WO2013061415A1 - Respiration measurement system and rem sleep assessment system - Google Patents

Respiration measurement system and rem sleep assessment system Download PDF

Info

Publication number
WO2013061415A1
WO2013061415A1 PCT/JP2011/074631 JP2011074631W WO2013061415A1 WO 2013061415 A1 WO2013061415 A1 WO 2013061415A1 JP 2011074631 W JP2011074631 W JP 2011074631W WO 2013061415 A1 WO2013061415 A1 WO 2013061415A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
respiration
rem
sleep
period
Prior art date
Application number
PCT/JP2011/074631
Other languages
French (fr)
Japanese (ja)
Inventor
健 河本
世貴 田島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013540540A priority Critical patent/JP5740006B2/en
Priority to PCT/JP2011/074631 priority patent/WO2013061415A1/en
Publication of WO2013061415A1 publication Critical patent/WO2013061415A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the present invention relates to a respiration measurement system and a REM sleep determination system, and more particularly to a respiration measurement system and a REM sleep determination system that measure the sleep and / or respiration state of a subject for a long period of time.
  • the frequency of breathing during sleep is closely related to the depth of sleep and the presence or absence of disease. Therefore, long-term measurement of breathing during sleep is an effective means for health management and early detection of diseases.
  • an acceleration sensor, a strain gauge, or an expiration sensor that detects airflow in the nostril are known.
  • the respiratory motion of the chest is measured by a triaxial acceleration sensor attached to the chest, the output value is scalarized, the low frequency component is extracted by a low-pass filter, the peak is detected, and the peak for one minute is detected.
  • a respiration rate estimation technique for outputting a number as a respiration frequency is disclosed.
  • the technology disclosed above is premised on an acceleration sensor to be worn on the chest. Therefore, it was unsuitable for long-term measurement at home. This is because the chest sensor has the following problems. ⁇ The chest sensor has a feeling of pressure on the chest when worn, and the sleep state that is different from everyday life is measured. ⁇ It is important that the chest sensor is properly positioned, and it is difficult to perform correct measurement without expert supervision, making it difficult to measure at home. -The burden on the chest sensor is 24 hours. Therefore, it is usually necessary to remove it and wear it consciously before going to bed. For this reason, for example, when you go to sleep while watching TV or drink and go to sleep, there is a possibility that data that is biased in the situation leading to sleep may be recorded, not remaining in the measurement record .
  • bracelet-type acceleration sensors that are worn on the wrist are known as means for measuring the sleep state in daily life.
  • the bracelet-type acceleration sensor is less expensive and less expensive, and it is the same as a normal wristwatch, so it is suitable for long-term continuous measurements at home.
  • Non-Patent Document 1 points out that a bracelet type acceleration sensor can effectively distinguish between sleep and awakening.
  • FIG. 21a shows the frequency spectrum of the scalar value of the acceleration waveform in the actual sleep data of less than 7 minutes. In this example, there is a strong peak at 0.22 Hz (corresponding to a breathing frequency of 13.2 times per minute). The case is shown.
  • This phenomenon occurs when the wrist on which the bracelet type acceleration sensor 1 is mounted is in a position where it is affected by the respiratory motion of the trunk, as shown in FIG. 22a. Therefore, for example, when the wrist is separated from the trunk as shown in FIG. 22b, the periodicity of respiration does not appear in the acceleration data as shown in FIG. 21b.
  • Patent Document 1 cannot be applied to the acceleration data of the arm. Acceleration data obtained from the chest reflects the breathing motion regardless of the user's body posture and limb position. Therefore, as disclosed in Patent Document 1, it is possible to accurately estimate the respiration frequency simply by finding main frequency components from a specific frequency region. However, in the data measured from the arm, it is rare that the breathing motion is reflected in the acceleration. For this reason, in many cases, the influence of noise (temperature change, sensor measurement noise, etc.) on the sensor value is dominant, and simply finding the main frequency component has no meaning not related to breathing. The value will be calculated.
  • noise temperature change, sensor measurement noise, etc.
  • FIG. 23a shows the respiration frequency data for every minute measured by the nostril breath sensor
  • FIG. 23b shows the data of the bracelet type acceleration sensor worn on the wrist during the same period as the breath sensor.
  • 1 is an estimated respiration frequency per minute calculated when the method disclosed in 1 is applied.
  • FIG. 24a shows the result of calculating the measured respiratory frequency and the estimated respiratory frequency per minute by simultaneously measuring the breath sensor and the wristband type acceleration sensor for 21 people each night. In this scatter diagram, it can be seen that the estimated respiratory frequency and the measured respiratory frequency vary greatly from each other.
  • the present invention has been made in view of the above, and a respiration measurement system capable of measuring respiration frequency with high accuracy even with sensing data from a wristband type sensor node, and REM sleep based on respiration frequency (REM).
  • An object of the present invention is to provide a REM sleep determination system for determining (sleep).
  • the present invention includes a plurality of means for solving the above-described problems. If one example (first solving means) is given, A sensor that is attached to the arm and acquires sensing data indicating the movement of the arm; A main period component detector that periodically collects sensing data of a predetermined period in the past and detects a main period component that is the main period; Respiration information acquisition success determination unit that determines whether the main period component is effective as a period component depending on respiration according to a predetermined determination condition regarding the magnitude or frequency of the main period component; There is provided a respiration measurement system including an accumulating unit that accumulates the frequency of the main period component as a respiration frequency in association with time information when it is determined to be effective as a period component due to respiration.
  • a respiration rate measurement system that can measure respiration frequency with high accuracy even with a wristband type accelerometer is provided by excluding the case where the breathing motion to be sensed is not reflected in the acceleration data as a missing value. To do.
  • the “peak score” that evaluates the peak intensity in the spectrum of the extracted main frequency component is defined as follows (Equation 1): Respiratory motion may not be reflected by adopting the detected peak only when the peak score value exceeds the threshold value (ie, it was a sufficiently strong peak), otherwise it is not detected. Respiratory frequency can be accurately estimated from acceleration data obtained from an existing acceleration sensor attached to the wrist. According to this method, as illustrated in FIG. 23c, although there are many missing values, it is possible to estimate the respiration frequency that follows the measured values with high accuracy. FIG. 24b also shows that the respiration frequency estimated by the proposed method can closely approximate the actually measured respiration frequency even in the data of 21 persons.
  • a respiratory measurement system as described above; A sleep detector that detects sleep from the sensing data; Basal respiration frequency calculation for calculating a basal respiration frequency for every elapsed time after bedtime based on a respiration frequency for a predetermined period accumulated in the accumulation unit of the respiration measurement system and time information. And A divergence calculating unit that calculates a divergence between the calculated basic respiration frequency and a respiration frequency that is actually measured and accumulated in the accumulation unit; A REM sleep determination unit that determines REM sleep from the difference between the basal respiration frequency and the actually measured respiration frequency; There is provided a REM sleep determination system including a second storage unit that stores time information of the determined REM sleep. With such a configuration, the REM sleep period can be obtained from the sensing data.
  • a respiration measurement system capable of measuring respiration frequency with high accuracy even with sensing data from a wristband type sensor node, and a REM sleep determination system for determining REM sleep (REM sleep) based on the respiration frequency.
  • REM sleep REM sleep
  • FIG. 1 is an overall view illustrating an example of a configuration of a respiration frequency estimation system according to a first embodiment. It is a figure which shows an example of the bracelet type
  • FIG. 2 shows a block diagram of an electronic circuit attached to the substrate 10 of the bracelet type sensor node 1. It is a block diagram which shows each component of the respiration frequency estimation system shown in FIG. It is a flowchart figure which shows the whole flow of the data processing performed with the system of Example 1.
  • FIG. 5 is a flowchart illustrating an example of processing performed by a data totalization program 200 of the PC 103. It is a figure which shows the example of the frequency
  • FIG. 5 is a flowchart illustrating an example of processing performed by a REM estimation program 500 of the PC 104. It is explanatory drawing which shows the format of the REM data table. It is a screen image of the REM display screen 1300 displayed on the display part 1041 of PC104 which is a client computer. It is an example of the frequency spectrum of the scalar value of the acceleration waveform in sleep data. It is explanatory drawing which shows the position of a bracelet type acceleration sensor. It is explanatory drawing of the relationship between respiration and acceleration. It is a relationship diagram of measured respiratory frequency and estimated respiratory frequency.
  • 3 is a functional block diagram of a client PC 103 in Embodiment 1.
  • FIG. 6 is a functional block diagram of a client PC 103 in Embodiment 2.
  • FIG. 5 is a detailed block diagram of a REM sleep determination unit 2604.
  • FIG. 1 is a functional block diagram of a REM sleep determination unit 2604.
  • FIG. 1 is an overall view showing an example of the configuration of the respiration frequency estimation system of the present embodiment.
  • the respiration frequency estimation system of the present embodiment uses the bracelet type sensor node 1 having an acceleration sensor as a sensor for detecting the operation (or state) of the user of the system and detects the acceleration of the arm as biological information. Indicates.
  • the bracelet type sensor node 1 is mounted on a user's (or participant's) arm to detect acceleration, and wirelessly transmits the acceleration data detected at a predetermined cycle to the base station 102 via the antenna 101 as sensing data.
  • the PC 103 communicates with a plurality of bracelet type sensor nodes 1, receives sensing data corresponding to the movement of the user from each bracelet type sensor node 1, analyzes the received sensing data, and outputs display data To do.
  • the output display data can be browsed by the client computer (PC) 103 operated by the user.
  • FIG. 2 is a diagram showing an example of the bracelet type sensor node 1 constituting the respiration frequency estimation system of the present embodiment
  • FIG. 2A is a schematic view seen from the front side of the bracelet type sensor node 1.
  • FIG. 2B is a cross-sectional view of the bracelet type sensor node 1 viewed from the side.
  • This bracelet type sensor node 1 mainly measures the movement of the user.
  • the bracelet type sensor node 1 includes a case 11 for storing a sensor and a control device, and a band 12 for attaching the case 11 to a human arm. Inside the case 11 is stored a substrate 10 including a microcomputer (not shown), a sensor 6 and the like (not shown) as shown in FIG.
  • the bracelet type sensor node 1 may include a temperature sensor and a pulse sensor (not shown), measure the user's body temperature and pulse, and output it as sensing data together with the acceleration. Further, the bracelet type sensor node 1 may be provided with a pressure sensor or a capacitance sensor (not shown), and whether or not the user wears the wristwatch type sensor node 1 may be output as a wearing state.
  • FIG. 3 shows a block diagram of an electronic circuit attached to the substrate 10 of the bracelet type sensor node 1.
  • a substrate 10 includes, for example, a wireless communication unit (RF) 2 including an antenna 5 that communicates with a base station 102, a USB communication unit 39 that is wired to a PC 103, a sensor 6 that is an acceleration sensor, A microcomputer 3 that controls the wireless communication unit 2, a real-time clock (RTC) 4 that functions as a timer for intermittently starting the microcomputer 3, a battery 7 that supplies power to each unit, and a power to the sensor 6 A switch 8 for controlling the supply of is provided. Further, a bypass capacitor C1 is connected between the switch 8 and the sensor 6 to eliminate noise and reduce charge / discharge speed to prevent wasteful power consumption.
  • RF wireless communication unit
  • RTC real-time clock
  • the microcomputer 3 interrupts the CPU 34 based on a signal (timer interrupt) from the CPU 34 that executes arithmetic processing, a ROM 33 that stores programs executed by the CPU 34, a RAM 32 that stores data and the like, and an RTC 4.
  • a serial communication interface (SCI) that transmits and receives signals as serial signals between the interrupt control unit 35 to be applied, the A / D converter 31 that converts the analog signal output from the sensor 6 into a digital signal, and the wireless communication unit 2.
  • 36 a wireless communication unit 2, a USB communication unit 39, a parallel interface (PIO) 37 that controls the switch 8, and an oscillation unit (OSC) 30 that supplies a clock to each of the units in the microcomputer 3.
  • PIO parallel interface
  • OSC oscillation unit
  • the above-described units in the microcomputer 3 are connected via a system bus 38.
  • the RTC 4 outputs an interrupt signal (timer interrupt) at a predetermined period set in advance in the interrupt control unit 35 of the microcomputer 3 and outputs a reference clock to the SCI 36.
  • the PIO 37 controls ON / OFF of the switch 8 in accordance with a command from the CPU 34 and controls power supply to the sensor 6.
  • the bracelet type sensor node 1 is an identifier that activates the microcomputer 3 at a predetermined cycle (for example, 1 second, for example), acquires sensing data from the sensor 6, and identifies the bracelet type sensor node 1 in the acquired sensing data. To the base station 102 with a time stamp.
  • FIG. 4 is a block diagram showing each component of the respiratory frequency estimation system shown in FIG.
  • Sensing data transmitted from the bracelet type sensor node 1 is accumulated in the sensing data table 1150 of the recording device 1100 of the client computer (PC) 103 via the base station 102. Or you may communicate with PC103 directly via wired communication which is not illustrated.
  • the PC 103 includes a display device (output device) 1031 that displays various types of information, and an input device 1032 that allows various information to be input by user operations.
  • the display device 1031 may be a printer or an image file output in addition to a display terminal such as a liquid crystal display or a CRT display.
  • the input device 1032 is an input device such as a keyboard and a mouse.
  • the display device 1031 and the input device 1032 may be a single device having both functions, such as a touch panel display.
  • the PC 103 further includes a processor 107, a memory 108, and a recording device 1100.
  • the recording device 1100 records various programs and various data tables, which will be described later, such as a hard disk drive, a CD-ROM drive, and a flash memory. Various programs and various data tables may be divided and recorded in a plurality of recording devices.
  • the processor 107 implements various functions by reading various programs recorded in the recording device 1100 into the memory 108 and executing them. Specifically, by executing the data totaling program 200, the sensing data measured by the acceleration sensor of the user's arm is totaled, a total value for each unit time (for example, one minute) is calculated, and the recording device 1100 is stored in the aggregate data table 250. Also, by executing the sleep period extraction program 300, the calculated total value for each unit time is analyzed, and all sleep periods are detected and stored in the sleep period data table 350 of the recording device 1100. Also, by executing the respiration frequency estimation program, the respiration frequency per unit time (for example, one minute) is estimated from the detected sleep period and stored in the respiration frequency data table 450 of the recording device 1100.
  • the PC 103 executes the data totaling program 200, the sleep period extraction program 300, and the respiration frequency estimation program 400 at regular intervals, or based on communication with the wristwatch-type sensor node 1, and further inputs
  • An example is shown in which display data is presented on the display device 1031 due to the operation of the device 1032, the activation of the PC 103, or the end of execution of the respiration frequency estimation program 400.
  • FIG. 5 is a flowchart showing the overall flow of data processing performed in the system of this embodiment.
  • step S ⁇ b> 1 the base station 102 transfers the sensing data transmitted from the bracelet type sensor node 1 to the PC 103 and accumulates the sensing data in the sensing data table 1150 of the PC 103. Further, an identifier assigned to the sensing data for identifying the sensor node and time information indicating the time when the sensing data is acquired are also stored in the sensing data table 1150 corresponding to the sensing data.
  • the PC 103 executes the data totaling program 200, calculates the exercise frequency per unit time from the sensing data stored in the recording apparatus 1100, and the recording apparatus 1100 Stored in the aggregate data table 250.
  • the data aggregation program 200 may be executed every predetermined period (for example, 5 minutes), may be executed due to the start or end of communication with the bracelet type sensor node 1, or the input device 1032 The operation may be performed as a cause.
  • step S ⁇ b> 2 the PC 103 executes the sleep period extraction program 300 to detect an area where the user is estimated to be in a sleep state from the aggregate data stored in the aggregate data table 250, and all sleep areas Is stored in the sleep period data table 350 as a set.
  • the PC 103 detects main sleep that is the maximum sleep period of the day, adds a main sleep tag to the main sleep among the stored sleep areas, and stores it in the sleep analysis data table 350.
  • the sleep period extraction program 300 may be executed every predetermined cycle (for example, 5 minutes), or may be executed due to the end of the data aggregation program 200.
  • the PC 103 executes the respiration frequency estimation program 400.
  • the PC 103 obtains sensing data within the period from the sensing data table 1150, and a predetermined period (for example, 1 second) (for example, 1 second) , 5 minutes) and a frequency component having the maximum power is detected as a respiratory frequency candidate.
  • a predetermined period for example, 1 second
  • 1 second for example, 1 second
  • 5 minutes a frequency component having the maximum power
  • step S4 the respiratory frequency obtained and stored by the respiratory frequency estimation program 400 is presented on the display unit 1031 of the client computer (PC) 103.
  • FIG. 6 is a flowchart illustrating an example of processing performed by the data totalization program 200 of the PC 103. Each step is executed by the processor 107 of the PC 103.
  • step S11 sensing data corresponding to a sensor identifier held by the user is read from the sensing data table 1150.
  • the identifier of the sensor owned by the user may be acquired from, for example, the wristwatch type sensor node 1 communicating with the base station 102, or may be an identifier designated by the user with the input device 102, It may be an arbitrary identifier selected from the user sensor correspondence table.
  • the amount of sensing data to be read here is a predetermined period (for example, 5 minutes) that is an aggregation period of sensing data, or everything after the last aggregation time already stored by the execution of the past data aggregation program 200, etc. You only have to set it.
  • a total value is calculated for each predetermined time interval (for example, 1 minute) for the acceleration data of the read sensing data.
  • the number of zero crosses indicating the frequency of exercise of the wearer (user) of the bracelet type sensor node 1 within a predetermined time interval is used as the total value.
  • the sensing data detected by the bracelet type sensor node 1 includes X, Y, and Z-axis acceleration data
  • the scalar amount of the X, Y, and Z-axis acceleration ⁇ (X ⁇ 2 + Y ⁇ 2 + Z ⁇ 2) is calculated (step S12), and the obtained scalar quantity is filtered (bandpass filter) to extract only a predetermined frequency band (for example, 0.1 Hz to 5 Hz) and remove noise components (step S13).
  • the data to which the band pass filter is applied may be appropriately stored for later display, for example. Then, as shown in FIG.
  • a value at which the obtained scalar amount passes a predetermined threshold is calculated as the number of zero crosses, and the frequency at which the number of zero crosses appears within a predetermined time interval is calculated.
  • This appearance frequency is output as an exercise frequency at a predetermined time interval (1 minute) (step S14).
  • the result of calculating the exercise frequency is data obtained by sorting the exercise frequency for each unit time in time series as shown in FIG.
  • the motion frequency may be other methods, such as counting the number of times that the acceleration value in each direction of X, Y, and Z vibrates positively and negatively (frequency) within a predetermined time in each direction. In this embodiment, since the calculation can be simplified, a method of calculating the number of zero crossings is employed.
  • a flag representing the state of data within a predetermined time interval is calculated (step S15).
  • the ratio of valid data that is, data in which three-axis data of X, Y, and Z within a predetermined range exist as values other than missing values
  • the time interval is determined as missing data.
  • a threshold for example, 0.8
  • the time interval is determined as non-wearing data.
  • the flag of the data state at the time interval is determined as one of “data present”, “missing value”, and “non-attached”.
  • the exercise frequency and the data flag are obtained for each predetermined time interval, and total data for each predetermined time interval is generated as shown in FIG. It accumulates together with the identifier 251 of the wearer of the bracelet type sensor node 1 and the identifier 252 of the bracelet type sensor node 1 (step S16).
  • FIG. 9 is an explanatory diagram showing the format of the total data table 250.
  • a user ID 251 for storing an identifier of a wearer of the bracelet type sensor node 1 (a user of the respiratory frequency estimation system), a sensor data ID 252 for storing an identifier of the bracelet type sensor node 1 included in the sensing data, and a predetermined time interval Stores the measurement date and time 253 for storing the start time (measurement date and time), the exercise frequency 254 for storing the exercise frequency calculated by the execution of the data totaling program 200, and the status flag of the data obtained by the execution of the data totaling program 200
  • One entry is formed from the flag 255.
  • the user identifier may be referred to from a table (not shown) set in advance based on the identifier of the bracelet type sensor node 1.
  • FIG. 10 is a flowchart illustrating an example of processing performed by the sleep period extraction program 300 of the PC 103. Each step is executed by the processor 107 of the PC 103.
  • the unit time aggregate data aggregated by the execution of the data aggregation program 200 is read from the aggregate data table 250 (step S21).
  • the amount of the total data read here may be set to all after the end time of the last sleep period already stored by the execution of the past sleep analysis program 300, for example.
  • the aggregate data to be processed may be deleted from the aggregate data table 250, or a processed flag may be added.
  • a period group estimated to be in a sleep state is detected from the read aggregated data.
  • the frequency of exercise during sleep is extremely low, the human body does exercise such as turning over during sleep, so the frequency of exercise does not become zero.
  • Several methods for determining sleep are known. For example, the Cole method (Non-patent Document 2) may be applied. The start time and end time of each period detected by such a method are held as a sleep period candidate group in a temporary storage (not shown) or the like.
  • the exercise frequency is close to zero and may be determined as sleep. For example, when a wristwatch-type sensor node has a non-wearing determination unit, sleep is not possible. It is also possible to prevent this by treating the data indicating that the flag 258 is not attached when reading the unit time totalization data table 250 as equivalent to data with high exercise frequency.
  • step S23 the adjacent sleep period candidates are combined.
  • the sleep period candidates are divided at the time of the temporary wakeup.
  • the next sleep area candidate starts within a predetermined time (for example, 30 minutes) after the end of the sleep period candidate, the two sleep period candidates are combined and handled as one large sleep period.
  • a predetermined time for example, 30 minutes
  • step S24 those that are incompatible as sleep period candidates are excluded.
  • sleep period candidates whose duration is a predetermined time (for example, 10 minutes) or less are excluded. If the end time of the last sleep period candidate in the candidate group is within a predetermined time (for example, 30 minutes) from the latest measurement time of the total data read by execution of the sleep analysis program 300, the next sleep analysis program Since there is a possibility that it can be combined with the sleep period newly listed as a candidate in the execution of 300, this is also excluded (returned to the next processing).
  • the sleep period candidate group processed as described above is determined as the sleep period group.
  • step S25 main sleep is extracted from the sleep period group determined in step S24, the sleep type is determined as "main sleep", and the other sleep periods are determined as "nap". More specifically, first, the calendar date to which each sleep period belongs is calculated. This means that if the end time of the sleep region is a predetermined time, for example, from 0 o'clock to 20 o'clock, it belongs to the same day, and if it is from 20 o'clock to 24 o'clock, it belongs to the next day. This standard is because it can be considered that sleep that ends before 20 o'clock in the ordinary life is included in the nap.
  • the sleep region that starts at 17:00 on July 23 and ends at 19:30 belongs to July 23, for example, the sleep region that starts at 16:30 on July 23 and ends at 20:30 It belongs to July 24th.
  • the longest belonging sleep area in each calendar day is derived, and these are determined as “main sleep” on that calendar day.
  • the type of sleep other than the “main sleep” calculated above is determined as “snapping”.
  • the confirmed sleep period group is accumulated in the sleep analysis data table 350 of the recording device 1100 as shown in FIG.
  • a sleep ID which is an identifier unique within the sleep analysis data table 350 is assigned to each sleep period. This may be selected, for example, by using a value obtained by adding 1 to the sleep ID assigned last.
  • FIG. 11 is an explanatory diagram showing the format of the sleep period data table 350.
  • User ID 351 for storing the identifier of the wearer of the bracelet type sensor node 1
  • sleep ID 352 for storing the sleep identifier
  • sleep start date and time 353 for storing the start time of the sleep period
  • sleep for storing the end time of the sleep period
  • One entry is configured from the end time 354 and the sleep type 355 that stores the sleep type (whether it is main sleep or nap).
  • FIG. 12 is a flowchart illustrating an example of processing performed by the respiration estimation program 400 of the PC 103. Each step is executed by the processor 107 of the PC 103.
  • step S31 the sleep period extracted by the sleep period extraction program 300 is read from the sleep period data table 350.
  • the amount of the sleep period read here may be set to, for example, all after the date and time of the last respiratory data already stored by executing the past respiratory estimation program 400.
  • step S32 to step S37 each sleep period acquired here is individually processed.
  • sensor data corresponding to the identifier of the wristwatch sensor node 1 worn by the user included in the sleep period acquired in step S31 is received from the sensing data table 1150.
  • step S33 the sensor data acquired in step S32 is cut out for every predetermined time (for example, 1 minute) and surrounding data for a predetermined period (for example, 5 minutes) and is converted into a scalar.
  • the scalar amount of the acceleration data of the X, Y, and Z axes of the sensing data detected by the bracelet type sensor node 1 ⁇ (X ⁇ 2 + Y ⁇ 2 + Z ⁇ 2) is calculated.
  • step S34 the obtained scalar quantity is filtered (bandpass filter) to extract only a predetermined frequency band (for example, 0.01 Hz to 1 Hz) and remove noise components.
  • step S35 a frequency spectrum is obtained for the scalar quantity filtered in the previous step S34.
  • FFT Fast Fourier Transform
  • the intensity at each frequency is calculated as illustrated in FIG. 21a.
  • the spectrum may be smoothed by averaging the intensity of each frequency including the intensity of the front and rear frequency components.
  • step S36 the frequency having the maximum intensity is acquired as the main frequency from the frequency spectrum obtained in the previous step S35.
  • step S37 the validity of the main frequency obtained in the previous step S36 as a respiratory frequency is verified.
  • the main frequency is verified whether the main frequency is within a predetermined frequency range (for example, 0.016 Hz to 0.33 Hz). Otherwise, it may be excluded as being too early or too late for respiration. .
  • a predetermined frequency range for example, 0.016 Hz to 0.33 Hz.
  • the possibility of noise may be high and may be excluded.
  • the degree to which the intensity of the main frequency (peak) protrudes from other frequencies is evaluated. If the degree of protrusion is small, the possibility of noise is high and may be excluded.
  • the following peak score (Formula 2) may be used.
  • this peak score falls below a predetermined threshold (for example, 8.0), it is evaluated that the degree of protrusion is insufficient and is excluded.
  • a predetermined threshold for example, 8.0
  • step S38 the respiratory frequency per minute is calculated by multiplying the main frequency calculated in the previous step S36 by 60.
  • step S39 the respiration frequency for each minute at each date and time within each sleep period calculated as described above is accumulated in the respiration estimation data table 450 of the recording device 1100.
  • the respiration frequency holds a value indicating non-detection (for example, “null”), and otherwise, step S38. Holds the respiration frequency for each minute calculated in.
  • the example of detecting the main frequency component using FFT Fast Fourier Transform
  • any method that can detect the intensity of the frequency component included in the acceleration data may be used.
  • Autocorrelation may be obtained.
  • the validity as the respiration frequency in step S37 may include, for example, a case where the correlation coefficient at the selected ⁇ is greater than or equal to a threshold value.
  • one main frequency component is detected, its validity is verified, and when it is valid, the example is adopted as the respiratory frequency.
  • a plurality of protruding frequency components are detected. May be.
  • the validity of each is verified, and if there are a plurality of valid frequency components, the most appropriate frequency component may be selected, for example ( For example, an index indicating validity may be obtained from the conditions exemplified above), or the frequency component closest to the respiratory frequency detected at the date and time immediately before the date and time may be selected.
  • the average respiratory frequency (breathing trend) for each elapsed time after the start of bedtime is calculated by averaging the respiratory rate calculated for the wearer so far. The elapsed time after bedtime start may be calculated, and the frequency component closest to the respiratory trend may be selected.
  • sensing data for a predetermined period for example, 5 minutes
  • unit time for example, 1 minute
  • the respiration frequency is detected, and accumulated in the respiration estimation data table 450 is shown.
  • the sensing data for a predetermined period for example, 5 minutes
  • the respiration frequency is detected, and the unit for each predetermined unit time (for example, 1 minute).
  • FIG. 13 is an explanatory diagram showing the format of the respiration estimation data table 450.
  • User ID 451 for storing the identifier of the wearer of the bracelet type sensor node 1; date and time 452 for storing the date and time of a predetermined time interval; if the estimated respiration frequency or reasonable respiration is not detected, it is not detected
  • a respiration frequency 453 for storing a value (for example, null) representing the value is held.
  • FIG. 25 is a functional block diagram of the client PC 103 according to the first embodiment.
  • the client PC 103 includes, for example, a main cycle component detection unit 2501, a respiratory information acquisition success determination unit 2502, and a storage unit 2503. Each unit is realized by the processor 107 executing the respiration estimation program 400 as described above.
  • the main period component detection unit 2501 periodically collects the sensing data of the past predetermined period and detects the main period component. This corresponds to the processing in steps S32 to S36 in FIG.
  • the respiration information acquisition success determination unit 2502 determines whether or not the main cycle component is effective as a respiration-related periodic component according to a predetermined determination condition. This corresponds to the process of step S37 in FIG.
  • the accumulating unit 2503 When it is determined that the accumulating unit 2503 is effective as a periodic component depending on respiration, the accumulating unit 2503 accumulates the frequency of the main periodic component in association with time information as a respiration frequency. This corresponds to the processing of the respiration frequency data table 450 in FIG. 4 and step S374 in FIG.
  • FIG. 14 is a screen image of the sleep display screen 1200 displayed on the display unit 1031 of the PC 103 which is a client computer.
  • the display of the sleep display screen 1200 by the PC 103 may be caused by accepting a display request from the user via the input device 1032, or may be caused by the end of execution of the respiration estimation program 400, for example If the sensing data of the bracelet type sensor node 1 can be acquired in real time by wireless means or the like, it may be caused by the sleep period extraction program 300 detecting that the wearer has woken up.
