WO2013051432A1 - Production planning device and production planning method - Google Patents

Production planning device and production planning method Download PDF

Info

Publication number
WO2013051432A1
WO2013051432A1 PCT/JP2012/074587 JP2012074587W WO2013051432A1 WO 2013051432 A1 WO2013051432 A1 WO 2013051432A1 JP 2012074587 W JP2012074587 W JP 2012074587W WO 2013051432 A1 WO2013051432 A1 WO 2013051432A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
area
processing
machining area
data
Prior art date
Application number
PCT/JP2012/074587
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 野中
隆宏 中野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201280048838.7A priority Critical patent/CN103842921B/en
Publication of WO2013051432A1 publication Critical patent/WO2013051432A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow

Definitions

  • the present invention effectively uses a plurality of cutting devices such as a lathe, a drilling machine, and a multi-axis NC processing device installed in a machining shop, thereby maximizing the throughput of a workpiece that is input to the machining shop.
  • the present invention relates to the technical field of CAM (Computer Aided Manufacturing) software having a function of determining assignment of work to each cutting device.
  • CAM Computer Aided Manufacturing
  • Patent Document 1 JP 2002-149223 (Patent Document 1) as background art in this technical field.
  • This gazette states, “Create a steel product production plan in a short time, accurately corresponding to short delivery times.
  • the passage process decision means determines the product passage process.
  • the production plan formation means obtains the lead time and efficiency for each passing process based on the passing process of the product order, and accumulates this from the delivery date of the product order to determine the passing timing and processing time of each passing process.
  • the processing time of each product order is accumulated in time series for each process, the operation rate for each equipment is calculated, the presence / absence of an overcapacity process is determined, and if there is no overcapacity process, the production plan is continued However, if there is an overcapacity process, the process in the relevant process is divided into the front and rear passage timings based on the delivery date and the capacity to suppress the excess capacity. After re-calculating step for each operation rate, when it is no longer capable excess process has been described as. "To create a production plan in the passage timing and processing time at that time (see abstract).
  • An initial task stacking unit that performs initial stacking of tasks that are operations of each process; a bottom search unit that searches for a minimum bottom that is a part with the lowest load in the planning period stacked in the initial task stacking unit; and An adjacent peak search unit that searches for a peak adjacent to the minimum bottom; a load leveling processing unit that moves a task existing between the adjacent peak and the minimum bottom to the minimum bottom by a predetermined method and performs load leveling; and A leveling degree evaluation unit that evaluates a load leveling processing result in the load leveling processing unit, and a finalization that performs a process end determination based on the result of the leveling evaluation.
  • a determination unit is described as having. "Plan output section for outputting a load leveling processing result (see Abstract).
  • Patent Document 3 JP-A-62-295116. This publication provides “a processing area division processing device for a practical automatic processing machine that categorizes and collects processing areas other than holes and automatically divides the processing areas into simple shapes by incorporating processing accuracy and processing efficiency.
  • a machining area division processing device for an automatic machine that automatically divides into simple area shapes corresponding to the tool to be used, a machining area reference data memory for preparing area division judgment criteria and setting criteria, and a groove in the machining area
  • An area shape determination unit for determining an area shape as machining, side surface grooving, side surface machining, and pocket machining, and the machining area standard with respect to the machining width and the machining depth of the machining area data determined and set by the area shape judgment unit
  • a machining area division determination unit that examines whether the data can be divided according to the tool to be used, and the division area data determined by the machining area division determination unit Machining in an automatic processing machine comprising a machining area division processing unit that divides a side surface portion, a bottom surface portion, and an upper surface portion according to area reference data, and a machining area data memory that files machining area data processed by the machining area division processing unit Region division processing apparatus ”(see abstract, claims).
  • JP 2002-149223 A JP 2001-318711 A JP-A-62-295116
  • Patent Document 1 and Patent Document 2 disclose a method of performing load distribution between processes by paying attention to the operation rate of each process. However, unlike the present invention, it is not a method of reconfiguring the machining area allocated to each cutting machine and distributing the load.
  • Patent Document 3 discloses a technique in which a processing area is divided by paying attention to a processing feature and is shared by a plurality of processing machines. However, as in the present invention, paying attention to the operating rate of each cutting device, this is not a method of reconfiguring the processing area allocated to each cutting device and distributing the load.
  • Cutting machines such as lathes, drilling machines, and multi-axis NC machines installed in machining shops are based on the structure and cutting tools of these machines. Has a well-established role in processing products with various hole shapes, and multi-axis NC processing machines are responsible for processing various flat surfaces, curved surfaces, pocket structures, groove structures, and free curved surfaces. It is true that there are many finishing processes that uniquely identify the cutting device used, including other special processes.
  • the present invention creates a process design proposal in which a machining area of a workpiece is allocated to a plurality of machining devices in a machining shop, schedules a machining shop, and evaluates the operating rate of each machining device, Provided is a CAM system that supports an operation of correcting an allocation of a processing area between cutting processing apparatuses.
  • a product shape and a material shape are displayed in comparison, a man-machine interface for defining a machining area on the material shape is provided, and a machining area of each cutting apparatus is registered.
  • the present invention provides a machining feature definition tool divided into categories of lathes, drilling machines, and multi-axis NC machining devices on a man-machine interface in the production planning device, and allows each machining performed by the user.
  • a means for registering the machining area of each cutting apparatus by receiving the definition of the machining area to which the feature is applied and the selection of the machining machine, the tool, and the machining condition and associating those data is provided.
  • the present invention reads out the machining area data of each cutting apparatus registered in the production planning apparatus, generates a tool path for machining the machining area from the machining conditions and the tool conditions, and generates a tool path.
  • NC data is generated from machine tool conditions, machining time is calculated by machining simulation of the NC data, machining shop scheduling is performed based on the above data, the throughput of the machining shop, and each cutting machine Means for calculating the operating rate of
  • the present invention provides means for calling a machining feature defining a registered machining area on a man-machine interface to the production planning apparatus and correcting the parameter, thereby correcting the machining area. And a means for calculating the removal volume of the machining area before and after the modification and presenting the modification effect of the machining area of each cutting apparatus.
  • a plurality of cutting devices such as a lathe, a drilling machine, and a multi-axis NC processing device installed in a machining shop are effectively used to maximize the throughput of a workpiece input to the machining shop.
  • the assignment of work to each of the cutting devices can be determined.
  • FIG. 1 is a schematic diagram of a production planning apparatus 100 according to an embodiment of the present invention.
  • the production planning apparatus 100 includes a calculation unit 101, a storage unit 102, an input unit 103, an output unit 104, and a communication unit 105.
  • the communication unit 105 of the production planning device 100 is connected to the three-dimensional CAD device 130 and the NC processing machine 140 via the network 150.
  • the calculation unit 101 includes a region generation rule registration unit 110, a three-dimensional CAM unit 111, a processing region model generation unit 112, a tool path generation unit 113, a removal volume calculation unit 114, a processing time calculation unit 115, a processing shop scheduling unit 116, and A machining simulation unit 117.
  • the storage unit 102 includes a machining condition data storage area 120, a tool condition data storage area 121, an apparatus condition data storage area 122, a machining feature data storage area 123, a product CAD model storage area 124, a material CAD model storage area 125, and production plan data.
  • the production planning apparatus 100 described above includes, for example, an external storage device such as a CPU (Central Processing Unit) 901, a memory 902, and an HDD (Hard Disk Drive) as shown in FIG. 19 (schematic diagram of the computer 900).
  • an external storage device such as a CPU (Central Processing Unit) 901, a memory 902, and an HDD (Hard Disk Drive) as shown in FIG. 19 (schematic diagram of the computer 900).
  • 903 a reading device 908 for reading / writing information from / to a portable storage medium 904 such as a CD (Compact Disk) or a DVD (Digital Versatile Disk), an input device 906 such as a keyboard or a mouse, and an output such as a display
  • a general computer 900 including a device 907 and a communication device 905 such as a NIC (Network Interface Card) for connecting to the communication network 909.
  • NIC Network Interface Card
  • the machining condition data storage area 120 stores in advance in the machining condition data table 120a cutting conditions when all the cutting apparatuses in the machining shop are used.
  • a machining condition data table 120a as shown in FIG. 2 is stored.
  • the machining condition data table 120a includes a machining condition number column 120b, a rotation speed column 120c, a feed rate column 120d, a one-blade feed column 120e, a cutting speed column 120f, and an axis cutting column 120g. And a diameter cutting column 120h.
  • the rotation speed column 120c stores information for specifying the rotation speed of the tool under the condition specified in the machining condition number column 120b.
  • the feed rate column 120d stores information for specifying the feed rate of the tool under the conditions specified in the machining condition number column 120b.
  • the single blade feed column 120e stores information on the feed amount per blade of the tool under the conditions specified in the machining condition number column 120b.
  • the cutting speed column 120f stores information for specifying the cutting speed of the tool under the conditions specified in the machining condition number column 120b.
  • the axis cutting column 120g stores information for specifying the cutting depth in the axial direction of the tool under the conditions specified in the machining condition number column 120b.
  • the diameter cutting field 120h stores information for specifying the diameter cutting amount under the conditions specified in the machining condition number field 120b.
  • a tool condition data table 121 a is stored in advance with information on tools used in all the cutting apparatuses in the machining shop.
  • a tool condition data table 121a as shown in FIG. 3 is stored.
  • the tool condition data table 121a includes a tool number column 121b, a diameter column 121c, a lower radius column 121d, a tool length column 121e, a holder diameter column 121f, a holder length column 121g, Have
  • the diameter column 121c stores information for specifying the tool diameter under the conditions specified in the tool number column 121b.
  • the lower radius column 121d stores information for specifying the lower radius of the tool under the conditions specified in the tool number column 121b.
  • the tool length column 121e stores information for specifying the tool length under the conditions specified in the tool number column 121b.
  • the holder diameter column 121f stores information for specifying the diameter of the holder under the conditions specified in the tool number column 121b.
  • the holder length column 121g stores information for specifying the length of the holder under the conditions specified in the tool number column 121b.
  • the apparatus condition data storage area 122 stores apparatus information of all the cutting machines in the machining shop.
  • an apparatus condition data table 122a as shown in FIG. 4 is stored.
  • the apparatus condition data table 122a includes a processing machine number column 122b, a processing machine name column 122c, an axis configuration column 122d, and a stroke column 122e.
  • the processing machine number column 122b stores a processing machine number that is identification information for specifying a cutting machine.
  • information for specifying the processing machine name of the processing machine is stored.
  • the axis configuration column 122d stores information for specifying the axis configuration of the processing machine.
  • the stroke column 122e stores information for specifying a stroke that is an operating range of each axis of the processing machine.
  • the machining feature data storage area 123 stores machining feature data used when defining the machining area.
  • the machining features are machined with a single tool, for example, a cylindrical shape machined by a single tool, a single hole drilled by a single drill, or a single area cut by a single end mill. Represents a unit of area.
  • standard machining features are registered in the data table in advance, and an appropriate machining feature is selected on the man-machine interface screen, and a machining area is defined in the material CAD model. Used when doing.
  • machining feature data such as machining feature examples shown in FIGS. 6, 7A, and 7B is registered in the machining feature data table 123a shown in FIG.
  • the machining feature data table 123a has a machining feature number column 123b, a machining feature name column 123c, a parameter column 123d, a positioning representative point column 123e, and a shape model column 123f.
  • the machining feature number column 123b stores a number for identifying the machining feature.
  • the machining feature name field 123c stores a number that identifies the machining feature name.
  • the parameter column 123d stores a parameter variable that defines the dimension of the processed feature.
  • the positioning representative point column 123e stores representative point information of the machining feature used when the machining feature is positioned on the material CAD model to create a machining area.
  • the shape model column 123f stores shape model information used when displaying the machining feature on the man-machine interface screen and defining the machining shape.
  • the product CAD model storage area 124 stores three-dimensional CAD data representing the finished shape of each product. Stores data in either face model, solid model, or both formats.
  • the three-dimensional CAD data created in the three-dimensional CAD device 130 is received via the communication unit and stored. For example, in this embodiment, a product CAD model 801 having a product name X001A as shown in FIG.
  • the product CAD model storage area 124 is stored in, for example, a DXF file format, the face model is defined as each graphic element constituting the drawing in the element definition section (ENTITIES), and the solid model is defined in the block definition section (BLOCKS ) Is defined as a block graphic element.
  • the CAD file format is not particularly limited.
  • the material CAD model storage area 125 stores three-dimensional CAD data representing the material shape of each product. Stores data in either face model, solid model, or both formats.
  • the three-dimensional CAD data created in the three-dimensional CAD device 130 is received via the communication unit and stored. For example, in the present embodiment, a material CAD model 802 as shown in FIG. 8B is stored.
  • the file format of the material CAD model storage area 125 is also stored in the same file format as that of the product CAD model storage area 124 described above.
  • the production plan data storage area 126 stores production plan information for performing machining at the machining shop.
  • a production plan data table 126a as shown in FIG. 9 is stored.
  • the production plan data table 126a stores a production plan amount 126e for each plan date and each product name for each production plan number for identifying a series of production plans.
  • the area generation rule storage area 127 stores information for specifying an area generation rule that defines a machining area registered by the area generation rule registration unit 110.
  • the region generation rule is registered by presenting a man-machine interface such as the processing region assignment rule registration screen 300 shown in FIG. Processing area allocation rule) is registered.
  • An area generation rule (machining area allocation rule) defines one machining area to be applied to a material with one machining feature, and further defines which machining conditions and which machining conditions are to be used. And processing region information, processing machine selection information, tool selection information, and processing condition selection information are registered in association with each other. In addition, by combining multiple machining areas defined by one machining feature, combine multiple machining areas (defined by multiple machining features) that each machine machine cuts in a series of machining operations from material to product. Thus, the management is expanded by one area generation rule number.
  • the area generation rule data table 127a shown in FIG. 10 includes an area generation rule number column 127b, a machining feature number column 127c, a machining feature representative point coordinate column 127d, a machining feature posture vector column 127e, a machining feature parameter value column 127f, and a machining condition selection. It has a column 127g, a tool selection column 127h, a processing machine selection column 127i, and a machining area CAD model column 127j.
  • the area generation rule number column 127b stores information for specifying an area generation rule number assigned to a combination of processing areas processed by a series of processing operations.
  • the processing feature number column 127c stores information for specifying the processing feature number selected when one processing region is defined.
  • the processed feature representative point coordinate column 127d has representative points determined for specifying the position of each processed feature, and stores the XYZ coordinate values of the representative points when the processed area by the processed feature is defined.
  • the machining feature posture vector column 127e stores posture vector information representing the posture of the machining feature on the XYZ coordinate axes when the machining area by the machining feature is defined.
  • the machining condition selection field 127g stores a machining condition number to be applied when machining the machining area defined by the machining feature.
  • the tool selection field 127h stores a tool number used when machining the machining area defined by the machining feature.
  • the processing machine selection field 127i stores the processing machine number used when processing the processing area defined by the processing feature.
  • the machining area CAD model column 127j stores CAD model information representing the machining area defined by the machining feature.
  • step 200 a processing area allocation rule for processing a product (workpiece) to be evaluated using a machining apparatus in a machining shop is created and registered.
  • a processing area allocation rule for processing a product (workpiece) to be evaluated using a machining apparatus in a machining shop is created and registered.
  • the present invention provides a man-machine interface of the machining area allocation rule registration screen 300 shown in FIG.
  • the machining area allocation rule registration screen 300 includes a CAD model display area 301, which displays a product CAD model and a material CAD model (intermediate workpiece CAD model) in the same position on the same coordinate axis. To do.
  • FIG. 14 shows a flowchart of the processing area allocation rule registration process.
  • step 400 a target product and a rule number are designated.
  • the number of the processing area assignment rule is newly designated as “1”, and the target product designates “X001A” from the menu.
  • step 401 information on the corresponding product CAD model and material CAD model is input, and the display of FIG. 12 is performed.
  • the area to be processed is regarded as an area left after the product CAD model is subtracted from the material CAD model. In this embodiment, however, a processing feature is selected and the processing feature is superimposed on the material CAD model and displayed. Then, the positioning and parameter values are finally determined by the selection means using the mouse and the input means of the input unit 103 that is not displayed on the screen, such as positioning, size change, and posture change of the processing feature.
  • the machining area is defined by the feature.
  • a pull-down menu is displayed by clicking the check box or radio button of the lathe machining feature selection unit 304 with a mouse, and machining features related to the lathe registered in the machining feature data storage area 123 are displayed.
  • a list is displayed, indicating that you have selected cylindrical machining features.
  • the system reads the shape model 123f of the machining feature number 1 in the machining feature table 123a and displays the cylindrical machining feature on the material CAD model of FIG.
  • the user uses the machining feature operation means provided by the three-dimensional CAM unit 111 to determine the machining area by superimposing the machining feature on the material CAD model.
  • the processing machine selection unit 307 selects “3” as the processing machine number from the menu of the contents of the apparatus condition data table 122a, and the tool selection unit 308 selects the tool number from the menu of the contents of the tool condition data table 121a. 7 ”is selected, and the machining condition selection unit 309 selects“ 10 ”as the machining condition number from the menu of the contents of the machining condition data table 120a.
  • the machining area data by the corresponding machining feature is registered as shown in the second row of the area generation rule data table 127a. Is done.
  • the machining area CAD model column 127j a CAD model representing an overlapping area between the machining feature and the material CAD model is formed and stored.
  • the material CAD model is turned, and the intermediate workpiece CAD model 803 shown in FIG. 18A is obtained as an intermediate workpiece CAD model.
  • the information is displayed in the display area 301 of the material CAD model and the intermediate workpiece CAD model.
  • the user selects the machining feature of the drilling machine from the drilling machine feature selection unit 305 in the same manner as described above, with the intention of machining by the drilling machine, and the system receives the selection, and the intermediate workpiece CAD is selected. Overlay on the model to display the drilling feature.
  • the user positions a hole machining feature, determines a parameter value, selects a machine, selects a tool, and selects a machining condition, and then clicks a machining feature determination button 310 to register a machining area. .
  • a machining area by a drilling machine is defined.
  • the hole drilling by the drilling machine is not limited to one place but can be made to overlap with a part of the region at a predetermined interval. These are created by a copy function, and data having different representative point coordinate values are registered in the region generation rule data table 127a.
  • the intermediate workpiece CAD model is displayed in the display area of FIG. 12, for example, as an intermediate workpiece CAD model 804 shown in FIG. 18B.
  • the user selects a machining feature of the multi-axis NC machining apparatus from the multi-axis NC machining apparatus machining feature selection unit 306 in the same manner as described above.
  • a desired free-form surface element can be taken out from the product CAD model and used as a machining feature. If rough machining is designated, a free curved surface having a predetermined offset is created from the free curved surface of the product CAD model. If finishing machining is designated, machining features along the free curved surface of the product CAD model are created. .
  • step 402 a roughing area and a finishing area by a lathe and a drilling machine are selected and defined. Subsequently, in step 403, a rough machining area and a finish machining area by the multi-axis NC machining apparatus are defined by selecting a machining feature.
  • the machining area assignment rule registration button 312 shown in FIG. 12 is clicked to complete the registration of the designated machining area assignment rule of rule number 1. At this time, a CAD model of the machining area obtained by combining all the machining areas is created and stored in the area generation rule data table.
  • step 200 of FIG. 11 one or more machining area allocation rules are created for each product (workpiece).
  • a plurality of types of products (work pieces) are input to the machining shop, different processing area assignment rules are created for each product (work pieces) and registered with different numbers.
  • a man-machine interface screen for machining shop throughput evaluation processing in FIG. 16 is displayed.
  • the user selects an area generation rule number 127 b from the pull-down menu 601 as a processing area assignment rule for processing the evaluation target product (work). If there are multiple rules, specify all rule numbers.
  • the production plan selection unit 602 designates a production plan number to be used for the current evaluation from the production plan data table 126a.
  • the user can use the pull-down menu of the machining shop device configuration unit 605 to select a device that does not relate to the machining of the evaluation target product among all the cutting processing devices constituting the machining shop, or during the evaluation target period. It is possible to select a cutting device to be evaluated, excluding devices that are not operating.
  • FIG. Specifies that lathe processing is performed first, and then the drilling is performed. Further, the user selects and designates a product to be evaluated in the input product selection unit 604, and selects and designates a schedule period 606 and an operation time zone 607 of the machining shop. After the above setting, the evaluation start button 608 is clicked to start the throughput evaluation process of the machining shop.
  • area generation rule machining area allocation rule
  • the tool path generation unit 113 upon the start of the throughput evaluation process of the machining shop, performs the area generation rule data, the processing condition data, and the tool condition data specified by the processing area allocation rule to be evaluated. Is generated, and a tool path for machining all corresponding machining areas is generated. If the lathe and drilling machine are NC processing machines, a tool path is created. If not, a tool path is not created.
  • the tool path generation unit 113 uses an existing CAM function for creating a tool path for the machining area CAD model.
  • the three-dimensional CAM unit 111 creates NC data for each cutting device based on the created tool path data and device condition data selected by the machine number.
  • the created NC data is stored in the NC data storage area 128.
  • the NC data creation process uses an existing CAM function.
  • the machining time calculation unit 115 calculates a machining time by executing a machining simulation for each cutting device using the machining simulation unit 117 on the created NC data. If the lathe and drilling machine are not NC processing machines, the processing time is calculated with reference to the standard lead time by the operator.
  • the machining simulation unit 117 uses an existing CAM function.
  • the machining shop scheduling unit 116 creates a simulation model of the machining process in the machining shop on the computer.
  • the cutting device selected by the user the input of the workpiece according to the production plan data, the cutting of the processing area according to the area generation rule (processing area allocation rule), and the processing order
  • the machining process of the machining shop is reproduced. Simulate the overall time transition and create a progress plan for all the workpieces entered in the machining shop.
  • the throughput of the machining shop in the scheduling period, and the cutting equipment is divided into categories such as lathe, drilling machine, multi-axis NC processing equipment, and the operation rate of the cutting equipment belonging to each category The average of is calculated.
  • the throughput evaluation result is displayed on the man-machine interface, for example, in the data table 610 shown in FIG. Since the evaluation is performed by first specifying 1 and 2 as the processing area allocation rules to be evaluated, the evaluation result of the processing area allocation rule numbers 1 and 2 is displayed in the data table 610 of FIG.
  • step 206 the process proceeds to the next step 207.
  • the lathe operating rate is an attribute value representing the volume machined by the lathe
  • the drilling machine operating rate is an attribute value representing the volume machined by the drilling machine
  • multi-axis The operation rate of the NC machining apparatus is stored as an attribute value representing a volume machined by the multi-axis NC machining apparatus.
  • the production planning apparatus 100 displays the processing area assignment rule correction screen 320 shown in FIG. 13 on the man-machine interface screen.
  • the machining area allocation rule correction screen 320 includes a CAD model display area 321 as in the machining area allocation rule registration screen 300.
  • the product CAD model and the material CAD model are the same. Display the same position on the coordinate axis.
  • FIG. 15 shows a flowchart of the processing area allocation rule correction process.
  • step 500 a target product and a rule number are designated.
  • the rule number display unit 322 is designated and input to modify the machining area allocation rule number “2” that has already been evaluated to the machining area allocation rule having a new number “3”.
  • the production planning apparatus 100 receives the rule number designation input, reads the data of the created machining area allocation rule “2” from the area generation rule data table 127 a, and, for example, in the pull-down menu of the drilling machine machining feature selection unit 325. Then, the machining feature numbers of the machining area allocation rule “2” are listed and the user's selection is accepted. In FIG. 13, the drilling feature number “12” is designated and correction is performed. There are a plurality of machining features with the number “12”. Using the input means of the input unit 103 not shown in the screen of FIG. 13, the user corrects the arrangement of the machining feature number “12” (corrects the representative point coordinates), corrects the parameter value, and the like.
  • the intermediate workpiece CAD model in the CAD model display area 321 always displays the corrected shape.
  • the processing feature determination button 332 When the correction of the drilling feature is finished, the user clicks the processing feature determination button 332, and the region generation rule registration unit 110 sets a new data record of the new region generation rule number “3” as the region generation rule data. Register in the table. Similarly, the lathe machining feature selection unit 323 and the multi-axis NC machining device machining feature selection unit 327 instruct to modify the machining feature, and a new data record with the new region generation rule number “3” is generated as a region generation rule. Can be registered in the data table. During the modification processing of these machining features, the machining machine modification selection unit 329, the tool modification selection unit 330, and the machining condition modification selection unit 331 determine the machining feature after modifying any data to be modified. If there is no correction, the existing data of the area generation rule number “2” is copied.
  • the region generation rule registration unit 110 sets the region generation rule number “2” before correction and the region after correction.
  • the removal volume calculation unit 114 calculates the machining volume by the drilling machine with the generation rule number “3”, and displays the machining removal volume before and after the correction on the drilling machine volume correction unit 326 in comparison.
  • the unit is mm 3 .
  • the machining area of other lathes and multi-axis NC machining equipment may change relatively by changing the machining area of the drilling machine even if the machining feature is not modified.
  • the processing removal volume is displayed in comparison. In the display example of FIG. 13, it is understood that the removal volume does not change in the lathe machining volume correction unit 324 but decreases in the multi-axis NC machining volume correction unit 328.
  • the processing of the removal volume calculation unit 114 creates NC data and calculates it by machining simulation processing, but uses an existing CAM function.
  • step 501 of FIG. 15 the machining features of the lathe, drilling machine, and multi-axis NC machining apparatus are sequentially corrected, newly added, and deleted, and a response is given to the user to show the shape of the corrected intermediate workpiece CAD model as needed.
  • step 502 as described above, based on the machining area data based on the machining features that are corrected or newly added, the other machining areas are referred to the area generation rule data before the correction, and each cutting machine The removal volume is calculated and the removal volume before and after correction is compared and presented to the user.
  • step 503 in FIG. 15 the user waits for an instruction to click the modification registration button 334 of the processing area assignment rule, and when an instruction for modification registration is received, the process proceeds to step 504, and the new number “3” that has been modified is entered. Register machining area assignment rules. In step 503, if there is further an instruction for correction or the like, the process proceeds to step 501.
  • step 208 of FIG. 11 the machining area allocation rule correction processing narrows the machining area having the largest operating rate of the machining apparatus as an attribute value (that is, reduces the removal volume), and the other machining apparatus In order to widen the machining area (that is, to increase the removal volume), the machining area assigned to each cutting apparatus is reset. Then, the modified new processing area allocation rule is registered in the area generation rule data table 127a.
  • step 201 the production planning apparatus 100 presents the machining shop throughput evaluation screen 600 to the user.
  • the user enters the selection area 601 of the machining area allocation rule to be evaluated,
  • the processing area assignment rule with the rule number “3” newly corrected and registered is designated, and the other setting items are the same as the previous evaluation, so that the evaluation process is instructed from the evaluation start button 608 without correction.
  • the production planning apparatus 100 executes the processing of steps 201, 202, 203, and 204 based on the data of the machining area allocation rule (area generation rule) number “3” in accordance with the instruction to start the evaluation.
  • the throughput is divided into categories such as lathes, drilling machines, and multi-axis NC processing devices, and the average of the operating rates of the cutting devices belonging to the respective categories is calculated.
  • categories such as lathes, drilling machines, and multi-axis NC processing devices
  • the evaluation result of the current processing area allocation rule “3” is displayed alongside the evaluation results of the processing area allocation rules “1” and “2” which are the previous evaluation results. Present.
  • step 205 it is evaluated that the evaluation result of the current machining area allocation rule “3” is the maximum throughput. Then, in addition to the machining area allocation rule “3”, it is determined that an efficient and appropriate machining operation cannot be found in addition to the machining area allocation rule “3”, and the machining area allocation rule is determined. The user finally determines that the processing method “3” gives the maximum throughput in the machining shop to be evaluated.
  • step 206 the processing procedure using the production planning device 100 and allocating the processing area to the plurality of cutting devices so as to maximize the throughput of the machining shop is completed.
  • the production planning apparatus 100 stores NC data for processing each machining device with the machining area model of the machining area allocation rule “3” that gives the maximum throughput. What is stored in the area 128 is read out and downloaded to each NC processing machine via the communication unit 105. For a cutting apparatus that is not an NC processing machine, a work instruction sheet or the like is created based on the data registered in the area generation rule data table and is output from the output unit 104.
  • the production planning apparatus 100 effectively uses a plurality of cutting devices such as a lathe, a drilling machine, and a multi-axis NC processing device installed in the machining shop,
  • the NC data can be supplied to each NC processing machine by assisting in determining the assignment of the operation to each cutting processing device for maximizing the throughput of the processing operation of the workpiece put into the machine.
  • DESCRIPTION OF SYMBOLS 100 Production planning apparatus 101 ... Operation part 102 ... Storage part 103 ... Input part 104 ... Output part 105 ... Communication part 110 ... Area generation rule registration part 111 ... Three-dimensional CAM part 112 ... Machining area model generation part 113 ... Tool path generation Unit 114 ... removal volume calculation unit 115 ... machining time calculation unit 116 ... machining shop scheduling unit 117 ... machining simulation unit 120 ... machining condition data storage area 120a ... machining condition data table 120b ... machining condition number column 120d ... Feed speed column 120e ... Single blade feed column 120f ... Cutting speed column 120g ... Shaft cut column 120h ...
  • Diameter cut column 121 ... Tool condition data storage area 121a ... Tool condition data table 121b ... Tool number column 121c ... Diameter column 121d ... Lower side Radius column 121e ... tool length column 121f ... hol Diameter field 121g ... Holder length field 122 ... Device condition data storage area 122a ... Device condition data table 122b ... Processing machine number field 122c ... Processing machine field 122d ... Axis configuration field 122e ... Stroke field 123 ... Processing feature data storage area 123a ... Machining feature data table 123b ... machining feature number column 123c ... machining feature name column 123d ... parameter column 123e ... positioning representative point column 123f ...
  • shape model column 124 ... product CAD model storage area 125 ... material CAD model storage area 126 ... production plan data Storage area 126a ... Production plan data table 126b ... Production plan number field 126c ... Plan date field 126d ... Product name field 126e ... Production plan amount 127 ... Area generation rule storage area 127a ... Area generation rule data table 127b ... Area Creation rule number column 127c ... machining feature number column 127d ... machining feature representative point coordinate column 127e ... machining feature orientation vector column 127f ... machining feature parameter value column 127g ... machining condition selection column 127h ... tool selection column 127i ... machining machine selection column 127j ... Machining area CAD model field 128 ...
  • Machining shop apparatus configuration unit 606 Schedule period designation unit 607 ... Operation time zone designation unit 608 ... Evaluation start button 610 ... Throughput evaluation result data table 611 ... Assignment of machining area Rule number column 612 ... Machining operation availability column 613 ... Drilling machining operation availability column 614 ... Multi-axis NC machining operation rate 615 ... Throughput column 701 ... Cylindrical machining feature 702 ... Tapered cylinder Machining feature 703 ... Through-hole machining feature 704 ... Blind hole machining feature 705 ... Closed pocket machining feature 706 ... Open pocket machining feature 707 ... Groove machining feature 708 ... Surface machining feature 709 ... Free-form surface machining feature 801 ...
  • Product CAD model example 802 Intermediate workpiece CAD model example of an intermediate workpiece CAD model example 804 ... after the drilling processing of materials CAD model example 803 ... after the lathing, 900 ... Computer 901 ... CPU 902 ... Memory 903 ... External storage device 904 ... Portable storage medium 905 ... Communication device 906 ; Input device 907 ... Output device 908 ... Reading device 909 ... Communication network,

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)
  • Numerical Control (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The objective of the present invention is to determine assignment of work to each cutting processing device so as to maximize throughput of processing work for work imparted to a machining shop by effectively using a plurality of cutting processing devices such as lathes, drill presses, or multi-axis NC processing devices placed in the machining shop. The production planning device is provided with means for registering the processing area of each cutting processing device, means which creates NC data for processing the processing area of each registered cutting processing device so as to perform scheduling for the machining shop in order to calculate the throughput of the machining shop and the utilization rate of each cutting processing device, means for registering a modified solution of the processing area for each cutting processing device on the basis of the utilization rate of the processing device, and means for determining an assignment method of processing areas for which maximum throughput is achieved.

