WO2013058385A1 - Large-sized phase-shift mask, and method for producing large-sized phase-shift mask - Google Patents

Large-sized phase-shift mask, and method for producing large-sized phase-shift mask Download PDF

Info

Publication number
WO2013058385A1
WO2013058385A1 PCT/JP2012/077157 JP2012077157W WO2013058385A1 WO 2013058385 A1 WO2013058385 A1 WO 2013058385A1 JP 2012077157 W JP2012077157 W JP 2012077157W WO 2013058385 A1 WO2013058385 A1 WO 2013058385A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
film
light
region
transparent substrate
Prior art date
Application number
PCT/JP2012/077157
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 木下
敦 飛田
悟 二嶋
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2013539714A priority Critical patent/JP6127977B2/en
Priority to KR1020147010272A priority patent/KR20140093215A/en
Priority to CN201280051359.0A priority patent/CN103890657A/en
Publication of WO2013058385A1 publication Critical patent/WO2013058385A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof

Definitions

  • the present invention relates to a photomask, and more particularly to a large photomask used for manufacturing an active matrix display device such as a liquid crystal display device or an EL display device, and a method for manufacturing the large photomask.
  • the high-definition of liquid crystal display devices initially advanced with higher pixels in personal computer displays.
  • the VGA display was 640 ⁇ 480 pixels, but the XGA display was 1024 ⁇ 768 pixels, the SXGA display was 1280 ⁇ 1024 pixels, and the UXGA display was 1600 ⁇ 1200 pixels.
  • the pixel pitch has been reduced from 0.33 mm to 0.24 mm and 0.20 mm.
  • it is 4.5 type and has 1280 ⁇ 720 pixels, and the pixel pitch reaches 0.077 mm (329 ppi).
  • high-definition has 1920 ⁇ 1080 pixels, but there is also a display in which pixels are further interpolated to 3840 ⁇ 2160 pixels (referred to as a 4K liquid crystal panel), which is four times the number of pixels.
  • a cell of a color TFT (Thin Film Transistor) liquid crystal display device which is a typical liquid crystal display device, is assembled by sealing liquid crystal between a separately manufactured color filter and a TFT array substrate. Furthermore, a liquid crystal display module is completed by incorporating a peripheral drive circuit and a backlight into the liquid crystal display cell, which converts the video signal into a TFT drive signal and supplies it.
  • TFT Thin Film Transistor
  • the TFT array substrate is a substrate in which a large number of TFTs are arranged in a matrix, and is a substrate that controls display (ON) and non-display (OFF) of each pixel of the liquid crystal. As an example, it is manufactured by the following process.
  • a gate wiring process for patterning a gate electrode material such as MoW on a glass substrate 2) a semiconductor part forming process for patterning an A-Si film in an island shape after forming a gate insulating film; ) Transparent display electrode formation step for patterning ITO film (tin-doped indium oxide film), 4) Step for forming contact hole in gate insulating film, 5) Pattern formation of conductor layer such as Al, source / drain of TFT and The TFT array substrate is manufactured through a manufacturing process including a process of forming a signal line and a process of 6) forming an insulating protective film on the surface.
  • Formation of the pattern used in each step of the above TFT array substrate manufacturing process is performed with a projection exposure apparatus (also referred to as a projection exposure apparatus) with an equal magnification using a large-sized mask with an equal magnification of 1: 1. .
  • a projection exposure apparatus also referred to as a projection exposure apparatus
  • the same size projection exposure method using a large mask has become a standard manufacturing method for patterning a TFT array substrate with high productivity and high accuracy.
  • a cost effective proximity exposure method is a standard manufacturing method for forming a color filter pattern.
  • Proximity exposure is an exposure method in which a mask and an object to be exposed are arranged close to each other with a gap of about several tens of ⁇ m to 100 ⁇ m, and parallel light is irradiated from behind the mask.
  • the large mask for the TFT array substrate originally started with a size of 350 mm ⁇ 350 mm, but has increased in size with the increase in the size of the projection type exposure apparatus used for manufacturing the TFT array substrate.
  • the size of the large mask to be used differs depending on the specifications of each exposure apparatus.
  • a large mask having a size of 520 mm ⁇ 610 mm is used for the mirror projection exposure method
  • 800 mm ⁇ 920 mm is used for the lens projection exposure method.
  • a large size mask is used. Further, for the eighth generation glass substrate, a large mask having a size of 850 mm ⁇ 1400 mm is used in the mirror projection exposure method, and a large mask having a size of 1220 mm ⁇ 1400 mm is used in the lens projection exposure method.
  • the diagonal length of the normal mask (6-inch reticle) for a normal semiconductor is about 154 mm, whereas the diagonal length of the large mask is 495 mm for the original mask, and the fifth generation mirror projection exposure system. Is about 801 mm, and the large mask for the eighth generation lens projection exposure system has been increased to 1856 mm.
  • the large mask used for pattern formation of the TFT array substrate is 3.2 to 12 times the diagonal length ratio of the mask for the semiconductor wafer. Furthermore, the area ratio directly related to the manufacturing cost (film formation time, inspection time, etc.) is 10 to 144 times.
  • the layer structure of the large mask is composed of a light shielding film mainly composed of chromium laminated on quartz glass, and chromium oxide or oxynitride laminated on the light shielding film. It is composed of two layers of an antireflection film mainly composed of chromium.
  • the light-shielding film preferably has a transmittance of 0.1% or less at the exposure wavelength used, and the antireflection film preferably has a reflectance of 30% or less at the exposure wavelength used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-4242753 proposes a method using a gray tone mask. A description will be given with reference to FIG. 4 cited from FIG. 1 described in Patent Document 1 and FIG. 5 added to explain FIG.
  • a photomask 50 exemplified in the prior art includes a light-shielding portion 54 formed by a light-shielding film 52 that does not have a fine pattern on a transparent substrate 51, and a semi-transparent film that does not have a fine pattern. 53, a semi-transparent part 55, a fine pattern part 56 (comprising a translucent part and a semi-transparent part of the semi-transparent film 53), and a translucent part 57 (the transparent substrate 51 is exposed). ) And 4 regions are formed.
  • FIG. 5 illustrates and explains the effect of the fine pattern 56 of the semipermeable membrane. That is, when a fine pattern is formed with a light-shielding film as in a general binary mask (FIG. 5B), the exposure light amount distribution shape 74c is such that the positive resist is formed even at the peak portion of the exposure amount corresponding to the translucent portion. The exposure dose 75 that passes through is not reached, and no pattern is formed. On the other hand, when the fine pattern 56 of the semi-transmissive film is exposed and transferred using the photomask 50 (FIG. 5A), the amount of exposure light transmitted is the fine pattern of the light shielding film of a general binary mask. It becomes larger than the transmission amount of the exposure light quantity of the part.
  • the distribution pattern 73c of the exposure light amount reaches the exposure amount 75 at which the positive resist comes off at the peak portion of the exposure amount corresponding to the translucent portion.
  • the pattern 63c can be formed on the resist.
  • the amount of exposure light transmitted is the exposure of the light shielding pattern portion by the light shielding film of a general binary mask. It becomes larger than the amount of transmitted light, and the contrast of the exposure light amount distribution decreases. For this reason, when the resist residual film value of the fine pattern region 63c on the transfer target when the fine pattern portion 56 of the semi-transparent film is transferred, the normal light shielding film pattern is transferred (for example, the thick film residual film region 63a). ) Smaller than the resist remaining film value.
  • the exposure amount is adjusted in order to appropriately perform the subsequent etching process of the transferred object.
  • the exposure amount is adjusted in order to appropriately perform the subsequent etching process of the transferred object.
  • a photomask used for manufacturing a flat display typified by a liquid crystal display device has been increased in size, but on the other hand, the display pixel pitch of the flat display has been miniaturized and the photomask has been developed. There is also an increasing demand for finer transfer patterns.
  • a photomask that replaces the conventional binary mask it has a transparent substrate and a phase shift film formed in a pattern on the transparent substrate, and a region where the transparent substrate is exposed is formed as a transmission region and a phase shift film. It has been studied to use a phase shift mask having a configuration in which a region to be used is a phase shift region.
  • the above-described phase shift mask suppresses the spread of light intensity by arranging the phase shift region at a position that cancels out the light amplitude of the spread portion of the light amplitude distribution of the transmission region caused by the resolution limit, thereby reducing the finer pattern. Can be exposed.
  • the phase shift film generally has a light shielding ability lower than that of the light shielding film of the binary mask and becomes a translucent film, when the exposure is performed using the phase shift mask described above, the transmission region and In the portion corresponding to the boundary of the phase shift region, the resist pattern has little spread, and the side surface can be formed in a sharp shape.
  • the phase shift film There is a problem that the resist has a dent due to its own transmittance.
  • the resist having the dent can exhibit the function of protecting the lower layer, the resist having the dent may be detected as a defect in the inspection performed after the resist development process. Therefore, a resist that originally has a protective function cannot be used because it is determined to be a defective product by inspection, and there is a problem that productivity of a TFT array substrate or the like is lowered.
  • the present invention is a phase shift mask for transferring a pattern by increasing the contrast of the exposure light quantity distribution of a fine pattern on the imaging surface when transferring a pattern to a transfer medium by exposure, and having a phase suitable for a large photomask.
  • a shift mask and a manufacturing method thereof are provided.
  • a mask having a side length of 350 mm or more is used as a large photomask.
  • the first means of the present invention includes a transparent substrate, a light shielding film formed on the transparent substrate, and a translucent phase shift film formed on the transparent substrate, A transmission region where the transparent substrate is exposed; a light shielding region where the light shielding film is provided on the transparent substrate; and a phase shift region where only the phase shift film is provided on the transparent substrate, And the phase shift region has an adjacent pattern, the phase shift region is adjacently disposed between the transmission region and the light shielding region, and the exposure light transmitted through the phase shift region is the transmission region.
  • phase shift film In the phase shift mask whose phase is reversed with respect to the exposure light transmitted through
  • the light shielding film includes chromium or a chromium compound as a main component
  • the phase shift film includes chromium oxide or chromium oxynitride as a main component, and a phase shift film is stacked on the light shielding film in the light shielding region.
  • a large phase shift mask is stacked on the light shielding film in the light shielding region.
  • the contrast of the exposure pattern can be increased with respect to the fine pattern in a large area, and the existing large hard mask blanks can be used as a starting material for production.
  • the manufacturing cost of a large phase shift mask can be reduced.
  • the second means of the present invention is the large phase shift mask according to the first means, further comprising an antireflection film between the light shielding film and the phase shift film in the light shielding region. is there.
  • the second means it is possible to prevent the reflection of the surface of the light shielding region of the large phase shift mask and to prevent the transfer accuracy from being lowered due to stray light during exposure.
  • any one of the first means and the second means is characterized in that the width of the phase shift region is in the range of 0.25 ⁇ m or more and 3.5 ⁇ m or less. 2.
  • the effect of the phase shift that increases the contrast of the exposure pattern can be obtained satisfactorily.
  • the width of the narrowest part of the transmission region is a width in the range of 1 ⁇ m or more and 6 ⁇ m or less.
  • the effect of the phase shift that increases the contrast of the exposure pattern can be obtained satisfactorily.
  • the light transmittance of the phase shift film with exposure light is 4% or more and 15% or less.
  • the effect of the phase shift that increases the contrast of the exposure pattern can be obtained satisfactorily.
  • the sixth means of the present invention comprises a transparent substrate, a light shielding film formed on the transparent substrate, and a translucent phase shift film formed on the transparent substrate, wherein the transparent substrate is exposed.
  • An area, a light-shielding area in which the light-shielding film is provided on the transparent substrate, and a phase shift area in which only the phase-shift film is provided on the transparent substrate, and the transmission area and the phase shift area are adjacent to each other.
  • a phase shift area is disposed adjacent to the light-transmitting area and the light-shielding area, and the exposure light transmitted through the phase shift area corresponds to the exposure light transmitted through the transmission area.
  • a method of manufacturing a phase shift mask for manufacturing a phase shift mask having an inverted phase A step of preparing a blank with a photosensitive resist, which is obtained by applying a photosensitive resist to a blank in which a light-shielding film made of chromium or a chromium compound is laminated on one surface of the transparent substrate; A process of exposing a desired pattern to a blank with a photosensitive resist with a drawing apparatus, developing it, performing wet etching, removing the photosensitive resist, and patterning a light-shielding film; Forming a phase shift film made of a chromium compound on the transparent substrate and the patterned light-shielding film; From the step of applying a photosensitive resist to the formed phase shift film, exposing and developing a desired pattern with a drawing apparatus, performing wet etching, removing the photosensitive resist, and patterning the phase shift film This is a manufacturing method of a large phase shift mask.
  • a large chrome hard mask blank can be used as a starting material for manufacturing, and furthermore, the pattern formation of the phase shift film can be performed by wet etching, so that the manufacturing cost of the large phase shift mask can be reduced. The effect of suppressing is great.
  • the seventh means of the present invention comprises a transparent substrate, a light shielding film formed on the transparent substrate, and a translucent phase shift film formed on the transparent substrate, wherein the transparent substrate is exposed.
  • An area, a light-shielding area in which the light-shielding film is provided on the transparent substrate, and a phase shift area in which only the phase-shift film is provided on the transparent substrate, and the transmission area and the phase shift area are adjacent to each other.
  • a phase shift area is disposed adjacent to the light-transmitting area and the light-shielding area, and the exposure light transmitted through the phase shift area corresponds to the exposure light transmitted through the transmission area.
  • phase shift mask in which the phase is reversed the phase shift film is laminated on the light shielding film in the light shielding region, and an antireflection film is further provided between the light shielding film and the phase shift film in the light shielding region
  • a photosensitive resist was applied to a blank laminated in the order of a light shielding film mainly composed of chromium and an antireflection film mainly composed of chromium oxide or chromium oxynitride.
  • a step of preparing blanks with a photosensitive resist Exposing a desired pattern to a blank with a photosensitive resist with a drawing apparatus, developing, wet etching, removing the photosensitive resist, and patterning the light-shielding film and the antireflection film; and Forming a phase shift film made of a chromium compound on the transparent substrate and the patterned light shielding film and the antireflection film; From the step of applying a photosensitive resist to the formed phase shift film, exposing and developing a desired pattern with a drawing apparatus, performing wet etching, removing the photosensitive resist, and patterning the phase shift film This is a manufacturing method of a large phase shift mask.
  • the seventh means of the present invention it is possible to use a two-layer large chromium hard mask blank having an antireflection film as a starting material for manufacturing, and furthermore, pattern formation of the phase shift film can be performed by wet etching.
  • the effect of suppressing the manufacturing cost of a large phase shift mask having a prevention film is great.
  • the contrast of the exposure pattern can be increased with respect to a fine pattern in a large area. Furthermore, as a starting material for manufacturing, an existing large-sized hard mask blank whose light-shielding film is a film containing chromium as a main component can be used, and a large-sized phase shift mask can be manufactured at low cost.
  • FIG. 1 is a sectional view for explaining the structure and operation of a large phase shift mask according to the present invention.
  • FIG. 2 is a sectional view showing a manufacturing process of a large phase shift mask according to the present invention.
  • FIG. 3 is an explanatory diagram comparing the effect of improving the contrast of the exposure intensity distribution of the large phase shift mask according to the present invention with a conventional binary mask.
  • FIG. 4 is a cross-sectional view schematically showing transfer of a fine pattern with a halftone mask which is a conventional technique.
  • FIG. 5A is a diagram for schematically explaining the exposure intensity distribution when exposed with the halftone mask of FIG. 4, and
  • FIG. 5B is the exposure intensity distribution when a fine pattern is exposed with a binary mask for comparison.
  • FIG. 6 is a schematic plan view showing an example of a large phase shift mask in the embodiment of the present invention.
  • FIG. 7 is a view for explaining the exposure intensity distribution of the large phase shift mask in the embodiment of the present invention.
  • FIG. 8 is an enlarged view of a portion C in FIG.
  • FIG. 9 is an enlarged view of a portion D in FIG.
  • FIG. 1A is a cross-sectional view schematically showing the structure of an embodiment of a large phase shift mask of the present invention.
  • FIGS. 1B and 1C are diagrams showing the amplitude and intensity of the exposure light transmitted through the large phase shift mask on the imaging plane.
  • 2 (a) to 2 (f) are diagrams for explaining the manufacturing process of the large phase shift mask of the present invention.
  • the configuration of the large phase shift mask 1 of the present invention is formed on a transparent substrate 2, a light shielding film 3 formed on the transparent substrate 2, and the transparent substrate 2.
  • the light shielding film 3 has chromium as a main component
  • the phase shift film 5 has chromium oxynitride or chromium oxide as a main component
  • the phase shift film 5 is laminated on the light shielding film 3 in the light shielding region 7.
  • the large phase shift mask is a mask having a length of at least one side of 350 mm or more.
  • FIG. 1B shows the amplitude distribution of light on the imaging plane (specifically, the photosensitive resist surface) of the large phase shift mask
  • FIG. 1C shows the imaging plane of the large phase shift mask.
  • the light intensity distribution is shown.
  • the light intensity is obtained by squaring the light amplitude, and the light amplitude takes a positive or negative value along with its phase, whereas the light intensity (same as energy) shows only a positive value.
  • the exposure light 40 is irradiated in the direction of the light shielding film 3 from the transparent substrate 2 side, as shown to Fig.1 (a).
  • the exposure light 40 is selected from g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), KrF excimer laser (193 nm). Can do. Practically, since the pattern formation of the TFT array substrate is a large area and a large amount of light is required for exposure, two wavelengths of i-line alone, h-line, i-line, or g-line, h-line, i-line The exposure light including the three wavelengths is used.
  • the light amplitude distribution when the exposure light 40 passes through the transmission region 6 of the large phase shift mask 1 and forms an image on the imaging surface on the resist is shown by a broken line 10 in FIG. 1B, and the light intensity distribution is shown in FIG. This is indicated by a broken line 13 in (c). If there is no resolution limit, the light amplitude distribution should be rectangular on the image plane, but the light amplitude distribution has a bell-shaped spread due to the resolution limit of the exposure apparatus (not shown). . On the other hand, the phase of the exposure light transmitted through the phase shift region in FIG. 1A is inverted, and a negative light amplitude distribution is obtained as indicated by the broken line 11 in FIG.
  • the phase shift region 8 is arranged at such a position that the negative light amplitude distribution 11 cancels the light amplitude of the light amplitude distribution 10 in the transmission region 6 and the amplitude of the exposure light is added.
  • a solid line 12 in FIG. 1B shows the amplitude distribution of light that prevents the distribution from spreading.
  • the intensity distribution of the light including the phase shift light corresponding to the amplitude distribution 12 of the light added with the phase shift light is shown by a solid line 14 in FIG. Comparing the light intensity distribution 13 of the transmission region only with the light intensity distribution 14 including the phase shift light, the light intensity is reduced corresponding to the position of the phase shift region 8 and the spread of the light intensity is suppressed. A portion where the light intensity is reduced is indicated by a hatched portion 15.
  • a portion where the light intensity is newly increased is called a side peak on the outside where the light intensity is reduced (FIG. 1 (c) 16).
  • the side peak becomes stronger when the transmittance of the phase shift region is increased, but it must be suppressed to a level at which the resist is not exposed.
  • the phase shift film 5 is required to have a film thickness that inverts the phase of the exposure light 40, the film thickness d of the phase shift film, the refractive index n of the phase shift film, the wavelength ⁇ of the exposure light, and the exposure light through the phase shift film
  • d is ⁇ / 2 (n ⁇ 1).
  • the thickness of the phase shift film can be calculated as 118 nm.
  • the allowable range of variation in the thickness of the phase shift film is a range of about plus or minus 10 percent with respect to the calculated thickness of the phase shift film. If within this allowable range, the effect of sufficient phase shift as the phase shift film is achieved. Is obtained.
  • the thickness of the phase shift film with respect to each peak wavelength is calculated and classified into each peak wavelength.
  • the film thickness of the phase shift film is determined by a sum (weighted average) weighted by the ratio of the energy intensity of the exposure light. For example, when a light source having an energy intensity of Pg, h line Ph, and i line Pi is used as an exposure light source, the thickness of the phase shift film corresponding to each g line corresponds to Dg, h line.
  • the thickness D of the phase shift film obtained by weighted averaging is found to be 128 nm.
  • the light transmittance of the phase shift film 5 is set to a value that increases the contrast of the exposed pattern within a range in which a side peak due to the effect of the phase shift does not occur.
  • the light transmittance of exposure light of the phase shift film 5 is preferably 4% or more and 15% or less. If the transmittance of the phase shift film is 4% or less, the effect of increasing the contrast due to the phase shift is small, and if the transmittance of the phase shift film is 15% or more, the effect of the phase shift is too strong and the sub-peak (side The peak) becomes high, which may cause defects.
  • FIG. 1A shows the specific dimensions of each region of the large phase shift mask 1 of the present invention that has the effect of suppressing the spread of the exposure intensity distribution due to the resolution limit of the exposure apparatus.
  • FIG. 1 illustrates an edge-enhanced phase shift mask.
  • FIG. 1A shows a cross-sectional view of a phase shift mask for exposing a line-and-space space pattern or hole pattern to a positive resist on the exposure surface.
  • the main application of the large phase shift mask of the present invention is pattern formation of a TFT array substrate used for flat display panels such as liquid crystal display devices and EL display devices.
  • the resolution limit of the large projection exposure apparatus used for this pattern formation is about 3 ⁇ m, and the large phase shift mask of the present invention provides the exposure pattern contrast for the drawing pattern related to the resolution limit (3 ⁇ m).
  • the challenge is to improve. Therefore, the width a of the transmissive region in which the large phase shift mask of the present application exhibits a remarkable effect is 1 ⁇ m or more and 6 ⁇ m or less.
  • the width a of the transmission area is larger than 6 ⁇ m, the effect of the large phase shift mask of the present invention is not remarkable because the influence of the resolution limit of the exposure apparatus is small. If the width of the transmissive region is smaller than 1 ⁇ m, the exposure pattern cannot be resolved even if the phase shift effect of the present invention is added.
  • the width a of the transmission region is the diameter of the maximum inscribed circle of the target transmission region shape on the transparent substrate plane. If the target transmission region has a rectangular shape, the length of the short side is transparent. The width of the region.
  • the width of the phase shift region in the present invention is not particularly limited as long as the spread of light intensity in the transmission region can be suppressed and the resist can be exposed to a desired pattern shape.
  • the width of such a phase shift region is preferably 3.5 ⁇ m or less, more preferably 2.5 ⁇ m or less, and particularly preferably 2.0 ⁇ m or less. This is because if the width of the phase shift region exceeds the above value, the phase shift effect is not within the range, and the effect of increasing the contrast of the exposure pattern may reach its peak.
  • the influence of the peak (side peak) of the light intensity distribution due to the light amplitude distribution remaining without being canceled with the light amplitude of the transmission region becomes large, and the phase shift region This is because there is a possibility that the resist reacts with the transmitted light that passes through the resist to cause a dent or the like in the resist pattern shape, making it difficult to make the resist pattern shape a desired shape.
  • the lower limit of the width of the phase shift region is particularly limited as long as a phase shift film can be formed.
  • the phase shift region is preferably 0.25 ⁇ m or more, more preferably 0.5 ⁇ m or more, and particularly preferably 0.8 ⁇ m or more. This is because the phase shift region can be provided with good alignment accuracy. Further, when the value is less than the above value, the amount of light whose phase is reversed is reduced, and there is a possibility that the effect is small.
  • the width b of the phase shift region is in the range of 0.5 ⁇ m or more and 2 ⁇ m or less, and the effect of phase shift is most remarkable.
  • the width b of the phase shift region is the shortest distance obtained by measuring the distance from the boundary between the transmission region and the phase shift region to the boundary between the phase shift region and the light shielding region in parallel with the transparent substrate surface.
  • the resolution limit of the above-described large projection exposure apparatus is that the binary mask can be stably resolved in the exposure area when the binary projection mask is used for exposure with the large projection exposure apparatus. It can be handled in the same manner as the minimum value of the width of the region (hereinafter sometimes referred to as the resolution limit width).
  • the phase shift mask of the present invention can resolve drawing patterns that are less than the resolution limit width of the binary mask described above.
  • the width of the drawing pattern of the phase shift mask of the present invention is preferably 100% or less, more preferably 85% or less, more preferably 30% or more with respect to the resolution limit width of the binary mask in a large projection exposure apparatus. Of these, 40% or more is preferable.
  • the width of the drawing pattern in the phase shift mask is equal to the resolution limit width, the resist shape can be made better than when exposure is performed using a binary mask.
  • the width d of the transmission region of the binary mask is set such that the distance from one boundary of the light shielding region adjacent to the one transmission region to the other boundary is parallel to the transparent substrate surface. The shortest distance measured. Further, the width of the drawing pattern of the phase shift mask refers to the width of the pattern drawn on the resist by the transmission region and the phase shift region.
  • the configuration of the large phase shift mask 1 shown in FIG. 1A includes a transparent substrate 2, a light shielding film 3 formed on the transparent substrate 2, and a translucent phase shift formed on the transparent substrate 2.
  • the size of the transparent substrate 2 used in the large phase shift mask 1 of the present invention is 350 mm ⁇ 350 mm to 1220 mm ⁇ 1400 mm and the thickness is 8 mm to 13 mm.
  • low-expansion glass aluminoborosilicate glass, borosilicate glass
  • synthetic quartz glass having a low coefficient of thermal expansion and high ultraviolet transmittance is preferably used.
  • the light-shielding film 3 used in the present invention is required to be a material that has a transmittance of 0.1% or less at the exposure wavelength and can be easily patterned.
  • a material for such a light shielding film chromium, a chromium compound, a molybdenum silicide compound, and a tantalum compound can be used.
  • a good pattern can be formed by wet etching, and chromium or a chromium compound, which has a long history of use, is used as a main component.
  • the light shielding film is preferable.
  • the chromium compound chromium nitride is used which has a high light shielding property and requires a thin light shielding film.
  • a chromium light-shielding film When comparing a chromium light-shielding film and a chromium nitride light-shielding film, mask blanks using a chromium light-shielding film that is easy to form and highly versatile are easily available and preferable.
  • the film thickness is 70 nm or more in order to make the exposure light transmittance 0.1% or less.
  • the film thickness is increased, the etching time is increased and the workability is lowered, so that the film thickness is usually 150 nm or less.
  • the phase shift film 5 used in the present invention is required to be a material that has a transmittance in the range of 4% to 15% at the exposure wavelength and can be easily patterned.
  • the material of the phase shift film 5 is selected from materials that are translucent and have an appropriate refractive index. Chromium oxynitride (CrON), chromium oxide (CrO), molybdenum silicide oxide (MoSiO), molybdenum silicide oxynitride (MoSiON) tantalum silicide oxide (TaSiO), titanium oxynitride (TiON) can be used.
  • CrON Chromium oxynitride
  • CrO chromium oxide
  • MoSiO molybdenum silicide oxide
  • MoSiON molybdenum silicide oxynitride
  • TaSiO tantalum silicide oxide
  • TiON titanium oxynitride
  • the light shielding film 3 and the phase shift film 5 can be processed with the same etching equipment.
  • both the light-shielding film 3 and the phase shift film 5 can be wet-etched with a second cerium nitrate wet etchant having good pattern processability, which has a great cost advantage.
  • the light shielding region has a structure in which a light shielding film is laminated on a transparent substrate and a phase shift film is laminated on the light shielding film.
  • the phase shift film has a thickness D with a phase difference ⁇ .
  • the stray light described above may exhibit the following behavior. First, stray light emitted from a large projection exposure apparatus passes through the transparent substrate of the phase shift mask and is reflected by a metal electrode or the like of the TFT array substrate to become reflected light. Next, the reflected light of the stray light enters the phase shift film in the light shielding region, is reflected by the light shielding film, becomes second reflected light, and is emitted from the phase shift film again.
  • the phase difference between the reflected light of the stray light incident on the phase shift film in the light shielding region and the second reflected light of the stray light reflected from the light shielding film and emitted from the phase shift layer is 2 ⁇ . Therefore, since the above-mentioned reflected light and the above-mentioned second reflected light strengthen each other on the surface of the phase shift film, there is a concern that the influence of the stray light on the resist becomes more remarkable. The above problem is caused by the layer structure of the light shielding region in the present invention.
  • the light shielding region 7 used in the present invention has a configuration in which a light shielding film 3 is laminated on a transparent substrate 2 and a phase shift film 5 is laminated on the light shielding film 3, but the phase shift film 5 has a phase difference ⁇ . Therefore, the exposure light reflected from the surface of the light shielding film 3 (stray reflected second light) and the reflected light from the surface of the phase shift film 5 (stray reflected light) have a phase difference of 2 ⁇ and become stronger. It will fit.
  • an antireflection film 4 made of a translucent film may be provided between the light shielding film and the phase shift film.
  • the antireflection film 4 By having the antireflection film 4, the light reflected from the light shielding film and the light reflected from the antireflection film (light reflected from the light shielding film (second reflected light of stray light) and reflected light of stray light on the surface of the antireflection film)
  • the optical path length so as to weaken each other, it is possible to prevent the phase difference from becoming 2 ⁇ and strengthening.
  • the antireflection film in the present invention is not particularly limited as long as it has an antireflection function and can be formed between the light shielding film and the phase shift film in the light shielding region, but a metal film, a metal compound film, etc. It can be used suitably.
  • the material for the antireflection film include chromium oxide (CrO), chromium oxynitride (CrON), chromium nitride (CrN), titanium oxide (TiO), tantalum oxide (TaO), and nickel aluminum oxide (NiAlO).
  • CrO chromium oxide
  • CrON chromium oxynitride
  • CrON chromium nitride
  • TiO titanium oxide
  • TaO tantalum oxide
  • NiAlO nickel aluminum oxide
  • chromium oxide (CrO) and chromium oxynitride (CrON) can be preferably used.
  • the thickness of the antireflection film is designed to have an optical path length so that the light reflected by the light shielding film and the light reflected by the antireflection film are weakened.
  • the thickness of such an antireflection film is such that the phase difference between the light reflected from the light shielding film and the light reflected from the antireflection film is ⁇ ⁇ 10 because light reflected from the light shielding film passes through the antireflection film.
  • the thickness is preferably in the range of ⁇ ⁇ 5, and in particular, the thickness is preferably in the range of ⁇ ⁇ 5, and particularly preferably ⁇ . This is because the light reflected by the light-shielding film and the light reflected by the antireflection film can be suitably weakened, and problems due to stray light can be suitably prevented.
  • the specific thickness of the antireflective film is appropriately selected depending on the material of the antireflective film and is not particularly limited, but is in the range of 0.01 ⁇ m to 0.1 ⁇ m, and in particular, 0. It is preferably in the range of 02 ⁇ m to 0.05 ⁇ m. If it is less than the above range, it may be difficult to form the antireflection film with a uniform thickness. If it exceeds the above range, it takes a lot of time and cost to form the antireflection film. Because there is a possibility.
  • the antireflection film in addition to the film that adjusts the phase of transmitted light, for example, a metal film or the like having a roughened surface and imparting a function of diffusing light may be used.
  • a semitransparent low reflection film can be provided on the surface of the phase shift film 5.
  • the phase shift film 5 is made of chromium oxynitride
  • the surface may contain metallic luster.
  • a low reflection layer made of chromium oxide is effective.
  • a photomask blank 20 is prepared in which a light shielding film 3 is laminated on a transparent substrate 2 and further an antireflection film 4 is laminated as required (FIG. 2 (a)).
  • the transparent substrate 2 is usually made of optically polished synthetic quartz having a thickness of 8 mm to 12 mm. If the light shielding film 3 of the photomask blank 20 is a chromium film or a chromium nitride film, it is formed by sputtering. If the antireflection film is chromium oxide, it is similarly formed by sputtering. Blanks in which the light-shielding film is chromium and the antireflection film is chromium oxide are the most common blanks, and commercial products can be easily obtained.
  • the light shielding film 3 and the antireflection film 4 of the photomask blank 20 are patterned according to a normal method (first pattern formation step). That is, a photosensitive resist corresponding to the exposure wavelength of the laser beam drawing apparatus is applied on the light shielding film 3 or the antireflection film 4 and baked for a predetermined time after the application to form a light shielding film resist film having a uniform thickness. .
  • a pattern of the light shielding region 7 is drawn on the resist film for light shielding film by a laser drawing apparatus and developed to form a resist 16 for light shielding film (FIG. 2B).
  • the light shielding region 7 is a region obtained by removing the transmission region 6 and the phase shift region 8 from the entire effective region of the mask. Further, if necessary, an alignment mark is formed of a light shielding film and used for alignment with the phase shift region pattern.
  • the light shielding film exposed from the light shielding film resist 16 is removed by etching, the remaining resist is peeled and removed, and the substrate 21 with the light shielding film patterned in the shape of the light shielding region 7 is obtained. Is obtained (FIG. 2 (c)).
  • Etching of the light-shielding film 3 can be performed by wet etching or dry etching. However, as the photomask used in the flat display is increased in size as described above, dry etching increases the cost of the etching apparatus. In addition, since it is difficult to control the uniformity of etching in a large area, wet etching is preferable in terms of cost.
  • the pattern can be satisfactorily formed with a wet etchant obtained by adding perchloric acid to ceric ammonium nitrate.
  • the material of the antireflection film 4 is a chromium-based material such as chromium oxide, a pattern can be formed by etching with the wet etchant simultaneously with the chromium-based light shielding film.
  • the patterned light-shielding film-attached substrate 21 is inspected, and if necessary, a process of correcting defects can be performed.
  • the phase shift film 5 is formed on the entire surface of the patterned light-shielding film-attached substrate 21 (FIG. 2D).
  • the phase shift film 5 is preferably made of the same material as the light shielding film 3.
  • the phase shift film 5 contains one or more elements such as oxygen, nitrogen, and carbon in chromium, has a relatively high refractive index, and has a predetermined value.
  • the component ratio of the material is selected so that the light transmittance is within the range. Specifically, the constituent ratio of each element is selected in chromium oxide, chromium oxynitride, and chromium oxynitride carbide.
  • the film formation of the phase shift film 5 is performed by a vacuum film formation method such as a sputtering method, similar to the method of forming the chromium light shielding film.
  • the phase shift film 5 is patterned by aligning with the light shielding region 7 which is the lower light shielding film pattern. That is, a photosensitive resist corresponding to the exposure wavelength of the laser beam drawing apparatus is applied on the phase shift film 5 and baked for a predetermined time after the application to form a resist film for a phase shift film having a uniform thickness.
  • region 7 is drawn on the resist film for phase shift films with a laser beam drawing apparatus. Subsequently, the exposed phase shift film resist is developed to obtain a patterned phase shift film resist 17 (FIG. 2E).
  • phase shift film 5 exposed from the phase shift film resist 17 is removed by etching to obtain a phase shift film patterned into a shape in which the phase shift region 8 and the light shielding film pattern 7 are combined.
  • the phase shift film is formed of a material containing at least one of oxygen, nitrogen, and carbon in chromium
  • pattern processing is performed by the same wet etching as the etching of the light shielding film 3 formed of chromium or a chromium compound. As described above, the cost advantage of the pattern processing process is great.
  • the remaining resist film for the phase shift film is peeled off and removed to complete a large phase shift mask (FIG. 2 (f)).
  • the method for manufacturing the phase shift mask according to the embodiment of the present invention has been described above with reference to FIG. Particularly in this manufacturing method, if the light shielding film 3 is made of chromium and the phase shift film 5 is made of a chromium compound containing at least one of oxygen, nitrogen, and carbon, a commercially available starting material for the manufacturing process is used. A chrome hard mask can be used, and the etching process is all wet etching, resulting in a great manufacturing cost merit.
  • the phase shift mask of the present invention is used for patterning a resist for pattern formation of the TFT array substrate or the like.
  • the resist used together with the phase shift mask of the present invention can be appropriately selected depending on the electrode material of the TFT substrate, the developer, the projection type exposure machine, etc., and is not particularly limited.
  • the influence of exposure light on a portion of the phase shift mask having a transmittance of 5% or less can be reduced. That is, since the resist can be hardly drawn by light having an exposure intensity of 5% or less, it is difficult to react to the side peak in the exposure intensity distribution, and the resist can be satisfactorily patterned.
  • the thickness of the resist is not particularly limited as long as it can be patterned into a desired shape using the phase shift mask of the present invention, but is within the range of 1.0 ⁇ m to 10.0 ⁇ m. It is preferably in the range of 2 ⁇ m to 5.0 ⁇ m, particularly in the range of 1.5 ⁇ m to 4.0 ⁇ m. By setting the thickness of the resist within the above range, a resist pattern having a desired shape can be formed using the phase shift mask of the present invention.
  • resist used together with the phase shift mask of the present invention is not limited to the above.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • FIG. 3 is an explanatory diagram comparing the effect of improving the contrast of the exposure intensity distribution of the large phase shift mask (Example 1) according to the present invention with that of a conventional binary mask (Comparative Example 1).
  • 3A is a plan view showing a line and space pattern of a large phase shift mask (Example 1) according to the present invention
  • FIG. 3B is a line and space pattern of a conventional binary mask (Comparative Example 1).
  • FIG. 3C is a plan view showing the space pattern
  • FIG. 3C is a diagram for comparing the exposure intensity distributions on the imaging planes of the masks shown in FIGS. 3A and 3B.
  • Table 1 is a table comparing the effect of improving the contrast of the exposure intensity distribution of the large phase shift mask (Example 1) according to the present invention with the conventional binary mask (Comparative Example 1).
  • 3A is a line-and-space pattern with a pitch of 4 ⁇ m and the width a of the transmission region 6 is 3 ⁇ m.
  • the width b of the phase shift region 8 provided adjacent to both sides of the transmission region 6 is 0.4 ⁇ m, the transmittance is 5.2%, and the phase is inverted by ⁇ (180 degrees).
  • the width of the light shielding region 7 is 0.2 ⁇ m and the transmittance is 0%.
  • the transmittance of each region is calculated with the transmittance of the transmissive region 6 being 100%.
  • the pattern of the binary mask which is Comparative Example 1 in FIG. 3B is a line and space pattern with a pitch of 4 ⁇ m, the width d of the transmission region is 3 ⁇ m, and the width e of the light shielding region is 1 ⁇ m.
  • FIG. 3 (c) is a graph showing the result obtained by simulating the exposure result by the exposure apparatus, and the light source of the exposure apparatus was calculated using a three-wavelength mixed light source of g-line, h-line and i-line.
  • the vertical axis of the graph is displayed by normalizing the maximum value of the exposure light intensity of the transmission region on the imaging plane to 1, and the horizontal axis of the graph indicates the position on the imaging plane.
  • An exposure light intensity distribution curve 31 shows the exposure light intensity distribution of the large phase shift mask at a position corresponding to the AA cross section of FIG.
  • the exposure light intensity distribution curve 32 of the binary mask at a position corresponding to the BB cross section of FIG.
  • the maximum value of the light intensity distribution of the large phase shift mask exposure light intensity distribution curve 31 shown in FIG. 3C is 0.747, the minimum value is 0.324, and the contrast that is the difference between the maximum value and the minimum value is 0. 423.
  • the maximum value of the light intensity distribution of the exposure light intensity distribution curve 32 of the conventional binary mask is 0.782, the minimum value is 0.399, and the contrast that is the difference between the maximum value and the minimum value is 0.383.
  • Met That is, the contrast of the exposure light on the imaging surface of the conventional binary mask is 0.383, whereas the contrast of the exposure light of the large phase shift mask of the present invention is 0.423, which increases the 0.04 contrast. In terms of contrast ratio, an improvement of about 10% was observed.
  • Table 1 The results are summarized in the effect of the large phase shift mask in Table 1.
  • the present invention can appropriately arrange a phase shift region in a large mask, improve the contrast of the exposure intensity distribution on the imaging surface, and stably form a finer pattern. Can do.
  • phase shift mask (Relationship between resolution limit of exposure tool and drawing pattern of phase shift mask) ⁇ Production of phase shift mask>
  • a commercially available photomask blank in which a synthetic quartz (transparent substrate) having a thickness of 10 mm, a chromium film (light-shielding film) having a thickness of 100 nm, and a chromium oxide film (antireflection film) having a thickness of 25 nm are laminated in this order is prepared.
  • a photosensitive resist adapted to the above was applied and baked for a predetermined time after the application to form a resist film for a light-shielding film having a uniform thickness.
  • a light shielding region pattern was drawn on the light shielding film resist film by a laser drawing apparatus and developed to form a light shielding film resist.
  • the antireflection film and the light shielding film exposed from the resist for the light shielding film are removed by etching using a wet etchant obtained by adding perchloric acid to ceric ammonium nitrate, and the remaining resist is peeled and removed.
  • a substrate with a light shielding film and an antireflection film patterned in the shape of the light shielding region was obtained.
  • a chromium oxynitride film phase shift film
  • the resist film for phase shift film was formed by the same formation method as the resist for light shielding film by aligning with the light shielding region which is the light shielding film pattern of the lower layer.
  • a pattern of a region in which the phase shift region and the light-shielding region are combined is drawn on the phase shift film resist film by a laser beam drawing apparatus and then developed to obtain a patterned phase shift film resist.
  • phase shift film exposed from the resist for the phase shift film is removed by etching in the same manner as the light shielding film and the antireflection film described above, and pattern processing is performed so that the phase shift region and the light shielding film pattern are combined.
  • a phase shift film was obtained.
  • the remaining resist film for the phase shift film was peeled off and removed.
  • the transmission region line width 1.9 ⁇ m
  • the phase shift region line width 2.0 ⁇ m
  • the light shielding region are arranged.
  • the antireflection film and the phase shift film are arranged in this order on the light shielding film.
  • a laminated large phase shift mask was obtained.
  • phase shift mask using a Nikon exposure machine with a resolution limit of 3 ⁇ m, pattern exposure was performed on a 1.6 ⁇ m thick resist (AZ1500) formed on a glass substrate, and development processing was performed. A resist pattern of 1.9 ⁇ m could be formed.
  • FIG. 6 is a plan view showing a pattern of a large phase shift mask according to the present invention
  • FIG. 7 is a view showing an exposure intensity distribution on the image plane of the large phase shift mask shown in FIG. 6, and
  • FIG. 7 is an enlarged view of a portion C
  • FIG. 9 is an enlarged view of a portion D of FIG.
  • the width of the transmission region is 5 ⁇ m
  • the width b of the phase shift region is 0.25 ⁇ m (Example 3), 0.5 ⁇ m (Example 4), 0.75 ⁇ m (Example 5), 1 0.0 ⁇ m (Example 6), 1.5 ⁇ m (Example 7), 2.0 ⁇ m (Example 8), 2.5 ⁇ m (Example 9), 3.0 ⁇ m (Example 10), 3.5 ⁇ m (Example) 11) and 4.0 ⁇ m (Example 12), the simulation was performed on the exposure intensity distribution (light intensity) by the Nikon exposure machine. The simulation conditions other than the large phase shift mask pattern were the same as in Example 1. The results are shown in FIGS.
  • the width of the phase shift region can be set so that the side peak does not affect the resist according to the sensitivity of the resist.
  • the width of such a phase shift is preferably set to a width at which the side peak exposure intensity is 5% or less, that is, from 0.25 ⁇ m to 3.5 ⁇ m, based on the results of the resist used when forming the TFT array substrate. .
  • Phase shift mask 1 Large phase shift mask 2 Transparent substrate 3 Light shielding film 4 Antireflection film 5 Phase shift film 6 Transmission area 7 Light shielding area 8 Phase shift area 10 Light amplitude distribution of transmission area 11 Light amplitude distribution of phase shift area 12 Including phase shift effect Light amplitude distribution 13 Light intensity distribution in transmission region 14 Light intensity distribution including phase shift effect 15 Effect of phase shift region 16 Resist formed in pattern of light shielding film 17 Formed in pattern of phase shift region and light shielding film Resist 20 Photomask blanks 21 Photomask blanks with light-shielding film patterned 30 Binary mask 31 Light intensity distribution of large phase shift mask 32 Light intensity distribution of binary mask 40 Exposure light

Abstract

Provided are: a phase-shift mask which is a large-sized photomask that enables the exposure of a large-sized area to light and has a constitution suitable for the formation of a fine pattern; and a method for producing the phase-shift mask. A large-sized phase-shift mask is produced, which can be produced easily and enables the transfer of a fine pattern. The large-sized phase-shift mask has such a constitution that a light-shielding film contains chromium or a chromium compound as the main component, a phase-shift film contains chromium oxide or oxidized chromium nitride as the main component, and the phase-shift film is laminated on the light-shielding film in the light-shielding area. The reflectance of the light-shielding area can be reduced by employing such a constitution that an anti-reflective film comprising a chromium compound is additionally provided between the light-shielding film and the phase-shift film.

Description

大型位相シフトマスクおよび大型位相シフトマスクの製造方法Large phase shift mask and manufacturing method of large phase shift mask
 本発明は、フォトマスクに関し、特に液晶表示装置、EL表示装置などのアクティブマトリクス型表示装置の製造に用いられる大型のフォトマスク及び大型のフォトマスクの製造方法に関する。 The present invention relates to a photomask, and more particularly to a large photomask used for manufacturing an active matrix display device such as a liquid crystal display device or an EL display device, and a method for manufacturing the large photomask.
 フラットパネルディスプレイ(FPDと略記)の製造に使用されるフォトマスクの仕様の変化は、液晶表示装置(LCDと略記)を用いた薄型テレビに見られる大画面化と高精細化で代表される。大画面化については液晶の薄型テレビの量産が始まった1990年当初の製造に用いられた第1世代と呼ばれるガラス基板のサイズは300mm×400mmであったが、2002年ごろ製造に使用され始めた第5世代のガラス基板のサイズは1100mm×1300mmであり、2006年ごろ製造に使用され始めた第8世代のガラス基板のサイズは2140mm×2460mmにまで達している。 Changes in the specifications of photomasks used in the manufacture of flat panel displays (abbreviated as FPD) are typified by the large screen and high definition found in thin televisions using liquid crystal display devices (abbreviated as LCD). Regarding the increase in screen size, the size of the glass substrate called the first generation used for manufacturing in the beginning of 1990 when liquid crystal flat-screen televisions were mass-produced was 300 mm x 400 mm, but began to be used for manufacturing around 2002. The size of the 5th generation glass substrate is 1100 mm × 1300 mm, and the size of the 8th generation glass substrate, which has been used for manufacturing around 2006, has reached 2140 mm × 2460 mm.
 液晶表示装置の高精細化は、当初パーソナルコンピュータ用ディスプレイで高画素化が進んだ。VGAディスプレイは640×480画素であったが、XGAディスプレイは1024×768画素、SXGAディスプレイでは1280×1024画素、UXGAディスプレイは1600×1200画素となった。これらの高画素化に伴い、画素ピッチも0.33mmから、0.24mm、0.20mmへと微細化が進んだ。さらに、スマートホンなどでは4.5型で1280×720画素であり、画素ピッチは0.077mm(329ppi)まで達している。又、ハイビジョン(HDTV)は1920×1080画素であるが、さらに画素を補間して4倍の画素数の3840×2160画素(4K液晶パネルと言われる)とするディスプレイもある。 The high-definition of liquid crystal display devices initially advanced with higher pixels in personal computer displays. The VGA display was 640 × 480 pixels, but the XGA display was 1024 × 768 pixels, the SXGA display was 1280 × 1024 pixels, and the UXGA display was 1600 × 1200 pixels. Along with the increase in the number of pixels, the pixel pitch has been reduced from 0.33 mm to 0.24 mm and 0.20 mm. Furthermore, in a smart phone or the like, it is 4.5 type and has 1280 × 720 pixels, and the pixel pitch reaches 0.077 mm (329 ppi). In addition, high-definition (HDTV) has 1920 × 1080 pixels, but there is also a display in which pixels are further interpolated to 3840 × 2160 pixels (referred to as a 4K liquid crystal panel), which is four times the number of pixels.
 前記のような液晶表示装置を製造する露光装置や、露光装置に使用されるフォトマスクについて、以下で説明する。代表的な液晶表示装置であるカラーTFT(Thin Film Transistor)液晶表示装置のセルは、別々に製造されたカラーフィルタとTFTアレイ基板の間に液晶を封入して組み立てられる。さらに、液晶表示セルに、映像信号をTFTの駆動信号に変換して供給する周辺駆動回路とバックライトを組み込んで、液晶表示モジュールが出来上がる。 An exposure apparatus for manufacturing the liquid crystal display device as described above and a photomask used for the exposure apparatus will be described below. A cell of a color TFT (Thin Film Transistor) liquid crystal display device, which is a typical liquid crystal display device, is assembled by sealing liquid crystal between a separately manufactured color filter and a TFT array substrate. Furthermore, a liquid crystal display module is completed by incorporating a peripheral drive circuit and a backlight into the liquid crystal display cell, which converts the video signal into a TFT drive signal and supplies it.
 TFTアレイ基板は、TFTをマトリックス状に多数配列した基板で、液晶の各画素の表示(ON)、非表示(OFF)を制御する基板である。一例として、以下のような工程で製造される。すなわち、1)ガラス基板上に、MoWなどのゲート電極材料をパターン形成するゲート配線工程、2)ゲート絶縁膜を形成した後、A-Si膜をアイランド状にパターン形成する半導体部分形成工程、3)ITO膜(スズドープ酸化インジウム膜)をパターン形成する透明表示電極形成工程、4)ゲート絶縁膜にコンタクトホールを形成する工程、5)Alなどの導体層をパターン形成してTFTのソース・ドレインおよび信号線を形成する工程、6)表面に絶縁性の保護膜を形成する工程、などから成る製造工程を経て、TFTアレイ基板が製造される。 The TFT array substrate is a substrate in which a large number of TFTs are arranged in a matrix, and is a substrate that controls display (ON) and non-display (OFF) of each pixel of the liquid crystal. As an example, it is manufactured by the following process. 1) a gate wiring process for patterning a gate electrode material such as MoW on a glass substrate; 2) a semiconductor part forming process for patterning an A-Si film in an island shape after forming a gate insulating film; ) Transparent display electrode formation step for patterning ITO film (tin-doped indium oxide film), 4) Step for forming contact hole in gate insulating film, 5) Pattern formation of conductor layer such as Al, source / drain of TFT and The TFT array substrate is manufactured through a manufacturing process including a process of forming a signal line and a process of 6) forming an insulating protective film on the surface.
 上記のTFTアレイ基板製造工程の各工程で用いられるパターンの形成は、倍率が1対1の等倍の大型マスクを用いて等倍の投影型露光装置(プロジェクション露光装置ともいう)で露光される。現在、この大型マスクを用いた等倍の投影露光方式が、生産性良く高精度にTFTアレイ基板をパターン形成する標準的な製造方法になっている。なお、カラーフィルタのパターン形成では、コスト的に有利なプロキシミティ露光方式が標準的な製造方法である。プロキシミティ露光は、マスクと露光対象を数十μm~100μm程度の隙間で近接して配置し、マスクの後方から平行光を照射する露光方式である。 Formation of the pattern used in each step of the above TFT array substrate manufacturing process is performed with a projection exposure apparatus (also referred to as a projection exposure apparatus) with an equal magnification using a large-sized mask with an equal magnification of 1: 1. . At present, the same size projection exposure method using a large mask has become a standard manufacturing method for patterning a TFT array substrate with high productivity and high accuracy. Note that a cost effective proximity exposure method is a standard manufacturing method for forming a color filter pattern. Proximity exposure is an exposure method in which a mask and an object to be exposed are arranged close to each other with a gap of about several tens of μm to 100 μm, and parallel light is irradiated from behind the mask.
 TFTアレイ基板用の大型マスクは、当初350mm×350mmのサイズで始まったが、TFTアレイ基板の製造に用いられる等倍の投影型露光装置の大型化に伴って大サイズ化してきた。TFTアレイ基板の製造に用いられる等倍の投影型露光装置には、マスクのパターンをワークに投影露光するのにミラー系を用いるミラープロジェクション露光方式と、レンズ系を用いるレンズプロジェクション露光方式の2つがある。それぞれの露光装置の仕様により、用いる大型マスクのサイズが異なり、第5世代のガラス基板に対して、ミラープロジェクション露光方式では520mm×610mmのサイズの大型マスクを用い、レンズプロジェクション露光方式では800mm×920mmのサイズの大型マスクを用いている。さらに、第8世代のガラス基板に対して、ミラープロジェクション露光方式では850mm×1400mmのサイズの大型マスクを用い、レンズプロジェクション露光方式では1220mm×1400mmのサイズの大型マスクを用いている。 The large mask for the TFT array substrate originally started with a size of 350 mm × 350 mm, but has increased in size with the increase in the size of the projection type exposure apparatus used for manufacturing the TFT array substrate. There are two types of projection-type exposure apparatuses used in the manufacture of TFT array substrates: a mirror projection exposure system that uses a mirror system to project and expose a mask pattern onto a workpiece, and a lens projection exposure system that uses a lens system. is there. The size of the large mask to be used differs depending on the specifications of each exposure apparatus. For the fifth generation glass substrate, a large mask having a size of 520 mm × 610 mm is used for the mirror projection exposure method, and 800 mm × 920 mm is used for the lens projection exposure method. A large size mask is used. Further, for the eighth generation glass substrate, a large mask having a size of 850 mm × 1400 mm is used in the mirror projection exposure method, and a large mask having a size of 1220 mm × 1400 mm is used in the lens projection exposure method.
 通常の半導体用のマスク(6インチレチクル)の対角線の長さは約154mmであるのに対し、上記の大型マスクの対角線の長さは、当初のマスクでは495mm、第5世代のミラープロジェクション露光方式では約801mmであり、第8世代のレンズプロジェクション露光方式用大型マスクでは1856mmまで大型化している。 The diagonal length of the normal mask (6-inch reticle) for a normal semiconductor is about 154 mm, whereas the diagonal length of the large mask is 495 mm for the original mask, and the fifth generation mirror projection exposure system. Is about 801 mm, and the large mask for the eighth generation lens projection exposure system has been increased to 1856 mm.
 上記のように、TFTアレイ基板のパターン形成に用いられる大型マスクは、半導体ウエハ用のマスクに対し、対角線の長さの比で3.2倍から12倍のサイズである。さらに、製造コスト(成膜時間、検査時間など)に直接関係する面積比では、10倍から144倍である。このような大サイズであることに起因するコスト的な要求から、大型マスクの層構成は石英ガラスに積層されたクロムを主成分とする遮光膜と、遮光膜に積層された酸化クロムもしくは酸化窒化クロムを主成分とする反射防止膜の2層で構成される。遮光膜は、使用する露光波長での透過率が0.1%以下が望ましく、反射防止膜は、使用する露光波長での反射率が30パーセント以下が望ましい。 As described above, the large mask used for pattern formation of the TFT array substrate is 3.2 to 12 times the diagonal length ratio of the mask for the semiconductor wafer. Furthermore, the area ratio directly related to the manufacturing cost (film formation time, inspection time, etc.) is 10 to 144 times. Due to the cost requirements due to such a large size, the layer structure of the large mask is composed of a light shielding film mainly composed of chromium laminated on quartz glass, and chromium oxide or oxynitride laminated on the light shielding film. It is composed of two layers of an antireflection film mainly composed of chromium. The light-shielding film preferably has a transmittance of 0.1% or less at the exposure wavelength used, and the antireflection film preferably has a reflectance of 30% or less at the exposure wavelength used.
 以上で述べてきたように、TFTアレイ基板は大型化する一方で、近年になってパターンの微細化が要求されるようになってきている。つまり、露光装置の解像限界に近い微細なパターン、もしくは露光装置の解像限界に近い微細なパターンを、露光領域全体で均一に結像することが求められている。 As described above, while the TFT array substrate has been increased in size, in recent years, pattern miniaturization has been required. That is, it is required to uniformly image a fine pattern close to the resolution limit of the exposure apparatus or a fine pattern close to the resolution limit of the exposure apparatus over the entire exposure region.
 露光装置の解像限界以下の微細なラインアンドスペース(L/S)パターンが形成されたバイナリ型のフォトマスクを用いてレジストに露光すると、結像面で、フォトマスク上のライン(遮光)の部分とスペース(透過)の部分に対応した露光強度の振幅が小さくなり、スペース(透過)部に対応した部分の露光量がレジストの感度の閾値に達せず、結果としてレジストを現像してもパターンが形成されない。 When a resist is exposed using a binary photomask on which a fine line-and-space (L / S) pattern below the resolution limit of the exposure apparatus is formed, the line (light-shielding) of the line on the photomask is blocked on the imaging plane. The amplitude of the exposure intensity corresponding to the part and the space (transmission) part becomes small, the exposure amount of the part corresponding to the space (transmission) part does not reach the threshold value of the resist sensitivity, and as a result the pattern is developed even if the resist is developed Is not formed.
 このような課題に対する従来技術による解決方法の一つとして、特許文献1(特開2009-4242753号広報)には、グレイトーンマスクを用いる方法が提案されている。特許文献1に記載された図1を引用した図4および、図4を説明するために追加した、露光光量分布をモデル的に示した図5を用いて説明する。 As a conventional solution to such a problem, Patent Document 1 (Japanese Patent Laid-Open No. 2009-4242753) proposes a method using a gray tone mask. A description will be given with reference to FIG. 4 cited from FIG. 1 described in Patent Document 1 and FIG. 5 added to explain FIG.
 図4(a)に例示するように、従来技術で例示されたフォトマスク50は、透明基板51上に、微細パターンを有しない遮光膜52による遮光部54、微細パターンを有しない半透光膜53による半透光部55、半透光膜53による微細パターン部56(透光部と半透光膜53による半透光部とで構成される)、透光部57(透明基板51が露出)、の4つの領域を形成している。 As illustrated in FIG. 4A, a photomask 50 exemplified in the prior art includes a light-shielding portion 54 formed by a light-shielding film 52 that does not have a fine pattern on a transparent substrate 51, and a semi-transparent film that does not have a fine pattern. 53, a semi-transparent part 55, a fine pattern part 56 (comprising a translucent part and a semi-transparent part of the semi-transparent film 53), and a translucent part 57 (the transparent substrate 51 is exposed). ) And 4 regions are formed.
 前述の、従来技術で例示されたフォトマスク50を露光光40を用いて露光し、被転写体60上のフォトレジスト膜(ポジレジスト)63にパターンを転写すると、図4(b)に示すように、被転写体60上に、現像後の厚膜の残膜領域63a、薄膜の残膜領域63b、上記フォトマスク50上の微細パターン部56に対応した微細パターン領域63c、および実質的に残膜のない領域63dからなる転写パターン(レジストパターン)が形成される。なお、図4中の符号62a、62bは、被転写体60において基板61上に積層された膜を示す。 When the above-described photomask 50 exemplified in the prior art is exposed using the exposure light 40 and the pattern is transferred to the photoresist film (positive resist) 63 on the transfer target 60, as shown in FIG. In addition, a thick film remaining film region 63a after development, a thin film remaining film region 63b, a fine pattern region 63c corresponding to the fine pattern portion 56 on the photomask 50, and a substantially remaining film are formed on the transfer target 60. A transfer pattern (resist pattern) composed of a region 63d without a film is formed. Note that reference numerals 62 a and 62 b in FIG. 4 indicate films stacked on the substrate 61 in the transfer target 60.
 図5に、半透過膜の微細パターン56の効果を図示し、説明する。すなわち、一般のバイナリマスクのように遮光膜で微細パターンを形成した場合(図5(b))の露光光量の分布形状74cは、透光部に対応した露光量のピークの部分でもポジレジストが抜ける露光量75に達せず、パターンを形成しない。これに対し、フォトマスク50を用いて、半透過膜の微細パターン56を露光して転写する場合(図5(a))、露光光の透過量は、一般のバイナリマスクの遮光膜による微細パターン部の露光光量の透過量より大きくなる。半透過膜で微細パターンを形成した場合の露光光量の分布形状73cは、透光部に対応した露光量のピークの部分でポジレジストが抜ける露光量75に達し、微細なパターンでも十分な露光量を得てレジスト上にパターン63cを形成可能としているのである。 FIG. 5 illustrates and explains the effect of the fine pattern 56 of the semipermeable membrane. That is, when a fine pattern is formed with a light-shielding film as in a general binary mask (FIG. 5B), the exposure light amount distribution shape 74c is such that the positive resist is formed even at the peak portion of the exposure amount corresponding to the translucent portion. The exposure dose 75 that passes through is not reached, and no pattern is formed. On the other hand, when the fine pattern 56 of the semi-transmissive film is exposed and transferred using the photomask 50 (FIG. 5A), the amount of exposure light transmitted is the fine pattern of the light shielding film of a general binary mask. It becomes larger than the transmission amount of the exposure light quantity of the part. When the fine pattern is formed with the semi-transmissive film, the distribution pattern 73c of the exposure light amount reaches the exposure amount 75 at which the positive resist comes off at the peak portion of the exposure amount corresponding to the translucent portion. Thus, the pattern 63c can be formed on the resist.
 一方、このような従来技術のフォトマスク50を用いて、半透過膜53の微細パターン56を露光により転写する際、露光光の透過量は、一般のバイナリマスクの遮光膜による遮光パターン部の露光光量の透過量より大きくなり、露光光量分布のコントラストが低下する。このため、半透光膜による微細パターン部56を転写した場合の被転写体上の微細パターン領域63cのレジスト残膜値が、通常の遮光膜パターンを転写した場合(例えば厚膜残膜領域63a)のレジスト残膜値より小さくなる。(ポジ型フォトレジストを例に説明しているが、ネガ型フォトレジストの場合も同様である。)この場合、その後の被転写体のエッチングプロセスを適切に行うために、露光量を調整するとともに、露光後のフォトレジストの現像プロセスにおいて、条件を適宜調整してレジスト残膜値を好適に調節する必要がある。 On the other hand, when the fine pattern 56 of the semi-transmissive film 53 is transferred by exposure using such a conventional photomask 50, the amount of exposure light transmitted is the exposure of the light shielding pattern portion by the light shielding film of a general binary mask. It becomes larger than the amount of transmitted light, and the contrast of the exposure light amount distribution decreases. For this reason, when the resist residual film value of the fine pattern region 63c on the transfer target when the fine pattern portion 56 of the semi-transparent film is transferred, the normal light shielding film pattern is transferred (for example, the thick film residual film region 63a). ) Smaller than the resist remaining film value. (Although a positive type photoresist is described as an example, the same applies to a negative type photoresist.) In this case, the exposure amount is adjusted in order to appropriately perform the subsequent etching process of the transferred object. In the development process of the photoresist after exposure, it is necessary to appropriately adjust the conditions to suitably adjust the resist residual film value.
特開2009-42753号公報JP 2009-42753 A
 上述したように、液晶表示装置に代表されるフラットディスプレイの製造に使用されるフォトマスクは大型化が進展しているが、他方で、フラットディスプレイの表示画素ピッチの微細化が進み、フォトマスクの転写パターンの微細化への要求も強まっている。 As described above, a photomask used for manufacturing a flat display typified by a liquid crystal display device has been increased in size, but on the other hand, the display pixel pitch of the flat display has been miniaturized and the photomask has been developed. There is also an increasing demand for finer transfer patterns.
 そこで、従来のバイナリマスクに代わるフォトマスクとして、透明基板と、透明基板上にパターン状に形成された位相シフト膜とを有し、透明基板が露出した領域を透過領域、位相シフト膜が形成されている領域を位相シフト領域とする構成の位相シフトマスクを用いることが検討されている。上記位相シフトマスクは、解像限界により生じる透過領域の光振幅分布の広がり部分の光振幅を相殺するような位置に位相シフト領域を配置することにより、光強度の広がりを抑え、より微細なパターンを露光することを可能とするものである。
 しかしながら、上記位相シフト膜は、通常、バイナリマスクの遮光膜と比較して遮光能力が低く、半透明な膜となるため、上述した位相シフトマスクを用いて露光を行った場合、上記透過領域および位相シフト領域の境界に対応する部分では、レジストのパターンの広がりが少なく、その側面を切り立った形状とすることが可能となるが、位相シフト領域の中央部分に対応する部分においては、位相シフト膜自体の透過率が影響してレジストに凹みが生じるという問題がある。また、上記凹みを有するレジストは下層を保護する機能については発揮することができるものの、レジストの現像工程後に行われる検査において、上記凹みを有するレジストについては欠陥として検出されてしまう場合がある。よって、本来保護機能を有するレジストについても検査により欠陥品と判別されて用いることができないため、TFTアレイ基板等の生産性が低下してしまうという問題がある。
Therefore, as a photomask that replaces the conventional binary mask, it has a transparent substrate and a phase shift film formed in a pattern on the transparent substrate, and a region where the transparent substrate is exposed is formed as a transmission region and a phase shift film. It has been studied to use a phase shift mask having a configuration in which a region to be used is a phase shift region. The above-described phase shift mask suppresses the spread of light intensity by arranging the phase shift region at a position that cancels out the light amplitude of the spread portion of the light amplitude distribution of the transmission region caused by the resolution limit, thereby reducing the finer pattern. Can be exposed.
However, since the phase shift film generally has a light shielding ability lower than that of the light shielding film of the binary mask and becomes a translucent film, when the exposure is performed using the phase shift mask described above, the transmission region and In the portion corresponding to the boundary of the phase shift region, the resist pattern has little spread, and the side surface can be formed in a sharp shape. However, in the portion corresponding to the central portion of the phase shift region, the phase shift film There is a problem that the resist has a dent due to its own transmittance. In addition, although the resist having the dent can exhibit the function of protecting the lower layer, the resist having the dent may be detected as a defect in the inspection performed after the resist development process. Therefore, a resist that originally has a protective function cannot be used because it is determined to be a defective product by inspection, and there is a problem that productivity of a TFT array substrate or the like is lowered.
 本発明は、露光により被転写体にパターンを転写する際に、結像面での微細なパターンの露光光量分布のコントラストを高めて転写する位相シフトマスクにおいて、大型フォトマスクに好適な構成の位相シフトマスク、およびその製造方法を提供することにある。なお、本願では一辺の長さが350mm以上のマスクを大型フォトマスクとしている。 The present invention is a phase shift mask for transferring a pattern by increasing the contrast of the exposure light quantity distribution of a fine pattern on the imaging surface when transferring a pattern to a transfer medium by exposure, and having a phase suitable for a large photomask. A shift mask and a manufacturing method thereof are provided. In the present application, a mask having a side length of 350 mm or more is used as a large photomask.
 (第1の手段)
 本発明の第1の手段は、透明基板と、前記透明基板上に形成された遮光膜と、前記透明基板上に形成された半透明な位相シフト膜を有し、
 前記透明基板が露出した透過領域と、前記透明基板上に前記遮光膜が設けられた遮光領域と、前記透明基板上に前記位相シフト膜のみが設けられた位相シフト領域を有し、前記透過領域および前記位相シフト領域が隣接するパターンを有し、前記透過領域と前記遮光領域との間に位相シフト領域が隣接して配置されており、前記位相シフト領域を透過した露光光は、前記透過領域を透過した露光光に対し位相が反転している位相シフトマスクにおいて、
 前記遮光膜はクロムまたはクロム化合物を主成分とし、前記位相シフト膜は酸化クロムないし酸化窒化クロムを主成分とし、前記遮光領域では遮光膜上に位相シフト膜が積層されていることを特徴とする、大型位相シフトマスクである。
(First means)
The first means of the present invention includes a transparent substrate, a light shielding film formed on the transparent substrate, and a translucent phase shift film formed on the transparent substrate,
A transmission region where the transparent substrate is exposed; a light shielding region where the light shielding film is provided on the transparent substrate; and a phase shift region where only the phase shift film is provided on the transparent substrate, And the phase shift region has an adjacent pattern, the phase shift region is adjacently disposed between the transmission region and the light shielding region, and the exposure light transmitted through the phase shift region is the transmission region. In the phase shift mask whose phase is reversed with respect to the exposure light transmitted through
The light shielding film includes chromium or a chromium compound as a main component, the phase shift film includes chromium oxide or chromium oxynitride as a main component, and a phase shift film is stacked on the light shielding film in the light shielding region. A large phase shift mask.
 上記第1の手段の大型位相シフトマスクを用いることで、大面積の領域で微細パターンに対し露光パターンのコントラストを高めることができるとともに、製造の出発材として既存の大型ハードマスクブランクスを使用でき、大型位相シフトマスクの製造コストを低減できる。 By using the large phase shift mask of the first means, the contrast of the exposure pattern can be increased with respect to the fine pattern in a large area, and the existing large hard mask blanks can be used as a starting material for production. The manufacturing cost of a large phase shift mask can be reduced.
 (第2の手段)
 本発明の第2の手段は、前記遮光領域の前記遮光膜と前記位相シフト膜との間に、反射防止膜をさらに有することを特徴とする、第1の手段に記載の大型位相シフトマスクである。
(Second means)
The second means of the present invention is the large phase shift mask according to the first means, further comprising an antireflection film between the light shielding film and the phase shift film in the light shielding region. is there.
 第2の手段によれば、大型位相シフトマスクの遮光領域の表面反射を防ぎ、露光の際に迷光を生じて転写精度が低下するのを防ぐことができる。 According to the second means, it is possible to prevent the reflection of the surface of the light shielding region of the large phase shift mask and to prevent the transfer accuracy from being lowered due to stray light during exposure.
 (第3の手段)
 本発明の第3の手段は、前記位相シフト領域の幅は、0.25μm以上、3.5μm以下の範囲の幅であることを特徴とする、第1の手段ないし第2の手段のいずれか1項の手段に記載の大型位相シフトマスクである。
(Third means)
According to a third means of the present invention, any one of the first means and the second means is characterized in that the width of the phase shift region is in the range of 0.25 μm or more and 3.5 μm or less. 2. A large phase shift mask according to item 1.
 第3の手段によれば、露光パターンのコントラストを高める位相シフトの効果が良好に得られる。 According to the third means, the effect of the phase shift that increases the contrast of the exposure pattern can be obtained satisfactorily.
 (第4の手段)
 本発明の第4の手段は、前記透過領域の最も狭い部分の幅は、1μm以上、6μm以下の範囲の幅であることを特徴とする、第1の手段から第3の手段までのいずれかに記載の大型位相シフトマスクである。
(Fourth means)
According to a fourth means of the present invention, in any one of the first means to the third means, the width of the narrowest part of the transmission region is a width in the range of 1 μm or more and 6 μm or less. The large phase shift mask described in 1.
 第4の手段によれば、露光パターンのコントラストを高める位相シフトの効果が良好に得られる。 According to the fourth means, the effect of the phase shift that increases the contrast of the exposure pattern can be obtained satisfactorily.
 (第5の手段)
 本発明の第5の手段は、露光光での前記位相シフト膜の光透過率は4%以上、15%以下であることを特徴とする、第1の手段から第4の手段までのいずれかに記載の大型位相シフトマスクである。
(Fifth means)
According to a fifth means of the present invention, in any one of the first to fourth means, the light transmittance of the phase shift film with exposure light is 4% or more and 15% or less. The large phase shift mask described in 1.
 第5の手段によれば、露光パターンのコントラストを高める位相シフトの効果が良好に得られる。 According to the fifth means, the effect of the phase shift that increases the contrast of the exposure pattern can be obtained satisfactorily.
 (第6の手段)
 本発明の第6の手段は、透明基板と、前記透明基板上に形成された遮光膜と、前記透明基板上に形成された半透明な位相シフト膜を有し、前記透明基板が露出した透過領域と、前記透明基板上に前記遮光膜が設けられた遮光領域と、前記透明基板上に前記位相シフト膜のみが設けられた位相シフト領域を有し、前記透過領域および前記位相シフト領域が隣接するパターンを有し、前記透過領域と前記遮光領域との間に位相シフト領域が隣接して配置されており、前記位相シフト領域を透過した露光光は、前記透過領域を透過した露光光に対し位相が反転している位相シフトマスクを製造する位相シフトマスクの製造方法であって、
 前記透明基板の一方の面に、クロムまたはクロム化合物を材料とする遮光膜が積層されたブランクスに感光性レジストを塗布した、感光性レジスト付のブランクスを準備する工程と、
 感光性レジスト付のブランクスに、描画装置で所望のパターンを露光し、現像した後、ウェットエッチングし、感光性レジストを除去して遮光膜をパターン形成する工程と、
 前記透明基板およびパターン形成された前記遮光膜の上にクロム化合物からなる位相シフト膜を形成する工程と、
 形成された前記位相シフト膜に感光性レジストを塗布し、描画装置で所望のパターンを露光、現像した後、ウェットエッチングし、感光性レジストを除去して前記位相シフト膜をパターン形成する工程とからなる、大型位相シフトマスクの製造方法である。
(Sixth means)
The sixth means of the present invention comprises a transparent substrate, a light shielding film formed on the transparent substrate, and a translucent phase shift film formed on the transparent substrate, wherein the transparent substrate is exposed. An area, a light-shielding area in which the light-shielding film is provided on the transparent substrate, and a phase shift area in which only the phase-shift film is provided on the transparent substrate, and the transmission area and the phase shift area are adjacent to each other. A phase shift area is disposed adjacent to the light-transmitting area and the light-shielding area, and the exposure light transmitted through the phase shift area corresponds to the exposure light transmitted through the transmission area. A method of manufacturing a phase shift mask for manufacturing a phase shift mask having an inverted phase,
A step of preparing a blank with a photosensitive resist, which is obtained by applying a photosensitive resist to a blank in which a light-shielding film made of chromium or a chromium compound is laminated on one surface of the transparent substrate;
A process of exposing a desired pattern to a blank with a photosensitive resist with a drawing apparatus, developing it, performing wet etching, removing the photosensitive resist, and patterning a light-shielding film;
Forming a phase shift film made of a chromium compound on the transparent substrate and the patterned light-shielding film;
From the step of applying a photosensitive resist to the formed phase shift film, exposing and developing a desired pattern with a drawing apparatus, performing wet etching, removing the photosensitive resist, and patterning the phase shift film This is a manufacturing method of a large phase shift mask.
 本発明の第6の手段によれば、製造の出発材としてクロムの大型ハードマスクブランクスを使用でき、さらに、位相シフト膜のパターン形成をウェットエッチングで行えるので、大型の位相シフトマスクの製造コストを抑える効果が大きい。 According to the sixth means of the present invention, a large chrome hard mask blank can be used as a starting material for manufacturing, and furthermore, the pattern formation of the phase shift film can be performed by wet etching, so that the manufacturing cost of the large phase shift mask can be reduced. The effect of suppressing is great.
 (第7の手段)
 本発明の第7の手段は、透明基板と、前記透明基板上に形成された遮光膜と、前記透明基板上に形成された半透明な位相シフト膜を有し、前記透明基板が露出した透過領域と、前記透明基板上に前記遮光膜が設けられた遮光領域と、前記透明基板上に前記位相シフト膜のみが設けられた位相シフト領域を有し、前記透過領域および前記位相シフト領域が隣接するパターンを有し、前記透過領域と前記遮光領域との間に位相シフト領域が隣接して配置されており、前記位相シフト領域を透過した露光光は、前記透過領域を透過した露光光に対し位相が反転しており、前記遮光領域では前記遮光膜上に前記位相シフト膜が積層され、前記遮光領域の前記遮光膜と前記位相シフト膜との間に、反射防止膜をさらに有する位相シフトマスクを製造する位相シフトマスクの製造方法であって、
 前記透明基板の一方の面に、クロムを主成分とする遮光膜と、クロムの酸化物もしくはクロムの酸化窒化物を主成分とする反射防止膜の順に積層されたブランクスに感光性レジストを塗布した、感光性レジスト付のブランクスを準備する工程と、
 感光性レジスト付のブランクスに、描画装置で所望のパターンを露光し、現像した後、ウェットエッチングし、感光性レジストを除去して前記遮光膜と前記反射防止膜をパターン形成する工程と、
 前記透明基板およびパターン形成された前記遮光膜と前記反射防止膜の上にクロム化合物からなる位相シフト膜を形成する工程と、
 形成された前記位相シフト膜に感光性レジストを塗布し、描画装置で所望のパターンを露光、現像した後、ウェットエッチングし、感光性レジストを除去して前記位相シフト膜をパターン形成する工程とからなる、大型位相シフトマスクの製造方法である。
(Seventh means)
The seventh means of the present invention comprises a transparent substrate, a light shielding film formed on the transparent substrate, and a translucent phase shift film formed on the transparent substrate, wherein the transparent substrate is exposed. An area, a light-shielding area in which the light-shielding film is provided on the transparent substrate, and a phase shift area in which only the phase-shift film is provided on the transparent substrate, and the transmission area and the phase shift area are adjacent to each other. A phase shift area is disposed adjacent to the light-transmitting area and the light-shielding area, and the exposure light transmitted through the phase shift area corresponds to the exposure light transmitted through the transmission area. A phase shift mask in which the phase is reversed, the phase shift film is laminated on the light shielding film in the light shielding region, and an antireflection film is further provided between the light shielding film and the phase shift film in the light shielding region Manufacture A method of manufacturing a phase shift mask,
On one surface of the transparent substrate, a photosensitive resist was applied to a blank laminated in the order of a light shielding film mainly composed of chromium and an antireflection film mainly composed of chromium oxide or chromium oxynitride. A step of preparing blanks with a photosensitive resist;
Exposing a desired pattern to a blank with a photosensitive resist with a drawing apparatus, developing, wet etching, removing the photosensitive resist, and patterning the light-shielding film and the antireflection film; and
Forming a phase shift film made of a chromium compound on the transparent substrate and the patterned light shielding film and the antireflection film;
From the step of applying a photosensitive resist to the formed phase shift film, exposing and developing a desired pattern with a drawing apparatus, performing wet etching, removing the photosensitive resist, and patterning the phase shift film This is a manufacturing method of a large phase shift mask.
 本発明の第7の手段によれば、製造の出発材として反射防止膜を有する2層のクロムの大型ハードマスクブランクスを使用でき、さらに、位相シフト膜のパターン形成をウェットエッチングで行えるので、反射防止膜を有する大型の位相シフトマスク製造コストを抑える効果が大きい。 According to the seventh means of the present invention, it is possible to use a two-layer large chromium hard mask blank having an antireflection film as a starting material for manufacturing, and furthermore, pattern formation of the phase shift film can be performed by wet etching. The effect of suppressing the manufacturing cost of a large phase shift mask having a prevention film is great.
 本発明の大型位相シフトマスクを用いることで、大面積の領域で微細なパターンに対して露光パターンのコントラストを高めることができる。さらに、製造の出発材として、遮光膜がクロムを主成分とする膜である既存の大型ハードマスクブランクスを使用でき、大型位相シフトマスクを低コストで製造できる。 By using the large phase shift mask of the present invention, the contrast of the exposure pattern can be increased with respect to a fine pattern in a large area. Furthermore, as a starting material for manufacturing, an existing large-sized hard mask blank whose light-shielding film is a film containing chromium as a main component can be used, and a large-sized phase shift mask can be manufactured at low cost.
図1は本発明による大型位相シフトマスクの構造と作用を説明する断面図である。FIG. 1 is a sectional view for explaining the structure and operation of a large phase shift mask according to the present invention. 図2は本発明による大型位相シフトマスクの製造工程を示した断面図である。FIG. 2 is a sectional view showing a manufacturing process of a large phase shift mask according to the present invention. 図3は本発明による大型位相シフトマスクの露光強度分布のコントラスト向上の効果を、従来のバイナリマスクと比較した説明図である。FIG. 3 is an explanatory diagram comparing the effect of improving the contrast of the exposure intensity distribution of the large phase shift mask according to the present invention with a conventional binary mask. 図4は従来技術であるハーフトーンマスクでの微細パターンの転写を、模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing transfer of a fine pattern with a halftone mask which is a conventional technique. 図5(a)は図4のハーフトーンマスクで露光した場合の露光強度分布を模式的に説明する図、図5(b)は比較のためバイナリマスクで微細パターンを露光した場合の露光強度分布を模式的に説明する図である。FIG. 5A is a diagram for schematically explaining the exposure intensity distribution when exposed with the halftone mask of FIG. 4, and FIG. 5B is the exposure intensity distribution when a fine pattern is exposed with a binary mask for comparison. FIG. 図6は本発明の実施例における大型位相シフトマスクの例について示す概略平面図である。FIG. 6 is a schematic plan view showing an example of a large phase shift mask in the embodiment of the present invention. 図7は、本発明の実施例における大型位相シフトマスクの露光強度分布について説明する図である。FIG. 7 is a view for explaining the exposure intensity distribution of the large phase shift mask in the embodiment of the present invention. 図8は、図7のC部分の拡大図である。FIG. 8 is an enlarged view of a portion C in FIG. 図9は、図7のD部分の拡大図である。FIG. 9 is an enlarged view of a portion D in FIG.
 以下、図面を参照して、本発明の大型位相シフトマスクの構成およびその製造方法の実施形態について説明する。 Hereinafter, with reference to the drawings, a configuration of a large phase shift mask of the present invention and an embodiment of a manufacturing method thereof will be described.
 図1(a)は、本発明の大型位相シフトマスクの一実施形態の構造を模式的に示す断面図である。図1(b)および図1(c)は大型位相シフトマスクを透過した露光光の結像面での振幅および強度を示す図である。図2(a)~(f)は本発明の大型位相シフトマスクの製造工程を説明する図である。 FIG. 1A is a cross-sectional view schematically showing the structure of an embodiment of a large phase shift mask of the present invention. FIGS. 1B and 1C are diagrams showing the amplitude and intensity of the exposure light transmitted through the large phase shift mask on the imaging plane. 2 (a) to 2 (f) are diagrams for explaining the manufacturing process of the large phase shift mask of the present invention.
(大型位相シフトマスクの構成)
 図1(a)に示すように、本発明の大型位相シフトマスク1の構成は、透明基板2と、前記透明基板2上に形成された遮光膜3と、前記透明基板2上に形成された半透明な位相シフト膜5を有し、前記透明基板2が露出した透過領域6と、前記透明基板2上に前記遮光膜3が設けられた遮光領域7と、前記透明基板2上に前記位相シフト膜5のみが設けられた位相シフト領域8を有し、前記透過領域6および前記位相シフト領域8が隣接するパターンを有し、前記透過領域6と前記遮光領域7との間に位相シフト領域8が隣接して配置されており、前記位相シフト領域8を透過した露光光は、前記透過領域6を透過した露光光に対し位相が反転している位相シフトマスクである。
(Configuration of large phase shift mask)
As shown in FIG. 1A, the configuration of the large phase shift mask 1 of the present invention is formed on a transparent substrate 2, a light shielding film 3 formed on the transparent substrate 2, and the transparent substrate 2. A translucent region 6 having a translucent phase shift film 5, the transparent substrate 2 being exposed, a light shielding region 7 in which the light shielding film 3 is provided on the transparent substrate 2, and the phase on the transparent substrate 2. A phase shift region 8 provided with only the shift film 5; the transmission region 6 and the phase shift region 8 have adjacent patterns; and the phase shift region between the transmission region 6 and the light shielding region 7 8 is a phase shift mask in which the exposure light transmitted through the phase shift region 8 is inverted in phase with respect to the exposure light transmitted through the transmission region 6.
 前記遮光膜3はクロムを主成分とし、前記位相シフト膜5は酸化窒化クロムないし酸化クロムを主成分とし、前記遮光領域7では遮光膜3上に位相シフト膜5が積層されている。ここで、大型位相シフトマスクとは、少なくともその一辺の長さが350mm以上のマスクとする。 The light shielding film 3 has chromium as a main component, the phase shift film 5 has chromium oxynitride or chromium oxide as a main component, and the phase shift film 5 is laminated on the light shielding film 3 in the light shielding region 7. Here, the large phase shift mask is a mask having a length of at least one side of 350 mm or more.
 エッジ強調型位相シフトマスクの結像面での効果を簡単に説明する。図1(b)は大型位相シフトマスクの結像面(具体的には感光性レジスト表面)での光の振幅分布を示しており、図1(c)は大型位相シフトマスクの結像面での光の強度分布を示している。光の強度は光の振幅を二乗して得られ、光振幅がその位相に伴って正負の値となるのに対し、光の強度(エネルギと同じ)は正の値のみを示す。又、露光光40は図1(a)に示すように透明基板2側から遮光膜3の方向に照射される。露光光40としては超高圧水銀灯のg線(波長436nm)、h線(波長405nm)、i線(波長365nm)、KrFエキシマレーザー(波長248nm)、KrFエキシマレーザー(193nm)から選択して用いることができる。実用的には、TFTアレイ基板のパターン形成は大面積であり、露光に大光量が要求されることから、i線単独、h線、i線の2波長、もしくはg線、h線、i線の3波長を含んだ露光光が使用される。 The effect of the edge-enhanced phase shift mask on the image plane will be briefly described. FIG. 1B shows the amplitude distribution of light on the imaging plane (specifically, the photosensitive resist surface) of the large phase shift mask, and FIG. 1C shows the imaging plane of the large phase shift mask. The light intensity distribution is shown. The light intensity is obtained by squaring the light amplitude, and the light amplitude takes a positive or negative value along with its phase, whereas the light intensity (same as energy) shows only a positive value. Moreover, the exposure light 40 is irradiated in the direction of the light shielding film 3 from the transparent substrate 2 side, as shown to Fig.1 (a). The exposure light 40 is selected from g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), KrF excimer laser (193 nm). Can do. Practically, since the pattern formation of the TFT array substrate is a large area and a large amount of light is required for exposure, two wavelengths of i-line alone, h-line, i-line, or g-line, h-line, i-line The exposure light including the three wavelengths is used.
 大型位相シフトマスク1の透過領域6を露光光40が透過し、レジスト上の結像面に結像したときの光振幅分布を図1(b)の破線10に示し、光強度分布を図1(c)の破線13に示す。解像限界がなければ、光振幅分布は結像面で矩形状となるべきであるが、露光装置(図示せず)の解像限界により釣鐘状の広がりを持った光振幅分布となっている。これに対し図1(a)の位相シフト領域を透過した露光光は位相が反転し、図1(b)の破線11に示すように負の光振幅分布となる。このような負の光振幅分布11を、透過領域6の光振幅分布10の広がり部分の光振幅を相殺するような位置に位相シフト領域8を配置し、位相シフト光を加えて露光光の振幅分布が広がるのを防いだ光の振幅分布を図1(b)の実線12に示す。又、位相シフト光を加えた光の振幅分布12に対応する位相シフト光を含む光の強度分布を図1(c)の実線14に示す。透過領域のみの光強度分布13と、位相シフト光を含む光の強度分布14を比較すると、位相シフト領域8の位置に対応して光強度が低下し光強度の広がりが抑えられている。この光強度が低下した部分を斜線部15で示す。一方、光強度の低下した外側には、サイドピークと呼ばれる新たに光強度が強まった部分が見られる(図1(c)16)。サイドピークは位相シフト領域の透過率を上げると強くなるが、レジストが感光しないレベルに抑える必要がある。 The light amplitude distribution when the exposure light 40 passes through the transmission region 6 of the large phase shift mask 1 and forms an image on the imaging surface on the resist is shown by a broken line 10 in FIG. 1B, and the light intensity distribution is shown in FIG. This is indicated by a broken line 13 in (c). If there is no resolution limit, the light amplitude distribution should be rectangular on the image plane, but the light amplitude distribution has a bell-shaped spread due to the resolution limit of the exposure apparatus (not shown). . On the other hand, the phase of the exposure light transmitted through the phase shift region in FIG. 1A is inverted, and a negative light amplitude distribution is obtained as indicated by the broken line 11 in FIG. The phase shift region 8 is arranged at such a position that the negative light amplitude distribution 11 cancels the light amplitude of the light amplitude distribution 10 in the transmission region 6 and the amplitude of the exposure light is added. A solid line 12 in FIG. 1B shows the amplitude distribution of light that prevents the distribution from spreading. The intensity distribution of the light including the phase shift light corresponding to the amplitude distribution 12 of the light added with the phase shift light is shown by a solid line 14 in FIG. Comparing the light intensity distribution 13 of the transmission region only with the light intensity distribution 14 including the phase shift light, the light intensity is reduced corresponding to the position of the phase shift region 8 and the spread of the light intensity is suppressed. A portion where the light intensity is reduced is indicated by a hatched portion 15. On the other hand, a portion where the light intensity is newly increased is called a side peak on the outside where the light intensity is reduced (FIG. 1 (c) 16). The side peak becomes stronger when the transmittance of the phase shift region is increased, but it must be suppressed to a level at which the resist is not exposed.
 本発明に使用される位相シフト膜5に必要な光学特性を説明する。位相シフト膜5は、露光光40の位相を反転させる膜厚が求められ、位相シフト膜の膜厚d、位相シフト膜の屈折率n、露光光の波長λと、露光光が位相シフト膜を通過して生じる位相差Φの間には、Φ=2π(n-1)d/λの関係があり、位相差が反転するのは、Φ=πであるから、位相差が反転する膜厚dは、λ/2(n-1)となる。具体的には、露光光波長λがi線の365nmで、位相シフト膜の屈折率nが2.55であれば、位相シフト膜の厚さは118nmと計算できる。位相シフト膜の厚みの変動の許容範囲としては計算された位相シフト膜の厚さに対しプラスマイナス10パーセント程度の範囲であり、この許容範囲内であれば位相シフト膜として十分な位相シフトの効果が得られる。 The optical characteristics necessary for the phase shift film 5 used in the present invention will be described. The phase shift film 5 is required to have a film thickness that inverts the phase of the exposure light 40, the film thickness d of the phase shift film, the refractive index n of the phase shift film, the wavelength λ of the exposure light, and the exposure light through the phase shift film There is a relationship of Φ = 2π (n−1) d / λ between the phase difference Φ generated through the passage, and the phase difference is inverted because Φ = π. Therefore, the film thickness at which the phase difference is inverted. d is λ / 2 (n−1). Specifically, if the exposure light wavelength λ is 365 nm of i-line and the refractive index n of the phase shift film is 2.55, the thickness of the phase shift film can be calculated as 118 nm. The allowable range of variation in the thickness of the phase shift film is a range of about plus or minus 10 percent with respect to the calculated thickness of the phase shift film. If within this allowable range, the effect of sufficient phase shift as the phase shift film is achieved. Is obtained.
 超高圧水銀灯のように、露光光が複数のピーク波長(3つの輝線スペクトルを持つ)からなる場合は、それぞれのピーク波長に対する位相シフト膜の膜厚を算出し、それぞれのピーク波長に区分される露光光のエネルギ強度の比率で重み付けした和(加重平均と言う)で位相シフト膜の膜厚を決める。例えば露光光源として、g線がPg、h線がPh、i線がPiのエネルギ強度を持つ光源を使用する場合、それぞれのg線に対応した位相シフト膜の厚さがDg、h線に対応した位相シフト膜の厚さがDh、i線に対応した位相シフト膜の厚さがDiであれば、加重平均で求めた位相シフト膜の厚さDは、D=(Pg×Dg+Ph×Dh+Pi×Di)÷(Pg+Ph+Pi)と求める。具体的に、Pg=2、Dg=141nm、Ph=1、Dh=130、Pi=3、Di=118nmであれば、加重平均で求めた位相シフト膜の厚さDは128nmと求まる。このような加重平均で求めた位相シフト膜の厚さDを用いることで、複数のピーク波長を含む露光光でも位相シフトマスクの効果が良好に得られる。 When the exposure light consists of a plurality of peak wavelengths (having three emission line spectra) as in an ultra-high pressure mercury lamp, the thickness of the phase shift film with respect to each peak wavelength is calculated and classified into each peak wavelength. The film thickness of the phase shift film is determined by a sum (weighted average) weighted by the ratio of the energy intensity of the exposure light. For example, when a light source having an energy intensity of Pg, h line Ph, and i line Pi is used as an exposure light source, the thickness of the phase shift film corresponding to each g line corresponds to Dg, h line. If the thickness of the phase shift film is Dh and the thickness of the phase shift film corresponding to the i line is Di, the thickness D of the phase shift film obtained by the weighted average is D = (Pg × Dg + Ph × Dh + Pi × Di) / (Pg + Ph + Pi). Specifically, if Pg = 2, Dg = 141 nm, Ph = 1, Dh = 130, Pi = 3, Di = 118 nm, the thickness D of the phase shift film obtained by weighted averaging is found to be 128 nm. By using the thickness D of the phase shift film obtained by such weighted average, the effect of the phase shift mask can be satisfactorily obtained even with exposure light including a plurality of peak wavelengths.
 加重平均で位相シフト膜の厚さDを求める方法としては、各ピーク波長に対する露光光のエネルギ強度に、対応する波長のレジストの感度を乗じた値を加重平均の重みとして用いる方法も適用でき、さらに良好な結果が得られる。 As a method for obtaining the thickness D of the phase shift film by a weighted average, a method of using a value obtained by multiplying the energy intensity of the exposure light for each peak wavelength by the sensitivity of the resist of the corresponding wavelength can be applied. Even better results are obtained.
 位相シフト膜5の光透過率については、位相シフトの効果によるサイドピークが発生しない範囲で、露光されたパターンのコントラストが高くなるような値に設定する。具体的には、位相シフト膜5の露光光での光透過率は、4%以上、15%以下が好適である。位相シフト膜の透過率が4%以下であると位相シフトによるコントラストを高める効果が少なく、位相シフト膜の透過率が15%以上であると位相シフトの効果が強すぎて遮光領域にサブピーク(サイドピーク)が高くなり、欠陥となる可能性が生じる。 The light transmittance of the phase shift film 5 is set to a value that increases the contrast of the exposed pattern within a range in which a side peak due to the effect of the phase shift does not occur. Specifically, the light transmittance of exposure light of the phase shift film 5 is preferably 4% or more and 15% or less. If the transmittance of the phase shift film is 4% or less, the effect of increasing the contrast due to the phase shift is small, and if the transmittance of the phase shift film is 15% or more, the effect of the phase shift is too strong and the sub-peak (side The peak) becomes high, which may cause defects.
 以上のように、露光装置の解像度限界に起因する露光強度分布の広がりを抑える効果を有する本発明の大型位相シフトマスク1の各領域の具体的な寸法について、図1(a)の断面図を参照しながら説明する。なお、図1はエッジ強調型位相シフトマスクを例示した。 As described above, the cross-sectional view of FIG. 1A shows the specific dimensions of each region of the large phase shift mask 1 of the present invention that has the effect of suppressing the spread of the exposure intensity distribution due to the resolution limit of the exposure apparatus. The description will be given with reference. FIG. 1 illustrates an edge-enhanced phase shift mask.
 図1(a)は、露光面でポジレジストにラインアンドスペースのスペースパターン、もしくはホールパターンを露光するための位相シフトマスクの断面図を示している。本発明の大型位相シフトマスクの主な用途は、液晶表示装置、EL表示装置などのフラットディスプレイパネルに用いられるTFTアレイ基板のパターン形成である。このパターン形成に使用される大型の投影型露光装置の解像限界は3μm程度であり、本発明の大型位相シフトマスクは、前記解像限界(3μm)に係わる描画パターンについて、露光パターンのコントラストを改善することを課題としている。従って、本願の大型位相シフトマスクが顕著な効果を発揮する透過領域の幅aは、1μm以上、6μm以下である。 FIG. 1A shows a cross-sectional view of a phase shift mask for exposing a line-and-space space pattern or hole pattern to a positive resist on the exposure surface. The main application of the large phase shift mask of the present invention is pattern formation of a TFT array substrate used for flat display panels such as liquid crystal display devices and EL display devices. The resolution limit of the large projection exposure apparatus used for this pattern formation is about 3 μm, and the large phase shift mask of the present invention provides the exposure pattern contrast for the drawing pattern related to the resolution limit (3 μm). The challenge is to improve. Therefore, the width a of the transmissive region in which the large phase shift mask of the present application exhibits a remarkable effect is 1 μm or more and 6 μm or less.
 透過領域の幅aが6μmより広い場合は露光装置の解像限界による影響は少ないので、本発明の大型位相シフトマスクの効果は顕著でない。又、透過領域の幅が1μmより狭い場合は本発明の位相シフトの効果を加えても露光パターンを解像することが出来ない。ここで、透過領域の幅aは、透明基板平面上の対象となる透過領域形状の最大の内接円の直径であり、対象透過領域の形状が矩形であれば、短辺の長さが透過領域の幅である。 When the width a of the transmission area is larger than 6 μm, the effect of the large phase shift mask of the present invention is not remarkable because the influence of the resolution limit of the exposure apparatus is small. If the width of the transmissive region is smaller than 1 μm, the exposure pattern cannot be resolved even if the phase shift effect of the present invention is added. Here, the width a of the transmission region is the diameter of the maximum inscribed circle of the target transmission region shape on the transparent substrate plane. If the target transmission region has a rectangular shape, the length of the short side is transparent. The width of the region.
 本発明における位相シフト領域の幅としては、透過領域の光強度の広がりを抑制することができ、レジストを所望のパターン形状に露光することができれば特に限定されない。
 このような位相シフト領域の幅としては、3.5μm以下、なかでも2.5μm以下、特に2.0μm以下であることが好ましい。上記位相シフト領域の幅が上記値を超える場合は、位相シフトの効果の及ぶ範囲から外れ、露光パターンのコントラストを強める効果が頭打ちになる可能性があるからである。また、透過領域および遮光領域の間に位置する位相シフト領域において、透過領域の光振幅と相殺されずに残る光振幅分布による光強度分布のピーク(サイドピーク)の影響が大きくなり、位相シフト領域を透過する透過光にレジストが反応してレジストのパターン形状に凹み等を生じ、レジストのパターン形状を所望の形状とすることが困難となる可能性があるからである。
 また、本発明においては位相シフト領域を有することにより、透過領域における光強度の広がりを抑制することができることから、位相シフト領域の幅の下限については位相シフト膜を形成可能な程度であれば特に限定されないが、0.25μm以上、なかでも0.5μm以上、特に0.8μm以上であることが好ましい。位相シフト領域を良好なアライメント精度で設けることができるからである。また、上記値に満たない場合は、位相が反転した光量が減り、効果が少ない可能性があるからである。
 また、上記位相シフト領域の幅bは、0.5μm以上、2μm以下の範囲で、位相シフトの効果が最も顕著である。
 ここで、位相シフト領域の幅bは、透過領域と位相シフト領域の境界から位相シフト領域と遮光領域の境界までの距離を透明基板表面に平行に測った最短距離である。
The width of the phase shift region in the present invention is not particularly limited as long as the spread of light intensity in the transmission region can be suppressed and the resist can be exposed to a desired pattern shape.
The width of such a phase shift region is preferably 3.5 μm or less, more preferably 2.5 μm or less, and particularly preferably 2.0 μm or less. This is because if the width of the phase shift region exceeds the above value, the phase shift effect is not within the range, and the effect of increasing the contrast of the exposure pattern may reach its peak. In addition, in the phase shift region located between the transmission region and the light shielding region, the influence of the peak (side peak) of the light intensity distribution due to the light amplitude distribution remaining without being canceled with the light amplitude of the transmission region becomes large, and the phase shift region This is because there is a possibility that the resist reacts with the transmitted light that passes through the resist to cause a dent or the like in the resist pattern shape, making it difficult to make the resist pattern shape a desired shape.
Further, in the present invention, since the spread of light intensity in the transmission region can be suppressed by having the phase shift region, the lower limit of the width of the phase shift region is particularly limited as long as a phase shift film can be formed. Although not limited, it is preferably 0.25 μm or more, more preferably 0.5 μm or more, and particularly preferably 0.8 μm or more. This is because the phase shift region can be provided with good alignment accuracy. Further, when the value is less than the above value, the amount of light whose phase is reversed is reduced, and there is a possibility that the effect is small.
The width b of the phase shift region is in the range of 0.5 μm or more and 2 μm or less, and the effect of phase shift is most remarkable.
Here, the width b of the phase shift region is the shortest distance obtained by measuring the distance from the boundary between the transmission region and the phase shift region to the boundary between the phase shift region and the light shielding region in parallel with the transparent substrate surface.
 ここで、上述した大型の投影型露光装置の解像限界は、上記大型の投影型露光装置でバイナリマスクを使用して露光した場合において、露光領域内で安定して解像できるバイナリマスクの透過領域の幅の最小値(以下、解像限界の幅と称する場合がある。)と同等に扱うことができる。
 本発明の位相シフトマスクは、大型の投影型露光装置とともに用いた場合に、上述したバイナリマスクの解像限界の幅以下の描画パターンを解像することができる。
 本発明の位相シフトマスクの描画パターンの幅としては、大型の投影型露光装置におけるバイナリマスクの解像限界の幅に対して100%以下、なかでも85%以下であることが好ましく、30%以上、なかでも40%以上であることが好ましい。上記描画パターンの幅が上記範囲に満たない場合は、描画パターン自体を解像することが困難となる可能性があるからである。また、上記描画パターンの幅が上記範囲を超える場合は、位相シフトによる効果を十分に発揮することが困難となる可能性があるからである。上記位相シフトマスクにおける描画パターンの幅が解像限界の幅と同等である場合は、バイナリマスクを用いて露光を行った場合に比べ、レジストの形状を良好なものとすることができる。
 上記描画パターンの幅については、大型の投影型露光装置に固有の解像限界の幅およびレジストの感度に基づいて、本発明の位相シフトマスクの透過領域の幅、および位相シフト領域の幅、位相シフト膜の透過率等を調整することにより決定することができる。
 ここで、バイナリマスクの透過領域の幅dは、図3(b)に示すように、一の透過領域に隣合う遮光領域の一方の境界から他方の境界までの距離を透明基板表面に平行に測った最短距離である。
 また、位相シフトマスクの描画パターンの幅とは、透過領域および位相シフト領域によりレジストに描画されるパターンの幅をいう。
Here, the resolution limit of the above-described large projection exposure apparatus is that the binary mask can be stably resolved in the exposure area when the binary projection mask is used for exposure with the large projection exposure apparatus. It can be handled in the same manner as the minimum value of the width of the region (hereinafter sometimes referred to as the resolution limit width).
When used with a large projection exposure apparatus, the phase shift mask of the present invention can resolve drawing patterns that are less than the resolution limit width of the binary mask described above.
The width of the drawing pattern of the phase shift mask of the present invention is preferably 100% or less, more preferably 85% or less, more preferably 30% or more with respect to the resolution limit width of the binary mask in a large projection exposure apparatus. Of these, 40% or more is preferable. This is because if the width of the drawing pattern is less than the above range, it may be difficult to resolve the drawing pattern itself. In addition, if the width of the drawing pattern exceeds the above range, it may be difficult to sufficiently exhibit the effect of the phase shift. When the width of the drawing pattern in the phase shift mask is equal to the resolution limit width, the resist shape can be made better than when exposure is performed using a binary mask.
Regarding the width of the drawing pattern, the width of the transmission region of the phase shift mask of the present invention, the width of the phase shift region, and the phase based on the resolution limit width and resist sensitivity inherent in a large projection exposure apparatus. It can be determined by adjusting the transmittance of the shift film.
Here, as shown in FIG. 3B, the width d of the transmission region of the binary mask is set such that the distance from one boundary of the light shielding region adjacent to the one transmission region to the other boundary is parallel to the transparent substrate surface. The shortest distance measured.
Further, the width of the drawing pattern of the phase shift mask refers to the width of the pattern drawn on the resist by the transmission region and the phase shift region.
(実施形態)
(大型位相シフトマスクの構成材料)
 本発明の大型位相シフトマスク1の個々の構成要素の具体的な材料、について図1(a)の断面図を参照しながら説明する。図1(a)に示した大型位相シフトマスク1の構成は、透明基板2と、前記透明基板2上に形成された遮光膜3と、前記透明基板2上に形成された半透明な位相シフト膜4を有した構造のフォトマスクである。
(Embodiment)
(Constituent material of large phase shift mask)
Specific materials of individual components of the large phase shift mask 1 of the present invention will be described with reference to the cross-sectional view of FIG. The configuration of the large phase shift mask 1 shown in FIG. 1A includes a transparent substrate 2, a light shielding film 3 formed on the transparent substrate 2, and a translucent phase shift formed on the transparent substrate 2. This is a photomask having a structure having a film 4.
 本発明の大型位相シフトマスク1で使用される透明基板2のサイズは350mm×350mmから1220mm×1400mm、厚さ8mm~13mmである。材質は光学研磨された低膨張ガラス(アルミノホウ珪酸ガラス、ホウ珪酸ガラス)、合成石英ガラスが使用可能であるが、熱膨張率が小さく、紫外線の透過率が高い合成石英ガラスが好適に用いられる。 The size of the transparent substrate 2 used in the large phase shift mask 1 of the present invention is 350 mm × 350 mm to 1220 mm × 1400 mm and the thickness is 8 mm to 13 mm. As the material, low-expansion glass (aluminoborosilicate glass, borosilicate glass) optically polished or synthetic quartz glass can be used, but synthetic quartz glass having a low coefficient of thermal expansion and high ultraviolet transmittance is preferably used.
 本発明に使用される遮光膜3としては露光波長において透過率が0.1%以下であり、パターン加工が容易な材質であることが求められる。このような遮光膜の材料としてはクロム、クロム化合物、モリブデンシリサイド化合物、タンタル化合物を用いることができるが、ウェットエッチングで良好なパターン形成が可能で、使用実績も多いクロムまたはクロム化合物を主成分とした遮光膜が好ましい。クロム化合物としては、遮光性が高く、遮光膜の膜厚が薄くてすむ窒化クロムが用いられる。クロムの遮光膜と窒化クロムの遮光膜を比較すると、成膜が容易で汎用性の高いクロム遮光膜を用いたマスクブランクスが入手しやすく好ましい。具体的には、金属クロムの薄膜を遮光膜とした場合、露光光の透過率を0.1%以下とするため、膜厚は70nm以上で用いられる。一方、膜厚を厚くするとエッチング時間が増し、加工性が低下するため通常150nm以下の膜厚で用いられる。 The light-shielding film 3 used in the present invention is required to be a material that has a transmittance of 0.1% or less at the exposure wavelength and can be easily patterned. As a material for such a light shielding film, chromium, a chromium compound, a molybdenum silicide compound, and a tantalum compound can be used. However, a good pattern can be formed by wet etching, and chromium or a chromium compound, which has a long history of use, is used as a main component. The light shielding film is preferable. As the chromium compound, chromium nitride is used which has a high light shielding property and requires a thin light shielding film. When comparing a chromium light-shielding film and a chromium nitride light-shielding film, mask blanks using a chromium light-shielding film that is easy to form and highly versatile are easily available and preferable. Specifically, when a thin film of metallic chrome is used as a light shielding film, the film thickness is 70 nm or more in order to make the exposure light transmittance 0.1% or less. On the other hand, when the film thickness is increased, the etching time is increased and the workability is lowered, so that the film thickness is usually 150 nm or less.
 本発明に使用される位相シフト膜5は、露光波長において透過率が4%~15%の範囲であり、パターン加工が容易な材質であることが求められる。 The phase shift film 5 used in the present invention is required to be a material that has a transmittance in the range of 4% to 15% at the exposure wavelength and can be easily patterned.
 位相シフト膜5の材料としては、半透明で、適切な屈折率を持つ材質から選ばれ、酸化窒化クロム(CrON)、酸化クロム(CrO)、モリブデンシリサイド酸化物(MoSiO)、モリブデンシリサイド酸化窒化物(MoSiON)タンタルシリサイド酸化物(TaSiO)、チタン酸化窒化物(TiON)を用いることができる。これらの材質のなかで、遮光膜3を構成する材質の酸化物や酸化窒化物を位相シフト膜5の材質として選ぶと、位相シフト膜と遮光膜を同一のエッチング設備、工程でパターン形成しうるという利点が生じる。 The material of the phase shift film 5 is selected from materials that are translucent and have an appropriate refractive index. Chromium oxynitride (CrON), chromium oxide (CrO), molybdenum silicide oxide (MoSiO), molybdenum silicide oxynitride (MoSiON) tantalum silicide oxide (TaSiO), titanium oxynitride (TiON) can be used. Among these materials, when the oxide or oxynitride of the material constituting the light shielding film 3 is selected as the material of the phase shift film 5, the phase shift film and the light shielding film can be patterned by the same etching equipment and process. This produces the advantage.
 さらに、遮光膜3としてクロムもしくは窒化クロム、位相シフト膜5として酸化クロム(CrO)もしくは酸化窒化クロム(CrON)を選択することで、遮光膜3と位相シフト膜5を同一のエッチング設備で加工できることに加え、遮光膜3と位相シフト膜5の両者を、良好なパターン加工性を有する硝酸第2セリウム系ウェットエッチャントによりウェットエッチングでき、コスト上のメリットが大きい。 Further, by selecting chromium or chromium nitride as the light shielding film 3 and chromium oxide (CrO) or chromium oxynitride (CrON) as the phase shift film 5, the light shielding film 3 and the phase shift film 5 can be processed with the same etching equipment. In addition, both the light-shielding film 3 and the phase shift film 5 can be wet-etched with a second cerium nitrate wet etchant having good pattern processability, which has a great cost advantage.
 ここで、一般的な大型の投影型露光装置においては、露光光として平行光のみを照射することは困難であり、露光光の一部には所定の角度を有する光を含む場合が多い。さらにパターンエッジにて回折して回り込む光や、膜の境界での反射光などが迷光として出てきてしまう。また、このような迷光は、大型の投影型露光装置における照射位置と、実際にレジストに到達した位置とが異なることから、本来、露光を要しない位相シフトマスクの遮光領域に対応するレジストについても露光してしまうことが懸念される。
 また、本発明においては、遮光領域は、透明基板上に遮光膜が積層され、遮光膜上に位相シフト膜が積層された構成を有するものである。また、位相シフト膜は位相差πの厚さDを有するものである。したがって、例えば、本発明の位相シフトマスクを用いて、TFTアレイ基板等を作製するためのレジストをパターニングする場合、上述した迷光は以下の挙動を示すことが考えられる。まず、大型の投影型露光装置から照射された迷光は、位相シフトマスクの透明基板を透過し、TFTアレイ基板の金属電極等に反射されて反射光となる。次に、上記迷光の反射光は遮光領域の位相シフト膜に入射し、遮光膜に反射されて第2反射光となり、再度、位相シフト膜から出射する。よって、上記遮光領域の位相シフト膜に入射する迷光の反射光と、遮光膜に反射されて位相シフト層から出射する迷光の第2反射光との位相差は2πとなる。そのため、位相シフト膜の表面においては上述の反射光と上述の第2反射光とが強め合うことから、迷光によるレジストへの影響がより顕著なものとなることが懸念される。
 上記の問題は、本発明における遮光領域の層構成に起因する問題である。
Here, in a general large projection exposure apparatus, it is difficult to irradiate only parallel light as exposure light, and part of the exposure light often includes light having a predetermined angle. Furthermore, light that diffracts around the pattern edge and reflected light at the boundary of the film come out as stray light. Such stray light is different from the irradiation position in a large projection exposure apparatus and the position actually reaching the resist. There is concern about exposure.
In the present invention, the light shielding region has a structure in which a light shielding film is laminated on a transparent substrate and a phase shift film is laminated on the light shielding film. The phase shift film has a thickness D with a phase difference π. Therefore, for example, when the resist for producing a TFT array substrate or the like is patterned using the phase shift mask of the present invention, the stray light described above may exhibit the following behavior. First, stray light emitted from a large projection exposure apparatus passes through the transparent substrate of the phase shift mask and is reflected by a metal electrode or the like of the TFT array substrate to become reflected light. Next, the reflected light of the stray light enters the phase shift film in the light shielding region, is reflected by the light shielding film, becomes second reflected light, and is emitted from the phase shift film again. Therefore, the phase difference between the reflected light of the stray light incident on the phase shift film in the light shielding region and the second reflected light of the stray light reflected from the light shielding film and emitted from the phase shift layer is 2π. Therefore, since the above-mentioned reflected light and the above-mentioned second reflected light strengthen each other on the surface of the phase shift film, there is a concern that the influence of the stray light on the resist becomes more remarkable.
The above problem is caused by the layer structure of the light shielding region in the present invention.
 本発明において、露光時の迷光対策の観点から遮光領域は反射防止機能を有するのが望ましい。本発明に使用される遮光領域7は、透明基板2上に遮光膜3が積層され、遮光膜3の上に位相シフト膜5が積層された構成を持つが、位相シフト膜5は位相差πの厚さDを持つため、遮光膜3の表面で反射された露光光(迷光の第2反射光)と位相シフト膜5の表面での反射光(迷光の反射光)は位相差2πとなり強め合ってしまう。この影響を軽減するため、遮光膜と位相シフト膜の間に半透明膜からなる反射防止膜4を設けても良い。反射防止膜4を有することで、遮光膜を反射した光と反射防止膜を反射した光(遮光膜を反射した光(迷光の第2反射光)と反射防止膜表面での迷光の反射光)が弱めあうように光路長を設定することによって、位相差が2πとなって強めあう事を防ぐことができる。 In the present invention, it is desirable that the light shielding region has an antireflection function from the viewpoint of stray light countermeasures during exposure. The light shielding region 7 used in the present invention has a configuration in which a light shielding film 3 is laminated on a transparent substrate 2 and a phase shift film 5 is laminated on the light shielding film 3, but the phase shift film 5 has a phase difference π. Therefore, the exposure light reflected from the surface of the light shielding film 3 (stray reflected second light) and the reflected light from the surface of the phase shift film 5 (stray reflected light) have a phase difference of 2π and become stronger. It will fit. In order to reduce this influence, an antireflection film 4 made of a translucent film may be provided between the light shielding film and the phase shift film. By having the antireflection film 4, the light reflected from the light shielding film and the light reflected from the antireflection film (light reflected from the light shielding film (second reflected light of stray light) and reflected light of stray light on the surface of the antireflection film) By setting the optical path length so as to weaken each other, it is possible to prevent the phase difference from becoming 2π and strengthening.
 本発明における反射防止膜としては、反射防止機能を有し、遮光領域の遮光膜および位相シフト膜の間に形成することができるものであれば特に限定されないが、金属膜、金属化合物膜等を好適に用いることができる。
 上記反射防止膜の材質としては、酸化クロム(CrO)、酸化窒化クロム(CrON)、窒化クロム(CrN)、酸化チタン(TiO)酸化タンタル(TaO)、酸化ニッケルアルミニウム(NiAlO)等を挙げることができ、なかでも酸化クロム(CrO)、酸化窒化クロム(CrON)を好適に使用できる。
The antireflection film in the present invention is not particularly limited as long as it has an antireflection function and can be formed between the light shielding film and the phase shift film in the light shielding region, but a metal film, a metal compound film, etc. It can be used suitably.
Examples of the material for the antireflection film include chromium oxide (CrO), chromium oxynitride (CrON), chromium nitride (CrN), titanium oxide (TiO), tantalum oxide (TaO), and nickel aluminum oxide (NiAlO). Among them, chromium oxide (CrO) and chromium oxynitride (CrON) can be preferably used.
 上記反射防止膜の厚みは、遮光膜を反射した光と反射防止膜を反射した光が弱めあうように光路長となるように設計される。
 このような反射防止膜の厚みとしては、遮光膜を反射した光が反射防止膜を透過することにより、遮光膜を反射した光と反射防止膜を反射した光との位相差が、π±10の範囲内となる厚みであることが好ましく、なかでもπ±5の範囲内となる厚みであることが好ましく、特にπとなる厚みであることが好ましい。
 遮光膜を反射した光と反射防止膜を反射した光を好適に弱めることができ、迷光による不具合を好適に防止することができるからである。
The thickness of the antireflection film is designed to have an optical path length so that the light reflected by the light shielding film and the light reflected by the antireflection film are weakened.
The thickness of such an antireflection film is such that the phase difference between the light reflected from the light shielding film and the light reflected from the antireflection film is π ± 10 because light reflected from the light shielding film passes through the antireflection film. The thickness is preferably in the range of π ± 5, and in particular, the thickness is preferably in the range of π ± 5, and particularly preferably π.
This is because the light reflected by the light-shielding film and the light reflected by the antireflection film can be suitably weakened, and problems due to stray light can be suitably prevented.
 上記反射防止膜の具体的な厚みとしては、反射防止膜の材料等により適宜選択されるものであり特に限定されるものではないが、0.01μm~0.1μmの範囲内、なかでも0.02μm~0.05μmの範囲内であることが好ましい。上記範囲に満たない場合は、反射防止膜を均一な厚みで形成することが困難となる可能性があるからであり、上記範囲を超える場合は、反射防止膜の成膜時間、コストが多くかかる可能性があるからである。 The specific thickness of the antireflective film is appropriately selected depending on the material of the antireflective film and is not particularly limited, but is in the range of 0.01 μm to 0.1 μm, and in particular, 0. It is preferably in the range of 02 μm to 0.05 μm. If it is less than the above range, it may be difficult to form the antireflection film with a uniform thickness. If it exceeds the above range, it takes a lot of time and cost to form the antireflection film. Because there is a possibility.
 また、反射防止膜としては、透過する光の位相を調整するもの以外にも、例えば金属膜等の表面を粗面化し、光を拡散させる機能を付与したものを用いてもよい。 Further, as the antireflection film, in addition to the film that adjusts the phase of transmitted light, for example, a metal film or the like having a roughened surface and imparting a function of diffusing light may be used.
 位相シフト膜5の表面の反射防止方法としては、位相シフト膜5の表面に半透明な低反射膜を設けることも出来る。特に位相シフト膜5が酸化窒化クロムの場合表面に金属光沢を含む場合があり、その場合は酸化クロムからなる低反射層が有効である。 As a method for preventing the reflection of the surface of the phase shift film 5, a semitransparent low reflection film can be provided on the surface of the phase shift film 5. In particular, when the phase shift film 5 is made of chromium oxynitride, the surface may contain metallic luster. In this case, a low reflection layer made of chromium oxide is effective.
(製造方法)
図2(a)~(f)は、図1(a)に示す本発明の大型位相シフトマスク1の製造工程を説明する図である。
(Production method)
2 (a) to 2 (f) are diagrams for explaining a manufacturing process of the large phase shift mask 1 of the present invention shown in FIG. 1 (a).
 本実施の形態の大型位相シフトマスク1を製作するには、まず、透明基板2に遮光膜3が積層され、さらに必要に応じ反射防止膜4が積層されたフォトマスクブランクス20を用意する(図2(a))。透明基板2は通常、厚さ8mm~12mmの光学研磨された合成石英を用いる。フォトマスクブランクス20の遮光膜3がクロム膜または窒化クロム膜であればスパッタリング法で成膜される。又、反射防止膜が酸化クロムであれば、同様にスパッタリング法で成膜される。遮光膜がクロム、反射防止膜が酸化クロムのブランクスは最も一般的であり、市販品を容易に入手できる。 In order to manufacture the large phase shift mask 1 of the present embodiment, first, a photomask blank 20 is prepared in which a light shielding film 3 is laminated on a transparent substrate 2 and further an antireflection film 4 is laminated as required (FIG. 2 (a)). The transparent substrate 2 is usually made of optically polished synthetic quartz having a thickness of 8 mm to 12 mm. If the light shielding film 3 of the photomask blank 20 is a chromium film or a chromium nitride film, it is formed by sputtering. If the antireflection film is chromium oxide, it is similarly formed by sputtering. Blanks in which the light-shielding film is chromium and the antireflection film is chromium oxide are the most common blanks, and commercial products can be easily obtained.
 次に、上記のフォトマスクブランクス20の遮光膜3と反射防止膜4を、通常の方法に従ってパターニング(1回目のパターン形成工程)する。すなわち、遮光膜3もしくは反射防止膜4上に、レーザービーム描画装置の露光波長に対応した感光性レジストを塗布し、塗布後に所定時間ベークし、均一な厚さの遮光膜用レジスト膜を形成する。次にレーザー描画装置により、上記遮光膜用レジスト膜に遮光領域7のパターンを描画し、現像して遮光膜用レジスト16を形成する(図2(b))。通常、遮光領域7は、マスクの有効領域全体から透過領域6と位相シフト領域8を除いた領域である。又、必要に応じ、位置合わせ用のマークを遮光膜で形成し、位相シフト領域パターンとの位置合わせに使用する。 Next, the light shielding film 3 and the antireflection film 4 of the photomask blank 20 are patterned according to a normal method (first pattern formation step). That is, a photosensitive resist corresponding to the exposure wavelength of the laser beam drawing apparatus is applied on the light shielding film 3 or the antireflection film 4 and baked for a predetermined time after the application to form a light shielding film resist film having a uniform thickness. . Next, a pattern of the light shielding region 7 is drawn on the resist film for light shielding film by a laser drawing apparatus and developed to form a resist 16 for light shielding film (FIG. 2B). Usually, the light shielding region 7 is a region obtained by removing the transmission region 6 and the phase shift region 8 from the entire effective region of the mask. Further, if necessary, an alignment mark is formed of a light shielding film and used for alignment with the phase shift region pattern.
 次に、遮光膜用レジスト16から露出している遮光膜をエッチングして除去し、残存しているレジストを剥離除去して、遮光領域7の形状にパターン形成された遮光膜付の基板21を得る(図2(c))。遮光膜3のエッチングは、ウェットエッチング法もしくはドライエッチング法が適用できるが、上記のようにフラットディスプレイに使用されるフォトマスクの大型化に伴い、ドライエッチングではエッチング装置の大型化に多大なコストがかかるとともに、大面積でのエッチングの均一性の制御も難しいため、ウェットエッチングがコスト的に好ましい。遮光膜3がクロム系の膜であれば、硝酸第2セリウムアンモニウムに過塩素酸を加えたウェットエッチャントで良好にパターン形成できる。なお、反射防止膜4の材質が酸化クロムなどのクロム系であれば、前記のウェットエッチャントで、クロム系の遮光膜と同時にエッチングしてパターン形成できる。 Next, the light shielding film exposed from the light shielding film resist 16 is removed by etching, the remaining resist is peeled and removed, and the substrate 21 with the light shielding film patterned in the shape of the light shielding region 7 is obtained. Is obtained (FIG. 2 (c)). Etching of the light-shielding film 3 can be performed by wet etching or dry etching. However, as the photomask used in the flat display is increased in size as described above, dry etching increases the cost of the etching apparatus. In addition, since it is difficult to control the uniformity of etching in a large area, wet etching is preferable in terms of cost. If the light-shielding film 3 is a chromium-based film, the pattern can be satisfactorily formed with a wet etchant obtained by adding perchloric acid to ceric ammonium nitrate. If the material of the antireflection film 4 is a chromium-based material such as chromium oxide, a pattern can be formed by etching with the wet etchant simultaneously with the chromium-based light shielding film.
 本実施の形態において、遮光膜3のパターン形成の工程後に、パターン形成された遮光膜付基板21の検査を行い、必要ならば欠陥を修正する工程を行うことが出来る。 In the present embodiment, after the pattern formation process of the light shielding film 3, the patterned light-shielding film-attached substrate 21 is inspected, and if necessary, a process of correcting defects can be performed.
 次に、パターン形成された遮光膜付基板21の全面に位相シフト膜5を成膜する(図2(d))。ここで、位相シフト膜5は、前記遮光膜3と同系の材料から成ることが好ましい。遮光膜3が前述のようにクロム系材料によるものであれば、位相シフト膜5はクロムに酸素、窒素、炭素などの元素を1種または2種以上含み、屈折率が比較的高く、所定の範囲の光透過率となるように材料の成分比率を選ぶ。具体的には、酸化クロム、酸化窒化クロム、酸化窒化炭化クロムにおいて各元素の構成比率を選ぶ。 Next, the phase shift film 5 is formed on the entire surface of the patterned light-shielding film-attached substrate 21 (FIG. 2D). Here, the phase shift film 5 is preferably made of the same material as the light shielding film 3. If the light shielding film 3 is made of a chromium-based material as described above, the phase shift film 5 contains one or more elements such as oxygen, nitrogen, and carbon in chromium, has a relatively high refractive index, and has a predetermined value. The component ratio of the material is selected so that the light transmittance is within the range. Specifically, the constituent ratio of each element is selected in chromium oxide, chromium oxynitride, and chromium oxynitride carbide.
 位相シフト膜5の成膜はクロム遮光膜を形成した方法と同じく、スパッタリング法などの真空成膜方法が用いられる。 The film formation of the phase shift film 5 is performed by a vacuum film formation method such as a sputtering method, similar to the method of forming the chromium light shielding film.
 次に、2回目のパターン形成工程により、下層の遮光膜パターンである遮光領域7と位置合わせをして、位相シフト膜5をパターン形成する。すなわち、位相シフト膜5上にレーザービーム描画装置の露光波長に対応した感光性レジストを塗布し、塗布後に所定時間ベークし、均一な厚さの位相シフト膜用レジスト膜を形成する。次に、レーザービーム描画装置により、位相シフト膜用レジスト膜に位相シフト領域8と遮光領域7を合わせた領域のパターンを描画する。続いて、露光した位相シフト膜用レジストを現像して、パターン形成された位相シフト膜用レジスト17を得る(図2(e))。 Next, in the second pattern formation step, the phase shift film 5 is patterned by aligning with the light shielding region 7 which is the lower light shielding film pattern. That is, a photosensitive resist corresponding to the exposure wavelength of the laser beam drawing apparatus is applied on the phase shift film 5 and baked for a predetermined time after the application to form a resist film for a phase shift film having a uniform thickness. Next, the pattern of the area | region which combined the phase shift area | region 8 and the light-shielding area | region 7 is drawn on the resist film for phase shift films with a laser beam drawing apparatus. Subsequently, the exposed phase shift film resist is developed to obtain a patterned phase shift film resist 17 (FIG. 2E).
 次に、位相シフト膜用レジスト17より露出している位相シフト膜5をエッチングして除去し、位相シフト領域8と、遮光膜パターン7を合わせた形状にパターン加工された位相シフト膜を得る。ここで、位相シフト膜がクロムに酸素、窒素、炭素の少なくともいずれか1つを含む材料で形成されていれば、クロムもしくはクロム化合物で形成された遮光膜3のエッチングと同じウェットエッチングでパターン加工ができ、すでに述べたようにパターン加工工程のコスト的なメリットが大きい。
次いで、残存している位相シフト膜用のレジスト膜を剥離、除去して大型位相シフトマスクが完成する(図2(f))。
 以上、図2に従って、本発明の実施の形態による位相シフトマスクの製造方法を説明した。この製造方法で特に、遮光膜3の材質をクロムとし、位相シフト膜5の材質を、酸素、窒素、炭素の少なくともいずれか1つを含むクロム化合物とすれば、製造工程の出発材として市販のクロムハードマスクが使用できるとともに、エッチング工程がすべてがウェットエッチングとなり、製造上のコストメリットが多大である。
Next, the phase shift film 5 exposed from the phase shift film resist 17 is removed by etching to obtain a phase shift film patterned into a shape in which the phase shift region 8 and the light shielding film pattern 7 are combined. Here, if the phase shift film is formed of a material containing at least one of oxygen, nitrogen, and carbon in chromium, pattern processing is performed by the same wet etching as the etching of the light shielding film 3 formed of chromium or a chromium compound. As described above, the cost advantage of the pattern processing process is great.
Next, the remaining resist film for the phase shift film is peeled off and removed to complete a large phase shift mask (FIG. 2 (f)).
The method for manufacturing the phase shift mask according to the embodiment of the present invention has been described above with reference to FIG. Particularly in this manufacturing method, if the light shielding film 3 is made of chromium and the phase shift film 5 is made of a chromium compound containing at least one of oxygen, nitrogen, and carbon, a commercially available starting material for the manufacturing process is used. A chrome hard mask can be used, and the etching process is all wet etching, resulting in a great manufacturing cost merit.
(その他)
 本発明の位相シフトマスクは、上記TFTアレイ基板等のパターン形成のためのレジストをパターニングするために用いられる。
 本発明の位相シフトマスクとともに用いられるレジストについては、TFT基板の電極材料、現像液、投影型露光機等により適宜選択することができ、特に限定されない。
 例えば、露光機としてNikon社製露光機を用い、レジストとしてAZ1500、現像液としてAZ300MIFを使用した際に、位相シフトマスクの透過率5%以下の部分における露光光の影響を少なくすることができる、すなわち露光強度が5%以下の光によりレジストが描画されにくいものとすることができるため、露光強度分布におけるサイドピークに反応しにくく、レジストのパターニングを良好に行うことができる。
(Other)
The phase shift mask of the present invention is used for patterning a resist for pattern formation of the TFT array substrate or the like.
The resist used together with the phase shift mask of the present invention can be appropriately selected depending on the electrode material of the TFT substrate, the developer, the projection type exposure machine, etc., and is not particularly limited.
For example, when using an exposure machine manufactured by Nikon as an exposure machine, and using AZ1500 as a resist and AZ300MIF as a developer, the influence of exposure light on a portion of the phase shift mask having a transmittance of 5% or less can be reduced. That is, since the resist can be hardly drawn by light having an exposure intensity of 5% or less, it is difficult to react to the side peak in the exposure intensity distribution, and the resist can be satisfactorily patterned.
 また、レジストの厚みとしては、本発明の位相シフトマスクを用いて所望の形状にパターニングすることができる程度であれば特に限定されないが、1.0μm~10.0μmの範囲内、なかでも1.2μm~5.0μmの範囲内、特に1.5μm~4.0μmの範囲内であることが好ましい。レジストの厚みを上記範囲内とすることにより、本発明の位相シフトマスクを用いて、所望の形状を有するレジストパターンを形成することができる。 The thickness of the resist is not particularly limited as long as it can be patterned into a desired shape using the phase shift mask of the present invention, but is within the range of 1.0 μm to 10.0 μm. It is preferably in the range of 2 μm to 5.0 μm, particularly in the range of 1.5 μm to 4.0 μm. By setting the thickness of the resist within the above range, a resist pattern having a desired shape can be formed using the phase shift mask of the present invention.
 なお、本発明の位相シフトマスクとともに用いられるレジストについては、上述のものに限定されない。 Note that the resist used together with the phase shift mask of the present invention is not limited to the above.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
(露光強度分布のコントラストについて)
 図3は、本発明による大型位相シフトマスク(実施例1)の露光強度分布のコントラスト向上の効果を、従来のバイナリマスク(比較例1)と比較した説明図である。図3(a)は、本発明による大型位相シフトマスク(実施例1)のラインアンドスペースパターンを示す平面図、図3(b)は、従来技術であるバイナリマスク(比較例1)のラインアンドスペースパターンを示す平面図、図3(c)は図3(a)と図3(b)に示したマスクの結像面での露光強度分布を比較する図である。
(About contrast of exposure intensity distribution)
FIG. 3 is an explanatory diagram comparing the effect of improving the contrast of the exposure intensity distribution of the large phase shift mask (Example 1) according to the present invention with that of a conventional binary mask (Comparative Example 1). 3A is a plan view showing a line and space pattern of a large phase shift mask (Example 1) according to the present invention, and FIG. 3B is a line and space pattern of a conventional binary mask (Comparative Example 1). FIG. 3C is a plan view showing the space pattern, and FIG. 3C is a diagram for comparing the exposure intensity distributions on the imaging planes of the masks shown in FIGS. 3A and 3B.
 又、表1は、本発明による大型位相シフトマスク(実施例1)の露光強度分布のコントラスト向上の効果を、従来のバイナリマスク(比較例1)と比較した表である。 Table 1 is a table comparing the effect of improving the contrast of the exposure intensity distribution of the large phase shift mask (Example 1) according to the present invention with the conventional binary mask (Comparative Example 1).
 図3(a)の実施例1である本発明の大型位相シフトマスクのパターンは4μmピッチのラインアンドスペースパターンで、透過領域6の幅aは3μmである。透過領域6の両側に隣接して設けられた位相シフト領域8の幅bは0.4μmで、透過率は5.2%、位相はπ(180度)で反転している。又、遮光領域7の幅は0.2μmで透過率は0%である。なお、各領域の透過率は透過領域6の透過率を100%として算出している。 3A is a line-and-space pattern with a pitch of 4 μm and the width a of the transmission region 6 is 3 μm. The width b of the phase shift region 8 provided adjacent to both sides of the transmission region 6 is 0.4 μm, the transmittance is 5.2%, and the phase is inverted by π (180 degrees). The width of the light shielding region 7 is 0.2 μm and the transmittance is 0%. The transmittance of each region is calculated with the transmittance of the transmissive region 6 being 100%.
 図3(b)の比較例1であるバイナリマスクのパターンは4μmピッチのラインアンドスペースパターンで、透過領域の幅dは3μm、遮光領域の幅eは1μmである。 The pattern of the binary mask which is Comparative Example 1 in FIG. 3B is a line and space pattern with a pitch of 4 μm, the width d of the transmission region is 3 μm, and the width e of the light shielding region is 1 μm.
 図3(c)は露光装置による露光結果をシミュレーションにより求めた結果を示すグラフであり、露光装置の光源はg線、h線、i線の3波長混合光源で計算した。グラフの縦軸は、結像面での透過領域の露光光強度の最大値を1に正規化して表示しており、グラフの横軸は結像面での位置をしめしている。図3(a)のAA断面に対応した位置の大型位相シフトマスクの露光光強度分布を露光光強度分布曲線31に示している。又、図3(b)のBB断面に対応した位置のバイナリマスクの露光光強度分布を露光光強度分布曲線32に示している。 FIG. 3 (c) is a graph showing the result obtained by simulating the exposure result by the exposure apparatus, and the light source of the exposure apparatus was calculated using a three-wavelength mixed light source of g-line, h-line and i-line. The vertical axis of the graph is displayed by normalizing the maximum value of the exposure light intensity of the transmission region on the imaging plane to 1, and the horizontal axis of the graph indicates the position on the imaging plane. An exposure light intensity distribution curve 31 shows the exposure light intensity distribution of the large phase shift mask at a position corresponding to the AA cross section of FIG. The exposure light intensity distribution curve 32 of the binary mask at a position corresponding to the BB cross section of FIG.
 図3(c)に示した大型位相シフトマスク露光光強度分布曲線31の光強度分布の最大値は0.747、最小値は0.324で、最大値と最小値の差であるコントラストは0.423であった。これに対し従来技術であるバイナリマスクの露光光強度分布曲線32の光強度分布の最大値は0.782、最小値は0.399で、最大値と最小値の差であるコントラストは0.383であった。つまり、従来バイナリマスクの結像面での露光光のコントラストが0.383であったのに対し、本発明の大型位相シフトマスクの露光光のコントラストは0.423となり0.04コントラストが高まり、コントラストの比率で言えば約10%の改善がみられた。この結果を表1の大型位相シフトマスクの効果にまとめて記載した。 The maximum value of the light intensity distribution of the large phase shift mask exposure light intensity distribution curve 31 shown in FIG. 3C is 0.747, the minimum value is 0.324, and the contrast that is the difference between the maximum value and the minimum value is 0. 423. On the other hand, the maximum value of the light intensity distribution of the exposure light intensity distribution curve 32 of the conventional binary mask is 0.782, the minimum value is 0.399, and the contrast that is the difference between the maximum value and the minimum value is 0.383. Met. That is, the contrast of the exposure light on the imaging surface of the conventional binary mask is 0.383, whereas the contrast of the exposure light of the large phase shift mask of the present invention is 0.423, which increases the 0.04 contrast. In terms of contrast ratio, an improvement of about 10% was observed. The results are summarized in the effect of the large phase shift mask in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の露光シミュレーション結果から、本発明は、大型のマスクにおいて位相シフト領域を適切に配置して、結像面での露光強度分布のコントラストを改善し、より微細なパターンを安定して形成することができる。 From the above exposure simulation results, the present invention can appropriately arrange a phase shift region in a large mask, improve the contrast of the exposure intensity distribution on the imaging surface, and stably form a finer pattern. Can do.
(露光機の解像限界と位相シフトマスクの描画パターンとの関係について)
<位相シフトマスクの作製>
 厚み10mmの合成石英(透明基板)、厚み100nmのクロム膜(遮光膜)、および厚み25nmの酸化クロム膜(反射防止膜)がこの順に積層された市販のフォトマスクブランクスを準備し、反射防止膜上に適応した感光性レジストを塗布し、塗布後に所定時間ベークし、均一な厚さの遮光膜用レジスト膜を形成した。次にレーザー描画装置により、上記遮光膜用レジスト膜に遮光領域のパターンを描画し、現像して遮光膜用レジストを形成した。
 次に、遮光膜用レジストから露出している反射防止膜および遮光膜を硝酸第2セリウムアンモニウムに過塩素酸を加えたウェットエッチャントを用いてエッチングして除去し、残存しているレジストを剥離除去して、遮光領域の形状にパターン形成された遮光膜および反射防止膜付の基板を得た。
 次に、パターン形成された遮光膜および反射防止膜付基板の全面に酸化窒化クロム膜(位相シフト膜)をスパッタリング法により成膜した。
(Relationship between resolution limit of exposure tool and drawing pattern of phase shift mask)
<Production of phase shift mask>
A commercially available photomask blank in which a synthetic quartz (transparent substrate) having a thickness of 10 mm, a chromium film (light-shielding film) having a thickness of 100 nm, and a chromium oxide film (antireflection film) having a thickness of 25 nm are laminated in this order is prepared. A photosensitive resist adapted to the above was applied and baked for a predetermined time after the application to form a resist film for a light-shielding film having a uniform thickness. Next, a light shielding region pattern was drawn on the light shielding film resist film by a laser drawing apparatus and developed to form a light shielding film resist.
Next, the antireflection film and the light shielding film exposed from the resist for the light shielding film are removed by etching using a wet etchant obtained by adding perchloric acid to ceric ammonium nitrate, and the remaining resist is peeled and removed. Thus, a substrate with a light shielding film and an antireflection film patterned in the shape of the light shielding region was obtained.
Next, a chromium oxynitride film (phase shift film) was formed on the entire surface of the patterned light-shielding film and antireflection film-coated substrate by a sputtering method.
 次に、2回目のパターン形成工程により、下層の遮光膜パターンである遮光領域と位置合わせをして、遮光膜用レジストと同様の形成方法により、位相シフト膜用レジスト膜を形成した。次に、レーザービーム描画装置により、位相シフト膜用レジスト膜に位相シフト領域と遮光領域を合わせた領域のパターンを描画した後、現像して、パターン形成された位相シフト膜用レジストを得た。 Next, in the second pattern formation step, the resist film for phase shift film was formed by the same formation method as the resist for light shielding film by aligning with the light shielding region which is the light shielding film pattern of the lower layer. Next, a pattern of a region in which the phase shift region and the light-shielding region are combined is drawn on the phase shift film resist film by a laser beam drawing apparatus and then developed to obtain a patterned phase shift film resist.
 次に、位相シフト膜用レジストより露出している位相シフト膜を上述した遮光膜および反射防止膜と同様にしてエッチングして除去し、位相シフト領域と、遮光膜パターンを合わせた形状にパターン加工された位相シフト膜を得た。次いで、残存している位相シフト膜用のレジスト膜を剥離、除去した。以上の工程により、透過領域(線幅1.9μm)、位相シフト領域(線幅2.0μm)、および遮光領域が配置され、遮光領域では遮光膜上に反射防止膜および位相シフト膜がこの順に積層されている大型位相シフトマスクを得た。 Next, the phase shift film exposed from the resist for the phase shift film is removed by etching in the same manner as the light shielding film and the antireflection film described above, and pattern processing is performed so that the phase shift region and the light shielding film pattern are combined. A phase shift film was obtained. Next, the remaining resist film for the phase shift film was peeled off and removed. Through the above steps, the transmission region (line width 1.9 μm), the phase shift region (line width 2.0 μm), and the light shielding region are arranged. In the light shielding region, the antireflection film and the phase shift film are arranged in this order on the light shielding film. A laminated large phase shift mask was obtained.
<レジストパターンの作製>
 上述の位相シフトマスクを用い、解像限界が3μmのNikon製露光機を用いて、ガラス基材上に形成された厚み1.6μmのレジスト(AZ1500)をパターン露光し、現像処理を行ったところ、1.9μmのレジストパターンを形成することができた。
<Preparation of resist pattern>
Using the above-mentioned phase shift mask, using a Nikon exposure machine with a resolution limit of 3 μm, pattern exposure was performed on a 1.6 μm thick resist (AZ1500) formed on a glass substrate, and development processing was performed. A resist pattern of 1.9 μm could be formed.
(位相シフトマスクにおける位相シフト領域の幅について)
 図6は、本発明による大型位相シフトマスクのパターンを示す平面図、図7は、図6に示した大型位相シフトマスクの結像面での露光強度分布を示す図であり、図8は図7のC部分の拡大図、図9は図7のD部分の拡大図である。
 大型位相シフトマスクとしては透過領域の幅を5μmとし、位相シフト領域の幅bを、0.25μm(実施例3)、0.5μm(実施例4)、0.75μm(実施例5)、1.0μm(実施例6)、1.5μm(実施例7)、2.0μm(実施例8)、2.5μm(実施例9)、3.0μm(実施例10)、3.5μm(実施例11)、および4.0μm(実施例12)とした場合のNikon社製露光機による露光強度分布(光強度)についてシミュレーションを行った。なお、上記大型位相シフトマスクのパターン以外のシミュレーション条件については実施例1と同様とした。結果を図7~9に示す。
 図8に示される露光強度が小さいほど、図7に示される波形がシャープになっていることを表わすが、大型位相シフトマスクのパターンエッジの位置での位相シフト効果については、位相シフト領域の幅が2.0μmを超えるとその以上の効果は見られなかった(位相シフト効果が頭打ちとなった)。
 また、図9に示されるように、位相シフト領域の幅が大きくなるにしたがって、サイドピークの値が大きくなった。
 本発明においては、レジストの感度に応じてサイドピークがレジストに影響を与えないように位相シフト領域の幅を設定することができる。
 このような位相シフトの幅については、TFTアレイ基板を形成する際に用いられるレジストの実績からサイドピークの露光強度が5%以下となる幅、すなわち0.25μm~3.5μmとすることが好ましい。
(About the width of the phase shift region in the phase shift mask)
FIG. 6 is a plan view showing a pattern of a large phase shift mask according to the present invention, FIG. 7 is a view showing an exposure intensity distribution on the image plane of the large phase shift mask shown in FIG. 6, and FIG. 7 is an enlarged view of a portion C, and FIG. 9 is an enlarged view of a portion D of FIG.
As a large phase shift mask, the width of the transmission region is 5 μm, and the width b of the phase shift region is 0.25 μm (Example 3), 0.5 μm (Example 4), 0.75 μm (Example 5), 1 0.0 μm (Example 6), 1.5 μm (Example 7), 2.0 μm (Example 8), 2.5 μm (Example 9), 3.0 μm (Example 10), 3.5 μm (Example) 11) and 4.0 μm (Example 12), the simulation was performed on the exposure intensity distribution (light intensity) by the Nikon exposure machine. The simulation conditions other than the large phase shift mask pattern were the same as in Example 1. The results are shown in FIGS.
The smaller the exposure intensity shown in FIG. 8, the sharper the waveform shown in FIG. 7, but the phase shift effect at the position of the pattern edge of the large phase shift mask is the width of the phase shift region. When the thickness exceeds 2.0 μm, no further effect was observed (the phase shift effect reached its peak).
Also, as shown in FIG. 9, the side peak value increased as the width of the phase shift region increased.
In the present invention, the width of the phase shift region can be set so that the side peak does not affect the resist according to the sensitivity of the resist.
The width of such a phase shift is preferably set to a width at which the side peak exposure intensity is 5% or less, that is, from 0.25 μm to 3.5 μm, based on the results of the resist used when forming the TFT array substrate. .
  1  大型位相シフトマスク
  2  透明基板
  3  遮光膜
  4  反射防止膜
  5  位相シフト膜
  6  透過領域
  7  遮光領域
  8  位相シフト領域
 10  透過領域の光振幅分布
 11  位相シフト領域の光振幅分布
 12  位相シフト効果を含む光の振幅分布
 13  透過領域の光強度分布
 14  位相シフト効果を含む光の強度分布
 15  位相シフト領域の効果
 16  遮光膜のパターンに形成されたレジスト
 17  位相シフト領域と遮光膜のパターンに形成されたレジスト
 20  フォトマスクブランクス
 21  遮光膜がパターン形成されたフォトマスクブランクス
 30  バイナリマスク
 31  大型位相シフトマスクの光強度分布
 32  バイナリマスクの光強度分布
 40  露光光
DESCRIPTION OF SYMBOLS 1 Large phase shift mask 2 Transparent substrate 3 Light shielding film 4 Antireflection film 5 Phase shift film 6 Transmission area 7 Light shielding area 8 Phase shift area 10 Light amplitude distribution of transmission area 11 Light amplitude distribution of phase shift area 12 Including phase shift effect Light amplitude distribution 13 Light intensity distribution in transmission region 14 Light intensity distribution including phase shift effect 15 Effect of phase shift region 16 Resist formed in pattern of light shielding film 17 Formed in pattern of phase shift region and light shielding film Resist 20 Photomask blanks 21 Photomask blanks with light-shielding film patterned 30 Binary mask 31 Light intensity distribution of large phase shift mask 32 Light intensity distribution of binary mask 40 Exposure light

Claims (7)

  1.  透明基板と、前記透明基板上に形成された遮光膜と、前記透明基板上に形成された半透明な位相シフト膜を有し、
     前記透明基板が露出した透過領域と、前記透明基板上に前記遮光膜が設けられた遮光領域と、前記透明基板上に前記位相シフト膜のみが設けられた位相シフト領域を有し、前記透過領域および前記位相シフト領域が隣接するパターンを有し、前記透過領域と前記遮光領域との間に位相シフト領域が隣接して配置されており、前記位相シフト領域を透過した露光光は、前記透過領域を透過した露光光に対し位相が反転している位相シフトマスクにおいて、
     前記遮光膜はクロムまたはクロム化合物を主成分とし、前記位相シフト膜は酸化クロムないし酸化窒化クロムを主成分とし、前記遮光領域では遮光膜上に位相シフト膜が積層されていることを特徴とする、大型位相シフトマスク。
    A transparent substrate, a light shielding film formed on the transparent substrate, and a translucent phase shift film formed on the transparent substrate,
    A transmission region where the transparent substrate is exposed; a light shielding region where the light shielding film is provided on the transparent substrate; and a phase shift region where only the phase shift film is provided on the transparent substrate, And the phase shift region has an adjacent pattern, the phase shift region is adjacently disposed between the transmission region and the light shielding region, and the exposure light transmitted through the phase shift region is the transmission region. In the phase shift mask whose phase is reversed with respect to the exposure light transmitted through
    The light shielding film includes chromium or a chromium compound as a main component, the phase shift film includes chromium oxide or chromium oxynitride as a main component, and a phase shift film is stacked on the light shielding film in the light shielding region. Large phase shift mask.
  2.  前記遮光領域の前記遮光膜と前記位相シフト膜との間に、反射防止膜をさらに有することを特徴とする、請求の範囲第1項に記載の大型位相シフトマスク。 The large phase shift mask according to claim 1, further comprising an antireflection film between the light shielding film and the phase shift film in the light shielding region.
  3.  前記位相シフト領域の幅は、0.25μm以上、3.5μm以下の範囲の幅であることを特徴とする、請求の範囲第1項ないし第2項のいずれかに記載の大型位相シフトマスク。 3. The large phase shift mask according to claim 1, wherein the phase shift region has a width in a range of 0.25 μm to 3.5 μm.
  4.  前記透過領域の最も狭い部分の幅は、1μm以上、6μm以下の範囲の幅であることを特徴とする、請求の範囲第1項から請求項3までのいずれかに記載の大型位相シフトマスク。 The large phase shift mask according to any one of claims 1 to 3, wherein the narrowest part of the transmission region has a width in a range of 1 µm to 6 µm.
  5.  露光光での前記位相シフト膜の光透過率は4%以上、15%以下であることを特徴とする、請求の範囲第1項から第4項までのいずれかに記載の大型位相シフトマスク。 The large phase shift mask according to any one of claims 1 to 4, wherein the light transmittance of the phase shift film with exposure light is 4% or more and 15% or less.
  6.  透明基板と、前記透明基板上に形成された遮光膜と、前記透明基板上に形成された半透明な位相シフト膜を有し、前記透明基板が露出した透過領域と、前記透明基板上に前記遮光膜が設けられた遮光領域と、前記透明基板上に前記位相シフト膜のみが設けられた位相シフト領域を有し、前記透過領域および前記位相シフト領域が隣接するパターンを有し、前記透過領域と前記遮光領域との間に位相シフト領域が隣接して配置されており、前記位相シフト領域を透過した露光光は、前記透過領域を透過した露光光に対し位相が反転している位相シフトマスクを製造する位相シフトマスクの製造方法であって、
     前記透明基板の一方の面に、クロムまたはクロム化合物を材料とする遮光膜が積層されたブランクスに感光性レジストを塗布した、感光性レジスト付のブランクスを準備する工程と、
     感光性レジスト付のブランクスに、描画装置で所望のパターンを露光し、現像した後、ウェットエッチングし、感光性レジストを除去して遮光膜をパターン形成する工程と、
     前記透明基板およびパターン形成された前記遮光膜の上にクロム化合物からなる位相シフト膜を形成する工程と、
     形成された前記位相シフト膜に感光性レジストを塗布し、描画装置で所望のパターンを露光、現像した後、ウェットエッチングし、感光性レジストを除去して前記位相シフト膜をパターン形成する工程とからなる、大型位相シフトマスクの製造方法。
    A transparent substrate; a light-shielding film formed on the transparent substrate; a translucent phase shift film formed on the transparent substrate; and a transparent region where the transparent substrate is exposed; and the transparent substrate on the transparent substrate. A light-shielding region provided with a light-shielding film; and a phase-shift region in which only the phase-shift film is provided on the transparent substrate, wherein the transmission region and the phase-shift region have adjacent patterns, and the transmission region A phase shift area adjacent to the light shielding area, and the phase of the exposure light transmitted through the phase shift area is reversed with respect to the exposure light transmitted through the transmission area A method of manufacturing a phase shift mask for manufacturing
    A step of preparing a blank with a photosensitive resist, which is obtained by applying a photosensitive resist to a blank in which a light-shielding film made of chromium or a chromium compound is laminated on one surface of the transparent substrate;
    A process of exposing a desired pattern to a blank with a photosensitive resist with a drawing apparatus, developing it, performing wet etching, removing the photosensitive resist, and patterning a light-shielding film;
    Forming a phase shift film made of a chromium compound on the transparent substrate and the patterned light-shielding film;
    From the step of applying a photosensitive resist to the formed phase shift film, exposing and developing a desired pattern with a drawing apparatus, performing wet etching, removing the photosensitive resist, and patterning the phase shift film A method for producing a large phase shift mask.
  7.  透明基板と、前記透明基板上に形成された遮光膜と、前記透明基板上に形成された半透明な位相シフト膜を有し、前記透明基板が露出した透過領域と、前記透明基板上に前記遮光膜が設けられた遮光領域と、前記透明基板上に前記位相シフト膜のみが設けられた位相シフト領域を有し、前記透過領域および前記位相シフト領域が隣接するパターンを有し、前記透過領域と前記遮光領域との間に位相シフト領域が隣接して配置されており、前記位相シフト領域を透過した露光光は、前記透過領域を透過した露光光に対し位相が反転しており、前記遮光領域では前記遮光膜上に前記位相シフト膜が積層され、前記遮光領域の前記遮光膜と前記位相シフト膜との間に、反射防止膜をさらに有する位相シフトマスクを製造する位相シフトマスクの製造方法であって、
     前記透明基板の一方の面に、クロムを主成分とする遮光膜と、クロムの酸化物もしくはクロムの酸化窒化物を主成分とする反射防止膜の順に積層されたブランクスに感光性レジストを塗布した、感光性レジスト付のブランクスを準備する工程と、
     感光性レジスト付のブランクスに、描画装置で所望のパターンを露光し、現像した後、ウェットエッチングし、感光性レジストを除去して前記遮光膜と前記反射防止膜をパターン形成する工程と、
     前記透明基板およびパターン形成された前記遮光膜と前記反射防止膜の上にクロム化合物からなる位相シフト膜を形成する工程と、
     形成された前記位相シフト膜に感光性レジストを塗布し、描画装置で所望のパターンを露光、現像した後、ウェットエッチングし、感光性レジストを除去して前記位相シフト膜をパターン形成する工程とからなる、大型位相シフトマスクの製造方法。
    A transparent substrate; a light-shielding film formed on the transparent substrate; a translucent phase shift film formed on the transparent substrate; and a transparent region where the transparent substrate is exposed; and the transparent substrate on the transparent substrate. A light-shielding region provided with a light-shielding film; and a phase-shift region in which only the phase-shift film is provided on the transparent substrate, wherein the transmission region and the phase-shift region have adjacent patterns, and the transmission region And a phase shift region adjacent to the light shielding region, and the exposure light transmitted through the phase shift region is inverted in phase with respect to the exposure light transmitted through the transmission region. In the region, the phase shift film is manufactured by stacking the phase shift film on the light shielding film, and producing a phase shift mask further including an antireflection film between the light shielding film and the phase shift film in the light shielding region. A law,
    On one surface of the transparent substrate, a photosensitive resist was applied to a blank laminated in the order of a light shielding film mainly composed of chromium and an antireflection film mainly composed of chromium oxide or chromium oxynitride. A step of preparing blanks with a photosensitive resist;
    Exposing a desired pattern to a blank with a photosensitive resist with a drawing apparatus, developing, wet etching, removing the photosensitive resist, and patterning the light-shielding film and the antireflection film; and
    Forming a phase shift film made of a chromium compound on the transparent substrate and the patterned light shielding film and the antireflection film;
    From the step of applying a photosensitive resist to the formed phase shift film, exposing and developing a desired pattern with a drawing apparatus, performing wet etching, removing the photosensitive resist, and patterning the phase shift film A method for producing a large phase shift mask.
PCT/JP2012/077157 2011-10-21 2012-10-19 Large-sized phase-shift mask, and method for producing large-sized phase-shift mask WO2013058385A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013539714A JP6127977B2 (en) 2011-10-21 2012-10-19 Large phase shift mask and manufacturing method of large phase shift mask
KR1020147010272A KR20140093215A (en) 2011-10-21 2012-10-19 Large-sized phase-shift mask, and method for producing large-sized phase-shift mask
CN201280051359.0A CN103890657A (en) 2011-10-21 2012-10-19 Large-size phase shift mask and producing method of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011231529 2011-10-21
JP2011-231529 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013058385A1 true WO2013058385A1 (en) 2013-04-25

Family

ID=48141028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077157 WO2013058385A1 (en) 2011-10-21 2012-10-19 Large-sized phase-shift mask, and method for producing large-sized phase-shift mask

Country Status (5)

Country Link
JP (1) JP6127977B2 (en)
KR (1) KR20140093215A (en)
CN (2) CN110083008A (en)
TW (1) TWI584058B (en)
WO (1) WO2013058385A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454850A (en) * 2013-09-24 2013-12-18 北京京东方光电科技有限公司 Mask plate and method for manufacturing photo-spacer
JP2014219676A (en) * 2013-05-06 2014-11-20 ピーケーエルカンパニー リミテッド Multi-wavelength exposure method using halftone phase shift mask
JP5668168B1 (en) * 2014-06-17 2015-02-12 株式会社エスケーエレクトロニクス Proximity exposure photomask
JP6271803B1 (en) * 2017-04-04 2018-01-31 株式会社エスケーエレクトロニクス Photomask, photomask blank, and photomask manufacturing method
CN112119352A (en) * 2018-03-15 2020-12-22 大日本印刷株式会社 Large-scale photomask
CN115826348A (en) * 2023-02-13 2023-03-21 上海传芯半导体有限公司 Mask and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675156B2 (en) * 2014-07-30 2020-04-01 信越化学工業株式会社 Photomask blank design method
JP6352224B2 (en) * 2015-07-17 2018-07-04 Hoya株式会社 Phase shift mask blank, method of manufacturing phase shift mask using the same, and method of manufacturing display device
CN105892142A (en) 2016-06-29 2016-08-24 武汉华星光电技术有限公司 Black matrix photomask, method for preparing black matrix and application of black matrix photomask
JP7080070B2 (en) * 2017-03-24 2022-06-03 Hoya株式会社 Manufacturing method of photomask and display device
CN108388077A (en) * 2018-03-26 2018-08-10 京东方科技集团股份有限公司 A kind of preparation method of mask plate and preparation method thereof, array substrate
CN110202788B (en) * 2019-05-31 2021-08-17 京东方科技集团股份有限公司 Opposed substrate, liquid crystal panel and 3D printing device
CN110364638A (en) * 2019-07-12 2019-10-22 昆山梦显电子科技有限公司 The preparation method and display module of high-resolution Micro-OLED
CN110703489A (en) * 2019-10-17 2020-01-17 深圳市华星光电技术有限公司 Mask plate, display panel and preparation method of display panel
CN113311660B (en) * 2021-06-03 2023-07-18 上海传芯半导体有限公司 Mask base plate manufacturing method and gluing equipment with plasma heating device
JP2023050611A (en) * 2021-09-30 2023-04-11 株式会社エスケーエレクトロニクス Photomask and manufacturing method of photomask

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236351A (en) * 1989-04-28 2002-08-23 Fujitsu Ltd Mask and method for forming pattern by using mask
JP2011013283A (en) * 2009-06-30 2011-01-20 Ulvac Seimaku Kk Method for producing phase shift mask, method for manufacturing flat panel display, and phase shift mask
JP2011186506A (en) * 2011-07-01 2011-09-22 Sk Electronics:Kk Halftone photomask

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443873B2 (en) * 2003-08-15 2010-03-31 Hoya株式会社 Method for manufacturing phase shift mask
JP4407815B2 (en) * 2004-09-10 2010-02-03 信越化学工業株式会社 Photomask blank and photomask
JP2006317665A (en) * 2005-05-12 2006-11-24 Shin Etsu Chem Co Ltd Phase shift mask blank, phase shift mask, and method for fabricating them
JP4933753B2 (en) * 2005-07-21 2012-05-16 信越化学工業株式会社 Phase shift mask blank, phase shift mask, and manufacturing method thereof
TW200736821A (en) * 2006-03-16 2007-10-01 Hoya Corp Pattern forming method and method of producing a gray tone mask
JP5410839B2 (en) * 2009-05-22 2014-02-05 Hoya株式会社 Multi-tone photomask manufacturing method, multi-tone photomask, and pattern transfer method
JP2011123426A (en) * 2009-12-14 2011-06-23 Toppan Printing Co Ltd Photomask blank and method for manufacturing photomask

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236351A (en) * 1989-04-28 2002-08-23 Fujitsu Ltd Mask and method for forming pattern by using mask
JP2011013283A (en) * 2009-06-30 2011-01-20 Ulvac Seimaku Kk Method for producing phase shift mask, method for manufacturing flat panel display, and phase shift mask
JP2011186506A (en) * 2011-07-01 2011-09-22 Sk Electronics:Kk Halftone photomask

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219676A (en) * 2013-05-06 2014-11-20 ピーケーエルカンパニー リミテッド Multi-wavelength exposure method using halftone phase shift mask
CN103454850A (en) * 2013-09-24 2013-12-18 北京京东方光电科技有限公司 Mask plate and method for manufacturing photo-spacer
WO2015043214A1 (en) * 2013-09-24 2015-04-02 京东方科技集团股份有限公司 Mask and method for manufacturing spacer
US9395582B2 (en) 2013-09-24 2016-07-19 Boe Technology Group Co., Ltd. Mask and method of fabricating spacers
JP5668168B1 (en) * 2014-06-17 2015-02-12 株式会社エスケーエレクトロニクス Proximity exposure photomask
JP2016004174A (en) * 2014-06-17 2016-01-12 株式会社エスケーエレクトロニクス Photomask for proximity exposure
JP6271803B1 (en) * 2017-04-04 2018-01-31 株式会社エスケーエレクトロニクス Photomask, photomask blank, and photomask manufacturing method
JP6368000B1 (en) * 2017-04-04 2018-08-01 株式会社エスケーエレクトロニクス Photomask, photomask blank, and photomask manufacturing method
JP2018180507A (en) * 2017-04-04 2018-11-15 株式会社エスケーエレクトロニクス Photomask and photomask blank, and method for manufacturing photomask
CN112119352A (en) * 2018-03-15 2020-12-22 大日本印刷株式会社 Large-scale photomask
CN115826348A (en) * 2023-02-13 2023-03-21 上海传芯半导体有限公司 Mask and preparation method thereof
CN115826348B (en) * 2023-02-13 2023-10-24 上海传芯半导体有限公司 Mask plate and preparation method thereof

Also Published As

Publication number Publication date
JPWO2013058385A1 (en) 2015-04-02
TWI584058B (en) 2017-05-21
CN103890657A (en) 2014-06-25
KR20140093215A (en) 2014-07-25
TW201329614A (en) 2013-07-16
JP6127977B2 (en) 2017-05-17
CN110083008A (en) 2019-08-02

Similar Documents

Publication Publication Date Title
JP6127977B2 (en) Large phase shift mask and manufacturing method of large phase shift mask
JP6186719B2 (en) Large phase shift mask and manufacturing method of large phase shift mask
TWI395053B (en) Gray level mask, and gray level mask blank
CN111624849B (en) Photomask, method for manufacturing photomask, and method for manufacturing display device
JP2009053683A (en) Method for manufacturing gray tone mask, the gray tone mask, method for inspecting the gray tone mask, and pattern transfer method
CN103676468A (en) Photomask and manufacturing method thereof, transfer method and manufacturing method for flat-panel display
KR101127376B1 (en) Multi-gray scale photomask, pattern transfer method, and display device manufacturing method using the photomask
TWI422963B (en) Multi-tone photomask and method of manufacturing the same, and pattern transfer method
KR101815368B1 (en) Photomask, photomask set, method for manufacturing photomask, and method for manufacturing display apparatus
JP2007171651A (en) Method for correcting defect in photomask having gradation, and photomask having gradation
JP5004283B2 (en) FPD device manufacturing mask blank, FPD device manufacturing mask blank design method, and FPD device manufacturing mask manufacturing method
JP2016156857A5 (en)
KR20180029877A (en) Method for manufacturing photomask, photomask, and method for manufacturing display device
TWI569090B (en) Phase shift mask and resist pattern forming method using the phase shift mask
JP6557638B2 (en) Halftone mask and halftone mask blanks
JP2015200719A (en) Phase shift mask and method for manufacturing the same
KR101171428B1 (en) Multi-gray scale photomask and pattern transfer method
JP5414079B2 (en) FPD device manufacturing mask blank, photomask, and FPD device manufacturing mask blank design method
JP4848071B2 (en) 5-tone photomask manufacturing method and pattern transfer method
JP2009244488A (en) Defect correction method of photomask, photomask, method of manufacturing photomask, and pattern transfer method
JP2009229868A (en) Method of manufacturing gray tone mask and the tone mask, and pattern transfer method
JP2014174269A (en) Method of producing processed body and photomask used in the same
KR20090104741A (en) Method of correcting defect of photomask, photomasak and method of manufacturing the same, and pattern transfer method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539714

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147010272

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841766

Country of ref document: EP

Kind code of ref document: A1