  • a browser may be adopted as an application that runs on the PC 103, or an application that runs alone may directly display the sleep display screen 1200.
  • the sleep display screen 1200 is an example of a screen that presents the user with information on the main sleep of the day and the detected respiratory frequency.
  • a sleep period graph 1203 indicating a sleep period detected from the period, a non-wear period, a respiration frequency graph 1204 indicating a detected respiration frequency, a respiration trend of the day, and a recent respiration frequency trend of the person
  • a respiration trend graph 1205 and a sleep memo panel 1206 for displaying numerical data and advice on sleep of the day are provided.
  • the date control 1201 is a control for indicating the date displayed on the screen, and the previous and next days may be selected by pressing the left and right buttons.
  • one of the data points included in the width of one pixel may be arbitrarily selected and drawn as a single point, or all the data points included in the width of one pixel may be drawn.
  • the average value may be drawn as a single point, or, as shown in the drawing example of FIG. 14B, the average value of all the data points included in the width of one pixel is a single color of dark color.
  • points (12021) for example, the standard deviation of data points higher than the average value and the standard deviation of data points lower than the average value are calculated, and the points lower than the average value from the standard deviation of points higher than the average value
  • the area up to the standard deviation of the data is filled with a light color (12022), so that the user understands the whole data and the behavior of the data when viewed in more detail (that is, whether or not the average value varies greatly) Can be recalled.
  • the sleep period graph 1203 is an area for displaying the sleep period calculated by the sleep period extraction program 300. All sleep regions included in the date to be displayed may be painted with a specific color as shown, and the main sleep may be painted with another color. Further, the sleep period may be integrated into the scalar quantity graph 1202 and displayed from above, for example, translucently.
  • the respiration frequency graph 1204 is a graph for displaying the respiration frequency detected during the sleep period of the day. A line graph is drawn for the area for which the effective respiration frequency is calculated, and the area for which the effective respiration frequency is not calculated is, for example, painted in a specific color as shown in the figure, and is a respiration non-detection period. May be shown.
  • the respiration trend graph 1205 is a graph for comparing and displaying the respiration trend obtained by interpolating the deficit value of the respiration of the day with the past respiration trend.
  • the respiratory trend of the day is, for example, about the respiratory frequency detected from the main sleep of the day, taking the “elapsed time after going to bed” on the x-axis and the “respiration frequency” on the y-axis, for example, approximating a quadratic regression equation, Based on this, the estimated respiratory frequency from the start to the end of the sleep period may be plotted with a solid line, for example. Thereby, the user can know the estimated value of the respiration rate even for the missing region.
  • the past breathing trend is, for example, a quadratic regression equation with “elapsed time after going to bed” on the x-axis and “breathing frequency” on the y-axis for the breathing frequency included in all sleep periods detected so far for the user.
  • Approximating y (qA * x 2 + qB * x + qC), and based on this equation, the past trend respiratory frequency from the start to the end of the sleep period may be plotted with a broken line, for example. In this way, the user can know that the sleep rate of the day is higher than the sleep rate of the day, for example, the level of the respiratory rate of falling asleep, the rate of decrease in the respiratory rate after going to bed, or the level of the respiratory rate before waking up.
  • the example using the quadratic regression equation for calculating the trend has been shown.
  • any method may be used as long as the respiratory frequency can be interpolated, for example, a linear regression equation.
  • all the past data of the user may be used, or only data within a predetermined range (for example, the past three months) may be used.
  • the user may also be included in the data. For example, when profile information such as gender and age is held for the user, it may be calculated including only the data of the user having a similar profile.
  • the sleep memo panel 1206 is an area for displaying numerical data relating to the sleep period of the day, and messages and advice to the user based on the numerical data.
  • the respiratory frequency immediately after going to bed may be calculated using the sleep trend calculated above and displayed as “sleeping rate at bedtime”.
  • the bedtime respiratory rate in normal sleep may also be presented as “normal bedtime respiratory rate”.
  • the square term of the quadratic regression equation y (qA * x 2 + qB * x + qC) calculated above, that is, qA may be displayed as a “sleep index”.
  • qA is an index indicating how sharply the respiratory rate decreases after going to bed, and since it is known that the respiratory rate decreases as the sleep becomes deeper, by presenting qA as a sleeping index, Users can know how good their sleep is.
  • the quadratic regression equation may be approximated using the respiratory frequency of all sleep periods, or the quadratic regression equation may be approximated using only the respiratory frequency within a predetermined time (for example, one hour) after going to bed. Also good.
  • qA may be normalized and displayed so as to fall within a range that is easy to grasp, such as 0 to 10 for many people.
  • a sleep index in normal sleep may be calculated using the past respiratory trend and presented as a “normal sleep index”.
  • the respiration frequency immediately before getting up may be presented as “respiration rate before waking up”, or the quadratic regression equation is approximated using only the respiration frequency calculated within one hour before waking up.
  • the value of the square term qA of the next regression equation may be presented as a “wake-up index”.
  • advice for obtaining good sleep may be presented to the user based on respiratory frequency and sensing data before and after sleep. For example, if the respiratory rate at bedtime is higher than normal and the activity index (eg, the sum of absolute values of the scalar amount) immediately before going to bed is greater than or equal to a predetermined value, for example, immediately before going to bed “You seem to be in bed before you fall asleep because you may have exercised. By displaying advice such as “Let's refrain from exercising before going to bed,” you can expect to have the effect of exercising just before going to bed and refraining from trying to sleep while your breathing rate is increasing.
  • the activity index eg, the sum of absolute values of the scalar amount
  • the respiratory rate at bedtime is higher than normal and the activity index just before going to bed is less than the specified value, for example, you may drink alcohol.
  • the sleep index was higher than usual (when sleep was good), for example, “I slept better than usual. It looks like you're tired. ”By working hard, you can expect users to look back on their fatigue.
  • the sleep index is lower than usual, for example, “It seems that sleep was worse than usual. If you are not sure, take a bath and relax.
  • an example of using the three-axis acceleration sensor of the bracelet type sensor node 1 attached to the user's arm to measure the activity state during sleep of the user (human body) as the respiratory frequency estimation system any sensor that can detect the activity state of the human body non-invasively may be used, for example, an angular velocity sensor attached to the arm, or a biaxial or non-axial acceleration sensor instead of a triaxial acceleration sensor. good.
  • the system which estimates the respiratory frequency during sleep was illustrated in the said embodiment, it is effective also in estimating the respiratory frequency during awakening rather than during sleep. For example, the frequency component of respiration may be reflected in the acceleration sensor even when arms are crossed during a meeting or breathing up immediately after exercise, but this can also be detected and presented by the same means as above. .
  • an acceleration sensor attached to the arm is used as an example of a sensor in which the state of breathing is reflected in a piecewise manner, but any sensor that reflects the state of breathing in a piecewise manner can be used.
  • the respiration frequency can be measured effectively.
  • this embodiment can be applied because the movement of breathing is not reflected on the video depending on the sleeping posture.
  • an acceleration sensor or a face-to-face sensor has been mounted on a name tag badge worn by an employee in a company. Although the breathing motion is not reflected in the acceleration data from the attached badge, the breathing motion may be reflected depending on the sitting posture. You can estimate well.
  • the system for presenting the respiratory frequency during sleep to the display device 1031 using a graph or the like has been exemplified.
  • a setting of a period in which the user wants to wake up is accepted by means not shown, and
  • a behavior suggesting a sleep that is infrequent is shown
  • a system that causes a user to wake up comfortably by using a bell or the like may be used.
  • the behavior suggesting shallow sleep may be, for example, when the fraction of the estimated respiration frequency and the past trend exceeds a predetermined threshold, or the respiration frequency of the most recent predetermined period (for example, 5 minutes) is increasing. May be shown.
  • the respiration frequency can be accurately estimated from the output data of a sensor in which the respiration movement is not reflected in the data in many cases like the acceleration sensor worn on the arm.
  • acceleration data is measured by a sensor attached to a person (user), the respiratory frequency during sleep is calculated, the REM sleep period is estimated from the increase or decrease in the respiratory frequency during sleep,
  • the REM sleep estimation system shown to a user is shown.
  • Human sleep is divided into REM sleep and NON-REM sleep. Of these, REM sleep accounts for approximately 20% of normal sleep and is a period in which memory is thought to be organized. As for the state of the body, it is known that the pulse and respiration are more disturbed and the frequency is faster than that during NON-REM.
  • Patent Document 3 discloses a technique for recognizing a period in which the pulse rate is equal to or greater than a predetermined threshold as REM sleep by utilizing this fact. Since heartbeat and respiration are controlled physiologically in the same system, REM sleep can be detected by the present invention even when the respiration frequency is used instead of the heart rate. For example, the measured value of the respiratory frequency shown in FIG. 23A shows that a mountain is generated every 60 to 90 minutes, but it is REM sleep that causes this mountain.
  • the patent document 3 does not specifically mention how to set the threshold.
  • the basal respiration frequency (respiration rate during NON-REM) continues to decrease over time from bedtime to wake-up, and the respiration rate during REM also changes accordingly. Will drop. Therefore, it is not possible to set a single REM sleep threshold throughout sleep. This is because the respiratory frequency during REM in the second half of sleep is often about the same as that of NON-REM in the first half of sleep.
  • the absolute value of the basal respiration frequency and how it falls itself varies depending on the person and the season, it is necessary to set a different threshold for each person.
  • REM can be estimated by detecting “mountains”.
  • the estimated respiration rate can be obtained only in pieces from the bracelet type acceleration sensor. Therefore, it is not easy to find a place where the respiratory frequency is higher than normal.
  • the present inventors use the estimated respiration rate of a certain user for the past week or so to estimate the basal respiration frequency over time of the user, and determine the location where the respiration frequency higher than the basal respiration rate is measured by REM. By recognizing it as sleep, it was found that REM sleep can be estimated with high accuracy even from fragmentary estimated respiratory frequencies obtained from bracelet type acceleration sensors.
  • FIG. 15A shows in black the REM sleep period measured from EOG (electrocardiogram) for a certain sleep. It can be seen that it occurs in about 90 minutes.
  • FIG. 15B shows the respiration frequency estimated using a bracelet type acceleration sensor during the same period. It is not possible to determine where the respiration frequency is higher than normal just by looking at this.
  • FIG.15 (c) is the figure which estimated the basic respiration frequency for every elapsed time after bedtime using the said user's sleep for the past one week, and plotted with the respiration frequency.
  • the basal respiratory frequency was estimated by approximating the elapsed time after the start of each main sleep (sleeping) and the quadratic regression equation for the two axes of the measured respiratory frequency. It can be seen that the curve of the basal respiration frequency monotonously decreases from about 16 breathing frequency when falling asleep to about 14 breathing frequency when waking up. This also revealed a region where the respiratory frequency was higher than usual in the sleep (black arrow). And it turns out that they also correspond with the REM sleep period shown to Fig.15 (a).
  • FIG. 15D is a diagram in which the deviation between the respiratory frequency estimated during the sleep period and the basal respiratory frequency curve is first calculated and further interpolated.
  • the divergence is the fraction (ratio) of the estimated respiratory frequency and the basal respiratory frequency, ie Define as Furthermore, since this data contains many missing values, smoothing and interpolation are performed by cubic spline interpolation. In the drawing, only portions where the breathing divergence is 1.0 or more, that is, the breathing frequency exceeds the basic breathing frequency are drawn.
  • FIG. 15E shows a period in which the interpolated respiratory deviation continuously exceeds 1.0 as a REM candidate period. At this stage, various feature quantities related to the REM candidate period, such as duration and maximum respiratory divergence, are calculated.
  • FIG. 15F shows what is determined to be REM by determining whether each REM candidate period is REM by, for example, known machine learning. This shows that the REM sleep measured in FIG. 15A can be estimated with high accuracy.
  • FIG. 16 is a block diagram showing each component of the REM sleep estimation system of the present embodiment. Sensing data transmitted from the bracelet type sensor node 1 is accumulated in the sensing data table 1150 of the recording device 1100 of the client (PC) 104 via the base station 102. Or you may communicate directly with PC104 via the wire communication which is not illustrated.
  • PC client
  • the PC 104 includes a display device (output device) 1041 that displays various types of information and an input device 1042 that allows various information to be input by user operations.
  • the display device 1041 may be a display terminal such as a liquid crystal display or a CRT display, or a printer or an image file output. Further, a speaker that generates sound may be provided.
  • the input device 1042 is an input device such as a keyboard and a mouse. Further, the display device 1041 and the input device 1042 may be a single device having both functions, such as a touch panel display.
  • the PC 104 includes a processor 107, a memory 108, and a recording device 1100.
  • the recording device 1100 records various programs and various data tables, which will be described later, such as a hard disk drive, a CD-ROM drive, and a flash memory. Various programs and various data tables may be divided and recorded in a plurality of recording devices.
  • the processor 107 implements various functions by reading various programs recorded in the recording device 1100 into the memory 108 and executing them. Specifically, by executing the data totaling program 200, the sensing data measured by the acceleration sensor of the user's arm is totaled, a total value for each unit time (for example, one minute) is calculated, and the recording device 1100 is stored in the aggregate data table 250. Also, by executing the sleep period extraction program 300, the calculated total value for each unit time is analyzed, and all sleep periods are detected and stored in the sleep period data table 350 of the recording device 1100. Also, by executing the respiration frequency estimation program, the respiration frequency per unit time (for example, one minute) is estimated from the detected sleep period and stored in the respiration frequency data table 450 of the recording device 1100. Also, by executing the REM estimation program 500, the REM sleep period is estimated from the estimated respiratory frequency and stored in the REM data table 550.
  • the PC 104 executes the data tabulation program 200, the sleep period extraction program 300, the respiration frequency estimation program 400, and the REM estimation program 500 at regular intervals, or due to communication with the wristwatch type sensor node 1.
  • An example is shown in which display data is displayed on the display device 1041 as a result of the operation of the input device 1042 or the activation of the PC 104 or the end of the execution of the respiration frequency estimation program 400.
  • FIG. 17 is a flowchart showing the overall flow of data processing performed in the system of this embodiment.
  • Steps S2.1 to 2.3 may be the same as S1 to S3 in the first embodiment.
  • the PC 104 executes the REM estimation program 500, acquires the respiratory frequency detected within the period from the respiratory frequency data table 450 for each sleep period stored in the sleep period data table 350, and further The basal respiration frequency per unit time (for example, 1 second) after going to bed is calculated using, for example, respiration frequency data for a predetermined period in the past (for example, one week), and the measured respiration frequency and basal respiration frequency are calculated.
  • the divergence is calculated as a respiratory divergence, and a period in which the respiratory divergence satisfies a predetermined condition (for example, exceeds a predetermined threshold) is detected as a REM sleep period and stored in the REM data table 550.
  • the REM estimation program 500 may be executed every predetermined cycle (for example, 5 minutes), or may be executed due to the end of the respiration frequency estimation program 400.
  • step S2.5 the REM period stored in the REM estimation program 500 is presented on the display unit 1041 of the client computer 104.
  • the data totaling program 200, the sleep period extraction program 300, and the respiration frequency estimation program 400 may be the same as the configuration in the first embodiment, for example.
  • FIG. 18 is a flowchart illustrating an example of processing performed by the REM estimation program 500 of the PC 104.
  • sleep period data for example, the sleep start time and sleep end time of a predetermined user
  • the amount of total data read here may be set to, for example, all after the end time of the last REM period already stored by the execution of the past REM estimation program 500.
  • each sleep period read here is individually processed.
  • step S42 all the respiratory frequencies calculated by the respiratory frequency estimation program 400 included in one sleep period are read.
  • step S43 the basal respiration frequency for every elapsed time after going to bed is calculated from the respiration frequency of all main sleeps for a predetermined period (for example, one week) before the sleep period.
  • the basic respiratory frequency from the start to the end of the sleep period is calculated.
  • the elapsed time after going to bed the elapsed time from the sleep start time (sleeping time) in one day can be used.
  • the calculation method of the basal respiration frequency is not particularly limited as long as the respiration frequency can be interpolated. For example, a linear regression equation, a cubic spline method, or a moving average may be used.
  • all the past data of the user may be used, or only data within a predetermined range (for example, one week) may be used. May be included in the data. For example, when profile information such as gender and age is held for the user, the calculation may be performed including only data of users having similar profiles.
  • step S44 the difference between the respiratory frequency detected during the sleep period and the basic respiratory frequency calculated in the step is calculated, and the missing value is interpolated.
  • the deviation may be defined by, for example, a fraction, that is, the following expression.
  • the calculated part of the breathing divergence that is, the part where no breathing is detected may be interpolated by a method such as a cubic spline method.
  • the missing value is not interpolated. By leaving it as it is, it is possible to prevent excessive interpolation in an area where the amount of information is small.
  • breathing divergence can be smoothed by substituting interpolated values for portions where the respiratory frequency is normally detected.
  • interpolation may be performed once and then again.
  • step S45 a period in which the calculated respiratory divergence continuously exceeds, for example, a predetermined threshold or more (for example, 1.0) is extracted as one REM candidate period.
  • step S46 it is determined whether or not all the extracted REM candidate periods are REM, and the REM period is determined.
  • various feature amounts related to the period are calculated from each REM candidate period. For example, the duration of the REM candidate period may be included as the feature amount. Since it is rare for REM sleep to continue for 15 minutes or more in normal sleep, it can be determined that the possibility that the REM candidate period that continues further is actual REM sleep is low.
  • the maximum value of respiratory divergence during the REM candidate period may be included. If the maximum value of respiratory divergence is too low (lower than a predetermined threshold), it can be determined that the possibility of REM sleep is low.
  • Another feature amount may include, for example, an elapsed time until the maximum value of respiratory divergence occurs after the start of the REM candidate period, or a value obtained by dividing this by the duration of the REM candidate period. Respiratory divergence during REM sleep is about the same as the rising period and the falling period. Therefore, if the elapsed time is extremely short immediately after the start or just before the end, it can be judged that the possibility of REM sleep is low. .
  • the ratio of the data points interpolated in step S44 during the REM candidate period may be included as the feature amount. If there are many interpolated data points, the reliability of the REM candidate period should be considered low.
  • the feature quantity group mentioned in the above description is an example, and other feature quantities can be used.
  • the REM candidate period is REM sleep using a feature vector including one or more of these feature quantities.
  • a model learned in advance using REM sleep learning data may be used.
  • a support vector machine (SVM) disclosed in Non-Patent Document 3 may be used, or any algorithm capable of discriminant analysis may be used.
  • the REM candidate period determined as REM sleep in this step is determined as REM sleep.
  • the determination of REM sleep can also be performed as follows. For example, when the difference between the actually measured respiration frequency and the basal respiration frequency is greater than a predetermined slope and increases for a predetermined time or more, it is determined that REM sleep is started, and REM sleep is ended based on a predetermined end condition.
  • the termination condition of REM sleep can include a predetermined time elapses from the start of REM sleep.
  • the REM sleep termination condition may include a monotonically decreasing fraction of the measured or interpolated respiratory frequency and the basal respiratory frequency that is less than or equal to a predetermined slope and longer than or equal to a predetermined time.
  • the REM sleep termination condition can include detecting body movements other than respiration based on the sensing data.
  • step S47 the REM candidate period determined as REM sleep in the above step is accumulated in the REM data table 550.
  • REM sleep is extracted by detecting a location where the respiratory frequency is higher than the basic respiratory frequency.
  • REM sleep cannot be detected in an area (time zone) where breathing is not detected in the first place.
  • an appropriate time interval (REM sleep interval) may be calculated from all REM sleep periods detected for the wearer, and the calculated time interval may be used.
  • the calculation method for example, the time interval from all REM sleeps to the next REM sleep is calculated, and by taking the average value of only the time intervals that were, for example, 135 minutes or less, the wearer's REM An average time interval of sleep may be calculated.
  • the time interval from every REM sleep to the next REM sleep is calculated, and when the time interval is 135 minutes or more, an integer that is less than 135 minutes by dividing the time interval
  • the wearer is selected by taking the average of the result of dividing by the selected number (for example, if the interval is 330 minutes, then 82.5 minutes is obtained by setting the number to 4).
  • a suitable REM sleep time interval is calculated. Note that it may be less than 135 minutes and closest to 90 minutes (for example, if the interval is 330 minutes, it is 110 minutes with gradual number 3, but 90 minutes with 82.5 minutes with gradual number 4) Close to).
  • This time interval may be calculated only from the sleep period that is the object of calculation, or the average of the time intervals calculated so far for the wearer may be used.
  • the duration of REM sleep determined by correction may be a predetermined time (for example, 15 minutes), or may be the average duration of all REM sleep periods detected so far for the wearer.
  • FIG. 19 is an explanatory diagram showing the format of the REM data table 550.
  • the user ID 551 stores the identifier of the wearer of the bracelet type sensor node 1
  • the REM start stores the start date and time of the REM candidate period determined to be REM sleep. It holds a date and time 552 and a REM end date and time 553 that stores the end date and time of the period. Further, when the discrimination algorithm used for discrimination of the REM candidate period can calculate the likelihood and reliability of discrimination, this information may be stored together with the REM period. If a means for interpolating the REM period is provided, the interpolation flag may be stored together with the REM period.
  • FIG. 26 is a functional block diagram of the client PC 103 according to the second embodiment.
  • the client PC 103 includes, for example, the respiration measurement system 2500 according to the first embodiment, the sleep detection unit 2601, the basal respiration frequency calculation unit 2602, the divergence calculation unit 2603, the REM sleep determination unit 2604, and the second accumulation unit 2605. Have. Each unit is realized by the processor 107 executing the programs 200, 300, 400, and 500 as described above.
  • the sleep detection unit 2601 detects sleep from the sensing data. This corresponds to the processing in step S2.2 in FIG. 17 and step S2 in FIG.
  • the basic respiration frequency calculation unit 2602 is a basic unit for each elapsed time after going to bed, based on the respiration frequency and the time information for a predetermined period accumulated in the accumulation unit 2503 of the respiration measurement system 2500. Calculate respiratory frequency. This corresponds to the processing of steps S42 and S43 in FIG.
  • the divergence calculation unit 2603 calculates the divergence between the calculated basic respiration frequency and the respiration frequency actually measured and accumulated in the accumulation unit 2503 for each elapsed time after going to bed. This corresponds to the processing in step S44 in FIG.
  • the REM sleep determination unit 2604 determines REM sleep from the difference between the basic respiration frequency and the actually measured respiration frequency. This corresponds to the processing in steps S45 and S46 in FIG.
  • the second accumulation unit 2605 accumulates the determined REM sleep time information. This corresponds to the processing in step S47 in FIG.
  • FIG. 27 is a detailed block diagram of the REM sleep determination unit 2604.
  • the REM sleep determination unit 2604 includes, for example, a REM candidate period extraction unit 2701, a feature amount calculation unit 2702, and a REM candidate period determination unit 2703.
  • the REM candidate period extraction unit 2701 extracts, as the REM candidate period, a period in which the difference between the respiratory frequency and the basal respiratory frequency is continuously greater than or equal to a predetermined second threshold value.
  • the feature amount calculation unit 2702 calculates a feature vector including the feature amount in the REM candidate period.
  • REM candidate period discriminating unit 2703 Based on the feature vector, it is determined whether or not the REM candidate period is REM sleep.
  • FIG. 20 is a screen image of the REM display screen 1300 displayed on the display unit 1041 of the PC 104 which is a client computer.
  • the display of the REM display screen 1300 by the PC 104 may be caused by receiving a display request from a user via the input device 1042, or may be caused by termination of execution of the REM estimation program 500. If the sensing data of the bracelet type sensor node 1 can be acquired in real time by wireless means or the like, it may be caused by the sleep period extraction program 300 detecting that the wearer has woken up.
  • a browser may be adopted as an application that runs on the PC 104, or an application that runs alone may directly display the REM display screen 1300.
  • the REM display screen 1300 is an example of a screen that presents the main sleep of the day, the detected respiration frequency, and information on the REM sleep to the user.
  • Sleep period graph 1303 indicating the detected sleep period and non-wearing period
  • respiratory frequency graph 1304 indicating the detected respiratory frequency
  • REM panel 1305 for detecting REM sleep for the day
  • the sleep memo panel 1306 is displayed.
  • the elements 1301, 1302, 1303, and 1304 may be the same as 1201, 1202, 1203, and 1204 of the sleep screen 1200 in the first embodiment, respectively, and thus detailed description is omitted in the following description.
  • the REM panel 1305 is an area for displaying the REM sleep period estimated by the REM estimation program 500.
  • the REM period (solid line frame) directly estimated from the respiration frequency may be distinguished from the REM period (broken line frame) interpolated every 90 minutes for the missing portion.
  • information such as the start date and time, end date and time, elapsed time, and estimation reliability of the REM period may be displayed within the frame of the REM period.
  • the sleep memo panel 1306 is an area for displaying numerical data related to the sleep period of the day, and messages and advice to the user based on the data. For example, the time until the first REM period appears after going to bed on that day may be set as the REM latency, and the average value of the REM latency in the past predetermined time (for example, half a year) may be displayed as the normal REM latency. It is known that the REM latency becomes longer when sleepiness is poor and becomes shorter, for example, in depression. For this reason, displaying the REM latency compared to the normal time is an opportunity for the wearer to save his / her physical condition.
  • the time elapsed since the last REM sleep before getting up may be displayed as, for example, a “clean wake-up index”.
  • a “clean wake-up index” In general, it is said that as time passes from REM sleep, sleep becomes deeper, and when waking up with deep sleep, waking is not good. Therefore, by displaying the elapsed time from REM sleep, it becomes a chance to look back on how to wake up.
  • the ratio of REM sleep occupying during sleep, the number of REM sleep periods, the average value of the time interval between REM sleeps, and the like may be presented.
  • comments and advice regarding sleep may be presented to the user based on respiratory frequency and sensing data before and after sleep. For example, if the REM latency is significantly longer than 90 minutes, sleep deprivation is suspected. By presenting comments such as “Looks like sleep deprivation,” the user is given a chance to review their own lifestyle patterns. May be given.
  • the embodiment in which the respiration frequency is calculated from the sensing data of the bracelet type sensor node 1, the REM sleep period is estimated, and presented on the display unit 1041 has been described.
  • REM sleep is terminated by generating a sound due to the termination of REM sleep during the time set by the wearer (for example, 6 to 6:30) It is possible to wake up at the timing that is most easily awakened.
  • an appropriate timing during REM sleep may be used.
  • since memory is organized during REM sleep studying for the examination is conducted all night, and it is desirable that REM sleep is also passed when sleeping as a short break.
  • the above-mentioned REM sleep determination may not be obtained by taking into consideration data representing respiration (for example, respiration frequency) from the sensing data, and REM sleep may be determined from the sensing data by the same process as described above.
  • the REM sleep determination method is: Aggregating sensing data from a sensor that is attached to the arm and acquires sensing data indicating the movement of the arm for the past predetermined period, and detecting a main main period component; A step of accumulating the frequency of the main period component corresponding to the time information when the main period component is in a predetermined frequency range; Detecting sleep from the sensing data; Calculating basic frequency data for each elapsed time after going to bed based on the accumulated frequency of the main period component and time information; Calculating a deviation between the calculated fundamental frequency data and the accumulated frequency of the main period component; Determining REM sleep based on the calculated divergence; Storing the determined time information of REM sleep.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The invention measures respiratory rate with high precision even with sensing data from a wristband sensor node. The respiration measurement system is provided with: a sensor that is worn on the arm and acquires sensing data representing movements of the arm; a main cyclic component-detecting unit that periodically tabulates sensing data for a prescribed elapsed period and detects the main cyclic component thereof; a respiratory information acquisition validity-assessing unit that assesses whether or not said main cyclic component is valid as a respiration-dependent cyclic component on the basis of the frequency and/or amplitude of the main cyclic component according to previously determined criteria; and a storage unit that stores the frequency of the main cyclic component as a respiratory rate correlated with time information when the main cyclic component is determined to be valid as a respiration-dependent cyclic component.

Description

呼吸測定システム及びREM睡眠判定システムRespiration measurement system and REM sleep determination system
 本発明は,呼吸測定システム及びREM睡眠判定システムに係り、特に、対象者の睡眠及び/又は呼吸の状態を長期的に測定する呼吸測定システム及びREM睡眠判定システムに関するものである。 The present invention relates to a respiration measurement system and a REM sleep determination system, and more particularly to a respiration measurement system and a REM sleep determination system that measure the sleep and / or respiration state of a subject for a long period of time.
 睡眠中の呼吸頻度は,睡眠の深さや疾患の有無に密接に関連している。そのため睡眠中の呼吸を日常の中で長期的に測定することは,健康管理や疾患の早期発見のためには有効な手段となる。
 従来では,睡眠中の呼吸頻度を測定する手段として,胸部に装着する加速度センサや歪ゲージ,あるいは鼻口の気流を検知する呼気センサ等などが知られている。例えば特許文献1には,胸部に装着した3軸の加速度センサにより胸部の呼吸運動を測定し,その出力値をスカラー化し,ローパスフィルタで低周波成分を抽出,ピークを検出し,一分間のピーク数を呼吸頻度として出力する,呼吸数推定技術が開示されている。
The frequency of breathing during sleep is closely related to the depth of sleep and the presence or absence of disease. Therefore, long-term measurement of breathing during sleep is an effective means for health management and early detection of diseases.
Conventionally, as means for measuring the respiratory frequency during sleep, an acceleration sensor, a strain gauge, or an expiration sensor that detects airflow in the nostril are known. For example, in Patent Document 1, the respiratory motion of the chest is measured by a triaxial acceleration sensor attached to the chest, the output value is scalarized, the low frequency component is extracted by a low-pass filter, the peak is detected, and the peak for one minute is detected. A respiration rate estimation technique for outputting a number as a respiration frequency is disclosed.
 上記で開示される技術は胸部に装着する加速度センサを前提としている。そのため,在宅で長期的に測定するには不適当であった。これは胸部センサには以下のような課題があるためである。
 ・胸部センサは装着による胸部への圧迫感があり,日常とは異なった睡眠の状態が測定されてしまう。
 ・胸部センサは装着位置が適切であることが重要であり,専門家の監督無しでの正しい装着が難しいため,在宅での測定が困難である。
 ・胸部のセンサは24時間装着することの負担が大きい。そのため,普段は外しておいて,就寝前に意識的に装着する必要がある。この事から,例えばテレビを見ながら寝てしまった時や,飲酒して寝てしまった場合などが測定記録に残らなく,睡眠に至る状況に偏りのあるデータが記録されてしまう可能性がある。
 その一方で,日常生活において睡眠の状態を測定する手段として,手首に装着する腕輪型の加速度センサが知られている。腕輪型の加速度センサは身体への負担が少なく安価であり,装着方法も通常の腕時計と変わらないため,在宅での長期的な常時測定に適している。また非特許文献1では,腕輪型の加速度センサは睡眠・覚醒の判別が有効に行える事が指摘されている。
The technology disclosed above is premised on an acceleration sensor to be worn on the chest. Therefore, it was unsuitable for long-term measurement at home. This is because the chest sensor has the following problems.
・ The chest sensor has a feeling of pressure on the chest when worn, and the sleep state that is different from everyday life is measured.
・ It is important that the chest sensor is properly positioned, and it is difficult to perform correct measurement without expert supervision, making it difficult to measure at home.
-The burden on the chest sensor is 24 hours. Therefore, it is usually necessary to remove it and wear it consciously before going to bed. For this reason, for example, when you go to sleep while watching TV or drink and go to sleep, there is a possibility that data that is biased in the situation leading to sleep may be recorded, not remaining in the measurement record .
On the other hand, bracelet-type acceleration sensors that are worn on the wrist are known as means for measuring the sleep state in daily life. The bracelet-type acceleration sensor is less expensive and less expensive, and it is the same as a normal wristwatch, so it is suitable for long-term continuous measurements at home. Non-Patent Document 1 points out that a bracelet type acceleration sensor can effectively distinguish between sleep and awakening.
特許第3809847号公報Japanese Patent No. 3809847 特開2008-210363号公報JP 2008-210363 A 特開2011-94881号公報JP 2011-94881 A
 しかし,腕輪型の加速度センサを用いて呼吸頻度を測定することはこれまで出来なかった。
 従来では,上記したような腕輪型の加速度センサを用いて対象者の負担少なく例えば睡眠中の呼吸頻度を測定する手段が知られていなかった。しかし本発明者らは,リストバンド型の加速度センサで測定した加速度データの低周波成分に,呼吸運動に由来する体幹の周期的な動作が反映されている場合があることを発見した。図21aでは実際の7分間弱の睡眠データにおける加速度波形のスカラー値の周波数スペクトルが図示されており,この例では0.22Hz(一分間の呼吸頻度13.2回に相当)に強いピークがある場合が示されている。
However, it has not been possible to measure the respiration frequency using a bracelet-type acceleration sensor.
Conventionally, no means has been known for measuring the respiratory frequency during sleep, for example, with less burden on the subject using the bracelet type acceleration sensor as described above. However, the present inventors have discovered that the low-frequency component of the acceleration data measured by the wristband type acceleration sensor may reflect the periodic movement of the trunk derived from respiratory motion. FIG. 21a shows the frequency spectrum of the scalar value of the acceleration waveform in the actual sleep data of less than 7 minutes. In this example, there is a strong peak at 0.22 Hz (corresponding to a breathing frequency of 13.2 times per minute). The case is shown.
 この現象は,図22aに示すように,腕輪型加速度センサ1を装着した手首が,体幹の呼吸運動の影響を受けるような位置にある場合に生じている。そのため,例えば図22bのように手首が体幹から離れてしまっている場合は図21bのように,呼吸の周期性は加速度データの中に現れない。 This phenomenon occurs when the wrist on which the bracelet type acceleration sensor 1 is mounted is in a position where it is affected by the respiratory motion of the trunk, as shown in FIG. 22a. Therefore, for example, when the wrist is separated from the trunk as shown in FIG. 22b, the periodicity of respiration does not appear in the acceleration data as shown in FIG. 21b.
 このことが原因で,上記特許文献1に開示される手法を腕の加速度データに適用することはできない。胸部から得られる加速度データであれば,利用者の体の姿勢や肢体の位置に関わりなく,呼吸の動作が反映される。そのため,特許文献1で開示されるように,特定の周波数領域から主となる周波数成分を見つけるだけでも呼吸頻度を精度良く推定する事が出来る。しかし,腕から測定したデータでは,呼吸の動作が加速度に反映されている場合のほうが稀である。そのため,多くの場合はセンサの値に乗るノイズ(温度変化や,センサの計測ノイズ等)の影響が優位となり,単純に主となる周波数成分を見つけるだけでは,呼吸とは関わりのない意味のない値が算出されてしまう。 For this reason, the method disclosed in Patent Document 1 cannot be applied to the acceleration data of the arm. Acceleration data obtained from the chest reflects the breathing motion regardless of the user's body posture and limb position. Therefore, as disclosed in Patent Document 1, it is possible to accurately estimate the respiration frequency simply by finding main frequency components from a specific frequency region. However, in the data measured from the arm, it is rare that the breathing motion is reflected in the acceleration. For this reason, in many cases, the influence of noise (temperature change, sensor measurement noise, etc.) on the sensor value is dominant, and simply finding the main frequency component has no meaning not related to breathing. The value will be calculated.
 この事を図23bにて実例で示す。図23aは鼻口の呼気センサにより実測した,一晩の一分間毎の呼吸頻度データであり,図23bは呼気センサと同期間手首に装着した腕輪型加速度センサのデータに対して,上記特許文献1で開示される手法を適用させた場合に算出される,一分間毎の推定呼吸頻度である。実測データと同じ値が算出される箇所もあるものの,全く異なる値も多く入り混じっており,この推定結果自体からは,対象者の睡眠中の呼吸の傾向を知る事は困難である。図24aに,21人の一晩ずつについて呼気センサとリストバンド型加速度センサを同時測定し,一分毎の実測呼吸頻度と推定呼吸頻度を算出した結果を示す。この散布図では,推定呼吸頻度と実測呼吸頻度は互いに大きくばらついている事が分かる。 This is illustrated by example in FIG. FIG. 23a shows the respiration frequency data for every minute measured by the nostril breath sensor, and FIG. 23b shows the data of the bracelet type acceleration sensor worn on the wrist during the same period as the breath sensor. 1 is an estimated respiration frequency per minute calculated when the method disclosed in 1 is applied. Although there are places where the same value as the actual measurement data is calculated, there are many completely different values, and it is difficult to know the tendency of the subject's breathing during sleep from this estimation result itself. FIG. 24a shows the result of calculating the measured respiratory frequency and the estimated respiratory frequency per minute by simultaneously measuring the breath sensor and the wristband type acceleration sensor for 21 people each night. In this scatter diagram, it can be seen that the estimated respiratory frequency and the measured respiratory frequency vary greatly from each other.
 本発明は,上記に鑑みてなされたものであって,リストバンド型センサノードからのセンシングデータでも高い精度で呼吸頻度を測定する事の出来る呼吸測定システム、及び、呼吸頻度に基づきREM睡眠(レム睡眠)を判定するREM睡眠判定システムを提供すること目的とする。 The present invention has been made in view of the above, and a respiration measurement system capable of measuring respiration frequency with high accuracy even with sensing data from a wristband type sensor node, and REM sleep based on respiration frequency (REM An object of the present invention is to provide a REM sleep determination system for determining (sleep).
 本発明は、上記課題を解決する手段を複数含んでいるが,その一例(第1の解決手段)をあげるならば,
 腕に装着して腕の動きを示すセンシングデータを取得するセンサと、
 周期的に過去所定期間のセンシングデータを集計し、その主となる主周期成分を検出する主周期成分検出部と、
 主周期成分の大きさ又は周波数に関する予め定められた判定条件に従い、該主周期成分が呼吸に依る周期成分として有効か否かを判定する呼吸情報取得成功判定部と、
 呼吸に依る周期成分として有効であると判定された場合にその主周期成分の周波数を呼吸頻度として時刻情報と対応して蓄積する蓄積部と
を備えた呼吸測定システムが提供される。
The present invention includes a plurality of means for solving the above-described problems. If one example (first solving means) is given,
A sensor that is attached to the arm and acquires sensing data indicating the movement of the arm;
A main period component detector that periodically collects sensing data of a predetermined period in the past and detects a main period component that is the main period;
Respiration information acquisition success determination unit that determines whether the main period component is effective as a period component depending on respiration according to a predetermined determination condition regarding the magnitude or frequency of the main period component;
There is provided a respiration measurement system including an accumulating unit that accumulates the frequency of the main period component as a respiration frequency in association with time information when it is determined to be effective as a period component due to respiration.
 このような構成により、リストバンド型センサノードからのセンシングデータでも高い精度で呼吸頻度を測定する事が出来る。
 一例として、センシング対象となる呼吸動作が加速度データに反映されていない場合を欠損値として除外する事によって,リストバンド型加速度センサでも高い精度で呼吸頻度を測定する事の出来る呼吸数測定システムを提供する。
With such a configuration, it is possible to measure the respiration frequency with high accuracy even with sensing data from the wristband type sensor node.
As an example, a respiration rate measurement system that can measure respiration frequency with high accuracy even with a wristband type accelerometer is provided by excluding the case where the breathing motion to be sensed is not reflected in the acceleration data as a missing value. To do.
 例えば、上述の課題には以下のような解決が行える。抽出された主となる周波数成分の,スペクトルにおけるピークの強さを評価する「ピークスコア」を次の(式1)のように定義し、
Figure JPOXMLDOC01-appb-M000001
ピークスコア値が閾値を超えた(即ち,充分に強いピークであった)場合にのみ,検知したピークを採用し,それ以外の場合は呼吸不検知とすることにより,呼吸運動が反映されない場合が存在する、手首に装着する加速度センサから得られる加速度データからも,精度良く呼吸頻度を推定する事が出来る。この方式によると,図23cに例示するように,欠損値を多分に含むものの,実測値を精度良く追う呼吸頻度の推定を行う事が出来る。また図24bでは,21人のデータにおいても,提案方式で推定した呼吸頻度が実測呼吸頻度をよく近似出来ている事を示している。
For example, the following problems can be solved for the above problem. The “peak score” that evaluates the peak intensity in the spectrum of the extracted main frequency component is defined as follows (Equation 1):
Figure JPOXMLDOC01-appb-M000001
Respiratory motion may not be reflected by adopting the detected peak only when the peak score value exceeds the threshold value (ie, it was a sufficiently strong peak), otherwise it is not detected. Respiratory frequency can be accurately estimated from acceleration data obtained from an existing acceleration sensor attached to the wrist. According to this method, as illustrated in FIG. 23c, although there are many missing values, it is possible to estimate the respiration frequency that follows the measured values with high accuracy. FIG. 24b also shows that the respiration frequency estimated by the proposed method can closely approximate the actually measured respiration frequency even in the data of 21 persons.
 本発明の第2の解決手段によると、
 上述の呼吸測定システムと、
 センシングデータから睡眠を検知する睡眠検知部と、
 前記呼吸測定システムの蓄積部に蓄積された所定期間の呼吸頻度と時刻情報とに基づき、就寝後経過時間毎の呼吸頻度を統計した就寝後経過時間毎の基礎呼吸頻度を算出する基礎呼吸頻度算出部と、
 算出された基礎呼吸頻度と実測され前記蓄積部に蓄積された呼吸頻度との乖離を、就寝後経過時間毎に算出する乖離算出部と、
 基礎呼吸頻度と実測された呼吸頻度との乖離からREM睡眠を判定するREM睡眠判定部と、
 判定されたREM睡眠の時刻情報を蓄積する第2蓄積部と
を備えたREM睡眠判定システムが提供される。
 このような構成により、センシングデータからREM睡眠期間を求めることができる。
According to the second solution of the present invention,
A respiratory measurement system as described above;
A sleep detector that detects sleep from the sensing data;
Basal respiration frequency calculation for calculating a basal respiration frequency for every elapsed time after bedtime based on a respiration frequency for a predetermined period accumulated in the accumulation unit of the respiration measurement system and time information. And
A divergence calculating unit that calculates a divergence between the calculated basic respiration frequency and a respiration frequency that is actually measured and accumulated in the accumulation unit;
A REM sleep determination unit that determines REM sleep from the difference between the basal respiration frequency and the actually measured respiration frequency;
There is provided a REM sleep determination system including a second storage unit that stores time information of the determined REM sleep.
With such a configuration, the REM sleep period can be obtained from the sensing data.
 本発明によると,リストバンド型センサノードからのセンシングデータでも高い精度で呼吸頻度を測定する事の出来る呼吸測定システム、及び、呼吸頻度に基づきREM睡眠(レム睡眠)を判定するREM睡眠判定システムを提供することができる。 According to the present invention, a respiration measurement system capable of measuring respiration frequency with high accuracy even with sensing data from a wristband type sensor node, and a REM sleep determination system for determining REM sleep (REM sleep) based on the respiration frequency. Can be provided.
実施例1の呼吸頻度推定システムの構成の一例を示す全体図である。1 is an overall view illustrating an example of a configuration of a respiration frequency estimation system according to a first embodiment. 実施例1の呼吸頻度推定システムを構成する腕輪型センサノード1の一例を示す図である。It is a figure which shows an example of the bracelet type | mold sensor node 1 which comprises the respiration frequency estimation system of Example 1. FIG. 腕輪型センサノード1の基板10に取り付けられた電子回路のブロック図を示す。FIG. 2 shows a block diagram of an electronic circuit attached to the substrate 10 of the bracelet type sensor node 1. 図1に示した呼吸頻度推定システムの各構成要素を示すブロック図である。It is a block diagram which shows each component of the respiration frequency estimation system shown in FIG. 実施例1のシステムで行われるデータ処理の全体的な流れを示すフローチャート図である。It is a flowchart figure which shows the whole flow of the data processing performed with the system of Example 1. FIG. PC103のデータ集計プログラム200で行われる処理の一例を示すフローチャートである。5 is a flowchart illustrating an example of processing performed by a data totalization program 200 of the PC 103. ゼロクロス回数の例を示す図である。It is a figure which shows the example of the frequency | count of zero crossing. 運動頻度の算出結果の例を示す図である。It is a figure which shows the example of the calculation result of an exercise frequency. 集計データテーブル250のフォーマットを示す説明図である。It is explanatory drawing which shows the format of the total data table. PC103の睡眠期間抽出プログラム300で行われる処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process performed with the sleep period extraction program 300 of PC103. 睡眠期間データテーブル350のフォーマットを示す説明図である。It is explanatory drawing which shows the format of the sleep period data table. PC103の呼吸推定プログラム400で行われる処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process performed with the respiration estimation program 400 of PC103. 呼吸推定データテーブル450のフォーマットを示す説明図である。It is explanatory drawing which shows the format of the respiration estimation data table. クライアント計算機であるPC103の表示部1031に表示される睡眠表示画面1200の画面イメージである。It is a screen image of the sleep display screen 1200 displayed on the display part 1031 of PC103 which is a client computer. REM睡眠判定の説明図である。It is explanatory drawing of REM sleep determination. 実施例2のREM睡眠推定システムの各構成要素を示すブロック図である。It is a block diagram which shows each component of the REM sleep estimation system of Example 2. 実施例2のシステムで行われるデータ処理の全体的な流れを示すフローチャート図である。It is a flowchart figure which shows the whole flow of the data processing performed with the system of Example 2. FIG. PC104のREM推定プログラム500で行われる処理の一例を示すフローチャートである。5 is a flowchart illustrating an example of processing performed by a REM estimation program 500 of the PC 104. REMデータテーブル550のフォーマットを示す説明図である。It is explanatory drawing which shows the format of the REM data table. クライアント計算機であるPC104の表示部1041に表示されるREM表示画面1300の画面イメージである。It is a screen image of the REM display screen 1300 displayed on the display part 1041 of PC104 which is a client computer. 睡眠データにおける加速度波形のスカラー値の周波数スペクトル例である。It is an example of the frequency spectrum of the scalar value of the acceleration waveform in sleep data. 腕輪型加速度センサの位置を示す説明図である。It is explanatory drawing which shows the position of a bracelet type acceleration sensor. 呼吸と加速度の関係の説明図である。It is explanatory drawing of the relationship between respiration and acceleration. 実測呼吸頻度と推定呼吸頻度の関係図である。It is a relationship diagram of measured respiratory frequency and estimated respiratory frequency. 実施例1におけるライアントPC103の機能ブロック図である。3 is a functional block diagram of a client PC 103 in Embodiment 1. FIG. 実施例2におけるクライアントPC103の機能ブロック図である。6 is a functional block diagram of a client PC 103 in Embodiment 2. FIG. REM睡眠判定部2604の詳細ブロック図である。5 is a detailed block diagram of a REM sleep determination unit 2604. FIG.
 以下,本発明の実施の形態を,図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の第1の実施例として,人(利用者)に装着したセンサによって加速度データを測定し,睡眠中の呼吸頻度を算出し,利用者に提示する呼吸頻度推定システム(呼吸測定システム、生活可視化システム)を示す。
 図1は,本実施例の呼吸頻度推定システムの構成の一例を示す全体図である。本実施例の呼吸頻度推定システムは,当該システムの利用者の動作(または状態)を検出するセンサとして,加速度センサを備えた腕輪型センサノード1を用い,生体情報として腕の加速度を検出する例を示す。腕輪型センサノード1は,利用者(または参加者)の腕に装着されて加速度を検出し,所定の周期で検出した加速度データをセンシングデータとして,アンテナ101を介して基地局102へ無線送信し,クライアント計算機(PC)103へ送信する。また,有線通信が可能な場合はUSB接続などを介して直接PC103へ送信する。無線,有線を問わず,センシングしたデータを逐次的に送る方法のほか,センサノードに蓄積したデータを一定周期毎に送信する方法でもよい。
 図1において,PC103は複数の腕輪型センサノード1と通信を行い,各腕輪型センサノード1から利用者の動きに応じたセンシングデータを受信し,受信したセンシングデータを解析し,表示データを出力する。出力される表示データは利用者が操作するクライアント計算機(PC)103で閲覧することができる。
As a first embodiment of the present invention, an acceleration data is measured by a sensor attached to a person (user), a respiration frequency during sleep is calculated, and a respiration frequency estimation system (respiration measurement system, life) is presented to the user. Visualization system).
FIG. 1 is an overall view showing an example of the configuration of the respiration frequency estimation system of the present embodiment. The respiration frequency estimation system of the present embodiment uses the bracelet type sensor node 1 having an acceleration sensor as a sensor for detecting the operation (or state) of the user of the system and detects the acceleration of the arm as biological information. Indicates. The bracelet type sensor node 1 is mounted on a user's (or participant's) arm to detect acceleration, and wirelessly transmits the acceleration data detected at a predetermined cycle to the base station 102 via the antenna 101 as sensing data. , To the client computer (PC) 103. If wired communication is possible, the data is transmitted directly to the PC 103 via a USB connection or the like. Regardless of the method of sending the sensed data sequentially regardless of wireless or wired, a method of sending the data accumulated in the sensor node at regular intervals may be used.
In FIG. 1, the PC 103 communicates with a plurality of bracelet type sensor nodes 1, receives sensing data corresponding to the movement of the user from each bracelet type sensor node 1, analyzes the received sensing data, and outputs display data To do. The output display data can be browsed by the client computer (PC) 103 operated by the user.
 図2は,本実施例の呼吸頻度推定システムを構成する腕輪型センサノード1の一例を示す図で,図2(a)は腕輪型センサノード1の正面から見た概略図である。図2(b)は腕輪型センサノード1を側方から見た断面図である。この腕輪型センサノード1は主に利用者の動きを測定する。
 腕輪型センサノード1は,センサや制御装置を格納するケース11と,ケース11を人体の腕に装着するバンド12を備える。
 ケース11の内部には,図2(b)のように図示しない(後に示す)マイクロコンピュータやセンサ6等を備えた基板10が格納される。そして,人体(生体)の動きを測定するセンサ6としては,図中X-Y-Zの3軸の加速度をそれぞれ測定する加速度センサを採用した例を示す。なお,腕輪型センサノード1には図示しない温度センサ,脈拍センサを備え,利用者の体温,脈拍を測定し,加速度とともにセンシングデータとして出力してもよい。また,腕輪型センサノード1が図示しない感圧センサや静電容量センサを備え,利用者が腕時計型センサノード1を装着しているか否かを装着状態として出力しても良い。
FIG. 2 is a diagram showing an example of the bracelet type sensor node 1 constituting the respiration frequency estimation system of the present embodiment, and FIG. 2A is a schematic view seen from the front side of the bracelet type sensor node 1. FIG. 2B is a cross-sectional view of the bracelet type sensor node 1 viewed from the side. This bracelet type sensor node 1 mainly measures the movement of the user.
The bracelet type sensor node 1 includes a case 11 for storing a sensor and a control device, and a band 12 for attaching the case 11 to a human arm.
Inside the case 11 is stored a substrate 10 including a microcomputer (not shown), a sensor 6 and the like (not shown) as shown in FIG. As an example of the sensor 6 that measures the movement of the human body (living body), an acceleration sensor that measures the three-axis accelerations XYZ in the drawing is shown. Note that the bracelet type sensor node 1 may include a temperature sensor and a pulse sensor (not shown), measure the user's body temperature and pulse, and output it as sensing data together with the acceleration. Further, the bracelet type sensor node 1 may be provided with a pressure sensor or a capacitance sensor (not shown), and whether or not the user wears the wristwatch type sensor node 1 may be output as a wearing state.
 図3は,腕輪型センサノード1の基板10に取り付けられた電子回路のブロック図を示す。図3において,基板10には,例えば、基地局102と通信を行うアンテナ5を備えた無線通信部(RF)2と,PC103と有線接続するUSB通信部39と,加速度センサであるセンサ6及び無線通信部2を制御するマイクロコンピュータ3と,マイクロコンピュータ3を間欠的に起動するためのタイマとして機能するリアルタイムクロック(RTC)4と,各部に電力を供給する電池7と,センサ6への電力の供給を制御するスイッチ8が配置される。また,スイッチ8とセンサ6の間には,バイパスコンデンサC1が接続されてノイズの除去や,充放電の速度を低減して無駄な電力消費を防ぐ。  FIG. 3 shows a block diagram of an electronic circuit attached to the substrate 10 of the bracelet type sensor node 1. In FIG. 3, a substrate 10 includes, for example, a wireless communication unit (RF) 2 including an antenna 5 that communicates with a base station 102, a USB communication unit 39 that is wired to a PC 103, a sensor 6 that is an acceleration sensor, A microcomputer 3 that controls the wireless communication unit 2, a real-time clock (RTC) 4 that functions as a timer for intermittently starting the microcomputer 3, a battery 7 that supplies power to each unit, and a power to the sensor 6 A switch 8 for controlling the supply of is provided. Further, a bypass capacitor C1 is connected between the switch 8 and the sensor 6 to eliminate noise and reduce charge / discharge speed to prevent wasteful power consumption. *
 マイクロコンピュータ3は,例えば、演算処理を実行するCPU34と,CPU34で実行するプログラムなどを格納するROM33と,データなどを格納するRAM32と,RTC4からの信号(タイマ割り込み)に基づいてCPU34に割り込みをかける割り込み制御部35と,センサ6から出力されたアナログ信号をデジタル信号に変換するA/Dコンバータ31と,無線通信部2との間でシリアル信号にて信号の送受を行うシリアルコミュニケーションインターフェース(SCI)36と,無線通信部2及びUSB通信部39とスイッチ8を制御するパラレルインターフェース(PIO)37と,マイクロコンピュータ3内の上記各部へクロックを供給する発振部(OSC)30とを含む。そして,マイクロコンピュータ3内の上記各部はシステムバス38を介して接続される。RTC4は,マイクロコンピュータ3の割り込み制御部35に予め設定されている所定の周期で割り込み信号(タイマ割り込み)を出力し,また,SCI36へ基準クロックを出力する。PIO37はCPU34からの指令に応じてスイッチ8のON/OFFを制御し,センサ6への電力供給を制御する。
 腕輪型センサノード1は,例えば所定の周期(例えば,1秒等)でマイクロコンピュータ3を起動して,センサ6からセンシングデータを取得し,取得したセンシングデータに腕輪型センサノード1を特定する識別子とタイムスタンプを付与して基地局102へ送信する。
For example, the microcomputer 3 interrupts the CPU 34 based on a signal (timer interrupt) from the CPU 34 that executes arithmetic processing, a ROM 33 that stores programs executed by the CPU 34, a RAM 32 that stores data and the like, and an RTC 4. A serial communication interface (SCI) that transmits and receives signals as serial signals between the interrupt control unit 35 to be applied, the A / D converter 31 that converts the analog signal output from the sensor 6 into a digital signal, and the wireless communication unit 2. ) 36, a wireless communication unit 2, a USB communication unit 39, a parallel interface (PIO) 37 that controls the switch 8, and an oscillation unit (OSC) 30 that supplies a clock to each of the units in the microcomputer 3. The above-described units in the microcomputer 3 are connected via a system bus 38. The RTC 4 outputs an interrupt signal (timer interrupt) at a predetermined period set in advance in the interrupt control unit 35 of the microcomputer 3 and outputs a reference clock to the SCI 36. The PIO 37 controls ON / OFF of the switch 8 in accordance with a command from the CPU 34 and controls power supply to the sensor 6.
The bracelet type sensor node 1 is an identifier that activates the microcomputer 3 at a predetermined cycle (for example, 1 second, for example), acquires sensing data from the sensor 6, and identifies the bracelet type sensor node 1 in the acquired sensing data. To the base station 102 with a time stamp.
 図4は,図1に示した呼吸頻度推定システムの各構成要素を示すブロック図である。腕輪型センサノード1が送信したセンシングデータは,基地局102を介してクライアント計算機(PC)103の記録装置1100のセンシングデータテーブル1150に蓄積される。もしくは図示しない有線通信を介して直接PC103と通信してもよい。
 PC103は,各種情報を表示する表示装置(出力装置)1031と、利用者の操作によって様々な情報の入力を可能とする入力装置1032を具備する。表示装置1031は液晶ディスプレイやCRTディスプレイ等の表示端末のほか,プリンタや画像ファイル出力でも良い。入力装置1032はキーボード,マウス等の入力用機器である。また,表示装置1031と入力装置1032はタッチパネル式ディスプレイのような,両方の機能を備える単体の機器でも良い。
FIG. 4 is a block diagram showing each component of the respiratory frequency estimation system shown in FIG. Sensing data transmitted from the bracelet type sensor node 1 is accumulated in the sensing data table 1150 of the recording device 1100 of the client computer (PC) 103 via the base station 102. Or you may communicate with PC103 directly via wired communication which is not illustrated.
The PC 103 includes a display device (output device) 1031 that displays various types of information, and an input device 1032 that allows various information to be input by user operations. The display device 1031 may be a printer or an image file output in addition to a display terminal such as a liquid crystal display or a CRT display. The input device 1032 is an input device such as a keyboard and a mouse. The display device 1031 and the input device 1032 may be a single device having both functions, such as a touch panel display.
 またPC103は,プロセッサ107と,メモリ108及び記録装置1100をさらに備える。記録装置1100は,後述する各種プログラム,各種データテーブルを記録するものであり,例えば,ハードディスクドライブやCDーROMドライブ,フラッシュメモリなどである。なお,複数の記録装置に各種プログラム,各種データテーブルを分割して記録するようにしてもよい。 The PC 103 further includes a processor 107, a memory 108, and a recording device 1100. The recording device 1100 records various programs and various data tables, which will be described later, such as a hard disk drive, a CD-ROM drive, and a flash memory. Various programs and various data tables may be divided and recorded in a plurality of recording devices.
 プロセッサ107は,記録装置1100に記録されている各種プログラムをメモリ108に読み出して実行することにより各種機能を実現する。具体的には,データ集計プログラム200を実行することにより,利用者の腕の加速度センサで測定されたセンシングデータを集計し,単位時間(例えば,1分間)毎の集計値を算出し,記録装置1100の集計データテーブル250に格納する。また,睡眠期間抽出プログラム300を実行することにより,算出した単位時間毎の集計値を解析し,全ての睡眠期間を検出し,記録装置1100の睡眠期間データテーブル350に格納する。また呼吸頻度推定プログラムを実行することにより,検出した睡眠期間から単位時間(例えば,一分間)毎の呼吸頻度を推定し,記録装置1100の呼吸頻度データテーブル450に格納する。 The processor 107 implements various functions by reading various programs recorded in the recording device 1100 into the memory 108 and executing them. Specifically, by executing the data totaling program 200, the sensing data measured by the acceleration sensor of the user's arm is totaled, a total value for each unit time (for example, one minute) is calculated, and the recording device 1100 is stored in the aggregate data table 250. Also, by executing the sleep period extraction program 300, the calculated total value for each unit time is analyzed, and all sleep periods are detected and stored in the sleep period data table 350 of the recording device 1100. Also, by executing the respiration frequency estimation program, the respiration frequency per unit time (for example, one minute) is estimated from the detected sleep period and stored in the respiration frequency data table 450 of the recording device 1100.
 なお,以下では,PC103が,データ集計プログラム200と睡眠期間抽出プログラム300と呼吸頻度推定プログラム400を定期的な周期で実行し,もしくは腕時計型センサノード1との通信を起因として実行し,更に入力装置1032の操作,もしくはPC103の起動,もしくは呼吸頻度推定プログラム400の実行の終了を起因として表示装置1031に表示データを提示する例を示す。 In the following, the PC 103 executes the data totaling program 200, the sleep period extraction program 300, and the respiration frequency estimation program 400 at regular intervals, or based on communication with the wristwatch-type sensor node 1, and further inputs An example is shown in which display data is presented on the display device 1031 due to the operation of the device 1032, the activation of the PC 103, or the end of execution of the respiration frequency estimation program 400.
 図5は,本実施例のシステムで行われるデータ処理の全体的な流れを示すフローチャート図である。まず、図5を参照して全体の処理の概略を示し、後に各ステップのより具体的な例を説明する。
 まず,ステップS1では,腕輪型センサノード1が送信したセンシングデータを基地局102がPC103へ転送し,PC103のセンシングデータテーブル1150にセンシングデータを蓄積する。また,センシングデータに付与されている,センサノードを特定するための識別子と当該センシングデータを取得した時刻を示す時刻情報もセンシングデータに対応してセンシングデータテーブル1150に蓄積する。さらに,PC103(例えば、プロセッサ107、以下の各ステップも同様)がデータ集計プログラム200を実行して,記録装置1100に蓄積されたセンシングデータから単位時間毎の運動頻度を算出し,記録装置1100の集計データテーブル250に格納する。なお,データ集計プログラム200を所定の周期(例えば,5分間)毎に実行しても良いし,腕輪型センサノード1との通信開始や終了を起因として実行しても良いし,入力装置1032の操作を起因として実行しても良い。
FIG. 5 is a flowchart showing the overall flow of data processing performed in the system of this embodiment. First, an overview of the entire process will be shown with reference to FIG. 5, and a more specific example of each step will be described later.