Description

生産計画装置および生産計画方法Production planning apparatus and production planning method
 本発明は、機械加工ショップに設置された旋盤、ボール盤、多軸NC加工装置といった複数の切削加工装置を有効に使用して、機械加工ショップに投入されるワークの加工作業のスループットを最大にするための各切削加工装置への作業の割り当てを決定する機能を備えたCAM(Computer Aided Manufacturing) ソフトウェアの技術分野に関する。 The present invention effectively uses a plurality of cutting devices such as a lathe, a drilling machine, and a multi-axis NC processing device installed in a machining shop, thereby maximizing the throughput of a workpiece that is input to the machining shop. The present invention relates to the technical field of CAM (Computer Aided Manufacturing) software having a function of determining assignment of work to each cutting device.
 本技術分野の背景技術として、特開2002―149223号公報(特許文献1)がある。この公報には、「鉄鋼製品の生産計画を短納期に正確に対応して短時間で作成する。オーダー入力手段で製品オーダーを入力することにより、通過工程決定手段で、製品の通過工程を決定し、生産計画形成手段で、製品オーダーの通過工程をもとに各通過工程毎のリードタイム及び能率を求め、これを製品オーダーの納期から積み上げて各通過工程の通過タイミング及び処理時間を決定し、これに基づいて各工程毎に時系列で各製品オーダーの処理時間を積み上げて設備毎の稼働率を演算してから、能力超過工程の有無を判定し、能力超過工程がないときにはそのまま生産計画を作成するが、能力超過工程がある場合には、該当工程での処理を納期と能力とに基づいて前後の通過タイミングに振り分ける山崩しを行って能力超過を抑制し、調整後に工程毎稼働率を再演算し、能力超過工程がなくなったときに、そのときの通過タイミング及び処理時間で生産計画を作成する。」と記載されている(要約参照)。 There is JP 2002-149223 (Patent Document 1) as background art in this technical field. This gazette states, “Create a steel product production plan in a short time, accurately corresponding to short delivery times. By entering the product order with the order entry means, the passage process decision means determines the product passage process. The production plan formation means obtains the lead time and efficiency for each passing process based on the passing process of the product order, and accumulates this from the delivery date of the product order to determine the passing timing and processing time of each passing process. Based on this, the processing time of each product order is accumulated in time series for each process, the operation rate for each equipment is calculated, the presence / absence of an overcapacity process is determined, and if there is no overcapacity process, the production plan is continued However, if there is an overcapacity process, the process in the relevant process is divided into the front and rear passage timings based on the delivery date and the capacity to suppress the excess capacity. After re-calculating step for each operation rate, when it is no longer capable excess process has been described as. "To create a production plan in the passage timing and processing time at that time (see abstract).
 また、特開2001―318711号公報(特許文献2)がある。この公報には、「日程計画時の過負荷の解消のみならず生産能力過剰に陥らないように負荷不足を解消し、負荷の平準化が可能なスケジューリング装置を提供する。製品の製造に必要な各工程の作業であるタスクの初期山積みを実施する初期タスク山積み部と、該初期タスク山積み部で山積みされた計画期間内で最も負荷の低い部分であるミニマムボトムを探索するボトムサーチ部と、前記ミニマムボトムに隣接するピークをサーチする隣接ピークサーチ部と、前記隣接ピークとミニマムボトムの間に存在するタスクを所定の方法により前記ミニマムボトムに移動し負荷平準化を行う負荷平準化処理部と、前記負荷平準化処理部での負荷平準化処理結果の評価を行う平準化度評価部と、平準化評価の結果をもとに処理の終了判定を実施する終了判定部と、負荷平準化処理結果を出力する計画出力部を有する。」と記載されている(要約参照)。 Moreover, there exists Unexamined-Japanese-Patent No. 2001-318711 (patent document 2). This gazette provides “a scheduling device that can not only eliminate overloads at the time of scheduling but also eliminate load shortages so as not to cause excessive production capacity and level the load. Necessary for manufacturing products. An initial task stacking unit that performs initial stacking of tasks that are operations of each process; a bottom search unit that searches for a minimum bottom that is a part with the lowest load in the planning period stacked in the initial task stacking unit; and An adjacent peak search unit that searches for a peak adjacent to the minimum bottom; a load leveling processing unit that moves a task existing between the adjacent peak and the minimum bottom to the minimum bottom by a predetermined method and performs load leveling; and A leveling degree evaluation unit that evaluates a load leveling processing result in the load leveling processing unit, and a finalization that performs a process end determination based on the result of the leveling evaluation. A determination unit is described as having. "Plan output section for outputting a load leveling processing result (see Abstract).
 また、特開昭62―295116号公報(特許文献3)がある。この公報には、「穴以外の加工領域を分類集約し、加工精度および加工能率を盛り込んで単純形状へと自動分割する実用的な自動加工機の加工領域分割処理装置を提供する。加工領域に対し使用する工具に対応した単純な領域形状に自動分割する自動加工機の加工領域分割処理装置であって、領域分割の判定基準および設定基準を用意する加工領域基準データメモリと、加工領域を溝加工、側面溝加工、側面加工、ポケット加工として領域形状を判定する領域形状判定部と、該領域形状判定部により判定され設定された加工領域データの加工巾および加工深さに対し前記加工領域基準データにより使用工具に対応して分割可能かを検討する加工領域分割判定部と、該加工領域分割判定部により判定された分割可能な加工領域データを前記加工領域基準データにより側面部と底面部と上面部に分割する加工領域分割処理部と、該加工領域分割処理部によって処理された加工領域データをファイルする加工領域データメモリとからなる自動加工機における加工領域分割処理装置。」と記載されている(要約、特許請求の範囲参照)。 There is also JP-A-62-295116 (Patent Document 3). This publication provides “a processing area division processing device for a practical automatic processing machine that categorizes and collects processing areas other than holes and automatically divides the processing areas into simple shapes by incorporating processing accuracy and processing efficiency. A machining area division processing device for an automatic machine that automatically divides into simple area shapes corresponding to the tool to be used, a machining area reference data memory for preparing area division judgment criteria and setting criteria, and a groove in the machining area An area shape determination unit for determining an area shape as machining, side surface grooving, side surface machining, and pocket machining, and the machining area standard with respect to the machining width and the machining depth of the machining area data determined and set by the area shape judgment unit A machining area division determination unit that examines whether the data can be divided according to the tool to be used, and the division area data determined by the machining area division determination unit Machining in an automatic processing machine comprising a machining area division processing unit that divides a side surface portion, a bottom surface portion, and an upper surface portion according to area reference data, and a machining area data memory that files machining area data processed by the machining area division processing unit Region division processing apparatus ”(see abstract, claims).
特開2002―149223号公報JP 2002-149223 A 特開2001―318711号公報JP 2001-318711 A 特開昭62―295116号公報JP-A-62-295116
 特許文献1、及び特許文献2のいずれも工程間の負荷分散を各工程の稼働率に着目して行うひとつの方法を開示している。しかし、本発明のように、各切削加工装置に割り振る加工領域を再構成して、負荷分散する方法ではない。 Both Patent Document 1 and Patent Document 2 disclose a method of performing load distribution between processes by paying attention to the operation rate of each process. However, unlike the present invention, it is not a method of reconfiguring the machining area allocated to each cutting machine and distributing the load.
 また、特許文献3には、加工フィーチャに着目して加工領域を分割し、複数の加工機に分担させる技術が開示されている。しかし、本発明のように、各切削加工装置の稼働率に着目して、各切削加工装置に割り振る加工領域を再構成して、負荷分散する方法ではない。 Further, Patent Document 3 discloses a technique in which a processing area is divided by paying attention to a processing feature and is shared by a plurality of processing machines. However, as in the present invention, paying attention to the operating rate of each cutting device, this is not a method of reconfiguring the processing area allocated to each cutting device and distributing the load.
 機械加工ショップに設置されている旋盤、ボール盤、多軸NC加工装置といった切削加工装置は、それらの機械の備えている構造、切削工具に基づいて、旋盤は円筒形状を持つ製品の加工を、ボール盤は各種穴形状を持つ製品の加工を、そして多軸NC加工装置は、各種平面、曲面、ポケット構造、溝構造、自由曲面の仕上げなどの加工を受け持つ役割が定着している。その他の特殊な加工も含めて、使用される切削加工装置が唯一に特定される仕上げ加工が多く存在することは事実である。 Cutting machines such as lathes, drilling machines, and multi-axis NC machines installed in machining shops are based on the structure and cutting tools of these machines. Has a well-established role in processing products with various hole shapes, and multi-axis NC processing machines are responsible for processing various flat surfaces, curved surfaces, pocket structures, groove structures, and free curved surfaces. It is true that there are many finishing processes that uniquely identify the cutting device used, including other special processes.
 しかし、製品を素材から粗加工によって中間加工品を作成して、さらに中間加工品を仕上げ加工によって仕上げる加工プロセスにおいて、特に粗加工の領域は複数の切削加工装置によって加工が可能な重複領域が存在する。 However, in the machining process in which intermediate products are created from raw materials by rough machining, and intermediate workpieces are finished by finishing, especially in the rough machining area, there are overlapping areas that can be machined by multiple cutting devices. To do.
 機械加工ショップに設置されている旋盤、ボール盤、多軸NC加工装置など複数の切削加工装置を利用して、複数のワークを効率よく加工する場合に、どの装置にどの位の加工領域を振り分ければ機械加工ショップのスループットが最大になるか判らない課題がある。 When using multiple cutting machines such as lathes, drilling machines, and multi-axis NC machines installed in machining shops, when machining multiple workpieces efficiently, you can assign which machining area to which machine. For example, there is a problem that the throughput of a machining shop cannot be maximized.
 これは、ひとつの切削加工装置に作業が集中する一方で、他の切削加工装置は作業が割り当てられなくなるなど、作業工数(何分/作業)が装置間でバランスが取れていないことが原因である。 This is because the work man-hours (minutes / work) are not balanced between the devices, for example, while the work concentrates on one cutting device, while other cutting devices cannot be assigned work. is there.
 本発明は、機械加工ショップの複数の切削加工装置にワークの加工領域を振り分けた工程設計案を作成したものを、機械加工ショップのスケジューリングを行い、各切削加工装置の稼働率を評価して、切削加工装置の間の加工領域の割り振りを修正する作業を支援するCAMシステムを提供する。 The present invention creates a process design proposal in which a machining area of a workpiece is allocated to a plurality of machining devices in a machining shop, schedules a machining shop, and evaluates the operating rate of each machining device, Provided is a CAM system that supports an operation of correcting an allocation of a processing area between cutting processing apparatuses.
 上記解決課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  上記課題を解決するために本発明では、製品形状と素材形状を対比して表示し、素材形状の上に加工領域を定義するマンマシンインタフェースを提供して、各切削加工装置の加工領域を登録する手段と、登録された各切削加工装置の加工領域を加工するNCデータを作成して、機械加工ショップのスケジューリングを行い、機械加工ショップのスループットと、各切削加工装置の稼働率を算出する手段と、前記算出された最も大きな稼働率を属性値として有する加工領域を狭め、他の加工領域を広めるように、前記各切削加工装置の加工領域を修正定義するマンマシンインタフェースを提供して、各切削加工装置の加工領域の修正解を登録する手段と、各切削加工装置の加工領域、およびその修正解のそれぞれにおいて機械加工ショップのスケジューリングにより得られた機械加工ショップのスループットを比較して、最大のスループットが得られる加工領域の割り当て方を決定する手段とを備えた生産計画装置を構成した。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
In order to solve the above problems, in the present invention, a product shape and a material shape are displayed in comparison, a man-machine interface for defining a machining area on the material shape is provided, and a machining area of each cutting apparatus is registered. And means for creating NC data for machining the machining area of each registered machining device, scheduling the machining shop, and calculating the throughput of the machining shop and the operating rate of each machining device And providing a man-machine interface for modifying and defining the machining area of each cutting device so as to narrow the machining area having the calculated maximum operating rate as an attribute value and widen the other machining areas, Means for registering a correction solution for the machining area of the machining apparatus, and a machining shop space for each machining area and each of the correction solutions for each machining apparatus. Compared machining shop throughput obtained by the scheduling, to constitute a production plan and means for determining the allocation how machining area where the maximum throughput.
 また、上記課題を解決するために本発明では、生産計画装置にマンマシンインタフェース上に、旋盤、ボール盤、多軸NC加工装置のカテゴリに分けた加工フィーチャ定義ツールを提供して、ユーザによる各加工フィーチャを適用した加工領域の定義、及び加工機、工具、加工条件の選択を受付けて、それらのデータを関連付けて、各切削加工装置の加工領域を登録する手段を備えた。 In order to solve the above problems, the present invention provides a machining feature definition tool divided into categories of lathes, drilling machines, and multi-axis NC machining devices on a man-machine interface in the production planning device, and allows each machining performed by the user. A means for registering the machining area of each cutting apparatus by receiving the definition of the machining area to which the feature is applied and the selection of the machining machine, the tool, and the machining condition and associating those data is provided.
 また、上記課題を解決するために本発明では、生産計画装置に登録された各切削加工装置の加工領域データを読み出し、加工条件と工具条件から加工領域を加工するツールパスを生成し、ツールパスと加工機条件よりNCデータを生成し、前記NCデータを加工シミュレーションして加工時間を算出して、以上のデータに基づき機械加工ショップのスケジューリングを行い、機械加工ショップのスループットと、各切削加工装置の稼働率を算出する手段を備えた。 In order to solve the above problems, the present invention reads out the machining area data of each cutting apparatus registered in the production planning apparatus, generates a tool path for machining the machining area from the machining conditions and the tool conditions, and generates a tool path. NC data is generated from machine tool conditions, machining time is calculated by machining simulation of the NC data, machining shop scheduling is performed based on the above data, the throughput of the machining shop, and each cutting machine Means for calculating the operating rate of
 また、上記課題を解決するために本発明では、生産計画装置にマンマシンインタフェース上に、既登録の加工領域を定義する加工フィーチャを呼び出して、パラメータを修正する手段を提供し、加工領域の修正を受付けて、修正前と修正後の加工領域の除去ボリュームを算出して、各切削加工装置の加工領域の修正効果を提示する手段を備えた。 Further, in order to solve the above-mentioned problems, the present invention provides means for calling a machining feature defining a registered machining area on a man-machine interface to the production planning apparatus and correcting the parameter, thereby correcting the machining area. And a means for calculating the removal volume of the machining area before and after the modification and presenting the modification effect of the machining area of each cutting apparatus.
 本発明により、機械加工ショップに設置された旋盤、ボール盤、多軸NC加工装置といった複数の切削加工装置を有効に使用して、機械加工ショップに投入されるワークの加工作業のスループットを最大にするための各切削加工装置への作業の割り当てを決定することができる。 According to the present invention, a plurality of cutting devices such as a lathe, a drilling machine, and a multi-axis NC processing device installed in a machining shop are effectively used to maximize the throughput of a workpiece input to the machining shop. The assignment of work to each of the cutting devices can be determined.
