Then, according to the determination result, an area determination result D13 indicating whether the current MB is included in the reference area or the non-reference area is output to the encoding control unit 190. Further, based on the managed reference area information, the intra-screen prediction restriction information D11 is provided to the intra-screen prediction unit 110, and the inter-screen prediction restriction information D12 is provided to the inter-screen prediction unit 120. This will be described in detail later.
  • the reference control unit 210 which is a feature of the video encoding apparatus according to the present embodiment, will be described in detail below with reference to the drawings.
  • FIG. 2 is a diagram for explaining an example of a reference area and non-reference area management method for each picture executed by the reference control unit 210 of the video encoding device 1 according to the present embodiment.
  • the reference control unit 210 divides each picture into left and right, determines one as a reference area and the other as a non-reference area, and performs control for switching each picture.
  • the reference control unit 210 sets the left half of the encoding target picture 403 as a reference area and the right half as a non-reference area in the encoding target picture 403 that is the first picture in time series (display order; the same applies hereinafter). In the subsequent pictures (pictures 402 and 401), the area that was the non-reference area in the previous picture in time series is set as the reference area, and the area that was the reference area is set as the non-reference area. Also, the reference control unit 210 holds position management information indicating the position (left half or right half) of the reference area or non-reference area for each picture for the current and past several pictures. Then, based on this position management information, it is determined whether the current MB being processed is included in the reference region or the non-reference region, and the determination result is output to the encoding control unit 190 as a region determination result D13.
  • this specific example is characterized in that the left and right reference areas and the non-reference areas are switched for each picture, and the reference area and the non-reference area in the first picture 403 may be reversed (that is, The right half of the picture 403 may be a reference area and the left half may be a non-reference area).
  • FIG. 3 is a diagram for explaining the code amount per macro block line (hereinafter referred to as “MBL”) in the encoding target picture.
  • FIG. 4 is a diagram showing a change in code amount for each MBL.
  • the moving image encoding process is performed on the encoding target picture 401 in MB units according to the raster scan order indicated by the arrows.
  • the left half of the encoding target picture 401 is a reference area and the right half is a non-reference area, a non-reference area with a small amount of code and a reference area with a large amount of code within 1 MBL
  • the area included in is always constant in any MBL (see FIG. 3). Therefore, in the case of this specific example, as shown in FIG. 4, the code amount is almost the same in 1 MBL units, and the fluctuation between pictures is small, so that the code amount fluctuation can be suppressed to within 1 MBL unit.
  • the encoding target picture is divided into left and right, but the present invention is not limited to this. If the ratio of the reference area and the non-reference area included in every fixed number of MBs is always the same, and the non-reference area and the reference area are switched at regular intervals, the “repetitive illusion of sharp images” can be used. It is possible to realize a delay. Therefore, for example, a method of dividing a picture diagonally, a method of dividing a picture into three or more regions, and a method of dividing by a stripe pattern may be used.
  • the delay of the code amount is suppressed and the delay is reduced while maintaining the image quality. Is possible.
  • the picture area is divided into a high-quality reference area and a low-quality non-reference area on the left and right sides of the picture, coding efficiency is obtained when pixel values in the non-reference area are referred to in intra prediction and inter prediction. Gets worse.
  • the reference control unit 210 provides intra-screen prediction restriction information D11 to the intra-screen prediction unit 110 for intra-screen prediction of the current MB and inter-screen prediction for inter-screen prediction so that image quality degradation does not propagate from the non-reference region.
  • the inter-screen prediction restriction information D12 is output to the unit 120.
  • inter-screen prediction restriction information D12 that the reference control unit 210 outputs to the inter-screen prediction unit 120 will be described.
  • the inter picture prediction restriction information D12 includes a reference picture number.
  • the “reference picture number” is a number indicating a reference image on which a motion vector search is performed in the inter-screen prediction process.
  • the inter-screen prediction process is a process of searching for a pixel block similar to the current MB within a search range centered on the position of the current MB or a position predicted therefrom.
  • 5 to 7 are diagrams conceptually illustrating an example of the inter-screen prediction restriction information D12 that the reference control unit 210 outputs to the inter-screen prediction unit 120 in this specific example.
  • the reference control unit 210 included the search range 41 of the encoding target picture 401 in the past in the coding order (that is, the left half region was the reference region). )
  • the picture number of the picture 403 which is the image temporally closest to the encoding target picture 401 is included and designated in the inter-screen prediction restriction information D12.
  • the coding is performed on the image in the coding order in the right half area in the past.
  • the picture number of the picture 402 that is the image temporally closest to the target picture 401 is specified by being included in the inter-screen prediction restriction information D12.
  • the left half area is referred to in the past.
  • the reference area of the picture 403 that is the most recent image that was the area (more specifically, the same area as the search area 41 in the reference area; the same applies to FIG. 15) and the nearest area in which the right half was the reference area in the past.
  • the picture numbers of both images are designated so as to refer to both the reference area of the picture 402 that is the image of the image (more specifically, the same area portion as the search area 41 in the reference area, which is the same in FIG. 15). .
  • the inter-screen prediction unit 120 that has received such inter-screen prediction restriction information D12 basically performs inter-screen prediction with reference to only the reference area of the designated picture number. Therefore, according to this specific example, the inter-picture prediction always uses the reference picture encoded with a small quantization coefficient. As a result, the inter-picture prediction accuracy is improved and the moving picture coding efficiency is also improved. To do.
  • the in-screen prediction restriction information D11 includes mode restriction information.
  • the reference control unit 210 sets the mode restriction information so that the intra-screen prediction unit 110 refers to the pixel value only from the reference region without referring to the pixel value from the non-reference region.
  • the “mode restriction information” will be described below.
  • FIG. 9 is a diagram for explaining an example of the restriction of the intra prediction mode in each positional relationship between the reference area and the current MB.
  • the reference control unit 210 has a non-reference area on the left side of the current picture 401a, a current MB in the reference area, and is adjacent to the right side of the non-reference area. Designates mode restriction information indicating that the use of the intra prediction mode referring to the pixel value on the left side is prohibited as the intra prediction restriction information D11 (FIG. 9C, “position A” column).
  • the reference control unit 210 does not specify mode restriction information.
  • the intra-screen prediction restriction information D11 may include information indicating that the prediction mode is not restricted.
  • FIG. 10 is a diagram for explaining another example of a method for managing a reference area and a non-reference area for each picture performed by the reference control unit 210.
  • the reference control unit 210 divides each picture into upper and lower parts, and performs control for switching each picture as a reference area and the other as a non-reference area.
  • the reference control unit 210 sets the upper half of the encoding target picture 503, which is the first picture in time series, as a reference area, the lower half as a non-reference area, and the subsequent pictures ( In the pictures 502 and 501), on the time axis, an area that was a non-reference area in the previous picture is set as a reference area, and an area that was a reference area is set as a non-reference area. Further, the reference control unit 210 holds position management information indicating the position of this reference area or non-reference area for the current and past several pictures. Then, based on this position management information, it is determined whether the current MB being processed is included in the reference region or the non-reference region, and the determination result is output to the encoding control unit 190 as a region determination result D13.
  • FIG. 11 is a diagram for explaining the code amount per picture in the picture to be encoded. Further, FIG. 12 is a diagram illustrating a change in code amount for each picture.
  • the moving image encoding process is performed on the encoding target picture 501 in MB units according to the raster scan order indicated by the arrows.
  • the code amount becomes almost the same code amount in one picture unit, and the code amount fluctuation can be suppressed to within one picture unit.
  • the non-reference area and the reference area are alternately displayed on the upper and lower sides of the encoding target picture. Can be used to maintain subjective image quality. Also, the amount of codes can be reduced.
  • This specific example is characterized in that the upper and lower reference areas and the non-reference areas are switched for each picture, and the reference area and the non-reference area in the first picture 503 may be reversed (that is, The lower half of the picture 503 may be a reference area, and the upper half may be a non-reference area).
  • the inter-screen prediction restriction information D12 output from the reference control unit 210 to the inter-screen prediction unit 120 includes a reference picture number, and the “reference picture number” It is a number indicating a reference image for performing motion vector search.
  • 13 to 15 are diagrams conceptually illustrating an example of the inter-screen prediction restriction information D12 that the reference control unit 210 outputs to the inter-screen prediction unit 120 in this specific example.
  • the reference control unit 210 refers to the upper half area in the past on the time axis.
  • the picture number of the picture 503 that is the image temporally closest to the encoding target picture 501 among the images that were the area is included and designated in the inter-screen prediction restriction information D12.
  • the encoding target of the images whose lower half area was the reference area in the past on the time axis is specified by being included in the inter-screen prediction restriction information D12.
  • the upper half area is referred to in the past.
  • the picture numbers of both images are designated so as to refer to both the reference area of the picture 503 which is the most recent image that was the area and the reference area of the picture 502 which is the most recent image whose lower half was the reference area in the past. .
  • the inter-picture prediction always uses the reference picture encoded with a small quantization coefficient.
  • the inter-picture prediction accuracy is improved and the moving picture coding efficiency is also improved. To do.
  • moving images generally have a large lateral movement.
  • the search range can be ensured horizontally longer than in the case of the specific example 1, and thus there is an advantage that the inter-screen prediction accuracy in the horizontal direction can be improved.
  • FIG. 16 is a diagram for explaining an example of the restriction of the intra prediction mode in each positional relationship between the reference area and the current MB.
  • the intra-screen prediction restriction information D11 output from the reference control unit 210 to the intra-screen prediction unit 110 includes mode restriction information.
  • the reference control unit 210 sets the upper pixel when the upper side of the encoding target picture 501a is a non-reference area and the current MB is adjacent to the lower side of the non-reference area.
  • the mode restriction information indicating that the in-screen prediction mode that refers to the value is prohibited is designated as the in-screen prediction restriction information D11 (FIG. 16B, “position C” column).
  • the reference control unit 210 does not specify mode restriction information.
  • the intra-screen prediction restriction information D11 may include information indicating that the prediction mode is not restricted.
  • the prediction mode in the horizontal direction of the picture is not limited in the intra prediction mode, there is an advantage that the prediction accuracy is improved compared to the above specific example 1 for an image having a horizontal movement. .
  • FIG. 17 is a diagram for explaining another example of a method for managing a reference area and a non-reference area for each picture performed by the reference control unit 210.
  • the reference control unit 210 divides each picture into three in the horizontal direction, and performs control for switching each of the pictures as a reference area and the remaining one as a non-reference area for each picture. Do.
  • the reference control unit 210 sets the right area of the encoding target picture 604 that is the first picture in time series as a non-reference area, the center and the left as reference areas, and the next picture In the following (pictures 603, 602, 601), if the area that was the non-reference area in the previous picture is right, the area is the center, left if it is the center, and if it is left, the right area is the non-reference area.
  • the reference control unit 210 refers to the current MB being processed based on the position management information indicating the position (left, center, right) of this reference area or non-reference area, as in the first specific example and the second specific example.
  • the region determination result D13 indicating whether the region is included in the region or the non-reference region is output to the encoding control unit 190.
  • the picture is divided into three parts, one of which is a non-reference area and two of which are reference areas, and the non-reference areas are moved in order of right, center, and left in time series.
  • the present invention is not limited to this.
  • the number of divisions and the order of movement of the non-reference areas may be other methods as long as the setting pattern of the non-reference areas and the reference areas is repeated in a predetermined cycle in time series.
  • each picture may be divided into more regions. This period does not need to be linked with the GOP period (IDR frame insertion interval).
  • FIG. 18 is a diagram illustrating the code amount per 1 MBL in the encoding target picture.
  • the moving image encoding process is performed on the encoding target picture 601 in MB units according to the raster scan order indicated by the arrows.
  • the proportion of non-reference areas with low image quality in a picture is narrower than in the first specific example, and when played back as a moving image, the interval at which non-reference areas appear at the same location in each picture is It becomes longer than the specific example 1. Therefore, even when the frame rate is as low as 30 fps, it is possible to receive the effect of improving the subjective image quality of the “repetitive illusion of sharp images”.
  • FIGS. 19 and 20 are diagrams conceptually illustrating an example of the inter-screen prediction restriction information D12 that the reference control unit 210 outputs to the inter-screen prediction unit 120 in this specific example.
  • the reference control unit 210 encodes the encoding target picture among the images whose left area was the reference area in the past on the time axis.
  • the picture number of the image temporally closest to 501 is specified by being included in the inter-screen prediction restriction information D12.
  • the search range 61 exists in the center area of the encoding target picture 601, the time for the encoding target picture 601 in the image whose center area has been the reference area in the past on the time axis is temporal.
  • the picture number of the closest image is included and specified in the inter-screen prediction restriction information D12.
  • the search range 61 exists in the right region of the encoding target picture 601. That is, the picture number of the image temporally closest to the encoding target picture 601 among the images whose right region has been the reference region in the past on the time axis is specified by being included in the inter-screen prediction restriction information D12.
  • the search range 61 extends over a plurality of areas such as the left and center of the encoding target picture 601 or the center and right
  • the picture number of the image is included in the inter-screen prediction restriction information D12 so as to refer to the reference area of the image in which the area at the same position as the position where the search range extends is the reference area.
  • the search range 61 extends over the left and center areas of the encoding target picture 601, but in this case, the picture that is the latest image in which the left area was the reference image in the past. Both the reference image 603 and the picture 602 that is the most recent image whose central area was the reference area in the past may be used.
  • the reference control unit 210 specifies the picture numbers of the pictures 602 and 603 by including them in the inter-screen prediction restriction information D12.
  • inter-picture prediction always uses a reference image encoded with a small quantization coefficient.
  • inter-picture prediction accuracy is improved and moving picture coding is performed. Efficiency is also improved.
  • the restriction on intra prediction is the same as in the first specific example. That is, when the current MB is adjacent to the non-reference area (for example, as shown in FIG. 20), the reference control unit 210 sets the mode restriction information so as not to refer to the pixel value from the non-reference area, and the intra-screen prediction restriction. Designated as information D11.
  • a sharp image and a sharp image are mixed in a moving image that is encoded and decoded according to the specific example described above.
  • the “repetitive illusion of a sharp image” is effective for human vision, but can be a disturbance to image processing such as image recognition.
  • Periodic sharp changes can be detected on the decoding side by observing the code amount or SAD value per macroblock, and it can be estimated whether it is a reference area or a non-reference area, but position management on the encoding side Information cannot be completely restored, and an extra processing load is generated.
  • transcoding which is once decoded and re-encoded with another method when it is desired to change the encoding method, is widely performed, but once a sharply repeated moving image material maintains its sharp pattern. If transcoding is not performed, the image quality is significantly degraded.
  • variable length encoding unit 180 encodes information (position management information) for distinguishing between a reference area and a non-reference area, and user information (for example, H.264 / AVC encoding). SEI (supplemental enhancement information) message) in the stream and output from the stream buffer. Then, the decoding device that receives the stream decodes the information and provides it to downstream image processing.
  • FIG. 24 is a configuration diagram of the transcoder according to the present embodiment.
  • the moving picture decoding apparatus 2 is the same as the H.264 standard. This is a general decoder that decodes an H.264 / AVC encoded stream and sequentially outputs image data. The motion information (motion vector) used for motion compensation and the position management information decoded from the stream are output together.
  • the moving picture decoding apparatus 1 ′ is almost the same as the moving picture decoding apparatus 1 described in the first to third specific examples.
  • the reference control unit 210 of the video decoding device 1 arbitrarily determines the positions of the reference region and the non-reference region, whereas the reference control unit 210 ′ of the video encoding device 1 ′ of the present example.
  • the position management information received from the video decoding device 2 is followed to determine the position.
  • the motion information from the video decoding device 2 is provided to the inter-screen prediction unit 120 ′, which is useful for reducing the amount of motion search processing.
  • the moving picture decoding apparatus 1 ′ and the moving picture decoding apparatus 2 have been described as being integrated so that data can be transferred through a memory or the like.
  • the position management information can be included in the ancillary data (auxiliary data).
  • a moving image encoding program for causing a computer to execute a moving image encoding method for encoding a moving image including a plurality of images arranged in time series by intra prediction or inter prediction.
  • the plurality of images are divided into a reference region that is a region that refers to a pixel value in the intra prediction or inter-screen prediction, and a non-reference region that is a region that does not refer to a pixel value, and the time series
  • a first processing step for determining the reference region and the non-reference region in the plurality of images so that the reference region and the non-reference region in the plurality of images are switched at a predetermined interval set forth above;
  • a moving image encoding program for executing a process including: a second processing step of performing quantization on the non-reference area with a coarser width than the reference area when encoding the plurality of images .
  • the present invention relates to MPEG (trademark), VC-1 (SMPTE 421M), H.264, etc.
  • the present invention can be applied to a moving picture coding system based on predictive coding such as H.265 / HEVC, and includes a video recording apparatus including a digital video camera using such a moving picture coding system, a video transmission system, a television studio device, a video phone / conference It can be used in a device or software for a personal computer that realizes these functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

