WO2013054712A1 - Sleep assessment system and sleep assessment apparatus - Google Patents

Sleep assessment system and sleep assessment apparatus Download PDF

Info

Publication number
WO2013054712A1
WO2013054712A1 PCT/JP2012/075638 JP2012075638W WO2013054712A1 WO 2013054712 A1 WO2013054712 A1 WO 2013054712A1 JP 2012075638 W JP2012075638 W JP 2012075638W WO 2013054712 A1 WO2013054712 A1 WO 2013054712A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleep
score
determination
evaluation
epoch
Prior art date
Application number
PCT/JP2012/075638
Other languages
French (fr)
Japanese (ja)
Inventor
由佳 本田
千秋 山谷
佐々木 敏昭
松本 崇
Original Assignee
株式会社タニタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012030812A external-priority patent/JP5748290B2/en
Priority claimed from JP2012143089A external-priority patent/JP5430034B2/en
Application filed by 株式会社タニタ filed Critical 株式会社タニタ
Publication of WO2013054712A1 publication Critical patent/WO2013054712A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4815Sleep quality

Definitions

  • the present invention relates to a sleep evaluation system and sleep evaluation apparatus for evaluating the quality of sleep.
  • the quality of sleep is determined by a polysomnography (PSG) obtained by acquiring each data of electroencephalogram, eye movement and mental electromyogram and judging based on these data.
  • PSG polysomnography
  • a sleep evaluation apparatus In such a sleep evaluation apparatus, unspecified regarding sleep determination data measured by the apparatus (for example, the length of time of sleep, the amount of awakening in the middle, the amount of deep sleep, the amount of body movement, etc.) Sample data of a large number of subjects are collected and analyzed, a regression equation for determining the quality of sleep is created, and this regression equation is incorporated into the sleep evaluation device to be a product.
  • the regression equation created in this way can incorporate the same regression equation for the same type of sleep evaluation device. For example, if it is incorporated in another newly improved sleep evaluation device as it is, There is a risk that an error may occur due to a difference in apparatus.
  • a sleep evaluation system and a sleep evaluation apparatus capable of making a difference in the evaluation results of sleep quality between a sleep disordered person and a healthy person such as a patient with sleep apnea syndrome (SAS) are desired. It is.
  • the conventional sleep evaluation apparatus what calculates
  • the test subject can know the quality of the sleep state of the day by seeing such a sleep score.
  • the subject confirms the sleep score, and if the value is high, it can be known that it is “good sleep”, and if it is low, it is “bad sleep”. It is impossible to grasp at a glance whether the score was good (or bad). Also, since the sleep depth, sleep cycle, sleep time, etc.
  • the subject cannot find the quality difference only by confirming the sleep score.
  • the factor that the sleep score as described above was good (or bad) and the quality of sleep, it was necessary for the subject to read and judge from the sleep stage graph and other information. For this reason, for a subject who does not have accurate and detailed knowledge regarding sleep determination, it is likely to be a sensory evaluation, and accurate evaluation and countermeasures may not be performed properly.
  • subjects in general-use sleep evaluation devices often do not have sufficient knowledge to perform accurate evaluations themselves, so a result display format that makes it easy for such people to understand the judgment results of sleep quality Is required.
  • the present invention has an object to provide a sleep evaluation system and a sleep evaluation apparatus that use a regression equation for evaluation of a general-purpose sleep quality created based on PSG measurement data. Moreover, an object of this invention is to provide the sleep evaluation apparatus and sleep evaluation system which are easy to confirm the judgment result of the quality of sleep.
  • a sleep evaluation system includes a measurement device including biological information detection means that detects biological information of a subject and outputs the biological information as a biological signal, and sleep of the subject based on the biological signal.
  • An information processing terminal for calculating an index wherein the information processing terminal relates to at least an item relating to sleep depth extracted based on measurement data of PSG and a sleep rhythm Calculated from a principal component coefficient for each predetermined item of a sleep evaluation score obtained by performing a principal component analysis on a plurality of types of predetermined items including items and items relating to mid-wakefulness, and the biological signal of the subject Obtained by calculating a sleep evaluation score by multiplying the sleep determination data corresponding to the predetermined item, and performing logistic regression analysis on the sleep evaluation score Calculating a sleep disorder judgment probabilities, characterized by calculating the sleep index of said subject based on said sleep disorder discrimination probability.
  • apnea hypopnea index (AHI), Pittsburgh sleep quality index (PSQI), Visual Analog Scale (VSA), OSA sleep survey (OSA sleep survey) Shirawa-Azumi sleep inventory (Kwansei-gakuin Sleepiness Scale; KSS), St. Mary's Hospital Sleep Questionnaire (St. Mary's Hospital Sleep Question Scale) Epworth sleepiness scale (ESS) ), Stanford Sleepiness Scale (SSS) and the like are suitable, but it is possible to use a wide range of indices related to sleep, and the present invention is not limited to these various indices.
  • the item related to the sleep depth includes at least one of a deep sleep rate or a deep sleep appearance amount
  • the item related to the sleep rhythm includes a sleep cycle or a differential sleep cycle score.
  • at least one of sleep efficiency or number of times of awakening in the middle and long period is included.
  • the sleep evaluation score includes any one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
  • the plurality of types of predetermined items are deep sleep rate, differential sleep cycle score, total bedtime, sleep cycle, deep sleep appearance amount, differential total bedtime score, medium length It includes the number of time awakenings, the number of short-time awakenings, and sleep efficiency.
  • the sleep evaluation apparatus includes biological information detection means that detects biological information of a subject and outputs it as a biological signal, and a determination unit that calculates the sleep index of the subject based on the biological signal.
  • the determination unit includes at least an item related to sleep depth, an item related to sleep rhythm, and an item related to mid-wakefulness extracted based on measurement data of PSG A principal component coefficient for each predetermined item of a sleep evaluation score obtained by performing principal component analysis on a plurality of types of predetermined items, and sleep determination data corresponding to the predetermined items calculated from the biological signal of the subject. Multiplying to calculate a sleep evaluation score, calculating a sleep disorder discrimination probability obtained by performing a logistic regression analysis on the sleep evaluation score, and based on the sleep disorder discrimination probability Characterized by calculating the sleep index of the subject Te.
  • the item related to the sleep depth includes at least one deep sleep rate or deep sleep appearance amount
  • the item related to the sleep rhythm includes a sleep cycle or a differential sleep cycle score.
  • Including at least one of the items, and the item related to mid-wake awakening includes at least one sleep efficiency or number of mid-long-time awakenings.
  • the sleep evaluation score includes any one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
  • the plurality of types of predetermined items are deep sleep rate, differential sleep cycle score, total bedtime, sleep cycle, deep sleep appearance amount, differential total bedtime score, medium length It includes the number of time awakenings, the number of short-time awakenings, and sleep efficiency.
  • the sleep evaluation apparatus which concerns on this invention detects the biological information of a test subject, outputs the biometric signal as a biomedical signal, and the test subject's sleep state based on the said biometric signal.
  • a plurality of types including at least an item related to sleep depth, an item related to sleep rhythm, and an item related to mid-wake awakening
  • a sleep evaluation score is calculated for each of the predetermined items, and it is determined based on the sleep evaluation score whether the sleep state of the subject corresponds to a predetermined sleep type.
  • the sleep type is a type stored in advance according to a feature of sleep content
  • the determination unit uses the calculated sleep evaluation score to calculate the sleep type.
  • a determination value is calculated for each, and based on the determination value, which of the predetermined sleep types is determined is determined.
  • the sleep evaluation score used for determining which of the predetermined sleep types includes at least a sleep depth score, a sleep cycle score, and a midway awakening score, or In addition to these, a sleep time score is further included.
  • the sleep evaluation apparatus has a display unit capable of collectively displaying the sleep evaluation scores calculated for each of the plurality of types of predetermined items.
  • the sleep evaluation score displayed in a lump on the display unit includes a sleep evaluation score used to determine which of the predetermined sleep types corresponds, or these In addition to a body movement frequency score and / or a sleep habit score.
  • the sleep evaluation apparatus is characterized by having a display unit capable of displaying the sleep evaluation score calculated for each of the plurality of types of predetermined items on a radar chart.
  • the sleep evaluation system includes a measuring device including biological information detection means for detecting biological information of a subject and outputting the biological information as a biological signal, and information processing for determining the sleep state of the subject based on the biological signal.
  • a plurality of types of predetermined items including at least an item related to sleep depth, an item related to sleep rhythm, and an item related to mid-wakefulness.
  • a sleep evaluation score is calculated for each, and it is determined based on the sleep evaluation score whether the sleep state of the subject corresponds to a predetermined sleep type.
  • the regression equation for evaluating the quality of sleep is created based on the measurement data of PSG, it can be widely applied to sleep evaluation devices in general, and a new sleep evaluation device is developed. Even in this case, the development process of recreating the original regression equation can be omitted. Further, according to the present invention, the regression equation for evaluating the quality of sleep is created based on the measurement data of PSG. Therefore, the information processing terminal incorporating this regression equation and the sleep determination data acquisition device are connected. Thus, the sleep determination data of PSG can be directly substituted into this regression equation and used for the evaluation of sleep quality, which is also useful for the evaluation of sleep quality in medical institutions.
  • an item indicating how much the sleep cycle differs from a predetermined reference time and the total bedtime is a predetermined reference time. This also reflects the item of how much difference there is, so that the time used as a reference for the sleep quality evaluation is set, so that the explanatory power can be further improved.
  • a sleep depth score, a sleep cycle score, a sleep time score, a mid-wake awakening score can be calculated as a sleep evaluation score based on a plurality of types of predetermined items, and thereby a sleep cycle score is also evaluated.
  • the accuracy of the sleep quality evaluation is improved as compared with the prior art.
  • the evaluation ability of items related to sleep depth is improved.
  • the sleep evaluation system can make a difference in the sleep quality evaluation result between the sleep disorder person and the healthy person And a sleep evaluation apparatus can be provided.
  • the present invention it is determined which of the predetermined sleep types, so that the subject himself can understand what his / her sleep was very easily.
  • the sleep evaluation score includes a sleep time score and / or body movement frequency score in addition to a sleep depth score, a sleep cycle score, and a midway awakening score, so that the sleep depth, sleep cycle, sleep time, midway awakening, body From various viewpoints such as motion frequency, it becomes easier to find improvements such as what can be improved to improve sleep evaluation.
  • the sleep evaluation score can be displayed in a lump, particularly on a radar chart, the score affecting the sleep evaluation can be visualized, and the sleep contents can be easily analyzed and self-evaluated.
  • the sleep type is a type stored in advance according to the characteristics of the sleep content, and the determination value for each sleep type is calculated using the calculated sleep evaluation score. It becomes possible. As a result, provision of advice for each sleep type can also be automated.
  • FIG. 1 is an external view when the sleep evaluation apparatus 1 is used
  • FIG. 2 is a block diagram of the sleep evaluation apparatus 1.
  • the sleep evaluation device 1 is connected to the sensor unit 2 (biological information detection means) that detects biological information of a subject lying on the bedding and outputs it as a biological signal, and is in the sleep stage.
  • a control box 3 that performs determination and evaluation of sleep quality.
  • the control box 3 includes a display unit 4 that performs guidance display such as a sleep stage determination result and a sleep evaluation index, and an operation unit 5 that performs operations such as power on / off or measurement start / end.
  • the sensor unit 2 detects, for example, a pressure fluctuation of a mattress enclosing an incompressible fluid by using a microphone (for example, a condenser microphone). As shown in FIG. It is intended to detect changes in the biological signal and posture of the subject in the supine position.
  • a microphone for example, a condenser microphone
  • the CPU 6 also includes a biological data detection unit 7 that detects each of a respiratory signal, a body motion signal, and a heartbeat signal from the biological signal detected by the sensor unit 2, a determination unit 8 that performs various determinations and calculations for sleep evaluation, A storage unit 9 that stores various conditional expressions, determination results, and calculation results for sleep stage determination and sleep evaluation, an evaluation unit 20 that evaluates sleep quality, and a power supply 10 that supplies power to the sleep evaluation device 1 And connected to.
  • the CPU 6 includes a control unit that controls the sleep evaluation apparatus 1 and a time measuring unit that measures time.
  • the determination unit 8 includes an entering / leaving determination unit 11, a body movement determination unit 12, a wake determination unit 13, a sleep determination unit 14, a deep sleep determination unit 15, a REM / light sleep determination unit 16, a midway An awakening determination unit 17 and a wakeup determination unit 18 (not shown) are included. Each of these determination units will be described later using a flowchart.
  • the determination unit 8 includes a sleep determination data calculation unit 30 (not shown), a sleep evaluation score calculation unit 40 (not shown), and a discrimination probability calculation unit 50 (not shown).
  • the sleep determination data calculation unit 30 calculates sleep determination data (a plurality of variable data) as a basis for calculating a sleep evaluation score (described later).
  • Sleep determination data includes deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, mid-long time awakening It is preferable to use nine types of data such as the number of times (times), the number of times of short-term awakening (times), and sleep efficiency (%).
  • the sleep determination data calculation unit 30 the deep sleep rate calculation unit, the difference sleep cycle score calculation unit, the total bedtime calculation unit, the sleep cycle calculation unit, the deep sleep appearance amount calculation unit, the difference total bedtime score calculation unit , A medium / long-time wake-up number calculating section, a short-time wake-up number calculating section, and a sleep efficiency calculating section (all not shown).
  • a sleep evaluation system and a sleep evaluation device using these nine types of sleep determination data will be described, but sleep determination data (variable data) other than these may be further added.
  • Deep sleep rate (%) means the ratio of deep sleep in sleep time, and “(deep sleep time / sleep time) ⁇ 100”, that is, “(deep sleep time / (time from falling asleep to final awakening)” ) ⁇ 100 ”.
  • the differential sleep cycle score is a score representing how much the sleep cycle (minute) is different from the reference time (for example, 90 minutes). “ ⁇
  • the value of the differential sleep cycle score is ⁇ 30.
  • Total bedtime (minutes) means the time from bed to bed.
  • the sleep cycle (minutes) means an average value of the cycle when one cycle is from the end of the REM sleep to the end of the next REM sleep. However, the first period is from the end of sleep to the end of REM sleep that appears first.
  • Deep sleep appearance amount (minute) means the sum total of deep sleep time.
  • the difference total bedtime score is a score indicating how much the total bedtime (minutes) is different from the reference time (for example, 6.5 hours (390 minutes)). “ ⁇
  • (
  • the value of the difference total bedtime score is 0 and shows the maximum value, and the total bedtime is 420 minutes. Alternatively, if it is 360 minutes, the value of the difference total bedtime score is ⁇ 30.
  • the number of awakening times (times) means the number of times of awakening over a reference time (for example, 2 minutes 30 seconds) that appears during sleep.
  • the number of short-time awakenings (times) means the number of times of awakening within a reference time (for example, 2 minutes) that appears during sleep.
  • the sleep efficiency (%) means the ratio of the actual sleep time to the total bedtime, which is “(total sleep time / total bedtime) ⁇ 100”, that is, “((total bedtime ⁇ sleeping time) (Total sum of hours awakened) / total bedtime) ⁇ 100 ”.
  • the nine types of sleep determination data are extracted as having good correlation between the PSG measurement data and the measurement data of the existing sleep evaluation device, and in particular (as an example, 90 Since it has a differential sleep cycle score (based on minutes) and a differential total bedtime score (based on 6.5 hours (390 minutes) as an example), it also has a sleep time and sleep cycle not found in the prior art It is possible to calculate the sleep quality evaluation in consideration, that is, the sleep score, and to improve the correlation of the sleep score with respect to the result of the sleep determination of PSG.
  • the sleep evaluation score calculation unit 40 calculates a sleep evaluation score that is a basis for evaluation of sleep quality.
  • the sleep evaluation score is composed of a four-component score including a sleep depth score as the first component score, a sleep cycle score as the second component score, a sleep time score as the third component score, and a mid-wake score as the fourth component score. It is preferable to do this. Therefore, the sleep evaluation score calculation unit 40 includes a sleep depth score calculation unit, a sleep cycle score calculation unit, a sleep time score calculation unit, and a midway awakening score calculation unit (all not shown). When evaluating the quality of sleep more accurately, the depth of sleep, the sleep cycle, the sleep time, and the degree of arousal during mid-level are important indicators. Therefore, in the present embodiment, the four types of component scores are used. Although the sleep evaluation device will be described, sleep evaluation scores other than these may be further added.
  • the discrimination probability calculation unit 50 calculates a discrimination probability (described later) indicating the probability of being a sleep disorder person such as a SAS patient.
  • the evaluation unit 20 calculates a sleep score (sleep index) based on the sleep evaluation score calculated by the sleep evaluation score calculation unit 40 based on the sleep determination data and the determination probability calculated by the determination probability calculation unit 50.
  • the result of sleep quality evaluation including this sleep score is displayed on the display unit 4.
  • the processes executed by the sleep determination data calculation unit 30, the sleep evaluation score calculation unit 40, the discrimination probability calculation unit 50, and the evaluation unit 20 will be described later using each flowchart.
  • the biometric data detection unit 7, the determination unit 8, the evaluation unit 20, the sleep determination data calculation unit 30, the sleep evaluation score calculation unit 40, and the discrimination probability calculation unit 50 are executed by the CPU 6 executing a predetermined program. Those functions may be realized.
  • FIG. 3 is a flowchart showing a main operation
  • FIG. 4 is a flowchart showing a flow of sleep stage determination using the respective determination units 11 to 18.
  • step S when the sleep evaluation apparatus 1 is turned on by turning on the operation unit 5, the guidance for instructing to take a sleeping posture and perform the measurement start operation of the operation unit 5 in step S ⁇ b> 1. Is displayed on the display unit 4 to determine whether or not a measurement start operation has been performed. If measurement start operation is not performed, it will progress to NO and will continue displaying the said guidance in step S1.
  • the process proceeds to YES, and in step S2, a biological signal is detected by the sensor unit 2 and stored in the storage unit 9 as biological signal data together with the time measured by the time measuring unit built in the CPU 6.
  • step S3 it is determined whether or not the measurement end operation has been performed. If the measurement end operation has not been performed, the process proceeds to NO. The detection and storage of the biological signal in step S2 is continued, and if the measurement end operation has been performed, the process proceeds to YES.
  • step S4 each part is controlled to process the biological signal detected by the control part in CPU6. That is, the biological signal data stored in the storage unit 9 is read out, the biological data detection unit 7 detects the respiratory signal, the body motion signal, and the heartbeat signal, and the respective waveforms obtained from these respiratory signal, body motion signal, and heartbeat signal. Are stored in the storage unit 9 as respiratory data, body movement data, and heartbeat data.
  • respiratory data, body movement data, and heart rate data are stored for each unit section having a predetermined time, for example, 30 seconds as one unit (hereinafter, this unit section is referred to as “epoch”).
  • this unit section is referred to as “epoch”.
  • the length of the epoch is not limited to 30 seconds, and can be set to an arbitrary value within a range that does not impair the accuracy of determination.
  • respiration data, body motion data, and heart rate data are detected and stored for all the biological signal data stored in the storage unit 9, the respiration data, body motion data, and heart rate data are stored in step S5.
  • a sleep stage determination (described later) is performed.
  • step S6 based on the result of the sleep stage determination, the sleep determination data (a plurality of variable data) is calculated, the sleep evaluation score is calculated, and the discrimination probability is calculated to calculate the sleep score.
  • step S ⁇ b> 7 the result of the sleep quality evaluation including the sleep score is displayed on the display unit 4.
  • step S8 it is determined whether or not a power-off operation has been performed on the operation unit 5. If the power-off operation has not been performed, the process proceeds to NO, and the display in step S7 is continued. If the power-off operation has been performed, the process proceeds to YES. Then, the sleep evaluation apparatus 1 is turned off and the process ends.
  • the determination unit 8 is controlled by the CPU 6 and sequentially performs the following determination processing based on the respiratory data, body movement data, and heart rate data stored for each epoch in the storage unit 9 in step S4 of FIG. .
  • step S11 the entrance / leaving determination unit 11 determines whether to enter or leave the floor between the start of measurement and the end of measurement based on changes in respiratory data, body movement data, and heart rate data. Make a decision.
  • step S12 body motion determination step
  • the body motion determination unit 12 performs rough body motion that is a large motion such as rolling over based on the amplitude or period of a waveform obtained from respiratory data, body motion data, and heart rate data.
  • the states of small body movements such as snoring and non-body movements obtained in a stable breathing / heartbeat / body movement state, it is determined which state each epoch is in.
  • step S13 the awake determination unit 13 determines whether or not the state is a clear awake state based on the determined body movement state.
  • step S14 the sleep onset determination unit 14 determines in which epoch the sleep state has shifted from the awakened state immediately after entering the bed (hereinafter referred to as the sleep onset period or sleep onset latency).
  • step S15 deep sleep determination step
  • the deep sleep determination unit 15 determines whether or not the patient is in a deep sleep state from the fluctuations in the respiratory data and the heart rate data and the determined body movement state.
  • step S16 the REM / shallow sleep determination unit 16 determines whether the deep sleep determination unit 15 determines that the sleep state is a REM sleep state or a shallow sleep state. Determine whether.
  • step S ⁇ b> 17 the midway awakening determination unit 17 determines the presence or absence of an awakening state during the sleep state based on the duration of body movement.
  • step S18 the wakeup determination unit 18 determines in which epoch the transition from the sleep state to the wakeup state (hereinafter referred to as a wakeup section) is made.
  • the process returns to the flowchart showing the main operation in FIG. 3, and after the sleep score calculation process in step 6 is executed, the result of the sleep quality evaluation including the sleep score in step S ⁇ b> 7. Is displayed.
  • each of the determination units 11 to 18 will be described step by step with reference to the flowcharts of FIGS. However, it is assumed that the constants indicated by alphabets and the like are set based on the correlation between sleep stage determination based on polysomnographic examination data and actual measurement data obtained by the sleep evaluation device 1.
  • step S23 A is the minimum value of the respiratory amplitude that is recognized when a person is in the normal supine position, and the amplitude of the respiratory waveform in the epoch n is greater than or equal to the magnitude t (sec). It is determined whether or not the process continues (see FIG. 6). Here, A and t are constants, and t ⁇ unit time. If this is the case, it is determined that respiration is detected, and the process proceeds to YES.
  • step S24 the subject is determined to be in the floor, and the epoch n is determined to be the floor section.
  • step S25 the corresponding epoch is detected.
  • n is stored in the storage unit 9 in association with n.
  • step S23 If the condition in step S23 is not satisfied, it is determined that no respiration is detected, and the process proceeds to NO.
  • step S27 the subject is determined to be out of bed, and epoch n is determined as a bed leaving section.
  • step S25 it is stored in the same manner as described above.
  • the total bedtime calculation unit and the differential total bedtime score calculation unit are configured to calculate the total bedtime (minutes) and the differential total employment as the sleep determination data.
  • the floor time score can be calculated.
  • the sleep efficiency calculation unit can calculate “total bedtime” necessary for calculating sleep efficiency (%).
  • the process of the body movement determination part 12 is demonstrated using the flowchart of FIG.
  • the process of the body movement determination unit first determines the magnitude of body movement from the amplitude of the waveform of the respiratory signal regardless of the epoch n, and then, depending on the presence or absence of the determined body movement in the epoch n, The body movement state of each epoch n is determined.
  • step S43 it is determined whether or not the read epoch n contains the respiratory waveform determined to be in the rough body movement state. Judged as a section. If not, the process proceeds to NO.
  • step S45 it is determined whether or not the epoch n has the respiratory waveform determined to be the thin body movement state. If there is, the process proceeds to YES.
  • Epoch n is determined to be a thin body motion section. If not, the process proceeds to NO, and in step S47, this epoch n is determined to be a non-movement section.
  • the process proceeds to YES, and the five sections are read from the storage unit 9.
  • the body motion value Z of each epoch in the five sections is obtained.
  • the sum of the body motion values Z of the five sections hereinafter, the sum of Z may be referred to as ⁇ Z).
  • step S59 the epoch n is changed to an unstable interval in which the respiratory state is relatively unstable and the possibility of a REM sleep or a shallow sleep state is high. Is determined. If the sum of Z is not within the above range, that is, if the sum of Z ⁇ 4, the process proceeds to NO, and the epoch n can be in a deep sleep state or a shallow sleep state where the respiratory state is relatively stable. Judged as a stable section with high characteristics.
  • the sleep detection unit 14 In order to determine an epoch (hereinafter referred to as a sleep interval) that shifts from the initial awake state immediately after entering the bed to the sleep state, the awake determination unit 13 described in detail in FIG.
  • the sleep interval is defined by determining the initial awake interval in more detail based on the person's sleep tendency.
  • step S73 it is determined whether or not the read epoch n is the unstable section detailed in FIG. However, this unstable section is an unstable section that appears for the first time after the continuation of the initial awakening section. Therefore, if it is not an unstable section, the process proceeds to NO, this epoch is replaced and stored as an awakening section, and the processing from step S72 is repeated until the unstable section is read again.
  • the process proceeds to YES, and it is determined whether or not there is an epoch determined to be a wake-up section between the epoch n and the predetermined number of sections C1.
  • the epoch n is a sleep interval, it is difficult to wake up immediately after falling asleep in human sleep. Therefore, the predetermined number of intervals C1 is assumed that the person does not normally wake up immediately after falling asleep. A constant with a range set.
  • step S75 the epoch n is set as the sleep (temporary) section, and the sleep section is determined more strictly by the processing after step S77.
  • step S77 is awakening up to which epoch among the epochs determined to be unstable after the sleep (temporary) interval, based on three respiratory fluctuation trends near the person's sleep, found by actual measurement.
  • the epoch immediately after that is determined as a sleep interval by determining whether it should be replaced as an interval.
  • step S77 out of each epoch determined to be an entrance section by the entrance / leaving determination unit 11 described in detail with reference to FIG.
  • the variance ⁇ 2 with respect to the respiratory rate for each epoch is obtained.
  • the number of constant intervals ⁇ , ⁇ and ⁇ from the sleep (provisional) interval (where ⁇ , ⁇ and ⁇ are constants set as ⁇ ⁇ ⁇ , and the three The time interval suitable for discriminating the respiratory fluctuation tendency is calculated and set from actual measurement.)
  • the epochs that set each range are the ⁇ range, ⁇ range, and ⁇ range up to the incremented range. Are defined as an ⁇ section, a ⁇ section, and a ⁇ section, respectively, and in the same manner as the reference range, the variance of the respiration rate of each of these ranges is obtained and is set as ⁇ 2 , ⁇ 2, and ⁇ 2 . Based on these variances ⁇ 2 , ⁇ 2 , ⁇ 2, and ⁇ 2 , the three respiratory fluctuation tendencies are determined as Condition D, Condition E, and Condition F, respectively.
  • the first respiratory fluctuation tendency is that a subject's breathing variation is rapidly reduced to a sleep state. Therefore, in step S78, the determination is made based on the condition D defined by the expression “ ⁇ 2 > ⁇ 2 (Expression 1)” and “ ⁇ 2 ⁇ C2 (Expression 2)”. That is, as shown in the above equation 1, the variation in the respiratory rate rapidly decreases as the range increases, and as shown in the above equation 2, the variance accompanying the increase in the population becomes smaller than a certain number C2. It is.
  • C2 is a constant that can be determined to be significantly close to the variation in respiratory rate that appears after falling asleep. When this condition D is satisfied, it can be determined that the ⁇ section is already in the sleeping state.
  • step S79 it is determined that at least the ⁇ section is the awakening section, and the epoch immediately after the ⁇ section is determined as the sleep period. If the condition D is not met, the process proceeds to NO, and in step S80, the second respiratory fluctuation tendency is determined.
  • the second tendency of respiratory fluctuation is that a subject's breathing variation is gradually reduced to a sleep state. Therefore, it is determined by the condition E defined by the expression “ ⁇ 2 ⁇ C3 ⁇ ⁇ 2 ⁇ ⁇ 2 (Expression 3)”.
  • C3 is a constant satisfying C3 ⁇ 1, and is reduced by some percent with respect to variations in the reference range.
  • step S79 since the variation is very gradual but tends to decrease, it is determined that the ⁇ period is the awakening period. The epoch immediately after is determined as the sleep interval. On the other hand, if the condition E is not satisfied, the process proceeds to NO, and the third respiratory fluctuation tendency is determined in step S81.
  • the third respiratory fluctuation tendency is that the fluctuation of the subject's breathing once decreases after the fluctuation once increases compared with the breathing fluctuation of the reference range. Therefore, it is determined by the condition F defined by the expressions “ ⁇ 2 ⁇ 2 (Expression 4)” and “ ⁇ 2 ⁇ 2 (Expression 5)”.
  • this tendency is a phenomenon seen in a relatively long span as compared with the conditions D and E, the conditions using the ⁇ range and the ⁇ range are used.
  • step S79 at least the ⁇ section in which the variation has increased is determined to be an awakening section, and the epoch immediately after the ⁇ section is determined. Determine as sleep interval.
  • step S82 the number of sections ⁇ , ⁇ , and ⁇ is increased by the number of sections ⁇ , respectively, and an ⁇ range, ⁇ After resetting each of the range and the ⁇ range, the process returns to step S78 again, and the conditions D, E and F are repeated until the sleep interval is determined.
  • the sleep interval calculation unit calculates “sleep time” necessary for calculating the deep sleep rate (%), that is, “from sleep onset to final awakening”. Can be calculated.
  • the sleep efficiency calculation unit calculates the “total amount of time awakened during sleep” necessary for calculating sleep efficiency (%). Is possible.
  • the process of the deep sleep determination part 15 is demonstrated using the flowchart of FIG.
  • breathing has a gentle constant rhythm, and body movement hardly occurs, so the following determination is performed.
  • the condition G is “respiration rate in epoch n ⁇ H1”, “standard deviation of the period of the respiratory waveform in epoch n ⁇ H2”, and “difference in respiratory rate between epoch n and ⁇ 1 interval of epoch n ⁇ H3” ”And“ Epoch n is a bodyless motion section ”, the epoch n is determined as a deep sleep section (where H1, H2, and H3 are constants obtained by actual measurement. ).
  • step S95 the epoch n is determined to be a deep sleep section, and the determination result is stored in the storage unit 9 in step S96. . If the condition G is not satisfied, the process proceeds to NO.
  • step S97 it is determined that it is an unstable section.
  • step S96 the stable section is replaced as an unstable section and stored in the storage unit 9.
  • step S98 it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO, and the steps from step S92 are repeated again. The process returns to the flowchart of FIG.
  • the deep sleep appearance amount calculation unit can calculate the deep sleep appearance amount (minute) as the sleep determination data. Further, based on the processing result of the deep sleep determination unit 15, the deep sleep rate calculation unit can calculate “deep sleep time” necessary for calculating the deep sleep rate (%).
  • the processing of the REM / light sleep determination unit 16 will be described using the flowchart of FIG.
  • the REM sleep state since the increase and fluctuation of the respiration rate occur continuously and the body movement increases, the following determination is performed.
  • the condition I is determined as follows: “Average value of respiration rate in epoch ⁇ respiration rate of epoch n”. That is, as described above, since an increase in respiratory rate is observed in REM sleep, it is determined whether the respiratory rate of the epoch n is higher than the average respiratory rate during sleep. .
  • the stable section during sleep (that is, the deep sleep state or the shallow sleep state) is determined based on the determination of the condition K that “the number of stable sections in the entire bed section / (the number of all bed sections ⁇ the awake section) ⁇ k”.
  • step S107 When the REM sleep interval and the light sleep interval are determined, they are stored in the storage unit 9 in association with each epoch n in step S107.
  • step S108 the continuation number j is once reset to 0, and in step S109, all epoch nmax
  • step S102 it is determined whether the above determination has been made. If all epochs have not been determined, the process proceeds to NO. The steps from step S102 are repeated, and if all epochs have been determined, the process proceeds to YES. Return to the next determination.
  • the sleep cycle calculation unit and the differential sleep cycle score calculation unit may calculate a sleep cycle (minutes) and a differential sleep cycle score as the sleep determination data. It becomes possible.
  • the process of the midway awakening determination unit 17 will be described using the flowchart of FIG. Even in the sleep state, if the body movement continues for a certain time or more, it can be understood that the user has awakened in the middle, and the following determination is made.
  • step S123 the read epoch n is n ⁇ nmax, and the coarse body motion, the fine body motion, and the non-body motion determined by the body motion determination unit 12 described in detail in FIG. It is determined whether it is either a section or a thin body movement section (hereinafter referred to as a body movement section).
  • each epoch is replaced with an awakening interval and stored in the storage unit 9, and in step S127, The number of continuations m is once reset to zero.
  • step S1208 it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO. The steps from step S102 are repeated again, and if all epochs have been determined, YES is determined. In the middle awakening condition determination described in detail in FIG. 17, the middle awakening is determined in detail according to each condition defined based on the tendency of the person during the middle awakening, found by the inventors. After this determination is made, the process returns to the flowchart of FIG. 4 and proceeds to the next determination.
  • the medium / long-time awakening frequency calculation unit and the short-time awakening frequency calculation unit calculate the medium / long-time awakening frequency (times) and the short-time awakening frequency as the sleep determination data ( Times) can be calculated.
  • the state of motion is obtained as the sum of U (hereinafter referred to as ⁇ U).
  • step S140 it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO. The steps from step S132 are repeated again, and if all epochs have been determined, YES is determined. Proceed and return to the flowchart of FIG.
  • step S154 it is determined whether or not there is a wake-up section in each epoch that goes back from the wake-up (temporary) section to a certain number of sections R.
  • the certain number of intervals R defines the certain time. If the awakening interval exists, the process proceeds to YES, and in step S158, each epoch from the detected awakening interval to the wake-up (temporary) interval is defined as an awakening interval.
  • step S154 the detected awakening is detected.
  • the epoch immediately before the section is newly redefined as a wake-up (temporary) section, and the fixed section number R is set again in step S155.
  • step S155 if there is no awakening section up to a certain number of sections R, the process proceeds to NO.
  • step S156 the wake-up (temporary) section is determined as the wake-up section.
  • step S157 The information is stored in the storage unit 9 in association with the corresponding epoch n, and the process returns to the flowchart showing the main operation in FIG.
  • the deep sleep rate calculation unit calculates “sleep time” necessary for calculating the deep sleep rate (%), that is, “time from falling asleep to final awakening”. It becomes possible to do.
  • a sleep score (sleep index) that comprehensively indicates the level of sleep quality is calculated by calculation.
  • the above-described bed / bed determination, body movement determination, arousal determination, sleep determination, deep sleep determination, REM / light sleep determination, mid-wake determination, Sleep determination data (e.g. deep sleep time, number of mid-wakefulness) indicating sleep state can be obtained by wakeup determination.
  • sleep determination data can evaluate the quality of sleep to some extent by itself, the evaluation by itself only evaluates a part of the sleep state.
  • a plurality of predetermined items (variables) reflecting “depth”, “cycle”, “time”, and “halfway awakening” of sleep are extracted from PSG measurement data, and existing sleep is extracted.
  • variables correlated with the evaluation device deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, The number of mid- and long-term awakenings (times), short-time awakenings (times), and sleep efficiency (%) were selected.
  • a principal component analysis is performed to develop a sleep evaluation score, and this sleep evaluation score and sleep apnea syndrome risk are reflected.
  • a sleep evaluation score is selected by a principal component analysis method in order to derive a sleep score that is an evaluation index for comprehensively evaluating the quality of sleep.
  • a plurality of predetermined items are measured by PSG.
  • predetermined items deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score The number of wakefulness (medium / long-time), the number of short-time wakefulness (times), and sleep efficiency (%).
  • a correlation coefficient between the plurality of predetermined items is calculated to obtain a correlation matrix.
  • the correlation matrix based on the nine items is given by the determinant shown in the following formula (1).
  • r11 to r99 are correlation coefficients.
  • first to ninth principal components Z1 to Z9 and eigenvectors a11 to a99 are calculated based on the correlation matrix. These are given by the following equations (2) to (7).
  • Z1 a11X1 + a12X2 + a13X3 + a14X4 + a15X5 + a16X6 + a17X7 + a18X8 + a19X9
  • Z2 a21X1 + a22X2 + a23X3 + a24X4 + a25X5 + a26X6 + a27X7 + a28X8 + a29X9
  • Z3 a31X1 + a32X2 + a33X3 + a34X4 + a35X5 + a36X6 + a37X7 + a38X8 + a39X9
  • Z4 a41X1 + a42X2 + a43X3 + a44X4 + a45X5 + a
  • the eigenvectors a11 to a99 appropriately reflect the meanings of the first to ninth principal components Z1 to Z9.
  • the reason why the eigenvectors a11 to a99 do not appropriately reflect the meanings of the first to ninth principal components Z1 to Z9 is that the item is selected incorrectly. For this reason, the set of items is rejected and another set of items is adopted.
  • eigenvalues ⁇ 1 to ⁇ 9 of the first to ninth principal components Z1 to Z9 are obtained from the following determinant.
  • the eigenvalues ⁇ 1 to ⁇ 9 are related to the dispersion of the first to ninth principal components Z1 to Z9.
  • the contribution ratios of the first to ninth main components Z1 to Z9 are calculated.
  • the contribution rate is the ratio of the eigenvalues of each principal component to the total of all eigenvalues.
  • the contribution rate is obtained by dividing each eigenvalue ⁇ 1 to ⁇ 9 by “9” which is the number of principal components.
  • the first principal components Z1 to Z9 are arranged in descending order of contribution, and when the cumulative contribution exceeds 0.8, the previous principals are adopted as sleep evaluation scores. For example, when analysis of principal components is given in the following table and K3 ⁇ 0.8 ⁇ K4, up to the fourth principal component is adopted as the sleep evaluation score.
  • the factor loading is calculated by multiplying the eigenvector by the square root of the eigenvalue, and those below a predetermined reference value (for example, 0.5) are deleted. Needless to say, it may be used without being deleted. As described above, through the first to eighth steps, four sleep evaluation scores are selected, and expressions (20) to (23) described later are derived.
  • the four sleep evaluation scores are obtained by multiply-adding each of the nine items X1 to X9 and the first coefficients a11 to a99 shown in the equations (2) to (10). Since the first coefficients a11 to a99 are eigenvectors, the four sleep evaluation scores are in a linearly independent relationship with each other. That is, four sleep evaluation scores having smaller correlation coefficients than any two of the nine items are generated. Therefore, the sleep evaluation score is obtained by aggregating a plurality (nine in the present embodiment) of predetermined items (variables) from the viewpoint of sleep, and each expresses a characteristic of sleep.
  • the predetermined items include deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, Select the number of mid- and long-term awakenings (times), short-time awakenings (times), and sleep efficiency (%). Based on these, four sleep evaluation scores are selected by the principal component analysis method.
  • a “sleep depth score”, a “sleep cycle score” as the second principal component, a “sleep time score” as the third principal component, and a “halfway awakening score” as the fourth principal component could be obtained.
  • “Sleep depth score” is an item indicating deep sleep
  • “sleep cycle score” is an item indicating sleep cycle
  • “sleep time score” is an item indicating sleep time
  • “midway awakening score” is an item indicating midway awakening.
  • FIG. 19 is a flowchart showing the flow of each calculation in the sleep score calculation process.
  • FIGS. 20 to 26 show the calculation processes in steps S165, S167, S168, S169, S170, S171, and S172. It is a flowchart which shows the detailed flow of.
  • FIG. 28 is a time chart for explaining predetermined items calculated in the calculation processing. In the following description, it is assumed that the CPU 6 executes these processes according to a predetermined program.
  • This sleep score calculation process is executed after the subject has completely awakened (that is, woken up).
  • the state in which the subject is completely awakened may be determined to be a complete awakening state when a state in which the subject's breathing is not detected continues for a predetermined period, or a measurement start / end button ( (Not shown) may be provided, and when the end button is pressed down, it may be determined that the state is completely awake.
  • storage part 9 memorize
  • Deep sleep rate (%) means the ratio of deep sleep in sleep time, and “(deep sleep time / sleep time) ⁇ 100”, that is, “(deep sleep time / (time from falling asleep to final awakening)” ) ⁇ 100 ”.
  • “Sleep time” necessary for calculating the deep sleep rate (%), that is, “time from falling asleep to final awakening” is determined by the sleep determination unit 14 as a sleep interval and the associated epoch is read to It is calculated by incrementing to an epoch that is determined to be an awakening section by the determination unit 13 and associated therewith.
  • “deep sleep time” is the total number of epochs of deep sleep time from the start to the end of the measurement (time t0 to te). What is necessary is just to calculate similarly to quantity DT (min).
  • the differential sleep cycle score is a score representing how much the sleep cycle (minute) is different from the reference time (for example, 90 minutes). “ ⁇
  • (
  • the reference time may be 90 minutes, for example, but is not particularly limited.
  • Total bedtime means the time from bed to bed. What is necessary is just to calculate as a sum total of the epochs which are determined to be in the floor-entry state by the floor-in / bed-out determination unit 11 and are associated with each other.
  • the CPU 6 executes a sleep cycle calculation process in step S164 of FIG.
  • the average value may be calculated based on the epoch that is determined to be the REM sleep section by the REM / shallow sleep determination unit 16 and is associated with the difference sleep cycle score calculation process.
  • the difference total bedtime score is a score indicating how much the total bedtime (minutes) is different from the reference time (for example, 6.5 hours (390 minutes)).
  • the total bedtime (minutes) may be calculated as the total number of epochs that are determined to be in the bedded state by the bed / leaving determination unit 11 and associated with each other, as in the total bedtime calculation process.
  • the CPU 6 proceeds to the medium / long-time awakening number calculation process in step S167 of FIG. 19 and executes the medium / long-time awakening number calculation process shown in FIG.
  • the number of awakening times (times) means the number of times of awakening over a reference time (for example, 2 minutes 30 seconds) that appears during sleep.
  • the process proceeds to the epoch next to the first epoch (step S191).
  • step S192 it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, then in step S193, it is determined whether or not the awakening continues for T minutes or more.
  • step S195 the epoch is advanced by the number of continued awakenings, and the process returns to step S191.
  • the determination condition in step S193 is negative, the process returns to step S191.
  • steps S191 to S195 or steps S191 to S193 is repeated until it is determined in step S192 that the epoch to be determined is the final epoch Ee. If the determination condition in step S192 is affirmed, the medium / long-term awakening count calculation process ends, and the routine returns to the flowchart of FIG.
  • the CPU 6 proceeds to the short-time awakening count calculation process in step S168 of FIG. 19 and executes the short-time awakening count calculation process shown in FIG.
  • the number of short-time awakenings means the number of times of awakening within a reference time (for example, 2 minutes) that appears during sleep.
  • the process proceeds to the epoch next to the first epoch (step S231).
  • step S232 it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, it is determined in step S233 whether or not the awakening continues for less than T minutes.
  • step S235 the epoch is advanced by the number of continued awakenings, and the process returns to step S231.
  • the determination in step S233 is negative, the process returns to step S231.
  • steps S231 to S235 or steps S231 to S233 is repeated until it is determined in step S232 that the epoch to be determined is the final epoch Ee. If the determination in step S232 is affirmed, the short-time awakening count calculation process ends, and the routine returns to the flowchart of FIG.
  • the sleep efficiency (%) means the ratio of the actual sleep time to the total bedtime, which is “(total sleep time / total bedtime) ⁇ 100”, that is, “((total bedtime ⁇ sleeping time) (Total sum of hours awakened) / total bedtime) ⁇ 100 ”. That is, the sleep efficiency SE is the total number of epochs from the start of measurement (time t0 in FIG. 28) to the end (time te), which is IA, and the epoch determined to be awake in determination step S183 described later.
  • step S181 the CPU 6 first proceeds to the next epoch. Subsequently, in step S182, it is determined whether or not the epoch is an epoch immediately before the transition to the complete awake state (final epoch Ee in FIG. 28). If this determination is negative, it is determined whether or not the epoch is awake (step S183). If the determination result is affirmative, the process proceeds to step S184, the value of the awakening epoch number (I) is incremented, the process returns to step S181, and the process proceeds to the next epoch.
  • step S182 it is determined whether or not the epoch is an epoch immediately before the transition to the complete awake state (final epoch Ee in FIG. 28). If this determination is negative, it is determined whether or not the epoch is awake (step S183). If the determination result is affirmative, the process proceeds to step S184, the value of the awakening epoch number (I) is incremented, the process returns to step S
  • step S183 determines whether the determination condition in step S183 is negative. If the determination condition in step S183 is negative, the process returns to step S181 without incrementing the value of the number of awakening epochs (I).
  • the CPU 6 repeats the processes of steps S181 to S183 or steps S181 to S184 unless the determination result of step S182 is positive.
  • each data standardization process the standardization process of the value of the sleep determination data acquired in steps S161 to S169 described above is executed.
  • each average Za and standard deviation Za are each average value and standard deviation value (fixed values) of deep sleep rate Za in the population based on the measurement data of PSG.
  • the population is, for example, a group of X people in their 20s when the subject's age is in their 20s.
  • the test subject inputs his / her parameters (for example, age and sex) in advance using the operation unit 5 to select data regarding an appropriate population and use it for the standardization process. Data regarding this population is stored in the storage unit 9 in advance.
  • the CPU 6 reads the average value and the standard deviation from the storage unit 9 and executes the calculation of step S241. The same applies to the processing in steps S242 to S249.
  • each sleep determination data is standardized.
  • the standard value of each sleep determination data is obtained by the following formulas (12) to (19) (steps S242 to S249).
  • Difference sleep cycle score Zb (st) (Zb ⁇ average Zb) / standard deviation Zb (12)
  • Total bedtime Zc (st) (Zc ⁇ average Zc) / standard deviation Zc (13)
  • Sleep cycle Zd (st) (Zd ⁇ average Zd) / standard deviation Zd (14)
  • Deep sleep appearance amount Ze (st) (Ze ⁇ average Ze) / standard deviation Ze (Equation 15)
  • Difference total bedtime score Zf (st) (Zf ⁇ average Zf) / standard deviation Zf (16)
  • Number of middle and long awakenings Zg (st) (Zg ⁇ average Zg) / standard deviation Zg (17)
  • Number of short-time awakenings Zh (st) (Zh ⁇ average Zh) / standard deviation Zh (18)
  • Sleep efficiency Zi (st) (Zb
  • each principal component score calculation process the standard value of each sleep determination data acquired in step S170 described above is used for the calculation.
  • the principal component score calculation process a plurality of types of predetermined items including at least items related to sleep depth, items related to sleep rhythm, and items related to mid-wake awakening extracted based on PSG measurement data Sleep evaluation by multiplying the principal component coefficient for each predetermined item of the sleep evaluation score obtained by performing the principal component analysis on the sleep determination data corresponding to the predetermined item calculated from the biological signal of the subject Calculate the score.
  • the nine sleep determination data are deep sleep rate Za, differential sleep cycle score Zb, total bedtime Zc, sleep cycle Zd, deep sleep appearance amount Ze, differential total bedtime score Zf, medium From the long-time awakening count Zg, the short-time awakening count Zh, and the sleep efficiency Zi, four sleep evaluation scores, that is, a “sleep depth score”, a “sleep cycle score”, a “sleep time score”, and a “halfway awake score” calculate.
  • the CPU 6 calculates the “sleep depth score”, “sleep cycle score”, “sleep time score”, and “halfway awakening score” according to the following equations (20) to (23) (steps S251 to S254).
  • First principal component score Coefficient C1a * Standard value Za (st) + Coefficient C1b * Standard value Zb (st) + Coefficient C1c * Standard value Zc (st) + Coefficient C1d * Standard value Zd (st) + Coefficient C1e * Standard value Ze (st) + Coefficient C1f * Standard value Zf (st) + Coefficient C1g * Standard value Zg (st) + Coefficient C1h * Standard value Zh (st) + Coefficient C1i * Standard value Zi (st) Equation (20)
  • Second principal component score Coefficient C2a * Standard value Za (st) + Coefficient C2b * Standard value Zb (st) + Coefficient C2c * Standard value Zc (st) + Coefficient C2d * Standard value Zd (st) + Coefficient C2e * Standard value Ze (st) + Coefficient C2f * Standard value Zf (st) + Coefficient C2g * Standard value Zg (st) + Coefficient C2h * Standard value Zh (st) + Coefficient C2i * Standard value Zi (st) Equation (21)
  • Third principal component score Coefficient C3a * Standard value Za (st) + Coefficient C3b * Standard value Zb (st) + Coefficient C3c * Standard value Zc (st) + Coefficient C3d * Standard value Zd (st) + Coefficient C3e * Standard value Ze (st) + Coefficient C3f * Standard value Zf (st) + Coefficient C3g * Standard value Zg (st) + Coefficient C3h * Standard value Zh (st) + Coefficient C3i * Standard value Zi (st) Equation (22)
  • Fourth principal component score Coefficient C4a * Standard value Za (st) + Coefficient C4b * Standard value Zb (st) + Coefficient C4c * Standard value Zc (st) + Coefficient C4d * Standard value Zd (st) + Coefficient C4e * Standard value Ze (st) + Coefficient C4f * Standard value Zf (st) + Coefficient C4g * Standard value Zg (st) + Coefficient C4h * Standard value Zh (st) + Coefficient C4i * Standard value Zi (st) Equation (23)
  • each coefficient in the equations (20) to (23) is a constant obtained from a principal component analysis method based on nine predetermined items, and is stored in the storage unit 9.
  • CPU6 reads each coefficient from the memory
  • the principal component score coefficient matrix of the nine predetermined items and the principal component score is as shown in Table 2.
  • step S254 ends, the routine returns to the flowchart of FIG.
  • the sleep disorder discrimination probability refers to the probability of being a sleep disorder person such as a SAS patient.
  • a sleep disorder determination probability obtained by performing logistic regression analysis on the sleep evaluation score is calculated.
  • Logistic regression analysis multiple regression analysis
  • sleep disorder dummy variables objective variables
  • the objective variable is represented by a dummy variable of 0/1 (the presence or absence of SAS: SAS group 1 / non-SAS group 0).
  • the explanatory variables are a first principal component score (sleep depth score), a second principal component score (sleep cycle score), a third principal component score (sleep time score), which are sleep evaluation scores calculated from sleep determination data, At least any three of the fourth principal component scores (halfway awakening scores) are used. This makes it possible to create a regression equation of sleep disorder discrimination probability.
  • the CPU 6 calculates the first principal component score (sleep depth score), the second principal component score (sleep cycle score), the third principal component score (sleep time score), and the fourth principal component score (halfway awakening) calculated in step S171.
  • variable P is calculated by the following equation (24) (step S261).
  • a process of inverting the signs of the third principal component score (sleep time score) and the fourth principal component score (halfway awakening score) may be appropriately performed.
  • Variable P Fixed value F1 * first principal component score + fixed value F2 * second principal component score + fixed value F3 * third principal component score + fixed value F4 * fourth principal component score (24)
  • the fixed values F1 to F4 are fixed values obtained from a principal component analysis method of a certain population. These fixed values are stored in the storage unit 9 and read out by the CPU 6 and used for calculation.
  • step S262 the CPU 6 calculates the sleep disorder determination probability by the following equation (25) using the variable P calculated in step S261 (step S262).
  • Sleep disorder discrimination probability 1 / (1+ (exp- (P))) (Equation 25)
  • FIG. 29 is a flowchart showing the contents of the evaluation result display process executed by the CPU 6,
  • FIG. 30 is an example of a sleep evaluation screen, and
  • FIG. 31 is an example of a sleep score transition screen.
  • the CPU 6 executes a sleep score comparison process (step S271).
  • this sleep score comparison process the sleep score Score obtained by the sleep score calculation process is compared with the first reference value W and the second reference value Y, and the sleep score Score is divided into three stages. Specifically, the sleep point average value + dispersion value of the sleep abnormal group included in a certain population is the first reference value W, and the sleep point average value + dispersion value of the healthy sleep group is the second reference value Y.
  • the sleep score Score is classified into the third category.
  • the first reference value W is the sleep point average value + dispersion value of the abnormal sleep group included in a certain population
  • the second reference value Y is the sleep point average value + dispersion value of the healthy sleep group. is there.
  • the CPU 6 displays “bad sleep” on the display unit 4 when the sleep score Score is classified into the first category, and “normal” when the sleep score Score is classified as the second category. If the sleep score is classified into the third category, “Good sleep” is displayed (step S272). For example, in the case of good sleep, the sleep evaluation screen shown in FIG. 30 is displayed on the display unit 4. In this case, it is preferable that the CPU 6 displays the transition of one sleep stage together using the processing results of the step S5 and the step S6 in addition to the processing result of the sleep score comparison processing. By displaying the category in addition to the sleep score, the user can know the quality of sleep quality. Furthermore, since the time course of the sleep stage such as awakening, shallowness, and deepness is displayed, it is possible to make use of it for self-condition management.
  • a vertical axis is a bar graph with the number of sleep points Score and the horizontal axis.
  • the sleep score Score is equal to or less than the average value + dispersion value calculated in step S274
  • the bar graph is colored and displayed.
  • step S276 the CPU 6 determines whether or not an operation for displaying the next screen has been performed. If the operation has been performed, the process is terminated.
  • FIG. 32 is a graph showing a comparison between the related art regarding the sleep score and the present invention, (a) is a graph showing the correlation between the conventional sleep score and the deep sleep rate, and (b) is a sleep of the present invention. It is a graph which shows the correlation with a score and a deep sleep rate.
  • the sleep evaluation device (Sleep Scan SL-501) manufactured by the applicant was used as the sleep score according to the prior art.
  • the deep sleep rate (%) on the vertical axis uses the measurement results obtained by the sleep evaluation device of the applicant's product for both (a) and (b). It is clear that the correlation between the sleep score of the present invention and the deep sleep rate (FIG. 32 (b)) is better than the correlation between the conventional sleep score and the deep sleep rate (FIG. 32 (a)), Among items related to sleep quality, items related to sleep depth, items related to sleep rhythm, and items related to awakening during sleep, the ability to evaluate items related to sleep depth can be improved.
  • the probability of being a sleep disorder person such as a SAS patient is calculated, and the sleep score is calculated by reflecting this, so the sleep disorder person and the healthy person can sleep. Differences in quality assessment results can be made.
  • FIG. 33 is a graph showing a comparison between the related art relating to the sleep score and the present invention.
  • a sleep evaluation device Sleep Scan SL-501 manufactured by the applicant is used. According to the present invention, it can be seen that the difference between the sleep score of a SAS patient and the sleep score of a healthy person appears more markedly than in the case of the prior art.
  • the sleep evaluation device 1 As shown in the external view of FIG. 1, the sleep evaluation device 1 according to the first embodiment is established as one device including the sensor unit 2 and the control box 3, and the control box 3 includes the device according to the present invention. Since a series of processing programs including a regression equation for obtaining the sleep score is already incorporated, the sleep determination data can be acquired and the sleep score can be calculated only by the sleep evaluation device 1.
  • the sleep evaluation system is for executing a series of processing programs including a measuring device for obtaining a biological signal of a subject and a regression equation for obtaining a sleep score (sleep index) in the present invention. And an information processing terminal.
  • the determination part (equivalent to the determination part 8 of 1st Embodiment) which performs a sleep stage determination etc. based on the said biosignal should just be comprised in either a measuring device or an information processing terminal.
  • the output of the data measured by the measuring device to the information processing terminal is not particularly limited, for example, using a wired or wireless connection means.
  • the regression equation for evaluating the quality of sleep is created based on the measurement data of PSG, a series of processing programs including such a regression equation is stored in the information processing terminal (for example, a personal computer).
  • the information processing terminal for example, a personal computer.
  • sleep determination data which is a plurality of variable data, based on the biological signal detected from the subject by the measuring device, and to evaluate the sleep quality of the subject, that is, to calculate the sleep score.
  • the acquisition device can measure biological information capable of calculating a predetermined item (sleep determination data). If it is, it will not specifically limit.
  • the sleep determination data can be directly substituted for use in the evaluation of sleep quality, which is also useful in the evaluation of sleep quality in medical institutions. Since the specific process flow is the same as that of the sleep measurement apparatus 1 of the first embodiment, detailed description thereof is omitted.
  • n is a natural number of 2 or more
  • m sleep evaluation scores (m is a natural number satisfying n> m) that are independent of each other may be calculated, and the sleep score may be calculated based on the m sleep evaluation scores.
  • sleep determination data includes sleep onset latency, sleep efficiency, number of mid- and long-term awakenings, deep sleep latency, deep sleep time, number of short-time awakenings, deep sleep rate, differential sleep cycle score, differential total bedtime Score, total bedtime, bed rest latency, sleep time, total sleep time, mid-wake time, REM sleep latency, shallow sleep time, REM sleep time, number of transitions to sleep stage, number of shallow sleep appearances, number of REM sleep appearances, Number of deep sleep appearances, REM sleep duration, REM sleep interval time, REM sleep cycle, sleep cycle, ratio of shallow sleep in the first and second half, ratio of REM sleep in the first and second half, ratio of deep sleep in the first and second half , Items related to sleep depth (for example, at least one of deep sleep rate or deep sleep appearance amount), items related to sleep rhythm (for example, at least one of sleep cycle or differential sleep cycle score), and midway awakening Items related to At least one) and the may be arbitrarily selected in sleep efficiency or medium long awakening times.
  • sleep depth for example
  • the sleep evaluation score may include any one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
  • the sleep evaluation apparatus 1 is exemplified by detection of a respiratory signal using a mattress and a condenser microphone sensor.
  • a piezoelectric sensor is assumed to be disposed under the mattress and directly detect a human body pressure fluctuation.
  • a piezoelectric element such as a cable, a capacitive sensor, a film sensor, a strain gauge, or the like may be used, and a known device may be used as long as it can detect a respiratory signal, a body motion signal, and a heartbeat signal.
  • the determination result may be corrected by taking a known correlation using the transition of the determination result of the sleep evaluation device 1 and the transition of the index related to the heartbeat detected by the heartbeat signal detecting means.
  • the sleep score may be calculated using m (n ⁇ m, where m is a natural number) sleep evaluation scores.
  • FIG. 34 is an external view when the sleep evaluation apparatus 101 is used
  • FIG. 35 is a block diagram of the sleep evaluation apparatus 101.
  • the sleep evaluation apparatus 101 detects the biological information of the subject lying on the bedding and outputs it as a biological signal, and is connected to the sensor unit 102 and is in the sleep stage.
  • a control box 103 that performs determination and evaluation of sleep quality.
  • the control box 103 includes a display unit 104 that performs guidance display such as a sleep stage determination result and a sleep evaluation index, and an operation unit 105 that performs operations such as power on / off or measurement start / end.
  • the sensor unit 102 detects, for example, a pressure fluctuation of a mattress enclosing an incompressible fluid using a microphone (for example, a condenser microphone). As shown in FIG. 34, the mattress is placed under a bedding. It is intended to detect changes in the biological signal and posture of the subject in the supine position.
  • a microphone for example, a condenser microphone
  • the CPU 106 includes a biological data detection unit 107 that detects each of a respiratory signal, a body motion signal, and a heartbeat signal from the biological signal detected by the sensor unit 102, a determination unit 108 that performs various determinations and calculations for sleep evaluation, A storage unit 109 that stores various conditional expressions, determination results, and calculation results for sleep stage determination and sleep evaluation, an evaluation unit 120 that evaluates sleep quality, and a power supply 110 that supplies power to the sleep evaluation device 101 And connected to.
  • a biological data detection unit 107 that detects each of a respiratory signal, a body motion signal, and a heartbeat signal from the biological signal detected by the sensor unit 102
  • a determination unit 108 that performs various determinations and calculations for sleep evaluation
  • a storage unit 109 that stores various conditional expressions, determination results, and calculation results for sleep stage determination and sleep evaluation
  • an evaluation unit 120 that evaluates sleep quality
  • a power supply 110 that supplies power to the sleep evaluation device 101 And connected to.
  • the CPU 106 includes a control unit that controls the sleep evaluation apparatus 101 and a timer unit that measures time. More specifically, the determination unit 108 includes an entering / leaving determination unit 111, a body movement determination unit 112, an arousal determination unit 113, a sleep determination unit 114, a deep sleep determination unit 115, a REM / light sleep determination unit 116, a midway An awakening determination unit 117 and a wakeup determination unit 118 (not shown) are included. Each of these determination units will be described later using a flowchart.
  • the determination unit 108 includes a sleep determination data calculation unit 130 (not shown), a sleep evaluation score calculation unit 140 (not shown), a discrimination probability calculation unit 150 (not shown), and a sleep type determination unit 160 (not shown). And).
  • the sleep determination data calculation unit 130 calculates sleep determination data (a plurality of variable data) as a basis for calculating a sleep evaluation score (described later).
  • Sleep determination data includes deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, mid-long time awakening It is preferable to use nine types of data such as the number of times (times), the number of times of short-term awakening (times), and sleep efficiency (%).
  • the sleep determination data calculation unit 130 the deep sleep rate calculation unit, the differential sleep cycle score calculation unit, the total bedtime calculation unit, the sleep cycle calculation unit, the deep sleep appearance amount calculation unit, the differential total bedtime score calculation unit , A medium / long-time wake-up number calculating unit, a short-time wake-up number calculating unit, and a sleep efficiency calculating unit (all not shown).
  • a sleep evaluation system and a sleep evaluation device using these nine types of sleep determination data will be described, but sleep determination data (variable data) other than these may be further added.
  • Deep sleep rate (%) means the ratio of deep sleep in sleep time, and “(deep sleep time / sleep time) ⁇ 100”, that is, “(deep sleep time / (time from falling asleep to final awakening)” ) ⁇ 100 ”.
  • the differential sleep cycle score is a score representing how much the sleep cycle (minute) is different from the reference time (for example, 90 minutes). “ ⁇
  • the value of the differential sleep cycle score is ⁇ 30.
  • Total bedtime (minutes) means the time from bed to bed.
  • the sleep cycle (minutes) means an average value of the cycle when one cycle is from the end of the REM sleep to the end of the next REM sleep. However, the first period is from the end of sleep to the end of REM sleep that appears first.
  • Deep sleep appearance amount (minute) means the sum total of deep sleep time.
  • the difference total bedtime score is a score indicating how much the total bedtime (minutes) is different from the reference time (for example, 6.5 hours (390 minutes)). “ ⁇
  • (
  • the value of the difference total bedtime score is 0 and shows the maximum value, and the total bedtime is 420 minutes. Alternatively, if it is 360 minutes, the value of the difference total bedtime score is ⁇ 30.
  • the number of awakening times (times) means the number of times of awakening over a reference time (for example, 2 minutes 30 seconds) that appears during sleep.
  • the number of short-time awakenings (times) means the number of times of awakening within a reference time (for example, 2 minutes) that appears during sleep.
  • the sleep efficiency (%) means the ratio of the actual sleep time to the total bedtime, which is “(total sleep time / total bedtime) ⁇ 100”, that is, “((total bedtime ⁇ sleeping time) (Total sum of hours awakened) / total bedtime) ⁇ 100 ”.
  • the nine types of sleep determination data are extracted as having good correlation between the PSG measurement data and the measurement data of the existing sleep evaluation device, and in particular (as an example, 90 Since it has a differential sleep cycle score (based on minutes) and a differential total bedtime score (based on 6.5 hours (390 minutes) as an example), it also has a sleep time and sleep cycle not found in the prior art It is possible to calculate the sleep quality evaluation in consideration, that is, the sleep score, and to improve the correlation of the sleep score with respect to the result of the sleep determination of PSG.
  • the sleep evaluation score calculation unit 140 calculates a sleep evaluation score that is a basis for evaluation of sleep quality.
  • the sleep evaluation score includes four components: a sleep depth score as the first principal component score, a sleep cycle score as the second principal component score, a sleep time score as the third principal component score, and a midway awakening score as the fourth principal component score. It is preferable to compose the score. Furthermore, it is preferable to add a body motion frequency score as a score related to the occurrence frequency of body motion occurring during sleep as one of the sleep evaluation scores. Therefore, the sleep evaluation score calculation unit 140 includes a sleep depth score calculation unit, a sleep cycle score calculation unit, a sleep time score calculation unit, a midway awakening score calculation unit, and a body motion frequency score calculation unit (all not shown). When evaluating the quality of sleep more accurately, the depth of sleep, sleep cycle, sleep time, midway awakening, and body motion frequency are important indicators. Although the sleep evaluation apparatus using a component score will be described, a sleep evaluation score other than these may be further added.
  • the discrimination probability calculation unit 150 calculates a discrimination probability (described later) indicating the probability of being a sleep disorder person such as a SAS patient.
  • the sleep type determination unit 160 determines which sleep type corresponds to a sleep type among a plurality of preset sleep types (described later).
  • the evaluation unit 120 calculates a sleep score (sleep index) based on the sleep evaluation score calculated by the sleep evaluation score calculation unit 140 based on the sleep determination data and the discrimination probability calculated by the discrimination probability calculation unit 150. Moreover, the sleep type determination unit 160 determines which sleep type the subject's sleep corresponds to. The result of sleep quality evaluation including such sleep points and sleep type is displayed on the display unit 104. The processes executed by the sleep determination data calculation unit 130, the sleep evaluation score calculation unit 140, the discrimination probability calculation unit 150, the sleep type determination unit 160, and the evaluation unit 120 will be described later using each flowchart.
  • the biometric data detection unit 107, the determination unit 108, the evaluation unit 120, the sleep determination data calculation unit 130, the sleep evaluation score calculation unit 140, the discrimination probability calculation unit 150, and the sleep type determination unit 160 are predetermined by the CPU 106. These functions may be realized by executing the program.
  • FIG. 36 is a flowchart showing the main operation
  • FIG. 37 is a flowchart showing the flow of sleep stage determination using the determination units 111 to 118.
  • step S1001 when the power of the sleep evaluation apparatus 101 is turned on by turning on the power of the operation unit 105, in step S1001, a guidance is given to take a sleeping posture and perform an operation to start the measurement of the operation unit 105. Is displayed on the display unit 104 to determine whether or not a measurement start operation has been performed. If measurement start operation is not performed, it will progress to NO and will continue displaying the said guidance in step S1001. If the measurement start operation is performed, the process proceeds to YES, and in step S1002, a biological signal is detected by the sensor unit 102, and is stored in the storage unit 109 as biological signal data together with the time measured by the timer unit built in the CPU 106.
  • step S1003 it is determined whether or not a measurement end operation has been performed. If the measurement end operation has not been performed, the process proceeds to NO, the detection and storage of the biological signal in step S1002 is continued, and if the measurement end operation has been performed, the process proceeds to YES.
  • step S1004 each unit is controlled to process the biological signal detected by the control unit in the CPU. That is, the biological signal data stored in the storage unit 109 is read, and the biological data detection unit 107 detects the respiratory signal, the body motion signal, and the heartbeat signal, and the respective waveforms obtained from the respiratory signal, the body motion signal, and the heartbeat signal. Are calculated and stored in the storage unit 109 as respiration data, body motion data, and heartbeat data.
  • respiratory data, body movement data, and heart rate data are stored for each unit section having a predetermined time, for example, 30 seconds as one unit (hereinafter, this unit section is referred to as “epoch”).
  • this unit section is referred to as “epoch”.
  • the length of the epoch is not limited to 30 seconds, and can be set to an arbitrary value within a range that does not impair the accuracy of determination.
  • step S1005 When respiration data, body motion data, and heart rate data are detected and stored for all the biological signal data stored in the storage unit 109, in step S1005, the respiration data, body motion data, and heart rate data are stored.
  • sleep stage determination (described later) is performed.
  • step S1006 based on the result of sleep stage determination, sleep determination data (a plurality of variable data) is calculated, sleep evaluation score is calculated, and discrimination probability is calculated to calculate the sleep score.
  • step S1007 it is determined which sleep type corresponds to the sleep type of the plurality of sleep types set in advance.
  • step S ⁇ b> 1008 the result of sleep quality evaluation including the sleep score and sleep type is displayed on the display unit 104.
  • step S1009 it is determined whether or not the power of the operation unit 105 has been turned off. If the power is not turned off, the process proceeds to NO, and the display in step S1008 is continued. If the power is turned off, the process proceeds to YES. Then, the sleep evaluation apparatus 101 is turned off and the process ends.
  • the determination unit 108 is controlled by the CPU 106 and sequentially performs the following determination processing based on the respiratory data, body motion data, and heart rate data stored for each epoch in the storage unit 109 in step S1004 of FIG. .
  • step S1011 the entrance / leaving determination unit 111 determines whether to enter or leave the floor from the start of measurement to the end of measurement based on changes in respiratory data, body movement data, and heart rate data. Make a decision.
  • step S1012 body motion determination step
  • the body motion determination unit 112 performs coarse body motion that is a large motion such as turning over based on the amplitude or period of the waveform obtained from the respiratory data, body motion data, and heart rate data.
  • the states of small body movements such as snoring and non-body movements obtained in a stable breathing / heartbeat / body movement state, it is determined which state each epoch is in.
  • step S1013 the awake determination unit 113 determines whether the state is a clear awake state based on the determined body movement state.
  • step S1014 the sleep onset determination unit 114 determines in which epoch the sleep state transitioned from the awakened state immediately after entering the bed (hereinafter referred to as a sleep onset period or sleep onset latency).
  • step S1015 the deep sleep determination unit 115 determines whether or not the patient is in a deep sleep state from the changes in the respiratory data and the heart rate data and the determined body movement state.
  • step S1016 the REM / shallow sleep determination unit 116 determines whether the deep sleep determination unit 115 determines that the sleep state is a REM sleep state or a shallow sleep state. Determine whether.
  • step S1017 middle awakening determination step
  • the midway awakening determination unit 117 determines the presence or absence of a waking state during the sleep state based on the duration of body movement.
  • step S1018 the wake-up determination unit 118 determines in which epoch the transition from the sleep state to the wake-up state (hereinafter referred to as the wake-up section) is made.
  • step S1008 the sleep score and sleep The result of sleep quality evaluation including type is displayed.
  • each of the determination units 111 to 118 will be described step by step using the flowcharts of FIGS. 38 to 49, respectively. However, it is assumed that the constants indicated by alphabets and the like are set based on the correlation between sleep stage determination based on polysomnographic examination data and actual measurement data obtained by the sleep evaluation apparatus 101.
  • A is the minimum value of the respiratory amplitude that is recognized when a person is in the normal supine position, and the amplitude of the respiratory waveform in the epoch n is t (sec) or greater. It is determined whether or not it continues (see FIG. 39). Here, A and t are constants, and t ⁇ unit time. If this is the case, it is determined that respiration is detected, and the process proceeds to YES.
  • step S1024 it is determined that the subject is in the floor, and the epoch n is determined to be a floor section.
  • the corresponding epoch is detected. The information is stored in the storage unit 109 in association with n.
  • step S1027 the epoch n is determined to be a bed leaving section, assuming that the subject is in the bed leaving step.
  • step S1025 it is stored in the same manner as described above.
  • the process proceeds to YES, and the process returns to the flowchart of FIG. 37 to proceed to the next determination.
  • the total bedtime calculation unit and the difference total bedtime score calculation unit are configured to calculate the total bedtime (minutes) and the difference total employment as the sleep determination data.
  • the floor time score can be calculated.
  • the sleep efficiency calculation unit can calculate the “total bedtime” necessary for calculating the sleep efficiency (%).
  • the process of the body movement determination unit 112 will be described using the flowchart of FIG.
  • the process of the body movement determination unit first determines the magnitude of body movement from the amplitude of the waveform of the respiratory signal regardless of the epoch n, and then, depending on the presence or absence of the determined body movement in the epoch n, The body movement state of each epoch n is determined.
  • step S1043 it is determined whether or not the read epoch n includes the respiratory waveform determined to be the rough body movement state. If there is, the process proceeds to YES.
  • step S1044 the epoch n is subjected to the rough body movement. Judged as a section. If not, the process proceeds to NO.
  • step S1045 it is determined whether or not the epoch n has the respiratory waveform determined to be the thin body movement state.
  • step S1046 the process proceeds to step S1046.
  • Epoch n is determined to be a thin body motion section. If not, the process proceeds to NO, and in step S1047, this epoch n is determined to be a non-movement section.
  • the process proceeds to YES, and the five sections are read from the storage unit 109.
  • the body motion value Z of each epoch in the five sections is obtained.
  • the sum of the body motion values Z of the five sections hereinafter, the sum of Z may be referred to as ⁇ Z).
  • step S1059 the epoch n is changed to an unstable interval in which the respiratory state is relatively unstable and the possibility of a REM sleep or a shallow sleep state is high. Is determined. If the sum of Z is not within the above range, that is, if the sum of Z ⁇ 4, the process proceeds to NO, and the epoch n can be in a deep sleep state or a shallow sleep state where the respiratory state is relatively stable. Judged as a stable section with high characteristics.
  • the processing of the sleep determination unit 114 will be described using the flowchart of FIG. 45.
  • a sleep interval an epoch that shifts from the initial awake state immediately after entering the bed to the sleep state
  • the awake determination unit 113 described in detail in FIG.
  • the sleep interval is defined by determining the initial awake interval in more detail based on the person's sleep tendency.
  • step S1073 it is determined whether or not the read epoch n is the unstable section detailed in FIG. However, this unstable section is an unstable section that appears for the first time after the continuation of the initial awakening section. Therefore, if it is not an unstable section, the process proceeds to NO, this epoch is replaced and stored as an awakening section, and the processing from step S1072 is repeated again until the unstable section is read.
  • the process proceeds to YES, and it is determined whether or not there is an epoch determined to be a wake-up section between the epoch n and the predetermined number of sections C1.
  • the epoch n is a sleep interval, it is difficult to wake up immediately after falling asleep in human sleep. Therefore, the predetermined number of intervals C1 is assumed that the person does not normally wake up immediately after falling asleep. A constant with a range set. Therefore, if there is an awakening interval between the epoch n and the predetermined number of intervals C1, the process proceeds to NO, the epoch n is replaced with the awakening interval and stored, and the processing from step S1072 is repeated again. If there is no awakening section, the process proceeds to YES, and in step S1075, the epoch n is set as a sleep (temporary) section, and the sleep section is determined more strictly by the processing after step S1077.
  • step S1077 onward wakes up to which epoch of epochs determined to be unstable intervals after the sleep (temporary) interval based on the three respiratory fluctuation trends near the person's sleep, found by actual measurement.
  • the epoch immediately after that is determined as a sleep interval by determining whether it should be replaced as an interval.
  • step S1077 out of each epoch determined to be an entrance section by the entrance / leaving determination unit 111 described in detail with reference to FIG.
  • the variance ⁇ 2 with respect to the respiratory rate for each epoch is obtained.
  • the number of constant intervals ⁇ , ⁇ and ⁇ from the sleep (provisional) interval (where ⁇ , ⁇ and ⁇ are constants set as ⁇ ⁇ ⁇ , and the three The time interval suitable for discriminating the respiratory fluctuation tendency is calculated and set from actual measurement.)
  • the epochs that set each range are the ⁇ range, ⁇ range, and ⁇ range up to the incremented range. Are defined as an ⁇ section, a ⁇ section, and a ⁇ section, respectively, and in the same manner as the reference range, the variance of the respiration rate of each of these ranges is obtained and is set as ⁇ 2 , ⁇ 2, and ⁇ 2 . Based on these variances ⁇ 2 , ⁇ 2 , ⁇ 2, and ⁇ 2 , the three respiratory fluctuation tendencies are determined as Condition D, Condition E, and Condition F, respectively.
  • the first respiratory fluctuation tendency is that a subject's breathing variation is rapidly reduced to a sleep state. Therefore, in step S1078, the determination is made based on the condition D defined by the expression “ ⁇ 2 > ⁇ 2 (Expression 1)” and “ ⁇ 2 ⁇ C2 (Expression 2)”. That is, as shown in the above equation 1, the variation in the respiratory rate rapidly decreases as the range increases, and as shown in the above equation 2, the variance accompanying the increase in the population becomes smaller than a certain number C2. It is.
  • C2 is a constant that can be determined to be significantly close to the variation in respiratory rate that appears after falling asleep. When this condition D is satisfied, it can be determined that the ⁇ section is already in the sleeping state.
  • step S1079 it is determined that at least the ⁇ section is the awakening section, and the epoch immediately after the ⁇ section is determined as the sleep period. If the condition D is not met, the process proceeds to NO, and in step S1080, the second respiratory fluctuation tendency is determined.
  • the second tendency of respiratory fluctuation is that a subject's breathing variation is gradually reduced to a sleep state. Therefore, it is determined by the condition E defined by the expression “ ⁇ 2 ⁇ C3 ⁇ ⁇ 2 ⁇ ⁇ 2 (Expression 3)”.
  • C3 is a constant satisfying C3 ⁇ 1, and is reduced by some percent with respect to variations in the reference range.
  • step S1079 the variation is very gradual but tends to decrease.
  • the epoch immediately after is determined as the sleep interval.
  • step S1081 a third respiratory fluctuation tendency
  • the third respiratory fluctuation tendency is that the fluctuation of the subject's breathing once decreases after the fluctuation once increases compared with the breathing fluctuation of the reference range. Therefore, it is determined by the condition F defined by the expressions “ ⁇ 2 ⁇ 2 (Expression 4)” and “ ⁇ 2 ⁇ 2 (Expression 5)”.
  • this tendency is a phenomenon seen in a relatively long span as compared with the conditions D and E, the conditions using the ⁇ range and the ⁇ range are used.
  • step S1079 it is determined that at least the ⁇ section in which the variation has increased is the awakening section, and the epoch immediately after the ⁇ section is determined. Determine as sleep interval.
  • step S1082 the number of sections ⁇ , ⁇ , and ⁇ is increased by the number of sections ⁇ , respectively, and an ⁇ range, ⁇ After resetting each of the range and the ⁇ range, the process returns to step S1078, and the conditions D, E, and F are repeated until the sleep interval is determined.
  • the wake interval and sleep interval are stored in association with the corresponding epoch n in step S1083, and then the process returns to the flowchart of FIG. 37 and proceeds to the next determination. .
  • the deep sleep rate calculation unit calculates “sleep time” necessary for calculating the deep sleep rate (%), that is, “from sleep onset to final awakening”. Can be calculated.
  • the sleep efficiency calculation unit calculates the “total amount of time awakened during sleep” necessary for calculating sleep efficiency (%). Is possible.
  • the condition G is “respiration rate in epoch n ⁇ H1”, “standard deviation of the period of the respiratory waveform in epoch n ⁇ H2”, and “difference in respiratory rate between epoch n and ⁇ 1 interval of epoch n ⁇ H3” ”And“ Epoch n is a bodyless motion section ”, the epoch n is determined as a deep sleep section (where H1, H2, and H3 are constants obtained by actual measurement. .
  • step S1094 if the read epoch n satisfies the condition G in step S1094, the process proceeds to YES.
  • step S1095 the epoch n is determined to be a deep sleep section, and the determination result is stored in the storage unit 109 in step S1096. . If the condition G is not satisfied, the process proceeds to NO.
  • step S1097 it is determined that it is an unstable section.
  • step S1096 the stable section is replaced as an unstable section and stored in the storage unit 109.
  • step S1098 it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO, and the steps from step S1092 are repeated again.
  • the process returns to the flowchart of FIG. 37 and proceeds to the next determination.
  • the deep sleep appearance amount calculation unit can calculate the deep sleep appearance amount (minute) as the sleep determination data.
  • the deep sleep rate calculation unit can calculate “deep sleep time” necessary for calculating the deep sleep rate (%).
  • the condition I is determined as follows: “Average value of respiration rate in epoch ⁇ respiration rate of epoch n”. That is, as described above, since an increase in respiratory rate is observed in REM sleep, it is determined whether the respiratory rate of the epoch n is higher than the average respiratory rate during sleep. .
  • step S1105 when there is an apnea state due to sleep apnea syndrome or the like, forced breathing occurs, and therefore, the “respiration rate of epoch n” of the condition I in step S1105 increases, and this abnormality
  • the condition I is determined based on the value, and the section to be determined as the shallow sleep section is determined as the REM (provisional) section. Therefore, in step S1113, a stable section during sleep (that is, a deep sleep state or a shallow sleep state) is determined based on the determination of the condition K that “the number of stable sections in all bed sections / (the number of all bed sections ⁇ wakening sections) ⁇ k”.
  • the sleep cycle calculation unit and the differential sleep cycle score calculation unit may calculate a sleep cycle (minutes) and a differential sleep cycle score as the sleep determination data. It becomes possible.
  • the process of the midway awakening determination unit 117 will be described using the flowchart of FIG. Even in the sleep state, if the body movement continues for a certain time or more, it can be understood that the user has awakened in the middle, and the following determination is made.
  • step S1123 the read epoch n is n ⁇ nmax, and the coarse body motion, the fine body motion, and the non-body motion determined by the body motion determination unit 112 described in detail in FIG. It is determined whether it is either a section or a thin body movement section (hereinafter referred to as a body movement section).
  • each epoch is replaced with an awakening interval and stored in the storage unit 109.
  • the number of continuations m is once reset to zero.
  • step S1128 it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO. The steps from step S1102 are repeated again, and if all epochs have been determined, YES is determined. 50, in the determination of midway awakening condition described in detail in FIG. 50, the midway awakening is determined in detail according to each condition defined based on the tendency at the time of midway awakening found by the inventors. After this determination is made, the process returns to the flowchart of FIG. 37 and proceeds to the next determination.
  • the medium / long-time awakening frequency calculation unit and the short-time awakening frequency calculation unit calculate the middle / long-time awakening frequency (times) and the short-time awakening frequency as the sleep determination data ( Times) can be calculated.
  • the movement state is obtained as the sum of U (hereinafter referred to as ⁇ U).
  • step S1140 it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO, and the steps from step S1132 are repeated again. Proceed and return to the flowchart of FIG.
  • step S1154 it is determined whether or not there is a wake-up section in each epoch that goes back from the wake-up (temporary) section to a certain number of sections R.
  • the certain number of intervals R defines the certain time. If the awakening interval exists, the process proceeds to YES, and in step S1158, each epoch from the detected awakening interval to the wake-up (temporary) interval is defined as an awakening interval.
  • step S1154 the detected awakening is detected.
  • the epoch immediately before the section is newly redefined as a wake-up (temporary) section, and the fixed section number R is set again in step S1155.
  • step S1155 if there is no awakening section up to a certain number of sections R, the process proceeds to NO.
  • step S1156 the wake-up (temporary) section is determined as the wake-up section.
  • step S1157 The information is stored in the storage unit 109 in association with the corresponding epoch n, and the process returns to the flowchart showing the main operation in FIG.
  • the deep sleep rate calculation unit calculates “sleep time” necessary for calculating the deep sleep rate (%), that is, “time from falling asleep to final awakening”. It becomes possible to do.
  • a sleep score (sleep index) that comprehensively indicates the level of sleep quality is calculated by calculation.
  • the above-described bed / bed determination, body movement determination, arousal determination, sleep determination, deep sleep determination, REM / light sleep determination, mid-wake determination, Sleep determination data (e.g. deep sleep time, number of mid-wakefulness) indicating sleep state can be obtained by wakeup determination.
  • sleep determination data can evaluate the quality of sleep to some extent by itself, the evaluation by itself only evaluates a part of the sleep state.
  • a plurality of predetermined items (variables) reflecting “depth”, “cycle”, “time”, and “halfway awakening” of sleep are extracted from PSG measurement data, and existing sleep is extracted.
  • variables correlated with the evaluation device deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, The number of mid- and long-term awakenings (times), short-time awakenings (times), and sleep efficiency (%) were selected.
  • a principal component analysis is performed to develop a sleep evaluation score, and this sleep evaluation score and sleep apnea syndrome risk are reflected.
  • a sleep evaluation score is selected by a principal component analysis method in order to derive a sleep score that is an evaluation index for comprehensively evaluating the quality of sleep.
  • a plurality of predetermined items are measured by PSG.
  • predetermined items deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score The number of wakefulness (medium / long-time), the number of short-time wakefulness (times), and sleep efficiency (%).
  • a correlation coefficient between the plurality of predetermined items is calculated to obtain a correlation matrix.
  • the correlation matrix based on the nine items is given by the determinant shown in the following equation (27).
  • r11 to r99 are correlation coefficients.
  • the eigenvectors a11 to a99 appropriately reflect the meanings of the first to ninth principal components Z1 to Z9.
  • the reason why the eigenvectors a11 to a99 do not appropriately reflect the meanings of the first to ninth principal components Z1 to Z9 is that the item is selected incorrectly. For this reason, the set of items is rejected and another set of items is adopted.
  • eigenvalues ⁇ 1 to ⁇ 9 of the first to ninth principal components Z1 to Z9 are obtained from the following determinant.
  • the eigenvalues ⁇ 1 to ⁇ 9 are related to the dispersion of the first to ninth principal components Z1 to Z9.
  • the contribution ratios of the first to ninth main components Z1 to Z9 are calculated.
  • the contribution rate is the ratio of the eigenvalues of each principal component to the total of all eigenvalues.
  • the contribution rate is obtained by dividing each eigenvalue ⁇ 1 to ⁇ 9 by “9” which is the number of principal components.
  • the first principal components Z1 to Z9 are arranged in descending order of contribution, and when the cumulative contribution exceeds 0.8, the previous principals are adopted as sleep evaluation scores. For example, when analysis of principal components is given in the following table and K3 ⁇ 0.8 ⁇ K4, up to the fourth principal component is adopted as the sleep evaluation score.
  • the factor loading is calculated by multiplying the eigenvector by the square root of the eigenvalue, and those below a predetermined reference value (for example, 0.5) are deleted. Needless to say, it may be used without being deleted.
  • a predetermined reference value for example, 0.5
  • the four sleep evaluation scores are obtained by multiply-adding each of the nine items X1 to X9 and the first coefficients a11 to a99 shown in the equations (28) to (36). Since the first coefficients a11 to a99 are eigenvectors, the four sleep evaluation scores are in a linearly independent relationship with each other. That is, four sleep evaluation scores having smaller correlation coefficients than any two of the nine items are generated. Therefore, the sleep evaluation score is obtained by aggregating a plurality (nine in the present embodiment) of predetermined items (variables) from the viewpoint of sleep, and each expresses a characteristic of sleep.
  • the predetermined items include deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, Select the number of mid- and long-term awakenings (times), short-time awakenings (times), and sleep efficiency (%). Based on these, four sleep evaluation scores are selected by the principal component analysis method.
  • a “sleep depth score”, a “sleep cycle score” as the second principal component, a “sleep time score” as the third principal component, and a “halfway awakening score” as the fourth principal component could be obtained.
  • “Sleep depth score” is an item indicating deep sleep
  • “sleep cycle score” is an item indicating sleep cycle
  • “sleep time score” is an item indicating sleep time
  • “midway awakening score” is an item indicating midway awakening.
  • FIG. 52 is a flowchart showing the flow of each calculation in the sleep score calculation process.
  • FIGS. 53 to 59 show the calculation processes in step S1165, step S1167, step S1168, step S1169, step S1170, step S1171, and step S1172, respectively. It is a flowchart which shows the detailed flow of.
  • FIG. 61 is a time chart for explaining predetermined items calculated in the calculation process. In the following description, it is assumed that the CPU 106 executes these processes according to a predetermined program.
  • This sleep score calculation process is executed after the subject has completely awakened (that is, woken up).
  • the state in which the subject is completely awakened may be determined to be a complete awake state when a state in which the subject's breathing is not detected continues for a predetermined period of time, or a measurement start / end button ( (Not shown) may be provided, and when the end button is pressed down, it may be determined that the state is completely awake.
  • the storage unit 109 stores the state in each epoch from the start of measurement (time t0 in FIG. 61) to the end (time te) (that is, the result of the sleep stage determination process in step S1005). And is used for sleep score calculation processing.
  • Deep sleep rate (%) means the ratio of deep sleep in sleep time, and “(deep sleep time / sleep time) ⁇ 100”, that is, “(deep sleep time / (time from falling asleep to final awakening)” ) ⁇ 100 ”.
  • the “sleep time” necessary for calculating the deep sleep rate (%), that is, “time from sleep onset to final awakening” is determined by the sleep determination unit 114 as the sleep interval and the associated epoch is read to It is calculated by incrementing to an epoch that is determined to be an awakening section by the determination unit 113 and associated therewith.
  • “deep sleep time” is the total number of epochs of deep sleep time from the start to the end of the measurement (time t0 to te). What is necessary is just to calculate similarly to quantity DT (min).
  • the differential sleep cycle score is a score representing how much the sleep cycle (minute) is different from the reference time (for example, 90 minutes). “ ⁇
  • (
  • the reference time may be 90 minutes, for example, but is not particularly limited.
  • Total bedtime means the time from bed to bed. What is necessary is just to calculate as a sum total of the epochs which are determined to be in the floor-entry state by the floor-in / bed-out determination unit 111 and are associated.
  • the CPU 106 executes a sleep cycle calculation process in step S1164 of FIG.
  • the average value may be calculated based on the epoch that is determined as the REM sleep section by the REM / shallow sleep determination unit 116 and is associated with the difference sleep cycle score calculation process.
  • the difference total bedtime score is a score indicating how much the total bedtime (minutes) is different from the reference time (for example, 6.5 hours (390 minutes)).
  • the total bedtime (minutes) may be calculated as the total number of epochs that are determined to be in the bedded state by the bed-and-bed determination unit 111 and associated with each other, as in the above-mentioned total bedtime calculation process.
  • the CPU 106 proceeds to the medium / long-time awakening number calculation process in step S1167 of FIG. 52, and executes the medium / long-time awakening number calculation process shown in FIG.
  • the number of awakening times (times) means the number of times of awakening over a reference time (for example, 2 minutes 30 seconds) that appears during sleep.
  • the process proceeds to the epoch next to the first epoch (step S1191).
  • step S1192 it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, it is determined in step S1193 whether or not the awakening continues for T minutes or more.
  • step S1195 the epoch is advanced by the number of continued awakenings, and the process returns to step S1191.
  • the determination condition in step S1193 is negative, the process returns to step S1191.
  • steps S1191 to S1195 or steps S1191 to S1193 is repeated until it is determined in step S1192 that the epoch to be determined is the final epoch Ee. If the determination condition in step S1192 is affirmed, the medium / long-term awakening count calculation process ends, and the routine returns to the flowchart of FIG.
  • the CPU 106 proceeds to the short-time awakening number calculation process in step S1168 of FIG. 52, and executes the short-time awakening number calculation process shown in FIG.
  • the number of short-time awakenings means the number of times of awakening within a reference time (for example, 2 minutes) that appears during sleep.
  • the process proceeds to the epoch next to the first epoch (step S1231).
  • step S1232 it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, it is determined in step S1233 whether or not the awakening continues for less than T minutes.
  • MN short-time awakenings
  • steps S1231 to S1235 or steps S1231 to S1233 is repeated until it is determined in step S1232 that the epoch to be determined is the final epoch Ee. If the determination in step S1232 is affirmative, the short-time awakening count calculation process ends, and the routine returns to the flowchart of FIG.
  • the sleep efficiency (%) means the ratio of the actual sleep time to the total bedtime, which is “(total sleep time / total bedtime) ⁇ 100”, that is, “((total bedtime ⁇ sleeping time) (Total sum of hours awakened) / total bedtime) ⁇ 100 ”. That is, the sleep efficiency SE is the total number of epochs from the start of measurement (time t0 in FIG. 61) to the end (time te), IA, and the epoch determined to be in an awake state in determination step S1183 described later.
  • step S1181 the CPU 106 first proceeds to the next epoch. Subsequently, in step S1182, it is determined whether or not the epoch is the epoch immediately before transitioning to the complete awake state (final epoch Ee in FIG. 61). If this determination is negative, it is determined whether or not the epoch is in an awake state (step S1183). If the determination result is affirmative, the process proceeds to step S1184, the value of the awakening epoch number (I) is incremented, the process returns to step S1181, and the process proceeds to the next epoch.
  • step S1182 it is determined whether or not the epoch is the epoch immediately before transitioning to the complete awake state (final epoch Ee in FIG. 61). If this determination is negative, it is determined whether or not the epoch is in an awake state (step S1183). If the determination result is affirmative, the process proceeds to step S1184, the value of the awakening epoch number (I)
  • step S1183 determines whether the determination condition in step S1183 is negative. If the determination condition in step S1183 is negative, the process returns to step S1181 without incrementing the value of the number of awakening epochs (I).
  • CPU 106 repeats the processing of steps S1181 to S1183 or steps S1181 to S1184 unless the determination result of step S1182 becomes affirmative.
  • each data standardization process the standardization process of the value of the sleep determination data acquired in steps S1161 to S1169 described above is executed.
  • each average Za and standard deviation Za are each average value and standard deviation value (fixed values) of deep sleep rate Za in the population based on the measurement data of PSG.
  • the population is, for example, a group of X people in their 20s when the subject's age is in their 20s.
  • the test subject inputs his / her parameters (for example, age and sex) in advance using the operation unit 105, so that data regarding an appropriate population is selected and used for the standardization process. Data regarding this population is stored in the storage unit 109 in advance.
  • CPU 106 reads out the average value and the standard deviation from storage unit 109 and executes the calculation of step S1241. The same applies to the processing in steps S1242 to S1249.
  • each sleep determination data is standardized.
  • the standard value of each sleep determination data is obtained by the following formulas (38) to (45) (steps S1242 to S1249).
  • Difference sleep cycle score Zb (st) (Zb ⁇ average Zb) / standard deviation Zb (38)
  • Total bedtime Zc (st) (Zc ⁇ average Zc) / standard deviation Zc (39)
  • Sleep cycle Zd (st) (Zd ⁇ average Zd) / standard deviation Zd Equation (40)
  • Deep sleep appearance amount Ze (st) (Ze ⁇ average Ze) / standard deviation Ze (formula 41)
  • Difference total bedtime score Zf (st) (Zf ⁇ average Zf) / standard deviation Zf Equation (42)
  • Number of middle and long awakenings Zg (st) (Zg ⁇ average Zg) / standard deviation Zg (43)
  • Number of short-time awakenings Zh (st) (Zh ⁇ average Zh) / standard deviation Zh (formula
  • each principal component score calculation process in step S1171 in FIG. 58, the standard value of each sleep determination data acquired in step S1170 described above is used for the calculation.
  • the principal component score calculation process a plurality of types of predetermined items including at least items related to sleep depth, items related to sleep rhythm, and items related to mid-wake awakening extracted based on PSG measurement data Sleep evaluation by multiplying the principal component coefficient for each predetermined item of the sleep evaluation score obtained by performing the principal component analysis on the sleep determination data corresponding to the predetermined item calculated from the biological signal of the subject Calculate the score.
  • the nine sleep determination data are deep sleep rate Za, differential sleep cycle score Zb, total bedtime Zc, sleep cycle Zd, deep sleep appearance amount Ze, differential total bedtime score Zf, medium From the long-time awakening count Zg, the short-time awakening count Zh, and the sleep efficiency Zi, four sleep evaluation scores, that is, a “sleep depth score”, a “sleep cycle score”, a “sleep time score”, and a “halfway awake score” calculate.
  • the CPU 106 calculates “sleep depth score”, “sleep cycle score”, “sleep time score”, and “halfway awakening score” according to the following equations (46) to (49) (steps S1251 to S1254).
  • Second principal component score Coefficient C1a * Standard value Za (st) + Coefficient C1b * Standard value Zb (st) + Coefficient C1c * Standard value Zc (st) + Coefficient C1d * Standard value Zd (st) + Coefficient C1e * Standard value Ze (st) + Coefficient C1f * Standard value Zf (st) + Coefficient C1g * Standard value Zg (st) + Coefficient C1h * Standard value Zh (st) + Coefficient C1i * Standard value Zi (st) Equation (46)
  • Second principal component score Coefficient C2a * Standard value Za (st) + Coefficient C2b * Standard value Zb (st) + Coefficient C2c * Standard value Zc (st) + Coefficient C2d * Standard value Zd (st) + Coefficient C2e * Standard value Ze (st) + Coefficient C2f * Standard value Zf (st) + Coefficient C2g * Standard value Zg (st) + Coefficient C2h * Standard value Zh (st) + Coefficient C2i * Standard value Zi (st) Equation (47)
  • Third principal component score Coefficient C3a * Standard value Za (st) + Coefficient C3b * Standard value Zb (st) + Coefficient C3c * Standard value Zc (st) + Coefficient C3d * Standard value Zd (st) + Coefficient C3e * Standard value Ze (st) + Coefficient C3f * Standard value Zf (st) + Coefficient C3g * Standard value Zg (st) + Coefficient C3h * Standard value Zh (st) + Coefficient C3i * Standard value Zi (st) Equation (48)
  • Fourth principal component score Coefficient C4a * Standard value Za (st) + Coefficient C4b * Standard value Zb (st) + Coefficient C4c * Standard value Zc (st) + Coefficient C4d * Standard value Zd (st) + Coefficient C4e * Standard value Ze (st) + Coefficient C4f * Standard value Zf (st) + Coefficient C4g * Standard value Zg (st) + Coefficient C4h * Standard value Zh (st) + Coefficient C4i * Standard value Zi (st) Equation (49)
  • each coefficient in the equations (46) to (49) is a constant obtained from a principal component analysis method based on nine predetermined items, and is stored in the storage unit 109.
  • the CPU 106 reads out each coefficient from the storage unit 109 and executes arithmetic processing.
  • a principal component score coefficient matrix of nine predetermined items and a principal component score is as shown in Table 24.
  • step S1254 ends, the routine returns to the flowchart of FIG.
  • the sleep disorder discrimination probability refers to the probability of being a sleep disorder person such as a SAS patient.
  • the sleep disorder determination probability obtained by performing logistic regression analysis on the sleep evaluation score is calculated.
  • Logistic regression analysis multiple regression analysis
  • sleep disorder dummy variables objective variables
  • the objective variable is represented by a dummy variable of 0/1 (the presence or absence of SAS: SAS group 1 / non-SAS group 0).
  • the explanatory variables are a first principal component score (sleep depth score), a second principal component score (sleep cycle score), a third principal component score (sleep time score), which are sleep evaluation scores calculated from sleep determination data, At least any three of the fourth principal component scores (halfway awakening scores) are used. This makes it possible to create a regression equation of sleep disorder discrimination probability.
  • an example using four sleep evaluation scores will be described with reference to FIG.
  • the CPU 106 calculates the first principal component score (sleep depth score), the second principal component score (sleep cycle score), the third principal component score (sleep time score), and the fourth principal component score (intermediate awakening) calculated in step S1171.
  • the variable P is calculated by the following equation (50) (step S1261).
  • a process of inverting the signs of the third principal component score (sleep time score) and the fourth principal component score (halfway awakening score) may be appropriately performed.
  • Variable P Fixed value F1 * 1st principal component score + Fixed value F2 * 2nd principal component score + Fixed value F3 * 3rd principal component score + Fixed value F4 * 4th principal component score ...
  • the fixed values F1 to F4 are fixed values obtained from a principal component analysis method of a certain population. These fixed values are stored in the storage unit 109 and read out by the CPU 106 and used for calculation.
  • step S1262 calculates the sleep disorder determination probability by the following equation (51) using the variable P calculated in step S1261 (step S1262).
  • Sleep disorder discrimination probability 1 / (1+ (exp- (P))) (51)
  • the CPU 106 executes the sleep score calculation process of step S1173 in FIG.
  • the CPU 106 calculates the sleep score (sleep index) by the following formula (52) using the sleep disorder determination probability calculated in step S1262 (step S1263).
  • Number of sleep points 100-(Sleep disorder discrimination probability * 100) ...
  • CPU6 memorize
  • the sleep disorder determination probability is high, the sleep score is calculated low, and when the sleep disorder determination probability is low, the sleep score is calculated high. This makes it possible to predict whether or not SAS will develop before SAS develops.
  • the sleep type determination process executed by the sleep evaluation apparatus 101 according to the present invention determines which sleep type the subject's sleep corresponds to among a plurality of preset sleep types. is there.
  • the sleep type is a type classified according to the feature of sleep content based on the level of each value of the sleep evaluation score.
  • the sleep type is a sleep evaluation score calculated as described above, a sleep depth score (first score), a sleep cycle score (second score), a sleep time score (third score), and a midway awakening score (fourth score).
  • the body motion frequency score is a score related to the frequency of body motion that occurs during sleep.
  • FIGS. 62 to 66 there are five types of sleep types as shown in FIGS. 62 to 66 in consideration of the values of the sleep depth score, the sleep cycle score, the sleep time score, the midway awakening score, and the body motion frequency score.
  • Set sleep type. 62 to 66 are radar charts showing examples of the first sleep type to the fifth sleep type.
  • the first sleep type shown in FIG. 62 is a sleep type in which sleep time is standard, but there are many body movements and no deep sleep / rhythm.
  • the second sleep type shown in FIG. 63 is a sleep type in which the sleep time is short, there are many midway awakenings, and the sleep rhythm is bad.
  • the fourth sleep type shown in FIG. 65 is a sleep type in which all scores are standard.
  • the fifth sleep type shown in FIG. 66 is a sleep type in which there is little sleep time / deep sleep, and there is a lot of awakening / body movement.
  • five types of sleep are described as a plurality of preset sleep types, but it goes without saying that the content and type of the sleep type may be changed as appropriate.
  • FIG. 67 is a flowchart showing the body motion frequency score calculation. This process will be described assuming that the CPU 106 as the body motion frequency score calculation unit executes according to a predetermined program. As shown in FIG. 67, the CPU 106 calculates a body movement frequency score by the following equation (53) and stores it in the storage unit 109 (step S1264).
  • Body motion frequency score number of body motions / total bedtime (53)
  • the total bedtime a value that has already been calculated by executing the total bedtime calculation process in step S1163 of FIG. 52 can be used.
  • the number of body movements may be obtained by detecting a part where the output from the sensor unit 102 is larger than a predetermined threshold due to body movement.
  • a predetermined threshold due to body movement.
  • a predetermined filter process is performed on the waveform of (1). For example, an infinite impulse response (IIR) filter is used, and a fourth-order band pass filter (BPF) of 0.01 Hz on the low frequency side and 0.1 Hz on the high frequency side is used in the forward and reverse directions. Filter on both.
  • a predetermined threshold is set for the waveform of (2).
  • an average value and a standard deviation of all data of the waveform of (2) are obtained, and the sum of both is set as a threshold value.
  • the number of epochs where points exceeding the threshold of (3) exist is counted, and this is taken as the number of body movements.
  • FIG. 68 is a flowchart showing sleep type determination. As shown in FIG. 68, in the sleep type determination process, the sleep depth score (first principal component score) and sleep cycle score (second score), which are the four sleep evaluation scores acquired in steps S1251 to S1254 described above.
  • the principal component score), the sleep time score (third principal component score), and the midway awakening score (fourth principal component score) are substituted into the following formulas (54) to (58), and the first judgment value to the first judgment value 5 Determination values are calculated (steps S1265 to S1270).
  • the first determination value is a value for determining the suitability of the first sleep type
  • the second determination value is a value for determining the suitability of the second sleep type
  • the third determination value is the third sleep type.
  • the value for determining the appropriateness, the fourth determination value are the values for determining the appropriateness of the fourth sleep type
  • the fifth determination value is the value for determining the appropriateness of the fifth sleep type.
  • Second determination value coefficient V1b * first principal component score + coefficient V2b * second principal component score + coefficient V3b * third principal component score + coefficient V4b * fourth principal component score Equation (55)
  • each coefficient in the formulas (54) to (58) is a constant set in advance to determine which of the five types of sleep types is closest, and is stored in the storage unit 109. ing.
  • the CPU 106 reads out each coefficient from the storage unit 109 and executes arithmetic processing.
  • the coefficient matrix of the first to fifth determination values and the principal component score is as shown in Table 5.
  • step S1265 to S1269 After calculating the first determination value to the fifth determination value (steps S1265 to S1269), the determination value that is the largest value is selected, and the sleep type corresponding to the determination value is specified, whereby the sleep type of the subject is determined. Which of the first sleep type to the fifth sleep type is determined is determined (step S1270) and stored in the storage unit 9. When the process of step S1270 ends, the routine returns to the flowchart of FIG.
  • FIG. 70 is an example of a sleep evaluation screen
  • FIG. 71 is an example of a display screen of sleep type and graph display
  • 72 is an example of a sleep score transition screen.
  • the CPU 106 executes a sleep score comparison process (step S1271).
  • the sleep score Score obtained by the sleep score calculation process is compared with the first reference value W and the second reference value Y, and the sleep score Score is divided into three stages. Specifically, the sleep point average value + dispersion value of the sleep abnormal group included in a certain population is the first reference value W, and the sleep point average value + dispersion value of the healthy sleep group is the second reference value Y.
  • the sleep score Score is classified into the third category.
  • the first reference value W is the sleep point average value + dispersion value of the abnormal sleep group included in a certain population
  • the second reference value Y is the sleep point average value + dispersion value of the healthy sleep group. is there.
  • the CPU 106 displays “bad sleep” on the display unit 104 when the sleep score Score is classified into the first category, and “normal” when the sleep score Score is classified as the second category. If the sleep score is classified into the third category, “Good sleep” is displayed (step S1272). For example, in the case of good sleep, the sleep evaluation screen shown in FIG. In this case, it is preferable that the CPU 106 displays the transition of one sleep stage together using the processing results of the step S1005 and step S1006 in addition to the processing result of the sleep score comparison processing. By displaying the category in addition to the sleep score, the user can know the quality of sleep quality. Furthermore, since the time course of the sleep stage such as awakening, shallowness, and deepness is displayed, it is possible to make use of it for self-condition management.
  • the CPU 106 determines whether or not an operation for displaying the next screen has been performed (step S1273). If the operation has been performed, the sleep evaluation score calculated and stored in the storage unit 109 is as described above. That is, graphs of a sleep depth score (first score), a sleep cycle score (second score), a sleep time score (third score), an awakening score (fourth score), and a body movement frequency score (fifth score)
  • the display and the corresponding sleep type are displayed on the display unit 104 (step S1274).
  • the graph display is not particularly limited. As an example, as shown in FIG. 71, the sleep depth score (first score), the sleep cycle score (second score), and the sleep time score (third) are radiated from the center.
  • the state of a some score can be visualized and a sleep score can be analyzed and self-evaluation can be easily performed. That is, it is possible to determine whether the number of sleep points is low (or high) due to various factors such as sleep depth, sleep cycle, sleep time, mid-wake awakening, body movement frequency, etc. It becomes easier to find improvements such as what will lead to an improvement in the number of sleep points.
  • by displaying an evaluation of which sleep type the subject's sleep corresponds to among the representative sleep types that are set in advance the subject himself / herself is what his / her sleep is. It will be very easy to understand.
  • the sleep type name it is preferable to adopt and display an intuitively easy-to-understand name as the sleep type name because the subject can easily imagine his / her sleep state.
  • “Gira Gira” for sleep types with a high midway awakening score “Grogro” for sleep types with a high body movement frequency score
  • “Good” or “Utoto” depending on the level of sleep depth score “Good” or “Utoto” depending on the level of sleep depth score
  • “long time” or “short time” may be used, or a combination of these may be adopted as appropriate.
  • the CPU 106 determines whether or not an operation for displaying the next screen has been performed (step S1276). If the operation has been performed, the CPU 106 determines the average value based on the sleep score Score stored in the storage unit 109. The variance value is calculated (step S1276), and a sleep score transition screen is displayed on the display unit 104 (step S1277). For example, as shown in FIG. 72, it is assumed that the vertical axis represents a sleep score Score and the horizontal axis represents a date. In this case, if the sleep score Score is equal to or less than the average value + dispersion value calculated in step S1276, the bar graph is colored and displayed. Thereby, the user can know the day when the quality of sleep was bad, and can use it for physical condition management.
  • step S1278 the CPU 106 determines whether or not an operation for displaying the next screen has been performed (step S1278), and when the operation has been performed, the processing ends.
  • FIG. 73 is a graph showing a comparison between the related art regarding the sleep score and the present invention, wherein (a) is a graph showing the correlation between the conventional sleep score and the deep sleep rate, and (b) is a sleep according to the present invention. It is a graph which shows the correlation with a score and a deep sleep rate.
  • the sleep evaluation device (Sleep Scan SL-501) manufactured by the applicant was used as the sleep score according to the prior art.
  • the deep sleep rate (%) on the vertical axis uses the measurement results obtained by the sleep evaluation device of the applicant's product for both (a) and (b). It is clear that the correlation between the sleep score of the present invention and the deep sleep rate (FIG. 73 (b)) is better than the correlation between the conventional sleep score and the deep sleep rate (FIG. 73 (a)), Among items related to sleep quality, items related to sleep depth, items related to sleep rhythm, and items related to awakening during sleep, the ability to evaluate items related to sleep depth can be improved.
  • the probability of being a sleep disorder person such as a SAS patient is calculated, and the sleep score is calculated by reflecting this, so the sleep disorder person and the healthy person can sleep. Differences in quality assessment results can be made.
  • FIG. 74 is a graph showing a comparison between the related art relating to the sleep score and the present invention.
  • a sleep evaluation device Sleep Scan SL-501 manufactured by the applicant is used. According to the present invention, it can be seen that the difference between the sleep score of a SAS patient and the sleep score of a healthy person appears more markedly than in the case of the prior art.
  • the sleep depth score (first score), the sleep cycle score (second score), the sleep time score (third score), the midway awakening score (fourth score), and the body movement frequency score (first score) 5 scores) were determined, the sleep type was determined based on them, and a pentagonal radar chart and the corresponding sleep type were displayed as an example (FIG. 71).
  • four scores of a sleep depth score (first score), a sleep cycle score (second score), a sleep time score (third score), and a midway awakening score (fourth score) are obtained and based on them. Then, the sleep type may be determined, and the rhombus radar chart and the corresponding sleep type may be displayed.
  • the sleep habit score is a score calculated based on the bedtime and wake-up time of each day in the sleep record for a predetermined number of days. More specifically, the sleep habit score is obtained as an average value of a bedtime score and a wake-up time score determined as described below as an example. Based on FIG. 75 thru
  • 75, FIG. 78, FIG. 80, and FIG. 82 are diagrams showing examples of sleep diaries, FIG. 76, FIG. 79, FIG. 81, and FIG. It is a figure which shows the example of a sleep habit pattern table.
  • the sleep evaluation apparatus 101 aggregates data related to sleep measured for a subject as a sleep diary (sleep record) and stores it in the storage unit 109.
  • a sleep diary As an example of the sleep diary, there is a sleep diary SD 1 as shown in FIG. Referring to the row of No. 1 which is the record of the first day, this subject shows that he went to sleep from 23:00 to 24:00 and got up from 6 to 7 on the next day. Similarly, it can be seen that the bedtime and the wake-up time remain constant thereafter. Sleep evaluation device 101, along such sleep diary SD 1, to calculate the bedtime score and wake-up time score.
  • bedtime table ST 1 and the rising time table WT 1 (see FIG. 76) to reflect the result of sleep diary SD 1, it is observed during the predetermined number of days Find the most frequent bedtime and wake-up time.
  • an example is a last seven days as a predetermined number of days to determine the sleep habits score, therefore, as shown in FIG. 76, bedtime table ST 1 and the rising time table WT 1, both, 24 hours 24 columns indicating 7 days and 7 rows indicating 7 days.
  • the sleep evaluation apparatus 101 calculates a bedtime time score and a wake-up time score along the record for the latest seven days. That is, after the items No. 1 to No. 7 of the sleep diary SD 1 are recorded, the sleep evaluation apparatus 101 performs the bedtime table ST 1 and the wake-up time according to the records of the items No. 1 to No. 7. performing an input to the table WT 1. Note that, on the next day, items up to item number 8 are recorded in the sleep diary SD 1 , so the sleep evaluation apparatus 101 excludes the record of item number 1 that is the oldest, and item numbers 2 through item number 8 are excluded. The bedtime score and the wake-up time score are calculated along with the record.
  • the sleep evaluation device 101 According to item 1 sleep diary SD 1, so bedtime is a 24 o'clock starting at 23, as shown in FIG. 76, the sleep evaluation device 101, the item number 1 bedtime table ST 1, 23:00 “1” is input to the column 12 corresponding to the time zone of 24:00.
  • the wake-up time is between 6 o'clock and 7 o'clock, so that the sleep evaluation apparatus 101 has the item number 1 of the wake-up time table WT 1 from 6 o'clock to 7 o'clock. Enter “1” in column 19 corresponding to the time zone.
  • the sleep evaluation apparatus 101 corresponds to the records from No. 2 to No. 7 of the sleep diary SD 1 and from No. 2 to No. 7 of the bedtime table ST 1 and the wake-up time table WT 1. Make input.
  • the total value SumST of each column calculates a SumWT, also, their SumST, the SumWT
  • the maximum value is detected from the inside. According to the example shown in FIG. 76, the maximum value of sumST is detected as “7” in column 12, and the maximum value of sumWT is detected as “7” in column 19. Furthermore, the sleep evaluation apparatus 101 also detects sumST and sumWT in the column immediately before and the column immediately after the column indicating the detected maximum value. As a result, the bedtime table ST 1 in FIG.
  • each maximum value of sumST and sumWT is a number corresponding to a predetermined number of days (“7” in FIG. 76).
  • the maximum values of sumST and sumWT are less than the number corresponding to the predetermined number of days (“7” in FIG. 76).
  • the sleep evaluation apparatus 101 detects the pattern including the maximum value of sumST, the sumST in the immediately preceding column, and the sumST in the immediately following column (“0-7-0” (according to the above example) ( The total value of the three values is “7”)) against the sleep habit pattern table stored in the storage unit 109 in advance, and the score corresponding to the matching pattern is determined as the “sleeping time score”. Similarly, the sleep evaluation apparatus 101 uses the pattern of the maximum value of sumWT, the sumWT in the immediately preceding column, and the sumWT in the immediately following column (“0-7-0” according to the above example) Is compared with the sleep habit pattern table and the score corresponding to the matching pattern is determined as the “wake-up time score”.
  • the sleep habit pattern table will be described with reference to FIG. As shown in FIG. 77, the sleep habit pattern table is associated with all the patterns including the maximum value of sumST (sumWT), sumST (sumWT) in the immediately preceding column, and sumST (sumWT) in the immediately following column.
  • the score that is the “wake-up time score” is set. Patterns located at the top of the table can be evaluated as regular sleeping habits with a constant bedtime (wake-up time), and are scored high for these. On the other hand, the patterns located in the lower part of the table can be evaluated as irregular sleeping habits with variations in bedtime (wake-up time), and the score is set low for these patterns.
  • the sleep evaluation apparatus 101 has a pattern consisting of the maximum sumST value, the sumST in the immediately preceding column, and the sumST in the immediately following column (“0-7-0” according to the above example (the total value of the three values is “7 ))) Is compared with the sleep habit pattern table and matches the pattern number 1, and the score “10” corresponding to this is determined as the “sleeping time score”.
  • the sleep evaluation apparatus 101 uses the pattern of the maximum value of sumWT, the sumWT in the immediately preceding column, and the sumWT in the immediately following column (“0-7-0” according to the above example) "7")) is compared with the sleep habit pattern table and matches the pattern number 1, so the score "10" corresponding to this is determined as the "wake-up time score".
  • the sleep evaluation apparatus 101 calculates the average value of the bedtime score (“10” in the above example) and the wake-up time score (“10” in the above example) determined as described above, and the average value (in the above example) Then, “10”) is determined as the “sleep habit score” and stored in the storage unit 109.
  • the example described above based on the sleep diary SD 1 in FIG. 76 and the bedtime table ST 1 and the wake-up time table WT 1 in FIG. 76 is a case of a subject who practices the most regular sleep habits.
  • the example of the test subject of another sleep habit is demonstrated.
  • Sleep diary SD 2 shown in FIG. 78 is generally going to bed and getting up at the Saturday and Sunday it is often a holiday is, shows an example of a slower subjects than going to bed and wake up in Monday through Friday.
  • the bedtime time score and the wake-up time score are calculated according to the records for the most recent 7 days (ie, item numbers 2 to 8). An example will be described.
  • the sleep evaluation device 101 According to item 2 of sleep diary SD 2, so bedtime is a 24 o'clock starting at 23, as shown in FIG. 79, the sleep evaluation device 101, the item number 1 bedtime table ST 2, 23:00 “1” is input to the column 12 corresponding to the time zone of 24:00.
  • the wake-up time is between 6 o'clock and 7 o'clock, so the sleep evaluation apparatus 101 can be used for the item No. 1 of the wake-up time table WT 2 from 6 o'clock to 7 o'clock. Enter “1” in column 19 corresponding to the time zone.
  • sleep evaluation device 101 in correspondence with the recording from No. 3 sleep diary SD 2 to No. 5, to No. 4 from No.
  • the total value SumST of each column calculates a SumWT, also, their SumST, the SumWT
  • the maximum value is detected from the inside. According to the example shown in FIG. 79, the maximum value of sumST is detected as “5” in column 12, and the maximum value of sumWT is detected as “5” in column 19. Furthermore, the sleep evaluation apparatus 101 also detects sumST and sumWT in the column immediately before and the column immediately after the column indicating the detected maximum value. As a result, the bedtime table ST 2 of FIG.
  • the sleep evaluation apparatus 101 displays a pattern “0-5-0” (sum of three values is “5”) including the maximum value of sumST, sumST in the immediately preceding column, and sumST in the immediately following column, Since it matches with the pattern number 25 by matching with the pattern table, the score “6” corresponding to this is determined as the “sleeping time score”. Similarly, the sleep evaluation apparatus 101 displays the pattern “0-5-0” (the total value of the three values is “5”) including the maximum value of sumWT, the sumWT in the immediately preceding column, and the sumWT in the immediately following column. Since it matches with the sleep habit pattern table and matches the pattern number 25, the score “6” corresponding thereto is determined as the “wake-up time score”. The sleep evaluation apparatus 101 calculates the average value of the bedtime score “6” and the wake-up time score “6” determined as described above, determines the average value “6” as the “sleep habit score”, Store in the storage unit 109.
  • Sleep Diary SD 3 shown in FIG. 80 shows an example of a subject sleeping and waking Slows daily.
  • the bedtime time score and the wake-up time score are calculated along the records for the most recent 7 days (ie, item Nos. 1 to 7). An example will be described.
  • the sleep evaluation apparatus 101 also detects sumST and sumWT in the column immediately before and the column immediately after the column indicating the detected maximum value.
  • “0-1-1” total value of three values is “2”
  • “1-1-1” total of three values
  • a sumST or sumWT of any pattern of “3”) or “1-1-0” the total value of the three values is “2” is detected.
  • the sleep evaluation apparatus 101 includes patterns “0-1-1” and “1-1-1-” including the maximum value of sumST (sumWT), sumST (sumWT) in the immediately preceding column, and sumST (sumWT) in the immediately following column. “1” and “1-1-0” are checked against the sleep habit pattern table and determined to match at least one of pattern numbers 42, 44, and 45. As described above, in the case of matching with a plurality of pattern numbers, a condition is given that a higher-order condition (a pattern having a high ternary total value) is preferentially applied in the sleep habit pattern table. Thereby, the pattern number 42 is applied, and the score “0” corresponding to this is determined as the “sleeping time score” (“wake-up time score”). The sleep evaluation apparatus 101 calculates the average value of the bedtime time score “0” and the wake-up time score “0” determined as described above, determines the average value “0” as the “sleep habit score”, Store in the storage unit 109.
  • Sleep diary SD 4 shown in FIG. 82 shows an example of a random subject bedtime and wake-up is daily.
  • the bedtime time score and the wake-up time score are calculated according to the records for the most recent 7 days (that is, item numbers 2 to 8). An example will be described.
  • the sleep evaluation device 101 No. 1 to No. 7 bedtime table ST 4, section rising time table WT 4 Enter in No. 1 to No. 7.
  • the sleep evaluation apparatus 101 also detects sumST and sumWT in the column immediately before and the column immediately after the column indicating the detected maximum value.
  • the bedtime table ST 4 in FIG. 81 "0-2-2" (the sum of 3 values "4"), "2-2-1” (the sum of 3 values "5") "1-2-0” (the sum of 3 values "3") SumST of any pattern are detected, the wake-up time table ST 4, sumWT the pattern of "0-4-1" is detected Will be.
  • the sleep evaluation apparatus 101 includes patterns “0-2-2”, “2-2-1”, “1-2-0” including the maximum value of sumST, the sumST in the immediately preceding column, and the sumST in the immediately following column. "Is compared with the sleep habit pattern table and it is determined that at least one of the pattern numbers 36, 32, and 41 matches. In the case of coincidence with a plurality of pattern numbers, the pattern number 32 is applied under the condition that the higher-order condition of the sleep habit pattern table is preferentially applied.
  • the sumST is “2” in a column immediately before the column of the maximum value of the sumST or in a column far from the column immediately after. There is a possibility that there is a column that is.
  • the score is set to “(a) 3”, “(b) 2”, etc. It is preferable to provide a difference. More specifically, in the bedtime table ST (or wake-up time table WT), sumST is “2” in addition to the three columns of (a) the column of the maximum value of sumST, the column immediately before it, and the column immediately after it. If there is no column that is, the score is "3". (B) If there is a column that has a sumST of "2" in a column that is 2 columns or more away from the column of the maximum value of sumST, the score is "2". Add the following condition.
  • the pattern of "2-2-1" to pattern number 32 is applied, the column 11 (immediately before the column) bedtime table ST 4, (column of the maximum value) row 12, column 13 (immediately after Column)). Since the sumST after two columns from the column 12 of the maximum value of sumST (that is, column 14) is “2”, “(b) 2” is applied as the score of the pattern number 32.
  • the sleep evaluation apparatus 101 compares the pattern “0-4-1” including the maximum value of sumWT, the sumWT in the immediately preceding column, and the sumWT in the immediately following column with the sleep habit pattern table, and the pattern number 26 Therefore, the score “5” corresponding to this is determined as the “wake-up time score”.
  • the sleep evaluation apparatus 101 calculates the average value of the bedtime score “2” and the wake-up time score “5” determined as described above, and determines the average value “3.5” as the “sleep habit score”. And stored in the storage unit 109.
  • the sleep habit score (sixth score) thus determined is the sleep evaluation score described in the third embodiment, that is, the sleep depth score (first score), the sleep cycle score (second score), and the sleep time score.
  • the graph may be displayed together with the (third score), the midway awakening score (fourth score), and the body movement frequency score (fifth score) (see step S1274).
  • the graph display is not particularly limited, as an example, as shown in FIG. 84, the sleep depth score (first score), the sleep cycle score (second score), and the sleep time score (first score) radiate from the center. 3 score), midway awakening score (fourth score), body movement frequency score (fifth score), and sleep habit score (sixth score).
  • the five types of scores (sleep depth score (first score), sleep cycle score (second score), sleep time score (third score) described in the third embodiment are used. ), Sleep awakening score (fourth score), body movement frequency score (fifth score)) plus sleep habit score (sixth score), all six types of scores can be calculated and displayed
  • a sleep habit score (sixth score) is adopted, and all five types of scores are obtained. It is good also as a sleep evaluation apparatus which can be calculated and displayed.
  • the sleep evaluation device 101 of the third embodiment is established as one device including the sensor unit 102 and the control box 103, and the control box 103 includes the device according to the present invention. Since a series of processing programs including a regression equation for obtaining the sleep score is already incorporated, the sleep evaluation data can be obtained and the sleep score can be calculated only by the sleep evaluation device 101.
  • the sleep evaluation system is for executing a series of processing programs including a measuring device that acquires a biological signal of a subject and a regression equation for obtaining a sleep score (sleep index) in the present invention. And an information processing terminal.
  • the determination unit (equivalent to the determination unit 108 of the third embodiment) that performs sleep stage determination based on the biological signal may be configured in any one of the measurement device and the information processing terminal.
  • the output of the data measured by the measuring device to the information processing terminal is not particularly limited, for example, using a wired or wireless connection means.
  • the regression equation for evaluating the quality of sleep is created based on the measurement data of PSG, a series of processing programs including such a regression equation is stored in the information processing terminal (for example, a personal computer).
  • the measurement apparatus calculates sleep determination data, which is a plurality of variable data, based on the biological signal detected from the subject, thereby enabling evaluation of the sleep quality of the subject, that is, calculation of the sleep score.
  • the acquisition device can measure biological information capable of calculating a predetermined item (sleep determination data). If it is, it will not specifically limit.
  • the sleep determination data can be directly substituted for use in the evaluation of sleep quality, which is also useful in the evaluation of sleep quality in medical institutions. Since the specific process flow is the same as that of the sleep measurement apparatus 101 of the third embodiment, a detailed description thereof will be omitted.
  • n is 2 indicating the sleep state.
  • m is a natural number satisfying n> m
  • sleep evaluation scores having independent relationships are calculated, and the sleep score is calculated based on the m sleep evaluation scores. It may be calculated.
  • sleep determination data includes sleep onset latency, sleep efficiency, number of mid- and long-term awakenings, deep sleep latency, deep sleep time, number of short-time awakenings, deep sleep rate, differential sleep cycle score, differential total bedtime Score, total bedtime, bed rest latency, sleep time, total sleep time, mid-wake time, REM sleep latency, shallow sleep time, REM sleep time, number of transitions to sleep stage, number of shallow sleep appearances, number of REM sleep appearances, Number of deep sleep appearances, REM sleep duration, REM sleep interval time, REM sleep cycle, sleep cycle, ratio of shallow sleep in the first and second half, ratio of REM sleep in the first and second half, ratio of deep sleep in the first and second half , Items related to sleep depth (for example, at least one of deep sleep rate or deep sleep appearance amount), items related to sleep rhythm (for example, at least one of sleep cycle or differential sleep cycle score), and midway awakening Items related to At least one) and the may be arbitrarily selected in sleep efficiency or medium long awakening times.
  • sleep depth for example
  • the sleep evaluation score may include any one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
  • the detection of a respiratory signal by a mattress and a condenser microphone sensor is taken as an example.
  • a piezoelectric element such as a cable, a capacitive sensor, a film sensor, a strain gauge, or the like may be used, and a known device may be used as long as it can detect a respiratory signal, a body motion signal, and a heartbeat signal.
  • the sleep stage is corrected using a heartbeat signal detecting means for detecting a heartbeat-related index and the heartbeat-related index.
  • the determination result may be corrected by taking a known correlation using the transition of the determination result of the sleep evaluation apparatus 101 and the transition of the index related to the heartbeat detected by the heartbeat signal detecting means.
  • n a natural number of 2 or more
  • the sleep score may be calculated using m (n ⁇ m, where m is a natural number) sleep evaluation scores obtained by collecting the predetermined items.
  • the regression equation for evaluating the quality of sleep is described based on the PSG measurement data.
  • the sleep evaluation apparatus 101 according to the present invention is described below. Collect and analyze sample data of unspecified number of subjects related to sleep determination data (eg, length of sleep, number of awakenings, amount of deep sleep, body movement, etc.) Then, a regression equation for determining the quality of sleep may be created and used.
  • sleep evaluation scores sleep depth score (first score), sleep cycle score (second score), sleep time score (third score), mid-wake awakening score (fourth score), body movement frequency score (fifth score)
  • the graph display of the sleep habit score (sixth score)
  • a bar graph or other graph display may be applied in addition to the radar chart as in the third and fourth embodiments described above.
  • it may replace with a graph display and may represent with the icon set to each score.
  • the icon of a character displays the level of the score according to the different facial expressions and poses of the character
  • the hand icon shows a folded state of the finger (an OK pose with the index finger and thumb fingertip, thumb up
  • the level of the score may be displayed according to a GOOD pose etc.

