WO2013061450A1 - Three-dimensional video display device - Google Patents

Three-dimensional video display device Download PDF

Info

Publication number
WO2013061450A1
WO2013061450A1 PCT/JP2011/074850 JP2011074850W WO2013061450A1 WO 2013061450 A1 WO2013061450 A1 WO 2013061450A1 JP 2011074850 W JP2011074850 W JP 2011074850W WO 2013061450 A1 WO2013061450 A1 WO 2013061450A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
display
lcd
display screen
display surface
Prior art date
Application number
PCT/JP2011/074850
Other languages
French (fr)
Japanese (ja)
Inventor
一雄 関家
望月 亮
Original Assignee
アスミタステクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アスミタステクノロジー株式会社 filed Critical アスミタステクノロジー株式会社
Priority to PCT/JP2011/074850 priority Critical patent/WO2013061450A1/en
Publication of WO2013061450A1 publication Critical patent/WO2013061450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects

Definitions

  • the present invention relates to a stereoscopic image display device.
  • stereoscopic video display devices that display binocular stereoscopic left and right images captured by an imaging device on a pair of left and right video display devices and stereoscopically view through a pair of left and right eyepieces have become widespread.
  • stereoscopic image display devices used in operations such as medical diagnosis reduce the fatigue of the operator during surgery and the like, and display characteristics equivalent to those observed with an optical microscope are required.
  • the stereoscopic image display device uses a normal color filter type liquid crystal display device (hereinafter referred to as “CF-LCD”) as the image display device, thereby improving resolution and color reproducibility compared with the case of using a CRT display.
  • CF-LCD normal color filter type liquid crystal display device
  • the CF-LCD is used in the prior art represented by the above-mentioned Patent Document 1, in this CF-LCD, for example, the width between the center of the left eye and the center of the right eye (eye width: about 65 mm on average) It is difficult to achieve high definition with a horizontal screen size approximately twice as large as the above.
  • a CF-LCD one pixel is divided into three sub-pixels of red (R), green (G), and blue (B), which are the three primary colors of light. Therefore, when the display screen is reduced, the aperture ratio of each pixel This is because (ratio of effective pixel area to pixel area) becomes too small (a pixel aperture ratio cannot be ensured).
  • a CF-LCD with Full-HD definition (horizontal 1920 ⁇ vertical 1080) is viewed at a virtual image position of about several tens of centimeters to 1 m and a sufficient angle of view (about 20 degrees in the vertical and horizontal directions)
  • Full- In an HD definition CF-LCD one pixel has a viewing angle of 1 minute (1 minute is an angle of 1 / 60th of 1 degree) or more. Since the visual resolution of a human with a visual acuity of 1.0 is 1 minute, a user with a visual acuity of 1.0 can identify one pixel or less in a CF-LCD with a Full-HD definition.
  • the present invention provides a display of definition corresponding to the HDTV (high definition television) system in which the horizontal screen size is formed to be about twice the eye width.
  • a color sequential display type liquid crystal display device having a screen, and a pair of left and right eyepieces provided on the display screen side of the liquid crystal display device, wherein the liquid crystal display device displays left and right images for binocular stereoscopic viewing
  • Each of the eyepieces is divided into a left display surface and a right display surface to be displayed, and each of the eyepieces is provided so that optical axes directed to the left display surface and the right display surface are parallel to each other. .
  • a color sequential display type field sequential color type: FSC type
  • FSC type field sequential color type
  • FIG. 1 is a diagram schematically illustrating the appearance of a stereoscopic video display apparatus according to an embodiment of the present invention.
  • FIG. 2 is a top view of the stereoscopic image display apparatus shown in FIG. 3 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 4 is a diagram for explaining the principle of stereoscopic vision by the parallel method.
  • FIG. 5 is a diagram illustrating an example of imaging by 3 CCDs.
  • FIG. 6 is a first diagram for explaining an image displayed on the CF-LCD.
  • FIG. 7 is a second diagram for explaining an image displayed on the CF-LCD.
  • FIG. 8 is a first diagram for explaining an image displayed on the FSC-LCD.
  • FIG. 9 is a third diagram for explaining an image displayed on the CF-LCD.
  • FIG. 10 is an enlarged view of a part of the screen when the fine line shown in FIG. 9 is displayed on the CF-LCD.
  • FIG. 11 is a second diagram for explaining an image displayed on the FSC-LCD.
  • FIG. 1 is a diagram schematically showing an appearance of a stereoscopic video display device 100 according to an embodiment of the present invention
  • FIG. 2 is a top view of the stereoscopic video display device shown in FIG. 1
  • FIG. 3 is a cross-sectional view taken along arrow AA shown in FIG.
  • the stereoscopic video display device 100 includes a color sequential display type liquid crystal display device (FSC-LCD, hereinafter referred to as “display device”) 6 and a case 1 as main components.
  • FSC-LCD color sequential display type liquid crystal display device
  • the display screen 4 includes a left display surface 4a and a right display surface 4b.
  • left and right images for binocular stereoscopic imaging captured by an imaging device are displayed so as not to overlap each other.
  • the definition of the display screen 4 is Full-HD definition (horizontal 1920 ⁇ vertical 1080). It is desirable to apply. Note that, for example, a backlight, a display device control drive circuit, and the like are provided in the display device 6.
  • a pair of left and right eyepieces are provided on the display screen 4 side of the display device 6 so that the left eyepiece 2a and right eyepiece 2b are
  • the case 1 is provided so as to be adjustable in the left-right direction.
  • the left eyepiece 2a is provided with an eyepiece 3a
  • the right eyepiece 2b is provided with an eyepiece 3b.
  • the image displayed on the left display surface 4a is displayed on the left through the eyepiece 3a.
  • the image observed by the eye P and displayed on the right display surface 4b is observed by the right eye P through the eyepiece 3b.
  • the optical axis 10 of the eyepiece 3a and the optical axis 10 of the eyepiece 3b are provided in parallel to each other and in a direction perpendicular to the surface of the display screen 4, and each of the center of the left display surface 4a and the right display surface 4b. Located in the center.
  • the partition wall 5 extends from the center position of the left display surface 4a and the right display surface 4b toward the center position of the left eyepiece portion 2a and the right eyepiece portion 2b.
  • the display screen 4b is separated from the front space of the display surface 4b so that the left eye can see only the image of the left display surface 4a and the right eye can see only the right display surface 4b. Therefore, when there is the partition wall 5, stereoscopic vision is facilitated, but it is possible to obtain the effect according to the present embodiment even without the partition wall 5.
  • the case 1 is used.
  • the display screen 4 may be provided at one end and the eyepiece 2 may be provided at the other end. If the display screen 4 and the eyepiece unit 2 can be provided integrally using a frame (not shown), the case 1 may not be used.
  • the case 1 When the case 1 is not provided, external light may be reflected on the display screen 4, but the effect according to the present embodiment can be obtained.
  • FIG. 4 is a diagram for explaining the principle of stereoscopic vision by the parallel method.
  • the stereoscopic image display device 100 is used for medical treatment, for example, an operator needs to perform stereoscopic viewing while performing a manual operation during surgery, and the optimum distance is 30 to 50 cm from the eye P.
  • the left-eye display image is displayed on the left display surface 4a and the right display surface 4b is displayed using the principle of the parallel method.
  • An image for the right eye is displayed, and the distance between the center of the left display surface 4a and the center of the right display surface 4b is the same as the eye width A.
  • the distance B between the eye P and the left display surface 4a (or the distance between the eye P and the right display surface 4b) B is, for example, about 10 cm, and the focal length of the eyepieces 3a, 3b is, for example, 12.5 cm.