本発明の一実現形態である生産計画装置の概略図を示す図である。It is a figure which shows the schematic of the production planning apparatus which is 1 implementation | achievement form of this invention. 本発明の一実現形態である加工条件データテーブルを示す図である。It is a figure which shows the process condition data table which is 1 implementation | achievement form of this invention. 本発明の一実現形態である工具条件データテーブルを示す図である。It is a figure which shows the tool condition data table which is 1 implementation | achievement form of this invention. 本発明の一実現形態である装置条件データテーブルを示す図である。It is a figure which shows the apparatus condition data table which is 1 implementation | achievement form of this invention. 本発明の一実現形態である加工フィーチャデータテーブルを示す図である。It is a figure which shows the process feature data table which is 1 implementation | achievement form of this invention. 本発明の一実現形態である加工フィーチャ例(1)を示す図である。It is a figure which shows the process feature example (1) which is 1 implementation | achievement form of this invention. 本発明の一実現形態である加工フィーチャ例(2)を示す図である。It is a figure which shows the process feature example (2) which is 1 implementation | achievement form of this invention. 本発明の一実現形態である加工フィーチャ例(3)を示す図である。It is a figure which shows the process feature example (3) which is 1 implementation | achievement form of this invention. 本発明の一実現形態である製品CADモデル例、および素材CADモデル例を示す図である。It is a figure which shows the product CAD model example which is one implementation | achievement form of this invention, and the raw material CAD model example. 本発明の一実現形態である生産計画データテーブルを示す図である。It is a figure which shows the production plan data table which is 1 implementation | achievement form of this invention. 本発明の一実現形態である領域生成ルールデータテーブルを示す図である。It is a figure which shows the area | region production | generation rule data table which is 1 implementation | achievement form of this invention. 本発明の一実現形態である機械加工ショップのスループットが最大となるように加工領域を複数の切削加工装置へ割り当てる処理を示すフローチャートを示す図である。It is a figure which shows the flowchart which shows the process which allocates a process area to a some cutting device so that the throughput of the machining shop which is one implementation | achievement form of this invention may become the maximum. 本発明の一実現形態である加工領域割り当てルール登録画面を示す図である。It is a figure which shows the process area allocation rule registration screen which is 1 implementation | achievement form of this invention. 本発明の一実現形態である加工領域割り当てルール修正画面を示す図である。It is a figure which shows the process area allocation rule correction screen which is 1 implementation | achievement form of this invention. 本発明の一実現形態である加工領域割り当てルール登録処理のフローチャートを示す図である。It is a figure which shows the flowchart of the process area allocation rule registration process which is 1 implementation | achievement form of this invention. 本発明の一実現形態である加工領域割り当てルール修正処理のフローチャートを示す図である。It is a figure which shows the flowchart of the process area allocation rule correction process which is 1 implementation | achievement form of this invention. 本発明の一実現形態である機械加工ショップスループット評価処理のマンマシンインタフェース画面を示す図である。It is a figure which shows the man-machine interface screen of the machining shop throughput evaluation process which is 1 implementation | achievement form of this invention. 本発明の一実現形態であるスループット評価結果のデータテーブルを示す図である。It is a figure which shows the data table of the throughput evaluation result which is one implementation | achievement form of this invention. 本発明の一実現形態である旋盤加工後、およびボール盤加工後の中間加工品CADモデル例を示す図である。It is a figure which shows the intermediate work product CAD model example after the lathe process which is one implementation | achievement form of this invention, and after a drilling. 本発明の一実現形態であるハードウェア構成を示す図である。It is a figure which shows the hardware constitutions which are 1 implementation | achievement form of this invention.
 以下、本発明の一実現形態について図面を用いて説明する。
  図1は本発明の一実施形態である、生産計画装置100の概略図である。図示するように、生産計画装置100は、演算部101と、記憶部102と、入力部103と、出力部104と、通信部105を備える。生産計画装置100の通信部105は、ネットワーク150を介して3次元CAD装置130、NC加工機140と接続される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a production planning apparatus 100 according to an embodiment of the present invention. As illustrated, the production planning apparatus 100 includes a calculation unit 101, a storage unit 102, an input unit 103, an output unit 104, and a communication unit 105. The communication unit 105 of the production planning device 100 is connected to the three-dimensional CAD device 130 and the NC processing machine 140 via the network 150.
 演算部101は、領域生成ルール登録部110、3次元CAM部111、加工領域モデル生成部112、ツールパス生成部113、除去ボリューム算出部114、加工時間算出部115、加工ショップスケジューリング部116、および加工シミュレーション部117とを有する。 The calculation unit 101 includes a region generation rule registration unit 110, a three-dimensional CAM unit 111, a processing region model generation unit 112, a tool path generation unit 113, a removal volume calculation unit 114, a processing time calculation unit 115, a processing shop scheduling unit 116, and A machining simulation unit 117.
 記憶部102は、加工条件データ記憶領域120、工具条件データ記憶領域121、装置条件データ記憶領域122、加工フィーチャデータ記憶領域123、製品CADモデル記憶領域124、素材CADモデル記憶領域125、生産計画データ記憶領域126、領域生成ルール記憶領域127、およびNCデータ記憶領域128と、を有する。 The storage unit 102 includes a machining condition data storage area 120, a tool condition data storage area 121, an apparatus condition data storage area 122, a machining feature data storage area 123, a product CAD model storage area 124, a material CAD model storage area 125, and production plan data. A storage area 126; an area generation rule storage area 127; and an NC data storage area 128.
 以上に記載した生産計画装置100は、例えば、図19(コンピュータ900の概略図)に示すような、CPU(Central Processing Unit)901と、メモリ902と、HDD(Hard Disk Drive)等の外部記憶装置903と、CD(Compact Disk)やDVD(Digital Versatile Disk)等の可搬性を有する記憶媒体904に対して情報を読み書きする読取装置908と、キーボードやマウスなどの入力装置906と、ディスプレイなどの出力装置907と、通信ネットワーク909に接続するためのNIC(Network Interface Card)等の通信装置905と、を備えた一般的なコンピュータ900で実現できる。 The production planning apparatus 100 described above includes, for example, an external storage device such as a CPU (Central Processing Unit) 901, a memory 902, and an HDD (Hard Disk Drive) as shown in FIG. 19 (schematic diagram of the computer 900). 903, a reading device 908 for reading / writing information from / to a portable storage medium 904 such as a CD (Compact Disk) or a DVD (Digital Versatile Disk), an input device 906 such as a keyboard or a mouse, and an output such as a display This can be realized by a general computer 900 including a device 907 and a communication device 905 such as a NIC (Network Interface Card) for connecting to the communication network 909.
 加工条件データ記憶領域120は、機械加工ショップに在る全ての切削加工装置を使用した際の切削加工条件を予め加工条件データテーブル120aに記憶する。例えば、本実施形態においては、図2に示すような加工条件データテーブル120aを記憶する。図示するように、加工条件データテーブル120aは、加工条件番号欄120bと、回転数欄120cと、送り速度欄120dと、一刃送り欄120eと、切削速度欄120fと、軸切込み欄120gと、径切込み欄120hと、を有する。 The machining condition data storage area 120 stores in advance in the machining condition data table 120a cutting conditions when all the cutting apparatuses in the machining shop are used. For example, in this embodiment, a machining condition data table 120a as shown in FIG. 2 is stored. As shown in the drawing, the machining condition data table 120a includes a machining condition number column 120b, a rotation speed column 120c, a feed rate column 120d, a one-blade feed column 120e, a cutting speed column 120f, and an axis cutting column 120g. And a diameter cutting column 120h.
 回転数欄120cは、加工条件番号欄120bで特定される条件で、工具の回転数を特定する情報を格納する。
  送り速度欄120dは、加工条件番号欄120bで特定される条件で、工具の送り速度を特定する情報を格納する。
  一刃送り欄120eは、加工条件番号欄120bで特定される条件で、工具の一刃あたりの送り量の情報を格納する。
  切削速度欄120fは、加工条件番号欄120bで特定される条件で、工具の切削速度を特定する情報を格納する。
  軸切込み欄120gは、加工条件番号欄120bで特定される条件で、工具の軸方向の切込み深さを特定する情報を格納する。
  径切込み欄120hは、加工条件番号欄120bで特定される条件で、径切込み量を特定する情報を格納する。
The rotation speed column 120c stores information for specifying the rotation speed of the tool under the condition specified in the machining condition number column 120b.
The feed rate column 120d stores information for specifying the feed rate of the tool under the conditions specified in the machining condition number column 120b.
The single blade feed column 120e stores information on the feed amount per blade of the tool under the conditions specified in the machining condition number column 120b.
The cutting speed column 120f stores information for specifying the cutting speed of the tool under the conditions specified in the machining condition number column 120b.
The axis cutting column 120g stores information for specifying the cutting depth in the axial direction of the tool under the conditions specified in the machining condition number column 120b.
The diameter cutting field 120h stores information for specifying the diameter cutting amount under the conditions specified in the machining condition number field 120b.
 図1に戻り、工具条件データ記憶領域121には、機械加工ショップに在る全ての切削加工装置で使用される工具の情報を予め工具条件データテーブル121aを記憶する。例えば、本実施形態においては、図3に示すような工具条件データテーブル121aを記憶する。
  図示するように、工具条件データテーブル121aは、工具番号欄121bと、直径欄121cと、下側の半径欄121dと、工具長欄121eと、ホルダ直径欄121fと、ホルダ長さ欄121gと、を有する。
Returning to FIG. 1, in the tool condition data storage area 121, a tool condition data table 121 a is stored in advance with information on tools used in all the cutting apparatuses in the machining shop. For example, in this embodiment, a tool condition data table 121a as shown in FIG. 3 is stored.
As shown in the figure, the tool condition data table 121a includes a tool number column 121b, a diameter column 121c, a lower radius column 121d, a tool length column 121e, a holder diameter column 121f, a holder length column 121g, Have
 直径欄121cは、工具番号欄121bで特定される条件で、工具の直径を特定する情報を格納する。
  下側の半径欄121dは、工具番号欄121bで特定される条件で、工具の下側の半径を特定する情報を格納する。
  工具長欄121eは、工具番号欄121bで特定される条件で、工具の長さを特定する情報を格納する。
  ホルダ直径欄121fは、工具番号欄121bで特定される条件で、ホルダの直径を特定する情報を格納する。
  ホルダ長さ欄121gは、工具番号欄121bで特定される条件で、ホルダの長さを特定する情報を格納する。
The diameter column 121c stores information for specifying the tool diameter under the conditions specified in the tool number column 121b.
The lower radius column 121d stores information for specifying the lower radius of the tool under the conditions specified in the tool number column 121b.
The tool length column 121e stores information for specifying the tool length under the conditions specified in the tool number column 121b.
The holder diameter column 121f stores information for specifying the diameter of the holder under the conditions specified in the tool number column 121b.
The holder length column 121g stores information for specifying the length of the holder under the conditions specified in the tool number column 121b.
 図1に戻り、装置条件データ記憶領域122には、機械加工ショップに在る全ての切削加工機の装置情報を記憶する。例えば、本実施形態においては、図4に示すような装置条件データテーブル122aを記憶する。
  図示するように、装置条件データテーブル122aは、加工機番号欄122bと、加工機名欄122cと、軸構成欄122dと、ストローク欄122eと、を有する。
Returning to FIG. 1, the apparatus condition data storage area 122 stores apparatus information of all the cutting machines in the machining shop. For example, in the present embodiment, an apparatus condition data table 122a as shown in FIG. 4 is stored.
As shown in the figure, the apparatus condition data table 122a includes a processing machine number column 122b, a processing machine name column 122c, an axis configuration column 122d, and a stroke column 122e.
 加工機番号欄122bには、切削加工機を特定する識別情報である加工機番号を格納する。
  加工機名欄122cには、加工機の加工機名を特定する情報を格納する。
  軸構成欄122dには、加工機の軸構成を特定する情報を格納する。
  ストローク欄122eには、加工機の各軸における稼動範囲であるストロークを特定する情報を格納する。
The processing machine number column 122b stores a processing machine number that is identification information for specifying a cutting machine.
In the processing machine name column 122c, information for specifying the processing machine name of the processing machine is stored.
The axis configuration column 122d stores information for specifying the axis configuration of the processing machine.
The stroke column 122e stores information for specifying a stroke that is an operating range of each axis of the processing machine.
 図1に戻り、加工フィーチャデータ記憶領域123には、加工領域を定義する際に使用する加工フィーチャデータを記憶する。加工フィーチャとは、例えば一本のバイトによって加工される円筒形状、一本のドリルで開けられる1つの穴、一本のエンドミルで切削される1つのまとまった領域など、1つの工具で加工されるひとまとまりの領域の単位を表わす。本実施例では、標準となる加工フィーチャをデータテーブルに予め登録してあり、それらの中より、適当な加工フィーチャをマンマシンインタフェース画面上で選択して、素材CADモデルの中に加工領域を定義する際に使用される。 Referring back to FIG. 1, the machining feature data storage area 123 stores machining feature data used when defining the machining area. The machining features are machined with a single tool, for example, a cylindrical shape machined by a single tool, a single hole drilled by a single drill, or a single area cut by a single end mill. Represents a unit of area. In this embodiment, standard machining features are registered in the data table in advance, and an appropriate machining feature is selected on the man-machine interface screen, and a machining area is defined in the material CAD model. Used when doing.
 例えば、本実施形態においては、図6、図7(a)、図7(b)に加工フィーチャ例を示すような加工フィーチャデータを図5に示す加工フィーチャデータテーブル123aに登録している。 For example, in this embodiment, machining feature data such as machining feature examples shown in FIGS. 6, 7A, and 7B is registered in the machining feature data table 123a shown in FIG.
 図示するように、加工フィーチャデータテーブル123aは、加工フィーチャ番号欄123b、加工フィーチャ名称欄123c、パラメータ欄123d、位置決め代表点欄123e、および形状モデル欄123fを有する。 As shown in the figure, the machining feature data table 123a has a machining feature number column 123b, a machining feature name column 123c, a parameter column 123d, a positioning representative point column 123e, and a shape model column 123f.
 加工フィーチャ番号欄123bには、加工フィーチャを特定する番号を格納する。
  加工フィーチャ名称欄123cには、加工フィーチャ名を特定する番号を格納する。
  パラメータ欄123dには、加工フィーチャの寸法を定義するパラメータ変数を格納する。
  位置決め代表点欄123eには、加工フィーチャを素材CADモデルに位置決めして加工領域を作成する時に使用される加工フィーチャの代表点情報を格納する。
  形状モデル欄123fには、マンマシンインタフェース画面上に加工フィーチャを表示して、加工形状を定義する際に使用される形状モデル情報を格納する。
The machining feature number column 123b stores a number for identifying the machining feature.
The machining feature name field 123c stores a number that identifies the machining feature name.
The parameter column 123d stores a parameter variable that defines the dimension of the processed feature.
The positioning representative point column 123e stores representative point information of the machining feature used when the machining feature is positioned on the material CAD model to create a machining area.
The shape model column 123f stores shape model information used when displaying the machining feature on the man-machine interface screen and defining the machining shape.
 図1に戻り、製品CADモデル記憶領域124は、製品毎の加工仕上がり形状を表わす3次元CADデータを記憶する。フェイスモデル、ソリッドモデルのいずれか、または両形式のデータを記憶する。3次元CAD装置130において作成された3次元CADデータを通信部を介して受信して、格納する。例えば、本実施例においては、図8(a)に示すような製品名称X001Aの製品CADモデル801を記憶する。 Returning to FIG. 1, the product CAD model storage area 124 stores three-dimensional CAD data representing the finished shape of each product. Stores data in either face model, solid model, or both formats. The three-dimensional CAD data created in the three-dimensional CAD device 130 is received via the communication unit and stored. For example, in this embodiment, a product CAD model 801 having a product name X001A as shown in FIG.
 製品CADモデル記憶領域124は、例えばDXFファイル形式にて格納しており、フェイスモデルは要素定義部(ENTITIES)に図面を構成する各図形要素として定義されており、ソリッドモデルはブロック定義部(BLOCKS)にブロック図形要素として定義されている。本発明では、CADファイル形式は特に限定はしない。 The product CAD model storage area 124 is stored in, for example, a DXF file format, the face model is defined as each graphic element constituting the drawing in the element definition section (ENTITIES), and the solid model is defined in the block definition section (BLOCKS ) Is defined as a block graphic element. In the present invention, the CAD file format is not particularly limited.
 素材CADモデル記憶領域125は、製品毎の素材形状を表わす3次元CADデータを記憶する。フェイスモデル、ソリッドモデルのいずれか、または両形式のデータを記憶する。3次元CAD装置130において作成された3次元CADデータを通信部を介して受信して、格納する。例えば、本実施形態においては、図8(b)に示すような素材CADモデル802を記憶する。素材CADモデル記憶領域125のファイル形式についても、前記した製品CADモデル記憶領域124と同じファイル形式にて格納する。 The material CAD model storage area 125 stores three-dimensional CAD data representing the material shape of each product. Stores data in either face model, solid model, or both formats. The three-dimensional CAD data created in the three-dimensional CAD device 130 is received via the communication unit and stored. For example, in the present embodiment, a material CAD model 802 as shown in FIG. 8B is stored. The file format of the material CAD model storage area 125 is also stored in the same file format as that of the product CAD model storage area 124 described above.
 図1に戻り、生産計画データ記憶領域126には、機械加工ショップにて機械加工を実施する生産計画情報を記憶する。例えば、本実施形態においては、図9に示すような生産計画データテーブル126aを記憶する。生産計画データテーブル126aには、一連の生産計画を識別する生産計画番号毎に、計画日毎、製品名称毎の生産計画量126eを格納する。 Referring back to FIG. 1, the production plan data storage area 126 stores production plan information for performing machining at the machining shop. For example, in the present embodiment, a production plan data table 126a as shown in FIG. 9 is stored. The production plan data table 126a stores a production plan amount 126e for each plan date and each product name for each production plan number for identifying a series of production plans.
 図1に戻り、領域生成ルール記憶領域127には、領域生成ルール登録部110によって登録される加工領域を定義する領域生成ルールを特定する情報が格納される。領域生成ルールの登録は、例えば、本実施形態おいては、図12に示すような加工領域割り当てルール登録画面300のようなマンマシンインタフェースをユーザに提示して、ユーザ入力によって、領域生成ルール(加工領域割り当てルール)が登録される。 Returning to FIG. 1, the area generation rule storage area 127 stores information for specifying an area generation rule that defines a machining area registered by the area generation rule registration unit 110. For example, in this embodiment, the region generation rule is registered by presenting a man-machine interface such as the processing region assignment rule registration screen 300 shown in FIG. Processing area allocation rule) is registered.
 領域生成ルール(加工領域割り当てルール)とは、素材に施される1つの加工領域を1つの加工フィーチャで定義して、さらにその加工領域をどの加工機、およびどの工具を使って、どの加工条件を使用して加工するのかを定義して、加工領域情報、加工機選択情報、工具選択情報、および加工条件選択情報を関係付けて登録したものである。さらに、1つの加工フィーチャによって定義される加工領域を複数組み合わせて、素材から製品に至る一連の加工作業において、各加工機械が切削する複数の加工領域(複数の加工フィーチャによって定義される)を組み合わせて、1つの領域生成ルール番号によって、拡張して管理する。 An area generation rule (machining area allocation rule) defines one machining area to be applied to a material with one machining feature, and further defines which machining conditions and which machining conditions are to be used. And processing region information, processing machine selection information, tool selection information, and processing condition selection information are registered in association with each other. In addition, by combining multiple machining areas defined by one machining feature, combine multiple machining areas (defined by multiple machining features) that each machine machine cuts in a series of machining operations from material to product. Thus, the management is expanded by one area generation rule number.
 図10に示す領域生成ルールデータテーブル127aは、領域生成ルール番号欄127b、加工フィーチャ番号欄127c、加工フィーチャ代表点座標欄127d、加工フィーチャ姿勢ベクトル欄127e、加工フィーチャパラメータ値欄127f、加工条件選択欄127g、工具選択欄127h、加工機選択欄127i、および加工領域CADモデル欄127jを有する。 The area generation rule data table 127a shown in FIG. 10 includes an area generation rule number column 127b, a machining feature number column 127c, a machining feature representative point coordinate column 127d, a machining feature posture vector column 127e, a machining feature parameter value column 127f, and a machining condition selection. It has a column 127g, a tool selection column 127h, a processing machine selection column 127i, and a machining area CAD model column 127j.
 領域生成ルール番号欄127bには、一連の加工作業によって加工される加工領域の組み合わせに対して付けられる領域生成ルール番号を特定する情報を格納する。
  加工フィーチャ番号欄127cには、1つの加工領域を定義するときに選択された加工フィーチャ番号を特定する情報を格納する。
  加工フィーチャ代表点座標欄127dには、加工フィーチャごとにその位置を特定するために決められた代表点があり、加工フィーチャによる加工領域が定義された時の代表点のX-Y-Z座標値を格納する。
  加工フィーチャ姿勢ベクトル欄127eには、加工フィーチャによる加工領域が定義された時の加工フィーチャのX-Y-Z座標軸上の姿勢を表わす姿勢ベクトル情報を格納する。
  加工フィーチャパラメータ値欄127fには、加工フィーチャによる加工領域が定義された時の加工フィーチャの各パラメータ変数に実際に定義された寸法値が格納される。
  加工条件選択欄127gには、加工フィーチャにより定義された加工領域を加工する際に適用する加工条件番号を格納する。
  工具選択欄127hには、加工フィーチャにより定義された加工領域を加工する際に使用する工具番号を格納する。
  加工機選択欄127iには、加工フィーチャにより定義された加工領域を加工する際に使用する加工機番号を格納する。
  加工領域CADモデル欄127jには、加工フィーチャにより定義された加工領域を表わすCADモデル情報を格納する。
The area generation rule number column 127b stores information for specifying an area generation rule number assigned to a combination of processing areas processed by a series of processing operations.
The processing feature number column 127c stores information for specifying the processing feature number selected when one processing region is defined.
The processed feature representative point coordinate column 127d has representative points determined for specifying the position of each processed feature, and stores the XYZ coordinate values of the representative points when the processed area by the processed feature is defined.
The machining feature posture vector column 127e stores posture vector information representing the posture of the machining feature on the XYZ coordinate axes when the machining area by the machining feature is defined.
In the machining feature parameter value column 127f, the dimension value actually defined in each parameter variable of the machining feature when the machining area by the machining feature is defined is stored.
The machining condition selection field 127g stores a machining condition number to be applied when machining the machining area defined by the machining feature.
The tool selection field 127h stores a tool number used when machining the machining area defined by the machining feature.
The processing machine selection field 127i stores the processing machine number used when processing the processing area defined by the processing feature.
The machining area CAD model column 127j stores CAD model information representing the machining area defined by the machining feature.
 図11のフローチャートにより、本発明を搭載した生産計画装置100を使用して、機械加工ショップに備える全ての切削加工装置を有効に活用して、機械加工ショップのスループットが最大となるように加工領域を複数の切削加工装置へ割り当てる処理手順を説明する。 According to the flowchart of FIG. 11, by using the production planning device 100 equipped with the present invention, all the cutting devices provided in the machining shop are effectively used, and the machining area is maximized so that the throughput of the machining shop is maximized. A processing procedure for assigning to a plurality of cutting devices will be described.
 ステップ200において、評価対象とする製品(ワーク)を機械加工ショップに有る切削加工装置を使用して加工するための、加工領域割り当てルールを作成して登録する。ここで、加工領域割り当てルールは、製品(ワーク)ごとに最低1つの案を作成する必要があり、別解がある場合には、複数案を作成して、それぞれのスループットの結果を比較することが望ましい。 In step 200, a processing area allocation rule for processing a product (workpiece) to be evaluated using a machining apparatus in a machining shop is created and registered. Here, it is necessary to create at least one plan for each product (work), and if there is another solution, create multiple plans and compare the results of each throughput. Is desirable.
 加工領域割り当てルールを作成して登録するために、本発明では図12に示す加工領域割り当てルール登録画面300のマンマシンインタフェースを提供する。加工領域割り当てルール登録画面300には、CADモデル表示領域301を備え、ここには、製品CADモデルと、素材CADモデル(中間加工品CADモデル)とを同じ座標軸上の同じ位置に対比させて表示する。 In order to create and register the machining area allocation rule, the present invention provides a man-machine interface of the machining area allocation rule registration screen 300 shown in FIG. The machining area allocation rule registration screen 300 includes a CAD model display area 301, which displays a product CAD model and a material CAD model (intermediate workpiece CAD model) in the same position on the same coordinate axis. To do.
 図14に、加工領域割り当てルール登録処理のフローチャートを示す。
  ステップ400では、対象製品と、ルール番号を指定する。図12では、新たに加工領域割り当てルールの番号を「1」と指定して、対象製品は、メニューより「X001A」を指定していることを示す。
  ステップ401では、該当する製品CADモデル、素材CADモデルの情報を入力して、図12の表示を行う。
FIG. 14 shows a flowchart of the processing area allocation rule registration process.
In step 400, a target product and a rule number are designated. In FIG. 12, the number of the processing area assignment rule is newly designated as “1”, and the target product designates “X001A” from the menu.
In step 401, information on the corresponding product CAD model and material CAD model is input, and the display of FIG. 12 is performed.
 加工すべき領域は、素材CADモデルより製品CADモデルを減算して残された領域として捉えられるが、本実施例では、加工フィーチャを選択して、素材CADモデル上に加工フィーチャを重ねて表示して、加工フィーチャの位置決め、サイズの変更、姿勢の変更などを、マウスによる選択手段、および画面には表示されない入力部103の入力手段によって、最終的に、位置決めとパラメータ値の決定がなされた加工フィーチャにより加工領域が定義される。 The area to be processed is regarded as an area left after the product CAD model is subtracted from the material CAD model. In this embodiment, however, a processing feature is selected and the processing feature is superimposed on the material CAD model and displayed. Then, the positioning and parameter values are finally determined by the selection means using the mouse and the input means of the input unit 103 that is not displayed on the screen, such as positioning, size change, and posture change of the processing feature. The machining area is defined by the feature.
 図12に示す実施例では、旋盤加工フィーチャ選択部304のチェックボックスまたはラジオボタンをマウスでクリックすることによってプルダウンメニューが表示され、加工フィーチャデータ記憶領域123に登録されている旋盤に関わる加工フィーチャの一覧が表示され、円筒の加工フィーチャを選択したことを示す。加工フィーチャの選択の入力を受付けて、システムは、加工フィーチャテーブル123aの加工フィーチャ番号1の形状モデル123fを読み出して、図12の素材CADモデル上に円筒加工フィーチャを表示する。図12上には加工フィーチャは表示されていないが、ユーザは、3次元CAM部111が提供する加工フィーチャ操作手段を使って、素材CADモデル上に加工フィーチャを重ねて加工領域を決定する。なお、加工フィーチャが素材CADモデル内に含まれるわけではなくて、重複領域を加工領域として定義する。さらに、加工機選択部307において、装置条件データテーブル122aの内容のメニューより加工機番号を「3」と選択し、工具選択部308において、工具条件データテーブル121aの内容のメニューより工具番号を「7」と選択し、加工条件選択部309において、加工条件データテーブル120aの内容のメニューより加工条件番号を「10」と選択している。 In the embodiment shown in FIG. 12, a pull-down menu is displayed by clicking the check box or radio button of the lathe machining feature selection unit 304 with a mouse, and machining features related to the lathe registered in the machining feature data storage area 123 are displayed. A list is displayed, indicating that you have selected cylindrical machining features. In response to the input of the selection of the machining feature, the system reads the shape model 123f of the machining feature number 1 in the machining feature table 123a and displays the cylindrical machining feature on the material CAD model of FIG. Although the machining feature is not displayed on FIG. 12, the user uses the machining feature operation means provided by the three-dimensional CAM unit 111 to determine the machining area by superimposing the machining feature on the material CAD model. Note that the machining feature is not included in the material CAD model, and an overlapping area is defined as a machining area. Further, the processing machine selection unit 307 selects “3” as the processing machine number from the menu of the contents of the apparatus condition data table 122a, and the tool selection unit 308 selects the tool number from the menu of the contents of the tool condition data table 121a. 7 ”is selected, and the machining condition selection unit 309 selects“ 10 ”as the machining condition number from the menu of the contents of the machining condition data table 120a.
 加工フィーチャを位置決めて、パラメータ値も入力した場合に、加工フィーチャの決定ボタン310の押下により、領域生成ルールデータテーブル127aの第2行目に示すように該当する加工フィーチャによる加工領域のデータが登録される。なお、加工領域CADモデル欄127jには、加工フィーチャと素材CADモデルとの重複領域を表わすCADモデルを形成して格納される。 When the machining feature is positioned and the parameter value is also entered, by pressing the machining feature determination button 310, the machining area data by the corresponding machining feature is registered as shown in the second row of the area generation rule data table 127a. Is done. In the machining area CAD model column 127j, a CAD model representing an overlapping area between the machining feature and the material CAD model is formed and stored.
 上記の加工フィーチャの決定処理によって、素材CADモデルに旋盤加工がなされたことになり、その結果の中間加工品CADモデルとして、図18(a)に示す中間加工品CADモデル803を、図12の素材CADモデル、中間加工品CADモデルの表示領域301に表示する。 As a result of the machining feature determination process, the material CAD model is turned, and the intermediate workpiece CAD model 803 shown in FIG. 18A is obtained as an intermediate workpiece CAD model. The information is displayed in the display area 301 of the material CAD model and the intermediate workpiece CAD model.
 ユーザは続いて、ボール盤による加工を意図して、ボール盤加工フィーチャ選択部305より、上記した操作と同様にして、ボール盤の加工フィーチャを選択して、システムはその選択を受けて、中間加工品CADモデル上に重ねて、穴加工の加工フィーチャを表示する。ユーザは、穴加工フィーチャを位置決めして、パラメータ値を決定して、加工機選択、工具選択、加工条件選択を行った後で、加工フィーチャの決定ボタン310をクリックして加工領域の登録を行う。図10の領域生成ルールデータテーブル127aの3行目に示す通り、ボール盤による加工領域を定義する。なお、ボール盤による穴加工は1箇所だけではなくて、所定の間隔で、一部の領域が重なるように空けられる。それらは、繰り返しをコピーの機能によって作成して、代表点座標値が異なるデータが、領域生成ルールデータテーブル127aに登録される。全てのボール盤加工の加工領域が登録された結果、中間加工品CADモデルは、例えば図18(b)に示される中間加工品CADモデル804のように、図12の表示領域に表示される。 Next, the user selects the machining feature of the drilling machine from the drilling machine feature selection unit 305 in the same manner as described above, with the intention of machining by the drilling machine, and the system receives the selection, and the intermediate workpiece CAD is selected. Overlay on the model to display the drilling feature. The user positions a hole machining feature, determines a parameter value, selects a machine, selects a tool, and selects a machining condition, and then clicks a machining feature determination button 310 to register a machining area. . As shown in the third line of the area generation rule data table 127a in FIG. 10, a machining area by a drilling machine is defined. It should be noted that the hole drilling by the drilling machine is not limited to one place but can be made to overlap with a part of the region at a predetermined interval. These are created by a copy function, and data having different representative point coordinate values are registered in the region generation rule data table 127a. As a result of registering all the machining areas for drilling, the intermediate workpiece CAD model is displayed in the display area of FIG. 12, for example, as an intermediate workpiece CAD model 804 shown in FIG. 18B.
 ユーザは続いて、多軸NC加工装置の加工フィーチャを多軸NC加工装置加工フィーチャ選択部306より上記と同様にして選択する。例えば、加工フィーチャ番号28の自由曲面の場合には、製品CADモデルより、所望の自由曲面要素を取り出して、加工フィーチャとすることができる。また、粗加工を指定すれば、製品CADモデルの自由曲面から所定のオフセットを持った自由曲面が作成され、仕上げ加工を指定すれば、製品CADモデルの自由曲面に沿った加工フィーチャが作成される。 Next, the user selects a machining feature of the multi-axis NC machining apparatus from the multi-axis NC machining apparatus machining feature selection unit 306 in the same manner as described above. For example, in the case of the free-form surface of the machining feature number 28, a desired free-form surface element can be taken out from the product CAD model and used as a machining feature. If rough machining is designated, a free curved surface having a predetermined offset is created from the free curved surface of the product CAD model. If finishing machining is designated, machining features along the free curved surface of the product CAD model are created. .
 以上のようにして、ステップ402において、旋盤、ボール盤による粗加工領域、仕上げ加工領域を加工フィーチャを選択して定義する。
  続いて、ステップ403において、多軸NC加工装置による粗加工領域、仕上げ加工領域を加工フィーチャを選択して定義する。
  全ての加工領域を定義し終えたら、図12の加工領域割り当てルールの登録ボタン312をクリックして、指定したルール番号1の加工領域割り当てルールの登録を完了する。この際に、全ての加工領域を組み合わせた加工領域のCADモデルを作成して、領域生成ルールデータテーブルに記憶する。
As described above, in step 402, a roughing area and a finishing area by a lathe and a drilling machine are selected and defined.
Subsequently, in step 403, a rough machining area and a finish machining area by the multi-axis NC machining apparatus are defined by selecting a machining feature.
When all the machining areas have been defined, the machining area assignment rule registration button 312 shown in FIG. 12 is clicked to complete the registration of the designated machining area assignment rule of rule number 1. At this time, a CAD model of the machining area obtained by combining all the machining areas is created and stored in the area generation rule data table.
 図11のステップ200では、製品(ワーク)ごとに1つ以上の加工領域割り当てルールを作成する。そして、機械加工ショップに複数種の製品(ワーク)を投入する場合には、各製品(ワーク)ごとに異なる加工領域割り当てルールを作成して、異なる番号で登録する。 In step 200 of FIG. 11, one or more machining area allocation rules are created for each product (workpiece). When a plurality of types of products (work pieces) are input to the machining shop, different processing area assignment rules are created for each product (work pieces) and registered with different numbers.
 図11のステップ201において、図16の機械加工ショップスループット評価処理のマンマシンインタフェース画面を表示する。
  ユーザは、評価対象の製品(ワーク)を加工する加工領域割り当てルールを、プルダウンのメニュー601より領域生成ルール番号127bを選択する。複数ある場合には全てのルール番号を指定する。また、生産計画選択部602において、今回の評価に使用する生産計画を生産計画データテーブル126aより生産計画番号を指定する。
  ユーザは、機械加工ショップ装置構成部605のプルダウンメニューにより、機械加工ショップを構成する全ての切削加工装置の中で、今回の評価対象製品の加工に係ることが無い装置、または評価対象期間には稼動していない装置を除外して、評価対象の切削加工装置を選択することが可能とする。ユーザの選択によって、丸印が付けられている。
  ユーザは、加工順番選択部603のプルダウンメニューより、加工順番を選択可能とする。領域生成ルール(加工領域割り当てルール)を作成するときに加工フィーチャによる加工領域の定義の順番に従って加工の順番が決められているが、加工順番選択部603において変えることが出来て、例えば、図16では、旋盤加工を先に行って、次にボール盤の加工を行うことを指定している。
  ユーザは、更に、投入製品選択部604において、評価対象の製品を選択して指定し、スケジュール期間606、機械加工ショップの稼動時間帯607を選択指定する。
  以上の設定の後、評価開始ボタン608をクリックして機械加工ショップのスループット評価処理を開始する。
In step 201 in FIG. 11, a man-machine interface screen for machining shop throughput evaluation processing in FIG. 16 is displayed.
The user selects an area generation rule number 127 b from the pull-down menu 601 as a processing area assignment rule for processing the evaluation target product (work). If there are multiple rules, specify all rule numbers. The production plan selection unit 602 designates a production plan number to be used for the current evaluation from the production plan data table 126a.
The user can use the pull-down menu of the machining shop device configuration unit 605 to select a device that does not relate to the machining of the evaluation target product among all the cutting processing devices constituting the machining shop, or during the evaluation target period. It is possible to select a cutting device to be evaluated, excluding devices that are not operating. Circled by user selection.
The user can select the processing order from the pull-down menu of the processing order selection unit 603. When creating an area generation rule (machining area allocation rule), the order of machining is determined according to the order of definition of the machining area by the machining feature, but can be changed in the machining order selection unit 603. For example, FIG. Specifies that lathe processing is performed first, and then the drilling is performed.
Further, the user selects and designates a product to be evaluated in the input product selection unit 604, and selects and designates a schedule period 606 and an operation time zone 607 of the machining shop.
After the above setting, the evaluation start button 608 is clicked to start the throughput evaluation process of the machining shop.
 図11のステップ201において、機械加工ショップのスループット評価処理の開始を受けて、ツールパス生成部113は、評価対象の加工領域割り当てルールで指定された領域生成ルールデータ、加工条件データ、工具条件データを読み出し、全ての該当する加工領域を機械加工するツールパスを生成する。旋盤、およびボール盤は、NC加工機であれば、ツールパスを作成し、NC加工機でなければツールパスは作成しない。ツールパス生成部113は、加工領域CADモデルに対してツールパスを作成する既存のCAM機能を使用する。 In step 201 in FIG. 11, upon the start of the throughput evaluation process of the machining shop, the tool path generation unit 113 performs the area generation rule data, the processing condition data, and the tool condition data specified by the processing area allocation rule to be evaluated. Is generated, and a tool path for machining all corresponding machining areas is generated. If the lathe and drilling machine are NC processing machines, a tool path is created. If not, a tool path is not created. The tool path generation unit 113 uses an existing CAM function for creating a tool path for the machining area CAD model.
 続いて、ステップ202において、3次元CAM部111は、前記作成されたツールパスデータと、加工機番号で選択された装置条件データに基づき切削加工装置毎のNCデータを作成する。作成したNCデータはNCデータ記憶領域128に記憶する。NCデータの作成処理は、既存のCAM機能を使用する。 Subsequently, in step 202, the three-dimensional CAM unit 111 creates NC data for each cutting device based on the created tool path data and device condition data selected by the machine number. The created NC data is stored in the NC data storage area 128. The NC data creation process uses an existing CAM function.
 続いて、ステップ203において、加工時間算出部115は、前記作成されたNCデータを加工シミュレーション部117により切削加工装置毎の加工シミュレーションを実行して、加工時間を算出する。なお、旋盤、およびボール盤がNC加工機でなければ、作業者による標準リードタイムを参照して、加工時間を算出する。加工シミュレーション部117は、既存のCAM機能を使用する。 Subsequently, in step 203, the machining time calculation unit 115 calculates a machining time by executing a machining simulation for each cutting device using the machining simulation unit 117 on the created NC data. If the lathe and drilling machine are not NC processing machines, the processing time is calculated with reference to the standard lead time by the operator. The machining simulation unit 117 uses an existing CAM function.
 続いて、ステップ204において、加工ショップスケジューリング部116は、機械加工ショップにおける機械加工プロセスのシミュレーションモデルを、コンピュータ上に作成する。そのモデルの中で、ユーザが選択した切削加工装置と、生産計画データに従ったワークの投入と、領域生成ルール(加工領域割り当てルール)に従った加工領域の切削加工と、加工順序に従った工程経路と、スケジューリング期間、稼動時間帯とを、(本実施例では作業者の勤務計画、作業者の技能的差異などは考慮しない。)コンピュータ上で再現することによって、機械加工ショップの加工プロセス全体の時間推移を模擬し、機械加工ショップに投入された全てのワークの進行計画を作成する。作成した全てのワークの進行計画から、スケジューリング期間における機械加工ショップのスループット、および切削加工装置を旋盤、ボール盤、多軸NC加工装置といったカテゴリに分けて、それぞれのカテゴリに属する切削加工装置の稼動率の平均を算出する。 Subsequently, in step 204, the machining shop scheduling unit 116 creates a simulation model of the machining process in the machining shop on the computer. In that model, the cutting device selected by the user, the input of the workpiece according to the production plan data, the cutting of the processing area according to the area generation rule (processing area allocation rule), and the processing order By reproducing the process route, scheduling period, and operation time zone (in this embodiment, the work plan of the worker and the technical difference of the worker are not considered) on the computer, the machining process of the machining shop is reproduced. Simulate the overall time transition and create a progress plan for all the workpieces entered in the machining shop. From the progress plan of all the created workpieces, the throughput of the machining shop in the scheduling period, and the cutting equipment is divided into categories such as lathe, drilling machine, multi-axis NC processing equipment, and the operation rate of the cutting equipment belonging to each category The average of is calculated.
 スループット評価結果は、例えば図17に示すデータテーブル610にてマンマシンインタフェースに表示する。評価対象の加工領域割り当てルールは、当初、1,2を指定して評価を実行したので、図17のデータテーブル610には、加工領域割り当てルール番号が1,2の評価結果が表示される。 The throughput evaluation result is displayed on the man-machine interface, for example, in the data table 610 shown in FIG. Since the evaluation is performed by first specifying 1 and 2 as the processing area allocation rules to be evaluated, the evaluation result of the processing area allocation rule numbers 1 and 2 is displayed in the data table 610 of FIG.
 続いて、ステップ205において、図17の2通りの加工領域割り当てルールにおける評価結果をユーザが見比べて、いずれも多軸NC加工装置による加工作業の稼働率が76%と77.5%と高く、多軸NC加工装置がスループットを上げるためのボトルネックとなっていることがわかる。そして、加工領域割り当てルール番号=2のスループットの方がわずかに大きく、ボール盤による加工作業の稼働率をさらに上げるように加工領域の形状を修正する余地があり、相対的に多軸NC加工装置による加工作業の稼働率を下げることが見込めることが判断できる。従って、さらにスループットを改善する加工領域割り当てルールが存在すると判定する。 Subsequently, in step 205, the user compares the evaluation results in the two machining area allocation rules shown in FIG. 17, and the operating rates of machining operations by the multi-axis NC machining apparatus are both high as 76% and 77.5%, It can be seen that the multi-axis NC machining apparatus is a bottleneck for increasing the throughput. And the throughput of the processing area allocation rule number = 2 is slightly larger, and there is room for correcting the shape of the processing area so as to further increase the operation rate of the processing work by the drilling machine. It can be judged that the working rate of the machining work can be lowered. Therefore, it is determined that there is a processing area allocation rule that further improves the throughput.
 従って、ステップ206において、次のステップ207へ移行する。 Therefore, in step 206, the process proceeds to the next step 207.
 続いて、ステップ207において、各加工領域割り当てルールごとに、旋盤の稼動率を旋盤によって加工されるボリュームを表わす属性値、ボール盤の稼動率をボール盤によって加工されるボリュームを表わす属性値、および多軸NC加工装置の稼動率を多軸NC加工装置によって加工されるボリュームを表わす属性値として記憶する。 Subsequently, in step 207, for each machining area assignment rule, the lathe operating rate is an attribute value representing the volume machined by the lathe, the drilling machine operating rate is an attribute value representing the volume machined by the drilling machine, and multi-axis The operation rate of the NC machining apparatus is stored as an attribute value representing a volume machined by the multi-axis NC machining apparatus.
 続いて、ステップ208において、生産計画装置100は、図13に示す加工領域割り当てルール修正画面320をマンマシンインタフェース画面に表示する。加工領域割り当てルール修正画面320には、加工領域割り当てルール登録画面300と同様にCADモデル表示領域321を備え、ここには、製品CADモデルと、素材CADモデル(中間加工品CADモデル)とを同じ座標軸上の同じ位置に対比させて表示する。 Subsequently, in step 208, the production planning apparatus 100 displays the processing area assignment rule correction screen 320 shown in FIG. 13 on the man-machine interface screen. The machining area allocation rule correction screen 320 includes a CAD model display area 321 as in the machining area allocation rule registration screen 300. Here, the product CAD model and the material CAD model (intermediate workpiece CAD model) are the same. Display the same position on the coordinate axis.
 図15に、加工領域割り当てルール修正処理のフローチャートを示す。
  ステップ500では、対象製品と、ルール番号を指定する。図13では、既に評価済みの加工領域割り当てルールの番号「2」を、新たな番号「3」の加工領域割り当てルールに修正することを、ルール番号表示部322において指定入力する。
FIG. 15 shows a flowchart of the processing area allocation rule correction process.
In step 500, a target product and a rule number are designated. In FIG. 13, the rule number display unit 322 is designated and input to modify the machining area allocation rule number “2” that has already been evaluated to the machining area allocation rule having a new number “3”.
 生産計画装置100は、ルール番号の指定入力を受け付けて、既作成の加工領域割り当てルール「2」のデータを領域生成ルールデータテーブル127aより読み出して、例えばボール盤加工フィーチャ選択部325のプルダウンメニューには、加工領域割り当てルール「2」の加工フィーチャ番号を列挙して、ユーザの選択を受け付ける。図13では、ボール盤加工フィーチャ番号「12」を指定して、修正を行うところを示している。番号「12」の加工フィーチャは複数ある。図13の画面には示していない入力部103の入力手段によって、ユーザは、番号「12」の加工フィーチャの配置の修正(代表点座標の修正)、パラメータ値の修正などを行う。または、ボール盤加工フィーチャ選択部325より新たな加工フィーチャの追加を指示することも出来る。修正処理中に、修正された加工フィーチャの加工領域を確認するために、CADモデル表示領域321の中間加工品CADモデルは、常に修正後の形状を表示する。 The production planning apparatus 100 receives the rule number designation input, reads the data of the created machining area allocation rule “2” from the area generation rule data table 127 a, and, for example, in the pull-down menu of the drilling machine machining feature selection unit 325. Then, the machining feature numbers of the machining area allocation rule “2” are listed and the user's selection is accepted. In FIG. 13, the drilling feature number “12” is designated and correction is performed. There are a plurality of machining features with the number “12”. Using the input means of the input unit 103 not shown in the screen of FIG. 13, the user corrects the arrangement of the machining feature number “12” (corrects the representative point coordinates), corrects the parameter value, and the like. Alternatively, addition of a new machining feature can be instructed from the drilling machine machining feature selection unit 325. In order to confirm the processing area of the corrected processing feature during the correction processing, the intermediate workpiece CAD model in the CAD model display area 321 always displays the corrected shape.
 ボール盤加工フィーチャの修正が終わったなら、ユーザは加工フィーチャの決定ボタン332をクリックして、領域生成ルール登録部110は、新たな領域生成ルール番号「3」の新たなデータレコードを領域生成ルールデータテーブルに登録する。同様にして、旋盤加工フィーチャ選択部323、多軸NC加工装置加工フィーチャ選択部327より、加工フィーチャの修正を指示して、新たな領域生成ルール番号「3」の新たなデータレコードを領域生成ルールデータテーブルに登録することができる。これらの加工フィーチャの修正処理の際に、加工機修正選択部329、工具修正選択部330、加工条件修正選択部331において、修正すべきデータがあれば修正してから加工フィーチャを決定する。もし、修正がなければ、領域生成ルール番号「2」の既存のデータがコピーされる。 When the correction of the drilling feature is finished, the user clicks the processing feature determination button 332, and the region generation rule registration unit 110 sets a new data record of the new region generation rule number “3” as the region generation rule data. Register in the table. Similarly, the lathe machining feature selection unit 323 and the multi-axis NC machining device machining feature selection unit 327 instruct to modify the machining feature, and a new data record with the new region generation rule number “3” is generated as a region generation rule. Can be registered in the data table. During the modification processing of these machining features, the machining machine modification selection unit 329, the tool modification selection unit 330, and the machining condition modification selection unit 331 determine the machining feature after modifying any data to be modified. If there is no correction, the existing data of the area generation rule number “2” is copied.
 前記したように、ボール盤加工フィーチャの修正処理の終了後、加工フィーチャの決定ボタン332のクリックを受け付けると、領域生成ルール登録部110は、修正前の領域生成ルール番号「2」と修正後の領域生成ルール番号「3」のボール盤による加工ボリュームをそれぞれ、除去ボリューム算出部114によって算出して、ボール盤加工ボリューム修正部326に修正前と修正後の加工除去ボリュームを対比して表示する。例えば、単位は、mm3である。その際に、その他の旋盤、および多軸NC加工装置の加工領域は、加工フィーチャが修正されていなくても、ボール盤の加工領域が変化することによって、相対的に変化することがあるため、いずれも領域生成ルール番号「2」の既存のデータを使用して、除去ボリューム算出部114により算出して、旋盤加工ボリューム修正部324、多軸NC加工ボリューム修正部328に、修正前と修正後の加工除去ボリュームを対比して表示する。図13の表示例では、旋盤加工ボリューム修正部324では除去ボリュームが変化しないが、多軸NC加工ボリューム修正部328では、減少していることが判る。除去ボリューム算出部114の処理は、NCデータを作成して、加工シミュレーション処理によって算出するが、既存のCAM機能を使用する。 As described above, when the click of the machining feature determination button 332 is accepted after completion of the drilling feature correction processing, the region generation rule registration unit 110 sets the region generation rule number “2” before correction and the region after correction. The removal volume calculation unit 114 calculates the machining volume by the drilling machine with the generation rule number “3”, and displays the machining removal volume before and after the correction on the drilling machine volume correction unit 326 in comparison. For example, the unit is mm 3 . At that time, the machining area of other lathes and multi-axis NC machining equipment may change relatively by changing the machining area of the drilling machine even if the machining feature is not modified. Is also calculated by the removal volume calculation unit 114 using the existing data of the region generation rule number “2”, and is input to the lathe machining volume correction unit 324 and the multi-axis NC machining volume correction unit 328 before and after the correction. The processing removal volume is displayed in comparison. In the display example of FIG. 13, it is understood that the removal volume does not change in the lathe machining volume correction unit 324 but decreases in the multi-axis NC machining volume correction unit 328. The processing of the removal volume calculation unit 114 creates NC data and calculates it by machining simulation processing, but uses an existing CAM function.
 図15のステップ501では、旋盤、ボール盤、多軸NC加工装置の加工フィーチャの修正、新規追加、削除などを逐次受け付けて、ユーザに修正後の中間加工品CADモデルの形状を随時見せる応答を行い、ステップ502では、前記したように、修正、または新規に加えられた加工フィーチャによる加工領域データに基づいて、それ以外の加工領域は修正前の領域生成ルールデータを参照して、各切削加工装置における除去ボリュームを計算して、修正前と修正後の除去ボリュームを対比してユーザに提示する。 In step 501 of FIG. 15, the machining features of the lathe, drilling machine, and multi-axis NC machining apparatus are sequentially corrected, newly added, and deleted, and a response is given to the user to show the shape of the corrected intermediate workpiece CAD model as needed. In step 502, as described above, based on the machining area data based on the machining features that are corrected or newly added, the other machining areas are referred to the area generation rule data before the correction, and each cutting machine The removal volume is calculated and the removal volume before and after correction is compared and presented to the user.
 図15のステップ503では、ユーザによる加工領域割り当てルールの修正登録ボタン334のクリックの指示を待ち、修正登録の指示を受け付けたら、ステップ504へ移行して、修正された新たな番号「3」の加工領域割り当てルールの登録を行う。ステップ503において、さらに修正などの指示があれば、ステップ501へ移行する。 In step 503 in FIG. 15, the user waits for an instruction to click the modification registration button 334 of the processing area assignment rule, and when an instruction for modification registration is received, the process proceeds to step 504, and the new number “3” that has been modified is entered. Register machining area assignment rules. In step 503, if there is further an instruction for correction or the like, the process proceeds to step 501.
 図11のステップ208において、加工領域割り当てルール修正処理は、最も大きな切削加工装置の稼働率を属性値として有する加工領域を狭めて(すなわち、除去ボリュームを減少させて)、他の切削加工装置の加工領域を広めるように(すなわち、除去ボリュームを増やすように)、各切削加工装置に割り当てる加工領域を再設定する。そして、修正された新たな加工領域割り当てルールを領域生成ルールデータテーブル127aに登録する。 In step 208 of FIG. 11, the machining area allocation rule correction processing narrows the machining area having the largest operating rate of the machining apparatus as an attribute value (that is, reduces the removal volume), and the other machining apparatus In order to widen the machining area (that is, to increase the removal volume), the machining area assigned to each cutting apparatus is reset. Then, the modified new processing area allocation rule is registered in the area generation rule data table 127a.
 続いて、再びステップ201へ移行して、生産計画装置100は、機械加工ショップスループット評価画面600をユーザへ提示して、それに対してユーザは、評価対象の加工領域割り当てルールの選択領域601に、新たに修正登録したルール番号「3」の加工領域割り当てルールを指定して、その他の設定項目は前回の評価と同じであるので修正はせずに、評価開始ボタン608より評価処理を指示する。生産計画装置100は、評価開始の指示に従って、加工領域割り当てルール(領域生成ルール)番号「3」のデータに基づき、ステップ201、202、203、および204の処理を実行して、機械加工ショップのスループット、および旋盤、ボール盤、多軸NC加工装置といったカテゴリに分けて、それぞれのカテゴリに属する切削加工装置の稼動率の平均を算出する。その結果は、図17のスループット評価結果データテーブルに示す通り、前回の評価結果である加工領域割り当てルール「1」「2」の評価結果と並べて今回の加工領域割り当てルール「3」の評価結果を提示する。 Subsequently, the process proceeds to step 201 again, and the production planning apparatus 100 presents the machining shop throughput evaluation screen 600 to the user. In response to this, the user enters the selection area 601 of the machining area allocation rule to be evaluated, The processing area assignment rule with the rule number “3” newly corrected and registered is designated, and the other setting items are the same as the previous evaluation, so that the evaluation process is instructed from the evaluation start button 608 without correction. The production planning apparatus 100 executes the processing of steps 201, 202, 203, and 204 based on the data of the machining area allocation rule (area generation rule) number “3” in accordance with the instruction to start the evaluation. The throughput is divided into categories such as lathes, drilling machines, and multi-axis NC processing devices, and the average of the operating rates of the cutting devices belonging to the respective categories is calculated. As a result, as shown in the throughput evaluation result data table of FIG. 17, the evaluation result of the current processing area allocation rule “3” is displayed alongside the evaluation results of the processing area allocation rules “1” and “2” which are the previous evaluation results. Present.
 ステップ205において、今回の加工領域割り当てルール「3」の評価結果が、スループットが最大となっていることを評価する。そして、ボール盤、または旋盤による加工領域の除去ボリューム量を、加工領域割り当てルール「3」の他に、さらに増加させるような効率的に妥当な加工作業が見出せないと判断して、加工領域割り当てルール「3」の加工方法が本評価対象の機械加工ショップにおける最大のスループットを与えるものと、ユーザが最終判定する。 In step 205, it is evaluated that the evaluation result of the current machining area allocation rule “3” is the maximum throughput. Then, in addition to the machining area allocation rule “3”, it is determined that an efficient and appropriate machining operation cannot be found in addition to the machining area allocation rule “3”, and the machining area allocation rule is determined. The user finally determines that the processing method “3” gives the maximum throughput in the machining shop to be evaluated.
 従って、ステップ206において、生産計画装置100を使用した、機械加工ショップのスループットが最大となるように加工領域を複数の切削加工装置へ割り当てる処理手順を終了する。 Therefore, in step 206, the processing procedure using the production planning device 100 and allocating the processing area to the plurality of cutting devices so as to maximize the throughput of the machining shop is completed.
 以上の処理に続いて、生産計画装置100は、最大のスループットを与える加工領域割り当てルール「3」の加工領域モデルを各切削加工装置が加工するためのNCデータが、以上の処理においてNCデータ記憶領域128に記憶されているものを読み出し、通信部105を介して各NC加工機へダウンロードする。また、NC加工機ではない切削加工装置に対しては、領域生成ルールデータテーブルに登録されたデータに基づいて、作業指示書などを作成して、出力部104より出力するものとする。 Subsequent to the above processing, the production planning apparatus 100 stores NC data for processing each machining device with the machining area model of the machining area allocation rule “3” that gives the maximum throughput. What is stored in the area 128 is read out and downloaded to each NC processing machine via the communication unit 105. For a cutting apparatus that is not an NC processing machine, a work instruction sheet or the like is created based on the data registered in the area generation rule data table and is output from the output unit 104.
 以上のように、本実施形態によれば、生産計画装置100は、機械加工ショップに設置された旋盤、ボール盤、多軸NC加工装置といった複数の切削加工装置を有効に使用して、機械加工ショップに投入されるワークの加工作業のスループットを最大にするための各切削加工装置への作業の割り当てを決定することを支援して、各NC加工機へNCデータを供給することができる。 As described above, according to the present embodiment, the production planning apparatus 100 effectively uses a plurality of cutting devices such as a lathe, a drilling machine, and a multi-axis NC processing device installed in the machining shop, The NC data can be supplied to each NC processing machine by assisting in determining the assignment of the operation to each cutting processing device for maximizing the throughput of the processing operation of the workpiece put into the machine.
100…生産計画装置
101…演算部
102…記憶部
103…入力部
104…出力部
105…通信部
110…領域生成ルール登録部
111…3次元CAM部
112…加工領域モデル生成部
113…ツールパス生成部
114…除去ボリューム算出部
115…加工時間算出部
116…加工ショップスケジューリング部
117…加工シミュレーション部
120…加工条件データ記憶領域
120a…加工条件データテーブル
120b…加工条件番号欄
120c…回転数欄
120d…送り速度欄
120e…一刃送り欄
120f…切削速度欄
120g…軸切込み欄
120h…径切込み欄
121…工具条件データ記憶領域
121a…工具条件データテーブル
121b…工具番号欄
121c…直径欄
121d…下側の半径欄
121e…工具長欄
121f…ホルダ直径欄
121g…ホルダ長さ欄
122…装置条件データ記憶領域
122a…装置条件データテーブル
122b…加工機番号欄
122c…加工機欄
122d…軸構成欄
122e…ストローク欄
123…加工フィーチャデータ記憶領域
123a…加工フィーチャデータテーブル
123b…加工フィーチャ番号欄
123c…加工フィーチャ名称欄
123d…パラメータ欄
123e…位置決め代表点欄
123f…形状モデル欄
124…製品CADモデル記憶領域
125…素材CADモデル記憶領域
126…生産計画データ記憶領域
126a…生産計画データテーブル
126b…生産計画番号欄
126c…計画日欄
126d…製品名称欄
126e…生産計画量
127…領域生成ルール記憶領域
127a…領域生成ルールデータテーブル
127b…領域生成ルール番号欄
127c…加工フィーチャ番号欄
127d…加工フィーチャ代表点座標欄
127e…加工フィーチャ姿勢ベクトル欄
127f…加工フィーチャパラメータ値欄
127g…加工条件選択欄
127h…工具選択欄
127i…加工機選択欄
127j…加工領域CADモデル欄
128…NCデータ記憶領域
130…3次元CAD装置
140…NC加工機
150…ネットワーク
300…加工領域割り当てルール登録画面
301…CADモデル表示領域
302…新規登録ルール番号欄
303…製品名称欄
304…旋盤加工フィーチャ選択部
305…ボール盤加工フィーチャ選択部
306…多軸NC加工装置加工フィーチャ選択部
307…加工機選択部
308…工具選択部
309…加工条件選択部
310…加工フィーチャの決定ボタン
311…加工順序の決定ボタン
312…加工領域割り当てルールの登録ボタン
320…加工領域割り当てルール修正画面
321…CADモデル表示領域
322…ルール番号表示部
323…旋盤加工フィーチャ選択部
324…旋盤加工ボリューム修正部
325…ボール盤加工フィーチャ選択部
326…ボール盤加工ボリューム修正部
327…多軸NC加工装置加工フィーチャ選択部
328…多軸NC加工ボリューム修正部
329…加工機修正選択部
330…工具修正選択部
331…加工条件修正選択部
332…加工フィーチャの決定ボタン
333…加工順序の修正ボタン
334…加工領域割り当てルールの修正登録ボタン
600…機械加工ショップスループット評価画面
601…評価対象の加工領域割り当てルールの選択領域
602…生産計画選択部
603…加工順番選択部
604…投入製品選択部
605…機械加工ショップ装置構成部
606…スケジュール期間指定部
607…稼動時間帯指定部
608…評価開始ボタン
610…スループット評価結果データテーブル
611…加工領域割り当てルール番号欄
612…旋盤による加工作業の稼働率欄
613…ボール盤による加工作業の稼働率欄
614…多軸NC加工装置による加工作業の稼働率欄
615…スループット欄
701…円筒加工フィーチャ
702…テーパ円筒加工フィーチャ
703…貫通孔加工フィーチャ
704…盲穴加工フィーチャ
705…閉ポケット加工フィーチャ
706…開ポケット加工フィーチャ
707…開溝加工フィーチャ
708…面加工フィーチャ
709…自由曲面加工フィーチャ
801…製品CADモデル例
802…素材CADモデル例
803…旋盤加工後の中間加工品CADモデル例
804…ボール盤加工後の中間加工品CADモデル例、
900…コンピュータ
901…CPU
902…メモリ
903…外部記憶装置
904…可搬性を有する記憶媒体
905…通信装置
906…入力装置
907…出力装置
908…読取装置
909…通信ネットワーク、
DESCRIPTION OF SYMBOLS 100 ... Production planning apparatus 101 ... Operation part 102 ... Storage part 103 ... Input part 104 ... Output part 105 ... Communication part 110 ... Area generation rule registration part 111 ... Three-dimensional CAM part 112 ... Machining area model generation part 113 ... Tool path generation Unit 114 ... removal volume calculation unit 115 ... machining time calculation unit 116 ... machining shop scheduling unit 117 ... machining simulation unit 120 ... machining condition data storage area 120a ... machining condition data table 120b ... machining condition number column 120c ... rotation speed column 120d ... Feed speed column 120e ... Single blade feed column 120f ... Cutting speed column 120g ... Shaft cut column 120h ... Diameter cut column 121 ... Tool condition data storage area 121a ... Tool condition data table 121b ... Tool number column 121c ... Diameter column 121d ... Lower side Radius column 121e ... tool length column 121f ... hol Diameter field 121g ... Holder length field 122 ... Device condition data storage area 122a ... Device condition data table 122b ... Processing machine number field 122c ... Processing machine field 122d ... Axis configuration field 122e ... Stroke field 123 ... Processing feature data storage area 123a ... Machining feature data table 123b ... machining feature number column 123c ... machining feature name column 123d ... parameter column 123e ... positioning representative point column 123f ... shape model column 124 ... product CAD model storage area 125 ... material CAD model storage area 126 ... production plan data Storage area 126a ... Production plan data table 126b ... Production plan number field 126c ... Plan date field 126d ... Product name field 126e ... Production plan amount 127 ... Area generation rule storage area 127a ... Area generation rule data table 127b ... Area Creation rule number column 127c ... machining feature number column 127d ... machining feature representative point coordinate column 127e ... machining feature orientation vector column 127f ... machining feature parameter value column 127g ... machining condition selection column 127h ... tool selection column 127i ... machining machine selection column 127j ... Machining area CAD model field 128 ... NC data storage area 130 ... 3D CAD device 140 ... NC machine 150 ... Network 300 ... Machining area assignment rule registration screen 301 ... CAD model display area 302 ... New registration rule number field 303 ... Product Name column 304 ... lathe machining feature selection unit 305 ... drilling machine feature selection unit 306 ... multi-axis NC machining device machining feature selection unit 307 ... machine tool selection unit 308 ... tool selection unit 309 ... machining condition selection unit 310 ... determination of machining feature Button 311 ... Machining order determination button 312 ... Machining area assignment rule registration button 320 ... Machining area assignment rule correction screen 321 ... CAD model display area 322 ... Rule number display part 323 ... Lathe machining feature selection part 324 ... Lathe machining volume correction part 325 ... Drilling machine machining feature selection unit 326 ... Drilling machine machining volume modification unit 327 ... Multi-axis NC machining device machining feature selection unit 328 ... Multi-axis NC machining volume modification unit 329 ... Machine tool modification selection unit 330 ... Tool modification selection unit 331 ... Machining conditions Correction selection unit 332 ... Machining feature determination button 333 ... Machining order correction button 334 ... Machining area allocation rule correction registration button 600 ... Machining shop throughput evaluation screen 601 ... Evaluation area of processing area allocation rule selection area 602 ... Production Plan selector 03 ... Machining order selection unit 604 ... Input product selection unit 605 ... Machining shop apparatus configuration unit 606 ... Schedule period designation unit 607 ... Operation time zone designation unit 608 ... Evaluation start button 610 ... Throughput evaluation result data table 611 ... Assignment of machining area Rule number column 612 ... Machining operation availability column 613 ... Drilling machining operation availability column 614 ... Multi-axis NC machining operation rate 615 ... Throughput column 701 ... Cylindrical machining feature 702 ... Tapered cylinder Machining feature 703 ... Through-hole machining feature 704 ... Blind hole machining feature 705 ... Closed pocket machining feature 706 ... Open pocket machining feature 707 ... Groove machining feature 708 ... Surface machining feature 709 ... Free-form surface machining feature 801 ... Product CAD model example 802 Intermediate workpiece CAD model example of an intermediate workpiece CAD model example 804 ... after the drilling processing of materials CAD model example 803 ... after the lathing,
900 ... Computer 901 ... CPU
902 ... Memory 903 ... External storage device 904 ... Portable storage medium 905 ... Communication device 906 ... Input device 907 ... Output device 908 ... Reading device 909 ... Communication network,

Claims (10)

  1.  製品形状と素材形状を対比して表示し、素材形状の上に加工領域を定義するマンマシンインタフェースを提供して、各切削加工装置の加工領域を登録する手段と、
     登録された各切削加工装置の加工領域を加工するNCデータを作成して、機械加工ショップのスケジューリングを行い、機械加工ショップのスループットと、各切削加工装置の稼働率を算出する手段と、
     前記算出された最も大きな稼働率を属性値として有する加工領域を狭め、他の加工領域を広めるように、前記各切削加工装置の加工領域を修正定義するマンマシンインタフェースを提供して、各切削加工装置の加工領域の修正解を登録する手段と、
     各切削加工装置の加工領域、およびその修正解のそれぞれにおいて機械加工ショップのスケジューリングにより得られた機械加工ショップのスループットを比較して、最大のスループットが得られる加工領域の割り当て方を決定する手段を備えたことを特徴とする生産計画装置。
    Means for displaying the product shape and the material shape in comparison, providing a man-machine interface for defining the machining area on the material shape, and registering the machining area of each cutting device;
    Creating NC data for machining the machining area of each registered machining device, scheduling the machining shop, calculating the throughput of the machining shop, and the operating rate of each machining device;
    Provide a man-machine interface for correcting and defining the machining area of each cutting device so that the machining area having the calculated maximum operating rate as an attribute value is narrowed and other machining areas are widened. Means for registering a modified solution of the machining area of the apparatus;
    A means for determining a method of allocating a processing region that can obtain the maximum throughput by comparing the processing region of each cutting device and the machining shop throughput obtained by scheduling of the machining shop in each of the corrected solutions. Production planning device characterized by comprising.
  2.  前記各切削加工装置の加工領域を登録する手段は、マンマシンインタフェース上に、旋盤、ボール盤、多軸NC加工装置のカテゴリに分けた加工フィーチャ定義ツールを提供して、ユーザによる各加工フィーチャを適用した加工領域の定義、及び加工機、工具、加工条件の選択を受付けて、それらのデータを関連付けて、各切削加工装置の加工領域を登録することを特徴とする請求項1に記載の生産計画装置。 The means for registering the machining area of each cutting device provides a machining feature definition tool divided into categories of lathes, drilling machines, and multi-axis NC machining devices on the man-machine interface, and applies each machining feature by the user. 2. The production plan according to claim 1, wherein the definition of the processed region and the selection of a processing machine, a tool, and a processing condition are received, and the processing region of each cutting device is registered in association with the data. apparatus.
  3.  前記機械加工ショップのスループットと、各切削加工装置の稼働率を算出する手段は、登録された各切削加工装置の加工領域データを読み出し、加工条件と工具条件から加工領域を加工するツールパスを生成し、ツールパスと加工機条件よりNCデータを生成し、前記NCデータを加工シミュレーションして加工時間を算出して、以上のデータに基づき機械加工ショップのスケジューリングを行い、機械加工ショップのスループットと、各切削加工装置の稼働率を算出することを特徴とする請求項1に記載の生産計画装置。 The means for calculating the throughput of the machining shop and the operating rate of each cutting machine reads the machining area data of each registered machining apparatus and generates a tool path for machining the machining area from the machining conditions and tool conditions. NC data is generated from the tool path and the machine condition, the NC data is machined to calculate the machining time, the machining shop is scheduled based on the above data, the machining shop throughput, The production planning apparatus according to claim 1, wherein an operation rate of each cutting apparatus is calculated.
  4.  前記各切削加工装置の加工領域の修正解を登録する手段は、マンマシンインタフェース上に、既登録の加工領域を定義する加工フィーチャを呼び出して、パラメータを修正する手段を提供し、加工領域の修正を受付けて、修正前と修正後の加工領域の除去ボリュームを算出して、各切削加工装置の加工領域の修正効果を提示することを特徴とする請求項1に記載の生産計画装置。 The means for registering the correction solution of the machining area of each of the cutting devices provides a means for calling a machining feature that defines a registered machining area on the man-machine interface and correcting the parameter, thereby correcting the machining area. The production planning apparatus according to claim 1, wherein the removal volume of the machining area before and after the correction is calculated, and the effect of correcting the machining area of each cutting apparatus is presented.
  5.  前記最大のスループットが得られる加工領域の割り当て方を決定する手段の決定に従い、該当する加工領域のNCデータが作成されているものは、ネットワークを介してNC加工機へNCデータをダウンロードすることを特徴とする請求項1に記載の生産計画装置。 In accordance with the determination of the means for determining the allocation of the machining area where the maximum throughput can be obtained, the NC data for the corresponding machining area is created by downloading the NC data to the NC machine via the network. 2. The production planning apparatus according to claim 1, wherein
  6.  機械加工ショップに設置された旋盤、ボール盤、多軸NC加工装置のカテゴリに分けた複数の切削加工装置を有効に使用して、機械加工ショップに投入されるワークの加工作業のスループットを最大にするための各切削加工装置への作業の割り当てを決定する生産計画方法であって、
     ユーザに製品形状と素材形状を対比して表示し、素材形状の上に加工領域を定義するマンマシンインタフェースを提供して、ユーザの定義を受付けて各切削加工装置の加工領域を登録する工程と、
     登録された各切削加工装置の加工領域を加工するNCデータを作成して、機械加工ショップのスケジューリングを行い、機械加工ショップのスループットと、各切削加工装置の稼働率を算出する工程と、
     前記算出された最も大きな稼働率を属性値として有する加工領域を狭め、他の加工領域を広めるように、前記各切削加工装置の加工領域を修正定義するマンマシンインタフェースをユーザに提供して、ユーザの修正を受付けて各切削加工装置の加工領域の修正解を登録する工程と、
     各切削加工装置の加工領域、およびその修正解のそれぞれにおいて機械加工ショップのスケジューリングにより得られた機械加工ショップのスループットを比較して、最大のスループットが得られる加工領域の割り当て方を決定する工程とを有することを特徴とする生産計画方法。
    Effectively use multiple cutting machines divided into categories of lathes, drilling machines, and multi-axis NC machines installed in machining shops to maximize the throughput of workpieces that are put into machining shops A production planning method for determining an assignment of work to each cutting device for
    Providing the user with a man-machine interface that displays the product shape and the material shape in comparison with each other, defines the machining area on the material shape, accepts the user's definition, and registers the machining area of each cutting device; ,
    Creating NC data for machining the machining area of each registered machining device, scheduling a machining shop, calculating the throughput of the machining shop, and calculating the operating rate of each machining device;
    The user is provided with a man-machine interface for modifying and defining the machining area of each cutting device so that the machining area having the calculated maximum operating rate as an attribute value is narrowed and other machining areas are widened. Accepting the correction and registering the correction solution of the machining area of each cutting device,
    Comparing the machining area of each machining apparatus and the machining shop throughput obtained by machining shop scheduling in each of the correction solutions, and determining how to allocate the machining area that provides the maximum throughput; A production planning method characterized by comprising:
  7.  前記各切削加工装置の加工領域を登録する工程は、マンマシンインタフェース上に、旋盤、ボール盤、多軸NC加工装置のカテゴリに分けた加工フィーチャ定義ツールを提供して、ユーザによる各加工フィーチャを適用した加工領域の定義、及び加工機、工具、加工条件の選択を受付けて、それらのデータを関連付けて、各切削加工装置の加工領域を登録する工程であることを特徴とする請求項6に記載の生産計画方法。 In the process of registering the machining area of each of the machining devices, a machining feature definition tool divided into categories of lathes, drilling machines, and multi-axis NC machining devices is provided on the man-machine interface, and each machining feature by the user is applied. 7. The process according to claim 6, which is a step of accepting the definition of the processed region and the selection of the processing machine, tool, and processing condition, associating those data, and registering the processing region of each cutting device. Production planning method.
  8.  前記機械加工ショップのスループットと、各切削加工装置の稼働率を算出する工程は、登録された各切削加工装置の加工領域データを読み出し、加工条件と工具条件から加工領域を加工するツールパスを生成し、ツールパスと加工機条件よりNCデータを生成し、前記NCデータを加工シミュレーションして加工時間を算出して、以上のデータに基づき機械加工ショップのスケジューリングを行い、機械加工ショップのスループットと、各切削加工装置の稼働率を算出する工程であることを特徴とする請求項6に記載の生産計画方法。 The process of calculating the throughput of the machining shop and the operating rate of each cutting machine reads out the machining area data of each registered machining apparatus and generates a tool path for machining the machining area from the machining conditions and tool conditions. NC data is generated from the tool path and the machine condition, the NC data is machined to calculate the machining time, the machining shop is scheduled based on the above data, the machining shop throughput, The production planning method according to claim 6, wherein the production planning method is a step of calculating an operating rate of each cutting apparatus.
  9.  前記各切削加工装置の加工領域の修正解を登録する工程は、マンマシンインタフェース上に、既登録の加工領域を定義する加工フィーチャを呼び出して、パラメータを修正する手段を提供し、加工領域の修正を受付けて、修正前と修正後の加工領域の除去ボリュームを算出して、各切削加工装置の加工領域の修正効果を提示する工程を有することを特徴とする請求項6に記載の生産計画方法。 The step of registering the correction solution of the machining area of each of the cutting devices provides a means for calling a machining feature that defines a registered machining area on the man-machine interface and correcting the parameter, thereby correcting the machining area. 7. The production planning method according to claim 6, further comprising the step of calculating the removal volume of the machining area before and after the correction, and presenting the correction effect of the machining area of each cutting apparatus. .
  10.  前記最大のスループットが得られる加工領域の割り当て方を決定する工程の決定に従い、該当する加工領域のNCデータが作成されているものは、ネットワークを介してNC加工機へNCデータをダウンロードする工程を更に有することを特徴とする請求項6に記載の生産計画方法。 If the NC data of the corresponding machining area is created according to the decision of the process of allocating the machining area where the maximum throughput can be obtained, the process of downloading the NC data to the NC machine via the network is performed. The production planning method according to claim 6, further comprising:
PCT/JP2012/074587 2011-10-06 2012-09-25 Production planning device and production planning method WO2013051432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280048838.7A CN103842921B (en) 2011-10-06 2012-09-25 Production schedule device and production schedule method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-221731 2011-10-06
JP2011221731A JP5689396B2 (en) 2011-10-06 2011-10-06 Production planning apparatus and production planning method

Publications (1)

Publication Number Publication Date
WO2013051432A1 true WO2013051432A1 (en) 2013-04-11

Family

ID=48043594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074587 WO2013051432A1 (en) 2011-10-06 2012-09-25 Production planning device and production planning method

Country Status (3)

Country Link
JP (1) JP5689396B2 (en)
CN (1) CN103842921B (en)
WO (1) WO2013051432A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014007237B4 (en) * 2014-12-08 2023-01-19 Mitsubishi Electric Corporation data provision system
CN105629927A (en) * 2015-12-18 2016-06-01 武汉开目信息技术有限责任公司 Hybrid genetic algorithm-based MES (Manufacturing Execution System) production planning and scheduling method
US10195708B2 (en) * 2016-09-28 2019-02-05 The Boeing Company Method and apparatus for centralized compliance, operations and setup of automated cutting tool machines
JP6353884B2 (en) * 2016-10-04 2018-07-04 Dmg森精機株式会社 Machining condition determination device and cutting tool selection device
US20180348742A1 (en) * 2017-06-01 2018-12-06 X Development Llc Planning and Adapting Projects Based on a Buildability Analysis
JP6777672B2 (en) * 2018-04-03 2020-10-28 Dmg森精機株式会社 Information processing equipment, information processing methods and information processing programs
JP7362104B2 (en) * 2019-06-28 2023-10-17 国立大学法人神戸大学 Production planning device, production planning program, and production planning method
CN110632902B (en) * 2019-09-06 2021-03-02 北京北方华创微电子装备有限公司 Material processing path selection method and device
JP7376620B2 (en) * 2020-02-06 2023-11-08 ファナック株式会社 support equipment
WO2021157511A1 (en) * 2020-02-06 2021-08-12 ファナック株式会社 Assistance device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295116A (en) * 1986-06-13 1987-12-22 Hitachi Seiki Co Ltd Machined area division processor in automatic machining device
JP2001318711A (en) * 2000-05-11 2001-11-16 Nkk Corp Scheduling device
JP2002149223A (en) * 2000-11-08 2002-05-24 Kawasaki Steel Corp Production management support system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021337A1 (en) * 2005-05-04 2006-11-16 Abb Patent Gmbh System and method for corrective planning and optimization of processing
CN100432878C (en) * 2007-04-20 2008-11-12 重庆大学 Automatic collection method for mechanical processing task progress state based on machine tool power information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295116A (en) * 1986-06-13 1987-12-22 Hitachi Seiki Co Ltd Machined area division processor in automatic machining device
JP2001318711A (en) * 2000-05-11 2001-11-16 Nkk Corp Scheduling device
JP2002149223A (en) * 2000-11-08 2002-05-24 Kawasaki Steel Corp Production management support system

Also Published As

Publication number Publication date
JP5689396B2 (en) 2015-03-25
CN103842921B (en) 2016-05-18
CN103842921A (en) 2014-06-04
JP2013084035A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5689396B2 (en) Production planning apparatus and production planning method
JP5890907B2 (en) Machining process determination method and machining process design apparatus
US7487005B2 (en) Process planning method, process planning apparatus and recording medium
EP3582046A1 (en) Selecting the same machining strategy for multiple features
WO2013137159A1 (en) Processing step planning device
JP6088035B1 (en) Cutting tool selection system and cutting tool selection method
CN101960457A (en) Method and device for composite machining
JP2005309713A (en) Process design supporting system and method
CN1289988C (en) Method and device for generating processing data
JP4529789B2 (en) NC data generation method
JP6865055B2 (en) Machining load analysis device, machining load analysis program, and machining load analysis system
JP5441627B2 (en) Optimal process determination device and optimal process determination method
JP2005025387A (en) Method for preparing estimate for component manufacturing
JP5983268B2 (en) Machining process decision device, machining process decision program, and machining process decision method
US8428765B2 (en) Process integration determining system and method
JP3753133B2 (en) NC machining data generation method for machine tools
JP4748049B2 (en) Method of determining the machining process
Sheen et al. Process planning and NC-code generation in manufacturing of press dies for production of car bodies
JPS62140740A (en) Division processing device for machining region in automatic machine
JP2022066721A (en) Grouping system and grouping method
JP2021170159A (en) Tool route generation device and tool route generation method
JP2003140717A (en) Automatic programming device
WO2020090058A1 (en) Processing support system
JP2005111635A (en) Nc data producing system, nc data providing method, computer readable recording medium, and computer program to be made to function as nc data producing system
JP2003001339A (en) Method for determining die clearance in punch press and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838034

Country of ref document: EP

Kind code of ref document: A1