First, in step S <b> 1, the base station 102 transfers the sensing data transmitted from the bracelet type sensor node 1 to the PC 103 and accumulates the sensing data in the sensing data table 1150 of the PC 103. Further, an identifier assigned to the sensing data for identifying the sensor node and time information indicating the time when the sensing data is acquired are also stored in the sensing data table 1150 corresponding to the sensing data. Furthermore, the PC 103 (for example, the processor 107, the following steps are also the same) executes the data totaling program 200, calculates the exercise frequency per unit time from the sensing data stored in the recording apparatus 1100, and the recording apparatus 1100 Stored in the aggregate data table 250. The data aggregation program 200 may be executed every predetermined period (for example, 5 minutes), may be executed due to the start or end of communication with the bracelet type sensor node 1, or the input device 1032 The operation may be performed as a cause.
 次に,ステップS2では,PC103は睡眠期間抽出プログラム300を実行して,集計データテーブル250に格納された集計データから利用者が睡眠状態にあると推定される領域を検出し,全ての睡眠領域の開始時刻と終了時刻を組みとして睡眠期間データテーブル350に格納する。また,PC103は、一日の最大の睡眠期間である主睡眠を検出し,上記格納した睡眠領域のうち主睡眠であるものに対して主睡眠タグを付加して睡眠分析データテーブル350に格納する。なお睡眠期間抽出プログラム300を所定の周期(例えば,5分間)毎に実行しても良いし,データ集計プログラム200の終了を起因として実行しても良い。 Next, in step S <b> 2, the PC 103 executes the sleep period extraction program 300 to detect an area where the user is estimated to be in a sleep state from the aggregate data stored in the aggregate data table 250, and all sleep areas Is stored in the sleep period data table 350 as a set. In addition, the PC 103 detects main sleep that is the maximum sleep period of the day, adds a main sleep tag to the main sleep among the stored sleep areas, and stores it in the sleep analysis data table 350. . The sleep period extraction program 300 may be executed every predetermined cycle (for example, 5 minutes), or may be executed due to the end of the data aggregation program 200.
 次に,ステップS3では,PC103は呼吸頻度推定プログラム400を実行する。ここでは、PC103は、睡眠データテーブル350に格納された各睡眠期間について,当該期間内のセンシングデータをセンシングデータテーブル1150から取得し,単位時間(例えば,1秒)毎の,所定の期間(例えば,5分)の周波数スペクトルを算出し,最大パワーを持つ周波数成分を呼吸周波数候補として検出する。例えば、該最大パワー値が充分に突出している場合には(60*周波数)を当該日時の分間呼吸頻度として確定して呼吸頻度データテーブル450に格納し,充分に突出していない場合は当該日時を呼吸未検出としてタグを付加して呼吸頻度データテーブル450に格納する。なお呼吸頻度推定プログラム400を所定の周期(例えば,5分間)毎に実行しても良いし,睡眠期間抽出プログラム300の終了を起因として実行しても良い。 Next, in step S3, the PC 103 executes the respiration frequency estimation program 400. Here, for each sleep period stored in the sleep data table 350, the PC 103 obtains sensing data within the period from the sensing data table 1150, and a predetermined period (for example, 1 second) (for example, 1 second) , 5 minutes) and a frequency component having the maximum power is detected as a respiratory frequency candidate. For example, if the maximum power value protrudes sufficiently, (60 * frequency) is determined as the minute respiration frequency of the relevant date and time and is stored in the respiration frequency data table 450. A tag is added to indicate that no respiration has been detected, and the respiration frequency data table 450 is stored. The respiration frequency estimation program 400 may be executed every predetermined cycle (for example, 5 minutes), or may be executed due to the end of the sleep period extraction program 300.
 次に,ステップS4では,呼吸頻度推定プログラム400により求められ、格納された呼吸頻度をクライアント計算機(PC)103の表示部1031に提示する。
 図6は,PC103のデータ集計プログラム200で行われる処理の一例を示すフローチャートである。各ステップは、PC103のプロセッサ107が実行する。
 まずステップS11では,利用者の保有するセンサの識別子に対応するセンシングデータをセンシングデータテーブル1150から読み込む。ここで利用者の保有するセンサの識別子は,例えば基地局102と通信している腕時計型センサノード1から取得しても良いし,入力装置102で利用者により指定された識別子でもよいし,図示しない利用者センサ対応テーブルから選択した任意の識別子でも良い。ここで読み込むセンシングデータの量は,センシングデータの集計周期である所定の周期(例えば,5分間),あるいは過去のデータ集計プログラム200の実行によって既に格納されている最後の集計時刻以降全て,等に設定すればよい。
Next, in step S4, the respiratory frequency obtained and stored by the respiratory frequency estimation program 400 is presented on the display unit 1031 of the client computer (PC) 103.
FIG. 6 is a flowchart illustrating an example of processing performed by the data totalization program 200 of the PC 103. Each step is executed by the processor 107 of the PC 103.
First, in step S11, sensing data corresponding to a sensor identifier held by the user is read from the sensing data table 1150. Here, the identifier of the sensor owned by the user may be acquired from, for example, the wristwatch type sensor node 1 communicating with the base station 102, or may be an identifier designated by the user with the input device 102, It may be an arbitrary identifier selected from the user sensor correspondence table. The amount of sensing data to be read here is a predetermined period (for example, 5 minutes) that is an aggregation period of sensing data, or everything after the last aggregation time already stored by the execution of the past data aggregation program 200, etc. You only have to set it.
 次に,ステップS12~S14では,読み込んだセンシングデータの加速度データについて所定の時間間隔(例えば,1分)毎の集計値を算出する。本実施形態では,所定の時間間隔内での腕輪型センサノード1の装着者(利用者)の運動の頻度を示すゼロクロス回数を集計値として用いる。
 腕輪型センサノード1が検出したセンシングデータにはX,Y,Z軸の加速度データが含まれているので,X,Y,Zの3軸の加速度のスカラー量=√(X^2+Y^2+Z^2)を算出し(ステップS12),求めたスカラー量をフィルタ(バンドパスフィルタ)処理することで所定の周波数帯域(例えば,0.1Hz~5Hz)のみを抽出しノイズ成分を除去する(ステップS13)。バンドパスフィルタを適用したデータは、例えば後の表示などのため適宜保存してもよい。そして,図7に示すように、求めたスカラー量が所定の閾値(例えば,0.05G)を通過する値をゼロクロス回数として算出し,ゼロクロス回数が所定時間間隔内に出現する頻度を算出し,この出現頻度を,所定の時間間隔(1分間)の運動頻度として出力する(ステップS14)。この運動頻度の算出結果は図8で示すように単位時間毎の運動頻度を時系列的にソートしたデータとなる。なお,運動頻度は,X,Y,Zの各方向の加速度の値が正と負に振動した回数(振動数)を各方向の所定時間内に数えて合計するなど他の方法でもよいが,本実施例では,計算を簡略化することができるため,ゼロクロス回数を算出する方法を採用している。
Next, in steps S12 to S14, a total value is calculated for each predetermined time interval (for example, 1 minute) for the acceleration data of the read sensing data. In the present embodiment, the number of zero crosses indicating the frequency of exercise of the wearer (user) of the bracelet type sensor node 1 within a predetermined time interval is used as the total value.
Since the sensing data detected by the bracelet type sensor node 1 includes X, Y, and Z-axis acceleration data, the scalar amount of the X, Y, and Z-axis acceleration = √ (X ^ 2 + Y ^ 2 + Z ^ 2) is calculated (step S12), and the obtained scalar quantity is filtered (bandpass filter) to extract only a predetermined frequency band (for example, 0.1 Hz to 5 Hz) and remove noise components (step S13). ). The data to which the band pass filter is applied may be appropriately stored for later display, for example. Then, as shown in FIG. 7, a value at which the obtained scalar amount passes a predetermined threshold (for example, 0.05 G) is calculated as the number of zero crosses, and the frequency at which the number of zero crosses appears within a predetermined time interval is calculated. This appearance frequency is output as an exercise frequency at a predetermined time interval (1 minute) (step S14). The result of calculating the exercise frequency is data obtained by sorting the exercise frequency for each unit time in time series as shown in FIG. The motion frequency may be other methods, such as counting the number of times that the acceleration value in each direction of X, Y, and Z vibrates positively and negatively (frequency) within a predetermined time in each direction. In this embodiment, since the calculation can be simplified, a method of calculating the number of zero crossings is employed.
 さらに,所定時間間隔内のデータの状態を表すフラグを算出する(ステップS15)。まず,所定時間間隔内に存在するデータのうち,有効なデータ(即ち,所定の範囲内のX,Y,Zの3軸のデータが欠損値以外の値として存在するもの)の割合が所定の閾値(例えば0.8)より少ない場合,該時間間隔を欠損データとして確定する。また腕時計型センサノード1が装着状態を出力する場合,該時間間隔が欠損でなく所定時間間隔内に存在するデータのうち装着中である割合が所定の閾値(例えば0.8)より少ない場合,該時間間隔を非装着データとして確定する。以上により,該時間間隔のデータの状態のフラグを「データ有り」「欠損値」「非装着」のうち一つに決定する。
 データ集計プログラム200の実行により,所定の時間間隔毎に,運動頻度及びデータフラグを求め,図9に示すように,所定の時間間隔毎の集計データを生成し,記録装置1100の集計データテーブル250へ腕輪型センサノード1の装着者の識別子251と,腕輪型センサノード1の識別子252と共に蓄積する(ステップS16)。
Further, a flag representing the state of data within a predetermined time interval is calculated (step S15). First, of the data existing within a predetermined time interval, the ratio of valid data (that is, data in which three-axis data of X, Y, and Z within a predetermined range exist as values other than missing values) is predetermined. If it is less than a threshold (for example, 0.8), the time interval is determined as missing data. When the wristwatch type sensor node 1 outputs the wearing state, when the time interval is not missing and the ratio of wearing data within the predetermined time interval is less than a predetermined threshold (for example, 0.8), The time interval is determined as non-wearing data. As described above, the flag of the data state at the time interval is determined as one of “data present”, “missing value”, and “non-attached”.
By executing the data totaling program 200, the exercise frequency and the data flag are obtained for each predetermined time interval, and total data for each predetermined time interval is generated as shown in FIG. It accumulates together with the identifier 251 of the wearer of the bracelet type sensor node 1 and the identifier 252 of the bracelet type sensor node 1 (step S16).
 図9は,集計データテーブル250のフォーマットを示す説明図である。腕輪型センサノード1の装着者(呼吸頻度推定システムの利用者)の識別子を格納するユーザID251と,センシングデータに含まれる腕輪型センサノード1の識別子を格納するセンサデータID252と,所定の時間間隔の開始時刻(測定日時)を格納する測定日時253と,データ集計プログラム200の実行により演算した運動頻度を格納する運動頻度254と,データ集計プログラム200の実行により求めたデータの状態フラグを格納するフラグ255からひとつのエントリを構成する。なお,利用者の識別子は,腕輪型センサノード1の識別子に基づいて予め設定した図示しないテーブルから参照すればよい。 FIG. 9 is an explanatory diagram showing the format of the total data table 250. A user ID 251 for storing an identifier of a wearer of the bracelet type sensor node 1 (a user of the respiratory frequency estimation system), a sensor data ID 252 for storing an identifier of the bracelet type sensor node 1 included in the sensing data, and a predetermined time interval Stores the measurement date and time 253 for storing the start time (measurement date and time), the exercise frequency 254 for storing the exercise frequency calculated by the execution of the data totaling program 200, and the status flag of the data obtained by the execution of the data totaling program 200 One entry is formed from the flag 255. The user identifier may be referred to from a table (not shown) set in advance based on the identifier of the bracelet type sensor node 1.
 図10は,PC103の睡眠期間抽出プログラム300で行われる処理の一例を示すフローチャートである。各ステップは、PC103のプロセッサ107が実行する。
 まず,データ集計プログラム200の実行により集計した単位時間集計データを集計データテーブル250から読み込む(ステップS21)。ここで読み込む集計データの量は,例えば過去の睡眠分析プログラム300の実行によって既に格納されている最後の睡眠期間の終了時刻以降全て,等に設定すればよい。例えば、処理の対象となった集計データは集計データテーブル250から削除するか、処理済のフラグなどをつけてもよい。
FIG. 10 is a flowchart illustrating an example of processing performed by the sleep period extraction program 300 of the PC 103. Each step is executed by the processor 107 of the PC 103.
First, the unit time aggregate data aggregated by the execution of the data aggregation program 200 is read from the aggregate data table 250 (step S21). The amount of the total data read here may be set to all after the end time of the last sleep period already stored by the execution of the past sleep analysis program 300, for example. For example, the aggregate data to be processed may be deleted from the aggregate data table 250, or a processed flag may be added.
 次に,ステップS22では,読み込んだ集計データから睡眠状態であると推定される期間群を検出する。睡眠中の運動頻度は極めて低いが,睡眠中でも人体は寝返りなどの運動を行うため,運動頻度はゼロにはならない。睡眠を判定する手法はいくつか知られており,例えば,Cole法(非特許文献2)などを適用すればよい。このような手法により検出された各期間の開始時刻と終了時刻を睡眠期間の候補群として,図示しない一時ストレージ等に保持する。また,利用者がセンサノードを装着していない場合は運動頻度がゼロに近くなり,睡眠として判定されてしまう場合もあるが,例えば腕時計型センサノードが非装着判定手段を備えている場合は睡眠として判定せず,さらに単位時間集計データテーブル250を読み込む際にフラグ258が非装着を示すデータは運動頻度が高いデータと同等に扱うことによっても,これを防ぐことが可能である。 Next, in step S22, a period group estimated to be in a sleep state is detected from the read aggregated data. Although the frequency of exercise during sleep is extremely low, the human body does exercise such as turning over during sleep, so the frequency of exercise does not become zero. Several methods for determining sleep are known. For example, the Cole method (Non-patent Document 2) may be applied. The start time and end time of each period detected by such a method are held as a sleep period candidate group in a temporary storage (not shown) or the like. In addition, when the user does not wear a sensor node, the exercise frequency is close to zero and may be determined as sleep. For example, when a wristwatch-type sensor node has a non-wearing determination unit, sleep is not possible. It is also possible to prevent this by treating the data indicating that the flag 258 is not attached when reading the unit time totalization data table 250 as equivalent to data with high exercise frequency.
 次に,ステップS23では,睡眠期間の候補の中で近接するもの同士を結合する。睡眠検出の手法によっては,例えば目覚まし時計を止めるために一時的に起床し,再び睡眠に入った場合でも一時的に起きた時刻で睡眠期間候補が区切られてしまう。しかし,生理活動としての睡眠は確かにそこで区切れているが,生活行動としての睡眠を考える場合そこで区切れることは望ましくない場合もある。そのため,睡眠期間候補の終了後,所定時間(例えば30分)以内に次の睡眠領域候補が開始している場合,二つの睡眠期間候補を結合し,一つの大きな睡眠期間として扱う。このようにして睡眠期間候補群の中で結合できるものを探索し,結合する。 Next, in step S23, the adjacent sleep period candidates are combined. Depending on the method of sleep detection, for example, even if the user wakes up temporarily to stop the alarm clock and enters sleep again, the sleep period candidates are divided at the time of the temporary wakeup. However, although sleep as a physiological activity is certainly delimited there, there are cases where it is not desirable to demarcate there as a sleep as a living activity. Therefore, when the next sleep area candidate starts within a predetermined time (for example, 30 minutes) after the end of the sleep period candidate, the two sleep period candidates are combined and handled as one large sleep period. Thus, what can be combined in the sleep period candidate group is searched and combined.
 次に,ステップS24では,睡眠期間の候補として不適合であるものを排除する。一例としてあげる方法においては,まず継続時間が所定時間(例えば10分)以下の睡眠期間候補は排除する。また,候補群の中の最後の睡眠期間候補の終了時刻がもし睡眠分析プログラム300の実行により読み込んだ集計データの最新測定時刻から所定時間(例えば30分)以内である場合,次回の睡眠分析プログラム300の実行で新しく候補に挙がる睡眠期間と結合できる可能性があるため,これも排除する(次回の処理にまわす)。以上のように処理した睡眠期間候補群を睡眠期間群として確定する。 Next, in step S24, those that are incompatible as sleep period candidates are excluded. In the method given as an example, first, sleep period candidates whose duration is a predetermined time (for example, 10 minutes) or less are excluded. If the end time of the last sleep period candidate in the candidate group is within a predetermined time (for example, 30 minutes) from the latest measurement time of the total data read by execution of the sleep analysis program 300, the next sleep analysis program Since there is a possibility that it can be combined with the sleep period newly listed as a candidate in the execution of 300, this is also excluded (returned to the next processing). The sleep period candidate group processed as described above is determined as the sleep period group.
 次に,ステップS25では,ステップS24で確定した睡眠期間群の中から,主睡眠を抽出し,睡眠の種類を「主睡眠」として確定し,それ以外の睡眠期間を「うたた寝」として確定する。より具体的には、まず各睡眠期間の所属するカレンダー日を算出する。これは,睡眠領域の終了時刻が所定時刻,例えば0時から20時までであるならば同日,20時から24時までであるならば次の日に所属するものとする。この基準は,一般人の生活において20時手前に終わる睡眠は昼寝に含まれると考える事も出来るからである。そして,例えば7月23日の17時に開始し19時半に終了する睡眠領域は7月23日に属し,例えば7月23日の16時半に開始し20時半に終了する睡眠領域は,7月24日に属する。こうして算出したカレンダー日の最古のカレンダー日から最新のカレンダー日まで,各カレンダー日において最長の所属睡眠領域を導き,これらをそのカレンダー日の「主睡眠」として確定する。以上で算出した「主睡眠」以外の睡眠の種類を「うたた寝」として確定する。 最後に,ステップS26では,確定した睡眠期間群を図11に示すように,記録装置1100の睡眠分析データテーブル350に蓄積する。この時,各睡眠期間に睡眠分析データテーブル350内で一意となるような識別子である睡眠IDを割り当てる。これは例えば最後に割り当てられた睡眠IDに1を足した値を利用する,等の選び方でよい。 Next, in step S25, main sleep is extracted from the sleep period group determined in step S24, the sleep type is determined as "main sleep", and the other sleep periods are determined as "nap". More specifically, first, the calendar date to which each sleep period belongs is calculated. This means that if the end time of the sleep region is a predetermined time, for example, from 0 o'clock to 20 o'clock, it belongs to the same day, and if it is from 20 o'clock to 24 o'clock, it belongs to the next day. This standard is because it can be considered that sleep that ends before 20 o'clock in the ordinary life is included in the nap. And, for example, the sleep region that starts at 17:00 on July 23 and ends at 19:30 belongs to July 23, for example, the sleep region that starts at 16:30 on July 23 and ends at 20:30 It belongs to July 24th. From the earliest calendar date calculated in this way to the latest calendar date, the longest belonging sleep area in each calendar day is derived, and these are determined as “main sleep” on that calendar day. The type of sleep other than the “main sleep” calculated above is determined as “snapping”. Finally, in step S26, the confirmed sleep period group is accumulated in the sleep analysis data table 350 of the recording device 1100 as shown in FIG. At this time, a sleep ID which is an identifier unique within the sleep analysis data table 350 is assigned to each sleep period. This may be selected, for example, by using a value obtained by adding 1 to the sleep ID assigned last.
 図11は,睡眠期間データテーブル350のフォーマットを示す説明図である。腕輪型センサノード1の装着者の識別子を格納するユーザID351と,睡眠の識別子を格納する睡眠ID352と,睡眠期間の開始時刻を格納する睡眠開始日時353と,睡眠期間の終了時刻を格納する睡眠終了時刻354と,睡眠の種類(主睡眠であるか,うたた寝であるか)を格納する睡眠の種類355からひとつのエントリを構成する。 FIG. 11 is an explanatory diagram showing the format of the sleep period data table 350. User ID 351 for storing the identifier of the wearer of the bracelet type sensor node 1, sleep ID 352 for storing the sleep identifier, sleep start date and time 353 for storing the start time of the sleep period, and sleep for storing the end time of the sleep period One entry is configured from the end time 354 and the sleep type 355 that stores the sleep type (whether it is main sleep or nap).
 図12は,PC103の呼吸推定プログラム400で行われる処理の一例を示すフローチャートである。各ステップは、PC103のプロセッサ107が実行する。
 ステップS31では,睡眠期間抽出プログラム300で抽出された睡眠期間を睡眠期間データテーブル350から読み込む。ここで読み込む睡眠期間の量は,例えば過去の呼吸推定プログラム400の実行によって既に格納されている最後の呼吸データの日時以降全て,等に設定すればよい。
FIG. 12 is a flowchart illustrating an example of processing performed by the respiration estimation program 400 of the PC 103. Each step is executed by the processor 107 of the PC 103.
In step S31, the sleep period extracted by the sleep period extraction program 300 is read from the sleep period data table 350. The amount of the sleep period read here may be set to, for example, all after the date and time of the last respiratory data already stored by executing the past respiratory estimation program 400.
 次に,ステップS32~ステップS37では,ここで取得した各睡眠期間について個別に処理を行う。
 ステップS32では,上記ステップS31で取得した睡眠期間のうち一つの期間について,その期間内に含まれる,当該利用者が装着する腕時計型センサノード1の識別子に対応するセンサデータをセンシングデータテーブル1150から読み込む。
 次に,ステップS33では前記ステップS32で取得したセンサデータについて,単位時間(例えば,1分)毎に,その周辺の所定の期間(例えば,5分)のセンシングデータを切り出し,スカラー化する。腕輪型センサノード1が検出したセンシングデータのX,Y,Z軸の加速度データのスカラー量=√(X^2+Y^2+Z^2)を算出する。
 次に,ステップS34では,求めたスカラー量をフィルタ(バンドパスフィルタ)処理することで所定の周波数帯域(例えば,0.01Hz~1Hz)のみを抽出しノイズ成分を除去する。
 次に,ステップS35では,前ステップS34でフィルタ処理したスカラー量について周波数スペクトルを求める。該スカラー量についてFFT(高速フーリエ変換)を行うことで,図21aに例示するように,各周波数における強度を算出する。この時,各周波数の強度を,前後周波数成分の強度も含めて平均化することで,スペクトルを平滑化しても良い。
 次に,ステップS36では,前ステップS35で求めた周波数スペクトルから最大強度を持つ周波数を,主周波数として取得する。
 次に,ステップS37では,前ステップS36で求めた主周波数の,呼吸周波数としての妥当性を検証する。
Next, in step S32 to step S37, each sleep period acquired here is individually processed.
In step S32, sensor data corresponding to the identifier of the wristwatch sensor node 1 worn by the user included in the sleep period acquired in step S31 is received from the sensing data table 1150. Read.
Next, in step S33, the sensor data acquired in step S32 is cut out for every predetermined time (for example, 1 minute) and surrounding data for a predetermined period (for example, 5 minutes) and is converted into a scalar. The scalar amount of the acceleration data of the X, Y, and Z axes of the sensing data detected by the bracelet type sensor node 1 = √ (X ^ 2 + Y ^ 2 + Z ^ 2) is calculated.
Next, in step S34, the obtained scalar quantity is filtered (bandpass filter) to extract only a predetermined frequency band (for example, 0.01 Hz to 1 Hz) and remove noise components.
Next, in step S35, a frequency spectrum is obtained for the scalar quantity filtered in the previous step S34. By performing FFT (Fast Fourier Transform) on the scalar quantity, the intensity at each frequency is calculated as illustrated in FIG. 21a. At this time, the spectrum may be smoothed by averaging the intensity of each frequency including the intensity of the front and rear frequency components.
Next, in step S36, the frequency having the maximum intensity is acquired as the main frequency from the frequency spectrum obtained in the previous step S35.
Next, in step S37, the validity of the main frequency obtained in the previous step S36 as a respiratory frequency is verified.
 例えば,主周波数が所定の周波数領域内(例えば,0.016Hz~0.33Hz)であるかどうかを検証し,それ以外である場合は呼吸としては早すぎる,もしくは遅すぎるとして除外しても良い。
 また,別の例としては,主周波数の強度が所定の閾値以下であった場合には,ノイズの可能性が高いため除外しても良い。
 また,別の例としては,主周波数(ピーク)の強度が他の周波数よりも突出する度合いを評価し,突出度合いが少ない場合はノイズの可能性が高いため除外しても良い。突出する度合いを評価する手段としては,例えば下記ピークスコア(式2)を用いても良い。
Figure JPOXMLDOC01-appb-M000002
このピークスコアが予め定められた閾値(例えば,8.0)を下回る場合は,突出度合いが足りないと評価し、除外する。
 以上で例示した条件で除外された場合は,当該日時の呼吸は「未検出」,除外されなかった場合は「検出成功」と判断する。
For example, it is verified whether the main frequency is within a predetermined frequency range (for example, 0.016 Hz to 0.33 Hz). Otherwise, it may be excluded as being too early or too late for respiration. .
As another example, when the intensity of the main frequency is less than or equal to a predetermined threshold value, the possibility of noise may be high and may be excluded.
As another example, the degree to which the intensity of the main frequency (peak) protrudes from other frequencies is evaluated. If the degree of protrusion is small, the possibility of noise is high and may be excluded. As a means for evaluating the degree of protrusion, for example, the following peak score (Formula 2) may be used.
Figure JPOXMLDOC01-appb-M000002
If this peak score falls below a predetermined threshold (for example, 8.0), it is evaluated that the degree of protrusion is insufficient and is excluded.
When excluded under the conditions exemplified above, it is determined that the breathing at the date and time is “not detected”, and when it is not excluded, “detected successfully”.
 次に,ステップS38では,前ステップS36で算出した主周波数に60をかける事で,分毎の呼吸頻度を算出する。
 最後に,ステップS39では,以上で算出した,各睡眠期間内の,各日時における分毎の呼吸頻度を,記録装置1100の呼吸推定データテーブル450に蓄積する。この時呼吸頻度は,ステップS37で当該日時の呼吸が「未検出」であると判断された場合は,未検出を表す値(例えば,「null」)を保持し,それ以外の場合はステップS38で算出した分毎の呼吸頻度を保持する。
Next, in step S38, the respiratory frequency per minute is calculated by multiplying the main frequency calculated in the previous step S36 by 60.
Finally, in step S39, the respiration frequency for each minute at each date and time within each sleep period calculated as described above is accumulated in the respiration estimation data table 450 of the recording device 1100. At this time, if it is determined in step S37 that the breathing at the date and time is “undetected”, the respiration frequency holds a value indicating non-detection (for example, “null”), and otherwise, step S38. Holds the respiration frequency for each minute calculated in.
 また,以上の説明ではFFT(高速フーリエ変換)を用いて主となる周波数成分を検出する例を示したが,加速度データ内に含まれる周波数成分の強度が検出出来る方法であれば何でも良く,例えば自己相関を求めても良い。自己相関を用いる場合の主となる周波数成分とは,例えばτ=0の山以降の次に現れる山の頂点としても良い。また,ステップS37における呼吸周波数としての妥当性は,例えば選択されたτにおける相関係数が閾値以上である場合,などを含んでも良い。 In the above description, the example of detecting the main frequency component using FFT (Fast Fourier Transform) has been shown. However, any method that can detect the intensity of the frequency component included in the acceleration data may be used. Autocorrelation may be obtained. The main frequency component in the case of using autocorrelation may be, for example, the peak of a peak that appears next to the peak after τ = 0. Further, the validity as the respiration frequency in step S37 may include, for example, a case where the correlation coefficient at the selected τ is greater than or equal to a threshold value.
 また,以上の説明では主となる一つの周波数成分を検出し,この妥当性を検証し,妥当である場合は呼吸頻度として採用する例を示したが,例えば複数の突出した周波数成分を検出しても良い。その場合は,例えば上記ステップS37の説明のように,それぞれの妥当性を検証し,妥当であった周波数成分が複数ある場合は,例えば最も妥当であった周波数成分を選択しても良いし(例えば上で例示した条件から妥当性を示す指標を求めても良い),当該日時の一つ手前の日時で検出された呼吸頻度に最も近い周波数成分を選択しても良い。また別の手段として,これまでに当該装着者に関して算出された睡眠期間の呼吸数を平均化することで,就寝開始後の経過時間毎の平均呼吸頻度(呼吸トレンド)を算出し,当該日時の就寝開始後経過時間を算出し,呼吸トレンドに最も近い周波数成分を選択しても良い。 In the above description, one main frequency component is detected, its validity is verified, and when it is valid, the example is adopted as the respiratory frequency. For example, a plurality of protruding frequency components are detected. May be. In that case, for example, as described in step S37 above, the validity of each is verified, and if there are a plurality of valid frequency components, the most appropriate frequency component may be selected, for example ( For example, an index indicating validity may be obtained from the conditions exemplified above), or the frequency component closest to the respiratory frequency detected at the date and time immediately before the date and time may be selected. As another means, the average respiratory frequency (breathing trend) for each elapsed time after the start of bedtime is calculated by averaging the respiratory rate calculated for the wearer so far. The elapsed time after bedtime start may be calculated, and the frequency component closest to the respiratory trend may be selected.
 また,以上の説明では単位時間(例えば,1分)毎に,所定の期間(例えば,5分)のセンシングデータを切り出し,呼吸頻度を検出し,呼吸推定データテーブル450に蓄積する例を示したが,例えばより細かい間隔(例えば,1秒)毎に,所定の期間(例えば,5分)のセンシングデータを切り出し,呼吸頻度を検出し,所定の単位時間(例えば,1分)毎に,単位時間内に検出された全ての呼吸頻度を平均化することで,突発的なノイズに強くしても良い。 In the above description, an example in which sensing data for a predetermined period (for example, 5 minutes) is cut out every unit time (for example, 1 minute), the respiration frequency is detected, and accumulated in the respiration estimation data table 450 is shown. However, for example, at a finer interval (for example, 1 second), the sensing data for a predetermined period (for example, 5 minutes) is cut out, the respiration frequency is detected, and the unit for each predetermined unit time (for example, 1 minute). By averaging all breathing frequencies detected in time, it may be strong against sudden noise.
 図13は,呼吸推定データテーブル450のフォーマットを示す説明図である。腕輪型センサノード1の装着者の識別子を格納するユーザID451と,所定の時間間隔の日時を格納する日時452と,推定された呼吸頻度,もしくは妥当な呼吸が検出されなかった場合には未検出を表す値(例えば,null)を格納する呼吸頻度453を保持する。 FIG. 13 is an explanatory diagram showing the format of the respiration estimation data table 450. User ID 451 for storing the identifier of the wearer of the bracelet type sensor node 1; date and time 452 for storing the date and time of a predetermined time interval; if the estimated respiration frequency or reasonable respiration is not detected, it is not detected A respiration frequency 453 for storing a value (for example, null) representing the value is held.
 図25は、実施例1におけるライアントPC103の機能ブロック図である。
 クライアントPC103は、例えば、主周期成分検出部2501と、呼吸情報取得成功判定部2502と、蓄積部2503とを有する。各部は、上述のようにプロセッサ107が呼吸推定プログラム400を実行することで実現される。
 主周期成分検出部2501は、周期的に過去所定期間のセンシングデータを集計し、その主となる主周期成分を検出する。図12のステップS32~S36の処理に相当する。呼吸情報取得成功判定部2502は、予め定められた判定条件に従い、該主周期成分が呼吸に依る周期成分として有効か否かを判定する。図12のステップS37の処理に相当する。蓄積部2503は、呼吸に依る周期成分として有効であると判定された場合にその主周期成分の周波数を呼吸頻度として時刻情報と対応して蓄積する。図4の呼吸頻度データテーブル450、図12のステップS374の処理に相当する。
FIG. 25 is a functional block diagram of the client PC 103 according to the first embodiment.
The client PC 103 includes, for example, a main cycle component detection unit 2501, a respiratory information acquisition success determination unit 2502, and a storage unit 2503. Each unit is realized by the processor 107 executing the respiration estimation program 400 as described above.
The main period component detection unit 2501 periodically collects the sensing data of the past predetermined period and detects the main period component. This corresponds to the processing in steps S32 to S36 in FIG. The respiration information acquisition success determination unit 2502 determines whether or not the main cycle component is effective as a respiration-related periodic component according to a predetermined determination condition. This corresponds to the process of step S37 in FIG. When it is determined that the accumulating unit 2503 is effective as a periodic component depending on respiration, the accumulating unit 2503 accumulates the frequency of the main periodic component in association with time information as a respiration frequency. This corresponds to the processing of the respiration frequency data table 450 in FIG. 4 and step S374 in FIG.
 図14は,クライアント計算機であるPC103の表示部1031に表示される睡眠表示画面1200の画面イメージである。PC103が睡眠表示画面1200を表示させるのは,入力装置1032を介した利用者からの表示要求を受け付けたことを起因としても良いし,呼吸推定プログラム400の実行終了を起因としても良いし,例えば無線等の手段で腕輪型センサノード1のセンシングデータをリアルタイムで取得する事が可能である場合は,装着者が起床した事を睡眠期間抽出プログラム300が検知した事を起因としても良い。なお,PC103で稼働するアプリケーションとしては,ブラウザを採用しても良いし,単独で稼働するアプリケーションが直接睡眠表示画面1200を表示しても良い。 FIG. 14 is a screen image of the sleep display screen 1200 displayed on the display unit 1031 of the PC 103 which is a client computer. The display of the sleep display screen 1200 by the PC 103 may be caused by accepting a display request from the user via the input device 1032, or may be caused by the end of execution of the respiration estimation program 400, for example If the sensing data of the bracelet type sensor node 1 can be acquired in real time by wireless means or the like, it may be caused by the sleep period extraction program 300 detecting that the wearer has woken up. Note that a browser may be adopted as an application that runs on the PC 103, or an application that runs alone may directly display the sleep display screen 1200.