  • a virtual image is formed at a distance C suitable for visual recognition (for example, about 50 cm).
  • the display screen 4 when the display screen 4 is small, that is, when the distance between the center of the left display surface 4a and the center of the right display surface 4b is shorter than the eye width A, it is closer to the focus adjustment of the eye with respect to the position where the virtual image can be seen. Because binocular parallax is attached in the direction of the cross-eye when looking at the camera, it causes fatigue.
  • the stereoscopic image display apparatus 100 realizes the stereoscopic viewing method shown in FIG. 4 so that the size of the display screen 4 is approximately twice the eye width A (for example, the horizontal width H is 130 mm and the height V is About 73 mm diagonal). That is, the distance between the center of the left display surface 4a and the center of the right display surface 4b corresponds to the eye width A. Therefore, according to the stereoscopic video display apparatus 100 according to the present embodiment, the angle ⁇ of the visual axis 11 with respect to the normal line of the display screen 4 can be reduced, and the user can display the video displayed on the display screen 4 as follows. It can be observed with the original binocular parallax, and the eye P does not get tired or have a headache even when observed for a long time.
  • the eyepieces 3a and 3b can have a large aperture, and even if the distance between the eyepieces 3a and 3b and the eye P is increased, the position of the pupil is 2 Stereoscopic viewing is possible even with a deviation of ⁇ 3 cm. In addition, brightness reduction and flicker do not occur as in the conventional liquid crystal shutter glasses method, and natural stereoscopic viewing is possible.
  • FIG. 5 is a diagram showing an example of imaging by 3 CCDs, and FIG. 5 shows imaging in which red and blue are alternately arranged vertically and horizontally as an example.
  • FIG. 6 is a first diagram for explaining an image displayed on the CF-LCD
  • FIG. 7 is a second diagram for explaining an image displayed on the CF-LCD.
  • CF-LCD full color display is performed by combining three sub-pixels of RGB as one set, so that one pixel is divided into a plurality of sub-pixels. For this reason, when the display screen 4 is made small, the aperture ratio of the pixels becomes too small, so that it is difficult to realize a horizontal screen size with high definition and about twice the eye width.
  • a color break at the boundary of the B (blue) display sub-pixel or the boundary of the R (red) display sub-pixel may appear as a K (black) thin line. is there.
  • an inappropriate color mixture (magenta: magenta) of R and B for example, in the upper half, is present at the boundary of the color plane (the part where the areas of each color are adjacent on the left and right).
  • a pseudo-wire (for example, K) of another color other than R and B may be seen due to a break like the lower half.
  • FIG. 8 is a first diagram for explaining an image displayed on the FSC-LCD.
  • FIG. 8 shows an example of an image when the image of FIG. 5 is displayed on the FSC-LCD.
  • the FSC-LCD is a method in which RGB is switched at high speed at 180 Hz or higher on the same pixel of the FSC-LCD, and full color display is performed with one pixel (a portion surrounded by a thin line in FIG. 8). Therefore, the FSC-LCD requires only one-third the number of signal wirings compared to the CF-LCD, so it is easy to achieve high definition and high aperture ratio, and there is no sub-pixel, and pixel boundary recognition is reduced. Is done.
  • the color of the light source for example, LED
  • other characteristics luminance, etc.
  • FIG. 9 is a third diagram for explaining an image displayed on the CF-LCD.
  • FIG. 9 shows a monochromatic (for example, red) thin line imaged by a 3CCD camera.
  • the 3CCD method is a method used by professionals or high-end machines, and when the subject is decomposed into R, G, and B images, each pixel of R, G, and B samples exactly the same position of the subject. It has become.
  • FIG. 10 is an enlarged view of a part of the screen of the thin line shown in FIG. 9 displayed on the CF-LCD.
  • the red thin line shown in FIG. 9 is displayed on the CF-LCD, since one pixel is divided into sub-pixels in the CF-LCD, only the red sub-pixel is displayed as shown in FIG. The thin line appears broken at the point indicated by the downward arrow.
  • FIG. 11 is a second diagram for explaining an image displayed on the FSC-LCD.
  • the red thin line shown in FIG. 9 is displayed on the FSC-LCD
  • one pixel is not divided into sub-pixels but becomes a single square, so that each pixel is vertically and horizontally as shown in FIG. It is displayed in an obliquely connected state and does not appear to be interrupted. Therefore, in the FSC-LCD, the glossiness like viewing a film photograph can be obtained by the connectivity of each pixel, and the connectivity of fine lines is not mistaken.
  • the biggest difficulty of FSC-LCD is that “color breakup” occurs. That is, when a certain display object is moving on the display screen of the FSC-LCD, the front end and the rear end appear to be rainbow colors. With regard to this color breakup, black can be added to one or more fields before and / or after the set of three primary colors, and the colors in the added set can be displayed sequentially to improve the level without any problem. is there.
  • the definition of the display screen 4 is the Full-HD definition (1920 ⁇ 1080), but is not limited to this, and the definition of the display screen 4 is, for example, 1440 ⁇ 1080 or 1280. It may be HD definition such as x720. Even in such a configuration, there is no problem with the prior art that the monochromatic thin line is interrupted and the color mixture and the pseudo-line are visible at the boundary of the color plane, so that it is possible to improve the image quality.
  • the stereoscopic image display apparatus 100 has a horizontal screen size that is approximately twice as large as the interpupillary width A, and has a definition corresponding to the HDTV (high definition television) system.
  • a color sequential display type liquid crystal display device (display device 6) having a display screen 4 of a degree and a pair of left and right eyepieces 3 a and 3 b provided on the display screen 4 side of the display device 6. Is divided into a left display surface 4a and a right display surface 4b for displaying right and left images for binocular stereoscopic viewing, respectively, and the eyepiece 3a and the eyepiece 3b are respectively directed to the left display surface 4a and the right display surface 4b.
  • the stereoscopic image display apparatus 100 can easily achieve higher definition and a wider aperture ratio than the CF-LCD, and can reduce pixel boundary recognition. Accordingly, it is possible to realize a wide color gamut and to adjust the color gamut freely without affecting other characteristics as long as it is within the maximum color gamut.
  • the stereoscopic image display apparatus 100 is configured such that the definition of the display screen 4 is not less than the full high-definition standard and the pixels are single squares without using sub-pixels. Even when a user with a visual acuity of 1.0 or more views stereoscopically, it is possible to visually recognize a clear video without being conscious of each pixel of the display screen 4.
  • the distance B between the display device 6 and the eyepieces 3a and 3b is set to about 10 cm, and the focal length of the eyepieces 3a and 3b is about 12.5 cm. Therefore, a virtual image is formed at a distance C (for example, about 50 cm) suitable for visual recognition.
  • the eye width A described in the present embodiment means that when the dispersion of the eye width A is 52 mm to 75 mm at the maximum, this value is divided by the average eye width A (63 to 65 mm). From the value (0.8 to 1.2), for example, 1.6 times to 2.4 times.
  • the focal length F is 12.5 cm and the display screen 4 is arranged at a position (B) of 10 cm
  • the magnification ratio of the virtual image is 5 times
  • the position (C) of the virtual image is 50 cm
  • the magnification ratio is 5 Doubled.
  • the stereoscopic video display device 100 shown in the present embodiment shows an example of the content of the present invention, and can be combined with another known technique, and departs from the gist of the present invention. Of course, it is possible to change and configure such as omitting a part within the range.
  • the present invention is mainly applicable to a stereoscopic video display device, and is particularly useful as an invention capable of reducing the size and improving the image quality of a stereoscopic video display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