Provided is a video encoding device for carrying out high-quality, low-latency encoding processing by suppressing variations in the amount of code while also enhancing subjective image quality. A video encoding device for encoding video comprising a plurality of images lined up side by side in time series by intra-frame prediction or inter-frame prediction, wherein the plurality of images are segmented into a reference region, which is a region for referencing pixel values in the intra-frame prediction or inter-frame prediction, and a non-reference region, which is a region where the pixel values are not referenced, and the reference region and non-reference region in the plurality of images are determined so that the reference region and non-reference region in the plurality of images alternate at a predetermined interval that is established in advance on the time series. During encoding of the plurality of images, the non-reference region is quantized by coarser steps than the reference region.

Description

動画像符号化装置Video encoding device
 本発明は、動画像を符号化する技術に関する。 The present invention relates to a technique for encoding a moving image.
 近年、ブロードバンドネットワークの発達による動画配信コンテンツの増加や、DVDなどの大容量記憶媒体と大画面映像表示機器の利用などにより、動画符号化技術は必要不可欠な技術となっている。また、撮像デバイスや表示デバイスの高解像度化と共に、動画像符号化技術において高解像度で符号化する技術も必要不可欠となっている。 In recent years, video coding technology has become an indispensable technology due to the increase in video distribution content due to the development of broadband networks and the use of large-capacity storage media such as DVDs and large-screen video display devices. In addition to the high resolution of the imaging device and the display device, a technology for encoding at a high resolution in the moving image encoding technology is indispensable.
 動画像符号化処理は、動画像符号化装置に入力される原画像(入力画像)をより少ないデータ量のストリームに変換する処理である。例えば、高解像度かつ高画質な符号化が可能な動画符号化技術の一つとして、国際標準であるH.264/AVC規格(非特許文献1)が存在する。 The moving image encoding process is a process of converting an original image (input image) input to the moving image encoding apparatus into a stream having a smaller data amount. For example, as one of moving image encoding technologies capable of encoding with high resolution and high image quality, the international standard H.264 is available. The H.264 / AVC standard (Non-Patent Document 1) exists.
 H.264/AVCによる符号化処理では、一般的には、原画像に対して16×16の画素で構成されるマクロブロックと呼ばれる単位で処理が行われる。また、H.264/AVCでは、画像情報が一般的に持つ特性、すなわち隣接画素間とフレーム間に高い相関を持つという特性を利用して画像の予測を行い、さらに人間の視覚では変化を知覚しにくい高周波成分などの冗長な情報を削減する。これにより、広い伝送帯域(例えば、HD-SDI(High Definition Serial Digital Interface)では約1.5Gbps)にある入力画像を、低い伝送帯域(例えば、地上波デジタル放送での約15Mbps)に適用する。 H. In the encoding processing by H.264 / AVC, processing is generally performed in units called macroblocks composed of 16 × 16 pixels with respect to the original image. H. In H.264 / AVC, image prediction is performed using characteristics that image information generally has, that is, characteristics that have high correlation between adjacent pixels and between frames, and furthermore, high-frequency components that are difficult for human vision to perceive changes. Reduce redundant information. Thereby, an input image in a wide transmission band (for example, about 1.5 Gbps in HD-SDI (High Definition Serial Digital Interface)) is applied to a low transmission band (for example, about 15 Mbps in terrestrial digital broadcasting).
 ところで、H.264/AVC符号化で用いられる予測方式には、主に画面内予測と画面間予測の二つの予測方式が存在する。画面内予測では、予測の単位となるブロックのサイズや予測方向の組み合わせに応じて複数の予測方式が用意されている。画面間予測においても、予測の単位となるブロックのサイズに応じて複数の予測方式が用意されている。H.264/AVCでは、目標とする画質や符号量に応じてこれらの予測方式を動的に選択することで、高画質かつ高圧縮な符号化方式を実現している。 By the way, H. There are mainly two prediction methods used in H.264 / AVC encoding: intra prediction and inter prediction. In the in-screen prediction, a plurality of prediction methods are prepared according to combinations of block sizes and prediction directions serving as prediction units. Also in the inter-screen prediction, a plurality of prediction methods are prepared according to the size of a block which is a prediction unit. H. In H.264 / AVC, an encoding method with high image quality and high compression is realized by dynamically selecting these prediction methods according to the target image quality and code amount.
 ここで、図21を用いて、H.264/AVC符号化の概要について説明する。図21は、従来のH.264/AVC符号化処理を行う画像符号化装置の構成を示す図である。 Here, referring to FIG. An outline of H.264 / AVC encoding will be described. FIG. 1 is a diagram illustrating a configuration of an image encoding device that performs H.264 / AVC encoding processing.
 画面内予測を用いた符号化処理を行うには、まず、モード選択部930が画面内予測部910を選択する。そして、画面内予測部910、直交変換部940、量子化部950、および可変長符号化部980を経て、原画像90からストリーム91を得る。また、画面間予測を用いた符号化処理では、モード選択部930が画面間予測部920を選択する。そして、画面間予測部920、直交変換部940、量子化部950、および可変長符号化部980を経て、原画像90からストリーム91を得る。 In order to perform an encoding process using intra prediction, first, the mode selection unit 930 selects the intra prediction unit 910. Then, the stream 91 is obtained from the original image 90 through the intra prediction unit 910, the orthogonal transform unit 940, the quantization unit 950, and the variable length coding unit 980. In the encoding process using inter-screen prediction, the mode selection unit 930 selects the inter-screen prediction unit 920. Then, the stream 91 is obtained from the original image 90 through the inter-screen prediction unit 920, the orthogonal transform unit 940, the quantization unit 950, and the variable length encoding unit 980.
 次に、量子化部950で実行される量子化について説明する。 Next, the quantization executed by the quantization unit 950 will be described.
 H.264/AVC符号化で行う量子化では、符号化制御部990が決定した量子化係数D84を用いて量子化の粒度を調整する。量子化粒度が小さければ符号量は大きくなるがより原画像に近い画像になり易く、量子化粒度が大きければ符号量は小さいが原画像から離れた画像になり易い。 H. In quantization performed by H.264 / AVC encoding, the quantization granularity is adjusted using the quantization coefficient D84 determined by the encoding control unit 990. If the quantization granularity is small, the code amount is large, but the image is likely to be closer to the original image, and if the quantization granularity is large, the code amount is small but the image is likely to be separated from the original image.
 そこで、H.264/AVC符号化では、目標とする画質や符号量に応じて量子化係数D84を動的に選択することで、高画質かつ高圧縮な符号化効率の高い符号化を実現している。 Therefore, H. In H.264 / AVC encoding, encoding with high image quality and high compression efficiency is realized by dynamically selecting the quantization coefficient D84 according to the target image quality and code amount.
 以下、H.264/AVC符号化の各処理について説明する。 The following is H. Each process of H.264 / AVC encoding will be described.
 画面内予測部910には、原画像90と、その周辺の画像である再構成画像92とが入力される。再構成画像92は、逆直交変換部970から出力される復元差分画像97と、モード選択部930によって出力される予測画像95とが足し合わされて構成される画像であり、原画像と同じ(つまり現在符号化中の)フレームを含む過去の複数フレームの画像群である。画面内予測で参照される再構成画像92は、原画像90と同じフレームである。 The in-screen prediction unit 910 receives an original image 90 and a reconstructed image 92 that is a peripheral image. The reconstructed image 92 is an image configured by adding the restored difference image 97 output from the inverse orthogonal transform unit 970 and the predicted image 95 output by the mode selection unit 930, and is the same as the original image (that is, It is an image group of a plurality of past frames including a frame (currently being encoded). The reconstructed image 92 referred to in intra-screen prediction is the same frame as the original image 90.
 そして、画面内予測部910は、原画像90と再構成画像92とから、画面内予測処理により適切な画面内予測モード(画面内予測方式)を選択し、画面内予測モードのモード情報を表す画面内予測情報D81、予測結果である画面内予測画像93、および原画像90と画面内予測画像93との差分を表す画面内予測誤差を生成する。 Then, the intra-screen prediction unit 910 selects an appropriate intra-screen prediction mode (intra-screen prediction method) from the original image 90 and the reconstructed image 92 by the intra-screen prediction process, and represents the mode information of the intra-screen prediction mode. An intra-screen prediction information D81, an intra-screen prediction image 93 which is a prediction result, and an intra-screen prediction error representing a difference between the original image 90 and the intra-screen prediction image 93 are generated.
 画面間予測部920は、原画像90と、その前後(過去または未来)の原画像から生成された再構成画像92の入力を受け付け、画面間予測情報D82、画面間予測画像94、および原画像90と画面間予測画像94との差分を表す画面間予測誤差を生成する。 The inter-screen prediction unit 920 receives the input of the original image 90 and the reconstructed image 92 generated from the original image before and after (past or future), and receives the inter-screen prediction information D82, the inter-screen prediction image 94, and the original image An inter-screen prediction error representing a difference between 90 and the inter-screen prediction image 94 is generated.
 モード選択部930は、画面内予測部910から入力される画面内予測誤差と、画面間予測部920から入力される画面間予測誤差とから、符号化モード選択アルゴリズムに従い、画面内予測および画面間予測のいずれかの符号化モードを決定する。そして、画面内予測を選択した場合には画面内予測画像93を、画面間予測を選択した場合には画面間予測画像94を、予測画像95として出力する。 The mode selection unit 930 uses the intra-screen prediction error input from the intra-screen prediction unit 910 and the inter-screen prediction error input from the inter-screen prediction unit 920 according to the encoding mode selection algorithm, and performs intra-screen prediction and inter-screen prediction. Determine any coding mode of prediction. When the intra prediction is selected, the intra prediction image 93 is output as the prediction image 95, and when the inter prediction is selected, the inter prediction image 94 is output as the prediction image 95.
 なお、符号化モード選択アルゴリズムは、ストリーム91の符号量および画質に大きな影響を与えるため、符号化対象となる原画像90の内容や映像符号化の用途によって様々な方式が存在している。 Note that the encoding mode selection algorithm greatly affects the code amount and image quality of the stream 91, and therefore there are various methods depending on the content of the original image 90 to be encoded and the purpose of video encoding.
 直交変換部940は、原画像90と予測画像95との差分である差分画像96から、直交変換処理によって周波数成分D83を生成する。なお、予測の単位(ブロック)と、直交変換の単位は同じとは限らず、差分画像96を更に分割して直交変換してもよい。 The orthogonal transform unit 940 generates a frequency component D83 from the difference image 96 that is a difference between the original image 90 and the predicted image 95 by orthogonal transform processing. Note that the unit of prediction (block) and the unit of orthogonal transformation are not necessarily the same, and the difference image 96 may be further divided and orthogonally transformed.
 量子化部950は、符号化制御部990から入力される量子化係数D84と、直交変換部940から入力される周波数成分D83とから量子化処理を行い、情報量を削減した量子化値D85を出力する。 The quantization unit 950 performs a quantization process from the quantization coefficient D84 input from the encoding control unit 990 and the frequency component D83 input from the orthogonal transform unit 940, and generates a quantized value D85 with a reduced amount of information. Output.
 逆量子化部960は、量子化値D85に対して逆量子化処理を行い、復元周波数成分D86を生成する。 The inverse quantization unit 960 performs an inverse quantization process on the quantized value D85 to generate a restored frequency component D86.
 逆直交変換部970は、復元周波数成分D86に対して逆直交変換処理を行い、復元差分画像97を生成する。そして、生成された復元差分画像97と、モード選択部930によって出力された予測画像95とが、同じブロック同士で足し合わされて、再構成画像92としてメモリ等の記憶装置に記憶される。 The inverse orthogonal transform unit 970 performs an inverse orthogonal transform process on the reconstructed frequency component D86 to generate a reconstructed difference image 97. Then, the generated restored differential image 97 and the predicted image 95 output by the mode selection unit 930 are added together in the same block, and stored as a reconstructed image 92 in a storage device such as a memory.
 可変長符号化部980は、量子化値D85と、画面内予測情報D81もしくは画面間予測情報D82を、より少ないデータ量のデータ列に符号化し、ストリーム91として出力する。 The variable length encoding unit 980 encodes the quantized value D85 and the intra-screen prediction information D81 or the inter-screen prediction information D82 into a data string having a smaller data amount, and outputs it as a stream 91.
 ストリームバッファ1000は、ストリーム91を一旦バッファリングした後、伝送路もしくは後段のデコーダに出力する。また、バッファリングしているストリーム91の符号量を符号量情報D87として、符号化制御部990に出力する。 The stream buffer 1000 once buffers the stream 91, and then outputs it to the transmission path or a subsequent decoder. The code amount of the buffered stream 91 is output to the encoding control unit 990 as code amount information D87.
 符号化制御部990は、ストリームバッファ1000から入力される符号量情報D87を用いて、レート制御アルゴリズムに従い量子化係数D84を決定し、これを量子化部950に出力する。 The encoding control unit 990 determines the quantization coefficient D84 according to the rate control algorithm using the code amount information D87 input from the stream buffer 1000, and outputs this to the quantization unit 950.
 ここで、量子化係数D84の制御によるレート制御アルゴリズムは、動画像符号化効率に大きな影響を与えるため、動画像符号化の用途によって様々な方式が存在している。量子化係数D84の制御によるレート制御アルゴリズムで動画像符号化効率を向上させる技術として、例えば、特許文献1に記載の画像符号化技術が挙げられる。 Here, since the rate control algorithm based on the control of the quantization coefficient D84 has a great influence on the moving picture coding efficiency, various systems exist depending on the use of the moving picture coding. As a technique for improving moving picture coding efficiency by a rate control algorithm based on the control of the quantization coefficient D84, for example, an image coding technique described in Patent Document 1 can be cited.
 特許文献1には、画面間予測における参照関係をピクチャ単位で管理することで、画面間予測において量子化係数を小さくした、より原画像に近い予測画像を参照することで客観画質を向上させる方法が開示されている。さらに、特許文献1には、1コマおきに鋭画像と鈍画像とを繰り返して表示すると、人間の視覚では全体が鋭画像に見える“鋭鈍画像の繰り返し錯覚”と呼ばれる視覚特性を利用して主観画質を向上させる方法も開示されている。 Patent Document 1 discloses a method for improving objective image quality by referring to a predicted image closer to an original image, in which the quantization coefficient is reduced in inter-screen prediction by managing the reference relationship in inter-screen prediction in units of pictures. Is disclosed. Further, in Patent Document 1, when a sharp image and a dull image are repeatedly displayed every other frame, a visual characteristic called “repetitive illusion of a dull image” that looks like a sharp image as a whole by human vision is utilized. A method for improving subjective image quality is also disclosed.
 図22は、特許文献1に記載の画像符号化技術における“鋭鈍画像の繰り返し錯覚”を利用した符号化効率の向上方法について説明する図である。図22に示されるように、1コマおきに、量子化係数を小さくした高画質な画像と、量子化係数を大きくして符号量を削減した低画質な画像を交互に表示すると、“鋭鈍画像の繰り返し錯覚”により、人間の視覚では動画像全体として量子化係数の小さい高画質な動画像と同等に見える。 FIG. 22 is a diagram for explaining a method for improving the encoding efficiency using the “repetitive illusion of a sharp image” in the image encoding technique described in Patent Document 1. As shown in FIG. 22, when alternately displaying a high-quality image with a reduced quantization coefficient and a low-quality image with a reduced quantization amount by increasing the quantization coefficient every other frame, “sharpness” is displayed. Due to the “repetitive illusion of images”, the entire moving image appears to be equivalent to a high-quality moving image with a small quantization coefficient in human vision.
 従って、特許文献1の画像符号化技術では、結果として主観画質を維持したまま量子化係数を大きくして符号量を削減することができる。 Therefore, in the image coding technique of Patent Document 1, it is possible to reduce the code amount by increasing the quantization coefficient while maintaining the subjective image quality.
特開2008-311824号公報JP 2008-31824 A 特開2008-153802号公報JP 2008-153802 A 特開平7-162863号公報JP-A-7-162863
 ところで、動画像符号化では、符号化および復号化時に遅延が生じることが一般的に知られている。 By the way, it is generally known that in moving picture encoding, a delay occurs during encoding and decoding.
 動画像符号化装置に画像を入力した後、この動画像符号化装置より出力された符号を動画像復号化装置に入力し、復号化処理を実行して表示を行うシステムにおいて、同一画像の入力から表示までの時間差が遅延時間であり、一般的な動画像符号化装置および動画像復号化装置では、数100ミリ秒から数秒程度の遅延となっている。 After an image is input to the moving image encoding device, the code output from the moving image encoding device is input to the moving image decoding device, and a decoding process is executed to display the same image. The time difference from display to display is the delay time, and in a general moving picture encoding apparatus and moving picture decoding apparatus, the delay is about several hundred milliseconds to several seconds.
 また、昨今では、非圧縮画像データとの同時使用などを目的として、例えば遅延時間が16ミリ秒以下といったような、動画像符号化および復号化における低遅延化の必要性が出てきている。 In recent years, for the purpose of simultaneous use with uncompressed image data and the like, there is a need for low delay in moving picture encoding and decoding such as a delay time of 16 milliseconds or less.
 低遅延の動画像符号化および復号化を実現するためには、データ発生量の変動を抑えることが必要である。一般に、画像データは、画像データ全体のデータ量から決定される固定のビットレートにより伝送され、伝送された画像データはバッファに格納されて処理される
 ここで、動画像符号化において画像のある領域においてビットレート以上の大量の符号データを生成した場合、この領域については、処理の際にバッファ内にあるデータでは足りず、バッファへの符号データの伝送待ちが生じてしまう。そして、この領域について全ての処理が完了しないと、この領域の表示を行うことができないため、結果として画像全体の表示における遅延時間が大きくなってしまう。
In order to realize low-delay video encoding and decoding, it is necessary to suppress fluctuations in the amount of data generated. In general, image data is transmitted at a fixed bit rate determined from the data amount of the entire image data, and the transmitted image data is stored and processed in a buffer. When a large amount of code data having a bit rate or higher is generated in this area, data in the buffer is insufficient for processing in this area, and waiting for transmission of code data to the buffer occurs. If all processing is not completed for this area, this area cannot be displayed, resulting in an increase in delay time in displaying the entire image.
 つまり、遅延時間は想定される最大符号発生量を処理する時間によって決定され、この遅延時間は、ビットレートと最大符号発生量との差、すなわち発生符号量の変動量に大きく影響される。 That is, the delay time is determined by the time for processing the assumed maximum code generation amount, and this delay time is greatly influenced by the difference between the bit rate and the maximum code generation amount, that is, the variation amount of the generated code amount.
 図23は、特許文献1に記載の画像符号化技術における、ピクチャ単位の量子化制御による符号量変動について説明する図である。 FIG. 23 is a diagram for explaining a code amount variation by quantization control in units of pictures in the image coding technique described in Patent Document 1.
 特許文献1の画像符号化技術では、量子化係数の大きい非参照ピクチャと、量子化係数の小さい参照ピクチャを決定し、ピクチャ単位で量子化係数を制御する。 In the image coding technique of Patent Document 1, a non-reference picture having a large quantization coefficient and a reference picture having a small quantization coefficient are determined, and the quantization coefficient is controlled in units of pictures.
 そのため、非参照ピクチャでは参照ピクチャに比べて大幅に符号量が小さくなり、ピクチャ間の符号量変動が大きくなるため、非参照ピクチャで数ピクチャ分のバッファリングが必要になり、数ピクチャ単位での遅延が生じてしまうという課題があった。 For this reason, the code amount of non-reference pictures is significantly smaller than that of reference pictures, and the code amount fluctuation between pictures is large. Therefore, buffering for several pictures is required for non-reference pictures. There was a problem that a delay occurred.
 そこで本発明は、上記課題に鑑み、動画像符号化処理において、画質を向上させながら符号量の変動を抑えることにより、高画質で低遅延な符号化処理を行うことが可能な動画像符号化装置、動画像符号化方法、および、動画像符号化プログラムを提供することを目的とする。 Accordingly, in view of the above problems, the present invention provides a moving image coding capable of performing high-quality and low-delay coding processing by suppressing fluctuations in the code amount while improving the image quality in the moving image coding processing. An object is to provide an apparatus, a moving image encoding method, and a moving image encoding program.
 上記課題を解決するために、本発明の一態様によれば、時系列に並ぶ複数の画像からなる動画像を画面内予測もしくは画面間予測によって符号化する動画像符号化装置であって、前記複数の画像を、前記画面内予測又は前記画面間予測において画素値を参照する領域である参照領域と、画素値を参照しない領域である非参照領域と、に分割し、かつ、前記時系列上においてあらかじめ定められた所定の間隔で前記複数の画像における前記参照領域と前記非参照領域とが入れ替わるように前記複数の画像における前記参照領域と前記非参照領域を決定する参照制御部と、前記複数の画像の前記符号化の際に、前記非参照領域については前記参照領域よりも粗い幅(階調)で量子化を行う量子化部と、を有することを特徴とする動画像符号化装置が提供される。 In order to solve the above-described problem, according to one aspect of the present invention, there is provided a moving image encoding apparatus that encodes a moving image including a plurality of images arranged in time series by intra prediction or inter prediction. A plurality of images are divided into a reference region that is a region that refers to a pixel value in the intra prediction or the inter-screen prediction and a non-reference region that is a region that does not refer to a pixel value, and A reference control unit that determines the reference region and the non-reference region in the plurality of images so that the reference region and the non-reference region in the plurality of images are switched at a predetermined interval in FIG. And a quantization unit that performs quantization with a width (gradation) coarser than the reference region for the non-reference region when the image is encoded. There is provided.
 この構成によれば、符号量の変動を抑えることにより遅延を抑え、かつ高画質に動画像を符号化することができる。 According to this configuration, it is possible to encode a moving image with high image quality while suppressing delay by suppressing variation in code amount.
 本発明の他の態様によれば、前記参照制御部は、前記画像において、一定単位の領域における前記参照領域と前記非参照領域との割合が、前記画像に含まれるいずれの一定単位の領域でも同じとなるように、前記参照領域と前記非参照領域を決定するようになっていてもよい。 According to another aspect of the present invention, the reference control unit may be configured such that a ratio of the reference area to the non-reference area in a certain unit area in any of the certain unit areas included in the image. The reference area and the non-reference area may be determined so as to be the same.
 この構成によれば、一定単位の領域内に符号量の変動を抑えることができる。 According to this configuration, it is possible to suppress fluctuations in the code amount within a certain unit area.
 本発明の他の態様によれば、動画像符号化装置は、前記複数の画像に対して前記画面内予測による前記符号化を行う画面内予測部をさらに有し、前記画面内予測部は、前記画像内において前記符号化対象のマクロブロックであるカレントマクロブロックと、前記参照領域または前記非参照領域と、の位置関係によって、前記参照領域の画素のみを参照して前記符号化を行うようになっていてもよい。 According to another aspect of the present invention, the video encoding device further includes an intra-screen prediction unit that performs the encoding by the intra-screen prediction on the plurality of images, and the intra-screen prediction unit includes: In the image, the encoding is performed with reference to only the pixels in the reference area according to the positional relationship between the current macroblock that is the macroblock to be encoded and the reference area or the non-reference area. It may be.
 この構成によれば、画面内予測において、高画質である参照領域の画素のみを参照することとなるため、符号化効率の低下を回避することができる。 According to this configuration, since only the pixels in the reference area with high image quality are referred to in the intra prediction, it is possible to avoid a decrease in encoding efficiency.
 本発明の他の態様によれば、動画像符号化装置は、前記複数の画像に対して前記画面間予測による前記符号化を行う画面間予測部をさらに有し、前記画面間予測部は、前記画面間予測を行う際に、動きベクトルの探索範囲が前記参照領域となる前記複数の画像の少なくとも一つを参照するようになっていてもよい。 According to another aspect of the present invention, the video encoding device further includes an inter-screen prediction unit that performs the encoding by the inter-screen prediction on the plurality of images, and the inter-screen prediction unit includes: When performing the inter-screen prediction, the motion vector search range may refer to at least one of the plurality of images serving as the reference region.
 この構成によれば、画面間予測において、高画質である参照領域の画素のみを参照することとなるため、符号化効率の低下を回避することができる。 According to this configuration, since only the pixels in the reference area having high image quality are referred to in inter-screen prediction, it is possible to avoid a decrease in encoding efficiency.
 本発明によれば、符号量の変動を抑えることにより遅延を抑え、かつ高画質に動画像を符号化することができる。 According to the present invention, it is possible to encode a moving image with high image quality while suppressing delay by suppressing fluctuations in code amount.
本発明の一実施形態に係る動画像符号化装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the moving image encoder which concerns on one Embodiment of this invention. 一実施形態に係る動画像符号化装置における参照制御部が実行するピクチャ毎の参照領域と非参照領域の管理方法の第1の具体例を示す図。The figure which shows the 1st specific example of the management method of the reference area and non-reference area | region for every picture which the reference control part in the moving image encoder which concerns on one Embodiment performs. 符号化対象ピクチャにおける1マクロブロックラインあたりの符号量を示す図。The figure which shows the code amount per macroblock line in an encoding object picture. 符号化対象ピクチャにおける1マクロブロックラインごとの符号量の変動を示す図。The figure which shows the fluctuation | variation of the code amount for every 1 macroblock line in an encoding object picture. カレントMBの探索範囲と画面間予測制限情報の対応を示す模式図。The schematic diagram which shows a response | compatibility with the search range of current MB, and inter-screen prediction restriction | limiting information. カレントMBの探索範囲と画面間予測制限情報の対応を示す模式図。The schematic diagram which shows a response | compatibility with the search range of current MB, and inter-screen prediction restriction | limiting information. カレントMBの探索範囲と画面間予測制限情報の対応を示す模式図。The schematic diagram which shows a response | compatibility with the search range of current MB, and inter-screen prediction restriction | limiting information. H.264/AVC規格における4×4ブロックに対する画面内予測における予測方向の種類を示す図。H. The figure which shows the kind of prediction direction in the prediction in a screen with respect to 4x4 block in a H.264 / AVC specification. 参照領域とカレントマクロブロックとの各位置関係における画面内予測モードの制限の一例を示す図。The figure which shows an example of the restriction | limiting of the prediction mode in a screen in each positional relationship of a reference area and the current macroblock. 本発明の一実施形態に係る参照領域と非参照領域の管理方法の第2の具体例を示す図。The figure which shows the 2nd specific example of the management method of the reference area and non-reference area which concern on one Embodiment of this invention. 符号化対象ピクチャにおける1ピクチャあたりの符号量を示す図。The figure which shows the code amount per picture in an encoding object picture. 符号化対象ピクチャにおける1ピクチャごとの符号量の変動を示す図。The figure which shows the fluctuation | variation of the code amount for every picture in an encoding object picture. カレントMBの探索範囲と画面間予測制限情報の対応を示す模式図。The schematic diagram which shows a response | compatibility with the search range of current MB, and inter-screen prediction restriction | limiting information. カレントMBの探索範囲と画面間予測制限情報の対応を示す模式図。The schematic diagram which shows a response | compatibility with the search range of current MB, and inter-screen prediction restriction | limiting information. カレントMBの探索範囲と画面間予測制限情報の対応を示す模式図。The schematic diagram which shows a response | compatibility with the search range of current MB, and inter-screen prediction restriction | limiting information. 参照領域とカレントマクロブロックとの各位置関係における画面内予測モードの制限の一例を示す図。The figure which shows an example of the restriction | limiting of the prediction mode in a screen in each positional relationship of a reference area and the current macroblock. 本発明の一実施形態に係る参照領域と非参照領域の管理方法の第3の具体例を示す図。The figure which shows the 3rd specific example of the management method of the reference area and non-reference area which concern on one Embodiment of this invention. 符号化対象ピクチャにおける1マクロブロックラインあたりの符号量を示す図。The figure which shows the code amount per macroblock line in an encoding object picture. カレントMBの探索範囲と画面間予測制限情報の対応を示す模式図。The schematic diagram which shows a response | compatibility with the search range of current MB, and inter-screen prediction restriction | limiting information. カレントMBの探索範囲と画面間予測制限情報の対応を示す模式図。The schematic diagram which shows a response | compatibility with the search range of current MB, and inter-screen prediction restriction | limiting information. 従来のH.264/AVC符号化処理を行う画像符号化装置の構成図。Conventional H.264. The block diagram of the image coding apparatus which performs a H.264 / AVC encoding process. 従来の“鋭鈍画像の繰り返し錯覚”を利用した符号化効率の向上方法を説明する図。The figure explaining the improvement method of the encoding efficiency using the conventional "repetitive illusion of a sharp image". 従来のピクチャ単位の量子化制御による符号量変動を説明する図。The figure explaining the code amount fluctuation | variation by the quantization control of the conventional picture unit. 実施例1に係るトランスコーダの構成図Configuration diagram of transcoder according to embodiment 1
 以下、本発明の実施形態について、図面を参照して説明する。なお、以下の説明において参照する各図では、他の図と同等部分は同一符号によって示される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings referred to in the following description, the same parts as those in the other drawings are denoted by the same reference numerals.
 (動画像符号化装置の構成)
 図1は、本実施形態に係る動画像符号化装置の構成の一例を示す図である。動画像符号化装置1は、画面内予測部110と、画面間予測部120と、モード選択部130と、直交変換部140と、量子化部150と、逆量子化部160と、逆直交変換部170と、可変長符号化部180と、符号化制御部190と、ストリームバッファ200と、参照制御部210と、を有する。
(Configuration of video encoding device)
FIG. 1 is a diagram illustrating an example of a configuration of a video encoding apparatus according to the present embodiment. The video encoding apparatus 1 includes an intra-screen prediction unit 110, an inter-screen prediction unit 120, a mode selection unit 130, an orthogonal transform unit 140, a quantization unit 150, an inverse quantization unit 160, and an inverse orthogonal transform. Unit 170, variable-length encoding unit 180, encoding control unit 190, stream buffer 200, and reference control unit 210.
 ここで、符号化制御部190と参照制御部210以外の構成については、図21に示される従来の動画像符号化装置の構成と同様であるので、以下においては簡単に説明する。 Here, since the configuration other than the encoding control unit 190 and the reference control unit 210 is the same as the configuration of the conventional moving image encoding apparatus shown in FIG. 21, it will be briefly described below.
 なお、図1に示される動画像符号化装置1は、例えば、LSI(Large Scale Integration)やFPGA(Field-Programmable Gate Array)などによって実現可能であり、動画像符号化処理を行う種々の画像処理機器に適用することが可能である。また、例えば、図示しないCPU(Central Processing Unit)、RAM(Random Access Memory)等のメモリ、ハードディスク等の記憶装置、ネットワークインタフェース等の一般的なコンピュータの構成と同様の構成によっても実現可能である。つまり、動画像符号化装置1の各構成の機能は、例えば、CPUがハードディスク等に記憶されているプログラムを読み出して実行することによって実現することが可能である。 1 can be realized by, for example, LSI (Large Scale Integration), FPGA (Field-Programmable Gate Array), and the like, and various image processing for performing moving image encoding processing is possible. It can be applied to equipment. Further, for example, it can be realized by a configuration similar to that of a general computer such as a memory (not shown) such as a CPU (Central Processing Unit) and a RAM (Random Access Memory), a storage device such as a hard disk, and a network interface. That is, the function of each component of the moving image encoding device 1 can be realized by, for example, the CPU reading and executing a program stored in a hard disk or the like.
 画面内予測部110は、原画像10と、その周囲に位置する画像である再構成画像12と、参照制御部210から出力される画面内予測制限情報D11(後述する)とを取得する。そして、画面内予測情報D1と、画面内予測の予測結果である画面内予測画像13と、原画像10と画面内予測画像13との差分を表す画面内予測誤差とを生成する。 The intra-screen prediction unit 110 acquires the original image 10, the reconstructed image 12 that is an image located around the original image 10, and intra-screen prediction restriction information D11 (described later) output from the reference control unit 210. Then, the intra-screen prediction information D1, the intra-screen prediction image 13 that is the prediction result of the intra-screen prediction, and the intra-screen prediction error representing the difference between the original image 10 and the intra-screen prediction image 13 are generated.
 画面内予測情報D1には、画面内予測を行ったブロックサイズを表す情報である画面内予測ブロックタイプや、画面内予測の方向を表す画面内予測モード情報が含まれる。 The intra-screen prediction information D1 includes an intra-screen prediction block type that is information indicating the block size for which intra-screen prediction has been performed, and intra-screen prediction mode information indicating the direction of intra-screen prediction.
 画面間予測部120は、原画像10と、これよりも過去の原画像(時間軸上、原画像10の前に位置する原画像。以下、同様。)または未来の原画像(時間軸上、原画像10の後に位置する原画像。以下、同様。)から生成された再構成画像12と、参照制御部210から出力される画面間予測制限情報D12(後述する)とを取得し、画面間予測情報D2と、画面間予測の予測結果である画面間予測画像14と、原画像10と画面間予測画像14との差分を表す画面間予測誤差とを生成する。 The inter-screen prediction unit 120 includes the original image 10 and a past original image (on the time axis, an original image located in front of the original image 10. The same applies hereinafter) or a future original image (on the time axis, The reconstructed image 12 generated from the original image located after the original image 10 (the same applies hereinafter) and the inter-screen prediction restriction information D12 (described later) output from the reference control unit 210 are acquired, and the inter-screen is acquired. The prediction information D2, the inter-screen prediction image 14 which is the prediction result of the inter-screen prediction, and the inter-screen prediction error representing the difference between the original image 10 and the inter-screen prediction image 14 are generated.
 画面間予測情報D2には、画面間予測を行った際のブロックサイズを表す画面間予測ブロックタイプや、動き補償を行った結果の動きベクトル情報が含まれる。 The inter-screen prediction information D2 includes an inter-screen prediction block type indicating a block size when inter-screen prediction is performed, and motion vector information as a result of motion compensation.
 モード選択部130は、画面内予測部110から出力される画面内予測誤差と、画面間予測部120から出力される画面間予測誤差とから、モード選択アルゴリズムに従って、選択する予測モード(画面内予測もしくは画面間予測)を決定する。“画面内予測”が選択された場合は画面内予測画像13を、“画面間予測”が選択された場合は画面間予測画像14を、予測画像15として出力する。 The mode selection unit 130 selects a prediction mode (intra-screen prediction) according to the mode selection algorithm from the intra-screen prediction error output from the intra-screen prediction unit 110 and the inter-screen prediction error output from the inter-screen prediction unit 120. Or, prediction between screens) is determined. When “intra-screen prediction” is selected, the intra-screen prediction image 13 is output as the predicted image 15. When “inter-screen prediction” is selected, the inter-screen prediction image 14 is output as the predicted image 15.
 直交変換部140は、原画像10と予測画像15との差分である差分画像16から、直交変換処理によって周波数成分D3を生成する。 The orthogonal transform unit 140 generates a frequency component D3 from the difference image 16 that is a difference between the original image 10 and the predicted image 15 by orthogonal transform processing.
 量子化部150は、符号化制御部190から出力される量子化係数D4と、直交変換部140から出力される周波数成分D3とから量子化処理を行い、情報量を削減した量子化値D5を出力する。 The quantization unit 150 performs a quantization process from the quantization coefficient D4 output from the encoding control unit 190 and the frequency component D3 output from the orthogonal transform unit 140, and obtains a quantization value D5 with a reduced amount of information. Output.
 逆量子化部160は、量子化部150から出力される量子化値D5に対して逆量子化処理を行い、復元周波数成分D6を生成する。 The inverse quantization unit 160 performs an inverse quantization process on the quantization value D5 output from the quantization unit 150 to generate a restored frequency component D6.
 逆直交変換部170は、逆量子化部160から出力される復元周波数成分D6に対して逆直交変換処理を行い、復元差分画像17を生成する。 The inverse orthogonal transform unit 170 performs an inverse orthogonal transform process on the restoration frequency component D6 output from the inverse quantization unit 160 to generate the restoration difference image 17.
 そして、復元差分画像17と、モード選択部130によって選択された予測画像15とを足し合わせて、再構成画像12としてメモリ等の記憶装置に記憶する。なお、後述する”非参照領域”については、再構成画像12を得る必要がないので、逆量子化部160、逆直交変換部170は処理を停止しても良い。 Then, the restored difference image 17 and the predicted image 15 selected by the mode selection unit 130 are added together and stored as a reconstructed image 12 in a storage device such as a memory. In addition, since it is not necessary to obtain the reconstructed image 12 for a “non-reference region” described later, the inverse quantization unit 160 and the inverse orthogonal transform unit 170 may stop processing.
 可変長符号化部180は、量子化値D5と、画面内予測情報D1もしくは画面間予測情報D2を、より少ないデータ量のデータ列に符号化し、ストリーム11として出力する。 The variable length encoding unit 180 encodes the quantized value D5 and the intra-screen prediction information D1 or the inter-screen prediction information D2 into a data string having a smaller data amount, and outputs the data stream 11 as a stream 11.
 ストリームバッファ200は、可変長符号化部180から出力されるストリーム11を取得し、バッファリングした後に、動画像符号化装置1に接続されている伝送路、もしくは後段のデコーダ等にストリーム11を先入れ先出し方式で出力する。また、バッファリングしているストリーム11の符号量(蓄積量)を符号量情報D7として符号化制御部190へ出力する。 The stream buffer 200 acquires the stream 11 output from the variable-length encoding unit 180, buffers the stream 11, and then puts the stream 11 in a first-in first-out manner in a transmission path connected to the moving image encoding apparatus 1, or a subsequent decoder. Output in the method. The code amount (accumulated amount) of the buffered stream 11 is output to the encoding control unit 190 as code amount information D7.
 符号化制御部190は、ストリームバッファ200から符号量情報D7を取得し、レート制御アルゴリズムに従って量子化係数D4を算出する。さらに、参照制御部210から出力されるカレントMB(マクロブロック。以下、同様。)の領域判定結果D13(後述する)が“参照領域”を示すものだった場合は量子化係数をそのままに、領域判定結果D13が“非参照領域”を示すものだった場合は量子化係数(或いは量子化パラメータ)にオフセット値を加算して、量子化部150に出力する。 The encoding control unit 190 acquires the code amount information D7 from the stream buffer 200, and calculates the quantization coefficient D4 according to the rate control algorithm. Further, if the region determination result D13 (described later) of the current MB (macroblock, the same applies hereinafter) output from the reference control unit 210 indicates “reference region”, the region is left with the quantization coefficient unchanged. If the determination result D13 indicates “non-reference region”, the offset value is added to the quantization coefficient (or quantization parameter), and the result is output to the quantization unit 150.
 ここで、「参照領域」とは他から参照されることが許可された領域、つまり画面間予測又は画面内予測においてマクロブロックの予測処理を行う際に、画面間予測においては画面間参照の探索範囲となる領域を、画面内予測においては画面内画素参照の対象となる領域を、意味し、「非参照領域」は他からの参照が禁止された領域、画面間予測においては画面間参照の探索範囲としない領域を、画面内予測においては画面内画素参照の対象としない領域を、指す。 Here, the “reference area” is an area that is permitted to be referred to by others, that is, when performing a macroblock prediction process in inter-screen prediction or intra-screen prediction, inter-screen prediction is searched for inter-screen reference. An area that is a range means an area that is the target of pixel reference within the screen in intra prediction, and `` non-reference area '' is an area that is prohibited from being referred to by others. An area that is not used as a search range refers to an area that is not subject to pixel reference within the screen in the intra prediction.
 参照制御部210は、ピクチャ毎に参照領域と非参照領域の位置を決定し、位置管理情報として保持して、予測処理対象のマクロブロックであるカレントMBが非参照領域と参照領域のどちらに含まれるのかを判定する。そして、その判定結果に応じて、また、符号化制御部190に対して、カレントMBが参照領域もしくは非参照領域のどちらに含まれるのかを表す領域判定結果D13を出力する。また、管理している参照領域情報に基づき、画面内予測部110に画面内予測制限情報D11を提供し、画面間予測部120に画面間予測制限情報D12を提供する。この点については、後に詳述する。 The reference control unit 210 determines the positions of the reference area and the non-reference area for each picture, holds the position management information, and includes the current MB, which is the macro block targeted for prediction processing, in either the non-reference area or the reference area Judge whether or not Then, according to the determination result, an area determination result D13 indicating whether the current MB is included in the reference area or the non-reference area is output to the encoding control unit 190. Further, based on the managed reference area information, the intra-screen prediction restriction information D11 is provided to the intra-screen prediction unit 110, and the inter-screen prediction restriction information D12 is provided to the inter-screen prediction unit 120. This will be described in detail later.
 以下、本実施形態に係る動画像符号化装置の特徴である参照制御部210について、以下、図面を参照しながら詳述する。 Hereinafter, the reference control unit 210, which is a feature of the video encoding apparatus according to the present embodiment, will be described in detail below with reference to the drawings.
 (参照制御部210)
 [具体例1:符号化対象ピクチャを左右分割]
 図2は、本実施形態に係る動画像符号化装置1の参照制御部210が実行するピクチャ毎の参照領域と非参照領域の管理方法の一例について説明する図である。
(Reference control unit 210)
[Specific example 1: Right-and-left division of encoding target picture]
FIG. 2 is a diagram for explaining an example of a reference area and non-reference area management method for each picture executed by the reference control unit 210 of the video encoding device 1 according to the present embodiment.
 本具体例においては、参照制御部210は各ピクチャを左右に分割し、その一方を参照領域、他方を非参照領域と定めて、これを1ピクチャ毎に切り替える制御を行う場合について説明する。 In this specific example, a case will be described in which the reference control unit 210 divides each picture into left and right, determines one as a reference area and the other as a non-reference area, and performs control for switching each picture.
 参照制御部210は、時系列(表示順。以下、同様。)上、最初のピクチャである符号化対象ピクチャ403では、符号化対象ピクチャ403の左半分を参照領域として、右半分を非参照領域とし、次ピクチャ以降(ピクチャ402、401)では、時系列上の前のピクチャで非参照領域だった領域を参照領域とし、参照領域だった領域を非参照領域とする。また、参照制御部210は、このピクチャ毎の参照領域もしくは非参照領域の位置(左半分もしくは右半分)を示す位置管理情報を、現在及び過去数ピクチャ分、保持しておく。そして、この位置管理情報に基づいて、処理中のカレントMBが参照領域もしくは非参照領域のどちらに含まれるのかを判断し、判断結果を領域判定結果D13として符号化制御部190に出力する。 The reference control unit 210 sets the left half of the encoding target picture 403 as a reference area and the right half as a non-reference area in the encoding target picture 403 that is the first picture in time series (display order; the same applies hereinafter). In the subsequent pictures (pictures 402 and 401), the area that was the non-reference area in the previous picture in time series is set as the reference area, and the area that was the reference area is set as the non-reference area. Also, the reference control unit 210 holds position management information indicating the position (left half or right half) of the reference area or non-reference area for each picture for the current and past several pictures. Then, based on this position management information, it is determined whether the current MB being processed is included in the reference region or the non-reference region, and the determination result is output to the encoding control unit 190 as a region determination result D13.
 (画質についての効果)
 これにより、符号化対象ピクチャの左および右のいずれでも、交互に非参照領域と参照領域が切り替わって表示されることとなるため、“鋭鈍画像の繰り返し錯覚”を利用して主観画質を維持することが可能である。さらに、符号量を削減することもできる。
(Effect on image quality)
As a result, the non-reference area and the reference area are alternately displayed on both the left and right sides of the encoding target picture, so that the subjective image quality is maintained using the “repetitive illusion of sharp images”. Is possible. Furthermore, the amount of codes can be reduced.
 なお、本具体例においては、1ピクチャ毎に左右の参照領域と非参照領域とを切り替える点が特徴であり、最初のピクチャ403における参照領域と非参照領域は逆であっても構わない(すなわち、ピクチャ403の右半分を参照領域とし、左半分を非参照領域としてもよい)。 Note that this specific example is characterized in that the left and right reference areas and the non-reference areas are switched for each picture, and the reference area and the non-reference area in the first picture 403 may be reversed (that is, The right half of the picture 403 may be a reference area and the left half may be a non-reference area).
 (符号量変動についての効果)
 次に、図2を用いて説明したように、参照制御部210が、符号化対象ピクチャを左右で非参照領域と参照領域とに分割した場合の符号量変動について説明する。
(Effect on code amount fluctuation)
Next, as described with reference to FIG. 2, a description will be given of code amount fluctuations when the reference control unit 210 divides the encoding target picture into a non-reference region and a reference region on the left and right.
 図3は、符号化対象ピクチャにおける1マクロブロックライン(以下、「MBL」という)あたりの符号量について説明する図である。また、図4は、MBLごとにおける符号量の変動を示す図である。 FIG. 3 is a diagram for explaining the code amount per macro block line (hereinafter referred to as “MBL”) in the encoding target picture. FIG. 4 is a diagram showing a change in code amount for each MBL.
 動画像符号化処理は、図3に示されるように、符号化対象ピクチャ401に対して、矢印で示されるラスタスキャン順に従ってMB単位で実行される。 As shown in FIG. 3, the moving image encoding process is performed on the encoding target picture 401 in MB units according to the raster scan order indicated by the arrows.
 ここで、本具体例のように、符号化対象ピクチャ401の左半分が参照領域、右半分が非参照領域となった場合、符号量の少ない非参照領域と符号量の多い参照領域の1MBL内に含まれる面積は、いずれのMBLにおいても常に一定となる(図3参照)。そのため、本具体例の場合、図4に示される通り、符号量は1MBL単位でほぼ同じとなり、ピクチャー間での変動も少ないため、符号量変動を1MBL単位以内にまで抑えることができる。 Here, as in this specific example, when the left half of the encoding target picture 401 is a reference area and the right half is a non-reference area, a non-reference area with a small amount of code and a reference area with a large amount of code within 1 MBL The area included in is always constant in any MBL (see FIG. 3). Therefore, in the case of this specific example, as shown in FIG. 4, the code amount is almost the same in 1 MBL units, and the fluctuation between pictures is small, so that the code amount fluctuation can be suppressed to within 1 MBL unit.
 よって、本具体例の符号化方法によれば、符号量変動を吸収するストリームバッファ200の容量を削減することが可能となり、低遅延化を実現することができる。 Therefore, according to the encoding method of this specific example, it is possible to reduce the capacity of the stream buffer 200 that absorbs code amount fluctuations, and to realize a low delay.
 なお、本具体例では、符号化対象ピクチャを左右に分割しているが、これに限定されるものではない。一定MB数毎に含まれる参照領域と非参照領域の割合が常に同じとなり、一定間隔で非参照領域と参照領域とが切り替わるものであれば、“鋭鈍画像の繰り返し錯覚”を利用したまま低遅延化を実現することが可能である。よって、例えば、ピクチャを斜めに分割する方法や、3つ以上の複数の領域に分割する方法、縞のパターンで分割する方法であっても構わない。 In this specific example, the encoding target picture is divided into left and right, but the present invention is not limited to this. If the ratio of the reference area and the non-reference area included in every fixed number of MBs is always the same, and the non-reference area and the reference area are switched at regular intervals, the “repetitive illusion of sharp images” can be used. It is possible to realize a delay. Therefore, for example, a method of dividing a picture diagonally, a method of dividing a picture into three or more regions, and a method of dividing by a stripe pattern may be used.
 (画面内予測制限情報および画面間予測制限情報について)
 ここで、参照制御部210が出力する画面内予測制限情報D11および画面間予測制限情報D12について説明する。
(About intra-screen prediction restriction information and inter-screen prediction restriction information)
Here, the intra-screen prediction restriction information D11 and the inter-screen prediction restriction information D12 output by the reference control unit 210 will be described.
 図2の例のように、符号化対象ピクチャの左右で高画質な参照領域と低画質な非参照領域とに分けると、画質を維持しつつ、符号量の変動を抑えて遅延を少なくすることが可能である。しかし、一方で、ピクチャの左右で高画質な参照領域と低画質な非参照領域とに分けた場合、画面内予測および画面間予測において非参照領域の画素値が参照された場合に符号化効率が悪化する。 As shown in the example of FIG. 2, when the picture area to be encoded is divided into a high-quality reference area and a low-quality non-reference area on the left and right sides, the delay of the code amount is suppressed and the delay is reduced while maintaining the image quality. Is possible. However, on the other hand, when the picture area is divided into a high-quality reference area and a low-quality non-reference area on the left and right sides of the picture, coding efficiency is obtained when pixel values in the non-reference area are referred to in intra prediction and inter prediction. Gets worse.
 そこで、参照制御部210は、非参照領域から画質劣化が伝搬しないように、カレントMBの画面内予測については画面内予測部110に画面内予測制限情報D11を、画面間予測については画面間予測部120に画面間予測制限情報D12を出力する。 Therefore, the reference control unit 210 provides intra-screen prediction restriction information D11 to the intra-screen prediction unit 110 for intra-screen prediction of the current MB and inter-screen prediction for inter-screen prediction so that image quality degradation does not propagate from the non-reference region. The inter-screen prediction restriction information D12 is output to the unit 120.
 (画面間予測の制限)
 まず、参照制御部210が画面間予測部120に対して出力する画面間予測制限情報D12について説明する。
(Restriction of prediction between screens)
First, the inter-screen prediction restriction information D12 that the reference control unit 210 outputs to the inter-screen prediction unit 120 will be described.
 画面間予測制限情報D12には、参照ピクチャ番号が含まれる。「参照ピクチャ番号」は、画面間予測処理において、動きベクトル探索を行う参照画像を示す番号である。また、画面間予測処理は、カレントMBの位置またはそこから予測された位置を中心とした探索範囲内でカレントMBと似た画素ブロックを探索する処理である。 The inter picture prediction restriction information D12 includes a reference picture number. The “reference picture number” is a number indicating a reference image on which a motion vector search is performed in the inter-screen prediction process. The inter-screen prediction process is a process of searching for a pixel block similar to the current MB within a search range centered on the position of the current MB or a position predicted therefrom.
 図5~図7は、本具体例において、参照制御部210が画面間予測部120に対して出力する画面間予測制限情報D12の一例について概念的に説明する図である。 5 to 7 are diagrams conceptually illustrating an example of the inter-screen prediction restriction information D12 that the reference control unit 210 outputs to the inter-screen prediction unit 120 in this specific example.
 参照制御部210は、図5に示されるように、符号化順における過去に、符号化対象ピクチャ401の探索範囲41が参照領域に含まれていた(つまり、左半分の領域が参照領域だった)ピクチャのうち、符号化対象ピクチャ401に対して時間的に最も近い画像であるピクチャ403のピクチャ番号を、画面間予測制限情報D12に含めて指定する。 As shown in FIG. 5, the reference control unit 210 included the search range 41 of the encoding target picture 401 in the past in the coding order (that is, the left half region was the reference region). ) Among the pictures, the picture number of the picture 403 which is the image temporally closest to the encoding target picture 401 is included and designated in the inter-screen prediction restriction information D12.
 また、図6に示されるように、探索範囲41が右半分の非参照領域内に存在しているならば、符号化順上、過去に右半分の領域が参照領域だった画像のうち符号化対象ピクチャ401に対して時間的に最も近い画像であるピクチャ402のピクチャ番号を、画面間予測制限情報D12に含めて指定する。 In addition, as shown in FIG. 6, if the search range 41 exists in the right-side non-reference area, the coding is performed on the image in the coding order in the right half area in the past. The picture number of the picture 402 that is the image temporally closest to the target picture 401 is specified by being included in the inter-screen prediction restriction information D12.
 また、図7に示されるように、カレントMBが符号化対象ピクチャ401の中央付近に位置することで、探索範囲41が左右両方の領域にまたがっている場合は、過去に左半分の領域が参照領域だった直近の画像であるピクチャ403の参照領域(より具体的には、参照領域における探索範囲41と同一範囲部分。図15においても同様。)と、過去に右半分が参照領域だった直近の画像であるピクチャ402の参照領域(より具体的には、参照領域における探索範囲41と同一範囲部分。図15においても同様。)の両方を参照する様に、両画像のピクチャ番号を指定する。 Further, as shown in FIG. 7, when the current MB is located near the center of the encoding target picture 401 and the search range 41 extends over both the left and right areas, the left half area is referred to in the past. The reference area of the picture 403 that is the most recent image that was the area (more specifically, the same area as the search area 41 in the reference area; the same applies to FIG. 15) and the nearest area in which the right half was the reference area in the past The picture numbers of both images are designated so as to refer to both the reference area of the picture 402 that is the image of the image (more specifically, the same area portion as the search area 41 in the reference area, which is the same in FIG. 15). .
 このような画面間予測制限情報D12を受取った画面間予測部120は、原則として、指定されたピクチャ番号の参照領域のみを参照して、画面間予測を行なう。
 従って、本具体例によれば、画面間予測では常に小さい量子化係数で符号化された参照画像を使用することになるため、結果として、画面間予測精度が向上し動画像符号化効率も向上する。
The inter-screen prediction unit 120 that has received such inter-screen prediction restriction information D12 basically performs inter-screen prediction with reference to only the reference area of the designated picture number.
Therefore, according to this specific example, the inter-picture prediction always uses the reference picture encoded with a small quantization coefficient. As a result, the inter-picture prediction accuracy is improved and the moving picture coding efficiency is also improved. To do.
 (画面内予測の制限)
 次に、参照制御部210が画面内予測部110に対して出力する画面内予測制限情報D11について説明する。
(In-screen prediction limit)
Next, the intra-screen prediction restriction information D11 that the reference control unit 210 outputs to the intra-screen prediction unit 110 will be described.
 画面内予測制限情報D11には、モード制限情報が含まれる。参照制御部210は、画面内予測部110に対して非参照領域から画素値を参照せずに、参照領域からのみ画素値を参照するように、モード制限情報を設定する。以下、「モード制限情報」について説明する。 The in-screen prediction restriction information D11 includes mode restriction information. The reference control unit 210 sets the mode restriction information so that the intra-screen prediction unit 110 refers to the pixel value only from the reference region without referring to the pixel value from the non-reference region. The “mode restriction information” will be described below.
 図8は、H.264/AVC規格に規定されている4×4ブロックに対する画面内予測における予測モード(予測方向)の種類を示す図である。また、図9は、参照領域とカレントMBとの各位置関係における画面内予測モードの制限の一例について説明する図である。 FIG. It is a figure which shows the kind of prediction mode (prediction direction) in the prediction in a screen with respect to 4x4 block prescribed | regulated to H.264 / AVC standard. FIG. 9 is a diagram for explaining an example of the restriction of the intra prediction mode in each positional relationship between the reference area and the current MB.
 参照制御部210は、図9(a)に示されるように、符号化対象ピクチャ401aの左側が非参照領域で、カレントMBが参照領域内にあり、非参照領域の右側に隣接している場合は、左側の画素値を参照する画面内予測モードを使用禁止にすることを示すモード制限情報を、画面内予測制限情報D11として指定する(図9(c)「位置A」欄)。 As illustrated in FIG. 9A, the reference control unit 210 has a non-reference area on the left side of the current picture 401a, a current MB in the reference area, and is adjacent to the right side of the non-reference area. Designates mode restriction information indicating that the use of the intra prediction mode referring to the pixel value on the left side is prohibited as the intra prediction restriction information D11 (FIG. 9C, “position A” column).
 また、図9(b)に示されるように、符号化対象ピクチャ401bの右側が非参照領域で、カレントMBが非参照領域の左側に隣接している場合は、右側の画素値を参照する画面内予測モードを使用禁止にすることを示すモード制限情報を、画面内予測制限情報D11として指定する(図9(c)「位置B」欄)。 Also, as shown in FIG. 9B, when the right side of the encoding target picture 401b is a non-reference area and the current MB is adjacent to the left side of the non-reference area, a screen for referring to the pixel value on the right side The mode restriction information indicating that the use of the intra prediction mode is prohibited is specified as the intra prediction restriction information D11 (FIG. 9 (c) “position B” column).
 参照領域とカレントMBとの位置関係が上記以外の場合、つまり符号化対象ピクチャの左側が非参照領域で、カレントMBが非参照領域の右側に隣接していない場合と、符号化対象ピクチャの右側が非参照領域で、カレントMBが非参照領域の左側に隣接していない場合は、画面内予測モードに制限を加える必要がない。よって、参照制御部210は、モード制限情報は特に指定しない。この時、例えば、画面内予測制限情報D11としては予測モードに制限がない旨を示す情報が含まれるようになっていてもよい。 When the positional relationship between the reference area and the current MB is other than the above, that is, the left side of the encoding target picture is a non-reference area and the current MB is not adjacent to the right side of the non-reference area, and the right side of the encoding target picture Is a non-reference area and the current MB is not adjacent to the left side of the non-reference area, it is not necessary to limit the intra prediction mode. Therefore, the reference control unit 210 does not specify mode restriction information. At this time, for example, the intra-screen prediction restriction information D11 may include information indicating that the prediction mode is not restricted.
 [具体例2:符号化対象ピクチャを上下分割]
 図10は、参照制御部210で行うピクチャ毎の参照領域と非参照領域の管理方法の他の例について説明する図である。本具体例においては、参照制御部210は各ピクチャを上下に分割し、その一方を参照領域、他方を非参照領域として、これを1ピクチャ毎に切り替える制御を行う。
[Specific example 2: Upper and lower division of encoding target picture]
FIG. 10 is a diagram for explaining another example of a method for managing a reference area and a non-reference area for each picture performed by the reference control unit 210. In this specific example, the reference control unit 210 divides each picture into upper and lower parts, and performs control for switching each picture as a reference area and the other as a non-reference area.
 図10に示されるように、参照制御部210は、例えば、時系列上、最初のピクチャである符号化対象ピクチャ503の上半分を参照領域として、下半分を非参照領域とし、次ピクチャ以降(ピクチャ502、501)では、時間軸上、前ピクチャで非参照領域だった領域を参照領域とし、参照領域だった領域を非参照領域とする。また、参照制御部210は、この参照領域もしくは非参照領域の位置を示す位置管理情報を現在及び過去数ピクチャ分、保持しておく。そして、この位置管理情報に基づいて、処理中のカレントMBが参照領域もしくは非参照領域のどちらに含まれるのかを判断し、判断結果を領域判定結果D13として符号化制御部190に出力する。 As illustrated in FIG. 10, for example, the reference control unit 210 sets the upper half of the encoding target picture 503, which is the first picture in time series, as a reference area, the lower half as a non-reference area, and the subsequent pictures ( In the pictures 502 and 501), on the time axis, an area that was a non-reference area in the previous picture is set as a reference area, and an area that was a reference area is set as a non-reference area. Further, the reference control unit 210 holds position management information indicating the position of this reference area or non-reference area for the current and past several pictures. Then, based on this position management information, it is determined whether the current MB being processed is included in the reference region or the non-reference region, and the determination result is output to the encoding control unit 190 as a region determination result D13.
 (符号量変動についての効果)
 以下、図10を用いて説明したように、参照制御部210が、符号化対象ピクチャを上下で非参照領域と参照領域とに分割した場合の符号量変動について説明する。
(Effect on code amount fluctuation)
Hereinafter, as described with reference to FIG. 10, a description will be given of code amount fluctuations when the reference control unit 210 divides an encoding target picture into a non-reference area and a reference area in the upper and lower directions.
 図11は、符号化対象ピクチャにおける1ピクチャあたりの符号量について説明する図である。また、図12は、ピクチャごとにおける符号量の変動を示す図である。 FIG. 11 is a diagram for explaining the code amount per picture in the picture to be encoded. Further, FIG. 12 is a diagram illustrating a change in code amount for each picture.
 動画像符号化処理は、図11に示されるように、符号化対象ピクチャ501に対して、矢印で示されるラスタスキャン順に従ってMB単位で実行される。 As shown in FIG. 11, the moving image encoding process is performed on the encoding target picture 501 in MB units according to the raster scan order indicated by the arrows.
 ここで、本具体例のように、符号化対象ピクチャ501の上半分が参照領域、下半分が非参照領域となった場合、符号量の少ない非参照領域と符号量の多い参照領域の1ピクチャ内に含まれる面積は、いずれのピクチャでも常に一定となる。そのため、本具体例の場合、図12に示される通り、符号量は1ピクチャ単位でほぼ同じ符号量となり、符号量変動を1ピクチャ単位以内にまで抑えることができる。 Here, as in this specific example, when the upper half of the encoding target picture 501 is a reference area and the lower half is a non-reference area, one picture of a non-reference area with a small code amount and a reference area with a large code amount The area contained within is always constant for any picture. Therefore, in this specific example, as shown in FIG. 12, the code amount becomes almost the same code amount in one picture unit, and the code amount fluctuation can be suppressed to within one picture unit.
 よって、本具体例の符号化方法によれば、符号量変動を吸収するストリームバッファ200の容量を削減することが可能となり、低遅延化を実現することができる。 Therefore, according to the encoding method of this specific example, it is possible to reduce the capacity of the stream buffer 200 that absorbs code amount fluctuations, and to realize a low delay.
 また、画質については、上記具体例1と同様に、符号化対象ピクチャの上下のいずれでも交互に非参照領域と参照領域とが切り替わって表示されることとなるため、“鋭鈍画像の繰り返し錯覚”を利用して主観画質を維持することが可能である。また、符号量を削減することもできる。 As for the image quality, similarly to the first specific example, the non-reference area and the reference area are alternately displayed on the upper and lower sides of the encoding target picture. Can be used to maintain subjective image quality. Also, the amount of codes can be reduced.
 なお、本具体例においては、1ピクチャ毎に上下の参照領域と非参照領域とを切り替える点が特徴であり、最初のピクチャ503における参照領域と非参照領域は逆であっても構わない(すなわち、ピクチャ503の下半分を参照領域とし、上半分を非参照領域としてもよい)。 This specific example is characterized in that the upper and lower reference areas and the non-reference areas are switched for each picture, and the reference area and the non-reference area in the first picture 503 may be reversed (that is, The lower half of the picture 503 may be a reference area, and the upper half may be a non-reference area).
 (画面間予測の制限)
 具体例1と同様に、参照制御部210が画面間予測部120に対して出力する画面間予測制限情報D12には、参照ピクチャ番号が含まれ、「参照ピクチャ番号」は画面間予測処理において、動きベクトル探索を行う参照画像を示す番号である。
(Restriction of prediction between screens)
As in the first specific example, the inter-screen prediction restriction information D12 output from the reference control unit 210 to the inter-screen prediction unit 120 includes a reference picture number, and the “reference picture number” It is a number indicating a reference image for performing motion vector search.
 図13~図15は、本具体例において、参照制御部210が画面間予測部120に対して出力する画面間予測制限情報D12の一例について概念的に説明する図である。 13 to 15 are diagrams conceptually illustrating an example of the inter-screen prediction restriction information D12 that the reference control unit 210 outputs to the inter-screen prediction unit 120 in this specific example.
 参照制御部210は、図13に示されるように、符号化対象ピクチャ501の探索範囲51が上半分の参照領域内に存在しているならば、時間軸上、過去に上半分の領域が参照領域だった画像のうち符号化対象ピクチャ501に対して時間的に最も近い画像であるピクチャ503のピクチャ番号を、画面間予測制限情報D12に含めて指定する。 As shown in FIG. 13, if the search range 51 of the encoding target picture 501 exists in the upper half reference area, the reference control unit 210 refers to the upper half area in the past on the time axis. The picture number of the picture 503 that is the image temporally closest to the encoding target picture 501 among the images that were the area is included and designated in the inter-screen prediction restriction information D12.
 また、図14に示されるように、探索範囲51が下半分の非参照領域内に存在しているならば、時間軸上、過去に下半分の領域が参照領域だった画像のうち符号化対象ピクチャ501に対して時間的に最も近い画像であるピクチャ502のピクチャ番号を、画面間予測制限情報D12に含めて指定する。 Also, as shown in FIG. 14, if the search range 51 exists in the lower half non-reference area, the encoding target of the images whose lower half area was the reference area in the past on the time axis. The picture number of the picture 502 that is the closest image in time to the picture 501 is specified by being included in the inter-screen prediction restriction information D12.
 また、図15に示されるように、カレントMBが符号化対象ピクチャ501の中央付近に位置することで、探索範囲51が上下両方の領域にまたがっている場合は、過去に上半分の領域が参照領域だった直近の画像であるピクチャ503の参照領域と、過去に下半分が参照領域だった直近の画像であるピクチャ502の参照領域の両方を参照する様に、両画像のピクチャ番号を指定する。 As shown in FIG. 15, when the current MB is located near the center of the encoding target picture 501 and the search range 51 extends over both upper and lower areas, the upper half area is referred to in the past. The picture numbers of both images are designated so as to refer to both the reference area of the picture 503 which is the most recent image that was the area and the reference area of the picture 502 which is the most recent image whose lower half was the reference area in the past. .
 従って、本具体例によれば、画面間予測では常に小さい量子化係数で符号化された参照画像を使用することになるため、結果として、画面間予測精度が向上し動画像符号化効率も向上する。 Therefore, according to this specific example, the inter-picture prediction always uses the reference picture encoded with a small quantization coefficient. As a result, the inter-picture prediction accuracy is improved and the moving picture coding efficiency is also improved. To do.
 また、動画像は一般的に横方向への動きが大きい。本具体例では、上記具体例1の場合よりも探索範囲を横長に確保できるため、横方向の画面間予測精度を向上させることができるという利点がある。 Also, moving images generally have a large lateral movement. In this specific example, the search range can be ensured horizontally longer than in the case of the specific example 1, and thus there is an advantage that the inter-screen prediction accuracy in the horizontal direction can be improved.
 (画面内予測の制限)
 図16は、参照領域とカレントMBとの各位置関係における画面内予測モードの制限の一例について説明する図である。
(In-screen prediction limit)
FIG. 16 is a diagram for explaining an example of the restriction of the intra prediction mode in each positional relationship between the reference area and the current MB.
 具体例1と同様に、参照制御部210が画面内予測部110に対して出力する画面内予測制限情報D11には、モード制限情報が含まれる。参照制御部210は、図16(a)に示されるように、符号化対象ピクチャ501aの上側が非参照領域で、カレントMBが非参照領域の下側に隣接している場合は、上側の画素値を参照する画面内予測モードを使用禁止にすることを示すモード制限情報を、画面内予測制限情報D11として指定する(図16(b)「位置C」欄)。 As in the first specific example, the intra-screen prediction restriction information D11 output from the reference control unit 210 to the intra-screen prediction unit 110 includes mode restriction information. As illustrated in FIG. 16A, the reference control unit 210 sets the upper pixel when the upper side of the encoding target picture 501a is a non-reference area and the current MB is adjacent to the lower side of the non-reference area. The mode restriction information indicating that the in-screen prediction mode that refers to the value is prohibited is designated as the in-screen prediction restriction information D11 (FIG. 16B, “position C” column).
 参照領域とカレントMBとの位置関係が上記以外の場合、つまり符号化対象ピクチャの上側が非参照領域で、カレントMBが非参照領域の下側に隣接していない場合と、符号化対象ピクチャの下側が非参照領域の場合には、画面内予測モードに制限を加える必要はない。よって、参照制御部210は、モード制限情報は特に指定しない。この時、例えば、画面内予測制限情報D11としては予測モードに制限がない旨を示す情報が含まれるようになっていてもよい。 When the positional relationship between the reference area and the current MB is other than the above, that is, when the upper side of the encoding target picture is a non-reference area and the current MB is not adjacent to the lower side of the non-reference area, When the lower side is a non-reference area, there is no need to limit the intra prediction mode. Therefore, the reference control unit 210 does not specify mode restriction information. At this time, for example, the intra-screen prediction restriction information D11 may include information indicating that the prediction mode is not restricted.
 本具体例では、画面内予測モードにおいて、ピクチャの左右方向の予測モードが制限されないため、横方向の動きがある画像に対しては、上記具体例1よりも予測精度が向上するという利点がある。 In this specific example, since the prediction mode in the horizontal direction of the picture is not limited in the intra prediction mode, there is an advantage that the prediction accuracy is improved compared to the above specific example 1 for an image having a horizontal movement. .
 [具体例3:符号化対象ピクチャを複数に分割]
 図17は、参照制御部210で行うピクチャ毎の参照領域と非参照領域の管理方法の他の例について説明する図である。本具体例においては、参照制御部210は各ピクチャを横方向に3つに分割し、そのうちの2つを参照領域、残りの1つを非参照領域として、これを1ピクチャ毎に切り替える制御を行う。
[Specific example 3: Divide the encoding target picture into a plurality]
FIG. 17 is a diagram for explaining another example of a method for managing a reference area and a non-reference area for each picture performed by the reference control unit 210. In this specific example, the reference control unit 210 divides each picture into three in the horizontal direction, and performs control for switching each of the pictures as a reference area and the remaining one as a non-reference area for each picture. Do.
 図17に示されるように、参照制御部210は、例えば、時系列上、最初のピクチャである符号化対象ピクチャ604の右の領域を非参照領域として、中央と左を参照領域とし、次ピクチャ以降(ピクチャ603、602、601)では、前ピクチャで非参照領域だった領域が右なら中央、中央なら左、左なら右の領域を非参照領域とし、残りの領域を参照領域とする。 As illustrated in FIG. 17, for example, the reference control unit 210 sets the right area of the encoding target picture 604 that is the first picture in time series as a non-reference area, the center and the left as reference areas, and the next picture In the following ( pictures 603, 602, 601), if the area that was the non-reference area in the previous picture is right, the area is the center, left if it is the center, and if it is left, the right area is the non-reference area.
 参照制御部210は、上記具体例1や具体例2と同様に、この参照領域もしくは非参照領域の位置(左、中央、右)を示す位置管理情報に基づいて、処理中のカレントMBが参照領域もしくは非参照領域のどちらに含まれるのかを表す領域判定結果D13を符号化制御部190に出力する。 The reference control unit 210 refers to the current MB being processed based on the position management information indicating the position (left, center, right) of this reference area or non-reference area, as in the first specific example and the second specific example. The region determination result D13 indicating whether the region is included in the region or the non-reference region is output to the encoding control unit 190.
 なお、本具体例ではピクチャを3つに分割し、そのうちの1つを非参照領域、2つを参照領域とし、時系列上、非参照領域を右、中央、左の順番に移動するようにしたが、これに限定されるものではない。ピクチャを複数分割する場合は、分割数や非参照領域の移動順は他の方法でもよく、非参照領域と参照領域の設定パターンが、時系列上、所定の周期で繰り返されるものであればよい。例えば、各ピクチャをより多くの領域に分割してもよい。なおこの周期は、GOP周期(IDRフレームの挿入間隔)と連動させる必要はない。 In this specific example, the picture is divided into three parts, one of which is a non-reference area and two of which are reference areas, and the non-reference areas are moved in order of right, center, and left in time series. However, the present invention is not limited to this. When the picture is divided into a plurality of parts, the number of divisions and the order of movement of the non-reference areas may be other methods as long as the setting pattern of the non-reference areas and the reference areas is repeated in a predetermined cycle in time series. . For example, each picture may be divided into more regions. This period does not need to be linked with the GOP period (IDR frame insertion interval).
 (符号量変動についての効果)
 以下、図17を用いて説明したように、参照制御部210が、符号化対象ピクチャを3分割し、非参照領域と参照領域の位置を管理した場合の符号量変動について説明する。
(Effect on code amount fluctuation)
Hereinafter, as described with reference to FIG. 17, a description will be given of fluctuations in code amount when the reference control unit 210 divides the encoding target picture into three and manages the positions of the non-reference area and the reference area.
 図18は、符号化対象ピクチャにおける1MBLあたりの符号量について説明する図である。 FIG. 18 is a diagram illustrating the code amount per 1 MBL in the encoding target picture.
 動画像符号化処理は、図18に示されるように、符号化対象ピクチャ601に対して、矢印で示されるラスタスキャン順に従ってMB単位で実行される。 As shown in FIG. 18, the moving image encoding process is performed on the encoding target picture 601 in MB units according to the raster scan order indicated by the arrows.
 ここで、本具体例のように、符号化対象ピクチャ601の右が非参照領域となり、中央と左が参照領域となった場合、符号量の少ない非参照領域と符号量の多い参照領域の1MBL内に含まれる面積は、いずれのMBLでも常に一定となる(図18参照)。そのため、本具体例の場合、上記具体例1と同様に、符号量は1MBL単位でほぼ同じとなり、符号量変動を1MBL単位以内にまで抑えることができる。 Here, as in this specific example, when the right of the encoding target picture 601 is a non-reference area and the center and the left are reference areas, 1 MBL of a non-reference area with a small code amount and a reference area with a large code amount The area contained therein is always constant in any MBL (see FIG. 18). Therefore, in the case of this specific example, the code amount is almost the same in 1 MBL unit as in the above specific example 1, and the code amount variation can be suppressed to within 1 MBL unit.
 よって、本具体例の符号化方法によれば、符号量変動を吸収するストリームバッファ200の容量を削減することが可能となり、低遅延化を実現することができる。 Therefore, according to the encoding method of this specific example, it is possible to reduce the capacity of the stream buffer 200 that absorbs code amount fluctuations, and to realize a low delay.
 また、画質については、ピクチャ内において画質の低い非参照領域の占める割合が上記具体例1よりも狭く、動画像として再生した場合に、各ピクチャの同一箇所において非参照領域が出現する間隔が上記具体例1よりも長くなる。よって、フレームレートが30fpsなどの低い場合でも、“鋭鈍画像の繰り返し錯覚”の主観画質向上効果を受けることが可能である。 As for image quality, the proportion of non-reference areas with low image quality in a picture is narrower than in the first specific example, and when played back as a moving image, the interval at which non-reference areas appear at the same location in each picture is It becomes longer than the specific example 1. Therefore, even when the frame rate is as low as 30 fps, it is possible to receive the effect of improving the subjective image quality of the “repetitive illusion of sharp images”.
 (画面間予測の制限)
 図19および図20は、本具体例において、参照制御部210が画面間予測部120に対して出力する画面間予測制限情報D12の一例について概念的に説明する図である。
(Restriction of prediction between screens)
19 and 20 are diagrams conceptually illustrating an example of the inter-screen prediction restriction information D12 that the reference control unit 210 outputs to the inter-screen prediction unit 120 in this specific example.
 参照制御部210は、符号化対象ピクチャ601の探索範囲61が左の参照領域内に存在しているならば、時間軸上、過去に左の領域が参照領域だった画像のうち符号化対象ピクチャ501に対して時間的に最も近い画像のピクチャ番号を、画面間予測制限情報D12に含めて指定する。また、探索範囲61が符号化対象ピクチャ601の中央の領域内に存在しているならば、時間軸上、過去に中央の領域が参照領域だった画像のうち符号化対象ピクチャ601に対して時間的に最も近い画像のピクチャ番号を、画面間予測制限情報D12に含めて指定する。探索範囲61が符号化対象ピクチャ601の右の領域内に存在している場合も同様である。つまり、時間軸上、過去に右の領域が参照領域だった画像のうち符号化対象ピクチャ601に対して時間的に最も近い画像のピクチャ番号を、画面間予測制限情報D12に含めて指定する。 If the search range 61 of the encoding target picture 601 exists in the left reference area, the reference control unit 210 encodes the encoding target picture among the images whose left area was the reference area in the past on the time axis. The picture number of the image temporally closest to 501 is specified by being included in the inter-screen prediction restriction information D12. Further, if the search range 61 exists in the center area of the encoding target picture 601, the time for the encoding target picture 601 in the image whose center area has been the reference area in the past on the time axis is temporal. The picture number of the closest image is included and specified in the inter-screen prediction restriction information D12. The same applies when the search range 61 exists in the right region of the encoding target picture 601. That is, the picture number of the image temporally closest to the encoding target picture 601 among the images whose right region has been the reference region in the past on the time axis is specified by being included in the inter-screen prediction restriction information D12.
 また、図19および図20に示されるように、探索範囲61が符号化対象ピクチャ601の左と中央、もしくは中央と右、の様に複数の領域にまたがっている場合は、過去の画像のうち、探索範囲がまたがっている位置と同じ位置の領域が参照領域だった画像の参照領域を参照する様に、その画像のピクチャ番号を画面間予測制限情報D12に含めて指定する。 Further, as shown in FIGS. 19 and 20, when the search range 61 extends over a plurality of areas such as the left and center of the encoding target picture 601 or the center and right, The picture number of the image is included in the inter-screen prediction restriction information D12 so as to refer to the reference area of the image in which the area at the same position as the position where the search range extends is the reference area.
 なお、図19および図20の例では、参照画像として単一のピクチャのみを参照する場合を示しているが、上記具体例1で図7を用いて説明したように、複数の参照画像を参照するようになっていてもよい。例えば、図19の例では、探索範囲61が符号化対象ピクチャ601の左と中央の領域にまたがっているが、この場合には、過去に左の領域が参照画像だった直近の画像であるピクチャ603と、過去に中央の領域が参照領域だった直近の画像であるピクチャ602の両方を参照画像とするようになっていてもよい。この時、参照制御部210は、ピクチャ602とピクチャ603のピクチャ番号を画面間予測制限情報D12に含めて指定する。 In the examples of FIGS. 19 and 20, a case where only a single picture is referred to as a reference image is shown. However, as described with reference to FIG. You may come to do. For example, in the example of FIG. 19, the search range 61 extends over the left and center areas of the encoding target picture 601, but in this case, the picture that is the latest image in which the left area was the reference image in the past. Both the reference image 603 and the picture 602 that is the most recent image whose central area was the reference area in the past may be used. At this time, the reference control unit 210 specifies the picture numbers of the pictures 602 and 603 by including them in the inter-screen prediction restriction information D12.
 以上のように、本具体例によれば、画面間予測では常に小さい量子化係数で符号化された参照画像を使用することになるため、結果として、画面間予測精度が向上し動画像符号化効率も向上する。 As described above, according to this specific example, inter-picture prediction always uses a reference image encoded with a small quantization coefficient. As a result, inter-picture prediction accuracy is improved and moving picture coding is performed. Efficiency is also improved.
 また、単一の参照画像に対して、1ピクチャを2つの領域に分割する上記具体例1よりも広い探索範囲を確保できるため、結果として、画面間予測精度が向上し動画像符号化効率も向上するという利点がある。 In addition, a wider search range than the first specific example in which one picture is divided into two regions can be secured for a single reference image. As a result, inter-screen prediction accuracy is improved and moving picture coding efficiency is also improved. There is an advantage of improvement.
 (画面内予測の制限)
 画面内予測の制限については、上記具体例1と同様である。すなわち、参照制御部210は、カレントMBが非参照領域に隣接する場合(例えば、図20のような場合)に、非参照領域から画素値を参照しないようにモード制限情報を、画面内予測制限情報D11として指定する。
(In-screen prediction limit)
The restriction on intra prediction is the same as in the first specific example. That is, when the current MB is adjacent to the non-reference area (for example, as shown in FIG. 20), the reference control unit 210 sets the mode restriction information so as not to refer to the pixel value from the non-reference area, and the intra-screen prediction restriction. Designated as information D11.
 上述の具体例に準じて符号化され、復号化された動画像中には、鋭鈍画像と鋭鈍画像とが混在する。“鋭鈍画像の繰り返し錯覚”は人の視覚には有効であるが、画像認識等の画像処理に対しては、外乱となりうる。周期的な鋭鈍変化は、復号側においてマクロブロック当りの符号量或いはSAD値の観察により検出でき、参照領域と非参照領域のどちらであるか一応推定はできるが、符号化側での位置管理情報を完全に復元できるとは限らず、また、余計な処理負荷が発生する。
 また、符号化方式を変更したい場合に一旦復号化し、再度別方式で符号化するトランスコードが広く行なわれているが、一度鋭鈍繰り返しにされた動画素材は、その鋭鈍のパターンを維持してトランスコードしないと、画質が著しく劣化する。
A sharp image and a sharp image are mixed in a moving image that is encoded and decoded according to the specific example described above. The “repetitive illusion of a sharp image” is effective for human vision, but can be a disturbance to image processing such as image recognition. Periodic sharp changes can be detected on the decoding side by observing the code amount or SAD value per macroblock, and it can be estimated whether it is a reference area or a non-reference area, but position management on the encoding side Information cannot be completely restored, and an extra processing load is generated.
In addition, transcoding, which is once decoded and re-encoded with another method when it is desired to change the encoding method, is widely performed, but once a sharply repeated moving image material maintains its sharp pattern. If transcoding is not performed, the image quality is significantly degraded.
 本例では、動画像符号化装置において、可変長符号化部180が参照領域と非参照領域とを区別する情報(位置管理情報)を符号化し、ユーザ情報等(例えばH.264/AVC符号化におけるSEI(supplemental enhancement information)メッセージ)としてストリームに含めて、ストリームバッファから出力する。そして、そのストリームを受取った復号化装置は、当該情報を復号化し、下流の画像処理に提供する。 In this example, in the video encoding apparatus, the variable length encoding unit 180 encodes information (position management information) for distinguishing between a reference area and a non-reference area, and user information (for example, H.264 / AVC encoding). SEI (supplemental enhancement information) message) in the stream and output from the stream buffer. Then, the decoding device that receives the stream decodes the information and provides it to downstream image processing.
 図24は、本実施例に係るトランスコーダの構成図である。
 動画像復号化装置2は、H.264/AVC符号化ストリームを復号化し、画像データを順次出力する、一般的なデコーダである。動き補償に用いた動き情報(動きベクトル)と、ストリームから復号化された位置管理情報を一緒に出力する。
 動画像復号化装置1’は、先の具体例1乃至3で説明した動画像復号化装置1とほぼ同じである。ただし、動画像復号化装置1の参照制御部210が、参照領域と非参照領域の位置を任意に決定していたのに対し、本例の動画像符号化装置1’の参照制御部210’は、動画像復号化装置2から受取った位置管理情報を踏襲して、それらの位置を決定する点で異なる。基本的には、かつて非参照領域だったところが非参照領域として維持すればよく、かつて参照領域だったところが非参照領域となる分には問題ない。なお、動画像復号化装置2からの動き情報は、画面間予測部120’に提供され、動き探索の処理量低減に役立てられる。
FIG. 24 is a configuration diagram of the transcoder according to the present embodiment.
The moving picture decoding apparatus 2 is the same as the H.264 standard. This is a general decoder that decodes an H.264 / AVC encoded stream and sequentially outputs image data. The motion information (motion vector) used for motion compensation and the position management information decoded from the stream are output together.
The moving picture decoding apparatus 1 ′ is almost the same as the moving picture decoding apparatus 1 described in the first to third specific examples. However, the reference control unit 210 of the video decoding device 1 arbitrarily determines the positions of the reference region and the non-reference region, whereas the reference control unit 210 ′ of the video encoding device 1 ′ of the present example. Is different in that the position management information received from the video decoding device 2 is followed to determine the position. Basically, what was once a non-reference area may be maintained as a non-reference area, and there is no problem as long as a former reference area becomes a non-reference area. Note that the motion information from the video decoding device 2 is provided to the inter-screen prediction unit 120 ′, which is useful for reducing the amount of motion search processing.
 なお、本実施例のトランスコーダでは、動画像復号化装置1’と動画像復号化装置2が一体化され、メモリ等と通じてデータの受け渡しができるものとして説明したが、両者が遠隔にあり、SDI(ビット直列デジタルインターフェース)等のベースバンド信号伝送媒体で接続される場合、位置管理情報はアンシラリーデータ(補助データ)に含めることができる。 In the transcoder of the present embodiment, the moving picture decoding apparatus 1 ′ and the moving picture decoding apparatus 2 have been described as being integrated so that data can be transferred through a memory or the like. When connected by a baseband signal transmission medium such as SDI (bit serial digital interface), the position management information can be included in the ancillary data (auxiliary data).
 (付記)
 なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
(Appendix)
It should be noted that the scope of the present invention is not limited to the illustrated and described exemplary embodiments, but includes all embodiments that provide the same effects as those intended by the present invention. Further, the scope of the invention can be defined by any desired combination of particular features among all the disclosed features.
 前述の実施形態の一部または全部は、以下の各付記のようにも記載することができる。しかしながら、以下の各付記は、あくまでも、本発明の単なる例示に過ぎず、本発明は、かかる場合のみに限るものではない。 Some or all of the above-described embodiments can be described as in the following supplementary notes. However, the following supplementary notes are merely examples of the present invention, and the present invention is not limited to such cases.
 時系列に並ぶ複数の画像からなる動画像を画面内予測もしくは画面間予測によって符号化する動画像符号化方法をコンピュータに実行させる動画像符号化プログラムであって、該プログラムは、前記コンピュータに、
 前記複数の画像を、前記画面内予測又は前記画面間予測において画素値を参照する領域である参照領域と、画素値を参照しない領域である非参照領域と、に分割し、かつ、前記時系列上においてあらかじめ定められた所定の間隔で前記複数の画像における前記参照領域と前記非参照領域とが入れ替わるように前記複数の画像における前記参照領域と前記非参照領域を決定する第1の処理ステップと、
 前記複数の画像の前記符号化の際に、前記非参照領域については前記参照領域よりも粗い幅で量子化を行う第2の処理ステップと、を含む処理を実行させるための動画像符号化プログラム。
A moving image encoding program for causing a computer to execute a moving image encoding method for encoding a moving image including a plurality of images arranged in time series by intra prediction or inter prediction.
The plurality of images are divided into a reference region that is a region that refers to a pixel value in the intra prediction or inter-screen prediction, and a non-reference region that is a region that does not refer to a pixel value, and the time series A first processing step for determining the reference region and the non-reference region in the plurality of images so that the reference region and the non-reference region in the plurality of images are switched at a predetermined interval set forth above; ,
A moving image encoding program for executing a process including: a second processing step of performing quantization on the non-reference area with a coarser width than the reference area when encoding the plurality of images .
 本発明は、MPEG(商標)、VC-1(SMPTE 421M)、H.265/HEVC等の予測符号化に基づく動画像符号化方式に適用でき、そのような動画像符号化方式を用いるデジタルビデオカメラを含む映像記録装置、映像伝送システム、テレビスタジオ機器、テレビ電話/会議装置、或いはそれらの機能を実現するパソコン用ソフト等で利用可能である。 The present invention relates to MPEG (trademark), VC-1 (SMPTE 421M), H.264, etc. The present invention can be applied to a moving picture coding system based on predictive coding such as H.265 / HEVC, and includes a video recording apparatus including a digital video camera using such a moving picture coding system, a video transmission system, a television studio device, a video phone / conference It can be used in a device or software for a personal computer that realizes these functions.
 1 動画像符号化装置、  10 原画像、  11 ストリーム、  12 再構成画像、  13 画面内予測画像、  14 画面間予測画像、  15 予測画像、
 16 差分画像、  17 復元差分画像
 41 探索範囲、  51 探索範囲、  61 探索範囲、  90 原画像、  91 ストリーム、  92 再構成画像、  93 画面内予測画像、
 94 画面間予測画像、  95 予測画像、  96 差分画像、  97 復元差分画像
 110 画面内予測部、  120 画面間予測部、  130 モード選択部、  140 直交変換部、  150 量子化部、  160 逆量子化部、
 170 逆直交変換部、  180 可変長符号化部、  190 符号化制御部
 200 ストリームバッファ、  210 参照制御部
 401 符号化対象ピクチャ、  401a、401b 符号化対象ピクチャ、  402 ピクチャ、  403 ピクチャ、  501 符号化対象ピクチャ、
 501a 符号化対象ピクチャ、  502 ピクチャ、  503 ピクチャ
 601 符号化対象ピクチャ、  602 ピクチャ、  603 ピクチャ、  910 画面内予測部、  920 画面間予測部、  930 モード選択部、
 940 直交変換部、  950 量子化部、  960 逆量子化部、  970 逆直交変換部、  980 可変長符号化部、  990 符号化制御部、  1000 ストリームバッファ、
 D1 画面内予測情報、  D2 画面間予測情報、  D3 周波数成分、  D4 量子化係数、  D5 量子化値、  D6 復元周波数成分、  D7 符号量情報、
 D11 画面内予測制限情報、  D12 画面間予測制限情報、  D13 領域判定結果、  D81 画面内予測情報、  D82 画面間予測情報、  D83 周波数成分、
 D84 量子化係数、  D85 量子化値、  D86 復元周波数成分、  D87 符号量情報
DESCRIPTION OF SYMBOLS 1 Moving image encoder, 10 Original image, 11 Stream, 12 Reconstructed image, 13 Intra-screen prediction image, 14 Inter-screen prediction image, 15 Prediction image,
16 differential images, 17 restored differential images, 41 search ranges, 51 search ranges, 61 search ranges, 90 original images, 91 streams, 92 reconstructed images, 93 intra prediction images,
94 inter-screen prediction image, 95 prediction image, 96 difference image, 97 restored differential image 110 intra-screen prediction unit, 120 inter-screen prediction unit, 130 mode selection unit, 140 orthogonal transform unit, 150 quantization unit, 160 inverse quantization unit ,
170 Inverse orthogonal transform unit, 180 Variable length coding unit, 190 Coding control unit 200 Stream buffer, 210 Reference control unit 401 Picture to be coded, 401a, 401b Picture to be coded, 402 picture, 403 picture, 501 Code target Picture,
501a encoding target picture, 502 picture, 503 picture 601 encoding target picture, 602 picture, 603 picture, 910 intra prediction unit, 920 inter prediction unit, 930 mode selection unit,
940 orthogonal transform unit, 950 quantization unit, 960 inverse quantization unit, 970 inverse orthogonal transform unit, 980 variable length coding unit, 990 encoding control unit, 1000 stream buffer,
D1 intra-screen prediction information, D2 inter-screen prediction information, D3 frequency component, D4 quantization coefficient, D5 quantized value, D6 restored frequency component, D7 code amount information,
D11 intra-screen prediction restriction information, D12 inter-screen prediction restriction information, D13 region determination result, D81 intra-screen prediction information, D82 inter-screen prediction information, D83 frequency component,
D84 quantization coefficient, D85 quantization value, D86 restoration frequency component, D87 code amount information

Claims (5)

  1.  時系列に並ぶ複数の画像からなる動画像を画面内予測もしくは画面間予測によって符号化する動画像符号化装置であって、
     前記複数の画像を、前記画面内予測又は前記画面間予測において画素値を参照する領域である参照領域と、画素値を参照しない領域である非参照領域と、に分割し、かつ、前記時系列上においてあらかじめ定められた所定の間隔で前記複数の画像における前記参照領域と前記非参照領域とが入れ替わるように前記複数の画像における前記参照領域と前記非参照領域を決定する参照制御部と、
     前記複数の画像の前記符号化の際に、前記非参照領域については前記参照領域よりも粗い幅で量子化を行う量子化部と、を有することを特徴とする動画像符号化装置。
    A video encoding device that encodes a video consisting of a plurality of images arranged in time series by intra prediction or inter prediction,
    The plurality of images are divided into a reference region that is a region that refers to a pixel value in the intra prediction or inter-screen prediction, and a non-reference region that is a region that does not refer to a pixel value, and the time series A reference control unit that determines the reference region and the non-reference region in the plurality of images so that the reference region and the non-reference region in the plurality of images are switched at a predetermined interval above;
    A moving image coding apparatus comprising: a quantization unit configured to perform quantization with a coarser width than the reference region for the non-reference region when the plurality of images are encoded.
  2.  前記参照制御部は、前記画像において、一定単位の領域における前記参照領域と前記非参照領域との割合が、前記画像に含まれるいずれの一定単位の領域でも同じとなるように、前記参照領域と前記非参照領域を決定することを特徴とする請求項1に記載の動画像符号化装置。 In the image, the reference control unit is configured so that a ratio of the reference area and the non-reference area in a certain unit area is the same in any certain unit area included in the image. The moving picture coding apparatus according to claim 1, wherein the non-reference area is determined.
  3.  前記複数の画像に対して前記画面内予測による前記符号化を行う画面内予測部をさらに有し、
     前記画面内予測部は、前記画像内において前記符号化対象のマクロブロックであるカレントマクロブロックと、前記参照領域または前記非参照領域と、の位置関係によって、前記参照領域の画素のみを参照して前記符号化を行うことを特徴とする請求項1又は2に記載の動画像符号化装置。
    An intra-screen prediction unit that performs the encoding by the intra-screen prediction on the plurality of images;
    The intra-screen prediction unit refers to only the pixels in the reference area according to the positional relationship between the current macroblock that is the encoding target macroblock and the reference area or the non-reference area in the image. The moving image encoding apparatus according to claim 1, wherein the encoding is performed.
  4.  前記複数の画像に対して前記画面間予測による前記符号化を行う画面間予測部をさらに有し、
     前記画面間予測部は、前記画面間予測を行う際に、動きベクトルの探索範囲が前記参照領域となる前記複数の画像の少なくとも一つを参照することを特徴とする請求項1から3のいずれか一項に記載の動画像符号化装置。
    An inter-screen prediction unit that performs the encoding by the inter-screen prediction for the plurality of images;
    The inter-screen prediction unit refers to at least one of the plurality of images whose motion vector search range is the reference region when performing the inter-screen prediction. The moving image encoding device according to claim 1.
  5.  参照制御部と量子化部とを有し、時系列に並ぶ複数の画像からなる動画像を画面内予測もしくは画面間予測によって符号化する動画像符号化装置が実行する動画像符号化方法であって、
     前記参照制御部は、前記複数の画像を、前記画面内予測又は前記画面間予測において画素値を参照する領域である参照領域と、画素値を参照しない領域である非参照領域と、に分割し、かつ、前記時系列上においてあらかじめ定められた所定の間隔で前記複数の画像における前記参照領域と前記非参照領域とが入れ替わるように前記複数の画像における前記参照領域と前記非参照領域を決定する第1のステップと、
     前記量子化部は、前記複数の画像の前記符号化の際に、前記非参照領域については前記参照領域よりも粗い粒度で量子化を行う第2のステップと、を含むことを特徴とする動画像符号化方法。
    This is a moving image encoding method executed by a moving image encoding apparatus that includes a reference control unit and a quantization unit and encodes a moving image composed of a plurality of images arranged in time series by intra prediction or inter prediction. And
    The reference control unit divides the plurality of images into a reference region that refers to a pixel value in the intra prediction or inter prediction and a non-reference region that does not refer to a pixel value. In addition, the reference area and the non-reference area in the plurality of images are determined so that the reference area and the non-reference area in the plurality of images are switched at predetermined intervals on the time series. A first step;
    The quantization unit includes a second step of performing quantization with a coarser granularity than the reference region for the non-reference region when the plurality of images are encoded. Image coding method.
PCT/JP2012/078784 2011-11-17 2012-11-07 Video encoding device WO2013073422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-251879 2011-11-17
JP2011251879A JP2013110466A (en) 2011-11-17 2011-11-17 Moving image encoding device

