WO2013065511A1 - Molten salt electrolysis metal fabrication method and apparatus for use in same - Google Patents

Molten salt electrolysis metal fabrication method and apparatus for use in same Download PDF

Info

Publication number
WO2013065511A1
WO2013065511A1 PCT/JP2012/077223 JP2012077223W WO2013065511A1 WO 2013065511 A1 WO2013065511 A1 WO 2013065511A1 JP 2012077223 W JP2012077223 W JP 2012077223W WO 2013065511 A1 WO2013065511 A1 WO 2013065511A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
metal
potential
electrode
producing
Prior art date
Application number
PCT/JP2012/077223
Other languages
French (fr)
Japanese (ja)
Inventor
知之 粟津
真嶋 正利
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/355,943 priority Critical patent/US20140291161A1/en
Priority to CN201280054132.1A priority patent/CN103906861A/en
Publication of WO2013065511A1 publication Critical patent/WO2013065511A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the present invention relates to a method for producing metal by molten salt electrolysis and an apparatus used for the method.
  • Dry smelting smelting is a method of separating a target metal by melting ore in a high-temperature furnace. For example, a concentrate, a roasted ore, or a sintered ore is melted in a high-temperature furnace, concentrated into a crude metal lump, and gangue and impurities are separated as slag (page 46 of Non-Patent Document 1). In smelting and refining, the metal contained in the ore is separated based on the difference in specific gravity when it is melted. In addition, it is required that the objects to be separated have a low solubility. Since elements satisfying these conditions are limited among metal materials, there is a problem that the target elements that can be separated by dry smelting are limited.
  • the hydrometallurgical smelting is a method in which ore is dissolved in a solution of alkali or acid, and the target metal is separated and extracted from this solution.
  • methods for separating and extracting the target metal from this aqueous solution include a method using ion exchange, a method using solvent extraction, and a method using aqueous solution electrolysis.
  • the ion exchange method is a method of reversibly ion-exchange using a solid having in part a group of ions capable of ion exchange called an ion exchange agent (page 194 of Non-Patent Document 1).
  • Ion exchange is an excellent treatment due to the adsorption capacity and exchange capacity of ion exchange resin, but it is processed by repeated adsorption and dissociation of ions, so it is not suitable for treating large quantities of substances economically and efficiently. There is.
  • the solvent extraction method is a separation method that utilizes the difference in distribution depending on the type of solute in two solvents that do not dissolve in each other (page 199 of Non-Patent Document 1).
  • This solvent extraction is ionized by acid treatment or the like, and it is necessary to carry out a large number of treatment steps for separation, and accordingly, a large amount of acid and alkali are required and a large amount of waste liquid is generated.
  • the method of electrolytic smelting by aqueous solution electrolysis is a method for producing pure metal by utilizing the difference in difficulty in anodic dissolution or cathode deposition depending on elements. Moreover, the formation reaction of the hardly soluble salt with respect to the impurity ion in the electrolyte solution to be used is also utilized (page 219 of Non-Patent Document 1).
  • metal elements that can be separated and precipitated by aqueous electrolytic purification are limited, and there is a problem that, for example, a material such as rare earth cannot be deposited in principle.
  • Al electrolytic smelting using molten salt electrolysis is also known.
  • Al which is a material to be refined, is alloyed to lower the melting point, and smelting is performed using the specific gravity difference as a three-layer system of molten salt and recovered metal.
  • This method has a problem that when the target metal is Al and the potential of the coexisting impurities is close to the potential of the purification target metal, it is mixed as an impurity in the deposited target metal.
  • Non-Patent Document 2 describes the following method. First, a hard scrap or a soft scrap of a cemented carbide tool is reacted with a molten salt of sodium nitrate and then dissolved in water to prepare a sodium tungstate aqueous solution. Then, an ammonium tungstate aqueous solution is produced from the sodium tungstate aqueous solution by an ion exchange method using an ion exchange resin, and ammonium paratungstate (APT) is crystallized from the ammonium tungstate aqueous solution.
  • APT ammonium paratungstate
  • Hard scrap is a generic term for scraps that maintain the shape of a product, and soft scrap refers to powdered scrap that consists of powder scraps, cutting scraps, and the like generated when processing and manufacturing a carbide tool.
  • Patent Document 1 when sodium tungstate is produced by oxidizing hard alloy scrap and / or heavy metal scrap in a molten salt bath, sodium hydroxide 60 to 90 wt% and sodium sulfate 10 to 40 wt% % Molten salt has been proposed. It has also been proposed that the reaction between the scrap and the molten salt be carried out in a rotary kiln that is operated batchwise and can be heated directly.
  • Non-Patent Document 2 the reaction between the hard scrap or soft scrap of the carbide tool and the molten salt of sodium nitrate occurs extremely vigorously, so that the reaction is difficult to control and there is a problem in the safety of operation. is there. Also, when hard scrap or soft scrap of cemented carbide tool and molten salt of sodium nitrate are reacted, metals such as vanadium and chromium contained in the hard scrap and soft scrap of cemented carbide tool are water-soluble metals. It will be contained in the sodium tungstate aqueous solution in the form of oxide ions. For this reason, these metals become impurities and there is a problem that high purity is difficult.
  • the melting point of sodium sulfate as a molten salt serving as an oxidizing agent is as high as 884 ° C., and the temperature during the reaction must be as high as 884 ° C. or higher. For this reason, there is a problem that the metal material is corroded. Moreover, since reaction becomes slow, there exists a problem that reaction takes time and energy loss is large.
  • lithium is extracted mainly from lithium-containing ores (spodumene, ambrigonite, petalite, lepidrite, etc.), salt lakes and underground brines with high lithium concentration.
  • lithium-containing ores sesumene, ambrigonite, petalite, lepidrite, etc.
  • salt lakes and underground brines with high lithium concentration.
  • Japan since Japan has neither lithium-containing ore nor salt lakes, the actual situation is that almost all of them depend on imports. Therefore, recently, studies have been started to separate and recover lithium from lithium-containing waste generated in the manufacturing process of lithium-containing products such as lithium batteries or lithium-containing products that are used and discarded.
  • lithium cobaltate which is a positive electrode material of a lithium secondary battery
  • a reduction reaction in a lithium chloride molten salt together with metal lithium to produce lithium oxide and cobalt or cobalt oxide is precipitated and separated.
  • a method has been proposed in which lithium oxide is electrolyzed in a lithium chloride molten salt to deposit and recover metallic lithium on the cathode (Japanese Patent Application Laid-Open No. 2005-011698).
  • this method needs to add metallic lithium in order to reduce and separate cobalt contained in the object to be treated, and employs a process of adding metallic lithium to recover metallic lithium. There is a problem that it is not efficient.
  • a mixture of carbon and lithium manganate which is a positive electrode material of a lithium secondary battery, is roasted in any of an air atmosphere, an oxidizing atmosphere, an inert atmosphere, and a reducing atmosphere to obtain lithium.
  • a method for recovering lithium by eluting lithium as lithium hydroxide and lithium carbonate by leaching this roasted product with water by using lithium oxide has been proposed (Patent Document 3).
  • Patent Document 3 A method for recovering lithium by eluting lithium as lithium hydroxide and lithium carbonate by leaching this roasted product with water by using lithium oxide has been proposed (Patent Document 3).
  • Patent Document 3 proposes a method for recovering lithium by eluting lithium as lithium hydroxide and lithium carbonate by leaching this roasted product with water by using lithium oxide.
  • tantalum is mainly used for tantalum capacitors and can be recovered from tantalum capacitor scrap. Specifically, it is recovered through processes of oxidation treatment, magnetic separation, sieving, running water separation, pulverization, sieving, leaching, oxidation treatment, reduction treatment, and leaching (Non-patent Documents 3, pages 319 to 326). reference).
  • Vanadium (V) is used as an additive to steel and as a desulfurization catalyst in petroleum refining. What was used as a steel additive is collected as steel scrap and recycled as steel. Vanadium pentoxide can be obtained by sequentially carrying out the steps of classification, roasting, pulverization, leaching, filtration, leachate, dehydration, thermal decomposition, and dissolution for the spent catalyst (the same document, pages 391 to 396). page).
  • Molybdenum (Mo) is also used as an additive and alloy for steel and as a desulfurization catalyst in petroleum refining. Those used as steel additives and alloy elements can be recovered as steel and alloys and used as they are in the form of steel and alloys. Mo can be obtained by sequentially performing the steps of roasting, removal of oil / water / sulfur, basic leaching, and recovery for the used catalyst (the same reference, pages 301 to 303). .
  • niobium is used as an additive to steel, and those used as such steel additives are recovered as steel scrap.
  • the content of niobium such as high-strength steel and stainless steel is extremely low and is not recycled as niobium (Id., Page 339).
  • Manganese (Mn) is mostly used for steel and aluminum alloys, and is recovered as steel scrap and aluminum alloy scrap, respectively. In the case of recycling for steel, manganese has a large proportion of remaining in various slags, and manganese forming slag is not suitable for recycling. Manganese in slag is partly used as manganese calcium fertilizer. In addition, aluminum cans used as aluminum alloys are recycled after being collected (page 343 to 344).
  • Chromium (Cr) used for steel (stainless steel) and superalloy is recycled as steel scrap and superalloy scrap, respectively, and is recycled and recycled. Pp. 219-221).
  • the recovery techniques as described above have a problem that the number of processes in the recovery process such as roasting (heating), pulverization, leaching, reduction, etc. is large and complicated, so that the processing takes time and costs increase.
  • roasting is necessary to perform the processing, and processing that is not subject to extraction accompanying the processing is performed, and unnecessary energy is used.
  • unnecessary oxides are generated, and a lot of waste is generated.
  • acid treatment and base treatment are performed, waste liquids of acid and base are generated after the treatment, and an environmental load is generated.
  • the conventional metal recovery technique has problems such as high processing cost, large energy loss, large amount of waste, and large environmental load.
  • some metals are not regenerated as a single unit due to cost and technical problems.
  • the present invention provides a metal production method for obtaining a low-cost, high-purity metal that can be used for any ore and an apparatus used for the production method. And The present invention provides a method for producing a metal that can obtain a specific metal with high purity, safety and low cost from a treatment object containing two or more kinds of metal elements, and an apparatus used for the method. Is an issue.
  • a step of dissolving a metal element contained in a processing object containing two or more kinds of metal elements in a molten salt, and a pair of electrode members provided in the molten salt in which the metal element is dissolved And a step of precipitating or alloying a specific metal present in the molten salt on one of the electrode members by controlling the potential of the electrode member to a predetermined value.
  • the treatment target is ore or a crude metal block obtained from the ore.
  • Another embodiment of the present invention is a method for producing tungsten, wherein the metal element contained in the object to be treated is tungsten, and in the step of dissolving the metal element from the object to be treated in a molten salt, In the step of dissolving tungsten from the object to be treated and precipitating or alloying the specific metal, a pair of electrode members are provided in the molten salt in which the tungsten is dissolved, and the potential at the electrode members is controlled to a predetermined value. Thus, tungsten existing in the molten salt is deposited on one of the electrode members.
  • the processing object is a metal material containing tungsten.
  • the object to be processed is a metal material containing tungsten and a transition metal.
  • the processing object is a cemented carbide product.
  • Another embodiment of the present invention is a method for producing lithium, wherein the metal element contained in the object to be treated is lithium, and in the step of dissolving the metal element from the object to be treated in a molten salt, In the step of dissolving lithium from the object to be treated and precipitating or alloying the specific metal, a pair of electrode members are provided in the molten salt in which the lithium is dissolved, and the potential at the electrode members is controlled to a predetermined value. As a result, lithium existing in the molten salt is deposited on one of the electrode members.
  • the object to be treated is a material containing lithium and a transition metal.
  • the processing object is a battery electrode material containing lithium.
  • the processing object includes a transition metal or a rare earth metal.
  • the processing object contains one or more metals selected from the group consisting of V, Nb, Mo, Ti, Ta, Zr, and Hf.
  • the processing object includes Sr and / or Ba.
  • the processing object includes one or more kinds of metals selected from the group consisting of Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, and Bi.
  • the standard electrode potential of the single metal or its alloy in the molten salt and the standard of another single metal or its alloy are used.
  • the molten salt is selected so that the difference from the electrode potential is 0.05 V or more.
  • the potential of the electrode member is controlled to a predetermined value, and the specific metal element in the molten salt is selectively precipitated. Or alloy it.
  • the metal is dissolved in the molten salt by a chemical method.
  • the molten salt in the step of dissolving the metal element contained in the object to be treated in the molten salt, includes a cathode and an anode made of an anode material containing the object to be treated.
  • the metal element corresponding to the controlled potential from the object to be treated is dissolved in the molten salt.
  • a standard electrode potential of the specific metal alone or an alloy thereof in the molten salt and another metal is selected so that the difference from the standard electrode potential of the simple substance or alloy thereof is 0.05 V or more.
  • the potential at the anode is controlled to a predetermined value, and the specific metal element is selectively melted. Dissolve in salt.
  • one or more specific metals are dissolved in the molten salt in the step of dissolving the metal element contained in the object to be processed in the molten salt.
  • the specific metal to be deposited or alloyed is a transition metal.
  • the specific metal to be deposited or alloyed is a rare earth metal.
  • the specific metal to be precipitated or alloyed is V, Nb, Mo, Ti, Ta, Zr, or Hf.
  • the specific metal to be deposited or alloyed is Sr or Ba.
  • the specific metal to be deposited or alloyed is Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, or Bi.
  • a chloride-based or fluoride-based molten salt is used as the molten salt.
  • a molten salt obtained by mixing a chloride-based molten salt and a fluoride-based molten salt is used as the molten salt.
  • the object to be processed is granular or powdery. In another embodiment of the present invention, the granular or powder object to be processed is pressed into the anode.
  • Another embodiment of the present invention is a method for producing a specific metal from a treatment object containing two or more kinds of metal elements by molten salt electrolysis, and comprises a cathode in the molten salt and an anode containing the treatment object An anode made of a material is provided, and by controlling the potential at the anode to a predetermined value, a metal element corresponding to the potential controlled from the object to be processed is dissolved in the molten salt, thereby allowing a specific metal to be used as the anode. It is a method for producing a metal by molten salt electrolysis, which is characterized by remaining.
  • the treatment target is ore or a crude metal block obtained from the ore.
  • Another embodiment of the present invention is a method for producing tungsten from a treatment object containing tungsten by molten salt electrolysis, wherein a cathode and an anode made of an anode material containing the treatment object are provided in the molten salt.
  • a cathode and an anode made of an anode material containing the treatment object are provided in the molten salt.
  • the standard electrode potential of the specific metal alone or its alloy in the molten salt and other metal is selected so that the difference from the standard electrode potential of a single substance or an alloy thereof is 0.05 V or more.
  • a container holding a molten salt therein, a cathode immersed in a molten salt held in the container, and a molten salt held in the container are immersed in 2
  • Another embodiment of the present invention includes a container holding therein a molten salt in which two or more kinds of metal elements are dissolved, a cathode and an anode immersed in the molten salt held inside the container, and the cathode And a control unit that controls the potential at the anode to a predetermined value, and the control unit is used in a method for producing a metal by molten salt electrolysis, wherein the potential value can be changed.
  • the two or more metal elements include at least one of tungsten and lithium.
  • the metal production method of the present invention and the apparatus used for the production method can be used for any ore.
  • a specific metal can be obtained with high purity, safety and low cost from a treatment object containing two or more kinds of metal elements.
  • the scale on the lower right of the photograph shows 8 ⁇ m. It is a scanning electron micrograph which shows the distribution condition of Dy about the area
  • the processing object is an ore containing two or more kinds of metal elements or a rough metal lump obtained from the ore (hereinafter also simply referred to as a rough metal lump).
  • the above-described embodiment is roughly divided into a process of dissolving a metal contained in an object (the ore or the coarse metal lump) in molten salt, and one electrode (cathode) by molten salt electrolysis from the molten salt in which the metal is dissolved. And the process of precipitating the metal or alloy of the target element to be separated and extracted.
  • the feature of the present embodiment is that the potential at the electrode is controlled to selectively dissolve or precipitate a specific element to be separated and refined.
  • Examples of the method for dissolving the metal element contained in the ore or the coarse metal block in the molten salt include a method of dissolving by a chemical method. Specifically, the ore or the rough metal lump is pulverized into a granular or powder form, and these and a salt are mixed and heated to melt two or more metal elements contained in the ore or the rough metal lump. Can be dissolved in. Further, the object to be treated may be put into molten salt and dissolved.
  • Another method is an electrochemical method. Specifically, the object is attached as an anode in the molten salt, and the elements contained in the object are selectively dissolved according to the magnitude of the potential controlled on the object. This is because the potential at which an element dissolves in molten salt electrolysis has different properties depending on the type of the element, and this property is used to selectively separate metals according to the potential. Thus, the metal element to be refined can be selectively dissolved in the molten salt by controlling the potential at the time of dissolution using the object as the anode.
  • the process of dissolving the metal element contained in the object in the molten salt it is preferable to control the potential so that the impurities contained in the object remain without being dissolved. Thereby, it is possible to reduce the introduction of impurities in the subsequent deposition process.
  • the standard potential of the specific metal the metal element to be dissolved
  • the molten salt so that the difference from the standard electrode potential of the single metal or alloy thereof is 0.05 V or more. Thereby, the metal element dissolved in the molten salt and the metal element remaining on the anode can be satisfactorily separated.
  • the difference in the standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
  • the value of the potential controlled at the anode can be calculated by the Nernst equation described later.
  • the potential may be controlled so that each of them is dissolved in the molten salt. Further, when one kind of specific metal is dissolved, the remaining ore or coarse metal block (anode) containing the remaining metal is transferred to another molten salt, and the potential is similarly controlled to a predetermined value, thereby remaining A specific metal may be dissolved in the molten salt. Depending on the metal species, separation by precipitation, which will be described later, may be easier. In such a case, all of the object to be treated may be dissolved, or a specific metal species and some of the remaining metal species. Only may be dissolved.
  • the potential at the anode is controlled to a predetermined value, and the specific metal element is It is preferable to selectively dissolve in the molten salt.
  • a chloride-based or fluoride-based salt can be used as the molten salt.
  • the molten salt of the chloride-based for example KCl, NaCl, CaCl 2, LiCl , RbCl, CsCl, be used, for example SrCl 2, BaCl 2, MgCl 2 .
  • As the molten salt fluoride e.g. LiF, may NaF, KF, RbF, CsF, be used MgF 2, CaF 2, SrF 2 , BaF 2.
  • KCl, NaCl, and CaCl 2 are preferably used because they are inexpensive and easily available. preferable.
  • the use of these molten salts can be used as a molten salt of any composition by combining a plurality of types of molten salt, for example KCl-CaCl 2 and LiCl-KCl or molten salt composition, such as NaCl-KCl, it can.
  • a material that is easily alloyed with an alkali metal such as Li or Na constituting carbon or a cation in the molten salt is used.
  • an alkali metal such as Li or Na constituting carbon or a cation in the molten salt
  • aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), etc. can do.
  • the ore or the coarse metal lump may be accommodated in a conductive basket made of metal or the like and provided in the molten salt.
  • An opening is provided in the upper part of the basket so that the ore or the rough metal lump, which is the object to be processed, can be inserted through the opening, and a large number of holes are formed in the side wall and the bottom wall of the basket to form a molten salt. Can be allowed to flow into the basket.
  • a material constituting the cage any material such as a net-like member formed by knitting a metal wire or a sheet member in which a large number of holes are formed in a sheet-like metal plate can be used.
  • the contact amount with the conductive material is preferably increased. It is effective to use the electrode as an electrode by wrapping it with a metal mesh member or filling the space inside the porous metal body.
  • the cathode and the cage holding the ore or the coarse metal lump in the molten salt By providing the cathode and the cage holding the ore or the coarse metal lump in the molten salt, and controlling the potential at the anode (cage) from the outside as described above, The resulting metal can be dissolved in the molten salt.
  • a pair of electrode members are provided in the molten salt, and a metal element dissolved in the molten salt is deposited on one electrode member (cathode) by molten salt electrolysis.
  • a specific metal element can be selectively deposited on the cathode as a metal or alloy depending on the magnitude of the potential controlled by molten salt electrolysis.
  • the potential at which an element is deposited on the cathode as a metal or alloy in molten salt electrolysis has different properties depending on the type of the element. Thus, even when a plurality of specific metals of interest are contained in the molten salt, the potential can be controlled to deposit one by one on the cathode alone.
  • the electrode member for example, nickel (Ni), molybdenum (Mo), glassy carbon (C) or the like can be used.
  • the present embodiment separates and extracts a specific metal element to be smelted from an object by the above two processes.
  • the molten salt since the molten salt is used, it is necessary to heat the system so that the temperature of the system in each process is equal to or higher than the melting point of the molten salt.
  • the characteristics of the above two processes are the use of molten salt, which makes use of the fact that the potential of dissolution / precipitation of each element differs depending on the type of molten salt, and the specific metal element of interest and the others It is possible to select and design the molten salt so that the dissolution / precipitation potential of the metal element as the impurity target becomes a value that is easy to process.
  • the standard electrode potential of the specific metal or its alloy in the molten salt and the standard electrode potential of another metal or its alloy It is preferable to select the molten salt so that the difference is 0.05 V or more.
  • the difference between the standard electrode potential of the specific metal or its alloy in the molten salt and the standard electrode potential of another metal or its alloy is more preferably 0.1 V or more, and 0.25 V or more. More preferably.
  • the potential of the electrode member is controlled to a predetermined value, and the specific metal element in the molten salt is selectively precipitated or alloyed. It is preferable.
  • the deposition potential of a single metal or alloy deposited on the cathode can be calculated by electrochemical calculation. Specifically, it is calculated using the Nernst equation.
  • Pr (III) the potential for precipitating Pr alone from trivalent praseodymium (Pr) ions (hereinafter referred to as Pr (III)) can be obtained by the following equation.
  • E Pr E 0 Pr + RT / 3F ⁇ ln (a Pr (III) / a Pr (0) ) (1)
  • E 0 Pr is a standard potential
  • T is the absolute temperature
  • F is the Faraday number
  • a Pr (III) is the activity of Pr (III) ions
  • a Pr (0) is the activity of Pr alone.
  • E Pr ⁇ Ni E 0 ′ Pr ⁇ Ni + RT / 3F ⁇ lnC Pr (III) (4)
  • E 0 ′ Pr ⁇ Ni is the formula electrode potential (here Then, E 0 Pr ⁇ Ni + RT / 3F ⁇ ln ⁇ Pr (III)) .
  • the precipitation potential can be obtained for each type of molten salt with respect to all precipitates by the above formula.
  • the deposition potential value of this specific metal or its alloy is looked at, and the precipitate from which a potential difference with other metal or its alloy is obtained is selected.
  • the target metal can be dissolved and deposited electrochemically by controlling the potential value.
  • a process can be simplified compared with the case of repeating processes, such as melt
  • it is not necessary to adjust the specific gravity of the molten salt and a simple apparatus configuration can be obtained by selecting a low-temperature molten salt that can be processed in a solid state of the object.
  • the operation mode can be simplified. For this reason, process efficiency and cost reduction can be achieved.
  • the method for producing a metal according to the present embodiment is a method for producing a specific metal by molten salt electrolysis from an ore containing two or more kinds of metal elements or a crude metal lump obtained from the ore.
  • a cathode and an anode made of an anode material containing the ore or the coarse metal lump are provided therein, and a metal element corresponding to the potential from the ore or the coarse metal lump is controlled by controlling the potential at the anode to a predetermined value.
  • a specific metal is left on the anode by dissolving in a molten salt.
  • the object (the ore or the coarse metal block) is used as an anode, and only a metal element other than a specific metal element, that is, an impurity, is dissolved in a molten salt, thereby leaving a specific metal on the anode. That's it. Also in this case, by controlling the potential at the anode, a phenomenon occurs in which the metal element to be smelted remains on the anode and the impurity element dissolves in the molten salt. Thereby, the metal material smelted by the anode is obtained.
  • the molten salt is preferably selected so that the difference from the standard electrode potential of the alloy is 0.05 V or more.
  • a specific metal and another metal can be isolate
  • the difference in standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
  • the value of the potential controlled at the anode can be calculated using the Nernst equation as described above.
  • the target specific metal is included.
  • gold ore, silver ore, copper ore, iron ore, aluminum ore, lead ore, zinc ore, tin ore, mercury ore, sulfur ore, phosphorus ore, nickel ore, cobalt ore, manganese ore, chromium ore, molybdenum ore examples include tungsten ore, antimony ore, arsenic ore, bismuth ore, strontium ore, beryllium ore, magnesium ore, barium ore, and calcium ore.
  • rare earth metals can be obtained by using bastonite, monazite, loparite, apatite, xenotime, fergsonite, udialite, and the like.
  • the crude metal block obtained from the ore refers to a metal whose target specific metal has a low purity, such as a metal obtained by smelting the ore.
  • the method for producing a metal by molten salt electrolysis according to the present embodiment is suitably applied to a material containing a transition metal or a rare earth metal (rare earth metal) as a crude metal block obtained from ore or ore used as an anode. Is done.
  • the transition metal is not particularly limited as long as it is an element included in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table.
  • the rare earth metal is not particularly limited as long as it is 15 elements of scandium (Sc), yttrium (Y), and lanthanoid belonging to Group 3 (IIIA group) of the periodic table.
  • the method for producing a metal by molten salt electrolysis according to this embodiment can be suitably used even when the specific metal deposited or alloyed on the cathode is a rare earth metal.
  • a rare earth metal that cannot be precipitated by electrolysis with an aqueous solution can also be deposited. For this reason, it becomes possible to easily obtain rare earth metals that are difficult to collect in terms of resources.
  • the rough metal lump obtained from the said ore or ore is a granular form or a powder form.
  • the surface area can be increased and the processing efficiency can be increased.
  • the maximum particle size of the ore or the rough metal lump is preferably 0.01 mm to 2 mm, more preferably 0.01 mm to 1 mm, and still more preferably 0.01 mm to 0.2 mm.
  • the powdered ore or coarse metal lump can be used as an anode (anode) by compacting. In this case, it is desirable that there is a space where the molten salt can easily enter between the particles.
  • Nd, Dy, and Pr are obtained by molten salt electrolysis using an ore containing neodymium (Nd), dysprosium (Dy), and praseodymium (Pr).
  • Nd neodymium
  • Dy dysprosium
  • Pr praseodymium
  • monazite, apatite, xenotime, fergussonite, udialite and the like can be used.
  • a preparatory process (S10) is implemented.
  • an ore that is an object to be processed, a molten salt to be used, and an apparatus including a container and an electrode for holding the molten salt are prepared.
  • an apparatus including a container and an electrode for holding the molten salt are prepared.
  • an ore containing Nd, Dy, and Pr for example, a xenotime ore can be used.
  • An example of the composition of xenotime ore is that Nd is 3.0%, Dy is 7.9%, and Pr is 0.5%.
  • dissolution process (S20) in molten salt is implemented.
  • the electric potential is controlled by immersing the ore and (another) electrode member in the prepared molten salt and connecting a power source between the ore and the electrode member.
  • the rare earth elements (Nd, Dy, and Pr) in the ore are selectively dissolved in the molten salt by adjusting the potential of the ore.
  • a molten salt having an arbitrary composition can be used as the molten salt.
  • LiF—NaF—KF can be used as the molten salt
  • an electrode made of glassy carbon can be used as the other electrode member
  • the ore can be used as the processing object.
  • the heating temperature of the molten salt is set to 700 ° C.
  • Nd, Dy, and Pr can be selectively dissolved from the ore into the molten salt.
  • the potential to be controlled is set such that elements other than Nd, Dy, and Pr are hardly dissolved in the molten salt while Nd, Dy, and Pr are dissolved.
  • a separation and extraction step (S30) is performed. Specifically, as described above, a pair of electrodes is inserted into the molten salt in which Nd, Dy, and Pr are dissolved, and the potential at this electrode member is controlled to a predetermined value. The value of this potential is adjusted to a potential corresponding to the deposition potential determined for each rare earth metal as shown in FIG. 2, for example, when using a LiCl-KCl molten salt. As a result, the kind of rare earth metal deposited on the electrode can be selected according to the adjusted potential. For this reason, rare earth metals can be selectively recovered for each element.
  • the rare earth elements such as Nd, Dy, and Pr have different precipitation potential values for each element.
  • the precipitation potential of Nd is about 0.40 V (vs. Li + / Li)
  • the precipitation potentials of Pr and Dy are about 0.47 V (vs. Li + / Li).
  • the precipitation potential of DyNi 2 which is a compound of Dy is about 0.77 V (vs. Li + / Li).
  • the deposition potential shown in FIG. 2 is based on Li. In FIG. 2, the vertical axis indicates the deposition potential (unit: V).
  • the precipitation potential is a value when LiCl-KCl is used as the molten salt and the temperature of the molten salt is 450 ° C.
  • each element or compound Since the deposition potential of each element or compound is different as described above, a pair of electrodes are immersed in a molten salt in which a specific metal is melted, and the cathode is controlled to have a potential corresponding to the above-described deposition potential. Thus, a specific rare earth element can be selectively deposited on the cathode. And the kind of the specific metal to deposit can also be selected by changing the value of the electric potential in a cathode (for example, changing an electric potential sequentially).
  • a pair of electrodes are immersed in the molten salt in which Nd, Dy, and Pr are dissolved, and different voltages are sequentially applied between the electrodes.
  • concentrations (ion concentrations) of Nd, Dy, and Pr in the molten salt are 0.5 mol%, respectively.
  • LiCl-KCl is used as the molten salt, and the temperature of the molten salt is set to 450.degree.
  • the horizontal axis represents the treatment time
  • the vertical axis represents the ion concentration of the rare earth element in the molten salt.
  • the unit of the vertical axis is mol%.
  • Ni is used as the cathode material, and the cathode potential is lower than 0.77 V (vs. Li + / Li) and slightly higher than 0.63 V (vs. Li + / Li) (for example, setting)
  • the potential difference is 0.631 V (vs. Li + / Li)
  • Dy ions are alloyed with Ni of the cathode material, and DyNi 2 is deposited on the cathode surface.
  • the ion concentration of Dy in the molten salt is rapidly reduced.
  • the recovery of Dy can be performed until the Dy ion concentration in the molten salt is about 3.6 ⁇ 10 ⁇ 4 mol%.
  • another electrode for example, Mo electrode
  • the potential of the cathode is slightly higher than 0.40V (vs. Li + / Li) (for example, the set potential difference is 0.401V).
  • Vs. Li + / Li) Pr is deposited on one electrode (cathode).
  • the ion concentration of Pr in the molten salt is rapidly reduced. This recovery of Pr can be performed until the Pr ion concentration in the molten salt reaches about 0.017 mol%.
  • an electrode different from the electrode on which DyNi 2 is deposited in STEP 1 is used.
  • electrodes DyNi 2 is precipitated in STEP1 is previously removed from the molten salt before STEP2 begins, it may be previously dipped another electrode in a molten salt, an electrode to which the DyNi 2 was precipitated It may be left as it is, and the potential of another electrode may be controlled in STEP2.
  • Nd is deposited on this electrode (cathode).
  • the ion concentration of Nd in the molten salt is rapidly reduced.
  • the recovery of Nd can be performed until the Nd ion concentration in the molten salt becomes about 2.7 ⁇ 10 ⁇ 7 mol%, for example.
  • the electrode on which Pr is deposited in STEP 2 may be taken out from the molten salt before STEP 3 starts, and another electrode may be immersed in the molten salt. Alternatively, the electrode on which Pr is deposited in STEP 2 may be immersed in the molten salt as it is, and another electrode may be used in STEP 3.
  • DyNi 2 collected in STEP 1 As STEP 4, the electrode on which DyNi 2 is deposited is immersed in a molten salt together with another electrode (for example, Mo electrode), and Dy dissolves the potential of the DyNi 2 electrode. However, by setting Ni within a potential range (0.77 to 2.6 V (vs. Li + / Li)) that does not dissolve, Dy is dissolved in the molten salt and only Dy is deposited on the surface of another electrode. It can be deposited. As described above, each target specific metal can be recovered from the molten salt.
  • another electrode for example, Mo electrode
  • the recovery device shown in FIG. 4 includes a container 1 that holds a molten salt therein, a molten salt 2 that is held inside the container 1, and a basket that holds a processing object (the ore or the rough metal lump) 3 inside. 4, electrodes 6 to 8, a heater 10 for heating the molten salt 2, and a control unit 9 electrically connected to the cage 4 and the electrodes 6 to 8 by a conductive wire 5.
  • the controller 9 can control the potential of these electrodes (change the potential) using the cage 4 as one electrode and any of the electrodes 6 to 8 as the other electrode.
  • the control unit 9 can change the value of the potential to be controlled.
  • the heater 10 is arranged so as to surround the container 1 in an annular shape.
  • the electrodes 6 to 8 can be made of any material.
  • the electrode 6 can be made of nickel (Ni).
  • carbon (C) can be used as a material of the electrodes 7 and 8, for example, carbon (C) can be used.
  • the shape of the container 1 may be a circular shape on the bottom or a polygonal shape.
  • the basket 4 can be the aforementioned basket.
  • the cage 4 and the electrodes 6 to 8 are controlled to a predetermined potential value by the control unit 9.
  • the electrodes 6 to 8 at different potentials, different specific metals are deposited on the surfaces of the electrodes 6 to 8 depending on the value of the controlled potential as described later.
  • the value of the potential controlled by the electrode 6 can be adjusted so that the DyNi 2 film 11 is deposited on the surface of the electrode 6.
  • the Pr film 12 can be deposited on the surface of the electrode 7 by adjusting the potential controlled by the electrode 7.
  • the Nd film 13 can be deposited on the surface of the electrode 8 by adjusting the potential controlled to the electrode 8.
  • the electrode 6 on which the DyNi 2 film 11 is deposited is further placed in the container 1 holding the molten salt 2 therein as shown in FIG. Further, another electrode is arranged in the molten salt 2 so that the DyNi 2 film 11 faces the electrode 6 deposited on the surface, and each electrode 6, 15 is connected to the control unit 9 by the conductive wire 5. Then, the potential of the electrodes 6 and 15 is controlled to a predetermined value by the controller 9 while the molten salt 2 is heated by the heater 10 disposed around the container 1. The potential to be controlled at this time is adjusted so that the potential at the cathode (electrode 15) becomes the deposition potential of Dy.
  • the heating temperature of the molten salt 2 by the heater 10 can be set to, for example, 800 ° C. for any of the processes in the apparatus shown in FIGS. In this way, a specific metal can be deposited as a single substance on the surfaces of the electrodes 7, 8, 15.
  • the ore When implementing the method of this embodiment using the apparatus as shown in FIG.4 and FIG.5, it is possible to implement as follows, for example.
  • 9 kg of the ore is prepared as the object 3 to be processed, and LiF—NaF—KF is prepared as the molten salt 2.
  • the ore for example, one containing 3.0 wt% Nd, 0.5 wt% Pr, and 7.9 wt% Dy can be used.
  • the ore is crushed and placed inside the basket 4.
  • the maximum particle size is 2 mm or less, more preferably 1 mm or less, and even more preferably 0.2 mm or less.
  • the ore is pulverized into fine granules.
  • the amount of the molten salt 2 is about 16 liters (mass: 25 kg).
  • STEP 1 to STEP 3 of the method of the present embodiment described with reference to FIG. 2 and FIG. carry out.
  • the processing object 3 and the electrode 6 held in the basket 4 as STEP 1 described above are used as a pair of electrodes, and the potential at the electrode is controlled to a predetermined value.
  • DyNi 2 is deposited on the surface of the electrode 6.
  • the processing object 3 and the electrode 7 held in the basket 4 as STEP 2 described above are used as a pair of electrodes, and the potential at the electrode is controlled to a predetermined value.
  • Pr is deposited on the surface of the electrode 7.
  • the processing object 3 and the electrode 8 held in the basket 4 as the above STEP 3 are used as a pair of electrodes, and the potential at the electrode is controlled to a predetermined value.
  • Nd is deposited on the surface of the electrode 8.
  • the mass of the Nd film deposited on the surface of the electrode 8 is, for example, about 200 g to 300 g.
  • the electrode 6 and the electrode 15 are arranged in the apparatus shown in FIG. 5, and the potential at these electrodes is controlled to a predetermined value in the molten salt.
  • Dy is deposited on the surface of the electrode 15.
  • the mass of the Dy film 16 deposited on the surface of the electrode 15 is 600 g to 800 g, for example.
  • the step of dissolving the target metal in the molten salt 2 and the step of depositing a specific metal as a simple substance on the surfaces of the electrodes 7, 8 and the like are the same apparatus. (Using the same molten salt 2).
  • the device used in the step of dissolving the metal in the molten salt 2 described with reference to FIG. 4 the device shown in FIG. 4 It is preferable to carry out in an apparatus different from () shown in FIG.
  • specific metals for example, Dy, Pr, and Nd
  • Dy, Pr, and Nd can be recovered from the ore or the rough metal lump as the processing object 3.
  • First embodiment-2 As an example of this embodiment, a method of obtaining Nd, Dy, and Pr by molten salt electrolysis using a crude metal lump obtained by smelting ore containing neodymium (Nd), dysprosium (Dy), praseodymium (Pr) Is described.
  • Nd neodymium
  • Dy dysprosium
  • Pr praseodymium
  • the crude metal block containing Nd, Dy, and Pr for example, a mixed rare earth metal (dydymium) can be used.
  • the refining method for obtaining the mixed rare earth metal is not particularly limited, and a known method can be used.
  • a step (S11) of preparing a rough metal lump that is a processing object is performed. Specifically, as shown in FIG. 7, a crude metal lump as the processing object 3 is immersed in the molten salt 2 held in the container 1, and the power source in the control unit 9 is connected to the processing object 3. A conductive wire 5 for connection is connected. LiCl-KCl was used as the salt.
  • the electrode material 25 held inside the cage 24 as the other electrode is immersed in the molten salt 2 together with the cage 24.
  • a material that is easily alloyed with an alkali metal such as Li or Na constituting a cation in the molten salt is used.
  • the electrode material 25 include aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth ( Bi) or the like can be used.
  • the step (S21) of dissolving Nd, Dy, and Pr in the molten salt shown in FIG. 6 is performed. Specifically, as shown in FIG. 7, the potential in the processing object 3 and the electrode material 25 held inside the basket 24 is controlled by the control unit 9, so that the potential in the processing object 3 is a predetermined value. Adjust to. As a result, rare earth elements such as Nd, Dy, and Pr are dissolved in the molten salt 2 from the crude metal block that is the processing object 3.
  • a step (S31) of depositing DyNi 2 by electrolysis shown in FIG. 6 is performed. Specifically, instead of the electrode material 25 held by the cage 24 shown in FIG. 7, the electrode 6 made of nickel is immersed in the molten salt 2 as shown in FIG. 8. The electrode 6 is connected to the control unit 9 by the conductive wire 5. In this state, the control unit 9 controls the potentials of the processing object 3 as one electrode and the electrode 6 as the other electrode to adjust to a predetermined value. As a result, a rare earth element such as Dy is dissolved from the object to be treated 3 into the molten salt 2, and DyNi 2 is deposited from the molten salt 2 on the surface of the electrode 6.
  • a rare earth element such as Dy is dissolved from the object to be treated 3 into the molten salt 2
  • DyNi 2 is deposited from the molten salt 2 on the surface of the electrode 6.
  • a step of collecting Pr by electrolysis (S32) shown in FIG. 6 is performed.
  • the electrode 27 made of carbon is immersed in the molten salt 2 as one electrode instead of the processing object 3.
  • an electrode 7 made of carbon is disposed in a state of being immersed in the molten salt 2 at a position facing the electrode 27.
  • the electrode 27 and the electrode 7 are electrically connected to the control unit 9 and the conductive wire 5.
  • the potential at one electrode 27 and the other electrode 7 is controlled to be adjusted to a predetermined value.
  • Pr dissolved in the molten salt 2 is deposited on the surface of the electrode 7.
  • chlorine gas (Cl 2 ) is generated from the electrode 27 side.
  • a step of recovering Nd by electrolysis shown in FIG. 6 is performed.
  • the electrode 8 made of carbon is disposed so as to be opposed to the electrode 27 while being immersed in the molten salt 2.
  • the electrode 8 is electrically connected to the control unit 9 by the conductive wire 5.
  • the potential at the electrode 8 and the electrode 27 is controlled by the control unit 9 to be adjusted to a predetermined value.
  • Nd is deposited on the surface of the electrode 8.
  • chlorine gas is generated from the electrode 27 side.
  • a step (S34) of recovering Dy by electrolysis from DyNi 2 recovered in the step (S31) is performed.
  • the electrode 6 (see FIG. 8) on which DyNi 2 is deposited is immersed in the molten salt 2, and another electrode 15 is immersed in the molten salt 2.
  • the potentials at these electrodes 6 and 15 are adjusted to a predetermined value by the control unit 9.
  • the Dy film 16 is deposited on the surface of the electrode 15. In this way, the rare earth metals Nd, Dy, Pr can be individually recovered.
  • the above-described steps (S21 to S32) may be performed by the following apparatus configuration.
  • the above-described step (S31) may be performed with an apparatus configuration as shown in FIG. Specifically, the cage 24 holding the material 26 alloyed in the process shown in FIG. 7 is immersed in the molten salt 2 instead of the processing object 3 in the apparatus configuration shown in FIG. Then, as shown in FIG. 11, the basket 24 and the control unit 9 are electrically connected by the conductive wire 5. Then, the potential of the electrode 6 and the material 26 alloyed in the process shown in FIG. 7 and held in the cage 24 is adjusted to a predetermined value. Thereby, Dy dissolved in the molten salt 2 is deposited as DyNi 2 on the surface of the electrode 6. It should be noted that Dy can be recovered as a simple substance from the DyNi 2 deposited on the surface of the electrode 6 by a process similar to the process (S34) of FIG.
  • processing may be performed with an apparatus configuration as shown in FIG. Specifically, instead of the electrode 6 shown in FIG. 11, the electrode 7 made of carbon is arranged at a position facing the cage 24 and immersed in the molten salt 2 as shown in FIG. 12.
  • the electrode 7 and the control unit 9 are electrically connected by the conductive wire 5.
  • basket 24 is controlled to a predetermined value by a control part.
  • Pr dissolved in the molten salt 2 is deposited on the surface of the electrode 7.
  • processing may be performed with an apparatus configuration as shown in FIG. Specifically, as shown in FIG. 13, instead of the electrode 7 of FIG. 12, an electrode 8 made of carbon is disposed at a position facing the cage 24 and immersed in the molten salt 2. Then, the electrode 8 and the control unit 9 are electrically connected by the conductive wire 5. The potential is adjusted to a predetermined value by controlling the potential at the electrode 26 and the alloy 26 disposed inside the cage 24 by the control unit 9. As a result, Nd is deposited on the surface of the electrode 8.
  • the specific metals contained in the rough metal lump can be recovered individually and sequentially.
  • the apparatus configuration can be simplified and the processing time can be shortened as compared with the conventional wet separation method, so that the cost for obtaining elements such as rare earth elements is reduced. be able to.
  • a specific metal can be deposited as a simple substance on the electrode surface by appropriately setting the potential at the electrode, a highly pure metal can be obtained.
  • the electric potential for depositing each metal or alloy can be calculated by the above-described calculation.
  • the method for producing tungsten by molten salt electrolysis is a method for producing tungsten from a treatment object containing tungsten by molten salt electrolysis, and a step of dissolving tungsten from the treatment object in the molten salt; Providing a pair of electrode members in the molten salt in which the tungsten is dissolved, and precipitating tungsten present in the molten salt on one of the electrode members by controlling the potential at the electrode member to a predetermined value. It is characterized by that.
  • the present embodiment is roughly divided into a process in which tungsten contained in the object to be processed is dissolved in a molten salt, and tungsten is deposited on one electrode (cathode) by molten salt electrolysis from the molten salt in which the tungsten is dissolved.
  • Process. The feature of this embodiment is that tungsten is selectively precipitated by controlling the potential at the electrode to obtain high-purity tungsten.
  • a process for dissolving tungsten contained in the object to be processed in the molten salt will be described.
  • a method for dissolving tungsten contained in the object to be treated in the molten salt for example, a method of dissolving by a chemical method can be mentioned.
  • the processing object is pulverized into granules and powders, and these and a salt are mixed and heated, whereby tungsten contained in the processing object can be dissolved in the molten salt.
  • the object to be treated may be put into molten salt and dissolved.
  • Another method is an electrochemical method. Specifically, an anode made of an anode material containing a processing object is provided in the molten salt, and tungsten contained in the processing object is selectively selected depending on the magnitude of the potential to be controlled by the processing object attached as the anode. Dissolve. In molten salt electrolysis, since the potential at which an element dissolves has different properties depending on the type of element, tungsten can be separated from other metals using this property. In this way, tungsten can be selectively dissolved in the molten salt by controlling the potential at the time of dissolution using the object to be treated as the anode.
  • all of the object to be treated may be dissolved, or a part of tungsten or only tungsten may be dissolved.
  • Conditions under which metals other than tungsten contained in the object to be processed may be dissolved, but it is preferable to control the potential so that only tungsten is dissolved as much as possible. That is, in the step of dissolving tungsten in the molten salt, it is preferable to selectively dissolve tungsten in the molten salt by controlling the potentials at the anode and the cathode to predetermined values. Thereby, it is possible to reduce the amount of impurities introduced in the subsequent deposition step.
  • the standard electrode potential of the tungsten alone or tungsten alloy in the molten salt and the standard electrode potential of another metal alone or alloy thereof It is preferable to select the molten salt so that the difference between the two is 0.05 V or more. Thereby, the tungsten dissolved in the molten salt and the metal element remaining on the anode can be satisfactorily separated.
  • the difference in the standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
  • the value of the potential controlled at the anode can be calculated by the Nernst equation described later.
  • a material which is easily alloyed with an alkali metal such as Li or Na constituting carbon or a cation in the molten salt is used.
  • an alkali metal such as Li or Na constituting carbon or a cation in the molten salt
  • aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), etc. can do.
  • the object to be treated may be accommodated in a conductive basket (anode material) made of metal or the like and provided in the molten salt.
  • An opening is provided in the upper part of the basket so that the object to be processed can be inserted into the interior from the opening, and a large number of holes are formed in the side wall and the bottom wall of the basket so that the molten salt can flow into the interior of the basket. You can do that.
  • a material constituting the cage any material such as a net-like member formed by knitting a metal wire or a sheet member in which a large number of holes are formed in a sheet-like metal plate can be used.
  • the contact amount with the conductive material is preferably increased. It is effective to use the electrode as an electrode by wrapping it with a metal mesh member or filling the space inside the porous metal body.
  • Control in which the cathode and an anode made of an anode material containing the object to be processed are provided in the molten salt, and the electric potential is controlled from the outside at both electrodes.
  • tungsten is deposited on one electrode member (cathode) by providing a pair of electrode members in the molten salt in which the tungsten is dissolved and performing molten salt electrolysis.
  • tungsten can be selectively deposited as a metal or alloy on the cathode depending on the magnitude of the potential controlled by molten salt electrolysis.
  • tungsten and other metals are separated by utilizing the property that in molten salt electrolysis, the potential at which an element is deposited on the cathode as a metal or alloy varies depending on the type of element, as in the case of the melting process. To do. Accordingly, even when a metal other than tungsten is contained in the molten salt, only tungsten can be deposited on the cathode by controlling the potential. Thereby, high purity tungsten can be obtained.
  • the cathode material When depositing tungsten, if the difference between the dissolution / precipitation potential of tungsten and the dissolution / precipitation potential of other metals contained in the molten salt is small and difficult to separate from the metal, the cathode The cathode material may be selected and the potential may be controlled so that the material and tungsten are alloyed and deposited. As a result, tungsten in the molten salt is separated from other impurity metals as a tungsten alloy, and then, for example, a melting step and a precipitation step are performed in another molten salt using a cathode material alloyed with tungsten. As a result, high-purity tungsten can be obtained.
  • the electrode member used in the deposition step for example, nickel (Ni), molybdenum (Mo), glassy carbon (C), or the like can be used.
  • tungsten is separated and extracted from the object to be processed by the above two processes.
  • the molten salt since the molten salt is used, it is necessary to heat the system so that the temperature of the system in each process is equal to or higher than the melting point of the molten salt.
  • a feature of the above two processes is the use of molten salt.
  • the dissolution / precipitation potential of tungsten and the dissolution / precipitation potential of the target metal other than tungsten are determined. It is possible to select and design the molten salt so as to be a value that is sufficiently separated and easy to process. Specifically, in the step of precipitating or alloying tungsten, the difference between the standard electrode potential of tungsten alone or tungsten alloy in the molten salt and the standard electrode potential of another impurity metal alone or alloy thereof is 0.
  • the molten salt it is preferable to select the molten salt so that it becomes 05 V or higher.
  • the difference between the standard electrode potential of the tungsten simple substance or tungsten alloy in the molten salt and the standard electrode potential of another metal simple substance or alloy thereof is more preferably 0.1 V or more, and 0.25 V or more. Is more preferable.
  • the deposition potential of tungsten deposited on the cathode can be calculated by electrochemical calculation. Specifically, it is calculated using the Nernst equation.
  • the potential for depositing single W from divalent tungsten (W) ions (hereinafter referred to as W (II)) can be obtained by the following equation.
  • E W E 0 W + RT / 3F ⁇ ln (a W (II) / a W (0) ) (1)
  • E 0 W is a standard potential
  • R I is the gas constant
  • T is the absolute temperature
  • F is the Faraday number
  • a W (II) is the activity of W (II) ions
  • a W (0) is the activity of W alone.
  • the precipitation potential can be obtained for each type of molten salt with respect to all precipitates by the above formula.
  • the same calculation can be performed when tungsten is alloyed and deposited.
  • the precipitation potential of this single tungsten or tungsten alloy is observed, and melting is performed so as to obtain a sufficient potential difference from the precipitation potential of another single metal or its alloy.
  • the salt or cathode material is selected and it is determined whether to deposit as tungsten or tungsten alloy. Since the voltage and current in operation vary depending on the size and positional relationship of the electrodes, after determining the reference value by setting the conditions, determine it at each step based on the potential value and order obtained by the above method. To do.
  • tungsten can be dissolved and deposited electrochemically by controlling the value of the potential. For this reason, a process can be simplified compared with the case of repeating processes, such as melt
  • the method for producing a metal is a method for producing tungsten from a processing object containing tungsten by molten salt electrolysis, and includes a cathode in the molten salt and an anode material containing the processing object.
  • An anode is provided, and by controlling the potential at the anode, the metal element corresponding to the potential value is dissolved in the molten salt from the object to be processed, so that tungsten remains in the anode.
  • This method uses the anode material containing the object to be treated as an anode, and dissolves only the metal element other than tungsten, that is, an impurity, in the molten salt, thereby leaving tungsten on the anode. Also in this case, by controlling the potential at the anode, it is possible to generate a phenomenon in which tungsten to be smelted remains on the anode and the impurity element dissolves in the molten salt. Thereby, tungsten refined on the anode is obtained.
  • the standard electrode potential of tungsten alone or tungsten alloy in the molten salt and the standard electrode potential of another metal alone or alloy thereof It is preferable to select the molten salt so that the difference from the above becomes 0.05 V or more. Thereby, tungsten and other metals can be satisfactorily separated, and only tungsten can remain on the anode.
  • the difference in standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
  • the value of the potential controlled at the anode can be calculated using the Nernst equation as described above.
  • a metal material containing tungsten can be preferably used as the processing object containing tungsten.
  • the metal material containing tungsten include a tungsten heater.
  • the present embodiment can be preferably applied to the case where the processing object is a metal material containing tungsten and a transition metal.
  • the transition metal is not particularly limited as long as it is an element included in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table.
  • Examples of the metal material containing tungsten and transition metal include cemented carbide.
  • a cemented carbide product can be used as the processing object.
  • the cemented carbide product here is a general term for products using a cemented carbide material, and examples thereof include cutting tools, jigs and tools, and molds using the cemented carbide material.
  • a chloride-based molten salt or a fluoride-based molten salt can be used as the molten salt.
  • a molten salt obtained by mixing a chloride-based molten salt and a fluoride-based molten salt can also be used.
  • the molten salt of the chloride-based for example KCl, NaCl, CaCl 2, LiCl , RbCl, CsCl, be used, for example SrCl 2, BaCl 2, MgCl 2 .
  • the molten salt fluoride e.g. LiF, may NaF, KF, RbF, CsF, be used MgF 2, CaF 2, SrF 2 , BaF 2.
  • a chloride-based molten salt from the viewpoint of efficiency, and KCl, NaCl, and CaCl 2 are particularly preferable because they are inexpensive and easily available.
  • these molten salts can be used as a molten salt of any composition by combining a plurality of types of molten salt, for example KCl-CaCl 2 and LiCl-KCl or molten salt composition, such as NaCl-KCl, it can.
  • an apparatus used in the method for producing tungsten by molten salt electrolysis according to the present embodiment includes a container holding a molten salt therein, a cathode immersed in the molten salt held inside the container, It is immersed in a molten salt held inside, and has an anode that holds a conductive object to be processed containing tungsten, and the anode allows the molten salt to flow between the inside and the outside. Furthermore, a control unit for controlling the potential at the cathode and the anode to a predetermined value is provided, and the control unit can change the value of the potential.
  • An apparatus used in the method for producing tungsten by molten salt electrolysis includes a container holding therein a molten salt in which tungsten is dissolved, and a cathode immersed in the molten salt held inside the container.
  • the apparatus of this embodiment is demonstrated with reference to FIG. 18 and FIG.
  • the apparatus shown in FIG. 18 includes a container 1 that holds a molten salt therein, a molten salt 2 that is held inside the container 1, a basket 4 that holds a treatment object 3 containing tungsten, and an electrode 6;
  • the heater 10 for heating the molten salt 2 and the control unit 9 electrically connected to the cage 4 and the electrode 6 by the conductive wire 5 are provided.
  • the control unit 9 can control the potential at this electrode to a predetermined value with the cage 4 as one electrode (anode) and the electrode 6 as the other electrode (cathode). Further, the control unit 9 can change the value of the potential to be controlled.
  • the heater 10 is arranged so as to surround the container 1 in an annular shape.
  • the electrode 6 can be made of any material, and for example, carbon can be used.
  • the shape of the container 1 may be a circular shape on the bottom or a polygonal shape. Further, as the basket 4, the aforementioned
  • a potential is controlled between the cage 4 and the electrode 6 by the control unit 9 so as to have a predetermined potential value.
  • tungsten is dissolved in the molten salt 2 from the processing object 3.
  • the cage 4 and the electrode 6 are taken out, and another electrode 7 (cathode) and electrode 8 (anode) are put into the molten salt 2.
  • the electrodes 7 and 8 are connected to the control unit 9 through the conductive wires 5, respectively.
  • the electric potential in the electrodes 7 and 8 is controlled from the control part 9 to a predetermined value.
  • the potential to be controlled is adjusted so that the potential of the electrode 7 becomes the deposition potential of tungsten.
  • tungsten dissolved in the molten salt 2 is deposited on the surface of the electrode 7 (cathode).
  • glassy carbon (C) can be used.
  • the heating temperature of the molten salt 2 by the heater 10 can be set to 800 ° C., for example, in any of the treatments in the apparatus shown in FIGS. In this way, tungsten can be deposited as a simple substance on the surface of the electrode 7.
  • the potential controlled in the electrodes 7 and 8 may be adjusted so that an alloy of tungsten and a cathode material is deposited on the surface of the electrode 7 (cathode).
  • the above-described melting step and precipitation step may be performed using the alloyed electrode 7. That is, a new apparatus as shown in FIG. 18 may be prepared, and the electrode 7 alloyed with tungsten may be used in place of the processing object 3 described above.
  • the following may be considered.
  • 9 kg of a cemented carbide cutting tool is prepared as the processing object 3
  • KCl—NaCl is prepared as the molten salt 2.
  • the cemented carbide cutting tool for example, 90 wt% tungsten carbide (WC) and 10 wt% cobalt (Co) are contained.
  • the cemented carbide cutting tool is pulverized and placed inside the basket 4. From the viewpoint of improving the processing efficiency, it is preferable that the cemented carbide cutting tool that is the processing object 3 is pulverized as small as possible.
  • the cemented carbide cutting tool is crushed into such a granular shape.
  • the amount of the molten salt 2 is about 16 liters (mass: 25 kg). Then, the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8.
  • tungsten can be recovered from the cemented carbide cutting tool as the processing object 3.
  • the apparatus configuration can be simplified and the processing time can be shortened as compared with the conventional wet separation method, so that the cost can be reduced.
  • tungsten can be deposited as a simple substance on the electrode surface, so that tungsten with high purity can be obtained.
  • the electric potential for depositing each tungsten or tungsten alloy can be calculated by the above-described calculation.
  • the method for producing lithium by molten salt electrolysis is a method for producing lithium from a treatment object containing lithium by molten salt electrolysis, the step of dissolving lithium from the treatment object in the molten salt; Providing a pair of electrode members in the molten salt in which the lithium is dissolved, and precipitating lithium existing in the molten salt on one of the electrode members by controlling the potential at the electrode member to a predetermined value. It is characterized by that.
  • the method for producing lithium according to the present embodiment includes a process of dissolving lithium contained in the object to be processed in a molten salt, and a lithium salt dissolved in one electrode (cathode) by molten salt electrolysis from the molten salt. And a step of precipitating.
  • the feature of this embodiment is that the potential at the electrode is controlled in the lithium melting step to selectively dissolve lithium from the object to be processed, and the potential at the electrode is controlled to a predetermined value in the lithium deposition step. This is to obtain lithium having high purity by selectively precipitating lithium from the molten salt on the cathode.
  • the process of dissolving lithium contained in the object to be treated in the molten salt will be described.
  • a method of dissolving lithium contained in the object to be treated in the molten salt for example, a method of dissolving by a chemical method can be mentioned.
  • the processing object is pulverized into granules and powders, and these and a salt are mixed and heated, whereby lithium contained in the processing object can be dissolved in the molten salt.
  • the object to be treated may be put into molten salt and dissolved.
  • Another method is an electrochemical method.
  • an anode made of an anode material containing a processing object is provided in the molten salt, and the potential value in the processing object attached as the anode is controlled to selectively select lithium contained in the processing object.
  • the entire object to be treated may be dissolved, or a part of lithium or only lithium may be dissolved.
  • metals other than lithium contained in the object to be treated may be dissolved, it is preferable to control the potential value so that only lithium is dissolved as much as possible. That is, in the step of dissolving lithium in the molten salt, it is preferable to selectively dissolve lithium in the molten salt by controlling the potentials at the anode and the cathode to predetermined values. Thereby, it is possible to reduce the amount of impurities introduced in the subsequent deposition step.
  • the standard electrode potential of lithium alone or lithium alloy in the molten salt and the standard electrode potential of another metal alone or alloy thereof is preferable to select the molten salt so that the difference between the two is 0.05 V or more. Thereby, the lithium dissolved in the molten salt and the metal element remaining on the anode can be well separated.
  • the difference in the standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
  • the value of the potential controlled at the anode can be calculated by the Nernst equation described later.
  • a material which is easily alloyed with an alkali metal such as Li or Na constituting carbon or a cation in the molten salt is used.
  • an alkali metal such as Li or Na constituting carbon or a cation in the molten salt
  • aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), etc. can do.
  • the object to be treated may be accommodated in a conductive basket (anode material) made of metal or the like and provided in the molten salt.
  • An opening is provided in the upper part of the basket so that the object to be processed can be inserted into the interior from the opening, and a large number of holes are formed in the side wall and the bottom wall of the basket so that the molten salt can flow into the interior of the basket. You can do that.
  • a material constituting the cage any material such as a net-like member formed by knitting a metal wire or a sheet member in which a large number of holes are formed in a sheet-like metal plate can be used.
  • the contact amount with the conductive material is preferably increased. It is effective to use the electrode as an electrode by wrapping it with a metal mesh member or filling the space inside the porous metal body.
  • the cathode and an anode made of an anode material containing the object to be processed are provided in the molten salt, and a predetermined potential is externally applied between the electrodes.
  • a control unit that controls the value and controlling the potential as described above, lithium can be dissolved from the object to be processed in the molten salt.
  • lithium is deposited on one electrode member (cathode) by providing a pair of electrode members in the molten salt in which lithium is dissolved and performing molten salt electrolysis.
  • lithium can be selectively deposited as a metal or alloy on the cathode depending on the magnitude of the potential controlled by molten salt electrolysis.
  • lithium and other metals are separated by utilizing the property that in molten salt electrolysis, the potential at which an element is deposited on the cathode as a metal or alloy varies depending on the type of element. To do. Thereby, even when metals other than lithium are contained in the molten salt, only lithium can be deposited on the cathode by controlling the potential. Thereby, high purity lithium can be obtained.
  • the cathode material When depositing lithium, if the difference between the dissolution / precipitation potential of lithium and the dissolution / precipitation potential of other metals contained in the molten salt is small and difficult to separate from the metal, the cathode The cathode material may be selected and the potential may be controlled so that the material and lithium are alloyed and deposited. Thereby, lithium in the molten salt is separated from other impurity metals as a lithium alloy, and then, by using a cathode material alloyed with lithium, a melting step and a precipitation step are performed in another molten salt. High purity lithium can be obtained.
  • the electrode member used in the deposition step for example, nickel (Ni), molybdenum (Mo), glassy carbon (C), or the like can be used.
  • lithium is separated and recovered from the object to be processed by the two steps as described above.
  • the molten salt since the molten salt is used, it is necessary to heat the system so that the temperature of the system in each step is equal to or higher than the melting point of the molten salt.
  • a molten salt is used as the electrolytic solution. That is, by utilizing the property of molten salt electrolysis in which the dissolution and precipitation potential of each element varies depending on the type of molten salt, the dissolution and precipitation potential of lithium and the dissolution and precipitation potential of the metal that is an impurity target other than lithium are determined. It is possible to select and design the molten salt so that it becomes a value that is sufficiently separated and easy to process. Specifically, in the step of depositing or alloying lithium, the difference between the standard electrode potential of lithium alone or lithium alloy in the molten salt and the standard electrode potential of another impurity metal alone or alloy thereof is 0.05 V. The molten salt is preferably selected so as to achieve the above.
  • the difference between the standard electrode potential of the lithium alone or lithium alloy in the molten salt and the standard electrode potential of another metal alone or its alloy is more preferably 0.1 V or more, and 0.25 V or more. Is more preferable.
  • the deposition potential of lithium deposited on the cathode can be calculated by electrochemical calculation. Specifically, it is calculated using the Nernst equation. For example, the potential for depositing Li alone from lithium ions (Li + ) can be obtained by the following equation.
  • E Li E 0 Li + RT / 3F ⁇ ln (a Li (I) / a Li (0)) ⁇ formula (1)
  • E 0 Li is the standard potential
  • R is the gas constant
  • T is the absolute temperature
  • F is the Faraday number
  • a Li (I) is the Li ion activity
  • a Li (0) means the activity of Li alone.
  • E LiM electrowetting potential
  • E LiM a LiM alloy (M is a metal to be alloyed)
  • E Li ⁇ M E 0 ′ Li ⁇ M + RT / 3F ⁇ lnC Li (I)
  • E 0 ′ Li ⁇ M means a formula electrode potential (here, equal to E 0 Li ⁇ M + RT / 3F ⁇ ln ⁇ Li (I)) .
  • the precipitation potential can be obtained for each type of molten salt with respect to all precipitates by the above formula.
  • the lithium is melted so that a sufficient potential difference can be obtained from the deposition potential of another single metal or its alloy by observing the value of the deposition potential of this single lithium or lithium alloy.
  • the salt or cathode material is selected, and it is determined whether to deposit as lithium or as a lithium alloy. Since the voltage and current in operation vary depending on the size and positional relationship of the electrodes, after determining the reference value by setting the conditions, determine it at each step based on the potential value and order obtained by the above method. To do.
  • lithium can be dissolved and precipitated electrochemically by controlling the potential value. For this reason, a process can be simplified compared with the case where the process of melt
  • the material to be treated is not limited as long as it is a material containing lithium, but preferred examples include a negative electrode material for a lithium primary battery and a lithium ion secondary battery.
  • a positive electrode material can be mentioned.
  • lithium cobaltate LiCoO 2
  • LiNiO 2 lithium nickelate
  • LiCo 0.3 Ni 0.7 O 2 lithium manganate
  • LiMn 2 O 4 lithium titanate
  • Li 4 Ti 5 O 12 lithium manganate compound
  • LiM y Mn 2 -y O 4 lithium manganate compound
  • a chloride-based molten salt or a fluoride-based molten salt can be used as the molten salt.
  • a molten salt obtained by mixing a chloride-based molten salt and a fluoride-based molten salt can also be used.
  • the molten salt of the chloride-based for example KCl, NaCl, CaCl 2, LiCl , RbCl, CsCl, be used, for example SrCl 2, BaCl 2, MgCl 2 .
  • the molten salt fluoride e.g. LiF, may NaF, KF, RbF, CsF, be used MgF 2, CaF 2, SrF 2 , BaF 2.
  • a chloride-based molten salt from the viewpoint of efficiency, and KCl, NaCl, and CaCl 2 are particularly preferable because they are inexpensive and easily available.
  • these molten salts can be used as a molten salt of any composition by combining a plurality of types of molten salt, for example KCl-CaCl 2 and LiCl-KCl or molten salt composition, such as NaCl-KCl, it can.
  • an apparatus used in the method for producing lithium by molten salt electrolysis according to the present embodiment includes a container holding a molten salt therein, a cathode immersed in the molten salt held inside the container, It is immersed in a molten salt held inside, and includes an anode holding a conductive processing object containing lithium inside, and the anode allows the molten salt to flow between the inside and the outside. Furthermore, a control unit for controlling the potential at the cathode and the anode to a predetermined value is provided, and the control unit can change the value of the potential.
  • the apparatus used for the method for producing lithium by molten salt electrolysis includes a container holding therein a molten salt in which lithium is dissolved, and a cathode immersed in the molten salt held inside the container.
  • the apparatus shown in FIG. 18 includes a container 1 that holds a molten salt therein, a molten salt 2 that is held inside the container 1, a basket 4 that holds a processing object 3 containing lithium, and an electrode 6;
  • the heater 10 for heating the molten salt 2 and the control unit 9 electrically connected to the cage 4 and the electrode 6 by the conductive wire 5 are provided.
  • the control unit 9 can control the potential at this electrode to a predetermined value with the cage 4 as one electrode (anode) and the electrode 6 as the other electrode (cathode). Further, the control unit 9 can change the value of the potential to be controlled.
  • the heater 10 is arranged so as to surround the container 1 in an annular shape.
  • the electrode 6 can be made of any material, and for example, aluminum can be used.
  • the shape of the container 1 may be a circular shape on the bottom or a polygonal shape. Further, as the basket 4, the aforementioned basket can be used.
  • a potential is controlled between the cage 4 and the electrode 6 by the control unit 9 so as to have a predetermined potential value.
  • lithium is dissolved in the molten salt 2 from the processing object 3.
  • the cage 4 and the electrode 6 are taken out, and another electrode 7 (cathode) and electrode 8 (anode) are put into the molten salt 2 as shown in FIG. .
  • the electrodes 7 and 8 are connected to the control unit 9 through the conductive wires 5, respectively.
  • the electric potential in the electrodes 7 and 8 is controlled from the control part 9 to a predetermined value.
  • the potential to be controlled is adjusted so that the potential of the electrode 7 becomes the deposition potential of lithium.
  • lithium dissolved in the molten salt 2 is deposited on the surface of the electrode 7 (cathode).
  • glassy carbon (C) can be used.
  • the heating temperature of the molten salt 2 by the heater 10 can be set to 800 ° C., for example, in any of the treatments in the apparatus shown in FIGS. In this way, lithium can be deposited as a simple substance on the surface of the electrode 7.
  • the potential value controlled in the electrodes 7 and 8 may be adjusted so that an alloy of lithium and a cathode material is deposited on the surface of the electrode 7 (cathode).
  • the above-described melting step and precipitation step may be performed using the alloyed electrode 7. That is, a new apparatus as shown in FIG. 18 may be prepared, and the electrode 7 alloyed with lithium may be used in place of the processing object 3 described above.
  • a cathode material of a lithium ion battery containing lithium is prepared as the processing object 3, and KCl—NaCl is prepared as the molten salt 2.
  • the positive electrode material for example, a powder containing lithium cobalt oxide (LiCoO 2 ) or lithium manganate is used.
  • the positive electrode material is pulverized and placed inside the cage 4. From the viewpoint of improving the processing efficiency, the positive electrode material that is the processing object 3 is preferably pulverized as small as possible.
  • the maximum particle size is 5 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less.
  • the positive electrode material is pulverized into granules. Then, the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8. As described above, lithium can be recovered from the positive electrode material as the processing object 3.
  • the apparatus configuration can be simplified and the processing time can be shortened as compared with the conventional wet separation method, so that the cost can be reduced.
  • lithium can be deposited as a simple substance on the electrode surface by appropriately setting the potential value at the electrode, lithium with high purity can be obtained.
  • a step of dissolving a metal element contained in a processing object containing two or more kinds of metal elements in a molten salt, a pair of electrode members is provided in the molten salt in which the metal element is dissolved, and the electrodes
  • a method of producing a metal by molten salt electrolysis comprising a step of precipitating or alloying a specific metal present in a molten salt on one of electrode members by controlling a potential of the member to a predetermined value.
  • the specific metal contained in the object to be treated is generally dissolved in the molten salt, and the molten salt in which the specific metal is dissolved is specified as one electrode (cathode) by molten salt electrolysis. And a process of depositing a metal.
  • the feature of this embodiment is that a specific metal having a high purity is obtained by selectively precipitating a specific metal from the object to be processed by controlling the potential at the electrode to a predetermined value.
  • a process for dissolving a specific metal contained in a processing object in a molten salt will be described.
  • the method for dissolving the specific metal contained in the object to be treated in the molten salt include a method for dissolving by a chemical method.
  • a specific metal contained in the processing object can be dissolved in the molten salt by crushing the processing object into a granular or powder form, mixing these and a salt, and heating.
  • the object to be treated may be put into molten salt and dissolved.
  • molten salt was controlled from the processing object by providing a cathode and an anode made of an anode material containing the processing object, and controlling the potential at the anode to a predetermined value.
  • a metal element corresponding to the potential value is dissolved in the molten salt.
  • the potential at which an element dissolves has different properties depending on the type of the element. Therefore, a specific metal can be separated from other metals using this property.
  • a specific metal can be selectively dissolved in the molten salt by controlling the potential at the time of dissolution using the object to be treated as an anode.
  • all the metals contained in the treatment object may be dissolved, the specific metal contained in the treatment object and other metals may be dissolved, and further included in the treatment object. It is preferable to dissolve only a specific metal. Although the condition may be that the specific metal contained in the object to be treated and other metals are dissolved, it is preferable to control the potential so that only the specific metal is dissolved as much as possible. That is, in the step of dissolving the specific metal in the molten salt, it is preferable to control the potential at the anode to a predetermined value and selectively dissolve the specific metal element in the molten salt. Thereby, it is possible to reduce the amount of impurities introduced in the subsequent deposition step.
  • the standard electrode potential of the specific metal or its alloy in the molten salt and the other single metal or its metal is preferably selected so that the difference from the standard electrode potential of the alloy is 0.05 V or more.
  • the difference in the standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
  • the value of the potential controlled at the anode can be calculated by the Nernst equation described later.
  • the said process target object contains 1 or more types of the specific metal used as the objective, 1 type or 2 types or more of specific metals are dissolved in the said molten salt in the said melt
  • the target metal is obtained by performing the precipitation step after dissolving the specific metal as described above.
  • two or more kinds of target specific metals are contained in the object to be treated, only one of them is dissolved in the molten salt, followed by the precipitation step, and then the dissolution step again. The remaining types of specific metals may be dissolved in the molten salt.
  • the object to be treated after the first dissolution step is transferred to a molten salt different from the molten salt used in the dissolution step, and the dissolution step is performed, so that the remaining types of specific metals can be obtained. It may be dissolved.
  • one type of the specific metals present in the molten salt is used in the subsequent precipitation step.
  • a desired specific metal can be produced by depositing or alloying the electrode material. In this case, after depositing or alloying one type of specific metal on the electrode material, the electrode material is exchanged to deposit or deposit the remaining specific metal dissolved in the molten salt on the electrode material. What is necessary is just to alloy.
  • a material that is easily alloyed with an alkali metal such as Li or Na constituting carbon or a cation in the molten salt is used.
  • an alkali metal such as Li or Na constituting carbon or a cation in the molten salt
  • aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), or the like is used. Can do.
  • the object to be treated may be accommodated in a conductive basket (anode material) made of metal or the like and provided in the molten salt.
  • An opening is provided in the upper part of the basket so that the object to be processed can be inserted into the interior from the opening, and a large number of holes are formed in the side wall and the bottom wall of the basket so that the molten salt can flow into the interior of the basket. You can do that.
  • a material constituting the cage any material such as a net-like member formed by knitting a metal wire or a sheet member in which a large number of holes are formed in a sheet-like metal plate can be used.
  • the contact amount with the conductive material is preferably increased. It is effective to use the electrode as an electrode by wrapping it with a metal mesh member or filling the space inside the porous metal body.
  • the cathode and an anode made of an anode material containing the object to be processed are provided in the molten salt, and the potential at the anode is controlled to a predetermined value.
  • an anode material containing the object to be processed for example, a metal cage that holds the object to be processed inside
  • the potential at the anode is controlled to a predetermined value.
  • a specific metal is deposited on one electrode member (cathode) by providing a pair of electrode members in the molten salt in which the specific metal is dissolved and performing molten salt electrolysis.
  • a specific metal can be selectively deposited as a metal or alloy on the cathode depending on the magnitude of the potential controlled by molten salt electrolysis.
  • the potential that an element is deposited on the cathode as a metal or alloy varies depending on the type of the element, so that a specific metal and other metals can be used. Isolate.
  • the specific metal element is selectively deposited on the cathode by controlling the potential of the electrode member to a predetermined value. Can be alloyed. That is, a high purity specific metal can be obtained.
  • the difference between the dissolution / precipitation potential of the specific metal and the dissolution / precipitation potential of other metals contained in the molten salt is small, and the specific metal is separated from other metals. If this is difficult, the cathode material and the potential may be controlled so that the cathode material and a specific metal are alloyed and deposited. Thereby, a specific metal in the molten salt is precipitated as an alloy, separated from other impurity metals, and then dissolved in another molten salt using, for example, a cathode material alloyed with the specific metal. By performing the precipitation step, a specific metal with high purity can be obtained.
  • an electrode member used in the precipitation step for example, nickel (Ni), molybdenum (Mo), glassy carbon (C), or the like can be used.
  • a specific metal is separated and extracted from the object to be processed by the above two processes.
  • the molten salt since the molten salt is used, it is necessary to heat the system so that the temperature of the system in each process is equal to or higher than the melting point of the molten salt. Further, as will be described later, it is possible to smelt using the completely opposite idea to this process. That is, only the metal element which becomes an impurity is dissolved in the molten salt with the object to be processed as an anode. Also in this case, by controlling the potential at the anode, a phenomenon occurs in which the specific metal remains on the anode and the impurity element dissolves. Thereby, a specific metal is obtained for the anode.
  • a feature of the above two processes is the use of molten salt.
  • the dissolution / precipitation potential of a specific metal and the dissolution / precipitation of a target metal other than a specific metal It is possible to select and design the molten salt so that the deposition potential is sufficiently separated from the deposition potential.
  • the standard electrode potential of the specific metal or its alloy in the molten salt and the standard electrode potential of another metal or its alloy It is preferable to select the molten salt so that the difference is 0.05 V or more.
  • the difference between the standard electrode potential of the specific metal or its alloy in the molten salt and the standard electrode potential of another metal or its alloy is more preferably 0.1 V or more, and 0.25 V or more. More preferably.
  • the potential of the electrode member is controlled to a predetermined value, and the specific metal element in the molten salt is selectively precipitated or alloyed. It is preferable.
  • the deposition potential of a specific metal deposited on the cathode can be calculated by electrochemical calculation. Specifically, it is calculated using the Nernst equation.
  • Mo (IV) tetravalent molybdenum ions
  • E Mo E 0 Mo + RT / 3F ⁇ ln (a Mo (IV) / a Mo (0) ) (1)
  • E 0 Mo is a standard potential
  • T is the absolute temperature
  • F is the Faraday number
  • a Mo (IV) is the activity of Mo (IV) ions
  • aMo (0) is the activity of Mo alone.
  • the precipitation potential can be obtained for each type of molten salt with respect to all precipitates by the above formula.
  • the same calculation can be performed when molybdenum is precipitated as an alloy.
  • the precipitation potential of this molybdenum alone or molybdenum alloy is observed, so that a sufficient potential difference can be obtained from the precipitation potential of other metals alone or their alloys.
  • the salt or cathode material is selected, and it is determined whether to precipitate as molybdenum alone or as a molybdenum alloy. Since the voltage and current in operation vary depending on the size and positional relationship of the electrodes, after determining the reference value by setting the conditions, determine it at each step based on the potential value and the order obtained by the above method. To do.
  • the specific metal in the method for producing a specific metal by molten salt electrolysis according to the present embodiment, the specific metal can be dissolved and deposited electrochemically by controlling the potential value. For this reason, a process can be simplified compared with the case of repeating processes, such as melt
  • the method for producing a metal by molten salt electrolysis is a method for producing a specific metal by molten salt electrolysis from a treatment object containing two or more kinds of metal elements, and a cathode in the molten salt, An anode made of an anode material containing the object to be treated is provided, and the potential at the anode is controlled to a predetermined value, whereby the metal element corresponding to the potential is dissolved in the molten salt from the object to be treated. The metal is left on the anode.
  • an anode material containing the object to be treated is used as an anode, and only a metal element other than a specific metal, that is, an impurity, is dissolved in a molten salt, thereby leaving a specific metal on the anode. is there. Also in this case, by controlling the potential at the anode, it is possible to generate a phenomenon in which the specific metal to be smelted remains on the anode and the impurity element dissolves in the molten salt. Thereby, the specific metal smelted by the anode is obtained.
  • the standard electrode potential of the specific metal or its alloy in the molten salt and the other metal simple or its alloy is preferably selected so that the difference from the standard electrode potential is 0.05 V or more.
  • a specific metal and another metal can be isolate
  • the difference in standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
  • the value of the potential controlled at the anode can be calculated using the Nernst equation as described above.
  • the object to be treated containing two or more kinds of metal elements is not limited as long as it is a metal material containing a target specific metal.
  • a metal material containing a target specific metal For example, Mn, Co, Sb, etc. from recovered battery materials, Nb, etc. from metal superconducting materials, Bi, Sr etc. from oxide superconducting materials, V from ferrovanadium, and Mo-Cu heat spreaders Can obtain Mo or the like, and Ge or the like from the optical fiber material.
  • the present embodiment can be preferably applied to the case where the object to be treated is a metal material containing a transition metal or a rare earth metal.
  • the transition metal is not particularly limited as long as it is an element included in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table.
  • the present embodiment is also suitably used when the object to be treated includes one or more metals selected from the group consisting of V, Nb, Mo, Ti, Ta, Zr, and Hf as transition metals. Can do.
  • the present embodiment is also suitably used when the metal contained in the processing object is either Sr or Ba, or both.
  • the present invention is also suitably used when the object to be processed contains one or more metals selected from the group consisting of Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, and Bi.
  • a transition metal or a rare earth metal can be obtained by the method for producing a metal by molten salt electrolysis according to this embodiment.
  • the transition metal is not particularly limited as long as it is an element included in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table.
  • the specific metal to be deposited or alloyed is V, Nb, Mo, Ti, Ta, Zr or Hf, Sr or Ba, or Zn, Cd, Ga, In, Ge, Sn. , Pb, Sb or Bi, these metals can be obtained.
  • the melting step one or more kinds of these metals contained in the object to be treated are dissolved in a molten salt, and a specific metal is deposited or alloyed on the electrode member sequentially from the molten salt. it can.
  • the processing object is preferably granular or powdery.
  • the surface area can be increased and the processing efficiency can be increased.
  • it can be used as an anode (anode) by compacting the object to be processed in a granular or powder form. In this case, it is desirable that there is a space where the molten salt can easily enter between the particles.
  • a chloride-based molten salt or a fluoride-based molten salt can be used as the molten salt.
  • a molten salt obtained by mixing a chloride-based molten salt and a fluoride-based molten salt can also be used.
  • the chloride-based molten salt for example, KCl, NaCl, CaCl 2 , LiCl, RbCl, CsCl, SrCl 2 , BaCl 2 , MgCl 2 and the like can be used.
  • the fluoride-based molten salt for example, LiF, NaF, KF, RbF, CsF, MgF 2 , CaF 2 , SrF 2 , and BaF 2 can be used.
  • a chloride-based molten salt from the viewpoint of efficiency
  • KCl, NaCl, and CaCl 2 are preferably used from the viewpoint of being inexpensive and easily available.
  • These molten salts can be used as a molten salt having an arbitrary composition by combining a plurality of types of molten salts.
  • a molten salt having a composition such as KCl—CaCl 2 , LiCl—KCl, or NaCl—KCl can be used. it can.
  • the following apparatus can be preferably used. That is, a container holding a molten salt therein, a cathode immersed in a molten salt held inside the container, and two or more kinds of metal elements immersed in a molten salt held inside the container
  • An anode holding a conductive object to be processed inside, the anode is configured such that the molten salt can flow between the inside and the outside, and the potential at the cathode and the anode is set to a predetermined value.
  • a control unit for controlling the potential is provided, and the control unit is capable of changing the value of the potential.
  • the apparatus used for the method for producing a metal by molten salt electrolysis according to the present embodiment is immersed in a molten salt in which a specific metal is dissolved and a molten salt held in the container. It is preferable that a cathode and an anode are provided, and a controller that controls a potential at the cathode and the anode to a predetermined value is provided, and the controller can change the value of the potential.
  • the apparatus shown in FIG. 18 includes a container 1 that holds a molten salt inside, a molten salt 2 that is held inside the container 1, and a basket 4 that holds a processing object 3 containing two or more kinds of metal elements inside.
  • the control unit 9 can control the potential at this electrode to a predetermined value with the cage 4 as one electrode (anode) and the electrode 6 as the other electrode (cathode). Further, the control unit 9 can change the value of the potential to be controlled.
  • the heater 10 is arranged so as to surround the container 1 in an annular shape.
  • the electrode 6 can be made of any material, and for example, carbon can be used.
  • the shape of the container 1 may be a circular shape on the bottom or a polygonal shape. Further, as the basket 4, the aforementioned basket can be used.
  • the potential is controlled by the control unit 9 so as to have a predetermined potential value.
  • the specific metal is dissolved in the molten salt 2 from the processing object 3.
  • the cage 4 and the electrode 6 are taken out, and another electrode 7 (cathode) and electrode 8 (anode) are put into the molten salt 2.
  • the electrodes 7 and 8 are connected to the control unit 9 through the conductive wires 5, respectively.
  • the control unit 9 controls the potentials at the electrodes 7 and 8 to a predetermined value.
  • the potential to be controlled is adjusted so that the potential of the electrode 7 becomes the deposition potential of the specific metal.
  • the specific metal dissolved in the molten salt 2 is deposited on the surface of the electrode 7 (cathode).
  • glassy carbon (C) can be used.
  • the heating temperature of the molten salt 2 by the heater 10 can be set to 800 ° C., for example, in any of the treatments in the apparatus shown in FIGS. In this way, a specific metal can be deposited as a simple substance on the surface of the electrode 7.
  • the potentials at the electrodes 7 and 8 may be adjusted so that an alloy of a specific metal and a cathode material is deposited on the surface of the electrode 7 (cathode).
  • the above-described melting step and precipitation step may be performed using the alloyed electrode 7. That is, a new apparatus as shown in FIG. 18 may be prepared, and the electrode 7 alloyed with a specific metal may be used in place of the processing object 3 described above.
  • the metal manufacturing method according to the present embodiment is performed using the apparatus as shown in FIGS. 18 and 19, for example, it can be performed as follows.
  • vanadium, molybdenum, strontium, and germanium will be described as examples.
  • vanadium For example, in order to obtain vanadium by the metal production method of the present embodiment, first, 1 kg of ferrovanadium is prepared as the object to be processed 3 and NaCl—KCl is prepared as the molten salt 2.
  • ferrovanadium for example, vanadium (V) is contained at 75 wt% and iron (Fe) is contained at 25 wt%.
  • the ferrovanadium is crushed and placed inside the basket 4.
  • the amount of the molten salt 2 is about 15 liters.
  • the above-described dissolution process may be performed using an electrode made of carbon as the electrode 6, and then the deposition process may be performed using electrodes made of glassy carbon as the electrodes 7 and 8.
  • molybdenum In order to obtain molybdenum by the metal manufacturing method of the present embodiment, first, 1 kg of Mo—Cu heat spreader is prepared as the object to be processed 3, and LiCl—KCl is prepared as the molten salt 2.
  • the Mo—Cu heat spreader includes, for example, 50 wt% molybdenum (Mo) and 50 wt% copper (Cu). The heat spreader is crushed and placed inside the basket 4. The amount of the molten salt 2 is about 5 liters. Then, the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8.
  • the metal manufacturing method of the present embodiment In order to obtain molybdenum by the metal manufacturing method of the present embodiment, first, 1 kg of an oxide-based superconducting material is prepared as the object to be processed 3 and LiF—CaF 2 is prepared as the molten salt 2.
  • the oxide-based superconducting material for example, 17 wt% of strontium (Sr) and 8 wt% of calcium (Ca) are contained.
  • the oxide superconducting material is pulverized and placed inside the cage 4.
  • the amount of the molten salt 2 is about 4 liters.
  • the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8.
  • germanium In order to obtain germanium by the metal production method of the present embodiment, first, 1 kg of an optical fiber material is prepared as the object to be processed 3 and LiF—CaF 2 is prepared as the molten salt 2. As an optical fiber material, for example, germanium (Ge) is contained at 3 wt%. The optical fiber material is crushed and placed inside the basket 4. The amount of the molten salt 2 is about 4 liters. Then, the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8.
  • vanadium, molybdenum, strontium, and germanium can be obtained by using ferrovanadium, a Mo—Cu heat spreader, an oxide superconducting material, and an optical fiber material as the processing object 3, respectively.
  • the ferrovanadium, the Mo—Cu heat spreader, the oxide superconducting material, and the optical fiber material used as the processing object 3 are preferably crushed as small as possible. It is preferable to pulverize into a granule so that the maximum value is 5 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less.
  • the apparatus configuration can be simplified and the processing time can be shortened as compared with the conventional recovery method and the like, so that the cost can be reduced. Furthermore, since a specific metal can be deposited as a simple substance on the electrode surface by appropriately setting the potential at the electrode, a highly pure metal can be obtained. Note that the potential for depositing each vanadium, vanadium alloy, molybdenum, molybdenum alloy, strontium, strontium alloy, germanium, or germanium alloy can be calculated by the above-described calculation.
  • the first to fourth embodiments have been described separately.
  • the method according to another embodiment can be employed in whole or in part.
  • Nd, Dy, and Pr were produced by molten salt electrolysis from ores containing rare earth metals.
  • Xenotime ore was used as the ore to be treated.
  • the xenotime ore was pulverized by means of a crusher or a ball mill so that the particle size became about 2 mm.
  • the crushed sample (xenotime ore) was wrapped in a mesh (50 mesh) made of molybdenum (Mo). As shown in FIG. 14, the sample powder held inside the net was used as an anode (anode electrode).
  • the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. After about 4 hours, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
  • Electrolysis process After the dissolution step, a cathode electrode made of Ni and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the LiF—NaF—KF molten salt was maintained at a potential such that a Dy—Ni alloy was formed. And after predetermined time progress, the surface state of the cathode electrode was observed.
  • FIG. 16 and FIG. 17 The result of having observed the cross section about the surface layer of the cathode electrode with the scanning electron microscope (SEM) is shown in FIG. 16 and FIG.
  • SEM scanning electron microscope
  • the Dy—Ni alloy 32 was deposited on the surface of the electrode main body 31 made of Ni constituting the cathode electrode.
  • This Dy—Ni alloy 32 is considered to be that Dy present in the molten salt reacted with Ni constituting the cathode electrode and deposited on the surface of the cathode electrode.
  • Dy contained in the xenotime ore can be separated and extracted from the ore in the form of a Dy-Ni alloy.
  • FIG. 16 shows a reflected electron image by SEM
  • FIG. 17 shows the distribution of Dy atoms by X-ray analysis of the region shown in FIG.
  • Dy is hardly detected in the region 33 corresponding to the electrode main body 31, but Dy is detected in the region 34 corresponding to the Dy—Ni alloy 32.
  • Tungsten was manufactured by molten salt electrolysis using a cemented carbide tool as a metal material containing tungsten.
  • a cemented carbide tool to be treated a cutting tool having 90 wt% tungsten carbide and 10 wt% cobalt as a binder was used.
  • the cutting tool was pulverized by means of a bead mill or an attritor so that the particle size was about 2 mm.
  • the crushed sample (cutting tool) was wrapped in a mesh (50 mesh) made of molybdenum (Mo). As shown in FIG. 14, the sample powder (object to be processed) held inside the Mo net was used as the anode (anode electrode).
  • the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. After a predetermined time, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
  • Electrolysis process After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that tungsten precipitated in the NaCl-KCl molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
  • Lithium was produced by molten salt electrolysis using a commercially available lithium ion secondary battery as a treatment object containing lithium.
  • Commercially available lithium ion secondary battery lithium cobaltate for positive electrode, graphite for negative electrode, lithium cobaltate content: mass%)
  • the lithium ion secondary battery was immersed in an electrolytic solution (5% NaCl) and discharged to 0.1 mV. Thereafter, the positive electrode material was taken out by manual decomposition and pulverized using a cutter mill to obtain a positive electrode material powder having an average particle diameter of 0.1 mm.
  • the composition is shown in Table 1. As a result of analysis, it was confirmed that the separated powder was lithium cobaltate.
  • the powder was wrapped in a mesh (200 mesh) made of molybdenum (Mo). As shown in FIG. 14, the sample powder held inside the Mo net was used as an anode (anode electrode).
  • a molten salt having a eutectic composition of NaCl-KCl was used as the molten salt, and it was completely melted by heating to 700 ° C. And the anode electrode and cathode electrode which were mentioned above were wired and immersed in the said molten salt. Carbon was used as a material for the cathode (cathode electrode).
  • the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. After a predetermined time, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
  • the anodic current observed in the dissolution process showed the same change with time as in the first embodiment (Example) (FIG. 15).
  • the horizontal axis of FIG. 15 shows time (unit: minute), and a vertical axis
  • shaft shows the electric current value (unit: mA) of anode current. As shown in FIG. 15, the current value decreased with time.
  • the time rate of change of the current value was highest at the start of measurement (at the start of energization), and thereafter the rate of change gradually decreased.
  • a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that lithium was precipitated in the NaCl-KCl molten salt.
  • the cross section of the surface layer of the cathode electrode was observed with a scanning electron microscope (SEM). As a result of the observation, lithium was deposited on the surface of the electrode body portion made of glassy carbon constituting the cathode electrode. Thus, the lithium contained in the positive electrode material containing lithium could be recovered.
  • the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt.
  • the potential at this time was such that iron was not dissolved but only vanadium was selectively dissolved.
  • a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
  • Electrolysis process After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that vanadium was precipitated in the NaCl—KCl molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
  • Molybdenum was produced by molten salt electrolysis using a Mo—Cu heat spreader as a metal material containing molybdenum.
  • a Mo—Cu heat spreader As the Mo—Cu heat spreader to be processed, a heat spreader having 50 wt% molybdenum and 50 wt% copper was used. The heat spreader was pulverized by means of a bead mill or an attritor so that the particle size became about 2 mm. The ground sample (heat spreader) was wrapped with a platinum (Pt) mesh (50 mesh). The sample powder (object to be treated) held inside the Pt net was used as the anode (anode electrode).
  • the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt.
  • the potential at this time was such that copper was not dissolved but only molybdenum was selectively dissolved.
  • a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
  • Electrolysis process After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that molybdenum precipitated in the LiCl—KCl molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
  • Example 3 Strontium was produced by molten salt electrolysis using an oxide-based superconducting material as a metal material containing strontium.
  • an oxide superconducting material having 17 wt% strontium and 8 wt% calcium was used.
  • the oxide superconducting material was pulverized by means of a bead mill or an attritor so that the particle size was about 2 mm.
  • the pulverized sample (oxide-based superconducting material) was wrapped with a platinum (Pt) mesh (50 mesh). The sample powder (object to be treated) held inside the Pt net was used as the anode (anode electrode).
  • the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt.
  • the potential was set such that only strontium and calcium were selectively dissolved, and other contained elements were not dissolved.
  • a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
  • Electrolysis process After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that strontium was precipitated in the LiF—CaF 2 molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
  • strontium was adhered to the surface of the electrode main body portion made of glassy carbon constituting the cathode electrode. Since the melting point of strontium is 768 ° C., it is a liquid. When the amount of adhesion to the electrode body increases, it floats due to the difference in specific gravity with the molten salt. Therefore, a jig for collecting floating strontium was installed on the upper side of the electrode. Thus, strontium contained in the oxide-based superconducting material containing strontium could be obtained with high purity.
  • Germanium was produced by molten salt electrolysis using an optical fiber material as a metal material containing germanium.
  • an optical fiber material to be processed an optical fiber material having 3 wt% germanium was used.
  • the optical fiber material was pulverized by means of a bead mill or an attritor so that the particle size was about 2 mm.
  • the crushed sample (optical fiber material) was wrapped with a platinum (Pt) mesh (50 mesh).
  • the sample powder (object to be treated) held inside the Pt net was used as the anode (anode electrode).
  • the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt.
  • the potential was such that only germanium was selectively dissolved and other contained elements were not dissolved.
  • a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
  • Electrolysis process After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that germanium was precipitated in the LiF—CaF 2 molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
  • germanium was deposited on the surface of the electrode main body portion made of glassy carbon constituting the cathode electrode.
  • germanium contained in the optical fiber material containing germanium could be obtained with high purity.
  • the present invention can be suitably used in a method for obtaining a high purity specific metal from a processing object containing two or more kinds of metal elements. Or this invention can be utilized suitably for the method of obtaining arbitrary metals from an ore or a rough metal lump. Or it can utilize suitably for the method of obtaining highly purified tungsten from the process target object containing at least any one of tungsten and lithium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Provided is a method for obtaining safely and at low cost a specific metal of high purity from a material to be processed that contains two or more metal elements. The molten salt electrolysis metal fabrication method of the present invention is characterized by having a step in which two or more metal elements contained within a material to be processed are dissolved in molten salt, and a step in which, by disposing a pair of electrode members in the molten salt in which the metal elements have been dissolved and controlling the electrical potential of the electrode members to a given value, a specific metal element present in the molten salt is precipitated onto, or made to form an alloy on, one of the electrode members.

Description

溶融塩電解による金属の製造方法及びその製造方法に使用する装置Method for producing metal by molten salt electrolysis and apparatus used for the method
  本発明は、溶融塩電解による金属の製造方法及びその製造方法に使用する装置に関する。 The present invention relates to a method for producing metal by molten salt electrolysis and an apparatus used for the method.
  鉱石から特定の金属を製錬する方法としては、乾式製錬による方法と、湿式製錬による方法とが知られている。 As a method for smelting a specific metal from slag ore, a method by dry smelting and a method by wet smelting are known.
  乾式製錬の溶融製錬は、鉱石を高温の炉で融解することで目的となる金属を分離する方法である。例えば、精鉱あるいは焙焼鉱、焼結鉱を高温の炉内で溶融し、粗金属塊にして濃縮し、脈石や不純物などをスラグとして分離する(非特許文献1の第46頁)。
  溶融製錬では溶融したときの比重差で鉱石に含まれる金属を分離するため、分離する金属間の比重差が大きいことが求められる。また、分離対象が互いに溶解度が小さいことが求められる。金属材料間でこうした条件を満たす元素は限定されるため、乾式製錬では分離できる対象元素が限定されるという問題がある。
Dry smelting smelting is a method of separating a target metal by melting ore in a high-temperature furnace. For example, a concentrate, a roasted ore, or a sintered ore is melted in a high-temperature furnace, concentrated into a crude metal lump, and gangue and impurities are separated as slag (page 46 of Non-Patent Document 1).
In smelting and refining, the metal contained in the ore is separated based on the difference in specific gravity when it is melted. In addition, it is required that the objects to be separated have a low solubility. Since elements satisfying these conditions are limited among metal materials, there is a problem that the target elements that can be separated by dry smelting are limited.
  また、湿式製錬とは、アルカリや酸等の溶液中に鉱石を溶解して、この溶液から目的となる金属を分離・抽出する方法である。この水溶液中から目的金属を分離・抽出する方法としては、例えば、イオン交換を利用する方法、溶媒抽出による方法、水溶液電解による方法が有る。 In addition, the hydrometallurgical smelting is a method in which ore is dissolved in a solution of alkali or acid, and the target metal is separated and extracted from this solution. Examples of methods for separating and extracting the target metal from this aqueous solution include a method using ion exchange, a method using solvent extraction, and a method using aqueous solution electrolysis.
  イオン交換による方法は、イオン交換剤とよばれるイオン交換のできるイオン群をその一部に持った固体を用いて、可逆的にイオン交換する方法である(非特許文献1の第194頁)。
  イオン交換はイオン交換樹脂の吸着能、交換能力により優れた処理であるが、イオンの吸着と解離の繰り返しで処理されるため、多量の物質を経済的かつ効率よく処理するには適さないという問題がある。
The ion exchange method is a method of reversibly ion-exchange using a solid having in part a group of ions capable of ion exchange called an ion exchange agent (page 194 of Non-Patent Document 1).
Ion exchange is an excellent treatment due to the adsorption capacity and exchange capacity of ion exchange resin, but it is processed by repeated adsorption and dissociation of ions, so it is not suitable for treating large quantities of substances economically and efficiently. There is.
  溶媒抽出による方法は、たがいに溶けあわない2種の溶媒中への溶質の種類による分配の違いを利用する分離方法である(非特許文献1の第199頁)。
  この溶媒抽出は、酸処理等でイオン化し、分離に際しては、処理段数を多く実施する必要があり、それに伴い、多量の酸、アルカリを要し、多量の廃液を生じるという問題がある。
The solvent extraction method is a separation method that utilizes the difference in distribution depending on the type of solute in two solvents that do not dissolve in each other (page 199 of Non-Patent Document 1).
This solvent extraction is ionized by acid treatment or the like, and it is necessary to carry out a large number of treatment steps for separation, and accordingly, a large amount of acid and alkali are required and a large amount of waste liquid is generated.
  電解製錬の水溶液電解による方法は、元素によってアノード溶解またはカソード析出に難易の差があることを利用して純金属を製造する方法である。また、使用される電解液中での不純物イオンに対する難溶塩の生成反応も同時に利用している(非特許文献1の第219頁)。
  しかしながら、水溶液電解精製では分離析出できる金属元素が限られており、例えば、レアアースといった材料は原理的に析出されることができないという問題がある。
The method of electrolytic smelting by aqueous solution electrolysis is a method for producing pure metal by utilizing the difference in difficulty in anodic dissolution or cathode deposition depending on elements. Moreover, the formation reaction of the hardly soluble salt with respect to the impurity ion in the electrolyte solution to be used is also utilized (page 219 of Non-Patent Document 1).
However, metal elements that can be separated and precipitated by aqueous electrolytic purification are limited, and there is a problem that, for example, a material such as rare earth cannot be deposited in principle.
  また、Alについては、溶融塩電解を利用した電解製錬も知られている。この方法では精製対象の材料であるAlを合金化して融点を低下させて、溶融塩、回収金属の三層式として比重差を利用して製錬を行う。このように比重差を利用するため、三層すべてが溶融した状態で実行する必要がある(非特許文献1の第254頁)。
  この方法は対象金属がAlであり、また、共存する不純物の電位が精製目的金属の電位に近いと、析出させた目的金属中に不純物として混入するという問題がある。
As for Al, electrolytic smelting using molten salt electrolysis is also known. In this method, Al, which is a material to be refined, is alloyed to lower the melting point, and smelting is performed using the specific gravity difference as a three-layer system of molten salt and recovered metal. In order to use the specific gravity difference in this way, it is necessary to carry out the process in a state where all three layers are melted (page 254 of Non-Patent Document 1).
This method has a problem that when the target metal is Al and the potential of the coexisting impurities is close to the potential of the purification target metal, it is mixed as an impurity in the deposited target metal.
  一方、タングステンの回収方法としては、例えば、非特許文献2には次のような方法が記載されている。
  まず、超硬工具のハードスクラップやソフトスクラップを硝酸ナトリウムの溶融塩と反応させた後に水に溶解させてタングステン酸ナトリウム水溶液を作製する。そして、イオン交換樹脂を用いたイオン交換法によりタングステン酸ナトリウム水溶液からタングステン酸アンモニウム水溶液を作製し、タングステン酸アンモニウム水溶液からパラタングステン酸アンモニウム(APT)を晶出させる。その後、上記のように晶出させたパラタングステン酸アンモニウムを仮焼、還元および炭化することによってタングステンカーバイドを得ている。
  なお、ハードスクラップとは製品の形状を保ったスクラップの総称であり、ソフトスクラップとは超硬工具を加工製造する際に発生する粉末屑や切削屑等からなる粉末状のスクラップのことをいう。
On the other hand, as a method for recovering tungsten, for example, Non-Patent Document 2 describes the following method.
First, a hard scrap or a soft scrap of a cemented carbide tool is reacted with a molten salt of sodium nitrate and then dissolved in water to prepare a sodium tungstate aqueous solution. Then, an ammonium tungstate aqueous solution is produced from the sodium tungstate aqueous solution by an ion exchange method using an ion exchange resin, and ammonium paratungstate (APT) is crystallized from the ammonium tungstate aqueous solution. Thereafter, tungsten carbide is obtained by calcining, reducing and carbonizing the ammonium paratungstate crystallized as described above.
Hard scrap is a generic term for scraps that maintain the shape of a product, and soft scrap refers to powdered scrap that consists of powder scraps, cutting scraps, and the like generated when processing and manufacturing a carbide tool.
  また、特許文献1では、硬質合金のスクラップおよび/または重金属のスクラップの溶融塩浴中での酸化によりタングステン酸ナトリウムを製造する際に、水酸化ナトリウム60~90重量%および硫酸ナトリウム10~40重量%の溶融塩を用いることが提案されている。上記のスクラップと溶融塩との反応は、バッチ式で運転され、直接加熱できるロータリーキルン中で行われることも提案されている。 In Patent Document 1, when sodium tungstate is produced by oxidizing hard alloy scrap and / or heavy metal scrap in a molten salt bath, sodium hydroxide 60 to 90 wt% and sodium sulfate 10 to 40 wt% % Molten salt has been proposed. It has also been proposed that the reaction between the scrap and the molten salt be carried out in a rotary kiln that is operated batchwise and can be heated directly.
  しかしながら、上記非特許文献2に記載の方法では、超硬工具のハードスクラップやソフトスクラップと硝酸ナトリウムの溶融塩との反応は極めて激しく起こるため、反応の制御が難しく、操業の安全性に問題がある。また、超硬工具のハードスクラップやソフトスクラップと硝酸ナトリウムの溶融塩とを反応させた場合に、超硬工具のハードスクラップやソフトスクラップに含まれているバナジウムやクロム等の金属が水溶性の金属酸化物イオンの形態でタングステン酸ナトリウム水溶液中に含まれてしまう。このためこれらの金属が不純物となってしまい、高純度が困難であるという問題がある。 However, in the method described in Non-Patent Document 2, the reaction between the hard scrap or soft scrap of the carbide tool and the molten salt of sodium nitrate occurs extremely vigorously, so that the reaction is difficult to control and there is a problem in the safety of operation. is there. Also, when hard scrap or soft scrap of cemented carbide tool and molten salt of sodium nitrate are reacted, metals such as vanadium and chromium contained in the hard scrap and soft scrap of cemented carbide tool are water-soluble metals. It will be contained in the sodium tungstate aqueous solution in the form of oxide ions. For this reason, these metals become impurities and there is a problem that high purity is difficult.
  また、上記特許文献1に記載の方法では、酸化剤となる溶融塩としての硫酸ナトリウムの融点が884℃と高く、反応時の温度884℃以上と高温にしなければならない。このため金属材料が腐食してしまうという問題がある。また、反応が緩慢になるため、反応に時間がかかり、エネルギーロスが大きいという問題がある。 In addition, in the method described in Patent Document 1, the melting point of sodium sulfate as a molten salt serving as an oxidizing agent is as high as 884 ° C., and the temperature during the reaction must be as high as 884 ° C. or higher. For this reason, there is a problem that the metal material is corroded. Moreover, since reaction becomes slow, there exists a problem that reaction takes time and energy loss is large.
  一方でリチウムは、主にリチウム含有鉱石(スポジューメン、アンブリゴナイト、ペタライト、レピドライト等)、リチウム濃度の高い塩湖や地下かん水から抽出されている。しかしながら、わが国にはリチウム含有鉱石も塩湖もないため、ほとんど全量を輸入に頼っているのが実情である。
  そこで、最近では、リチウム電池等のリチウム含有製品の製造工程で発生するリチウム含有廃棄物又は使用済みとなって廃棄されるリチウム含有製品等からリチウムを分離、回収する検討が始まっている。
On the other hand, lithium is extracted mainly from lithium-containing ores (spodumene, ambrigonite, petalite, lepidrite, etc.), salt lakes and underground brines with high lithium concentration. However, since Japan has neither lithium-containing ore nor salt lakes, the actual situation is that almost all of them depend on imports.
Therefore, recently, studies have been started to separate and recover lithium from lithium-containing waste generated in the manufacturing process of lithium-containing products such as lithium batteries or lithium-containing products that are used and discarded.
  リチウムを回収する方法としては、リチウム二次電池の正極材料であるコバルト酸リチウムを金属リチウムとともに塩化リチウム溶融塩中で還元反応させて酸化リチウムを生成してコバルトまたは酸化コバルトを沈殿分離し、その後に塩化リチウム溶融塩内で酸化リチウムを電解して金属リチウムを陰極に析出させて回収する方法が提案されている(特許文献2特開2005-011698号公報)。
  しかしながら、この方法は、処理対象物に含まれるコバルトを還元して分離するために金属リチウムを添加する必要があり、金属リチウムの回収のために金属リチウムを添加するといった工程を採用しているため効率がよくないという問題がある。
As a method for recovering lithium, lithium cobaltate, which is a positive electrode material of a lithium secondary battery, is subjected to a reduction reaction in a lithium chloride molten salt together with metal lithium to produce lithium oxide, and cobalt or cobalt oxide is precipitated and separated. In addition, a method has been proposed in which lithium oxide is electrolyzed in a lithium chloride molten salt to deposit and recover metallic lithium on the cathode (Japanese Patent Application Laid-Open No. 2005-011698).
However, this method needs to add metallic lithium in order to reduce and separate cobalt contained in the object to be treated, and employs a process of adding metallic lithium to recover metallic lithium. There is a problem that it is not efficient.
  また、リチウム二次電池の正極材料であるマンガン酸リチウムに炭素を混合した混合物を、大気雰囲気下、酸化雰囲気下、不活性雰囲気下、および還元雰囲気下のいずれかで焙焼して、リチウムを酸化リチウムとし、この焙焼物を水で浸出することによってリチウムを水酸化リチウムおよび炭酸リチウムとして溶出させてリチウムを回収する方法が提案されている(特許文献3)。
  しかしながら、この方法は、水酸化リチウム、炭酸リチウムの溶解度が大きくないため、回収の効率が悪く、また、水酸化リチウムおよび炭酸リチウムを水に溶出させるために多量の水が必要となり、処理後には多量の廃水が発生するという問題がある。
In addition, a mixture of carbon and lithium manganate, which is a positive electrode material of a lithium secondary battery, is roasted in any of an air atmosphere, an oxidizing atmosphere, an inert atmosphere, and a reducing atmosphere to obtain lithium. A method for recovering lithium by eluting lithium as lithium hydroxide and lithium carbonate by leaching this roasted product with water by using lithium oxide has been proposed (Patent Document 3).
However, in this method, since the solubility of lithium hydroxide and lithium carbonate is not large, the recovery efficiency is poor, and a large amount of water is required to elute lithium hydroxide and lithium carbonate into water. There is a problem that a large amount of wastewater is generated.
  さらに、タンタル(Ta)は主にタンタルコンデンサに利用されており、タンタルコンデンサスクラップから回収することができる。具体的には、酸化処理、磁力選別、篩分け、流水分離、粉砕、篩分け、リーチング、酸化処理、還元処理、リーチングというプロセスを経て回収されている(非特許文献3、319頁~326頁参照)。 Furthermore, tantalum (Ta) is mainly used for tantalum capacitors and can be recovered from tantalum capacitor scrap. Specifically, it is recovered through processes of oxidation treatment, magnetic separation, sieving, running water separation, pulverization, sieving, leaching, oxidation treatment, reduction treatment, and leaching (Non-patent Documents 3, pages 319 to 326). reference).
  バナジウム(V)は、鉄鋼への添加物や、石油精製における脱硫触媒として利用されている。鉄鋼添加物として利用されたものは鉄鋼スクラップとして回収され、鉄鋼としてリサイクルされる。使用済み触媒に対しては、分級、焙焼、粉砕、浸出、ろ過、浸出液、脱水、熱分解、溶解という工程を順次行うことにより五酸化バナジウムを得ることができる(同文献、391頁~396頁)。 Vanadium (V) is used as an additive to steel and as a desulfurization catalyst in petroleum refining. What was used as a steel additive is collected as steel scrap and recycled as steel. Vanadium pentoxide can be obtained by sequentially carrying out the steps of classification, roasting, pulverization, leaching, filtration, leachate, dehydration, thermal decomposition, and dissolution for the spent catalyst (the same document, pages 391 to 396). page).
  モリブデン(Mo)も、鉄鋼への添加物や合金、石油精製における脱硫触媒として利用されている。鉄鋼添加物や合金元素として利用されたものは、鉄鋼や合金として回収し、そのまま鉄鋼や合金の形で利用さていれる。使用済み触媒に対しては、焙焼、油分・水分・硫黄分の除去、塩基性での浸出、回収という工程を順次行うことによりMoを得ることができる(同文献、301頁~303頁)。 Molybdenum (Mo) is also used as an additive and alloy for steel and as a desulfurization catalyst in petroleum refining. Those used as steel additives and alloy elements can be recovered as steel and alloys and used as they are in the form of steel and alloys. Mo can be obtained by sequentially performing the steps of roasting, removal of oil / water / sulfur, basic leaching, and recovery for the used catalyst (the same reference, pages 301 to 303). .
  ニオブ(Nb)は、鉄鋼への添加物としての利用形態が大半であり、このような鉄鋼添加物として利用したものは、鉄鋼スクラップとして回収されている。しかしながら、高張力鋼やステンレス鋼などのニオブの含有量は極めて低く、ニオブとしてのリサイクルはされていない(同文献、339頁)。 Most of the niobium (Nb) is used as an additive to steel, and those used as such steel additives are recovered as steel scrap. However, the content of niobium such as high-strength steel and stainless steel is extremely low and is not recycled as niobium (Id., Page 339).
  マンガン(Mn)は大部分が鉄鋼およびアルミ合金に利用されており、それぞれ鉄鋼スクラップ、アルミ合金スクラップとして回収されている。鉄鋼用リサイクルの場合には、マンガンは各種スラグに残る割合が大きく、スラグを形成したマンガンはリサイクルには適さない。スラグ中のマンガンはマンガンケイカル肥料などとして一部利用されている。
また、アルミニウム合金として利用されているアルミニウム缶は回収後、リサイクル再生されている(同文献、343頁~344頁)。
Manganese (Mn) is mostly used for steel and aluminum alloys, and is recovered as steel scrap and aluminum alloy scrap, respectively. In the case of recycling for steel, manganese has a large proportion of remaining in various slags, and manganese forming slag is not suitable for recycling. Manganese in slag is partly used as manganese calcium fertilizer.
In addition, aluminum cans used as aluminum alloys are recycled after being collected (page 343 to 344).
  クロム(Cr)は鉄鋼(ステンレス)およびスーパーアロイに利用されたものは、それぞれ鉄鋼スクラップ、スーパーアロイスクラップとして回収後、リサイクル再生されており、クロム単体での抽出回収は行われていない(同文献、219頁~221頁)。 Chromium (Cr) used for steel (stainless steel) and superalloy is recycled as steel scrap and superalloy scrap, respectively, and is recycled and recycled. Pp. 219-221).
  上記のような回収技術では、焙焼(加熱)、粉砕、浸出、還元等、回収過程におけるプロセス数が多く、複雑であるため処理に時間がかかりコスト高になるという問題がある。
また、処理を行うために焙焼が必要であり、その処理に伴い抽出対象でないものに対しても処理をすることとなり、不要なエネルギーを用いることになる。更に、処理対象でないものに焙焼処理を施すことで、不要な酸化物を生成することになり、廃棄物を多く発生させてしまう。また、酸処理や塩基処理を行うため、処理後に酸や塩基の廃液が発生し、環境への負荷が発生してしまう。
  このように従来の金属の回収技術では処理コストがかかる、エネルギーロスが大きい、廃棄物が多い、環境負荷が大きい等の問題がある。また、費用面や技術的な問題から単体として再生されない金属もある。
The recovery techniques as described above have a problem that the number of processes in the recovery process such as roasting (heating), pulverization, leaching, reduction, etc. is large and complicated, so that the processing takes time and costs increase.
In addition, roasting is necessary to perform the processing, and processing that is not subject to extraction accompanying the processing is performed, and unnecessary energy is used. Furthermore, by subjecting a non-treatment target to a roasting process, unnecessary oxides are generated, and a lot of waste is generated. Moreover, since acid treatment and base treatment are performed, waste liquids of acid and base are generated after the treatment, and an environmental load is generated.
As described above, the conventional metal recovery technique has problems such as high processing cost, large energy loss, large amount of waste, and large environmental load. In addition, some metals are not regenerated as a single unit due to cost and technical problems.
特表平11-505801号公報Japanese National Patent Publication No. 11-505801 特開2005-011698号公報JP 2005-011698 A 特開2011-094227号公報JP 2011-094227 A
  上記問題点に鑑みて、本発明は、どのような鉱石にも利用可能な、低コストで高純度の金属を得るための金属の製造方法及びその製造方法に使用する装置を提供することを課題とする。本発明は、2種類以上の金属元素を含む処理対象物から、特定の金属を高純度で、安全かつ低コストで得ることができる金属の製造方法及びその製造方法に使用する装置を提供することを課題とする。 In view of the above problems, the present invention provides a metal production method for obtaining a low-cost, high-purity metal that can be used for any ore and an apparatus used for the production method. And The present invention provides a method for producing a metal that can obtain a specific metal with high purity, safety and low cost from a treatment object containing two or more kinds of metal elements, and an apparatus used for the method. Is an issue.
 本発明の一実施形態は、2種類以上の金属元素を含む処理対象物に含まれる金属元素を溶融塩中に溶解させる工程と、前記金属元素が溶解した溶融塩中に一対の電極部材を設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に、溶融塩中に存在する特定の金属を析出又は合金化させる工程と、を備えることを特徴とする溶融塩電解による金属の製造方法であるである。
 本発明の他の実施形態は、前記処理対象が鉱石又は該鉱石から得られた粗金属塊である。
 本発明の他の実施形態は、タングステンを製造する方法であって、前記処理対象物に含まれる金属元素がタングステンであって、前記処理対象物から金属元素を溶融塩中に溶解させる工程において、前記処理対象物からタングステンを溶解させ、前記特定の金属を析出又は合金化させる工程において、前記タングステンが溶解した溶融塩中に一対の電極部材設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に溶融塩中に存在するタングステンを析出させる。
 本発明の他の実施形態は、前記処理対象物は前記タングステンを含む金属材料である。
 本発明の他の実施形態は、前記処理対象物はタングステンと遷移金属とを含む金属材料である。
 本発明の他の実施形態は、前記処理対象物は超硬製品である。
 本発明の他の実施形態は、リチウムを製造する方法であって、前記処理対象物に含まれる金属元素がリチウムであって、前記処理対象物から金属元素を溶融塩中に溶解させる工程において、前記処理対象物からリチウムを溶解させ、前記特定の金属を析出又は合金化させる工程において、前記リチウムが溶解した溶融塩中に一対の電極部材設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に溶融塩中に存在するリチウムを析出させる。
 本発明の他の実施形態は、前記処理対象物はリチウムと遷移金属とを含む材料である。
 本発明の他の実施形態は、前記処理対象物はリチウムを含む電池用電極材料である。
 本発明の他の実施形態は、前記処理対象物は、遷移金属又は希土類金属を含む。
 本発明の他の実施形態は、前記処理対象物は、V、Nb、Mo、Ti、Ta、Zr、及びHfからなる群より選ばれる1種類以上の金属を含む。
 本発明の他の実施形態は、前記処理対象物は、Sr及び/又はBaを含む。
 本発明の他の実施形態は、前記処理対象物は、Zn、Cd、Ga、In、Ge、Sn、Pb、Sb、及びBiからなる群より選ばれる1種類以上の金属を含む。
 本発明の他の実施形態は、前記特定の金属を析出又は合金化させる工程において、溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択する。
 本発明の他の実施形態は、前記特定の金属を析出又は合金化させる工程において、前記電極部材における電位を所定の値に制御し、前記溶融塩中の前記特定の金属元素を選択的に析出又は合金化させる。
 本発明の他の実施形態は、前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、化学的手法により前記金属を前記溶融塩中に溶解させる。
 本発明の他の実施形態は、前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、前記溶融塩中に、陰極と、前記処理対象物を含む陽極材料からなる陽極とを設け、該陽極における電位を所定の値に制御することにより、前記処理対象物から制御した電位に応じた金属元素を溶融塩中に溶解させる。
 本発明の他の実施形態は、前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、前記溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択する。
 本発明の他の実施形態は、前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、前記陽極における電位を所定の値に制御し、前記特定の金属元素を選択的に溶融塩中に溶解させる。
 本発明の他の実施形態は、前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、1種類もしくは2種類以上の前記特定の金属を前記溶融塩中に溶解させる。
 本発明の他の実施形態は、前記析出又は合金化させる特定の金属が遷移金属である。
 本発明の他の実施形態は、前記析出又は合金化させる特定の金属が希土類金属である。
 本発明の他の実施形態は、前記析出又は合金化させる特定の金属がV、Nb、Mo、Ti、Ta、Zr、又はHfである。
 本発明の他の実施形態は、前記析出又は合金化させる特定の金属がSr又はBaである。
 本発明の他の実施形態は、前記析出又は合金化させる特定の金属がZn、Cd、Ga、In、Ge、Sn、Pb、Sb、又はBiである。
 本発明の他の実施形態は、前記溶融塩として塩化物系またはフッ化物系の溶融塩を用いる。
 本発明の他の実施形態は、前記溶融塩として塩化物系の溶融塩とフッ化物系の溶融塩とを混合した溶融塩を用いる。
 本発明の他の実施形態は、前記処理対象物は、粒状又は粉末状である。
 本発明の他の実施形態は、前記粒状又は粉末状の前記処理対象物を押し固めて前記陽極とする。
 本発明の他の実施形態は、2種類以上の金属元素を含む処理対象物から特定の金属を溶融塩電解により製造する方法であって、溶融塩中に陰極と、前記処理対象物を含む陽極材料からなる陽極とを設け、該陽極における電位を所定の値に制御することにより、前記処理対象物から制御した電位に応じた金属元素を溶融塩中に溶解させることで特定の金属を陽極に残留させることを特徴とする溶融塩電解による金属の製造方法である。
 本発明の他の実施形態は、前記処理対象が鉱石又は該鉱石から得られた粗金属塊である。
 本発明の他の実施形態は、タングステンを含む処理対象物から溶融塩電解によりタングステンを製造する方法であって、溶融塩中に陰極と、前記処理対象物を含む陽極材料からなる陽極とを設け、該陽極における電位を所定の値に制御することにより、前記処理対象物から制御した電位に応じた金属元素を溶融塩中に溶解させることでタングステンを陽極に残留させる。
 本発明の他の実施形態は、前記溶融塩中に前記処理対象物から金属元素を溶解させる工程において、前記溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択する。
 本発明の他の実施形態は、溶融塩を内部に保持した容器と、前記容器の内部に保持された溶融塩に浸漬した陰極と、前記容器の内部に保持された溶融塩に浸漬され、2種類以上の金属元素を含む処理対象物を内部に保持した陽極とを備え、前記陽極は内部と外部との間で前記溶融塩が流通可能になっており、さらに、前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、前記制御部は、前記電位の値の変更が可能となっていることを特徴とする溶融塩電解による金属の製造方法に使用する装置である。
 本発明の他の実施形態は、2種類以上の金属元素が溶解した溶融塩を内部に保持した容器と、前記容器の内部に保持された溶融塩に浸漬した陰極と陽極とを備え、前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、前記制御部は、前記電位の値の変更が可能となっていることを特徴とする溶融塩電解による金属の製造方法に使用する装置である。
 本発明の他の実施形態は、前記2種類以上の金属元素として、タングステン及びリチウムのうち少なくとも1種を含む。
In one embodiment of the present invention, a step of dissolving a metal element contained in a processing object containing two or more kinds of metal elements in a molten salt, and a pair of electrode members provided in the molten salt in which the metal element is dissolved And a step of precipitating or alloying a specific metal present in the molten salt on one of the electrode members by controlling the potential of the electrode member to a predetermined value. This is a method for producing a metal.
In another embodiment of the present invention, the treatment target is ore or a crude metal block obtained from the ore.
Another embodiment of the present invention is a method for producing tungsten, wherein the metal element contained in the object to be treated is tungsten, and in the step of dissolving the metal element from the object to be treated in a molten salt, In the step of dissolving tungsten from the object to be treated and precipitating or alloying the specific metal, a pair of electrode members are provided in the molten salt in which the tungsten is dissolved, and the potential at the electrode members is controlled to a predetermined value. Thus, tungsten existing in the molten salt is deposited on one of the electrode members.
In another embodiment of the present invention, the processing object is a metal material containing tungsten.
In another embodiment of the present invention, the object to be processed is a metal material containing tungsten and a transition metal.
In another embodiment of the present invention, the processing object is a cemented carbide product.
Another embodiment of the present invention is a method for producing lithium, wherein the metal element contained in the object to be treated is lithium, and in the step of dissolving the metal element from the object to be treated in a molten salt, In the step of dissolving lithium from the object to be treated and precipitating or alloying the specific metal, a pair of electrode members are provided in the molten salt in which the lithium is dissolved, and the potential at the electrode members is controlled to a predetermined value. As a result, lithium existing in the molten salt is deposited on one of the electrode members.
In another embodiment of the present invention, the object to be treated is a material containing lithium and a transition metal.
In another embodiment of the present invention, the processing object is a battery electrode material containing lithium.
In another embodiment of the present invention, the processing object includes a transition metal or a rare earth metal.
In another embodiment of the present invention, the processing object contains one or more metals selected from the group consisting of V, Nb, Mo, Ti, Ta, Zr, and Hf.
In another embodiment of the present invention, the processing object includes Sr and / or Ba.
In another embodiment of the present invention, the processing object includes one or more kinds of metals selected from the group consisting of Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, and Bi.
In another embodiment of the present invention, in the step of precipitating or alloying the specific metal, the standard electrode potential of the single metal or its alloy in the molten salt and the standard of another single metal or its alloy are used. The molten salt is selected so that the difference from the electrode potential is 0.05 V or more.
In another embodiment of the present invention, in the step of depositing or alloying the specific metal, the potential of the electrode member is controlled to a predetermined value, and the specific metal element in the molten salt is selectively precipitated. Or alloy it.
In another embodiment of the present invention, in the step of dissolving the metal element contained in the object to be treated in the molten salt, the metal is dissolved in the molten salt by a chemical method.
In another embodiment of the present invention, in the step of dissolving the metal element contained in the object to be treated in the molten salt, the molten salt includes a cathode and an anode made of an anode material containing the object to be treated. By providing and controlling the potential at the anode to a predetermined value, the metal element corresponding to the controlled potential from the object to be treated is dissolved in the molten salt.
In another embodiment of the present invention, in the step of dissolving a metal element contained in the object to be treated in a molten salt, a standard electrode potential of the specific metal alone or an alloy thereof in the molten salt and another metal The molten salt is selected so that the difference from the standard electrode potential of the simple substance or alloy thereof is 0.05 V or more.
In another embodiment of the present invention, in the step of dissolving the metal element contained in the object to be treated in the molten salt, the potential at the anode is controlled to a predetermined value, and the specific metal element is selectively melted. Dissolve in salt.
In another embodiment of the present invention, one or more specific metals are dissolved in the molten salt in the step of dissolving the metal element contained in the object to be processed in the molten salt.
In another embodiment of the present invention, the specific metal to be deposited or alloyed is a transition metal.
In another embodiment of the present invention, the specific metal to be deposited or alloyed is a rare earth metal.
In another embodiment of the present invention, the specific metal to be precipitated or alloyed is V, Nb, Mo, Ti, Ta, Zr, or Hf.
In another embodiment of the present invention, the specific metal to be deposited or alloyed is Sr or Ba.
In another embodiment of the present invention, the specific metal to be deposited or alloyed is Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, or Bi.
In another embodiment of the present invention, a chloride-based or fluoride-based molten salt is used as the molten salt.
In another embodiment of the present invention, a molten salt obtained by mixing a chloride-based molten salt and a fluoride-based molten salt is used as the molten salt.
In another embodiment of the present invention, the object to be processed is granular or powdery.
In another embodiment of the present invention, the granular or powder object to be processed is pressed into the anode.
Another embodiment of the present invention is a method for producing a specific metal from a treatment object containing two or more kinds of metal elements by molten salt electrolysis, and comprises a cathode in the molten salt and an anode containing the treatment object An anode made of a material is provided, and by controlling the potential at the anode to a predetermined value, a metal element corresponding to the potential controlled from the object to be processed is dissolved in the molten salt, thereby allowing a specific metal to be used as the anode. It is a method for producing a metal by molten salt electrolysis, which is characterized by remaining.
In another embodiment of the present invention, the treatment target is ore or a crude metal block obtained from the ore.
Another embodiment of the present invention is a method for producing tungsten from a treatment object containing tungsten by molten salt electrolysis, wherein a cathode and an anode made of an anode material containing the treatment object are provided in the molten salt. By controlling the potential at the anode to a predetermined value, the metal element corresponding to the controlled potential from the object to be processed is dissolved in the molten salt, so that tungsten remains in the anode.
According to another embodiment of the present invention, in the step of dissolving a metal element from the object to be treated in the molten salt, the standard electrode potential of the specific metal alone or its alloy in the molten salt and other metal The molten salt is selected so that the difference from the standard electrode potential of a single substance or an alloy thereof is 0.05 V or more.
In another embodiment of the present invention, a container holding a molten salt therein, a cathode immersed in a molten salt held in the container, and a molten salt held in the container are immersed in 2 An anode holding a treatment object containing at least one kind of metal element inside, the anode is capable of flowing the molten salt between the inside and the outside, and further, the potential at the cathode and the anode Is a device for use in a method for producing a metal by molten salt electrolysis, wherein the control unit is capable of changing the value of the potential.
Another embodiment of the present invention includes a container holding therein a molten salt in which two or more kinds of metal elements are dissolved, a cathode and an anode immersed in the molten salt held inside the container, and the cathode And a control unit that controls the potential at the anode to a predetermined value, and the control unit is used in a method for producing a metal by molten salt electrolysis, wherein the potential value can be changed. Device.
In another embodiment of the present invention, the two or more metal elements include at least one of tungsten and lithium.
  本発明の金属の製造方法及びその製造方法に使用する装置は、どのような鉱石にも利用可能である。本発明の製造方法及びその製造方法に使用する装置により、2種類以上の金属元素を含む処理対象物から、特定の金属を高純度で、安全かつ低コストで得ることができる。 金属 The metal production method of the present invention and the apparatus used for the production method can be used for any ore. With the production method of the present invention and the apparatus used for the production method, a specific metal can be obtained with high purity, safety and low cost from a treatment object containing two or more kinds of metal elements.
本発明の実施形態を説明するフローチャートである。It is a flowchart explaining embodiment of this invention. 溶融塩中での希土類金属の析出電位の例を示す模式図である。It is a schematic diagram which shows the example of the precipitation potential of the rare earth metal in molten salt. 本発明を実施した場合の処理時間と溶融塩中の希土類金属のイオン濃度との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the processing time at the time of implementing this invention, and the ion concentration of the rare earth metal in molten salt. 本発明を実施する装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the apparatus which implements this invention. 本発明を実施する装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the apparatus which implements this invention. 本発明の他の実施形態を説明するためのフローチャートである。It is a flowchart for demonstrating other embodiment of this invention. 本発明の他の実施形態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating other embodiment of this invention. 本発明の他の実施形態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating other embodiment of this invention. 本発明の他の実施形態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating other embodiment of this invention. 本発明の他の実施形態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating other embodiment of this invention. 本発明の他の実施形態の変形例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the modification of other embodiment of this invention. 本発明の他の実施形態の変形例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the modification of other embodiment of this invention. 本発明の他の実施形態の変形例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the modification of other embodiment of this invention. 本発明に係る実施例で用いたアノード電極を説明するための写真である。It is a photograph for demonstrating the anode electrode used in the Example which concerns on this invention. 本発明に係る実施例におけるアノード電流値と時間との関係を示すグラフである。It is a graph which shows the relationship between the anode electric current value and time in the Example which concerns on this invention. 本発明に係る実施例の電解工程で用いたカソード電極の表面部を示す走査型電子顕微鏡写真である。写真右下の目盛は8μmを示す。It is a scanning electron micrograph which shows the surface part of the cathode electrode used at the electrolysis process of the Example which concerns on this invention. The scale on the lower right of the photograph shows 8 μm. 図16に示した電子顕微鏡写真の領域について、Dyの分布状況を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the distribution condition of Dy about the area | region of the electron micrograph shown in FIG. 本発明の実施形態の装置の構成の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of a structure of the apparatus of embodiment of this invention. 本発明の実施形態の装置の構成の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of a structure of the apparatus of embodiment of this invention.
  本発明の一実施形態は、2種類以上の金属元素を含む処理対象物に含まれる金属元素を溶融塩中に溶解させる工程と、前記金属元素が溶解した溶融塩中に一対の電極部材を設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に、溶融塩中に存在する特定の金属を析出又は合金化させる工程と、を備えることを特徴とする溶融塩電解による金属の製造方法である。
[第1実施形態]
  第1実施形態は、前記処理対象物が2種類以上の金属元素を含む鉱石又は該鉱石から得られた粗金属塊(以下、単に粗金属塊とも記す)である。
In one embodiment of the present invention, a step of dissolving a metal element contained in a processing object containing two or more kinds of metal elements in a molten salt, and a pair of electrode members provided in the molten salt in which the metal element is dissolved And a step of precipitating or alloying a specific metal present in the molten salt on one of the electrode members by controlling the potential of the electrode member to a predetermined value. Is a method for producing a metal.
[First embodiment]
In the first embodiment, the processing object is an ore containing two or more kinds of metal elements or a rough metal lump obtained from the ore (hereinafter also simply referred to as a rough metal lump).
  すなわち、上記実施形態は大きくは、溶融塩中に対象物(前記鉱石又は粗金属塊)に含まれる金属を溶解させるプロセスと、該金属が溶解した溶融塩から溶融塩電解により一方の極(陰極)に分離抽出する対象元素の金属もしくは合金を析出させるプロセスとから成る。そして本実施形態の特徴は、電極における電位を制御することで、対象となる特定の元素を選択的に溶解もしくは析出させて分離・精錬するところにある。 That is, the above-described embodiment is roughly divided into a process of dissolving a metal contained in an object (the ore or the coarse metal lump) in molten salt, and one electrode (cathode) by molten salt electrolysis from the molten salt in which the metal is dissolved. And the process of precipitating the metal or alloy of the target element to be separated and extracted. The feature of the present embodiment is that the potential at the electrode is controlled to selectively dissolve or precipitate a specific element to be separated and refined.
  まず、対象物に含まれる金属元素を溶融塩中に溶解するプロセスについて説明する。
  鉱石又は粗金属塊に含まれる金属元素を溶融塩中に溶解させる方法としては例えば化学的手法により溶解させる方法が挙げられる。具体的には、鉱石又は粗金属塊を粉砕して粒状、粉状にし、これらと塩とを混合して加熱することにより、鉱石又は粗金属塊に含まれる2種以上の金属元素を溶融塩中に溶解させることができる。また、処理対象物を溶融塩に投入して溶解させてもよい。
First, a process for dissolving a metal element contained in an object in a molten salt will be described.
Examples of the method for dissolving the metal element contained in the ore or the coarse metal block in the molten salt include a method of dissolving by a chemical method. Specifically, the ore or the rough metal lump is pulverized into a granular or powder form, and these and a salt are mixed and heated to melt two or more metal elements contained in the ore or the rough metal lump. Can be dissolved in. Further, the object to be treated may be put into molten salt and dissolved.
  また、別の方法としては電気化学的手法が挙げられる。具体的には、対象物を溶融塩中に陽極として取り付け、該対象物に制御する電位の大きさによって、対象物に含まれる元素を選択的に溶解する。これは、溶融塩電解において元素が溶解する電位は、元素の種類によって異なる性質があるため、この性質を利用して電位に応じた金属を選択的に分離するものである。このように対象物を陽極として用いて、溶解時の電位を制御することで精錬を行いたい金属元素を選択的に溶融塩中に溶解することができる。 別 Another method is an electrochemical method. Specifically, the object is attached as an anode in the molten salt, and the elements contained in the object are selectively dissolved according to the magnitude of the potential controlled on the object. This is because the potential at which an element dissolves in molten salt electrolysis has different properties depending on the type of the element, and this property is used to selectively separate metals according to the potential. Thus, the metal element to be refined can be selectively dissolved in the molten salt by controlling the potential at the time of dissolution using the object as the anode.
  対象物に含まれる金属元素を溶融塩中に溶解するプロセスでは、対象物に含まれる不純物は溶解しないで残留するように電位を制御することが好ましい。これにより、続く析出プロセスでの不純物の持ち込みをより少なくすることができる。
  このためには、前記鉱石又は粗金属塊に含まれる金属元素を溶融塩中に溶解させる工程において、前記溶融塩中の特定の金属(溶解させる金属元素)の単体もしくはその合金の標準電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。これにより溶融塩中に溶解させる金属元素と、陽極に残留させる金属元素とを良好に分離することができる。前記標準電極電位の差は0.1V以上であることがより好ましく、0.25V以上であることが更に好ましい。
  陽極において制御する電位の値は、後述するネルンストの式により計算することができる。
In the process of dissolving the metal element contained in the object in the molten salt, it is preferable to control the potential so that the impurities contained in the object remain without being dissolved. Thereby, it is possible to reduce the introduction of impurities in the subsequent deposition process.
For this purpose, in the step of dissolving the metal element contained in the ore or the coarse metal block in the molten salt, the standard potential of the specific metal (the metal element to be dissolved) in the molten salt or its alloy and the like. It is preferable to select the molten salt so that the difference from the standard electrode potential of the single metal or alloy thereof is 0.05 V or more. Thereby, the metal element dissolved in the molten salt and the metal element remaining on the anode can be satisfactorily separated. The difference in the standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
The value of the potential controlled at the anode can be calculated by the Nernst equation described later.
  なお、使用する鉱石又は粗金属塊に、対象となる特定の金属が複数種類含まれている場合には、そのそれぞれが溶融塩中に溶解するように電位を制御しても良い。また、特定の金属の1種類が溶解したところで、残りの金属が含まれる鉱石又は粗金属塊(陽極)を別の溶融塩に移して同様に電位を所定の値に制御することにより、残りの特定の金属を該溶融塩中に溶解させてもよい。
 金属種によっては後述する析出での分離の方が容易である場合があるため、そのような場合は処理対象物すべてを溶解してもよいし、特定の金属種と残りの金属種のいくつかのみを溶解してもよい。
  また、不純物の持ち込みを少なくする観点から、前記鉱石又は粗金属塊に含まれる金属元素を溶融塩中に溶解させる工程において、前記陽極における電位を所定の値に制御し、前記特定の金属元素を選択的に溶融塩中に溶解させることが好ましい。
In addition, when the ore or coarse metal lump to be used contains a plurality of specific target metals, the potential may be controlled so that each of them is dissolved in the molten salt. Further, when one kind of specific metal is dissolved, the remaining ore or coarse metal block (anode) containing the remaining metal is transferred to another molten salt, and the potential is similarly controlled to a predetermined value, thereby remaining A specific metal may be dissolved in the molten salt.
Depending on the metal species, separation by precipitation, which will be described later, may be easier. In such a case, all of the object to be treated may be dissolved, or a specific metal species and some of the remaining metal species. Only may be dissolved.
In addition, from the viewpoint of reducing the introduction of impurities, in the step of dissolving the metal element contained in the ore or the coarse metal lump in the molten salt, the potential at the anode is controlled to a predetermined value, and the specific metal element is It is preferable to selectively dissolve in the molten salt.
  前記溶融塩としては、塩化物系のものやフッ化物系のものを用いることができる。塩化物系の溶融塩としては、例えばKCl、NaCl、CaCl2、LiCl、RbCl、CsCl、SrCl2、BaCl2、MgCl2などを用いることができる。またフッ化物系の溶融塩としては、例えばLiF、NaF、KF、RbF、CsF、MgF2、CaF2、SrF2、BaF2を用いることができる。なお、希土類元素を溶融塩電解する場合には、効率の点から塩化物系の溶融塩を用いることが好ましく、なかでも安価で入手が容易という点から、KCl、NaCl、CaCl2を用いることが好ましい。
  また、これらの溶融塩は複数種類の溶融塩を組み合わせて任意の組成の溶融塩として用いることができ、例えばKCl-CaCl2やLiCl-KCl、あるいはNaCl-KClといった組成の溶融塩を用いることができる。
As the molten salt, a chloride-based or fluoride-based salt can be used. The molten salt of the chloride-based, for example KCl, NaCl, CaCl 2, LiCl , RbCl, CsCl, be used, for example SrCl 2, BaCl 2, MgCl 2 . As the molten salt fluoride, e.g. LiF, may NaF, KF, RbF, CsF, be used MgF 2, CaF 2, SrF 2 , BaF 2. In the case of the molten salt electrolysis of rare earth elements, it is preferable to use a chloride-based molten salt from the viewpoint of efficiency. Among them, KCl, NaCl, and CaCl 2 are preferably used because they are inexpensive and easily available. preferable.
Moreover, the use of these molten salts can be used as a molten salt of any composition by combining a plurality of types of molten salt, for example KCl-CaCl 2 and LiCl-KCl or molten salt composition, such as NaCl-KCl, it can.
  前記陰極としては炭素または溶融塩中の陽イオンを構成するLiやNa等のアルカリ金属と合金化しやすい材料を用いる。例えば、アルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、アンチモン(Sb)、鉛(Pb)、ビスマス(Bi)などを用いることができる。 材料 As the cathode, a material that is easily alloyed with an alkali metal such as Li or Na constituting carbon or a cation in the molten salt is used. For example, use aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), etc. Can do.
  前記鉱石又は粗金属塊を陽極として使用するには、例えば、金属等による導電性のカゴの中に鉱石又は粗金属塊を収容して溶融塩中に設ければよい。カゴの上部に開口部を設けて、当該開口部から処理対象物である鉱石又は粗金属塊を内部に挿入できるようにし、また、カゴの側壁および底壁に多数の穴を形成して溶融塩がカゴの内部に流入できるようにすればよい。カゴを構成する材料としては、金属線を編むことで形成された網状部材や、シート状の金属板に多数の穴を開けたシート部材など、任意の材料を用いることができる。特に、当該材料としてC、Pt、Mo等を用いるのが有効である。
  対象物が鉱石などで電気抵抗が高い場合には、前記の導電性材料との接触量を高めるようにするのがよい。金属製の網状部材で包み込んだり、金属多孔体内部の空間部分に充填するなどを行って、電極として用いる方法が有効である。
In order to use the ore or the coarse metal lump as the anode, for example, the ore or the coarse metal lump may be accommodated in a conductive basket made of metal or the like and provided in the molten salt. An opening is provided in the upper part of the basket so that the ore or the rough metal lump, which is the object to be processed, can be inserted through the opening, and a large number of holes are formed in the side wall and the bottom wall of the basket to form a molten salt. Can be allowed to flow into the basket. As a material constituting the cage, any material such as a net-like member formed by knitting a metal wire or a sheet member in which a large number of holes are formed in a sheet-like metal plate can be used. In particular, it is effective to use C, Pt, Mo or the like as the material.
When the object is an ore or the like and has a high electric resistance, the contact amount with the conductive material is preferably increased. It is effective to use the electrode as an electrode by wrapping it with a metal mesh member or filling the space inside the porous metal body.
  前記陰極と、前記鉱石又は粗金属塊を内部に保持したカゴを前記溶融塩中に設け、外部から陽極(カゴ)における電位を前述のように制御することで、鉱石又は粗金属塊から対象となる金属を溶融塩中に溶解させることができる。 By providing the cathode and the cage holding the ore or the coarse metal lump in the molten salt, and controlling the potential at the anode (cage) from the outside as described above, The resulting metal can be dissolved in the molten salt.
  次の析出プロセスでは、溶融塩中に一対の電極部材を設け、溶融塩中に溶解した金属元素を溶融塩電解によって一方の電極部材(陰極)に析出させる。この場合は溶融塩電解で制御する電位の大きさによって、特定の金属元素を選択的に陰極に金属もしくは合金として析出させることができる。
  この析出プロセスにおいても、前記溶解プロセスと同様に、溶融塩電解において元素が金属もしくは合金として陰極に析出する電位は元素の種類によって異なる性質があるため、この性質を利用して分離する。これにより、目的の特定の金属が溶融塩中に複数種類含まれている場合にも、電位を制御することで、1種類ずつ単独で陰極に析出させることができる。
In the next deposition process, a pair of electrode members are provided in the molten salt, and a metal element dissolved in the molten salt is deposited on one electrode member (cathode) by molten salt electrolysis. In this case, a specific metal element can be selectively deposited on the cathode as a metal or alloy depending on the magnitude of the potential controlled by molten salt electrolysis.
In this deposition process, as in the melting process, the potential at which an element is deposited on the cathode as a metal or alloy in molten salt electrolysis has different properties depending on the type of the element. Thus, even when a plurality of specific metals of interest are contained in the molten salt, the potential can be controlled to deposit one by one on the cathode alone.
  前記電極部材としては、例えば、ニッケル(Ni)、モリブデン(Mo)、グラッシーカーボン(C)等を用いることができる。 ニ ッ ケ ル As the electrode member, for example, nickel (Ni), molybdenum (Mo), glassy carbon (C) or the like can be used.
  本実施形態は以上のような2つのプロセスによって、対象物から製錬対象となる特定の金属元素を分離抽出する。なお、本実施形態においては溶融塩を用いるため、各プロセスにおける系の温度が溶融塩の融点以上となるように系を加熱する必要がある。 The present embodiment separates and extracts a specific metal element to be smelted from an object by the above two processes. In this embodiment, since the molten salt is used, it is necessary to heat the system so that the temperature of the system in each process is equal to or higher than the melting point of the molten salt.
  上記の2つのプロセスの特徴は溶融塩を用いることであり、これにより、溶融塩の種類によって各元素の溶解・析出の電位が異なることを利用して、対象となる特定の金属元素とそれ以外の不純物対象の金属元素の溶解・析出電位が処理しやすい値となるように溶融塩を選択して設計することが可能となる。具体的には、前記特定の金属を析出又は合金化させる工程において、溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差は、0.1V以上とすることがより好ましく、0.25V以上とすることが更に好ましい。
  このように、前記特定の金属を析出又は合金化させる工程においては、前記電極部材における電位を所定の値に制御し、前記溶融塩中の前記特定の金属元素を選択的に析出又は合金化させることが好ましい。
The characteristics of the above two processes are the use of molten salt, which makes use of the fact that the potential of dissolution / precipitation of each element differs depending on the type of molten salt, and the specific metal element of interest and the others It is possible to select and design the molten salt so that the dissolution / precipitation potential of the metal element as the impurity target becomes a value that is easy to process. Specifically, in the step of precipitating or alloying the specific metal, the standard electrode potential of the specific metal or its alloy in the molten salt and the standard electrode potential of another metal or its alloy It is preferable to select the molten salt so that the difference is 0.05 V or more. The difference between the standard electrode potential of the specific metal or its alloy in the molten salt and the standard electrode potential of another metal or its alloy is more preferably 0.1 V or more, and 0.25 V or more. More preferably.
Thus, in the step of precipitating or alloying the specific metal, the potential of the electrode member is controlled to a predetermined value, and the specific metal element in the molten salt is selectively precipitated or alloyed. It is preferable.
  陰極に析出させる金属単体又は合金の析出電位は、電気化学的な計算により算出することができる。具体的にはネルンストの式を用いて計算する。
  例えば、3価のプラセオジム(Pr)イオン(以下ではPr(III)と表す)からPr単体を析出させる電位は次の式により求めることができる。
The deposition potential of a single metal or alloy deposited on the cathode can be calculated by electrochemical calculation. Specifically, it is calculated using the Nernst equation.
For example, the potential for precipitating Pr alone from trivalent praseodymium (Pr) ions (hereinafter referred to as Pr (III)) can be obtained by the following equation.
 EPr=E Pr + RT/3F・ln(aPr(III)/aPr(0))  ・・・式(1)  なお、上記式(1)において、E Prは標準電位を、Rは気体定数を、Tは絶対温度を、Fはファラデー数を、aPr(III)はPr(III)イオンの活量を、aPr(0)はPr単体の活量を、それぞれ意味する。 E Pr = E 0 Pr + RT / 3F · ln (a Pr (III) / a Pr (0) ) (1) In the above formula (1), E 0 Pr is a standard potential, R Is the gas constant, T is the absolute temperature, F is the Faraday number, a Pr (III) is the activity of Pr (III) ions, and a Pr (0) is the activity of Pr alone.
  そして、上記式(1)を、活量係数γPr(III)を考慮して書き直すと、aPr(0)=1なので、以下のような式となる。
 EPr=E Pr + RT/3F・lnaPr(III)
     =E Pr + RT/3F・ln(γPr(III)・CPr(III))  ・・・式(2) EPr=E0’ Pr + RT/3F・lnCPr(III)                ・・・式(3)  なお、上記式(3)において、CPr(III)は3価のPrイオンの濃度を、E0’ Prは式量電極電位(ここでは、E Pr+ RT/3F・lnγPr(III)と等しい)をそれぞれ意味する。
When the above equation (1) is rewritten in consideration of the activity coefficient γ Pr (III) , since a Pr (0) = 1, the following equation is obtained.
E Pr = E 0 Pr + RT / 3F · lna Pr (III)
= E 0 Pr + RT / 3F · ln (γ Pr (III) · C Pr (III) ) (2) E Pr = E 0 ′ Pr + RT / 3F · lnC Pr (III) Formula (3) In the above formula (3), C Pr (III) is the concentration of trivalent Pr ions, E 0 ′ Pr is the formula electrode potential (here, E 0 Pr + RT / 3F · lnγ Means Pr (III)) .
  また、同様にPrNi合金を電極表面に析出させる場合の電位(析出電位:EPr・Ni)は、以下の式に基づいて決定できる。
 EPr・Ni=E0’ Pr・Ni + RT/3F・lnCPr(III)      ・・・式(4)  なお、上記式(4)において、E0’ Pr・Niは式量電極電位(ここでは、E Pr・
Ni + RT/3F・lnγPr(III)に等しい)を意味する。
Similarly, the potential (precipitation potential: E Pr · Ni ) when the PrNi alloy is deposited on the electrode surface can be determined based on the following equation.
E Pr · Ni = E 0 ′ Pr · Ni + RT / 3F · lnC Pr (III) (4) In the above formula (4), E 0 ′ Pr · Ni is the formula electrode potential (here Then, E 0 Pr ·
Ni + RT / 3F · lnγ Pr (III)) .
  同様にして、上記計算式により、全ての析出物に対して溶融塩の種類ごとに、析出電位を求めることができる。陰極に特定の金属を析出又は合金化させるプロセスでは、この特定の金属もしくはその合金の析出電位の値を見て、他の金属もしくはその合金との電位差が得られる析出物を選定し、また、析出させる順序を決定する。
  操業における電圧や電流は、電極の大きさや位置関係によって変わってくるため、条件出しにより基準となる値を決めた後に、上記の方法で求めた電位の値と序列に基づいて、各ステップにおいて決定する。
Similarly, the precipitation potential can be obtained for each type of molten salt with respect to all precipitates by the above formula. In the process of depositing or alloying a specific metal on the cathode, the deposition potential value of this specific metal or its alloy is looked at, and the precipitate from which a potential difference with other metal or its alloy is obtained is selected. Determine the order of deposition.
Since the voltage and current in operation vary depending on the size and positional relationship of the electrodes, after determining the reference value by setting the conditions, determine it at each step based on the potential value and order obtained by the above method. To do.
  上記のように、本実施形態の溶融塩電解による金属の製造方法では、電位の値を制御することにより、対象となる金属を電気化学的に溶解・析出させることができる。このため、従来の湿式処理などのように酸などを用いた溶解・抽出といったプロセスを繰り返す場合よりも工程を簡略化でき、また特定の元素を選択的に分離・回収することができる。更に、溶融塩の比重の調整も不必要であり、対象物が固体の状態で処理できる低温の溶融塩を選択することで、簡易な装置構成とすることができる。また、操業形態も単純化することが可能である。このため、工程の効率化および低コスト化を図ることができる。 As described above, in the method for producing a metal by molten salt electrolysis according to this embodiment, the target metal can be dissolved and deposited electrochemically by controlling the potential value. For this reason, a process can be simplified compared with the case of repeating processes, such as melt | dissolution and extraction using an acid etc. like the conventional wet process, and a specific element can be selectively isolate | separated and collect | recovered. Furthermore, it is not necessary to adjust the specific gravity of the molten salt, and a simple apparatus configuration can be obtained by selecting a low-temperature molten salt that can be processed in a solid state of the object. In addition, the operation mode can be simplified. For this reason, process efficiency and cost reduction can be achieved.
  また、前述のように、特定の金属を陰極に析出又は合金化させるという考え方とは全く逆の考え方で特定の金属を製錬することも可能である。
  すなわち、本実施形態に係る金属の製造方法は、2種類以上の金属元素を含む鉱石又は該鉱石から得られた粗金属塊から特定の金属を溶融塩電解により製造する方法であって、溶融塩中に陰極と、前記鉱石又は粗金属塊を含む陽極材料からなる陽極とを設け、該陽極における電位を所定の値に制御することにより、前記鉱石又は粗金属塊から電位に応じた金属元素を溶融塩中に溶解させることで特定の金属を陽極に残留させることを特徴とする。
In addition, as described above, a specific metal can be smelted by a concept completely opposite to the concept of depositing or alloying a specific metal on the cathode.
That is, the method for producing a metal according to the present embodiment is a method for producing a specific metal by molten salt electrolysis from an ore containing two or more kinds of metal elements or a crude metal lump obtained from the ore. A cathode and an anode made of an anode material containing the ore or the coarse metal lump are provided therein, and a metal element corresponding to the potential from the ore or the coarse metal lump is controlled by controlling the potential at the anode to a predetermined value. A specific metal is left on the anode by dissolving in a molten salt.
  この方法は、前記対象物(前記鉱石又は粗金属塊)を陽極とし、特定の金属元素以外、すなわち不純物となる金属元素のみを溶融塩中に溶解させることにより、特定の金属を陽極に残留させるというものである。この場合も、陽極における電位を制御することで、製錬対象の金属元素が陽極に残留し、不純物元素が溶融塩中に溶解するといった現象を発生させる。これにより、陽極に製錬された金属材料が得られる。 In this method, the object (the ore or the coarse metal block) is used as an anode, and only a metal element other than a specific metal element, that is, an impurity, is dissolved in a molten salt, thereby leaving a specific metal on the anode. That's it. Also in this case, by controlling the potential at the anode, a phenomenon occurs in which the metal element to be smelted remains on the anode and the impurity element dissolves in the molten salt. Thereby, the metal material smelted by the anode is obtained.
  この方法においても、前記溶融塩中に前記鉱石又は粗金属塊から金属元素を溶解させる工程において、前記溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。これにより、特定の金属とその他の金属とを良好に分離することができ、特定の金属のみを陽極に残留させることができる。標準電極電位の差は0.1V以上であることがより好ましく、0.25V以上であることが更に好ましい。
  また、陽極において制御する電位の値は、前記のようにネルンストの式を用いて計算することができる。
Also in this method, in the step of dissolving the metal element from the ore or the coarse metal lump in the molten salt, the standard electrode potential of the specific metal or its alloy in the molten salt and the simple substance of other metal or The molten salt is preferably selected so that the difference from the standard electrode potential of the alloy is 0.05 V or more. Thereby, a specific metal and another metal can be isolate | separated favorably, and only a specific metal can remain in an anode. The difference in standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
The value of the potential controlled at the anode can be calculated using the Nernst equation as described above.
  本実施形態に係る溶融塩電解による金属の製造方法において使用する鉱石としては、目的となる特定の金属を含んでいればよい。例えば、金鉱石、銀鉱石、銅鉱石、鉄鉱石、アルミニウム鉱石、鉛鉱石、亜鉛鉱石、スズ鉱石、水銀鉱石、硫黄鉱石、リン鉱石、ニッケル鉱石、コバルト鉱石、マンガン鉱石、クロム鉱石、モリブデン鉱石、タングステン鉱石、アンチモン鉱石、ヒ素鉱石、ビスマス鉱石、ストロンチウム鉱石、ベリリウム鉱石、マグネシウム鉱石、バリウム鉱石、カルシウム鉱石等が挙げられる。また、例えば、バストネサイト、モナザイト、ロパライト、燐灰石、ゼノタイム、フェルグソナイト、ユーダイアライト等を用いることにより、希土類金属を得ることができる。 As the ore used in the method for producing a metal by molten salt electrolysis according to the present embodiment, it is sufficient that the target specific metal is included. For example, gold ore, silver ore, copper ore, iron ore, aluminum ore, lead ore, zinc ore, tin ore, mercury ore, sulfur ore, phosphorus ore, nickel ore, cobalt ore, manganese ore, chromium ore, molybdenum ore, Examples include tungsten ore, antimony ore, arsenic ore, bismuth ore, strontium ore, beryllium ore, magnesium ore, barium ore, and calcium ore. For example, rare earth metals can be obtained by using bastonite, monazite, loparite, apatite, xenotime, fergsonite, udialite, and the like.
  また、前記鉱石から得られた粗金属塊とは、例えば前記鉱石を製錬することによって得られた金属等の、目的となる特定の金属の純度が低い金属のことをいう。 In addition, the crude metal block obtained from the ore refers to a metal whose target specific metal has a low purity, such as a metal obtained by smelting the ore.
  本実施形態に係る溶融塩電解による金属の製造方法は、陽極として使用する鉱石又は鉱石から得られた粗金属塊として、遷移金属又は希土類金属(レアアースメタル)を含有しているものに好適に適用される。
  前記遷移金属としては特に限定されず、周期律表の第3族(IIIA族)~第11族(IB族)に含まれる元素であればよい。前記希土類金属も特に限定されず、周期律表の第3族(IIIA族)に属するスカンジウム(Sc)、イットリウム(Y)、及びランタノイドの15元素であればよい。
The method for producing a metal by molten salt electrolysis according to the present embodiment is suitably applied to a material containing a transition metal or a rare earth metal (rare earth metal) as a crude metal block obtained from ore or ore used as an anode. Is done.
The transition metal is not particularly limited as long as it is an element included in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table. The rare earth metal is not particularly limited as long as it is 15 elements of scandium (Sc), yttrium (Y), and lanthanoid belonging to Group 3 (IIIA group) of the periodic table.
  本実施形態の溶融塩電解による金属の製造方法は、陰極に析出又は合金化させる特定の金属が希土類金属の場合にも好適に利用できる。本実施形態では前記溶融塩の組成を適宜選択することにより、水溶液による電解では析出させることのできない希土類金属をも析出させることができる。このため資源的に採取が困難な希土類金属を容易に得ることができるようになる。 The method for producing a metal by molten salt electrolysis according to this embodiment can be suitably used even when the specific metal deposited or alloyed on the cathode is a rare earth metal. In the present embodiment, by appropriately selecting the composition of the molten salt, a rare earth metal that cannot be precipitated by electrolysis with an aqueous solution can also be deposited. For this reason, it becomes possible to easily obtain rare earth metals that are difficult to collect in terms of resources.
  また、本実施形態において前記鉱石又は鉱石から得られた粗金属塊は、粒状又は粉末状であることが好ましい。処理対象の前記鉱石又は粗金属塊を、粒状もしくは粉末状とすることで、表面積を増やし処理効率を高めることができる。この観点から、鉱石又は粗金属塊の最大粒径は0.01mm~2mmとすることが好ましく、0.01mm~1mmがより好ましく、0.01mm~0.2mmが更に好ましい。
  更に、前記粒状又は粉末状の、前記鉱石又は粗金属塊を押し固めて前記陽極とすることが好ましい。粉末状の鉱石又は粗金属塊は押し固めることで、陽極(アノード)として使用することができる。この場合、粒子間に溶融塩が容易に侵入できる空間が存在することが望ましい。
Moreover, in this embodiment, it is preferable that the rough metal lump obtained from the said ore or ore is a granular form or a powder form. By making the said ore or rough metal lump to be processed into a granular or powder form, the surface area can be increased and the processing efficiency can be increased. From this viewpoint, the maximum particle size of the ore or the rough metal lump is preferably 0.01 mm to 2 mm, more preferably 0.01 mm to 1 mm, and still more preferably 0.01 mm to 0.2 mm.
Furthermore, it is preferable to compress the granular or powdered ore or coarse metal lump into the anode. The powdered ore or coarse metal lump can be used as an anode (anode) by compacting. In this case, it is desirable that there is a space where the molten salt can easily enter between the particles.
  以下、図面に基づいて本実施形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 [第1実施形態-1] 
  本実施形態の一例として、ネオジム(Nd)、ジスプロシウム(Dy)、プラセオジム(Pr)を含む鉱石を用いてNd、Dy、及びPrを溶融塩電解により得る方法を記載する。このような鉱石としては、例えば、モナザイト、燐灰石、ゼノタイム、フェルグソナイト、ユーダイアライト等を用いることができる。
Hereinafter, the present embodiment will be described based on the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
[First Embodiment-1]
As an example of this embodiment, a method is described in which Nd, Dy, and Pr are obtained by molten salt electrolysis using an ore containing neodymium (Nd), dysprosium (Dy), and praseodymium (Pr). As such ore, for example, monazite, apatite, xenotime, fergussonite, udialite and the like can be used.
  まず、図1に示すように、準備工程(S10)を実施する。
  この工程では、処理対象物である鉱石や、使用する溶融塩、さらに当該溶融塩を保持する容器や電極などを含む装置などを準備する。なお、処理対象物の溶融塩中への溶解を促進するために、処理対象物と溶融塩との接触面積を大きくする目的で、処理対象物を細かく砕くことも可能である。
  Nd、Dy、及びPrを含む鉱石としては、例えばゼノタイム鉱石を用いることができる。ゼノタイム鉱石の組成の一例は、Ndが3.0%で、Dyが7.9%で、Prが0.5%である。
First, as shown in FIG. 1, a preparatory process (S10) is implemented.
In this step, an ore that is an object to be processed, a molten salt to be used, and an apparatus including a container and an electrode for holding the molten salt are prepared. In addition, in order to accelerate | stimulate melt | dissolution in the molten salt of a process target object, it is also possible to grind | pulverize a process target object finely in order to enlarge the contact area of a process target object and molten salt.
As an ore containing Nd, Dy, and Pr, for example, a xenotime ore can be used. An example of the composition of xenotime ore is that Nd is 3.0%, Dy is 7.9%, and Pr is 0.5%.
  次に、溶融塩中への溶解工程(S20)を実施する。
  この工程(S20)においては、準備した溶融塩に前記鉱石と、(別の)電極部材とを浸漬し、この鉱石と電極部材との間に電源を接続することによってそれぞれの電位を制御する。そして、鉱石の電位を調整することにより、鉱石中の希土類元素(Nd、Dy、及びPr)を選択的に溶融塩中に溶解させる。溶融塩としては任意の組成の溶融塩を用いることができる。
Next, the melt | dissolution process (S20) in molten salt is implemented.
In this step (S20), the electric potential is controlled by immersing the ore and (another) electrode member in the prepared molten salt and connecting a power source between the ore and the electrode member. And the rare earth elements (Nd, Dy, and Pr) in the ore are selectively dissolved in the molten salt by adjusting the potential of the ore. As the molten salt, a molten salt having an arbitrary composition can be used.
  例えば一例として、溶融塩としてLiF-NaF-KFを用い、他の電極部材としてグラッシーカーボンからなる電極を用い、前記鉱石を処理対象物として用いることができる。
この場合、たとえば溶融塩の加熱温度を700℃とし、前記鉱石から溶融塩中に、Nd、Dy、及びPrを選択的に溶解させることができる。制御する電位は、溶融塩中にNd、Dy、及びPr以外の元素はほとんど溶解しない一方、Nd、Dy、及びPrは溶解するような値を設定している。
For example, as an example, LiF—NaF—KF can be used as the molten salt, an electrode made of glassy carbon can be used as the other electrode member, and the ore can be used as the processing object.
In this case, for example, the heating temperature of the molten salt is set to 700 ° C., and Nd, Dy, and Pr can be selectively dissolved from the ore into the molten salt. The potential to be controlled is set such that elements other than Nd, Dy, and Pr are hardly dissolved in the molten salt while Nd, Dy, and Pr are dissolved.
  次に、図1に示すように、分離抽出工程(S30)を実施する。
  具体的には、上述のようにNd、Dy、及びPrが溶解している溶融塩に対して1対の電極を挿入し、この電極部材における電位を所定の値に制御する。この電位の値としては、たとえば、LiCl-KCl系の溶融塩を用いる場合には、図2に示すような希土類金属毎に決定される析出電位に対応する電位に調整する。この結果、調整された電位に応じて電極に析出する希土類金属の種類を選択することができる。このため希土類金属を、元素ごとに選択的に回収することができる。
Next, as shown in FIG. 1, a separation and extraction step (S30) is performed.
Specifically, as described above, a pair of electrodes is inserted into the molten salt in which Nd, Dy, and Pr are dissolved, and the potential at this electrode member is controlled to a predetermined value. The value of this potential is adjusted to a potential corresponding to the deposition potential determined for each rare earth metal as shown in FIG. 2, for example, when using a LiCl-KCl molten salt. As a result, the kind of rare earth metal deposited on the electrode can be selected according to the adjusted potential. For this reason, rare earth metals can be selectively recovered for each element.
  例えば、図2に示すように、Nd、Dy、Prなどの希土類元素は、各元素毎に析出電位の値が異なっている。具体的には、図2に示すようにNdの析出電位は約0.40V(vs.Li+/Li)であり、PrおよびDyの析出電位は約0.47V(vs.Li+/Li)であり、また、Dyの化合物であるDyNi2の析出電位は約0.77V(vs.Li+/Li)となっている。
  なお、図2に示した析出電位はLiを基準としている。また、図2において縦軸は析出電位(単位:V)を示している。当該析出電位は、溶融塩としてLiCl-KClを用い、溶融塩の温度を450℃とした場合の値となっている。
For example, as shown in FIG. 2, the rare earth elements such as Nd, Dy, and Pr have different precipitation potential values for each element. Specifically, as shown in FIG. 2, the precipitation potential of Nd is about 0.40 V (vs. Li + / Li), and the precipitation potentials of Pr and Dy are about 0.47 V (vs. Li + / Li). In addition, the precipitation potential of DyNi 2 which is a compound of Dy is about 0.77 V (vs. Li + / Li).
The deposition potential shown in FIG. 2 is based on Li. In FIG. 2, the vertical axis indicates the deposition potential (unit: V). The precipitation potential is a value when LiCl-KCl is used as the molten salt and the temperature of the molten salt is 450 ° C.
  このように各元素または化合物の析出電位が異なることから、特定の金属が溶融した溶融塩中に1対の電極を浸漬し、当陰極において上述した析出電位に対応する電位となるように制御することで、陰極に選択的に特定の希土類元素を析出させることができる。そして、陰極における電位の値を変える(たとえば電位を順次変更する)ことにより、析出させる特定の金属の種類を選択することもできる。 Since the deposition potential of each element or compound is different as described above, a pair of electrodes are immersed in a molten salt in which a specific metal is melted, and the cathode is controlled to have a potential corresponding to the above-described deposition potential. Thus, a specific rare earth element can be selectively deposited on the cathode. And the kind of the specific metal to deposit can also be selected by changing the value of the electric potential in a cathode (for example, changing an electric potential sequentially).
  例えば、図3に示すように、上述したNd、Dy、及びPrが溶解している溶融塩に対して、1対の電極を浸漬し当該電極間に順次異なる電圧を印加していく。なお、溶融塩中のNd、Dy、Prの濃度(イオン濃度)はそれぞれ0.5mol%とする。
  析出電位の値として、図2に示したデータを利用する場合、たとえば溶融塩としてLiCl-KClを用い、当該溶融塩の温度を450℃とする。図3において横軸は処理時間を示し、縦軸は溶融塩中の希土類元素のイオン濃度を示している。縦軸の単位はmol%である。
For example, as shown in FIG. 3, a pair of electrodes are immersed in the molten salt in which Nd, Dy, and Pr are dissolved, and different voltages are sequentially applied between the electrodes. Note that the concentrations (ion concentrations) of Nd, Dy, and Pr in the molten salt are 0.5 mol%, respectively.
When the data shown in FIG. 2 is used as the value of the precipitation potential, for example, LiCl-KCl is used as the molten salt, and the temperature of the molten salt is set to 450.degree. In FIG. 3, the horizontal axis represents the treatment time, and the vertical axis represents the ion concentration of the rare earth element in the molten salt. The unit of the vertical axis is mol%.
  まず、STEP1として陰極材料にNiを用いて陰極の電位を0.77V(vs.Li+/Li)より卑であり、0.63V(vs.Li+/Li)より少し貴な値(例えば設定電位差を0.631V(vs.Li+/Li))とすると、Dyイオンは陰極材料のNiと合金化し、DyNi2が陰極表面に析出する。この結果、図3に示すように溶融塩中のDyのイオン濃度が急激に低下することになる。Dyの回収は、溶融塩中のDyイオン濃度が3.6×10-4mol%程度になるまで行なうことができる。 First, as STEP 1, Ni is used as the cathode material, and the cathode potential is lower than 0.77 V (vs. Li + / Li) and slightly higher than 0.63 V (vs. Li + / Li) (for example, setting) When the potential difference is 0.631 V (vs. Li + / Li)), Dy ions are alloyed with Ni of the cathode material, and DyNi 2 is deposited on the cathode surface. As a result, as shown in FIG. 3, the ion concentration of Dy in the molten salt is rapidly reduced. The recovery of Dy can be performed until the Dy ion concentration in the molten salt is about 3.6 × 10 −4 mol%.
  次にSTEP2として、別の電極(例えば、Mo電極)を陰極として用いて、当該陰極の電位を0.40V(vs.Li+/Li)より少し貴な値(例えば、設定電位差を0.401V(vs.Li+/Li))とすると、Prが一方の電極(陰極)に析出する。この結果、図3に示すように溶融塩中のPrのイオン濃度が急激に低下することになる。このPrの回収は、溶融塩中のPrイオン濃度が0.017mol%程度になるまで行なうことができる。
  なお、STEP1においてDyNi2が析出した電極とは別の電極をSTEP2では用いる。例えば、STEP1においてDyNi2が析出した電極は、STEP2が始まる前に溶融塩中から取出しておき、別の電極を溶融塩中に浸漬しておいてもよいし、当該DyNi2が析出した電極をそのままにしておき、STEP2では別の電極の電位を制御するようにしてもよい。
Next, as STEP2, another electrode (for example, Mo electrode) is used as a cathode, and the potential of the cathode is slightly higher than 0.40V (vs. Li + / Li) (for example, the set potential difference is 0.401V). (Vs. Li + / Li)), Pr is deposited on one electrode (cathode). As a result, as shown in FIG. 3, the ion concentration of Pr in the molten salt is rapidly reduced. This recovery of Pr can be performed until the Pr ion concentration in the molten salt reaches about 0.017 mol%.
In STEP 2, an electrode different from the electrode on which DyNi 2 is deposited in STEP 1 is used. For example, electrodes DyNi 2 is precipitated in STEP1 is previously removed from the molten salt before STEP2 begins, it may be previously dipped another electrode in a molten salt, an electrode to which the DyNi 2 was precipitated It may be left as it is, and the potential of another electrode may be controlled in STEP2.
  次に、STEP3として、更に別の電極(例えばMo電極)の電位を0.10V(vs.Li+/Li)とすると、Ndがこの電極(陰極)に析出する。この結果、図3に示すように溶融塩中のNdのイオン濃度が急激に低下することになる。Ndの回収は、溶融塩中のNdイオン濃度が例えば2.7×10-7mol%程度になるまで行なうことができる。
  なお、STEP2においてPrが析出した電極は、STEP3が始まる前に溶融塩中から取出しておき、別の電極を溶融塩中に浸漬しておいてもよい。あるいは、STEP2においてPrが析出した電極を溶融塩中にそのまま浸漬しておき、別の電極をSTEP3において用いてもよい。
Next, as STEP3, when the potential of another electrode (for example, Mo electrode) is set to 0.10 V (vs. Li + / Li), Nd is deposited on this electrode (cathode). As a result, as shown in FIG. 3, the ion concentration of Nd in the molten salt is rapidly reduced. The recovery of Nd can be performed until the Nd ion concentration in the molten salt becomes about 2.7 × 10 −7 mol%, for example.
The electrode on which Pr is deposited in STEP 2 may be taken out from the molten salt before STEP 3 starts, and another electrode may be immersed in the molten salt. Alternatively, the electrode on which Pr is deposited in STEP 2 may be immersed in the molten salt as it is, and another electrode may be used in STEP 3.
  そして、STEP1で回収したDyNi2については、STEP4として、DyNi2が表面に析出した電極を、別の電極(例えばMo電極)とともに溶融塩中に浸漬し、DyNi2電極の電位をDyは溶解するもののNiは溶解しない電位範囲(0.77以上2.6V以下(vs.Li+/Li))に設定することで、Dyを溶融塩中に溶解させるとともに、別の電極の表面にDyのみを析出させることができる。
  以上のようにして、目的の特定の金属毎に溶融塩中から回収することができる。
For DyNi 2 collected in STEP 1, as STEP 4, the electrode on which DyNi 2 is deposited is immersed in a molten salt together with another electrode (for example, Mo electrode), and Dy dissolves the potential of the DyNi 2 electrode. However, by setting Ni within a potential range (0.77 to 2.6 V (vs. Li + / Li)) that does not dissolve, Dy is dissolved in the molten salt and only Dy is deposited on the surface of another electrode. It can be deposited.
As described above, each target specific metal can be recovered from the molten salt.
(本実施形態の方法に用いられる装置)
  次に、図1に示した本実施形態の方法において用いられる装置を、図4および図5を参照して説明する。図4に示す回収装置は、溶融塩を内部に保持する容器1と、容器1の内部に保持される溶融塩2と、処理対象物(前記鉱石又は粗金属塊)3を内部に保持するカゴ4と、電極6~8と、溶融塩2を加熱するためのヒータ10と、カゴ4および電極6~8と導電線5によって電気的に接続された制御部9とを備える。制御部9は、カゴ4を一方の電極とし、電極6~8のいずれかを他方の電極としてこれらの電極の電位を制御する(電位を変更する)ことが可能となっている。また、制御部9においては、制御する電位の値の変更が可能である。ヒータ10は、容器1の周囲を環状に囲むように配置されている。電極6~8は任意の材料により構成することができるが、たとえば電極6の材料としてはニッケル(Ni)を用いることができる。また、電極7、8の材料としては、たとえばカーボン(C)を用いることができる。なお、容器1の形状は、底面の円形状あるいは多角形状であってもよい。また、カゴ4は前述のカゴを用いることができる。
(Apparatus used for the method of this embodiment)
Next, an apparatus used in the method of the present embodiment shown in FIG. 1 will be described with reference to FIGS. 4 and 5. The recovery device shown in FIG. 4 includes a container 1 that holds a molten salt therein, a molten salt 2 that is held inside the container 1, and a basket that holds a processing object (the ore or the rough metal lump) 3 inside. 4, electrodes 6 to 8, a heater 10 for heating the molten salt 2, and a control unit 9 electrically connected to the cage 4 and the electrodes 6 to 8 by a conductive wire 5. The controller 9 can control the potential of these electrodes (change the potential) using the cage 4 as one electrode and any of the electrodes 6 to 8 as the other electrode. Further, the control unit 9 can change the value of the potential to be controlled. The heater 10 is arranged so as to surround the container 1 in an annular shape. The electrodes 6 to 8 can be made of any material. For example, the electrode 6 can be made of nickel (Ni). Moreover, as a material of the electrodes 7 and 8, for example, carbon (C) can be used. The shape of the container 1 may be a circular shape on the bottom or a polygonal shape. Further, the basket 4 can be the aforementioned basket.
  カゴ4と電極6~8においては、制御部9により所定の電位の値に制御される。電極6~8のそれぞれに異なる電位に制御することで、電極6~8の表面には、後述するように制御される電位の値に応じてそれぞれ異なる特定の金属が析出する。例えば、後述するように、電極6の表面にはDyNi2膜11が析出するように、電極6に制御する電位の値を調整できる。また、電極7に制御する電位を調整することで、電極7の表面にはPr膜12を析出させることができる。また、電極8に制御する電位を調整することで、電極8の表面にはNd膜13を析出させることができる。 The cage 4 and the electrodes 6 to 8 are controlled to a predetermined potential value by the control unit 9. By controlling the electrodes 6 to 8 at different potentials, different specific metals are deposited on the surfaces of the electrodes 6 to 8 depending on the value of the controlled potential as described later. For example, as described later, the value of the potential controlled by the electrode 6 can be adjusted so that the DyNi 2 film 11 is deposited on the surface of the electrode 6. In addition, the Pr film 12 can be deposited on the surface of the electrode 7 by adjusting the potential controlled by the electrode 7. Further, the Nd film 13 can be deposited on the surface of the electrode 8 by adjusting the potential controlled to the electrode 8.
  そして、DyNi2膜11が析出した電極6を、さらに図5に示すように溶融塩2を内部に保持した容器1内に配置する。更に、DyNi2膜11が表面に析出した電極6と対向するように、他の電極を溶融塩2中に配置し、それぞれの電極6、15を導電線5により制御部9と接続する。そして、容器1の周囲に配置されたヒータ10により溶融塩2を加熱しながら、制御部9により電極6、15における電位を所定の値に制御する。このとき制御する電位については、陰極(電極15)における電位がDyの析出電位となるように調整する。
  これにより、電極6の表面に析出したDyNi2膜11からDyが溶融塩2中に溶け出す一方、電極15の表面にはDy膜16が析出することになる。なお、ヒータ10による溶融塩2の加熱温度は、図4および図5に示した装置での処理のいずれについてもたとえば800℃とすることができる。このようにして、電極7、8、15の表面に特定の金属を単体として析出させることができる。
Then, the electrode 6 on which the DyNi 2 film 11 is deposited is further placed in the container 1 holding the molten salt 2 therein as shown in FIG. Further, another electrode is arranged in the molten salt 2 so that the DyNi 2 film 11 faces the electrode 6 deposited on the surface, and each electrode 6, 15 is connected to the control unit 9 by the conductive wire 5. Then, the potential of the electrodes 6 and 15 is controlled to a predetermined value by the controller 9 while the molten salt 2 is heated by the heater 10 disposed around the container 1. The potential to be controlled at this time is adjusted so that the potential at the cathode (electrode 15) becomes the deposition potential of Dy.
As a result, Dy is dissolved into the molten salt 2 from the DyNi 2 film 11 deposited on the surface of the electrode 6, while the Dy film 16 is deposited on the surface of the electrode 15. In addition, the heating temperature of the molten salt 2 by the heater 10 can be set to, for example, 800 ° C. for any of the processes in the apparatus shown in FIGS. In this way, a specific metal can be deposited as a single substance on the surfaces of the electrodes 7, 8, 15.
  図4及び図5に示したような装置を用いて本実施形態の方法を実施する場合には、例えば以下のように実施することが考えられる。
  まず、処理対象物3として前記鉱石を9kg準備し、溶融塩2としてLiF-NaF-KFを準備する。鉱石としては、例えば、Ndを3.0wt%、Prを0.5wt%、Dyを7.9wt%含有するものを用いることができる。当該鉱石を粉砕してカゴ4の内部に配置する。処理の効率を向上させる観点から、処理対象物3である鉱石はできるだけ小さく粉砕することが好ましいが、例えば最大粒径が2mm以下、より好ましくは1mm以下、さらに好ましくは0.2mm以下となるような粒状に当該鉱石を粉砕する。溶融塩2の量は約16リットル(質量:25kg)とする。
When implementing the method of this embodiment using the apparatus as shown in FIG.4 and FIG.5, it is possible to implement as follows, for example.
First, 9 kg of the ore is prepared as the object 3 to be processed, and LiF—NaF—KF is prepared as the molten salt 2. As the ore, for example, one containing 3.0 wt% Nd, 0.5 wt% Pr, and 7.9 wt% Dy can be used. The ore is crushed and placed inside the basket 4. From the viewpoint of improving the efficiency of the treatment, it is preferable to pulverize the ore that is the treatment object 3 as small as possible. For example, the maximum particle size is 2 mm or less, more preferably 1 mm or less, and even more preferably 0.2 mm or less. The ore is pulverized into fine granules. The amount of the molten salt 2 is about 16 liters (mass: 25 kg).
  そして、カゴ4に保持された処理対象物3と電極6~8のいずれか1つとを1対の電極として、図2及び図3を参照しながら説明した本実施形態の方法のSTEP1~STEP3を実施する。具体的には、上述したSTEP1としてカゴ4に保持された処理対象物3と電極6とを1対の電極として、当該電極における電位を所定の値に制御する。これにより、電極6の表面にはDyNi2が析出する。また、上述したSTEP2としてカゴ4に保持された処理対象物3と電極7とを1対の電極として、当該電極における電位を所定の値に制御する。これにより、電極7の表面にはPrが析出する。図4に示した電極7の表面に析出するPr膜の質量は例えば30g~50g程度となる。 Then, STEP 1 to STEP 3 of the method of the present embodiment described with reference to FIG. 2 and FIG. carry out. Specifically, the processing object 3 and the electrode 6 held in the basket 4 as STEP 1 described above are used as a pair of electrodes, and the potential at the electrode is controlled to a predetermined value. As a result, DyNi 2 is deposited on the surface of the electrode 6. Further, the processing object 3 and the electrode 7 held in the basket 4 as STEP 2 described above are used as a pair of electrodes, and the potential at the electrode is controlled to a predetermined value. Thereby, Pr is deposited on the surface of the electrode 7. The mass of the Pr film deposited on the surface of the electrode 7 shown in FIG.
  また、上述したSTEP3としてカゴ4に保持された処理対象物3と電極8とを1対の電極として、当該電極における電位を所定の値に制御する。この結果、電極8の表面にはNdが析出する。電極8の表面に析出するNd膜の質量は例えば200g~300g程度となる。 In addition, the processing object 3 and the electrode 8 held in the basket 4 as the above STEP 3 are used as a pair of electrodes, and the potential at the electrode is controlled to a predetermined value. As a result, Nd is deposited on the surface of the electrode 8. The mass of the Nd film deposited on the surface of the electrode 8 is, for example, about 200 g to 300 g.
  また、上述したSTEP4として、図5に示した装置に上記電極6と電極15とを配置し、溶融塩中でこれらの電極における電位を所定の値に制御する。これにより、電極15の表面にはDyが析出する。電極15の表面に析出するDy膜16の質量はたとえば600g~800gとなる。
  なお、図4を参照して説明したように、溶融塩2中に目的となる金属を溶解させる工程と、電極7、8などの表面に特定の金属を単体として析出させる工程とは、同じ装置内で(同じ溶融塩2を用いて)実施することができる。一方、上記STEP4で示した、DyNi2からDyを分離・抽出する工程については、図4を参照して説明した溶融塩2中に金属を溶解させる工程で用いた装置(図4に示した装置)とは別の装置(図5に示した装置)において実施することが好ましい。
Further, as STEP 4 described above, the electrode 6 and the electrode 15 are arranged in the apparatus shown in FIG. 5, and the potential at these electrodes is controlled to a predetermined value in the molten salt. Thereby, Dy is deposited on the surface of the electrode 15. The mass of the Dy film 16 deposited on the surface of the electrode 15 is 600 g to 800 g, for example.
As described with reference to FIG. 4, the step of dissolving the target metal in the molten salt 2 and the step of depositing a specific metal as a simple substance on the surfaces of the electrodes 7, 8 and the like are the same apparatus. (Using the same molten salt 2). On the other hand, for the step of separating and extracting Dy from DyNi 2 shown in STEP 4 above, the device used in the step of dissolving the metal in the molten salt 2 described with reference to FIG. 4 (the device shown in FIG. 4) It is preferable to carry out in an apparatus different from () shown in FIG.
  以上のようにして、処理対象物3としての鉱石又は粗金属塊から特定の金属(例えば、Dy、Pr、Ndを回収することができる。 As described above, specific metals (for example, Dy, Pr, and Nd) can be recovered from the ore or the rough metal lump as the processing object 3.
[第1実施形態-2] 
  本実施形態の一例として、ネオジム(Nd)、ジスプロシウム(Dy)プラセオジム(Pr)を含む鉱石を製錬して得られた粗金属塊を用いてNd、Dy、及びPrを溶融塩電解により得る方法を記載する。
  Nd、Dy、及びPrを含む粗金属塊としては、例えば混合希土類金属(ジジム)を用いることができる。当該混合希土類金属を得る製錬方法としては特に限定されず公知の方法を利用可能である。
[First embodiment-2]
As an example of this embodiment, a method of obtaining Nd, Dy, and Pr by molten salt electrolysis using a crude metal lump obtained by smelting ore containing neodymium (Nd), dysprosium (Dy), praseodymium (Pr) Is described.
As the crude metal block containing Nd, Dy, and Pr, for example, a mixed rare earth metal (dydymium) can be used. The refining method for obtaining the mixed rare earth metal is not particularly limited, and a known method can be used.
  図6に示すように、まず処理対象物である粗金属塊を準備する工程(S11)を実施する。具体的には、図7に示すように、容器1の内部に保持された溶融塩2に、処理対象物3としての粗金属塊を浸漬し、この処理対象物3に制御部9における電源と接続するための導電線5を接続する。塩にはLiCl-KClを用いた。 As shown in FIG. 6, first, a step (S11) of preparing a rough metal lump that is a processing object is performed. Specifically, as shown in FIG. 7, a crude metal lump as the processing object 3 is immersed in the molten salt 2 held in the container 1, and the power source in the control unit 9 is connected to the processing object 3. A conductive wire 5 for connection is connected. LiCl-KCl was used as the salt.
  そして、溶融塩2に、もう一方の電極としてのカゴ24の内部に保持された電極材料25をカゴ24ごと浸漬する。この電極材料25としては、溶融塩中の陽イオンを構成するLiやNa等のアルカリ金属と合金化しやすい材料を用いる。この電極材料25としては例えば、アルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、アンチモン(Sb)、鉛(Pb)、ビスマス(Bi)などを用いることができる。 Then, the electrode material 25 held inside the cage 24 as the other electrode is immersed in the molten salt 2 together with the cage 24. As the electrode material 25, a material that is easily alloyed with an alkali metal such as Li or Na constituting a cation in the molten salt is used. Examples of the electrode material 25 include aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth ( Bi) or the like can be used.
  次に、図6に示した、溶融塩にNd、Dy、Prを溶解する工程(S21)を実施する。
具体的には、図7に示すように、処理対象物3とカゴ24の内部に保持された電極材料25における電位を制御部9により制御することにより、処理対象物3における電位を所定の値に調整する。この結果、処理対象物3である粗金属塊からNd、Dy、Prといった希土類元素が溶融塩2中に溶解する。
Next, the step (S21) of dissolving Nd, Dy, and Pr in the molten salt shown in FIG. 6 is performed.
Specifically, as shown in FIG. 7, the potential in the processing object 3 and the electrode material 25 held inside the basket 24 is controlled by the control unit 9, so that the potential in the processing object 3 is a predetermined value. Adjust to. As a result, rare earth elements such as Nd, Dy, and Pr are dissolved in the molten salt 2 from the crude metal block that is the processing object 3.
  次に、図6に示す、電解によりDyNi2を析出させる工程(S31)を実施する。具体的には、図7に示したカゴ24に保持された電極材料25に代えて、図8に示すように、ニッケルからなる電極6を溶融塩2に浸漬する。そして、この電極6を制御部9と導電線5により接続する。この状態で、制御部9により一方の電極としての処理対象物3ともう一方の電極としての電極6における電位を制御することにより、所定の値に調整する。
この結果、処理対象物3から溶融塩2中にDyなどの希土類元素が溶解するとともに、溶融塩2から電極6の表面にDyNi2が析出する。
Next, a step (S31) of depositing DyNi 2 by electrolysis shown in FIG. 6 is performed. Specifically, instead of the electrode material 25 held by the cage 24 shown in FIG. 7, the electrode 6 made of nickel is immersed in the molten salt 2 as shown in FIG. 8. The electrode 6 is connected to the control unit 9 by the conductive wire 5. In this state, the control unit 9 controls the potentials of the processing object 3 as one electrode and the electrode 6 as the other electrode to adjust to a predetermined value.
As a result, a rare earth element such as Dy is dissolved from the object to be treated 3 into the molten salt 2, and DyNi 2 is deposited from the molten salt 2 on the surface of the electrode 6.
  次に、図6に示す、電解によりPrを回収する工程(S32)を実施する。具体的には、図9に示すように、処理対象物3に代えて炭素からなる電極27を一方の電極として溶融塩2に浸漬する。また、図8に示した電極6に代えて、炭素からなる電極7を、上記電極27と対向する位置であって溶融塩2に浸漬した状態で配置する。そして、この電極27および電極7を制御部9と導電線5により電気的に接続する。この状態で、一方の電極27ともう一方の電極7における電位を制御することにより、所定の値に調整する。
これにより、溶融塩2中に溶解していたPrが電極7の表面に析出する。なお、溶融塩2として塩化物を用いている場合には、電極27側から塩素ガス(Cl2)が発生する。
Next, a step of collecting Pr by electrolysis (S32) shown in FIG. 6 is performed. Specifically, as shown in FIG. 9, the electrode 27 made of carbon is immersed in the molten salt 2 as one electrode instead of the processing object 3. Further, instead of the electrode 6 shown in FIG. 8, an electrode 7 made of carbon is disposed in a state of being immersed in the molten salt 2 at a position facing the electrode 27. The electrode 27 and the electrode 7 are electrically connected to the control unit 9 and the conductive wire 5. In this state, the potential at one electrode 27 and the other electrode 7 is controlled to be adjusted to a predetermined value.
As a result, Pr dissolved in the molten salt 2 is deposited on the surface of the electrode 7. When chloride is used as the molten salt 2, chlorine gas (Cl 2 ) is generated from the electrode 27 side.
  次に、図6に示す、電解によりNdを回収する工程(S33)を実施する。具体的には、上記電極7に代えて、図10に示すように、電極27に対向するように、炭素からなる電極8を溶融塩2に浸漬した状態で配置する。この電極8は制御部9と導電線5により電気的に接続される。そして、制御部9により電極8と電極27における電位を制御することにより、所定の値に調整する。これにより電極8の表面にNdが析出する。また、このとき電極27側からは塩素ガスが発生する。 Next, a step of recovering Nd by electrolysis (S33) shown in FIG. 6 is performed. Specifically, instead of the electrode 7, as shown in FIG. 10, the electrode 8 made of carbon is disposed so as to be opposed to the electrode 27 while being immersed in the molten salt 2. The electrode 8 is electrically connected to the control unit 9 by the conductive wire 5. Then, the potential at the electrode 8 and the electrode 27 is controlled by the control unit 9 to be adjusted to a predetermined value. As a result, Nd is deposited on the surface of the electrode 8. At this time, chlorine gas is generated from the electrode 27 side.
  次に、上記工程(S31)において回収されたDyNi2から電解によりDyを回収する工程(S34)を実施する。具体的には、図5に示したように、DyNi2が表面に析出した電極6(図8参照)を溶融塩2中に浸漬し、別の電極15を溶融塩2に浸漬した状態で配置し、これらの電極6、15における電位を制御部9により所定の値に調整する。これにより、電極6の表面に析出したDyNi2からDyが一旦溶融塩2中に溶解した後、電極15の表面にDy膜16が析出する。このようにして、希土類金属であるNd、Dy、Prを個別に回収することができる。 Next, a step (S34) of recovering Dy by electrolysis from DyNi 2 recovered in the step (S31) is performed. Specifically, as shown in FIG. 5, the electrode 6 (see FIG. 8) on which DyNi 2 is deposited is immersed in the molten salt 2, and another electrode 15 is immersed in the molten salt 2. The potentials at these electrodes 6 and 15 are adjusted to a predetermined value by the control unit 9. Thereby, after Dy is once dissolved in the molten salt 2 from DyNi 2 deposited on the surface of the electrode 6, the Dy film 16 is deposited on the surface of the electrode 15. In this way, the rare earth metals Nd, Dy, Pr can be individually recovered.
  なお、上述した工程(S21~S32)は、以下のような装置構成によって実施してもよい。例えば、上述した工程(S31)を、図11に示すような装置構成により実施してもよい。
  具体的には、図8に示した装置構成における処理対象物3の代わりに図7に示した工程で合金化した材料26を保持したカゴ24を溶融塩2中に浸漬する。そして、図11に示したように、このカゴ24と制御部9とを導電線5により電気的に接続する。そして、カゴ24の内部に保持された、図7に示した工程で合金化した材料26と電極6における電位を制御することにより所定の値に調整する。これにより、電極6の表面には溶融塩2中に溶解していたDyがDyNi2として析出する。なお、電極6の表面に析出したDyNi2から、図6の工程(S34)と同様の工程によりDyを単体として回収することができる。
Note that the above-described steps (S21 to S32) may be performed by the following apparatus configuration. For example, the above-described step (S31) may be performed with an apparatus configuration as shown in FIG.
Specifically, the cage 24 holding the material 26 alloyed in the process shown in FIG. 7 is immersed in the molten salt 2 instead of the processing object 3 in the apparatus configuration shown in FIG. Then, as shown in FIG. 11, the basket 24 and the control unit 9 are electrically connected by the conductive wire 5. Then, the potential of the electrode 6 and the material 26 alloyed in the process shown in FIG. 7 and held in the cage 24 is adjusted to a predetermined value. Thereby, Dy dissolved in the molten salt 2 is deposited as DyNi 2 on the surface of the electrode 6. It should be noted that Dy can be recovered as a simple substance from the DyNi 2 deposited on the surface of the electrode 6 by a process similar to the process (S34) of FIG.