A three-dimensional video display device, comprising: a color-sequential display-type display device (6) having a display screen (4) that is formed at a size whereby the horizontal screen dimensions thereof are approximately twice the size of an eye width (A), and having definition corresponding to HDTV format; and a pair of left and right eyepieces (3a, 3b) provided on the display screen (4) side of the display device (6). The display device (6) is divided into a left-side display screen (4a) and a right-side display screen (4b) that respectively display left and right video images for twin lens stereoscopic viewing; and the eyepiece (3a) and the eyepiece (3b) are disposed such that the optical axes (10) thereof facing the left-side display screen (4a) and the right-side display screen (4b) are parallel.

Description

立体映像表示装置3D image display device
 本発明は、立体映像表示装置に関する。 The present invention relates to a stereoscopic image display device.
 近年、撮像装置で撮像された二眼立体視用の左右映像を左右一対の映像表示装置に表示し、左右一対の接眼レンズを通して立体視する立体映像表示装置が普及している。特に、医療診断をはじめとする手術の際に用いられる立体映像表示装置には、手術等における術者の疲労を軽減すると共に、光学顕微鏡による観察像と同等の表示特性が求められるため、従来の立体映像表示装置は、映像表示装置として通常のカラーフィルタ方式の液晶表示装置(以下「CF-LCD」と表記)を用いることによってCRTディスプレイを用いた場合に比べて解像度および色再現性を高めている(例えば下記特許文献1) In recent years, stereoscopic video display devices that display binocular stereoscopic left and right images captured by an imaging device on a pair of left and right video display devices and stereoscopically view through a pair of left and right eyepieces have become widespread. In particular, stereoscopic image display devices used in operations such as medical diagnosis reduce the fatigue of the operator during surgery and the like, and display characteristics equivalent to those observed with an optical microscope are required. The stereoscopic image display device uses a normal color filter type liquid crystal display device (hereinafter referred to as “CF-LCD”) as the image display device, thereby improving resolution and color reproducibility compared with the case of using a CRT display. (For example, Patent Document 1 below)
国際公開WO2008/139828号公報International Publication WO2008 / 139828
 しかしながら、上記特許文献1に代表される従来技術においてはCF-LCDが用いられているため、このCF-LCDでは例えば左眼中心と右眼中心との間の幅(眼幅:平均約65mm)の約2倍の水平画面寸法では高精細度を実現することが困難である。CF-LCDでは1画素が光の3原色である赤(R)、緑(G)、青(B)の3つのサブ画素に分割されるため、表示画面を小さくした場合、各画素の開口率(画素面積に対する有効画素面積の比)が小さく成り過ぎる(画素の開口率を確保することができない)ためである。 However, since the CF-LCD is used in the prior art represented by the above-mentioned Patent Document 1, in this CF-LCD, for example, the width between the center of the left eye and the center of the right eye (eye width: about 65 mm on average) It is difficult to achieve high definition with a horizontal screen size approximately twice as large as the above. In a CF-LCD, one pixel is divided into three sub-pixels of red (R), green (G), and blue (B), which are the three primary colors of light. Therefore, when the display screen is reduced, the aperture ratio of each pixel This is because (ratio of effective pixel area to pixel area) becomes too small (a pixel aperture ratio cannot be ensured).
 一方、Full-HD精細度(横1920×縦1080)のCF-LCDを、虚像位置が数10cm~1m程度、かつ、十分な画角(上下左右それぞれ20度程度)で見た場合、Full-HD精細度のCF-LCDでは1画素が視角1分(1分は1度の60分の1の角度)以上になる。視力1.0の人間の視覚の分解能は、1分であるため、視力1.0のユーザであれば、Full-HD精細度のCF-LCDの1画素以下が識別できてしまうこととなる。たとえCF-LCDで上記の水平画面寸法を実現できた場合でも、CF-LCDでは、サブ画素が見えてしまうため、単色の細線が途切れて見えてしまうという問題や、色面の境界で不適切な混色あるいは途切れによる別な色の疑似線が見えてしまうという問題があった。従って、上記特許文献1に代表される従来技術は、立体映像表示装置の更なる小型化および画質向上を図りたいというニーズに対応することができないという課題があった。 On the other hand, if a CF-LCD with Full-HD definition (horizontal 1920 × vertical 1080) is viewed at a virtual image position of about several tens of centimeters to 1 m and a sufficient angle of view (about 20 degrees in the vertical and horizontal directions), Full- In an HD definition CF-LCD, one pixel has a viewing angle of 1 minute (1 minute is an angle of 1 / 60th of 1 degree) or more. Since the visual resolution of a human with a visual acuity of 1.0 is 1 minute, a user with a visual acuity of 1.0 can identify one pixel or less in a CF-LCD with a Full-HD definition. Even if the above-mentioned horizontal screen dimensions can be realized with a CF-LCD, sub-pixels can be seen with the CF-LCD, so that a single-color thin line may appear to be interrupted, and it is inappropriate for the boundary of the color plane. There is a problem in that pseudo-wires of different colors are visible due to various color mixing or interruptions. Therefore, the prior art represented by the above-mentioned Patent Document 1 has a problem that it cannot meet the needs to further reduce the size and improve the image quality of the stereoscopic video display device.
 本発明は、立体映像表示装置の更なる小型化および画質向上を図ることができる立体映像表示装置を得ることを目的とする。 It is an object of the present invention to obtain a stereoscopic video display device that can further reduce the size and improve the image quality of the stereoscopic video display device.
 上述した課題を解決し、目的を達成するために、本発明は、水平画面寸法が眼幅の約2倍の大きさに形成されHDTV(高精細度テレビジョン)方式に対応する精細度の表示画面を有する色順次表示方式の液晶表示装置と、前記液晶表示装置の表示画面側に設けられた左右一対の接眼レンズと、を備え、前記液晶表示装置は、二眼立体視用の左右映像をそれぞれ表示する左側表示面と右側表示面とに分割され、前記各接眼レンズは、前記左側表示面および前記右側表示面にそれぞれ向かう光軸が平行になるように設けられていることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a display of definition corresponding to the HDTV (high definition television) system in which the horizontal screen size is formed to be about twice the eye width. A color sequential display type liquid crystal display device having a screen, and a pair of left and right eyepieces provided on the display screen side of the liquid crystal display device, wherein the liquid crystal display device displays left and right images for binocular stereoscopic viewing Each of the eyepieces is divided into a left display surface and a right display surface to be displayed, and each of the eyepieces is provided so that optical axes directed to the left display surface and the right display surface are parallel to each other. .
 この発明によれば、色順次表示方式(フィールドシーケンシャルカラー方式:FSC方式)のLCDを用いるようにしたので、立体映像表示装置の更なる小型化および画質向上を図ることができるという効果を奏する。 According to the present invention, since a color sequential display type (field sequential color type: FSC type) LCD is used, it is possible to further reduce the size and improve the image quality of the stereoscopic video display device.
図1は、本発明の実施の形態にかかる立体映像表示装置の外観を模式的に示す図である。FIG. 1 is a diagram schematically illustrating the appearance of a stereoscopic video display apparatus according to an embodiment of the present invention. 図2は、図1に示される立体映像表示装置の上面図である。FIG. 2 is a top view of the stereoscopic image display apparatus shown in FIG. 図3は、図2に示されるA-A矢視断面図である。3 is a cross-sectional view taken along line AA shown in FIG. 図4は、平行法による立体視の原理を説明するための図である。FIG. 4 is a diagram for explaining the principle of stereoscopic vision by the parallel method. 図5は、3CCDによる撮像の一例を示す図である。FIG. 5 is a diagram illustrating an example of imaging by 3 CCDs. 図6は、CF-LCDに表示される映像を説明するための第1の図である。FIG. 6 is a first diagram for explaining an image displayed on the CF-LCD. 図7は、CF-LCDに表示される映像を説明するための第2の図である。FIG. 7 is a second diagram for explaining an image displayed on the CF-LCD. 図8は、FSC-LCDに表示される映像を説明するための第1の図である。FIG. 8 is a first diagram for explaining an image displayed on the FSC-LCD. 図9は、CF-LCDに表示される映像を説明するための第3の図である。FIG. 9 is a third diagram for explaining an image displayed on the CF-LCD. 図10は、図9に示される細線をCF-LCDに表示しその画面の一部を拡大した図である。FIG. 10 is an enlarged view of a part of the screen when the fine line shown in FIG. 9 is displayed on the CF-LCD. 図11は、FSC-LCDに表示される映像を説明するための第2の図である。FIG. 11 is a second diagram for explaining an image displayed on the FSC-LCD.
 以下に、本発明にかかる立体映像表示装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a stereoscopic video display device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態にかかる立体映像表示装置100の外観を模式的に示す図であり、図2は、図1に示される立体映像表示装置の上面図であり、図3は、図2に示されるA-A矢視断面図である。
Embodiment.
FIG. 1 is a diagram schematically showing an appearance of a stereoscopic video display device 100 according to an embodiment of the present invention, FIG. 2 is a top view of the stereoscopic video display device shown in FIG. 1, and FIG. FIG. 3 is a cross-sectional view taken along arrow AA shown in FIG.
 立体映像表示装置100は、主たる構成として、色順次表示方式液晶表示装置(FSC-LCD、以下「表示装置」)6とケース1とを有して構成されている。 The stereoscopic video display device 100 includes a color sequential display type liquid crystal display device (FSC-LCD, hereinafter referred to as “display device”) 6 and a case 1 as main components.
 表示装置6にはアスペクト比が16対9(横(H):縦(V)=16:9)の表示画面4が設けられ、この表示画面4は、左側表示面4aと右側表示面4bとに分割され、左側表示面4aと右側表示面4bには、撮像装置(図示せず)で撮像された二眼立体視用の左右映像が相互に重畳しないように表示される。なお、立体映像表示装置100を医療用として用いる場合、光学顕微鏡による観察像と同等の表示特性が求められるため、表示画面4の精細度は、Full-HD精細度(横1920×縦1080)を適用することが望ましい。なお、表示装置6の内部には、例えばバックライトや表示装置制御駆動回路などが設けられている。 The display device 6 is provided with a display screen 4 having an aspect ratio of 16: 9 (horizontal (H): vertical (V) = 16: 9). The display screen 4 includes a left display surface 4a and a right display surface 4b. In the left display surface 4a and the right display surface 4b, left and right images for binocular stereoscopic imaging captured by an imaging device (not shown) are displayed so as not to overlap each other. Note that, when the stereoscopic video display device 100 is used for medical purposes, display characteristics equivalent to an observation image obtained by an optical microscope are required. Therefore, the definition of the display screen 4 is Full-HD definition (horizontal 1920 × vertical 1080). It is desirable to apply. Note that, for example, a backlight, a display device control drive circuit, and the like are provided in the display device 6.
 表示装置6の表示画面4側には、左右一対の接眼部(左側接眼部2a、右側接眼部2b)が対向するように設けられ、左側接眼部2aおよび右側接眼部2bは、それぞれケース1の左右方向に調整可能に設けられている。そして、左側接眼部2aには接眼レンズ3aが設けられ、右側接眼部2bには接眼レンズ3bが設けられており、左側表示面4aに表示された映像は接眼レンズ3aを介して左の眼Pで観察され、右側表示面4bに表示された映像は接眼レンズ3bを介して右の眼Pで観察される。 A pair of left and right eyepieces (left eyepiece 2a and right eyepiece 2b) are provided on the display screen 4 side of the display device 6 so that the left eyepiece 2a and right eyepiece 2b are The case 1 is provided so as to be adjustable in the left-right direction. The left eyepiece 2a is provided with an eyepiece 3a, and the right eyepiece 2b is provided with an eyepiece 3b. The image displayed on the left display surface 4a is displayed on the left through the eyepiece 3a. The image observed by the eye P and displayed on the right display surface 4b is observed by the right eye P through the eyepiece 3b.
 接眼レンズ3aの光軸10と接眼レンズ3bの光軸10は、互いに平行、かつ、表示画面4の表面に対して垂直方向に設けられ、それぞれ左側表示面4aの中央部と右側表示面4bの中央部とに位置する。 The optical axis 10 of the eyepiece 3a and the optical axis 10 of the eyepiece 3b are provided in parallel to each other and in a direction perpendicular to the surface of the display screen 4, and each of the center of the left display surface 4a and the right display surface 4b. Located in the center.
 仕切り壁5は、左側表示面4aと右側表示面4bとの中心位置から左側接眼部2aと右側接眼部2bとの中心位置に向けて延設され、左側表示面4aの前面空間と右側表示面4bの前面空間とを仕切るものであり、左眼が左側表示面4aの映像のみ見えるようにし、かつ、右眼が右側表示面4bのみ見えるようにするためのものである。従って、仕切り壁5がある場合、立体視が容易化されるが、仕切り壁5がなくとも本実施の形態にかかる効果を得ることは可能である。 The partition wall 5 extends from the center position of the left display surface 4a and the right display surface 4b toward the center position of the left eyepiece portion 2a and the right eyepiece portion 2b. The display screen 4b is separated from the front space of the display surface 4b so that the left eye can see only the image of the left display surface 4a and the right eye can see only the right display surface 4b. Therefore, when there is the partition wall 5, stereoscopic vision is facilitated, but it is possible to obtain the effect according to the present embodiment even without the partition wall 5.
 なお、本実施の形態では、ケース1が用いられているが、これに限定されるものではなく、例えば、一端に表示画面4を配設し他端に接眼部2を配設することができるフレーム(図示せず)を用いて表示画面4および接眼部2を一体的に設けることができれば、ケース1を用いなくてもよい。ケース1が無い場合、外部の光が表示画面4に映り込む可能性があるものの、本実施の形態にかかる効果を得ることは可能である。 In the present embodiment, the case 1 is used. However, the present invention is not limited to this. For example, the display screen 4 may be provided at one end and the eyepiece 2 may be provided at the other end. If the display screen 4 and the eyepiece unit 2 can be provided integrally using a frame (not shown), the case 1 may not be used. When the case 1 is not provided, external light may be reflected on the display screen 4, but the effect according to the present embodiment can be obtained.
 図4は、平行法による立体視の原理を説明するための図である。立体映像表示装置100を例えば医療に用いる場合、術者は、手術中に手作業を行いながら立体視認することが必要であり、その最適な距離は眼Pから30~50cmである。この条件のもと、疲れない立体視を実現するためには、図4に示すように平行法の原理を用いて、左側表示面4aに左眼用の映像を表示し、右側表示面4bに右眼用の映像を表示して、左側表示面4aの中心と右側表示面4bの中心との間の距離を眼幅Aと同じとする。 FIG. 4 is a diagram for explaining the principle of stereoscopic vision by the parallel method. When the stereoscopic image display device 100 is used for medical treatment, for example, an operator needs to perform stereoscopic viewing while performing a manual operation during surgery, and the optimum distance is 30 to 50 cm from the eye P. Under this condition, in order to realize a stereoscopic view without fatigue, as shown in FIG. 4, the left-eye display image is displayed on the left display surface 4a and the right display surface 4b is displayed using the principle of the parallel method. An image for the right eye is displayed, and the distance between the center of the left display surface 4a and the center of the right display surface 4b is the same as the eye width A.
 眼Pと左側表示面4aとの距離(または眼Pと右側表示面4bとの距離)Bは、例えば約10cmとし、接眼レンズ3a、3bの焦点距離は、例えば12.5cmとすることによって、視認に適した距離C(例えば約50cm)に虚像が形成される。 The distance B between the eye P and the left display surface 4a (or the distance between the eye P and the right display surface 4b) B is, for example, about 10 cm, and the focal length of the eyepieces 3a, 3b is, for example, 12.5 cm. A virtual image is formed at a distance C suitable for visual recognition (for example, about 50 cm).
 表示画面4が大きい場合、すなわち左側表示面4aの中心と右側表示面4bの中心との間の距離が眼幅Aよりも長い場合、開散方向(離し眼方向)に両眼視差(両眼の網膜に映る像の違い)がついてしまうため、大部分のユーザが左右映像を観る際に立体映像を融合することができず、疲労を引き起こす。 When the display screen 4 is large, that is, when the distance between the center of the left display surface 4a and the center of the right display surface 4b is longer than the eye width A, binocular parallax (binocular) in the divergence direction (away eye direction) The difference between the images displayed on the retina of the image is attached), so that most users cannot fuse stereoscopic images when viewing left and right images, causing fatigue.