Abstract

Provided are a sleep assessment system and sleep assessment apparatus for accurately assessing quality of sleep. A sleep assessment system and sleep assessment apparatus for multiplying: sleep determination data corresponding to a predetermined item calculated from the subject's biological signals; and a principal component factor for each of a plurality of types of predetermined items in a sleep assessment score obtained by running a principal component analysis on the predetermined items, the predetermined items including at least an item relating to the depth of sleep, an item relating to the rhythm of sleep, and an item relating to interrupting arousal, extracted on the basis of PSG measurement data; and calculating a sleep assessment score, calculating a sleep disorder conditional probability obtained by running a logistic regression analysis on the sleep assessment score, and computing a sleep index of the subject on the basis of the sleep disorder conditional probability.

Description

睡眠評価システム及び睡眠評価装置Sleep evaluation system and sleep evaluation apparatus
 本発明は、睡眠の質を評価する睡眠評価システム及び睡眠評価装置に関する。 The present invention relates to a sleep evaluation system and sleep evaluation apparatus for evaluating the quality of sleep.
 一般的に、睡眠の質の判定は、脳波、眼球運動及びオトガイ筋電図の各データを取得し、これらのデータに基づいて判定する睡眠ポリグラフ(polysomnography:PSG)によりなされている。しかしながら、そのデータの取得に際しては、医療機関への入院検査、人体への電極の貼り付け等が必要となり、被験者の負担が大きい上に、測定装置の操作など専門的な知識が要求され、一般家庭において測定できるものではないため、簡便に一般家庭においても睡眠の質を評価することができる睡眠評価装置が開発されている(例えば、特許文献1参照)。 Generally, the quality of sleep is determined by a polysomnography (PSG) obtained by acquiring each data of electroencephalogram, eye movement and mental electromyogram and judging based on these data. However, when acquiring the data, it is necessary to have a hospitalized examination at a medical institution, affixing electrodes to the human body, etc., which is not only burdensome for the test subject, but also requires specialized knowledge such as operation of the measuring device. Since it cannot be measured at home, a sleep evaluation apparatus that can easily evaluate the quality of sleep in a general home has been developed (see, for example, Patent Document 1).
特開2008-301951JP2008-301951
 そのような睡眠評価装置では、当該装置によって測定される睡眠判定データ(例えば、寝付き時間の長さ、途中の覚醒の多さ、深い睡眠の多さ、体動の多さなど)に関する、不特定多数の被験者のサンプルデータを収集・解析し、睡眠の質を判定するための回帰式を作成して、この回帰式を前記睡眠評価装置に組み込んで製品とされるものであった。
 しかしながら、このようにして作成された回帰式は、同一タイプの睡眠評価装置に対しては同一の回帰式を組み込むことは可能であったが、例えば新しく改良した別の睡眠評価装置にそのまま組み込むと、装置の違いによる誤差が生じてしまう恐れがあった。そのため、新たな睡眠評価装置を開発する場合は、当該装置で測定される睡眠判定データに関するサンプルデータを改めて収集・解析し、この新たな睡眠評価装置用の新たな回帰式を再作成する必要があり、開発の労力及びコストがかかっていた。
 また、睡眠点数などの睡眠指標を算出する回帰式の作成に際しては、更なる別の所定項目をも反映することで、睡眠の質の評価の精度を更に向上させることが望まれる。特に、睡眠の質の評価においては、睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を考慮することが重要であるが、従来の睡眠の質の評価においては、睡眠のリズム(周期)に係る項目の評価がされておらず、更に、深睡眠率が考慮されていないため、睡眠の深さに係る項目の評価能力を向上させる余地もある。
 更に、睡眠時無呼吸症候群(sleep apnea syndrome;SAS)患者のような睡眠障害者と健常者とで、睡眠の質の評価結果に違いを持たせることができる睡眠評価システム及び睡眠評価装置が望まれる。
In such a sleep evaluation apparatus, unspecified regarding sleep determination data measured by the apparatus (for example, the length of time of sleep, the amount of awakening in the middle, the amount of deep sleep, the amount of body movement, etc.) Sample data of a large number of subjects are collected and analyzed, a regression equation for determining the quality of sleep is created, and this regression equation is incorporated into the sleep evaluation device to be a product.
However, the regression equation created in this way can incorporate the same regression equation for the same type of sleep evaluation device. For example, if it is incorporated in another newly improved sleep evaluation device as it is, There is a risk that an error may occur due to a difference in apparatus. Therefore, when developing a new sleep evaluation device, it is necessary to collect and analyze sample data relating to sleep determination data measured by the device again and recreate a new regression equation for the new sleep evaluation device. There was development effort and cost.
Further, when creating a regression equation for calculating a sleep index such as a sleep score, it is desired to further improve the accuracy of sleep quality evaluation by reflecting another predetermined item. In particular, in the evaluation of sleep quality, it is important to consider items related to sleep depth, items related to sleep rhythm, and items related to mid-wakefulness. In the evaluation, since the items related to the sleep rhythm (cycle) are not evaluated, and the deep sleep rate is not considered, there is room for improving the evaluation ability of the items related to the sleep depth.
Furthermore, a sleep evaluation system and a sleep evaluation apparatus capable of making a difference in the evaluation results of sleep quality between a sleep disordered person and a healthy person such as a patient with sleep apnea syndrome (SAS) are desired. It is.
 また、従来の睡眠評価装置では、被験者の睡眠の質を評価する指標として、客観的な数値である睡眠点数を算出し、表示部に表示するものが知られている。被験者は、そのような睡眠点数をみて、その日の睡眠状態の質の良し悪しを知ることができる。
 しかしながら、従来の睡眠評価装置では、被験者はその睡眠点数を確認し、その数値が高ければ「良い睡眠」、低ければ「悪い睡眠」であったと知ることができても、いかなる要因のために睡眠点数が良かったのか(又は悪かったのか)、を一見して把握することはできない。
 また、睡眠深度、睡眠周期、睡眠時間などが日によって異なる場合もあるため、例えば、一昨日の睡眠点数と昨日の睡眠点数とが結果的にはほぼ同じような値であったとしても、前記一昨日の睡眠の質と昨日の睡眠の質とが同じとは限らない。そのため、被験者は、睡眠点数の確認だけではその質の差異を見出すことができない。
 上記のような睡眠点数が良かった(又は悪かった)要因や睡眠の質がいかなるものであったかを知るためには、被験者が自ら、睡眠ステージグラフその他の情報から読み取って判断する必要があった。このため、睡眠判定に関する正確・詳細な知識を有しない被験者にとっては、感覚的な評価となりやすく、正確な評価及びそれに対する対処が適正に行われない場合がある。
 特に一般家庭用の睡眠評価装置における被験者は、正確な評価を自ら行うのに十分な知識を有しない場合も多いため、そのような者にとっても睡眠の質の判定結果を理解しやすい結果表示形式が求められている。
Moreover, in the conventional sleep evaluation apparatus, what calculates | requires the sleep score which is an objective numerical value as a parameter | index which evaluates a test subject's sleep quality, and displays on a display part is known. The test subject can know the quality of the sleep state of the day by seeing such a sleep score.
However, in the conventional sleep evaluation device, the subject confirms the sleep score, and if the value is high, it can be known that it is “good sleep”, and if it is low, it is “bad sleep”. It is impossible to grasp at a glance whether the score was good (or bad).
Also, since the sleep depth, sleep cycle, sleep time, etc. may vary from day to day, for example, even if the sleep score of yesterday and yesterday's sleep score are substantially the same value as a result, the day before yesterday The quality of sleep and yesterday's sleep are not always the same. Therefore, the subject cannot find the quality difference only by confirming the sleep score.
In order to know the factor that the sleep score as described above was good (or bad) and the quality of sleep, it was necessary for the subject to read and judge from the sleep stage graph and other information. For this reason, for a subject who does not have accurate and detailed knowledge regarding sleep determination, it is likely to be a sensory evaluation, and accurate evaluation and countermeasures may not be performed properly.
In particular, subjects in general-use sleep evaluation devices often do not have sufficient knowledge to perform accurate evaluations themselves, so a result display format that makes it easy for such people to understand the judgment results of sleep quality Is required.
 本発明は、PSGの測定データに基づいて作成される、汎用可能な睡眠の質の評価のための回帰式を用いる睡眠評価システム及び睡眠評価装置を提供することを目的とする。また、本発明は、睡眠の質の判定結果を確認しやすい睡眠評価装置及び睡眠評価システムを提供することを目的とする。 The present invention has an object to provide a sleep evaluation system and a sleep evaluation apparatus that use a regression equation for evaluation of a general-purpose sleep quality created based on PSG measurement data. Moreover, an object of this invention is to provide the sleep evaluation apparatus and sleep evaluation system which are easy to confirm the judgment result of the quality of sleep.
 上記課題を解決するために、本発明に係る睡眠評価システムは、被験者の生体情報を検出して生体信号として出力する生体情報検出手段を含む測定装置と、前記生体信号に基づいて前記被験者の睡眠指数を演算する情報処理端末と、を有する睡眠評価システムであって、前記情報処理端末は、PSGの測定データに基づいて抽出された、少なくとも睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目について主成分分析を行って得られる睡眠評価スコアの前記所定項目ごとの主成分係数と、前記被験者の前記生体信号から算出された前記所定項目に対応する睡眠判定データと、を乗算して睡眠評価スコアを算出し、前記睡眠評価スコアについてロジスティック回帰分析を行って得られる睡眠障害判別確率を算出し、前記睡眠障害判別確率に基づいて前記被験者の前記睡眠指数を演算することを特徴とする。
 なお、睡眠障害の判定には、無呼吸・低呼吸指数(apnea hypopnea index;AHI)やピッツバーグ睡眠質問票(pittsburgh sleep quality index;PSQI)、Visual Analog Scale(VSA)、OSA睡眠調査票(Oguri-Shirakawa-Azumi sleep inventory)、関西学院式眠気尺度(Kwansei-gakuin Sleepiness Scale;KSS)、セントマリー病院睡眠質問票(St.Marry’s Hospital Sleep Questionnaire)、アテネ不眠尺度(Athene Insomnia Scale;AIS)、エプワース睡眠尺度(Epworth sleepiness scale;ESS)、スタンフォード眠気尺度(Stanford Sleepiness Scale;SSS)等を用いるのが好適であるが、睡眠に関わる指標を広く用いることが可能であり、これらの各種指標に限定されるものではない。
In order to solve the above-described problems, a sleep evaluation system according to the present invention includes a measurement device including biological information detection means that detects biological information of a subject and outputs the biological information as a biological signal, and sleep of the subject based on the biological signal. An information processing terminal for calculating an index, wherein the information processing terminal relates to at least an item relating to sleep depth extracted based on measurement data of PSG and a sleep rhythm Calculated from a principal component coefficient for each predetermined item of a sleep evaluation score obtained by performing a principal component analysis on a plurality of types of predetermined items including items and items relating to mid-wakefulness, and the biological signal of the subject Obtained by calculating a sleep evaluation score by multiplying the sleep determination data corresponding to the predetermined item, and performing logistic regression analysis on the sleep evaluation score Calculating a sleep disorder judgment probabilities, characterized by calculating the sleep index of said subject based on said sleep disorder discrimination probability.
For the determination of sleep disorders, apnea hypopnea index (AHI), Pittsburgh sleep quality index (PSQI), Visual Analog Scale (VSA), OSA sleep survey (OSA sleep survey) Shirawa-Azumi sleep inventory (Kwansei-gakuin Sleepiness Scale; KSS), St. Mary's Hospital Sleep Questionnaire (St. Mary's Hospital Sleep Question Scale) Epworth sleepiness scale (ESS) ), Stanford Sleepiness Scale (SSS) and the like are suitable, but it is possible to use a wide range of indices related to sleep, and the present invention is not limited to these various indices.
 また、本発明に係る睡眠評価システムにおいて、前記睡眠の深さに係る項目は深睡眠率又は深睡眠出現量の少なくとも一つを含み、前記睡眠のリズムに係る項目は睡眠周期又は差分睡眠周期スコアの少なくとも一つを含み、及び、前記中途覚醒に係る項目は睡眠効率又は中長時間覚醒回数の少なくとも一つを含むことを特徴とする。 In the sleep evaluation system according to the present invention, the item related to the sleep depth includes at least one of a deep sleep rate or a deep sleep appearance amount, and the item related to the sleep rhythm includes a sleep cycle or a differential sleep cycle score. And at least one of sleep efficiency or number of times of awakening in the middle and long period is included.
 また、本発明に係る睡眠評価システムにおいて、前記睡眠評価スコアは、睡眠深度スコア、睡眠周期スコア、睡眠時間スコア、及び、中途覚醒スコアのいずれか1以上を含むことを特徴とする。 In the sleep evaluation system according to the present invention, the sleep evaluation score includes any one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
 また、本発明に係る睡眠評価システムにおいて、前記複数種類の所定項目は、深睡眠率、差分睡眠周期スコア、総就床時間、睡眠周期、深睡眠出現量、差分総就床時間スコア、中長時間覚醒回数、短時間覚醒回数、及び、睡眠効率を含むことを特徴とする。 Moreover, in the sleep evaluation system according to the present invention, the plurality of types of predetermined items are deep sleep rate, differential sleep cycle score, total bedtime, sleep cycle, deep sleep appearance amount, differential total bedtime score, medium length It includes the number of time awakenings, the number of short-time awakenings, and sleep efficiency.
 また、本発明に係る睡眠評価装置は、被験者の生体情報を検出して生体信号として出力する生体情報検出手段と、前記生体信号に基づいて前記被験者の睡眠指数を演算する判定部と、を有する睡眠評価装置であって、前記判定部は、PSGの測定データに基づいて抽出された、少なくとも睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目について主成分分析を行って得られる睡眠評価スコアの前記所定項目ごとの主成分係数と、前記被験者の前記生体信号から算出された前記所定項目に対応する睡眠判定データと、を乗算して睡眠評価スコアを算出し、前記睡眠評価スコアについてロジスティック回帰分析を行って得られる睡眠障害判別確率を算出し、前記睡眠障害判別確率に基づいて前記被験者の前記睡眠指数を演算することを特徴とする。 Moreover, the sleep evaluation apparatus according to the present invention includes biological information detection means that detects biological information of a subject and outputs it as a biological signal, and a determination unit that calculates the sleep index of the subject based on the biological signal. In the sleep evaluation device, the determination unit includes at least an item related to sleep depth, an item related to sleep rhythm, and an item related to mid-wakefulness extracted based on measurement data of PSG A principal component coefficient for each predetermined item of a sleep evaluation score obtained by performing principal component analysis on a plurality of types of predetermined items, and sleep determination data corresponding to the predetermined items calculated from the biological signal of the subject. Multiplying to calculate a sleep evaluation score, calculating a sleep disorder discrimination probability obtained by performing a logistic regression analysis on the sleep evaluation score, and based on the sleep disorder discrimination probability Characterized by calculating the sleep index of the subject Te.
 また、本発明に係る睡眠評価装置において、前記睡眠の深さに係る項目は深睡眠率又は深睡眠出現量を少なくとも一つ含み、前記睡眠のリズムに係る項目は睡眠周期又は差分睡眠周期スコアを少なくとも一つ含み、及び、前記中途覚醒に係る項目は睡眠効率又は中長時間覚醒回数を少なくとも一つ含むことを特徴とする。 In the sleep evaluation device according to the present invention, the item related to the sleep depth includes at least one deep sleep rate or deep sleep appearance amount, and the item related to the sleep rhythm includes a sleep cycle or a differential sleep cycle score. Including at least one of the items, and the item related to mid-wake awakening includes at least one sleep efficiency or number of mid-long-time awakenings.
 また、本発明に係る睡眠評価装置において、前記睡眠評価スコアは、睡眠深度スコア、睡眠周期スコア、睡眠時間スコア、及び、中途覚醒スコアのいずれか1以上を含むことを特徴とする。 In the sleep evaluation device according to the present invention, the sleep evaluation score includes any one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
 また、本発明に係る睡眠評価装置において、前記複数種類の所定項目は、深睡眠率、差分睡眠周期スコア、総就床時間、睡眠周期、深睡眠出現量、差分総就床時間スコア、中長時間覚醒回数、短時間覚醒回数、及び、睡眠効率を含むことを特徴とする。 Further, in the sleep evaluation device according to the present invention, the plurality of types of predetermined items are deep sleep rate, differential sleep cycle score, total bedtime, sleep cycle, deep sleep appearance amount, differential total bedtime score, medium length It includes the number of time awakenings, the number of short-time awakenings, and sleep efficiency.
 また、上記課題を解決するために、本発明に係る睡眠評価装置は、被験者の生体情報を検出して生体信号として出力する生体情報検出手段と、前記生体信号に基づいて前記被験者の睡眠状態を判定する判定部と、を有する睡眠評価装置であって、前記判定部は、少なくとも、睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目ごとに睡眠評価スコアを算出し、前記被験者の睡眠状態が所定の睡眠タイプのいずれに該当するかを、前記睡眠評価スコアに基づいて判定することを特徴とする。 Moreover, in order to solve the said subject, the sleep evaluation apparatus which concerns on this invention detects the biological information of a test subject, outputs the biometric signal as a biomedical signal, and the test subject's sleep state based on the said biometric signal. A plurality of types including at least an item related to sleep depth, an item related to sleep rhythm, and an item related to mid-wake awakening A sleep evaluation score is calculated for each of the predetermined items, and it is determined based on the sleep evaluation score whether the sleep state of the subject corresponds to a predetermined sleep type.
 また、本発明に係る睡眠評価装置において、前記睡眠タイプは、睡眠内容の特徴に応じて予め記憶されている種別であり、前記判定部は、算出された前記睡眠評価スコアを用いて前記睡眠タイプごとの判定値を算出し、該判定値に基づいて、前記所定の睡眠タイプのいずれに該当するかを判定することを特徴とする。 Moreover, in the sleep evaluation apparatus according to the present invention, the sleep type is a type stored in advance according to a feature of sleep content, and the determination unit uses the calculated sleep evaluation score to calculate the sleep type. A determination value is calculated for each, and based on the determination value, which of the predetermined sleep types is determined is determined.
 また、本発明に係る睡眠評価装置において、前記所定の睡眠タイプのいずれに該当するかの判定に用いる睡眠評価スコアには、少なくとも睡眠深度スコアと睡眠周期スコアと中途覚醒スコアとを含み、又は、これらに加えて睡眠時間スコアを更に含むことを特徴とする。 In the sleep evaluation device according to the present invention, the sleep evaluation score used for determining which of the predetermined sleep types includes at least a sleep depth score, a sleep cycle score, and a midway awakening score, or In addition to these, a sleep time score is further included.
 また、本発明に係る睡眠評価装置は、前記複数種類の所定項目ごとに算出される前記睡眠評価スコアを一括表示可能な表示部を有することを特徴とする。 Moreover, the sleep evaluation apparatus according to the present invention has a display unit capable of collectively displaying the sleep evaluation scores calculated for each of the plurality of types of predetermined items.
 また、本発明に係る睡眠評価装置において、前記表示部に一括表示される睡眠評価スコアには、前記所定の睡眠タイプのいずれに該当するかの判定に用いた睡眠評価スコアを含み、又は、これらに加えて体動頻度スコア及び/又は睡眠習慣スコアを更に含むことを特徴とする。 Moreover, in the sleep evaluation device according to the present invention, the sleep evaluation score displayed in a lump on the display unit includes a sleep evaluation score used to determine which of the predetermined sleep types corresponds, or these In addition to a body movement frequency score and / or a sleep habit score.
 また、本発明に係る睡眠評価装置において、前記複数種類の所定項目ごとに算出される前記睡眠評価スコアをレーダーチャートで表示可能な表示部を有することを特徴とする。 Moreover, the sleep evaluation apparatus according to the present invention is characterized by having a display unit capable of displaying the sleep evaluation score calculated for each of the plurality of types of predetermined items on a radar chart.
 また、本発明に係る睡眠評価システムは、被験者の生体情報を検出して生体信号として出力する生体情報検出手段を含む測定装置と、前記生体信号に基づいて前記被験者の睡眠状態を判定する情報処理端末と、を有する睡眠評価システムであって、前記情報処理端末は、少なくとも睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目ごとに睡眠評価スコアを算出し、前記被験者の睡眠状態が所定の睡眠タイプのいずれに該当するかを、前記睡眠評価スコアに基づいて判定することを特徴とする。 In addition, the sleep evaluation system according to the present invention includes a measuring device including biological information detection means for detecting biological information of a subject and outputting the biological information as a biological signal, and information processing for determining the sleep state of the subject based on the biological signal. A plurality of types of predetermined items including at least an item related to sleep depth, an item related to sleep rhythm, and an item related to mid-wakefulness. A sleep evaluation score is calculated for each, and it is determined based on the sleep evaluation score whether the sleep state of the subject corresponds to a predetermined sleep type.
 本発明によれば、睡眠の質を評価するための回帰式はPSGの測定データに基づいて作成されるので、睡眠評価装置一般に広く適用することが可能であり、新たな睡眠評価装置を開発する場合も、独自の回帰式を再作成するという開発工程を省略することができる。また、本発明によれば、睡眠の質を評価するための回帰式はPSGの測定データに基づいて作成されるので、この回帰式を組み込んだ情報処理端末と睡眠判定データ取得装置とを接続することにより、この回帰式にPSGの睡眠判定データをそのまま代入して睡眠の質の評価に用いることもでき、医療機関における睡眠の質の評価においても有用である。 According to the present invention, since the regression equation for evaluating the quality of sleep is created based on the measurement data of PSG, it can be widely applied to sleep evaluation devices in general, and a new sleep evaluation device is developed. Even in this case, the development process of recreating the original regression equation can be omitted. Further, according to the present invention, the regression equation for evaluating the quality of sleep is created based on the measurement data of PSG. Therefore, the information processing terminal incorporating this regression equation and the sleep determination data acquisition device are connected. Thus, the sleep determination data of PSG can be directly substituted into this regression equation and used for the evaluation of sleep quality, which is also useful for the evaluation of sleep quality in medical institutions.
 また、本発明によれば、睡眠の質を評価するための回帰式の作成に際して、睡眠周期が所定基準時間に対してどの程度の差があるかという項目や、総就床時間が所定基準時間に対してどの程度の差があるかという項目をも反映するので、睡眠の質の評価について基準となる時間を設定したために、説明力を更に向上させることができる。 In addition, according to the present invention, when creating a regression equation for evaluating the quality of sleep, an item indicating how much the sleep cycle differs from a predetermined reference time, and the total bedtime is a predetermined reference time. This also reflects the item of how much difference there is, so that the time used as a reference for the sleep quality evaluation is set, so that the explanatory power can be further improved.
 また、本発明によれば、複数種類の所定項目に基づいて睡眠評価スコアとして睡眠深度スコア、睡眠周期スコア、睡眠時間スコア、中途覚醒スコアを算出でき、これにより睡眠周期スコアをも評価するため、従来よりも睡眠の質の評価の精度が向上される。更に、睡眠の質の評価に深睡眠率も反映されるため、睡眠の深さに係る項目の評価能力が向上される。 In addition, according to the present invention, a sleep depth score, a sleep cycle score, a sleep time score, a mid-wake awakening score can be calculated as a sleep evaluation score based on a plurality of types of predetermined items, and thereby a sleep cycle score is also evaluated. The accuracy of the sleep quality evaluation is improved as compared with the prior art. Furthermore, since the deep sleep rate is also reflected in the sleep quality evaluation, the evaluation ability of items related to sleep depth is improved.
 また、本発明によれば、SAS患者のような睡眠障害者である確率を算出するので、睡眠障害者と健常者とで、睡眠の質の評価結果に違いを持たせることができる睡眠評価システム及び睡眠評価装置を提供することができる。 In addition, according to the present invention, since the probability of being a sleep disorder person such as a SAS patient is calculated, the sleep evaluation system can make a difference in the sleep quality evaluation result between the sleep disorder person and the healthy person And a sleep evaluation apparatus can be provided.
 また、本発明によれば、所定の睡眠タイプのいずれに該当するかを判定するので、被験者自身は自己の睡眠がいかなるものであったのかを極めて容易に理解できるものとなる。 In addition, according to the present invention, it is determined which of the predetermined sleep types, so that the subject himself can understand what his / her sleep was very easily.
 特に、睡眠評価スコアは、睡眠深度スコア、睡眠周期スコア、及び中途覚醒スコアに加えて、睡眠時間スコア及び/又は体動頻度スコアを含むので、睡眠深度、睡眠周期、睡眠時間、中途覚醒、体動頻度等の各観点から、何を改善すれば睡眠の評価の向上に繋がるのか、といった改善点を見出しやすくなる。 In particular, the sleep evaluation score includes a sleep time score and / or body movement frequency score in addition to a sleep depth score, a sleep cycle score, and a midway awakening score, so that the sleep depth, sleep cycle, sleep time, midway awakening, body From various viewpoints such as motion frequency, it becomes easier to find improvements such as what can be improved to improve sleep evaluation.
 また、睡眠評価スコアを一括表示可能、特にレーダーチャートで表示可能であるので、睡眠の評価に影響を及ぼしているスコアが可視化され、睡眠内容の分析・自己評価が容易となる。 Moreover, since the sleep evaluation score can be displayed in a lump, particularly on a radar chart, the score affecting the sleep evaluation can be visualized, and the sleep contents can be easily analyzed and self-evaluated.
 また、睡眠タイプは、睡眠内容の特徴に応じて予め記憶されている種別であり、算出された前記睡眠評価スコアを用いて前記睡眠タイプごとの判定値を算出するので、睡眠タイプの自動判別が可能となる。その結果、睡眠タイプごとのアドバイスの提供も自動化できるものとなる。 In addition, the sleep type is a type stored in advance according to the characteristics of the sleep content, and the determination value for each sleep type is calculated using the calculated sleep evaluation score. It becomes possible. As a result, provision of advice for each sleep type can also be automated.
実施例の睡眠評価装置の使用時外観斜視図である。It is an external appearance perspective view of the sleep evaluation apparatus of an Example at the time of use. 実施例の睡眠評価装置の電気ブロック図である。It is an electrical block diagram of the sleep evaluation apparatus of an Example. メイン動作を示すフローチャートである。It is a flowchart which shows main operation | movement. 睡眠段階判定の流れを示すフローチャートである。It is a flowchart which shows the flow of sleep stage determination. 入床・離床判定を示すフローチャートである。It is a flowchart which shows entering / leaving judgment. 離床状態の呼吸波形を示す図である。It is a figure which shows the respiration waveform of a bed leaving state. 体動判定を示すフローチャートである。It is a flowchart which shows body movement determination. 無体動状態の呼吸波形を示す図である。It is a figure which shows the respiration waveform of an inbody movement state. 粗体動状態の呼吸波形を示す図である。It is a figure which shows the respiratory waveform of a rough body movement state. 細体動状態の呼吸波形を示す図である。It is a figure which shows the respiration waveform of a thin body movement state. 体動判定及び覚醒判定の関係を示す図である。It is a figure which shows the relationship between body movement determination and arousal determination. 覚醒判定を示すフローチャートである。It is a flowchart which shows arousal determination. 入眠判定を示すフローチャートである。It is a flowchart which shows sleep onset determination. 深睡眠判定示すフローチャートである。It is a flowchart which shows deep sleep determination. REM・浅睡眠判定を示すフローチャートである。It is a flowchart which shows REM and shallow sleep determination. 中途覚醒判定を示すフローチャートである。It is a flowchart which shows midway awakening determination. 中途覚醒条件判定を示すフローチャートである。It is a flowchart which shows midway awakening condition determination. 起床判定を示すフローチャートである。It is a flowchart which shows wakeup determination. 睡眠点数演算を示すフローチャートである。It is a flowchart which shows a sleep point calculation. 深睡眠出現量算出を示すフローチャートである。It is a flowchart which shows deep sleep appearance amount calculation. 中長時間覚醒回数算出を示すフローチャートである。It is a flowchart which shows the number of times of awakening in middle and long time. 短時間覚醒回数算出を示すフローチャートである。It is a flowchart which shows the frequency | count of awakening for a short time. 睡眠効率算出を示すフローチャートである。It is a flowchart which shows sleep efficiency calculation. データの標準化を示すフローチャートである。It is a flowchart which shows the standardization of data. 主成分スコア演算を示すフローチャートである。It is a flowchart which shows a principal component score calculation. 判別確率演算を示すフローチャートである。It is a flowchart which shows discrimination | determination probability calculation. 睡眠点数演算を示すフローチャートである。It is a flowchart which shows a sleep point calculation. 所定項目を説明するためのタイムチャートである。It is a time chart for demonstrating a predetermined item. 判定結果表示を示すフローチャートである。It is a flowchart which shows a determination result display. 判定結果の画面を示す説明図である。It is explanatory drawing which shows the screen of a determination result. 判定結果の画面を示す説明図である。It is explanatory drawing which shows the screen of a determination result. 睡眠点数に関する従来技術と本発明との比較を示すグラフであり、(a)は、従来の睡眠点数と深睡眠率との相関を示すグラフ、(b)は、本発明の睡眠点数と深睡眠率との相関を示すグラフである。It is a graph which shows the comparison with the prior art regarding sleep score and this invention, (a) is a graph which shows the correlation with the conventional sleep score and deep sleep rate, (b) is the sleep score of this invention, and deep sleep. It is a graph which shows the correlation with a rate. 睡眠点数に関する従来技術と本発明との比較を示すグラフである。It is a graph which shows the comparison with the prior art and this invention regarding a sleep score. 実施例の睡眠評価装置の使用時外観斜視図である。It is an external appearance perspective view of the sleep evaluation apparatus of an Example at the time of use. 実施例の睡眠評価装置の電気ブロック図である。It is an electrical block diagram of the sleep evaluation apparatus of an Example. メイン動作を示すフローチャートである。It is a flowchart which shows main operation | movement. 睡眠段階判定の流れを示すフローチャートである。It is a flowchart which shows the flow of sleep stage determination. 入床・離床判定を示すフローチャートである。It is a flowchart which shows entering / leaving judgment. 離床状態の呼吸波形を示す図である。It is a figure which shows the respiration waveform of a bed leaving state. 体動判定を示すフローチャートである。It is a flowchart which shows body movement determination. 無体動状態の呼吸波形を示す図である。It is a figure which shows the respiration waveform of an inbody movement state. 粗体動状態の呼吸波形を示す図である。It is a figure which shows the respiratory waveform of a rough body movement state. 細体動状態の呼吸波形を示す図である。It is a figure which shows the respiration waveform of a thin body movement state. 体動判定及び覚醒判定の関係を示す図である。It is a figure which shows the relationship between body movement determination and arousal determination. 覚醒判定を示すフローチャートである。It is a flowchart which shows arousal determination. 入眠判定を示すフローチャートである。It is a flowchart which shows sleep onset determination. 深睡眠判定示すフローチャートである。It is a flowchart which shows deep sleep determination. REM・浅睡眠判定を示すフローチャートである。It is a flowchart which shows REM and shallow sleep determination. 中途覚醒判定を示すフローチャートである。It is a flowchart which shows midway awakening determination. 中途覚醒条件判定を示すフローチャートである。It is a flowchart which shows midway awakening condition determination. 起床判定を示すフローチャートである。It is a flowchart which shows wakeup determination. 睡眠点数演算を示すフローチャートである。It is a flowchart which shows a sleep point calculation. 深睡眠出現量算出を示すフローチャートである。It is a flowchart which shows deep sleep appearance amount calculation. 中長時間覚醒回数算出を示すフローチャートである。It is a flowchart which shows the number of times of awakening in middle and long time. 短時間覚醒回数算出を示すフローチャートである。It is a flowchart which shows the frequency | count of awakening for a short time. 睡眠効率算出を示すフローチャートである。It is a flowchart which shows sleep efficiency calculation. データの標準化を示すフローチャートである。It is a flowchart which shows the standardization of data. 主成分スコア演算を示すフローチャートである。It is a flowchart which shows a principal component score calculation. 睡眠障害判別確率演算を示すフローチャートである。It is a flowchart which shows a sleep disorder discrimination | determination probability calculation. 睡眠点数演算を示すフローチャートである。It is a flowchart which shows a sleep point calculation. 所定項目を説明するためのタイムチャートである。It is a time chart for demonstrating a predetermined item. 第1睡眠タイプの例を示すレーダーチャートである。It is a radar chart which shows the example of the 1st sleep type. 第2睡眠タイプの例を示すレーダーチャートである。It is a radar chart which shows the example of the 2nd sleep type. 第3睡眠タイプの例を示すレーダーチャートである。It is a radar chart which shows the example of the 3rd sleep type. 第4睡眠タイプの例を示すレーダーチャートである。It is a radar chart which shows the example of the 4th sleep type. 第5睡眠タイプの例を示すレーダーチャートである。It is a radar chart which shows the example of the 5th sleep type. 体動頻度スコア演算を示すフローチャートである。It is a flowchart which shows a body movement frequency score calculation. 睡眠タイプ判定を示すフローチャートである。It is a flowchart which shows sleep type determination. 判定結果表示を示すフローチャートである。It is a flowchart which shows a determination result display. 判定結果の画面を示す説明図である。It is explanatory drawing which shows the screen of a determination result. 判定結果の画面を示す説明図である。It is explanatory drawing which shows the screen of a determination result. 判定結果の画面を示す説明図である。It is explanatory drawing which shows the screen of a determination result. 睡眠点数に関する従来技術と本発明との比較を示すグラフであり、(a)は、従来の睡眠点数と深睡眠率との相関を示すグラフ、(b)は、本発明の睡眠点数と深睡眠率との相関を示すグラフである。It is a graph which shows the comparison with the prior art regarding sleep score and this invention, (a) is a graph which shows the correlation with the conventional sleep score and deep sleep rate, (b) is the sleep score of this invention, and deep sleep. It is a graph which shows the correlation with a rate. 睡眠点数に関する従来技術と本発明との比較を示すグラフである。It is a graph which shows the comparison with the prior art and this invention regarding a sleep score. 睡眠日誌SDの例を示す図である。Is a diagram showing an example of a sleep diary SD 1. 就寝時間テーブルST及び起床時間テーブルWTの例を示す図である。It is a diagram showing an example of a sleep time table ST 1 and wake-up time table WT 1. 睡眠習慣パターンテーブルの例を示す図である。It is a figure which shows the example of a sleep habit pattern table. 睡眠日誌SDの例を示す図である。Is a diagram showing an example of a sleep diary SD 2. 就寝時間テーブルST及び起床時間テーブルWTの例を示す図である。It is a diagram showing an example of a bedtime table ST 2 and wake-up time table WT 2. 睡眠日誌SDの例を示す図である。Is a diagram showing an example of a sleep diary SD 3. 就寝時間テーブルST及び起床時間テーブルWTの例を示す図である。It is a diagram showing an example of a bedtime table ST 3 and waking-up time table WT 3. 睡眠日誌SDの例を示す図である。Is a diagram showing an example of a sleep diary SD 4. 就寝時間テーブルST及び起床時間テーブルWTの例を示す図である。It is a diagram showing an example of a bedtime table ST 4 and waking-up time table WT 4. 判定結果の画面を示す説明図である。It is explanatory drawing which shows the screen of a determination result.
[第1実施形態]以下、図面を参照して、本発明による第1実施形態である睡眠評価装置を実施するための形態について説明する。 [First Embodiment] A mode for carrying out a sleep evaluation apparatus according to a first embodiment of the present invention will be described below with reference to the drawings.
 まず、図1及び図2を用いて、本実施形態の睡眠評価装置の構成を説明する。図1は、睡眠評価装置1の使用時の外観図、図2は、睡眠評価装置1のブロック図である。図1に示すように、睡眠評価装置1は、寝具に横臥した被験者の生体情報を検出して生体信号として出力するセンサ部2(生体情報検出手段)と、センサ部2に接続され睡眠段階の判定及び睡眠の質の評価を行なう制御ボックス3とを備える。制御ボックス3は、睡眠段階の判定結果及び睡眠の評価指標などのガイダンス表示などを行なう表示部4及び電源オン/オフ又は測定開始/終了などの操作を行なう操作部5を備える。 First, the configuration of the sleep evaluation apparatus of this embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is an external view when the sleep evaluation apparatus 1 is used, and FIG. 2 is a block diagram of the sleep evaluation apparatus 1. As shown in FIG. 1, the sleep evaluation device 1 is connected to the sensor unit 2 (biological information detection means) that detects biological information of a subject lying on the bedding and outputs it as a biological signal, and is in the sleep stage. And a control box 3 that performs determination and evaluation of sleep quality. The control box 3 includes a display unit 4 that performs guidance display such as a sleep stage determination result and a sleep evaluation index, and an operation unit 5 that performs operations such as power on / off or measurement start / end.
 センサ部2は、例えば、非圧縮性の流体を内封したマットレスの圧力変動を、マイクロホン(例えば、コンデンサマイクロホン)を用いて検出するものであり、図1に示すように、マットレスを寝具の下に敷くことにより、仰臥位の被験者の生体信号や姿勢の変化を検出するものである。 The sensor unit 2 detects, for example, a pressure fluctuation of a mattress enclosing an incompressible fluid by using a microphone (for example, a condenser microphone). As shown in FIG. It is intended to detect changes in the biological signal and posture of the subject in the supine position.
 また、図2に示すように、制御ボックス3において、センサ部2、表示部4及び操作部5はCPU6に接続される。また、CPU6は、センサ部2で検出された生体信号から呼吸信号、体動信号、心拍信号のそれぞれを検出する生体データ検出部7、睡眠評価のための各種判定および演算を行なう判定部8、睡眠段階判定および睡眠評価のための各種条件式や判定結果および演算結果を記憶しておく記憶部9と、睡眠の質を評価する評価部20と、睡眠評価装置1に電力を供給する電源10とに接続される。この場合において、CPU6は、睡眠評価装置1を制御する制御部と時間を計測する計時部とを内部に備える。判定部8は、より具体的には、入床・離床判定部11、体動判定部12、覚醒判定部13、入眠判定部14、深睡眠判定部15、REM・浅睡眠判定部16、中途覚醒判定部17及び起床判定部18(図示略)を含む。なお、これらの各判定部については、各々フローチャートを用いて後述する。 As shown in FIG. 2, in the control box 3, the sensor unit 2, the display unit 4, and the operation unit 5 are connected to the CPU 6. The CPU 6 also includes a biological data detection unit 7 that detects each of a respiratory signal, a body motion signal, and a heartbeat signal from the biological signal detected by the sensor unit 2, a determination unit 8 that performs various determinations and calculations for sleep evaluation, A storage unit 9 that stores various conditional expressions, determination results, and calculation results for sleep stage determination and sleep evaluation, an evaluation unit 20 that evaluates sleep quality, and a power supply 10 that supplies power to the sleep evaluation device 1 And connected to. In this case, the CPU 6 includes a control unit that controls the sleep evaluation apparatus 1 and a time measuring unit that measures time. More specifically, the determination unit 8 includes an entering / leaving determination unit 11, a body movement determination unit 12, a wake determination unit 13, a sleep determination unit 14, a deep sleep determination unit 15, a REM / light sleep determination unit 16, a midway An awakening determination unit 17 and a wakeup determination unit 18 (not shown) are included. Each of these determination units will be described later using a flowchart.
 さらに、判定部8は、睡眠判定データ演算部30(図示略)と、睡眠評価スコア演算部40(図示略)と、判別確率算出部50(図示略)と、を有する。 Furthermore, the determination unit 8 includes a sleep determination data calculation unit 30 (not shown), a sleep evaluation score calculation unit 40 (not shown), and a discrimination probability calculation unit 50 (not shown).
 睡眠判定データ演算部30は、睡眠評価スコア(後述)を算出するための基礎となる睡眠判定データ(複数の変数データ)を演算するものである。睡眠判定データは、深睡眠率(%)、差分睡眠周期スコア、総就床時間(分)、睡眠周期(分)、深睡眠出現量(分)、差分総就床時間スコア、中長時間覚醒回数(回)、短時間覚醒回数(回)、睡眠効率(%)の9種類のデータを用いるのが好適である。よって、睡眠判定データ算出部30として、深睡眠率演算部、差分睡眠周期スコア演算部、総就床時間演算部、睡眠周期演算部、深睡眠出現量演算部、差分総就床時間スコア演算部、中長時間覚醒回数演算部、短時間覚醒回数演算部、睡眠効率演算部を有する(いずれも図示略)。本実施形態では、これらの9種類の睡眠判定データを用いる睡眠評価システム及び睡眠評価装置を説明するが、これら以外の睡眠判定データ(変数データ)を更に追加しても良い。 The sleep determination data calculation unit 30 calculates sleep determination data (a plurality of variable data) as a basis for calculating a sleep evaluation score (described later). Sleep determination data includes deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, mid-long time awakening It is preferable to use nine types of data such as the number of times (times), the number of times of short-term awakening (times), and sleep efficiency (%). Therefore, as the sleep determination data calculation unit 30, the deep sleep rate calculation unit, the difference sleep cycle score calculation unit, the total bedtime calculation unit, the sleep cycle calculation unit, the deep sleep appearance amount calculation unit, the difference total bedtime score calculation unit , A medium / long-time wake-up number calculating section, a short-time wake-up number calculating section, and a sleep efficiency calculating section (all not shown). In the present embodiment, a sleep evaluation system and a sleep evaluation device using these nine types of sleep determination data will be described, but sleep determination data (variable data) other than these may be further added.
 ここで、複数の変数データである前記9種類の睡眠判定データについて更に説明する。深睡眠率(%)は、睡眠時間における深い睡眠の割合を意味し、「(深い睡眠の時間/睡眠時間)×100」、すなわち「(深い睡眠の時間/(入眠から最終覚醒までの時間))×100」として求めることができる。差分睡眠周期スコアは、睡眠周期(分)が基準時間(例えば90分)に対してどの程度の差があるかを表すスコアである。「-|睡眠周期-所定基準時間|」(||は絶対値を表す。)により求めることができる。従って、基準時間を90分と設定した場合に、被験者の睡眠周期が90分であれば、差分睡眠周期スコアの値は0になり最大値を示し、睡眠周期が120分又は60分であれば、差分睡眠周期スコアの値は-30となる。総就床時間(分)は、就床から離床までの時間を意味する。睡眠周期(分)は、REM睡眠の終了から次のREM睡眠の終了までを1周期とした場合の、当該周期の平均値を意味する。但し、第1周期は、入眠してから最初に現れるREM睡眠の終了までとする。深睡眠出現量(分)は、深い睡眠の時間の総和を意味する。差分総就床時間スコアは、総就床時間(分)が基準時間(例えば6.5時間(390分))に対してどの程度の差があるかを表すスコアである。「-|総就床時間-基準時間|」(||は絶対値を表す。)により求めることができる。従って、基準時間を390分と設定した場合に、被験者の総就床時間が390分であれば、差分総就床時間スコアの値は0になり最大値を示し、総就床時間が420分又は360分であれば、差分総就床時間スコアの値は-30となる。中長時間覚醒回数(回)は、睡眠中に現れる基準時間(例えば、2分30秒)以上の覚醒の回数を意味する。短時間覚醒回数(回)は、睡眠中に現れる基準時間(例えば2分)以内の覚醒の回数を意味する。睡眠効率(%)は、総就床時間に対する実際に眠っていた時間の割合を意味し、「(総睡眠時間/総就床時間)×100」、すなわち「((総就床時間-睡眠中に覚醒した時間の総和)/総就床時間)×100」として求めることができる。 Here, the nine types of sleep determination data, which are a plurality of variable data, will be further described. Deep sleep rate (%) means the ratio of deep sleep in sleep time, and “(deep sleep time / sleep time) × 100”, that is, “(deep sleep time / (time from falling asleep to final awakening)” ) × 100 ”. The differential sleep cycle score is a score representing how much the sleep cycle (minute) is different from the reference time (for example, 90 minutes). “− | Sleep cycle−predetermined reference time |” (|| represents an absolute value). Therefore, when the reference time is set to 90 minutes, if the sleep cycle of the subject is 90 minutes, the value of the differential sleep cycle score is 0 and shows the maximum value, and if the sleep cycle is 120 minutes or 60 minutes. The value of the differential sleep cycle score is −30. Total bedtime (minutes) means the time from bed to bed. The sleep cycle (minutes) means an average value of the cycle when one cycle is from the end of the REM sleep to the end of the next REM sleep. However, the first period is from the end of sleep to the end of REM sleep that appears first. Deep sleep appearance amount (minute) means the sum total of deep sleep time. The difference total bedtime score is a score indicating how much the total bedtime (minutes) is different from the reference time (for example, 6.5 hours (390 minutes)). “− | Total bedtime−reference time |” (|| represents an absolute value). Therefore, when the reference time is set to 390 minutes and the total bedtime of the subject is 390 minutes, the value of the difference total bedtime score is 0 and shows the maximum value, and the total bedtime is 420 minutes. Alternatively, if it is 360 minutes, the value of the difference total bedtime score is −30. The number of awakening times (times) means the number of times of awakening over a reference time (for example, 2 minutes 30 seconds) that appears during sleep. The number of short-time awakenings (times) means the number of times of awakening within a reference time (for example, 2 minutes) that appears during sleep. The sleep efficiency (%) means the ratio of the actual sleep time to the total bedtime, which is “(total sleep time / total bedtime) × 100”, that is, “((total bedtime−sleeping time) (Total sum of hours awakened) / total bedtime) × 100 ”.
 本発明においては、前記9種類の睡眠判定データ(所定項目)は、PSGの測定データと既存の睡眠評価装置の測定データとの相関がよいものとして抽出されている上に、特に(一例として90分基準の)差分睡眠周期スコアや、(一例として6.5時間(390分)基準の)差分総就床時間スコアを有しているため、従来技術にはない、睡眠時間や睡眠周期をも考慮した睡眠の質の評価、すなわち睡眠点数を演算することが可能であり、PSGの睡眠判定の結果に対して、睡眠点数の相関を向上させることができる。 In the present invention, the nine types of sleep determination data (predetermined items) are extracted as having good correlation between the PSG measurement data and the measurement data of the existing sleep evaluation device, and in particular (as an example, 90 Since it has a differential sleep cycle score (based on minutes) and a differential total bedtime score (based on 6.5 hours (390 minutes) as an example), it also has a sleep time and sleep cycle not found in the prior art It is possible to calculate the sleep quality evaluation in consideration, that is, the sleep score, and to improve the correlation of the sleep score with respect to the result of the sleep determination of PSG.
 睡眠評価スコア演算部40は、睡眠の質の評価の基礎となる睡眠評価スコアを演算するものである。睡眠評価スコアは、一例として、第1成分スコアとして睡眠深度スコア、第2成分スコアとして睡眠周期スコア、第3成分スコアとして睡眠時間スコア、第4成分スコアとして中途覚醒スコア、の4成分スコアで構成するのが好適である。よって、睡眠評価スコア演算部40は、睡眠深度スコア演算部、睡眠周期スコア演算部、睡眠時間スコア演算部、中途覚醒スコア演算部を有する(いずれも図示略)。より正確に睡眠の質を評価する際には、睡眠の深さ、睡眠の周期、睡眠の時間、中途覚醒の程度が重要な指標となるため、本実施形態では前記4種類の成分スコアを用いる睡眠評価装置を説明するが、これら以外の睡眠評価スコアを更に追加しても良い。 The sleep evaluation score calculation unit 40 calculates a sleep evaluation score that is a basis for evaluation of sleep quality. As an example, the sleep evaluation score is composed of a four-component score including a sleep depth score as the first component score, a sleep cycle score as the second component score, a sleep time score as the third component score, and a mid-wake score as the fourth component score. It is preferable to do this. Therefore, the sleep evaluation score calculation unit 40 includes a sleep depth score calculation unit, a sleep cycle score calculation unit, a sleep time score calculation unit, and a midway awakening score calculation unit (all not shown). When evaluating the quality of sleep more accurately, the depth of sleep, the sleep cycle, the sleep time, and the degree of arousal during mid-level are important indicators. Therefore, in the present embodiment, the four types of component scores are used. Although the sleep evaluation device will be described, sleep evaluation scores other than these may be further added.
 判別確率算出部50は、SAS患者のような睡眠障害者である確率を示す判別確率(後述)を演算するものである。 The discrimination probability calculation unit 50 calculates a discrimination probability (described later) indicating the probability of being a sleep disorder person such as a SAS patient.
 評価部20は、睡眠評価スコア演算部40が睡眠判定データに基づいて演算した睡眠評価スコアと、判別確率算出部50が演算した判別確率と、に基づいて睡眠点数(睡眠指数)を演算し、この睡眠点数を含む睡眠の質の評価の結果を表示部4に表示する。睡眠判定データ演算部30、睡眠評価スコア演算部40、判別確率算出部50、及び、評価部20が実行する処理については、各フローチャートを用いて後述する。なお、生体データ検出部7、判定部8、評価部20、睡眠判定データ演算部30と、睡眠評価スコア演算部40と、判別確率算出部50は、CPU6が所定のプログラムを実行することによって、それらの機能を実現してもよい。 The evaluation unit 20 calculates a sleep score (sleep index) based on the sleep evaluation score calculated by the sleep evaluation score calculation unit 40 based on the sleep determination data and the determination probability calculated by the determination probability calculation unit 50. The result of sleep quality evaluation including this sleep score is displayed on the display unit 4. The processes executed by the sleep determination data calculation unit 30, the sleep evaluation score calculation unit 40, the discrimination probability calculation unit 50, and the evaluation unit 20 will be described later using each flowchart. The biometric data detection unit 7, the determination unit 8, the evaluation unit 20, the sleep determination data calculation unit 30, the sleep evaluation score calculation unit 40, and the discrimination probability calculation unit 50 are executed by the CPU 6 executing a predetermined program. Those functions may be realized.
 次に図3及び図4のフローチャートを用いて、睡眠評価装置1の主な動作を説明する。図3は、メイン動作を示すフローチャート、図4は、前記各判定部11~18を用いた睡眠段階判定の流れを示すフローチャートである。 Next, the main operation of the sleep evaluation apparatus 1 will be described with reference to the flowcharts of FIGS. FIG. 3 is a flowchart showing a main operation, and FIG. 4 is a flowchart showing a flow of sleep stage determination using the respective determination units 11 to 18.
 まず図3に示すように、操作部5の電源オン操作により睡眠評価装置1の電源をオンすると、ステップS1において、就寝姿勢を取り、操作部5の測定開始の操作を行うように指示するガイダンスが表示部4に表示され、測定開始操作がされたか否かを判定する。測定開始操作がされなければNOに進み、ステップS1において前記ガイダンスを表示し続ける。また、測定開始操作がされたらYESに進み、ステップS2において、センサ部2により生体信号が検出され、CPU6に内蔵の計時部で計測した時刻と共に生体信号データとして記憶部9に記憶される。 First, as shown in FIG. 3, when the sleep evaluation apparatus 1 is turned on by turning on the operation unit 5, the guidance for instructing to take a sleeping posture and perform the measurement start operation of the operation unit 5 in step S <b> 1. Is displayed on the display unit 4 to determine whether or not a measurement start operation has been performed. If measurement start operation is not performed, it will progress to NO and will continue displaying the said guidance in step S1. When the measurement start operation is performed, the process proceeds to YES, and in step S2, a biological signal is detected by the sensor unit 2 and stored in the storage unit 9 as biological signal data together with the time measured by the time measuring unit built in the CPU 6.
 ステップS3において、測定終了の操作がされたか否かが判断され、測定終了操作がされなければNOに進み、ステップS2の生体信号の検出及び記憶を続け、測定終了操作がされたらYESに進み、ステップS4において、CPU6内の制御部により検出した生体信号の処理をするよう各部を制御する。すなわち、記憶部9に記憶した生体信号データを読み出し、生体データ検出部7において呼吸信号、体動信号、心拍信号を検出し、これらの呼吸信号、体動信号、心拍信号により得られるそれぞれの波形の振幅及び周期が演算され、呼吸データ、体動データ、心拍データとして記憶部9に記憶する。このとき、呼吸データ、体動データ、心拍データは、所定時間、例えば30秒を1単位とする単位区間毎に記憶されるものとする(以下、この単位区間を「エポック」という)。なお、呼吸信号、体動信号、心拍信号の波形の振幅及び周期の演算に関しては、既に公知であるため省略する。また、エポックの長さは30秒に限られるものではなく、判定の精度を損なわない範囲で任意の値に設定することができる。 In step S3, it is determined whether or not the measurement end operation has been performed. If the measurement end operation has not been performed, the process proceeds to NO. The detection and storage of the biological signal in step S2 is continued, and if the measurement end operation has been performed, the process proceeds to YES. In step S4, each part is controlled to process the biological signal detected by the control part in CPU6. That is, the biological signal data stored in the storage unit 9 is read out, the biological data detection unit 7 detects the respiratory signal, the body motion signal, and the heartbeat signal, and the respective waveforms obtained from these respiratory signal, body motion signal, and heartbeat signal. Are stored in the storage unit 9 as respiratory data, body movement data, and heartbeat data. At this time, it is assumed that respiratory data, body movement data, and heart rate data are stored for each unit section having a predetermined time, for example, 30 seconds as one unit (hereinafter, this unit section is referred to as “epoch”). Note that the calculation of the amplitude and period of the waveform of the respiratory signal, the body motion signal, and the heartbeat signal is already known and will be omitted. The length of the epoch is not limited to 30 seconds, and can be set to an arbitrary value within a range that does not impair the accuracy of determination.
 記憶部9に記憶された総ての生体信号データに対して、呼吸データ、体動データ、心拍データが検出され記憶されると、ステップS5において、それらの呼吸データ、体動データ、心拍データを用いて、判定部8内の各判定部11~18により、睡眠段階判定(後述)が行なわれる。 When respiration data, body motion data, and heart rate data are detected and stored for all the biological signal data stored in the storage unit 9, the respiration data, body motion data, and heart rate data are stored in step S5. Using each of the determination units 11 to 18 in the determination unit 8, a sleep stage determination (described later) is performed.
 ステップS6において、睡眠段階判定の結果に基づいて睡眠判定データ(複数の変数データ)の演算、睡眠評価スコアの演算、判別確率の演算を行い、睡眠点数が演算される。ステップS7において、睡眠点数を含む睡眠の質の評価の結果が表示部4に表示される。ステップS8において、操作部5の電源オフ操作がされたか否かが判断され、電源オフ操作がされていなければNOに進み、ステップS7の表示を続け、電源オフ操作された場合にはYESに進み、睡眠評価装置1の電源をオフにし終了となる。 In step S6, based on the result of the sleep stage determination, the sleep determination data (a plurality of variable data) is calculated, the sleep evaluation score is calculated, and the discrimination probability is calculated to calculate the sleep score. In step S <b> 7, the result of the sleep quality evaluation including the sleep score is displayed on the display unit 4. In step S8, it is determined whether or not a power-off operation has been performed on the operation unit 5. If the power-off operation has not been performed, the process proceeds to NO, and the display in step S7 is continued. If the power-off operation has been performed, the process proceeds to YES. Then, the sleep evaluation apparatus 1 is turned off and the process ends.
 次に図4のフローチャートを用いて、判定部8内における各判定部11~18を用いた睡眠段階判定の流れを説明する。判定部8は、CPU6に制御され、図3のステップS4において記憶部9に前記エポック毎に記憶された呼吸データ、体動データ、心拍データに基づいて、以下の判定処理を順次行なうものである。 Next, the flow of sleep stage determination using the determination units 11 to 18 in the determination unit 8 will be described using the flowchart of FIG. The determination unit 8 is controlled by the CPU 6 and sequentially performs the following determination processing based on the respiratory data, body movement data, and heart rate data stored for each epoch in the storage unit 9 in step S4 of FIG. .
 ステップS11(入床・離床判定ステップ)において、入床・離床判定部11は、呼吸データ、体動データ、心拍データの変動に基づいて、測定開始から測定終了までの間の入床又は離床の判定を行なう。ステップS12(体動判定ステップ)において、体動判定部12は、呼吸データ、体動データ、心拍データから得られる波形の振幅又は周期などに基づいて、寝返りなどの大きな動きである粗体動、いびきなどの小さな動きである細体動、及び、安定した呼吸・心拍・体動状態のときに得られる無体動、の各状態の内、各エポックがどの状態にあるかを判定する。ステップS13(覚醒判定ステップ)において、覚醒判定部13は、前記判定された体動の状態に基づいて明らかな覚醒状態であるか否かを判定する。ステップS14(入眠判定ステップ)において、入眠判定部14は、入床直後の覚醒状態から、どのエポックにおいて睡眠状態へ移行したか(以下、入眠区間、または、入眠潜時と言う。)を判定する。ステップS15(深睡眠判定ステップ)において、深睡眠判定部15は、呼吸データ及び心拍データの変動と前記判定された体動の状態とから、深い睡眠状態にあるか否か判定する。ステップS16(REM・浅睡眠判定ステップ)において、REM・浅睡眠判定部16は、深睡眠判定部15により深睡眠状態と判定されなかった各エポックに対して、REM睡眠状態又は浅い睡眠状態のいずれかを判定する。ステップS17(中途覚醒判定ステップ)において、中途覚醒判定部17は、体動の継続期間に基づいて入眠状態途中での覚醒状態の有無を判定する。ステップS18(起床判定ステップ)において、起床判定部18により、どのエポックにおいて睡眠状態から起床状態へ移行したか(以下、起床区間と言う。)を判定する。 In step S11 (entrance / leaving determination step), the entrance / leaving determination unit 11 determines whether to enter or leave the floor between the start of measurement and the end of measurement based on changes in respiratory data, body movement data, and heart rate data. Make a decision. In step S12 (body motion determination step), the body motion determination unit 12 performs rough body motion that is a large motion such as rolling over based on the amplitude or period of a waveform obtained from respiratory data, body motion data, and heart rate data. Among the states of small body movements such as snoring and non-body movements obtained in a stable breathing / heartbeat / body movement state, it is determined which state each epoch is in. In step S13 (awake determination step), the awake determination unit 13 determines whether or not the state is a clear awake state based on the determined body movement state. In step S14 (sleep onset determination step), the sleep onset determination unit 14 determines in which epoch the sleep state has shifted from the awakened state immediately after entering the bed (hereinafter referred to as the sleep onset period or sleep onset latency). . In step S15 (deep sleep determination step), the deep sleep determination unit 15 determines whether or not the patient is in a deep sleep state from the fluctuations in the respiratory data and the heart rate data and the determined body movement state. In step S16 (REM / shallow sleep determination step), the REM / shallow sleep determination unit 16 determines whether the deep sleep determination unit 15 determines that the sleep state is a REM sleep state or a shallow sleep state. Determine whether. In step S <b> 17 (midway awakening determination step), the midway awakening determination unit 17 determines the presence or absence of an awakening state during the sleep state based on the duration of body movement. In step S18 (wakeup determination step), the wakeup determination unit 18 determines in which epoch the transition from the sleep state to the wakeup state (hereinafter referred to as a wakeup section) is made.
 以上の総ての判定が終了すると、図3のメイン動作を示すフローチャートに戻り、ステップ6における睡眠点数の演算処理が実行されたのち、ステップS7において、睡眠点数を含む睡眠の質の評価の結果が表示されるものである。 When all the above determinations are completed, the process returns to the flowchart showing the main operation in FIG. 3, and after the sleep score calculation process in step 6 is executed, the result of the sleep quality evaluation including the sleep score in step S <b> 7. Is displayed.
 前記各判定部11~18の処理を、各々図5乃至図16の各フローチャートを用いて順を追って説明する。ただし、以下アルファベットなどで示された各定数は、睡眠ポリグラフ検査のデータによる睡眠段階判定と睡眠評価装置1による実測データとの相関に基づいて設定されるものであるとする。 The processing of each of the determination units 11 to 18 will be described step by step with reference to the flowcharts of FIGS. However, it is assumed that the constants indicated by alphabets and the like are set based on the correlation between sleep stage determination based on polysomnographic examination data and actual measurement data obtained by the sleep evaluation device 1.
 図5のフローチャートを用いて入床・離床判定部11の処理を説明する。
 ステップS21において、記憶部9に記憶された呼吸データ、体動データ、心拍データに対して設定した各エポックの総数をnmax区間とし、n=1区間目からn=nmax区間目までの各エポック毎に処理するため、n=0として初期設定する。続いてステップS22において、n=n+1として1エポック分進め記憶部9の該当するエポックの呼吸データを読み込む。
The processing of the entrance / leaving determination unit 11 will be described using the flowchart of FIG.
In step S21, the total number of epochs set for the respiratory data, body motion data, and heart rate data stored in the storage unit 9 is defined as an nmax section, and for each epoch from the n = 1 section to the n = nmax section. Therefore, n = 0 is initialized. Subsequently, in step S22, as n = n + 1, the respiration data of the corresponding epoch in the advance storage unit 9 is read by one epoch.
 ステップS23において、人が通常の仰臥位でいるときに認められる呼吸振幅の大きさの最小値をAとし、前記エポックn内の呼吸波形の振幅について、大きさA以上の振幅がt(sec)以上継続しているかどうか判定される(図6参照)。ここで、A及びtは定数であり、t<単位時間である。これに当たる場合には、呼吸が検出されていると判断しYESに進み、ステップS24において、被験者は入床状態にあるとして、前記エポックnを入床区間と判定し、ステップS25において、該当するエポックnに関連付けて記憶部9に記憶する。また、前記ステップS23の条件に当てはまらない場合には、呼吸は検出されていないと判断しNOに進み、ステップS27において、被験者は離床状態であるとして、前記エポックnを離床区間と判定し、ステップS25において、前記と同様にして記憶される。ステップS26において、全エポックnmaxにおいて前記入床・離床判定がなされたか否か、すなわちn=nmaxかが判断され、全エポックの判定がなされていなければNOに進み再びステップS22において、n=n+1として入床・離床判定を繰り返し、全エポックの判定がなされるとYESに進み、図4のフローチャートに戻り、次の判定に進む。なお、呼吸データを用いる例を説明したが、体動データ、心拍データを用いても良いことは言うまでもない。この入床・離床判定部11の処理結果に基づいて、前記総就床時間演算部及び差分総就床時間スコア演算部は、前記睡眠判定データとしての総就床時間(分)及び差分総就床時間スコアを演算することが可能となる。また、入床・離床判定部11の処理結果に基づいて、睡眠効率演算部は、睡眠効率(%)を演算するために必要な「総就床時間」を演算することが可能となる。 In step S23, A is the minimum value of the respiratory amplitude that is recognized when a person is in the normal supine position, and the amplitude of the respiratory waveform in the epoch n is greater than or equal to the magnitude t (sec). It is determined whether or not the process continues (see FIG. 6). Here, A and t are constants, and t <unit time. If this is the case, it is determined that respiration is detected, and the process proceeds to YES. In step S24, the subject is determined to be in the floor, and the epoch n is determined to be the floor section. In step S25, the corresponding epoch is detected. n is stored in the storage unit 9 in association with n. If the condition in step S23 is not satisfied, it is determined that no respiration is detected, and the process proceeds to NO. In step S27, the subject is determined to be out of bed, and epoch n is determined as a bed leaving section. In S25, it is stored in the same manner as described above. In step S26, it is determined whether or not the entry / exit determination has been made at all epochs nmax, that is, n = nmax. If all epochs have not been determined, the process proceeds to NO and again at step S22, n = n + 1 is set. When entering / leaving determination is repeated and all epochs are determined, the process proceeds to YES, and the process returns to the flowchart of FIG. 4 to proceed to the next determination. In addition, although the example using respiration data was demonstrated, it cannot be overemphasized that body movement data and heart rate data may be used. Based on the processing result of the entrance / exit determination unit 11, the total bedtime calculation unit and the differential total bedtime score calculation unit are configured to calculate the total bedtime (minutes) and the differential total employment as the sleep determination data. The floor time score can be calculated. Further, based on the processing result of the entrance / leaving determination unit 11, the sleep efficiency calculation unit can calculate “total bedtime” necessary for calculating sleep efficiency (%).
 図7のフローチャートを用いて体動判定部12の処理を説明する。
 体動判定部の処理は、まず、前記エポックnに関わらず、呼吸信号の波形の振幅から体動の大きさを判定し、次に、エポックn内における前記判定された体動の有無により、各エポックnの体動状態を判定するものである。
The process of the body movement determination part 12 is demonstrated using the flowchart of FIG.
The process of the body movement determination unit first determines the magnitude of body movement from the amplitude of the waveform of the respiratory signal regardless of the epoch n, and then, depending on the presence or absence of the determined body movement in the epoch n, The body movement state of each epoch n is determined.
 よって、ステップS31において、測定開始から測定終了までの総呼吸数をimax回とし、i=0として初期設定する。続いてステップS32において、i=i+1として1呼吸数分進め、記憶部9のi=1回目からi=imax回目までの各呼吸数iに該当する呼吸波形を読み込む。 Therefore, in step S31, the total respiratory rate from the start of measurement to the end of measurement is set to imax, and i = 0 is initially set. Subsequently, in step S32, i = i + 1 is set to advance by one respiration rate, and a respiration waveform corresponding to each respiration rate i from i = 1 to i = imax in the storage unit 9 is read.
 ステップS32において、更にi=i+2回目とi=i+3回目の呼吸波形を読み込み、この連続する3つの呼吸波形の振幅のばらつきにより体動の有無を判定する。すなわち、ステップS33において、前記3つの呼吸波形の振幅の標準偏差≧B1(ここで、B1は、呼吸波形が安定しているか否かの閾値をしめす定数である。)かどうかを判定する。標準偏差<B1であった場合、呼吸のばらつきは小さいため呼吸波形が安定していると判断しNOに進み、ステップS38において、前記連続する3つの呼吸波形の内、i=i+1回目の呼吸は無体動状態を示すものと判定する。 In step S32, the i = i + 2 and i = i + 3 respiration waveforms are further read, and the presence / absence of body movement is determined based on variations in the amplitudes of the three consecutive respiration waveforms. That is, in step S33, it is determined whether or not the standard deviation of the amplitudes of the three respiratory waveforms ≧ B1 (where B1 is a constant indicating a threshold value indicating whether the respiratory waveform is stable). If the standard deviation is smaller than B1, it is determined that the respiration waveform is stable because the variation in respiration is small, and the process proceeds to NO. In step S38, of the three consecutive respiration waveforms, i = i + 1th respiration is It is determined to indicate an inanimate state.
 また、ステップS33において標準偏差≧B1であった場合、呼吸のばらつきが大きいため体動有り、と判断してYESに進み、ステップS34において、前記i=i+1回目の呼吸波形の振幅の大きさ≧B2(ここで、B2は、人が通常の仰臥位でいるときに認められる呼吸振幅の最大値であり、B2>Aなる定数である。)かどうかを判定する。前記振幅の大きさ≧B2であった場合YESに進み、ステップS35において、i=i+1回目の呼吸は粗体動状態であると判定する(図9参照)。また、前記振幅の大きさ<B2であった場合NOに進み、ステップS36において、呼吸波形の周期により体動の大きさを判定する。すなわち、前記i=i+1回目の呼吸周期≧B3であるかどうかを判定する。前記呼吸周期≧B3であった場合YESに進み、粗体動と状態であると判定する。また、呼吸周期<B3であった場合NOに進み、ステップS37において、呼吸波形の振幅及び周期共に小さいが変動が大きいと判断され、細体動状態であると判定される(図10参照)。 If the standard deviation is greater than or equal to B1 in step S33, it is determined that there is a body movement due to large variations in respiration, and the process proceeds to YES. In step S34, the amplitude of the i = i + 1th respiration waveform is greater than or equal to ≧ It is determined whether or not B2 (where B2 is the maximum value of the respiration amplitude recognized when the person is in the normal supine position, and B2> A). If the magnitude of amplitude is greater than or equal to B2, the process proceeds to YES, and in step S35, it is determined that i = i + 1-th breathing is in a rough body motion state (see FIG. 9). Further, if the magnitude of the amplitude is smaller than B2, the process proceeds to NO, and in step S36, the magnitude of the body motion is determined based on the period of the respiratory waveform. That is, it is determined whether or not i = i + 1th respiration cycle ≧ B3. If the breathing cycle ≧ B3, the process proceeds to YES, and it is determined that the body motion and state are present. If respiratory cycle <B3, the process proceeds to NO. In step S37, it is determined that both the amplitude and cycle of the respiratory waveform are small, but the fluctuation is large, and it is determined that the body is in a thin body motion state (see FIG. 10).
 このように、粗体動、細体動及び無体動の各体動の状態が判定されると、ステップS39において、該当する呼吸数iに関連付けて記憶部9に記憶され、ステップS40において、全呼吸数imaxにおいて前記体動判定がなされたか否か、すなわちi=imaxかが判断され、全エポックの判定がなされていなければNOに進み、再びステップS32からi=i+1として体動判定を繰り返し、全呼吸数の判定がなされるとYESに進み、今度は、ステップS41以降のエポックn毎の体動判定を行なう(図11参照)。 As described above, when the state of each body motion of coarse body motion, thin body motion and inbody motion is determined, in step S39, it is stored in the storage unit 9 in association with the corresponding respiration rate i. It is determined whether or not the body movement determination is made at the respiration rate imax, that is, whether i = imax. If all the epochs are not determined, the process proceeds to NO, and the body movement determination is repeated again from step S32 as i = i + 1. When the determination of the total respiratory rate is made, the process proceeds to YES, and this time the body movement determination for each epoch n after step S41 is performed (see FIG. 11).
 すなわち、図5のステップS21及びステップS22と同様にして、図7のステップS41においてエポックn=0と初期設定し、ステップS42において、n=n+1として該当するエポックの呼吸データを読み込む。続くステップS43において、前記読み込んだエポックn内に、前記粗体動状態と判定された呼吸波形が有るかどうか判定され、有る場合にはYESに進み、ステップS44において、このエポックnを粗体動区間と判定する。また、無い場合にはNOに進み、ステップS45において、同エポックnに、前記細体動状態と判定された呼吸波形が有るかどうか判定され、有る場合にはYESに進み、ステップS46において、このエポックnを細体動区間と判定する。また、無い場合にはNOに進み、ステップS47において、このエポックnを無体動区間と判定する。 That is, similarly to step S21 and step S22 of FIG. 5, epoch n = 0 is initially set in step S41 of FIG. 7, and respiration data of the corresponding epoch is read as n = n + 1 in step S42. In the following step S43, it is determined whether or not the read epoch n contains the respiratory waveform determined to be in the rough body movement state. Judged as a section. If not, the process proceeds to NO. In step S45, it is determined whether or not the epoch n has the respiratory waveform determined to be the thin body movement state. If there is, the process proceeds to YES. Epoch n is determined to be a thin body motion section. If not, the process proceeds to NO, and in step S47, this epoch n is determined to be a non-movement section.
 このように、粗体動区間、細体動区間及び無体動区間の判定がなされると、ステップS48において、該当するエポックnに関連付けて判定結果が記憶部9に記憶され、ステップS49において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS42からn=n+1としてエポック毎の体動判定を繰り返し、全エポックの判定がなされるとYESに進み、図4のフローチャートに戻り、次の判定に進む。 As described above, when the rough body motion section, the fine body motion section, and the non-body motion section are determined, the determination result is stored in the storage unit 9 in association with the corresponding epoch n in step S48. It is determined whether or not the above determination has been made at the epoch nmax. If all epochs have not been determined, the process proceeds to NO, and body movement determination for each epoch is repeated again from step S42 with n = n + 1, and all epochs are determined. The process proceeds to YES and returns to the flowchart of FIG. 4 to proceed to the next determination.
 図12のフローチャートを用いて覚醒判定部13の処理を説明する。
 前述と同様にエポック毎の判定を行なうため、ステップS51において、エポックn=0と初期設定し、ステップS52において、n=n+1として該当するエポックnの呼吸データを読み込む。以下、図12に示すように、続くステップS53において、例えば、前記読み込んだエポックnの前後各±2区間の合計5区間のエポックが記憶部9内に存在するかどうか判断される。存在しない場合にはNOに進み、再びステップS52に戻りn=n+1として進める。また前記5区間が存在する場合にはYESに進み、5区間を記憶部9より読み込む。続くステップS55において、前記5区間の各エポックの体動値Zを求める。体動値Zは、図7を用いて詳述した体動判定部12の体動区間の判定に基づき、粗体動区間であればZ=2、細体動区間であればZ=1、無体動区間であればZ=0として定義される値である。これと共に、前記各エポックの体動値Zに基づいて5区間の体動値Zの総和(ここで、0≦Zの総和≦10であり、以下、Zの総和をΣZと言う場合がある。)も求める。
Processing of the awakening determination unit 13 will be described using the flowchart of FIG.
In order to make a determination for each epoch as described above, in step S51, epoch n = 0 is initially set, and in step S52, the respiration data of the corresponding epoch n is read as n = n + 1. Hereinafter, as shown in FIG. 12, in the subsequent step S53, for example, it is determined whether or not there are a total of 5 epochs in the storage unit 9 of ± 2 sections before and after the read epoch n. If it does not exist, the process proceeds to NO, returns to step S52 again, and proceeds as n = n + 1. If the five sections exist, the process proceeds to YES, and the five sections are read from the storage unit 9. In subsequent step S55, the body motion value Z of each epoch in the five sections is obtained. Based on the determination of the body motion section of the body motion determination unit 12 described in detail with reference to FIG. 7, the body motion value Z is Z = 2 for a rough body motion section, Z = 1 for a thin body motion section, In the case of an inbody movement section, the value is defined as Z = 0. At the same time, based on the body motion value Z of each epoch, the sum of the body motion values Z of the five sections (here, 0 ≦ Z sum ≦ 10, hereinafter, the sum of Z may be referred to as ΣZ). )
 ステップS56において、前記5区間の体動値Zの総和=10であるか否かが判定される。前記Zの総和=10であった場合YESに進み、ステップS57において、前記5区間全てが粗体動区間であることから、前記ステップS52で読み込んだエポックn(5区間の中央のエポック)を覚醒状態にある覚醒区間と判定する。また、体動値Zの総和が10に満たない場合NOに進み、ステップS58において、ステップS56と同様にして、5≦前記体動値Zの総和≦9であるか否かが判定される。前記Zの総和がこの範囲内にあった場合にはYESに進み、ステップS59において、前記エポックnを、呼吸状態が比較的不安定であるREM睡眠又は浅睡眠状態の可能性が高い不安定区間と判定する。また、Zの総和が前記範囲になかった場合、すなわちZの総和≦4であった場合にはNOに進み、前記エポックnを呼吸状態が比較的安定している深睡眠又は浅睡眠状態の可能性が高い安定区間と判断する。 In step S56, it is determined whether or not the sum of the body motion values Z of the five sections = 10. If the sum of Z = 10, the process proceeds to YES. In step S57, since all the five sections are coarse body movement sections, the epoch n (the epoch at the center of the five sections) read in step S52 is awakened. It is determined as an awakening section in a state. If the sum of the body motion values Z is less than 10, the process proceeds to NO, and in step S58, it is determined whether or not 5 ≦ the sum of the body motion values Z ≦ 9 as in step S56. If the total sum of Z is within this range, the process proceeds to YES, and in step S59, the epoch n is changed to an unstable interval in which the respiratory state is relatively unstable and the possibility of a REM sleep or a shallow sleep state is high. Is determined. If the sum of Z is not within the above range, that is, if the sum of Z ≦ 4, the process proceeds to NO, and the epoch n can be in a deep sleep state or a shallow sleep state where the respiratory state is relatively stable. Judged as a stable section with high characteristics.
 このように、覚醒区間、不安定区間及び安定区間の判定がなされると、ステップS61において、該当するエポックnに関連付けて記憶部9に記憶され、ステップS62において、エポックnmaxが前記5区間の中に存在したかどうか判断され、存在していなければNOに進み、再びステップS52に戻りn=n+1としてエポック毎の覚醒判定を繰り返し、存在していた場合にはYESに進み、図4のフローチャートに戻り、次の判定に進む。 As described above, when the determination of the awakening period, the unstable period, and the stable period is made, the epoch nmax is stored in the storage section 9 in association with the corresponding epoch n in step S61. If it does not exist, the process proceeds to NO, returns to step S52 again, repeats the awakening determination for each epoch with n = n + 1, and proceeds to YES if it exists, as shown in the flowchart of FIG. Return to the next determination.
 図13のフローチャートを用いて入眠判定部14の処理を説明する。
 入床直後の初期の覚醒状態から睡眠状態へ移行するエポック(以下、入眠区間と言う。)を判定するために、図12に詳述した覚醒判定部13により、体動値Zによる覚醒判定に加えて、人の入眠の傾向に基づいて、より詳細に初期の覚醒区間を判定していくことによって前記入眠区間を定義するものである。
The process of the sleep detection unit 14 will be described with reference to the flowchart of FIG.
In order to determine an epoch (hereinafter referred to as a sleep interval) that shifts from the initial awake state immediately after entering the bed to the sleep state, the awake determination unit 13 described in detail in FIG. In addition, the sleep interval is defined by determining the initial awake interval in more detail based on the person's sleep tendency.
 前述と同様にエポック毎の判定を行なうため、ステップS71において、エポックn=0と初期設定し、ステップS72おいて、n=n+1として該当するエポックnの呼吸データを読み込む。続くステップS73において、読み込んだエポックnが、図12で詳述した不安定区間であるか否かを判定する。ただし、この不安定区間は初期の覚醒区間の継続後に初めて出現する不安定区間である。よって、不安定区間でない場合にはNOに進み、このエポックを改めて覚醒区間として置き換えて記憶し、再びステップS72からの処理を不安定区間を読み込むまで繰り返す。このとき、前記エポックが安定区間であった場合であっても、通常の人の呼吸においては、入床直後の初期の覚醒状態から不安定状態を経ずに、突如として安定状態が現れることは考えにくい。従って、この安定区間は信頼性の低いデータであると容易に推定可能であり、覚醒区間として置き換えることは妥当であると言える。 In order to make a determination for each epoch as described above, in step S71, epoch n = 0 is initially set, and in step S72, the respiration data of the corresponding epoch n is read as n = n + 1. In a succeeding step S73, it is determined whether or not the read epoch n is the unstable section detailed in FIG. However, this unstable section is an unstable section that appears for the first time after the continuation of the initial awakening section. Therefore, if it is not an unstable section, the process proceeds to NO, this epoch is replaced and stored as an awakening section, and the processing from step S72 is repeated until the unstable section is read again. At this time, even in the case where the epoch is in a stable section, in a normal person's breathing, the stable state suddenly appears without going through the unstable state from the initial awakening state immediately after entering the bed. Very Hard to think. Therefore, it can be easily estimated that this stable interval is data with low reliability, and it can be said that it is appropriate to replace it as an awakening interval.
 また、前記エポックnが不安定区間であった場合にはYESに進み、前記エポックnから一定区間数C1までの間に覚醒区間と判定されたエポックが存在するか否かが判定される。ここで、前記エポックnが入眠区間であるとした場合、人の睡眠において、入眠直後に覚醒することは考えにくいことから、前記一定区間数C1は、人が通常入眠直後に覚醒しないとされる範囲を設定した定数である。従って、前記エポックnから一定区間数C1までの間に覚醒区間が存在した場合にはNOに進み、前記エポックnを覚醒区間と置き換えて記憶し、再びステップS72からの処理を繰り返す。また、覚醒区間が存在しなかった場合にはYESに進み、ステップS75において前記エポックnを入眠(仮)区間として、ステップS77以降の処理によって、より厳密に入眠区間を判定する。 Further, if the epoch n is an unstable section, the process proceeds to YES, and it is determined whether or not there is an epoch determined to be a wake-up section between the epoch n and the predetermined number of sections C1. Here, assuming that the epoch n is a sleep interval, it is difficult to wake up immediately after falling asleep in human sleep. Therefore, the predetermined number of intervals C1 is assumed that the person does not normally wake up immediately after falling asleep. A constant with a range set. Accordingly, if there is a wake-up interval between the epoch n and the predetermined number of intervals C1, the process proceeds to NO, the epoch n is replaced with the wake-up interval and stored, and the processing from step S72 is repeated again. If the awakening section does not exist, the process proceeds to YES. In step S75, the epoch n is set as the sleep (temporary) section, and the sleep section is determined more strictly by the processing after step S77.
 ステップS77以降の処理は、実測により見出した、人の入眠付近の3つの呼吸変動傾向に基づいて、前記入眠(仮)区間以降の不安定区間と判定されたエポックの内、どのエポックまでを覚醒区間と見なして置換すべきかを判定することにより、その直後のエポックを入眠区間として定義するものである。 The processing after step S77 is awakening up to which epoch among the epochs determined to be unstable after the sleep (temporary) interval, based on three respiratory fluctuation trends near the person's sleep, found by actual measurement. The epoch immediately after that is determined as a sleep interval by determining whether it should be replaced as an interval.
 まず、ステップS77において、図5を用いて詳述した入床・離床判定部11により入床区間と判定された各エポックの内、測定開始後最も早く入床区間と判定されたエポックから前記入眠(仮)区間の直前のエポックまでを基準範囲として設定し、この基準範囲において、各エポック毎の呼吸数に対する分散σを求める。また、前記基準範囲を含み、前記入眠(仮)区間から一定区間数α、β及びγ(ここで、α、β及びγは、α<β<γとして設定される定数であり、前記3つの呼吸変動傾向を判別するために適した時間間隔を実測から割り出して設定されるものである。)分増加させた範囲までを、各々α範囲、β範囲及びγ範囲とし、各範囲を設定するエポックを各々α区間、β区間及びγ区間として定義し、前記基準範囲と同様にして、これら各範囲の呼吸数の分散を求め、各々σα、σβ及びσγとする。これら分散σ、σα、σβ及びσγに基づいて、前記3つの呼吸変動傾向を各々条件D、条件E及び条件Fとして判定する。 First, in step S77, out of each epoch determined to be an entrance section by the entrance / leaving determination unit 11 described in detail with reference to FIG. Up to the epoch immediately before the (temporary) section is set as a reference range, and in this reference range, the variance σ 2 with respect to the respiratory rate for each epoch is obtained. Further, including the reference range, the number of constant intervals α, β and γ from the sleep (provisional) interval (where α, β and γ are constants set as α <β <γ, and the three The time interval suitable for discriminating the respiratory fluctuation tendency is calculated and set from actual measurement.) The epochs that set each range are the α range, β range, and γ range up to the incremented range. Are defined as an α section, a β section, and a γ section, respectively, and in the same manner as the reference range, the variance of the respiration rate of each of these ranges is obtained and is set as σα 2 , σβ 2, and σγ 2 . Based on these variances σ 2 , σα 2 , σβ 2, and σγ 2 , the three respiratory fluctuation tendencies are determined as Condition D, Condition E, and Condition F, respectively.
 1つ目の呼吸変動傾向は、被験者の呼吸のばらつきが急速に低減して睡眠状態に至るものである。従って、ステップS78において、「σα>σβ(式1)」且つ「σβ≦C2(式2)」なる式により定義される条件Dにより判定される。すなわち、前記式1に示すように、範囲の増加に従って急速に呼吸数のばらつきが減少し、且つ、前記式2に示すように、母集団の増加に伴う分散が一定数C2よりも小さくなるものである。ここで、前記C2は、入眠後に現れる呼吸数のばらつきに有意に近しいと判定可能な定数である。この条件Dに該当する場合には、β区間はすでに睡眠状態にあると判定できる。 The first respiratory fluctuation tendency is that a subject's breathing variation is rapidly reduced to a sleep state. Therefore, in step S78, the determination is made based on the condition D defined by the expression “σα 2 > σβ 2 (Expression 1)” and “σβ 2 ≦ C2 (Expression 2)”. That is, as shown in the above equation 1, the variation in the respiratory rate rapidly decreases as the range increases, and as shown in the above equation 2, the variance accompanying the increase in the population becomes smaller than a certain number C2. It is. Here, C2 is a constant that can be determined to be significantly close to the variation in respiratory rate that appears after falling asleep. When this condition D is satisfied, it can be determined that the β section is already in the sleeping state.
 これに従い、条件Dに該当する場合にはYESに進み、ステップS79において、少なくとも、α区間までは覚醒区間であると判定し、このα区間の直後のエポックを入眠区間として決定する。また、条件Dに該当しない場合にはNOに進み、ステップS80において、2つ目の呼吸変動傾向の判定を行なう。 Accordingly, if the condition D is satisfied, the process proceeds to YES. In step S79, it is determined that at least the α section is the awakening section, and the epoch immediately after the α section is determined as the sleep period. If the condition D is not met, the process proceeds to NO, and in step S80, the second respiratory fluctuation tendency is determined.
 2つめの呼吸変動傾向は、被験者の呼吸のばらつきが徐々に低減して睡眠状態に至るものである。従って、「σ×C3≧σα≧σβ(式3)」なる式により定義される条件Eにより判定される。ここで、前記C3は、C3<1なる定数であり、基準範囲のばらつきに対して何割か低減させるものである。ただし、前記式2のC2との間にはσ×C3>C2なる関係が存在する。従って、式3に示すように、前記C3により低減した基準範囲のばらつきに対し、α範囲のばらつきが小さく、β範囲のばらつきは更に小さくなるものである。 The second tendency of respiratory fluctuation is that a subject's breathing variation is gradually reduced to a sleep state. Therefore, it is determined by the condition E defined by the expression “σ 2 × C3 ≧ σα 2 ≧ σβ 2 (Expression 3)”. Here, C3 is a constant satisfying C3 <1, and is reduced by some percent with respect to variations in the reference range. However, there is a relationship of σ 2 × C3> C2 with C2 in the formula 2. Therefore, as shown in Expression 3, the variation of the α range is small and the variation of the β range is further reduced with respect to the variation of the reference range reduced by the C3.
 これに従い、条件Eに該当する場合にはYESに進み、ステップS79において、ばらつきは非常に緩やかではあるが減少傾向にあることから、前記β区間までを覚醒区間であると判定し、このβ区間の直後のエポックを入眠区間として決定する。また条件Eに該当しない場合にはNOに進み、ステップS81において、3つ目の呼吸変動傾向の判定を行なう。 Accordingly, if the condition E is satisfied, the process proceeds to YES. In step S79, since the variation is very gradual but tends to decrease, it is determined that the β period is the awakening period. The epoch immediately after is determined as the sleep interval. On the other hand, if the condition E is not satisfied, the process proceeds to NO, and the third respiratory fluctuation tendency is determined in step S81.
 3つ目の呼吸変動傾向は、被験者の呼吸のばらつきが、基準範囲の呼吸のばらつきに比べて一旦ばらつきが増大した後に、再び減少するものである。従って、「σ<σβ(式4)」且つ「σγ<σβ(式5)」なる式により定義される条件Fにより判定される。ここで、この傾向は条件D及びEに比べ、比較的長いスパンで見られる現象であることから、上記β範囲及びγ範囲を用いた条件としたものである。 The third respiratory fluctuation tendency is that the fluctuation of the subject's breathing once decreases after the fluctuation once increases compared with the breathing fluctuation of the reference range. Therefore, it is determined by the condition F defined by the expressions “σ 2 <σβ 2 (Expression 4)” and “σγ 2 <σβ 2 (Expression 5)”. Here, since this tendency is a phenomenon seen in a relatively long span as compared with the conditions D and E, the conditions using the β range and the γ range are used.
 これに従い、条件Fに該当する場合にはYESに進み、ステップS79において、前記γ範囲の内、少なくとも前記ばらつきが増大したβ区間までは覚醒区間であると判定し、β区間の直後のエポックを入眠区間として決定する。 Accordingly, if the condition F is satisfied, the process proceeds to YES, and in step S79, at least the β section in which the variation has increased is determined to be an awakening section, and the epoch immediately after the β section is determined. Determine as sleep interval.
 また条件Fに該当しない場合にはNOに進む。これは、前記条件D、E及びFの何れの条件にも該当しなかった場合であり、ステップS82において、前記区間数α、β及びγを各々区間数δだけ増加して、α範囲、β範囲及びγ範囲を各々再設定した上で、再びステップS78に戻り、前記条件D、条件E及び条件Fを、入眠区間が決定するまで繰り返す。 If the condition F is not met, proceed to NO. This is a case where none of the conditions D, E, and F is satisfied. In step S82, the number of sections α, β, and γ is increased by the number of sections δ, respectively, and an α range, β After resetting each of the range and the γ range, the process returns to step S78 again, and the conditions D, E and F are repeated until the sleep interval is determined.
 また、前記ステップS79において、入眠区間が決定されると、ステップS83において、該当するエポックnに関連付けて、前記覚醒区間及び入眠区間を記憶した後、図4のフローチャートに戻り、次の判定に進む。以上の覚醒判定部13及び入眠判定部14の処理結果に基づいて、前記深睡眠率演算部は、深睡眠率(%)を演算するために必要な「睡眠時間」すなわち「入眠から最終覚醒までの時間」を演算することが可能となる。また、覚醒判定部13及び入眠判定部14の処理結果に基づいて、睡眠効率演算部は、睡眠効率(%)を演算するために必要な「睡眠中に覚醒した時間の総和」を演算することが可能となる。 When the sleep interval is determined in step S79, the awake interval and the sleep interval are stored in association with the corresponding epoch n in step S83, and the process returns to the flowchart of FIG. 4 and proceeds to the next determination. . Based on the processing results of the awakening determination unit 13 and the sleep onset determination unit 14, the deep sleep rate calculation unit calculates “sleep time” necessary for calculating the deep sleep rate (%), that is, “from sleep onset to final awakening”. Can be calculated. In addition, based on the processing results of the awakening determination unit 13 and the sleep onset determination unit 14, the sleep efficiency calculation unit calculates the “total amount of time awakened during sleep” necessary for calculating sleep efficiency (%). Is possible.
 図14のフローチャートを用いて深睡眠判定部15の処理を説明する。
 ここで、深睡眠状態において、呼吸は穏やかな一定リズムになり、体動はほぼ起こらなくなることから、以下の判定を行なうものである。
The process of the deep sleep determination part 15 is demonstrated using the flowchart of FIG.
Here, in the deep sleep state, breathing has a gentle constant rhythm, and body movement hardly occurs, so the following determination is performed.
 前述と同様にエポック毎の判定を行なうため、ステップS91において、エポックn=0と初期設定し、ステップS92おいて、n=n+1として該当するエポックnの呼吸データを読み込む。続くステップS93において、読み込んだエポックnが、図12で詳述した安定区間であるか否かを判定する。安定区間でない場合には、再びステップS92に戻りn=n+1として安定区間に該当するまで繰り返す。また安定区間であった場合にはYESに進み、ステップS94において、多数の判定条件を複合した条件Gの判定を行なう。 In order to make a determination for each epoch as described above, in step S91, epoch n = 0 is initially set, and in step S92, the respiration data of the corresponding epoch n is read as n = n + 1. In a succeeding step S93, it is determined whether or not the read epoch n is the stable section detailed in FIG. If it is not the stable section, the process returns to step S92 again and repeats until n = n + 1 and the stable section is met. Further, if it is a stable section, the process proceeds to YES, and in step S94, a condition G in which a large number of determination conditions are combined is determined.
 前記条件Gは、「エポックn内の呼吸数≦H1」且つ「エポックn内の呼吸波形の周期の標準偏差≦H2」且つ「エポックnとエポックnの±1区間との呼吸数の差≦H3」且つ「エポックnは無体動区間である」の条件を満たすときに、前記エポックnを深睡眠区間として判定するものである(ここで、H1、H2及びH3は、実測により求められる定数である)。 The condition G is “respiration rate in epoch n ≦ H1”, “standard deviation of the period of the respiratory waveform in epoch n ≦ H2”, and “difference in respiratory rate between epoch n and ± 1 interval of epoch n ≦ H3” ”And“ Epoch n is a bodyless motion section ”, the epoch n is determined as a deep sleep section (where H1, H2, and H3 are constants obtained by actual measurement. ).
 従って、ステップS94において、読み込んだエポックnが条件Gを満たした場合にはYESに進み、ステップS95において、前記エポックnを深睡眠区間と判定し、ステップS96において判定結果を記憶部9に記憶する。また、条件Gを満たさなかった場合にはNOに進み、ステップS97において、不安定区間であると判断し、ステップS96において、前記安定区間を不安定区間として置きかえて記憶部9に記憶する。ステップS98において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS92からのステップを繰り返し、全エポックの判定がなされるとYESに進み、図4のフローチャートに戻り、次の判定に進む。この深睡眠判定部15の処理結果に基づいて、前記深睡眠出現量演算部は、前記睡眠判定データとしての深睡眠出現量(分)を演算することが可能となる。また、この深睡眠判定部15の処理結果に基づいて、深睡眠率演算部は、深睡眠率(%)を演算するために必要な「深い睡眠の時間」を演算することが可能となる。 Accordingly, if the read epoch n satisfies the condition G in step S94, the process proceeds to YES. In step S95, the epoch n is determined to be a deep sleep section, and the determination result is stored in the storage unit 9 in step S96. . If the condition G is not satisfied, the process proceeds to NO. In step S97, it is determined that it is an unstable section. In step S96, the stable section is replaced as an unstable section and stored in the storage unit 9. In step S98, it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO, and the steps from step S92 are repeated again. The process returns to the flowchart of FIG. 4 and proceeds to the next determination. Based on the processing result of the deep sleep determination unit 15, the deep sleep appearance amount calculation unit can calculate the deep sleep appearance amount (minute) as the sleep determination data. Further, based on the processing result of the deep sleep determination unit 15, the deep sleep rate calculation unit can calculate “deep sleep time” necessary for calculating the deep sleep rate (%).
 図15のフローチャートを用いて、REM・浅睡眠判定部16の処理を説明する。
 ここで、REM睡眠状態においては、呼吸数の増加及び変動が継続して起こり、体動も多くなることから、以下の判定を行なうものである。
The processing of the REM / light sleep determination unit 16 will be described using the flowchart of FIG.
Here, in the REM sleep state, since the increase and fluctuation of the respiration rate occur continuously and the body movement increases, the following determination is performed.
 前述と同様にエポック毎の判定を行なうため、ステップS101において、エポックn=0と初期設定し、ステップS102において、n=n+1として該当するエポックnの呼吸データを読み込む。 In order to make a determination for each epoch as described above, in step S101, epoch n = 0 is initially set, and in step S102, the respiration data of the corresponding epoch n is read as n = n + 1.
 ステップS103において、読み込んだエポックnが、n≠nmaxであるか且つ前記図12で詳述した不安定区間であるか否かを判定する。エポックnがn≠nmax且つ不安定区間であった場合にはYESに進み、ステップS104において、不安定区間の継続回数をj=j+1としてカウントし、続くステップS105において、「全入床区間における各エポック内の呼吸数の平均値≦エポックnの呼吸数」なる、条件Iの判定を行なう。すなわち、前述したように、REM睡眠においては呼吸数の増加が見られることから、睡眠中の平均的な呼吸数よりも前記エポックnの呼吸数の方が多いか否かを判定するものである。 In step S103, it is determined whether or not the read epoch n is n ≠ nmax and is the unstable section detailed in FIG. If epoch n is n ≠ nmax and an unstable section, the process proceeds to YES, and in step S104, the number of continuations of the unstable section is counted as j = j + 1. The condition I is determined as follows: “Average value of respiration rate in epoch ≦ respiration rate of epoch n”. That is, as described above, since an increase in respiratory rate is observed in REM sleep, it is determined whether the respiratory rate of the epoch n is higher than the average respiratory rate during sleep. .
 この条件Iを満たさない場合にはNOに進み、ステップS106において、前記継続回数j=1からj=jまでの各エポックを浅睡眠区間と判定する。また、条件Iを満たす場合にはYESに進み、再びステップS102においてn=n+1として不安定区間の検出を行う。 If this condition I is not satisfied, the process proceeds to NO, and in step S106, each epoch from the number of continuations j = 1 to j = j is determined as a shallow sleep section. If the condition I is satisfied, the process proceeds to YES, and an unstable section is detected again with n = n + 1 in step S102.
 前記ステップS103において、エポックnが、n=nmaxであるか又は不安定区間でない場合にはNOに進み、ステップS110において、不安定区間の継続回数j=0か否かを判断しj=0であればYESに進み、再びステップS102に戻ってn=n+1として不安定区間に該当するまで繰り返す。またj=0でない場合にはNOに進み、ステップS111において、前記条件Iを満たす、継続回数j=1からj=jまでの不安定区間に対して、継続回数jが一定回数jx以上か否か、j≧jx(ここで、jxは、REM睡眠状態の可能性を示唆する継続数である。)の判定がなされる。超えていない場合にはNOに進み、前記ステップS106に示したj=1からj=jまでの各エポックを浅睡眠区間と判定する。また、超えた場合にはYESに進み、ステップS112において、前記継続回数j=1からjまではREM睡眠状態である可能性が高いとして、各エポックをREM睡眠(仮)区間と判定する。 In step S103, if epoch n is n = nmax or not an unstable section, the process proceeds to NO. In step S110, it is determined whether the number of continuations in the unstable section j = 0, and j = 0. If there is, the process proceeds to YES, returns to step S102 again, and repeats until n = n + 1 corresponding to the unstable section. If j is not 0, the process proceeds to NO. In step S111, whether or not the continuation number j is equal to or greater than the predetermined number jx for the unstable section satisfying the condition I from the continuation number j = 1 to j = j. Or j ≧ jx (where jx is the number of continuations suggesting the possibility of a REM sleep state). If not, the process proceeds to NO, and each epoch from j = 1 to j = j shown in step S106 is determined as a shallow sleep section. If exceeded, the process proceeds to YES, and it is determined in step S112 that each epoch is a REM sleep (provisional) section, assuming that there is a high possibility that the continuation count j = 1 to j is in the REM sleep state.
 ここで、睡眠時無呼吸症候群などによる無呼吸状態があった場合には、努力性呼吸が起きるため、前記ステップS105における条件Iの「エポックnの呼吸数」は増加することになり、この異常値に基づいて前記条件Iが判定され、浅睡眠区間と判定されるべき区間がREM(仮)区間と判定されてしまう。そこで、ステップS113において、「全入床区間における安定区間数/(全入床区間数-覚醒区間)≧k」なる条件Kの判定により、睡眠中の安定区間(すなわち深睡眠状態又は浅睡眠状態)が、所定の割合k以上出現しているか否かを判定することにより、少なくとも一般的に正常とされる睡眠が保たれているかどうか判定するものである。前記条件Kを満たす場合には、睡眠は正常であり、条件Iの判定は妥当であると判断しYESに進み、ステップS115において、継続回数j=1からjまでの各エポックをREM睡眠区間と決定する。また、前記条件Kを満たさない場合、異常な睡眠状態があったと判断しNOに進み、ステップS114において、条件Lによる判定を行なう。 Here, when there is an apnea state due to sleep apnea syndrome or the like, forced breathing occurs, and therefore, the “respiration rate of epoch n” of the condition I in step S105 increases, and this abnormality The condition I is determined based on the value, and the section to be determined as the shallow sleep section is determined as the REM (provisional) section. Therefore, in step S113, the stable section during sleep (that is, the deep sleep state or the shallow sleep state) is determined based on the determination of the condition K that “the number of stable sections in the entire bed section / (the number of all bed sections−the awake section) ≧ k”. ) Is determined whether or not at least a predetermined ratio k is present, thereby determining whether or not at least generally normal sleep is maintained. If the condition K is satisfied, sleep is normal and the determination of the condition I is determined to be appropriate, and the process proceeds to YES. In step S115, the epochs of the number of continuations j = 1 to j are defined as REM sleep intervals. decide. If the condition K is not satisfied, it is determined that there is an abnormal sleep state, the process proceeds to NO, and the determination based on the condition L is performed in step S114.
 条件Lは、継続回数j=1からjまでのREM睡眠(仮)区間において、「(各区間の最大呼吸数-各区間の最小呼吸数)/REM睡眠(仮)区間数≧Lx」の判定により、呼吸数にばらつきがあってもそれが正常な範囲か否かを判定するものであり、Lxは、呼吸が異常であると定義する最小値である。すなわち、前記継続回数j=1からjまでのREM睡眠(仮)区間のいずれかに無呼吸状態が出現したとするものである。従って、条件Lを満たす場合、すなわち呼吸に異常がある場合にはYESに進み、ステップS106において、前記REM睡眠(仮)区間とした継続回数j=1からjまでの各エポックを前記浅睡眠区間として決定する。また、条件Lを満たさない場合、すなわち呼吸が正常である場合にはNOに進み、ステップS115において、前記REM睡眠(仮)区間とした継続回数j=1からjまでの各エポックを前記REM睡眠区間と決定する。 Condition L is the determination of “(maximum respiratory rate in each segment−minimum respiratory rate in each segment) / REM sleep (provisional) segment number ≧ Lx” in the REM sleep (provisional) interval from the number of continuous times j = 1 to j. Therefore, even if there is a variation in the respiration rate, it is determined whether or not the respiration rate is within a normal range, and Lx is a minimum value that defines that respiration is abnormal. That is, it is assumed that an apnea state appears in any of the REM sleep (provisional) sections from the number of continuous times j = 1 to j. Therefore, if the condition L is satisfied, that is, if there is an abnormality in breathing, the process proceeds to YES, and in step S106, each epoch from j = 1 to j as the REM sleep (provisional) section is set as the shallow sleep section. Determine as. Further, if the condition L is not satisfied, that is, if the breathing is normal, the process proceeds to NO, and in step S115, the epochs of the number of continuations j = 1 to j as the REM sleep (provisional) section are set as the REM sleep. Determined as a section.
 前記REM睡眠区間及び浅睡眠区間が決定されると、ステップS107において各エポックnに関連付けて記憶部9に記憶され、ステップS108において、継続回数jを一旦0に戻し、ステップS109において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS102からのステップを繰り返し、全エポックの判定がなされるとYESに進み、図4のフローチャートに戻り、次の判定に進む。このREM・浅睡眠判定部16の処理結果に基づいて、前記睡眠周期演算部及び差分睡眠周期スコア演算部は、前記睡眠判定データとしての睡眠周期(分)及び差分睡眠周期スコアを演算することが可能となる。 When the REM sleep interval and the light sleep interval are determined, they are stored in the storage unit 9 in association with each epoch n in step S107. In step S108, the continuation number j is once reset to 0, and in step S109, all epoch nmax In step S102, it is determined whether the above determination has been made. If all epochs have not been determined, the process proceeds to NO. The steps from step S102 are repeated, and if all epochs have been determined, the process proceeds to YES. Return to the next determination. Based on the processing result of the REM / shallow sleep determination unit 16, the sleep cycle calculation unit and the differential sleep cycle score calculation unit may calculate a sleep cycle (minutes) and a differential sleep cycle score as the sleep determination data. It becomes possible.
 図16のフローチャートを用いて、中途覚醒判定部17の処理を説明する。
 睡眠状態にあっても、体動がある一定時間以上継続した場合には、途中で目覚めたと解することができ、以下の判定を行なうものである。
The process of the midway awakening determination unit 17 will be described using the flowchart of FIG.
Even in the sleep state, if the body movement continues for a certain time or more, it can be understood that the user has awakened in the middle, and the following determination is made.
 前述と同様にエポック毎の判定を行なうため、ステップS121において、エポックn=0と初期設定し、ステップS122おいて、n=n+1として該当するエポックnの呼吸データを読み込む。ステップS123において、読み込んだエポックnが、n≠nmaxであるか、且つ、図7に詳述した体動判定部12で判定した、粗体動、細体動及び無体動の内、粗体動区間又は細体動区間のいずれか一方(以下、体動区間と言う)であるかを判定する。 In the same manner as described above, in order to perform the determination for each epoch, in step S121, epoch n = 0 is initially set, and in step S122, the respiration data of the corresponding epoch n is read as n = n + 1. In step S123, the read epoch n is n ≠ nmax, and the coarse body motion, the fine body motion, and the non-body motion determined by the body motion determination unit 12 described in detail in FIG. It is determined whether it is either a section or a thin body movement section (hereinafter referred to as a body movement section).
 エポックnがn≠nmax且つ体動区間であった場合にはYESに進み、ステップS124において、継続回数m=m+1としてカウントし、再びステップS122においてn=n+1として体動区間の検出を繰り返す。また、エポックnが、n=nmaxであるか又は体動区間であった場合にはNOに進み、ステップS125において、前記継続回数mがm≧mx(ここで、mxは、中途覚醒の可能性を含む体動区間継続数である。)であるか否かが判断され、m≧mxの場合にはYESに進み、ステップS126において、m=1からm=mまでの各エポックは覚醒状態にあると判定し、各エポックが深睡眠区間、浅睡眠区間及びREM睡眠区間として記憶されている場合であっても、各エポックを覚醒区間と置きなおして記憶部9に記憶し、ステップS127において、継続回数mを一旦0に戻す。 If epoch n is n ≠ nmax and is a body motion section, the process proceeds to YES, and in step S124, the number of continuations is counted as m = m + 1. In step S122, detection of the body motion section is repeated with n = n + 1. If epoch n is n = nmax or is a body movement section, the process proceeds to NO, and in step S125, the number of continuations m is m ≧ mx (where mx is the possibility of mid-wakefulness) In the case of m ≧ mx, the process proceeds to YES, and in step S126, each epoch from m = 1 to m = m is in the awake state. Even if it is determined that each epoch is stored as a deep sleep interval, a shallow sleep interval, and a REM sleep interval, each epoch is replaced with an awakening interval and stored in the storage unit 9, and in step S127, The number of continuations m is once reset to zero.
 また、継続回数mがmxを超えていない場合にはNOに進み、そのまま前記ステップS127において、継続回数m=0とする。ステップS128において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS102からのステップを繰り返し、全エポックの判定がなされるとYESに進み、図17に詳述する中途覚醒条件判定において、発明者が実測により見出した、人の中途覚醒時の傾向に基づいて定義した各条件により詳細に中途覚醒を判定する。この判定がなされた後に、図4のフローチャートに戻り、次の判定に進む。この中途覚醒判定部17の処理結果に基づいて、前記中長時間覚醒回数演算部及び短時間覚醒回数演算部は、前記睡眠判定データとしての中長時間覚醒回数(回)及び短時間覚醒回数(回)を演算することが可能となる。 If the continuation count m does not exceed mx, the process proceeds to NO, and the continuation count m = 0 is set as it is in step S127. In step S128, it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO. The steps from step S102 are repeated again, and if all epochs have been determined, YES is determined. In the middle awakening condition determination described in detail in FIG. 17, the middle awakening is determined in detail according to each condition defined based on the tendency of the person during the middle awakening, found by the inventors. After this determination is made, the process returns to the flowchart of FIG. 4 and proceeds to the next determination. Based on the processing result of the midway awakening determination unit 17, the medium / long-time awakening frequency calculation unit and the short-time awakening frequency calculation unit calculate the medium / long-time awakening frequency (times) and the short-time awakening frequency as the sleep determination data ( Times) can be calculated.
 ここで、図17のフローチャートを用いて、中途覚醒条件判定を説明する。中途覚醒条件判定は、ステップS131において、エポックn=0と初期設定し、ステップS132において、n=n+1として該当するエポックnの呼吸データを読み込む。 Here, mid-wake condition determination will be described using the flowchart of FIG. In the mid-wake condition determination, epoch n = 0 is initially set in step S131, and respiration data of the corresponding epoch n is read as n = n + 1 in step S132.
 ステップS133においては、まず、各エポックn毎の体動の状態を求める。すなわち、前述の体動判定部12の説明において、図7のフローチャートのステップS39において、1呼吸iに関連付けて記憶した粗体動、細体動及び無体動の各状態に対して、前記粗体動状態であればU=2とし、同様にして細体動状態であればU=1、無体動状態であればU=0として、前記読み込んだエポックn内の各呼吸iに応じて前記体動の状態を前記Uの総和(以下、ΣUと言う)として求める。 In step S133, first, the state of body movement for each epoch n is obtained. That is, in the description of the body motion determination unit 12 described above, the coarse body motion, the thin body motion, and the non-body motion state stored in association with one breath i in step S39 of the flowchart of FIG. In the same way, U = 2 is set for the moving state, U = 1 is set for the thin body moving state, and U = 0 is set for the non-body moving state. The state of motion is obtained as the sum of U (hereinafter referred to as ΣU).
 次に、前記エポックnにおいてΣU≧2か否かが判断される。ΣU≧2の場合にはYESに進み、ステップS134において、継続回数m=m+1としてカウントする。また、ΣU≧2でなかった場合にはNOに進み、継続回数をカウントせずにステップS135において、前回までカウントした継続回数がm≧mp(ここで、mpは、中途覚醒の可能性を含む体動区間継続数を示す定数であり、mp<mxなる定数である。)であるか否かを判断する。m≧mpでなかった場合には、中途覚醒の可能性はないとしてNOに進み、ステップS140において継続回数をm=0に戻す。また、m≧mpであった場合には、継続回数m=1からm=mまでの各エポックnが覚醒状態にある可能性があるといえるためYESに進み、次の条件判定を行なう。 Next, it is determined whether or not ΣU ≧ 2 at the epoch n. If ΣU ≧ 2, the process proceeds to YES, and in step S134, the number of continuations is counted as m = m + 1. Further, if ΣU ≧ 2, the process proceeds to NO, and the number of continuations counted up to the previous time is m ≧ mp in step S135 without counting the number of continuations (where mp includes the possibility of mid-wakefulness) It is a constant indicating the number of continuation of body motion sections, and it is determined whether or not mp <mx. If m ≧ mp is not satisfied, the process proceeds to NO because there is no possibility of awakening, and the number of continuations is returned to m = 0 in step S140. If m ≧ mp, it can be said that there is a possibility that each epoch n from the number of continuations m = 1 to m = m is in the awake state, so the process proceeds to YES and the next condition determination is performed.
 すなわち、ステップS136において、前記継続回数m=1からm=mまでのエポックの内、「(ΣU≧10のエポックnの数)≧m1%」(ここで、m1は全継続回数mに対する割合を示す定数である。)に該当するか否かを判定する。この条件に該当する場合にはYESに進み、ステップS139において、前記継続回数m=1からm=mまでの各エポックnを覚醒区間として置きなおし、記憶部9に記憶する。また、前記条件に該当しない場合にはNOに進み、次の条件判定を行なう。 That is, in step S136, “(number of epochs n of ΣU ≧ 10) ≧ m1%” among the epochs from the continuation number m = 1 to m = m (where m1 is a ratio to the total continuation number m). It is determined whether or not it is a constant. If this condition is met, the process proceeds to YES, and in step S139, each epoch n from the number of continuations m = 1 to m = m is replaced as an awakening section and stored in the storage unit 9. If the condition is not met, the process proceeds to NO and the next condition determination is performed.
 すなわち、ステップS137において、「(ΣU≧10のエポックnの数)≧m2%」(ここで、m2は全継続回数mに対する割合を示す定数であり、m2<m1なる定数である。)に該当するか否かを判定する。この条件に該当しない場合には、m=1からm=mまでの間に中途覚醒の可能性はないものとしてNOに進み、ステップS140において継続回数をm=0に戻す。前記条件に該当する場合には、中途覚醒の可能性ありと判定しYESに進み、更に条件を加える。 That is, in step S137, “(number of epochs n of ΣU ≧ 10) ≧ m2%” (where m2 is a constant indicating the ratio to the total number of continuations m, and m2 <m1). It is determined whether or not to do. If this condition is not met, it is determined that there is no possibility of awakening during m = 1 to m = m, and the process proceeds to NO, and the number of continuations is returned to m = 0 in step S140. If the above condition is met, it is determined that there is a possibility of awakening midway, the process proceeds to YES, and further conditions are added.
 すなわち、ステップS138において、「(m=1からm=mまでの全エポックの平均呼吸数)≧(n=1からn=nmaxまでの全エポックの平均呼吸数)×mq」に該当するか否かを判定する。ここで、mqはmq>1なる定数であり、一般的に睡眠状態での呼吸数に比べて覚醒状態での呼吸数の方が多いとされていることから、睡眠状態を含むn=1からn=nmaxまでのエポックの平均呼吸数のmq倍よりも、m=1からm=mまでのエポックの平均呼吸数が多ければ、明らかに覚醒状態にあると判定できると言える。 That is, whether or not “(average respiratory rate of all epochs from m = 1 to m = m) ≧ (average respiratory rate of all epochs from n = 1 to n = nmax) × mq” in step S138. Determine whether. Here, mq is a constant of mq> 1, and since the respiratory rate in the awake state is generally higher than the respiratory rate in the sleep state, from n = 1 including the sleep state. If the average respiratory rate of epochs from m = 1 to m = m is larger than mq times the average respiratory rate of epochs up to n = nmax, it can be said that it is clearly determined that the patient is in an awake state.
 前記条件を満たしていなければ、m=1からm=mまでの間に中途覚醒の可能性はないとしてNOに進み、ステップS140において継続回数をm=0に戻す。また、前記条件を満たしている場合にはYESに進み、ステップS139において、前記継続回数m=1からm=mまでの各エポックnを覚醒区間として置きなおし、記憶部9に記憶した後、ステップS140において継続回数がm=0に戻す。ステップS141において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS132からのステップを繰り返し、全エポックの判定がなされるとYESに進み、図16のフローチャートに戻る。 If the above conditions are not satisfied, it is determined that there is no possibility of awakening during m = 1 to m = m, and the process proceeds to NO, and the number of continuations is returned to m = 0 in step S140. If the condition is satisfied, the process proceeds to YES, and in step S139, the epoch n from the number of continuations m = 1 to m = m is replaced as a wake-up section and stored in the storage unit 9; In S140, the continuation count is returned to m = 0. In step S141, it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO. The steps from step S132 are repeated again, and if all epochs have been determined, YES is determined. Proceed and return to the flowchart of FIG.
 図18のフローチャートを用いて、起床判定部18の処理を説明する。
 ステップS151において、エポックn=nmaxとし、ステップS152において、n=n-1として時間的に遡って、該当するエポックnを読み込む。ステップS153において、読み込んだエポックnが、睡眠状態と判定されているか否か、すなわち、深睡眠区間、浅睡眠区間及びREM睡眠区間の内いずれか(以下、睡眠区間と言う。)に該当するか否かを判定する。睡眠区間に該当しない場合にはNOに進み、再びステップS152においてn=n-1として睡眠区間の検出を繰り返す。また前記エポックnが睡眠区間であった場合にはYESに進み、ステップS154において、このエポックnを起床(仮)区間として定義する。続くステップS155において、前記起床(仮)区間から更に一定区間数Rまで遡った各エポックにおいて、覚醒区間が存在するか否かを判定する。ここで、人の通常の睡眠において、目覚める一定時間前に覚醒が起こることはないと見なせることから、前記一定区間数Rは、前記一定時間を定義するものである。前記覚醒区間が存在した場合にはYESに進み、ステップS158において、この検出された覚醒区間から前記起床(仮)区間までの各エポックを覚醒区間として定義し、ステップS154において、前記検出された覚醒区間の一つ前のエポックを新たに起床(仮)区間として再定義し、再びステップS155において、前記一定区間数Rを設定する。また、前記ステップS155において、一定区間数Rまでの間に覚醒区間が存在しなかった場合にはNOに進み、ステップS156において、前記起床(仮)区間を起床区間として決定し、ステップS157において、該当するエポックnに関連付けて記憶部9に記憶して、図3のメイン動作を示すフローチャートに戻る。以上の起床判定部18の処理結果に基づいて、前記深睡眠率演算部は、深睡眠率(%)を演算するために必要な「睡眠時間」すなわち「入眠から最終覚醒までの時間」を演算することが可能となる。
The process of the wakeup determination unit 18 will be described using the flowchart of FIG.
In step S151, epoch n = nmax is set, and in step S152, n = n−1 is set back in time, and the corresponding epoch n is read. In step S153, whether or not the read epoch n is determined to be a sleep state, that is, corresponds to any one of a deep sleep section, a shallow sleep section, and a REM sleep section (hereinafter referred to as a sleep section). Determine whether or not. If it does not correspond to the sleep section, the process proceeds to NO, and the detection of the sleep section is repeated with n = n−1 again in step S152. If the epoch n is a sleep section, the process proceeds to YES, and this epoch n is defined as a wake-up (temporary) section in step S154. In subsequent step S155, it is determined whether or not there is a wake-up section in each epoch that goes back from the wake-up (temporary) section to a certain number of sections R. Here, in the normal sleep of a person, it can be considered that awakening does not occur a certain time before waking up. Therefore, the certain number of intervals R defines the certain time. If the awakening interval exists, the process proceeds to YES, and in step S158, each epoch from the detected awakening interval to the wake-up (temporary) interval is defined as an awakening interval. In step S154, the detected awakening is detected. The epoch immediately before the section is newly redefined as a wake-up (temporary) section, and the fixed section number R is set again in step S155. In step S155, if there is no awakening section up to a certain number of sections R, the process proceeds to NO. In step S156, the wake-up (temporary) section is determined as the wake-up section. In step S157, The information is stored in the storage unit 9 in association with the corresponding epoch n, and the process returns to the flowchart showing the main operation in FIG. Based on the processing result of the wake-up determination unit 18, the deep sleep rate calculation unit calculates “sleep time” necessary for calculating the deep sleep rate (%), that is, “time from falling asleep to final awakening”. It becomes possible to do.
 続いて、CPU6は、図3のステップS6に進み、睡眠点数演算処理を実行する。睡眠点数演算処理では、睡眠の質の程度を総合的に示す睡眠点数(睡眠指標)を演算により算出する。被験者が就寝姿勢を取ってから起床するまでの1回の睡眠において、上述した入床・離床判定、体動判定、覚醒判定、入眠判定、深睡眠判定、REM・浅睡眠判定、中途覚醒判定、起床判定によって、睡眠の状態を示す睡眠判定データ(例えば深睡眠時間、中途覚醒回数)を得ることができる。これらの睡眠判定データは、単体でも睡眠の質をある程度評価することができるが、単体での評価は、睡眠の状態のある一部を評価しているに過ぎない。そこで、本実施形態では、PSGの測定データのうち、睡眠の「深さ」、「周期」、「時間」、「中途覚醒」を反映する複数の所定項目(変数)を抽出し、既存の睡眠評価装置と相関のある変数として、深睡眠率(%)、差分睡眠周期スコア、総就床時間(分)、睡眠周期(分)、深睡眠出現量(分)、差分総就床時間スコア、中長時間覚醒回数(回)、短時間覚醒回数(回)、睡眠効率(%)を選定した。さらに、これらの所定項目(変数)を集約した睡眠点数を導くために、主成分分析を実施して睡眠評価スコアを開発すると共に、この睡眠評価スコアと睡眠時無呼吸症候群リスクとを反映する、睡眠点数の回帰式を開発した。なお、本実施形態における回帰式作成に際して解析したPSGの測定データの対象は、健常者49名、SAS患者112名であった。
 上記の様に、本実施形態では、睡眠の質を総合的に評価するための評価指数である睡眠点数を導くために、睡眠評価スコアを主成分分析法によって選定する。
Then, CPU6 progresses to step S6 of FIG. 3, and performs a sleep point calculation process. In the sleep score calculation process, a sleep score (sleep index) that comprehensively indicates the level of sleep quality is calculated by calculation. In one sleep from when the subject takes a sleeping posture to wake up, the above-described bed / bed determination, body movement determination, arousal determination, sleep determination, deep sleep determination, REM / light sleep determination, mid-wake determination, Sleep determination data (e.g. deep sleep time, number of mid-wakefulness) indicating sleep state can be obtained by wakeup determination. Although these sleep determination data can evaluate the quality of sleep to some extent by itself, the evaluation by itself only evaluates a part of the sleep state. Therefore, in the present embodiment, a plurality of predetermined items (variables) reflecting “depth”, “cycle”, “time”, and “halfway awakening” of sleep are extracted from PSG measurement data, and existing sleep is extracted. As variables correlated with the evaluation device, deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, The number of mid- and long-term awakenings (times), short-time awakenings (times), and sleep efficiency (%) were selected. Furthermore, in order to derive a sleep score that aggregates these predetermined items (variables), a principal component analysis is performed to develop a sleep evaluation score, and this sleep evaluation score and sleep apnea syndrome risk are reflected. A regression formula for sleep scores was developed. In addition, the object of the measurement data of PSG analyzed when creating the regression equation in the present embodiment was 49 healthy persons and 112 SAS patients.
As described above, in this embodiment, a sleep evaluation score is selected by a principal component analysis method in order to derive a sleep score that is an evaluation index for comprehensively evaluating the quality of sleep.
 第1に、ある母集団について、PSGによって複数の所定項目(変数)を測定する。この例では、複数の所定項目として、深睡眠率(%)、差分睡眠周期スコア、総就床時間(分)、睡眠周期(分)、深睡眠出現量(分)、差分総就床時間スコア、中長時間覚醒回数(回)、短時間覚醒回数(回)、睡眠効率(%)とする。 First, for a certain population, a plurality of predetermined items (variables) are measured by PSG. In this example, as a plurality of predetermined items, deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score The number of wakefulness (medium / long-time), the number of short-time wakefulness (times), and sleep efficiency (%).
 第2に、前記複数の所定項目の相互の相関係数を算出し、相関行列を求める。9個の項目に基づく相関行列は、以下の式(1)に示す行列式で与えられる。但し、r11~r99は相関係数である。 Second, a correlation coefficient between the plurality of predetermined items is calculated to obtain a correlation matrix. The correlation matrix based on the nine items is given by the determinant shown in the following formula (1). However, r11 to r99 are correlation coefficients.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第3に、相関行列に基づいて、第1乃至第9主成分Z1~Z9、固有ベクトルa11~a99を算出する。これらは、以下の式(2)~(7)で与えられる。
 Z1=a11X1+a12X2+a13X3+a14X4+a15X5+a16X6+a17X7+a18X8+a19X9…式(2)
 Z2=a21X1+a22X2+a23X3+a24X4+a25X5+a26X6+a27X7+a28X8+a29X9…式(3)
 Z3=a31X1+a32X2+a33X3+a34X4+a35X5+a36X6+a37X7+a38X8+a39X9…式(4)
 Z4=a41X1+a42X2+a43X3+a44X4+a45X5+a46X6+a47X7+a48X8+a49X9…式(5)
 Z5=a51X1+a52X2+a53X3+a54X4+a55X5+a56X6+a57X7+a58X8+a59X9…式(6)
 Z6=a61X1+a62X2+a63X3+a64X4+a65X5+a66X6+a67X7+a68X8+a69X9…式(7)
 Z7=a71X1+a72X2+a73X3+a74X4+a75X5+a76X6+a77X7+a78X8+a79X9…式(8)
 Z8=a81X1+a82X2+a83X3+a84X4+a85X5+a86X6+a87X7+a88X8+a89X9…式(9)
 Z9=a91X1+a92X2+a93X3+a94X4+a95X5+a96X6+a97X7+a98X8+a99X9…式(10)
 但し、X1~X9は、上述した9個の項目である。第1乃至第9主成分Z1~Z9は互いに直交するように固有ベクトルa11~a99が定められる。直交するとは互いに独立であり、両者の間に相関がないことを意味する。
Third, first to ninth principal components Z1 to Z9 and eigenvectors a11 to a99 are calculated based on the correlation matrix. These are given by the following equations (2) to (7).
Z1 = a11X1 + a12X2 + a13X3 + a14X4 + a15X5 + a16X6 + a17X7 + a18X8 + a19X9 (2)
Z2 = a21X1 + a22X2 + a23X3 + a24X4 + a25X5 + a26X6 + a27X7 + a28X8 + a29X9 (3)
Z3 = a31X1 + a32X2 + a33X3 + a34X4 + a35X5 + a36X6 + a37X7 + a38X8 + a39X9 (4)
Z4 = a41X1 + a42X2 + a43X3 + a44X4 + a45X5 + a46X6 + a47X7 + a48X8 + a49X9 (5)
Z5 = a51X1 + a52X2 + a53X3 + a54X4 + a55X5 + a56X6 + a57X7 + a58X8 + a59X9 (6)
Z6 = a61X1 + a62X2 + a63X3 + a64X4 + a65X5 + a66X6 + a67X7 + a68X8 + a69X9 (7)
Z7 = a71X1 + a72X2 + a73X3 + a74X4 + a75X5 + a76X6 + a77X7 + a78X8 + a79X9 (8)
Z8 = a81X1 + a82X2 + a83X3 + a84X4 + a85X5 + a86X6 + a87X7 + a88X8 + a89X9 (9)
Z9 = a91X1 + a92X2 + a93X3 + a94X4 + a95X5 + a96X6 + a97X7 + a98X8 + a99X9 (10)
However, X1 to X9 are the nine items described above. Eigenvectors a11 to a99 are determined so that the first to ninth principal components Z1 to Z9 are orthogonal to each other. Orthogonal means that they are independent of each other and there is no correlation between them.
 第4に、固有ベクトルa11~a99が適切に第1乃至第9主成分Z1~Z9の意味を反映しているかを判定する。固有ベクトルa11~a99が適切に第1乃至第9主成分Z1~Z9の意味を反映していないのは、項目の選定に誤りがある。このため、項目の組を棄却して、他の項目の組を採用する。 Fourth, it is determined whether the eigenvectors a11 to a99 appropriately reflect the meanings of the first to ninth principal components Z1 to Z9. The reason why the eigenvectors a11 to a99 do not appropriately reflect the meanings of the first to ninth principal components Z1 to Z9 is that the item is selected incorrectly. For this reason, the set of items is rejected and another set of items is adopted.
 第5に、次の行列式から第1乃至第9主成分Z1~Z9の固有値λ1~λ9を求める。 Fifth, eigenvalues λ1 to λ9 of the first to ninth principal components Z1 to Z9 are obtained from the following determinant.
Figure JPOXMLDOC01-appb-M000002
 固有値λ1~λ9は、第1乃至第9主成分Z1~Z9の分散と関係があり、固有値が大きい程、分散が大きくなり、固有値が小さい程、分散が小さくなる。そして、分散が大きい程、対応する主成分の重要度が高くなる。すなわち、固有値が大きい程、対応する主成分が全体をより適切に表現していることになる。
Figure JPOXMLDOC01-appb-M000002
The eigenvalues λ1 to λ9 are related to the dispersion of the first to ninth principal components Z1 to Z9. The larger the eigenvalue, the larger the dispersion, and the smaller the eigenvalue, the smaller the dispersion. Then, the greater the variance, the higher the importance of the corresponding principal component. That is, the larger the eigenvalue, the more appropriately the corresponding principal component represents the whole.
 第6に、第1乃至第9主成分Z1~Z9の寄与率を算出する。寄与率は各主成分の固有値が総ての固有値の合計に占める割合である。なお、相関行列に基づいて固有値を算出した場合には、寄与率は各固有値λ1~λ9を主成分数である「9」で割って得られる。 Sixth, the contribution ratios of the first to ninth main components Z1 to Z9 are calculated. The contribution rate is the ratio of the eigenvalues of each principal component to the total of all eigenvalues. When the eigenvalue is calculated based on the correlation matrix, the contribution rate is obtained by dividing each eigenvalue λ1 to λ9 by “9” which is the number of principal components.
 第7に、第1主成分Z1~Z9を寄与率が大きいものから順に並べ、累積寄与率が0.8を超えた時点で、それまでの主成分を睡眠評価スコアとして採用する。例えば、主成分の分析が下記の表で与えられ、K3<0.8<K4である場合、第4主成分までを睡眠評価スコアとして採用する。 Seventh, the first principal components Z1 to Z9 are arranged in descending order of contribution, and when the cumulative contribution exceeds 0.8, the previous principals are adopted as sleep evaluation scores. For example, when analysis of principal components is given in the following table and K3 <0.8 <K4, up to the fourth principal component is adopted as the sleep evaluation score.
Figure JPOXMLDOC01-appb-T000003
 第8に、固有ベクトルに固有値の平方根を乗じて因子負荷量を算出し、所定の基準値(例えば,0.5)以下のものを削除する。なお、削除せずにそのまま用いてよいことは勿論である。
 以上、第1乃至第8のステップを経て、4個の睡眠評価スコアが選定され、後述する式(20)~式(23)が導かれる。
Figure JPOXMLDOC01-appb-T000003
Eighth, the factor loading is calculated by multiplying the eigenvector by the square root of the eigenvalue, and those below a predetermined reference value (for example, 0.5) are deleted. Needless to say, it may be used without being deleted.
As described above, through the first to eighth steps, four sleep evaluation scores are selected, and expressions (20) to (23) described later are derived.
 ここで、4個の睡眠評価スコアは、9個の項目X1~X9の各々と式(2)~(10)に示す第1係数a11~a99の積和算によって得られる。第1係数a11~a99は固有ベクトルであるから、4個の睡眠評価スコアは、互いに一次独立の関係にある。すなわち、9個の項目のうちいずれか2つの相関係数よりも、互いの相関係数が小さい4個の睡眠評価スコアを生成する。したがって、睡眠評価スコアは複数(本実施形態では9個)の所定項目(変数)を睡眠の観点から集約したものであって、各々が睡眠の特徴を端的にあらわしている。よって、睡眠評価スコアを用いて睡眠を評価することによって、前記所定項目の単体や、これらを適当に組み合わせたものと比較して、より的確な評価指標を得ることができる。本実施形態においては、所定項目として深睡眠率(%)、差分睡眠周期スコア、総就床時間(分)、睡眠周期(分)、深睡眠出現量(分)、差分総就床時間スコア、中長時間覚醒回数(回)、短時間覚醒回数(回)、睡眠効率(%)を選定し、これらに基づいて4個の睡眠評価スコアを主成分分析法によって選定し、第1主成分として「睡眠深度スコア」、第2主成分として「睡眠周期スコア」、第3主成分として「睡眠時間スコア」、第4主成分として「中途覚醒スコア」、を得ることができた。「睡眠深度スコア」は深い睡眠を示す項目、「睡眠周期スコア」は睡眠周期を示す項目、「睡眠時間スコア」は睡眠時間を示す項目、「中途覚醒スコア」は中途覚醒を示す項目である。 Here, the four sleep evaluation scores are obtained by multiply-adding each of the nine items X1 to X9 and the first coefficients a11 to a99 shown in the equations (2) to (10). Since the first coefficients a11 to a99 are eigenvectors, the four sleep evaluation scores are in a linearly independent relationship with each other. That is, four sleep evaluation scores having smaller correlation coefficients than any two of the nine items are generated. Therefore, the sleep evaluation score is obtained by aggregating a plurality (nine in the present embodiment) of predetermined items (variables) from the viewpoint of sleep, and each expresses a characteristic of sleep. Therefore, by evaluating sleep using a sleep evaluation score, it is possible to obtain a more accurate evaluation index as compared to a single predetermined item or a combination of these appropriately. In the present embodiment, the predetermined items include deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, Select the number of mid- and long-term awakenings (times), short-time awakenings (times), and sleep efficiency (%). Based on these, four sleep evaluation scores are selected by the principal component analysis method. A “sleep depth score”, a “sleep cycle score” as the second principal component, a “sleep time score” as the third principal component, and a “halfway awakening score” as the fourth principal component could be obtained. “Sleep depth score” is an item indicating deep sleep, “sleep cycle score” is an item indicating sleep cycle, “sleep time score” is an item indicating sleep time, and “midway awakening score” is an item indicating midway awakening.
 図19は、睡眠点数演算処理における各演算の流れを示すフローチャートであり、図20~図26は、ステップS165、ステップS167、ステップS168、ステップS169、ステップS170、ステップS171、ステップS172における各演算処理の詳細な流れを示すフローチャートである。また、図28は、当該演算処理で演算される所定項目を説明するためのタイムチャートである。なお、以下の説明では、これらの処理をCPU6が所定のプログラムに従って実行するものとする。 FIG. 19 is a flowchart showing the flow of each calculation in the sleep score calculation process. FIGS. 20 to 26 show the calculation processes in steps S165, S167, S168, S169, S170, S171, and S172. It is a flowchart which shows the detailed flow of. FIG. 28 is a time chart for explaining predetermined items calculated in the calculation processing. In the following description, it is assumed that the CPU 6 executes these processes according to a predetermined program.
 この睡眠点数演算処理は、被験者が完全に覚醒(すなわち、起床)した後に実行される。被験者が完全に覚醒した状態とは、所定期間、被験者の呼吸が検出されない状態が継続した場合に完全覚醒状態であると判断してもよいし、電源10とは別個に測定開始/終了ボタン(図示略)を設けて、終了ボタンが押し下げされた場合に、完全覚醒状態であると判断してもよい。そして、記憶部9には、測定が開始(図28の時刻t0)されてから終了(時刻te)するまでの各エポックにおける状態(すなわち、ステップS5における睡眠段階判定処理の結果)が記憶されており、睡眠点数演算処理に利用される。 This sleep score calculation process is executed after the subject has completely awakened (that is, woken up). The state in which the subject is completely awakened may be determined to be a complete awakening state when a state in which the subject's breathing is not detected continues for a predetermined period, or a measurement start / end button ( (Not shown) may be provided, and when the end button is pressed down, it may be determined that the state is completely awake. And the memory | storage part 9 memorize | stores the state (namely, result of the sleep stage determination process in step S5) in each epoch after measurement is started (time t0 of FIG. 28) until it ends (time te). And is used for sleep score calculation processing.
 図19に示されるように、睡眠点数演算処理においては、まず、深睡眠率算出処理(ステップS161)が実行される。深睡眠率(%)は、睡眠時間における深い睡眠の割合を意味し、「(深い睡眠の時間/睡眠時間)×100」、すなわち「(深い睡眠の時間/(入眠から最終覚醒までの時間))×100」として求めることができる。深睡眠率(%)を演算するために必要な「睡眠時間」即ち「入眠から最終覚醒までの時間」は、入眠判定部14により入眠区間と判定されて関連付けられているエポックを読み出して、覚醒判定部13により覚醒区間と判定されて関連付けられているエポックまでインクリメントして算出する。また、「深い睡眠の時間」は、図28に示されるように、測定を開始してから終了するまでの間(時刻t0~te)における深睡眠時間の合計エポック数であり、後述の睡眠出現量DT(分)と同様にして算出すればよい。 As shown in FIG. 19, in the sleep point calculation process, first, a deep sleep rate calculation process (step S161) is executed. Deep sleep rate (%) means the ratio of deep sleep in sleep time, and “(deep sleep time / sleep time) × 100”, that is, “(deep sleep time / (time from falling asleep to final awakening)” ) × 100 ”. “Sleep time” necessary for calculating the deep sleep rate (%), that is, “time from falling asleep to final awakening” is determined by the sleep determination unit 14 as a sleep interval and the associated epoch is read to It is calculated by incrementing to an epoch that is determined to be an awakening section by the determination unit 13 and associated therewith. In addition, as shown in FIG. 28, “deep sleep time” is the total number of epochs of deep sleep time from the start to the end of the measurement (time t0 to te). What is necessary is just to calculate similarly to quantity DT (min).
 続いて、CPU6は、図19のステップS162における差分睡眠周期スコア算出処理を実行する。差分睡眠周期スコアは、睡眠周期(分)が基準時間(例えば90分)に対してどの程度の差があるかを表すスコアである。「-|睡眠周期-所定基準時間|」(||は絶対値を表す。)により求めることができる。睡眠周期は、REM睡眠の終了から次のREM睡眠の終了までを1周期とした場合の平均値であるので、REM・浅睡眠判定部16によりREM睡眠区間と判定されて関連付けられているエポックに基づいて前記平均値を算出すればよい。なお、基準時間としては、例えば90分とすればよいが、特に限定されるものではない。 Subsequently, the CPU 6 executes a differential sleep cycle score calculation process in step S162 of FIG. The differential sleep cycle score is a score representing how much the sleep cycle (minute) is different from the reference time (for example, 90 minutes). “− | Sleep cycle−predetermined reference time |” (|| represents an absolute value). Since the sleep cycle is an average value when one cycle is from the end of the REM sleep to the end of the next REM sleep, the REM / shallow sleep determination unit 16 determines the REM sleep interval and associates it with the epoch The average value may be calculated based on this. The reference time may be 90 minutes, for example, but is not particularly limited.
 続いて、CPU6は、図19のステップS163における総就床時間算出処理を実行する。総就床時間(分)は、就床から離床までの時間を意味する。入床・離床判定部11により入床状態と判定されて関連付けられているエポックの合計として算出すればよい。 Subsequently, the CPU 6 executes a total bedtime calculation process in step S163 of FIG. Total bedtime (minutes) means the time from bed to bed. What is necessary is just to calculate as a sum total of the epochs which are determined to be in the floor-entry state by the floor-in / bed-out determination unit 11 and are associated with each other.
 続いて、CPU6は、図19のステップS164における睡眠周期算出処理を実行する。睡眠周期は、前記差分睡眠周期スコア算出処理と同様に、REM・浅睡眠判定部16によりREM睡眠区間と判定されて関連付けられているエポックに基づいて前記平均値を算出すればよい。 Subsequently, the CPU 6 executes a sleep cycle calculation process in step S164 of FIG. As for the sleep cycle, the average value may be calculated based on the epoch that is determined to be the REM sleep section by the REM / shallow sleep determination unit 16 and is associated with the difference sleep cycle score calculation process.
 続いて、CPU6は、図19のステップS165における深睡眠出現量算出処理に進み、図20に示す深睡眠出現量算出処理を実行する。深睡眠出現量DT(分)は、深い睡眠の時間の総和を意味し、より具体的には、図28に示されるように、測定を開始してから終了するまでの間(時刻t0~te)における深睡眠出現量の合計エポック数である。よって、図28に示されるように、時刻t0~teの期間中に深睡眠出現量DT1とDT2が測定された場合、深睡眠出現量DT=DT1+DT2となる。 Subsequently, the CPU 6 proceeds to the deep sleep appearance amount calculation process in step S165 of FIG. 19 and executes the deep sleep appearance amount calculation process shown in FIG. The deep sleep appearance amount DT (minutes) means the sum of deep sleep times, and more specifically, as shown in FIG. 28, from the start to the end of the measurement (time t0 to te ) Is the total number of epochs of deep sleep appearance amount. Therefore, as shown in FIG. 28, when the deep sleep appearance amounts DT1 and DT2 are measured during the period from time t0 to te, the deep sleep appearance amount DT = DT1 + DT2.
 図20に示されるように、深睡眠出現量算出処理においては、まず、最初のエポックの次のエポックに進む(ステップS221)。次に、ステップS222において、当該エポックが最終エポックEeであるか否か判定する。この判定条件が否定された場合、続いて、ステップS223において、当該エポックが深睡眠状態であるか否か判定する。この判定条件が肯定された場合、ステップS224において深睡眠出現量DTがインクリメントされ(ただし、DTの初期値DT=0)、処理はステップS221に戻る。一方、ステップS223の判定条件が否定された場合、深睡眠出現量DTはインクリメントされることなく、処理はステップS221に戻る。ステップS221~S224までの処理、あるいはステップS221~S223までの処理は、ステップS222の判定条件が肯定されるまで繰り返される。ステップS222の判定条件が肯定されると、処理は図19のフローチャートに戻る。 As shown in FIG. 20, in the deep sleep appearance amount calculation process, first, the process proceeds to the epoch next to the first epoch (step S221). Next, in step S222, it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, then in step S223, it is determined whether or not the epoch is in a deep sleep state. If this determination condition is affirmed, the deep sleep appearance amount DT is incremented in step S224 (however, the initial value DT of DT = 0), and the process returns to step S221. On the other hand, if the determination condition in step S223 is negative, the deep sleep appearance amount DT is not incremented, and the process returns to step S221. The process from step S221 to S224 or the process from step S221 to S223 is repeated until the determination condition in step S222 is affirmed. If the determination condition in step S222 is affirmed, the process returns to the flowchart of FIG.
 続いて、CPU6は、図19のステップS166における差分総就床時間スコア算出処理を実行する。差分総就床時間スコアは、総就床時間(分)が基準時間(例えば6.5時間(390分))に対してどの程度の差があるかを表すスコアであり、「-|総就床時間-基準時間|」(||は絶対値を表す。)により求めることができる。総就床時間(分)は、前記総就床時間算出処理と同様に、入床・離床判定部11により入床状態と判定されて関連付けられているエポックの合計として算出すればよい。 Subsequently, the CPU 6 executes a difference total bedtime score calculation process in step S166 of FIG. The difference total bedtime score is a score indicating how much the total bedtime (minutes) is different from the reference time (for example, 6.5 hours (390 minutes)). Floor time−reference time | ”(|| represents an absolute value). The total bedtime (minutes) may be calculated as the total number of epochs that are determined to be in the bedded state by the bed / leaving determination unit 11 and associated with each other, as in the total bedtime calculation process.
 続いて、CPU6は、図19のステップS167における中長時間覚醒回数算出処理に進み、図21に示す中長時間覚醒回数算出処理を実行する。中長時間覚醒回数(回)は、睡眠中に現れる基準時間(例えば、2分30秒)以上の覚醒の回数を意味する。図21に示されるように、中長時間覚醒回数算出処理においては、まず、最初のエポックの次のエポックに進む(ステップS191)。次に、ステップS192において、当該エポックが最終エポックEeであるか否か判定する。この判定条件が否定された場合、続いて、ステップS193において、T分以上継続する覚醒か否か判定する。上述したように、本実施形態においては1エポック=30秒であるから、T=2.5の場合、覚醒エポックが連続して5個以上継続した場合には、覚醒状態であるとみなされる。したがって、CPU6は、覚醒状態であるエポックが所定数(例えば、5個以上)連続した場合にのみ、ステップS193の判定を肯定する。続いて、ルーチンはステップS194に進み、中長時間覚醒回数(WN;但し、初期値WN=0)をインクリメントする。続いて、ステップS195において、覚醒が継続した数だけエポックを進め、ステップS191に戻る。一方、ステップS193の判定条件が否定された場合、ステップS191に戻る。ステップS191~S195あるいはステップS191~S193の処理は、ステップS192の判定において、判定対象のエポックが最終エポックEeであると判定されるまで繰り返される。ステップS192の判定条件が肯定されると、中長時間覚醒回数算出処理は終了し、ルーチンは、図19のフローチャートに戻る。 Subsequently, the CPU 6 proceeds to the medium / long-time awakening number calculation process in step S167 of FIG. 19 and executes the medium / long-time awakening number calculation process shown in FIG. The number of awakening times (times) means the number of times of awakening over a reference time (for example, 2 minutes 30 seconds) that appears during sleep. As shown in FIG. 21, in the mid-long-time awakening count calculation process, first, the process proceeds to the epoch next to the first epoch (step S191). Next, in step S192, it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, then in step S193, it is determined whether or not the awakening continues for T minutes or more. As described above, since 1 epoch = 30 seconds in this embodiment, when T = 2.5, if 5 or more awakening epochs continue, it is considered that the state is awakening. Therefore, the CPU 6 affirms the determination in step S193 only when a predetermined number (for example, five or more) of epochs in the awake state are continued. Subsequently, the routine proceeds to step S194, and increments the number of wake-up times (WN; where initial value WN = 0). Subsequently, in step S195, the epoch is advanced by the number of continued awakenings, and the process returns to step S191. On the other hand, if the determination condition in step S193 is negative, the process returns to step S191. The processing in steps S191 to S195 or steps S191 to S193 is repeated until it is determined in step S192 that the epoch to be determined is the final epoch Ee. If the determination condition in step S192 is affirmed, the medium / long-term awakening count calculation process ends, and the routine returns to the flowchart of FIG.
 続いて、CPU6は、図19のステップS168における短時間覚醒回数算出処理に進み、図22に示す短時間覚醒回数算出処理を実行する。短時間覚醒回数(回)は、睡眠中に現れる基準時間(例えば2分)以内の覚醒の回数を意味する。図22に示されるように、短時間覚醒回数算出処理においては、まず、最初のエポックの次のエポックに進む(ステップS231)。次に、ステップS232において、当該エポックが最終エポックEeであるか否かを判定する。この判定条件が否定された場合、続いて、ステップS233において、T分未満継続する覚醒か否か判定する。上述したように、本実施形態においては1エポック=30秒であるから、T=2.5の場合、連続する覚醒エポックが5個未満である場合には、短時間覚醒であるとみなされる。したがって、CPU6は、連続する覚醒エポックの数が所定数(例えば、5個)未満である場合にのみ、ステップS233の判定を肯定する。続いて、ルーチンはステップS234に進み、短時間覚醒回数(MN;但し、初期値MN=0)をインクリメントする。続いて、ステップS235において、覚醒が継続した数だけエポックを進め、ステップS231に戻る。一方、ステップS233の判定が否定された場合、ステップS231に戻る。ステップS231~S235あるいはステップS231~S233の処理は、ステップS232の判定において、判定対象のエポックが最終エポックEeであると判定されるまで繰り返される。ステップS232の判定が肯定されると、短時間覚醒回数算出処理は終了し、ルーチンは、図19のフローチャートに戻る。 Subsequently, the CPU 6 proceeds to the short-time awakening count calculation process in step S168 of FIG. 19 and executes the short-time awakening count calculation process shown in FIG. The number of short-time awakenings (times) means the number of times of awakening within a reference time (for example, 2 minutes) that appears during sleep. As shown in FIG. 22, in the short-time awakening count calculation process, first, the process proceeds to the epoch next to the first epoch (step S231). Next, in step S232, it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, it is determined in step S233 whether or not the awakening continues for less than T minutes. As described above, since 1 epoch = 30 seconds in the present embodiment, when T = 2.5, if there are less than 5 continuous awakening epochs, it is regarded as a short-time awakening. Therefore, the CPU 6 affirms the determination in step S233 only when the number of continuous awakening epochs is less than a predetermined number (for example, 5). Subsequently, the routine proceeds to step S234, and increments the short-time awakening count (MN; provided that the initial value MN = 0). Subsequently, in step S235, the epoch is advanced by the number of continued awakenings, and the process returns to step S231. On the other hand, if the determination in step S233 is negative, the process returns to step S231. The processing in steps S231 to S235 or steps S231 to S233 is repeated until it is determined in step S232 that the epoch to be determined is the final epoch Ee. If the determination in step S232 is affirmed, the short-time awakening count calculation process ends, and the routine returns to the flowchart of FIG.
 続いて、CPU6は、図19のステップS169における睡眠効率算出処理に進み、図23に示す睡眠効率算出処理を実行する。睡眠効率(%)は、総就床時間に対する実際に眠っていた時間の割合を意味し、「(総睡眠時間/総就床時間)×100」、すなわち「((総就床時間-睡眠中に覚醒した時間の総和)/総就床時間)×100」として求めることができる。すなわち、睡眠効率SEは、測定が開始(図28の時刻t0)されてから終了(時刻te)するまでの総エポック数をIAとし、後述の判定ステップS183において覚醒状態であると判定されたエポックの数(覚醒エポック数)をIとした場合に、(IA-I)/IAで求められる値である。よって、当該睡眠効率算出処理において、最初のエポックは覚醒状態であるので、覚醒エポック数(I)の初期値は1に設定され、ステップS183において、判定対象のエポックが覚醒であると判定される度にインクリメントされる(ステップS184)。 Subsequently, the CPU 6 proceeds to the sleep efficiency calculation process in step S169 of FIG. 19 and executes the sleep efficiency calculation process shown in FIG. The sleep efficiency (%) means the ratio of the actual sleep time to the total bedtime, which is “(total sleep time / total bedtime) × 100”, that is, “((total bedtime−sleeping time) (Total sum of hours awakened) / total bedtime) × 100 ”. That is, the sleep efficiency SE is the total number of epochs from the start of measurement (time t0 in FIG. 28) to the end (time te), which is IA, and the epoch determined to be awake in determination step S183 described later. This is a value obtained by (IA-I) / IA where I is the number of wakefulness (number of awakening epochs). Therefore, in the sleep efficiency calculation process, since the first epoch is in the awake state, the initial value of the number of awakening epochs (I) is set to 1, and it is determined in step S183 that the epoch to be determined is awake. It is incremented every time (step S184).
 図23に示されるように、ステップS181において、CPU6は、まず、次のエポックに進む。続いて、ステップS182において、当該エポックが完全覚醒状態に遷移する直前のエポック(図28の最終エポックEe)であるか否か判定する。この判定が否定された場合、当該エポックは覚醒状態であるか否か判定する(ステップS183)。この判定結果が肯定的された場合、ステップS184に進み、覚醒エポック数(I)の値がインクリメントされ、ステップS181に戻り、次のエポックに進む。一方、ステップS183の判定条件が否定された場合、覚醒エポック数(I)の値をインクリメントすることなく、ステップS181に戻る。CPU6は、ステップS182の判定結果が肯定的にならない限り、ステップS181~S183あるいはステップS181~S184の処理を繰り返す。 As shown in FIG. 23, in step S181, the CPU 6 first proceeds to the next epoch. Subsequently, in step S182, it is determined whether or not the epoch is an epoch immediately before the transition to the complete awake state (final epoch Ee in FIG. 28). If this determination is negative, it is determined whether or not the epoch is awake (step S183). If the determination result is affirmative, the process proceeds to step S184, the value of the awakening epoch number (I) is incremented, the process returns to step S181, and the process proceeds to the next epoch. On the other hand, if the determination condition in step S183 is negative, the process returns to step S181 without incrementing the value of the number of awakening epochs (I). The CPU 6 repeats the processes of steps S181 to S183 or steps S181 to S184 unless the determination result of step S182 is positive.
 一方、ステップS182の判定が肯定された場合、ルーチンはステップS185に進み、睡眠効率SEを演算する。すなわち、上記式SE=(IA-I)/IAに、覚醒エポック数Iの最終値および総エポック数IAの数値が代入されて、睡眠効率SEが求められ、当該睡眠効率算出処理は終了し、図19のフローチャートに戻る。 On the other hand, if the determination in step S182 is affirmed, the routine proceeds to step S185, and sleep efficiency SE is calculated. That is, the final value of the awakening epoch number I and the numerical value of the total epoch number IA are substituted into the above formula SE = (IA−I) / IA to obtain the sleep efficiency SE, and the sleep efficiency calculation process ends. Returning to the flowchart of FIG.
 続いて、CPU6は、図19のステップS170における各データ標準化処理を実行する。図24に示されるように、各データ標準化処理においては、上述のステップS161~S169で取得された睡眠判定データの値の標準化処理が実行される。まず、ステップS241において、深睡眠率Zaの標準値Za(st)は、Za(st)=(Za-平均Za)/標準偏差Zaにより求められる。ここで、各平均Zaおよび標準偏差Zaは、PSGの測定データに基づいた母集団における深睡眠率Zaの各平均値および標準偏差値(各々固定値)である。母集団は、例えば、被験者の年齢が20代の場合、20代のX人の集団である。被験者は、操作部5を用いて自己のパラメータ(例えば、年齢、性別)を予め入力しておくことにより、適切な母集団に関するデータが選択されて、当該標準化処理に利用される。この母集団に関するデータは、記憶部9に予め記憶されている。CPU6は、記憶部9から平均値および標準偏差を読み出してステップS241の演算を実行する。なお、ステップS242~S249の処理でも同様である。 Subsequently, the CPU 6 executes each data standardization process in step S170 of FIG. As shown in FIG. 24, in each data standardization process, the standardization process of the value of the sleep determination data acquired in steps S161 to S169 described above is executed. First, in step S241, the standard value Za (st) of the deep sleep rate Za is obtained by Za (st) = (Za−average Za) / standard deviation Za. Here, each average Za and standard deviation Za are each average value and standard deviation value (fixed values) of deep sleep rate Za in the population based on the measurement data of PSG. The population is, for example, a group of X people in their 20s when the subject's age is in their 20s. The test subject inputs his / her parameters (for example, age and sex) in advance using the operation unit 5 to select data regarding an appropriate population and use it for the standardization process. Data regarding this population is stored in the storage unit 9 in advance. The CPU 6 reads the average value and the standard deviation from the storage unit 9 and executes the calculation of step S241. The same applies to the processing in steps S242 to S249.
 同様にして、各ステップS242~S249において、各睡眠判定データの標準化処理が行われる。各睡眠判定データの標準値は、下記式(12)~式(19)により求められる(ステップS242~S249)。
 差分睡眠周期スコアZb(st)=(Zb-平均Zb)/標準偏差Zb…式(12)
 総就床時間Zc(st)=(Zc-平均Zc)/標準偏差Zc…式(13)
 睡眠周期Zd(st)=(Zd-平均Zd)/標準偏差Zd…式(14)
 深睡眠出現量Ze(st)=(Ze-平均Ze)/標準偏差Ze…式(15)
 差分総就床時間スコアZf(st)=(Zf-平均Zf)/標準偏差Zf…式(16)
 中長時間覚醒回数Zg(st)=(Zg-平均Zg)/標準偏差Zg…式(17)
 短時間覚醒回数Zh(st)=(Zh-平均Zh)/標準偏差Zh…式(18)
 睡眠効率Zi(st)=(Zi-平均Zi)/標準偏差Zi…式(19)
 この標準化の処理によって、異なるスケールの深睡眠率Za、差分睡眠周期スコアZb、総就床時間Zc、睡眠周期Zd、深睡眠出現量Ze、差分総就床時間スコアZf、中長時間覚醒回数Zg、短時間覚醒回数Zh、及び睡眠効率Ziを同一の処理で取り扱うことが可能となる。ステップS249の処理が終了すると、ルーチンは、図19のフローチャートに戻る。
Similarly, in each step S242 to S249, each sleep determination data is standardized. The standard value of each sleep determination data is obtained by the following formulas (12) to (19) (steps S242 to S249).
Difference sleep cycle score Zb (st) = (Zb−average Zb) / standard deviation Zb (12)
Total bedtime Zc (st) = (Zc−average Zc) / standard deviation Zc (13)
Sleep cycle Zd (st) = (Zd−average Zd) / standard deviation Zd (14)
Deep sleep appearance amount Ze (st) = (Ze−average Ze) / standard deviation Ze (Equation 15)
Difference total bedtime score Zf (st) = (Zf−average Zf) / standard deviation Zf (16)
Number of middle and long awakenings Zg (st) = (Zg−average Zg) / standard deviation Zg (17)
Number of short-time awakenings Zh (st) = (Zh−average Zh) / standard deviation Zh (18)
Sleep efficiency Zi (st) = (Zi−average Zi) / standard deviation Zi (19)
By this standardization process, the deep sleep rate Za, the differential sleep cycle score Zb, the total bedtime Zc, the sleep cycle Zd, the deep sleep appearance amount Ze, the differential total bedtime score Zf, and the number of mid- and long-term awakenings Zg of different scales. It becomes possible to handle the number of short-time awakenings Zh and sleep efficiency Zi by the same process. When the process of step S249 ends, the routine returns to the flowchart of FIG.
 続いて、CPU6は、図19のステップS171における各主成分スコア演算処理を実行する。図25に示されるように、各主成分スコア演算処理においては、上述のステップS170で取得された各睡眠判定データの標準値が演算に利用される。主成分スコア演算処理では、PSGの測定データに基づいて抽出された、少なくとも睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目について主成分分析を行って得られる睡眠評価スコアの前記所定項目ごとの主成分係数と、前記被験者の前記生体信号から算出された前記所定項目に対応する睡眠判定データと、を乗算して睡眠評価スコアを算出する。より具体的には、9個の睡眠判定データである深睡眠率Za、差分睡眠周期スコアZb、総就床時間Zc、睡眠周期Zd、深睡眠出現量Ze、差分総就床時間スコアZf、中長時間覚醒回数Zg、短時間覚醒回数Zh、及び睡眠効率Ziから、4個の睡眠評価スコアである「睡眠深度スコア」、「睡眠周期スコア」、「睡眠時間スコア」、「中途覚醒スコア」を算出する。CPU6は、「睡眠深度スコア」、「睡眠周期スコア」、「睡眠時間スコア」、「中途覚醒スコア」を以下に示す式(20)~式(23)に従って算出する(ステップS251~S254)。 Subsequently, the CPU 6 executes each principal component score calculation process in step S171 of FIG. As shown in FIG. 25, in each principal component score calculation process, the standard value of each sleep determination data acquired in step S170 described above is used for the calculation. In the principal component score calculation process, a plurality of types of predetermined items including at least items related to sleep depth, items related to sleep rhythm, and items related to mid-wake awakening extracted based on PSG measurement data Sleep evaluation by multiplying the principal component coefficient for each predetermined item of the sleep evaluation score obtained by performing the principal component analysis on the sleep determination data corresponding to the predetermined item calculated from the biological signal of the subject Calculate the score. More specifically, the nine sleep determination data are deep sleep rate Za, differential sleep cycle score Zb, total bedtime Zc, sleep cycle Zd, deep sleep appearance amount Ze, differential total bedtime score Zf, medium From the long-time awakening count Zg, the short-time awakening count Zh, and the sleep efficiency Zi, four sleep evaluation scores, that is, a “sleep depth score”, a “sleep cycle score”, a “sleep time score”, and a “halfway awake score” calculate. The CPU 6 calculates the “sleep depth score”, “sleep cycle score”, “sleep time score”, and “halfway awakening score” according to the following equations (20) to (23) (steps S251 to S254).
 第1主成分スコア(睡眠深度スコア)
= 係数C1a * 標準値Za(st) + 係数C1b * 標準値Zb(st) + 係数C1c * 標準値Zc(st) + 係数C1d * 標準値Zd(st) + 係数C1e * 標準値Ze(st) + 係数C1f * 標準値Zf(st) + 係数C1g * 標準値Zg(st) + 係数C1h * 標準値Zh(st) + 係数C1i * 標準値Zi(st)  …式(20)
First principal component score (sleep depth score)
= Coefficient C1a * Standard value Za (st) + Coefficient C1b * Standard value Zb (st) + Coefficient C1c * Standard value Zc (st) + Coefficient C1d * Standard value Zd (st) + Coefficient C1e * Standard value Ze (st) + Coefficient C1f * Standard value Zf (st) + Coefficient C1g * Standard value Zg (st) + Coefficient C1h * Standard value Zh (st) + Coefficient C1i * Standard value Zi (st) Equation (20)
 第2主成分スコア(睡眠周期スコア)
= 係数C2a * 標準値Za(st) + 係数C2b * 標準値Zb(st) + 係数C2c * 標準値Zc(st) + 係数C2d * 標準値Zd(st) + 係数C2e * 標準値Ze(st) + 係数C2f * 標準値Zf(st) + 係数C2g * 標準値Zg(st) + 係数C2h * 標準値Zh(st) + 係数C2i * 標準値Zi(st)  …式(21)
Second principal component score (sleep cycle score)
= Coefficient C2a * Standard value Za (st) + Coefficient C2b * Standard value Zb (st) + Coefficient C2c * Standard value Zc (st) + Coefficient C2d * Standard value Zd (st) + Coefficient C2e * Standard value Ze (st) + Coefficient C2f * Standard value Zf (st) + Coefficient C2g * Standard value Zg (st) + Coefficient C2h * Standard value Zh (st) + Coefficient C2i * Standard value Zi (st) Equation (21)
 第3主成分スコア(睡眠時間スコア)
= 係数C3a * 標準値Za(st) + 係数C3b * 標準値Zb(st) + 係数C3c * 標準値Zc(st) + 係数C3d * 標準値Zd(st) + 係数C3e * 標準値Ze(st) + 係数C3f * 標準値Zf(st) + 係数C3g * 標準値Zg(st) + 係数C3h * 標準値Zh(st) + 係数C3i * 標準値Zi(st)  …式(22)
Third principal component score (sleep time score)
= Coefficient C3a * Standard value Za (st) + Coefficient C3b * Standard value Zb (st) + Coefficient C3c * Standard value Zc (st) + Coefficient C3d * Standard value Zd (st) + Coefficient C3e * Standard value Ze (st) + Coefficient C3f * Standard value Zf (st) + Coefficient C3g * Standard value Zg (st) + Coefficient C3h * Standard value Zh (st) + Coefficient C3i * Standard value Zi (st) Equation (22)
 第4主成分スコア(中途覚醒スコア)
= 係数C4a * 標準値Za(st) + 係数C4b * 標準値Zb(st) + 係数C4c * 標準値Zc(st) + 係数C4d * 標準値Zd(st) + 係数C4e * 標準値Ze(st) + 係数C4f * 標準値Zf(st) + 係数C4g * 標準値Zg(st) + 係数C4h * 標準値Zh(st) + 係数C4i * 標準値Zi(st)  …式(23)
Fourth principal component score (midway awakening score)
= Coefficient C4a * Standard value Za (st) + Coefficient C4b * Standard value Zb (st) + Coefficient C4c * Standard value Zc (st) + Coefficient C4d * Standard value Zd (st) + Coefficient C4e * Standard value Ze (st) + Coefficient C4f * Standard value Zf (st) + Coefficient C4g * Standard value Zg (st) + Coefficient C4h * Standard value Zh (st) + Coefficient C4i * Standard value Zi (st) Equation (23)
 ここで、前記式(20)乃至式(23)における各係数は、9個の所定項目に基づく主成分分析法から求めた定数であり、記憶部9に記憶されている。CPU6は、それぞれの係数を記憶部9から読み出して、演算処理を実行する。9個の所定項目と主成分スコアとの主成分得点係数行列は、表2に示す通りである。 Here, each coefficient in the equations (20) to (23) is a constant obtained from a principal component analysis method based on nine predetermined items, and is stored in the storage unit 9. CPU6 reads each coefficient from the memory | storage part 9, and performs a calculation process. The principal component score coefficient matrix of the nine predetermined items and the principal component score is as shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
 ステップS254の処理が終了すると、ルーチンは、図19のフローチャートに戻る。
Figure JPOXMLDOC01-appb-T000004
When the process of step S254 ends, the routine returns to the flowchart of FIG.
 続いて、CPU6は、図19のステップS172における睡眠障害判別確率演算処理を実行する。ここで、睡眠障害判別確率とは、SAS患者のような睡眠障害者である確率をいう。図26に示すように、睡眠障害判別確率演算処理においては、睡眠評価スコアについてロジスティック回帰分析を行って得られる睡眠障害判別確率を算出する。
 複数の睡眠評価スコア(説明変数)と、睡眠障害のダミー変数(目的変数)と、をロジスティック回帰分析(重回帰分析)することで、複数の睡眠評価スコアから睡眠障害に該当する確率(睡眠障害判別確率)を示すことができる。
 本実施形態におけるロジスティック回帰分析では、目的変数を0/1(SASの有無:SAS群1/非SAS群0)のダミー変数で表す。また、説明変数は、睡眠判定データから算出した睡眠評価スコアである第1主成分スコア(睡眠深度スコア)、第2主成分スコア(睡眠周期スコア)、第3主成分スコア(睡眠時間スコア)、第4主成分スコア(中途覚醒スコア)のうちの少なくともいずれか3つのスコアを用いる。これにより、睡眠障害判別確率の回帰式を作成することが可能となる。ここでは、4つの睡眠評価スコアを用いる例を、図26を参照して説明する。
 CPU6は、ステップS171において演算された第1主成分スコア(睡眠深度スコア)、第2主成分スコア(睡眠周期スコア)、第3主成分スコア(睡眠時間スコア)、第4主成分スコア(中途覚醒スコア)を用いて、以下の式(24)により変数Pを演算する(ステップS261)。なお、この時、第3主成分スコア(睡眠時間スコア)、第4主成分スコア(中途覚醒スコア)の符号を反転させる処理を適宜行ってもよい。
 変数P
= 固定値F1 * 第1主成分スコア + 固定値F2 * 第2主成分スコア + 固定値F3 * 第3主成分スコア + 固定値F4 * 第4主成分スコア  …式(24)
 ここで、固定値F1~F4は、ある母集団の主成分分析法から求めた固定値である。これらの固定値は記憶部9に記憶されており、CPU6が読み出して演算に用いる。
Subsequently, the CPU 6 executes the sleep disorder determination probability calculation process in step S172 of FIG. Here, the sleep disorder discrimination probability refers to the probability of being a sleep disorder person such as a SAS patient. As shown in FIG. 26, in the sleep disorder determination probability calculation process, a sleep disorder determination probability obtained by performing logistic regression analysis on the sleep evaluation score is calculated.
Logistic regression analysis (multiple regression analysis) of multiple sleep evaluation scores (explanatory variables) and sleep disorder dummy variables (objective variables) allows the probability of falling into sleep disorder from multiple sleep evaluation scores (sleep disorder) Discrimination probability).
In the logistic regression analysis in this embodiment, the objective variable is represented by a dummy variable of 0/1 (the presence or absence of SAS: SAS group 1 / non-SAS group 0). The explanatory variables are a first principal component score (sleep depth score), a second principal component score (sleep cycle score), a third principal component score (sleep time score), which are sleep evaluation scores calculated from sleep determination data, At least any three of the fourth principal component scores (halfway awakening scores) are used. This makes it possible to create a regression equation of sleep disorder discrimination probability. Here, an example using four sleep evaluation scores will be described with reference to FIG.
The CPU 6 calculates the first principal component score (sleep depth score), the second principal component score (sleep cycle score), the third principal component score (sleep time score), and the fourth principal component score (halfway awakening) calculated in step S171. Using the score, the variable P is calculated by the following equation (24) (step S261). At this time, a process of inverting the signs of the third principal component score (sleep time score) and the fourth principal component score (halfway awakening score) may be appropriately performed.
Variable P
= Fixed value F1 * first principal component score + fixed value F2 * second principal component score + fixed value F3 * third principal component score + fixed value F4 * fourth principal component score (24)
Here, the fixed values F1 to F4 are fixed values obtained from a principal component analysis method of a certain population. These fixed values are stored in the storage unit 9 and read out by the CPU 6 and used for calculation.
 次に、CPU6は、ステップS261で演算した変数Pを用いて、以下の式(25)により睡眠障害判別確率を演算する(ステップS262)。
 睡眠障害判別確率 = 1/(1+(exp-(P)))  …式(25)
 ステップS262の処理が終了すると、ルーチンは、図19のフローチャートに戻る。
Next, the CPU 6 calculates the sleep disorder determination probability by the following equation (25) using the variable P calculated in step S261 (step S262).
Sleep disorder discrimination probability = 1 / (1+ (exp- (P))) (Equation 25)
When the process of step S262 ends, the routine returns to the flowchart of FIG.
 この後、CPU6は、図19のステップS173の睡眠点数演算処理を実行する。図27に示すように、睡眠点数演算処理においては、CPU6は、ステップS262により演算された睡眠障害判別確率を用いて、以下の式(26)により睡眠点数(睡眠指数)を演算する(ステップS265)。
睡眠点数 = 100 - (睡眠障害判別確率 * 100)   …式(26)
 CPU6は、ステップS265で得られた睡眠点数(Score)を記憶部9に記憶する(ステップS174、図19参照)。
 このように、式(26)より、睡眠障害判別確率が高い場合には睡眠点数は低く算出され、睡眠障害判別確率が低い場合には睡眠点数は高く算出されることになる。これにより、SASが発症する前に、SASが発症するか否かを予測することが可能となる。
Then, CPU6 performs the sleep point number calculation process of step S173 of FIG. As shown in FIG. 27, in the sleep score calculation process, the CPU 6 calculates the sleep score (sleep index) by the following equation (26) using the sleep disorder determination probability calculated in step S262 (step S265). ).
Number of sleep points = 100-(Sleep disorder discrimination probability * 100) Equation (26)
CPU6 memorize | stores the sleep score (Score) obtained by step S265 in the memory | storage part 9 (refer step S174 and FIG. 19).
Thus, from equation (26), when the sleep disorder determination probability is high, the sleep score is calculated low, and when the sleep disorder determination probability is low, the sleep score is calculated high. This makes it possible to predict whether or not SAS will develop before SAS develops.
 このように、本発明における睡眠点数を求める回帰式は、上記説明した以下の3式に集約されることとなる。
 変数P = 固定値F1 * 第1主成分スコア + 固定値F2 * 第2主成分スコア + 固定値F3 * 第3主成分スコア + 固定値F4 * 第4主成分スコア  …式(24)
 判別確率 = 1/(1+(exp-(P)))  …式(25)
 睡眠点数 = 100 - (判別確率 * 100)   …式(26)
Thus, the regression equations for obtaining the number of sleep points in the present invention are summarized in the following three equations described above.
Variable P = fixed value F1 * first principal component score + fixed value F2 * second principal component score + fixed value F3 * third principal component score + fixed value F4 * fourth principal component score (24)
Discrimination probability = 1 / (1+ (exp- (P))) (Equation 25)
Number of sleep points = 100− (discrimination probability * 100) Equation (26)
 次に、評価結果表示処理(ステップ7、図3参照)について説明する。図29は、CPU6が実行する評価結果表示処理の内容を示すフローチャートであり、図30は、睡眠評価画面の一例であり、図31は睡眠点数推移画面の一例である。 Next, the evaluation result display process (step 7, see FIG. 3) will be described. FIG. 29 is a flowchart showing the contents of the evaluation result display process executed by the CPU 6, FIG. 30 is an example of a sleep evaluation screen, and FIG. 31 is an example of a sleep score transition screen.
 まず、CPU6は、睡眠点数比較処理を実行する(ステップS271)。この睡眠点数比較処理では、睡眠点数演算処理で得られた睡眠点数Scoreを第1基準値W、第2基準値Yと比較して、睡眠点数Scoreを3段階に分ける。具体的には、ある母集団に含まれていた睡眠異常群の睡眠点数平均値+分散値を第1基準値W、睡眠健常群の睡眠点数平均値+分散値を第2基準値Yとしたとき、睡眠点数Scoreが第1基準値W以下の場合には第1区分、睡眠点数Scoreが第1基準値W上回り第2基準値Y以下の場合には第2区分、睡眠点数Scoreが第2基準値Yを上回る場合には、睡眠点数Scoreを第3区分に分類する。ここで、第1基準値Wは、ある母集団に含まれていた睡眠異常群の睡眠点数平均値+分散値であり、第2基準値Yは睡眠健常群の睡眠点数平均値+分散値である。これらの固定値W,Yは記憶部9に記憶されており、睡眠点数比較処理において読み出される。 First, the CPU 6 executes a sleep score comparison process (step S271). In this sleep score comparison process, the sleep score Score obtained by the sleep score calculation process is compared with the first reference value W and the second reference value Y, and the sleep score Score is divided into three stages. Specifically, the sleep point average value + dispersion value of the sleep abnormal group included in a certain population is the first reference value W, and the sleep point average value + dispersion value of the healthy sleep group is the second reference value Y. When the sleep score Score is less than or equal to the first reference value W, the first division, and when the sleep score Score exceeds the first reference value W and is less than or equal to the second reference value Y, the second category and the sleep score Score When the reference value Y is exceeded, the sleep score Score is classified into the third category. Here, the first reference value W is the sleep point average value + dispersion value of the abnormal sleep group included in a certain population, and the second reference value Y is the sleep point average value + dispersion value of the healthy sleep group. is there. These fixed values W and Y are stored in the storage unit 9 and read in the sleep score comparison process.
 次に、CPU6は、睡眠点数Scoreが第1区分に分類された場合には、表示部4に「悪い睡眠です」と表示し、睡眠点数Scoreが第2区分に分類された場合には「普通の睡眠です」と表示し、睡眠点数Scoreが第3区分に分類された場合には「良い睡眠です」と表示する(ステップS272)。例えば、良い睡眠の場合は、図30に示す睡眠評価画面が、表示部4に表示される。この場合、CPU6は、睡眠点数比較処理の処理結果の他、ステップS5及びステップS6の処理結果を用いて、一回の睡眠の段階の遷移を併せて表示するのが好適である。睡眠点数Scoreの外にその区分を表示することによって、利用者は睡眠の質の大まかな良否を知ることができる。さらに、覚醒、浅い、深いといった睡眠の段階の時間経過が表示されるので、自己の体調管理などに役立てることが可能となる。 Next, the CPU 6 displays “bad sleep” on the display unit 4 when the sleep score Score is classified into the first category, and “normal” when the sleep score Score is classified as the second category. If the sleep score is classified into the third category, “Good sleep” is displayed (step S272). For example, in the case of good sleep, the sleep evaluation screen shown in FIG. 30 is displayed on the display unit 4. In this case, it is preferable that the CPU 6 displays the transition of one sleep stage together using the processing results of the step S5 and the step S6 in addition to the processing result of the sleep score comparison processing. By displaying the category in addition to the sleep score, the user can know the quality of sleep quality. Furthermore, since the time course of the sleep stage such as awakening, shallowness, and deepness is displayed, it is possible to make use of it for self-condition management.
 次に、CPU6は、次画面を表示する操作がなされたか否かを判定し(ステップS273)、操作がなされた場合には、記憶部9に記憶された睡眠点数Scoreに基づいてその平均値と分散値とを演算し(ステップS274)、さらに睡眠点数推移画面を表示部4に表示する(ステップS275)。例えば、図31に示すように縦軸に睡眠点数Score、横軸に日付を取った棒グラフとする。この場合、睡眠点数ScoreがステップS274で算出した平均値+分散値以下であれば、棒グラフに色を付けて表示する。これによって、利用者は睡眠の質が悪かった日を知ることができ、体調管理に役立てることができる。 Next, the CPU 6 determines whether or not an operation for displaying the next screen has been performed (step S273). The variance value is calculated (step S274), and a sleep point transition screen is displayed on the display unit 4 (step S275). For example, as shown in FIG. 31, a vertical axis is a bar graph with the number of sleep points Score and the horizontal axis. In this case, if the sleep score Score is equal to or less than the average value + dispersion value calculated in step S274, the bar graph is colored and displayed. Thereby, the user can know the day when the quality of sleep was bad, and can use it for physical condition management.
 次に、CPU6は、次画面を表示する操作がなされたか否かを判定し(ステップS276)、操作がなされた場合には、処理を終了する。 Next, the CPU 6 determines whether or not an operation for displaying the next screen has been performed (step S276). If the operation has been performed, the process is terminated.
 本発明によれば、所定項目の1つとして深睡眠率(%)を選定したため、睡眠の質を評価するための回帰式に深睡眠率が反映されており、睡眠の深さに係る評価能力が向上される。図32は、睡眠点数に関する従来技術と本発明との比較を示すグラフであり、(a)は、従来の睡眠点数と深睡眠率との相関を示すグラフ、(b)は、本発明の睡眠点数と深睡眠率との相関を示すグラフである。従来技術による睡眠点数としては出願人製品の睡眠評価装置(スリープスキャンSL-501)を用いた。また、縦軸の深睡眠率(%)は、(a)及び(b)共に、前記出願人製品の睡眠評価装置による測定結果を用いている。従来の睡眠点数と深睡眠率との相関(図32(a))よりも、本発明の睡眠点数と深睡眠率との相関(図32(b))の方がよいことが明らかであり、睡眠の質の評価において重要な、睡眠の深さに係る項目、睡眠のリズムに係る項目、中途覚醒に係る項目のうち、睡眠の深さに係る項目の評価能力を向上することができる。 According to the present invention, since the deep sleep rate (%) is selected as one of the predetermined items, the deep sleep rate is reflected in the regression equation for evaluating the quality of sleep, and the evaluation ability related to the sleep depth Is improved. FIG. 32 is a graph showing a comparison between the related art regarding the sleep score and the present invention, (a) is a graph showing the correlation between the conventional sleep score and the deep sleep rate, and (b) is a sleep of the present invention. It is a graph which shows the correlation with a score and a deep sleep rate. The sleep evaluation device (Sleep Scan SL-501) manufactured by the applicant was used as the sleep score according to the prior art. Further, the deep sleep rate (%) on the vertical axis uses the measurement results obtained by the sleep evaluation device of the applicant's product for both (a) and (b). It is clear that the correlation between the sleep score of the present invention and the deep sleep rate (FIG. 32 (b)) is better than the correlation between the conventional sleep score and the deep sleep rate (FIG. 32 (a)), Among items related to sleep quality, items related to sleep depth, items related to sleep rhythm, and items related to awakening during sleep, the ability to evaluate items related to sleep depth can be improved.
 本発明によれば、SAS患者のような睡眠障害者である確率(睡眠障害判別確率)を算出し、これを反映して睡眠点数を演算するので、睡眠障害者と健常者とで、睡眠の質の評価結果に違いを持たせることができる。図33は、睡眠点数に関する従来技術と本発明との比較を示すグラフである。従来技術としては出願人製品の睡眠評価装置(スリープスキャンSL-501)を用いた。本発明によれば、SAS患者の睡眠点数と健常者の睡眠点数との違いが、従来技術の場合よりも顕著に表れていることがみてとれる。 According to the present invention, the probability of being a sleep disorder person such as a SAS patient (sleep disorder discrimination probability) is calculated, and the sleep score is calculated by reflecting this, so the sleep disorder person and the healthy person can sleep. Differences in quality assessment results can be made. FIG. 33 is a graph showing a comparison between the related art relating to the sleep score and the present invention. As a prior art, a sleep evaluation device (Sleep Scan SL-501) manufactured by the applicant is used. According to the present invention, it can be seen that the difference between the sleep score of a SAS patient and the sleep score of a healthy person appears more markedly than in the case of the prior art.
[第2実施形態]
 以下、本発明による第2実施形態である睡眠評価システムを実施するための形態について説明する。上記第1実施形態の睡眠評価装置1は、図1の外観図に示す通り、センサ部2と制御ボックス3とを備えた一つの装置として成立しており、制御ボックス3には、本発明における睡眠点数を求めるための回帰式を含む一連の処理プログラムが、既に組み込まれているものであるため、睡眠評価装置1のみで睡眠判定データの取得及び睡眠点数演算が実現できるものである。
 一方、第2実施形態である睡眠評価システムは、被験者の生体信号を取得する測定装置と、本発明における睡眠点数(睡眠指数)を求めるための回帰式を含む一連の処理プログラムを実行するための情報処理端末と、から構成されるシステムである。前記生体信号に基づいて睡眠段階判定等を行う判定部(第1実施形態の判定部8に相当)は、測定装置及び情報処理端末のうちいずれかに構成されていればよい。測定装置で測定されたデータ等の情報処理端末への出力は、例えば有線又は無線の接続手段を用いるなど、特に限定されるものではない。
 本発明によれば、睡眠の質を評価するための回帰式はPSGの測定データに基づいて作成されるので、このような回帰式を含む一連の処理プログラムを前記情報処理端末(例えばパーソナルコンピュータ)に導入すると共に、前記測定装置が被験者から検出した生体信号に基づいて、複数の変数データである睡眠判定データを算出して、被験者の睡眠の質の評価、即ち睡眠点数の算出が可能となる。しかも、本発明の睡眠の質を評価するための回帰式はPSGの測定データに基づいて作成されるので、前記取得装置は、所定項目(睡眠判定データ)を算出可能な生体情報を測定できるものであれば特に限定されるものではない。そのため、例えば、PSG測定装置を測定装置として、その睡眠判定データをそのまま代入して睡眠の質の評価に用いることもでき、医療機関における睡眠の質の評価においても有用である。具体的な処理の流れは、前記第1実施形態の睡眠測定装置1と同様であるので、詳細な説明は省略する。
[Second Embodiment]
Hereinafter, the form for implementing the sleep evaluation system which is 2nd Embodiment by this invention is demonstrated. As shown in the external view of FIG. 1, the sleep evaluation device 1 according to the first embodiment is established as one device including the sensor unit 2 and the control box 3, and the control box 3 includes the device according to the present invention. Since a series of processing programs including a regression equation for obtaining the sleep score is already incorporated, the sleep determination data can be acquired and the sleep score can be calculated only by the sleep evaluation device 1.
On the other hand, the sleep evaluation system according to the second embodiment is for executing a series of processing programs including a measuring device for obtaining a biological signal of a subject and a regression equation for obtaining a sleep score (sleep index) in the present invention. And an information processing terminal. The determination part (equivalent to the determination part 8 of 1st Embodiment) which performs a sleep stage determination etc. based on the said biosignal should just be comprised in either a measuring device or an information processing terminal. The output of the data measured by the measuring device to the information processing terminal is not particularly limited, for example, using a wired or wireless connection means.
According to the present invention, since the regression equation for evaluating the quality of sleep is created based on the measurement data of PSG, a series of processing programs including such a regression equation is stored in the information processing terminal (for example, a personal computer). In addition, it is possible to calculate sleep determination data, which is a plurality of variable data, based on the biological signal detected from the subject by the measuring device, and to evaluate the sleep quality of the subject, that is, to calculate the sleep score. . In addition, since the regression equation for evaluating the quality of sleep according to the present invention is created based on the measurement data of PSG, the acquisition device can measure biological information capable of calculating a predetermined item (sleep determination data). If it is, it will not specifically limit. Therefore, for example, using a PSG measurement device as a measurement device, the sleep determination data can be directly substituted for use in the evaluation of sleep quality, which is also useful in the evaluation of sleep quality in medical institutions. Since the specific process flow is the same as that of the sleep measurement apparatus 1 of the first embodiment, detailed description thereof is omitted.
 上述した実施形態においては、9つの睡眠判定データから4つの睡眠評価成分を選定したが、本発明はこれに限定されるものではなく、睡眠の状態を示すn(nは2以上の自然数)個の睡眠判定データから、独立した関係にあるm(mは、n>mを満たす自然数)個の睡眠評価スコアを算出し、m個の睡眠評価スコアに基づいて、睡眠点数を算出しても良い。この場合、睡眠判定データとしては、入眠潜時、睡眠効率、中長時間覚醒回数、深睡眠潜時、深睡眠時間、短時間覚醒回数、深睡眠率、差分睡眠周期スコア、差分総就床時間スコア、総就床時間、離床潜時、睡眠時間、総睡眠時間、中途覚醒時間、REM睡眠潜時、浅睡眠時間、REM睡眠時間、睡眠段階移行回数、浅睡眠出現数、REM睡眠出現数、深睡眠出現数、REM睡眠持続時間、REM睡眠間隔時間、REM睡眠周期、睡眠周期、前半と後半の浅睡眠の割合、前半と後半のREM睡眠の割合、前半と後半の深睡眠の割合の中から、睡眠の深さに係る項目(例えば深睡眠率又は深睡眠出現量の少なくとも一つ)と、睡眠のリズムに係る項目(例えば睡眠周期又は差分睡眠周期スコアの少なくとも一つ)と、中途覚醒に係る項目(例えば睡眠効率又は中長時間覚醒回数の少なくとも一つ)とを任意に選定してもよい。睡眠の質の評価において重要な指標となる睡眠の深さ、睡眠のリズム、中途覚醒に係る項目を選定すれば、総合的な睡眠の質の程度を示す指標を適切に導出することができる。また、睡眠評価スコアは、睡眠深度スコア、睡眠周期スコア、睡眠時間スコア、及び、中途覚醒スコアのいずれか1以上を含むように構成してもよい。 In the embodiment described above, four sleep evaluation components are selected from nine sleep determination data, but the present invention is not limited to this, and n (n is a natural number of 2 or more) indicating a sleep state. From the sleep determination data, m sleep evaluation scores (m is a natural number satisfying n> m) that are independent of each other may be calculated, and the sleep score may be calculated based on the m sleep evaluation scores. . In this case, sleep determination data includes sleep onset latency, sleep efficiency, number of mid- and long-term awakenings, deep sleep latency, deep sleep time, number of short-time awakenings, deep sleep rate, differential sleep cycle score, differential total bedtime Score, total bedtime, bed rest latency, sleep time, total sleep time, mid-wake time, REM sleep latency, shallow sleep time, REM sleep time, number of transitions to sleep stage, number of shallow sleep appearances, number of REM sleep appearances, Number of deep sleep appearances, REM sleep duration, REM sleep interval time, REM sleep cycle, sleep cycle, ratio of shallow sleep in the first and second half, ratio of REM sleep in the first and second half, ratio of deep sleep in the first and second half , Items related to sleep depth (for example, at least one of deep sleep rate or deep sleep appearance amount), items related to sleep rhythm (for example, at least one of sleep cycle or differential sleep cycle score), and midway awakening Items related to At least one) and the may be arbitrarily selected in sleep efficiency or medium long awakening times. If items relating to sleep depth, sleep rhythm, and awakening that are important indicators in the evaluation of sleep quality are selected, it is possible to appropriately derive an indicator that indicates the overall level of sleep quality. The sleep evaluation score may include any one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
 なお、第1実施形態においては、睡眠評価装置1として、マットレスとコンデンサマイクロホンセンサによる呼吸信号の検出を例としたが、マットレスの下に配して人体の圧力変動を直接検出するものとして、ピエゾケーブルなどの圧電素子、静電容量式センサ、フィルムセンサ又は歪ゲージなどを用いても良いし、呼吸信号や体動信号や心拍信号が検出できるものであれば、公知装置を用いても良い。 In the first embodiment, the sleep evaluation apparatus 1 is exemplified by detection of a respiratory signal using a mattress and a condenser microphone sensor. However, a piezoelectric sensor is assumed to be disposed under the mattress and directly detect a human body pressure fluctuation. A piezoelectric element such as a cable, a capacitive sensor, a film sensor, a strain gauge, or the like may be used, and a known device may be used as long as it can detect a respiratory signal, a body motion signal, and a heartbeat signal.
 また、図17のフローチャートを用いて説明した中途覚醒条件判定のステップS138において、「(m=1からm=mまでの全エポックの平均呼吸数)≧(n=1からn=nmaxまでの全エポックの平均呼吸数)×mq」なる条件で、呼吸数による中途覚醒判定を行ったが、心拍に関する指標を検出する心拍信号検出手段と、前記心拍に関する指標を用いて、前記睡眠段階を補正する補正手段とを更に備えることにより、例えば、「(m=1からm=mまでの全エポックの平均心拍数)≧(n=1からn=nmaxまでの全エポックの平均心拍数)×mv」(ここで、mvは、mv>1なる定数である。)とする条件を加えて、この条件を満たす場合を覚醒状態と判定しても良く、より精度の高い覚醒判定が可能となる。 Further, in step S138 of the midway awakening condition determination described with reference to the flowchart of FIG. 17, “(average respiratory rate of all epochs from m = 1 to m = m) ≧ (n = 1 to n = nmax Under the condition of “epoch average respiratory rate) × mq”, the awakening determination based on the respiratory rate is performed, and the sleep stage is corrected using the heartbeat signal detecting means for detecting the heartbeat-related index and the heartbeat-related index. By further providing a correcting means, for example, “(average heart rate of all epochs from m = 1 to m = m) ≧ (average heart rate of all epochs from n = 1 to n = nmax) × mv” (Here, mv is a constant such that mv> 1), and a condition that satisfies this condition may be determined as an arousal state, and a more accurate arousal determination is possible.
 更に、睡眠評価装置1の判定結果の推移と、心拍信号検出手段により検出された心拍に関する指標の推移とを用いて、公知の相関を取ることにより、前記判定結果を補正しても良い。 Furthermore, the determination result may be corrected by taking a known correlation using the transition of the determination result of the sleep evaluation device 1 and the transition of the index related to the heartbeat detected by the heartbeat signal detecting means.
 また、上述した実施形態では、9個の所定項目と4個の睡眠評価スコアを一例として説明したが、本発明はこれに限定されるものではなく、n(2以上の自然数)個の所定項目を集約したm(n≧m、mは自然数)個の睡眠評価スコアを用いて睡眠点数を算出してもよい。 In the embodiment described above, nine predetermined items and four sleep evaluation scores have been described as examples. However, the present invention is not limited to this, and n (two or more natural numbers) predetermined items. The sleep score may be calculated using m (n ≧ m, where m is a natural number) sleep evaluation scores.
[第3実施形態]
 以下、図面を参照して、本発明による第3実施形態である睡眠評価装置を実施するための形態について説明する。
[Third Embodiment]
Hereinafter, with reference to drawings, the form for implementing the sleep evaluation apparatus which is 3rd Embodiment by this invention is demonstrated.
 まず、図34及び図35を用いて、本実施形態の睡眠評価装置の構成を説明する。図34は、睡眠評価装置101の使用時の外観図、図35は、睡眠評価装置101のブロック図である。図34に示すように、睡眠評価装置101は、寝具に横臥した被験者の生体情報を検出して生体信号として出力するセンサ部102(生体情報検出手段)と、センサ部102に接続され睡眠段階の判定及び睡眠の質の評価を行なう制御ボックス103とを備える。制御ボックス103は、睡眠段階の判定結果及び睡眠の評価指標などのガイダンス表示などを行なう表示部104及び電源オン/オフ又は測定開始/終了などの操作を行なう操作部105を備える。 First, the configuration of the sleep evaluation apparatus according to the present embodiment will be described with reference to FIGS. 34 and 35. FIG. 34 is an external view when the sleep evaluation apparatus 101 is used, and FIG. 35 is a block diagram of the sleep evaluation apparatus 101. As shown in FIG. 34, the sleep evaluation apparatus 101 detects the biological information of the subject lying on the bedding and outputs it as a biological signal, and is connected to the sensor unit 102 and is in the sleep stage. And a control box 103 that performs determination and evaluation of sleep quality. The control box 103 includes a display unit 104 that performs guidance display such as a sleep stage determination result and a sleep evaluation index, and an operation unit 105 that performs operations such as power on / off or measurement start / end.
 センサ部102は、例えば、非圧縮性の流体を内封したマットレスの圧力変動を、マイクロホン(例えば、コンデンサマイクロホン)を用いて検出するものであり、図34に示すように、マットレスを寝具の下に敷くことにより、仰臥位の被験者の生体信号や姿勢の変化を検出するものである。 The sensor unit 102 detects, for example, a pressure fluctuation of a mattress enclosing an incompressible fluid using a microphone (for example, a condenser microphone). As shown in FIG. 34, the mattress is placed under a bedding. It is intended to detect changes in the biological signal and posture of the subject in the supine position.
 また、図35に示すように、制御ボックス103において、センサ部102、表示部104及び操作部105はCPU106に接続される。また、CPU106は、センサ部102で検出された生体信号から呼吸信号、体動信号、心拍信号のそれぞれを検出する生体データ検出部107、睡眠評価のための各種判定および演算を行なう判定部108、睡眠段階判定および睡眠評価のための各種条件式や判定結果および演算結果を記憶しておく記憶部109と、睡眠の質を評価する評価部120と、睡眠評価装置101に電力を供給する電源110とに接続される。この場合において、CPU106は、睡眠評価装置101を制御する制御部と時間を計測する計時部とを内部に備える。判定部108は、より具体的には、入床・離床判定部111、体動判定部112、覚醒判定部113、入眠判定部114、深睡眠判定部115、REM・浅睡眠判定部116、中途覚醒判定部117及び起床判定部118(図示略)を含む。なお、これらの各判定部については、各々フローチャートを用いて後述する。 As shown in FIG. 35, in the control box 103, the sensor unit 102, the display unit 104, and the operation unit 105 are connected to the CPU 106. In addition, the CPU 106 includes a biological data detection unit 107 that detects each of a respiratory signal, a body motion signal, and a heartbeat signal from the biological signal detected by the sensor unit 102, a determination unit 108 that performs various determinations and calculations for sleep evaluation, A storage unit 109 that stores various conditional expressions, determination results, and calculation results for sleep stage determination and sleep evaluation, an evaluation unit 120 that evaluates sleep quality, and a power supply 110 that supplies power to the sleep evaluation device 101 And connected to. In this case, the CPU 106 includes a control unit that controls the sleep evaluation apparatus 101 and a timer unit that measures time. More specifically, the determination unit 108 includes an entering / leaving determination unit 111, a body movement determination unit 112, an arousal determination unit 113, a sleep determination unit 114, a deep sleep determination unit 115, a REM / light sleep determination unit 116, a midway An awakening determination unit 117 and a wakeup determination unit 118 (not shown) are included. Each of these determination units will be described later using a flowchart.
 さらに、判定部108は、睡眠判定データ演算部130(図示略)と、睡眠評価スコア演算部140(図示略)と、判別確率算出部150(図示略)と、睡眠タイプ判定部160(図示略)と、を有する。 Further, the determination unit 108 includes a sleep determination data calculation unit 130 (not shown), a sleep evaluation score calculation unit 140 (not shown), a discrimination probability calculation unit 150 (not shown), and a sleep type determination unit 160 (not shown). And).
 睡眠判定データ演算部130は、睡眠評価スコア(後述)を算出するための基礎となる睡眠判定データ(複数の変数データ)を演算するものである。睡眠判定データは、深睡眠率(%)、差分睡眠周期スコア、総就床時間(分)、睡眠周期(分)、深睡眠出現量(分)、差分総就床時間スコア、中長時間覚醒回数(回)、短時間覚醒回数(回)、睡眠効率(%)の9種類のデータを用いるのが好適である。よって、睡眠判定データ算出部130として、深睡眠率演算部、差分睡眠周期スコア演算部、総就床時間演算部、睡眠周期演算部、深睡眠出現量演算部、差分総就床時間スコア演算部、中長時間覚醒回数演算部、短時間覚醒回数演算部、睡眠効率演算部を有する(いずれも図示略)。本実施形態では、これらの9種類の睡眠判定データを用いる睡眠評価システム及び睡眠評価装置を説明するが、これら以外の睡眠判定データ(変数データ)を更に追加しても良い。 The sleep determination data calculation unit 130 calculates sleep determination data (a plurality of variable data) as a basis for calculating a sleep evaluation score (described later). Sleep determination data includes deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, mid-long time awakening It is preferable to use nine types of data such as the number of times (times), the number of times of short-term awakening (times), and sleep efficiency (%). Therefore, as the sleep determination data calculation unit 130, the deep sleep rate calculation unit, the differential sleep cycle score calculation unit, the total bedtime calculation unit, the sleep cycle calculation unit, the deep sleep appearance amount calculation unit, the differential total bedtime score calculation unit , A medium / long-time wake-up number calculating unit, a short-time wake-up number calculating unit, and a sleep efficiency calculating unit (all not shown). In the present embodiment, a sleep evaluation system and a sleep evaluation device using these nine types of sleep determination data will be described, but sleep determination data (variable data) other than these may be further added.
 ここで、複数の変数データである前記9種類の睡眠判定データについて更に説明する。深睡眠率(%)は、睡眠時間における深い睡眠の割合を意味し、「(深い睡眠の時間/睡眠時間)×100」、すなわち「(深い睡眠の時間/(入眠から最終覚醒までの時間))×100」として求めることができる。差分睡眠周期スコアは、睡眠周期(分)が基準時間(例えば90分)に対してどの程度の差があるかを表すスコアである。「-|睡眠周期-所定基準時間|」(||は絶対値を表す。)により求めることができる。従って、基準時間を90分と設定した場合に、被験者の睡眠周期が90分であれば、差分睡眠周期スコアの値は0になり最大値を示し、睡眠周期が120分又は60分であれば、差分睡眠周期スコアの値は-30となる。総就床時間(分)は、就床から離床までの時間を意味する。睡眠周期(分)は、REM睡眠の終了から次のREM睡眠の終了までを1周期とした場合の、当該周期の平均値を意味する。但し、第1周期は、入眠してから最初に現れるREM睡眠の終了までとする。深睡眠出現量(分)は、深い睡眠の時間の総和を意味する。差分総就床時間スコアは、総就床時間(分)が基準時間(例えば6.5時間(390分))に対してどの程度の差があるかを表すスコアである。「-|総就床時間-基準時間|」(||は絶対値を表す。)により求めることができる。従って、基準時間を390分と設定した場合に、被験者の総就床時間が390分であれば、差分総就床時間スコアの値は0になり最大値を示し、総就床時間が420分又は360分であれば、差分総就床時間スコアの値は-30となる。中長時間覚醒回数(回)は、睡眠中に現れる基準時間(例えば、2分30秒)以上の覚醒の回数を意味する。短時間覚醒回数(回)は、睡眠中に現れる基準時間(例えば2分)以内の覚醒の回数を意味する。睡眠効率(%)は、総就床時間に対する実際に眠っていた時間の割合を意味し、「(総睡眠時間/総就床時間)×100」、すなわち「((総就床時間-睡眠中に覚醒した時間の総和)/総就床時間)×100」として求めることができる。 Here, the nine types of sleep determination data, which are a plurality of variable data, will be further described. Deep sleep rate (%) means the ratio of deep sleep in sleep time, and “(deep sleep time / sleep time) × 100”, that is, “(deep sleep time / (time from falling asleep to final awakening)” ) × 100 ”. The differential sleep cycle score is a score representing how much the sleep cycle (minute) is different from the reference time (for example, 90 minutes). “− | Sleep cycle−predetermined reference time |” (|| represents an absolute value). Therefore, when the reference time is set to 90 minutes, if the sleep cycle of the subject is 90 minutes, the value of the differential sleep cycle score is 0 and shows the maximum value, and if the sleep cycle is 120 minutes or 60 minutes. The value of the differential sleep cycle score is −30. Total bedtime (minutes) means the time from bed to bed. The sleep cycle (minutes) means an average value of the cycle when one cycle is from the end of the REM sleep to the end of the next REM sleep. However, the first period is from the end of sleep to the end of REM sleep that appears first. Deep sleep appearance amount (minute) means the sum total of deep sleep time. The difference total bedtime score is a score indicating how much the total bedtime (minutes) is different from the reference time (for example, 6.5 hours (390 minutes)). “− | Total bedtime−reference time |” (|| represents an absolute value). Therefore, when the reference time is set to 390 minutes and the total bedtime of the subject is 390 minutes, the value of the difference total bedtime score is 0 and shows the maximum value, and the total bedtime is 420 minutes. Alternatively, if it is 360 minutes, the value of the difference total bedtime score is −30. The number of awakening times (times) means the number of times of awakening over a reference time (for example, 2 minutes 30 seconds) that appears during sleep. The number of short-time awakenings (times) means the number of times of awakening within a reference time (for example, 2 minutes) that appears during sleep. The sleep efficiency (%) means the ratio of the actual sleep time to the total bedtime, which is “(total sleep time / total bedtime) × 100”, that is, “((total bedtime−sleeping time) (Total sum of hours awakened) / total bedtime) × 100 ”.
 本発明においては、前記9種類の睡眠判定データ(所定項目)は、PSGの測定データと既存の睡眠評価装置の測定データとの相関がよいものとして抽出されている上に、特に(一例として90分基準の)差分睡眠周期スコアや、(一例として6.5時間(390分)基準の)差分総就床時間スコアを有しているため、従来技術にはない、睡眠時間や睡眠周期をも考慮した睡眠の質の評価、すなわち睡眠点数を演算することが可能であり、PSGの睡眠判定の結果に対して、睡眠点数の相関を向上させることができる。 In the present invention, the nine types of sleep determination data (predetermined items) are extracted as having good correlation between the PSG measurement data and the measurement data of the existing sleep evaluation device, and in particular (as an example, 90 Since it has a differential sleep cycle score (based on minutes) and a differential total bedtime score (based on 6.5 hours (390 minutes) as an example), it also has a sleep time and sleep cycle not found in the prior art It is possible to calculate the sleep quality evaluation in consideration, that is, the sleep score, and to improve the correlation of the sleep score with respect to the result of the sleep determination of PSG.
 睡眠評価スコア演算部140は、睡眠の質の評価の基礎となる睡眠評価スコアを演算するものである。睡眠評価スコアは、一例として、第1主成分スコアとして睡眠深度スコア、第2主成分スコアとして睡眠周期スコア、第3主成分スコアとして睡眠時間スコア、第4主成分スコアとして中途覚醒スコアの4成分スコアで構成するのが好適である。さらに、睡眠中に生じる体動の発生頻度に関するスコアとしての体動頻度スコアをも睡眠評価スコアの1つとして加えるのが好適である。よって、睡眠評価スコア演算部140は、睡眠深度スコア演算部、睡眠周期スコア演算部、睡眠時間スコア演算部、中途覚醒スコア演算部、体動頻度スコア演算部を有する(いずれも図示略)。より正確に睡眠の質を評価する際には、睡眠の深さ、睡眠の周期、睡眠の時間、中途覚醒、体動頻度の程度が重要な指標となるため、本実施形態では前記5種類の成分スコアを用いる睡眠評価装置を説明するが、これら以外の睡眠評価スコアを更に追加しても良い。 The sleep evaluation score calculation unit 140 calculates a sleep evaluation score that is a basis for evaluation of sleep quality. As an example, the sleep evaluation score includes four components: a sleep depth score as the first principal component score, a sleep cycle score as the second principal component score, a sleep time score as the third principal component score, and a midway awakening score as the fourth principal component score. It is preferable to compose the score. Furthermore, it is preferable to add a body motion frequency score as a score related to the occurrence frequency of body motion occurring during sleep as one of the sleep evaluation scores. Therefore, the sleep evaluation score calculation unit 140 includes a sleep depth score calculation unit, a sleep cycle score calculation unit, a sleep time score calculation unit, a midway awakening score calculation unit, and a body motion frequency score calculation unit (all not shown). When evaluating the quality of sleep more accurately, the depth of sleep, sleep cycle, sleep time, midway awakening, and body motion frequency are important indicators. Although the sleep evaluation apparatus using a component score will be described, a sleep evaluation score other than these may be further added.
 判別確率算出部150は、SAS患者のような睡眠障害者である確率を示す判別確率(後述)を演算するものである。 The discrimination probability calculation unit 150 calculates a discrimination probability (described later) indicating the probability of being a sleep disorder person such as a SAS patient.
 睡眠タイプ判定部160は、予め設定されている複数の睡眠タイプ(後述)のうち、いずれの睡眠タイプに該当する睡眠であったかを判定するものである。 The sleep type determination unit 160 determines which sleep type corresponds to a sleep type among a plurality of preset sleep types (described later).
 評価部120は、睡眠評価スコア演算部140が睡眠判定データに基づいて演算した睡眠評価スコアと、判別確率算出部150が演算した判別確率と、に基づいて睡眠点数(睡眠指数)を演算する。また、睡眠タイプ判定部160は、被験者の睡眠がいずれの睡眠タイプに該当するかを判定する。このような睡眠点数や睡眠タイプを含む睡眠の質の評価の結果を表示部104に表示する。睡眠判定データ演算部130、睡眠評価スコア演算部140、判別確率算出部150、睡眠タイプ判定部160、及び、評価部120が実行する処理については、各フローチャートを用いて後述する。なお、生体データ検出部107、判定部108、評価部120、睡眠判定データ演算部130と、睡眠評価スコア演算部140と、判別確率算出部150と、睡眠タイプ判定部160とは、CPU106が所定のプログラムを実行することによって、それらの機能を実現してもよい。 The evaluation unit 120 calculates a sleep score (sleep index) based on the sleep evaluation score calculated by the sleep evaluation score calculation unit 140 based on the sleep determination data and the discrimination probability calculated by the discrimination probability calculation unit 150. Moreover, the sleep type determination unit 160 determines which sleep type the subject's sleep corresponds to. The result of sleep quality evaluation including such sleep points and sleep type is displayed on the display unit 104. The processes executed by the sleep determination data calculation unit 130, the sleep evaluation score calculation unit 140, the discrimination probability calculation unit 150, the sleep type determination unit 160, and the evaluation unit 120 will be described later using each flowchart. The biometric data detection unit 107, the determination unit 108, the evaluation unit 120, the sleep determination data calculation unit 130, the sleep evaluation score calculation unit 140, the discrimination probability calculation unit 150, and the sleep type determination unit 160 are predetermined by the CPU 106. These functions may be realized by executing the program.
 次に図36及び図37のフローチャートを用いて、睡眠評価装置101の主な動作を説明する。図36は、メイン動作を示すフローチャート、図37は、前記各判定部111~118を用いた睡眠段階判定の流れを示すフローチャートである。 Next, the main operation of the sleep evaluation apparatus 101 will be described using the flowcharts of FIGS. FIG. 36 is a flowchart showing the main operation, and FIG. 37 is a flowchart showing the flow of sleep stage determination using the determination units 111 to 118.
 まず図36に示すように、操作部105の電源オン操作により睡眠評価装置101の電源をオンすると、ステップS1001において、就寝姿勢を取り、操作部105の測定開始の操作を行うように指示するガイダンスが表示部104に表示され、測定開始操作がされたか否かを判定する。測定開始操作がされなければNOに進み、ステップS1001において前記ガイダンスを表示し続ける。また、測定開始操作がされたらYESに進み、ステップS1002において、センサ部102により生体信号が検出され、CPU106に内蔵の計時部で計測した時刻と共に生体信号データとして記憶部109に記憶される。 First, as shown in FIG. 36, when the power of the sleep evaluation apparatus 101 is turned on by turning on the power of the operation unit 105, in step S1001, a guidance is given to take a sleeping posture and perform an operation to start the measurement of the operation unit 105. Is displayed on the display unit 104 to determine whether or not a measurement start operation has been performed. If measurement start operation is not performed, it will progress to NO and will continue displaying the said guidance in step S1001. If the measurement start operation is performed, the process proceeds to YES, and in step S1002, a biological signal is detected by the sensor unit 102, and is stored in the storage unit 109 as biological signal data together with the time measured by the timer unit built in the CPU 106.
 ステップS1003において、測定終了の操作がされたか否かが判断され、測定終了操作がされなければNOに進み、ステップS1002の生体信号の検出及び記憶を続け、測定終了操作がされたらYESに進み、ステップS1004において、CPU106内の制御部により検出した生体信号の処理をするよう各部を制御する。すなわち、記憶部109に記憶した生体信号データを読み出し、生体データ検出部107において呼吸信号、体動信号、心拍信号を検出し、これらの呼吸信号、体動信号、心拍信号により得られるそれぞれの波形の振幅及び周期が演算され、呼吸データ、体動データ、心拍データとして記憶部109に記憶する。このとき、呼吸データ、体動データ、心拍データは、所定時間、例えば30秒を1単位とする単位区間毎に記憶されるものとする(以下、この単位区間を「エポック」という)。なお、呼吸信号、体動信号、心拍信号の波形の振幅及び周期の演算に関しては、既に公知であるため省略する。また、エポックの長さは30秒に限られるものではなく、判定の精度を損なわない範囲で任意の値に設定することができる。 In step S1003, it is determined whether or not a measurement end operation has been performed. If the measurement end operation has not been performed, the process proceeds to NO, the detection and storage of the biological signal in step S1002 is continued, and if the measurement end operation has been performed, the process proceeds to YES. In step S1004, each unit is controlled to process the biological signal detected by the control unit in the CPU. That is, the biological signal data stored in the storage unit 109 is read, and the biological data detection unit 107 detects the respiratory signal, the body motion signal, and the heartbeat signal, and the respective waveforms obtained from the respiratory signal, the body motion signal, and the heartbeat signal. Are calculated and stored in the storage unit 109 as respiration data, body motion data, and heartbeat data. At this time, it is assumed that respiratory data, body movement data, and heart rate data are stored for each unit section having a predetermined time, for example, 30 seconds as one unit (hereinafter, this unit section is referred to as “epoch”). Note that the calculation of the amplitude and period of the waveform of the respiratory signal, the body motion signal, and the heartbeat signal is already known and will be omitted. The length of the epoch is not limited to 30 seconds, and can be set to an arbitrary value within a range that does not impair the accuracy of determination.
 記憶部109に記憶された総ての生体信号データに対して、呼吸データ、体動データ、心拍データが検出され記憶されると、ステップS1005において、それらの呼吸データ、体動データ、心拍データを用いて、判定部108内の各判定部111~118により、睡眠段階判定(後述)が行なわれる。 When respiration data, body motion data, and heart rate data are detected and stored for all the biological signal data stored in the storage unit 109, in step S1005, the respiration data, body motion data, and heart rate data are stored. By using each of the determination units 111 to 118 in the determination unit 108, sleep stage determination (described later) is performed.
 ステップS1006において、睡眠段階判定の結果に基づいて睡眠判定データ(複数の変数データ)の演算、睡眠評価スコアの演算、判別確率の演算を行い、睡眠点数が演算される。ステップS1007において、被験者の睡眠が、予め設定されている複数の睡眠タイプのうち、いずれの睡眠タイプに該当する睡眠であったかが判定される。ステップS1008において、睡眠点数や睡眠タイプを含む睡眠の質の評価の結果が表示部104に表示される。ステップS1009において、操作部105の電源オフ操作がされたか否かが判断され、電源オフ操作がされていなければNOに進み、ステップS1008の表示を続け、電源オフ操作された場合にはYESに進み、睡眠評価装置101の電源をオフにし終了となる。 In step S1006, based on the result of sleep stage determination, sleep determination data (a plurality of variable data) is calculated, sleep evaluation score is calculated, and discrimination probability is calculated to calculate the sleep score. In step S1007, it is determined which sleep type corresponds to the sleep type of the plurality of sleep types set in advance. In step S <b> 1008, the result of sleep quality evaluation including the sleep score and sleep type is displayed on the display unit 104. In step S1009, it is determined whether or not the power of the operation unit 105 has been turned off. If the power is not turned off, the process proceeds to NO, and the display in step S1008 is continued. If the power is turned off, the process proceeds to YES. Then, the sleep evaluation apparatus 101 is turned off and the process ends.
 次に図37のフローチャートを用いて、判定部108内における各判定部111~118を用いた睡眠段階判定の流れを説明する。判定部108は、CPU106に制御され、図36のステップS1004において記憶部109に前記エポック毎に記憶された呼吸データ、体動データ、心拍データに基づいて、以下の判定処理を順次行なうものである。 Next, the flow of sleep stage determination using the determination units 111 to 118 in the determination unit 108 will be described using the flowchart of FIG. The determination unit 108 is controlled by the CPU 106 and sequentially performs the following determination processing based on the respiratory data, body motion data, and heart rate data stored for each epoch in the storage unit 109 in step S1004 of FIG. .
 ステップS1011(入床・離床判定ステップ)において、入床・離床判定部111は、呼吸データ、体動データ、心拍データの変動に基づいて、測定開始から測定終了までの間の入床又は離床の判定を行なう。ステップS1012(体動判定ステップ)において、体動判定部112は、呼吸データ、体動データ、心拍データから得られる波形の振幅又は周期などに基づいて、寝返りなどの大きな動きである粗体動、いびきなどの小さな動きである細体動、及び、安定した呼吸・心拍・体動状態のときに得られる無体動、の各状態の内、各エポックがどの状態にあるかを判定する。ステップS1013(覚醒判定ステップ)において、覚醒判定部113は、前記判定された体動の状態に基づいて明らかな覚醒状態であるか否かを判定する。ステップS1014(入眠判定ステップ)において、入眠判定部114は、入床直後の覚醒状態から、どのエポックにおいて睡眠状態へ移行したか(以下、入眠区間、または、入眠潜時と言う。)を判定する。ステップS1015(深睡眠判定ステップ)において、深睡眠判定部115は、呼吸データ及び心拍データの変動と前記判定された体動の状態とから、深い睡眠状態にあるか否か判定する。ステップS1016(REM・浅睡眠判定ステップ)において、REM・浅睡眠判定部116は、深睡眠判定部115により深睡眠状態と判定されなかった各エポックに対して、REM睡眠状態又は浅い睡眠状態のいずれかを判定する。ステップS1017(中途覚醒判定ステップ)において、中途覚醒判定部117は、体動の継続期間に基づいて入眠状態途中での覚醒状態の有無を判定する。ステップS1018(起床判定ステップ)において、起床判定部118により、どのエポックにおいて睡眠状態から起床状態へ移行したか(以下、起床区間と言う。)を判定する。 In step S1011 (entrance / leaving determination step), the entrance / leaving determination unit 111 determines whether to enter or leave the floor from the start of measurement to the end of measurement based on changes in respiratory data, body movement data, and heart rate data. Make a decision. In step S1012 (body motion determination step), the body motion determination unit 112 performs coarse body motion that is a large motion such as turning over based on the amplitude or period of the waveform obtained from the respiratory data, body motion data, and heart rate data. Among the states of small body movements such as snoring and non-body movements obtained in a stable breathing / heartbeat / body movement state, it is determined which state each epoch is in. In step S1013 (awake determination step), the awake determination unit 113 determines whether the state is a clear awake state based on the determined body movement state. In step S1014 (sleep onset determination step), the sleep onset determination unit 114 determines in which epoch the sleep state transitioned from the awakened state immediately after entering the bed (hereinafter referred to as a sleep onset period or sleep onset latency). . In step S1015 (deep sleep determination step), the deep sleep determination unit 115 determines whether or not the patient is in a deep sleep state from the changes in the respiratory data and the heart rate data and the determined body movement state. In step S1016 (REM / shallow sleep determination step), the REM / shallow sleep determination unit 116 determines whether the deep sleep determination unit 115 determines that the sleep state is a REM sleep state or a shallow sleep state. Determine whether. In step S1017 (middle awakening determination step), the midway awakening determination unit 117 determines the presence or absence of a waking state during the sleep state based on the duration of body movement. In step S1018 (wake-up determination step), the wake-up determination unit 118 determines in which epoch the transition from the sleep state to the wake-up state (hereinafter referred to as the wake-up section) is made.
 以上の総ての判定が終了すると、図36のメイン動作を示すフローチャートに戻り、ステップ1006における睡眠点数の演算処理、ステップ1007における睡眠タイプ判定が実行されたのち、ステップS1008において、睡眠点数や睡眠タイプを含む睡眠の質の評価の結果が表示されるものである。 When all the above determinations are completed, the flow returns to the flowchart showing the main operation in FIG. 36. After the sleep score calculation processing in step 1006 and the sleep type determination in step 1007 are executed, in step S1008 the sleep score and sleep The result of sleep quality evaluation including type is displayed.
 前記各判定部111~118の処理を、各々図38乃至図49の各フローチャートを用いて順を追って説明する。ただし、以下アルファベットなどで示された各定数は、睡眠ポリグラフ検査のデータによる睡眠段階判定と睡眠評価装置101による実測データとの相関に基づいて設定されるものであるとする。 The processing of each of the determination units 111 to 118 will be described step by step using the flowcharts of FIGS. 38 to 49, respectively. However, it is assumed that the constants indicated by alphabets and the like are set based on the correlation between sleep stage determination based on polysomnographic examination data and actual measurement data obtained by the sleep evaluation apparatus 101.
 図38のフローチャートを用いて入床・離床判定部111の処理を説明する。
 ステップS1021において、記憶部9に記憶された呼吸データ、体動データ、心拍データに対して設定した各エポックの総数をnmax区間とし、n=1区間目からn=nmax区間目までの各エポック毎に処理するため、n=0として初期設定する。続いてステップS1022において、n=n+1として1エポック分進め記憶部109の該当するエポックの呼吸データを読み込む。
The processing of the entering / leaving determination unit 111 will be described using the flowchart of FIG.
In step S1021, the total number of epochs set for the respiration data, body motion data, and heart rate data stored in the storage unit 9 is defined as an nmax interval, and for each epoch from the n = 1 interval to the n = nmax interval. Therefore, n = 0 is initialized. In step S1022, n = n + 1 is set, and the epoch respiration data of the corresponding epoch is read from the advance storage unit 109 for one epoch.
 ステップS1023において、人が通常の仰臥位でいるときに認められる呼吸振幅の大きさの最小値をAとし、前記エポックn内の呼吸波形の振幅について、大きさA以上の振幅がt(sec)以上継続しているかどうか判定される(図39参照)。ここで、A及びtは定数であり、t<単位時間である。これに当たる場合には、呼吸が検出されていると判断しYESに進み、ステップS1024において、被験者は入床状態にあるとして、前記エポックnを入床区間と判定し、ステップS1025において、該当するエポックnに関連付けて記憶部109に記憶する。また、前記ステップS1023の条件に当てはまらない場合には、呼吸は検出されていないと判断しNOに進み、ステップS1027において、被験者は離床状態であるとして、前記エポックnを離床区間と判定し、ステップS1025において、前記と同様にして記憶される。ステップS1026において、全エポックnmaxにおいて前記入床・離床判定がなされたか否か、すなわちn=nmaxかが判断され、全エポックの判定がなされていなければNOに進み再びステップS1022において、n=n+1として入床・離床判定を繰り返し、全エポックの判定がなされるとYESに進み、図37のフローチャートに戻り、次の判定に進む。なお、呼吸データを用いる例を説明したが、体動データ、心拍データを用いても良いことは言うまでもない。この入床・離床判定部111の処理結果に基づいて、前記総就床時間演算部及び差分総就床時間スコア演算部は、前記睡眠判定データとしての総就床時間(分)及び差分総就床時間スコアを演算することが可能となる。また、入床・離床判定部111の処理結果に基づいて、睡眠効率演算部は、睡眠効率(%)を演算するために必要な「総就床時間」を演算することが可能となる。 In step S1023, A is the minimum value of the respiratory amplitude that is recognized when a person is in the normal supine position, and the amplitude of the respiratory waveform in the epoch n is t (sec) or greater. It is determined whether or not it continues (see FIG. 39). Here, A and t are constants, and t <unit time. If this is the case, it is determined that respiration is detected, and the process proceeds to YES. In step S1024, it is determined that the subject is in the floor, and the epoch n is determined to be a floor section. In step S1025, the corresponding epoch is detected. The information is stored in the storage unit 109 in association with n. If the condition of step S1023 is not satisfied, it is determined that respiration is not detected, and the process proceeds to NO. In step S1027, the epoch n is determined to be a bed leaving section, assuming that the subject is in the bed leaving step. In S1025, it is stored in the same manner as described above. In step S1026, it is determined whether or not the entrance / leaving determination has been made for all epochs nmax, that is, n = nmax. If all epochs have not been determined, the process proceeds to NO, and in step S1022, n = n + 1 is set again. When entering / leaving determination is repeated and all epochs are determined, the process proceeds to YES, and the process returns to the flowchart of FIG. 37 to proceed to the next determination. In addition, although the example using respiration data was demonstrated, it cannot be overemphasized that body movement data and heart rate data may be used. Based on the processing result of the entrance / exit determination unit 111, the total bedtime calculation unit and the difference total bedtime score calculation unit are configured to calculate the total bedtime (minutes) and the difference total employment as the sleep determination data. The floor time score can be calculated. Further, based on the processing result of the entrance / leaving determination unit 111, the sleep efficiency calculation unit can calculate the “total bedtime” necessary for calculating the sleep efficiency (%).
 図40のフローチャートを用いて体動判定部112の処理を説明する。
 体動判定部の処理は、まず、前記エポックnに関わらず、呼吸信号の波形の振幅から体動の大きさを判定し、次に、エポックn内における前記判定された体動の有無により、各エポックnの体動状態を判定するものである。
The process of the body movement determination unit 112 will be described using the flowchart of FIG.
The process of the body movement determination unit first determines the magnitude of body movement from the amplitude of the waveform of the respiratory signal regardless of the epoch n, and then, depending on the presence or absence of the determined body movement in the epoch n, The body movement state of each epoch n is determined.
 よって、ステップS1031において、測定開始から測定終了までの総呼吸数をimax回とし、i=0として初期設定する。続いてステップS1032において、i=i+1として1呼吸数分進め、記憶部109のi=1回目からi=imax回目までの各呼吸数iに該当する呼吸波形を読み込む。 Therefore, in step S1031, the total respiration rate from the start of measurement to the end of measurement is set to imax, and i = 0 is initially set. Subsequently, in step S1032, i = i + 1 is set to advance by one respiration rate, and a respiration waveform corresponding to each respiration rate i from i = 1 to i = imax in the storage unit 109 is read.
 ステップS1032において、更にi=i+2回目とi=i+3回目の呼吸波形を読み込み、この連続する3つの呼吸波形の振幅のばらつきにより体動の有無を判定する。すなわち、ステップS1033において、前記3つの呼吸波形の振幅の標準偏差≧B1(ここで、B1は、呼吸波形が安定しているか否かの閾値をしめす定数である。)かどうかを判定する。標準偏差<B1であった場合、呼吸のばらつきは小さいため呼吸波形が安定していると判断しNOに進み、ステップS1038において、前記連続する3つの呼吸波形の内、i=i+1回目の呼吸は無体動状態を示すものと判定する。 In step S1032, the i = i + 2 and i = i + 3 respiration waveforms are further read, and the presence / absence of body motion is determined based on variations in the amplitudes of the three consecutive respiration waveforms. That is, in step S1033, it is determined whether or not the standard deviation of the amplitudes of the three respiratory waveforms ≧ B1 (where B1 is a constant indicating a threshold value indicating whether the respiratory waveform is stable). If the standard deviation is smaller than B1, it is determined that the respiration waveform is stable because the variation in respiration is small, and the process proceeds to NO. It is determined to indicate an inanimate state.
 また、ステップS1033において標準偏差≧B1であった場合、呼吸のばらつきが大きいため体動有り、と判断してYESに進み、ステップS1034において、前記i=i+1回目の呼吸波形の振幅の大きさ≧B2(ここで、B2は、人が通常の仰臥位でいるときに認められる呼吸振幅の最大値であり、B2>Aなる定数である。)かどうかを判定する。前記振幅の大きさ≧B2であった場合YESに進み、ステップS1035において、i=i+1回目の呼吸は粗体動状態であると判定する(図42参照)。また、前記振幅の大きさ<B2であった場合NOに進み、ステップS1036において、呼吸波形の周期により体動の大きさを判定する。すなわち、前記i=i+1回目の呼吸周期≧B3であるかどうかを判定する。前記呼吸周期≧B3であった場合YESに進み、粗体動と状態であると判定する。また、呼吸周期<B3であった場合NOに進み、ステップS1037において、呼吸波形の振幅及び周期共に小さいが変動が大きいと判断され、細体動状態であると判定される(図43参照)。 If the standard deviation is greater than or equal to B1 in step S1033, it is determined that there is body movement due to large variations in respiration, and the process proceeds to YES. In step S1034, the amplitude of the i = i + 1th respiration waveform is greater than or equal to It is determined whether or not B2 (where B2 is the maximum value of the respiration amplitude recognized when the person is in the normal supine position, and B2> A). If the magnitude of amplitude is greater than or equal to B2, the process proceeds to YES, and in step S1035, it is determined that i = i + 1-th breathing is in a rough body motion state (see FIG. 42). If the amplitude magnitude is smaller than B2, the process proceeds to NO. In step S1036, the magnitude of body movement is determined based on the period of the respiratory waveform. That is, it is determined whether or not i = i + 1th respiration cycle ≧ B3. If the breathing cycle ≧ B3, the process proceeds to YES, and it is determined that the body motion and state are present. If breathing cycle <B3, the process proceeds to NO, and in step S1037, it is determined that both the amplitude and cycle of the breathing waveform are small but the fluctuation is large, and it is determined that the body is in a thin body motion state (see FIG. 43).
 このように、粗体動、細体動及び無体動の各体動の状態が判定されると、ステップS1039において、該当する呼吸数iに関連付けて記憶部109に記憶され、ステップS1040において、全呼吸数imaxにおいて前記体動判定がなされたか否か、すなわちi=imaxかが判断され、全エポックの判定がなされていなければNOに進み、再びステップS1032からi=i+1として体動判定を繰り返し、全呼吸数の判定がなされるとYESに進み、今度は、ステップS1041以降のエポックn毎の体動判定を行なう(図11参照)。 As described above, when the states of the body movements of the coarse body movement, the thin body movement, and the non-body movement are determined, in step S1039, they are stored in the storage unit 109 in association with the corresponding respiration rate i. It is determined whether or not the body movement determination is made at the respiration rate imax, that is, whether i = imax. If all the epochs are not determined, the process proceeds to NO, and the body movement determination is repeated again from step S1032 as i = i + 1. When the determination of the total respiratory rate is made, the process proceeds to YES, and this time, the body movement determination for each epoch n after step S1041 is performed (see FIG. 11).
 すなわち、図38のステップS1021及びステップS1022と同様にして、図40のステップS1041においてエポックn=0と初期設定し、ステップS1042において、n=n+1として該当するエポックの呼吸データを読み込む。続くステップS1043において、前記読み込んだエポックn内に、前記粗体動状態と判定された呼吸波形が有るかどうか判定され、有る場合にはYESに進み、ステップS1044において、このエポックnを粗体動区間と判定する。また、無い場合にはNOに進み、ステップS1045において、同エポックnに、前記細体動状態と判定された呼吸波形が有るかどうか判定され、有る場合にはYESに進み、ステップS1046において、このエポックnを細体動区間と判定する。また、無い場合にはNOに進み、ステップS1047において、このエポックnを無体動区間と判定する。 That is, similar to steps S1021 and S1022 of FIG. 38, epoch n = 0 is initially set in step S1041 of FIG. 40, and in step S1042, the respiratory data of the corresponding epoch is read as n = n + 1. In the following step S1043, it is determined whether or not the read epoch n includes the respiratory waveform determined to be the rough body movement state. If there is, the process proceeds to YES. In step S1044, the epoch n is subjected to the rough body movement. Judged as a section. If not, the process proceeds to NO. In step S1045, it is determined whether or not the epoch n has the respiratory waveform determined to be the thin body movement state. If there is, the process proceeds to YES. In step S1046, the process proceeds to step S1046. Epoch n is determined to be a thin body motion section. If not, the process proceeds to NO, and in step S1047, this epoch n is determined to be a non-movement section.
 このように、粗体動区間、細体動区間及び無体動区間の判定がなされると、ステップS1048において、該当するエポックnに関連付けて判定結果が記憶部109に記憶され、ステップS1049において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS1042からn=n+1としてエポック毎の体動判定を繰り返し、全エポックの判定がなされるとYESに進み、図37のフローチャートに戻り、次の判定に進む。 As described above, when the rough body motion section, the fine body motion section, and the non-body motion section are determined, the determination result is stored in the storage unit 109 in association with the corresponding epoch n in step S1048, and in step S1049, all the determination results are stored. It is determined whether or not the above determination has been made at epoch nmax. If all epochs have not been determined, the process proceeds to NO, and body movement determination for each epoch is repeated from step S1042 to n = n + 1, and all epochs are determined. The process proceeds to YES and returns to the flowchart of FIG. 37 to proceed to the next determination.
 図45のフローチャートを用いて覚醒判定部113の処理を説明する。
 前述と同様にエポック毎の判定を行なうため、ステップS1051において、エポックn=0と初期設定し、ステップS1052において、n=n+1として該当するエポックnの呼吸データを読み込む。以下、図45に示すように、続くステップS1053において、例えば、前記読み込んだエポックnの前後各±2区間の合計5区間のエポックが記憶部109内に存在するかどうか判断される。存在しない場合にはNOに進み、再びステップS1052に戻りn=n+1として進める。また前記5区間が存在する場合にはYESに進み、5区間を記憶部109より読み込む。続くステップS1055において、前記5区間の各エポックの体動値Zを求める。体動値Zは、図40を用いて詳述した体動判定部112の体動区間の判定に基づき、粗体動区間であればZ=2、細体動区間であればZ=1、無体動区間であればZ=0として定義される値である。これと共に、前記各エポックの体動値Zに基づいて5区間の体動値Zの総和(ここで、0≦Zの総和≦10であり、以下、Zの総和をΣZと言う場合がある。)も求める。
The processing of the awakening determination unit 113 will be described using the flowchart of FIG.
In order to make a determination for each epoch as described above, in step S1051, epoch n = 0 is initially set, and in step S1052, the respiration data of the corresponding epoch n is read as n = n + 1. Thereafter, as shown in FIG. 45, in the subsequent step S1053, for example, it is determined whether or not there are five epochs in total of ± 2 sections before and after the read epoch n in the storage unit 109. If it does not exist, the process proceeds to NO, and the process returns to step S1052 and proceeds as n = n + 1. If the five sections exist, the process proceeds to YES, and the five sections are read from the storage unit 109. In subsequent step S1055, the body motion value Z of each epoch in the five sections is obtained. Based on the determination of the body motion section of the body motion determination unit 112 described in detail with reference to FIG. 40, the body motion value Z is Z = 2 for a rough body motion section, Z = 1 for a thin body motion section, In the case of an inbody movement section, the value is defined as Z = 0. At the same time, based on the body motion value Z of each epoch, the sum of the body motion values Z of the five sections (here, 0 ≦ Z sum ≦ 10, hereinafter, the sum of Z may be referred to as ΣZ). )
 ステップS1056において、前記5区間の体動値Zの総和=10であるか否かが判定される。前記Zの総和=10であった場合YESに進み、ステップS1057において、前記5区間全てが粗体動区間であることから、前記ステップS1052で読み込んだエポックn(5区間の中央のエポック)を覚醒状態にある覚醒区間と判定する。また、体動値Zの総和が10に満たない場合NOに進み、ステップS1058において、ステップS1056と同様にして、5≦前記体動値Zの総和≦9であるか否かが判定される。前記Zの総和がこの範囲内にあった場合にはYESに進み、ステップS1059において、前記エポックnを、呼吸状態が比較的不安定であるREM睡眠又は浅睡眠状態の可能性が高い不安定区間と判定する。また、Zの総和が前記範囲になかった場合、すなわちZの総和≦4であった場合にはNOに進み、前記エポックnを呼吸状態が比較的安定している深睡眠又は浅睡眠状態の可能性が高い安定区間と判断する。 In step S1056, it is determined whether or not the sum of the body motion values Z of the five sections is equal to 10. If the sum of Z = 10, the process proceeds to YES. In step S1057, since all the five sections are coarse body movement sections, the epoch n (the epoch at the center of the five sections) read in step S1052 is awakened. It is determined that the awakening section is in the state. If the sum of the body motion values Z is less than 10, the process proceeds to NO, and in step S1058, it is determined whether or not 5 ≦ the sum of the body motion values Z ≦ 9 as in step S1056. If the total sum of Z is within this range, the process proceeds to YES, and in step S1059, the epoch n is changed to an unstable interval in which the respiratory state is relatively unstable and the possibility of a REM sleep or a shallow sleep state is high. Is determined. If the sum of Z is not within the above range, that is, if the sum of Z ≦ 4, the process proceeds to NO, and the epoch n can be in a deep sleep state or a shallow sleep state where the respiratory state is relatively stable. Judged as a stable section with high characteristics.
 このように、覚醒区間、不安定区間及び安定区間の判定がなされると、ステップS1061において、該当するエポックnに関連付けて記憶部109に記憶され、ステップS1062において、エポックnmaxが前記5区間の中に存在したかどうか判断され、存在していなければNOに進み、再びステップS1052に戻りn=n+1としてエポック毎の覚醒判定を繰り返し、存在していた場合にはYESに進み、図37のフローチャートに戻り、次の判定に進む。 As described above, when the determination of the awakening period, the unstable period, and the stable period is made, in step S1061, the epoch nmax is stored in the storage unit 109 in association with the corresponding epoch n. If it does not exist, the process proceeds to NO, returns to step S1052, and repeats the awakening determination for each epoch with n = n + 1. If it exists, the process proceeds to YES, and the flowchart of FIG. Return to the next determination.
 図46のフローチャートを用いて入眠判定部114の処理を説明する。
 入床直後の初期の覚醒状態から睡眠状態へ移行するエポック(以下、入眠区間と言う。)を判定するために、図45に詳述した覚醒判定部113により、体動値Zによる覚醒判定に加えて、人の入眠の傾向に基づいて、より詳細に初期の覚醒区間を判定していくことによって前記入眠区間を定義するものである。
The processing of the sleep determination unit 114 will be described using the flowchart of FIG.
45. In order to determine an epoch (hereinafter referred to as a sleep interval) that shifts from the initial awake state immediately after entering the bed to the sleep state, the awake determination unit 113 described in detail in FIG. In addition, the sleep interval is defined by determining the initial awake interval in more detail based on the person's sleep tendency.
 前述と同様にエポック毎の判定を行なうため、ステップS1071において、エポックn=0と初期設定し、ステップS1072おいて、n=n+1として該当するエポックnの呼吸データを読み込む。続くステップS1073において、読み込んだエポックnが、図45で詳述した不安定区間であるか否かを判定する。ただし、この不安定区間は初期の覚醒区間の継続後に初めて出現する不安定区間である。よって、不安定区間でない場合にはNOに進み、このエポックを改めて覚醒区間として置き換えて記憶し、再びステップS1072からの処理を不安定区間を読み込むまで繰り返す。このとき、前記エポックが安定区間であった場合であっても、通常の人の呼吸においては、入床直後の初期の覚醒状態から不安定状態を経ずに、突如として安定状態が現れることは考えにくい。従って、この安定区間は信頼性の低いデータであると容易に推定可能であり、覚醒区間として置き換えることは妥当であると言える。 In order to make a determination for each epoch as described above, in step S1071, epoch n = 0 is initially set, and in step S1072, the respiration data of the corresponding epoch n is read as n = n + 1. In a succeeding step S1073, it is determined whether or not the read epoch n is the unstable section detailed in FIG. However, this unstable section is an unstable section that appears for the first time after the continuation of the initial awakening section. Therefore, if it is not an unstable section, the process proceeds to NO, this epoch is replaced and stored as an awakening section, and the processing from step S1072 is repeated again until the unstable section is read. At this time, even in the case where the epoch is in a stable section, in a normal person's breathing, the stable state suddenly appears without going through the unstable state from the initial awakening state immediately after entering the bed. Very Hard to think. Therefore, it can be easily estimated that this stable interval is data with low reliability, and it can be said that it is appropriate to replace it as an awakening interval.
 また、前記エポックnが不安定区間であった場合にはYESに進み、前記エポックnから一定区間数C1までの間に覚醒区間と判定されたエポックが存在するか否かが判定される。ここで、前記エポックnが入眠区間であるとした場合、人の睡眠において、入眠直後に覚醒することは考えにくいことから、前記一定区間数C1は、人が通常入眠直後に覚醒しないとされる範囲を設定した定数である。従って、前記エポックnから一定区間数C1までの間に覚醒区間が存在した場合にはNOに進み、前記エポックnを覚醒区間と置き換えて記憶し、再びステップS1072からの処理を繰り返す。また、覚醒区間が存在しなかった場合にはYESに進み、ステップS1075において前記エポックnを入眠(仮)区間として、ステップS1077以降の処理によって、より厳密に入眠区間を判定する。 Further, if the epoch n is an unstable section, the process proceeds to YES, and it is determined whether or not there is an epoch determined to be a wake-up section between the epoch n and the predetermined number of sections C1. Here, assuming that the epoch n is a sleep interval, it is difficult to wake up immediately after falling asleep in human sleep. Therefore, the predetermined number of intervals C1 is assumed that the person does not normally wake up immediately after falling asleep. A constant with a range set. Therefore, if there is an awakening interval between the epoch n and the predetermined number of intervals C1, the process proceeds to NO, the epoch n is replaced with the awakening interval and stored, and the processing from step S1072 is repeated again. If there is no awakening section, the process proceeds to YES, and in step S1075, the epoch n is set as a sleep (temporary) section, and the sleep section is determined more strictly by the processing after step S1077.
 ステップS1077以降の処理は、実測により見出した、人の入眠付近の3つの呼吸変動傾向に基づいて、前記入眠(仮)区間以降の不安定区間と判定されたエポックの内、どのエポックまでを覚醒区間と見なして置換すべきかを判定することにより、その直後のエポックを入眠区間として定義するものである。 The processing from step S1077 onward wakes up to which epoch of epochs determined to be unstable intervals after the sleep (temporary) interval based on the three respiratory fluctuation trends near the person's sleep, found by actual measurement. The epoch immediately after that is determined as a sleep interval by determining whether it should be replaced as an interval.
 まず、ステップS1077において、図38を用いて詳述した入床・離床判定部111により入床区間と判定された各エポックの内、測定開始後最も早く入床区間と判定されたエポックから前記入眠(仮)区間の直前のエポックまでを基準範囲として設定し、この基準範囲において、各エポック毎の呼吸数に対する分散σを求める。また、前記基準範囲を含み、前記入眠(仮)区間から一定区間数α、β及びγ(ここで、α、β及びγは、α<β<γとして設定される定数であり、前記3つの呼吸変動傾向を判別するために適した時間間隔を実測から割り出して設定されるものである。)分増加させた範囲までを、各々α範囲、β範囲及びγ範囲とし、各範囲を設定するエポックを各々α区間、β区間及びγ区間として定義し、前記基準範囲と同様にして、これら各範囲の呼吸数の分散を求め、各々σα、σβ及びσγとする。これら分散σ、σα、σβ及びσγに基づいて、前記3つの呼吸変動傾向を各々条件D、条件E及び条件Fとして判定する。 First, in step S1077, out of each epoch determined to be an entrance section by the entrance / leaving determination unit 111 described in detail with reference to FIG. Up to the epoch immediately before the (temporary) section is set as a reference range, and in this reference range, the variance σ 2 with respect to the respiratory rate for each epoch is obtained. Further, including the reference range, the number of constant intervals α, β and γ from the sleep (provisional) interval (where α, β and γ are constants set as α <β <γ, and the three The time interval suitable for discriminating the respiratory fluctuation tendency is calculated and set from actual measurement.) The epochs that set each range are the α range, β range, and γ range up to the incremented range. Are defined as an α section, a β section, and a γ section, respectively, and in the same manner as the reference range, the variance of the respiration rate of each of these ranges is obtained and is set as σα 2 , σβ 2, and σγ 2 . Based on these variances σ 2 , σα 2 , σβ 2, and σγ 2 , the three respiratory fluctuation tendencies are determined as Condition D, Condition E, and Condition F, respectively.
 1つ目の呼吸変動傾向は、被験者の呼吸のばらつきが急速に低減して睡眠状態に至るものである。従って、ステップS1078において、「σα>σβ(式1)」且つ「σβ≦C2(式2)」なる式により定義される条件Dにより判定される。すなわち、前記式1に示すように、範囲の増加に従って急速に呼吸数のばらつきが減少し、且つ、前記式2に示すように、母集団の増加に伴う分散が一定数C2よりも小さくなるものである。ここで、前記C2は、入眠後に現れる呼吸数のばらつきに有意に近しいと判定可能な定数である。この条件Dに該当する場合には、β区間はすでに睡眠状態にあると判定できる。 The first respiratory fluctuation tendency is that a subject's breathing variation is rapidly reduced to a sleep state. Therefore, in step S1078, the determination is made based on the condition D defined by the expression “σα 2 > σβ 2 (Expression 1)” and “σβ 2 ≦ C2 (Expression 2)”. That is, as shown in the above equation 1, the variation in the respiratory rate rapidly decreases as the range increases, and as shown in the above equation 2, the variance accompanying the increase in the population becomes smaller than a certain number C2. It is. Here, C2 is a constant that can be determined to be significantly close to the variation in respiratory rate that appears after falling asleep. When this condition D is satisfied, it can be determined that the β section is already in the sleeping state.
 これに従い、条件Dに該当する場合にはYESに進み、ステップS1079において、少なくとも、α区間までは覚醒区間であると判定し、このα区間の直後のエポックを入眠区間として決定する。また、条件Dに該当しない場合にはNOに進み、ステップS1080において、2つ目の呼吸変動傾向の判定を行なう。 Accordingly, if the condition D is satisfied, the process proceeds to YES. In step S1079, it is determined that at least the α section is the awakening section, and the epoch immediately after the α section is determined as the sleep period. If the condition D is not met, the process proceeds to NO, and in step S1080, the second respiratory fluctuation tendency is determined.
 2つめの呼吸変動傾向は、被験者の呼吸のばらつきが徐々に低減して睡眠状態に至るものである。従って、「σ×C3≧σα≧σβ(式3)」なる式により定義される条件Eにより判定される。ここで、前記C3は、C3<1なる定数であり、基準範囲のばらつきに対して何割か低減させるものである。ただし、前記式2のC2との間にはσ×C3>C2なる関係が存在する。従って、式3に示すように、前記C3により低減した基準範囲のばらつきに対し、α範囲のばらつきが小さく、β範囲のばらつきは更に小さくなるものである。 The second tendency of respiratory fluctuation is that a subject's breathing variation is gradually reduced to a sleep state. Therefore, it is determined by the condition E defined by the expression “σ 2 × C3 ≧ σα 2 ≧ σβ 2 (Expression 3)”. Here, C3 is a constant satisfying C3 <1, and is reduced by some percent with respect to variations in the reference range. However, there is a relationship of σ 2 × C3> C2 with C2 in the formula 2. Therefore, as shown in Expression 3, the variation of the α range is small and the variation of the β range is further reduced with respect to the variation of the reference range reduced by the C3.
 これに従い、条件Eに該当する場合にはYESに進み、ステップS1079において、ばらつきは非常に緩やかではあるが減少傾向にあることから、前記β区間までを覚醒区間であると判定し、このβ区間の直後のエポックを入眠区間として決定する。また条件Eに該当しない場合にはNOに進み、ステップS1081において、3つ目の呼吸変動傾向の判定を行なう。 Accordingly, if the condition E is satisfied, the process proceeds to YES. In step S1079, the variation is very gradual but tends to decrease. The epoch immediately after is determined as the sleep interval. On the other hand, if the condition E is not satisfied, the process proceeds to NO, and a third respiratory fluctuation tendency is determined in step S1081.
 3つ目の呼吸変動傾向は、被験者の呼吸のばらつきが、基準範囲の呼吸のばらつきに比べて一旦ばらつきが増大した後に、再び減少するものである。従って、「σ<σβ(式4)」且つ「σγ<σβ(式5)」なる式により定義される条件Fにより判定される。ここで、この傾向は条件D及びEに比べ、比較的長いスパンで見られる現象であることから、上記β範囲及びγ範囲を用いた条件としたものである。 The third respiratory fluctuation tendency is that the fluctuation of the subject's breathing once decreases after the fluctuation once increases compared with the breathing fluctuation of the reference range. Therefore, it is determined by the condition F defined by the expressions “σ 2 <σβ 2 (Expression 4)” and “σγ 2 <σβ 2 (Expression 5)”. Here, since this tendency is a phenomenon seen in a relatively long span as compared with the conditions D and E, the conditions using the β range and the γ range are used.
 これに従い、条件Fに該当する場合にはYESに進み、ステップS1079において、前記γ範囲の内、少なくとも前記ばらつきが増大したβ区間までは覚醒区間であると判定し、β区間の直後のエポックを入眠区間として決定する。 Accordingly, if the condition F is satisfied, the process proceeds to YES, and in step S1079, it is determined that at least the β section in which the variation has increased is the awakening section, and the epoch immediately after the β section is determined. Determine as sleep interval.
 また条件Fに該当しない場合にはNOに進む。これは、前記条件D、E及びFの何れの条件にも該当しなかった場合であり、ステップS1082において、前記区間数α、β及びγを各々区間数δだけ増加して、α範囲、β範囲及びγ範囲を各々再設定した上で、再びステップS1078に戻り、前記条件D、条件E及び条件Fを、入眠区間が決定するまで繰り返す。 If the condition F is not met, proceed to NO. This is a case where none of the conditions D, E, and F is satisfied. In step S1082, the number of sections α, β, and γ is increased by the number of sections δ, respectively, and an α range, β After resetting each of the range and the γ range, the process returns to step S1078, and the conditions D, E, and F are repeated until the sleep interval is determined.
 また、前記ステップS1079において、入眠区間が決定されると、ステップS1083において、該当するエポックnに関連付けて、前記覚醒区間及び入眠区間を記憶した後、図37のフローチャートに戻り、次の判定に進む。以上の覚醒判定部113及び入眠判定部114の処理結果に基づいて、前記深睡眠率演算部は、深睡眠率(%)を演算するために必要な「睡眠時間」すなわち「入眠から最終覚醒までの時間」を演算することが可能となる。また、覚醒判定部113及び入眠判定部114の処理結果に基づいて、睡眠効率演算部は、睡眠効率(%)を演算するために必要な「睡眠中に覚醒した時間の総和」を演算することが可能となる。 When the sleep interval is determined in step S1079, the wake interval and sleep interval are stored in association with the corresponding epoch n in step S1083, and then the process returns to the flowchart of FIG. 37 and proceeds to the next determination. . Based on the processing results of the awakening determination unit 113 and the sleep onset determination unit 114, the deep sleep rate calculation unit calculates “sleep time” necessary for calculating the deep sleep rate (%), that is, “from sleep onset to final awakening”. Can be calculated. In addition, based on the processing results of the awakening determination unit 113 and the sleep onset determination unit 114, the sleep efficiency calculation unit calculates the “total amount of time awakened during sleep” necessary for calculating sleep efficiency (%). Is possible.
 図47のフローチャートを用いて深睡眠判定部115の処理を説明する。
 ここで、深睡眠状態において、呼吸は穏やかな一定リズムになり、体動はほぼ起こらなくなることから、以下の判定を行なうものである。
Processing of the deep sleep determination unit 115 will be described using the flowchart of FIG.
Here, in the deep sleep state, breathing has a gentle constant rhythm, and body movement hardly occurs, so the following determination is performed.
 前述と同様にエポック毎の判定を行なうため、ステップS1091において、エポックn=0と初期設定し、ステップS1092おいて、n=n+1として該当するエポックnの呼吸データを読み込む。続くステップS1093において、読み込んだエポックnが、図45で詳述した安定区間であるか否かを判定する。安定区間でない場合には、再びステップS1092に戻りn=n+1として安定区間に該当するまで繰り返す。また安定区間であった場合にはYESに進み、ステップS1094において、多数の判定条件を複合した条件Gの判定を行なう。 In order to make a determination for each epoch as described above, in step S1091, epoch n = 0 is initially set, and in step S1092, the respiration data of the corresponding epoch n is read as n = n + 1. In a succeeding step S1093, it is determined whether or not the read epoch n is the stable section detailed in FIG. If it is not the stable section, the process returns to step S1092 again, and repeats until n = n + 1 until it corresponds to the stable section. On the other hand, if it is a stable section, the process proceeds to YES, and in step S1094, a condition G that is a combination of a large number of determination conditions is determined.
 前記条件Gは、「エポックn内の呼吸数≦H1」且つ「エポックn内の呼吸波形の周期の標準偏差≦H2」且つ「エポックnとエポックnの±1区間との呼吸数の差≦H3」且つ「エポックnは無体動区間である」の条件を満たすときに、前記エポックnを深睡眠区間として判定するものである(ここで、H1、H2及びH3は、実測により求められる定数である。 The condition G is “respiration rate in epoch n ≦ H1”, “standard deviation of the period of the respiratory waveform in epoch n ≦ H2”, and “difference in respiratory rate between epoch n and ± 1 interval of epoch n ≦ H3” ”And“ Epoch n is a bodyless motion section ”, the epoch n is determined as a deep sleep section (where H1, H2, and H3 are constants obtained by actual measurement. .
 従って、ステップS1094において、読み込んだエポックnが条件Gを満たした場合にはYESに進み、ステップS1095において、前記エポックnを深睡眠区間と判定し、ステップS1096において判定結果を記憶部109に記憶する。また、条件Gを満たさなかった場合にはNOに進み、ステップS1097において、不安定区間であると判断し、ステップS1096において、前記安定区間を不安定区間として置きかえて記憶部109に記憶する。ステップS1098において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS1092からのステップを繰り返し、全エポックの判定がなされるとYESに進み、図37のフローチャートに戻り、次の判定に進む。この深睡眠判定部115の処理結果に基づいて、前記深睡眠出現量演算部は、前記睡眠判定データとしての深睡眠出現量(分)を演算することが可能となる。また、この深睡眠判定部115の処理結果に基づいて、深睡眠率演算部は、深睡眠率(%)を演算するために必要な「深い睡眠の時間」を演算することが可能となる。 Accordingly, if the read epoch n satisfies the condition G in step S1094, the process proceeds to YES. In step S1095, the epoch n is determined to be a deep sleep section, and the determination result is stored in the storage unit 109 in step S1096. . If the condition G is not satisfied, the process proceeds to NO. In step S1097, it is determined that it is an unstable section. In step S1096, the stable section is replaced as an unstable section and stored in the storage unit 109. In step S1098, it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO, and the steps from step S1092 are repeated again. Then, the process returns to the flowchart of FIG. 37 and proceeds to the next determination. Based on the processing result of the deep sleep determination unit 115, the deep sleep appearance amount calculation unit can calculate the deep sleep appearance amount (minute) as the sleep determination data. Further, based on the processing result of the deep sleep determination unit 115, the deep sleep rate calculation unit can calculate “deep sleep time” necessary for calculating the deep sleep rate (%).
 図48のフローチャートを用いて、REM・浅睡眠判定部116の処理を説明する。
 ここで、REM睡眠状態においては、呼吸数の増加及び変動が継続して起こり、体動も多くなることから、以下の判定を行なうものである。
Processing of the REM / shallow sleep determination unit 116 will be described using the flowchart of FIG.
Here, in the REM sleep state, since the increase and fluctuation of the respiration rate occur continuously and the body movement increases, the following determination is performed.
 前述と同様にエポック毎の判定を行なうため、ステップS1101において、エポックn=0と初期設定し、ステップS1102において、n=n+1として該当するエポックnの呼吸データを読み込む。 In order to make a determination for each epoch in the same manner as described above, in step S1101, epoch n = 0 is initially set, and in step S1102, the respiratory data of the corresponding epoch n is read as n = n + 1.
 ステップS1103において、読み込んだエポックnが、n≠nmaxであるか且つ前記図45で詳述した不安定区間であるか否かを判定する。エポックnがn≠nmax且つ不安定区間であった場合にはYESに進み、ステップS1104において、不安定区間の継続回数をj=j+1としてカウントし、続くステップS1105において、「全入床区間における各エポック内の呼吸数の平均値≦エポックnの呼吸数」なる、条件Iの判定を行なう。すなわち、前述したように、REM睡眠においては呼吸数の増加が見られることから、睡眠中の平均的な呼吸数よりも前記エポックnの呼吸数の方が多いか否かを判定するものである。 In step S1103, it is determined whether or not the read epoch n is n ≠ nmax and is the unstable section detailed in FIG. If epoch n is n ≠ nmax and an unstable section, the process proceeds to YES, and in step S1104, the number of continuations of the unstable section is counted as j = j + 1. The condition I is determined as follows: “Average value of respiration rate in epoch ≦ respiration rate of epoch n”. That is, as described above, since an increase in respiratory rate is observed in REM sleep, it is determined whether the respiratory rate of the epoch n is higher than the average respiratory rate during sleep. .
 この条件Iを満たさない場合にはNOに進み、ステップS1106において、前記継続回数j=1からj=jまでの各エポックを浅睡眠区間と判定する。また、条件Iを満たす場合にはYESに進み、再びステップS1102においてn=n+1として不安定区間の検出を行う。 If this condition I is not satisfied, the process proceeds to NO, and in step S1106, each epoch from the number of continuations j = 1 to j = j is determined as a shallow sleep section. If the condition I is satisfied, the process proceeds to YES, and in step S1102, n = n + 1 is set again to detect an unstable section.
 前記ステップS1103において、エポックnが、n=nmaxであるか又は不安定区間でない場合にはNOに進み、ステップS1110において、不安定区間の継続回数j=0か否かを判断しj=0であればYESに進み、再びステップS1102に戻ってn=n+1として不安定区間に該当するまで繰り返す。またj=0でない場合にはNOに進み、ステップS1111において、前記条件Iを満たす、継続回数j=1からj=jまでの不安定区間に対して、継続回数jが一定回数jx以上か否か、j≧jx(ここで、jxは、REM睡眠状態の可能性を示唆する継続数である。)の判定がなされる。超えていない場合にはNOに進み、前記ステップS1106に示したj=1からj=jまでの各エポックを浅睡眠区間と判定する。また、超えた場合にはYESに進み、ステップS1112において、前記継続回数j=1からjまではREM睡眠状態である可能性が高いとして、各エポックをREM睡眠(仮)区間と判定する。 In step S1103, if epoch n is n = nmax or not an unstable section, the process proceeds to NO. In step S1110, it is determined whether the number of continuations in the unstable section j = 0, and j = 0. If yes, the process proceeds to YES, returns to step S1102 again, and repeats until n = n + 1 and corresponds to the unstable section. If j is not 0, the process proceeds to NO. In step S1111, whether or not the continuation number j is equal to or greater than the predetermined number jx for the unstable section satisfying the condition I from continuation number j = 1 to j = j. Or j ≧ jx (where jx is the number of continuations suggesting the possibility of a REM sleep state). If not, the process proceeds to NO, and each epoch from j = 1 to j = j shown in step S1106 is determined as a shallow sleep section. If exceeded, the process proceeds to YES, and in step S1112, the epoch is determined to be a REM sleep (provisional) section, assuming that there is a high possibility that the continuation count j = 1 to j is in the REM sleep state.
 ここで、睡眠時無呼吸症候群などによる無呼吸状態があった場合には、努力性呼吸が起きるため、前記ステップS1105における条件Iの「エポックnの呼吸数」は増加することになり、この異常値に基づいて前記条件Iが判定され、浅睡眠区間と判定されるべき区間がREM(仮)区間と判定されてしまう。そこで、ステップS1113において、「全入床区間における安定区間数/(全入床区間数-覚醒区間)≧k」なる条件Kの判定により、睡眠中の安定区間(すなわち深睡眠状態又は浅睡眠状態)が、所定の割合k以上出現しているか否かを判定することにより、少なくとも一般的に正常とされる睡眠が保たれているかどうか判定するものである。前記条件Kを満たす場合には、睡眠は正常であり、条件Iの判定は妥当であると判断しYESに進み、ステップS1115において、継続回数j=1からjまでの各エポックをREM睡眠区間と決定する。また、前記条件Kを満たさない場合、異常な睡眠状態があったと判断しNOに進み、ステップS1114において、条件Lによる判定を行なう。 Here, when there is an apnea state due to sleep apnea syndrome or the like, forced breathing occurs, and therefore, the “respiration rate of epoch n” of the condition I in step S1105 increases, and this abnormality The condition I is determined based on the value, and the section to be determined as the shallow sleep section is determined as the REM (provisional) section. Therefore, in step S1113, a stable section during sleep (that is, a deep sleep state or a shallow sleep state) is determined based on the determination of the condition K that “the number of stable sections in all bed sections / (the number of all bed sections−wakening sections) ≧ k”. ) Is determined whether or not a predetermined ratio k or more is present, thereby determining whether or not at least generally normal sleep is maintained. If the condition K is satisfied, the sleep is normal and the determination of the condition I is determined to be appropriate, and the process proceeds to YES. In step S1115, the epochs of the number of continuations j = 1 to j are defined as REM sleep intervals. decide. If the condition K is not satisfied, it is determined that there is an abnormal sleep state, the process proceeds to NO, and the determination based on the condition L is performed in step S1114.
 条件Lは、継続回数j=1からjまでのREM睡眠(仮)区間において、「(各区間の最大呼吸数-各区間の最小呼吸数)/REM睡眠(仮)区間数≧Lx」の判定により、呼吸数にばらつきがあってもそれが正常な範囲か否かを判定するものであり、Lxは、呼吸が異常であると定義する最小値である。すなわち、前記継続回数j=1からjまでのREM睡眠(仮)区間のいずれかに無呼吸状態が出現したとするものである。従って、条件Lを満たす場合、すなわち呼吸に異常がある場合にはYESに進み、ステップS1106において、前記REM睡眠(仮)区間とした継続回数j=1からjまでの各エポックを前記浅睡眠区間として決定する。また、条件Lを満たさない場合、すなわち呼吸が正常である場合にはNOに進み、ステップS1115において、前記REM睡眠(仮)区間とした継続回数j=1からjまでの各エポックを前記REM睡眠区間と決定する。 Condition L is the determination of “(maximum respiratory rate in each segment−minimum respiratory rate in each segment) / REM sleep (provisional) segment number ≧ Lx” in the REM sleep (provisional) interval from the number of continuous times j = 1 to j. Therefore, even if there is a variation in the respiration rate, it is determined whether or not the respiration rate is within a normal range, and Lx is a minimum value that defines that respiration is abnormal. That is, it is assumed that an apnea state appears in any of the REM sleep (provisional) sections from the number of continuous times j = 1 to j. Therefore, if the condition L is satisfied, that is, if there is an abnormality in breathing, the process proceeds to YES, and in step S1106, each epoch from the continuation number j = 1 to j as the REM sleep (provisional) section is set as the shallow sleep section. Determine as. Further, if the condition L is not satisfied, that is, if the breathing is normal, the process proceeds to NO, and in step S1115, the epochs of the number of continuations j = 1 to j as the REM sleep (provisional) section are set as the REM sleep. It is determined as an interval.
 前記REM睡眠区間及び浅睡眠区間が決定されると、ステップS1107において各エポックnに関連付けて記憶部109に記憶され、ステップS1108において、継続回数jを一旦0に戻し、ステップS1109において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS1102からのステップを繰り返し、全エポックの判定がなされるとYESに進み、図37のフローチャートに戻り、次の判定に進む。このREM・浅睡眠判定部116の処理結果に基づいて、前記睡眠周期演算部及び差分睡眠周期スコア演算部は、前記睡眠判定データとしての睡眠周期(分)及び差分睡眠周期スコアを演算することが可能となる。 When the REM sleep interval and the light sleep interval are determined, they are stored in the storage unit 109 in association with each epoch n in step S1107. In step S1108, the continuation number j is once reset to 0, and in step S1109, all epoch nmax 37, it is determined whether or not the above determination has been made. If all epochs have not been determined, the process proceeds to NO. The steps from step S1102 are repeated, and if all epochs have been determined, the process proceeds to YES, and the flowchart of FIG. Return to the next determination. Based on the processing result of the REM / shallow sleep determination unit 116, the sleep cycle calculation unit and the differential sleep cycle score calculation unit may calculate a sleep cycle (minutes) and a differential sleep cycle score as the sleep determination data. It becomes possible.
 図49のフローチャートを用いて、中途覚醒判定部117の処理を説明する。
 睡眠状態にあっても、体動がある一定時間以上継続した場合には、途中で目覚めたと解することができ、以下の判定を行なうものである。
The process of the midway awakening determination unit 117 will be described using the flowchart of FIG.
Even in the sleep state, if the body movement continues for a certain time or more, it can be understood that the user has awakened in the middle, and the following determination is made.
 前述と同様にエポック毎の判定を行なうため、ステップS1121において、エポックn=0と初期設定し、ステップS1122おいて、n=n+1として該当するエポックnの呼吸データを読み込む。ステップS1123において、読み込んだエポックnが、n≠nmaxであるか、且つ、図40に詳述した体動判定部112で判定した、粗体動、細体動及び無体動の内、粗体動区間又は細体動区間のいずれか一方(以下、体動区間と言う)であるかを判定する。 In order to make a determination for each epoch in the same manner as described above, in step S1121, epoch n = 0 is initially set, and in step S1122, the respiration data of the corresponding epoch n is read as n = n + 1. In step S1123, the read epoch n is n ≠ nmax, and the coarse body motion, the fine body motion, and the non-body motion determined by the body motion determination unit 112 described in detail in FIG. It is determined whether it is either a section or a thin body movement section (hereinafter referred to as a body movement section).
 エポックnがn≠nmax且つ体動区間であった場合にはYESに進み、ステップS1124において、継続回数m=m+1としてカウントし、再びステップS1122においてn=n+1として体動区間の検出を繰り返す。また、エポックnが、n=nmaxであるか又は体動区間であった場合にはNOに進み、ステップS1125において、前記継続回数mがm≧mx(ここで、mxは、中途覚醒の可能性を含む体動区間継続数である。)であるか否かが判断され、m≧mxの場合にはYESに進み、ステップS1126において、m=1からm=mまでの各エポックは覚醒状態にあると判定し、各エポックが深睡眠区間、浅睡眠区間及びREM睡眠区間として記憶されている場合であっても、各エポックを覚醒区間と置きなおして記憶部109に記憶し、ステップS1127において、継続回数mを一旦0に戻す。 If epoch n is n ≠ nmax and is a body motion section, the process proceeds to YES, and in step S1124, the number of continuations is counted as m = m + 1. If epoch n is n = nmax or is a body movement section, the process proceeds to NO, and in step S1125, the number of continuations m is m ≧ mx (where mx is the possibility of mid-wakefulness) And if m ≧ mx, the process proceeds to YES, and in step S1126, each epoch from m = 1 to m = m is in an awake state. Even if it is determined that each epoch is stored as a deep sleep interval, a shallow sleep interval, and a REM sleep interval, each epoch is replaced with an awakening interval and stored in the storage unit 109. In step S1127, The number of continuations m is once reset to zero.
 また、継続回数mがmxを超えていない場合にはNOに進み、そのまま前記ステップS1127において、継続回数m=0とする。ステップS1128において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS1102からのステップを繰り返し、全エポックの判定がなされるとYESに進み、図50に詳述する中途覚醒条件判定において、発明者が実測により見出した、人の中途覚醒時の傾向に基づいて定義した各条件により詳細に中途覚醒を判定する。この判定がなされた後に、図37のフローチャートに戻り、次の判定に進む。この中途覚醒判定部117の処理結果に基づいて、前記中長時間覚醒回数演算部及び短時間覚醒回数演算部は、前記睡眠判定データとしての中長時間覚醒回数(回)及び短時間覚醒回数(回)を演算することが可能となる。 If the number of continuations m does not exceed mx, the process proceeds to NO, and in step S1127, the number of continuations m = 0. In step S1128, it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO. The steps from step S1102 are repeated again, and if all epochs have been determined, YES is determined. 50, in the determination of midway awakening condition described in detail in FIG. 50, the midway awakening is determined in detail according to each condition defined based on the tendency at the time of midway awakening found by the inventors. After this determination is made, the process returns to the flowchart of FIG. 37 and proceeds to the next determination. Based on the processing result of the midway awakening determination unit 117, the medium / long-time awakening frequency calculation unit and the short-time awakening frequency calculation unit calculate the middle / long-time awakening frequency (times) and the short-time awakening frequency as the sleep determination data ( Times) can be calculated.
 ここで、図50のフローチャートを用いて、中途覚醒条件判定を説明する。中途覚醒条件判定は、ステップS1131において、エポックn=0と初期設定し、ステップS1132において、n=n+1として該当するエポックnの呼吸データを読み込む。 Here, mid-wake condition determination will be described using the flowchart of FIG. In step S1131, the awakening condition determination is initially set to epoch n = 0, and in step S1132, the respiratory data of the corresponding epoch n is read as n = n + 1.
 ステップS1133においては、まず、各エポックn毎の体動の状態を求める。すなわち、前述の体動判定部112の説明において、図40のフローチャートのステップS1039において、1呼吸iに関連付けて記憶した粗体動、細体動及び無体動の各状態に対して、前記粗体動状態であればU=2とし、同様にして細体動状態であればU=1、無体動状態であればU=0として、前記読み込んだエポックn内の各呼吸iに応じて前記体動の状態を前記Uの総和(以下、ΣUと言う)として求める。 In step S1133, first, the state of body movement for each epoch n is obtained. That is, in the description of the body motion determination unit 112 described above, the coarse body motion, the fine body motion, and the non-body motion state stored in association with one breath i in step S1039 in the flowchart of FIG. In the same way, U = 2 is set for the moving state, U = 1 is set for the thin body moving state, U = 0 is set for the non-body moving state, and the body is set according to each breath i in the read epoch n. The movement state is obtained as the sum of U (hereinafter referred to as ΣU).
 次に、前記エポックnにおいてΣU≧2か否かが判断される。ΣU≧2の場合にはYESに進み、ステップS1134において、継続回数m=m+1としてカウントする。また、ΣU≧2でなかった場合にはNOに進み、継続回数をカウントせずにステップS1135において、前回までカウントした継続回数がm≧mp(ここで、mpは、中途覚醒の可能性を含む体動区間継続数を示す定数であり、mp<mxなる定数である。)であるか否かを判断する。m≧mpでなかった場合には、中途覚醒の可能性はないとしてNOに進み、ステップS1140において継続回数をm=0に戻す。また、m≧mpであった場合には、継続回数m=1からm=mまでの各エポックnが覚醒状態にある可能性があるといえるためYESに進み、次の条件判定を行なう。 Next, it is determined whether or not ΣU ≧ 2 at the epoch n. If ΣU ≧ 2, the process proceeds to YES, and in step S1134, the number of continuations m = m + 1 is counted. If ΣU ≧ 2, the process proceeds to NO, and the number of continuations counted up to the previous time is m ≧ mp in step S1135 without counting the number of continuations (where mp includes the possibility of mid-wakefulness) It is a constant indicating the number of continuation of body motion sections, and it is determined whether or not mp <mx. If not m ≧ mp, it is determined that there is no possibility of mid-wakening, and the process proceeds to NO. In step S1140, the number of continuations is returned to m = 0. If m ≧ mp, it can be said that there is a possibility that each epoch n from the number of continuations m = 1 to m = m is in the awake state, so the process proceeds to YES and the next condition determination is performed.
 すなわち、ステップS1136において、前記継続回数m=1からm=mまでのエポックの内、「(ΣU≧10のエポックnの数)≧m1%」(ここで、m1は全継続回数mに対する割合を示す定数である。)に該当するか否かを判定する。この条件に該当する場合にはYESに進み、ステップS1139において、前記継続回数m=1からm=mまでの各エポックnを覚醒区間として置きなおし、記憶部109に記憶する。また、前記条件に該当しない場合にはNOに進み、次の条件判定を行なう。 That is, in step S1136, “(number of epochs n of ΣU ≧ 10) ≧ m1%” among the epochs from the continuation number m = 1 to m = m (where m1 is a ratio to the total continuation number m). It is determined whether or not it is a constant. If this condition is met, the process proceeds to YES, and in step S1139, each epoch n from the number of continuations m = 1 to m = m is replaced as an awakening section and stored in the storage unit 109. If the condition is not met, the process proceeds to NO and the next condition determination is performed.
 すなわち、ステップS1137において、「(ΣU≧10のエポックnの数)≧m2%」(ここで、m2は全継続回数mに対する割合を示す定数であり、m2<m1なる定数である。)に該当するか否かを判定する。この条件に該当しない場合には、m=1からm=mまでの間に中途覚醒の可能性はないものとしてNOに進み、ステップS1140において継続回数をm=0に戻す。前記条件に該当する場合には、中途覚醒の可能性ありと判定しYESに進み、更に条件を加える。 That is, in step S1137, “(number of epochs n of ΣU ≧ 10) ≧ m2%” (where m2 is a constant indicating the ratio to the total number of continuations m, and m2 <m1). It is determined whether or not to do. If this condition is not met, the process proceeds to NO assuming that there is no possibility of awakening during m = 1 to m = m, and the number of continuations is returned to m = 0 in step S1140. If the above condition is met, it is determined that there is a possibility of awakening midway, the process proceeds to YES, and further conditions are added.
 すなわち、ステップS1138において、「(m=1からm=mまでの全エポックの平均呼吸数)≧(n=1からn=nmaxまでの全エポックの平均呼吸数)×mq」に該当するか否かを判定する。ここで、mqはmq>1なる定数であり、一般的に睡眠状態での呼吸数に比べて覚醒状態での呼吸数の方が多いとされていることから、睡眠状態を含むn=1からn=nmaxまでのエポックの平均呼吸数のmq倍よりも、m=1からm=mまでのエポックの平均呼吸数が多ければ、明らかに覚醒状態にあると判定できると言える。 That is, whether or not “(average respiratory rate of all epochs from m = 1 to m = m) ≧ (average respiratory rate of all epochs from n = 1 to n = nmax) × mq” in step S1138. Determine whether. Here, mq is a constant of mq> 1, and since the respiratory rate in the awake state is generally higher than the respiratory rate in the sleep state, from n = 1 including the sleep state. If the average respiratory rate of epochs from m = 1 to m = m is larger than mq times the average respiratory rate of epochs up to n = nmax, it can be said that it is clearly determined that the patient is in an awake state.
 前記条件を満たしていなければ、m=1からm=mまでの間に中途覚醒の可能性はないとしてNOに進み、ステップS1140において継続回数をm=0に戻す。また、前記条件を満たしている場合にはYESに進み、ステップS1139において、前記継続回数m=1からm=mまでの各エポックnを覚醒区間として置きなおし、記憶部109に記憶した後、ステップS1140において継続回数がm=0に戻す。ステップS1141において、全エポックnmaxにおいて上記判定がなされたか否か判断され、全エポックの判定がなされていなければNOに進み、再びステップS1132からのステップを繰り返し、全エポックの判定がなされるとYESに進み、図49のフローチャートに戻る。 If the above conditions are not satisfied, it is determined that there is no possibility of awakening during m = 1 to m = m, and the process proceeds to NO, and the number of continuations is returned to m = 0 in step S1140. If the condition is satisfied, the process proceeds to YES. In step S1139, each epoch n from the number of continuations m = 1 to m = m is replaced as an awakening interval and stored in the storage unit 109. In S1140, the number of continuations is returned to m = 0. In step S1141, it is determined whether or not the above determination has been made for all epochs nmax. If all epochs have not been determined, the process proceeds to NO, and the steps from step S1132 are repeated again. Proceed and return to the flowchart of FIG.
 図51のフローチャートを用いて、起床判定部118の処理を説明する。
 ステップS1151において、エポックn=nmaxとし、ステップS1152において、n=n-1として時間的に遡って、該当するエポックnを読み込む。ステップS1153において、読み込んだエポックnが、睡眠状態と判定されているか否か、すなわち、深睡眠区間、浅睡眠区間及びREM睡眠区間の内いずれか(以下、睡眠区間と言う。)に該当するか否かを判定する。睡眠区間に該当しない場合にはNOに進み、再びステップS1152においてn=n-1として睡眠区間の検出を繰り返す。また前記エポックnが睡眠区間であった場合にはYESに進み、ステップS1154において、このエポックnを起床(仮)区間として定義する。続くステップS1155において、前記起床(仮)区間から更に一定区間数Rまで遡った各エポックにおいて、覚醒区間が存在するか否かを判定する。ここで、人の通常の睡眠において、目覚める一定時間前に覚醒が起こることはないと見なせることから、前記一定区間数Rは、前記一定時間を定義するものである。前記覚醒区間が存在した場合にはYESに進み、ステップS1158において、この検出された覚醒区間から前記起床(仮)区間までの各エポックを覚醒区間として定義し、ステップS1154において、前記検出された覚醒区間の一つ前のエポックを新たに起床(仮)区間として再定義し、再びステップS1155において、前記一定区間数Rを設定する。また、前記ステップS1155において、一定区間数Rまでの間に覚醒区間が存在しなかった場合にはNOに進み、ステップS1156において、前記起床(仮)区間を起床区間として決定し、ステップS1157において、該当するエポックnに関連付けて記憶部109に記憶して、図36のメイン動作を示すフローチャートに戻る。以上の起床判定部118の処理結果に基づいて、前記深睡眠率演算部は、深睡眠率(%)を演算するために必要な「睡眠時間」すなわち「入眠から最終覚醒までの時間」を演算することが可能となる。
Processing of the wakeup determination unit 118 will be described with reference to the flowchart of FIG.
In step S1151, epoch n = nmax is set. In step S1152, n = n−1 is set back in time, and the corresponding epoch n is read. In step S1153, it is determined whether or not the read epoch n is determined to be a sleep state, that is, corresponds to any one of a deep sleep section, a shallow sleep section, and a REM sleep section (hereinafter referred to as a sleep section). Determine whether or not. If it does not correspond to the sleep section, the process proceeds to NO, and the detection of the sleep section is repeated with n = n−1 again in step S1152. If the epoch n is a sleep section, the process proceeds to YES, and this epoch n is defined as a wake-up (temporary) section in step S1154. In the following step S1155, it is determined whether or not there is a wake-up section in each epoch that goes back from the wake-up (temporary) section to a certain number of sections R. Here, in the normal sleep of a person, it can be considered that awakening does not occur a certain time before waking up. Therefore, the certain number of intervals R defines the certain time. If the awakening interval exists, the process proceeds to YES, and in step S1158, each epoch from the detected awakening interval to the wake-up (temporary) interval is defined as an awakening interval. In step S1154, the detected awakening is detected. The epoch immediately before the section is newly redefined as a wake-up (temporary) section, and the fixed section number R is set again in step S1155. In step S1155, if there is no awakening section up to a certain number of sections R, the process proceeds to NO. In step S1156, the wake-up (temporary) section is determined as the wake-up section. In step S1157, The information is stored in the storage unit 109 in association with the corresponding epoch n, and the process returns to the flowchart showing the main operation in FIG. Based on the processing result of the wake-up determination unit 118 described above, the deep sleep rate calculation unit calculates “sleep time” necessary for calculating the deep sleep rate (%), that is, “time from falling asleep to final awakening”. It becomes possible to do.
 続いて、CPU106は、図36のステップS1006に進み、睡眠点数演算処理を実行する。睡眠点数演算処理では、睡眠の質の程度を総合的に示す睡眠点数(睡眠指標)を演算により算出する。被験者が就寝姿勢を取ってから起床するまでの1回の睡眠において、上述した入床・離床判定、体動判定、覚醒判定、入眠判定、深睡眠判定、REM・浅睡眠判定、中途覚醒判定、起床判定によって、睡眠の状態を示す睡眠判定データ(例えば深睡眠時間、中途覚醒回数)を得ることができる。これらの睡眠判定データは、単体でも睡眠の質をある程度評価することができるが、単体での評価は、睡眠の状態のある一部を評価しているに過ぎない。そこで、本実施形態では、PSGの測定データのうち、睡眠の「深さ」、「周期」、「時間」、「中途覚醒」を反映する複数の所定項目(変数)を抽出し、既存の睡眠評価装置と相関のある変数として、深睡眠率(%)、差分睡眠周期スコア、総就床時間(分)、睡眠周期(分)、深睡眠出現量(分)、差分総就床時間スコア、中長時間覚醒回数(回)、短時間覚醒回数(回)、睡眠効率(%)を選定した。さらに、これらの所定項目(変数)を集約した睡眠点数を導くために、主成分分析を実施して睡眠評価スコアを開発すると共に、この睡眠評価スコアと睡眠時無呼吸症候群リスクとを反映する、睡眠点数の回帰式を開発した。なお、本実施形態における回帰式作成に際して解析したPSGの測定データの対象は、健常者49名、SAS患者112名であった。
 上記の様に、本実施形態では、睡眠の質を総合的に評価するための評価指数である睡眠点数を導くために、睡眠評価スコアを主成分分析法によって選定する。
Subsequently, the CPU 106 proceeds to step S1006 in FIG. 36, and executes a sleep score calculation process. In the sleep score calculation process, a sleep score (sleep index) that comprehensively indicates the level of sleep quality is calculated by calculation. In one sleep from when the subject takes a sleeping posture to wake up, the above-described bed / bed determination, body movement determination, arousal determination, sleep determination, deep sleep determination, REM / light sleep determination, mid-wake determination, Sleep determination data (e.g. deep sleep time, number of mid-wakefulness) indicating sleep state can be obtained by wakeup determination. Although these sleep determination data can evaluate the quality of sleep to some extent by itself, the evaluation by itself only evaluates a part of the sleep state. Therefore, in the present embodiment, a plurality of predetermined items (variables) reflecting “depth”, “cycle”, “time”, and “halfway awakening” of sleep are extracted from PSG measurement data, and existing sleep is extracted. As variables correlated with the evaluation device, deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, The number of mid- and long-term awakenings (times), short-time awakenings (times), and sleep efficiency (%) were selected. Furthermore, in order to derive a sleep score that aggregates these predetermined items (variables), a principal component analysis is performed to develop a sleep evaluation score, and this sleep evaluation score and sleep apnea syndrome risk are reflected. A regression formula for sleep scores was developed. In addition, the object of the measurement data of PSG analyzed when creating the regression equation in the present embodiment was 49 healthy persons and 112 SAS patients.
As described above, in this embodiment, a sleep evaluation score is selected by a principal component analysis method in order to derive a sleep score that is an evaluation index for comprehensively evaluating the quality of sleep.
 第1に、ある母集団について、PSGによって複数の所定項目(変数)を測定する。この例では、複数の所定項目として、深睡眠率(%)、差分睡眠周期スコア、総就床時間(分)、睡眠周期(分)、深睡眠出現量(分)、差分総就床時間スコア、中長時間覚醒回数(回)、短時間覚醒回数(回)、睡眠効率(%)とする。 First, for a certain population, a plurality of predetermined items (variables) are measured by PSG. In this example, as a plurality of predetermined items, deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score The number of wakefulness (medium / long-time), the number of short-time wakefulness (times), and sleep efficiency (%).
 第2に、前記複数の所定項目の相互の相関係数を算出し、相関行列を求める。9個の項目に基づく相関行列は、以下の式(27)に示す行列式で与えられる。但し、r11~r99は相関係数である。 Second, a correlation coefficient between the plurality of predetermined items is calculated to obtain a correlation matrix. The correlation matrix based on the nine items is given by the determinant shown in the following equation (27). However, r11 to r99 are correlation coefficients.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 第3に、相関行列に基づいて、第1乃至第9主成分Z1~Z9、固有ベクトルa11~a99を算出する。これらは、以下の式(28)~(36)で与えられる。
 Z1=a11X1+a12X2+a13X3+a14X4+a15X5+a16X6+a17X7+a18X8+a19X9…式(28)
 Z2=a21X1+a22X2+a23X3+a24X4+a25X5+a26X6+a27X7+a28X8+a29X9…式(29)
 Z3=a31X1+a32X2+a33X3+a34X4+a35X5+a36X6+a37X7+a38X8+a39X9…式(30)
 Z4=a41X1+a42X2+a43X3+a44X4+a45X5+a46X6+a47X7+a48X8+a49X9…式(31)
 Z5=a51X1+a52X2+a53X3+a54X4+a55X5+a56X6+a57X7+a58X8+a59X9…式(32)
 Z6=a61X1+a62X2+a63X3+a64X4+a65X5+a66X6+a67X7+a68X8+a69X9…式(33)
 Z7=a71X1+a72X2+a73X3+a74X4+a75X5+a76X6+a77X7+a78X8+a79X9…式(34)
 Z8=a81X1+a82X2+a83X3+a84X4+a85X5+a86X6+a87X7+a88X8+a89X9…式(35)
 Z9=a91X1+a92X2+a93X3+a94X4+a95X5+a96X6+a97X7+a98X8+a99X9…式(36)
 但し、X1~X9は、上述した9個の項目である。第1乃至第9主成分Z1~Z9は互いに直交するように固有ベクトルa11~a99が定められる。直交するとは互いに独立であり、両者の間に相関がないことを意味する。
Third, first to ninth principal components Z1 to Z9 and eigenvectors a11 to a99 are calculated based on the correlation matrix. These are given by the following equations (28) to (36).
Z1 = a11X1 + a12X2 + a13X3 + a14X4 + a15X5 + a16X6 + a17X7 + a18X8 + a19X9 (28)
Z2 = a21X1 + a22X2 + a23X3 + a24X4 + a25X5 + a26X6 + a27X7 + a28X8 + a29X9 (29)
Z3 = a31X1 + a32X2 + a33X3 + a34X4 + a35X5 + a36X6 + a37X7 + a38X8 + a39X9 (30)
Z4 = a41X1 + a42X2 + a43X3 + a44X4 + a45X5 + a46X6 + a47X7 + a48X8 + a49X9 (31)
Z5 = a51X1 + a52X2 + a53X3 + a54X4 + a55X5 + a56X6 + a57X7 + a58X8 + a59X9 (32)
Z6 = a61X1 + a62X2 + a63X3 + a64X4 + a65X5 + a66X6 + a67X7 + a68X8 + a69X9 (33)
Z7 = a71X1 + a72X2 + a73X3 + a74X4 + a75X5 + a76X6 + a77X7 + a78X8 + a79X9 Formula (34)
Z8 = a81X1 + a82X2 + a83X3 + a84X4 + a85X5 + a86X6 + a87X7 + a88X8 + a89X9 (35)
Z9 = a91X1 + a92X2 + a93X3 + a94X4 + a95X5 + a96X6 + a97X7 + a98X8 + a99X9 (36)
However, X1 to X9 are the nine items described above. Eigenvectors a11 to a99 are determined so that the first to ninth principal components Z1 to Z9 are orthogonal to each other. Orthogonal means that they are independent of each other and there is no correlation between them.
 第4に、固有ベクトルa11~a99が適切に第1乃至第9主成分Z1~Z9の意味を反映しているかを判定する。固有ベクトルa11~a99が適切に第1乃至第9主成分Z1~Z9の意味を反映していないのは、項目の選定に誤りがある。このため、項目の組を棄却して、他の項目の組を採用する。 Fourth, it is determined whether the eigenvectors a11 to a99 appropriately reflect the meanings of the first to ninth principal components Z1 to Z9. The reason why the eigenvectors a11 to a99 do not appropriately reflect the meanings of the first to ninth principal components Z1 to Z9 is that the item is selected incorrectly. For this reason, the set of items is rejected and another set of items is adopted.
 第5に、次の行列式から第1乃至第9主成分Z1~Z9の固有値λ1~λ9を求める。 Fifth, eigenvalues λ1 to λ9 of the first to ninth principal components Z1 to Z9 are obtained from the following determinant.
Figure JPOXMLDOC01-appb-M000006
 固有値λ1~λ9は、第1乃至第9主成分Z1~Z9の分散と関係があり、固有値が大きい程、分散が大きくなり、固有値が小さい程、分散が小さくなる。そして、分散が大きい程、対応する主成分の重要度が高くなる。すなわち、固有値が大きい程、対応する主成分が全体をより適切に表現していることになる。
Figure JPOXMLDOC01-appb-M000006
The eigenvalues λ1 to λ9 are related to the dispersion of the first to ninth principal components Z1 to Z9. The larger the eigenvalue, the larger the dispersion, and the smaller the eigenvalue, the smaller the dispersion. Then, the greater the variance, the higher the importance of the corresponding principal component. That is, the larger the eigenvalue, the more appropriately the corresponding principal component represents the whole.
 第6に、第1乃至第9主成分Z1~Z9の寄与率を算出する。寄与率は各主成分の固有値が総ての固有値の合計に占める割合である。なお、相関行列に基づいて固有値を算出した場合には、寄与率は各固有値λ1~λ9を主成分数である「9」で割って得られる。 Sixth, the contribution ratios of the first to ninth main components Z1 to Z9 are calculated. The contribution rate is the ratio of the eigenvalues of each principal component to the total of all eigenvalues. When the eigenvalue is calculated based on the correlation matrix, the contribution rate is obtained by dividing each eigenvalue λ1 to λ9 by “9” which is the number of principal components.
 第7に、第1主成分Z1~Z9を寄与率が大きいものから順に並べ、累積寄与率が0.8を超えた時点で、それまでの主成分を睡眠評価スコアとして採用する。例えば、主成分の分析が下記の表で与えられ、K3<0.8<K4である場合、第4主成分までを睡眠評価スコアとして採用する。 Seventh, the first principal components Z1 to Z9 are arranged in descending order of contribution, and when the cumulative contribution exceeds 0.8, the previous principals are adopted as sleep evaluation scores. For example, when analysis of principal components is given in the following table and K3 <0.8 <K4, up to the fourth principal component is adopted as the sleep evaluation score.
Figure JPOXMLDOC01-appb-T000007
 第8に、固有ベクトルに固有値の平方根を乗じて因子負荷量を算出し、所定の基準値(例えば,0.5)以下のものを削除する。なお、削除せずにそのまま用いてよいことは勿論である。
 以上、第1乃至第8のステップを経て、4個の睡眠評価スコアが選定され、後述する式(46)~式(49)が導かれる。
Figure JPOXMLDOC01-appb-T000007
Eighth, the factor loading is calculated by multiplying the eigenvector by the square root of the eigenvalue, and those below a predetermined reference value (for example, 0.5) are deleted. Needless to say, it may be used without being deleted.
As described above, four sleep evaluation scores are selected through the first to eighth steps, and expressions (46) to (49) described later are derived.
 ここで、4個の睡眠評価スコアは、9個の項目X1~X9の各々と式(28)~(36)に示す第1係数a11~a99の積和算によって得られる。第1係数a11~a99は固有ベクトルであるから、4個の睡眠評価スコアは、互いに一次独立の関係にある。すなわち、9個の項目のうちいずれか2つの相関係数よりも、互いの相関係数が小さい4個の睡眠評価スコアを生成する。したがって、睡眠評価スコアは複数(本実施形態では9個)の所定項目(変数)を睡眠の観点から集約したものであって、各々が睡眠の特徴を端的にあらわしている。よって、睡眠評価スコアを用いて睡眠を評価することによって、前記所定項目の単体や、これらを適当に組み合わせたものと比較して、より的確な評価指標を得ることができる。本実施形態においては、所定項目として深睡眠率(%)、差分睡眠周期スコア、総就床時間(分)、睡眠周期(分)、深睡眠出現量(分)、差分総就床時間スコア、中長時間覚醒回数(回)、短時間覚醒回数(回)、睡眠効率(%)を選定し、これらに基づいて4個の睡眠評価スコアを主成分分析法によって選定し、第1主成分として「睡眠深度スコア」、第2主成分として「睡眠周期スコア」、第3主成分として「睡眠時間スコア」、第4主成分として「中途覚醒スコア」、を得ることができた。「睡眠深度スコア」は深い睡眠を示す項目、「睡眠周期スコア」は睡眠周期を示す項目、「睡眠時間スコア」は睡眠時間を示す項目、「中途覚醒スコア」は中途覚醒を示す項目である。 Here, the four sleep evaluation scores are obtained by multiply-adding each of the nine items X1 to X9 and the first coefficients a11 to a99 shown in the equations (28) to (36). Since the first coefficients a11 to a99 are eigenvectors, the four sleep evaluation scores are in a linearly independent relationship with each other. That is, four sleep evaluation scores having smaller correlation coefficients than any two of the nine items are generated. Therefore, the sleep evaluation score is obtained by aggregating a plurality (nine in the present embodiment) of predetermined items (variables) from the viewpoint of sleep, and each expresses a characteristic of sleep. Therefore, by evaluating sleep using a sleep evaluation score, it is possible to obtain a more accurate evaluation index as compared to a single predetermined item or a combination of these appropriately. In the present embodiment, the predetermined items include deep sleep rate (%), differential sleep cycle score, total bedtime (minutes), sleep cycle (minutes), deep sleep appearance amount (minutes), differential total bedtime score, Select the number of mid- and long-term awakenings (times), short-time awakenings (times), and sleep efficiency (%). Based on these, four sleep evaluation scores are selected by the principal component analysis method. A “sleep depth score”, a “sleep cycle score” as the second principal component, a “sleep time score” as the third principal component, and a “halfway awakening score” as the fourth principal component could be obtained. “Sleep depth score” is an item indicating deep sleep, “sleep cycle score” is an item indicating sleep cycle, “sleep time score” is an item indicating sleep time, and “midway awakening score” is an item indicating midway awakening.
 図52は、睡眠点数演算処理における各演算の流れを示すフローチャートであり、図53~図59は、ステップS1165、ステップS1167、ステップS1168、ステップS1169、ステップS1170、ステップS1171、ステップS1172における各演算処理の詳細な流れを示すフローチャートである。また、図61は、当該演算処理で演算される所定項目を説明するためのタイムチャートである。なお、以下の説明では、これらの処理をCPU106が所定のプログラムに従って実行するものとする。 FIG. 52 is a flowchart showing the flow of each calculation in the sleep score calculation process. FIGS. 53 to 59 show the calculation processes in step S1165, step S1167, step S1168, step S1169, step S1170, step S1171, and step S1172, respectively. It is a flowchart which shows the detailed flow of. FIG. 61 is a time chart for explaining predetermined items calculated in the calculation process. In the following description, it is assumed that the CPU 106 executes these processes according to a predetermined program.
 この睡眠点数演算処理は、被験者が完全に覚醒(すなわち、起床)した後に実行される。被験者が完全に覚醒した状態とは、所定期間、被験者の呼吸が検出されない状態が継続した場合に完全覚醒状態であると判断してもよいし、電源110とは別個に測定開始/終了ボタン(図示略)を設けて、終了ボタンが押し下げされた場合に、完全覚醒状態であると判断してもよい。そして、記憶部109には、測定が開始(図61の時刻t0)されてから終了(時刻te)するまでの各エポックにおける状態(すなわち、ステップS1005における睡眠段階判定処理の結果)が記憶されており、睡眠点数演算処理に利用される。 This sleep score calculation process is executed after the subject has completely awakened (that is, woken up). The state in which the subject is completely awakened may be determined to be a complete awake state when a state in which the subject's breathing is not detected continues for a predetermined period of time, or a measurement start / end button ( (Not shown) may be provided, and when the end button is pressed down, it may be determined that the state is completely awake. The storage unit 109 stores the state in each epoch from the start of measurement (time t0 in FIG. 61) to the end (time te) (that is, the result of the sleep stage determination process in step S1005). And is used for sleep score calculation processing.
 図52に示されるように、睡眠点数演算処理においては、まず、深睡眠率算出処理(ステップS1161)が実行される。深睡眠率(%)は、睡眠時間における深い睡眠の割合を意味し、「(深い睡眠の時間/睡眠時間)×100」、すなわち「(深い睡眠の時間/(入眠から最終覚醒までの時間))×100」として求めることができる。深睡眠率(%)を演算するために必要な「睡眠時間」即ち「入眠から最終覚醒までの時間」は、入眠判定部114により入眠区間と判定されて関連付けられているエポックを読み出して、覚醒判定部113により覚醒区間と判定されて関連付けられているエポックまでインクリメントして算出する。また、「深い睡眠の時間」は、図61に示されるように、測定を開始してから終了するまでの間(時刻t0~te)における深睡眠時間の合計エポック数であり、後述の睡眠出現量DT(分)と同様にして算出すればよい。 52, in the sleep score calculation process, first, a deep sleep rate calculation process (step S1161) is executed. Deep sleep rate (%) means the ratio of deep sleep in sleep time, and “(deep sleep time / sleep time) × 100”, that is, “(deep sleep time / (time from falling asleep to final awakening)” ) × 100 ”. The “sleep time” necessary for calculating the deep sleep rate (%), that is, “time from sleep onset to final awakening” is determined by the sleep determination unit 114 as the sleep interval and the associated epoch is read to It is calculated by incrementing to an epoch that is determined to be an awakening section by the determination unit 113 and associated therewith. Further, as shown in FIG. 61, “deep sleep time” is the total number of epochs of deep sleep time from the start to the end of the measurement (time t0 to te). What is necessary is just to calculate similarly to quantity DT (min).
 続いて、CPU106は、図52のステップS1162における差分睡眠周期スコア算出処理を実行する。差分睡眠周期スコアは、睡眠周期(分)が基準時間(例えば90分)に対してどの程度の差があるかを表すスコアである。「-|睡眠周期-所定基準時間|」(||は絶対値を表す。)により求めることができる。睡眠周期は、REM睡眠の終了から次のREM睡眠の終了までを1周期とした場合の平均値であるので、REM・浅睡眠判定部116によりREM睡眠区間と判定されて関連付けられているエポックに基づいて前記平均値を算出すればよい。なお、基準時間としては、例えば90分とすればよいが、特に限定されるものではない。 Subsequently, the CPU 106 executes a differential sleep cycle score calculation process in step S1162 of FIG. The differential sleep cycle score is a score representing how much the sleep cycle (minute) is different from the reference time (for example, 90 minutes). “− | Sleep cycle−predetermined reference time |” (|| represents an absolute value). Since the sleep cycle is an average value when one cycle is from the end of the REM sleep to the end of the next REM sleep, the REM / shallow sleep determination unit 116 determines the REM sleep interval and associates it with the epoch The average value may be calculated based on this. The reference time may be 90 minutes, for example, but is not particularly limited.
 続いて、CPU106は、図52のステップS1163における総就床時間算出処理を実行する。総就床時間(分)は、就床から離床までの時間を意味する。入床・離床判定部111により入床状態と判定されて関連付けられているエポックの合計として算出すればよい。 Subsequently, the CPU 106 executes a total bedtime calculation process in step S1163 of FIG. Total bedtime (minutes) means the time from bed to bed. What is necessary is just to calculate as a sum total of the epochs which are determined to be in the floor-entry state by the floor-in / bed-out determination unit 111 and are associated.
 続いて、CPU106は、図52のステップS1164における睡眠周期算出処理を実行する。睡眠周期は、前記差分睡眠周期スコア算出処理と同様に、REM・浅睡眠判定部116によりREM睡眠区間と判定されて関連付けられているエポックに基づいて前記平均値を算出すればよい。 Subsequently, the CPU 106 executes a sleep cycle calculation process in step S1164 of FIG. As for the sleep cycle, the average value may be calculated based on the epoch that is determined as the REM sleep section by the REM / shallow sleep determination unit 116 and is associated with the difference sleep cycle score calculation process.
 続いて、CPU106は、図52のステップS1165における深睡眠出現量算出処理に進み、図53に示す深睡眠出現量算出処理を実行する。深睡眠出現量DT(分)は、深い睡眠の時間の総和を意味し、より具体的には、図61に示されるように、測定を開始してから終了するまでの間(時刻t0~te)における深睡眠出現量の合計エポック数である。よって、図61に示されるように、時刻t0~teの期間中に深睡眠出現量DT1とDT2が測定された場合、深睡眠出現量DT=DT1+DT2となる。 Subsequently, the CPU 106 proceeds to the deep sleep appearance amount calculation process in step S1165 of FIG. 52, and executes the deep sleep appearance amount calculation process shown in FIG. The deep sleep appearance amount DT (minutes) means the sum of deep sleep times, and more specifically, as shown in FIG. 61, from the start to the end of the measurement (time t0 to te). ) Is the total number of epochs of deep sleep appearance amount. Therefore, as shown in FIG. 61, when the deep sleep appearance amounts DT1 and DT2 are measured during the period from time t0 to te, the deep sleep appearance amount DT = DT1 + DT2.
 図53に示されるように、深睡眠出現量算出処理においては、まず、最初のエポックの次のエポックに進む(ステップS1221)。次に、ステップS1222において、当該エポックが最終エポックEeであるか否か判定する。この判定条件が否定された場合、続いて、ステップS1223において、当該エポックが深睡眠状態であるか否か判定する。この判定条件が肯定された場合、ステップS1224において深睡眠出現量DTがインクリメントされ(ただし、DTの初期値DT=0)、処理はステップS1221に戻る。一方、ステップS1223の判定条件が否定された場合、深睡眠出現量DTはインクリメントされることなく、処理はステップS1221に戻る。ステップS1221~S1224までの処理、あるいはステップS1221~S1223までの処理は、ステップS1222の判定条件が肯定されるまで繰り返される。ステップS1222の判定条件が肯定されると、処理は図52のフローチャートに戻る。 As shown in FIG. 53, in the deep sleep appearance amount calculation process, first, the process proceeds to the epoch next to the first epoch (step S1221). Next, in step S1222, it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, it is determined in step S1223 whether or not the epoch is in a deep sleep state. If this determination condition is affirmed, the deep sleep appearance amount DT is incremented in step S1224 (however, the initial value DT of DT = 0), and the process returns to step S1221. On the other hand, if the determination condition in step S1223 is negative, the deep sleep appearance amount DT is not incremented, and the process returns to step S1221. The processing from step S1221 to S1224 or the processing from step S1221 to S1223 is repeated until the determination condition of step S1222 is affirmed. If the determination condition in step S1222 is affirmed, the process returns to the flowchart of FIG.
 続いて、CPU106は、図52のステップS1166における差分総就床時間スコア算出処理を実行する。差分総就床時間スコアは、総就床時間(分)が基準時間(例えば6.5時間(390分))に対してどの程度の差があるかを表すスコアであり、「-|総就床時間-基準時間|」(||は絶対値を表す。)により求めることができる。総就床時間(分)は、前記総就床時間算出処理と同様に、入床・離床判定部111により入床状態と判定されて関連付けられているエポックの合計として算出すればよい。 Subsequently, the CPU 106 executes a difference total bedtime score calculation process in step S1166 of FIG. The difference total bedtime score is a score indicating how much the total bedtime (minutes) is different from the reference time (for example, 6.5 hours (390 minutes)). Floor time−reference time | ”(|| represents an absolute value). The total bedtime (minutes) may be calculated as the total number of epochs that are determined to be in the bedded state by the bed-and-bed determination unit 111 and associated with each other, as in the above-mentioned total bedtime calculation process.
 続いて、CPU106は、図52のステップS1167における中長時間覚醒回数算出処理に進み、図54に示す中長時間覚醒回数算出処理を実行する。中長時間覚醒回数(回)は、睡眠中に現れる基準時間(例えば、2分30秒)以上の覚醒の回数を意味する。図54に示されるように、中長時間覚醒回数算出処理においては、まず、最初のエポックの次のエポックに進む(ステップS1191)。次に、ステップS1192において、当該エポックが最終エポックEeであるか否か判定する。この判定条件が否定された場合、続いて、ステップS1193において、T分以上継続する覚醒か否か判定する。上述したように、本実施形態においては1エポック=30秒であるから、T=2.5の場合、覚醒エポックが連続して5個以上継続した場合には、覚醒状態であるとみなされる。したがって、CPU106は、覚醒状態であるエポックが所定数(例えば、5個以上)連続した場合にのみ、ステップS1193の判定を肯定する。続いて、ルーチンはステップS1194に進み、中長時間覚醒回数(WN;但し、初期値WN=0)をインクリメントする。続いて、ステップS1195において、覚醒が継続した数だけエポックを進め、ステップS1191に戻る。一方、ステップS1193の判定条件が否定された場合、ステップS1191に戻る。ステップS1191~S1195あるいはステップS1191~S1193の処理は、ステップS1192の判定において、判定対象のエポックが最終エポックEeであると判定されるまで繰り返される。ステップS1192の判定条件が肯定されると、中長時間覚醒回数算出処理は終了し、ルーチンは、図52のフローチャートに戻る。 Subsequently, the CPU 106 proceeds to the medium / long-time awakening number calculation process in step S1167 of FIG. 52, and executes the medium / long-time awakening number calculation process shown in FIG. The number of awakening times (times) means the number of times of awakening over a reference time (for example, 2 minutes 30 seconds) that appears during sleep. As shown in FIG. 54, in the middle / long-term awakening count calculation process, first, the process proceeds to the epoch next to the first epoch (step S1191). Next, in step S1192, it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, it is determined in step S1193 whether or not the awakening continues for T minutes or more. As described above, since 1 epoch = 30 seconds in this embodiment, when T = 2.5, if 5 or more awakening epochs continue, it is considered that the state is awakening. Therefore, the CPU 106 affirms the determination in step S <b> 1193 only when a predetermined number (for example, five or more) of epochs in the awake state continues. Subsequently, the routine proceeds to step S1194, and increments the number of wake-up times (WN; where initial value WN = 0). Subsequently, in step S1195, the epoch is advanced by the number of continued awakenings, and the process returns to step S1191. On the other hand, if the determination condition in step S1193 is negative, the process returns to step S1191. The processing of steps S1191 to S1195 or steps S1191 to S1193 is repeated until it is determined in step S1192 that the epoch to be determined is the final epoch Ee. If the determination condition in step S1192 is affirmed, the medium / long-term awakening count calculation process ends, and the routine returns to the flowchart of FIG.
 続いて、CPU106は、図52のステップS1168における短時間覚醒回数算出処理に進み、図55に示す短時間覚醒回数算出処理を実行する。短時間覚醒回数(回)は、睡眠中に現れる基準時間(例えば2分)以内の覚醒の回数を意味する。図55に示されるように、短時間覚醒回数算出処理においては、まず、最初のエポックの次のエポックに進む(ステップS1231)。次に、ステップS1232において、当該エポックが最終エポックEeであるか否かを判定する。この判定条件が否定された場合、続いて、ステップS1233において、T分未満継続する覚醒か否か判定する。上述したように、本実施形態においては1エポック=30秒であるから、T=2.5の場合、連続する覚醒エポックが5個未満である場合には、短時間覚醒であるとみなされる。したがって、CPU106は、連続する覚醒エポックの数が所定数(例えば、5個)未満である場合にのみ、ステップS1233の判定を肯定する。続いて、ルーチンはステップS1234に進み、短時間覚醒回数(MN;但し、初期値MN=0)をインクリメントする。続いて、ステップS1235において、覚醒が継続した数だけエポックを進め、ステップS1231に戻る。一方、ステップS1233の判定が否定された場合、ステップS1231に戻る。ステップS1231~S1235あるいはステップS1231~S1233の処理は、ステップS1232の判定において、判定対象のエポックが最終エポックEeであると判定されるまで繰り返される。ステップS1232の判定が肯定されると、短時間覚醒回数算出処理は終了し、ルーチンは、図52のフローチャートに戻る。 Subsequently, the CPU 106 proceeds to the short-time awakening number calculation process in step S1168 of FIG. 52, and executes the short-time awakening number calculation process shown in FIG. The number of short-time awakenings (times) means the number of times of awakening within a reference time (for example, 2 minutes) that appears during sleep. As shown in FIG. 55, in the short-time awakening count calculation process, first, the process proceeds to the epoch next to the first epoch (step S1231). Next, in step S1232, it is determined whether or not the epoch is the final epoch Ee. If this determination condition is negative, it is determined in step S1233 whether or not the awakening continues for less than T minutes. As described above, since 1 epoch = 30 seconds in the present embodiment, when T = 2.5, if there are less than 5 continuous awakening epochs, it is regarded as a short-time awakening. Therefore, CPU 106 affirms the determination in step S1233 only when the number of consecutive awakening epochs is less than a predetermined number (for example, 5). Subsequently, the routine proceeds to step S1234, and increments the number of short-time awakenings (MN; provided that the initial value MN = 0). Subsequently, in step S1235, the epoch is advanced by the number of continued awakenings, and the process returns to step S1231. On the other hand, if the determination in step S1233 is negative, the process returns to step S1231. The processing in steps S1231 to S1235 or steps S1231 to S1233 is repeated until it is determined in step S1232 that the epoch to be determined is the final epoch Ee. If the determination in step S1232 is affirmative, the short-time awakening count calculation process ends, and the routine returns to the flowchart of FIG.
 続いて、CPU106は、図52のステップS1169における睡眠効率算出処理に進み、図56に示す睡眠効率算出処理を実行する。睡眠効率(%)は、総就床時間に対する実際に眠っていた時間の割合を意味し、「(総睡眠時間/総就床時間)×100」、すなわち「((総就床時間-睡眠中に覚醒した時間の総和)/総就床時間)×100」として求めることができる。すなわち、睡眠効率SEは、測定が開始(図61の時刻t0)されてから終了(時刻te)するまでの総エポック数をIAとし、後述の判定ステップS1183において覚醒状態であると判定されたエポックの数(覚醒エポック数)をIとした場合に、(IA-I)/IAで求められる値である。よって、当該睡眠効率算出処理において、最初のエポックは覚醒状態であるので、覚醒エポック数(I)の初期値は1に設定され、ステップS1183において、判定対象のエポックが覚醒であると判定される度にインクリメントされる(ステップS1184)。 Subsequently, the CPU 106 proceeds to the sleep efficiency calculation process in step S1169 of FIG. 52, and executes the sleep efficiency calculation process shown in FIG. The sleep efficiency (%) means the ratio of the actual sleep time to the total bedtime, which is “(total sleep time / total bedtime) × 100”, that is, “((total bedtime−sleeping time) (Total sum of hours awakened) / total bedtime) × 100 ”. That is, the sleep efficiency SE is the total number of epochs from the start of measurement (time t0 in FIG. 61) to the end (time te), IA, and the epoch determined to be in an awake state in determination step S1183 described later. This is a value obtained by (IA-I) / IA where I is the number of wakefulness (number of awakening epochs). Therefore, in the sleep efficiency calculation process, since the first epoch is in the awake state, the initial value of the number of awakening epochs (I) is set to 1, and it is determined in step S1183 that the epoch to be determined is awake. It is incremented every time (step S1184).
 図56に示されるように、ステップS1181において、CPU106は、まず、次のエポックに進む。続いて、ステップS1182において、当該エポックが完全覚醒状態に遷移する直前のエポック(図61の最終エポックEe)であるか否か判定する。この判定が否定された場合、当該エポックは覚醒状態であるか否か判定する(ステップS1183)。この判定結果が肯定的された場合、ステップS1184に進み、覚醒エポック数(I)の値がインクリメントされ、ステップS1181に戻り、次のエポックに進む。一方、ステップS1183の判定条件が否定された場合、覚醒エポック数(I)の値をインクリメントすることなく、ステップS1181に戻る。CPU106は、ステップS1182の判定結果が肯定的にならない限り、ステップS1181~S1183あるいはステップS1181~S1184の処理を繰り返す。 As shown in FIG. 56, in step S1181, the CPU 106 first proceeds to the next epoch. Subsequently, in step S1182, it is determined whether or not the epoch is the epoch immediately before transitioning to the complete awake state (final epoch Ee in FIG. 61). If this determination is negative, it is determined whether or not the epoch is in an awake state (step S1183). If the determination result is affirmative, the process proceeds to step S1184, the value of the awakening epoch number (I) is incremented, the process returns to step S1181, and the process proceeds to the next epoch. On the other hand, if the determination condition in step S1183 is negative, the process returns to step S1181 without incrementing the value of the number of awakening epochs (I). CPU 106 repeats the processing of steps S1181 to S1183 or steps S1181 to S1184 unless the determination result of step S1182 becomes affirmative.
 一方、ステップS1182の判定が肯定された場合、ルーチンはステップS1185に進み、睡眠効率SEを演算する。すなわち、上記式SE=(IA-I)/IAに、覚醒エポック数Iの最終値および総エポック数IAの数値が代入されて、睡眠効率SEが求められ、当該睡眠効率算出処理は終了し、図52のフローチャートに戻る。 On the other hand, if the determination in step S1182 is affirmative, the routine proceeds to step S1185 and calculates sleep efficiency SE. That is, the final value of the awakening epoch number I and the numerical value of the total epoch number IA are substituted into the above formula SE = (IA−I) / IA to obtain the sleep efficiency SE, and the sleep efficiency calculation process ends. Returning to the flowchart of FIG.
 続いて、CPU106は、図52のステップS1170における各データ標準化処理を実行する。図57に示されるように、各データ標準化処理においては、上述のステップS1161~S1169で取得された睡眠判定データの値の標準化処理が実行される。まず、ステップS1241において、深睡眠率Zaの標準値Za(st)は、Za(st)=(Za-平均Za)/標準偏差Zaにより求められる。ここで、各平均Zaおよび標準偏差Zaは、PSGの測定データに基づいた母集団における深睡眠率Zaの各平均値および標準偏差値(各々固定値)である。母集団は、例えば、被験者の年齢が20代の場合、20代のX人の集団である。被験者は、操作部105を用いて自己のパラメータ(例えば、年齢、性別)を予め入力しておくことにより、適切な母集団に関するデータが選択されて、当該標準化処理に利用される。この母集団に関するデータは、記憶部109に予め記憶されている。CPU106は、記憶部109から平均値および標準偏差を読み出してステップS1241の演算を実行する。なお、ステップS1242~S1249の処理でも同様である。 Subsequently, the CPU 106 executes each data standardization process in step S1170 of FIG. As shown in FIG. 57, in each data standardization process, the standardization process of the value of the sleep determination data acquired in steps S1161 to S1169 described above is executed. First, in step S1241, the standard value Za (st) of the deep sleep rate Za is obtained by Za (st) = (Za−average Za) / standard deviation Za. Here, each average Za and standard deviation Za are each average value and standard deviation value (fixed values) of deep sleep rate Za in the population based on the measurement data of PSG. The population is, for example, a group of X people in their 20s when the subject's age is in their 20s. The test subject inputs his / her parameters (for example, age and sex) in advance using the operation unit 105, so that data regarding an appropriate population is selected and used for the standardization process. Data regarding this population is stored in the storage unit 109 in advance. CPU 106 reads out the average value and the standard deviation from storage unit 109 and executes the calculation of step S1241. The same applies to the processing in steps S1242 to S1249.
 同様にして、各ステップS1242~S1249において、各睡眠判定データの標準化処理が行われる。各睡眠判定データの標準値は、下記式(38)~式(45)により求められる(ステップS1242~S1249)。
 差分睡眠周期スコアZb(st)=(Zb-平均Zb)/標準偏差Zb…式(38)
 総就床時間Zc(st)=(Zc-平均Zc)/標準偏差Zc…式(39)
 睡眠周期Zd(st)=(Zd-平均Zd)/標準偏差Zd…式(40)
 深睡眠出現量Ze(st)=(Ze-平均Ze)/標準偏差Ze…式(41)
 差分総就床時間スコアZf(st)=(Zf-平均Zf)/標準偏差Zf…式(42)
 中長時間覚醒回数Zg(st)=(Zg-平均Zg)/標準偏差Zg…式(43)
 短時間覚醒回数Zh(st)=(Zh-平均Zh)/標準偏差Zh…式(44)
 睡眠効率Zi(st)=(Zi-平均Zi)/標準偏差Zi…式(45)
 この標準化の処理によって、異なるスケールの深睡眠率Za、差分睡眠周期スコアZb、総就床時間Zc、睡眠周期Zd、深睡眠出現量Ze、差分総就床時間スコアZf、中長時間覚醒回数Zg、短時間覚醒回数Zh、及び睡眠効率Ziを同一の処理で取り扱うことが可能となる。ステップS1249の処理が終了すると、ルーチンは、図52のフローチャートに戻る。
Similarly, in each step S1242 to S1249, each sleep determination data is standardized. The standard value of each sleep determination data is obtained by the following formulas (38) to (45) (steps S1242 to S1249).
Difference sleep cycle score Zb (st) = (Zb−average Zb) / standard deviation Zb (38)
Total bedtime Zc (st) = (Zc−average Zc) / standard deviation Zc (39)
Sleep cycle Zd (st) = (Zd−average Zd) / standard deviation Zd Equation (40)
Deep sleep appearance amount Ze (st) = (Ze−average Ze) / standard deviation Ze (formula 41)
Difference total bedtime score Zf (st) = (Zf−average Zf) / standard deviation Zf Equation (42)
Number of middle and long awakenings Zg (st) = (Zg−average Zg) / standard deviation Zg (43)
Number of short-time awakenings Zh (st) = (Zh−average Zh) / standard deviation Zh (formula 44)
Sleep efficiency Zi (st) = (Zi−average Zi) / standard deviation Zi (formula 45)
By this standardization process, the deep sleep rate Za, the differential sleep cycle score Zb, the total bedtime Zc, the sleep cycle Zd, the deep sleep appearance amount Ze, the differential total bedtime score Zf, and the number of mid- and long-term awakenings Zg of different scales. It becomes possible to handle the number of short-time awakenings Zh and sleep efficiency Zi by the same process. When the process of step S1249 ends, the routine returns to the flowchart of FIG.
 続いて、CPU106は、図52のステップS1171における各主成分スコア演算処理を実行する。図58に示されるように、各主成分スコア演算処理においては、上述のステップS1170で取得された各睡眠判定データの標準値が演算に利用される。主成分スコア演算処理では、PSGの測定データに基づいて抽出された、少なくとも睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目について主成分分析を行って得られる睡眠評価スコアの前記所定項目ごとの主成分係数と、前記被験者の前記生体信号から算出された前記所定項目に対応する睡眠判定データと、を乗算して睡眠評価スコアを算出する。より具体的には、9個の睡眠判定データである深睡眠率Za、差分睡眠周期スコアZb、総就床時間Zc、睡眠周期Zd、深睡眠出現量Ze、差分総就床時間スコアZf、中長時間覚醒回数Zg、短時間覚醒回数Zh、及び睡眠効率Ziから、4個の睡眠評価スコアである「睡眠深度スコア」、「睡眠周期スコア」、「睡眠時間スコア」、「中途覚醒スコア」を算出する。CPU106は、「睡眠深度スコア」、「睡眠周期スコア」、「睡眠時間スコア」、「中途覚醒スコア」を以下に示す式(46)~式(49)に従って算出する(ステップS1251~S1254)。 Subsequently, the CPU 106 executes each principal component score calculation process in step S1171 in FIG. As shown in FIG. 58, in each principal component score calculation process, the standard value of each sleep determination data acquired in step S1170 described above is used for the calculation. In the principal component score calculation process, a plurality of types of predetermined items including at least items related to sleep depth, items related to sleep rhythm, and items related to mid-wake awakening extracted based on PSG measurement data Sleep evaluation by multiplying the principal component coefficient for each predetermined item of the sleep evaluation score obtained by performing the principal component analysis on the sleep determination data corresponding to the predetermined item calculated from the biological signal of the subject Calculate the score. More specifically, the nine sleep determination data are deep sleep rate Za, differential sleep cycle score Zb, total bedtime Zc, sleep cycle Zd, deep sleep appearance amount Ze, differential total bedtime score Zf, medium From the long-time awakening count Zg, the short-time awakening count Zh, and the sleep efficiency Zi, four sleep evaluation scores, that is, a “sleep depth score”, a “sleep cycle score”, a “sleep time score”, and a “halfway awake score” calculate. The CPU 106 calculates “sleep depth score”, “sleep cycle score”, “sleep time score”, and “halfway awakening score” according to the following equations (46) to (49) (steps S1251 to S1254).
 第1主成分スコア(睡眠深度スコア)
= 係数C1a * 標準値Za(st) + 係数C1b * 標準値Zb(st) + 係数C1c * 標準値Zc(st) + 係数C1d * 標準値Zd(st) + 係数C1e * 標準値Ze(st) + 係数C1f * 標準値Zf(st) + 係数C1g * 標準値Zg(st) + 係数C1h * 標準値Zh(st) + 係数C1i * 標準値Zi(st)  …式(46)
First principal component score (sleep depth score)
= Coefficient C1a * Standard value Za (st) + Coefficient C1b * Standard value Zb (st) + Coefficient C1c * Standard value Zc (st) + Coefficient C1d * Standard value Zd (st) + Coefficient C1e * Standard value Ze (st) + Coefficient C1f * Standard value Zf (st) + Coefficient C1g * Standard value Zg (st) + Coefficient C1h * Standard value Zh (st) + Coefficient C1i * Standard value Zi (st) Equation (46)
 第2主成分スコア(睡眠周期スコア)
= 係数C2a * 標準値Za(st) + 係数C2b * 標準値Zb(st) + 係数C2c * 標準値Zc(st) + 係数C2d * 標準値Zd(st) + 係数C2e * 標準値Ze(st) + 係数C2f * 標準値Zf(st) + 係数C2g * 標準値Zg(st) + 係数C2h * 標準値Zh(st) + 係数C2i * 標準値Zi(st)  …式(47)
Second principal component score (sleep cycle score)
= Coefficient C2a * Standard value Za (st) + Coefficient C2b * Standard value Zb (st) + Coefficient C2c * Standard value Zc (st) + Coefficient C2d * Standard value Zd (st) + Coefficient C2e * Standard value Ze (st) + Coefficient C2f * Standard value Zf (st) + Coefficient C2g * Standard value Zg (st) + Coefficient C2h * Standard value Zh (st) + Coefficient C2i * Standard value Zi (st) Equation (47)
 第3主成分スコア(睡眠時間スコア)
= 係数C3a * 標準値Za(st) + 係数C3b * 標準値Zb(st) + 係数C3c * 標準値Zc(st) + 係数C3d * 標準値Zd(st) + 係数C3e * 標準値Ze(st) + 係数C3f * 標準値Zf(st) + 係数C3g * 標準値Zg(st) + 係数C3h * 標準値Zh(st) + 係数C3i * 標準値Zi(st)  …式(48)
Third principal component score (sleep time score)
= Coefficient C3a * Standard value Za (st) + Coefficient C3b * Standard value Zb (st) + Coefficient C3c * Standard value Zc (st) + Coefficient C3d * Standard value Zd (st) + Coefficient C3e * Standard value Ze (st) + Coefficient C3f * Standard value Zf (st) + Coefficient C3g * Standard value Zg (st) + Coefficient C3h * Standard value Zh (st) + Coefficient C3i * Standard value Zi (st) Equation (48)
 第4主成分スコア(中途覚醒スコア)
= 係数C4a * 標準値Za(st) + 係数C4b * 標準値Zb(st) + 係数C4c * 標準値Zc(st) + 係数C4d * 標準値Zd(st) + 係数C4e * 標準値Ze(st) + 係数C4f * 標準値Zf(st) + 係数C4g * 標準値Zg(st) + 係数C4h * 標準値Zh(st) + 係数C4i * 標準値Zi(st)  …式(49)
Fourth principal component score (midway awakening score)
= Coefficient C4a * Standard value Za (st) + Coefficient C4b * Standard value Zb (st) + Coefficient C4c * Standard value Zc (st) + Coefficient C4d * Standard value Zd (st) + Coefficient C4e * Standard value Ze (st) + Coefficient C4f * Standard value Zf (st) + Coefficient C4g * Standard value Zg (st) + Coefficient C4h * Standard value Zh (st) + Coefficient C4i * Standard value Zi (st) Equation (49)
 ここで、前記式(46)乃至式(49)における各係数は、9個の所定項目に基づく主成分分析法から求めた定数であり、記憶部109に記憶されている。CPU106は、それぞれの係数を記憶部109から読み出して、演算処理を実行する。9個の所定項目と主成分スコアとの主成分得点係数行列は、表24に示す通りである。 Here, each coefficient in the equations (46) to (49) is a constant obtained from a principal component analysis method based on nine predetermined items, and is stored in the storage unit 109. The CPU 106 reads out each coefficient from the storage unit 109 and executes arithmetic processing. A principal component score coefficient matrix of nine predetermined items and a principal component score is as shown in Table 24.
Figure JPOXMLDOC01-appb-T000008
 ステップS1254の処理が終了すると、ルーチンは、図52のフローチャートに戻る。
Figure JPOXMLDOC01-appb-T000008
When the process of step S1254 ends, the routine returns to the flowchart of FIG.
 続いて、CPU106は、図52のステップS1172における睡眠障害判別確率演算処理を実行する。ここで、睡眠障害判別確率とは、SAS患者のような睡眠障害者である確率をいう。図59に示すように、睡眠障害判別確率演算処理においては、睡眠評価スコアについてロジスティック回帰分析を行って得られる睡眠障害判別確率を算出する。
 複数の睡眠評価スコア(説明変数)と、睡眠障害のダミー変数(目的変数)と、をロジスティック回帰分析(重回帰分析)することで、複数の睡眠評価スコアから睡眠障害に該当する確率(睡眠障害判別確率)を示すことができる。
 本実施形態におけるロジスティック回帰分析では、目的変数を0/1(SASの有無:SAS群1/非SAS群0)のダミー変数で表す。また、説明変数は、睡眠判定データから算出した睡眠評価スコアである第1主成分スコア(睡眠深度スコア)、第2主成分スコア(睡眠周期スコア)、第3主成分スコア(睡眠時間スコア)、第4主成分スコア(中途覚醒スコア)のうちの少なくともいずれか3つのスコアを用いる。これにより、睡眠障害判別確率の回帰式を作成することが可能となる。ここでは、4つの睡眠評価スコアを用いる例を、図59を参照して説明する。
 CPU106は、ステップS1171において演算された第1主成分スコア(睡眠深度スコア)、第2主成分スコア(睡眠周期スコア)、第3主成分スコア(睡眠時間スコア)、第4主成分スコア(中途覚醒スコア)を用いて、以下の式(50)により変数Pを演算する(ステップS1261)。なお、この時、第3主成分スコア(睡眠時間スコア)、第4主成分スコア(中途覚醒スコア)の符号を反転させる処理を適宜行ってもよい。
 変数P
= 固定値F1 * 第1主成分スコア + 固定値F2 * 第2主成分スコア + 固定値F3 * 第3主成分スコア + 固定値F4 * 第4主成分スコア  …式(50)
 ここで、固定値F1~F4は、ある母集団の主成分分析法から求めた固定値である。これらの固定値は記憶部109に記憶されており、CPU106が読み出して演算に用いる。
Subsequently, the CPU 106 executes sleep disorder determination probability calculation processing in step S1172 of FIG. Here, the sleep disorder discrimination probability refers to the probability of being a sleep disorder person such as a SAS patient. As shown in FIG. 59, in the sleep disorder determination probability calculation process, the sleep disorder determination probability obtained by performing logistic regression analysis on the sleep evaluation score is calculated.
Logistic regression analysis (multiple regression analysis) of multiple sleep evaluation scores (explanatory variables) and sleep disorder dummy variables (objective variables) allows the probability of falling into sleep disorder from multiple sleep evaluation scores (sleep disorder) Discrimination probability).
In the logistic regression analysis in this embodiment, the objective variable is represented by a dummy variable of 0/1 (the presence or absence of SAS: SAS group 1 / non-SAS group 0). The explanatory variables are a first principal component score (sleep depth score), a second principal component score (sleep cycle score), a third principal component score (sleep time score), which are sleep evaluation scores calculated from sleep determination data, At least any three of the fourth principal component scores (halfway awakening scores) are used. This makes it possible to create a regression equation of sleep disorder discrimination probability. Here, an example using four sleep evaluation scores will be described with reference to FIG.
The CPU 106 calculates the first principal component score (sleep depth score), the second principal component score (sleep cycle score), the third principal component score (sleep time score), and the fourth principal component score (intermediate awakening) calculated in step S1171. Using the score, the variable P is calculated by the following equation (50) (step S1261). At this time, a process of inverting the signs of the third principal component score (sleep time score) and the fourth principal component score (halfway awakening score) may be appropriately performed.
Variable P
= Fixed value F1 * 1st principal component score + Fixed value F2 * 2nd principal component score + Fixed value F3 * 3rd principal component score + Fixed value F4 * 4th principal component score ... Formula (50)
Here, the fixed values F1 to F4 are fixed values obtained from a principal component analysis method of a certain population. These fixed values are stored in the storage unit 109 and read out by the CPU 106 and used for calculation.
 次に、CPU106は、ステップS1261で演算した変数Pを用いて、以下の式(51)により睡眠障害判別確率を演算する(ステップS1262)。
 睡眠障害判別確率 = 1/(1+(exp-(P)))  …式(51)
 ステップS1262の処理が終了すると、ルーチンは、図52のフローチャートに戻る。
Next, the CPU 106 calculates the sleep disorder determination probability by the following equation (51) using the variable P calculated in step S1261 (step S1262).
Sleep disorder discrimination probability = 1 / (1+ (exp- (P))) (51)
When the process of step S1262 ends, the routine returns to the flowchart of FIG.
 この後、CPU106は、図52のステップS1173の睡眠点数演算処理を実行する。図60に示すように、睡眠点数演算処理においては、CPU106は、ステップS1262により演算された睡眠障害判別確率を用いて、以下の式(52)により睡眠点数(睡眠指数)を演算する(ステップS1263)。
睡眠点数 = 100 - (睡眠障害判別確率 * 100)   …式(52)
 CPU6は、ステップS1263で得られた睡眠点数を記憶部9に記憶する(ステップS1174、図52参照)。
 このように、式(52)より、睡眠障害判別確率が高い場合には睡眠点数は低く算出され、睡眠障害判別確率が低い場合には睡眠点数は高く算出されることになる。これにより、SASが発症する前に、SASが発症するか否かを予測することが可能となる。
Thereafter, the CPU 106 executes the sleep score calculation process of step S1173 in FIG. As shown in FIG. 60, in the sleep score calculation process, the CPU 106 calculates the sleep score (sleep index) by the following formula (52) using the sleep disorder determination probability calculated in step S1262 (step S1263). ).
Number of sleep points = 100-(Sleep disorder discrimination probability * 100) ... Formula (52)
CPU6 memorize | stores the sleep score obtained by step S1263 in the memory | storage part 9 (step S1174, refer FIG. 52).
Thus, from equation (52), when the sleep disorder determination probability is high, the sleep score is calculated low, and when the sleep disorder determination probability is low, the sleep score is calculated high. This makes it possible to predict whether or not SAS will develop before SAS develops.
 このように、本発明における睡眠点数を求める回帰式は、上記説明した以下の3式に集約されることとなる。
 変数P = 固定値F1 * 第1主成分スコア + 固定値F2 * 第2主成分スコア + 固定値F3 * 第3主成分スコア + 固定値F4 * 第4主成分スコア  …式(50)
 判別確率 = 1/(1+(exp-(P)))  …式(51)
 睡眠点数 = 100 - (睡眠障害判別確率 * 100)   …式(52)
Thus, the regression equations for obtaining the number of sleep points in the present invention are summarized in the following three equations described above.
Variable P = fixed value F1 * first principal component score + fixed value F2 * second principal component score + fixed value F3 * third principal component score + fixed value F4 * fourth principal component score Equation (50)
Discrimination probability = 1 / (1+ (exp- (P))) (51)
Number of sleep points = 100-(Sleep disorder discrimination probability * 100) ... Formula (52)
 次に、睡眠タイプ判定処理を説明する。
 本発明にかかる睡眠評価装置101が実行する睡眠タイプ判定処理は、予め設定されている複数の睡眠タイプのうち、被験者の睡眠がいずれの睡眠タイプに該当するものであったのかを判定するものである。睡眠タイプは、睡眠評価スコアの各値の高低に基づき、睡眠内容の特徴に応じて分類化された種別である。睡眠タイプは、上記の通り演算された睡眠評価スコアである、睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)の他、更に体動頻度スコア(第5スコア)の程度に基づいて予め設定・記憶させておくのが好適である。体動頻度スコアとは、睡眠中に生じる体動の発生頻度に関するスコアである。
Next, sleep type determination processing will be described.
The sleep type determination process executed by the sleep evaluation apparatus 101 according to the present invention determines which sleep type the subject's sleep corresponds to among a plurality of preset sleep types. is there. The sleep type is a type classified according to the feature of sleep content based on the level of each value of the sleep evaluation score. The sleep type is a sleep evaluation score calculated as described above, a sleep depth score (first score), a sleep cycle score (second score), a sleep time score (third score), and a midway awakening score (fourth score). In addition, it is preferable to set and store in advance based on the degree of the body movement frequency score (fifth score). The body motion frequency score is a score related to the frequency of body motion that occurs during sleep.
 睡眠タイプは、一例として、睡眠深度スコア、睡眠周期スコア、睡眠時間スコア、中途覚醒スコア、及び、体動頻度スコアのそれぞれの値を考慮して、図62乃至図66に示すような5種類の睡眠タイプを設定する。図62乃至図66は、第1睡眠タイプ乃至第5睡眠タイプの例を示すレーダーチャートである。図62に示す第1睡眠タイプは、睡眠時間は標準的だが、体動が多く深睡眠・リズムがない、という睡眠タイプである。図63に示す第2睡眠タイプは、睡眠時間が短く、中途覚醒が多く、睡眠リズムが悪い、という睡眠タイプである。図64に示す第3睡眠タイプは、睡眠時間・リズムはほぼ標準だが,体動・中途覚醒が多く、深睡眠が少ない、という睡眠タイプである。図65に示す第4睡眠タイプは、いずれのスコアも標準的、という睡眠タイプである。図66に示す第5睡眠タイプは、睡眠時間・深睡眠が少なく、途中覚醒・体動が多い、という睡眠タイプである。本実施形態では、予め設定されている複数の睡眠タイプとして、5種類の睡眠タイプを説明するが、睡眠タイプの内容や種類を適宜変更してもよいことは言うまでもない。 As an example, there are five types of sleep types as shown in FIGS. 62 to 66 in consideration of the values of the sleep depth score, the sleep cycle score, the sleep time score, the midway awakening score, and the body motion frequency score. Set sleep type. 62 to 66 are radar charts showing examples of the first sleep type to the fifth sleep type. The first sleep type shown in FIG. 62 is a sleep type in which sleep time is standard, but there are many body movements and no deep sleep / rhythm. The second sleep type shown in FIG. 63 is a sleep type in which the sleep time is short, there are many midway awakenings, and the sleep rhythm is bad. The third sleep type shown in FIG. 64 is a sleep type in which sleep time and rhythm are almost standard, but there are many body movements and awakening during the middle, and little deep sleep. The fourth sleep type shown in FIG. 65 is a sleep type in which all scores are standard. The fifth sleep type shown in FIG. 66 is a sleep type in which there is little sleep time / deep sleep, and there is a lot of awakening / body movement. In the present embodiment, five types of sleep are described as a plurality of preset sleep types, but it goes without saying that the content and type of the sleep type may be changed as appropriate.
 まず、図67に示すように、体動頻度スコアの演算を実施する。図67は、体動頻度スコア演算を示すフローチャートである。なお、この処理は、体動頻度スコア演算部としてのCPU106が、所定のプログラムに従って実行するものとして説明する。図67に示すように、CPU106は、以下の式(53)により体動頻度スコアを演算し、記憶部109に記憶する(ステップS1264)。
体動頻度スコア=体動回数/総就床時間  …(53)
 ここで、総就床時間は、上述した通り、図52のステップS1163における総就床時間算出処理の実行によって既に算出されている値を用いることができる。
First, as shown in FIG. 67, the body motion frequency score is calculated. FIG. 67 is a flowchart showing the body motion frequency score calculation. This process will be described assuming that the CPU 106 as the body motion frequency score calculation unit executes according to a predetermined program. As shown in FIG. 67, the CPU 106 calculates a body movement frequency score by the following equation (53) and stores it in the storage unit 109 (step S1264).
Body motion frequency score = number of body motions / total bedtime (53)
Here, as described above, as the total bedtime, a value that has already been calculated by executing the total bedtime calculation process in step S1163 of FIG. 52 can be used.
 体動回数は、体動によりセンサ部102における出力が所定の閾値よりも大きかった部分を検出することによって求めればよい。その求め方は特に限定されるものではないが、一例としては次の通りである。
(1)センサ部102から検出された信号の中央値を基準にして折り返す(全波整流)。
(2)前記(1)の波形に対して所定のフィルタ処理を行う。例えば、無限インパルス応答(infinite impulse response;IIR)フィルタを用い、低域側0.01Hz、高域側0.1Hzの4次のバンドパスフィルタ(band pass filter;BPF)を、順方向及び逆方向の両方でフィルタ処理する。
(3)前記(2)の波形について所定の閾値を設定する。例えば、前記(2)の波形の全データの平均値と標準偏差とを求め、その両者の和を閾値として設定する。
(4)前記(2)の波形について、前記(3)の閾値を超えた点が存在するエポックの数をカウントし、これを体動回数とする。
The number of body movements may be obtained by detecting a part where the output from the sensor unit 102 is larger than a predetermined threshold due to body movement. Although the method of obtaining is not particularly limited, an example is as follows.
(1) Folding is performed with reference to the median value of the signal detected from the sensor unit 102 (full-wave rectification).
(2) A predetermined filter process is performed on the waveform of (1). For example, an infinite impulse response (IIR) filter is used, and a fourth-order band pass filter (BPF) of 0.01 Hz on the low frequency side and 0.1 Hz on the high frequency side is used in the forward and reverse directions. Filter on both.
(3) A predetermined threshold is set for the waveform of (2). For example, an average value and a standard deviation of all data of the waveform of (2) are obtained, and the sum of both is set as a threshold value.
(4) For the waveform of (2), the number of epochs where points exceeding the threshold of (3) exist is counted, and this is taken as the number of body movements.
 続いて、CPU106は、図36のステップS1007における睡眠タイプ判定処理を実行する。なお、この処理は、睡眠タイプ判定部160としてのCPU106が、所定のプログラムに従って実行するものとして説明する。睡眠タイプ判定処理の一例を、図68を参照して説明する。図68は、睡眠タイプ判定を示すフローチャートである。
 図68に示すように、睡眠タイプ判定処理においては、上述のステップS1251~S1254で取得された4個の睡眠評価スコアである、睡眠深度スコア(第1主成分スコア)、睡眠周期スコア(第2主成分スコア)、睡眠時間スコア(第3主成分スコア)、中途覚醒スコア(第4主成分スコア)を、以下に示す式(54)~式(58)に代入し、第1判定値乃至第5判定値を算出する(ステップS1265~S1270)。なお、第1判定値は第1睡眠タイプの該当性を判定するための値、第2判定値は第2睡眠タイプの該当性を判定するための値、第3判定値は第3睡眠タイプの該当性を判定するための値、第4判定値は第4睡眠タイプの該当性を判定するための値、第5判定値は第5睡眠タイプの該当性を判定するための値である。
Subsequently, the CPU 106 executes sleep type determination processing in step S1007 in FIG. In addition, this process demonstrates as what CPU106 as the sleep type determination part 160 performs according to a predetermined program. An example of the sleep type determination process will be described with reference to FIG. FIG. 68 is a flowchart showing sleep type determination.
As shown in FIG. 68, in the sleep type determination process, the sleep depth score (first principal component score) and sleep cycle score (second score), which are the four sleep evaluation scores acquired in steps S1251 to S1254 described above. The principal component score), the sleep time score (third principal component score), and the midway awakening score (fourth principal component score) are substituted into the following formulas (54) to (58), and the first judgment value to the first judgment value 5 Determination values are calculated (steps S1265 to S1270). The first determination value is a value for determining the suitability of the first sleep type, the second determination value is a value for determining the suitability of the second sleep type, and the third determination value is the third sleep type. The value for determining the appropriateness, the fourth determination value are the values for determining the appropriateness of the fourth sleep type, and the fifth determination value is the value for determining the appropriateness of the fifth sleep type.
 第1判定値
= 係数V1a * 第1主成分スコア + 係数V2a * 第2主成分スコア + 係数V3a * 第3主成分スコア + 係数V4a * 第4主成分スコア  …式(54)
First judgment value = coefficient V1a * first principal component score + coefficient V2a * second principal component score + coefficient V3a * third principal component score + coefficient V4a * fourth principal component score (54)
 第2判定値
= 係数V1b * 第1主成分スコア + 係数V2b * 第2主成分スコア + 係数V3b * 第3主成分スコア + 係数V4b * 第4主成分スコア  …式(55)
Second determination value = coefficient V1b * first principal component score + coefficient V2b * second principal component score + coefficient V3b * third principal component score + coefficient V4b * fourth principal component score Equation (55)
 第3判定値
= 係数V1c * 第1主成分スコア + 係数V2c * 第2主成分スコア + 係数V3c * 第3主成分スコア + 係数V4c * 第4主成分スコア  …式(56)
Third judgment value = coefficient V1c * first principal component score + coefficient V2c * second principal component score + coefficient V3c * third principal component score + coefficient V4c * fourth principal component score (56)
 第4判定値
= 係数V1d * 第1主成分スコア + 係数V2d * 第2主成分スコア + 係数V3d * 第3主成分スコア + 係数V4d * 第4主成分スコア  …式(57)
Fourth determination value = coefficient V1d * first principal component score + coefficient V2d * second principal component score + coefficient V3d * third principal component score + coefficient V4d * fourth principal component score Equation (57)
 第5判定値
= 係数V1e * 第1主成分スコア + 係数V2e * 第2主成分スコア + 係数V3e * 第3主成分スコア + 係数V4e * 第4主成分スコア  …式(58)
Fifth judgment value = coefficient V1e * first principal component score + coefficient V2e * second principal component score + coefficient V3e * third principal component score + coefficient V4e * fourth principal component score (58)
 ここで、前記式(54)乃至式(58)における各係数は、上記の5種類の睡眠タイプのいずれに最も近いのかを判定するために予め設定された定数であり、記憶部109に記憶されている。CPU106は、それぞれの係数を記憶部109から読み出して、演算処理を実行する。第1乃至第5判定値と主成分スコアとの係数行列は、表5に示す通りである。 Here, each coefficient in the formulas (54) to (58) is a constant set in advance to determine which of the five types of sleep types is closest, and is stored in the storage unit 109. ing. The CPU 106 reads out each coefficient from the storage unit 109 and executes arithmetic processing. The coefficient matrix of the first to fifth determination values and the principal component score is as shown in Table 5.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 第1判定値乃至第5判定値を算出した後(ステップS1265~S1269)、最も大きな値である判定値を選定し、その判定値に対応する睡眠タイプを特定することによって、被験者の睡眠タイプが、第1睡眠タイプ乃至第5睡眠タイプのうちいずれに該当するのかを決定し(ステップS1270)、記憶部9に記憶する。ステップS1270の処理が終了すると、ルーチンは、図36のフローチャートに戻る。 After calculating the first determination value to the fifth determination value (steps S1265 to S1269), the determination value that is the largest value is selected, and the sleep type corresponding to the determination value is specified, whereby the sleep type of the subject is determined. Which of the first sleep type to the fifth sleep type is determined is determined (step S1270) and stored in the storage unit 9. When the process of step S1270 ends, the routine returns to the flowchart of FIG.
 次に、評価結果表示処理(ステップ1008、図36参照)について説明する。図69は、CPU106が実行する評価結果表示処理の内容を示すフローチャートであり、図70は、睡眠評価画面の一例であり、図71は、睡眠タイプ及びグラフ表示の表示画面の一例であり、図72は睡眠点数推移画面の一例である。 Next, the evaluation result display process (step 1008, see FIG. 36) will be described. 69 is a flowchart showing the contents of the evaluation result display process executed by the CPU 106, FIG. 70 is an example of a sleep evaluation screen, FIG. 71 is an example of a display screen of sleep type and graph display, 72 is an example of a sleep score transition screen.
 まず、CPU106は、睡眠点数比較処理を実行する(ステップS1271)。この睡眠点数比較処理では、睡眠点数演算処理で得られた睡眠点数Scoreを第1基準値W、第2基準値Yと比較して、睡眠点数Scoreを3段階に分ける。具体的には、ある母集団に含まれていた睡眠異常群の睡眠点数平均値+分散値を第1基準値W、睡眠健常群の睡眠点数平均値+分散値を第2基準値Yとしたとき、睡眠点数Scoreが第1基準値W以下の場合には第1区分、睡眠点数Scoreが第1基準値W上回り第2基準値Y以下の場合には第2区分、睡眠点数Scoreが第2基準値Yを上回る場合には、睡眠点数Scoreを第3区分に分類する。ここで、第1基準値Wは、ある母集団に含まれていた睡眠異常群の睡眠点数平均値+分散値であり、第2基準値Yは睡眠健常群の睡眠点数平均値+分散値である。これらの固定値W,Yは記憶部109に記憶されており、睡眠点数比較処理において読み出される。 First, the CPU 106 executes a sleep score comparison process (step S1271). In this sleep score comparison process, the sleep score Score obtained by the sleep score calculation process is compared with the first reference value W and the second reference value Y, and the sleep score Score is divided into three stages. Specifically, the sleep point average value + dispersion value of the sleep abnormal group included in a certain population is the first reference value W, and the sleep point average value + dispersion value of the healthy sleep group is the second reference value Y. When the sleep score Score is less than or equal to the first reference value W, the first division, and when the sleep score Score exceeds the first reference value W and is less than or equal to the second reference value Y, the second category and the sleep score Score When the reference value Y is exceeded, the sleep score Score is classified into the third category. Here, the first reference value W is the sleep point average value + dispersion value of the abnormal sleep group included in a certain population, and the second reference value Y is the sleep point average value + dispersion value of the healthy sleep group. is there. These fixed values W and Y are stored in the storage unit 109 and read out in the sleep score comparison process.
 次に、CPU106は、睡眠点数Scoreが第1区分に分類された場合には、表示部104に「悪い睡眠です」と表示し、睡眠点数Scoreが第2区分に分類された場合には「普通の睡眠です」と表示し、睡眠点数Scoreが第3区分に分類された場合には「良い睡眠です」と表示する(ステップS1272)。例えば、良い睡眠の場合は、図70に示す睡眠評価画面が、表示部104に表示される。この場合、CPU106は、睡眠点数比較処理の処理結果の他、ステップS1005及びステップS1006の処理結果を用いて、一回の睡眠の段階の遷移を併せて表示するのが好適である。睡眠点数Scoreの外にその区分を表示することによって、利用者は睡眠の質の大まかな良否を知ることができる。さらに、覚醒、浅い、深いといった睡眠の段階の時間経過が表示されるので、自己の体調管理などに役立てることが可能となる。 Next, the CPU 106 displays “bad sleep” on the display unit 104 when the sleep score Score is classified into the first category, and “normal” when the sleep score Score is classified as the second category. If the sleep score is classified into the third category, “Good sleep” is displayed (step S1272). For example, in the case of good sleep, the sleep evaluation screen shown in FIG. In this case, it is preferable that the CPU 106 displays the transition of one sleep stage together using the processing results of the step S1005 and step S1006 in addition to the processing result of the sleep score comparison processing. By displaying the category in addition to the sleep score, the user can know the quality of sleep quality. Furthermore, since the time course of the sleep stage such as awakening, shallowness, and deepness is displayed, it is possible to make use of it for self-condition management.
 次に、CPU106は、次画面を表示する操作がなされたか否かを判定し(ステップS1273)、操作がなされた場合には、上記の通り演算されて記憶部109に記憶されている睡眠評価スコア、即ち、睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)、体動頻度スコア(第5スコア)のグラフ表示と、該当する睡眠タイプを表示部104に表示する(ステップS1274)。グラフ表示は特に限定されるものではなく、一例としては、図71に示すように、中央から放射状に睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)、体動頻度スコア(第5スコア)の軸をとったレーダーチャートとする。このように、複数のスコアの状態を可視化して、睡眠点数の分析及び自己評価を容易に行うことができるものとなる。即ち、睡眠点数という数値がいかなる要因によって低いものであったのか(又は高かいものであったのか)を、睡眠深度、睡眠周期、睡眠時間、中途覚醒、体動頻度等の各観点から判断でき、何を改善すれば睡眠点数の向上に繋がるのか、といった改善点を見出しやすくなる。更に、予め複数設定されている代表的な睡眠タイプのうち、被験者の睡眠がいずれの睡眠タイプに該当するものであったか、という評価を表示することにより、被験者自身は自己の睡眠がいかなるものであったのかを極めて容易に理解できるものとなる。また、睡眠タイプの名称として、直感的に分かり易い名称を採用して表示するようにすれば、被験者は自身の睡眠状態をイメージしやすくなるので好適である。例えば、中途覚醒スコアが高い睡眠タイプについて「ギラギラ」、体動頻度スコアが高い睡眠タイプに「ゴロゴロ」、睡眠深度スコアの高低に応じて「ぐっすり」又は「ウトウト」、睡眠時間スコアの高低に応じて「長時間」又は「短時間」としたり、これらを適宜組み合わせた名称を採択してもよい。 Next, the CPU 106 determines whether or not an operation for displaying the next screen has been performed (step S1273). If the operation has been performed, the sleep evaluation score calculated and stored in the storage unit 109 is as described above. That is, graphs of a sleep depth score (first score), a sleep cycle score (second score), a sleep time score (third score), an awakening score (fourth score), and a body movement frequency score (fifth score) The display and the corresponding sleep type are displayed on the display unit 104 (step S1274). The graph display is not particularly limited. As an example, as shown in FIG. 71, the sleep depth score (first score), the sleep cycle score (second score), and the sleep time score (third) are radiated from the center. A radar chart having axes of (score), midway awakening score (fourth score), and body movement frequency score (fifth score). Thus, the state of a some score can be visualized and a sleep score can be analyzed and self-evaluation can be easily performed. That is, it is possible to determine whether the number of sleep points is low (or high) due to various factors such as sleep depth, sleep cycle, sleep time, mid-wake awakening, body movement frequency, etc. It becomes easier to find improvements such as what will lead to an improvement in the number of sleep points. In addition, by displaying an evaluation of which sleep type the subject's sleep corresponds to among the representative sleep types that are set in advance, the subject himself / herself is what his / her sleep is. It will be very easy to understand. In addition, it is preferable to adopt and display an intuitively easy-to-understand name as the sleep type name because the subject can easily imagine his / her sleep state. For example, “Gira Gira” for sleep types with a high midway awakening score, “Grogro” for sleep types with a high body movement frequency score, “Good” or “Utoto” depending on the level of sleep depth score, Depending on the level of sleep time score Thus, “long time” or “short time” may be used, or a combination of these may be adopted as appropriate.
 次に、CPU106は、次画面を表示する操作がなされたか否かを判定し(ステップS1276)、操作がなされた場合には、記憶部109に記憶された睡眠点数Scoreに基づいてその平均値と分散値とを演算し(ステップS1276)、さらに睡眠点数推移画面を表示部104に表示する(ステップS1277)。例えば、図72に示すように縦軸に睡眠点数Score、横軸に日付を取った棒グラフとする。この場合、睡眠点数ScoreがステップS1276で算出した平均値+分散値以下であれば、棒グラフに色を付けて表示する。これによって、利用者は睡眠の質が悪かった日を知ることができ、体調管理に役立てることができる。 Next, the CPU 106 determines whether or not an operation for displaying the next screen has been performed (step S1276). If the operation has been performed, the CPU 106 determines the average value based on the sleep score Score stored in the storage unit 109. The variance value is calculated (step S1276), and a sleep score transition screen is displayed on the display unit 104 (step S1277). For example, as shown in FIG. 72, it is assumed that the vertical axis represents a sleep score Score and the horizontal axis represents a date. In this case, if the sleep score Score is equal to or less than the average value + dispersion value calculated in step S1276, the bar graph is colored and displayed. Thereby, the user can know the day when the quality of sleep was bad, and can use it for physical condition management.
 次に、CPU106は、次画面を表示する操作がなされたか否かを判定し(ステップS1278)、操作がなされた場合には、処理を終了する。 Next, the CPU 106 determines whether or not an operation for displaying the next screen has been performed (step S1278), and when the operation has been performed, the processing ends.
 本発明によれば、所定項目の1つとして深睡眠率(%)を選定したため、睡眠の質を評価するための回帰式に深睡眠率が反映されており、睡眠の深さに係る評価能力が向上される。図73は、睡眠点数に関する従来技術と本発明との比較を示すグラフであり、(a)は、従来の睡眠点数と深睡眠率との相関を示すグラフ、(b)は、本発明の睡眠点数と深睡眠率との相関を示すグラフである。従来技術による睡眠点数としては出願人製品の睡眠評価装置(スリープスキャンSL-501)を用いた。また、縦軸の深睡眠率(%)は、(a)及び(b)共に、前記出願人製品の睡眠評価装置による測定結果を用いている。従来の睡眠点数と深睡眠率との相関(図73(a))よりも、本発明の睡眠点数と深睡眠率との相関(図73(b))の方がよいことが明らかであり、睡眠の質の評価において重要な、睡眠の深さに係る項目、睡眠のリズムに係る項目、中途覚醒に係る項目のうち、睡眠の深さに係る項目の評価能力を向上することができる。 According to the present invention, since the deep sleep rate (%) is selected as one of the predetermined items, the deep sleep rate is reflected in the regression equation for evaluating the quality of sleep, and the evaluation ability related to the sleep depth Is improved. FIG. 73 is a graph showing a comparison between the related art regarding the sleep score and the present invention, wherein (a) is a graph showing the correlation between the conventional sleep score and the deep sleep rate, and (b) is a sleep according to the present invention. It is a graph which shows the correlation with a score and a deep sleep rate. The sleep evaluation device (Sleep Scan SL-501) manufactured by the applicant was used as the sleep score according to the prior art. Further, the deep sleep rate (%) on the vertical axis uses the measurement results obtained by the sleep evaluation device of the applicant's product for both (a) and (b). It is clear that the correlation between the sleep score of the present invention and the deep sleep rate (FIG. 73 (b)) is better than the correlation between the conventional sleep score and the deep sleep rate (FIG. 73 (a)), Among items related to sleep quality, items related to sleep depth, items related to sleep rhythm, and items related to awakening during sleep, the ability to evaluate items related to sleep depth can be improved.
 本発明によれば、SAS患者のような睡眠障害者である確率(睡眠障害判別確率)を算出し、これを反映して睡眠点数を演算するので、睡眠障害者と健常者とで、睡眠の質の評価結果に違いを持たせることができる。図74は、睡眠点数に関する従来技術と本発明との比較を示すグラフである。従来技術としては出願人製品の睡眠評価装置(スリープスキャンSL-501)を用いた。本発明によれば、SAS患者の睡眠点数と健常者の睡眠点数との違いが、従来技術の場合よりも顕著に表れていることがみてとれる。 According to the present invention, the probability of being a sleep disorder person such as a SAS patient (sleep disorder discrimination probability) is calculated, and the sleep score is calculated by reflecting this, so the sleep disorder person and the healthy person can sleep. Differences in quality assessment results can be made. FIG. 74 is a graph showing a comparison between the related art relating to the sleep score and the present invention. As a prior art, a sleep evaluation device (Sleep Scan SL-501) manufactured by the applicant is used. According to the present invention, it can be seen that the difference between the sleep score of a SAS patient and the sleep score of a healthy person appears more markedly than in the case of the prior art.
[第3実施形態の変形例1]
 上記の第3実施形態では、睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)、体動頻度スコア(第5スコア)の5つのスコアを求め、これらに基づいて睡眠タイプを決定し、一例として5角形のレーダーチャート及び該当する睡眠タイプを表示するものを説明した(図71)。これに対して、睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)の4つのスコアを求め、これらに基づいて睡眠タイプを決定し、菱形のレーダーチャート及び該当する睡眠タイプを表示するようにしてもよい。
[Modification 1 of the third embodiment]
In the third embodiment, the sleep depth score (first score), the sleep cycle score (second score), the sleep time score (third score), the midway awakening score (fourth score), and the body movement frequency score (first score) 5 scores) were determined, the sleep type was determined based on them, and a pentagonal radar chart and the corresponding sleep type were displayed as an example (FIG. 71). On the other hand, four scores of a sleep depth score (first score), a sleep cycle score (second score), a sleep time score (third score), and a midway awakening score (fourth score) are obtained and based on them. Then, the sleep type may be determined, and the rhombus radar chart and the corresponding sleep type may be displayed.
[第3実施形態の変形例2]
 また、睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)、体動頻度スコア(第5スコア)に加え、第6スコアとして睡眠習慣スコアをも含めた6つのスコアを求め、6角形のレーダーチャートを表示するようにしてもよい。以下、これについて説明する。
[Modification 2 of the third embodiment]
In addition to the sleep depth score (first score), sleep cycle score (second score), sleep time score (third score), mid-wake awakening score (fourth score), body movement frequency score (fifth score), Six scores including the sleep habit score may be obtained as the sixth score, and a hexagonal radar chart may be displayed. This will be described below.
 睡眠習慣スコアとは、所定日数分の睡眠記録における各日の就寝時刻及び起床時刻に基づいて算出されるスコアである。この睡眠習慣スコアは、より具体的には、一例として後述のようにして決定される就寝時刻スコアと起床時刻スコアとの平均値として求める。図75乃至図83に基づいて、睡眠習慣スコア、就寝時刻スコア、起床時刻スコアについて説明する。図75、図78、図80、図82は、睡眠日誌の例を示す図、図76、図79、図81、図83は、就寝時間テーブル及び起床時間テーブルの例を示す図、図77は、睡眠習慣パターンテーブルの例を示す図である。 The sleep habit score is a score calculated based on the bedtime and wake-up time of each day in the sleep record for a predetermined number of days. More specifically, the sleep habit score is obtained as an average value of a bedtime score and a wake-up time score determined as described below as an example. Based on FIG. 75 thru | or FIG. 83, a sleep habit score, a bedtime score, and a wake-up time score are demonstrated. 75, FIG. 78, FIG. 80, and FIG. 82 are diagrams showing examples of sleep diaries, FIG. 76, FIG. 79, FIG. 81, and FIG. It is a figure which shows the example of a sleep habit pattern table.
 本発明による睡眠評価装置101は、被験者について測定した睡眠に関するデータを、睡眠日誌(睡眠記録)として集計して、記憶部109に記憶しておく。睡眠日誌の一例としては、図75に示すような睡眠日誌SDが挙げられる。第1日の記録である項番1の行を参照すると、この被験者は、23時から24時までの間に就寝し、翌日の6時から7時までの間に起床したことを示しており、同様に、その後も、就寝時刻及び起床時刻は一定していることが分かる。睡眠評価装置101は、このような睡眠日誌SDに沿って、就寝時刻スコア及び起床時刻スコアを算出する。 The sleep evaluation apparatus 101 according to the present invention aggregates data related to sleep measured for a subject as a sleep diary (sleep record) and stores it in the storage unit 109. As an example of the sleep diary, there is a sleep diary SD 1 as shown in FIG. Referring to the row of No. 1 which is the record of the first day, this subject shows that he went to sleep from 23:00 to 24:00 and got up from 6 to 7 on the next day. Similarly, it can be seen that the bedtime and the wake-up time remain constant thereafter. Sleep evaluation device 101, along such sleep diary SD 1, to calculate the bedtime score and wake-up time score.
 就寝時刻スコア及び起床時刻スコアを算出するために、睡眠日誌SDの結果を反映する就寝時刻テーブルST及び起床時刻テーブルWT(図76参照)に示す要領で、所定日数の間に観測された最も多い就寝時刻及び起床時刻を求める。本実施例では、睡眠習慣スコアを決定する所定日数として直近7日間である例を示し、そのため、図76に示すように、就寝時刻テーブルST及び起床時刻テーブルWTは、いずれも、24時間を示す24列と、7日間を示す7行と、により構成されている。 To calculate the bedtime score and wake-up time scores, in a manner shown in bedtime table ST 1 and the rising time table WT 1 (see FIG. 76) to reflect the result of sleep diary SD 1, it is observed during the predetermined number of days Find the most frequent bedtime and wake-up time. In this embodiment, an example is a last seven days as a predetermined number of days to determine the sleep habits score, therefore, as shown in FIG. 76, bedtime table ST 1 and the rising time table WT 1, both, 24 hours 24 columns indicating 7 days and 7 rows indicating 7 days.
 睡眠日誌SDにおいて、直近7日分が記録された後、睡眠評価装置101は、その直近7日分の記録に沿って、就寝時刻スコア及び起床時刻スコアを算出する。即ち、睡眠日誌SDの項番1乃至項番7までが記録された後、睡眠評価装置101は、その項番1乃至項番7までの記録に沿って、就寝時刻テーブルST及び起床時刻テーブルWTに入力を行う。なお、次の日には、睡眠日誌SDには項番8までが記録されるため、睡眠評価装置101は、最も古い項番1の記録を除外して、項番2乃至項番8までの記録に沿って、就寝時刻スコア及び起床時刻スコアを算出することとする。 In the sleep diary SD 1 , after the latest seven days are recorded, the sleep evaluation apparatus 101 calculates a bedtime time score and a wake-up time score along the record for the latest seven days. That is, after the items No. 1 to No. 7 of the sleep diary SD 1 are recorded, the sleep evaluation apparatus 101 performs the bedtime table ST 1 and the wake-up time according to the records of the items No. 1 to No. 7. performing an input to the table WT 1. Note that, on the next day, items up to item number 8 are recorded in the sleep diary SD 1 , so the sleep evaluation apparatus 101 excludes the record of item number 1 that is the oldest, and item numbers 2 through item number 8 are excluded. The bedtime score and the wake-up time score are calculated along with the record.
 睡眠日誌SDの項番1によれば、就寝時間は23時から24時の間であるので、図76に示すように、睡眠評価装置101は、就寝時刻テーブルSTの項番1の、23時から24時の時間帯に対応した列12に「1」を入力する。同様に、睡眠日誌SDの項番1によれば、起床時間は6時から7時の間であるので、睡眠評価装置101は、起床時刻テーブルWTの項番1の、6時から7時の時間帯に対応した列19に「1」を入力する。同様にして、睡眠評価装置101は、睡眠日誌SDの項番2から項番7までの記録に対応させて、就寝時刻テーブルST及び起床時刻テーブルWTの項番2から項番7に入力を行う。 According to item 1 sleep diary SD 1, so bedtime is a 24 o'clock starting at 23, as shown in FIG. 76, the sleep evaluation device 101, the item number 1 bedtime table ST 1, 23:00 “1” is input to the column 12 corresponding to the time zone of 24:00. Similarly, according to item No. 1 of the sleep diary SD 1 , the wake-up time is between 6 o'clock and 7 o'clock, so that the sleep evaluation apparatus 101 has the item number 1 of the wake-up time table WT 1 from 6 o'clock to 7 o'clock. Enter “1” in column 19 corresponding to the time zone. Similarly, the sleep evaluation apparatus 101 corresponds to the records from No. 2 to No. 7 of the sleep diary SD 1 and from No. 2 to No. 7 of the bedtime table ST 1 and the wake-up time table WT 1. Make input.
 就寝時刻テーブルST及び起床時刻テーブルWTの項番1乃至項番7への入力後、睡眠評価装置101は、各列の合計値sumST、sumWTを算出し、また、それらのsumST、sumWTの中から最大値を検出する。図76に示す例によれば、sumSTの最大値は列12の「7」、sumWTの最大値は列19の「7」、と検出される。更に、睡眠評価装置101は、検出された最大値を示す列の直前の列及び直後の列におけるsumST、sumWTをも検出する。この結果、図76の就寝時刻テーブルSTでは、列11、12、13より「0-7-0」(3値の合計値は「7」)というパターンのsumSTが検出され、同様に、起床時刻テーブルWTでは、列18、19、20より「0-7-0」(3値の合計値は「7」)というパターンのsumWTが検出されることとなる。ここで、sumST、sumWTの最大値を検出することにより、所定日数(例えば7日間)において、最も多かった就寝時刻及び起床時刻、を把握することが可能となる。また、sumST、sumWTの最大値を示す列の直前の列及び直後の列のsumST、sumWTをも検出して睡眠習慣スコアの基礎とするのは、就寝時刻や起床時刻の1時間以内の差異は、睡眠習慣を検討する上では許容可能な範囲であるからである。毎日規則正しい就寝及び起床をしている被験者の場合、sumST及びsumWTの各最大値は、それぞれ所定日数に相当する数(図76では「7」)となる。しかしながら、不規則な就寝及び起床をしている被験者の場合は、ばらつきが生じるため、sumST及びsumWTの各最大値は、所定日数に相当する数(図76では「7」)に満たないことになる。 After the input to bedtime table ST 1 and the rising time table WT 1 of No. 1 to No. 7, sleep evaluation device 101, the total value SumST of each column, calculates a SumWT, also, their SumST, the SumWT The maximum value is detected from the inside. According to the example shown in FIG. 76, the maximum value of sumST is detected as “7” in column 12, and the maximum value of sumWT is detected as “7” in column 19. Furthermore, the sleep evaluation apparatus 101 also detects sumST and sumWT in the column immediately before and the column immediately after the column indicating the detected maximum value. As a result, the bedtime table ST 1 in FIG. 76, "0-7-0" than columns 11, 12 and 13 (sum of 3 values "7") SumST pattern that is detected, similarly, waking In the time table WT 1 , a sumWT having a pattern of “0-7-0” (the total value of the three values is “7”) is detected from the columns 18, 19, and 20. Here, by detecting the maximum values of sumST and sumWT, it is possible to grasp the bedtime and the wake-up time that were most common in a predetermined number of days (for example, 7 days). Also, the difference between the bedtime and the wake-up time within one hour is the basis of the sleep habit score by detecting sumST and sumWT in the column immediately before and after the column indicating the maximum value of sumST and sumWT. This is because it is an acceptable range in examining sleep habits. In the case of a subject who regularly goes to bed and wakes up every day, each maximum value of sumST and sumWT is a number corresponding to a predetermined number of days (“7” in FIG. 76). However, in the case of subjects sleeping irregularly and getting up, variation occurs, so that the maximum values of sumST and sumWT are less than the number corresponding to the predetermined number of days (“7” in FIG. 76). Become.
 睡眠評価装置101は、前記のように検出された、sumSTの最大値、その直前の列におけるsumST、及び、直後の列におけるsumSTからなるパターン(前記例によれば「0-7-0」(3値の合計値は「7」))を、予め記憶部109に記憶されている睡眠習慣パターンテーブルと照合し、一致するパターンに対応する点数を「就寝時刻スコア」として決定する。同様に、睡眠評価装置101は、sumWTの最大値、その直前の列におけるsumWT、及び、直後の列におけるsumWTからなるパターン(前記例によれば「0-7-0」(3値の合計値は「7」))を、睡眠習慣パターンテーブルと照合し、一致するパターンに対応する点数を「起床時刻スコア」として決定する。 The sleep evaluation apparatus 101 detects the pattern including the maximum value of sumST, the sumST in the immediately preceding column, and the sumST in the immediately following column (“0-7-0” (according to the above example) ( The total value of the three values is “7”)) against the sleep habit pattern table stored in the storage unit 109 in advance, and the score corresponding to the matching pattern is determined as the “sleeping time score”. Similarly, the sleep evaluation apparatus 101 uses the pattern of the maximum value of sumWT, the sumWT in the immediately preceding column, and the sumWT in the immediately following column (“0-7-0” according to the above example) Is compared with the sleep habit pattern table and the score corresponding to the matching pattern is determined as the “wake-up time score”.
 ここで、図77を参照して、睡眠習慣パターンテーブルについて説明する。図77に示すように、睡眠習慣パターンテーブルは、sumST(sumWT)の最大値、その直前の列におけるsumST(sumWT)、及び、直後の列におけるsumST(sumWT)からなる総てのパターンに対応させて、「起床時刻スコア」である点数が定まるように設定されている。テーブルの上位に位置するパターンは、就寝時刻(起床時刻)が一定して規則正しい睡眠習慣と評価でき、これらに対しては点数が高く設定されている。一方、テーブルの下位に位置するパターンは、就寝時刻(起床時刻)にばらつきがあり不規則な睡眠習慣と評価でき、これらに対しては点数が低く設定されている。 Here, the sleep habit pattern table will be described with reference to FIG. As shown in FIG. 77, the sleep habit pattern table is associated with all the patterns including the maximum value of sumST (sumWT), sumST (sumWT) in the immediately preceding column, and sumST (sumWT) in the immediately following column. Thus, the score that is the “wake-up time score” is set. Patterns located at the top of the table can be evaluated as regular sleeping habits with a constant bedtime (wake-up time), and are scored high for these. On the other hand, the patterns located in the lower part of the table can be evaluated as irregular sleeping habits with variations in bedtime (wake-up time), and the score is set low for these patterns.
 睡眠評価装置101は、sumSTの最大値、その直前の列におけるsumST、及び、直後の列におけるsumSTからなるパターン(前記例によれば「0-7-0」(3値の合計値は「7」))を、睡眠習慣パターンテーブルと照合し、パターンナンバー1と一致するため、これに対応する点数「10」を「就寝時刻スコア」として決定する。同様に、睡眠評価装置101は、sumWTの最大値、その直前の列におけるsumWT、及び、直後の列におけるsumWTからなるパターン(前記例によれば「0-7-0」(3値の合計値は「7」))を、睡眠習慣パターンテーブルと照合し、パターンナンバー1と一致するため、これに対応する点数「10」を「起床時刻スコア」として決定する。 The sleep evaluation apparatus 101 has a pattern consisting of the maximum sumST value, the sumST in the immediately preceding column, and the sumST in the immediately following column (“0-7-0” according to the above example (the total value of the three values is “7 ))) Is compared with the sleep habit pattern table and matches the pattern number 1, and the score “10” corresponding to this is determined as the “sleeping time score”. Similarly, the sleep evaluation apparatus 101 uses the pattern of the maximum value of sumWT, the sumWT in the immediately preceding column, and the sumWT in the immediately following column (“0-7-0” according to the above example) "7")) is compared with the sleep habit pattern table and matches the pattern number 1, so the score "10" corresponding to this is determined as the "wake-up time score".
 睡眠評価装置101は、以上のように決定した、就寝時刻スコア(前記例では「10」)と起床時刻スコア(前記例では「10」)との平均値を算出し、その平均値(前記例では「10」)を「睡眠習慣スコア」として決定し、記憶部109に記憶する。 The sleep evaluation apparatus 101 calculates the average value of the bedtime score (“10” in the above example) and the wake-up time score (“10” in the above example) determined as described above, and the average value (in the above example) Then, “10”) is determined as the “sleep habit score” and stored in the storage unit 109.
 図76の睡眠日誌SD、図76の就寝時間テーブルST及び起床時間テーブルWTに基づいて上述した例は、最も規則正しい睡眠習慣を実践している被験者の場合である。以下、別の睡眠習慣の被験者の例を説明する。 The example described above based on the sleep diary SD 1 in FIG. 76 and the bedtime table ST 1 and the wake-up time table WT 1 in FIG. 76 is a case of a subject who practices the most regular sleep habits. Hereinafter, the example of the test subject of another sleep habit is demonstrated.
 図78に示す睡眠日誌SDは、一般的に休日であることが多い土曜日及び日曜日における就寝及び起床が、月曜日乃至金曜日における就寝及び起床よりも遅くなる被験者の例を示している。このような睡眠日誌SDにおいて、項番8までの記録がなされた後に、直近7日間の(即ち項番2乃至項番8の)記録に沿って、就寝時刻スコア及び起床時刻スコアを算出する例を説明する。 Sleep diary SD 2 shown in FIG. 78 is generally going to bed and getting up at the Saturday and Sunday it is often a holiday is, shows an example of a slower subjects than going to bed and wake up in Monday through Friday. In such a sleep diary SD 2 , after the recording up to item number 8 is made, the bedtime time score and the wake-up time score are calculated according to the records for the most recent 7 days (ie, item numbers 2 to 8). An example will be described.
 睡眠日誌SDの項番2によれば、就寝時間は23時から24時の間であるので、図79に示すように、睡眠評価装置101は、就寝時刻テーブルSTの項番1の、23時から24時の時間帯に対応した列12に「1」を入力する。同様に、睡眠日誌SDの項番2によれば、起床時間は6時から7時の間であるので、睡眠評価装置101は、起床時刻テーブルWTの項番1の、6時から7時の時間帯に対応した列19に「1」を入力する。同様にして、睡眠評価装置101は、睡眠日誌SDの項番3から項番5までの記録に対応させて、就寝時刻テーブルST及び起床時刻テーブルWTの項番2から項番4に入力を行う。睡眠日誌SDの項番6によれば、就寝時間は1時から2時の間であるので、睡眠評価装置101は、就寝時刻テーブルSTの項番5の、1時から2時の時間帯に対応した列14に「1」を入力する。同様に、睡眠日誌SDの項番6によれば、起床時間は8時から9時の間であるので、睡眠評価装置101は、起床時刻テーブルWTの項番5の、8時から9時の時間帯に対応した列21に「1」を入力する。同様にして、睡眠評価装置101は、睡眠日誌SDの項番7、項番8の記録に対応させて、就寝時刻テーブルST及び起床時刻テーブルWTの項番6、項番7に入力を行う。 According to item 2 of sleep diary SD 2, so bedtime is a 24 o'clock starting at 23, as shown in FIG. 79, the sleep evaluation device 101, the item number 1 bedtime table ST 2, 23:00 “1” is input to the column 12 corresponding to the time zone of 24:00. Similarly, according to item No. 2 of the sleep diary SD 2 , the wake-up time is between 6 o'clock and 7 o'clock, so the sleep evaluation apparatus 101 can be used for the item No. 1 of the wake-up time table WT 2 from 6 o'clock to 7 o'clock. Enter “1” in column 19 corresponding to the time zone. Similarly, sleep evaluation device 101, in correspondence with the recording from No. 3 sleep diary SD 2 to No. 5, to No. 4 from No. 2 bedtime table ST 2 and the rising time table WT 2 Make input. According to No. 6 of sleep diary SD 2, so bedtime is 2 o'clock starting at 1, sleep evaluation device 101, the item number 5 bedtime table ST 2, the time zone of the 2 o'clock 1 Enter “1” in the corresponding column 14. Similarly, according to item number 6 of the sleep diary SD 2 , the wake-up time is between 8 o'clock and 9 o'clock, so the sleep evaluation device 101 is the number of items 5 in the wake-up time table WT 2 from 8 o'clock to 9 o'clock. Enter “1” in the column 21 corresponding to the time zone. Similarly, sleep evaluation device 101, No. 7 sleep diary SD 2, in correspondence with the recording of item No. 8, the input No. 6. bedtime table ST 2 and the rising time table WT 2, the No. 7 I do.
 就寝時刻テーブルST及び起床時刻テーブルWTの項番1乃至項番7への入力後、睡眠評価装置101は、各列の合計値sumST、sumWTを算出し、また、それらのsumST、sumWTの中から最大値を検出する。図79に示す例によれば、sumSTの最大値は列12の「5」、sumWTの最大値は列19の「5」、と検出される。更に、睡眠評価装置101は、検出された最大値を示す列の直前の列及び直後の列におけるsumST、sumWTをも検出する。この結果、図79の就寝時刻テーブルSTでは、列11、12、13より「0-5-0」(3値の合計値は「5」)というパターンのsumSTが検出され、同様に、起床時刻テーブルWTでは、列18、19、20より「0-5-0」(3値の合計値は「5」)というパターンのsumWTが検出されることとなる。 After the input to bedtime table ST 2 and the rising time table WT 2 of No. 1 to No. 7, sleep evaluation device 101, the total value SumST of each column, calculates a SumWT, also, their SumST, the SumWT The maximum value is detected from the inside. According to the example shown in FIG. 79, the maximum value of sumST is detected as “5” in column 12, and the maximum value of sumWT is detected as “5” in column 19. Furthermore, the sleep evaluation apparatus 101 also detects sumST and sumWT in the column immediately before and the column immediately after the column indicating the detected maximum value. As a result, the bedtime table ST 2 of FIG. 79, "0-5-0" than columns 11, 12 and 13 (sum of 3 values "5") SumST pattern that is detected, similarly, waking In the time table WT 2 , a sumWT having a pattern of “0-5-0” (the total value of the three values is “5”) is detected from the columns 18, 19, and 20.
 睡眠評価装置101は、sumSTの最大値、その直前の列におけるsumST、及び、直後の列におけるsumSTからなるパターン「0-5-0」(3値の合計値は「5」)を、睡眠習慣パターンテーブルと照合し、パターンナンバー25と一致するため、これに対応する点数「6」を「就寝時刻スコア」として決定する。同様に、睡眠評価装置101は、sumWTの最大値、その直前の列におけるsumWT、及び、直後の列におけるsumWTからなるパターン「0-5-0」(3値の合計値は「5」)を、睡眠習慣パターンテーブルと照合し、パターンナンバー25と一致するため、これに対応する点数「6」を「起床時刻スコア」として決定する。睡眠評価装置101は、以上のように決定した、就寝時刻スコア「6」と起床時刻スコア「6」との平均値を算出し、その平均値「6」を「睡眠習慣スコア」として決定し、記憶部109に記憶する。 The sleep evaluation apparatus 101 displays a pattern “0-5-0” (sum of three values is “5”) including the maximum value of sumST, sumST in the immediately preceding column, and sumST in the immediately following column, Since it matches with the pattern number 25 by matching with the pattern table, the score “6” corresponding to this is determined as the “sleeping time score”. Similarly, the sleep evaluation apparatus 101 displays the pattern “0-5-0” (the total value of the three values is “5”) including the maximum value of sumWT, the sumWT in the immediately preceding column, and the sumWT in the immediately following column. Since it matches with the sleep habit pattern table and matches the pattern number 25, the score “6” corresponding thereto is determined as the “wake-up time score”. The sleep evaluation apparatus 101 calculates the average value of the bedtime score “6” and the wake-up time score “6” determined as described above, determines the average value “6” as the “sleep habit score”, Store in the storage unit 109.
 図80に示す睡眠日誌SDは、就寝及び起床が日毎に遅くなる被験者の例を示している。このような睡眠日誌SDにおいて、項番7までの記録がなされた後に、直近7日間の(即ち項番1乃至項番7の)記録に沿って、就寝時刻スコア及び起床時刻スコアを算出する例を説明する。 Sleep Diary SD 3 shown in FIG. 80 shows an example of a subject sleeping and waking Slows daily. In such a sleep diary SD 3 , after the recording up to item No. 7 is made, the bedtime time score and the wake-up time score are calculated along the records for the most recent 7 days (ie, item Nos. 1 to 7). An example will be described.
 睡眠日誌SDの項番1乃至項番7に沿って、図81に示すように、睡眠評価装置101は、就寝時刻テーブルSTの項番1乃至項番7、起床時刻テーブルWTの項番1乃至項番7に入力する。 Along No. 1 to No. 7 sleep diary SD 3, as shown in FIG. 81, the sleep evaluation device 101, No. 1 to No. 7 bedtime table ST 3, section rising time table WT 3 Enter in No. 1 to No. 7.
 図81に示す例によれば、sumSTの最大値は列12乃至列18の「1」、sumWTの最大値は列19乃至列24及び列1の「1」、と検出される。更に、睡眠評価装置101は、検出された最大値を示す列の直前の列及び直後の列におけるsumST、sumWTをも検出する。この結果、図81の就寝時刻テーブルST及び起床時刻テーブルWTでは、「0-1-1」(3値の合計値は「2」)、「1-1-1」(3値の合計値は「3」)、「1-1-0」(3値の合計値は「2」)のいずれかのパターンのsumST、sumWTが検出されることとなる。 In the example shown in FIG. 81, the maximum value of sumST is detected as “1” in columns 12 to 18, and the maximum value of sumWT is detected as “1” in columns 19 to 24 and column 1. Furthermore, the sleep evaluation apparatus 101 also detects sumST and sumWT in the column immediately before and the column immediately after the column indicating the detected maximum value. As a result, in the bedtime table ST 3 and the wake-up time table WT 3 in FIG. 81, “0-1-1” (total value of three values is “2”), “1-1-1” (total of three values) A sumST or sumWT of any pattern of “3”) or “1-1-0” (the total value of the three values is “2”) is detected.
 睡眠評価装置101は、sumST(sumWT)の最大値、その直前の列におけるsumST(sumWT)、及び、直後の列におけるsumST(sumWT)からなるパターン「0-1-1」、「1-1-1」、「1-1-0」を、睡眠習慣パターンテーブルと照合し、少なくともパターンナンバー42、44、45のいずれかと一致すると判断する。このように、複数のパターンナンバーと一致する場合においては、睡眠習慣パターンテーブルの上位の条件(3値の合計値の高いパターン)を優先して適用する、という条件付けを行っておく。これにより、パターンナンバー42が適用されて、これに対応する点数「0」を「就寝時刻スコア」(「起床時刻スコア」)として決定する。睡眠評価装置101は、以上のように決定した、就寝時刻スコア「0」と起床時刻スコア「0」との平均値を算出し、その平均値「0」を「睡眠習慣スコア」として決定し、記憶部109に記憶する。 The sleep evaluation apparatus 101 includes patterns “0-1-1” and “1-1-1-” including the maximum value of sumST (sumWT), sumST (sumWT) in the immediately preceding column, and sumST (sumWT) in the immediately following column. “1” and “1-1-0” are checked against the sleep habit pattern table and determined to match at least one of pattern numbers 42, 44, and 45. As described above, in the case of matching with a plurality of pattern numbers, a condition is given that a higher-order condition (a pattern having a high ternary total value) is preferentially applied in the sleep habit pattern table. Thereby, the pattern number 42 is applied, and the score “0” corresponding to this is determined as the “sleeping time score” (“wake-up time score”). The sleep evaluation apparatus 101 calculates the average value of the bedtime time score “0” and the wake-up time score “0” determined as described above, determines the average value “0” as the “sleep habit score”, Store in the storage unit 109.
 図82に示す睡眠日誌SDは、就寝及び起床が日毎にランダムな被験者の例を示している。このような睡眠日誌SDにおいて、項番8までの記録がなされた後に、直近7日間の(即ち項番2乃至項番8の)記録に沿って、就寝時刻スコア及び起床時刻スコアを算出する例を説明する。 Sleep diary SD 4 shown in FIG. 82 shows an example of a random subject bedtime and wake-up is daily. In such a sleep diary SD 4 , after the records up to item number 8 are made, the bedtime time score and the wake-up time score are calculated according to the records for the most recent 7 days (that is, item numbers 2 to 8). An example will be described.
 睡眠日誌SDの項番2乃至項番8に沿って、図83に示すように、睡眠評価装置101は、就寝時刻テーブルSTの項番1乃至項番7、起床時刻テーブルWTの項番1乃至項番7に入力する。 Along No. 2 to No. 8 of the sleep diary SD 4, as shown in FIG. 83, the sleep evaluation device 101, No. 1 to No. 7 bedtime table ST 4, section rising time table WT 4 Enter in No. 1 to No. 7.
 図83に示す例によれば、sumSTの最大値は列11、列12、列14の「2」、sumWTの最大値は列19の「4」、と検出される。更に、睡眠評価装置101は、検出された最大値を示す列の直前の列及び直後の列におけるsumST、sumWTをも検出する。この結果、図81の就寝時刻テーブルSTでは、「0-2-2」(3値の合計値は「4」)、「2-2-1」(3値の合計値は「5」)、「1-2-0」(3値の合計値は「3」)のいずれかのパターンのsumSTが検出され、起床時刻テーブルSTでは、「0-4-1」のパターンのsumWTが検出されることとなる。 According to the example shown in FIG. 83, the maximum value of sumST is detected as “2” in columns 11, 12, and 14, and the maximum value of sumWT is detected as “4” in column 19. Furthermore, the sleep evaluation apparatus 101 also detects sumST and sumWT in the column immediately before and the column immediately after the column indicating the detected maximum value. As a result, the bedtime table ST 4 in FIG. 81, "0-2-2" (the sum of 3 values "4"), "2-2-1" (the sum of 3 values "5") "1-2-0" (the sum of 3 values "3") SumST of any pattern are detected, the wake-up time table ST 4, sumWT the pattern of "0-4-1" is detected Will be.
 睡眠評価装置101は、sumSTの最大値、その直前の列におけるsumST、及び、直後の列におけるsumSTからなるパターン「0-2-2」、「2-2-1」、「1-2-0」を、睡眠習慣パターンテーブルと照合し、少なくともパターンナンバー36、32、41のいずれかと一致すると判断する。複数のパターンナンバーと一致する場合においては、睡眠習慣パターンテーブルの上位の条件を優先して適用する、という条件付けにより、パターンナンバー32が適用される。
 ここで、「2-2-1」のようなパターンの場合には、就寝時刻テーブルSTにおいて、sumSTの最大値の列の直前の列や直後の列よりも離れた列に、sumSTが「2」となっている列がある可能性もある。そこで、そのように離れた列にsumSTが「2」となっている列があるか否かに応じて、点数を「(a)3」としたり「(b)2」とするなど、点数に差を設けるのが好適である。より具体的には、就寝時刻テーブルST(又は起床時刻テーブルWT)において、(a)sumSTの最大値の列、その直前の列、直後の列、の3列以外には、sumSTが「2」である列がない場合は点数を「3」とし、(b)sumSTの最大値の列から2列以上離れた列に、sumSTが「2」である列がある場合には点数を「2」とする条件を付加する。なお、同様の条件を、パターンナンバー31、34乃至41についても付加するのが好適である。
 上記の例では、パターンナンバー32が適用される「2-2-1」というパターンは、就寝時刻テーブルSTの列11(直前の列)、列12(最大値の列)、列13(直後の列)のsumSTに基づいている。sumSTの最大値の列12から2列後(即ち、列14)のsumSTが「2」となっているので、パターンナンバー32の点数は「(b)2」が適用されることになる。一方、睡眠評価装置101は、sumWTの最大値、その直前の列におけるsumWT、及び、直後の列におけるsumWTからなるパターン「0-4-1」を、睡眠習慣パターンテーブルと照合し、パターンナンバー26と一致するため、これに対応する点数「5」を「起床時刻スコア」として決定する。睡眠評価装置101は、以上のように決定した、就寝時刻スコア「2」と起床時刻スコア「5」との平均値を算出し、その平均値「3.5」を「睡眠習慣スコア」として決定し、記憶部109に記憶する。
The sleep evaluation apparatus 101 includes patterns “0-2-2”, “2-2-1”, “1-2-0” including the maximum value of sumST, the sumST in the immediately preceding column, and the sumST in the immediately following column. "Is compared with the sleep habit pattern table and it is determined that at least one of the pattern numbers 36, 32, and 41 matches. In the case of coincidence with a plurality of pattern numbers, the pattern number 32 is applied under the condition that the higher-order condition of the sleep habit pattern table is preferentially applied.
Here, in the case of a pattern such as “2-2-1,” in the bedtime table ST, the sumST is “2” in a column immediately before the column of the maximum value of the sumST or in a column far from the column immediately after. There is a possibility that there is a column that is. Therefore, depending on whether there is a column in which the sumST is “2” in such a distant column, the score is set to “(a) 3”, “(b) 2”, etc. It is preferable to provide a difference. More specifically, in the bedtime table ST (or wake-up time table WT), sumST is “2” in addition to the three columns of (a) the column of the maximum value of sumST, the column immediately before it, and the column immediately after it. If there is no column that is, the score is "3". (B) If there is a column that has a sumST of "2" in a column that is 2 columns or more away from the column of the maximum value of sumST, the score is "2". Add the following condition. It is preferable to add the same conditions for the pattern numbers 31, 34 to 41.
In the above example, the pattern of "2-2-1" to pattern number 32 is applied, the column 11 (immediately before the column) bedtime table ST 4, (column of the maximum value) row 12, column 13 (immediately after Column)). Since the sumST after two columns from the column 12 of the maximum value of sumST (that is, column 14) is “2”, “(b) 2” is applied as the score of the pattern number 32. On the other hand, the sleep evaluation apparatus 101 compares the pattern “0-4-1” including the maximum value of sumWT, the sumWT in the immediately preceding column, and the sumWT in the immediately following column with the sleep habit pattern table, and the pattern number 26 Therefore, the score “5” corresponding to this is determined as the “wake-up time score”. The sleep evaluation apparatus 101 calculates the average value of the bedtime score “2” and the wake-up time score “5” determined as described above, and determines the average value “3.5” as the “sleep habit score”. And stored in the storage unit 109.
 このように決定した睡眠習慣スコア(第6スコア)は、上記第3実施形態で説明した睡眠評価スコア、即ち、睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)、体動頻度スコア(第5スコア)とともに、グラフ表示すればよい(ステップS1274参照)。グラフ表示は特に限定されるものではないが、一例としては、図84に示すように、中央から放射状に睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)、体動頻度スコア(第5スコア)、睡眠習慣スコア(第6スコア)の軸をとった6角形のレーダーチャートとする。 The sleep habit score (sixth score) thus determined is the sleep evaluation score described in the third embodiment, that is, the sleep depth score (first score), the sleep cycle score (second score), and the sleep time score. The graph may be displayed together with the (third score), the midway awakening score (fourth score), and the body movement frequency score (fifth score) (see step S1274). Although the graph display is not particularly limited, as an example, as shown in FIG. 84, the sleep depth score (first score), the sleep cycle score (second score), and the sleep time score (first score) radiate from the center. 3 score), midway awakening score (fourth score), body movement frequency score (fifth score), and sleep habit score (sixth score).
 なお、第3実施形態の変形例2としては、第3実施形態で説明した5種類のスコア(睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)、体動頻度スコア(第5スコア))に、睡眠習慣スコア(第6スコア)を加えた、全6種類のスコアを算出し、表示可能な睡眠評価装置を説明したが、例えば、第3実施形態で説明したスコアのうち、体動頻度スコア(第5スコア))に代えて、睡眠習慣スコア(第6スコア)を採用し、全5種類のスコアを算出・表示可能な睡眠評価装置としてもよい。 As a second modification of the third embodiment, the five types of scores (sleep depth score (first score), sleep cycle score (second score), sleep time score (third score) described in the third embodiment are used. ), Sleep awakening score (fourth score), body movement frequency score (fifth score)) plus sleep habit score (sixth score), all six types of scores can be calculated and displayed For example, instead of the body movement frequency score (fifth score)) among the scores described in the third embodiment, a sleep habit score (sixth score) is adopted, and all five types of scores are obtained. It is good also as a sleep evaluation apparatus which can be calculated and displayed.
[第4実施形態]
 以下、本発明による第4実施形態である睡眠評価システムを実施するための形態について説明する。上記第3実施形態の睡眠評価装置101は、図134の外観図に示す通り、センサ部102と制御ボックス103とを備えた一つの装置として成立しており、制御ボックス103には、本発明における睡眠点数を求めるための回帰式を含む一連の処理プログラムが、既に組み込まれているものであるため、睡眠評価装置101のみで睡眠判定データの取得及び睡眠点数演算が実現できるものである。
 一方、第4実施形態である睡眠評価システムは、被験者の生体信号を取得する測定装置と、本発明における睡眠点数(睡眠指数)を求めるための回帰式を含む一連の処理プログラムを実行するための情報処理端末と、から構成されるシステムである。前記生体信号に基づいて睡眠段階判定等を行う判定部(第3実施形態の判定部108に相当)は、測定装置及び情報処理端末のうちいずれかに構成されていればよい。測定装置で測定されたデータ等の情報処理端末への出力は、例えば有線又は無線の接続手段を用いるなど、特に限定されるものではない。
 本発明によれば、睡眠の質を評価するための回帰式はPSGの測定データに基づいて作成されるので、このような回帰式を含む一連の処理プログラムを前記情報処理端末(例えばパーソナルコンピュータ)に導入すると共に、前記測定装置が被験者から検出した生体信号に基づいて、複数の変数データである睡眠判定データを算出して、被験者の睡眠の質の評価、即ち睡眠点数の算出が可能となる。しかも、本発明の睡眠の質を評価するための回帰式はPSGの測定データに基づいて作成されるので、前記取得装置は、所定項目(睡眠判定データ)を算出可能な生体情報を測定できるものであれば特に限定されるものではない。そのため、例えば、PSG測定装置を測定装置として、その睡眠判定データをそのまま代入して睡眠の質の評価に用いることもでき、医療機関における睡眠の質の評価においても有用である。具体的な処理の流れは、前記第3実施形態の睡眠測定装置101と同様であるので、詳細な説明は省略する。
[Fourth Embodiment]
Hereinafter, the form for implementing the sleep evaluation system which is 4th Embodiment by this invention is demonstrated. As shown in the external view of FIG. 134, the sleep evaluation device 101 of the third embodiment is established as one device including the sensor unit 102 and the control box 103, and the control box 103 includes the device according to the present invention. Since a series of processing programs including a regression equation for obtaining the sleep score is already incorporated, the sleep evaluation data can be obtained and the sleep score can be calculated only by the sleep evaluation device 101.
On the other hand, the sleep evaluation system according to the fourth embodiment is for executing a series of processing programs including a measuring device that acquires a biological signal of a subject and a regression equation for obtaining a sleep score (sleep index) in the present invention. And an information processing terminal. The determination unit (equivalent to the determination unit 108 of the third embodiment) that performs sleep stage determination based on the biological signal may be configured in any one of the measurement device and the information processing terminal. The output of the data measured by the measuring device to the information processing terminal is not particularly limited, for example, using a wired or wireless connection means.
According to the present invention, since the regression equation for evaluating the quality of sleep is created based on the measurement data of PSG, a series of processing programs including such a regression equation is stored in the information processing terminal (for example, a personal computer). In addition, the measurement apparatus calculates sleep determination data, which is a plurality of variable data, based on the biological signal detected from the subject, thereby enabling evaluation of the sleep quality of the subject, that is, calculation of the sleep score. . In addition, since the regression equation for evaluating the quality of sleep according to the present invention is created based on the measurement data of PSG, the acquisition device can measure biological information capable of calculating a predetermined item (sleep determination data). If it is, it will not specifically limit. Therefore, for example, using a PSG measurement device as a measurement device, the sleep determination data can be directly substituted for use in the evaluation of sleep quality, which is also useful in the evaluation of sleep quality in medical institutions. Since the specific process flow is the same as that of the sleep measurement apparatus 101 of the third embodiment, a detailed description thereof will be omitted.
 上述した第3及び第4実施形態においては、9つの睡眠判定データから4つの睡眠評価成分を選定したが、本発明はこれに限定されるものではなく、睡眠の状態を示すn(nは2以上の自然数)個の睡眠判定データから、独立した関係にあるm(mは、n>mを満たす自然数)個の睡眠評価スコアを算出し、m個の睡眠評価スコアに基づいて、睡眠点数を算出しても良い。この場合、睡眠判定データとしては、入眠潜時、睡眠効率、中長時間覚醒回数、深睡眠潜時、深睡眠時間、短時間覚醒回数、深睡眠率、差分睡眠周期スコア、差分総就床時間スコア、総就床時間、離床潜時、睡眠時間、総睡眠時間、中途覚醒時間、REM睡眠潜時、浅睡眠時間、REM睡眠時間、睡眠段階移行回数、浅睡眠出現数、REM睡眠出現数、深睡眠出現数、REM睡眠持続時間、REM睡眠間隔時間、REM睡眠周期、睡眠周期、前半と後半の浅睡眠の割合、前半と後半のREM睡眠の割合、前半と後半の深睡眠の割合の中から、睡眠の深さに係る項目(例えば深睡眠率又は深睡眠出現量の少なくとも一つ)と、睡眠のリズムに係る項目(例えば睡眠周期又は差分睡眠周期スコアの少なくとも一つ)と、中途覚醒に係る項目(例えば睡眠効率又は中長時間覚醒回数の少なくとも一つ)とを任意に選定してもよい。睡眠の質の評価において重要な指標となる睡眠の深さ、睡眠のリズム、中途覚醒に係る項目を選定すれば、総合的な睡眠の質の程度を示す指標を適切に導出することができる。また、睡眠評価スコアは、睡眠深度スコア、睡眠周期スコア、睡眠時間スコア、及び、中途覚醒スコアのいずれか1以上を含むように構成してもよい。 In the third and fourth embodiments described above, four sleep evaluation components are selected from nine sleep determination data. However, the present invention is not limited to this, and n (n is 2 indicating the sleep state). From the above natural number) sleep determination data, m (m is a natural number satisfying n> m) sleep evaluation scores having independent relationships are calculated, and the sleep score is calculated based on the m sleep evaluation scores. It may be calculated. In this case, sleep determination data includes sleep onset latency, sleep efficiency, number of mid- and long-term awakenings, deep sleep latency, deep sleep time, number of short-time awakenings, deep sleep rate, differential sleep cycle score, differential total bedtime Score, total bedtime, bed rest latency, sleep time, total sleep time, mid-wake time, REM sleep latency, shallow sleep time, REM sleep time, number of transitions to sleep stage, number of shallow sleep appearances, number of REM sleep appearances, Number of deep sleep appearances, REM sleep duration, REM sleep interval time, REM sleep cycle, sleep cycle, ratio of shallow sleep in the first and second half, ratio of REM sleep in the first and second half, ratio of deep sleep in the first and second half , Items related to sleep depth (for example, at least one of deep sleep rate or deep sleep appearance amount), items related to sleep rhythm (for example, at least one of sleep cycle or differential sleep cycle score), and midway awakening Items related to At least one) and the may be arbitrarily selected in sleep efficiency or medium long awakening times. If items relating to sleep depth, sleep rhythm, and awakening that are important indicators in the evaluation of sleep quality are selected, it is possible to appropriately derive an indicator that indicates the overall level of sleep quality. The sleep evaluation score may include any one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
 なお、第3実施形態においては、睡眠評価装置101として、マットレスとコンデンサマイクロホンセンサによる呼吸信号の検出を例としたが、マットレスの下に配して人体の圧力変動を直接検出するものとして、ピエゾケーブルなどの圧電素子、静電容量式センサ、フィルムセンサ又は歪ゲージなどを用いても良いし、呼吸信号や体動信号や心拍信号が検出できるものであれば、公知装置を用いても良い。 In the third embodiment, as the sleep evaluation apparatus 101, the detection of a respiratory signal by a mattress and a condenser microphone sensor is taken as an example. A piezoelectric element such as a cable, a capacitive sensor, a film sensor, a strain gauge, or the like may be used, and a known device may be used as long as it can detect a respiratory signal, a body motion signal, and a heartbeat signal.
 また、図50のフローチャートを用いて説明した中途覚醒条件判定のステップS1138において、「(m=1からm=mまでの全エポックの平均呼吸数)≧(n=1からn=nmaxまでの全エポックの平均呼吸数)×mq」なる条件で、呼吸数による中途覚醒判定を行ったが、心拍に関する指標を検出する心拍信号検出手段と、前記心拍に関する指標を用いて、前記睡眠段階を補正する補正手段とを更に備えることにより、例えば、「(m=1からm=mまでの全エポックの平均心拍数)≧(n=1からn=nmaxまでの全エポックの平均心拍数)×mv」(ここで、mvは、mv>1なる定数である。)とする条件を加えて、この条件を満たす場合を覚醒状態と判定しても良く、より精度の高い覚醒判定が可能となる。 Further, in step S1138 of the midway awakening condition determination described with reference to the flowchart of FIG. 50, “(average respiration rate of all epochs from m = 1 to m = m) ≧ (n = 1 to n = nmax The epoch average respiration rate) × mq ”was used to determine midway arousal based on the respiration rate. The sleep stage is corrected using a heartbeat signal detecting means for detecting a heartbeat-related index and the heartbeat-related index. By further providing a correcting means, for example, “(average heart rate of all epochs from m = 1 to m = m) ≧ (average heart rate of all epochs from n = 1 to n = nmax) × mv” (Here, mv is a constant such that mv> 1), and a condition that satisfies this condition may be determined as an arousal state, and a more accurate arousal determination is possible.
 更に、睡眠評価装置101の判定結果の推移と、心拍信号検出手段により検出された心拍に関する指標の推移とを用いて、公知の相関を取ることにより、前記判定結果を補正しても良い。 Furthermore, the determination result may be corrected by taking a known correlation using the transition of the determination result of the sleep evaluation apparatus 101 and the transition of the index related to the heartbeat detected by the heartbeat signal detecting means.
 また、上述した第3及び第4実施形態では、9個の所定項目と4個の睡眠評価スコアを一例として説明したが、本発明はこれに限定されるものではなく、n(2以上の自然数)個の所定項目を集約したm(n≧m、mは自然数)個の睡眠評価スコアを用いて睡眠点数を算出してもよい。 In the third and fourth embodiments described above, nine predetermined items and four sleep evaluation scores have been described as examples. However, the present invention is not limited to this, and n (a natural number of 2 or more) ) The sleep score may be calculated using m (n ≧ m, where m is a natural number) sleep evaluation scores obtained by collecting the predetermined items.
 また、上述した第3及び第4実施形態では、睡眠の質を評価するための回帰式は、PSGの測定データに基づいて作成されるものを説明したが、例えば、本発明による睡眠評価装置101によって測定される睡眠判定データ(例えば、寝付き時間の長さ、途中の覚醒の多さ、深い睡眠の多さ、体動の多さなど)に関する、不特定多数の被験者のサンプルデータを収集・解析し、睡眠の質を判定するための回帰式を作成して用いても良い。 In the above-described third and fourth embodiments, the regression equation for evaluating the quality of sleep is described based on the PSG measurement data. For example, the sleep evaluation apparatus 101 according to the present invention is described below. Collect and analyze sample data of unspecified number of subjects related to sleep determination data (eg, length of sleep, number of awakenings, amount of deep sleep, body movement, etc.) Then, a regression equation for determining the quality of sleep may be created and used.
 また、睡眠評価スコア(睡眠深度スコア(第1スコア)、睡眠周期スコア(第2スコア)、睡眠時間スコア(第3スコア)、中途覚醒スコア(第4スコア)、体動頻度スコア(第5スコア)、睡眠習慣スコア(第6スコア))のグラフ表示については、上述した第3及び第4実施形態のようなレーダーチャートの他、棒グラフその他のグラフ表示を適用してもよい。また、グラフ表示に代えて、各スコアに設定されたアイコンによって表してもよい。例えば、キャラクターのアイコンとして、そのキャラクターの異なる表情やポーズに応じてスコアの高低を表示したり、手のアイコンとして、指の折り曲げ状態(人差し指と親指の指先を付けたOKのポーズ、親指を上に立てて握るGOODのポーズなど)に応じてスコアの高低を表示したりしてもよい。 Also, sleep evaluation scores (sleep depth score (first score), sleep cycle score (second score), sleep time score (third score), mid-wake awakening score (fourth score), body movement frequency score (fifth score) ), And the graph display of the sleep habit score (sixth score)), a bar graph or other graph display may be applied in addition to the radar chart as in the third and fourth embodiments described above. Moreover, it may replace with a graph display and may represent with the icon set to each score. For example, the icon of a character displays the level of the score according to the different facial expressions and poses of the character, and the hand icon shows a folded state of the finger (an OK pose with the index finger and thumb fingertip, thumb up The level of the score may be displayed according to a GOOD pose etc.
 また、上述した第3及び第4実施形態では、睡眠点数や一回の睡眠の段階の遷移(図70参照)、睡眠点数推移(図72参照)を表示する例を説明したが、必ずしもこれらを表示しなければならないものではない。 In the above-described third and fourth embodiments, the example of displaying the sleep score, the transition of the sleep stage (see FIG. 70), and the sleep score transition (see FIG. 72) has been described. It does not have to be displayed.
  1  睡眠評価装置
  2  センサ部(生体情報検出手段)
  3  制御ボックス
  4  表示部
  5  操作部
  6  CPU
  7  生体データ検出部
  8  判定部
  9  記憶部
  10 電源
  20 評価部
 101 睡眠評価装置
 102 センサ部(生体情報検出手段)
 103 制御ボックス
 104 表示部
 105 操作部
 106 CPU
 107 生体データ検出部
 108 判定部
 109 記憶部
 110 電源
 120 評価部
DESCRIPTION OF SYMBOLS 1 Sleep evaluation apparatus 2 Sensor part (biological information detection means)
3 Control box 4 Display unit 5 Operation unit 6 CPU
7 Biometric Data Detection Unit 8 Judgment Unit 9 Storage Unit 10 Power Supply 20 Evaluation Unit 101 Sleep Evaluation Device 102 Sensor Unit (Biological Information Detection Unit)
103 Control Box 104 Display Unit 105 Operation Unit 106 CPU
107 Biometric data detection unit 108 Judgment unit 109 Storage unit 110 Power supply 120 Evaluation unit

Claims (15)

  1.  被験者の生体情報を検出して生体信号として出力する生体情報検出手段を含む測定装置と、前記生体信号に基づいて前記被験者の睡眠指数を演算する情報処理端末と、を有する睡眠評価システムであって、
     前記情報処理端末は、
     PSGの測定データに基づいて抽出された、少なくとも睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目について主成分分析を行って得られる睡眠評価スコアの前記所定項目ごとの主成分係数と、前記被験者の前記生体信号から算出された前記所定項目に対応する睡眠判定データと、を乗算して睡眠評価スコアを算出し、
     前記睡眠評価スコアについてロジスティック回帰分析を行って得られる睡眠障害判別確率を算出し、
     前記睡眠障害判別確率に基づいて前記被験者の前記睡眠指数を演算すること
    を特徴とする睡眠評価システム。
    A sleep evaluation system comprising: a measurement device including biological information detection means for detecting biological information of a subject and outputting it as a biological signal; and an information processing terminal that calculates a sleep index of the subject based on the biological signal. ,
    The information processing terminal
    Principal component analysis is performed on a plurality of types of predetermined items including at least items related to sleep depth, items related to sleep rhythm, and items related to mid-wakefulness extracted based on PSG measurement data The sleep evaluation score is calculated by multiplying the principal component coefficient for each predetermined item of the obtained sleep evaluation score by the sleep determination data corresponding to the predetermined item calculated from the biological signal of the subject,
    Calculating a sleep disorder discrimination probability obtained by performing logistic regression analysis on the sleep evaluation score;
    A sleep evaluation system, wherein the sleep index of the subject is calculated based on the sleep disorder discrimination probability.
  2.  前記睡眠の深さに係る項目は深睡眠率又は深睡眠出現量の少なくとも一つを含み、前記睡眠のリズムに係る項目は睡眠周期又は差分睡眠周期スコアの少なくとも一つを含み、及び、前記中途覚醒に係る項目は睡眠効率又は中長時間覚醒回数の少なくとも一つを含むことを特徴とする請求項1に記載の睡眠評価システム。 The item related to the sleep depth includes at least one of a deep sleep rate or a deep sleep appearance amount, the item related to the sleep rhythm includes at least one of a sleep cycle or a differential sleep cycle score, and the midway The sleep evaluation system according to claim 1, wherein the item related to awakening includes at least one of sleep efficiency and the number of times of awakening in the middle and long period.
  3.  前記睡眠評価スコアは、睡眠深度スコア、睡眠周期スコア、睡眠時間スコア、及び、中途覚醒スコアのいずれか1以上を含むことを特徴とする請求項1又は請求項2に記載の睡眠評価システム。 The sleep evaluation system according to claim 1, wherein the sleep evaluation score includes one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
  4.  前記複数種類の所定項目は、深睡眠率、差分睡眠周期スコア、総就床時間、睡眠周期、深睡眠出現量、差分総就床時間スコア、中長時間覚醒回数、短時間覚醒回数、及び、睡眠効率を含むことを特徴とする請求項1乃至請求項3のうち、いずれか1に記載の睡眠評価システム。 The predetermined items of the plurality of types are deep sleep rate, differential sleep cycle score, total bedtime, sleep cycle, deep sleep appearance amount, differential total bedtime score, number of middle and long awakening times, number of short time awakenings, and The sleep evaluation system according to any one of claims 1 to 3, wherein the sleep evaluation system includes sleep efficiency.
  5.  被験者の生体情報を検出して生体信号として出力する生体情報検出手段と、前記生体信号に基づいて前記被験者の睡眠指数を演算する判定部と、を有する睡眠評価装置であって、
     前記判定部は、
     PSGの測定データに基づいて抽出された、少なくとも睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目について主成分分析を行って得られる睡眠評価スコアの前記所定項目ごとの主成分係数と、前記被験者の前記生体信号から算出された前記所定項目に対応する睡眠判定データと、を乗算して睡眠評価スコアを算出し、
     前記睡眠評価スコアについてロジスティック回帰分析を行って得られる睡眠障害判別確率を算出し、
     前記睡眠障害判別確率に基づいて前記被験者の前記睡眠指数を演算すること
    を特徴とする睡眠評価装置。
    A sleep evaluation device comprising: biological information detection means for detecting biological information of a subject and outputting it as a biological signal; and a determination unit that calculates a sleep index of the subject based on the biological signal,
    The determination unit
    Principal component analysis is performed on a plurality of types of predetermined items including at least items related to sleep depth, items related to sleep rhythm, and items related to mid-wakefulness extracted based on PSG measurement data The sleep evaluation score is calculated by multiplying the principal component coefficient for each predetermined item of the obtained sleep evaluation score by the sleep determination data corresponding to the predetermined item calculated from the biological signal of the subject,
    Calculating a sleep disorder discrimination probability obtained by performing logistic regression analysis on the sleep evaluation score;
    The sleep evaluation apparatus, wherein the sleep index of the subject is calculated based on the sleep disorder discrimination probability.
  6.  前記睡眠の深さに係る項目は深睡眠率又は深睡眠出現量の少なくとも一つを含み、前記睡眠のリズムに係る項目は睡眠周期又は差分睡眠周期スコアの少なくとも一つを含み、及び、前記中途覚醒に係る項目は睡眠効率又は中長時間覚醒回数の少なくとも一つを含むことを特徴とする請求項5に記載の睡眠評価装置。 The item related to the sleep depth includes at least one of a deep sleep rate or a deep sleep appearance amount, the item related to the sleep rhythm includes at least one of a sleep cycle or a differential sleep cycle score, and the midway The sleep evaluation apparatus according to claim 5, wherein the item relating to awakening includes at least one of sleep efficiency or the number of times of awakening in the middle and long period.
  7.  前記睡眠評価スコアは、睡眠深度スコア、睡眠周期スコア、睡眠時間スコア、及び、中途覚醒スコアのいずれか1以上を含むことを特徴とする請求項5又は請求項6に記載の睡眠評価装置。 The sleep evaluation apparatus according to claim 5 or 6, wherein the sleep evaluation score includes any one or more of a sleep depth score, a sleep cycle score, a sleep time score, and a midway awakening score.
  8.  前記複数種類の所定項目は、深睡眠率、差分睡眠周期スコア、総就床時間、睡眠周期、深睡眠出現量、差分総就床時間スコア、中長時間覚醒回数、短時間覚醒回数、及び、睡眠効率を含むことを特徴とする請求項5乃至請求項7のうち、いずれか1に記載の睡眠評価装置。 The predetermined items of the plurality of types are deep sleep rate, differential sleep cycle score, total bedtime, sleep cycle, deep sleep appearance amount, differential total bedtime score, number of middle and long awakening times, number of short time awakenings, and The sleep evaluation apparatus according to any one of claims 5 to 7, comprising sleep efficiency.
  9.  被験者の生体情報を検出して生体信号として出力する生体情報検出手段と、前記生体信号に基づいて前記被験者の睡眠状態を判定する判定部と、を有する睡眠評価装置であって、
     前記判定部は、
     少なくとも、睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目ごとに睡眠評価スコアを算出し、
     前記被験者の睡眠状態が所定の睡眠タイプのいずれに該当するかを、前記睡眠評価スコアに基づいて判定すること
    を特徴とする睡眠評価装置。
    A sleep evaluation apparatus comprising: biological information detection means for detecting biological information of a subject and outputting it as a biological signal; and a determination unit that determines the sleep state of the subject based on the biological signal,
    The determination unit
    At least, a sleep evaluation score is calculated for each of a plurality of types of predetermined items including an item related to sleep depth, an item related to sleep rhythm, and an item related to mid-wake awakening,
    A sleep evaluation device that determines which of the predetermined sleep types the sleep state of the subject corresponds to based on the sleep evaluation score.
  10.  前記睡眠タイプは、睡眠内容の特徴に応じて予め記憶されている種別であり、
     前記判定部は、算出された前記睡眠評価スコアを用いて前記睡眠タイプごとの判定値を算出し、該判定値に基づいて、前記所定の睡眠タイプのいずれに該当するかを判定することを特徴とする請求項9に記載の睡眠評価装置。
    The sleep type is a type stored in advance according to the characteristics of the sleep content,
    The determination unit calculates a determination value for each sleep type using the calculated sleep evaluation score, and determines which one of the predetermined sleep types corresponds to the determination value. The sleep evaluation apparatus according to claim 9.
  11.  前記所定の睡眠タイプのいずれに該当するかの判定に用いる睡眠評価スコアには、少なくとも睡眠深度スコアと睡眠周期スコアと中途覚醒スコアとを含み、又は、これらに加えて睡眠時間スコアを更に含むことを特徴とする請求項9又は請求項10に記載の睡眠評価装置。 The sleep evaluation score used to determine which of the predetermined sleep types includes at least a sleep depth score, a sleep cycle score, and a midway awakening score, or in addition to these, a sleep time score is further included. The sleep evaluation apparatus according to claim 9 or 10, wherein:
  12.  前記複数種類の所定項目ごとに算出される前記睡眠評価スコアを一括表示可能な表示部を有することを特徴とする請求項9乃至請求項11のうち、いずれか1に記載の睡眠評価装置。 The sleep evaluation apparatus according to any one of claims 9 to 11, further comprising a display unit capable of collectively displaying the sleep evaluation scores calculated for the plurality of types of predetermined items.
  13.  前記表示部に一括表示される睡眠評価スコアには、前記所定の睡眠タイプのいずれに該当するかの判定に用いた睡眠評価スコアを含み、又は、これらに加えて体動頻度スコア及び/又は睡眠習慣スコアを更に含むことを特徴とする請求項12に記載の睡眠評価装置。 The sleep evaluation score collectively displayed on the display unit includes a sleep evaluation score used to determine which of the predetermined sleep types corresponds to, or in addition to these, a body movement frequency score and / or sleep The sleep evaluation apparatus according to claim 12, further comprising a habit score.
  14.  前記複数種類の所定項目ごとに算出される前記睡眠評価スコアをレーダーチャートで一括表示可能な表示部を有することを特徴とする請求項9乃至請求項13のうち、いずれか1に記載の睡眠評価装置。 The sleep evaluation according to any one of claims 9 to 13, further comprising a display unit capable of collectively displaying the sleep evaluation score calculated for each of the plurality of types of predetermined items on a radar chart. apparatus.
  15.  被験者の生体情報を検出して生体信号として出力する生体情報検出手段を含む測定装置と、前記生体信号に基づいて前記被験者の睡眠状態を判定する情報処理端末と、を有する睡眠評価システムであって、
     前記情報処理端末は、
     少なくとも睡眠の深さに係る項目と、睡眠のリズムに係る項目と、中途覚醒に係る項目と、を含む複数種類の所定項目ごとに睡眠評価スコアを算出し、
     前記被験者の睡眠状態が所定の睡眠タイプのいずれに該当するかを、前記睡眠評価スコアに基づいて判定すること
    を特徴とする睡眠評価システム。
    A sleep evaluation system comprising: a measurement device including biological information detection means for detecting biological information of a subject and outputting it as a biological signal; and an information processing terminal that determines the sleep state of the subject based on the biological signal. ,
    The information processing terminal
    Calculating a sleep evaluation score for each of a plurality of types of predetermined items including at least an item relating to sleep depth, an item relating to sleep rhythm, and an item relating to mid-wakening,
    A sleep evaluation system that determines which of the predetermined sleep types the sleep state of the subject corresponds to based on the sleep evaluation score.
PCT/JP2012/075638 2011-10-14 2012-10-03 Sleep assessment system and sleep assessment apparatus WO2013054712A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011227471 2011-10-14
JP2011-227471 2011-10-14
JP2012-030812 2012-02-15
JP2012030812A JP5748290B2 (en) 2012-02-15 2012-02-15 Sleep evaluation device and sleep evaluation system
JP2012-143089 2012-06-26
JP2012143089A JP5430034B2 (en) 2011-10-14 2012-06-26 Sleep evaluation processing system and sleep evaluation apparatus

Publications (1)

Publication Number Publication Date
WO2013054712A1 true WO2013054712A1 (en) 2013-04-18

Family

ID=48081769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075638 WO2013054712A1 (en) 2011-10-14 2012-10-03 Sleep assessment system and sleep assessment apparatus

Country Status (1)

Country Link
WO (1) WO2013054712A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150164409A1 (en) * 2013-12-16 2015-06-18 Blue Ocean Laboratories, Inc. Sleep system for obtaining sleep state information
WO2017040331A1 (en) * 2015-08-28 2017-03-09 Awarables, Inc. Determining sleep stages and sleep events using sensor data
CN109568760A (en) * 2017-09-29 2019-04-05 中国移动通信有限公司研究院 Sleep environment adjusting method and system
WO2019177080A1 (en) * 2018-03-14 2019-09-19 ミネベアミツミ株式会社 Body motion determination system
US10582890B2 (en) 2015-08-28 2020-03-10 Awarables Inc. Visualizing, scoring, recording, and analyzing sleep data and hypnograms
CN113974567A (en) * 2021-11-09 2022-01-28 重庆火后草科技有限公司 Method for calculating metabolic rate of sleep process
WO2022025678A1 (en) * 2020-07-31 2022-02-03 Samsung Electronics Co., Ltd. Electronic device for evaluating sleep quality and method for operation in the electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109960A (en) * 1990-08-30 1992-04-10 Matsushita Electric Ind Co Ltd Evaluating device for sleep
JP2004358235A (en) * 2003-05-15 2004-12-24 Sanyo Electric Co Ltd Sleep analyzer and program for giving sleep analysis function to computer
JP2006296940A (en) * 2005-04-25 2006-11-02 Denso Corp Biosensor, pulse wave sensor, sleep information processing method, sleep information processing device, program and recording medium
JP2007319238A (en) * 2006-05-30 2007-12-13 Toshiba Consumer Marketing Corp Sleep monitoring device
JP2008301951A (en) * 2007-06-06 2008-12-18 Tanita Corp Sleep evaluation apparatus
JP2009028352A (en) * 2007-07-27 2009-02-12 Daikin Ind Ltd Sleep information providing system
WO2011006199A1 (en) * 2009-07-16 2011-01-20 Resmed Ltd Detection of sleep condition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109960A (en) * 1990-08-30 1992-04-10 Matsushita Electric Ind Co Ltd Evaluating device for sleep
JP2004358235A (en) * 2003-05-15 2004-12-24 Sanyo Electric Co Ltd Sleep analyzer and program for giving sleep analysis function to computer
JP2006296940A (en) * 2005-04-25 2006-11-02 Denso Corp Biosensor, pulse wave sensor, sleep information processing method, sleep information processing device, program and recording medium
JP2007319238A (en) * 2006-05-30 2007-12-13 Toshiba Consumer Marketing Corp Sleep monitoring device
JP2008301951A (en) * 2007-06-06 2008-12-18 Tanita Corp Sleep evaluation apparatus
JP2009028352A (en) * 2007-07-27 2009-02-12 Daikin Ind Ltd Sleep information providing system
WO2011006199A1 (en) * 2009-07-16 2011-01-20 Resmed Ltd Detection of sleep condition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10398378B2 (en) 2013-12-16 2019-09-03 Blue Ocean Laboratories, Inc. Sleep monitoring system
US10874350B2 (en) 2013-12-16 2020-12-29 Blue Ocean Laboratories, Inc. Sleep monitoring system
US20150164409A1 (en) * 2013-12-16 2015-06-18 Blue Ocean Laboratories, Inc. Sleep system for obtaining sleep state information
US10582890B2 (en) 2015-08-28 2020-03-10 Awarables Inc. Visualizing, scoring, recording, and analyzing sleep data and hypnograms
WO2017040331A1 (en) * 2015-08-28 2017-03-09 Awarables, Inc. Determining sleep stages and sleep events using sensor data
US10321871B2 (en) 2015-08-28 2019-06-18 Awarables Inc. Determining sleep stages and sleep events using sensor data
CN109568760A (en) * 2017-09-29 2019-04-05 中国移动通信有限公司研究院 Sleep environment adjusting method and system
JP2019154856A (en) * 2018-03-14 2019-09-19 ミネベアミツミ株式会社 Body motion determination system
WO2019177080A1 (en) * 2018-03-14 2019-09-19 ミネベアミツミ株式会社 Body motion determination system
WO2022025678A1 (en) * 2020-07-31 2022-02-03 Samsung Electronics Co., Ltd. Electronic device for evaluating sleep quality and method for operation in the electronic device
US20220031233A1 (en) * 2020-07-31 2022-02-03 Samsung Electronics Co., Ltd. Electronic device for evaluating sleep quality and method for operation in the electronic device
EP4142581A4 (en) * 2020-07-31 2024-03-13 Samsung Electronics Co Ltd Electronic device for evaluating sleep quality and method for operation in the electronic device
CN113974567A (en) * 2021-11-09 2022-01-28 重庆火后草科技有限公司 Method for calculating metabolic rate of sleep process
CN113974567B (en) * 2021-11-09 2024-03-26 重庆火后草科技有限公司 Method for calculating metabolic rate in sleeping process

Similar Documents

Publication Publication Date Title
JP5748290B2 (en) Sleep evaluation device and sleep evaluation system
JP5073371B2 (en) Sleep evaluation device
WO2013054712A1 (en) Sleep assessment system and sleep assessment apparatus
JP5430034B2 (en) Sleep evaluation processing system and sleep evaluation apparatus
JP5841196B2 (en) Residue-based management of human health
Deviaene et al. Automatic screening of sleep apnea patients based on the spo 2 signal
JP4582642B2 (en) Sleep stage determination device
JP6414393B2 (en) Sleep evaluation device
JP7043655B2 (en) Abnormality notification device, program and abnormality notification method
JP5788293B2 (en) Sleep evaluation apparatus and sleep evaluation program
JP6193649B2 (en) Sleep evaluation apparatus and sleep evaluation program
JP5241598B2 (en) Psychological state evaluation device
Yeo et al. Respiratory event detection during sleep using electrocardiogram and respiratory related signals: Using polysomnogram and patch-type wearable device data
JP7034687B2 (en) Abnormality notification device and program
JP2016087355A (en) Sleep state determination device, and sleep state determination method and program
WO2019075520A1 (en) Breathing state indicator
JP2019187970A (en) Evaluation device and program
JP6518294B2 (en) Sleep evaluation device and program
JP2019136526A (en) Sleeping state determination device and sleeping state determination method
JP7261913B2 (en) Abnormality notification device, program, and abnormality notification method
JP6976387B2 (en) Evaluation device and program
JP2019136527A (en) Sleep evaluation device and sleep evaluation program
KR102637471B1 (en) Data processing apparatus for detecting respiratory event according to polysomnography and operating method of the same
WO2021230223A1 (en) Sleep-waking determination system, sleep-waking determination device, and program
KR20230081156A (en) Data processing apparatus for detecting respiratory effort related arousal section according to polysomnography and operating method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840331

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840331

Country of ref document: EP

Kind code of ref document: A1