  次に、上述した工程(S32)として、図12に示すような装置構成で処理を実施してもよい。具体的には、図11に示した電極6に代えて、図12に示したように炭素からなる電極7をカゴ24と対向する位置であって溶融塩2に浸漬した状態で配置する。この電極7と制御部9とを導電線5により電気的に接続する。そして、カゴ24の内部に保持された合金26と電極7における電位を制御部により所定の値に制御する。これにより溶融塩2に溶解していたPrが電極7の表面に析出する。 Next, as the step (S32) described above, processing may be performed with an apparatus configuration as shown in FIG. Specifically, instead of the electrode 6 shown in FIG. 11, the electrode 7 made of carbon is arranged at a position facing the cage 24 and immersed in the molten salt 2 as shown in FIG. 12. The electrode 7 and the control unit 9 are electrically connected by the conductive wire 5. And the electric potential in the alloy 26 and the electrode 7 hold | maintained inside the cage | basket 24 is controlled to a predetermined value by a control part. As a result, Pr dissolved in the molten salt 2 is deposited on the surface of the electrode 7.
  次に、上述した工程(S33)として、図13に示すような装置構成により処理を実施してもよい。具体的には、図13に示すように、図12の電極7に代えて、炭素からなる電極8をカゴ24と対向する位置であって溶融塩2に浸漬した状態で配置する。そして、電極8と制御部9とを導電線5により電気的に接続する。制御部9によりカゴ24の内部に配置された合金26と、電極8における電位を制御することにより、電位を所定の値に調整する。これにより、電極8の表面にNdが析出する。 Next, as the above-described step (S33), processing may be performed with an apparatus configuration as shown in FIG. Specifically, as shown in FIG. 13, instead of the electrode 7 of FIG. 12, an electrode 8 made of carbon is disposed at a position facing the cage 24 and immersed in the molten salt 2. Then, the electrode 8 and the control unit 9 are electrically connected by the conductive wire 5. The potential is adjusted to a predetermined value by controlling the potential at the electrode 26 and the alloy 26 disposed inside the cage 24 by the control unit 9. As a result, Nd is deposited on the surface of the electrode 8.
  以上のような方法により、粗金属塊に含まれる特定の金属を順次個別に回収することができる。そして、本実施形態の方法によれば従来の湿式の分離方法などに比べて装置構成を簡略化できるとともに処理時間も短くすることができるため、希土類元素などの元素を得るためのコストを低減することができる。さらに、電極における電位を適切に設定することで、電極表面に特定の金属を単体として析出させることができるので、純度の高い金属を得ることができる。なお、それぞれの金属又は合金を析出させるための電位は前述の計算により算出することができる。 By the method as described above, the specific metals contained in the rough metal lump can be recovered individually and sequentially. In addition, according to the method of the present embodiment, the apparatus configuration can be simplified and the processing time can be shortened as compared with the conventional wet separation method, so that the cost for obtaining elements such as rare earth elements is reduced. be able to. Furthermore, since a specific metal can be deposited as a simple substance on the electrode surface by appropriately setting the potential at the electrode, a highly pure metal can be obtained. In addition, the electric potential for depositing each metal or alloy can be calculated by the above-described calculation.
[第2実施形態]
  本実施形態に係る溶融塩電解によるタングステンの製造方法は、タングステンを含む処理対象物から溶融塩電解によりタングステンを製造する方法であって、溶融塩中に前記処理対象物からタングステンを溶解させる工程と、前記タングステンが溶解した溶融塩中に一対の電極部材設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に溶融塩中に存在するタングステンを析出させる工程とを備えることを特徴とする。
[Second Embodiment]
The method for producing tungsten by molten salt electrolysis according to the present embodiment is a method for producing tungsten from a treatment object containing tungsten by molten salt electrolysis, and a step of dissolving tungsten from the treatment object in the molten salt; Providing a pair of electrode members in the molten salt in which the tungsten is dissolved, and precipitating tungsten present in the molten salt on one of the electrode members by controlling the potential at the electrode member to a predetermined value. It is characterized by that.
  すなわち、上記本実施形態は大きくは、前記処理対象物に含まれるタングステンを溶融塩中に溶解させるプロセスと、該タングステンが溶解した溶融塩から溶融塩電解により一方の電極(陰極)にタングステンを析出させるプロセスとから成る。そして本実施形態の特徴は、電極における電位を制御することで、処理対象物からタングステンを選択的に析出させて純度の高いタングステンを得ることにある。 That is, the present embodiment is roughly divided into a process in which tungsten contained in the object to be processed is dissolved in a molten salt, and tungsten is deposited on one electrode (cathode) by molten salt electrolysis from the molten salt in which the tungsten is dissolved. Process. The feature of this embodiment is that tungsten is selectively precipitated by controlling the potential at the electrode to obtain high-purity tungsten.
  まず、処理対象物に含まれるタングステンを溶融塩中に溶解させるプロセスについて説明する。
  処理対象物に含まれるタングステンを溶融塩中に溶解させる方法としては例えば化学的手法により溶解させる方法が挙げられる。具体的には、処理対象物を粉砕して粒状、粉状にし、これらと塩とを混合して加熱することにより、処理対象物に含まれるタングステンを溶融塩中に溶解させることができる。また、処理対象物を溶融塩に投入して溶解させてもよい。
First, a process for dissolving tungsten contained in the object to be processed in the molten salt will be described.
As a method for dissolving tungsten contained in the object to be treated in the molten salt, for example, a method of dissolving by a chemical method can be mentioned. Specifically, the processing object is pulverized into granules and powders, and these and a salt are mixed and heated, whereby tungsten contained in the processing object can be dissolved in the molten salt. Further, the object to be treated may be put into molten salt and dissolved.
  また、別の方法としては電気化学的手法が挙げられる。具体的には、処理対象物を含む陽極材料からなる陽極を溶融塩中に設け、該陽極として取り付けた処理対象物に制御する電位の大きさによって、処理対象物に含まれるタングステンを選択的に溶解させる。溶融塩電解においては、元素が溶解する電位は元素の種類によって異なる性質があるため、この性質を利用してタングステンを他の金属から分離することができる。このように処理対象物を陽極として用いて、溶解時の電位を制御することでタングステンを選択的に溶融塩中に溶解させることができる。 別 Another method is an electrochemical method. Specifically, an anode made of an anode material containing a processing object is provided in the molten salt, and tungsten contained in the processing object is selectively selected depending on the magnitude of the potential to be controlled by the processing object attached as the anode. Dissolve. In molten salt electrolysis, since the potential at which an element dissolves has different properties depending on the type of element, tungsten can be separated from other metals using this property. In this way, tungsten can be selectively dissolved in the molten salt by controlling the potential at the time of dissolution using the object to be treated as the anode.
  この工程においては、処理対象物すべてを溶解させても良いし、タングステンを含む一部もしくはタングステンのみを溶解させても良い。処理対象物に含まれるタングステン以外の金属が溶解する条件であってもよいが、なるべくタングステンのみが溶解するように電位を制御することが好ましい。すなわち、前記タングステンを溶融塩中に溶解させる工程においては、前記陽極と前記陰極における電位を所定の値に制御して、タングステンを選択的に溶融塩中に溶解させることが好ましい。これにより、続けて行う析出工程において不純物の持ち込みをより少なくすることができる。 す べ て In this step, all of the object to be treated may be dissolved, or a part of tungsten or only tungsten may be dissolved. Conditions under which metals other than tungsten contained in the object to be processed may be dissolved, but it is preferable to control the potential so that only tungsten is dissolved as much as possible. That is, in the step of dissolving tungsten in the molten salt, it is preferable to selectively dissolve tungsten in the molten salt by controlling the potentials at the anode and the cathode to predetermined values. Thereby, it is possible to reduce the amount of impurities introduced in the subsequent deposition step.
  このためには、前記溶融塩中に前記処理対象物からタングステンを溶解させる工程において、前記溶融塩中のタングステン単体もしくはタングステン合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。これにより溶融塩中に溶解させるタングステンと、陽極に残留させる金属元素とを良好に分離することができる。前記標準電極電位の差は0.1V以上であることがより好ましく、0.25V以上であることが更に好ましい。
  陽極において制御する電位の値は、後述するネルンストの式により計算することができる。
For this purpose, in the step of dissolving tungsten from the object to be treated in the molten salt, the standard electrode potential of the tungsten alone or tungsten alloy in the molten salt and the standard electrode potential of another metal alone or alloy thereof It is preferable to select the molten salt so that the difference between the two is 0.05 V or more. Thereby, the tungsten dissolved in the molten salt and the metal element remaining on the anode can be satisfactorily separated. The difference in the standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
The value of the potential controlled at the anode can be calculated by the Nernst equation described later.
  前記溶解工程において使用する陰極としては炭素あるいは溶融塩中の陽イオンを構成するLiやNa等のアルカリ金属と合金化しやすい材料を用いる。例えば、アルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、アンチモン(Sb)、鉛(Pb)、ビスマス(Bi)などを用いることができる。 陰極 As the cathode used in the melting step, a material which is easily alloyed with an alkali metal such as Li or Na constituting carbon or a cation in the molten salt is used. For example, use aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), etc. Can do.
  前記タングステンを含む処理対象物を陽極として使用するには、例えば、金属等による導電性のカゴ(陽極材料)の中に処理対象物を収容して溶融塩中に設ければよい。カゴの上部に開口部を設けて、当該開口部から処理対象物を内部に挿入できるようにし、また、カゴの側壁および底壁に多数の穴を形成して溶融塩がカゴの内部に流入できるようにすればよい。カゴを構成する材料としては、金属線を編むことで形成された網状部材や、シート状の金属板に多数の穴を開けたシート部材など、任意の材料を用いることができる。特に、当該材料としてC、Pt、Mo等を用いるのが有効である。
  対象物が酸化物などで電気抵抗が高い場合には、前記の導電性材料との接触量を高めるようにするのがよい。金属製の網状部材で包み込んだり、金属多孔体内部の空間部分に充填するなどを行って、電極として用いる方法が有効である。
In order to use the object to be treated containing tungsten as an anode, for example, the object to be treated may be accommodated in a conductive basket (anode material) made of metal or the like and provided in the molten salt. An opening is provided in the upper part of the basket so that the object to be processed can be inserted into the interior from the opening, and a large number of holes are formed in the side wall and the bottom wall of the basket so that the molten salt can flow into the interior of the basket. You can do that. As a material constituting the cage, any material such as a net-like member formed by knitting a metal wire or a sheet member in which a large number of holes are formed in a sheet-like metal plate can be used. In particular, it is effective to use C, Pt, Mo or the like as the material.
When the object is an oxide or the like and has a high electric resistance, the contact amount with the conductive material is preferably increased. It is effective to use the electrode as an electrode by wrapping it with a metal mesh member or filling the space inside the porous metal body.
  前記陰極と、前記処理対象物を含む陽極材料からなる陽極(例えば、前記処理対象物を内部に保持した金属製のカゴ)を前記溶融塩中に設け、該両極において外部から電位を制御する制御部を接続し、電位を前述のように制御することで、処理対象物からタングステンを溶融塩中に溶解させることができる。 Control in which the cathode and an anode made of an anode material containing the object to be processed (for example, a metal basket holding the object to be processed inside) are provided in the molten salt, and the electric potential is controlled from the outside at both electrodes. By connecting the parts and controlling the potential as described above, tungsten can be dissolved in the molten salt from the object to be treated.
  次の析出プロセスでは、前記タングステンが溶解した溶融塩中に一対の電極部材を設けて溶融塩電解を行うことによりタングステンを一方の電極部材(陰極)に析出させる。この場合は溶融塩電解で制御する電位の大きさによって、タングステンを選択的に陰極に金属もしくは合金として析出させることができる。 In the next deposition process, tungsten is deposited on one electrode member (cathode) by providing a pair of electrode members in the molten salt in which the tungsten is dissolved and performing molten salt electrolysis. In this case, tungsten can be selectively deposited as a metal or alloy on the cathode depending on the magnitude of the potential controlled by molten salt electrolysis.
  この析出プロセスにおいても、前記溶解プロセスと同様に、溶融塩電解においては元素が金属もしくは合金として陰極に析出する電位は元素の種類によって異なるという性質を利用して、タングステンと他の金属とを分離する。これにより、タングステン以外の金属が溶融塩中に含まれている場合にも、電位を制御することで、タングステンのみを陰極に析出させることができる。これにより高純度のタングステンを得ることができる。 Also in this deposition process, tungsten and other metals are separated by utilizing the property that in molten salt electrolysis, the potential at which an element is deposited on the cathode as a metal or alloy varies depending on the type of element, as in the case of the melting process. To do. Accordingly, even when a metal other than tungsten is contained in the molten salt, only tungsten can be deposited on the cathode by controlling the potential. Thereby, high purity tungsten can be obtained.
  また、タングステンを析出させる場合に、タングステンの溶解・析出電位と溶融塩中に含まれる他の金属の溶解・析出電位との差が小さく、当該金属と分離することが困難な場合には、陰極材料とタングステンとが合金化して析出するように、陰極材料の選択及び電位の制御を行っても良い。これにより、溶融塩中のタングステンをタングステン合金として他の不純物金属と分離し、その後に例えば、タングステンと合金化した陰極材料を用いて、別の溶融塩中にて溶解工程と析出工程を行うことにより高純度のタングステンを得ることができる。 When depositing tungsten, if the difference between the dissolution / precipitation potential of tungsten and the dissolution / precipitation potential of other metals contained in the molten salt is small and difficult to separate from the metal, the cathode The cathode material may be selected and the potential may be controlled so that the material and tungsten are alloyed and deposited. As a result, tungsten in the molten salt is separated from other impurity metals as a tungsten alloy, and then, for example, a melting step and a precipitation step are performed in another molten salt using a cathode material alloyed with tungsten. As a result, high-purity tungsten can be obtained.
  前記析出工程において使用する電極部材としては、例えば、ニッケル(Ni)、モリブデン(Mo)、グラッシーカーボン(C)等を用いることができる。 電極 As the electrode member used in the deposition step, for example, nickel (Ni), molybdenum (Mo), glassy carbon (C), or the like can be used.
  本実施形態は以上のような2つのプロセスによって、処理対象物からタングステンを分離抽出する。なお、本実施形態においては溶融塩を用いるため、各プロセスにおける系の温度が溶融塩の融点以上となるように系を加熱する必要がある。
  また、本プロセスで全く逆の考え方で製錬することも可能である。すなわち、対象処理物を陽極とし、不純物となる金属元素のみを溶融塩中に溶解させるというものである。この場合も、陽極における電位を所定の値に制御することで、タングステンが陽極に残留し、不純物元素が溶解するといった現象を発生させる。これにより陽極にタングステンが得られる。
In the present embodiment, tungsten is separated and extracted from the object to be processed by the above two processes. In this embodiment, since the molten salt is used, it is necessary to heat the system so that the temperature of the system in each process is equal to or higher than the melting point of the molten salt.
It is also possible to smelt with the opposite idea in this process. That is, only the metal element which becomes an impurity is dissolved in the molten salt with the object to be processed as an anode. Also in this case, by controlling the potential at the anode to a predetermined value, a phenomenon occurs in which tungsten remains on the anode and the impurity element dissolves. Thereby, tungsten is obtained at the anode.
  上記の2つのプロセスの特徴は溶融塩を用いることである。すなわち、溶融塩の種類によって各元素の溶解・析出の電位が異なるという溶融塩電解の性質を利用して、タングステンの溶解・析出電位とタングステン以外の不純物対象となる金属の溶解・析出電位とが充分に離れて処理しやすい値となるように溶融塩を選択して設計することが可能となる。
  具体的には、前記タングステンを析出もしくは合金化させる工程において、溶融塩中のタングステン単体のもしくはタングステン合金の標準電極電位と他の不純物金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。溶融塩中の前記タングステン単体もしくはタングステン合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差は、0.1V以上とすることがより好ましく、0.25V以上とすることが更に好ましい。
  このように、前記タングステンを析出もしくは合金化させる工程においては、前記電極部材における電位を所定の値に制御して、前記溶融塩中の前記タングステンを選択的に析出又は合金化させることが好ましい。
A feature of the above two processes is the use of molten salt. In other words, by utilizing the property of molten salt electrolysis in which the potential of dissolution / precipitation of each element varies depending on the type of molten salt, the dissolution / precipitation potential of tungsten and the dissolution / precipitation potential of the target metal other than tungsten are determined. It is possible to select and design the molten salt so as to be a value that is sufficiently separated and easy to process.
Specifically, in the step of precipitating or alloying tungsten, the difference between the standard electrode potential of tungsten alone or tungsten alloy in the molten salt and the standard electrode potential of another impurity metal alone or alloy thereof is 0. It is preferable to select the molten salt so that it becomes 05 V or higher. The difference between the standard electrode potential of the tungsten simple substance or tungsten alloy in the molten salt and the standard electrode potential of another metal simple substance or alloy thereof is more preferably 0.1 V or more, and 0.25 V or more. Is more preferable.
Thus, in the step of depositing or alloying tungsten, it is preferable to selectively precipitate or alloy the tungsten in the molten salt by controlling the potential of the electrode member to a predetermined value.
  陰極に析出させるタングステンの析出電位は、電気化学的な計算により算出することができる。具体的にはネルンストの式を用いて計算する。
  例えば、2価のタングステン(W)イオン(以下ではW(II)と表す)からW単体を析出させる電位は次の式により求めることができる。
The deposition potential of tungsten deposited on the cathode can be calculated by electrochemical calculation. Specifically, it is calculated using the Nernst equation.
For example, the potential for depositing single W from divalent tungsten (W) ions (hereinafter referred to as W (II)) can be obtained by the following equation.
      E=E  + RT/3F・ln(aW(II)/aW(0))  ・・・式(1)  なお、上記式(1)において、E は標準電位を、Rは気体定数を、Tは絶対温度を、Fはファラデー数を、aW(II)はW(II)イオンの活量を、aW(0)はW単体の活量を、それぞれ意味する。 E W = E 0 W + RT / 3F · ln (a W (II) / a W (0) ) (1) In the above formula (1), E 0 W is a standard potential, R Is the gas constant, T is the absolute temperature, F is the Faraday number, a W (II) is the activity of W (II) ions, and a W (0) is the activity of W alone.
  そして、上記式(1)を、活量係数γW(II)を考慮して書き直すと、aW(0)=1なので、以下のような式となる。
    EWr=E  + RT/3F・lnaW(II)
        =E  + RT/3F・ln(γW(II)・CW(II))    ・・・式(2)    E=E0’  + RT/3F・lnCW(II)                ・・・式(3)
  なお、上記式(3)において、CW(II)は2価のWイオンの濃度を、E0’ は式量電極電位(ここでは、E + RT/3F・lnγW(II)と等しい)をそれぞれ意味する。
When the above equation (1) is rewritten in consideration of the activity coefficient γ W (II) , a W (0) = 1, so that the following equation is obtained.
E Wr = E 0 W + RT / 3F · lna W (II)
= E 0 W + RT / 3F · ln (γ W (II) · C W (II) ) (2) E W = E 0 ′ W + RT / 3F · lnC W (II) Formula (3)
In the above formula (3), C W (II) is the concentration of divalent W ions, E 0 ′ W is the formula electrode potential (here, E 0 W + RT / 3F · lnγ W (II) Means).
  同様にして、上記計算式により、全ての析出物に対して溶融塩の種類ごとに、析出電位を求めることができる。また、タングステンを合金化させて析出させる場合にも同様にして計算することができる。前記の陰極にタングステンを析出もしくは合金化させるプロセスでは、このタングステン単体もしくはタングステン合金の析出電位の値を見て、他の金属の単体もしくはその合金の析出電位と充分な電位差が得られるように溶融塩や陰極材料の選定を行い、タングステンとして析出させるか又はタングステン合金として析出させるかを決定する。
  操業における電圧や電流は、電極の大きさや位置関係によって変わってくるため、条件出しにより基準となる値を決めた後に、上記の方法で求めた電位の値と序列に基づいて、各ステップにおいて決定する。
Similarly, the precipitation potential can be obtained for each type of molten salt with respect to all precipitates by the above formula. The same calculation can be performed when tungsten is alloyed and deposited. In the process of depositing or alloying tungsten on the cathode, the precipitation potential of this single tungsten or tungsten alloy is observed, and melting is performed so as to obtain a sufficient potential difference from the precipitation potential of another single metal or its alloy. The salt or cathode material is selected and it is determined whether to deposit as tungsten or tungsten alloy.
Since the voltage and current in operation vary depending on the size and positional relationship of the electrodes, after determining the reference value by setting the conditions, determine it at each step based on the potential value and order obtained by the above method. To do.
  上記のように、本実施形態の溶融塩電解によるタングステンの製造方法では、電位の値を制御することにより、タングステンを電気化学的に溶解・析出させることができる。このため、従来の湿式処理などのように酸などを用いた溶解・抽出といったプロセスを繰り返す場合よりも工程を簡略化でき、また特定の元素を選択的に分離・回収することができる。更に、溶融塩の比重の調整も不必要であり、タングステンを固体の状態で処理できる低温の溶融塩を選択することで、簡易な装置構成とすることができる。また、操業形態も単純化することが可能である。このため、工程の効率化および低コスト化を図ることが可能である。 As described above, in the method for producing tungsten by molten salt electrolysis according to this embodiment, tungsten can be dissolved and deposited electrochemically by controlling the value of the potential. For this reason, a process can be simplified compared with the case of repeating processes, such as melt | dissolution and extraction using an acid etc. like the conventional wet process, and a specific element can be selectively isolate | separated and collect | recovered. Furthermore, it is not necessary to adjust the specific gravity of the molten salt, and by selecting a low-temperature molten salt that can treat tungsten in a solid state, a simple apparatus configuration can be obtained. In addition, the operation mode can be simplified. For this reason, it is possible to increase the efficiency and cost of the process.
  また、前述のようにタングステンを陰極に析出もしくは合金化させるという考え方とは全く逆の考え方でタングステンを製錬することも可能である。
  すなわち、本実施形態に係る金属の製造方法は、タングステンを含む処理対象物から溶融塩電解によりタングステンを製造する方法であって、溶融塩中に陰極と、前記処理対象物を含む陽極材料からなる陽極とを設け、該陽極における電位を制御することにより、前記処理対象物から電位の値に応じた金属元素を溶融塩中に溶解させることでタングステンを陽極に残留させることを特徴とする。
Further, as described above, tungsten can be smelted in a way that is completely opposite to the way of depositing or alloying tungsten on the cathode.
That is, the method for producing a metal according to the present embodiment is a method for producing tungsten from a processing object containing tungsten by molten salt electrolysis, and includes a cathode in the molten salt and an anode material containing the processing object. An anode is provided, and by controlling the potential at the anode, the metal element corresponding to the potential value is dissolved in the molten salt from the object to be processed, so that tungsten remains in the anode.
  この方法は、前記処理対象物を含む陽極材料を陽極とし、タングステン以外、すなわち不純物となる金属元素のみを溶融塩中に溶解させることにより、タングステンを陽極に残留させるというものである。この場合も、陽極における電位を制御することで、製錬対象のタングステンが陽極に残留し、不純物元素が溶融塩中に溶解するといった現象を発生させることができる。これにより、陽極に製錬されたタングステンが得られる。 This method uses the anode material containing the object to be treated as an anode, and dissolves only the metal element other than tungsten, that is, an impurity, in the molten salt, thereby leaving tungsten on the anode. Also in this case, by controlling the potential at the anode, it is possible to generate a phenomenon in which tungsten to be smelted remains on the anode and the impurity element dissolves in the molten salt. Thereby, tungsten refined on the anode is obtained.
  この方法においても、前記溶融塩中に前記処理対象物から金属元素を溶解させる工程において、前記溶融塩中のタングステン単体もしくはタングステン合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。これにより、タングステンとその他の金属とを良好に分離することができ、タングステンのみを陽極に残留させることができる。標準電極電位の差は0.1V以上であることがより好ましく、0.25V以上であることが更に好ましい。
  また、陽極において制御する電位の値は、前記のようにネルンストの式を用いて計算することができる。
Also in this method, in the step of dissolving the metal element from the object to be treated in the molten salt, the standard electrode potential of tungsten alone or tungsten alloy in the molten salt and the standard electrode potential of another metal alone or alloy thereof It is preferable to select the molten salt so that the difference from the above becomes 0.05 V or more. Thereby, tungsten and other metals can be satisfactorily separated, and only tungsten can remain on the anode. The difference in standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
The value of the potential controlled at the anode can be calculated using the Nernst equation as described above.
  本実施形態に係る溶融塩電解によるタングステンの製造方法において、タングステンを含む処理対象物としては、例えば、タングステンを含む金属材料を好ましく利用することができる。タングステンを含む金属材料としては、例えば、タングステンヒータ等が挙げられる。 In the method for producing tungsten by molten salt electrolysis according to the present embodiment, for example, a metal material containing tungsten can be preferably used as the processing object containing tungsten. Examples of the metal material containing tungsten include a tungsten heater.
  また、本実施形態は、前記処理対象物がタングステンと遷移金属とを含む金属材料の場合にも好ましく適用することができる。遷移金属としては特に限定されず、周期律表の第3族(IIIA族)~第11族(IB族)に含まれる元素であればよい。タングステンと遷移金属とを含む金属材料としては、例えば、超硬合金等が挙げられる。 In addition, the present embodiment can be preferably applied to the case where the processing object is a metal material containing tungsten and a transition metal. The transition metal is not particularly limited as long as it is an element included in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table. Examples of the metal material containing tungsten and transition metal include cemented carbide.
  前記のような処理対象物としては、例えば、超硬製品を用いることができる。ここでいう超硬製品とは、超硬材料を用いた製品の総称であり、例えば、超硬材料を用いた切削工具、治工具、金型等が挙げられる。 超 For example, a cemented carbide product can be used as the processing object. The cemented carbide product here is a general term for products using a cemented carbide material, and examples thereof include cutting tools, jigs and tools, and molds using the cemented carbide material.
  前記溶融塩としては、塩化物系の溶融塩またはフッ化物系の溶融塩を用いることができる。また、塩化物系の溶融塩とフッ化物系の溶融塩とを混合した溶融塩を用いることもできる。
  塩化物系の溶融塩としては、例えばKCl、NaCl、CaCl2、LiCl、RbCl、CsCl、SrCl2、BaCl2、MgCl2などを用いることができる。またフッ化物系の溶融塩としては、例えばLiF、NaF、KF、RbF、CsF、MgF2、CaF2、SrF2、BaF2を用いることができる。なお、効率の点から塩化物系の溶融塩を用いることが好ましく、なかでも安価で入手が容易という点から、KCl、NaCl、CaCl2を用いることが好ましい。
  また、これらの溶融塩は複数種類の溶融塩を組み合わせて任意の組成の溶融塩として用いることができ、例えばKCl-CaCl2やLiCl-KCl、あるいはNaCl-KClといった組成の溶融塩を用いることができる。
As the molten salt, a chloride-based molten salt or a fluoride-based molten salt can be used. A molten salt obtained by mixing a chloride-based molten salt and a fluoride-based molten salt can also be used.
The molten salt of the chloride-based, for example KCl, NaCl, CaCl 2, LiCl , RbCl, CsCl, be used, for example SrCl 2, BaCl 2, MgCl 2 . As the molten salt fluoride, e.g. LiF, may NaF, KF, RbF, CsF, be used MgF 2, CaF 2, SrF 2 , BaF 2. It is preferable to use a chloride-based molten salt from the viewpoint of efficiency, and KCl, NaCl, and CaCl 2 are particularly preferable because they are inexpensive and easily available.
Moreover, the use of these molten salts can be used as a molten salt of any composition by combining a plurality of types of molten salt, for example KCl-CaCl 2 and LiCl-KCl or molten salt composition, such as NaCl-KCl, it can.
  本実施形態に係る溶融塩電解によるタングステンの製造方法においては、次のような装置を好ましく使用することができる。すなわち、本実施形態に係る溶融塩電解によるタングステンの製造方法に使用する装置は、溶融塩を内部に保持した容器と、前記容器の内部に保持された溶融塩に浸漬した陰極と、前記容器の内部に保持された溶融塩に浸漬され、タングステンを含み導電性の処理対象物を内部に保持した陽極とを備え、前記陽極は内部と外部との間で前記溶融塩が流通可能になっており、さらに、前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、前記制御部は、前記電位の値の変更が可能となっていることを特徴とする。また、本実施形態に係る溶融塩電解によるタングステンの製造方法に使用する装置は、タングステンが溶解した溶融塩を内部に保持した容器と、前記容器の内部に保持された溶融塩に浸漬した陰極と陽極とを備え、前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、前記制御部は、前記電位の値の変更が可能となっていることを特徴とする。 In the method for producing tungsten by molten salt electrolysis according to this embodiment, the following apparatus can be preferably used. That is, an apparatus used in the method for producing tungsten by molten salt electrolysis according to the present embodiment includes a container holding a molten salt therein, a cathode immersed in the molten salt held inside the container, It is immersed in a molten salt held inside, and has an anode that holds a conductive object to be processed containing tungsten, and the anode allows the molten salt to flow between the inside and the outside. Furthermore, a control unit for controlling the potential at the cathode and the anode to a predetermined value is provided, and the control unit can change the value of the potential. An apparatus used in the method for producing tungsten by molten salt electrolysis according to the present embodiment includes a container holding therein a molten salt in which tungsten is dissolved, and a cathode immersed in the molten salt held inside the container. An anode, and a controller that controls the cathode and the potential at the anode to a predetermined value, wherein the controller can change the value of the potential.
  本実施形態の装置を、図18および図19を参照して説明する。図18に示す装置は、溶融塩を内部に保持する容器1と、容器1の内部に保持される溶融塩2と、タングステンを含む処理対象物3を内部に保持するカゴ4と、電極6と、溶融塩2を加熱するためのヒータ10と、カゴ4および電極6と導電線5によって電気的に接続された制御部9とを備えている。
  制御部9は、カゴ4を一方の電極(陽極)とし、電極6を他方の電極(陰極)としてこの電極における電位を所定の値に制御することが可能となっている。また、制御部9においては、制御する電位の値の変更が可能である。ヒータ10は、容器1の周囲を環状に囲むように配置されている。電極6は任意の材料により構成することができるが、例えば炭素を用いることができる。なお、容器1の形状は、底面の円形状あるいは多角形状であってもよい。また、カゴ4としては前述のカゴを用いることができる。
The apparatus of this embodiment is demonstrated with reference to FIG. 18 and FIG. The apparatus shown in FIG. 18 includes a container 1 that holds a molten salt therein, a molten salt 2 that is held inside the container 1, a basket 4 that holds a treatment object 3 containing tungsten, and an electrode 6; The heater 10 for heating the molten salt 2 and the control unit 9 electrically connected to the cage 4 and the electrode 6 by the conductive wire 5 are provided.
The control unit 9 can control the potential at this electrode to a predetermined value with the cage 4 as one electrode (anode) and the electrode 6 as the other electrode (cathode). Further, the control unit 9 can change the value of the potential to be controlled. The heater 10 is arranged so as to surround the container 1 in an annular shape. The electrode 6 can be made of any material, and for example, carbon can be used. The shape of the container 1 may be a circular shape on the bottom or a polygonal shape. Further, as the basket 4, the aforementioned basket can be used.
  カゴ4と電極6の間には、制御部9により所定の電位の値となるように電位が制御される。これにより処理対象物3からタングステンが溶融塩2中に溶解する。
  そして、処理対象物3からタングステンが充分に溶解した後に、カゴ4及び電極6を取り出し、別の電極7(陰極)、電極8(陽極)を溶融塩2中に投入する。この電極7、8はそれぞれ導電線5を介して制御部9と接続している。そして、制御部9から電極7、8における電位を所定の値に制御する。このとき、制御する電位は、電極7の電位がタングステンの析出電位となるように調整する。これにより溶融塩2中に溶解していたタングステンが電極7(陰極)の表面に析出することになる。電極7、8の材料としては、たとえばグラッシーカーボン(C)を用いることができる。
A potential is controlled between the cage 4 and the electrode 6 by the control unit 9 so as to have a predetermined potential value. As a result, tungsten is dissolved in the molten salt 2 from the processing object 3.
Then, after tungsten is sufficiently dissolved from the processing object 3, the cage 4 and the electrode 6 are taken out, and another electrode 7 (cathode) and electrode 8 (anode) are put into the molten salt 2. The electrodes 7 and 8 are connected to the control unit 9 through the conductive wires 5, respectively. And the electric potential in the electrodes 7 and 8 is controlled from the control part 9 to a predetermined value. At this time, the potential to be controlled is adjusted so that the potential of the electrode 7 becomes the deposition potential of tungsten. As a result, tungsten dissolved in the molten salt 2 is deposited on the surface of the electrode 7 (cathode). As a material for the electrodes 7 and 8, for example, glassy carbon (C) can be used.
  なお、ヒータ10による溶融塩2の加熱温度は、図18および図19に示した装置での処理のいずれについてもたとえば800℃とすることができる。このようにして、電極7の表面にタングステンを単体として析出させることができる。 It should be noted that the heating temperature of the molten salt 2 by the heater 10 can be set to 800 ° C., for example, in any of the treatments in the apparatus shown in FIGS. In this way, tungsten can be deposited as a simple substance on the surface of the electrode 7.
  なお、前記電極7、8において制御する電位は、電極7(陰極)の表面にタングステンと陰極材料との合金が析出するように調整してもよい。この場合には、該合金化した電極7を用いて、前述の溶解工程及び析出工程を行えばよい。即ち、新たに図18に示すような装置を用意して、前述の処理対象物3の代わりにタングステンと合金化した電極7を用いればよい。 Note that the potential controlled in the electrodes 7 and 8 may be adjusted so that an alloy of tungsten and a cathode material is deposited on the surface of the electrode 7 (cathode). In this case, the above-described melting step and precipitation step may be performed using the alloyed electrode 7. That is, a new apparatus as shown in FIG. 18 may be prepared, and the electrode 7 alloyed with tungsten may be used in place of the processing object 3 described above.
  図18及び図19に示したような装置を用いて本実施形態によるタングステンの製造方法を実施する場合には、例えば以下のように実施することが考えられる。
  まず、処理対象物3として超硬切削工具を9kg準備し、溶融塩2としてKCl-NaClを準備する。超硬切削工具としては例えば炭化タングステン(WC)を90wt%、コバルト(Co)を10wt%含有するものとする。当該超硬切削工具を粉砕してカゴ4の内部に配置する。処理の効率を向上させる観点から、処理対象物3である超硬切削工具はできるだけ小さく粉砕することが好ましいが、例えば径の最大値が5mm以下、より好ましくは3mm以下、さらに好ましくは1mm以下となるような粒状に当該超硬切削工具を粉砕する。溶融塩2の量は約16リットル(質量:25kg)とする。
  そして、電極6として炭素からなる電極を用いて前述の溶解工程を行い、続いて電極7、8としてグラッシーカーボンからなる電極を用いて析出工程を行えばよい。
When performing the tungsten manufacturing method according to the present embodiment using the apparatus as shown in FIGS. 18 and 19, for example, the following may be considered.
First, 9 kg of a cemented carbide cutting tool is prepared as the processing object 3, and KCl—NaCl is prepared as the molten salt 2. As the cemented carbide cutting tool, for example, 90 wt% tungsten carbide (WC) and 10 wt% cobalt (Co) are contained. The cemented carbide cutting tool is pulverized and placed inside the basket 4. From the viewpoint of improving the processing efficiency, it is preferable that the cemented carbide cutting tool that is the processing object 3 is pulverized as small as possible. The cemented carbide cutting tool is crushed into such a granular shape. The amount of the molten salt 2 is about 16 liters (mass: 25 kg).
Then, the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8.
  以上のようにして、処理対象物3としての超硬切削工具からタングステンを回収することができる。本実施形態の溶融塩電解によるタングステンの製造方法によれば、従来の湿式の分離方法などに比べて装置構成を簡略化できるとともに処理時間も短くすることができるため、コストを低減することができる。さらに、電極における電位を適切に設定することで、電極表面にタングステンを単体として析出させることができるので、純度の高いタングステンを得ることができる。なお、それぞれのタングステン又はタングステン合金を析出させるための電位は前述の計算により算出することができる。 As described above, tungsten can be recovered from the cemented carbide cutting tool as the processing object 3. According to the method for producing tungsten by molten salt electrolysis according to the present embodiment, the apparatus configuration can be simplified and the processing time can be shortened as compared with the conventional wet separation method, so that the cost can be reduced. . Furthermore, by setting the potential at the electrode appropriately, tungsten can be deposited as a simple substance on the electrode surface, so that tungsten with high purity can be obtained. In addition, the electric potential for depositing each tungsten or tungsten alloy can be calculated by the above-described calculation.
[第3実施形態]
  本実施形態に係る溶融塩電解によるリチウムの製造方法は、リチウムを含む処理対象物から溶融塩電解によりリチウムを製造する方法であって、溶融塩中に前記処理対象物からリチウムを溶解させる工程と、前記リチウムが溶解した溶融塩中に一対の電極部材設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に溶融塩中に存在するリチウムを析出させる工程とを備えることを特徴とする。
[Third embodiment]
The method for producing lithium by molten salt electrolysis according to the present embodiment is a method for producing lithium from a treatment object containing lithium by molten salt electrolysis, the step of dissolving lithium from the treatment object in the molten salt; Providing a pair of electrode members in the molten salt in which the lithium is dissolved, and precipitating lithium existing in the molten salt on one of the electrode members by controlling the potential at the electrode member to a predetermined value. It is characterized by that.
  すなわち、本実施形態のリチウムの製造方法は、前記処理対象物に含まれるリチウムを溶融塩中に溶解させるプロセスと、該リチウムが溶解した溶融塩から溶融塩電解により一方の電極(陰極)にリチウムを析出させる工程とから成る。そして本実施形態の特徴は、リチウムの溶解工程において電極における電位を制御することで、処理対象物からリチウムを選択的に溶解させ、かつ、リチウムの析出工程において電極における電位を所定の値に制御することで、溶融塩中から陰極上にリチウムを選択的に析出させることにより純度の高いリチウムを得ることにある。 That is, the method for producing lithium according to the present embodiment includes a process of dissolving lithium contained in the object to be processed in a molten salt, and a lithium salt dissolved in one electrode (cathode) by molten salt electrolysis from the molten salt. And a step of precipitating. The feature of this embodiment is that the potential at the electrode is controlled in the lithium melting step to selectively dissolve lithium from the object to be processed, and the potential at the electrode is controlled to a predetermined value in the lithium deposition step. This is to obtain lithium having high purity by selectively precipitating lithium from the molten salt on the cathode.
  まず、処理対象物に含まれるリチウムを溶融塩中に溶解させる工程について説明する。
  処理対象物に含まれるリチウムを溶融塩中に溶解させる方法としては例えば化学的手法により溶解させる方法が挙げられる。具体的には、処理対象物を粉砕して粒状、粉状にし、これらと塩とを混合して加熱することにより、処理対象物に含まれるリチウムを溶融塩中に溶解させることができる。また、処理対象物を溶融塩に投入して溶解させてもよい。
  また、別の方法としては電気化学的手法が挙げられる。具体的には、処理対象物を含む陽極材料からなる陽極を溶融塩中に設け、該陽極として取り付けた処理対象物における電位の値を制御することによって、処理対象物に含まれるリチウムを選択的に溶解させる。溶融塩電解においては、元素が溶解する電位は元素の種類によって異なる性質があるため、このように処理対象物を陽極として用いて、溶解時の電位を制御することでリチウムを選択的に溶融塩中に溶解させてリチウムを他の金属から分離することができる。
First, the process of dissolving lithium contained in the object to be treated in the molten salt will be described.
As a method of dissolving lithium contained in the object to be treated in the molten salt, for example, a method of dissolving by a chemical method can be mentioned. Specifically, the processing object is pulverized into granules and powders, and these and a salt are mixed and heated, whereby lithium contained in the processing object can be dissolved in the molten salt. Further, the object to be treated may be put into molten salt and dissolved.
Another method is an electrochemical method. Specifically, an anode made of an anode material containing a processing object is provided in the molten salt, and the potential value in the processing object attached as the anode is controlled to selectively select lithium contained in the processing object. Dissolve in. In molten salt electrolysis, the potential at which an element dissolves varies depending on the type of element. Thus, by using the object to be treated as an anode and controlling the potential at the time of dissolution, lithium is selectively molten salt. It can be dissolved in to separate lithium from other metals.
  この工程においては、処理対象物すべてを溶解させても良いし、リチウムを含む一部もしくはリチウムのみを溶解させても良い。処理対象物に含まれるリチウム以外の金属が溶解することもあるが、なるべくリチウムのみが溶解するように電位の値を制御することが好ましい。すなわち、前記リチウムを溶融塩中に溶解させる工程においては、前記陽極と前記陰極における電位を所定の値に制御して、リチウムを選択的に溶融塩中に溶解させることが好ましい。これにより、続けて行う析出工程において不純物の持ち込みをより少なくすることができる。
  このためには、前記溶融塩中に前記処理対象物からリチウムを溶解させる工程において、前記溶融塩中のリチウム単体もしくはリチウム合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。これにより溶融塩中に溶解させるリチウムと、陽極に残留させる金属元素とを良好に分離することができる。前記標準電極電位の差は0.1V以上であることがより好ましく、0.25V以上であることが更に好ましい。
  陽極において制御する電位の値は、後述するネルンストの式により計算することができる。
In this step, the entire object to be treated may be dissolved, or a part of lithium or only lithium may be dissolved. Although metals other than lithium contained in the object to be treated may be dissolved, it is preferable to control the potential value so that only lithium is dissolved as much as possible. That is, in the step of dissolving lithium in the molten salt, it is preferable to selectively dissolve lithium in the molten salt by controlling the potentials at the anode and the cathode to predetermined values. Thereby, it is possible to reduce the amount of impurities introduced in the subsequent deposition step.
For this purpose, in the step of dissolving lithium from the object to be treated in the molten salt, the standard electrode potential of lithium alone or lithium alloy in the molten salt and the standard electrode potential of another metal alone or alloy thereof It is preferable to select the molten salt so that the difference between the two is 0.05 V or more. Thereby, the lithium dissolved in the molten salt and the metal element remaining on the anode can be well separated. The difference in the standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
The value of the potential controlled at the anode can be calculated by the Nernst equation described later.
  前記溶解工程において使用する陰極としては炭素あるいは溶融塩中の陽イオンを構成するLiやNa等のアルカリ金属と合金化しやすい材料を用いる。例えば、アルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、アンチモン(Sb)、鉛(Pb)、ビスマス(Bi)などを用いることができる。 陰極 As the cathode used in the melting step, a material which is easily alloyed with an alkali metal such as Li or Na constituting carbon or a cation in the molten salt is used. For example, use aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), etc. Can do.
  前記リチウムを含む処理対象物を陽極として使用するには、例えば、金属等による導電性のカゴ(陽極材料)の中に処理対象物を収容して溶融塩中に設ければよい。カゴの上部に開口部を設けて、当該開口部から処理対象物を内部に挿入できるようにし、また、カゴの側壁および底壁に多数の穴を形成して溶融塩がカゴの内部に流入できるようにすればよい。カゴを構成する材料としては、金属線を編むことで形成された網状部材や、シート状の金属板に多数の穴を開けたシート部材など、任意の材料を用いることができる。特に、当該材料としてC、Pt、Mo等を用いるのが有効である。
  対象物が酸化物などで電気抵抗が高い場合には、前記の導電性材料との接触量を高めるようにするのがよい。金属製の網状部材で包み込んだり、金属多孔体内部の空間部分に充填するなどを行って、電極として用いる方法が有効である。
In order to use the object to be treated containing lithium as an anode, for example, the object to be treated may be accommodated in a conductive basket (anode material) made of metal or the like and provided in the molten salt. An opening is provided in the upper part of the basket so that the object to be processed can be inserted into the interior from the opening, and a large number of holes are formed in the side wall and the bottom wall of the basket so that the molten salt can flow into the interior of the basket. You can do that. As a material constituting the cage, any material such as a net-like member formed by knitting a metal wire or a sheet member in which a large number of holes are formed in a sheet-like metal plate can be used. In particular, it is effective to use C, Pt, Mo or the like as the material.
When the object is an oxide or the like and has a high electric resistance, the contact amount with the conductive material is preferably increased. It is effective to use the electrode as an electrode by wrapping it with a metal mesh member or filling the space inside the porous metal body.
  前記陰極と、前記処理対象物を含む陽極材料かなる陽極(例えば、前記処理対象物を内部に保持した金属製のカゴ)を前記溶融塩中に設け、該両極間に外部から電位を所定の値に制御する制御部と接続し、電位を前述のように制御することで、処理対象物からリチウムを溶融塩中に溶解させることができる。 The cathode and an anode made of an anode material containing the object to be processed (for example, a metal cage holding the object to be processed inside) are provided in the molten salt, and a predetermined potential is externally applied between the electrodes. By connecting to a control unit that controls the value and controlling the potential as described above, lithium can be dissolved from the object to be processed in the molten salt.
  次の析出工程では、前記リチウムを溶解させた溶融塩中に一対の電極部材を設けて溶融塩電解を行うことによりリチウムを一方の電極部材(陰極)に析出させる。この場合は溶融塩電解で制御する電位の大きさによって、リチウムを選択的に陰極に金属もしくは合金として析出させることができる。 In the subsequent deposition step, lithium is deposited on one electrode member (cathode) by providing a pair of electrode members in the molten salt in which lithium is dissolved and performing molten salt electrolysis. In this case, lithium can be selectively deposited as a metal or alloy on the cathode depending on the magnitude of the potential controlled by molten salt electrolysis.
  この析出工程においても、前記溶解工程と同様に、溶融塩電解においては元素が金属もしくは合金として陰極に析出する電位は元素の種類によって異なるという性質を利用して、リチウムと他の金属とを分離する。これにより、リチウム以外の金属が溶融塩中に含まれている場合にも、電位を制御することで、リチウムのみを陰極に析出させることができる。これにより高純度のリチウムを得ることができる。 In this precipitation step, as in the melting step, lithium and other metals are separated by utilizing the property that in molten salt electrolysis, the potential at which an element is deposited on the cathode as a metal or alloy varies depending on the type of element. To do. Thereby, even when metals other than lithium are contained in the molten salt, only lithium can be deposited on the cathode by controlling the potential. Thereby, high purity lithium can be obtained.
  また、リチウムを析出させる場合に、リチウムの溶解・析出電位と溶融塩中に含まれる他の金属の溶解・析出電位との差が小さく、当該金属と分離することが困難な場合には、陰極材料とリチウムとが合金化して析出するように、陰極材料の選択及び電位の制御を行っても良い。これにより、溶融塩中のリチウムをリチウム合金として他の不純物金属と分離し、その後に、リチウムと合金化した陰極材料を用いて、別の溶融塩中にて溶解工程と析出工程を行うことにより高純度のリチウムを得ることができる。 When depositing lithium, if the difference between the dissolution / precipitation potential of lithium and the dissolution / precipitation potential of other metals contained in the molten salt is small and difficult to separate from the metal, the cathode The cathode material may be selected and the potential may be controlled so that the material and lithium are alloyed and deposited. Thereby, lithium in the molten salt is separated from other impurity metals as a lithium alloy, and then, by using a cathode material alloyed with lithium, a melting step and a precipitation step are performed in another molten salt. High purity lithium can be obtained.
  前記析出工程において使用する電極部材としては、例えば、ニッケル(Ni)、モリブデン(Mo)、グラッシーカーボン(C)等を用いることができる。 電極 As the electrode member used in the deposition step, for example, nickel (Ni), molybdenum (Mo), glassy carbon (C), or the like can be used.
  本実施形態は以上のような2つの工程によって、処理対象物からリチウムを分離回収する。
  なお、本実施形態においては溶融塩を用いるため、各工程における系の温度が溶融塩の融点以上となるように系を加熱する必要がある。
In the present embodiment, lithium is separated and recovered from the object to be processed by the two steps as described above.
In this embodiment, since the molten salt is used, it is necessary to heat the system so that the temperature of the system in each step is equal to or higher than the melting point of the molten salt.
  上記の2つの工程の特徴は電解液として溶融塩を用いることにある。すなわち、溶融塩の種類によって各元素の溶解・析出の電位が異なるという溶融塩電解の性質を利用して、リチウムの溶解・析出電位とリチウム以外の不純物対象となる金属の溶解・析出電位とが充分に離れて処理しやすい値となるように溶融塩を選択して設計することが可能となる。
  具体的には、前記リチウムを析出もしくは合金化させる工程において、溶融塩中のリチウム単体もしくはリチウム合金の標準電極電位と他の不純物金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。溶融塩中の前記リチウム単体もしくはリチウム合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差は、0.1V以上とすることがより好ましく、0.25V以上とすることが更に好ましい。
  このように、前記リチウムを析出もしくは合金化させる工程においては、前記電極部材における電位を所定の値に制御して、前記溶融塩中の前記リチウムを選択的に析出又は合金化させることが好ましい。
The feature of the above two steps is that a molten salt is used as the electrolytic solution. That is, by utilizing the property of molten salt electrolysis in which the dissolution and precipitation potential of each element varies depending on the type of molten salt, the dissolution and precipitation potential of lithium and the dissolution and precipitation potential of the metal that is an impurity target other than lithium are determined. It is possible to select and design the molten salt so that it becomes a value that is sufficiently separated and easy to process.
Specifically, in the step of depositing or alloying lithium, the difference between the standard electrode potential of lithium alone or lithium alloy in the molten salt and the standard electrode potential of another impurity metal alone or alloy thereof is 0.05 V. The molten salt is preferably selected so as to achieve the above. The difference between the standard electrode potential of the lithium alone or lithium alloy in the molten salt and the standard electrode potential of another metal alone or its alloy is more preferably 0.1 V or more, and 0.25 V or more. Is more preferable.
Thus, in the step of precipitating or alloying the lithium, it is preferable to selectively precipitate or alloy the lithium in the molten salt by controlling the potential of the electrode member to a predetermined value.
  陰極に析出させるリチウムの析出電位は、電気化学的な計算により算出することができる。具体的にはネルンストの式を用いて計算する。
  例えば、リチウムイオン(Li)からLi単体を析出させる電位は次の式により求めることができる。
The deposition potential of lithium deposited on the cathode can be calculated by electrochemical calculation. Specifically, it is calculated using the Nernst equation.
For example, the potential for depositing Li alone from lithium ions (Li + ) can be obtained by the following equation.
 ELi=E Li + RT/3F・ln(aLi(I)/aLi(0))・・・式(1)
  なお、上記式(1)において、E Liは標準電位を、Rは気体定数を、Tは絶対温度を、Fはファラデー数を、aLi(I)はLiイオンの活量を、aLi(0)はLi単体の活量を、それぞれ意味する。
E Li = E 0 Li + RT / 3F · ln (a Li (I) / a Li (0)) ··· formula (1)
In the above formula (1), E 0 Li is the standard potential, R is the gas constant, T is the absolute temperature, F is the Faraday number, a Li (I) is the Li ion activity, a Li (0) means the activity of Li alone.
  そして、上記式(1)を、活量係数γLi(I)を考慮して書き直すと、aLi(0)=1なので、以下のような式となる。
 ELi=E Li+ RT/3F・lnaLi(I)
     =E Li + RT/3F・ln(γLi(I)・CLi(I))・・・式(2)    ELi=E0’ Li + RT/3F・lnCLi(I)        ・・・式(3)
  なお、上記式(3)において、CLi(I)はLiイオンの濃度を、E0’ Liは式量電極電位(ここでは、E Li+ RT/3F・lnγLi(I)と等しい)をそれぞれ意味する。
When the above equation (1) is rewritten in consideration of the activity coefficient γ Li (I) , since a Li (0) = 1, the following equation is obtained.
E Li = E 0 Li + RT / 3F · lna Li (I)
= E 0 Li + RT / 3F · ln (γ Li (I) · C Li (I) ) (2) E Li = E 0 ′ Li + RT / 3F · lnC Li (I) Formula (3)
In the above formula (3), C Li (I) is the concentration of Li ions, E 0 ′ Li is the formula electrode potential (here, E 0 Li + RT / 3F · lnγ Li (I) is equal) Means each.
  また、同様にLiM合金(Mは合金化する金属)を電極表面に析出させる場合の電位(析出電位:ELiM)は、以下の式に基づいて決定できる。
 ELi・M=E0’ Li・M + RT/3F・lnCLi(I)    ・・・式(4)
  なお、上記式(4)において、E0’ Li・Mは式量電極電位(ここでは、E Li・M+ RT/3F・lnγLi(I)に等しい)を意味する。
Similarly, the potential (precipitation potential: E LiM ) when a LiM alloy (M is a metal to be alloyed) is deposited on the electrode surface can be determined based on the following equation.
E Li · M = E 0 ′ Li · M + RT / 3F · lnC Li (I) Formula (4)
In the above formula (4), E 0 ′ Li · M means a formula electrode potential (here, equal to E 0 Li · M + RT / 3F · lnγ Li (I)) .
  同様にして、上記計算式により、全ての析出物に対して溶融塩の種類ごとに、析出電位を求めることができる。前記の陰極にリチウムを析出もしくは合金化させる工程では、このリチウム単体もしくはリチウム合金の析出電位の値を見て、他の金属の単体もしくはその合金の析出電位と充分な電位差が得られるように溶融塩や陰極材料の選定を行い、リチウムとして析出させるか又はリチウム合金として析出させるかを決定する。
  操業における電圧や電流は、電極の大きさや位置関係によって変わってくるため、条件出しにより基準となる値を決めた後に、上記の方法で求めた電位の値と序列に基づいて、各ステップにおいて決定する。
Similarly, the precipitation potential can be obtained for each type of molten salt with respect to all precipitates by the above formula. In the step of depositing or alloying lithium on the cathode, the lithium is melted so that a sufficient potential difference can be obtained from the deposition potential of another single metal or its alloy by observing the value of the deposition potential of this single lithium or lithium alloy. The salt or cathode material is selected, and it is determined whether to deposit as lithium or as a lithium alloy.
Since the voltage and current in operation vary depending on the size and positional relationship of the electrodes, after determining the reference value by setting the conditions, determine it at each step based on the potential value and order obtained by the above method. To do.
  上記のように、本実施形態の溶融塩電解によるリチウムの製造方法では、電位の値を制御することにより、リチウムを電気化学的に溶解・析出させることができる。このため、従来の湿式処理などのように酸などを用いた溶解・抽出といった工程を繰り返す場合よりも工程を簡略化でき、また特定の元素を選択的に分離・回収することができる。更に、溶融塩の比重の調整も不必要であり、リチウムを固体の状態で処理できる低温の溶融塩を選択することで、簡易な装置構成とすることができる。また、操業形態も単純化することが可能である。このため、工程の効率化および低コスト化を図ることが可能である。 As described above, in the method for producing lithium by molten salt electrolysis according to this embodiment, lithium can be dissolved and precipitated electrochemically by controlling the potential value. For this reason, a process can be simplified compared with the case where the process of melt | dissolution and extraction using an acid etc. is repeated like the conventional wet process, and a specific element can be selectively isolate | separated and collect | recovered. Furthermore, it is not necessary to adjust the specific gravity of the molten salt, and by selecting a low-temperature molten salt capable of treating lithium in a solid state, a simple apparatus configuration can be obtained. In addition, the operation mode can be simplified. For this reason, it is possible to increase the efficiency and cost of the process.
  本実施形態に係る溶融塩電解によるリチウムの製造方法において、処理対象物としてはリチウムを含む材料であれば制限はないが、好ましい例としては、リチウム一次電池の負極材料、リチウムイオン二次電池の正極材料を挙げることができる。
  例えば、チウムイオン二次電池の正極材料の正極活物質として、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、ニッケルコバルト酸リチウム(LiCo0.3Ni0.7)、マンガン酸リチウム(LiMn24)、チタン酸リチウム(Li4Ti512)、リチウムマンガン酸化合物(LiMyMn2-y4);M=Cr、Co、Ni)、リチウム酸等が挙げられる。
In the method for producing lithium by molten salt electrolysis according to the present embodiment, the material to be treated is not limited as long as it is a material containing lithium, but preferred examples include a negative electrode material for a lithium primary battery and a lithium ion secondary battery. A positive electrode material can be mentioned.
For example, as a positive electrode active material of a positive electrode material of a lithium ion secondary battery, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium nickel cobaltate (LiCo 0.3 Ni 0.7 O 2 ), lithium manganate ( LiMn 2 O 4 ), lithium titanate (Li 4 Ti 5 O 12 ), lithium manganate compound (LiM y Mn 2 -y O 4 ); M = Cr, Co, Ni), lithium acid and the like.
  前記溶融塩としては、塩化物系の溶融塩またはフッ化物系の溶融塩を用いることができる。また、塩化物系の溶融塩とフッ化物系の溶融塩とを混合した溶融塩を用いることもできる。
  塩化物系の溶融塩としては、例えばKCl、NaCl、CaCl2、LiCl、RbCl、CsCl、SrCl2、BaCl2、MgCl2などを用いることができる。またフッ化物系の溶融塩としては、例えばLiF、NaF、KF、RbF、CsF、MgF2、CaF2、SrF2、BaF2を用いることができる。なお、効率の点から塩化物系の溶融塩を用いることが好ましく、なかでも安価で入手が容易という点から、KCl、NaCl、CaCl2を用いることが好ましい。
  また、これらの溶融塩は複数種類の溶融塩を組み合わせて任意の組成の溶融塩として用いることができ、例えばKCl-CaCl2やLiCl-KCl、あるいはNaCl-KClといった組成の溶融塩を用いることができる。
As the molten salt, a chloride-based molten salt or a fluoride-based molten salt can be used. A molten salt obtained by mixing a chloride-based molten salt and a fluoride-based molten salt can also be used.
The molten salt of the chloride-based, for example KCl, NaCl, CaCl 2, LiCl , RbCl, CsCl, be used, for example SrCl 2, BaCl 2, MgCl 2 . As the molten salt fluoride, e.g. LiF, may NaF, KF, RbF, CsF, be used MgF 2, CaF 2, SrF 2 , BaF 2. It is preferable to use a chloride-based molten salt from the viewpoint of efficiency, and KCl, NaCl, and CaCl 2 are particularly preferable because they are inexpensive and easily available.
Moreover, the use of these molten salts can be used as a molten salt of any composition by combining a plurality of types of molten salt, for example KCl-CaCl 2 and LiCl-KCl or molten salt composition, such as NaCl-KCl, it can.
  本実施形態に係る溶融塩電解によるリチウムの製造方法においては、次のような装置を好ましく使用することができる。すなわち、本実施形態に係る溶融塩電解によるリチウムの製造方法に使用する装置は、溶融塩を内部に保持した容器と、前記容器の内部に保持された溶融塩に浸漬した陰極と、前記容器の内部に保持された溶融塩に浸漬され、リチウムを含み導電性の処理対象物を内部に保持した陽極とを備え、前記陽極は内部と外部との間で前記溶融塩が流通可能になっており、さらに、前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、前記制御部は、前記電位の値の変更が可能となっていることを特徴とする。
  また、本実施形態に係る溶融塩電解によるリチウムの製造方法に使用する装置は、リチウムが溶解した溶融塩を内部に保持した容器と、前記容器の内部に保持された溶融塩に浸漬した陰極と陽極とを備え、前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、前記制御部は、前記電位の値の変更が可能となっていることを特徴とする。
In the method for producing lithium by molten salt electrolysis according to this embodiment, the following apparatus can be preferably used. That is, an apparatus used in the method for producing lithium by molten salt electrolysis according to the present embodiment includes a container holding a molten salt therein, a cathode immersed in the molten salt held inside the container, It is immersed in a molten salt held inside, and includes an anode holding a conductive processing object containing lithium inside, and the anode allows the molten salt to flow between the inside and the outside. Furthermore, a control unit for controlling the potential at the cathode and the anode to a predetermined value is provided, and the control unit can change the value of the potential.
The apparatus used for the method for producing lithium by molten salt electrolysis according to the present embodiment includes a container holding therein a molten salt in which lithium is dissolved, and a cathode immersed in the molten salt held inside the container. An anode, and a controller that controls the cathode and the potential at the anode to a predetermined value, wherein the controller can change the value of the potential.
  前記本実施形態の装置を、図18および図19を参照して説明する。図18に示す装置は、溶融塩を内部に保持する容器1と、容器1の内部に保持される溶融塩2と、リチウムを含む処理対象物3を内部に保持するカゴ4と、電極6と、溶融塩2を加熱するためのヒータ10と、カゴ4および電極6と導電線5によって電気的に接続された制御部9とを備えている。
  制御部9は、カゴ4を一方の電極(陽極)とし、電極6を他方の電極(陰極)としてこの電極における電位を所定の値に制御することが可能となっている。また、制御部9においては、制御する電位の値の変更が可能である。ヒータ10は、容器1の周囲を環状に囲むように配置されている。電極6は任意の材料により構成することができるが、例えばアルミニウムを用いることができる。なお、容器1の形状は、底面の円形状あるいは多角形状であってもよい。また、カゴ4としては前述のカゴを用いることができる。
The apparatus of the present embodiment will be described with reference to FIGS. The apparatus shown in FIG. 18 includes a container 1 that holds a molten salt therein, a molten salt 2 that is held inside the container 1, a basket 4 that holds a processing object 3 containing lithium, and an electrode 6; The heater 10 for heating the molten salt 2 and the control unit 9 electrically connected to the cage 4 and the electrode 6 by the conductive wire 5 are provided.
The control unit 9 can control the potential at this electrode to a predetermined value with the cage 4 as one electrode (anode) and the electrode 6 as the other electrode (cathode). Further, the control unit 9 can change the value of the potential to be controlled. The heater 10 is arranged so as to surround the container 1 in an annular shape. The electrode 6 can be made of any material, and for example, aluminum can be used. The shape of the container 1 may be a circular shape on the bottom or a polygonal shape. Further, as the basket 4, the aforementioned basket can be used.
  カゴ4と電極6の間には、制御部9により所定の電位の値となるように電位が制御される。これにより処理対象物3からリチウムが溶融塩2中に溶解する。
  そして、処理対象物3からリチウムが充分に溶解した後に、カゴ4及び電極6を取り出し、図19に示すように別の電極7(陰極)、電極8(陽極)を溶融塩2中に投入する。この電極7、8はそれぞれ導電線5を介して制御部9と接続している。そして、制御部9から電極7、8における電位を所定の値に制御する。このとき、制御する電位は、電極7の電位がリチウムの析出電位となるように調整する。これにより溶融塩2中に溶解していたリチウムが電極7(陰極)の表面に析出することになる。電極7、8の材料としては、たとえばグラッシーカーボン(C)を用いることができる。
A potential is controlled between the cage 4 and the electrode 6 by the control unit 9 so as to have a predetermined potential value. As a result, lithium is dissolved in the molten salt 2 from the processing object 3.
After the lithium is sufficiently dissolved from the object 3 to be processed, the cage 4 and the electrode 6 are taken out, and another electrode 7 (cathode) and electrode 8 (anode) are put into the molten salt 2 as shown in FIG. . The electrodes 7 and 8 are connected to the control unit 9 through the conductive wires 5, respectively. And the electric potential in the electrodes 7 and 8 is controlled from the control part 9 to a predetermined value. At this time, the potential to be controlled is adjusted so that the potential of the electrode 7 becomes the deposition potential of lithium. As a result, lithium dissolved in the molten salt 2 is deposited on the surface of the electrode 7 (cathode). As a material for the electrodes 7 and 8, for example, glassy carbon (C) can be used.
  なお、ヒータ10による溶融塩2の加熱温度は、図18および図19に示した装置での処理のいずれについてもたとえば800℃とすることができる。このようにして、電極7の表面にリチウムを単体として析出させることができる。 It should be noted that the heating temperature of the molten salt 2 by the heater 10 can be set to 800 ° C., for example, in any of the treatments in the apparatus shown in FIGS. In this way, lithium can be deposited as a simple substance on the surface of the electrode 7.
  なお、前記電極7、8において制御する電位の値は、電極7(陰極)の表面にリチウムと陰極材料との合金が析出するように調整してもよい。この場合には、該合金化した電極7を用いて、前述の溶解工程及び析出工程を行えばよい。即ち、新たに図18に示すような装置を用意して、前述の処理対象物3の代わりにリチウムと合金化した電極7を用いればよい。 Note that the potential value controlled in the electrodes 7 and 8 may be adjusted so that an alloy of lithium and a cathode material is deposited on the surface of the electrode 7 (cathode). In this case, the above-described melting step and precipitation step may be performed using the alloyed electrode 7. That is, a new apparatus as shown in FIG. 18 may be prepared, and the electrode 7 alloyed with lithium may be used in place of the processing object 3 described above.
  図18及び図19に示したような装置を用いて本実施形態によるリチウムの製造方法を実施する場合には、例えば以下のように実施することが考えられる。
  まず、処理対象物3としてリチウムを含有するリチウムイオン電池の正極材料を準備し、溶融塩2としてKCl-NaClを準備する。前記正極材料としては例えばコバルト酸リチウム(LiCoO2)又はマンガン酸リチウムを含有する粉体を用いる。前記正極材料を粉砕してカゴ4の内部に配置する。処理の効率を向上させる観点から、処理対象物3である正極材料はできるだけ小さく粉砕することが好ましいが、例えば最大粒径が5mm以下、より好ましくは3mm以下、さらに好ましくは1mm以下となるような粒状に正極材料を粉砕する。そして、電極6として炭素からなる電極を用いて前述の溶解工程を行い、続いて電極7、8としてグラッシーカーボンからなる電極を用いて析出工程を行えばよい。
  以上のようにして、処理対象物3としての正極材料からリチウムを回収することができる。
When the method for producing lithium according to the present embodiment is performed using the apparatus as shown in FIGS. 18 and 19, for example, the following may be considered.
First, a cathode material of a lithium ion battery containing lithium is prepared as the processing object 3, and KCl—NaCl is prepared as the molten salt 2. As the positive electrode material, for example, a powder containing lithium cobalt oxide (LiCoO 2 ) or lithium manganate is used. The positive electrode material is pulverized and placed inside the cage 4. From the viewpoint of improving the processing efficiency, the positive electrode material that is the processing object 3 is preferably pulverized as small as possible. For example, the maximum particle size is 5 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less. The positive electrode material is pulverized into granules. Then, the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8.
As described above, lithium can be recovered from the positive electrode material as the processing object 3.
  本実施形態の溶融塩電解によるリチウムの製造方法によれば、従来の湿式の分離方法などに比べて装置構成を簡略化できるとともに処理時間も短くすることができるため、コストを低減することができる。さらに、電極における電位の値を適切に設定することで、電極表面にリチウムを単体として析出させることができるので、純度の高いリチウムを得ることができる。 According to the method for producing lithium by molten salt electrolysis according to the present embodiment, the apparatus configuration can be simplified and the processing time can be shortened as compared with the conventional wet separation method, so that the cost can be reduced. . Furthermore, since lithium can be deposited as a simple substance on the electrode surface by appropriately setting the potential value at the electrode, lithium with high purity can be obtained.
[第4実施形態]
  本実施形態は、2種類以上の金属元素を含む処理対象物に含まれる金属元素を溶融塩中に溶解させる工程と、前記金属元素が溶解した溶融塩中に一対の電極部材を設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に、溶融塩中に存在する特定の金属を析出又は合金化させる工程とを備える溶融塩電解による金属の製造方法である。
[Fourth embodiment]
In the present embodiment, a step of dissolving a metal element contained in a processing object containing two or more kinds of metal elements in a molten salt, a pair of electrode members is provided in the molten salt in which the metal element is dissolved, and the electrodes A method of producing a metal by molten salt electrolysis comprising a step of precipitating or alloying a specific metal present in a molten salt on one of electrode members by controlling a potential of the member to a predetermined value.
  本実施形態は、大きくは、前記処理対象物に含まれる特定の金属を溶融塩中に溶解させるプロセスと、該特定の金属が溶解した溶融塩から溶融塩電解により一方の電極(陰極)に特定の金属を析出させるプロセスとから成る。そして本実施形態の特徴は、電極における電位を所定の値に制御することで、処理対象物から特定の金属を選択的に析出させて純度の高い特定の金属を得ることにある。 In the present embodiment, the specific metal contained in the object to be treated is generally dissolved in the molten salt, and the molten salt in which the specific metal is dissolved is specified as one electrode (cathode) by molten salt electrolysis. And a process of depositing a metal. The feature of this embodiment is that a specific metal having a high purity is obtained by selectively precipitating a specific metal from the object to be processed by controlling the potential at the electrode to a predetermined value.
  まず、処理対象物に含まれる特定の金属を溶融塩中に溶解させるプロセスについて説明する。
  処理対象物に含まれる特定の金属を溶融塩中に溶解させる方法としては、例えば化学的手法により溶解させる方法が挙げられる。具体的には、処理対象物を粉砕して粒状、粉状にし、これらと塩とを混合して加熱することにより、処理対象物に含まれる特定の金属を溶融塩中に溶解させることができる。また、処理対象物を溶融塩に投入して溶解させてもよい。
First, a process for dissolving a specific metal contained in a processing object in a molten salt will be described.
Examples of the method for dissolving the specific metal contained in the object to be treated in the molten salt include a method for dissolving by a chemical method. Specifically, a specific metal contained in the processing object can be dissolved in the molten salt by crushing the processing object into a granular or powder form, mixing these and a salt, and heating. . Further, the object to be treated may be put into molten salt and dissolved.
  また、別の方法としては電気化学的手法が挙げられる。具体的には、前記溶融塩中に、陰極と、前記処理対象物を含む陽極材料からなる陽極とを設け、該陽極における電位を所定の値に制御することにより、前記処理対象物から制御した電位の値に応じた金属元素を溶融塩中に溶解させる。溶融塩電解においては、元素が溶解する電位は元素の種類によって異なる性質があるため、この性質を利用して特定の金属を他の金属から分離することができる。このように処理対象物を陽極として用いて、溶解時の電位を制御することで特定の金属を選択的に溶融塩中に溶解させることができる。 別 Another method is an electrochemical method. Specifically, the molten salt was controlled from the processing object by providing a cathode and an anode made of an anode material containing the processing object, and controlling the potential at the anode to a predetermined value. A metal element corresponding to the potential value is dissolved in the molten salt. In molten salt electrolysis, the potential at which an element dissolves has different properties depending on the type of the element. Therefore, a specific metal can be separated from other metals using this property. Thus, a specific metal can be selectively dissolved in the molten salt by controlling the potential at the time of dissolution using the object to be treated as an anode.
  この工程においては、処理対象物に含まれるすべての金属を溶解させても良いし、処理対象物に含まれる特定の金属とその他の金属を溶解させても良く、更には処理対象物に含まれる特定の金属のみを溶解させることが好ましい。処理対象物に含まれる特定の金属とそれ以外の金属とが溶解する条件であってもよいが、なるべく特定の金属のみが溶解するように電位を制御することが好ましい。すなわち、前記特定の金属を溶融塩中に溶解させる工程においては、前記陽極における電位を所定の値に制御し、前記特定の金属元素を選択的に溶融塩中に溶解させることが好ましい。これにより、続けて行う析出工程において不純物の持ち込みをより少なくすることができる。 In this step, all the metals contained in the treatment object may be dissolved, the specific metal contained in the treatment object and other metals may be dissolved, and further included in the treatment object. It is preferable to dissolve only a specific metal. Although the condition may be that the specific metal contained in the object to be treated and other metals are dissolved, it is preferable to control the potential so that only the specific metal is dissolved as much as possible. That is, in the step of dissolving the specific metal in the molten salt, it is preferable to control the potential at the anode to a predetermined value and selectively dissolve the specific metal element in the molten salt. Thereby, it is possible to reduce the amount of impurities introduced in the subsequent deposition step.
  このためには、前記溶融塩中に前記処理対象物から特定の金属を溶解させる工程において、前記溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。これにより溶融塩中に溶解させる特定の金属と、陽極に残留させる他の金属元素とを良好に分離することができる。前記標準電極電位の差は、0.1V以上であることがより好ましく、0.25V以上であることが更に好ましい。
  陽極において制御する電位の値は、後述するネルンストの式により計算することができる。
For this purpose, in the step of dissolving the specific metal from the object to be treated in the molten salt, the standard electrode potential of the specific metal or its alloy in the molten salt and the other single metal or its metal The molten salt is preferably selected so that the difference from the standard electrode potential of the alloy is 0.05 V or more. Thereby, the specific metal dissolved in the molten salt and the other metal elements remaining on the anode can be satisfactorily separated. The difference in the standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
The value of the potential controlled at the anode can be calculated by the Nernst equation described later.
  なお、前記処理対象物に、目的となる特定の金属が1種類以上含まれている場合には、前記溶解工程において、1種類もしくは2種類以上の特定の金属を前記溶融塩中に溶解させる。
  処理対象物に特定の金属が1種類のみ含まれている場合には、前述のように当該特定の金属を溶解させた後に析出工程を行って目的の金属を得る。また、処理対象物に目的となる特定の金属が2種類以上含まれている場合には、そのうちの1種類のみを溶融塩中に溶解させ、続けて析出工程を行い、その後に、再度溶解工程を行うことにより残りの種類の特定の金属を溶融塩に溶解させても良い。なおこの場合には、最初の溶解工程を経た後の処理対象物を当該溶解工程に用いた溶融塩とは別の溶融塩に移して溶解工程を行うことによって、残りの種類の特定の金属を溶解させても良い。
  処理対象物に含まれている2種類以上の特定の金属を溶融塩中に2種類以上溶解させた場合には、その後に行う析出工程において、溶融塩中に存在する特定の金属を1種類ずつ電極材料に析出又は合金化させることで、所望の特定の金属を製造することができる。この場合には、1種類の特定の金属を電極材料に析出又は合金化させた後に、電極材料を交換して、該電極材料に溶融塩中に溶解している残りの特定の金属を析出又は合金化させればよい。
In addition, when the said process target object contains 1 or more types of the specific metal used as the objective, 1 type or 2 types or more of specific metals are dissolved in the said molten salt in the said melt | dissolution process.
When only one type of specific metal is included in the object to be treated, the target metal is obtained by performing the precipitation step after dissolving the specific metal as described above. In addition, when two or more kinds of target specific metals are contained in the object to be treated, only one of them is dissolved in the molten salt, followed by the precipitation step, and then the dissolution step again. The remaining types of specific metals may be dissolved in the molten salt. In this case, the object to be treated after the first dissolution step is transferred to a molten salt different from the molten salt used in the dissolution step, and the dissolution step is performed, so that the remaining types of specific metals can be obtained. It may be dissolved.
When two or more types of specific metals contained in the object to be treated are dissolved in the molten salt, one type of the specific metals present in the molten salt is used in the subsequent precipitation step. A desired specific metal can be produced by depositing or alloying the electrode material. In this case, after depositing or alloying one type of specific metal on the electrode material, the electrode material is exchanged to deposit or deposit the remaining specific metal dissolved in the molten salt on the electrode material. What is necessary is just to alloy.
  前記溶解工程において使用する陰極としては、炭素あるいは溶融塩中の陽イオンを構成するLiやNa等のアルカリ金属と合金化しやすい材料を用いる。例えば、アルミニウム(Al)、亜鉛(Zn)、ガリウム(Ga)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、アンチモン(Sb)、鉛(Pb)、ビスマス(Bi)等を用いることができる。 陰極 As the cathode used in the melting step, a material that is easily alloyed with an alkali metal such as Li or Na constituting carbon or a cation in the molten salt is used. For example, aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), or the like is used. Can do.
  前記特定の金属を含む処理対象物を陽極として使用するには、例えば、金属等による導電性のカゴ(陽極材料)の中に処理対象物を収容して溶融塩中に設ければよい。カゴの上部に開口部を設けて、当該開口部から処理対象物を内部に挿入できるようにし、また、カゴの側壁および底壁に多数の穴を形成して溶融塩がカゴの内部に流入できるようにすればよい。カゴを構成する材料としては、金属線を編むことで形成された網状部材や、シート状の金属板に多数の穴を開けたシート部材など、任意の材料を用いることができる。特に、当該材料としてC、Pt、Mo等を用いるのが有効である。
  対象物が酸化物などで電気抵抗が高い場合には、前記の導電性材料との接触量を高めるようにするのがよい。金属製の網状部材で包み込んだり、金属多孔体内部の空間部分に充填するなどを行って、電極として用いる方法が有効である。
In order to use the object to be treated containing the specific metal as the anode, for example, the object to be treated may be accommodated in a conductive basket (anode material) made of metal or the like and provided in the molten salt. An opening is provided in the upper part of the basket so that the object to be processed can be inserted into the interior from the opening, and a large number of holes are formed in the side wall and the bottom wall of the basket so that the molten salt can flow into the interior of the basket. You can do that. As a material constituting the cage, any material such as a net-like member formed by knitting a metal wire or a sheet member in which a large number of holes are formed in a sheet-like metal plate can be used. In particular, it is effective to use C, Pt, Mo or the like as the material.
When the object is an oxide or the like and has a high electric resistance, the contact amount with the conductive material is preferably increased. It is effective to use the electrode as an electrode by wrapping it with a metal mesh member or filling the space inside the porous metal body.
  前記陰極と、前記処理対象物を含む陽極材料からなる陽極(例えば、前記処理対象物を内部に保持した金属製のカゴ)を前記溶融塩中に設け、該陽極における電位を所定の値に制御することで、処理対象物から特定の金属を溶融塩中に溶解させることができる。 The cathode and an anode made of an anode material containing the object to be processed (for example, a metal cage that holds the object to be processed inside) are provided in the molten salt, and the potential at the anode is controlled to a predetermined value. As a result, a specific metal can be dissolved in the molten salt from the object to be treated.
  次の析出プロセスでは、前記特定の金属が溶解した溶融塩中に一対の電極部材を設けて溶融塩電解を行うことにより特定の金属を一方の電極部材(陰極)に析出させる。この場合は溶融塩電解で制御する電位の大きさによって、特定の金属を選択的に陰極に金属もしくは合金として析出させることができる。 In the subsequent deposition process, a specific metal is deposited on one electrode member (cathode) by providing a pair of electrode members in the molten salt in which the specific metal is dissolved and performing molten salt electrolysis. In this case, a specific metal can be selectively deposited as a metal or alloy on the cathode depending on the magnitude of the potential controlled by molten salt electrolysis.
  この析出プロセスにおいても、前記溶解プロセスと同様に、溶融塩電解においては元素が金属もしくは合金として陰極に析出する電位は元素の種類によって異なるという性質を利用して、特定の金属と他の金属とを分離する。これにより、特定の金属以外の金属が溶融塩中に含まれている場合にも、前記の電極部材における電位を所定の値に制御することで、特定の金属元素を選択的に陰極に析出又は合金化させることができる。すなわち高純度の特定の金属を得ることができる。 Also in this precipitation process, similar to the dissolution process, in molten salt electrolysis, the potential that an element is deposited on the cathode as a metal or alloy varies depending on the type of the element, so that a specific metal and other metals can be used. Isolate. Thus, even when a metal other than the specific metal is contained in the molten salt, the specific metal element is selectively deposited on the cathode by controlling the potential of the electrode member to a predetermined value. Can be alloyed. That is, a high purity specific metal can be obtained.
  また、特定の金属を析出させる場合に、特定の金属の溶解・析出電位と溶融塩中に含まれる他の金属の溶解・析出電位との差が小さく、特定の金属を他の金属と分離することが困難な場合には、陰極材料と特定の金属とが合金化して析出するように、陰極材料の選択及び電位の制御を行っても良い。これにより、溶融塩中の特定の金属を合金として析出させ、他の不純物金属と分離し、その後に例えば、特定の金属と合金化した陰極材料を用いて、別の溶融塩中にて溶解工程と析出工程を行うことにより高純度の特定の金属を得ることができる。 Moreover, when depositing a specific metal, the difference between the dissolution / precipitation potential of the specific metal and the dissolution / precipitation potential of other metals contained in the molten salt is small, and the specific metal is separated from other metals. If this is difficult, the cathode material and the potential may be controlled so that the cathode material and a specific metal are alloyed and deposited. Thereby, a specific metal in the molten salt is precipitated as an alloy, separated from other impurity metals, and then dissolved in another molten salt using, for example, a cathode material alloyed with the specific metal. By performing the precipitation step, a specific metal with high purity can be obtained.
  前記析出工程において使用する電極部材としては、例えば、ニッケル(Ni)、モリブデン(Mo)、グラッシーカーボン(C)等を用いることができる。 電極 As an electrode member used in the precipitation step, for example, nickel (Ni), molybdenum (Mo), glassy carbon (C), or the like can be used.
  本実施形態は以上のような2つのプロセスによって、処理対象物から特定の金属を分離抽出する。なお、本実施形態においては溶融塩を用いるため、各プロセスにおける系の温度が溶融塩の融点以上となるように系を加熱する必要がある。
  また、後述するように、本プロセスと全く逆の考え方で製錬することも可能である。すなわち、対象処理物を陽極とし、不純物となる金属元素のみを溶融塩中に溶解させるというものである。この場合も、陽極における電位を制御することで、特定の金属が陽極に残留し、不純物元素が溶解するといった現象を発生させる。これにより陽極に特定の金属が得られる。
In the present embodiment, a specific metal is separated and extracted from the object to be processed by the above two processes. In this embodiment, since the molten salt is used, it is necessary to heat the system so that the temperature of the system in each process is equal to or higher than the melting point of the molten salt.
Further, as will be described later, it is possible to smelt using the completely opposite idea to this process. That is, only the metal element which becomes an impurity is dissolved in the molten salt with the object to be processed as an anode. Also in this case, by controlling the potential at the anode, a phenomenon occurs in which the specific metal remains on the anode and the impurity element dissolves. Thereby, a specific metal is obtained for the anode.
  上記の2つのプロセスの特徴は溶融塩を用いることである。すなわち、溶融塩の種類によって各元素の溶解・析出の電位が異なるという溶融塩電解の性質を利用して、特定の金属の溶解・析出電位と特定の金属以外の不純物対象となる金属の溶解・析出電位とが充分に離れて処理しやすい値となるように溶融塩を選択して設計することが可能となる。
  具体的には、前記特定の金属を析出又は合金化させる工程において、溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。
溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差は、0.1V以上とすることがより好ましく、0.25V以上とすることが更に好ましい。
  このように、前記特定の金属を析出もしくは合金化させる工程においては、前記電極部材における電位を所定の値に制御し、前記溶融塩中の前記特定の金属元素を選択的に析出又は合金化させることが好ましい。
A feature of the above two processes is the use of molten salt. In other words, by utilizing the property of molten salt electrolysis in which the potential of dissolution / precipitation of each element varies depending on the type of molten salt, the dissolution / precipitation potential of a specific metal and the dissolution / precipitation of a target metal other than a specific metal It is possible to select and design the molten salt so that the deposition potential is sufficiently separated from the deposition potential.
Specifically, in the step of precipitating or alloying the specific metal, the standard electrode potential of the specific metal or its alloy in the molten salt and the standard electrode potential of another metal or its alloy It is preferable to select the molten salt so that the difference is 0.05 V or more.
The difference between the standard electrode potential of the specific metal or its alloy in the molten salt and the standard electrode potential of another metal or its alloy is more preferably 0.1 V or more, and 0.25 V or more. More preferably.
Thus, in the step of precipitating or alloying the specific metal, the potential of the electrode member is controlled to a predetermined value, and the specific metal element in the molten salt is selectively precipitated or alloyed. It is preferable.
  陰極に析出させる特定の金属の析出電位は、電気化学的な計算により算出することができる。具体的にはネルンストの式を用いて計算する。
  例えば、特定の金属としてモリブデンが溶解して4価のモリブデン(Mo)イオン(以下ではMo(IV)と表す)となっている溶融塩からMo単体を析出させる電位は次の式により求めることができる。
The deposition potential of a specific metal deposited on the cathode can be calculated by electrochemical calculation. Specifically, it is calculated using the Nernst equation.
For example, the potential at which Mo is precipitated from a molten salt in which molybdenum is dissolved as a specific metal to form tetravalent molybdenum (Mo) ions (hereinafter referred to as Mo (IV)) can be obtained by the following equation. it can.
Mo=E Mo + RT/3F・ln(aMo(IV)/aMo(0))・・・式(1)  なお、上記式(1)において、E Moは標準電位を、Rは気体定数を、Tは絶対温度を、Fはファラデー数を、aMo(IV)はMo(IV)イオンの活量を、aMo(0)はMo単体の活量を、それぞれ意味する。 E Mo = E 0 Mo + RT / 3F · ln (a Mo (IV) / a Mo (0) ) (1) In the above formula (1), E 0 Mo is a standard potential, R Is the gas constant, T is the absolute temperature, F is the Faraday number, a Mo (IV) is the activity of Mo (IV) ions, and aMo (0) is the activity of Mo alone.
  そして、上記式(1)を、活量係数γMo(IV)を考慮して書き直すと、aMo(0)=1なので、以下のような式となる。
Mo=E Mo + RT/3F・lnaMo(IV)
     =E Mo + RT/3F・ln(γMo(IV)・CMo(IV))・・・式(2)EMo=E0’ Mo + RT/3F・lnCMo(IV)              ・・・式(3)
  なお、上記式(3)において、CMo(IV)は4価のMoイオンの濃度を、E0’ Moは式量電極電位(ここでは、E Mo+RT/3F・lnγMo(IV)と等しい)をそれぞれ意味する。
When the above equation (1) is rewritten in consideration of the activity coefficient γ Mo (IV) , since a Mo (0) = 1, the following equation is obtained.
E Mo = E 0 Mo + RT / 3F · lna Mo (IV)
= E 0 Mo + RT / 3F · ln (γ Mo (IV) · C Mo (IV)) ··· formula (2) E Mo = E 0 'Mo + RT / 3F · lnC Mo (IV) ··· Formula (3)
In the above formula (3), C Mo (IV) is the concentration of tetravalent Mo ions, E 0 ′ Mo is the formula electrode potential (here, E 0 Mo + RT / 3F · lnγ Mo (IV)) Means equal).
  同様にして、上記計算式により、全ての析出物に対して溶融塩の種類ごとに、析出電位を求めることができる。
  また、モリブデンを合金として析出させる場合にも同様にして計算することができる。
前記の陰極にモリブデンを析出もしくは合金化させるプロセスでは、このモリブデン単体もしくはモリブデン合金の析出電位の値を見て、他の金属の単体もしくはその合金の析出電位と充分な電位差が得られるように溶融塩や陰極材料の選定を行い、モリブデン単体として析出させるか又はモリブデン合金として析出させるかを決定する。
  操業における電圧と電流は、電極の大きさや位置関係によって変わってくるため、条件出しにより基準となる値を決めた後に、上記の方法で求めた電位の値と序列に基づいて、各ステップにおいて決定する。
Similarly, the precipitation potential can be obtained for each type of molten salt with respect to all precipitates by the above formula.
The same calculation can be performed when molybdenum is precipitated as an alloy.
In the process of depositing or alloying molybdenum on the cathode, the precipitation potential of this molybdenum alone or molybdenum alloy is observed, so that a sufficient potential difference can be obtained from the precipitation potential of other metals alone or their alloys. The salt or cathode material is selected, and it is determined whether to precipitate as molybdenum alone or as a molybdenum alloy.
Since the voltage and current in operation vary depending on the size and positional relationship of the electrodes, after determining the reference value by setting the conditions, determine it at each step based on the potential value and the order obtained by the above method. To do.
  上記のように、本実施形態の溶融塩電解による特定の金属の製造方法では、電位の値を制御することにより特定の金属を電気化学的に溶解・析出させることができる。このため、従来の湿式処理などのように酸などを用いた溶解・抽出といったプロセスを繰り返す場合よりも工程を簡略化でき、また、特定の金属を選択的に分離・回収することができる。更に、溶融塩の比重の調整も不必要であり、特定の金属を固体の状態で処理できる低温の溶融塩を選択することで、簡易な装置構成とすることができる。また、操業形態も単純化することが可能である。このため、工程の効率化、および低コスト化を図ることが可能である。 As described above, in the method for producing a specific metal by molten salt electrolysis according to the present embodiment, the specific metal can be dissolved and deposited electrochemically by controlling the potential value. For this reason, a process can be simplified compared with the case of repeating processes, such as melt | dissolution and extraction using an acid etc. like the conventional wet process, and a specific metal can be selectively isolate | separated and collect | recovered. Furthermore, it is not necessary to adjust the specific gravity of the molten salt, and by selecting a low-temperature molten salt that can treat a specific metal in a solid state, a simple apparatus configuration can be obtained. In addition, the operation mode can be simplified. For this reason, it is possible to increase the efficiency of the process and reduce the cost.
  また、前述のように特定の金属を陰極に析出もしくは合金化させるという考え方とは全く逆の考え方で特定の金属を製錬することも可能である。
  すなわち、本実施形態の溶融塩電解による金属の製造方法は、2種類以上の金属元素を含む処理対象物から特定の金属を溶融塩電解により製造する方法であって、溶融塩中に陰極と、前記処理対象物を含む陽極材料からなる陽極とを設け、該陽極における電位を所定の値に制御することにより、前記処理対象物から電位に応じた金属元素を溶融塩中に溶解させることで特定の金属を陽極に残留させることを特徴とする。
In addition, as described above, it is possible to smelt a specific metal based on a concept that is completely opposite to the concept of depositing or alloying a specific metal on the cathode.
That is, the method for producing a metal by molten salt electrolysis according to the present embodiment is a method for producing a specific metal by molten salt electrolysis from a treatment object containing two or more kinds of metal elements, and a cathode in the molten salt, An anode made of an anode material containing the object to be treated is provided, and the potential at the anode is controlled to a predetermined value, whereby the metal element corresponding to the potential is dissolved in the molten salt from the object to be treated. The metal is left on the anode.
  この製造方法は、前記処理対象物を含む陽極材料を陽極とし、特定の金属以外、すなわち不純物となる金属元素のみを溶融塩中に溶解させることにより、特定の金属を陽極に残留させるというものである。この場合も、陽極における電位を制御することで、製錬対象の特定の金属が陽極に残留し、不純物元素が溶融塩中に溶解するといった現象を発生させることができる。これにより、陽極に製錬された特定の金属が得られる。 In this manufacturing method, an anode material containing the object to be treated is used as an anode, and only a metal element other than a specific metal, that is, an impurity, is dissolved in a molten salt, thereby leaving a specific metal on the anode. is there. Also in this case, by controlling the potential at the anode, it is possible to generate a phenomenon in which the specific metal to be smelted remains on the anode and the impurity element dissolves in the molten salt. Thereby, the specific metal smelted by the anode is obtained.
  この方法においても、前記溶融塩中に前記処理対象物から金属元素を溶解させる工程において、前記溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することが好ましい。これにより、特定の金属とその他の金属とを良好に分離することができ、特定の金属のみを陽極に残留させることができる。標準電極電位の差は0.1V以上であることがより好ましく、0.25V以上であることが更に好ましい。
  また、陽極において制御する電位の値は、前記のようにネルンストの式を用いて計算することができる。
Also in this method, in the step of dissolving the metal element from the object to be treated in the molten salt, the standard electrode potential of the specific metal or its alloy in the molten salt and the other metal simple or its alloy The molten salt is preferably selected so that the difference from the standard electrode potential is 0.05 V or more. Thereby, a specific metal and another metal can be isolate | separated favorably, and only a specific metal can remain in an anode. The difference in standard electrode potential is more preferably 0.1 V or more, and further preferably 0.25 V or more.
The value of the potential controlled at the anode can be calculated using the Nernst equation as described above.
  本実施形態に係る溶融塩電解による金属の製造方法において、2種類以上の金属元素を含む処理対象物としては、目的となる特定の金属を含む金属材料であれば何ら限定されるものではない。例えば、回収電池材料からはMn、Co、Sb等を、金属超電導材料からはNb等を、酸化物系超電導材料からはBi、Sr等を、フェロバナジウムからはVを、Mo-Cu系ヒートスプレッダからはMo等を、光ファイバ材料からはGe等を得ることができる。 に お い て In the method for producing a metal by molten salt electrolysis according to this embodiment, the object to be treated containing two or more kinds of metal elements is not limited as long as it is a metal material containing a target specific metal. For example, Mn, Co, Sb, etc. from recovered battery materials, Nb, etc. from metal superconducting materials, Bi, Sr etc. from oxide superconducting materials, V from ferrovanadium, and Mo-Cu heat spreaders Can obtain Mo or the like, and Ge or the like from the optical fiber material.
  本実施形態は前記処理対象物が遷移金属又は希土類金属を含む金属材料の場合にも好ましく適用することができる。遷移金属としては特に限定されず、周期律表の第3族(IIIA族)~第11族(IB族)に含まれる元素であればよい。前記処理対象物が遷移金属としてV、Nb、Mo、Ti、Ta、Zr、及びHfからなる群より選ばれるいずれか1種類以上の金属を含むものである場合にも本実施形態を好適に利用することができる。
  また本実施形態は、前記処理対象物に含まれる金属が、Sr、Baのいずれか、又は両方である場合にも好適に利用される。更に、前記処理対象物がZn、Cd、Ga、In、Ge、Sn、Pb、Sb、及びBiからなる群より選ばれる1種類以上の金属を含む場合にも好適に利用される。
The present embodiment can be preferably applied to the case where the object to be treated is a metal material containing a transition metal or a rare earth metal. The transition metal is not particularly limited as long as it is an element included in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table. The present embodiment is also suitably used when the object to be treated includes one or more metals selected from the group consisting of V, Nb, Mo, Ti, Ta, Zr, and Hf as transition metals. Can do.
The present embodiment is also suitably used when the metal contained in the processing object is either Sr or Ba, or both. Furthermore, the present invention is also suitably used when the object to be processed contains one or more metals selected from the group consisting of Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, and Bi.
  前記析出又は合金化させる特定の金属を遷移金属又は希土類金属とすることで、本実施形態の溶融塩電解による金属の製造方法により、遷移金属又は希土類金属を得ることができる。なお、遷移金属としては特に限定されず、周期律表の第3族(IIIA族)~第11族(IB族)に含まれる元素であればよい。
  同様に、前記析出又は合金化させる特定の金属を、V、Nb、Mo、Ti、Ta、Zr若しくはHfとするか、Sr若しくはBaとするか、又はZn、Cd、Ga、In、Ge、Sn、Pb、Sb若しくはBiとすることにより、これらの金属を得ることができる。
  前述のように、前記溶解工程において、処理対象物に含まれるこれらの金属を1種類以上溶融塩に溶解させて、当該溶融塩から順番に特定の金属を電極部材に析出又は合金化させることができる。
By making the specific metal to be deposited or alloyed into a transition metal or a rare earth metal, a transition metal or a rare earth metal can be obtained by the method for producing a metal by molten salt electrolysis according to this embodiment. The transition metal is not particularly limited as long as it is an element included in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table.
Similarly, the specific metal to be deposited or alloyed is V, Nb, Mo, Ti, Ta, Zr or Hf, Sr or Ba, or Zn, Cd, Ga, In, Ge, Sn. , Pb, Sb or Bi, these metals can be obtained.
As described above, in the melting step, one or more kinds of these metals contained in the object to be treated are dissolved in a molten salt, and a specific metal is deposited or alloyed on the electrode member sequentially from the molten salt. it can.
  前記処理対象物は粒状又は粉末状であることが好ましい。処理対象物を粒状又は粉末状にすることで、表面積を増やし処理効率を高めることができる。
  更に、粒状又は粉末状にした処理対象物を押し固めることで、陽極(アノード)として使用することができる。この場合、粒子間に溶融塩が容易に侵入できる空間が存在することが望ましい。
The processing object is preferably granular or powdery. By making the object to be processed granular or powdery, the surface area can be increased and the processing efficiency can be increased.
Furthermore, it can be used as an anode (anode) by compacting the object to be processed in a granular or powder form. In this case, it is desirable that there is a space where the molten salt can easily enter between the particles.
  前記溶融塩としては、塩化物系の溶融塩またはフッ化物系の溶融塩を用いることができる。また、塩化物系の溶融塩とフッ化物系の溶融塩とを混合した溶融塩を用いることもできる。
  塩化物系の溶融塩としては、例えばKCl、NaCl、CaCl、LiCl、RbCl、CsCl、SrCl、BaCl、MgClなどを用いることができる。またフッ化物系の溶融塩としては、例えばLiF、NaF、KF、RbF、CsF、MgF、CaF、SrF、BaFを用いることができる。なお、効率の点から塩化物系の溶融塩を用いることが好ましく、なかでも安価で入手が容易という点から、KCl、NaCl、CaClを用いることが好ましい。
  また、これらの溶融塩は複数種類の溶融塩を組み合わせて任意の組成の溶融塩として用いることができ、例えばKCl-CaClやLiCl-KCl、あるいはNaCl-KClといった組成の溶融塩を用いることができる。
As the molten salt, a chloride-based molten salt or a fluoride-based molten salt can be used. A molten salt obtained by mixing a chloride-based molten salt and a fluoride-based molten salt can also be used.
As the chloride-based molten salt, for example, KCl, NaCl, CaCl 2 , LiCl, RbCl, CsCl, SrCl 2 , BaCl 2 , MgCl 2 and the like can be used. As the fluoride-based molten salt, for example, LiF, NaF, KF, RbF, CsF, MgF 2 , CaF 2 , SrF 2 , and BaF 2 can be used. It is preferable to use a chloride-based molten salt from the viewpoint of efficiency, and KCl, NaCl, and CaCl 2 are preferably used from the viewpoint of being inexpensive and easily available.
These molten salts can be used as a molten salt having an arbitrary composition by combining a plurality of types of molten salts. For example, a molten salt having a composition such as KCl—CaCl 2 , LiCl—KCl, or NaCl—KCl can be used. it can.
  本実施形態に係る溶融塩電解による金属の製造方法においては、次のような装置を好ましく使用することができる。すなわち、溶融塩を内部に保持した容器と、前記容器の内部に保持された溶融塩に浸漬した陰極と、前記容器の内部に保持された溶融塩に浸漬され、2種類以上の金属元素を含み導電性の処理対象物を内部に保持した陽極とを備え、前記陽極は内部と外部との間で前記溶融塩が流通可能になっており、さらに、前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、前記制御部は、前記電位の値の変更が可能となっていることが好ましい。また、本実施形態に係る溶融塩電解による金属の製造方法に使用する装置は、特定の金属が溶解した溶融塩を内部に保持した容器と、前記容器の内部に保持された溶融塩に浸漬した陰極と陽極とを備え、前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、前記制御部は、前記電位の値の変更が可能となっていることが好ましい。 In the method for producing metal by molten salt electrolysis according to this embodiment, the following apparatus can be preferably used. That is, a container holding a molten salt therein, a cathode immersed in a molten salt held inside the container, and two or more kinds of metal elements immersed in a molten salt held inside the container An anode holding a conductive object to be processed inside, the anode is configured such that the molten salt can flow between the inside and the outside, and the potential at the cathode and the anode is set to a predetermined value. It is preferable that a control unit for controlling the potential is provided, and the control unit is capable of changing the value of the potential. Moreover, the apparatus used for the method for producing a metal by molten salt electrolysis according to the present embodiment is immersed in a molten salt in which a specific metal is dissolved and a molten salt held in the container. It is preferable that a cathode and an anode are provided, and a controller that controls a potential at the cathode and the anode to a predetermined value is provided, and the controller can change the value of the potential.
  前記装置を、図18および図19を参照して説明する。図18に示す装置は、溶融塩を内部に保持する容器1と、容器1の内部に保持される溶融塩2と、2種類以上の金属元素を含む処理対象物3を内部に保持するカゴ4と、電極6と、溶融塩2を加熱するためのヒータ10と、カゴ4および電極6と導電線5によって電気的に接続された制御部9とを備えている。
  制御部9は、カゴ4を一方の電極(陽極)とし、電極6を他方の電極(陰極)としてこの電極における電位を所定の値に制御することが可能となっている。また、制御部9においては、制御する電位の値の変更が可能である。ヒータ10は、容器1の周囲を環状に囲むように配置されている。電極6は任意の材料により構成することができるが、例えば炭素を用いることができる。なお、容器1の形状は、底面の円形状あるいは多角形状であってもよい。また、カゴ4としては前述のカゴを用いることができる。
The apparatus will be described with reference to FIGS. The apparatus shown in FIG. 18 includes a container 1 that holds a molten salt inside, a molten salt 2 that is held inside the container 1, and a basket 4 that holds a processing object 3 containing two or more kinds of metal elements inside. An electrode 6, a heater 10 for heating the molten salt 2, and a control unit 9 electrically connected to the cage 4 and the electrode 6 by a conductive wire 5.
The control unit 9 can control the potential at this electrode to a predetermined value with the cage 4 as one electrode (anode) and the electrode 6 as the other electrode (cathode). Further, the control unit 9 can change the value of the potential to be controlled. The heater 10 is arranged so as to surround the container 1 in an annular shape. The electrode 6 can be made of any material, and for example, carbon can be used. The shape of the container 1 may be a circular shape on the bottom or a polygonal shape. Further, as the basket 4, the aforementioned basket can be used.
  カゴ4と電極6においては、制御部9により所定の電位の値となるように電位が制御される。これにより処理対象物3から特定の金属が溶融塩2中に溶解する。
  そして、処理対象物3から特定の金属が充分に溶解した後に、カゴ4及び電極6を取り出し、別の電極7(陰極)、電極8(陽極)を溶融塩2中に投入する。この電極7、8はそれぞれ導電線5を介して制御部9と接続している。そして、制御部9により電極7、8における電位を所定の値に制御する。このとき、制御する電位は、電極7の電位が特定の金属の析出電位となるように調整する。これにより溶融塩2に溶解していた特定の金属が電極7(陰極)の表面に析出することになる。電極7、8の材料としては、たとえばグラッシーカーボン(C)を用いることができる。
In the cage 4 and the electrode 6, the potential is controlled by the control unit 9 so as to have a predetermined potential value. As a result, the specific metal is dissolved in the molten salt 2 from the processing object 3.
Then, after the specific metal is sufficiently dissolved from the processing object 3, the cage 4 and the electrode 6 are taken out, and another electrode 7 (cathode) and electrode 8 (anode) are put into the molten salt 2. The electrodes 7 and 8 are connected to the control unit 9 through the conductive wires 5, respectively. Then, the control unit 9 controls the potentials at the electrodes 7 and 8 to a predetermined value. At this time, the potential to be controlled is adjusted so that the potential of the electrode 7 becomes the deposition potential of the specific metal. As a result, the specific metal dissolved in the molten salt 2 is deposited on the surface of the electrode 7 (cathode). As a material for the electrodes 7 and 8, for example, glassy carbon (C) can be used.
  なお、ヒータ10による溶融塩2の加熱温度は、図18および図19に示した装置での処理のいずれについてもたとえば800℃とすることができる。このようにして、電極7の表面に特定の金属を単体として析出させることができる。 It should be noted that the heating temperature of the molten salt 2 by the heater 10 can be set to 800 ° C., for example, in any of the treatments in the apparatus shown in FIGS. In this way, a specific metal can be deposited as a simple substance on the surface of the electrode 7.
  なお、前記電極7、8における電位は、電極7(陰極)の表面に特定の金属と陰極材料との合金が析出するように調整してもよい。この場合には、該合金化した電極7を用いて、前述の溶解工程及び析出工程を行えばよい。即ち、新たに図18に示すような装置を用意して、前述の処理対象物3の代わりに特定の金属と合金化した電極7を用いればよい。 Note that the potentials at the electrodes 7 and 8 may be adjusted so that an alloy of a specific metal and a cathode material is deposited on the surface of the electrode 7 (cathode). In this case, the above-described melting step and precipitation step may be performed using the alloyed electrode 7. That is, a new apparatus as shown in FIG. 18 may be prepared, and the electrode 7 alloyed with a specific metal may be used in place of the processing object 3 described above.
  図18及び図19に示したような装置を用いて本実施形態による金属の製造方法を実施する場合には、例えば次のように実施することができる。以下では、バナジウム、モリブデン、ストロンチウム、及びゲルマニウムを例に説明する。 When the metal manufacturing method according to the present embodiment is performed using the apparatus as shown in FIGS. 18 and 19, for example, it can be performed as follows. Hereinafter, vanadium, molybdenum, strontium, and germanium will be described as examples.
(バナジウム)
  例えば、本実施形態の金属の製造方法によりバナジウムを得るためには、まず、処理対象物3としてフェロバナジウムを1kg準備し、溶融塩2としてNaCl-KClを準備する。フェロバナジウムとしては例えばバナジウム(V)を75wt%、鉄(Fe)を25wt%含有するものとする。当該フェロバナジウムを粉砕してカゴ4の内部に配置する。溶融塩2の量は約15リットルとする。
  そして、電極6として炭素からなる電極を用いて前述の溶解工程を行い、続いて、電極7、8としてグラッシーカーボンからなる電極を用いて析出工程を行えばよい。
(vanadium)
For example, in order to obtain vanadium by the metal production method of the present embodiment, first, 1 kg of ferrovanadium is prepared as the object to be processed 3 and NaCl—KCl is prepared as the molten salt 2. As ferrovanadium, for example, vanadium (V) is contained at 75 wt% and iron (Fe) is contained at 25 wt%. The ferrovanadium is crushed and placed inside the basket 4. The amount of the molten salt 2 is about 15 liters.
Then, the above-described dissolution process may be performed using an electrode made of carbon as the electrode 6, and then the deposition process may be performed using electrodes made of glassy carbon as the electrodes 7 and 8.
(モリブデン)
  本実施形態の金属の製造方法によりモリブデンを得るためには、まず、処理対象物3としてMo-Cu系ヒートスプレッダを1kg準備し、溶融塩2としてLiCl-KClを準備する。Mo-Cu系ヒートスプレッダとしては例えばモリブデン(Mo)を50wt%、銅(Cu)を50wt%含有するものとする。当該ヒートスプレッダを粉砕してカゴ4の内部に配置する。溶融塩2の量は約5リットルとする。
  そして、電極6として炭素からなる電極を用いて前述の溶解工程を行い、続いて電極7、8としてグラッシーカーボンからなる電極を用いて析出工程を行えばよい。
(molybdenum)
In order to obtain molybdenum by the metal manufacturing method of the present embodiment, first, 1 kg of Mo—Cu heat spreader is prepared as the object to be processed 3, and LiCl—KCl is prepared as the molten salt 2. The Mo—Cu heat spreader includes, for example, 50 wt% molybdenum (Mo) and 50 wt% copper (Cu). The heat spreader is crushed and placed inside the basket 4. The amount of the molten salt 2 is about 5 liters.
Then, the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8.
(ストロンチウム)
  本実施形態の金属の製造方法によりモリブデンを得るためには、まず、処理対象物3として酸化物系超電導材料を1kg準備し、溶融塩2としてLiF-CaFを準備する。酸化物系超電導材料としては例えばストロンチウム(Sr)を17wt%、カルシウム(Ca)を8wt%含有するものとする。当該酸化物系超電導材料を粉砕してカゴ4の内部に配置する。溶融塩2の量は約4リットルとする。
  そして、電極6として炭素からなる電極を用いて前述の溶解工程を行い、続いて電極7、8としてグラッシーカーボンからなる電極を用いて析出工程を行えばよい。
(strontium)
In order to obtain molybdenum by the metal manufacturing method of the present embodiment, first, 1 kg of an oxide-based superconducting material is prepared as the object to be processed 3 and LiF—CaF 2 is prepared as the molten salt 2. As the oxide-based superconducting material, for example, 17 wt% of strontium (Sr) and 8 wt% of calcium (Ca) are contained. The oxide superconducting material is pulverized and placed inside the cage 4. The amount of the molten salt 2 is about 4 liters.
Then, the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8.
(ゲルマニウム)
  本実施形態の金属の製造方法によりゲルマニウムを得るためには、まず、処理対象物3として光ファイバ材料を1kg準備し、溶融塩2としてLiF-CaFを準備する。光ファイバ材料としては例えばゲルマニウム(Ge)を3wt%含有するものとする。当該光ファイバ材料を粉砕してカゴ4の内部に配置する。溶融塩2の量は約4リットルとする。
  そして、電極6として炭素からなる電極を用いて前述の溶解工程を行い、続いて電極7、8としてグラッシーカーボンからなる電極を用いて析出工程を行えばよい。
(germanium)
In order to obtain germanium by the metal production method of the present embodiment, first, 1 kg of an optical fiber material is prepared as the object to be processed 3 and LiF—CaF 2 is prepared as the molten salt 2. As an optical fiber material, for example, germanium (Ge) is contained at 3 wt%. The optical fiber material is crushed and placed inside the basket 4. The amount of the molten salt 2 is about 4 liters.
Then, the above-described dissolution process is performed using an electrode made of carbon as the electrode 6, and then the deposition process is performed using electrodes made of glassy carbon as the electrodes 7 and 8.
  以上のようにして、処理対象物3としてフェロバナジウム、Mo-Cu系ヒートスプレッダ、酸化物系超電導材料、光ファイバ材料を用いることにより、それぞれバナジウム、モリブデン、ストロンチウム、ゲルマニウムを得ることができる。なお、処理の効率を向上させる観点から、処理対象物3として用いるフェロバナジウム、Mo-Cu系ヒートスプレッダ、酸化物系超電導材料、及び光ファイバ材料は、それぞれできるだけ小さく粉砕することが好ましいく、例えば径の最大値が5mm以下、より好ましくは3mm以下、さらに好ましくは1mm以下となるような粒状に粉砕することが好ましい。
  本実施形態の溶融塩電解による金属の製造方法によれば、従来の回収方法などに比べて装置構成を簡略化できるとともに処理時間も短くすることができるため、コストを低減することができる。さらに、電極における電位を適切に設定することで、電極表面に特定の金属を単体として析出させることができるので、純度の高い金属を得ることができる。
  なお、それぞれのバナジウム、バナジウム合金、モリブデン、モリブデン合金、ストロンチウム、ストロンチウム合金、ゲルマニウム、又はゲルマニウム合金を析出させるための電位は前述の計算により算出することができる。
As described above, vanadium, molybdenum, strontium, and germanium can be obtained by using ferrovanadium, a Mo—Cu heat spreader, an oxide superconducting material, and an optical fiber material as the processing object 3, respectively. From the viewpoint of improving the processing efficiency, the ferrovanadium, the Mo—Cu heat spreader, the oxide superconducting material, and the optical fiber material used as the processing object 3 are preferably crushed as small as possible. It is preferable to pulverize into a granule so that the maximum value is 5 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less.
According to the method for producing a metal by molten salt electrolysis according to the present embodiment, the apparatus configuration can be simplified and the processing time can be shortened as compared with the conventional recovery method and the like, so that the cost can be reduced. Furthermore, since a specific metal can be deposited as a simple substance on the electrode surface by appropriately setting the potential at the electrode, a highly pure metal can be obtained.
Note that the potential for depositing each vanadium, vanadium alloy, molybdenum, molybdenum alloy, strontium, strontium alloy, germanium, or germanium alloy can be calculated by the above-described calculation.
  以上の通り、第1実施形態乃至第4実施形態を別個に説明したが、例えば、第2乃至第4実施形態のタングステン、リチウム、遷移金属及び希土類金属を得るために、他の実施形態の方法を全体的に或いは部分的に採用することができる。 As described above, the first to fourth embodiments have been described separately. For example, in order to obtain the tungsten, lithium, transition metal, and rare earth metal according to the second to fourth embodiments, the method according to another embodiment. Can be employed in whole or in part.
[第1実施形態(実施例)]
  希土類金属を含む鉱石からNd、Dy、及びPrを溶融塩電解により製造した。
(試料)
  処理対象物である鉱石として、ゼノタイム鉱石を用いた。ゼノタイム鉱石をクラッシャーやボールミルの手段により粉砕して粒径が約2mmとなるようにした。そして、粉砕した試料(ゼノタイム鉱石)を、モリブデン(Mo)製の網(50mesh)で包んだ。
図14に示すように網の内部に保持された試料粉末を、陽極(アノード電極)とした。
[First Embodiment (Example)]
Nd, Dy, and Pr were produced by molten salt electrolysis from ores containing rare earth metals.
(sample)
Xenotime ore was used as the ore to be treated. The xenotime ore was pulverized by means of a crusher or a ball mill so that the particle size became about 2 mm. Then, the crushed sample (xenotime ore) was wrapped in a mesh (50 mesh) made of molybdenum (Mo).
As shown in FIG. 14, the sample powder held inside the net was used as an anode (anode electrode).
(実験内容)
  溶融塩としてLiF-NaF-KFの共晶組成の溶融塩を使用し、700℃に加熱して完全に溶解させた。そして、当該溶融塩に、上述したアノード電極と、カソード電極とを配線して浸漬した。カソード電極の材料としてはグラッシーカーボンを用いた。
(Experiment contents)
A molten salt having a eutectic composition of LiF—NaF—KF was used as the molten salt, and the mixture was heated to 700 ° C. and completely dissolved. And the anode electrode and cathode electrode which were mentioned above were wired and immersed in the said molten salt. Glassy carbon was used as the cathode electrode material.
溶解工程:
  このように溶融塩にアノード電極とカソード電極とを浸漬した状態で、アノード電極を所定の電位に保持した。そして、約4時間経過後、溶融塩からサンプルを採取し、当該サンプルについてICP-AESにより組成分析を行なった。
Dissolution process:
Thus, the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. After about 4 hours, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
電解工程:
  上記溶解工程の後、溶融塩にNiからなるカソード電極およびグラッシーカーボンからなるアノード電極を浸漬し、カソード電極の電位を所定の電位に保持した。具体的には、LiF-NaF-KF系溶融塩においてDy-Ni合金が形成するような電位に保持した。そして、所定時間経過後、カソード電極の表面状態を観察した。
Electrolysis process:
After the dissolution step, a cathode electrode made of Ni and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the LiF—NaF—KF molten salt was maintained at a potential such that a Dy—Ni alloy was formed. And after predetermined time progress, the surface state of the cathode electrode was observed.
(結果)
溶解工程について:
  溶解工程において観察されたアノード電流は、図15に示すような経時変化を示した。
なお、図15の横軸は時間(単位:分)を示し、縦軸はアノード電流の電流値(単位:mA)を示す。図15に示すように、電流値は時間が経過するにつれて低下していた。また、電流値の時間変化率は、測定開始時(通電開始時)が最も高く、その後徐々に変化率が小さくなっていく傾向が見られた。
(result)
About dissolution process:
The anode current observed in the dissolution process showed a change with time as shown in FIG.
In addition, the horizontal axis of FIG. 15 shows time (unit: minute), and a vertical axis | shaft shows the electric current value (unit: mA) of anode current. As shown in FIG. 15, the current value decreased with time. Moreover, the time rate of change of the current value was highest at the start of measurement (at the start of energization), and thereafter the rate of change gradually decreased.
  そして、溶融塩から採取したサンプルについて、ICP-AESにより組成分析を行なった結果、当該溶融塩中にNd、Dyが溶解していることが確認された。 As a result of analyzing the composition of the sample collected from the molten salt by ICP-AES, it was confirmed that Nd and Dy were dissolved in the molten salt.
電解工程について:
  カソード電極の表面層について、断面を走査型電子顕微鏡(SEM)で観察した結果を図16および図17に示す。図16および図17に示すように、カソード電極を構成するNiからなる電極本体部31の表面に、Dy-Ni合金32が析出していた。このDy-Ni合金32は、溶融塩中に存在していたDyがカソード電極を構成するNiと反応し、カソード電極の表面に析出したものと考えられる。このように、ゼノタイム鉱石に含まれていたDyをDy-Ni合金という形で当該鉱石から分離・抽出することができる。
About the electrolysis process:
The result of having observed the cross section about the surface layer of the cathode electrode with the scanning electron microscope (SEM) is shown in FIG. 16 and FIG. As shown in FIGS. 16 and 17, the Dy—Ni alloy 32 was deposited on the surface of the electrode main body 31 made of Ni constituting the cathode electrode. This Dy—Ni alloy 32 is considered to be that Dy present in the molten salt reacted with Ni constituting the cathode electrode and deposited on the surface of the cathode electrode. Thus, Dy contained in the xenotime ore can be separated and extracted from the ore in the form of a Dy-Ni alloy.
  なお、図16はSEMによる反射電子像を示しており、また、図17は図16に示した領域についてのX線分析によりDy原子の分布を示している。図17に示すように、電極本体部31に対応する領域33ではほとんどDyは検出されていないが、Dy-Ni合金32に対応する領域34ではDyが検出されている。 Note that FIG. 16 shows a reflected electron image by SEM, and FIG. 17 shows the distribution of Dy atoms by X-ray analysis of the region shown in FIG. As shown in FIG. 17, Dy is hardly detected in the region 33 corresponding to the electrode main body 31, but Dy is detected in the region 34 corresponding to the Dy—Ni alloy 32.
[第2実施形態(実施例)]
  タングステンを含む金属材料として超硬工具を用いて、溶融塩電解によりタングステンを製造した。
(試料)
  処理対象物である超硬工具としては、炭化タングステンを90wt%、結合材としてのコバルトを10wt%有する切削工具を使用した。そして当該切削工具をビーズミルやアトライターの手段により粉砕して粒径が約2mmとなるようにした。粉砕した試料(切削工具)を、モリブデン(Mo)製の網(50mesh)で包んだ。図14に示すようにMo製の網の内部に保持された試料粉末(処理対象物)を、陽極(アノード電極)とした。
[Second Embodiment (Example)]
Tungsten was manufactured by molten salt electrolysis using a cemented carbide tool as a metal material containing tungsten.
(sample)
As the cemented carbide tool to be treated, a cutting tool having 90 wt% tungsten carbide and 10 wt% cobalt as a binder was used. The cutting tool was pulverized by means of a bead mill or an attritor so that the particle size was about 2 mm. The crushed sample (cutting tool) was wrapped in a mesh (50 mesh) made of molybdenum (Mo). As shown in FIG. 14, the sample powder (object to be processed) held inside the Mo net was used as the anode (anode electrode).
(実験内容)
  溶融塩としてNaCl-KClの共晶組成の溶融塩を使用し、700℃に加熱して完全に溶融させた。そして、当該溶融塩に、上述したアノード電極と、カソード電極とを配線して浸漬した。カソード電極の材料としてはグラッシーカーボンを用いた。
(Experiment contents)
A molten salt having a eutectic composition of NaCl-KCl was used as the molten salt, and it was completely melted by heating to 700 ° C. And the anode electrode and cathode electrode which were mentioned above were wired and immersed in the said molten salt. Glassy carbon was used as the cathode electrode material.
溶解工程:
  このように溶融塩にアノード電極とカソード電極とを浸漬した状態で、アノード電極を所定の電位に保持した。そして、所定時間経過後、溶融塩からサンプルを採取し、当該サンプルについてICP-AESにより組成分析を行なった。
Dissolution process:
Thus, the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. After a predetermined time, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
電解工程:
  上記溶解工程の後、溶融塩にグラッシーカーボンからなるカソード電極およびグラッシーカーボンからなるアノード電極を浸漬し、カソード電極の電位を所定の電位に保持した。具体的には、NaCl-KCl系溶融塩においてタングステンが析出するような電位に保持した。そして、所定時間経過後、カソード電極の表面状態を観察した。
Electrolysis process:
After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that tungsten precipitated in the NaCl-KCl molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
(結果)
溶解工程について:
  溶解工程において観察されたアノード電流は、第1実施形態(実施例)(図15)と同様の経時変化を示した。なお、図15の横軸は時間(単位:分)を示し、縦軸はアノード電流の電流値(単位:mA)を示す。図15に示すように、電流値は時間が経過するにつれて低下していた。また、電流値の時間変化率は、測定開始時(通電開始時)が最も高く、その後徐々に変化率が小さくなっていく傾向が見られた。
(result)
About dissolution process:
The anodic current observed in the dissolution process showed the same change with time as in the first embodiment (Example) (FIG. 15). In addition, the horizontal axis of FIG. 15 shows time (unit: minute), and a vertical axis | shaft shows the electric current value (unit: mA) of anode current. As shown in FIG. 15, the current value decreased with time. Moreover, the time rate of change of the current value was highest at the start of measurement (at the start of energization), and thereafter the rate of change gradually decreased.
  そして、溶融塩から採取したサンプルについて、ICP-AESにより組成分析を行なった結果、当該溶融塩中にタングステンが溶解していることが確認された。 As a result of analyzing the composition of the sample collected from the molten salt by ICP-AES, it was confirmed that tungsten was dissolved in the molten salt.
電解(析出)工程について:
  カソード電極の表面層について、断面を走査型電子顕微鏡(SEM)で観察した結果、カソード電極を構成するグラッシーカーボンからなる電極本体部の表面に、タングステンが析出していた。
  このように、タングステンを含む超硬切削工具に含まれていたタングステンを高純度で得ることができた。
About the electrolysis (deposition) process:
As a result of observing the cross section of the surface layer of the cathode electrode with a scanning electron microscope (SEM), tungsten was deposited on the surface of the electrode main body portion made of glassy carbon constituting the cathode electrode.
Thus, the tungsten contained in the cemented carbide cutting tool containing tungsten could be obtained with high purity.
[第3実施形態(実施例)]
  リチウムを含む処理対象物として市販のリチウムイオン二次電池を用いて、溶融塩電解によりリチウムを製造した。
(試料)
  市販のリチウムイオン二次電池(正極にコバルト酸リチウム、負極にグラファイトを使用、コバルト酸リチウム含有量:質量%)
(リチウム電池正極材料の分離)
  前記リチウムイオン二次電池を、電解液(5%NaCl)中に浸漬し、0.1mVになるまで放電させた。その後、手分解により正極材料を取り出し、カッターミルを用いて粉砕し平均粒径0.1mmの正極材料粉末を得た。その組成を表1に示す。分析の結果、分離された粉体はコバルト酸リチウムであることが確認された。
[Third Embodiment (Example)]
Lithium was produced by molten salt electrolysis using a commercially available lithium ion secondary battery as a treatment object containing lithium.
(sample)
Commercially available lithium ion secondary battery (lithium cobaltate for positive electrode, graphite for negative electrode, lithium cobaltate content: mass%)
(Separation of lithium battery positive electrode material)
The lithium ion secondary battery was immersed in an electrolytic solution (5% NaCl) and discharged to 0.1 mV. Thereafter, the positive electrode material was taken out by manual decomposition and pulverized using a cutter mill to obtain a positive electrode material powder having an average particle diameter of 0.1 mm. The composition is shown in Table 1. As a result of analysis, it was confirmed that the separated powder was lithium cobaltate.
Figure JPOXMLDOC01-appb-T000001
  前記粉末を、モリブデン(Mo)製の網(200mesh)で包んだ。図14に示すようにMo製の網の内部に保持された試料粉末を、陽極(アノード電極)とした。
Figure JPOXMLDOC01-appb-T000001
The powder was wrapped in a mesh (200 mesh) made of molybdenum (Mo). As shown in FIG. 14, the sample powder held inside the Mo net was used as an anode (anode electrode).
(電解装置の準備)
  溶融塩としてNaCl-KClの共晶組成の溶融塩を使用し、700℃に加熱して完全に溶融させた。そして、当該溶融塩に、上述したアノード電極と、カソード電極とを配線して浸漬した。陰極(カソード電極)の材料としては炭素を用いた。
(Preparation of electrolyzer)
A molten salt having a eutectic composition of NaCl-KCl was used as the molten salt, and it was completely melted by heating to 700 ° C. And the anode electrode and cathode electrode which were mentioned above were wired and immersed in the said molten salt. Carbon was used as a material for the cathode (cathode electrode).
(電解溶解工程)
  このように溶融塩にアノード電極とカソード電極とを浸漬した状態で、アノード電極を所定の電位に保持した。そして、所定時間経過後、溶融塩からサンプルを採取し、当該サンプルについてICP-AESにより組成分析を行なった。
  溶解工程において観察されたアノード電流は、第1実施形態(実施例)(図15)と同様の経時変化を示した。なお、図15の横軸は時間(単位:分)を示し、縦軸はアノード電流の電流値(単位:mA)を示す。図15に示すように、電流値は時間が経過するにつれて低下していた。また、電流値の時間変化率は、測定開始時(通電開始時)が最も高く、その後徐々に変化率が小さくなっていく傾向が見られた。
溶融塩から採取したサンプルについて、ICP-AESにより組成分析を行なった結果、当該溶融塩中にリチウムが溶解していることが確認された。
(Electrolytic dissolution process)
Thus, the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. After a predetermined time, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
The anodic current observed in the dissolution process showed the same change with time as in the first embodiment (Example) (FIG. 15). In addition, the horizontal axis of FIG. 15 shows time (unit: minute), and a vertical axis | shaft shows the electric current value (unit: mA) of anode current. As shown in FIG. 15, the current value decreased with time. Moreover, the time rate of change of the current value was highest at the start of measurement (at the start of energization), and thereafter the rate of change gradually decreased.
As a result of analyzing the composition of the sample collected from the molten salt by ICP-AES, it was confirmed that lithium was dissolved in the molten salt.
(電解析出工程)
  上記溶解工程の後、溶融塩にグラッシーカーボンからなるカソード電極およびグラッシーカーボンからなるアノード電極を浸漬し、カソード電極の電位を所定の電位に保持した。具体的には、NaCl-KCl系溶融塩においてリチウムが析出するような電位に保持した。そして、所定時間経過後、カソード電極の表面層の断面を走査型電子顕微鏡(SEM)で観察した。
  その観察の結果、カソード電極を構成するグラッシーカーボンからなる電極本体部の表面に、リチウムが析出していた。
  このように、リチウムを含む正極材料に含まれていたリチウムを回収することができた。
(Electrolytic deposition process)
After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that lithium was precipitated in the NaCl-KCl molten salt. After a predetermined time, the cross section of the surface layer of the cathode electrode was observed with a scanning electron microscope (SEM).
As a result of the observation, lithium was deposited on the surface of the electrode body portion made of glassy carbon constituting the cathode electrode.
Thus, the lithium contained in the positive electrode material containing lithium could be recovered.
[第4実施形態(実施例)-1]
  バナジウムを含む金属材料としてフェロバナジウムを用いて、溶融塩電解によりバナジウムを製造した。
(試料)
  処理対象物であるフェロバナジウムとしては、バナジウムを75wt%、鉄を25wt%有するフェロバナジウムを使用した。そして当該フェロバナジウムをビーズミルやアトライターの手段により粉砕して粒径が約2mmとなるようにした。粉砕した試料(フェロバナジウム)を、モリブデン(Mo)製の網(50mesh)で包んだ。図14に示すようにMo製の網の内部に保持された試料粉末(処理対象物)を、陽極(アノード電極)とした。
[Fourth Embodiment (Example) -1]
Using ferrovanadium as a metal material containing vanadium, vanadium was produced by molten salt electrolysis.
(sample)
Ferrovanadium having 75 wt% vanadium and 25 wt% iron was used as the object to be treated. The ferrovanadium was pulverized by means of a bead mill or an attritor so that the particle size was about 2 mm. The ground sample (ferrovanadium) was wrapped in a mesh (50 mesh) made of molybdenum (Mo). As shown in FIG. 14, the sample powder (processing object) held inside the Mo net was used as an anode (anode electrode).
(実験内容)
  溶融塩としてNaCl-KClの共晶組成の溶融塩を使用し、700℃に加熱して完全に溶融させた。そして、当該溶融塩に、上述したアノード電極と、カソード電極とを配線して浸漬した。カソード電極の材料としてはグラッシーカーボンを用いた。
(Experiment contents)
A molten salt having a eutectic composition of NaCl—KCl was used as the molten salt, and the mixture was heated to 700 ° C. and completely melted. And the anode electrode and cathode electrode which were mentioned above were wired and immersed in the said molten salt. Glassy carbon was used as the cathode electrode material.
溶解工程:
  このように溶融塩にアノード電極とカソード電極とを浸漬した状態で、アノード電極を所定の電位に保持した。この際の電位は、鉄は溶解せずに、バナジウムのみが選択的に溶解する電位とした。そして、所定時間経過後、溶融塩からサンプルを採取し、当該サンプルについてICP-AESにより組成分析を行なった。
Dissolution process:
Thus, the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. The potential at this time was such that iron was not dissolved but only vanadium was selectively dissolved. After a predetermined time, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
電解工程:
  上記溶解工程の後、溶融塩にグラッシーカーボンからなるカソード電極およびグラッシーカーボンからなるアノード電極を浸漬し、カソード電極の電位を所定の電位に保持した。具体的には、NaCl-KCl系溶融塩においてバナジウムが析出するような電位に保持した。そして、所定時間経過後、カソード電極の表面状態を観察した。
Electrolysis process:
After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that vanadium was precipitated in the NaCl—KCl molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
(結果)
溶解工程について:
  溶解工程において観察されたアノード電流は、第1実施形態(実施例)(図15)と同様の経時変化を示した。なお、図15の横軸は時間(単位:分)を示し、縦軸はアノード電流の電流値を示す。図15に示すように、電流値は時間が経過するにつれて低下していた。また、電流値の時間変化率は、測定開始時(通電開始時)が最も高く、その後徐々に変化率が小さくなっていく傾向が見られた。
(result)
About dissolution process:
The anodic current observed in the dissolution process showed the same change with time as in the first embodiment (Example) (FIG. 15). In addition, the horizontal axis of FIG. 15 shows time (unit: minute), and a vertical axis | shaft shows the electric current value of anode current. As shown in FIG. 15, the current value decreased with time. Moreover, the time rate of change of the current value was highest at the start of measurement (at the start of energization), and thereafter the rate of change gradually decreased.
  そして、溶融塩から採取したサンプルについて、ICP-AESにより組成分析を行なった結果、当該溶融塩中にバナジウムが溶解していることが確認された。 As a result of analyzing the composition of the sample collected from the molten salt by ICP-AES, it was confirmed that vanadium was dissolved in the molten salt.
電解(析出)工程について:
  カソード電極の表面層について、断面を走査型電子顕微鏡(SEM)で観察した結果、カソード電極を構成するグラッシーカーボンからなる電極本体部の表面に、バナジウムが析出していた。
  このように、バナジウムを含むフェロバナジウムに含まれていたバナジウムを高純度で得ることができた。
About the electrolysis (deposition) process:
As a result of observing the cross section of the surface layer of the cathode electrode with a scanning electron microscope (SEM), vanadium was deposited on the surface of the electrode main body portion made of glassy carbon constituting the cathode electrode.
Thus, vanadium contained in ferrovanadium containing vanadium could be obtained with high purity.
[第4実施形態(実施例)-2]
  モリブデンを含む金属材料としてMo-Cu系ヒートスプレッダを用いて、溶融塩電解によりモリブデンを製造した。
(試料)
  処理対象物であるMo-Cu系ヒートスプレッダとしては、モリブデンを50wt%、銅を50wt%有するヒートスプレッダを使用した。そして当該ヒートスプレッダをビーズミルやアトライターの手段により粉砕して粒径が約2mmとなるようにした。粉砕した試料(ヒートスプレッダ)を、白金(Pt)製の網(50mesh)で包んだ。Pt製の網の内部に保持された試料粉末(処理対象物)を、陽極(アノード電極)とした。
[Fourth Embodiment (Example) -2]
Molybdenum was produced by molten salt electrolysis using a Mo—Cu heat spreader as a metal material containing molybdenum.
(sample)
As the Mo—Cu heat spreader to be processed, a heat spreader having 50 wt% molybdenum and 50 wt% copper was used. The heat spreader was pulverized by means of a bead mill or an attritor so that the particle size became about 2 mm. The ground sample (heat spreader) was wrapped with a platinum (Pt) mesh (50 mesh). The sample powder (object to be treated) held inside the Pt net was used as the anode (anode electrode).
(実験内容)
  溶融塩としてLiCl-KClの共晶組成の溶融塩を使用し、450℃に加熱して完全に溶融させた。そして、当該溶融塩に、上述したアノード電極と、カソード電極とを配線して浸漬した。カソード電極の材料としてはグラッシーカーボンを用いた。
(Experiment contents)
A molten salt having a eutectic composition of LiCl—KCl was used as the molten salt and heated to 450 ° C. to be completely melted. And the anode electrode and cathode electrode which were mentioned above were wired and immersed in the said molten salt. Glassy carbon was used as the cathode electrode material.
溶解工程:
  このように溶融塩にアノード電極とカソード電極とを浸漬した状態で、アノード電極を所定の電位に保持した。この際の電位は、銅は溶解せずに、モリブデンのみが選択的に溶解する電位とした。そして、所定時間経過後、溶融塩からサンプルを採取し、当該サンプルについてICP-AESにより組成分析を行なった。
Dissolution process:
Thus, the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. The potential at this time was such that copper was not dissolved but only molybdenum was selectively dissolved. After a predetermined time, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
電解工程:
  上記溶解工程の後、溶融塩にグラッシーカーボンからなるカソード電極およびグラッシーカーボンからなるアノード電極を浸漬し、カソード電極の電位を所定の電位に保持した。具体的には、LiCl-KCl系溶融塩においてモリブデンが析出するような電位に保持した。そして、所定時間経過後、カソード電極の表面状態を観察した。
Electrolysis process:
After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that molybdenum precipitated in the LiCl—KCl molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
(結果)
溶解工程について:
  溶解工程において観察されたアノード電流は、前記バナジウムの場合と同様に、時間が経過するにつれて電流値が低下していた。また、電流値の時間変化率は、測定開始時(通電開始時)が最も高く、その後徐々に変化率が小さくなっていく傾向が見られた。
(result)
About dissolution process:
As in the case of vanadium, the current value of the anode current observed in the melting process decreased with time. Moreover, the time rate of change of the current value was highest at the start of measurement (at the start of energization), and thereafter the rate of change gradually decreased.
  そして、溶融塩から採取したサンプルについて、ICP-AESにより組成分析を行なった結果、当該溶融塩中にモリブデンが溶解していることが確認された。 As a result of analyzing the composition of the sample collected from the molten salt by ICP-AES, it was confirmed that molybdenum was dissolved in the molten salt.
電解(析出)工程について:
  カソード電極の表面層について、断面を走査型電子顕微鏡(SEM)で観察した結果、カソード電極を構成するグラッシーカーボンからなる電極本体部の表面に、モリブデンが析出していた。
  このように、モリブデンを含むヒートスプレッダに含まれていたモリブデンを高純度で得ることができた。
About the electrolysis (deposition) process:
As a result of observing the cross section of the surface layer of the cathode electrode with a scanning electron microscope (SEM), molybdenum was deposited on the surface of the electrode main body portion made of glassy carbon constituting the cathode electrode.
Thus, the molybdenum contained in the heat spreader containing molybdenum could be obtained with high purity.
[第4実施形態(実施例)-3]
  ストロンチウムを含む金属材料として酸化物系超電導材料を用いて、溶融塩電解によりストロンチウムを製造した。
(試料)
  処理対象物である酸化物系超電導材料としては、ストロンチウムを17wt%、カルシウムを8wt%有する酸化物系超電導材料を使用した。そして当該酸化物系超電導材料をビーズミルやアトライターの手段により粉砕して粒径が約2mmとなるようにした。粉砕した試料(酸化物系超電導材料)を、白金(Pt)製の網(50mesh)で包んだ。Pt製の網の内部に保持された試料粉末(処理対象物)を、陽極(アノード電極)とした。
[Fourth Embodiment (Example) -3]
Strontium was produced by molten salt electrolysis using an oxide-based superconducting material as a metal material containing strontium.
(sample)
As the oxide superconducting material to be treated, an oxide superconducting material having 17 wt% strontium and 8 wt% calcium was used. The oxide superconducting material was pulverized by means of a bead mill or an attritor so that the particle size was about 2 mm. The pulverized sample (oxide-based superconducting material) was wrapped with a platinum (Pt) mesh (50 mesh). The sample powder (object to be treated) held inside the Pt net was used as the anode (anode electrode).
(実験内容)
  溶融塩としてLiF-CaFの共晶組成の溶融塩を使用し、850℃に加熱して完全に溶融させた。そして、当該溶融塩に、上述したアノード電極と、カソード電極とを配線して浸漬した。カソード電極の材料としてはグラッシーカーボンを用いた。
(Experiment contents)
A molten salt having a eutectic composition of LiF—CaF 2 was used as the molten salt and heated to 850 ° C. to be completely melted. And the anode electrode and cathode electrode which were mentioned above were wired and immersed in the said molten salt. Glassy carbon was used as the cathode electrode material.
溶解工程:
  このように溶融塩にアノード電極とカソード電極とを浸漬した状態で、アノード電極を所定の電位に保持した。この際の電位は、ストロンチウム、カルシウムのみが選択的に溶解し、他の含有元素は溶解しない電位とした。そして、所定時間経過後、溶融塩からサンプルを採取し、当該サンプルについてICP-AESにより組成分析を行なった。
Dissolution process:
Thus, the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. In this case, the potential was set such that only strontium and calcium were selectively dissolved, and other contained elements were not dissolved. After a predetermined time, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
電解工程:
  上記溶解工程の後、溶融塩にグラッシーカーボンからなるカソード電極およびグラッシーカーボンからなるアノード電極を浸漬し、カソード電極の電位を所定の電位に保持した。具体的には、LiF-CaF系溶融塩においてストロンチウムが析出するような電位に保持した。そして、所定時間経過後、カソード電極の表面状態を観察した。
Electrolysis process:
After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that strontium was precipitated in the LiF—CaF 2 molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
(結果)
溶解工程について:
  溶解工程において観察されたアノード電流は、前記バナジウムの場合と同様に、時間が経過するにつれて電流値が低下していた。また、電流値の時間変化率は、測定開始時(通電開始時)が最も高く、その後徐々に変化率が小さくなっていく傾向が見られた。
(result)
About dissolution process:
As in the case of vanadium, the current value of the anode current observed in the melting process decreased with time. Moreover, the time rate of change of the current value was highest at the start of measurement (at the start of energization), and thereafter the rate of change gradually decreased.
  そして、溶融塩から採取したサンプルについて、ICP-AESにより組成分析を行なった結果、当該溶融塩中にストロンチウムが溶解していることが確認された。 As a result of analyzing the composition of the sample collected from the molten salt by ICP-AES, it was confirmed that strontium was dissolved in the molten salt.
電解(析出)工程について:
  カソード電極の表面層について、断面を走査型電子顕微鏡(SEM)で観察した結果、カソード電極を構成するグラッシーカーボンからなる電極本体部の表面に、ストロンチウムが付着していた。ストロンチウムの融点は768℃なので、液体となっている。電極本体への付着量が多くなると、溶融塩との比重差により、浮遊してくるので、電極の上側には浮遊してきたストロンチウムを捕集する治具を設置した。
  このように、ストロンチウムを含む酸化物系超電導材料に含まれていたストロンチウムを高純度で得ることができた。
About the electrolysis (deposition) process:
As a result of observing the cross section of the surface layer of the cathode electrode with a scanning electron microscope (SEM), strontium was adhered to the surface of the electrode main body portion made of glassy carbon constituting the cathode electrode. Since the melting point of strontium is 768 ° C., it is a liquid. When the amount of adhesion to the electrode body increases, it floats due to the difference in specific gravity with the molten salt. Therefore, a jig for collecting floating strontium was installed on the upper side of the electrode.
Thus, strontium contained in the oxide-based superconducting material containing strontium could be obtained with high purity.
[第4実施形態(実施例)-4]
  ゲルマニウムを含む金属材料として光ファイバ材料を用いて、溶融塩電解によりゲルマニウムを製造した。
(試料)
  処理対象物である光ファイバ材料としては、ゲルマニウムを3wt%有する光ファイバ材料を使用した。そして当該光ファイバ材料をビーズミルやアトライターの手段により粉砕して粒径が約2mmとなるようにした。粉砕した試料(光ファイバ材料)を、白金(Pt)製の網(50mesh)で包んだ。Pt製の網の内部に保持された試料粉末(処理対象物)を、陽極(アノード電極)とした。
[Fourth Embodiment (Example) -4]
Germanium was produced by molten salt electrolysis using an optical fiber material as a metal material containing germanium.
(sample)
As an optical fiber material to be processed, an optical fiber material having 3 wt% germanium was used. The optical fiber material was pulverized by means of a bead mill or an attritor so that the particle size was about 2 mm. The crushed sample (optical fiber material) was wrapped with a platinum (Pt) mesh (50 mesh). The sample powder (object to be treated) held inside the Pt net was used as the anode (anode electrode).
(実験内容)
  溶融塩としてLiF-CaFの共晶組成の溶融塩を使用し、850℃に加熱して完全に溶融させた。そして、当該溶融塩に、上述したアノード電極と、カソード電極とを配線して浸漬した。カソード電極の材料としてはグラッシーカーボンを用いた。
(Experiment contents)
A molten salt having a eutectic composition of LiF—CaF 2 was used as the molten salt and heated to 850 ° C. to be completely melted. And the anode electrode and cathode electrode which were mentioned above were wired and immersed in the said molten salt. Glassy carbon was used as the cathode electrode material.
溶解工程:
  このように溶融塩にアノード電極とカソード電極とを浸漬した状態で、アノード電極を所定の電位に保持した。この際の電位は、ゲルマニウムのみが選択的に溶解し、他の含有元素は溶解しない電位とした。そして、所定時間経過後、溶融塩からサンプルを採取し、当該サンプルについてICP-AESにより組成分析を行なった。
Dissolution process:
Thus, the anode electrode was kept at a predetermined potential with the anode electrode and the cathode electrode immersed in the molten salt. In this case, the potential was such that only germanium was selectively dissolved and other contained elements were not dissolved. After a predetermined time, a sample was taken from the molten salt, and the sample was subjected to composition analysis by ICP-AES.
電解工程:
  上記溶解工程の後、溶融塩にグラッシーカーボンからなるカソード電極およびグラッシーカーボンからなるアノード電極を浸漬し、カソード電極の電位を所定の電位に保持した。具体的には、LiF-CaF系溶融塩においてゲルマニウムが析出するような電位に保持した。そして、所定時間経過後、カソード電極の表面状態を観察した。
Electrolysis process:
After the dissolution step, a cathode electrode made of glassy carbon and an anode electrode made of glassy carbon were immersed in the molten salt, and the potential of the cathode electrode was maintained at a predetermined potential. Specifically, the potential was maintained such that germanium was precipitated in the LiF—CaF 2 molten salt. And after predetermined time progress, the surface state of the cathode electrode was observed.
(結果)
溶解工程について:
  溶解工程において観察されたアノード電流は、前記バナジウムの場合と同様に、時間が経過するにつれて低下していた。また、電流値の時間変化率は、測定開始時(通電開始時)が最も高く、その後徐々に変化率が小さくなっていく傾向が見られた。
(result)
About dissolution process:
The anodic current observed in the dissolution process decreased with time, as in the case of vanadium. Moreover, the time rate of change of the current value was highest at the start of measurement (at the start of energization), and thereafter the rate of change gradually decreased.
  そして、溶融塩から採取したサンプルについて、ICP-AESにより組成分析を行なった結果、当該溶融塩中にゲルマニウムが溶解していることが確認された。 As a result of analyzing the composition of the sample collected from the molten salt by ICP-AES, it was confirmed that germanium was dissolved in the molten salt.
電解(析出)工程について:
  カソード電極の表面層について、断面を走査型電子顕微鏡(SEM)で観察した結果、カソード電極を構成するグラッシーカーボンからなる電極本体部の表面に、ゲルマニウムが析出していた。
  このように、ゲルマニウムを含む光ファイバ材料に含まれていたゲルマニウムを高純度で得ることができた。
About the electrolysis (deposition) process:
As a result of observing the cross section of the surface layer of the cathode electrode with a scanning electron microscope (SEM), germanium was deposited on the surface of the electrode main body portion made of glassy carbon constituting the cathode electrode.
Thus, germanium contained in the optical fiber material containing germanium could be obtained with high purity.
  以上、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, the embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
    本発明は2種類以上の金属元素を含む処理対象物から高純度の特定の金属を得る方法に好適に利用することができる。あるいは、本発明は鉱石又は粗金属塊から任意の金属を得る方法に好適に利用することができる。あるいは、タングステン及びリチウムのすくなくともいずれかを含む処理対象物から高純度のタングステンを得る方法に好適に利用することができる。 The present invention can be suitably used in a method for obtaining a high purity specific metal from a processing object containing two or more kinds of metal elements. Or this invention can be utilized suitably for the method of obtaining arbitrary metals from an ore or a rough metal lump. Or it can utilize suitably for the method of obtaining highly purified tungsten from the process target object containing at least any one of tungsten and lithium.
1 容器、  2 溶融塩、  3 処理対象物、  4,24 カゴ、  5 導電線、  6~8,15,27 電極、  9 制御部、  10 ヒータ、  11 DyNi2膜、  12 Pr膜、  13 Nd膜、  16 Dy膜、  25 電極材料、  26 合金、31 電極本体部、  32 Dy-Ni合金、  33,34 領域 1 container, 2 molten salt, 3 processing object 4, 24 car, 5 conductive wire, 6-8,15,27 electrode, 9 control unit, 10 a heater, 11 DyNi 2 film, 12 Pr film, 13 Nd film, 16 Dy film, 25 electrode material, 26 alloy, 31 electrode body, 32 Dy-Ni alloy, 33, 34 region

Claims (36)

  1.   2種類以上の金属元素を含む処理対象物に含まれる金属元素を溶融塩中に溶解させる工程と、
      前記金属元素が溶解した溶融塩中に一対の電極部材を設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に、溶融塩中に存在する特定の金属を析出又は合金化させる工程と、
    を備えることを特徴とする溶融塩電解による金属の製造方法。
    Dissolving a metal element contained in a processing object containing two or more kinds of metal elements in a molten salt;
    By providing a pair of electrode members in the molten salt in which the metal element is dissolved and controlling the potential at the electrode member to a predetermined value, a specific metal present in the molten salt is deposited on one of the electrode members or Alloying step,
    A method for producing a metal by molten salt electrolysis, comprising:
  2.   前記処理対象が鉱石又は該鉱石から得られた粗金属塊であることを特徴とする請求項1に記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to claim 1, wherein the object to be treated is ore or a crude metal block obtained from the ore.
  3.   タングステンを製造する方法であって、
      前記処理対象物に含まれる金属元素がタングステンであって、
      前記処理対象物から金属元素を溶融塩中に溶解させる工程において、前記処理対象物からタングステンを溶解させ、
      前記特定の金属を析出又は合金化させる工程において、前記タングステンが溶解した溶融塩中に一対の電極部材設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に溶融塩中に存在するタングステンを析出させる請求項1又は2に記載の溶融塩電解による金属の製造方法。
    A method for producing tungsten, comprising:
    The metal element contained in the processing object is tungsten,
    In the step of dissolving the metal element in the molten salt from the treatment object, tungsten is dissolved from the treatment object,
    In the step of precipitating or alloying the specific metal, a pair of electrode members is provided in the molten salt in which the tungsten is dissolved, and the potential of the electrode member is controlled to a predetermined value, whereby one of the electrode members has a molten salt. The method for producing a metal by molten salt electrolysis according to claim 1 or 2, wherein tungsten existing therein is precipitated.
  4.   前記処理対象物は前記タングステンを含む金属材料であることを特徴とする請求項3に記載の溶融塩電解によるタングステンの製造方法。 The method for producing tungsten by molten salt electrolysis according to claim 3, wherein the object to be treated is a metal material containing tungsten.
  5.   前記処理対象物はタングステンと遷移金属とを含む金属材料であることを特徴とする請求項3又は4に記載の溶融塩電解によるタングステンの製造方法。 The method for producing tungsten by molten salt electrolysis according to claim 3 or 4, wherein the object to be treated is a metal material containing tungsten and a transition metal.
  6.   前記処理対象物は超硬製品であることを特徴とする請求項3~6のいずれかに記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to any one of claims 3 to 6, wherein the object to be treated is a cemented carbide product.
  7.   リチウムを製造する方法であって、
      前記処理対象物に含まれる金属元素がリチウムであって、
      前記処理対象物から金属元素を溶融塩中に溶解させる工程において、前記処理対象物からリチウムを溶解させ、
      前記特定の金属を析出又は合金化させる工程において、前記リチウムが溶解した溶融塩中に一対の電極部材設け、該電極部材における電位を所定の値に制御することにより、電極部材の一方に溶融塩中に存在するリチウムを析出させる請求項1又は2に記載の溶融塩電解による金属の製造方法。
    A method for producing lithium, comprising:
    The metal element contained in the processing object is lithium,
    In the step of dissolving the metal element in the molten salt from the treatment object, lithium is dissolved from the treatment object,
    In the step of precipitating or alloying the specific metal, a pair of electrode members is provided in the molten salt in which the lithium is dissolved, and the potential of the electrode member is controlled to a predetermined value, whereby one of the electrode members has a molten salt. The method for producing a metal by molten salt electrolysis according to claim 1 or 2, wherein lithium existing therein is deposited.
  8.   前記処理対象物はリチウムと遷移金属とを含む材料であることを特徴とする請求項7に記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to claim 7, wherein the object to be treated is a material containing lithium and a transition metal.
  9.   前記処理対象物はリチウムを含む電池用電極材料であることを特徴とする請求項7又は8のいずれかに記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to claim 7 or 8, wherein the object to be treated is a battery electrode material containing lithium.
  10.   前記処理対象物は、遷移金属又は希土類金属を含むことを特徴とする請求項1又は2に記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to claim 1 or 2, wherein the object to be treated contains a transition metal or a rare earth metal.
  11.   前記処理対象物は、V、Nb、Mo、Ti、Ta、Zr、及びHfからなる群より選ばれる1種類以上の金属を含むことを特徴とする請求項1又は2に記載の溶融塩電解による金属の製造方法。 3. The molten salt electrolysis according to claim 1, wherein the object to be treated includes one or more kinds of metals selected from the group consisting of V, Nb, Mo, Ti, Ta, Zr, and Hf. Metal manufacturing method.
  12.   前記処理対象物は、Sr及び/又はBaを含むことを特徴とする請求項1又は2に記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to claim 1 or 2, wherein the object to be treated contains Sr and / or Ba.
  13.   前記処理対象物は、Zn、Cd、Ga、In、Ge、Sn、Pb、Sb、及びBiからなる群より選ばれる1種類以上の金属を含むことを特徴とする請求項1又は2に記載の溶融塩電解による金属の製造方法。 The said process target object contains 1 or more types of metals chosen from the group which consists of Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, and Bi, The Claim 1 or 2 characterized by the above-mentioned. A method for producing a metal by molten salt electrolysis.
  14.   前記特定の金属を析出又は合金化させる工程において、溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することを特徴とする請求項1~13のいずれかに記載の溶融塩電解による金属の製造方法。 In the step of depositing or alloying the specific metal, the difference between the standard electrode potential of the specific metal or its alloy in the molten salt and the standard electrode potential of another metal or its alloy is 0.05 V. The method for producing a metal by molten salt electrolysis according to any one of claims 1 to 13, wherein the molten salt is selected so as to achieve the above.
  15.   前記特定の金属を析出又は合金化させる工程において、前記電極部材における電位を所定の値に制御し、前記溶融塩中の前記特定の金属元素を選択的に析出又は合金化させることを特徴とする請求項1~14のいずれかに記載の溶融塩電解による金属の製造方法。 In the step of depositing or alloying the specific metal, the potential of the electrode member is controlled to a predetermined value, and the specific metal element in the molten salt is selectively precipitated or alloyed. The method for producing a metal by molten salt electrolysis according to any one of claims 1 to 14.
  16.   前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、
    化学的手法により前記金属を前記溶融塩中に溶解させることを特徴とする請求項1~15のいずれかに記載の溶融塩電解による金属の製造方法。
    In the step of dissolving the metal element contained in the treatment object in the molten salt,
    The method for producing a metal by molten salt electrolysis according to any one of claims 1 to 15, wherein the metal is dissolved in the molten salt by a chemical method.
  17.   前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、
    前記溶融塩中に、陰極と、前記処理対象物を含む陽極材料からなる陽極とを設け、該陽極における電位を所定の値に制御することにより、前記処理対象物から制御した電位に応じた金属元素を溶融塩中に溶解させることを特徴とする請求項1~16のいずれかに記載の溶融塩電解による金属の製造方法。
    In the step of dissolving the metal element contained in the treatment object in the molten salt,
    The molten salt is provided with a cathode and an anode made of an anode material containing the object to be processed, and a metal corresponding to the potential controlled from the object to be processed by controlling the potential at the anode to a predetermined value. The method for producing a metal by molten salt electrolysis according to any one of claims 1 to 16, wherein the element is dissolved in the molten salt.
  18.   前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、前記溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することを特徴とする請求項17に記載の溶融塩電解による金属の製造方法。 In the step of dissolving the metal element contained in the object to be treated in the molten salt, the standard electrode potential of the specific metal alone or its alloy in the molten salt and the standard electrode potential of another metal alone or its alloy The method for producing a metal by molten salt electrolysis according to claim 17, wherein the molten salt is selected so that a difference from the difference is 0.05 V or more.
  19.   前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、前記陽極における電位を所定の値に制御し、前記特定の金属元素を選択的に溶融塩中に溶解させることを特徴とする請求項17又は18に記載の溶融塩電解による金属の製造方法。 In the step of dissolving the metal element contained in the object to be treated in the molten salt, the potential at the anode is controlled to a predetermined value, and the specific metal element is selectively dissolved in the molten salt, The method for producing a metal by molten salt electrolysis according to claim 17 or 18.
  20.   前記処理対象物に含まれる金属元素を溶融塩中に溶解させる工程において、1種類もしくは2種類以上の前記特定の金属を前記溶融塩中に溶解させることを特徴とする請求項1~19のいずれかに記載の溶融塩電解による金属の製造方法。 20. The step of dissolving the metal element contained in the object to be treated in the molten salt, wherein one or more kinds of the specific metal are dissolved in the molten salt. A method for producing a metal by molten salt electrolysis according to claim 1.
  21.   前記析出又は合金化させる特定の金属が遷移金属であることを特徴とする請求項1~6、10、11、14~20のいずれかに記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to any one of claims 1 to 6, 10, 11, and 14 to 20, wherein the specific metal to be deposited or alloyed is a transition metal.
  22.   前記析出又は合金化させる特定の金属が希土類金属であることを特徴とする請求項1,2,10、14~20のいずれかに記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to any one of claims 1, 2, 10, and 14 to 20, wherein the specific metal to be deposited or alloyed is a rare earth metal.
  23.   前記析出又は合金化させる特定の金属がV、Nb、Mo、Ti、Ta、Zr、又はHfであることを特徴とする請求項1,2,10、11、14~20のいずれかに記載の溶融塩電解による金属の製造方法。 The specific metal to be precipitated or alloyed is V, Nb, Mo, Ti, Ta, Zr, or Hf, according to any one of claims 1, 2, 10, 11, 14 to 20 A method for producing a metal by molten salt electrolysis.
  24.   前記析出又は合金化させる特定の金属がSr又はBaであることを特徴とする請求項1,2,12、14~20のいずれかに記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to any one of claims 1, 2, 12, and 14 to 20, wherein the specific metal to be deposited or alloyed is Sr or Ba.
  25.   前記析出又は合金化させる特定の金属がZn、Cd、Ga、In、Ge、Sn、Pb、Sb、又はBiであることを特徴とする請求項1,2,13~20のいずれかに記載の溶融塩電解による金属の製造方法。 The specific metal to be deposited or alloyed is Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, or Bi, according to any one of claims 1, 2, 13 to 20, A method for producing a metal by molten salt electrolysis.
  26.   前記溶融塩として塩化物系またはフッ化物系の溶融塩を用いることを特徴とする請求項1~25のいずれかに記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to any one of claims 1 to 25, wherein a molten salt of chloride or fluoride is used as the molten salt.
  27.   前記溶融塩として塩化物系の溶融塩とフッ化物系の溶融塩とを混合した溶融塩を用いることを特徴とする請求項1~26のいずれかに記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to any one of claims 1 to 26, wherein a molten salt obtained by mixing a chloride-based molten salt and a fluoride-based molten salt is used as the molten salt.
  28.   前記処理対象物は、粒状又は粉末状であることを特徴とする請求項1~27のいずれかに記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to any one of claims 1 to 27, wherein the object to be treated is granular or powder.
  29.   前記粒状又は粉末状の前記処理対象物を押し固めて前記陽極とすることを特徴とする請求項28に記載の溶融塩電解による金属の製造方法。 29. The method for producing a metal by molten salt electrolysis according to claim 28, wherein the granular or powdery object to be treated is pressed into the anode.
  30.   2種類以上の金属元素を含む処理対象物から特定の金属を溶融塩電解により製造する方法であって、
      溶融塩中に陰極と、前記処理対象物を含む陽極材料からなる陽極とを設け、該陽極における電位を所定の値に制御することにより、前記処理対象物から制御した電位に応じた金属元素を溶融塩中に溶解させることで特定の金属を陽極に残留させることを特徴とする
    溶融塩電解による金属の製造方法。
    A method for producing a specific metal from a processing object containing two or more kinds of metal elements by molten salt electrolysis,
    By providing a cathode and an anode made of an anode material containing the object to be processed in the molten salt, and controlling the potential at the anode to a predetermined value, a metal element corresponding to the potential controlled from the object to be processed is obtained. A method for producing a metal by molten salt electrolysis, wherein a specific metal is left on the anode by dissolving in a molten salt.
  31.   前記処理対象が鉱石又は該鉱石から得られた粗金属塊であることを特徴とする請求項30に記載の溶融塩電解による金属の製造方法。 The method for producing a metal by molten salt electrolysis according to claim 30, wherein the object to be treated is ore or a crude metal lump obtained from the ore.
  32.   タングステンを含む処理対象物から溶融塩電解によりタングステンを製造する方法であって、
      溶融塩中に陰極と、前記処理対象物を含む陽極材料からなる陽極とを設け、該陽極における電位を所定の値に制御することにより、前記処理対象物から制御した電位に応じた金属元素を溶融塩中に溶解させることでタングステンを陽極に残留させることを特徴とする請求項30又は31に記載の溶融塩電解による金属の製造方法。
    A method for producing tungsten from a processing object containing tungsten by molten salt electrolysis,
    By providing a cathode and an anode made of an anode material containing the object to be processed in the molten salt, and controlling the potential at the anode to a predetermined value, a metal element corresponding to the potential controlled from the object to be processed is obtained. 32. The method for producing a metal by molten salt electrolysis according to claim 30 or 31, wherein tungsten is left in the anode by being dissolved in the molten salt.
  33.   前記溶融塩中に前記処理対象物から金属元素を溶解させる工程において、前記溶融塩中の前記特定の金属の単体もしくはその合金の標準電極電位と他の金属の単体もしくはその合金の標準電極電位との差が0.05V以上となるように前記溶融塩を選択することを特徴とする請求項30~32に記載の溶融塩電解による金属の製造方法。 In the step of dissolving a metal element from the object to be treated in the molten salt, a standard electrode potential of the specific metal alone or its alloy in the molten salt and a standard electrode potential of another metal simple substance or its alloy The method for producing a metal by molten salt electrolysis according to any one of claims 30 to 32, wherein the molten salt is selected so that the difference between the two is 0.05 V or more.
  34.   溶融塩を内部に保持した容器と、
    前記容器の内部に保持された溶融塩に浸漬した陰極と、
    前記容器の内部に保持された溶融塩に浸漬され、2種類以上の金属元素を含む処理対象物を内部に保持した陽極とを備え、
    前記陽極は内部と外部との間で前記溶融塩が流通可能になっており、
    さらに、
    前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、
    前記制御部は、前記電位の値の変更が可能となっている
    ことを特徴とする溶融塩電解による金属の製造方法に使用する装置。
    A container holding the molten salt inside;
    A cathode immersed in a molten salt held inside the container;
    An anode which is immersed in a molten salt held inside the container and holds a treatment object containing two or more kinds of metal elements therein;
    The anode is capable of circulating the molten salt between the inside and the outside,
    further,
    A controller for controlling the potential at the cathode and the anode to a predetermined value;
    The said control part can change the value of the said electric potential, The apparatus used for the manufacturing method of the metal by molten salt electrolysis characterized by the above-mentioned.
  35.   2種類以上の金属元素が溶解した溶融塩を内部に保持した容器と、
    前記容器の内部に保持された溶融塩に浸漬した陰極と陽極とを備え、
    前記陰極と前記陽極における電位を所定の値に制御する制御部を備え、
    前記制御部は、前記電位の値の変更が可能となっている
    ことを特徴とする溶融塩電解による金属の製造方法に使用する装置。
    A container holding therein a molten salt in which two or more kinds of metal elements are dissolved;
    A cathode and an anode immersed in a molten salt held inside the container;
    A controller for controlling the potential at the cathode and the anode to a predetermined value;
    The said control part can change the value of the said electric potential, The apparatus used for the manufacturing method of the metal by molten salt electrolysis characterized by the above-mentioned.
  36.   前記2種類以上の金属元素として、タングステン及びリチウムのうち少なくとも1種を含むことを特徴とする請求項34又は35に記載の装置。 36. The apparatus according to claim 34 or 35, wherein the two or more kinds of metal elements include at least one of tungsten and lithium.
PCT/JP2012/077223 2011-11-04 2012-10-22 Molten salt electrolysis metal fabrication method and apparatus for use in same WO2013065511A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/355,943 US20140291161A1 (en) 2011-11-04 2012-10-22 Method for producing metal by molten salt electrolysis and apparatus used for the production method
CN201280054132.1A CN103906861A (en) 2011-11-04 2012-10-22 Molten salt electrolysis metal fabrication method and apparatus for use in same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-242473 2011-11-04
JP2011242381 2011-11-04
JP2011-242381 2011-11-04
JP2011-242457 2011-11-04
JP2011242457 2011-11-04
JP2011242473 2011-11-04
JP2011281477 2011-12-22
JP2011-281477 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013065511A1 true WO2013065511A1 (en) 2013-05-10

Family

ID=48191866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077223 WO2013065511A1 (en) 2011-11-04 2012-10-22 Molten salt electrolysis metal fabrication method and apparatus for use in same

Country Status (3)

Country Link
US (1) US20140291161A1 (en)
CN (1) CN103906861A (en)
WO (1) WO2013065511A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2576409C1 (en) * 2014-10-31 2016-03-10 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Method of thin wall electrolytic production of lead
US10106902B1 (en) 2016-03-22 2018-10-23 Plasma Processes, Llc Zirconium coating of a substrate

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993374B2 (en) * 2011-08-10 2016-09-14 住友電気工業株式会社 Element recovery method
JP6114651B2 (en) * 2013-07-05 2017-04-12 株式会社東芝 Metal separation and recovery method and metal separation and recovery system
JP2015024347A (en) * 2013-07-24 2015-02-05 株式会社東芝 Recovery method of valuable metal contained in waste magnet, and recovery device therefor
CN104018190B (en) * 2014-06-17 2016-06-08 北京工业大学 A kind of method that reclaims hard alloy scraps
US9725788B2 (en) * 2014-07-21 2017-08-08 Iowa State University Research Foundation, Inc. Recovering heavy rare earth metals from magnet scrap
KR101556774B1 (en) * 2014-08-20 2015-10-05 서울대학교산학협력단 Preparation method of titanium using electrowinning process
US10323299B2 (en) * 2015-07-15 2019-06-18 Iowa State University Research Foundation, Inc. Recovering rare earth metals from magnet scrap
JP6502805B2 (en) * 2015-09-11 2019-04-17 住友電気工業株式会社 Method of manufacturing rare earth metal
CN106795580B (en) * 2016-01-27 2018-07-06 王娜 A kind of method of fused salt chemistry method recycling hard alloy scraps
CN106222703A (en) * 2016-08-25 2016-12-14 北京工业大学 Multistep selective electrolysis reclaims the method for metal in hard alloy scraps
CN106544701B (en) * 2016-10-11 2018-08-24 北京工业大学 With the method for the metal in electrolysis of fluorides recovered WC waste material
CN106435648A (en) * 2016-10-13 2017-02-22 北京科技大学 Method for preparing molybdenum through high temperature electrolysis fusion of molybdenum concentrate
MX2019006790A (en) * 2016-12-08 2019-11-12 Metoxs Pte Ltd Recovery of gold and silver from precious metals-containing solids.
CN107385484B (en) * 2017-07-14 2020-03-31 南京信息工程大学 Method for electrodepositing tungsten coating on single connecting wire
US10844501B2 (en) * 2018-03-08 2020-11-24 Uchicago Argonne, Llc Carbon supported single atom carbon dioxide reduction electro catalysts
CN109868489A (en) * 2019-04-02 2019-06-11 柳州光华科技有限公司 A kind of refinement of tin and recovery method
BR112021025730A2 (en) * 2019-06-21 2022-03-03 Xerion Advanced Battery Corp Methods to extract lithium from spodumene
CN110415842B (en) * 2019-08-08 2021-01-22 中国核动力研究设计院 Molten pool heat transfer characteristic simulation material, preparation method and application thereof
CN110611136B (en) * 2019-09-09 2022-10-21 华北理工大学 Method for recovering and preparing cobalt elementary substance from waste lithium battery by molten salt method
JP7108644B2 (en) * 2020-01-15 2022-07-28 株式会社豊田中央研究所 Metal removal method and metal recovery method
US11554363B2 (en) 2020-09-01 2023-01-17 Uchicago Argonne, Llc Method of preparing electrocatalysts for converting carbon dioxide to chemicals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134686A (en) * 1986-11-07 1988-06-07 アルキャン・インターナショナル・リミテッド Method for refining lithium-containing aluminum scrap
JPH03177594A (en) * 1989-12-06 1991-08-01 Nippon Mining Co Ltd Method and device for producing high-purity titanium
JPH06173064A (en) * 1992-12-09 1994-06-21 Japan Energy Corp Method for refining ti
JP2005113191A (en) * 2003-10-07 2005-04-28 Nikko Materials Co Ltd High purity vanadium, target composed of vanadium, thin film of vanadium, method of producing vanadium, and method of producing sputtering target of vanadium
WO2005111272A1 (en) * 2004-04-06 2005-11-24 Iox Co., Ltd. Process for producing microparticles by plasma-induced electrolysis

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297554A (en) * 1963-05-28 1967-01-10 Timax Associates Electrolytic production of tungsten and molybdenum
US5336378A (en) * 1989-02-15 1994-08-09 Japan Energy Corporation Method and apparatus for producing a high-purity titanium
US7482072B2 (en) * 2002-07-09 2009-01-27 Grintellectual Reserve, Llc Optimizing reactions in fuel cells and electrochemical reactions
US7410562B2 (en) * 2003-08-20 2008-08-12 Materials & Electrochemical Research Corp. Thermal and electrochemical process for metal production
US8097142B2 (en) * 2008-02-29 2012-01-17 Uchicago Argonne, Llc. High-throughput electrorefiner for recovery of U and U/TRU product from spent fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134686A (en) * 1986-11-07 1988-06-07 アルキャン・インターナショナル・リミテッド Method for refining lithium-containing aluminum scrap
JPH03177594A (en) * 1989-12-06 1991-08-01 Nippon Mining Co Ltd Method and device for producing high-purity titanium
JPH06173064A (en) * 1992-12-09 1994-06-21 Japan Energy Corp Method for refining ti
JP2005113191A (en) * 2003-10-07 2005-04-28 Nikko Materials Co Ltd High purity vanadium, target composed of vanadium, thin film of vanadium, method of producing vanadium, and method of producing sputtering target of vanadium
WO2005111272A1 (en) * 2004-04-06 2005-11-24 Iox Co., Ltd. Process for producing microparticles by plasma-induced electrolysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2576409C1 (en) * 2014-10-31 2016-03-10 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Method of thin wall electrolytic production of lead
US10106902B1 (en) 2016-03-22 2018-10-23 Plasma Processes, Llc Zirconium coating of a substrate

Also Published As

Publication number Publication date
CN103906861A (en) 2014-07-02
US20140291161A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
WO2013065511A1 (en) Molten salt electrolysis metal fabrication method and apparatus for use in same
KR102639040B1 (en) Method for separating copper from nickel and cobalt
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
CN110527835B (en) Method for recycling soft package full components of waste ternary lithium battery
KR102606562B1 (en) Method for producing precursor compounds for lithium battery cathodes
JP2017115179A (en) Recovery method of valuable substance
CN108138343B (en) Metal refining method using electrolytic reduction and electrolytic refining process
EP0649912B1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
CA3143966C (en) Methods for extracting lithium from spodumene
Hazotte et al. Direct recovery of cadmium and nickel from Ni-Cd spent batteries by electroassisted leaching and electrodeposition in a single-cell process
JP6519628B2 (en) Separation method of copper and nickel and cobalt
US20200318219A1 (en) Mechanochemical recovery of Co, Li and other constituents from spent lithium-ion batteries
CA2703400C (en) Production of tungsten and tungsten alloys from tungsten bearing compounds by electrochemical methods
JP5993374B2 (en) Element recovery method
KR20220127893A (en) How to deal with alloys
JP2013147731A (en) Molten salt electrolysis metal fabrication method
JP2013117064A (en) Method of producing tungsten by molten salt electrolysis, and device for use in the production method
JP2013117063A (en) Method of producing metal by molten salt electrolysis
KR102211986B1 (en) Method for recovering metal from scrap
Abiko et al. Reduction of titanium oxide in molten salt medium
CN106574384B (en) The method for manufacturing titanium using strike
JP2013117062A (en) Method of producing metal by way of electrolysis
JP7220340B1 (en) METHOD FOR RECOVERING METAL FROM LITHIUM-ION BATTERY
JP2013117065A (en) Method of producing lithium by molten salt electrolysis, and device for use in the production method
JP2002080988A (en) Method of recovering mixed rare earth metal from scrap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355943

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845372

Country of ref document: EP

Kind code of ref document: A1