 また、表示画面4が小さい場合、すなわち左側表示面4aの中心と右側表示面4bの中心との間の距離が眼幅Aよりも短い場合、虚像の見える位置に対する眼の焦点調整に対しより近くを見る寄り眼方向に両眼視差がついてしまうため、疲労を引き起こす。 Further, when the display screen 4 is small, that is, when the distance between the center of the left display surface 4a and the center of the right display surface 4b is shorter than the eye width A, it is closer to the focus adjustment of the eye with respect to the position where the virtual image can be seen. Because binocular parallax is attached in the direction of the cross-eye when looking at the camera, it causes fatigue.
 本実施の形態にかかる立体映像表示装置100は、図4に示される立体視方式を実現するため、表示画面4の寸法が眼幅Aの約2倍(例えば横幅Hを130mm、高さVを約73mmとする対角5.9インチ程度)に形成されている。すなわち、左側表示面4aの中心と右側表示面4bの中心との間の距離が眼幅Aに対応するように形成されている。従って、本実施の形態にかかる立体映像表示装置100によれば、表示画面4の法線に対する視軸11の角度θを小さくすることができ、ユーザは、表示画面4に表示された映像を、本来の両眼視差で観察することができ、長時間観察しても眼Pが疲れたり頭痛がしたりすることがない。 The stereoscopic image display apparatus 100 according to the present embodiment realizes the stereoscopic viewing method shown in FIG. 4 so that the size of the display screen 4 is approximately twice the eye width A (for example, the horizontal width H is 130 mm and the height V is About 73 mm diagonal). That is, the distance between the center of the left display surface 4a and the center of the right display surface 4b corresponds to the eye width A. Therefore, according to the stereoscopic video display apparatus 100 according to the present embodiment, the angle θ of the visual axis 11 with respect to the normal line of the display screen 4 can be reduced, and the user can display the video displayed on the display screen 4 as follows. It can be observed with the original binocular parallax, and the eye P does not get tired or have a headache even when observed for a long time.
 また、本実施の形態にかかる立体映像表示装置100によれば、接眼レンズ3a、3bを大口径にでき、接眼レンズ3a、3bと眼Pとの距離を空けても、また瞳孔の位置が2~3cmずれても立体視が可能である。また、従来用いられている液晶シャッターメガネ方式のような輝度の低下、ちらつきが生じず自然な立体視が可能であり、長時間の視認でも疲れにくい。 In addition, according to the stereoscopic image display apparatus 100 according to the present embodiment, the eyepieces 3a and 3b can have a large aperture, and even if the distance between the eyepieces 3a and 3b and the eye P is increased, the position of the pupil is 2 Stereoscopic viewing is possible even with a deviation of ~ 3 cm. In addition, brightness reduction and flicker do not occur as in the conventional liquid crystal shutter glasses method, and natural stereoscopic viewing is possible.
 図5は、3CCDによる撮像の一例を示す図であり、図5には、一例として赤と青を上下左右に交互に配置した撮像が示されている。図6は、CF-LCDに表示される映像を説明するための第1の図であり、図7は、CF-LCDに表示される映像を説明するための第2の図である。 FIG. 5 is a diagram showing an example of imaging by 3 CCDs, and FIG. 5 shows imaging in which red and blue are alternately arranged vertically and horizontally as an example. FIG. 6 is a first diagram for explaining an image displayed on the CF-LCD, and FIG. 7 is a second diagram for explaining an image displayed on the CF-LCD.
 CF-LCDでは、RGBの3つのサブ画素を1つの組みとしてフルカラー表示が行われるため、1画素が複数のサブ画素に分割される。そのため、表示画面4を小さくした場合、画素の開口率が小さく成り過ぎるため、高精細度で眼幅の約2倍の水平画面寸法の実現は困難である。また、視力1.0のユーザが、例えば虚像位置が数10cm~1m程度、かつ、十分な画角(上下左右それぞれ20度程度)でFull-HD精細度のCF-LCDを見た場合、1画素の画角が1分以上になるため、CF-LCDではサブ画素が分解して見えてしまう。従って、たとえCF-LCDで上記の水平画面寸法を実現できた場合でも、CF-LCDでは、サブ画素の境界が色の途切れとして認識されてしまう。そのため、図6に示されるように、例えばB(青)表示のサブ画素の境界、またはR(赤)表示のサブ画素の境界における色の途切れがK(黒)の細線に見えてしまう場合がある。その結果、図7に示されるように、色面の境界(各色の領域が左右で隣接する部分)では、例えば上半分のようにRとBとの不適切な混色(マジェンタ:赤紫)が見えてしまう場合や、下半分のように途切れによってRおよびB以外の別な色の疑似線(例えばK)が見えてしまう場合がある。 In CF-LCD, full color display is performed by combining three sub-pixels of RGB as one set, so that one pixel is divided into a plurality of sub-pixels. For this reason, when the display screen 4 is made small, the aperture ratio of the pixels becomes too small, so that it is difficult to realize a horizontal screen size with high definition and about twice the eye width. Also, when a user with a visual acuity of 1.0 views a CF-LCD with a full-HD definition at a virtual image position of about several tens of centimeters to 1 m and a sufficient angle of view (up and down, left and right, about 20 degrees each), 1 Since the angle of view of the pixel is 1 minute or longer, the sub-pixels appear to be decomposed on the CF-LCD. Therefore, even when the above-mentioned horizontal screen size can be realized by the CF-LCD, the boundary of the sub-pixel is recognized as a color break in the CF-LCD. For this reason, as shown in FIG. 6, for example, a color break at the boundary of the B (blue) display sub-pixel or the boundary of the R (red) display sub-pixel may appear as a K (black) thin line. is there. As a result, as shown in FIG. 7, an inappropriate color mixture (magenta: magenta) of R and B, for example, in the upper half, is present at the boundary of the color plane (the part where the areas of each color are adjacent on the left and right). In some cases, a pseudo-wire (for example, K) of another color other than R and B may be seen due to a break like the lower half.
 図8は、FSC-LCDに表示される映像を説明するための第1の図である。図8には、図5の撮像をFSC-LCDに表示したときの映像例が示されている。FSC-LCDは、RGBをFSC-LCDの同一画素上において180Hz以上で高速に切り替え、1つの画素(図8において細線で囲まれる部分)でフルカラー表示を行う方式である。従って、FSC-LCDは、CF-LCDに比べて信号配線数が3分の1で済むため、高精細化および高開口率化が容易であり、またサブ画素がないため画素境界の認識が低減される。従って、FSC-LCDでは、途切れ、混色、および擬似線などが見えるということがない。また、FSC-LCDでは、光源(例えばLEDなど)の色が略そのまま表現されるため、広い色再現域を実現できると共に、最大色再現域の内部であれば、他の特性(輝度など)に支障を及ぼさずに自由に色再現域を調整できるといった利点を有する。 FIG. 8 is a first diagram for explaining an image displayed on the FSC-LCD. FIG. 8 shows an example of an image when the image of FIG. 5 is displayed on the FSC-LCD. The FSC-LCD is a method in which RGB is switched at high speed at 180 Hz or higher on the same pixel of the FSC-LCD, and full color display is performed with one pixel (a portion surrounded by a thin line in FIG. 8). Therefore, the FSC-LCD requires only one-third the number of signal wirings compared to the CF-LCD, so it is easy to achieve high definition and high aperture ratio, and there is no sub-pixel, and pixel boundary recognition is reduced. Is done. Therefore, in the FSC-LCD, there is no possibility of seeing discontinuities, color mixing, pseudo lines, and the like. In addition, in the FSC-LCD, the color of the light source (for example, LED) is expressed almost as it is, so that a wide color gamut can be realized, and other characteristics (luminance, etc.) can be achieved within the maximum color gamut. There is an advantage that the color gamut can be freely adjusted without causing any trouble.
 図9は、CF-LCDに表示される映像を説明するための第3の図である。図9には3CCD方式のカメラで撮像された単色(例えば赤)の細線が示されている。3CCD方式はプロフェッショナル用あるいは高級機で使われる方式であり、被写体をR、G、Bに分解して撮像する際、R、G、Bの各画素が厳密に被写体の同じ位置をサンプルするようになっている。 FIG. 9 is a third diagram for explaining an image displayed on the CF-LCD. FIG. 9 shows a monochromatic (for example, red) thin line imaged by a 3CCD camera. The 3CCD method is a method used by professionals or high-end machines, and when the subject is decomposed into R, G, and B images, each pixel of R, G, and B samples exactly the same position of the subject. It has become.
 図10は、図9に示される細線をCF-LCDに表示しその画面の一部を拡大した図である。図9に示される赤色の細線をCF-LCDに表示した場合、CF-LCDでは1画素がサブ画素に分割されるため、図10に示されるように赤色のサブ画素のみが表示され、赤の細線が下向きの矢印が指す箇所において途切れて見えてしまう。 FIG. 10 is an enlarged view of a part of the screen of the thin line shown in FIG. 9 displayed on the CF-LCD. When the red thin line shown in FIG. 9 is displayed on the CF-LCD, since one pixel is divided into sub-pixels in the CF-LCD, only the red sub-pixel is displayed as shown in FIG. The thin line appears broken at the point indicated by the downward arrow.