 睡眠表示画面1200はその日の主睡眠と,検知された呼吸頻度に関する情報を利用者に提示する画面の一例である。これは,表示対象となる日付を表示し,選択を可能とする日付コントロール1201と,データ集計プログラム200のステップS13で算出したスカラー量の一日の推移を示す,スカラー量グラフ1202と,この日から検出された睡眠期間,非装着期間を示す睡眠期間グラフ1203と,検知された呼吸頻度を示す呼吸頻度グラフ1204と,その日の呼吸のトレンドと,その人の最近の呼吸頻度のトレンドとを示す呼吸トレンドグラフ1205と,その日の睡眠の数値データやアドバイスを表示する睡眠メモパネル1206を有する。
 日付コントロール1201は,画面上に表示されている日付を示すためのコントロールであり,また左右のボタンへの押下により前後の日が選択されるようにしても良い。
The sleep display screen 1200 is an example of a screen that presents the user with information on the main sleep of the day and the detected respiratory frequency. This includes a date control 1201 that displays the date to be displayed and allows selection, a scalar quantity graph 1202 that shows the daily transition of the scalar quantity calculated in step S13 of the data aggregation program 200, and this date. A sleep period graph 1203 indicating a sleep period detected from the period, a non-wear period, a respiration frequency graph 1204 indicating a detected respiration frequency, a respiration trend of the day, and a recent respiration frequency trend of the person A respiration trend graph 1205 and a sleep memo panel 1206 for displaying numerical data and advice on sleep of the day are provided.
The date control 1201 is a control for indicating the date displayed on the screen, and the previous and next days may be selected by pressing the left and right buttons.
 スカラー量グラフ1202は,データ集計プログラム200のステップS13で算出した,センシングデータをスカラー化し,バンドパスフィルタを適用したデータを表示するためのグラフである。これを表示することにより,直感的に睡眠中の体動量や,睡眠以外での活動量を利用者が知る事が出来る。表示するデータ量(例えば,24時間×60分×60秒×20サンプル=1728000データ点)が画面の幅(例えば,1280ピクセル)よりも大きい場合,画面内の1ピクセルの幅内に実際に含まれる複数のデータ点を表現する必要がある。この時,例えば1ピクセルの幅内に含まれるデータ点の中から一つを任意に選択して単一の点として描画しても良いし,1ピクセルの幅内に含まれる全てのデータ点の平均値を単一の点として描画しても良いし,図14(b)の描画例に示すように,1ピクセルの幅内に含まれる全てのデータ点の平均値を濃い色の単一の点として描画しつつ(12021),例えば平均値よりも高いデータ点の標準偏差と,平均値よりも低いデータ点の標準偏差を算出し,平均値より高い点の標準偏差から平均値より低い点の標準偏差までの領域を薄い色で塗りつぶす(12022)事で,利用者はデータの全貌を把握しつつ,より詳細に見た場合のデータの挙動(即ち,平均値から大きくばらつくか否か)を想起することが出来る。 The scalar quantity graph 1202 is a graph for displaying the data obtained by converting the sensing data into a scalar and applying the bandpass filter calculated in step S13 of the data totaling program 200. By displaying this, the user can intuitively know the amount of body movement during sleep and the amount of activity other than sleep. If the amount of data to be displayed (for example, 24 hours x 60 minutes x 60 seconds x 20 samples = 1728000 data points) is larger than the screen width (eg 1280 pixels), it is actually included within the width of one pixel in the screen It is necessary to represent multiple data points. At this time, for example, one of the data points included in the width of one pixel may be arbitrarily selected and drawn as a single point, or all the data points included in the width of one pixel may be drawn. The average value may be drawn as a single point, or, as shown in the drawing example of FIG. 14B, the average value of all the data points included in the width of one pixel is a single color of dark color. While drawing as points (12021), for example, the standard deviation of data points higher than the average value and the standard deviation of data points lower than the average value are calculated, and the points lower than the average value from the standard deviation of points higher than the average value The area up to the standard deviation of the data is filled with a light color (12022), so that the user understands the whole data and the behavior of the data when viewed in more detail (that is, whether or not the average value varies greatly) Can be recalled.
 睡眠期間グラフ1203は,睡眠期間抽出プログラム300で算出された睡眠期間を表示する領域である。表示対象となっている日付が含む全ての睡眠領域を,図示するように特定の色で塗りつぶし,また主睡眠を別の色で塗りつぶしても良い。また,睡眠期間はスカラー量グラフ1202に統合して,例えば半透明で上から表示しても良い。
 呼吸頻度グラフ1204は,その日の睡眠期間中に検出された呼吸頻度を表示するためのグラフである。有効な呼吸頻度が算出された領域に関しては折れ線グラフを描画し,有効な呼吸頻度が算出されなかった領域は,例えば図示するように特定の色で塗りつぶす事に依り,呼吸未検出期間である事を示しても良い。
The sleep period graph 1203 is an area for displaying the sleep period calculated by the sleep period extraction program 300. All sleep regions included in the date to be displayed may be painted with a specific color as shown, and the main sleep may be painted with another color. Further, the sleep period may be integrated into the scalar quantity graph 1202 and displayed from above, for example, translucently.
The respiration frequency graph 1204 is a graph for displaying the respiration frequency detected during the sleep period of the day. A line graph is drawn for the area for which the effective respiration frequency is calculated, and the area for which the effective respiration frequency is not calculated is, for example, painted in a specific color as shown in the figure, and is a respiration non-detection period. May be shown.
 呼吸トレンドグラフ1205は,その日の呼吸の欠損値を補間することで得られる呼吸トレンドを,過去の呼吸トレンドと比較表示するグラフである。その日の呼吸トレンドは,例えばその日の主睡眠から検出された呼吸頻度について,「就寝後経過時間」をx軸にとり,「呼吸頻度」をy軸にとって例えば二次回帰式を近似し,この式に基づき,睡眠期間の開始から終了までの推定呼吸頻度を例えば実線でプロットしても良い。これにより,利用者は欠損している領域についても,呼吸数の推定値を知る事が出来る。また過去の呼吸トレンドは,当該利用者について今まで検出した全ての睡眠期間に含まれる呼吸頻度について,「就寝後経過時間」をx軸にとり,「呼吸頻度」をy軸にとって例えば二次回帰式y=(qA*x+qB*x+qC)を近似し,この式に基づき,睡眠期間の開始から終了までの過去のトレンド呼吸頻度を例えば破線でプロットしても良い。これにより,利用者はその日の睡眠が過去の睡眠と比較することで,例えば寝入りの呼吸数の高低や,就寝後の呼吸数の低下速度の緩急や,寝起き前の呼吸数の高低を知る事が出来る。以上の説明ではトレンドを算出するために二次回帰式を用いる例を示したが,呼吸頻度の補間が出来ればなんでもよく,例えば一次回帰式でも良い。また,過去の呼吸トレンドを算出する際に,当該利用者の過去のデータ全てを用いても良いし,所定の範囲内(例えば,過去3ヶ月間)のデータのみを用いても良いし,他の利用者もデータに含めても良いし,例えば利用者について性別や年齢などのプロフィール情報を保持している場合は,似たプロフィールの利用者のデータのみを含めて算出しても良い。 The respiration trend graph 1205 is a graph for comparing and displaying the respiration trend obtained by interpolating the deficit value of the respiration of the day with the past respiration trend. The respiratory trend of the day is, for example, about the respiratory frequency detected from the main sleep of the day, taking the “elapsed time after going to bed” on the x-axis and the “respiration frequency” on the y-axis, for example, approximating a quadratic regression equation, Based on this, the estimated respiratory frequency from the start to the end of the sleep period may be plotted with a solid line, for example. Thereby, the user can know the estimated value of the respiration rate even for the missing region. The past breathing trend is, for example, a quadratic regression equation with “elapsed time after going to bed” on the x-axis and “breathing frequency” on the y-axis for the breathing frequency included in all sleep periods detected so far for the user. Approximating y = (qA * x 2 + qB * x + qC), and based on this equation, the past trend respiratory frequency from the start to the end of the sleep period may be plotted with a broken line, for example. In this way, the user can know that the sleep rate of the day is higher than the sleep rate of the day, for example, the level of the respiratory rate of falling asleep, the rate of decrease in the respiratory rate after going to bed, or the level of the respiratory rate before waking up. I can do it. In the above description, the example using the quadratic regression equation for calculating the trend has been shown. However, any method may be used as long as the respiratory frequency can be interpolated, for example, a linear regression equation. Moreover, when calculating the past respiratory trend, all the past data of the user may be used, or only data within a predetermined range (for example, the past three months) may be used. The user may also be included in the data. For example, when profile information such as gender and age is held for the user, it may be calculated including only the data of the user having a similar profile.
 睡眠メモパネル1206は,その日の睡眠期間に関する数値データや,それに基づく利用者へのメッセージやアドバイスを表示する領域である。例えば,上記で算出する睡眠トレンドを用いて就寝直後の呼吸頻度を算出し,「就寝時呼吸数」として表示しても良い。さらに,過去の呼吸トレンドを用いて,通常の睡眠における就寝時呼吸数も「通常の就寝時呼吸数」として提示しても良い。また別の例として,上記で算出した二次回帰式y=(qA*x+qB*x+qC)の二乗項,即ちqAを「寝つき指標」として表示しても良い。qAは,就寝後に呼吸数がどれだけ急峻に低下するかの度合いを表す指標であり,呼吸数は睡眠が深くなると低くなることが知られているため,qAを寝つき指標として提示することで,利用者は自らの睡眠の寝つきの良さを知る事が出来る。この時,睡眠期間全ての呼吸頻度を用いて二次回帰式を近似しても良いし,就寝後所定時間(例えば,一時間)以内の呼吸頻度のみを用いて二次回帰式を近似しても良い。また,qAを,例えば多くの人にとって0~10等の把握しやすい範囲に収まるように正規化して表示しても良い。更に,過去の呼吸トレンドを用いて,通常の睡眠における寝つき指標を算出し,「通常の寝つき指標」として提示しても良い。それ以外にも,例えば起床直前の呼吸頻度を「起床前呼吸数」として提示しても良いし,起床前一時間以内に算出された呼吸頻度のみを用いて二次回帰式を近似し,二次回帰式の二乗項qAの値を「寝起き指標」として提示しても良い。 The sleep memo panel 1206 is an area for displaying numerical data relating to the sleep period of the day, and messages and advice to the user based on the numerical data. For example, the respiratory frequency immediately after going to bed may be calculated using the sleep trend calculated above and displayed as “sleeping rate at bedtime”. Furthermore, using the past respiratory trend, the bedtime respiratory rate in normal sleep may also be presented as “normal bedtime respiratory rate”. As another example, the square term of the quadratic regression equation y = (qA * x 2 + qB * x + qC) calculated above, that is, qA may be displayed as a “sleep index”. qA is an index indicating how sharply the respiratory rate decreases after going to bed, and since it is known that the respiratory rate decreases as the sleep becomes deeper, by presenting qA as a sleeping index, Users can know how good their sleep is. At this time, the quadratic regression equation may be approximated using the respiratory frequency of all sleep periods, or the quadratic regression equation may be approximated using only the respiratory frequency within a predetermined time (for example, one hour) after going to bed. Also good. Further, qA may be normalized and displayed so as to fall within a range that is easy to grasp, such as 0 to 10 for many people. Further, a sleep index in normal sleep may be calculated using the past respiratory trend and presented as a “normal sleep index”. In addition to this, for example, the respiration frequency immediately before getting up may be presented as “respiration rate before waking up”, or the quadratic regression equation is approximated using only the respiration frequency calculated within one hour before waking up. The value of the square term qA of the next regression equation may be presented as a “wake-up index”.
 更に,呼吸頻度や睡眠前後のセンシングデータに基づいて,良眠を得るためのアドバイスを利用者に提示しても良い。例えば,寝入り時の呼吸数が通常より高く,就寝直前(例えば,一時間)の活動量指標(例えば,スカラー量の絶対値の積算)が所定の値以上であった場合は,例えば寝る直前に運動した可能性があるため『眠くなる前に就床しているようですね。寝る前の運動は控えましょう』などのアドバイスを表示することで,寝る直前に運動して呼吸数が上がったまま寝ようとするのを控えさせる効果が期待できる。逆に,寝入り時の呼吸数が通常より高く,就寝直前の活動量指標が所定の値以下であった場合は,例えば飲酒の可能性があるため『お酒を飲みましたか?寝る前のお酒は睡眠を浅くするので控えましょう』などのアドバイスを表示することで,寝酒を控えさせる効果が期待できる。また,いつもより寝つき指標が高かった(寝つきが良かった)場合は例えば『いつもより良く寝つきました。お疲れだったようですね』と労う事で,利用者に自らの疲労状態を振り返らせる効果が期待できる。逆に,いつもより寝つき指標が低かった場合は例えば『いつもより寝つきが悪かったようですね。気が張っている時はお風呂に入ってリラックスしてみましょう』等のアドバイスを表示することで,寝つきが悪い時に効果のある療法を知らせる事が出来る。また,例えばその日の睡眠トレンドのqA項とqB項が共に0に近い(例えば,絶対値が所定の閾値以下)であった場合は呼吸数が最後まで殆ど下がっていない状態であり,例えば風邪をひいた時に見られる兆候であるため,『風邪を引きましたか?ゆっくり休んでください』などのアドバイスを送ることで,利用者に自分の体調の変化を気付かせる効果が期待できる。なお、これらのアドバイスを表示させるための閾値は、予め設定されることができる。 Furthermore, advice for obtaining good sleep may be presented to the user based on respiratory frequency and sensing data before and after sleep. For example, if the respiratory rate at bedtime is higher than normal and the activity index (eg, the sum of absolute values of the scalar amount) immediately before going to bed is greater than or equal to a predetermined value, for example, immediately before going to bed “You seem to be in bed before you fall asleep because you may have exercised. By displaying advice such as “Let's refrain from exercising before going to bed,” you can expect to have the effect of exercising just before going to bed and refraining from trying to sleep while your breathing rate is increasing. On the other hand, if the respiratory rate at bedtime is higher than normal and the activity index just before going to bed is less than the specified value, for example, you may drink alcohol. By displaying advice such as “Let's refrain from drinking alcohol before going to sleep because it makes sleep less shallow”, it can be expected to refrain from drinking alcohol. In addition, when the sleep index was higher than usual (when sleep was good), for example, “I slept better than usual. It looks like you're tired. ”By working hard, you can expect users to look back on their fatigue. On the other hand, if the sleep index is lower than usual, for example, “It seems that sleep was worse than usual. If you are not sure, take a bath and relax. " For example, if the qA term and the qB term of the sleep trend for the day are both close to 0 (for example, the absolute value is below a predetermined threshold), the respiratory rate has hardly decreased to the end. Because this is a sign that you can see when you catch it, 'Did you catch a cold? By sending advice such as “Please take a rest slowly,” you can expect users to notice changes in their physical condition. Note that a threshold value for displaying these advices can be set in advance.
 なお,上記実施形態では呼吸頻度推定システムとして利用者(人体)の睡眠中の活動状態を測定するために利用者の腕に装着される腕輪型センサノード1の3軸加速度センサを用いた例を示したが,非侵襲に人体の活動状態を検知可能なセンサであればよく,例えば,腕に装着した角速度センサでも良いし,3軸の加速度センサではなく,2軸や無軸の加速度センサでも良い。
 また,上記実施形態では睡眠中の呼吸頻度を推定するシステムを例示したが,睡眠中ではなく覚醒中の呼吸頻度を推定することにも効果がある。例えば会議中に腕を組んだり,運動直後に息が上がったりしている状態でも,加速度センサに呼吸の周波数成分が反映されることがあるが,これについても上記と同じ手段により検知,提示が行える。
In the above embodiment, an example of using the three-axis acceleration sensor of the bracelet type sensor node 1 attached to the user's arm to measure the activity state during sleep of the user (human body) as the respiratory frequency estimation system. As shown, any sensor that can detect the activity state of the human body non-invasively may be used, for example, an angular velocity sensor attached to the arm, or a biaxial or non-axial acceleration sensor instead of a triaxial acceleration sensor. good.
Moreover, although the system which estimates the respiratory frequency during sleep was illustrated in the said embodiment, it is effective also in estimating the respiratory frequency during awakening rather than during sleep. For example, the frequency component of respiration may be reflected in the acceleration sensor even when arms are crossed during a meeting or breathing up immediately after exercise, but this can also be detected and presented by the same means as above. .
 また本実施例は,呼吸の状態が断片的に反映されるセンサの例として腕に装着した加速度センサを用いた例を示したが,呼吸の状態が断片的にしか反映されないセンサであれば何でも本実施例は効果的に呼吸頻度を測定する事が出来る。例えば,寝具の上に装着した赤外線カメラで対象の動きを測定する場合は,睡眠姿勢によって呼吸の動きが映像上に反映されたりされなかったりするため,本実施例が適用出来る。また,例えば特許文献2に開示されるように,近年では企業内で社員が装着する名札バッジには加速度センサや対面センサが搭載されるようになってきているが,通常時は服の上に装着したバッジからでは呼吸運動が加速度データに反映されることはないものの,座り方の姿勢によっては呼吸運動が反映される事があるため,これについても本実施例を適用して呼吸頻度を精度良く推定する事が出来る。 In this embodiment, an example is shown in which an acceleration sensor attached to the arm is used as an example of a sensor in which the state of breathing is reflected in a piecewise manner, but any sensor that reflects the state of breathing in a piecewise manner can be used. In this embodiment, the respiration frequency can be measured effectively. For example, when measuring the movement of an object with an infrared camera mounted on the bedding, this embodiment can be applied because the movement of breathing is not reflected on the video depending on the sleeping posture. In addition, as disclosed in, for example, Patent Document 2, in recent years, an acceleration sensor or a face-to-face sensor has been mounted on a name tag badge worn by an employee in a company. Although the breathing motion is not reflected in the acceleration data from the attached badge, the breathing motion may be reflected depending on the sitting posture. You can estimate well.
 また,上記実施形態では睡眠中の呼吸頻度を表示装置1031にグラフ等を用いて提示するシステムを例示したが,例えば図示しない手段により利用者が起床したい期間の設定を受け付け,その期間内に呼吸頻度が浅い眠りを示唆する挙動を示した場合に,図示しないベル等をならせる事により,利用者によって快適な起床を生じさせるシステムでも良い。浅い眠りを示唆する挙動とは,例えば推定呼吸頻度と過去のトレンドとの分数が所定の閾値を超えた場合でも良いし,例えば直近の所定の期間(例えば,5分間)の呼吸頻度が上昇傾向を示した場合でも良い。
 上記で説明した実施形態により,腕に装着した加速度センサのように,多くの場合は呼吸運動がデータ内に反映されないセンサの出力データからも,精度良く呼吸頻度を推定する事が出来る。
In the above embodiment, the system for presenting the respiratory frequency during sleep to the display device 1031 using a graph or the like has been exemplified. However, for example, a setting of a period in which the user wants to wake up is accepted by means not shown, and When a behavior suggesting a sleep that is infrequent is shown, a system that causes a user to wake up comfortably by using a bell or the like (not shown) may be used. The behavior suggesting shallow sleep may be, for example, when the fraction of the estimated respiration frequency and the past trend exceeds a predetermined threshold, or the respiration frequency of the most recent predetermined period (for example, 5 minutes) is increasing. May be shown.
According to the embodiment described above, the respiration frequency can be accurately estimated from the output data of a sensor in which the respiration movement is not reflected in the data in many cases like the acceleration sensor worn on the arm.
 本発明の第2の実施例として,人(利用者)に装着したセンサによって加速度データを測定し,睡眠中の呼吸頻度を算出し,睡眠中の呼吸頻度の増減からREM睡眠期間を推定し,利用者に提示するREM睡眠推定システムを示す。
 まず,本実施例により解決される課題について説明する。人の睡眠はREM睡眠とNON-REM睡眠に分かれており,このうちREM睡眠とは通常の睡眠の約2割を占め,記憶の整理が行われていると考えられている期間である。身体の状態としては,脈拍及び呼吸がNON-REM時よりも乱れ,頻度も早くなる事が知られている。そのため,特許文献3ではこの事を利用し,脈拍数が所定の閾値以上である期間をREM睡眠として認識する技術が開示されている。また,心拍と呼吸は生理的に同じ系で制御されるため,心拍数ではなく呼吸頻度を用いた場合でも同発明でREM睡眠の検知が行える。例えば図23(a)で示した呼吸頻度の実測値では,60~90分おきに山が生じている様子が示されているが,この山を生じさせているのが,REM睡眠である。
As a second embodiment of the present invention, acceleration data is measured by a sensor attached to a person (user), the respiratory frequency during sleep is calculated, the REM sleep period is estimated from the increase or decrease in the respiratory frequency during sleep, The REM sleep estimation system shown to a user is shown.
First, problems to be solved by this embodiment will be described. Human sleep is divided into REM sleep and NON-REM sleep. Of these, REM sleep accounts for approximately 20% of normal sleep and is a period in which memory is thought to be organized. As for the state of the body, it is known that the pulse and respiration are more disturbed and the frequency is faster than that during NON-REM. For this reason, Patent Document 3 discloses a technique for recognizing a period in which the pulse rate is equal to or greater than a predetermined threshold as REM sleep by utilizing this fact. Since heartbeat and respiration are controlled physiologically in the same system, REM sleep can be detected by the present invention even when the respiration frequency is used instead of the heart rate. For example, the measured value of the respiratory frequency shown in FIG. 23A shows that a mountain is generated every 60 to 90 minutes, but it is REM sleep that causes this mountain.
 一方で,当該特許文献3では閾値の設定の仕方について具体的な言及がない。実際の睡眠では,図23(a)に示したように,就寝後から起床まで,基礎呼吸頻度(NON-REM中の呼吸数)は経時的に低下し続け,REM中の呼吸数もそれに応じて低下する。そのため,睡眠全体を通して単一のREM睡眠の閾値を設ける事は出来ない。何故なら,睡眠の後半におけるREM中の呼吸頻度は,睡眠の前半におけるNON-REMの呼吸頻度程度であることは多々あるからである。
 また基礎呼吸頻度の絶対値や下がり方自体が人や季節によって違うため,人毎に違う閾値を設定する必要がある。
On the other hand, the patent document 3 does not specifically mention how to set the threshold. In actual sleep, as shown in FIG. 23 (a), the basal respiration frequency (respiration rate during NON-REM) continues to decrease over time from bedtime to wake-up, and the respiration rate during REM also changes accordingly. Will drop. Therefore, it is not possible to set a single REM sleep threshold throughout sleep. This is because the respiratory frequency during REM in the second half of sleep is often about the same as that of NON-REM in the first half of sleep.
In addition, since the absolute value of the basal respiration frequency and how it falls itself varies depending on the person and the season, it is necessary to set a different threshold for each person.
 更に,図23(a)のように睡眠期間中の呼吸頻度が端から端まで測定出来る場合であれば「山」を検知することでREMの推定が行えるが,図15(b)に例示したように,腕輪型の加速度センサからは推定呼吸数は断片的にしか得られない。そのため,呼吸頻度が通常より高いところを発見するのは容易ではない。
 本発明者らは,ある利用者の過去一週間程度の推定呼吸数を用いて当該利用者の経時的な基礎呼吸頻度を推定し,基礎呼吸数よりも高い呼吸頻度が測定された箇所をREM睡眠と認識することで,腕輪型加速度センサから得られる断片的な推定呼吸頻度からでも高い精度でREM睡眠を推定出来る事を見出した。
Furthermore, if the respiratory frequency during the sleep period can be measured from end to end as shown in FIG. 23 (a), REM can be estimated by detecting “mountains”. Thus, the estimated respiration rate can be obtained only in pieces from the bracelet type acceleration sensor. Therefore, it is not easy to find a place where the respiratory frequency is higher than normal.
The present inventors use the estimated respiration rate of a certain user for the past week or so to estimate the basal respiration frequency over time of the user, and determine the location where the respiration frequency higher than the basal respiration rate is measured by REM. By recognizing it as sleep, it was found that REM sleep can be estimated with high accuracy even from fragmentary estimated respiratory frequencies obtained from bracelet type acceleration sensors.
 この事の詳細,そして本実施例における処理の一例を図で説明する。
 図15(a)は,ある睡眠についてEOG(眼電図)から実測されたREM睡眠の期間を黒く示したものである。大体90分周期程度で生じていることが分かる。
 図15(b)は,同期間について腕輪型加速度センサを用いて推定された呼吸頻度である。これを見るだけでは,呼吸頻度が通常よりも高い箇所を判別する事は出来ない。
 図15(c)は,当該利用者の過去一週間の睡眠を用いて,就寝後経過時間毎の基礎呼吸頻度を推定し,呼吸頻度と共にプロットした図である。基礎呼吸頻度は,各主睡眠の開始(就寝)後の経過時間と,実測呼吸頻度の二軸に対する二次回帰式の近似によって推定した。基礎呼吸頻度のカーブは,寝入り時の呼吸頻度16程度から,起床時の呼吸頻度14程度まで単調に減少している事が分かる。またこれにより,当該睡眠において呼吸頻度が通常よりも高い領域が明らかになった(黒い矢印)。そしてそれらが図15(a)に示したREM睡眠期間とも一致している事が分かる。
 図15(d)は,まず当該睡眠期間において推定された呼吸頻度と,基礎呼吸頻度カーブとの乖離を算出し,更に補間した図である。乖離は推定呼吸頻度と基礎呼吸頻度の分数(比),即ち
Figure JPOXMLDOC01-appb-M000003
として定義する。更に,このデータは欠損値を多く含むため,3次スプライン補間により平滑化,補間を行っている。図上では呼吸乖離が1.0以上,即ち呼吸頻度が基礎呼吸頻度を上回った箇所のみを描画している。
 図15(e)は,前記補間した呼吸乖離が連続的に1.0を上回った期間を,REM候補期間として示している。この段階で,REM候補期間に関する種々の特徴量,例えば継続時間や,最大呼吸乖離等を算出する。
 図15(f)は,各REM候補期間がREMであるか否かを,例えば公知の機械学習により判別し,REMであると判別されたものを示している。これにより,図15(a)で実測されたREM睡眠を高い精度で推定出来ているという事が分かる。
Details of this and an example of processing in this embodiment will be described with reference to the drawings.
FIG. 15A shows in black the REM sleep period measured from EOG (electrocardiogram) for a certain sleep. It can be seen that it occurs in about 90 minutes.
FIG. 15B shows the respiration frequency estimated using a bracelet type acceleration sensor during the same period. It is not possible to determine where the respiration frequency is higher than normal just by looking at this.
FIG.15 (c) is the figure which estimated the basic respiration frequency for every elapsed time after bedtime using the said user's sleep for the past one week, and plotted with the respiration frequency. The basal respiratory frequency was estimated by approximating the elapsed time after the start of each main sleep (sleeping) and the quadratic regression equation for the two axes of the measured respiratory frequency. It can be seen that the curve of the basal respiration frequency monotonously decreases from about 16 breathing frequency when falling asleep to about 14 breathing frequency when waking up. This also revealed a region where the respiratory frequency was higher than usual in the sleep (black arrow). And it turns out that they also correspond with the REM sleep period shown to Fig.15 (a).
FIG. 15D is a diagram in which the deviation between the respiratory frequency estimated during the sleep period and the basal respiratory frequency curve is first calculated and further interpolated. The divergence is the fraction (ratio) of the estimated respiratory frequency and the basal respiratory frequency, ie
Figure JPOXMLDOC01-appb-M000003
Define as Furthermore, since this data contains many missing values, smoothing and interpolation are performed by cubic spline interpolation. In the drawing, only portions where the breathing divergence is 1.0 or more, that is, the breathing frequency exceeds the basic breathing frequency are drawn.
FIG. 15E shows a period in which the interpolated respiratory deviation continuously exceeds 1.0 as a REM candidate period. At this stage, various feature quantities related to the REM candidate period, such as duration and maximum respiratory divergence, are calculated.
FIG. 15F shows what is determined to be REM by determining whether each REM candidate period is REM by, for example, known machine learning. This shows that the REM sleep measured in FIG. 15A can be estimated with high accuracy.
 以下に,REM睡眠推定システムを実現するためのシステム構成の例を示す。尚,実施例1の呼吸頻度推定システムの構成と同一のものには,同一符号を付すことで,その重複する構成及び動作の説明については省略する。
 図16は,本実施例のREM睡眠推定システムの各構成要素を示すブロック図である。腕輪型センサノード1が送信したセンシングデータは,基地局102を介してクライアント(PC)104の記録装置1100のセンシングデータテーブル1150に蓄積される。もしくは図示しない有線通信を介して直接PC104と通信してもよい。
An example of a system configuration for realizing the REM sleep estimation system is shown below. The same components as those of the respiratory frequency estimation system according to the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted.
FIG. 16 is a block diagram showing each component of the REM sleep estimation system of the present embodiment. Sensing data transmitted from the bracelet type sensor node 1 is accumulated in the sensing data table 1150 of the recording device 1100 of the client (PC) 104 via the base station 102. Or you may communicate directly with PC104 via the wire communication which is not illustrated.
 PC104は,各種情報を表示する表示装置(出力装置)1041と利用者の操作によって様々な情報の入力を可能とする入力装置1042を具備する。表示装置1041は液晶ディスプレイやCRTディスプレイ等の表示端末のほか,プリンタや画像ファイル出力でも良い。また,音を発生させるスピーカを具備していても良い。入力装置1042はキーボード,マウス等の入力用機器である。また,表示装置1041と入力装置1042はタッチパネル式ディスプレイのような,両方の機能を備える単体の機器でも良い。
 またPC104は,プロセッサ107と,メモリ108及び記録装置1100を備える。記録装置1100は,後述する各種プログラム,各種データテーブルを記録するものであり,例えば,ハードディスクドライブやCDーROMドライブ,フラッシュメモリなどである。なお,複数の記録装置に各種プログラム,各種データテーブルを分割して記録するようにしてもよい。
The PC 104 includes a display device (output device) 1041 that displays various types of information and an input device 1042 that allows various information to be input by user operations. The display device 1041 may be a display terminal such as a liquid crystal display or a CRT display, or a printer or an image file output. Further, a speaker that generates sound may be provided. The input device 1042 is an input device such as a keyboard and a mouse. Further, the display device 1041 and the input device 1042 may be a single device having both functions, such as a touch panel display.
The PC 104 includes a processor 107, a memory 108, and a recording device 1100. The recording device 1100 records various programs and various data tables, which will be described later, such as a hard disk drive, a CD-ROM drive, and a flash memory. Various programs and various data tables may be divided and recorded in a plurality of recording devices.
 プロセッサ107は,記録装置1100に記録されている各種プログラムをメモリ108に読み出して実行することにより各種機能を実現する。具体的には,データ集計プログラム200を実行することにより,利用者の腕の加速度センサで測定されたセンシングデータを集計し,単位時間(例えば,1分間)毎の集計値を算出し,記録装置1100の集計データテーブル250に格納する。また,睡眠期間抽出プログラム300を実行することにより,算出した単位時間毎の集計値を解析し,全ての睡眠期間を検出し,記録装置1100の睡眠期間データテーブル350に格納する。また呼吸頻度推定プログラムを実行することにより,検出した睡眠期間から単位時間(例えば,一分間)毎の呼吸頻度を推定し,記録装置1100の呼吸頻度データテーブル450に格納する。またREM推定プログラム500を実行することにより,推定した呼吸頻度からREM睡眠の期間を推定し,REMデータテーブル550に格納する。 The processor 107 implements various functions by reading various programs recorded in the recording device 1100 into the memory 108 and executing them. Specifically, by executing the data totaling program 200, the sensing data measured by the acceleration sensor of the user's arm is totaled, a total value for each unit time (for example, one minute) is calculated, and the recording device 1100 is stored in the aggregate data table 250. Also, by executing the sleep period extraction program 300, the calculated total value for each unit time is analyzed, and all sleep periods are detected and stored in the sleep period data table 350 of the recording device 1100. Also, by executing the respiration frequency estimation program, the respiration frequency per unit time (for example, one minute) is estimated from the detected sleep period and stored in the respiration frequency data table 450 of the recording device 1100. Also, by executing the REM estimation program 500, the REM sleep period is estimated from the estimated respiratory frequency and stored in the REM data table 550.
 なお,以下では,PC104が,データ集計プログラム200と睡眠期間抽出プログラム300と呼吸頻度推定プログラム400とREM推定プログラム500を定期的な周期で実行し,もしくは腕時計型センサノード1との通信を起因として実行し,更に入力装置1042の操作,もしくはPC104の起動,もしくは呼吸頻度推定プログラム400の実行の終了を起因として表示装置1041に表示データを提示する例を示す。 In the following, the PC 104 executes the data tabulation program 200, the sleep period extraction program 300, the respiration frequency estimation program 400, and the REM estimation program 500 at regular intervals, or due to communication with the wristwatch type sensor node 1. An example is shown in which display data is displayed on the display device 1041 as a result of the operation of the input device 1042 or the activation of the PC 104 or the end of the execution of the respiration frequency estimation program 400.
 図17は,本実施例のシステムで行われるデータ処理の全体的な流れを示すフローチャート図である。
 ステップS2.1~2.3は,第1の実施例におけるS1~S3と同一でも良い。
 ステップS2.4では,PC104はREM推定プログラム500を実行して,睡眠期間データテーブル350に格納された各睡眠期間について,期間内に検出された呼吸頻度を呼吸頻度データテーブル450から取得し,更に就寝後経過後の単位時間(例えば,1秒)毎の基礎呼吸頻度を,例えば過去所定の期間(例えば一週間)の呼吸頻度データを用いて算出し,測定された呼吸頻度と基礎呼吸頻度の乖離を呼吸乖離として算出し,呼吸乖離が所定の条件(例えば,予め定められた閾値を超えているなど)を満たす期間をREM睡眠期間として検出し,REMデータテーブル550に格納する。なおREM推定プログラム500を所定の周期(例えば,5分間)毎に実行しても良いし,呼吸頻度推定プログラム400の終了を起因として実行しても良い。
FIG. 17 is a flowchart showing the overall flow of data processing performed in the system of this embodiment.
Steps S2.1 to 2.3 may be the same as S1 to S3 in the first embodiment.
In step S2.4, the PC 104 executes the REM estimation program 500, acquires the respiratory frequency detected within the period from the respiratory frequency data table 450 for each sleep period stored in the sleep period data table 350, and further The basal respiration frequency per unit time (for example, 1 second) after going to bed is calculated using, for example, respiration frequency data for a predetermined period in the past (for example, one week), and the measured respiration frequency and basal respiration frequency are calculated. The divergence is calculated as a respiratory divergence, and a period in which the respiratory divergence satisfies a predetermined condition (for example, exceeds a predetermined threshold) is detected as a REM sleep period and stored in the REM data table 550. The REM estimation program 500 may be executed every predetermined cycle (for example, 5 minutes), or may be executed due to the end of the respiration frequency estimation program 400.
 次に,ステップS2.5では,REM推定プログラム500に格納されたREM期間をクライアント計算機104の表示部1041に提示する。
 尚,データ集計プログラム200,及び睡眠期間抽出プログラム300,及び呼吸頻度推定プログラム400は,例えば第1の実施例における構成と同一でも良い。
Next, in step S2.5, the REM period stored in the REM estimation program 500 is presented on the display unit 1041 of the client computer 104.
In addition, the data totaling program 200, the sleep period extraction program 300, and the respiration frequency estimation program 400 may be the same as the configuration in the first embodiment, for example.
 図18は,PC104のREM推定プログラム500で行われる処理の一例を示すフローチャートである。
 まず,睡眠期間抽出プログラム300の実行により抽出した睡眠期間データ(例えば、所定ユーザの睡眠開始時刻及び睡眠終了時刻)を睡眠期間データテーブル350から読み込む(ステップS41)。ここで読み込む集計データの量は,例えば過去のREM推定プログラム500の実行によって既に格納されている最後のREM期間の終了時刻以降全て,等に設定すればよい。 
FIG. 18 is a flowchart illustrating an example of processing performed by the REM estimation program 500 of the PC 104.
First, sleep period data (for example, the sleep start time and sleep end time of a predetermined user) extracted by executing the sleep period extraction program 300 is read from the sleep period data table 350 (step S41). The amount of total data read here may be set to, for example, all after the end time of the last REM period already stored by the execution of the past REM estimation program 500.
 次に,ステップS42~47では,ここで読み込んだ各睡眠期間について個別に処理を行う。
 ステップS42では,一つの睡眠期間内に含まれる,呼吸頻度推定プログラム400により算出された呼吸頻度を全て読み込む。
 次に,ステップS43では,当該睡眠期間以前の所定の期間(例えば,一週間)分の全ての主睡眠の呼吸頻度から,就寝後経過時間毎の基礎呼吸頻度を算出する。基礎呼吸頻度は,前記所定の期間の呼吸頻度の「就寝後経過時間」をx軸にとり,「呼吸頻度」をy軸にとって二次回帰式y=(qA*x+qB*x+qC)を近似し,この式に基づき,睡眠期間の開始から終了までの基礎呼吸頻度を算出する。なお、就寝後経過時間は、1日における睡眠の開始時間(就寝時刻)からの経過時間を用いることができる。また基礎呼吸頻度の算出方法は,呼吸頻度の補間が出来ればなんでもよく,例えば一次回帰式でも3次スプライン法でも移動平均でも良い。また,基礎呼吸頻度を算出する際に,当該利用者の過去のデータ全てを用いても良いし,所定の範囲内(例えば,一週間)のデータのみを用いても良いし,他の利用者もデータに含めても良いし,例えば利用者について性別や年齢などのプロフィール情報を保持している場合は,似たプロフィールの利用者のデータのみを含めて算出しても良い。
Next, in steps S42 to S47, each sleep period read here is individually processed.
In step S42, all the respiratory frequencies calculated by the respiratory frequency estimation program 400 included in one sleep period are read.
Next, in step S43, the basal respiration frequency for every elapsed time after going to bed is calculated from the respiration frequency of all main sleeps for a predetermined period (for example, one week) before the sleep period. The basal respiration frequency approximates a quadratic regression equation y = (qA * x 2 + qB * x + qC) with the “elapsed time after going to bed” of the respiration frequency for the predetermined period on the x axis and the “respiration frequency” on the y axis. Based on this formula, the basic respiratory frequency from the start to the end of the sleep period is calculated. As the elapsed time after going to bed, the elapsed time from the sleep start time (sleeping time) in one day can be used. The calculation method of the basal respiration frequency is not particularly limited as long as the respiration frequency can be interpolated. For example, a linear regression equation, a cubic spline method, or a moving average may be used. Moreover, when calculating the basal respiration frequency, all the past data of the user may be used, or only data within a predetermined range (for example, one week) may be used. May be included in the data. For example, when profile information such as gender and age is held for the user, the calculation may be performed including only data of users having similar profiles.
 次に,ステップS44では,当該睡眠期間中に検出された呼吸頻度と,前記ステップで算出した基礎呼吸頻度との乖離を算出し,欠損値を補間する。乖離は,例えば分数,即ち以下の式で定義しても良い。
Figure JPOXMLDOC01-appb-M000004
更に,算出した呼吸乖離の欠損部分,つまり呼吸が未検出の部分を3次スプライン法等の方法で補間しても良い。またこの時,ある欠損している日時において,正常に検出された最後の呼吸,もしくは次の呼吸が所定の期間(例えば,5分)以上前,もしくは後である場合,補間せずに欠損値のままにしておくことで,情報量が少ない領域において過度な補間が行われるのを防ぐ事が出来る。また欠損値以外にも,正常に呼吸頻度が検出された部分についても補間値で置き換える事に依り,呼吸乖離を平滑化する事が出来る。また一度補間をかけたあと,再度補間をかけても良い。
Next, in step S44, the difference between the respiratory frequency detected during the sleep period and the basic respiratory frequency calculated in the step is calculated, and the missing value is interpolated. The deviation may be defined by, for example, a fraction, that is, the following expression.
Figure JPOXMLDOC01-appb-M000004
Further, the calculated part of the breathing divergence, that is, the part where no breathing is detected may be interpolated by a method such as a cubic spline method. Also, at this time, if the last detected breath or the next breath is detected before or after a predetermined period (for example, 5 minutes) at a certain missing date and time, the missing value is not interpolated. By leaving it as it is, it is possible to prevent excessive interpolation in an area where the amount of information is small. In addition to missing values, breathing divergence can be smoothed by substituting interpolated values for portions where the respiratory frequency is normally detected. In addition, interpolation may be performed once and then again.
 次に,ステップS45では,前記算出した呼吸乖離が,例えば所定の閾値以上(例えば,1.0)を連続的に超えていた期間を一つのREM候補期間として抽出する。
 次に,ステップS46では,前記抽出した全てのREM候補期間に対してREMであるか否かを判別し,REM期間を確定する。まず,各REM候補期間から期間に関する種々の特徴量を算出する。
 特徴量として,例えばREM候補期間の継続時間を含んでも良い。通常の睡眠でREM睡眠が15分以上継続することは稀であるため,それ以上続くREM候補期間は実際のREM睡眠である可能性は低いと判断出来る。
Next, in step S45, a period in which the calculated respiratory divergence continuously exceeds, for example, a predetermined threshold or more (for example, 1.0) is extracted as one REM candidate period.
Next, in step S46, it is determined whether or not all the extracted REM candidate periods are REM, and the REM period is determined. First, various feature amounts related to the period are calculated from each REM candidate period.
For example, the duration of the REM candidate period may be included as the feature amount. Since it is rare for REM sleep to continue for 15 minutes or more in normal sleep, it can be determined that the possibility that the REM candidate period that continues further is actual REM sleep is low.
 また別の特徴量として,例えばREM候補期間中の呼吸乖離の最大値を含んでも良い。呼吸乖離の最大値が低すぎる(予め定められた閾値より低い)場合は,REM睡眠である可能性が低いと判断出来る。
 また別の特徴量として,例えばREM候補期間開始後に呼吸乖離の最大値が生じるまでの経過時間や,これをREM候補期間の継続時間で割ったものを含んでも良い。REM睡眠中の呼吸乖離は,上昇期間と下降期間が同じぐらいの時間であるため,極端に経過時間が開始直後,もしくは終了間際に寄っている場合はREM睡眠である可能性は低いと判断出来る。
 また別の特徴量として,REM候補期間中に,ステップS44で補間されたデータ点の割合を特徴量として含んでも良い。補間されたデータ点が多い場合は,該REM候補期間の信頼度も少なく考えるべきである。
 また別の特徴量として,REM候補期間中の呼吸乖離を二次回帰式y=(qA*x+qB*x+qC)の各係数,qA,qB,qCを特徴量として含んでも良い。REM睡眠時の呼吸乖離は綺麗な山型である事が多いため,これら係数を用いる事で,山型の評価を行う事が出来る。なお、上述の特徴量による判別は、予め定められた閾値等により行うことができる。
 以上の説明で挙げた特徴量群は例であり,以上以外の特徴量を用いる事も出来る。
As another feature amount, for example, the maximum value of respiratory divergence during the REM candidate period may be included. If the maximum value of respiratory divergence is too low (lower than a predetermined threshold), it can be determined that the possibility of REM sleep is low.
Another feature amount may include, for example, an elapsed time until the maximum value of respiratory divergence occurs after the start of the REM candidate period, or a value obtained by dividing this by the duration of the REM candidate period. Respiratory divergence during REM sleep is about the same as the rising period and the falling period. Therefore, if the elapsed time is extremely short immediately after the start or just before the end, it can be judged that the possibility of REM sleep is low. .
As another feature amount, the ratio of the data points interpolated in step S44 during the REM candidate period may be included as the feature amount. If there are many interpolated data points, the reliability of the REM candidate period should be considered low.
As another feature amount, the respiratory divergence during the REM candidate period may include each coefficient of the quadratic regression equation y = (qA * x 2 + qB * x + qC), qA, qB, qC as the feature amount. Since the breathing divergence during REM sleep is often a beautiful mountain shape, it is possible to evaluate the mountain shape by using these coefficients. Note that the determination based on the above-described feature amount can be performed based on a predetermined threshold value or the like.
The feature quantity group mentioned in the above description is an example, and other feature quantities can be used.
 これらの特徴量のひとつ又は複数を含む特徴ベクトルを用いて,REM候補期間がREM睡眠であるか否かを判別する。判別のためには,事前にREM睡眠の学習データを用いて学習したモデルを用いても良い。この際の学習アルゴリズムとして,例えば非特許文献3に開示されるサポートベクトルマシン(SVM)を用いても良いし,判別分析が行えるアルゴリズムであれば何でもよい。このステップでREM睡眠と判別されたREM候補期間を,REM睡眠と確定する。 It is determined whether or not the REM candidate period is REM sleep using a feature vector including one or more of these feature quantities. For the determination, a model learned in advance using REM sleep learning data may be used. As a learning algorithm at this time, for example, a support vector machine (SVM) disclosed in Non-Patent Document 3 may be used, or any algorithm capable of discriminant analysis may be used. The REM candidate period determined as REM sleep in this step is determined as REM sleep.
 REM睡眠の判定は、以下のようにすることもできる。
 例えば、実測された呼吸頻度と基礎呼吸頻度との乖離が所定の傾き以上で所定の時間以上増加する場合にREM睡眠の開始と判定し、所定の終了条件に基づいてREM睡眠の終了とする。ここで、REM睡眠の終了条件は、REM睡眠の開始から所定の時間が経過する事を含むことができる。また、REM睡眠の終了条件は、実測もしくは補間された呼吸頻度と基礎呼吸頻度の分数が所定の傾き以下で所定の時間以上単調減少する事を含むことができる。さらに、REM睡眠の終了条件は、センシングデータに基づき呼吸以外の体動が検知される事を含むことができる。
 次に,ステップS47では,前記ステップでREM睡眠と確定されたREM候補期間を,REMデータテーブル550に蓄積する。
The determination of REM sleep can also be performed as follows.
For example, when the difference between the actually measured respiration frequency and the basal respiration frequency is greater than a predetermined slope and increases for a predetermined time or more, it is determined that REM sleep is started, and REM sleep is ended based on a predetermined end condition. Here, the termination condition of REM sleep can include a predetermined time elapses from the start of REM sleep. Also, the REM sleep termination condition may include a monotonically decreasing fraction of the measured or interpolated respiratory frequency and the basal respiratory frequency that is less than or equal to a predetermined slope and longer than or equal to a predetermined time. Furthermore, the REM sleep termination condition can include detecting body movements other than respiration based on the sensing data.
Next, in step S47, the REM candidate period determined as REM sleep in the above step is accumulated in the REM data table 550.
 以上の説明では,呼吸頻度が基礎呼吸頻度よりも上昇した箇所を検知する事で,REM睡眠を抽出する例を示した。この方法では,呼吸がそもそも検知されていない領域(時間帯)についてはREM睡眠を検知する事が出来ない。一方で,REM睡眠は多くの人にとって大体90分周期程度で生じることが知られている。そこで,発見されたREM睡眠から所定の時間間隔(例えば,90分)の整数倍分に前後(つまり,90分前,90分後,180分前,180分後,270分前,...など)の領域をREM睡眠と判定することで補間しても良い。またこの時,90分ではなく,この装着者に関して検知されたすべてのREM睡眠期間から適切な時間間隔(REM睡眠間隔)を算出して、算出された時間間隔を用いても良い。その算出方法としては,例えば全てのREM睡眠からその次のREM睡眠までの時間間隔を算出し,それらのうち例えば135分以下であった時間間隔のみの平均値を取る事で、装着者のREM睡眠の平均的な時間間隔を算出しても良い。別の例としては,全てのREM睡眠からその次のREM睡眠までの時間間隔を算出し,時間間隔が135分以上である場合は,当該時間間隔を割る事で135分未満になるような整数の徐数を選択し(例えば,間隔が330分なら,徐数を4とすることで82.5分が得られる),選択した徐数で割った結果の平均を取ることで,その装着者にとって好適なREM睡眠の時間間隔が算出される。なお、135分未満でかつ90分に最も近くなるようにしてもよい(例えば、間隔が330分なら、徐数3で110分であるが、徐数4で82.5分にしたほうが90分に近い)。この時間間隔は,計算対象となっている睡眠期間のみから算出しても良いし,この装着者についてこれまで算出された時間間隔の平均等を用いても良い。また,補正によって判定するREM睡眠の継続時間は所定の時間(例えば,15分間)でも良いし,これまでその装着者に関して検知された全てのREM睡眠期間の平均継続時間でも良い。 In the above description, an example in which REM sleep is extracted by detecting a location where the respiratory frequency is higher than the basic respiratory frequency is shown. In this method, REM sleep cannot be detected in an area (time zone) where breathing is not detected in the first place. On the other hand, it is known that REM sleep occurs with a period of about 90 minutes for many people. Therefore, it is around an integer multiple of a predetermined time interval (for example, 90 minutes) from the found REM sleep (that is, 90 minutes ago, 90 minutes ago, 180 minutes ago, 180 minutes later, 270 minutes ago,...). Etc.) may be interpolated by determining the region as REM sleep. At this time, instead of 90 minutes, an appropriate time interval (REM sleep interval) may be calculated from all REM sleep periods detected for the wearer, and the calculated time interval may be used. As the calculation method, for example, the time interval from all REM sleeps to the next REM sleep is calculated, and by taking the average value of only the time intervals that were, for example, 135 minutes or less, the wearer's REM An average time interval of sleep may be calculated. As another example, the time interval from every REM sleep to the next REM sleep is calculated, and when the time interval is 135 minutes or more, an integer that is less than 135 minutes by dividing the time interval The wearer is selected by taking the average of the result of dividing by the selected number (for example, if the interval is 330 minutes, then 82.5 minutes is obtained by setting the number to 4). A suitable REM sleep time interval is calculated. Note that it may be less than 135 minutes and closest to 90 minutes (for example, if the interval is 330 minutes, it is 110 minutes with gradual number 3, but 90 minutes with 82.5 minutes with gradual number 4) Close to). This time interval may be calculated only from the sleep period that is the object of calculation, or the average of the time intervals calculated so far for the wearer may be used. The duration of REM sleep determined by correction may be a predetermined time (for example, 15 minutes), or may be the average duration of all REM sleep periods detected so far for the wearer.
 図19は,REMデータテーブル550のフォーマットを示す説明図で,腕輪型センサノード1の装着者の識別子を格納するユーザID551と,REM睡眠と確定されたREM候補期間の開始日時を格納するREM開始日時552と,該期間の終了日時を格納するREM終了日時553を保持する。また,REM候補期間の判別に用いた判別アルゴリズムが判別の尤度や信頼度を算出出来る場合,この情報もREM期間と共に格納しても良い。またREM期間を補間する手段が備わっている場合は,補間フラッグをREM期間と共に格納しても良い。 FIG. 19 is an explanatory diagram showing the format of the REM data table 550. The user ID 551 stores the identifier of the wearer of the bracelet type sensor node 1, and the REM start stores the start date and time of the REM candidate period determined to be REM sleep. It holds a date and time 552 and a REM end date and time 553 that stores the end date and time of the period. Further, when the discrimination algorithm used for discrimination of the REM candidate period can calculate the likelihood and reliability of discrimination, this information may be stored together with the REM period. If a means for interpolating the REM period is provided, the interpolation flag may be stored together with the REM period.
 図26は、実施例2におけるクライアントPC103の機能ブロック図である。
 クライアントPC103は、例えば、実施例1の呼吸測定システム2500と、睡眠検知部2601と、基礎呼吸頻度算出部2602と、乖離算出部2603と、REM睡眠判定部2604と、第2蓄積部2605とを有する。各部は、上述のようにプロセッサ107が各プログラム200、300、400及び500を実行することで実現される。
 睡眠検知部2601は、センシングデータから睡眠を検知する。図17のステップS2.2、図5のステップS2の処理に相当する。基礎呼吸頻度算出部2602は、呼吸測定システム2500の蓄積部2503に蓄積された所定期間の呼吸頻度と時刻情報とに基づき、就寝後経過時間毎の呼吸頻度を統計した就寝後経過時間毎の基礎呼吸頻度を算出する。図18のステップS42、S43の処理に相当する。乖離算出部2603は、算出された基礎呼吸頻度と実測され蓄積部2503に蓄積された呼吸頻度との乖離を、就寝後経過時間毎に算出する。図18のステップS44の処理に相当する。REM睡眠判定部2604は、基礎呼吸頻度と実測された呼吸頻度との乖離からREM睡眠を判定する。図18のステップS45、S46の処理に相当する。第2蓄積部2605は、判定されたREM睡眠の時刻情報を蓄積する。図18のステップS47の処理に相当する。
FIG. 26 is a functional block diagram of the client PC 103 according to the second embodiment.
The client PC 103 includes, for example, the respiration measurement system 2500 according to the first embodiment, the sleep detection unit 2601, the basal respiration frequency calculation unit 2602, the divergence calculation unit 2603, the REM sleep determination unit 2604, and the second accumulation unit 2605. Have. Each unit is realized by the processor 107 executing the programs 200, 300, 400, and 500 as described above.
The sleep detection unit 2601 detects sleep from the sensing data. This corresponds to the processing in step S2.2 in FIG. 17 and step S2 in FIG. The basic respiration frequency calculation unit 2602 is a basic unit for each elapsed time after going to bed, based on the respiration frequency and the time information for a predetermined period accumulated in the accumulation unit 2503 of the respiration measurement system 2500. Calculate respiratory frequency. This corresponds to the processing of steps S42 and S43 in FIG. The divergence calculation unit 2603 calculates the divergence between the calculated basic respiration frequency and the respiration frequency actually measured and accumulated in the accumulation unit 2503 for each elapsed time after going to bed. This corresponds to the processing in step S44 in FIG. The REM sleep determination unit 2604 determines REM sleep from the difference between the basic respiration frequency and the actually measured respiration frequency. This corresponds to the processing in steps S45 and S46 in FIG. The second accumulation unit 2605 accumulates the determined REM sleep time information. This corresponds to the processing in step S47 in FIG.
 図27は、REM睡眠判定部2604の詳細ブロック図である。
 REM睡眠判定部2604は、例えば、REM候補期間抽出部2701と、特徴量算出部2702と、REM候補期間判別部2703とを有する。
 REM候補期間抽出部2701は、呼吸頻度と基礎呼吸頻度との乖離が連続して予め定められた第2閾値以上であった期間をREM候補期間として抽出する。特徴量算出部2702は、前記REM候補期間における特徴量を含む特徴ベクトルを算出する。REM候補期間判別部2703前記特徴ベクトルに基づいて前記REM候補期間がREM睡眠であるか否かを判定する。
FIG. 27 is a detailed block diagram of the REM sleep determination unit 2604.
The REM sleep determination unit 2604 includes, for example, a REM candidate period extraction unit 2701, a feature amount calculation unit 2702, and a REM candidate period determination unit 2703.
The REM candidate period extraction unit 2701 extracts, as the REM candidate period, a period in which the difference between the respiratory frequency and the basal respiratory frequency is continuously greater than or equal to a predetermined second threshold value. The feature amount calculation unit 2702 calculates a feature vector including the feature amount in the REM candidate period. REM candidate period discriminating unit 2703 Based on the feature vector, it is determined whether or not the REM candidate period is REM sleep.
 図20は,クライアント計算機であるPC104の表示部1041に表示されるREM表示画面1300の画面イメージである。PC104がREM表示画面1300を表示させるのは,入力装置1042を介した利用者からの表示要求を受け付けたことを起因としても良いし,REM推定プログラム500の実行終了を起因としても良いし,例えば無線等の手段で腕輪型センサノード1のセンシングデータをリアルタイムで取得する事が可能である場合は,装着者が起床した事を睡眠期間抽出プログラム300が検知した事を起因としても良い。なお,PC104で稼働するアプリケーションとしては,ブラウザを採用しても良いし,単独で稼働するアプリケーションが直接REM表示画面1300を表示しても良い。 FIG. 20 is a screen image of the REM display screen 1300 displayed on the display unit 1041 of the PC 104 which is a client computer. The display of the REM display screen 1300 by the PC 104 may be caused by receiving a display request from a user via the input device 1042, or may be caused by termination of execution of the REM estimation program 500. If the sensing data of the bracelet type sensor node 1 can be acquired in real time by wireless means or the like, it may be caused by the sleep period extraction program 300 detecting that the wearer has woken up. Note that a browser may be adopted as an application that runs on the PC 104, or an application that runs alone may directly display the REM display screen 1300.
 REM表示画面1300はその日の主睡眠と,検知された呼吸頻度と,REM睡眠に関する情報を利用者に提示する画面の一例である。これは,表示対象となる日付を表示し,選択を可能とする日付コントロール1301と,データ集計プログラム200のステップS13で算出したスカラー量の一日の推移を示すスカラー量グラフ1302と,この日から検出された睡眠期間,非装着期間を示す睡眠期間グラフ1303と,検知された呼吸頻度を示す呼吸頻度グラフ1304と,その日のREM睡眠を検知するREMパネル1305と,その日の睡眠の数値データやアドバイスを表示する睡眠メモパネル1306を有する。
 なお,要素1301,1302,1303,1304は,第1の実施例における睡眠画面1200の1201,1202,1203,1204とそれぞれ同一でも良いため,以下の説明においては詳細説明を省く。
The REM display screen 1300 is an example of a screen that presents the main sleep of the day, the detected respiration frequency, and information on the REM sleep to the user. This includes a date control 1301 that displays the date to be displayed and allows selection, a scalar quantity graph 1302 that shows the daily transition of the scalar quantity calculated in step S13 of the data totaling program 200, and from this date. Sleep period graph 1303 indicating the detected sleep period and non-wearing period, respiratory frequency graph 1304 indicating the detected respiratory frequency, REM panel 1305 for detecting REM sleep for the day, and numerical data and advice for the sleep of the day The sleep memo panel 1306 is displayed.
Note that the elements 1301, 1302, 1303, and 1304 may be the same as 1201, 1202, 1203, and 1204 of the sleep screen 1200 in the first embodiment, respectively, and thus detailed description is omitted in the following description.
 REMパネル1305は,REM推定プログラム500で推定されたREM睡眠の期間を表示する領域である。図面のように,呼吸頻度から直接推定されたREM期間(実線枠)と,欠損部分について90分周期毎に補間したREM期間(破線枠)を区別して描いても良い。また,例えばREM期間の枠内に,REM期間の開始日時,終了日時,経過時間,推定の信頼度等の情報を表示しても良い。 The REM panel 1305 is an area for displaying the REM sleep period estimated by the REM estimation program 500. As shown in the drawing, the REM period (solid line frame) directly estimated from the respiration frequency may be distinguished from the REM period (broken line frame) interpolated every 90 minutes for the missing portion. Further, for example, information such as the start date and time, end date and time, elapsed time, and estimation reliability of the REM period may be displayed within the frame of the REM period.
 睡眠メモパネル1306は,その日の睡眠期間に関する数値データや,それに基づく利用者へのメッセージやアドバイスを表示する領域である。例えば,その日の就寝後,最初のREM期間が現れるまでの時間をREM潜時とし,過去所定の時間(例えば,半年)のREM潜時の平均値を通常REM潜時として表示しても良い。REM潜時は,睡眠不足気味になると長くなり,例えばうつ病では短くなる事が知られている。そのためREM潜時を通常と比べて表示することで,装着者が自分の体調を省みるきっかけとなる。また,起床前に最後のREM睡眠から経過した時間を例えば「すっきり目覚め指数」として表示しても良い。通常,REM睡眠から時間がたてばたつほど眠りが深くなり,眠りが深い状態で起床してしまうと目覚めが良くないとされている。そのため,REM睡眠からの経過時間を表示することで,自らの目覚め方を振り返るきっかけとなる。またこれら以外にも,睡眠中を占めるREM睡眠の割合や,REM睡眠期間の回数,REM睡眠間の時間間隔の平均値などを提示しても良い。 The sleep memo panel 1306 is an area for displaying numerical data related to the sleep period of the day, and messages and advice to the user based on the data. For example, the time until the first REM period appears after going to bed on that day may be set as the REM latency, and the average value of the REM latency in the past predetermined time (for example, half a year) may be displayed as the normal REM latency. It is known that the REM latency becomes longer when sleepiness is poor and becomes shorter, for example, in depression. For this reason, displaying the REM latency compared to the normal time is an opportunity for the wearer to save his / her physical condition. Further, the time elapsed since the last REM sleep before getting up may be displayed as, for example, a “clean wake-up index”. In general, it is said that as time passes from REM sleep, sleep becomes deeper, and when waking up with deep sleep, waking is not good. Therefore, by displaying the elapsed time from REM sleep, it becomes a chance to look back on how to wake up. In addition to these, the ratio of REM sleep occupying during sleep, the number of REM sleep periods, the average value of the time interval between REM sleeps, and the like may be presented.
 更に,呼吸頻度や睡眠前後のセンシングデータに基づいて,睡眠についてのコメントやアドバイスを利用者に提示しても良い。例えば,REM潜時が90分より大幅に長い場合は睡眠不足が疑われるため,「睡眠不足気味のようですね」などのコメントを提示することで,利用者に自らの生活パターンを見直すきっかけを与えてもよい。 Furthermore, comments and advice regarding sleep may be presented to the user based on respiratory frequency and sensing data before and after sleep. For example, if the REM latency is significantly longer than 90 minutes, sleep deprivation is suspected. By presenting comments such as “Looks like sleep deprivation,” the user is given a chance to review their own lifestyle patterns. May be given.
 以上の説明では,腕輪型センサノード1のセンシングデータから呼吸頻度を算出し,REM睡眠の期間を推定し,表示部1041に提示する実施の形態を説明したが,例えば表示部1041に音声を発するブザーやスピーカが備わっている場合,装着者が設定した時間(例えば,6時から6時半など)の間にREM睡眠が終了したことを起因として音声を発生させることで,REM睡眠が終了した間際の一番すっきり目覚めやすいタイミングで起床させる事が出来る。なお、REM睡眠が終了したタイミング以外にも、REM睡眠中の適宜のタイミングでもよい。また,前述の通りREM睡眠中には記憶の整理が行われるため,受験勉強を徹夜で行っており,小休憩として寝る場合はREM睡眠も経る事が望ましい。そこで,就寝後最初のREM睡眠が終了したことを起因として音声を発生させることで,効率よく短期記憶の定着化を促す事が出来る。
 上記で説明した実施形態により,腕に装着した加速度センサから算出した欠損値を多く含む呼吸頻度からでも,精度良くREM睡眠を推定する事が出来る。
In the above description, the embodiment in which the respiration frequency is calculated from the sensing data of the bracelet type sensor node 1, the REM sleep period is estimated, and presented on the display unit 1041 has been described. When a buzzer or speaker is provided, REM sleep is terminated by generating a sound due to the termination of REM sleep during the time set by the wearer (for example, 6 to 6:30) It is possible to wake up at the timing that is most easily awakened. In addition to the timing when REM sleep ends, an appropriate timing during REM sleep may be used. In addition, as described above, since memory is organized during REM sleep, studying for the examination is conducted all night, and it is desirable that REM sleep is also passed when sleeping as a short break. Therefore, it is possible to efficiently promote the establishment of short-term memory by generating a sound based on the end of the first REM sleep after going to bed.
According to the embodiment described above, it is possible to accurately estimate REM sleep even from a respiratory frequency including many missing values calculated from an acceleration sensor worn on the arm.
(変形例)
 上述のREM睡眠判定は、センシングデータから呼吸を表すデータ(例えば呼吸頻度)を意識して求めなくてもよく、センシングデータから上述と同様の処理でREM睡眠を判定してもよい。例えば、REM睡眠判定方法は、
 腕に装着され腕の動きを示すセンシングデータを取得するセンサからのセンシングデータを過去所定期間について集計し、その主となる主周期成分を検出するステップと、
 該主周期成分が、予め定められた周波数範囲である場合にその主周期成分の周波数を時刻情報と対応して蓄積するステップと、
 センシングデータから睡眠を検知するステップと、
 蓄積された主周期成分の周波数と時刻情報とに基づき、就寝後経過時間毎の基礎周波数データを算出するステップと、
 算出された基礎周波数データと蓄積された主周期成分の周波数との乖離を算出するステップと、
 算出された乖離に基づきREM睡眠を判定するステップと、
 判定されたREM睡眠の時刻情報を蓄積するステップと
を含むように構成することができる。
(Modification)
The above-mentioned REM sleep determination may not be obtained by taking into consideration data representing respiration (for example, respiration frequency) from the sensing data, and REM sleep may be determined from the sensing data by the same process as described above. For example, the REM sleep determination method is:
Aggregating sensing data from a sensor that is attached to the arm and acquires sensing data indicating the movement of the arm for the past predetermined period, and detecting a main main period component;
A step of accumulating the frequency of the main period component corresponding to the time information when the main period component is in a predetermined frequency range;
Detecting sleep from the sensing data;
Calculating basic frequency data for each elapsed time after going to bed based on the accumulated frequency of the main period component and time information;
Calculating a deviation between the calculated fundamental frequency data and the accumulated frequency of the main period component;
Determining REM sleep based on the calculated divergence;
Storing the determined time information of REM sleep.
1 腕輪型センサノード
6 センサ
10 基板
11 ケース
12 バンド
103 クライアント計算機(PC)
107 プロセッサ
108 メモリ
1100 記憶装置
250 集計データテーブル
350 睡眠期間データテーブル
450 呼吸頻度データテーブル
1150 センシングデータテーブル
2500 呼吸測定システム
2501 主周期成分検出部
2502 呼吸情報取得成功判定部
2503 蓄積部
2601 睡眠検知部
2602 基礎呼吸頻度算出部
2603 乖離算出部
2604 REM睡眠判定部
2605 第2蓄積部
2701 REM候補期間抽出部
2702 特徴量算出部
2703 REM候補期間判別部
1 bracelet type sensor node 6 sensor 10 substrate 11 case 12 band 103 client computer (PC)
107 Processor 108 Memory 1100 Storage Device 250 Total Data Table 350 Sleep Period Data Table 450 Respiration Frequency Data Table 1150 Sensing Data Table 2500 Respiration Measurement System 2501 Main Period Component Detection Unit 2502 Respiration Information Acquisition Success Determination Unit 2503 Accumulation Unit 2601 Sleep Detection Unit 2602 Basal respiration frequency calculation unit 2603 Deviation calculation unit 2604 REM sleep determination unit 2605 Second accumulation unit 2701 REM candidate period extraction unit 2702 Feature quantity calculation unit 2703 REM candidate period determination unit

Claims (19)

  1.  腕に装着して腕の動きを示すセンシングデータを取得するセンサと、
     周期的に過去所定期間のセンシングデータを集計し、その主となる主周期成分を検出する主周期成分検出部と、
     主周期成分の大きさ又は周波数に関する予め定められた判定条件に従い、該主周期成分が呼吸に依る周期成分として有効か否かを判定する呼吸情報取得成功判定部と、
     呼吸に依る周期成分として有効であると判定された場合にその主周期成分の周波数を呼吸頻度として時刻情報と対応して蓄積する蓄積部と
    を備えた呼吸測定システム。
    A sensor that is attached to the arm and acquires sensing data indicating the movement of the arm;
    A main period component detector that periodically collects sensing data of a predetermined period in the past and detects a main period component that is the main period;
    Respiration information acquisition success determination unit that determines whether the main period component is effective as a period component depending on respiration according to a predetermined determination condition regarding the magnitude or frequency of the main period component;
    A respiration measurement system comprising: an accumulator that accumulates the frequency of the main period component as respiration frequency in association with time information when it is determined to be effective as a period component depending on respiration.
  2.  前記主周期成分検出部は、センシングデータのスカラー値をFFTした演算結果の最大ピークを前記主周期成分とする請求項1に記載の呼吸測定システム。 The respiratory measurement system according to claim 1, wherein the main period component detection unit uses a maximum peak of a calculation result obtained by performing FFT on a scalar value of sensing data as the main period component.
  3.  前記呼吸情報取得成功判定部における判定条件は、主周期成分のパワー値が予め定められた第1閾値以上であれば、呼吸に依る周期成分として有効であると判定することを含む請求項1に記載の呼吸測定システム。 The determination condition in the respiration information acquisition success determination unit includes determining that the respiration information is effective as a periodic component if the power value of the main cycle component is equal to or greater than a predetermined first threshold value. Respiratory measurement system as described.
  4.  前記呼吸情報取得成功判定部における判定条件は、主周期成分のパワー値が、該主周期成分まわりの第1の範囲内の周期成分のパワー値と比較して、所定量以上突出していれば、呼吸に依る周期成分として有効であると判定することを含む請求項1に記載の呼吸測定システム。 The determination condition in the respiratory information acquisition success determination unit is that the power value of the main period component protrudes by a predetermined amount or more in comparison with the power value of the period component in the first range around the main period component. The respiration measurement system according to claim 1, wherein the respiration measurement system includes determining that it is effective as a periodic component depending on respiration.
  5.  前記呼吸情報取得成功判定部における判定条件は、主周期成分の周波数が予め定められた第2の範囲内にあれば、呼吸に依る周期成分として有効であると判定することを含む請求項1に記載の呼吸測定システム。 The determination condition in the respiration information acquisition success determination unit includes determining that the respiration information is effective as a periodic component if the frequency of the main cycle component is within a predetermined second range. Respiratory measurement system as described.
  6.  前記センサは、装着される腕の加速度データを取得する加速度センサ又は装着される腕の角速度データを取得する角速度センサである請求項1に記載の呼吸測定システム。 2. The respiratory measurement system according to claim 1, wherein the sensor is an acceleration sensor that acquires acceleration data of a worn arm or an angular velocity sensor that acquires angular velocity data of a worn arm.
  7.  請求項1に記載の呼吸測定システムと、
     センシングデータから睡眠を検知する睡眠検知部と、
     前記呼吸測定システムの蓄積部に蓄積された所定期間の呼吸頻度と時刻情報とに基づき、就寝後経過時間毎の呼吸頻度を統計した就寝後経過時間毎の基礎呼吸頻度を算出する基礎呼吸頻度算出部と、
     算出された基礎呼吸頻度と実測され前記蓄積部に蓄積された呼吸頻度との乖離を、就寝後経過時間毎に算出する乖離算出部と、
     基礎呼吸頻度と実測された呼吸頻度との乖離からREM睡眠を判定するREM睡眠判定部と、
     判定されたREM睡眠の時刻情報を蓄積する第2蓄積部と
    を備えたREM睡眠判定システム。
    A respiratory measurement system according to claim 1;
    A sleep detector that detects sleep from the sensing data;
    Basal respiration frequency calculation for calculating a basal respiration frequency for every elapsed time after bedtime based on a respiration frequency for a predetermined period accumulated in the accumulation unit of the respiration measurement system and time information. And
    A divergence calculating unit that calculates a divergence between the calculated basic respiration frequency and a respiration frequency that is actually measured and accumulated in the accumulation unit;
    A REM sleep determination unit that determines REM sleep from the difference between the basal respiration frequency and the actually measured respiration frequency;
    The REM sleep determination system provided with the 2nd storage part which accumulate | stores the time information of the determined REM sleep.
  8.  前記基礎呼吸頻度算出部は、前記蓄積部に蓄積された、複数の睡眠についての呼吸頻度から就寝後経過時間毎の平均値を算出することで、就寝後経過時間毎の基礎呼吸頻度を算出する請求項7に記載のREM睡眠判定システム。 The basal respiration frequency calculation unit calculates a basal respiration frequency for each elapsed time after bedtime by calculating an average value for each elapsed time after bedtime from the respiration frequencies for a plurality of sleeps accumulated in the accumulation unit. The REM sleep determination system according to claim 7.
  9.  前記基礎呼吸頻度算出部は、前記蓄積部に蓄積された、複数の睡眠についての呼吸頻度を所定の項数の多項式で近似することで、就寝後経過時間毎の基礎呼吸頻度を算出する請求項7に記載のREM睡眠判定システム。 The basal respiration frequency calculation unit calculates a basal respiration frequency for each elapsed time after going to bed by approximating a respiration frequency for a plurality of sleeps accumulated in the accumulation unit with a polynomial having a predetermined number of terms. 8. The REM sleep determination system according to 7.
  10.  前記乖離算出部は、呼吸頻度が蓄積されなかった期間を所定の補間法により補間する請求項7に記載のREM睡眠判定システム。 The REM sleep determination system according to claim 7, wherein the divergence calculation unit interpolates a period during which the respiratory frequency is not accumulated by a predetermined interpolation method.
  11.  前記乖離算出部における補間法は三次スプライン補間法である請求項10に記載のREM睡眠判定システム。 The REM sleep determination system according to claim 10, wherein the interpolation method in the deviation calculation unit is a cubic spline interpolation method.
  12.  前記乖離算出部により算出される乖離は、実測された呼吸頻度と、基礎呼吸頻度との分数で表される請求項7に記載のREM睡眠判定システム。 The REM sleep determination system according to claim 7, wherein the divergence calculated by the divergence calculation unit is expressed as a fraction of the actually measured respiration frequency and the basal respiration frequency.
  13.  前記REM睡眠判定部は、
     呼吸頻度と基礎呼吸頻度との乖離が連続して第2閾値以上であった期間をREM候補期間として抽出するREM候補期間抽出部と、
     前記REM候補期間における特徴量を含む特徴ベクトルを算出する特徴量算出部と、
     前記特徴ベクトルに基づいて前記REM候補期間がREM睡眠であるか否かを判定するREM候補期間判別部と
    を有する請求項7に記載のREM睡眠判定システム。
    The REM sleep determination unit
    A REM candidate period extraction unit that extracts a period in which the difference between the respiratory frequency and the basal respiratory frequency is continuously equal to or greater than the second threshold as a REM candidate period;
    A feature amount calculation unit that calculates a feature vector including the feature amount in the REM candidate period;
    The REM sleep determination system according to claim 7, further comprising: a REM candidate period determination unit that determines whether the REM candidate period is REM sleep based on the feature vector.
  14.  前記特徴ベクトルは、
     REM候補期間の継続時間、REM候補期間中の実測もしくは補間された呼吸頻度と基礎呼吸頻度の乖離の最大値、REM候補期間開始後に最大呼吸頻度が生じるまでの経過時間、もしくはこの経過時間のREM候補期間の継続時間を母数とした割合、REM候補期間中に補間された呼吸数が占める割合、及び、REM候補期間中の呼吸頻度を二次回帰式で近似した時の各係数、のうち少なくともひとつの特徴量を含む請求項13に記載のREM睡眠判定システム。
    The feature vector is
    The duration of the REM candidate period, the maximum difference between the measured or interpolated respiratory frequency and the basic respiratory frequency during the REM candidate period, the elapsed time until the maximum respiratory frequency occurs after the start of the REM candidate period, or the REM of this elapsed time Of the ratio when the duration of the candidate period is a parameter, the ratio of the respiratory rate interpolated during the REM candidate period, and each coefficient when the respiratory frequency during the REM candidate period is approximated by a quadratic regression equation The REM sleep determination system according to claim 13, comprising at least one feature amount.
  15.  前記REM睡眠判定部は、実測された呼吸頻度と基礎呼吸頻度との乖離が所定の傾き以上で所定の時間以上増加する場合にREM睡眠の開始と判定し、所定の終了条件に基づいてREM睡眠の終了とする請求項7に記載のREM睡眠判定システム。 The REM sleep determination unit determines the start of REM sleep when the difference between the actually measured respiration frequency and the basal respiration frequency is greater than a predetermined slope and increases for a predetermined time, and the REM sleep is determined based on a predetermined end condition. The REM sleep determination system according to claim 7, wherein the REM sleep determination system is terminated.
  16.  REM睡眠の前記終了条件は、REM睡眠の開始から所定の時間が経過する事を含む請求項15に記載のREM睡眠判定システム。 The REM sleep determination system according to claim 15, wherein the termination condition of REM sleep includes that a predetermined time elapses from the start of REM sleep.
  17.  REM睡眠の前記終了条件は、実測もしくは補間された呼吸頻度と基礎呼吸頻度の分数が所定の傾き以下で所定の時間以上単調減少する事を含む請求項15に記載のREM睡眠判定システム。 The REM sleep determination system according to claim 15, wherein the termination condition of REM sleep includes that the fraction of the actually measured or interpolated respiration frequency and the basal respiration frequency is monotonously decreased for a predetermined time or less with a predetermined inclination or less.
  18.  REM睡眠の前記終了条件は、センシングデータに基づき呼吸以外の体動が検知される事を含む請求項15に記載のREM睡眠判定システム。 The REM sleep determination system according to claim 15, wherein the end condition of REM sleep includes detecting body movements other than respiration based on sensing data.
  19.  前記REM睡眠判定部で判定された複数のREM睡眠の間隔に基づくREM睡眠間隔に従い、該REM睡眠間隔の倍数分の期間もREM睡眠と判定する請求項7に記載のREM睡眠判定システム。 The REM sleep determination system according to claim 7, wherein a period corresponding to a multiple of the REM sleep interval is also determined as REM sleep according to a REM sleep interval based on a plurality of REM sleep intervals determined by the REM sleep determination unit.
PCT/JP2011/074631 2011-10-26 2011-10-26 Respiration measurement system and rem sleep assessment system WO2013061415A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013540540A JP5740006B2 (en) 2011-10-26 2011-10-26 Respiration measurement system and REM sleep determination system
PCT/JP2011/074631 WO2013061415A1 (en) 2011-10-26 2011-10-26 Respiration measurement system and rem sleep assessment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074631 WO2013061415A1 (en) 2011-10-26 2011-10-26 Respiration measurement system and rem sleep assessment system

Publications (1)

Publication Number Publication Date
WO2013061415A1 true WO2013061415A1 (en) 2013-05-02

Family

ID=48167282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074631 WO2013061415A1 (en) 2011-10-26 2011-10-26 Respiration measurement system and rem sleep assessment system

Country Status (2)

Country Link
JP (1) JP5740006B2 (en)
WO (1) WO2013061415A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012949A (en) * 2013-07-04 2015-01-22 パラマウントベッド株式会社 Abnormality evaluation device, abnormality evaluation method for subject, and abnormality evaluation program for subject
JP2016041112A (en) * 2014-08-14 2016-03-31 株式会社東芝 Activity meter
WO2016150924A1 (en) * 2015-03-25 2016-09-29 Koninklijke Philips N.V. Wearable device for sleep assistance
WO2017029725A1 (en) * 2015-08-19 2017-02-23 株式会社日立システムズ Life log cloud system, life log cloud system control method, life log control method, program, recording medium, and cloud server
JP2017213422A (en) * 2017-08-10 2017-12-07 パラマウントベッド株式会社 Abnormality evaluation device and program
CN109620231A (en) * 2018-12-25 2019-04-16 湖南明康中锦医疗科技发展有限公司 Flow limitation determination method, device, computer equipment and storage medium
JP2020000371A (en) * 2018-06-26 2020-01-09 凸版印刷株式会社 Sleep state determination device, sleep state determination method, and sleep state determination system
WO2020053858A1 (en) 2018-09-14 2020-03-19 ChroniSense Medical Ltd. System and method for monitoring respiratory rate and oxygen saturation
CN111465354A (en) * 2017-12-13 2020-07-28 松下知识产权经营株式会社 Cognitive function degradation determination system
CN113158009A (en) * 2020-01-22 2021-07-23 青岛海尔电冰箱有限公司 Diet recommendation method, refrigerator and computer-readable storage medium
CN114767064A (en) * 2022-03-23 2022-07-22 中国科学院苏州生物医学工程技术研究所 Child sleep monitoring method and system and electronic device
US11464457B2 (en) 2015-06-12 2022-10-11 ChroniSense Medical Ltd. Determining an early warning score based on wearable device measurements
WO2023008099A1 (en) * 2021-07-27 2023-02-02 株式会社ACCELStars Sleep/waking determination system, sleep/waking determination method, and program
US11571139B2 (en) 2015-06-12 2023-02-07 ChroniSense Medical Ltd. Wearable system and method for measuring oxygen saturation
CN116392087A (en) * 2023-06-06 2023-07-07 安徽星辰智跃科技有限责任公司 Sleep stability quantification and adjustment method, system and device based on modal decomposition
US11712190B2 (en) 2015-06-12 2023-08-01 ChroniSense Medical Ltd. Wearable device electrocardiogram

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319378A (en) * 2006-05-31 2007-12-13 Denso Corp Physiological state detection device, controller and pulse wave sensor mounting device
JP2010220947A (en) * 2009-03-25 2010-10-07 Citizen Holdings Co Ltd Biological signal measuring apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156320A (en) * 2010-02-04 2011-08-18 Panasonic Corp Biological information detection system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319378A (en) * 2006-05-31 2007-12-13 Denso Corp Physiological state detection device, controller and pulse wave sensor mounting device
JP2010220947A (en) * 2009-03-25 2010-10-07 Citizen Holdings Co Ltd Biological signal measuring apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012949A (en) * 2013-07-04 2015-01-22 パラマウントベッド株式会社 Abnormality evaluation device, abnormality evaluation method for subject, and abnormality evaluation program for subject
JP2016041112A (en) * 2014-08-14 2016-03-31 株式会社東芝 Activity meter
WO2016150924A1 (en) * 2015-03-25 2016-09-29 Koninklijke Philips N.V. Wearable device for sleep assistance
JP2018512927A (en) * 2015-03-25 2018-05-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Wearable device for sleep assistance
US10478589B2 (en) 2015-03-25 2019-11-19 Koninklijke Philips N.V. Wearable device for sleep assistance
US11464457B2 (en) 2015-06-12 2022-10-11 ChroniSense Medical Ltd. Determining an early warning score based on wearable device measurements
US11931155B2 (en) 2015-06-12 2024-03-19 ChroniSense Medical Ltd. Wearable wrist device electrocardiogram
US11712190B2 (en) 2015-06-12 2023-08-01 ChroniSense Medical Ltd. Wearable device electrocardiogram
US11571139B2 (en) 2015-06-12 2023-02-07 ChroniSense Medical Ltd. Wearable system and method for measuring oxygen saturation
WO2017029725A1 (en) * 2015-08-19 2017-02-23 株式会社日立システムズ Life log cloud system, life log cloud system control method, life log control method, program, recording medium, and cloud server
JP6145215B1 (en) * 2015-08-19 2017-06-07 株式会社日立システムズ Life log cloud system, life log cloud system control method, life log control method, program, recording medium, cloud server
JP2017213422A (en) * 2017-08-10 2017-12-07 パラマウントベッド株式会社 Abnormality evaluation device and program
CN111465354B (en) * 2017-12-13 2023-02-24 松下知识产权经营株式会社 Cognitive function degradation determination system
CN111465354A (en) * 2017-12-13 2020-07-28 松下知识产权经营株式会社 Cognitive function degradation determination system
JP2020000371A (en) * 2018-06-26 2020-01-09 凸版印刷株式会社 Sleep state determination device, sleep state determination method, and sleep state determination system
EP3849407A4 (en) * 2018-09-14 2022-09-07 Chronisense Medical Ltd. System and method for monitoring respiratory rate and oxygen saturation
WO2020053858A1 (en) 2018-09-14 2020-03-19 ChroniSense Medical Ltd. System and method for monitoring respiratory rate and oxygen saturation
CN109620231A (en) * 2018-12-25 2019-04-16 湖南明康中锦医疗科技发展有限公司 Flow limitation determination method, device, computer equipment and storage medium
CN113158009A (en) * 2020-01-22 2021-07-23 青岛海尔电冰箱有限公司 Diet recommendation method, refrigerator and computer-readable storage medium
WO2023008099A1 (en) * 2021-07-27 2023-02-02 株式会社ACCELStars Sleep/waking determination system, sleep/waking determination method, and program
TWI833276B (en) * 2021-07-27 2024-02-21 日商優化睡眠股份有限公司 Sleep-wake determination system, sleep-wake determination method, and program
CN114767064A (en) * 2022-03-23 2022-07-22 中国科学院苏州生物医学工程技术研究所 Child sleep monitoring method and system and electronic device
CN114767064B (en) * 2022-03-23 2024-01-23 中国科学院苏州生物医学工程技术研究所 Child sleep monitoring method, system and electronic device
CN116392087A (en) * 2023-06-06 2023-07-07 安徽星辰智跃科技有限责任公司 Sleep stability quantification and adjustment method, system and device based on modal decomposition
CN116392087B (en) * 2023-06-06 2023-09-01 安徽星辰智跃科技有限责任公司 Sleep stability quantification and adjustment method, system and device based on modal decomposition

Also Published As

Publication number Publication date
JPWO2013061415A1 (en) 2015-04-02
JP5740006B2 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5740006B2 (en) Respiration measurement system and REM sleep determination system
CN108852283B (en) Sleep scoring based on physiological information
EP3313276B1 (en) Heart rate variability with sleep detection
Paalasmaa et al. Unobtrusive online monitoring of sleep at home
JP6047346B2 (en) Biological information processing system, wearable device, server system, and program
JP5788293B2 (en) Sleep evaluation apparatus and sleep evaluation program
JP4023429B2 (en) Portable biological information monitor device
US10586620B2 (en) Device for calculating amount of retained physical activity, method for calculating amount of retained physical activity and system for calculating amount of retained physical activity
JP5263774B2 (en) Computer system
WO2013171799A1 (en) Biorhythm-estimating device
US20170035365A1 (en) Biological information processing system, electronic apparatus, server system and biological information processing method
JP2016016144A (en) Biological information processing system and method of controlling biological information processing system
WO2017163300A1 (en) Basal body temperature measurement system and basal body temperature measurement device
JP2015150034A (en) Sleep state determination device, sleep state determination method, and sleep state determination system
JP2016067811A (en) Biological information detection system, biological information detection device and control method of biological information detection system
EP1163878A1 (en) Device for body activity detection and processing
JP2021043480A (en) Napping assistance system and napping assistance program
JP6702559B2 (en) Electronic device, method and program
EP3740125B1 (en) Method, apparatus, and system for detecting stages of sleep of person
US20240164678A1 (en) Fatigue Evaluation Based On Sleep Quality And Physical Activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874820

Country of ref document: EP

Kind code of ref document: A1