Publications (1)

Publication Number Publication Date
WO2013073422A1 true WO2013073422A1 (en) 2013-05-23

Family

ID=48429485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078784 WO2013073422A1 (en) 2011-11-17 2012-11-07 Video encoding device

Country Status (2)

Country Link
JP (1) JP2013110466A (en)
WO (1) WO2013073422A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009208B (en) * 2019-12-27 2021-07-06 Tcl华星光电技术有限公司 Optimization method of panel display, display panel and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723392A (en) * 1993-06-16 1995-01-24 Mitsubishi Electric Corp Video signal encoding/decoding system
JPH0870458A (en) * 1994-08-29 1996-03-12 Sanyo Electric Co Ltd Method for controlling encoding quantity
JP2002064829A (en) * 2000-08-23 2002-02-28 Kddi Research & Development Laboratories Inc Quantization control apparatus of dynamic image
JP2005236459A (en) * 2004-02-18 2005-09-02 Nippon Hoso Kyokai <Nhk> Motion picture encoder, encoding method, and program
JP2011035444A (en) * 2009-07-29 2011-02-17 Sony Corp Image processing apparatus and image processing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934568B2 (en) * 2003-03-04 2007-06-20 松下電器産業株式会社 Video coding method and apparatus
JP5238523B2 (en) * 2009-01-13 2013-07-17 株式会社日立国際電気 Moving picture encoding apparatus, moving picture decoding apparatus, and moving picture decoding method
JP5067471B2 (en) * 2010-11-29 2012-11-07 株式会社日立製作所 Decoding method, decoding apparatus, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723392A (en) * 1993-06-16 1995-01-24 Mitsubishi Electric Corp Video signal encoding/decoding system
JPH0870458A (en) * 1994-08-29 1996-03-12 Sanyo Electric Co Ltd Method for controlling encoding quantity
JP2002064829A (en) * 2000-08-23 2002-02-28 Kddi Research & Development Laboratories Inc Quantization control apparatus of dynamic image
JP2005236459A (en) * 2004-02-18 2005-09-02 Nippon Hoso Kyokai <Nhk> Motion picture encoder, encoding method, and program
JP2011035444A (en) * 2009-07-29 2011-02-17 Sony Corp Image processing apparatus and image processing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASATOSHI TAKADA ET AL.: "Development on ultra-low delay video codec for broadcasting system", HITACHI KOKUSAI ELECTRIC TECHNICAL JOURNAL, 19 March 2010 (2010-03-19), pages 29 - 35 *
TAKAHIKO FUKINUKI: "Repetition of Sharp/Blurred TV Pictures and Its Application to Frame Interpolation (TFI) : Extension of Signal Processing of Visual Perception", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 63, no. 4, 1 April 2009 (2009-04-01), pages 549 - 552 *

Also Published As

Publication number Publication date
JP2013110466A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
KR100667806B1 (en) Method and apparatus for video encoding and decoding
JP4908180B2 (en) Video encoding device
US8630347B2 (en) Video decoding apparatus and video decoding method
JP4755093B2 (en) Image encoding method and image encoding apparatus
US20070199011A1 (en) System and method for high quality AVC encoding
US20070025444A1 (en) Coding Method
US9307241B2 (en) Video encoding method and a video encoding apparatus using the same
JP4875007B2 (en) Moving picture coding apparatus, moving picture coding method, and moving picture decoding apparatus
US20070098078A1 (en) Method and apparatus for video encoding/decoding
JP5137687B2 (en) Decoding device, decoding method, and program
JP4774315B2 (en) Image decoding apparatus and image decoding method
US20150016518A1 (en) Video Decoding with Reduced Complexity Deblocking
EP3057319A1 (en) Adaptive resolution video decoder
JP7343817B2 (en) Encoding device, encoding method, and encoding program
JP5529161B2 (en) Method and apparatus for browsing video streams
US20070014364A1 (en) Video coding method for performing rate control through frame dropping and frame composition, video encoder and transcoder using the same
JP2011250400A (en) Moving picture encoding apparatus and moving picture encoding method
US9930352B2 (en) Reducing noise in an intraframe appearance cycle
WO2011108146A1 (en) Image coding device, image coding/decoding system, image coding method, and image display method
WO2013073422A1 (en) Video encoding device
JP2009218965A (en) Image processor, imaging device mounted with the same and image reproduction device
WO2012165428A1 (en) Video encoding device
JP5656575B2 (en) Image encoding device
KR20170095047A (en) Dynamic frame deletion apparatus and method
JP4857243B2 (en) Image encoding apparatus, control method therefor, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848816

Country of ref document: EP

Kind code of ref document: A1