 図11は、FSC-LCDに表示される映像を説明するための第2の図である。図9に示される赤色の細線をFSC-LCDに表示した場合、FSC-LCDでは1画素がサブ画素に分割されずに単一の正方形になるため、図11に示されるように各画素が縦横斜めに連結した状態で表示され、途切れて見えることはない。従って、FSC-LCDでは、各画素の連結性により、フィルム写真を見るような光沢感を得ることができるとともに、細線の連結性を誤認することがない。 FIG. 11 is a second diagram for explaining an image displayed on the FSC-LCD. When the red thin line shown in FIG. 9 is displayed on the FSC-LCD, in the FSC-LCD, one pixel is not divided into sub-pixels but becomes a single square, so that each pixel is vertically and horizontally as shown in FIG. It is displayed in an obliquely connected state and does not appear to be interrupted. Therefore, in the FSC-LCD, the glossiness like viewing a film photograph can be obtained by the connectivity of each pixel, and the connectivity of fine lines is not mistaken.
 なお、FSC-LCDが抱える最大の難点は「色割れ(カラーブレイクアップ)」が生ずることにある。すなわち、ある表示物体がFSC-LCDの表示画面上で動いていると、その前端と後端が虹色に見える。この色割れに関しては、3原色の組の前および/または後に1または2以上のフィールド分の黒色を付加し、この付加した組内の色を順次表示することにより支障のないレベルまで改善可能である。 The biggest difficulty of FSC-LCD is that “color breakup” occurs. That is, when a certain display object is moving on the display screen of the FSC-LCD, the front end and the rear end appear to be rainbow colors. With regard to this color breakup, black can be added to one or more fields before and / or after the set of three primary colors, and the colors in the added set can be displayed sequentially to improve the level without any problem. is there.
 なお、上記説明では、表示画面4の精細度をFull-HD精細度(1920×1080)としているが、これに限定されるものではなく、表示画面4の精細度は、例えば1440×1080あるいは1280×720などのHD精細度であってもよい。このように構成した場合でも、単色の細線が途切れる、色面の境界で混色や疑似線が見えてしまう、という従来技術の問題は生じないため、画質向上を図ることは可能である。 In the above description, the definition of the display screen 4 is the Full-HD definition (1920 × 1080), but is not limited to this, and the definition of the display screen 4 is, for example, 1440 × 1080 or 1280. It may be HD definition such as x720. Even in such a configuration, there is no problem with the prior art that the monochromatic thin line is interrupted and the color mixture and the pseudo-line are visible at the boundary of the color plane, so that it is possible to improve the image quality.
 以上に説明したように、本実施の形態にかかる立体映像表示装置100は、水平画面寸法が眼幅Aの約2倍の大きさに形成されHDTV(高精細度テレビジョン)方式に対応する精細度の表示画面4を有する色順次表示方式の液晶表示装置(表示装置6)と、表示装置6の表示画面4側に設けられた左右一対の接眼レンズ3a、3bと、を備え、表示装置6は、二眼立体視用の左右映像をそれぞれ表示する左側表示面4aと右側表示面4bとに分割され、接眼レンズ3aおよび接眼レンズ3bは、左側表示面4aおよび右側表示面4bにそれぞれ向かう光軸10が平行になるように設けられているので、表示画面4に表示された映像を本来の両眼視差で観察することができ、長時間観察しても眼Pが疲れたり頭痛がしたりすることがない。また、本実施の形態にかかる立体映像表示装置100は、CF-LCDに比べて高精細化および広開口率化が容易であり、また画素境界の認識を低減させることができる。従って、広い色再現域を実現できると共に、最大色再現域の内部であれば、他の特性に支障を及ぼさずに自由に色再現域を調整することが可能である。 As described above, the stereoscopic image display apparatus 100 according to the present embodiment has a horizontal screen size that is approximately twice as large as the interpupillary width A, and has a definition corresponding to the HDTV (high definition television) system. A color sequential display type liquid crystal display device (display device 6) having a display screen 4 of a degree and a pair of left and right eyepieces 3 a and 3 b provided on the display screen 4 side of the display device 6. Is divided into a left display surface 4a and a right display surface 4b for displaying right and left images for binocular stereoscopic viewing, respectively, and the eyepiece 3a and the eyepiece 3b are respectively directed to the left display surface 4a and the right display surface 4b. Since the axis 10 is provided so as to be parallel, the image displayed on the display screen 4 can be observed with the original binocular parallax. There is nothing to do. In addition, the stereoscopic image display apparatus 100 according to the present embodiment can easily achieve higher definition and a wider aperture ratio than the CF-LCD, and can reduce pixel boundary recognition. Accordingly, it is possible to realize a wide color gamut and to adjust the color gamut freely without affecting other characteristics as long as it is within the maximum color gamut.
 また、本実施の形態にかかる立体映像表示装置100は、表示画面4の精細度がフルハイビジョン規格以上で、サブ画素を用いず画素が単一の正方形となるように構成されているので、例えば視力1.0以上のユーザが立体視した場合でも表示画面4の各画素を意識することなく鮮明な映像を視認することが可能である。 In addition, the stereoscopic image display apparatus 100 according to the present embodiment is configured such that the definition of the display screen 4 is not less than the full high-definition standard and the pixels are single squares without using sub-pixels. Even when a user with a visual acuity of 1.0 or more views stereoscopically, it is possible to visually recognize a clear video without being conscious of each pixel of the display screen 4.
 また、本実施の形態にかかる立体映像表示装置100は、表示装置6と接眼レンズ3a、3bとの間の距離Bが約10cmに設定され、接眼レンズ3a、3bの焦点距離が約12.5cmに設定されているので、視認に適した距離C(例えば約50cm)に虚像が形成される。 In the stereoscopic image display apparatus 100 according to the present embodiment, the distance B between the display device 6 and the eyepieces 3a and 3b is set to about 10 cm, and the focal length of the eyepieces 3a and 3b is about 12.5 cm. Therefore, a virtual image is formed at a distance C (for example, about 50 cm) suitable for visual recognition.
 なお、本実施の形態で説明した眼幅Aの約2倍とは、眼幅Aのばらつきが最大52mm~75mmとした場合、この値を平均的な眼幅A(63~65mm)で割った値(0.8~1.2)より、例えば1.6倍~2.4倍である。 Note that about twice the eye width A described in the present embodiment means that when the dispersion of the eye width A is 52 mm to 75 mm at the maximum, this value is divided by the average eye width A (63 to 65 mm). From the value (0.8 to 1.2), for example, 1.6 times to 2.4 times.
 なお、距離Bと焦点距離(Fと仮定)との関係を補足すると、虚像の位置(C)はC=B*F/(F-B)で表すことができ、虚像の拡大率はF/(F-B)で表すことができる。例えば、焦点距離Fが12.5cmの場合、10cmの位置(B)に表示画面4を配置した場合、虚像の拡大率は5倍となり、虚像の位置(C)が50cmで、拡大率が5倍となる。 If the relationship between the distance B and the focal length (assuming F) is supplemented, the position (C) of the virtual image can be expressed by C = B * F / (FB), and the magnification ratio of the virtual image is F / It can be represented by (FB). For example, when the focal length F is 12.5 cm and the display screen 4 is arranged at a position (B) of 10 cm, the magnification ratio of the virtual image is 5 times, the position (C) of the virtual image is 50 cm, and the magnification ratio is 5 Doubled.
 また、本実施の形態に示した立体映像表示装置100は、本発明の内容の一例を示すものであり、更なる別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。 Further, the stereoscopic video display device 100 shown in the present embodiment shows an example of the content of the present invention, and can be combined with another known technique, and departs from the gist of the present invention. Of course, it is possible to change and configure such as omitting a part within the range.
 以上のように、本発明は、主に立体映像表示装置に適用可能であり、特に、立体映像表示装置の小型化および画質向上を図ることができる発明として有用である。 As described above, the present invention is mainly applicable to a stereoscopic video display device, and is particularly useful as an invention capable of reducing the size and improving the image quality of a stereoscopic video display device.
 1 ケース
 2 接眼部
 2a 左側接眼部
 2b 右側接眼部
 3a、3b 接眼レンズ
 4 表示画面
 4a 左側表示面
 4b 右側表示面
 5 仕切り壁
 6 色順次表示方式液晶表示装置
 10 光軸
 11 視軸
 100 立体映像表示装置
 A 眼幅
 B 表示装置と接眼レンズとの間の距離
 C 視認に適した距離
 H 横幅
 V 高さ
DESCRIPTION OF SYMBOLS 1 Case 2 Eyepiece part 2a Left eyepiece part 2b Right eyepiece part 3a, 3b Eyepiece 4 Display screen 4a Left display surface 4b Right display surface 5 Partition wall 6 Color sequential display system liquid crystal display device 10 Optical axis 11 Visual axis 100 3D image display device A Eye width B Distance between display device and eyepiece C Distance suitable for visual recognition H Horizontal width V Height

Claims (2)

  1.  水平画面寸法が眼幅の約2倍の大きさに形成されHDTV(高精細度テレビジョン)方式に対応する精細度の表示画面を有する色順次表示方式の液晶表示装置と、
     前記液晶表示装置の表示画面側に設けられた左右一対の接眼レンズと、
     を備え、
     前記液晶表示装置は、二眼立体視用の左右映像をそれぞれ表示する左側表示面と右側表示面とに分割され、
     前記各接眼レンズは、前記左側表示面および前記右側表示面にそれぞれ向かう光軸が平行になるように設けられていることを特徴とする立体映像表示装置。
    A color sequential display type liquid crystal display device having a display screen with a definition corresponding to an HDTV (high definition television) system, which has a horizontal screen size approximately twice as wide as the eye width;
    A pair of left and right eyepieces provided on the display screen side of the liquid crystal display device;
    With
    The liquid crystal display device is divided into a left display surface and a right display surface for displaying left and right images for binocular stereoscopic viewing, respectively.
    Each of the eyepieces is provided so that optical axes directed to the left display surface and the right display surface are parallel to each other.
  2.  前記液晶表示装置の精細度は、フルハイビジョン規格以上で、サブ画素を用いず画素が単一の正方形あることを特徴とする請求項1に記載の立体映像表示装置。
      
     
     
     
    The stereoscopic image display device according to claim 1, wherein the definition of the liquid crystal display device is equal to or higher than a full high-definition standard, and a pixel is a single square without using a sub-pixel.



PCT/JP2011/074850 2011-10-27 2011-10-27 Three-dimensional video display device WO2013061450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074850 WO2013061450A1 (en) 2011-10-27 2011-10-27 Three-dimensional video display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074850 WO2013061450A1 (en) 2011-10-27 2011-10-27 Three-dimensional video display device

Publications (1)

Publication Number Publication Date
WO2013061450A1 true WO2013061450A1 (en) 2013-05-02

Family

ID=48167315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074850 WO2013061450A1 (en) 2011-10-27 2011-10-27 Three-dimensional video display device

Country Status (1)

Country Link
WO (1) WO2013061450A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305367A (en) * 2003-04-04 2004-11-04 Olympus Corp Stereoscopic observing apparatus
WO2008139828A1 (en) * 2007-05-14 2008-11-20 Mitaka Kohki Co., Ltd. Three-dimeeeeeensional image display device
JP2009288296A (en) * 2008-05-27 2009-12-10 Mitaka Koki Co Ltd Stereoscopic image display device
JP2010224065A (en) * 2009-03-19 2010-10-07 21 Aomori Sangyo Sogo Shien Center Field-sequential color type liquid crystal display apparatus and color display method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305367A (en) * 2003-04-04 2004-11-04 Olympus Corp Stereoscopic observing apparatus
WO2008139828A1 (en) * 2007-05-14 2008-11-20 Mitaka Kohki Co., Ltd. Three-dimeeeeeensional image display device
JP2009288296A (en) * 2008-05-27 2009-12-10 Mitaka Koki Co Ltd Stereoscopic image display device
JP2010224065A (en) * 2009-03-19 2010-10-07 21 Aomori Sangyo Sogo Shien Center Field-sequential color type liquid crystal display apparatus and color display method therefor

Similar Documents

Publication Publication Date Title
US9812052B2 (en) 2D/3D image displaying apparatus
RU2313191C2 (en) Method and system for generation of a stereo image
KR20070120282A (en) Three-dimensional image display
CN107561724B (en) Stereoscopic display device and display apparatus
WO2012176446A1 (en) Image display device and image display method
CN108135740A (en) Surgical operation microscope, image processing apparatus and image processing method
WO2014050819A1 (en) Stereoscopic display device
JP2011164202A (en) Image display device, image display system, and image display method
US20120320038A1 (en) Three-dimensional image processing apparatus, method for processing three-dimensional image, display apparatus, and computer program
JP2006018216A (en) Stereoscopic display device and driving method of the stereoscopic display device
US20140085352A1 (en) Stereoscopic display with improved vertical resolution
JPH0996777A (en) Three-dimensional display
KR20100051755A (en) The device of autostereosopic display seeing long distance range
WO2013061450A1 (en) Three-dimensional video display device
TW201307897A (en) Three dimensional displaying panel and retarder film thereof
US20130063813A1 (en) Method of viewing anaglyphs with single color filter to optimize color perception
JP2013183438A (en) Display device
WO2013061439A1 (en) Three-dimensional video display device
KR100893924B1 (en) Monitor for displaying glasses-typed 3-dimensional image display system
JP3643642B2 (en) Color stereoscopic image display device
CN114885148B (en) Display method of stereoscopic display system and stereoscopic display system
JPH11103475A (en) Color stereoscopic picture display device
KR101349138B1 (en) Auto stereoscopic Display Apparatus Using Parallax Barrier
KR20130003966A (en) Film patterned retarder stereoscopic 3d display device
TWI489146B (en) Lcd and method for generating 3d images by matching a software optical grating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP