WO2013061356A1 - Slip sensor - Google Patents

Slip sensor Download PDF

Info

Publication number
WO2013061356A1
WO2013061356A1 PCT/JP2011/005921 JP2011005921W WO2013061356A1 WO 2013061356 A1 WO2013061356 A1 WO 2013061356A1 JP 2011005921 W JP2011005921 W JP 2011005921W WO 2013061356 A1 WO2013061356 A1 WO 2013061356A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric film
vibration
slip sensor
slip
sensor
Prior art date
Application number
PCT/JP2011/005921
Other languages
French (fr)
Japanese (ja)
Inventor
友美 高橋
潔人 伊藤
真 佐圓
長田 健一
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/005921 priority Critical patent/WO2013061356A1/en
Publication of WO2013061356A1 publication Critical patent/WO2013061356A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/082Grasping-force detectors
    • B25J13/083Grasping-force detectors fitted with slippage detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/226Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping

Definitions

  • the present invention relates to a slip sensor for detecting slip of an object.
  • Non-Patent Document 1 is given as a conventional slip sensor using a piezoelectric film.
  • the slip sensor using the piezoelectric film of Non-Patent Document 1 is composed of a module integrated with silicon rubber (Non-Patent Document 1: Figure 1).
  • a module formed of silicon rubber has a flat portion and a sensor portion, and there is a gap between the flat portion and the sensor portion.
  • Piezoelectric film generates a signal by applied compression and expansion, and its characteristics depend on the area. Since the slip sensor using the piezoelectric film of Non-Patent Document 1 has a low height and a wide structure, a generated signal amount is small and it is difficult to obtain a sufficient SN ratio. As a result, the detection accuracy may be lowered.
  • the sensor part and the outer peripheral part are integrally formed of silicon rubber, and the outer peripheral part is made of silicon rubber, so that the outer peripheral part also vibrates together with the sensor part. Such vibration dispersion also causes a decrease in detection accuracy.
  • the sensor unit has a structure in which the piezoelectric film is erected on its neutral axis. However, when the sensor part bends due to vibration, there is little expansion or compression on the neutral axis, so the amount of signal generated is small.
  • a slip sensor that detects slipping of an object, and includes a vibration part that contacts the object and has a piezoelectric film and a protective part that covers the piezoelectric film, and a holding part that holds the vibration part.
  • the film is arranged at a position shifted from its neutral axis.
  • FIG. 10A is a flowchart for gripping an object
  • FIG. 10B is a flowchart for gripping an object including a reset operation.
  • FIG. 1 is a schematic perspective view showing a schematic configuration of a slip sensor 7 according to the present invention.
  • 2 is a cross-sectional view of the slip sensor 7 at the A-A ′ position
  • FIG. 3 is a cross-sectional view of the slip sensor 7 at the B-B ′ position.
  • the slip sensor 7 includes a holding unit 1 and a vibrating unit 6.
  • the holding unit 1 is formed of a hard resin and includes a base portion that supports the vibrating unit 6 and a portion that surrounds the vibrating unit 6.
  • the vibration unit 6 has a configuration in which the film sensor 14 is covered with the protection unit 2.
  • the film sensor 14 includes the piezoelectric film 4 and electrodes.
  • the piezoelectric film 4 is an element that converts strain generated in the film by an applied force into an electric signal.
  • PVDF vinylidene fluoride resin
  • the protection unit 2 is made of, for example, silicon rubber, and more preferably made of silicon rubber having a hardness of about 40.
  • the electrode 5 is connected to the piezoelectric film 4 and has positive and negative terminals.
  • the positive electrode 5 a is connected to the surface of the piezoelectric film 4, and the negative electrode 5 b is connected to the back surface of the piezoelectric film 4. Since a potential difference between both surfaces of the piezoelectric film 4 caused by the distortion of the piezoelectric film 4 is generated in the electrodes, the strain of the piezoelectric film 4 can be detected by detecting this potential difference.
  • the vibration part 6 has an array of projections 3 so that when an object slides on the upper part, the vibration part 6 is likely to vibrate by increasing friction.
  • the size of the protruding portion 3 is configured by a height, width, and interval that are about one-tenth of the vibrating portion 6.
  • the protrusion 3 is disposed only on the upper surface of the vibration unit 6 that contacts the object.
  • the aspect ratio is increased by making the height H of the vibration part 6 having the piezoelectric film 4 larger than the width W.
  • the width W of the vibration part 6 is narrowed to reduce the size of the slip sensor, and the height H of the vibration part 6 is increased to increase the vibration and increase the sensitivity.
  • the slip sensor is divided into the vibration part 6 made of a soft resin such as silicon rubber and the holding part 1 made of a resin harder than the vibration part 6, only the vibration part 6 vibrates. Since the holding unit 1 does not vibrate, vibration energy is not dispersed and detection accuracy can be improved.
  • the piezoelectric film 4 is bent at the cavity 8 provided in the holding portion 1 and passed through the slit 9.
  • the size of the slip sensor 7 can be reduced, and vibrations can be hardly transmitted to the piezoelectric film portion to which the electrode 5 is connected.
  • the electrode 5 is connected to an external signal processing circuit through the wiring 19. Note that fixing the piezoelectric film 4 with the adhesive 30 is effective for preventing wobbling in a small slip sensor, but a relatively thick thickness can be provided in the base portion of the holding portion 1 in which the slit 9 is provided. In some cases, it is possible to fix the piezoelectric film 4 while suppressing wobble without using an adhesive.
  • Fig. 4 shows a plan view (top view) of the slip sensor.
  • the holding part 1 By attaching the vibrating part 6 to the center of the central depression of the holding part 1, the holding part 1 surrounds and is fixed around the vibrating part 6 with a certain interval. If the distance L between the holding unit 1 and the vibrating unit 6 (the interval in the vibration direction of the vibrating unit 6) is too small, the vibration of the vibrating unit 6 is disturbed, and if too large, the size of the slip sensor 7 is affected. When the height of the portion 6 is about 5 mm, a small interval of about 5 mm is desirable.
  • the relationship between the height of the vibrating part 6 and the holding part 1 is such that the upper end of the vibrating part 6 (projection part 3) and the upper end of the holding part 1 are positioned at the same height.
  • a slipping object can be detected by the sliding object coming into contact with the protrusion 3 and the vibration part 6 vibrating. If the upper end of the vibration unit 6 is higher than the upper end of the holding unit 1, the vibration unit 6 does not vibrate by sticking to a sliding object and bending. Moreover, if the upper end of the vibration part 6 is too low compared with the upper end of the holding part 1, it cannot contact the sliding object.
  • FIG. 5 is a bottom view of the slip sensor 7.
  • the piezoelectric film 4 is mounted on the back of the holding unit 1 in order to reduce the mounting area and reduce the size of the slip sensor 7.
  • the base portion of the holding portion 1 has a hollow portion 8 for folding the piezoelectric film 4, a slit 9 for passing the piezoelectric film 4, and guides 10 a and 10 b for passing the wiring 19 connected to the electrode 5.
  • the piezoelectric film 4 is fixed by being inserted into the slit 9 (when the base part of the holding part 1 is thick) or by an adhesive (when the base part of the holding part 1 is thin).
  • the piezoelectric film 4 is passed from the surface of the holding unit 1 through the slit 9 through the slit 9, the piezoelectric film 4 is folded and mounted in the cavity 8 where the electrodes are folded, and then the wiring is passed through the guides 10 a and 10 b.
  • the slip sensor 7 is miniaturized with a small mounting area. Further, the vibration is hardly transmitted to the piezoelectric film portion to which the electrode 5 is connected.
  • FIG. 6 is a diagram showing an operating state of the slip sensor 7.
  • the initial state of the vibration part 6 is as shown in FIG. 3, but the tip of the vibration part 6 (projection part 3) sticks to the object 11 in the sliding direction 20 of the object 11 according to the slip of the object 11.
  • the object 11 is distorted in the sliding direction.
  • the force for returning the vibration part 6 becomes larger than the slipping force, that is, the shearing force applied to the vibration part 6, the vibration part 6 returns to the direction for restoring the distortion.
  • the vibration unit 6 is displaced to the left and right according to the slip of the object 11, that is, the vibration unit 6 vibrates, so that the piezoelectric film 4 in the vibration unit 6 also vibrates, and the output signal changes during the slip period.
  • the slip sensor 7 of the present invention captures slip as vibration.
  • the vibration part 6 has the protrusion 3 on the upper surface thereof, and thus vibrates regardless of the shape of the surface of the sliding object 11.
  • the piezoelectric film 4 is applied with force by vibration, and the piezoelectric film 4 expands and compresses to change the output signal.
  • the film sensor 14 (piezoelectric film 4) is shifted from the neutral shaft 31 of the vibration unit 6 and is disposed closer to the side surface, so that the piezoelectric film 4 is sufficiently expanded and compressed, and a large signal is obtained. A quantity is obtained. Since the protection part 2 of the vibration part 6 has the purpose of protecting the piezoelectric film 4, it is desirable that the film sensor 14 be disposed as close to the side surface of the vibration part 6 as possible so as not to be exposed.
  • FIG. 7 shows a modified example in which two piezoelectric films 4 a and 4 b are placed on both sides of the vibration part 6 in order to obtain a large signal amount.
  • the piezoelectric film 4a When the piezoelectric film 4a is compressed by deformation of the vibration part 6 due to slipping of the object, the piezoelectric film 4b expands and contracts.
  • signals having opposite polarities are obtained by the piezoelectric film 4a and the piezoelectric film 4b, a large signal amount can be obtained by taking the difference.
  • FIG. 8 shows an output signal of the potential difference of the electrode 5 when the vibrating part 6 of FIG. 3 vibrates.
  • the piezoelectric film 4 repeats positive and negative peaks according to the vibration by the change of the voltage generated by the vibration while sliding. Since the amount of signal increases when slipping, it is suitable to perform threshold processing and hold processing for slip detection.
  • the obtained output signal is larger than the positive threshold or smaller than the negative threshold, 1 is set. Otherwise, 0 is assumed.
  • a peak is seen in the waveform, that is, the period in which peaks and valleys are repeated is slipping, but if only threshold processing is used, only one peak is captured.
  • the threshold processing result is subjected to hold processing for the same length of time as the positive / negative peak cycle in which the output signal repeats. Similarly, when the obtained output signal is larger than the positive threshold or smaller than the negative threshold, it is set to 1. Otherwise, 0 is assumed. In this way, the threshold processing and the hold processing are repeated, and it is assumed that slipping occurs when 1 is output and slipping does not occur while 0 is output.
  • the vibration part 6 vibrates at the natural frequency of the protection part 2 in a sliding state and is different from the noise frequency.
  • the piezoelectric film 4 is a very soft material, so that the natural frequency of the vibration part 6 is substantially the natural frequency of the protection part 2. Therefore, it is also possible to detect the slip state by signal processing that extracts the natural frequency of the protection unit 2 in detecting the slip.
  • the period during which the natural frequency of the protection unit 2 can be extracted is regarded as slipping.
  • Methods for extracting frequencies include Fourier transform and wavelet transform.
  • FIG. 9 shows a manipulator 13 that grips an object by detecting slippage.
  • the manipulator includes a grip portion 12 and a vibration portion 6.
  • the grip portion 12 has a hole 35, and the manipulator can be downsized by attaching the vibrating portion 6 to the hole 35.
  • FIG. 3 or FIG. 7 there is a slit large enough to insert the piezoelectric film in the center of the hole 35, and the piezoelectric film is fixed. If the distance between the gripping part 12 and the vibration part 6 is too small, the vibration of the vibration part 6 is hindered. If it is too large, the manipulator 13 is downsized.
  • Pressure sensors can be arranged on the surface of the grip portion 12. It is also possible to grip an object by combining slip and pressure detection.
  • FIG. 10 is a flowchart when the robot hand grips an object using the manipulator 13.
  • the manipulator 13 pinches an object (S1), lifts (S2), lifts with the same force if no slip is detected by the slip sensor (S3), and pinches strongly if slip is detected.
  • S4 The presence / absence of slip is determined again.
  • a reset operation is performed.
  • the manipulator 13 pinches the object (S11), lifts (S12), and determines slipping. If no slip is detected, the manipulator 13 lifts with the same force (S13). If slipping is detected, the manipulator 13 resets the object. Perform (S14), and then pinch firmly (S15), lift (S12), and once again determine whether there is any slip.
  • SYMBOLS 1 Holding part, 2: Protection part, 3: Projection part, 4: Piezoelectric film, 5: Electrode, 6: Vibration part, 7: Slip sensor, 8: Cavity part which folds electrode 5, 9: Slit which lets electrode 5 pass 10: guide, 11: heel object, 12: heel gripping part, 13: manipulator, 14: film sensor.

Abstract

Provided is a highly sensitive small slip sensor, which detects slipping of an object. A slip sensor (7) has: an oscillating section (6), which has a piezoelectric film (4) and a protecting section (2) covering the piezoelectric film; and a holding section (1), which holds the oscillating section (6). The oscillating section (6) contacts an object, and detects, as slipping, signals generated due to oscillation of the oscillating section (6). The piezoelectric film (4) is disposed by being displaced from the neutral axis of the oscillating section (6) such that the piezoelectric film (4) sufficiently expands and contacts.

Description

滑りセンサSlip sensor
 本発明は物体の滑りを検出する滑りセンサに関する。 The present invention relates to a slip sensor for detecting slip of an object.
 ロボットハンドで物体を把持する際に、その滑りを検出する必要がある。滑りセンサとしては圧電フィルムを用いたものが知られている。圧電フィルムは、圧縮や伸張により信号を発生する。従来の圧電フィルムを用いた滑りセンサとして、非特許文献1をあげる。非特許文献1の圧電フィルムを用いた滑りセンサは、シリコンゴムで一体化したモジュールで構成される(非特許文献1:Figure1)。シリコンゴムで形成されたモジュールには、平面部とセンサ部があり、平面部とセンサ部の間には間隙がある。センサ部内に圧電フィルムがあり、センサ部が振動することで出力される信号を検出し、それを滑りと判断する。 It is necessary to detect the slip when gripping an object with a robot hand. As a slip sensor, a sensor using a piezoelectric film is known. A piezoelectric film generates a signal by compression or expansion. Non-Patent Document 1 is given as a conventional slip sensor using a piezoelectric film. The slip sensor using the piezoelectric film of Non-Patent Document 1 is composed of a module integrated with silicon rubber (Non-Patent Document 1: Figure 1). A module formed of silicon rubber has a flat portion and a sensor portion, and there is a gap between the flat portion and the sensor portion. There is a piezoelectric film in the sensor unit, and a signal output when the sensor unit vibrates is detected, and it is determined as slipping.
 圧電フィルムは印加される圧縮や伸張により信号を発生し、その特性は面積に依存する。非特許文献1の圧電フィルムを用いた滑りセンサは高さが低く、幅が広い構造であるため、発生する信号量が小さく、十分なSN比をとることが難しい。そのため、検出精度が低くなるおそれがある。 Piezoelectric film generates a signal by applied compression and expansion, and its characteristics depend on the area. Since the slip sensor using the piezoelectric film of Non-Patent Document 1 has a low height and a wide structure, a generated signal amount is small and it is difficult to obtain a sufficient SN ratio. As a result, the detection accuracy may be lowered.
 また、センサ部と外周部とをシリコンゴムで一体に形成しており、外周部がシリコンゴムであることで、外周部もセンサ部と一緒に振動してしまう。このような振動の分散も検出精度を低下させる原因となる。さらに、センサ部は圧電フィルムがその中立軸に立てられる構造となっている。しかし、振動によりセンサ部が曲がるとき、中立軸では伸張も圧縮もほとんどしないため、発生する信号量が小さい。 In addition, the sensor part and the outer peripheral part are integrally formed of silicon rubber, and the outer peripheral part is made of silicon rubber, so that the outer peripheral part also vibrates together with the sensor part. Such vibration dispersion also causes a decrease in detection accuracy. Furthermore, the sensor unit has a structure in which the piezoelectric film is erected on its neutral axis. However, when the sensor part bends due to vibration, there is little expansion or compression on the neutral axis, so the amount of signal generated is small.
 物体の滑りを検出する滑りセンサであって、物体に接触し、圧電フィルムと圧電フィルムを覆う保護部とを有する振動部と、振動部を保持する保持部とを有し、振動部において、圧電フィルムはその中立軸からずらした位置に配置されている。 A slip sensor that detects slipping of an object, and includes a vibration part that contacts the object and has a piezoelectric film and a protective part that covers the piezoelectric film, and a holding part that holds the vibration part. The film is arranged at a position shifted from its neutral axis.
 物体の滑りを検出する高感度で小型の滑りセンサを実現する。 Realize a high-sensitivity and small-sized slip sensor that detects object slip.
滑りセンサの斜視図である。It is a perspective view of a slip sensor. 滑りセンサのA-A’位置での断面図である。It is sectional drawing in the A-A 'position of a slip sensor. 滑りセンサのB-B’位置での断面図である。It is sectional drawing in the B-B 'position of a slip sensor. 滑りセンサの上面図である。It is a top view of a slip sensor. 滑りセンサの底面図である。It is a bottom view of a slip sensor. 滑りセンサの動作状態を示す図である。It is a figure which shows the operation state of a slip sensor. 圧電フィルムを中立軸の両端に配置した例を示す図である。It is a figure which shows the example which has arrange | positioned the piezoelectric film to the both ends of a neutral axis. 振動部が振動するときの出力信号の図である。It is a figure of an output signal when a vibration part vibrates. 滑りセンサを設けたマニピュレータである。A manipulator provided with a slip sensor. 図10(a)は物体把持のためのフローチャートであり、図10(b)はリセット動作を含む物体把持のためのフローチャートである。FIG. 10A is a flowchart for gripping an object, and FIG. 10B is a flowchart for gripping an object including a reset operation.
 以下、本発明の実施の形態について添付図面を参照して説明する。なお、全ての図面において、実施形態が異なる場合であっても、同一または相当する部材については同一の符号を付し、共通する説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and the common description will not be repeated.
 図1は、本発明にかかる滑りセンサ7の概略構成を示す模式的な斜視図である。図2は滑りセンサ7のA-A’位置での断面図であり、図3は滑りセンサ7のB-B’位置での断面図である。 FIG. 1 is a schematic perspective view showing a schematic configuration of a slip sensor 7 according to the present invention. 2 is a cross-sectional view of the slip sensor 7 at the A-A ′ position, and FIG. 3 is a cross-sectional view of the slip sensor 7 at the B-B ′ position.
 滑りセンサ7は保持部1と振動部6とから構成される。保持部1は硬い樹脂で形成され、振動部6を支える土台部分と振動部6を囲う部分とから構成される。振動部6は保護部2でフィルムセンサ14を覆った構成である。フィルムセンサ14は圧電フィルム4と電極から構成される。圧電フィルム4とは加えられた力によってフィルムに生じた歪を電気信号に変換する素子であり、例えば、フッ化ビニリデン樹脂(PVDF)フィルムなどを適用できる。保護部2は、例えばシリコンゴムで構成され、より望ましくは、硬度40程度のシリコンゴムで構成される。電極5は圧電フィルム4に接続されており、正負の端子がある。例えば、正電極5aは圧電フィルム4の表面に、負電極5bは圧電フィルム4の裏面に接続されている。圧電フィルム4の歪によって生じる圧電フィルム4の両面間の電位差が電極に生じるため、この電位差を検知することにより、圧電フィルム4の歪を検知することができる。振動部6は物体がその上部を滑る際に、摩擦を増やすことで振動しやすいようにアレイ状の突起部3を有している。突起部3の大きさは、振動部6の10分の1程度の高さ、幅、間隔で構成される。突起部3は、物体と接触する振動部6の上面にのみ配置される。 The slip sensor 7 includes a holding unit 1 and a vibrating unit 6. The holding unit 1 is formed of a hard resin and includes a base portion that supports the vibrating unit 6 and a portion that surrounds the vibrating unit 6. The vibration unit 6 has a configuration in which the film sensor 14 is covered with the protection unit 2. The film sensor 14 includes the piezoelectric film 4 and electrodes. The piezoelectric film 4 is an element that converts strain generated in the film by an applied force into an electric signal. For example, a vinylidene fluoride resin (PVDF) film can be applied. The protection unit 2 is made of, for example, silicon rubber, and more preferably made of silicon rubber having a hardness of about 40. The electrode 5 is connected to the piezoelectric film 4 and has positive and negative terminals. For example, the positive electrode 5 a is connected to the surface of the piezoelectric film 4, and the negative electrode 5 b is connected to the back surface of the piezoelectric film 4. Since a potential difference between both surfaces of the piezoelectric film 4 caused by the distortion of the piezoelectric film 4 is generated in the electrodes, the strain of the piezoelectric film 4 can be detected by detecting this potential difference. The vibration part 6 has an array of projections 3 so that when an object slides on the upper part, the vibration part 6 is likely to vibrate by increasing friction. The size of the protruding portion 3 is configured by a height, width, and interval that are about one-tenth of the vibrating portion 6. The protrusion 3 is disposed only on the upper surface of the vibration unit 6 that contacts the object.
 このように、圧電フィルム4を有する振動部6の高さHを幅Wより大きくすることで、アスペクト比を大きくしている。振動部6の幅Wを狭くして滑りセンサを小型化するとともに、振動部6の高さHを高くして揺れを大きくして高感度化する。 Thus, the aspect ratio is increased by making the height H of the vibration part 6 having the piezoelectric film 4 larger than the width W. The width W of the vibration part 6 is narrowed to reduce the size of the slip sensor, and the height H of the vibration part 6 is increased to increase the vibration and increase the sensitivity.
 また、滑りセンサをシリコンゴムのような柔らかい樹脂で構成される振動部6と振動部6よりも硬い樹脂で構成される保持部1に分けて構成することで、振動部6だけが振動し、保持部1は振動しないことにより、振動エネルギーが分散することがなくなり、検出精度を高めることができる。 In addition, since the slip sensor is divided into the vibration part 6 made of a soft resin such as silicon rubber and the holding part 1 made of a resin harder than the vibration part 6, only the vibration part 6 vibrates. Since the holding unit 1 does not vibrate, vibration energy is not dispersed and detection accuracy can be improved.
 保持部1の土台部分の中央には圧電フィルム4が通る程度のスリット9がある。圧電フィルム4をスリット9に通し、接着剤30で固めることで、フィルムセンサ14と振動部6を保持部1に垂直に固定する。接着剤30で圧電フィルム4を固定することで、振動部6の振動方向と違う向きにぐらつきが生じても精度良く振動を検出することが可能である。さらに、振動部6の圧電フィルム部分の振動が電極5の接続されている圧電フィルム部分に伝わりにくくなるため、振動によって圧電フィルム4と電極5との接続が劣化するおそれを低減できる。また、図3に示すように、圧電フィルム4を保持部1に設けられた空洞部8で圧電フィルム4を屈曲させてスリット9に通すようになっている。これにより、滑りセンサ7を小型化するとともに、振動を電極5の接続されている圧電フィルム部分に伝わりにくくするという効果も有する。電極5は配線19を通じて外部の信号処理回路に接続される。なお、接着剤30で圧電フィルム4を固定することは小型の滑りセンサではぐらつきを防止するために有効であるが、スリット9が設けられる保持部1の土台部分に比較的厚みを設けることができる場合には、接着剤を用いずともぐらつきを抑えて圧電フィルム4を固定することも可能である。 In the center of the base part of the holding part 1, there is a slit 9 through which the piezoelectric film 4 passes. By passing the piezoelectric film 4 through the slit 9 and solidifying with the adhesive 30, the film sensor 14 and the vibration part 6 are fixed vertically to the holding part 1. By fixing the piezoelectric film 4 with the adhesive 30, it is possible to detect vibration with high accuracy even if wobbling occurs in a direction different from the vibration direction of the vibration unit 6. Furthermore, since the vibration of the piezoelectric film portion of the vibrating portion 6 is not easily transmitted to the piezoelectric film portion to which the electrode 5 is connected, the possibility that the connection between the piezoelectric film 4 and the electrode 5 is deteriorated due to the vibration can be reduced. In addition, as shown in FIG. 3, the piezoelectric film 4 is bent at the cavity 8 provided in the holding portion 1 and passed through the slit 9. As a result, the size of the slip sensor 7 can be reduced, and vibrations can be hardly transmitted to the piezoelectric film portion to which the electrode 5 is connected. The electrode 5 is connected to an external signal processing circuit through the wiring 19. Note that fixing the piezoelectric film 4 with the adhesive 30 is effective for preventing wobbling in a small slip sensor, but a relatively thick thickness can be provided in the base portion of the holding portion 1 in which the slit 9 is provided. In some cases, it is possible to fix the piezoelectric film 4 while suppressing wobble without using an adhesive.
 図4に滑りセンサの平面図(上面図)を示す。保持部1の中央の窪みの中心に振動部6を取り付けることにより、一定の間隔をあけて保持部1が振動部6の周囲を囲み、固定されている。保持部1と振動部6の間隔L(振動部6の振動方向の間隔)は、小さすぎると振動部6の振動を妨げ、大きすぎると滑りセンサ7の小型化に影響するので、例えば、振動部6の高さが5mm程度とした場合に、5mm程度の小さい間隔が望ましい。また、振動部6と保持部1の高さの関係は、振動部6(突起部3)の上端と保持部1の上端とが同じ高さに位置するようにされている。滑る物体が突起部3に接触し、振動部6が振動することで滑りが検出できる。振動部6の上端が保持部1の上端よりも高い位置にあると、振動部6が滑る物体にくっついて折れ曲がることで振動しなくなる。また、振動部6の上端が保持部1の上端に比べて低すぎると滑る物体に接触することができない。 Fig. 4 shows a plan view (top view) of the slip sensor. By attaching the vibrating part 6 to the center of the central depression of the holding part 1, the holding part 1 surrounds and is fixed around the vibrating part 6 with a certain interval. If the distance L between the holding unit 1 and the vibrating unit 6 (the interval in the vibration direction of the vibrating unit 6) is too small, the vibration of the vibrating unit 6 is disturbed, and if too large, the size of the slip sensor 7 is affected. When the height of the portion 6 is about 5 mm, a small interval of about 5 mm is desirable. Further, the relationship between the height of the vibrating part 6 and the holding part 1 is such that the upper end of the vibrating part 6 (projection part 3) and the upper end of the holding part 1 are positioned at the same height. A slipping object can be detected by the sliding object coming into contact with the protrusion 3 and the vibration part 6 vibrating. If the upper end of the vibration unit 6 is higher than the upper end of the holding unit 1, the vibration unit 6 does not vibrate by sticking to a sliding object and bending. Moreover, if the upper end of the vibration part 6 is too low compared with the upper end of the holding part 1, it cannot contact the sliding object.
 図5は滑りセンサ7の底面図である。圧電フィルム4は、実装面積を小さくし、滑りセンサ7を小型化するために、保持部1の裏に曲げて実装する。保持部1の土台部分には圧電フィルム4を折りたたむ空洞部8、圧電フィルム4を通すスリット9、電極5に接続する配線19を通すガイド10a,10bを有する。圧電フィルム4は、スリット9に差し込むことにより(保持部1の土台部分が厚い場合)、または接着剤により(保持部1の土台部分が薄い場合)、固定する。保持部1の底面では、スリット9を通して圧電フィルム4を保持部1の表面から底面に通し、電極を折りたたむ空洞部8に圧電フィルム4を畳んで実装した後、配線をガイド10a,10bに通すことで、小実装面積にし、滑りセンサ7の小型化をはかる。また、振動を電極5の接続されている圧電フィルム部分に伝わりにくくする。 FIG. 5 is a bottom view of the slip sensor 7. The piezoelectric film 4 is mounted on the back of the holding unit 1 in order to reduce the mounting area and reduce the size of the slip sensor 7. The base portion of the holding portion 1 has a hollow portion 8 for folding the piezoelectric film 4, a slit 9 for passing the piezoelectric film 4, and guides 10 a and 10 b for passing the wiring 19 connected to the electrode 5. The piezoelectric film 4 is fixed by being inserted into the slit 9 (when the base part of the holding part 1 is thick) or by an adhesive (when the base part of the holding part 1 is thin). On the bottom surface of the holding unit 1, the piezoelectric film 4 is passed from the surface of the holding unit 1 through the slit 9 through the slit 9, the piezoelectric film 4 is folded and mounted in the cavity 8 where the electrodes are folded, and then the wiring is passed through the guides 10 a and 10 b. Thus, the slip sensor 7 is miniaturized with a small mounting area. Further, the vibration is hardly transmitted to the piezoelectric film portion to which the electrode 5 is connected.
 図6は滑りセンサ7の動作状態を示す図である。振動部6の初期状態は図3に示すような状態であるが、物体11の滑りに応じて、物体11の滑り方向20に振動部6(突起部3)の先端が物体11にくっついてひっぱられ、物体11の滑り方向に歪んだ状態になる。これが図6の状態である。さらに、滑りの力、つまり、振動部6に加わるせん断力に比べて、振動部6を戻す力が大きくなったとき、振動部6はその歪みを元に戻す方向に戻る。このように、物体11の滑りに応じて、振動部6が左右に変位する、すなわち振動部6が振動するため、振動部6内の圧電フィルム4も振動し、滑り期間中、出力信号が変化する。このように、本発明の滑りセンサ7は、滑りを振動としてとらえる。振動部6は、その上部の表面に突起部3を有することで、滑る物体11の表面の形状によらず、振動する。 FIG. 6 is a diagram showing an operating state of the slip sensor 7. The initial state of the vibration part 6 is as shown in FIG. 3, but the tip of the vibration part 6 (projection part 3) sticks to the object 11 in the sliding direction 20 of the object 11 according to the slip of the object 11. Thus, the object 11 is distorted in the sliding direction. This is the state of FIG. Furthermore, when the force for returning the vibration part 6 becomes larger than the slipping force, that is, the shearing force applied to the vibration part 6, the vibration part 6 returns to the direction for restoring the distortion. As described above, the vibration unit 6 is displaced to the left and right according to the slip of the object 11, that is, the vibration unit 6 vibrates, so that the piezoelectric film 4 in the vibration unit 6 also vibrates, and the output signal changes during the slip period. To do. Thus, the slip sensor 7 of the present invention captures slip as vibration. The vibration part 6 has the protrusion 3 on the upper surface thereof, and thus vibrates regardless of the shape of the surface of the sliding object 11.
 圧電フィルム4は、振動することにより力が加えられることで、圧電フィルム4が伸張や圧縮をすることで、出力信号が変化する。振動部6の中立軸では、振動部6の側面に比べて、振動部6の伸張と圧縮が小さいため、圧電フィルム4が発生する信号変化量が小さい。図3に示すように、フィルムセンサ14(圧電フィルム4)を振動部6の中立軸31からずらして、より側面に寄せて配置することで、圧電フィルム4が十分に伸張と圧縮し、大きな信号量が得られる。振動部6の保護部2は圧電フィルム4を保護する目的があるので、フィルムセンサ14は、露出しない程度にできるだけ振動部6の側面に近い位置に配置することが望ましい。 The piezoelectric film 4 is applied with force by vibration, and the piezoelectric film 4 expands and compresses to change the output signal. At the neutral axis of the vibration part 6, since the expansion and compression of the vibration part 6 is small compared to the side surface of the vibration part 6, the amount of signal change generated by the piezoelectric film 4 is small. As shown in FIG. 3, the film sensor 14 (piezoelectric film 4) is shifted from the neutral shaft 31 of the vibration unit 6 and is disposed closer to the side surface, so that the piezoelectric film 4 is sufficiently expanded and compressed, and a large signal is obtained. A quantity is obtained. Since the protection part 2 of the vibration part 6 has the purpose of protecting the piezoelectric film 4, it is desirable that the film sensor 14 be disposed as close to the side surface of the vibration part 6 as possible so as not to be exposed.
 図7は大きな信号量を得るために、圧電フィルム4a、4bを振動部6の両側に2枚置いた変形例である。圧電フィルム4aが、物体の滑りによる振動部6の変形により圧縮した場合、圧電フィルム4bは伸縮する。このように圧電フィルム4aと圧電フィルム4bとで、逆の極性の信号が得られるため、その差分をとることで大きな信号量を得ることができる。 FIG. 7 shows a modified example in which two piezoelectric films 4 a and 4 b are placed on both sides of the vibration part 6 in order to obtain a large signal amount. When the piezoelectric film 4a is compressed by deformation of the vibration part 6 due to slipping of the object, the piezoelectric film 4b expands and contracts. As described above, since signals having opposite polarities are obtained by the piezoelectric film 4a and the piezoelectric film 4b, a large signal amount can be obtained by taking the difference.
 図8は図3の振動部6が振動したときの、電極5の電位差の出力信号である。滑り状態では振動に応じて正負の大きなピークが繰り返され、滑っていない状態では小さなノイズが出力されている。圧電フィルム4は、滑っている間、振動により発生する電圧の変化で、振動に応じて正負のピークを繰り返す。滑っているときに信号量が大きくなるので、滑りの検出に、閾値処理とホールド処理をすることが適している。得られた出力信号が、正側の閾値より大きい場合、または、負側の閾値より小さい場合、1とする。それ以外を0とする。波形にピークがみられる、つまり、山と谷が繰り返されている期間が滑りであるが、閾値処理のみだと、一つ一つのピークだけとらえてしまう。ピークが出ている期間を連続して滑りとみなすために、閾値処理の結果を、出力信号が繰り返す正負のピークの周期と同じ長さの時間、ホールド処理をする。次に、同様に、得られた出力信号が、正側の閾値より大きい場合、または、負側の閾値より小さい場合、1とする。それ以外を0とする。このように閾値処理とホールド処理を繰り返し、1が出力される間を滑りとし、0が出力される間を滑っていないとする。 FIG. 8 shows an output signal of the potential difference of the electrode 5 when the vibrating part 6 of FIG. 3 vibrates. In the sliding state, large positive and negative peaks are repeated according to the vibration, and small noise is output in the non-sliding state. The piezoelectric film 4 repeats positive and negative peaks according to the vibration by the change of the voltage generated by the vibration while sliding. Since the amount of signal increases when slipping, it is suitable to perform threshold processing and hold processing for slip detection. When the obtained output signal is larger than the positive threshold or smaller than the negative threshold, 1 is set. Otherwise, 0 is assumed. A peak is seen in the waveform, that is, the period in which peaks and valleys are repeated is slipping, but if only threshold processing is used, only one peak is captured. In order to continuously consider the period in which the peak is present as the slip, the threshold processing result is subjected to hold processing for the same length of time as the positive / negative peak cycle in which the output signal repeats. Similarly, when the obtained output signal is larger than the positive threshold or smaller than the negative threshold, it is set to 1. Otherwise, 0 is assumed. In this way, the threshold processing and the hold processing are repeated, and it is assumed that slipping occurs when 1 is output and slipping does not occur while 0 is output.
 また、振動部6は滑り状態のときには保護部2の固有周波数で振動し、ノイズの周波数とは異なる。圧電フィルム4は極めて柔らかい材料であるので、振動部6の固有周波数はほぼ保護部2の固有周波数となるためである。そのため、滑りの検出に、保護部2の固有周波数を抽出するような信号処理により滑り状態を検出することも可能である。保護部2の固有周波数を抽出できた間を滑りととらえる。周波数を抽出する方法には、フーリエ変換やウェーブレット変換がある。 In addition, the vibration part 6 vibrates at the natural frequency of the protection part 2 in a sliding state and is different from the noise frequency. This is because the piezoelectric film 4 is a very soft material, so that the natural frequency of the vibration part 6 is substantially the natural frequency of the protection part 2. Therefore, it is also possible to detect the slip state by signal processing that extracts the natural frequency of the protection unit 2 in detecting the slip. The period during which the natural frequency of the protection unit 2 can be extracted is regarded as slipping. Methods for extracting frequencies include Fourier transform and wavelet transform.
 図9に、滑りを検出することで物体を把持するマニピュレータ13を示す。マニピュレータは把持部12と振動部6から構成される。把持部12は穴35を有し、穴35に振動部6をとりつけることで、マニピュレータの小型化をはかる。詳細は図示しないが、図3または図7と同様に、穴35の中心に圧電フィルムが差し込める大きさのスリットがあり、圧電フィルムが固定されている。把持部12と振動部6の間隔は、小さすぎると振動部6の振動を妨げ、大きすぎるとマニピュレータ13の小型化に影響するので、適切な間隔をとる必要がある。把持部12の面には圧力センサを並べることが可能である。滑りと圧力の検出を組み合わせて、物体を把持することも可能である。 FIG. 9 shows a manipulator 13 that grips an object by detecting slippage. The manipulator includes a grip portion 12 and a vibration portion 6. The grip portion 12 has a hole 35, and the manipulator can be downsized by attaching the vibrating portion 6 to the hole 35. Although details are not shown, as in FIG. 3 or FIG. 7, there is a slit large enough to insert the piezoelectric film in the center of the hole 35, and the piezoelectric film is fixed. If the distance between the gripping part 12 and the vibration part 6 is too small, the vibration of the vibration part 6 is hindered. If it is too large, the manipulator 13 is downsized. Pressure sensors can be arranged on the surface of the grip portion 12. It is also possible to grip an object by combining slip and pressure detection.
 図10はロボットハンドが、マニピュレータ13を用いて物体を把持する場合のフローチャートである。図10(a)の場合、マニピュレータ13は物体を挟み(S1)、持ち上げ(S2)、滑りセンサにより滑りが検出されない場合はそのままの力で持ち上げ(S3)、滑りが検出された場合は強く挟み(S4)、もう一度滑りの有無を判定する。図10(b)の場合、リセット動作が行われる。マニピュレータ13は物体を挟み(S11)、持ち上げ(S12)、滑りを判定し、滑りが検出されない場合はそのままの力で持ち上げ(S13)、滑りが検出された場合は、物体を離すというリセット動作を行い(S14)、次に、強く挟んで(S15)、持ち上げ(S12)、もう一度滑りの有無を判定する。 FIG. 10 is a flowchart when the robot hand grips an object using the manipulator 13. In the case of FIG. 10 (a), the manipulator 13 pinches an object (S1), lifts (S2), lifts with the same force if no slip is detected by the slip sensor (S3), and pinches strongly if slip is detected. (S4) The presence / absence of slip is determined again. In the case of FIG. 10B, a reset operation is performed. The manipulator 13 pinches the object (S11), lifts (S12), and determines slipping. If no slip is detected, the manipulator 13 lifts with the same force (S13). If slipping is detected, the manipulator 13 resets the object. Perform (S14), and then pinch firmly (S15), lift (S12), and once again determine whether there is any slip.
1:保持部、2:保護部、3:突起部、4:圧電フィルム、5:電極、6:振動部、7:滑りセンサ、8:電極5を折りたたむ空洞部、9:電極5を通すスリット、10:ガイド、11: 物体、12: 把持部、13:マニピュレータ、14:フィルムセンサ。 DESCRIPTION OF SYMBOLS 1: Holding part, 2: Protection part, 3: Projection part, 4: Piezoelectric film, 5: Electrode, 6: Vibration part, 7: Slip sensor, 8: Cavity part which folds electrode 5, 9: Slit which lets electrode 5 pass 10: guide, 11: heel object, 12: heel gripping part, 13: manipulator, 14: film sensor.

Claims (8)

  1.  物体の滑りを検出する滑りセンサであって、
     上記物体に接触し、圧電フィルムと上記圧電フィルムを覆う保護部とを有する振動部と、
     上記振動部を保持する保持部とを有し、
     上記振動部において、上記圧電フィルムはその中立軸からずらした位置に配置されている滑りセンサ。
    A slip sensor for detecting slipping of an object,
    A vibrating portion that contacts the object and has a piezoelectric film and a protective portion that covers the piezoelectric film;
    A holding part for holding the vibrating part,
    In the vibration unit, the piezoelectric film is disposed at a position shifted from the neutral axis.
  2.  請求項1において、
     上記保持部はスリットを有し、
     上記圧電フィルムは上記スリットにおいて接着剤によりまたは上記スリットに差し込むことにより上記保持部に固定される滑りセンサ。
    In claim 1,
    The holding part has a slit,
    A slip sensor in which the piezoelectric film is fixed to the holding portion by inserting an adhesive in the slit or by inserting the piezoelectric film into the slit.
  3.  請求項2において、
     上記圧電フィルムは上記保持部のスリットと上記圧電フィルムに電極が接続される部分との間で折り曲げられている滑りセンサ。
    In claim 2,
    The slip sensor, wherein the piezoelectric film is bent between a slit of the holding portion and a portion where an electrode is connected to the piezoelectric film.
  4.  請求項3において、
     上記振動部の高さが幅よりも大きい滑りセンサ。
    In claim 3,
    A slip sensor in which the height of the vibration part is larger than the width.
  5.  請求項4において、
     上記保持部は土台部分と上記土台部分を囲む囲い部分とを有し、
     上記土台部分に上記スリットが形成されており、
     上記振動部の先端と上記囲い部分の先端とは同じ高さに位置する滑りセンサ。
    In claim 4,
    The holding part has a base part and a surrounding part surrounding the base part,
    The slit is formed in the base part,
    A slip sensor in which a tip of the vibration part and a tip of the surrounding part are located at the same height.
  6.  請求項5において、
     上記保持部は上記振動部より硬い滑りセンサ。
    In claim 5,
    The holding part is a slip sensor harder than the vibrating part.
  7.  請求項1において、
     2枚の上記圧電フィルムを有し、
     上記2枚の圧電フィルムを上記振動部の中立軸からずらした両側に配置する滑りセンサ。
    In claim 1,
    Having two piezoelectric films,
    The slip sensor which arrange | positions the said 2 piezoelectric film on the both sides shifted from the neutral axis of the said vibration part.
  8.  請求項1において、
     上記振動部の上面に、突起部を有する滑りセンサ。
    In claim 1,
    The slip sensor which has a projection part on the upper surface of the said vibration part.
PCT/JP2011/005921 2011-10-24 2011-10-24 Slip sensor WO2013061356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005921 WO2013061356A1 (en) 2011-10-24 2011-10-24 Slip sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005921 WO2013061356A1 (en) 2011-10-24 2011-10-24 Slip sensor

Publications (1)

Publication Number Publication Date
WO2013061356A1 true WO2013061356A1 (en) 2013-05-02

Family

ID=48167229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005921 WO2013061356A1 (en) 2011-10-24 2011-10-24 Slip sensor

Country Status (1)

Country Link
WO (1) WO2013061356A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130966A1 (en) * 2021-12-20 2023-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives PIEZOELECTRIC SENSOR TO DETECT DISTANCE, FORCE AND SLIDING OF AN OBJECT

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034294A (en) * 1983-08-03 1985-02-21 株式会社日立製作所 Sensor for cutaneous sensation
JPS62238417A (en) * 1986-04-09 1987-10-19 Meidensha Electric Mfg Co Ltd Multifunctional matrix sensor
JPH04273031A (en) * 1990-08-31 1992-09-29 Atochem North America Inc Material sensor
JPH0618341A (en) * 1992-07-02 1994-01-25 Fuji Electric Co Ltd Tactual sense transmission device
JPH0755611A (en) * 1990-01-24 1995-03-03 Wisconsin Alumni Res Found Sensor chip for robot gripper and manufacture thereof
JPH07128163A (en) * 1993-11-08 1995-05-19 Fuji Electric Co Ltd Touch sensor
JPH11271351A (en) * 1998-03-19 1999-10-08 Mitsubishi Electric Corp Piezoelectric detecting element
JP2005515466A (en) * 2002-01-16 2005-05-26 メソード・エレクトロニクス・インコーポレーテッド Omnidirectional collision sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034294A (en) * 1983-08-03 1985-02-21 株式会社日立製作所 Sensor for cutaneous sensation
JPS62238417A (en) * 1986-04-09 1987-10-19 Meidensha Electric Mfg Co Ltd Multifunctional matrix sensor
JPH0755611A (en) * 1990-01-24 1995-03-03 Wisconsin Alumni Res Found Sensor chip for robot gripper and manufacture thereof
JPH04273031A (en) * 1990-08-31 1992-09-29 Atochem North America Inc Material sensor
JPH0618341A (en) * 1992-07-02 1994-01-25 Fuji Electric Co Ltd Tactual sense transmission device
JPH07128163A (en) * 1993-11-08 1995-05-19 Fuji Electric Co Ltd Touch sensor
JPH11271351A (en) * 1998-03-19 1999-10-08 Mitsubishi Electric Corp Piezoelectric detecting element
JP2005515466A (en) * 2002-01-16 2005-05-26 メソード・エレクトロニクス・インコーポレーテッド Omnidirectional collision sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130966A1 (en) * 2021-12-20 2023-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives PIEZOELECTRIC SENSOR TO DETECT DISTANCE, FORCE AND SLIDING OF AN OBJECT

Similar Documents

Publication Publication Date Title
US9479875B2 (en) Multi-mode microphones
JP4677493B2 (en) Piezoelectric vibration type force sensor
TW201113130A (en) Sheet-like touch sensor system
US20160219374A1 (en) Multi-mode Microphones
JP2008085507A (en) Acoustic sensor, and sound module with acoustic sensor
US20160219375A1 (en) Multi-mode Microphones
US10067014B1 (en) Force sensor
CN108702576B (en) Capacitive MEMS microphone and electronic device
US9693150B2 (en) Microphone sensor
WO2013061356A1 (en) Slip sensor
JP2016050877A (en) Sensor device and method for manufacturing the same
JP2008252847A (en) Electrostatic transducer
JP2017112479A (en) Contact microphone
KR200397042Y1 (en) Quadrilateral vibrator
JP6498453B2 (en) Contact microphone
JP2008039449A (en) Displacement detection apparatus
CN115533948A (en) Piezoelectric sensor and gripper
CN115541070A (en) Piezoelectric sensor and hand
US20220364939A1 (en) Force-measuring device assembly for a portable electronic apparatus, a portable electronic apparatus, and a method of modifying a span of a sense region in a force-measuring device assembly
JP2008164471A (en) Electromechanical converter
WO2020202631A1 (en) Pressing sensor placement structure and electronic device
WO2014136388A1 (en) Strain-detection device
JP2004093274A (en) Impact sensor
WO2013027740A1 (en) Piezoelectric vibration sensor
JP5671699B2 (en) Angular velocity sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP