WO2013047293A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2013047293A1
WO2013047293A1 PCT/JP2012/073934 JP2012073934W WO2013047293A1 WO 2013047293 A1 WO2013047293 A1 WO 2013047293A1 JP 2012073934 W JP2012073934 W JP 2012073934W WO 2013047293 A1 WO2013047293 A1 WO 2013047293A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
represented
group represented
substituent
Prior art date
Application number
PCT/JP2012/073934
Other languages
French (fr)
Japanese (ja)
Inventor
邦仁 三宅
有和 梅山
博 今堀
Original Assignee
住友化学株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人京都大学 filed Critical 住友化学株式会社
Publication of WO2013047293A1 publication Critical patent/WO2013047293A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element.
  • a photoelectric conversion element is an element provided with a pair of electrodes consisting of an anode and a cathode, and an active layer provided between the pair of electrodes.
  • an organic semiconductor material for an active layer of the photoelectric conversion element has been studied.
  • a photoelectric conversion element using an organic semiconductor material for an active layer for example, a photoelectric conversion element using a compound 1 represented by the following formula for an active layer has been proposed (Non-patent Document 1).
  • the photoelectric conversion element using the compound 1 as an active layer has a problem that the amount of charges converted from light having a long wavelength is small.
  • an object of the present invention is to provide a photoelectric conversion element having a large amount of charge converted from light having a long wavelength.
  • the present invention provides the following [1] to [29].
  • [1] It has an anode, a cathode, and an active layer provided between the anode and the cathode, and the active layer contains an electron donating compound and an electron accepting compound.
  • X 1 represents a sulfur atom, an oxygen atom or a divalent group.
  • X 2 and X 3 each independently represent a group represented by the formula: ⁇ C (R 1 ) — or a nitrogen atom.
  • R 1 represents a hydrogen atom or a substituent.
  • Ar 1 represents a divalent fused ring group which may have a substituent.
  • R 2 represents a hydrogen atom or a substituent.
  • the polymer compound further includes a repeating unit represented by the formula (II), and the repeating unit represented by the formula (II) is bonded to the repeating unit represented by the formula (I-1).
  • the photoelectric conversion element according to any one of [1] to [4]. C (R 3 )-(II) [Wherein R 3 represents a hydrogen atom or a substituent.
  • a photoelectric conversion device according to any one of [1] to [9], wherein the energy level of the highest occupied orbit of the polymer compound is ⁇ 4.5 eV or less.
  • a solar cell module including the photoelectric conversion element according to any one of [1] to [10].
  • An image sensor including the photoelectric conversion element according to any one of [1] to [10].
  • a polymer compound comprising a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2).
  • X 1 represents a sulfur atom, an oxygen atom or a divalent group.
  • X 2 and X 3 each independently represent a group represented by the formula: ⁇ C (R 1 ) — or a nitrogen atom.
  • R 1 represents a hydrogen atom or a substituent.
  • Ar 1 represents a divalent fused ring group which may have a substituent.
  • R 2 represents a hydrogen atom or a substituent.
  • a compound containing a group represented by the formula (III) and a substituted stannyl group [Wherein, X 4 represents a sulfur atom, an oxygen atom or a divalent group. X 5 and X 6 each independently represent a group represented by the formula: ⁇ C (R 1 ) — or a nitrogen atom. R 1 represents a hydrogen atom or a substituent. When X 5 and X 6 are a group represented by the formula: ⁇ C (R 1 ) —, an atom contained in R 1 in X 5 is bonded to an atom contained in R 1 in X 6 An annular structure may be formed.
  • R 2 represents a hydrogen atom or a substituent.
  • the photoelectric conversion element of the present invention Since the photoelectric conversion element of the present invention has a large amount of charge converted from light having a long wavelength, the present invention is extremely useful.
  • the photoelectric conversion element of the present invention has an anode, a cathode, and an active layer provided between the anode and the cathode, and includes an electron donating compound and an electron accepting compound in the active layer.
  • at least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2). It is characterized by that.
  • X 1 represents a sulfur atom, an oxygen atom or a divalent group.
  • the divalent group include a group represented by the formula: —S ( ⁇ O) —, a group represented by the formula: —S ( ⁇ O) 2 —, and a formula: —N (R 2 ) —.
  • the substituent represented by R 2 include an optionally substituted alkyl group, an optionally substituted alkoxy group, and an optionally substituted aryl group.
  • the alkyl group in the “optionally substituted alkyl group” represented by R 2 may be linear or branched, and may be a cycloalkyl group.
  • the alkyl group generally has 1 to 30 carbon atoms, preferably 1 to 20, and more preferably 1 to 12. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl.
  • hexyl group isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, nonyl group
  • chain alkyl groups such as decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cycloalkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group.
  • the hydrogen atom in the alkyl group may be substituted with a substituent, and examples of the substituent include a halogen atom.
  • substituent include a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the substituted alkyl group include a trifluoromethyl group and a pentafluoroethyl group.
  • the alkoxy group in the “optionally substituted alkoxy group” represented by R 2 may be linear or branched, and may be a cyclic alkyloxy group.
  • the number of carbon atoms in the alkoxy group is usually 1-20, preferably 1-15, and more preferably 1-12.
  • alkoxy group examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group Group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and dodecyloxy group.
  • the hydrogen atom in the alkoxy group may be substituted with a substituent, and examples of the substituent include a halogen atom and an alkoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group are the same as the definition and specific examples of the alkoxy group described in the substituent represented by R 2.
  • substituted alkoxy group examples include trifluoromethoxy group, pentafluoroethoxy group, perfluorobutoxy group, perfluorohexyloxy group, perfluorooctyloxy group, methoxymethyloxy group and 2-methoxyethyloxy group. It is done.
  • the aryl group in the “optionally substituted aryl group” represented by R 2 means a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 16, and more preferably 6 to 10.
  • Specific examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and a C1 to C12 alkylphenyl group (“C1 to C12” represents 1 to 12 carbon atoms. The same applies hereinafter. .).
  • the hydrogen atom in the aryl group may be substituted with a substituent, and examples of the substituent include a halogen atom and an alkoxy group.
  • substituent include a halogen atom and an alkoxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the definition and specific examples of the alkoxy group are the same as the definition and specific examples of the alkoxy group described in the substituent represented by R 2 .
  • Examples of the substituted aryl group include a pentafluorophenyl group.
  • R 2 is preferably a hydrogen atom or an alkyl group.
  • X 1 is preferably a sulfur atom.
  • X 2 and X 3 each independently represent a group represented by the formula: ⁇ C (R 1 ) — or a nitrogen atom.
  • R 1 represents a hydrogen atom or a substituent.
  • R 1 is preferably a hydrogen atom or an alkyl group.
  • X 2 and X 3 are preferably ⁇ C (R 1 ) —.
  • Examples of the repeating unit represented by the formula (I-1) include the following repeating units.
  • Ar 1 represents a divalent condensed ring group which may have a substituent.
  • the divalent condensed ring group means a group in which two hydrogen atoms on the ring are removed from the condensed ring.
  • the number of carbon atoms in the divalent fused ring group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 15.
  • Examples of the condensed ring include naphthalene ring, anthracene ring, pyrene ring, fluorene ring, thienothiophene ring, quinoline ring, isoquinoline ring, carbazole ring, dibenzothiophene ring, dibenzofuran ring, phenoxazine ring, phenothiazine ring and diketopyrrolopyrrole.
  • a ring is mentioned.
  • Specific examples of the substituent that the divalent condensed ring group may have are the same as the specific examples of the substituent represented by R 2 described above.
  • Examples of the divalent fused ring group include the following groups. [Wherein, R represents a substituent. ]
  • Ar 1 is preferably a divalent group containing a nitrogen-containing condensed ring which may have a substituent, and more preferably a diketopyrrolopyrrole diyl group which may have a substituent.
  • Examples of the diketopyrrolopyrrole diyl group which may have a substituent include a group represented by the formula (VI). [Wherein, R 7 represents an optionally substituted alkyl group. Two R 7 may be the same or different. ]
  • the polymer compound used in the present invention preferably further contains a repeating unit represented by the formula (II).
  • R 3 represents a hydrogen atom or a substituent.
  • the definition and specific examples of the substituent represented by R 3 are the same as the definition and specific examples of the substituent represented by R 2 described above.
  • R 3 is preferably an optionally substituted aryl group.
  • the repeating unit represented by the formula (II) is preferably a repeating unit represented by the formula (II-1).
  • R 6 represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group or an optionally substituted aryl group.
  • a represents an integer of 0 to 5. When there are a plurality of R 6 s , they may be the same or different.
  • halogen atom represented by R 6 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Optionally substituted alkyl group defined and specific examples of the aryl group which is a alkoxy group and substituted also be substituted, an alkyl group which may be substituted represented by the aforementioned R 2, The definitions and specific examples of the alkoxy group which may be substituted and the aryl group which may be substituted are the same.
  • R 6 is preferably an alkyl group.
  • a is preferably an integer of 0 to 3, and more preferably 1.
  • the polymer compound used in the present invention may further contain a thiophenediyl group which may have a substituent as a repeating unit.
  • a thiophenediyl group which may have a substituent are the same as the specific examples of the substituent represented by R 2 described above.
  • a group represented by the formula (VII) is preferable.
  • R 8 represents a hydrogen atom or an optionally substituted alkyl group. Two R 8 may be the same or different.
  • the polymer compound used in the present invention includes a repeating unit represented by the formula (I-1), a repeating unit represented by the formula (I-2), a repeating unit represented by the formula (II), and a substituent.
  • the polymer compound used in the present invention has a polystyrene-equivalent number average molecular weight of preferably 1 ⁇ 10 3 to 1 ⁇ 10 8 , more preferably 3 ⁇ 10 3 to 1 ⁇ 10 7. More preferably, it is from ⁇ 10 3 to 1 ⁇ 10 7 .
  • the polymer compound used in the present invention may form a cyclic structure by bonding two ends of the polymer compound, but preferably does not form a cyclic structure.
  • the polymer compound used in the present invention preferably has an absorption wavelength end of 600 nm or more.
  • a polymer compound having an absorption wavelength end of 600 nm or more absorbs sunlight in a wide wavelength range, and a photoelectric conversion element including the polymer compound in an active layer has high photoelectric conversion efficiency.
  • the absorption wavelength end of the polymer compound can be determined by the following method.
  • a spectrophotometer for example, JASCO-V670, UV-visible near infrared spectrophotometer manufactured by JASCO Corporation
  • the measurable wavelength range is 200 to 1500 nm. Therefore, measurement is performed in this wavelength range.
  • the absorption spectrum of the substrate used for measurement is measured.
  • a quartz substrate, a glass substrate, or the like is used.
  • a thin film containing a polymer compound is formed on the substrate from a solution containing the polymer compound or a melt containing the polymer compound.
  • the vertical axis represents the absorbance of the polymer compound
  • the horizontal axis represents the wavelength. It is desirable to adjust the thickness of the thin film so that the absorbance at the largest absorption peak is about 0.5 to 2.
  • the absorbance of the absorption peak with the longest wavelength among the absorption peaks is defined as 100%, and the intersection of the absorption peak and a straight line parallel to the horizontal axis (wavelength axis) including the absorbance of 50% of the absorption peak.
  • the intersection point that is longer than the peak wavelength is taken as the first point.
  • the intersection point between the absorption peak and a straight line parallel to the wavelength axis containing 25% of the absorbance and the absorption peak, which is longer than the peak wavelength of the absorption peak, is defined as a second point.
  • the intersection of the straight line connecting the first point and the second point and the reference line is defined as the absorption wavelength end.
  • the reference line is the intersection of the absorption peak and the straight line parallel to the wavelength axis including the absorbance of 10% at the absorption peak of the longest wavelength, where the absorbance of the absorption peak is 100%.
  • the energy level of the highest occupied orbit of the polymer compound used in the present invention is preferably ⁇ 4.5 eV or less, more preferably ⁇ 5.0 eV or less.
  • the energy level of the highest occupied orbit of the polymer compound is ⁇ 4.5 eV or less, the open-circuit voltage of the photoelectric conversion element containing the polymer compound in the active layer is increased, and the photoelectric conversion efficiency is increased.
  • the photoelectric conversion element of the present invention has a pair of electrodes (anode and cathode), at least one of which is transparent or translucent, and an active layer provided between the pair of electrodes.
  • an active layer a bulk hetero active layer formed from an organic composition of an electron-donating compound (p-type organic semiconductor, etc.) and an electron-accepting compound (n-type organic semiconductor, etc.), and electron donation And a p / n stacked active layer in which a first active layer formed of a conductive compound and a second active layer formed of an electron accepting compound are stacked.
  • the polymer compound containing the repeating unit represented by the formula (I-1) and the repeating unit represented by the formula (I-2) contained in the active layer thereof has a long wavelength region.
  • the photoelectric conversion efficiency is increased.
  • the photoelectric conversion element of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed.
  • Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate
  • Examples of the material for the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, using conductive materials such as indium oxide, zinc oxide, tin oxide, and composites thereof (for example, indium tin oxide (ITO), indium zinc oxide (IZO), NESA)). A produced film or a film produced using a metal such as gold, platinum, silver or copper is used, and a film produced using ITO, IZO or tin oxide is preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • the transparent or translucent electrode may be an anode or a cathode.
  • the other electrode may not be transparent.
  • a metal, a conductive polymer, or the like can be used as a material for the electrode.
  • Specific examples of the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
  • the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • an additional intermediate layer (such as a charge transport layer) other than the active layer may be used.
  • the material of the intermediate layer include alkali metal halides, alkali metal oxides, alkaline earth metal halides, and alkaline earth metal oxides. Specifically, lithium fluoride is used. It is done.
  • fine particles of inorganic semiconductor such as titanium oxide, PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrenesulfonate)) mixture (PEDOT: PSS), etc. It may be used as
  • the active layer included in the photoelectric conversion device of the present invention includes an electron donating compound and an electron accepting compound, and at least one of the electron donating compound and the electron accepting compound is represented by the formula (I-1). And a repeating compound represented by formula (I-2).
  • the electron-donating compound and the electron-accepting compound are relatively determined from the HOMO or LUMO energy levels of these compounds.
  • the electron donating compound may be a low molecular compound. Although a high molecular compound may be sufficient, a high molecular compound is preferable.
  • the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains.
  • the electron-donating compound include polythiophene (polythiophene and derivatives thereof) which may have a substituent, a structure containing a dithiopentameric thiophene or a structure containing a dithiopentameric thiophene derivative.
  • polythiophene derivative is a polymer compound containing a thiophenediyl group having a substituent.
  • Polythiophene and its derivatives are preferably homopolymers.
  • a homopolymer is a polymer formed by bonding only a plurality of groups selected from the group consisting of a thiophenediyl group and a substituted thiophenediyl group.
  • the thiophene diyl group is preferably a thiophene-2,5-diyl group, and the thiophene diyl group having a substituent is preferably an alkylthiophene-2, 5-diyl group.
  • polythiophenes and derivatives thereof which are homopolymers polythiophene homopolymers comprising thiophene diyl groups having an alkyl group having 6 to 30 carbon atoms as substituents are preferred.
  • Examples of the polymer compound having thiophene as a partial skeleton include a polymer compound represented by the formula (2).
  • R 71 and R 72 each independently represents a hydrogen atom or a substituent.
  • Two R 71 may be the same or different.
  • Six R ⁇ 72> may be the same or may be different from each other.
  • n represents the number of repetitions and is a number from 2 to 1000.
  • R 71 and R 72 are the same as the definition and specific example of the substituent represented by R 2 described above.
  • an alkoxy group having 1 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms is preferable.
  • polymer compound represented by the formula (2) a polymer compound in which R 71 is an alkyl group and R 72 is a hydrogen atom is preferable.
  • Specific examples of the polymer compound represented by the formula (2) include a polymer compound represented by the formula (2-1). [Wherein n represents the same meaning as in formula (2). ]
  • Electrode-accepting compound When a polymer compound containing a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2) is used as an electron-donating compound, examples of the electron-accepting compound include oxalates.
  • the electron-accepting compound includes a compound having a benzothiadiazole structure, a polymer compound having a benzothiadiazole structure in a repeating unit, a compound having a quinoxaline structure in a repeating unit, a polymer compound having a quinoxaline structure in a repeating unit, titanium oxide, carbon nanotube, fullerene, And a fullerene derivative, a compound having a benzothiadiazole structure, a polymer compound having a benzothiadiazole structure in a repeating unit, a compound having a quinoxaline structure, a polymer compound having a quinoxaline structure in a repeating unit, fullerene, and a fullerene derivative are more preferable.
  • a compound containing a benzothiadiazole structure, a polymer compound containing a benzothiadiazole structure in a repeating unit, a compound containing a quinoxaline structure, a polymer containing a quinoxaline structure in a repeating unit Compound, and more preferably a fullerene derivative, polymer compounds containing benzothiadiazole structure in the repeating unit, the polymer compound including a quinoxaline structure repeating units, and fullerene derivatives are particularly preferred.
  • Examples of the polymer compound having a benzothiadiazole structure in the repeating unit include a polymer compound represented by the formula (2) exemplified as the electron donating compound, and represented by the formula (2-1). High molecular compounds are preferred. That is, depending on the combination with the compound applied as the electron donating compound, the polymer compound represented by the formula (2) can be applied as the electron accepting compound.
  • the fullerene for example, C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene include C 84 fullerene.
  • the fullerene derivative for example, C 60 fullerene derivatives, C 70 fullerene derivatives, C 76 fullerene derivatives, C 78 fullerene derivatives, C 84 fullerene derivatives.
  • the fullerene derivative represents a compound in which at least a part of fullerene is modified.
  • C 60 fullerene derivative examples include the following compounds.
  • C 70 fullerene derivatives there are the following.
  • Suitable fullerene derivatives include, for example, [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -Phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM) , [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] Phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] thienyl- And C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).
  • the use ratio of the electron accepting compound to the electron donating compound is preferably 10 to 1000 parts by weight, more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. preferable.
  • the thickness of the active layer is preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
  • the active layer may contain other components as necessary in order to express various functions.
  • other components include an ultraviolet absorber, an antioxidant, a sensitizer for sensitizing the function of generating charges by absorbed light, and a light stabilizer for increasing the stability to ultraviolet rays. It is done.
  • the components other than the electron donating compound and the electron accepting compound constituting the active layer are each preferably 5 parts by weight or less, more preferably 0 with respect to 100 parts by weight of the total amount of the electron donating compound and the electron accepting compound. .01 to 3 parts by weight is blended.
  • the active layer may contain a polymer compound other than an electron donating compound and an electron accepting compound as a polymer binder in order to improve mechanical properties.
  • a polymer compound that does not inhibit the electron transport property or hole transport property is preferably used.
  • As the polymer binder a polymer compound that does not strongly absorb visible light is preferably used.
  • polymer binder examples include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-chenylene vinylene) and derivatives thereof.
  • polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like can be mentioned.
  • the active layer of the photoelectric conversion element of the present invention is formed by film formation from a solution containing the electron-donating compound, the electron-accepting compound, and other components blended as necessary. Can be formed.
  • the active layer can be formed by applying the solution on an anode or a cathode. Then, another electrode can be formed on an active layer and a photoelectric conversion element can be manufactured.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the above-described electron-donating compound and electron-accepting compound.
  • solvents include hydrocarbon solvents (for example, toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene), halogenated hydrocarbon solvents (for example, four Carbon chloride, chloroform, dichloromethane, dichloroethane, dichloropropane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, trichlorobenzene, etc.), and ether solvents (e.g., Tetrahydrofuran,
  • film formation methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing,
  • gravure printing flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method and the like, spin coating method, flexographic printing method, gravure printing method, inkjet printing method, Dispenser printing is preferred.
  • the photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by irradiating light such as sunlight from a transparent or translucent electrode to generate a photovoltaic force between the electrodes. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • the solar cell module When a solar cell module is configured using a photoelectric conversion element as an organic thin film solar cell, the solar cell module can basically have the same module structure as a conventional solar cell module.
  • the solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side.
  • Examples of the known module structure of the solar cell module include a module structure such as a super straight type, a substrate type, and a potting type, and a substrate integrated module structure used in an amorphous silicon solar cell. Even in the organic thin-film solar cell to which the organic photoelectric conversion element of the present invention is applied, these module structures can be appropriately selected depending on the purpose of use, the place of use and the environment.
  • a super straight type or substrate type solar cell module having a typical module structure
  • cells are arranged at regular intervals between a pair of support substrates which are transparent on one side or both sides and subjected to antireflection treatment.
  • Adjacent cells are connected by wiring such as metal leads or flexible wiring.
  • Current collecting electrodes are arranged on the outer edge of the module, and the generated power is taken out to the outside.
  • plastic materials such as ethylene vinyl acetate (EVA) may be provided between the support substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency.
  • EVA ethylene vinyl acetate
  • the surface protective layer is made of a transparent plastic film, or the filling resin is cured.
  • a protective function may be imparted and the support substrate on one side may be omitted.
  • the periphery of the support substrate is usually fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material.
  • the support substrate, the filling material, and the sealing material the solar cell module can be formed on the curved surface.
  • a solar cell module main body can be produced by sealing. Moreover, it can also have a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391. Furthermore, the solar cell module using the flexible support can be used by being bonded and fixed to curved glass or the like.
  • the second aspect of the present invention is a polymer compound comprising a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2).
  • X 1 represents a sulfur atom, an oxygen atom or a divalent group.
  • X 2 and X 3 each independently represent a group represented by the formula: ⁇ C (R 1 ) — or a nitrogen atom.
  • R 1 represents a hydrogen atom or a substituent.
  • Ar 1 represents a divalent fused ring group which may have a substituent.
  • the polymer compound of the present invention preferably further contains a repeating unit represented by the formula (II).
  • the repeating unit represented by the formula (II) is preferable.
  • the polymer compound of the present invention preferably further contains a thiophenediyl group which may have a substituent as a repeating unit.
  • a thiophenediyl group which may have a substituent as a repeating unit.
  • Specific examples of the substituent that the thiophenediyl group may have are the same as the specific examples of the substituent represented by R 2 described above.
  • the thiophenediyl group which may have a substituent is preferably a group represented by the formula (VII).
  • the polymer compound of the present invention has a repeating unit represented by the formula (I-1), a repeating unit represented by the formula (I-2), a repeating unit represented by the formula (II), and a substituent. It is preferable that the thiophene diyl group may be optionally substituted.
  • the repeating unit represented by the formula (I-1), the group represented by the formula (VI), and the repeating unit represented by the formula (II) More preferably, it consists of a unit and a group represented by the formula (VII).
  • the polymer compound of the present invention preferably has a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 , more preferably 3 ⁇ 10 3 to 1 ⁇ 10 7 , and more preferably 5 ⁇ 10. More preferably, it is 3 to 1 ⁇ 10 7 .
  • two ends of the polymer compound may be bonded to form a cyclic structure, but it is preferable that no cyclic structure is formed.
  • a method for producing the polymer compound of the present invention is not particularly limited. For example, a method using a reductive coupling reaction using a Ni catalyst, a method using a Stille coupling reaction, and a Suzuki coupling reaction are used. A method is mentioned.
  • the formula (100) Q 1 -E 1 -Q 2 (100) [Wherein E 1 represents a group containing a diketopyrrolopyrrole diyl group. Q 1 and Q 2 each independently represent a halogen atom or a sulfonic acid residue. ]
  • T 1 and T 2 each independently represents a substituted stannyl group.
  • the manufacturing method which has a process with which 1 or more types of compounds represented by these are made to react in presence of a palladium catalyst is mentioned.
  • E 2 preferably includes a repeating unit represented by Formula (II).
  • the repeating unit represented by the formula (II) is preferably bonded to the repeating unit represented by the formula (I-1).
  • the repeating unit represented by the formula (II) is preferable.
  • Examples of the substituted stannyl group represented by T 1 and T 2 in the formula (200) include a group represented by the formula: —SnR 200 3 .
  • R 200 represents a monovalent organic group.
  • Examples of the monovalent organic group include an optionally substituted alkyl group and an optionally substituted aryl group.
  • R 200 definitions and specific examples of the aryl group which is a substituted alkyl group and substituted also be substituted, also be an alkyl group and substituted substituted represented by the aforementioned R 2
  • the definition and specific examples of the aryl group that may be included are the same.
  • —SnMe 3 , —SnEt 3 , —SnBu 3 , and —SnPh 3 are preferable, and —SnMe 3 , —SnEt 3 , and —SnBu 3 are more preferable.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the total number of moles of one or more compounds represented by formula (200) used for the reaction is preferably excessive with respect to the total number of moles of one or more compounds represented by formula (100).
  • the total number of moles of one or more compounds represented by formula (200) used in the reaction is 1 mole
  • the total number of moles of one or more compounds represented by formula (100) is 0.6-0. .99 mol is preferable, and 0.7 to 0.95 mol is more preferable.
  • Examples of the halogen atom represented by Q 1 and Q 2 in Formula (100) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of synthesis of the polymer compound, the halogen atom is preferably a bromine atom or an iodine atom, and more preferably an iodine atom.
  • the sulfonic acid residue represented by Q 1 and Q 2 in the formula (100) means an atomic group obtained by removing acidic hydrogen from sulfonic acid.
  • Specific examples of the sulfonic acid residue include alkyl sulfonate groups (for example, methane sulfonate group, ethane sulfonate group), aryl sulfonate groups (for example, benzene sulfonate group, p-toluene sulfonate group), aryl alkyl sulfonate groups (for example, benzyl group) Sulfonate groups) and trifluoromethanesulfonate groups.
  • alkyl sulfonate groups for example, methane sulfonate group, ethane sulfonate group
  • aryl sulfonate groups for example, benzene sulfonate group, p-toluene sulf
  • the thiophenediyl group which may have a substituent is contained in the compound represented by the formula (100). It may be contained in the compound represented by the formula (200), or may be contained in both compounds.
  • the optionally substituted thiophenediyl group is contained in the compound represented by the formula (100)
  • the optionally substituted thiophenediyl group can be contained in E 1.
  • the optionally substituted thiophenediyl group can be contained in E 2. .
  • the palladium catalyst used in the Stille coupling reaction examples include a Pd (0) catalyst and a Pd (II) catalyst.
  • Specific examples of the palladium catalyst include palladium [tetrakis (triphenylphosphine)], palladium acetates, and dichlorobis (triphenylphosphine) palladium (II).
  • the palladium catalyst is preferably dichlorobis (triphenylphosphine) palladium (II) and palladium acetates.
  • the addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol with respect to 1 mol of the compound represented by the formula (100). Yes, preferably 0.0003 mol to 0.1 mol.
  • a phosphorus compound When using palladium acetate as the palladium catalyst, a phosphorus compound may be added as a ligand.
  • the phosphorus compound include triphenylphosphine, tri (o-tolyl) phosphine, and tri (o-methoxyphenyl) phosphine.
  • the amount added is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 1 mol with respect to 1 mol of the palladium catalyst. 10 moles.
  • the reaction is usually performed in a solvent.
  • the solvent include N, N-dimethylformamide, toluene, xylene, chlorobenzene, dimethoxyethane, and tetrahydrofuran.
  • the solvent is preferably toluene, xylene or tetrahydrofuran.
  • the temperature of the Stille coupling reaction is usually 50 to 200 ° C., although it depends on the solvent. From the viewpoint of increasing the molecular weight of the polymer compound, the reaction temperature is preferably 60 to 120 ° C. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed.
  • reaction time may be the end point when the target degree of polymerization is reached, but is usually 0.1 to 200 hours, preferably 1 to 30 hours.
  • the Stille coupling reaction is performed in a reaction system in which the palladium catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas.
  • an inert atmosphere such as argon gas or nitrogen gas.
  • it is performed in a system sufficiently deaerated with argon gas or nitrogen gas.
  • the reaction vessel was sufficiently replaced with nitrogen gas, degassed, and a solvent degassed by bubbling with nitrogen gas in advance, for example, degassed toluene was added. Thereafter, the mixture is heated and heated to polymerize, for example, at the reflux temperature for 8 hours while maintaining an inert atmosphere.
  • the third aspect of the present invention is a compound containing a group represented by the formula (III) and a substituted stannyl group.
  • X 4 represents a sulfur atom, an oxygen atom or a divalent group.
  • the divalent group include a group represented by the formula: —S ( ⁇ O) —, a group represented by the formula: —S ( ⁇ O) 2 —, and a formula: —N (R 2 ) —.
  • R 2 the definition and specific examples of R 2 are the same as described above.
  • X 4 is preferably a sulfur atom.
  • X 5 and X 6 each independently represent a group represented by the formula: ⁇ C (R 1 ) — or a nitrogen atom.
  • R 1 the definition and specific examples of R 1 are the same as described above.
  • X 5 and X 6 are a group represented by the formula: ⁇ C (R 1 ) —
  • an atom contained in R 1 in X 5 is bonded to an atom contained in R 1 in X 6
  • An annular structure may be formed.
  • X 5 and X 6 are preferably a group represented by the formula: ⁇ C (R 1 ) —.
  • the compound of the present invention preferably further contains a group represented by the formula (IV).
  • R 4 represents a hydrogen atom or a substituent.
  • the definition and specific examples of the substituent represented by R 4 are the same as the definition and specific examples of the substituent represented by R 2 described above.
  • the definition and specific examples of the substituted stannyl group contained in the compound of the present invention are the same as the definition and specific examples of the substituted stannyl group represented by the above formula: —SnR 200 3 .
  • the compound of the present invention preferably has two substituted stannyl groups.
  • R 5 represents an alkyl group. Three R 5 may be the same or different.
  • the definition and specific examples of the alkyl group represented by R 5 are the same as the definition and specific examples of the alkyl group described for the substituent represented by R 2 described above.
  • the compound of the present invention preferably further contains a thiophene ring.
  • a thiophenediyl group which may have the aforementioned substituent.
  • Specific examples of the substituent that the thiophenediyl group may have are the same as the specific examples of the substituent represented by R 2 described above.
  • the thiophenediyl group which may have a substituent is preferably a group represented by the formula (VII).
  • a compound represented by the formula (VIII) is preferable.
  • X 4 , X 5 , X 6 , R 4 and R 5 represent the same meaning as described above.
  • R 9 represents a hydrogen atom or an optionally substituted alkyl group. Four R 9 may be the same or different.
  • R 5 and R 9 represent the same meaning as described above.
  • R 10 represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group or an optionally substituted aryl group.
  • b represents an integer of 0 to 5. Two b's may be the same or different. When there are a plurality of R 10 , they may be the same or different.
  • halogen atom represented by R 10 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted alkoxy group, and the optionally substituted aryl group represented by R 10 are the substituted and substituted groups represented by R 2 described above.
  • the definition and specific examples of the alkyl group which may be substituted, the alkoxy group which may be substituted and the aryl group which may be substituted are the same.
  • R 10 is preferably an alkyl group.
  • b is preferably an integer of 0 to 3, and more preferably 1.
  • the NMR spectrum of the compound was measured with a nuclear magnetic resonance apparatus (device name: JNM-EX400, manufactured by JEOL).
  • the IR spectrum was measured with an infrared spectrophotometer (device name: FT / IR-470 Plus, manufactured by JASCO Corporation).
  • the high resolution mass spectrometry spectrum was measured with a high resolution mass spectrometer (device name: JMS-T100CS, manufactured by JEOL).
  • the number average molecular weight in terms of polystyrene and the weight average molecular weight in terms of polystyrene of the polymer compound are as follows: gel permeation chromatography device (device name: Prominence, manufactured by Shimadzu Corporation) and GPC column (JAIGEL-3HAF, manufactured by Nihon Analytical Industries, Ltd.) Measurement was performed using chloroform as an eluent.
  • a solution prepared by dissolving 0.32 g (0.5 mmol) of Compound 2a and 0.16 mL of tetramethylethylenediamine (TMEDA) in 5 mL of distilled tetrahydrofuran was added to a 30 mL 2-neck round bottom flask. After the reaction solution was cooled to ⁇ 78 ° C., 0.64 mL of a 1.65 mol / L n-butyllithium (n-BuLi) hexane solution (n-BuLi content: 1.1 mmol) was stirred in the reaction solution. Added to. The reaction was refluxed for 1 hour and then cooled to -78 ° C.
  • TEDA tetramethylethylenediamine
  • Example 3 (Production and Evaluation of Organic Thin Film Solar Cell 1) An organic thin film solar cell 1 having the following element configuration was prepared and evaluated for characteristics.
  • the hole transport layer is prepared by spin-coating a liquid (trade name: Clevios P VP AI 4083) containing poly (3,4-ethylenedioxythiophene) (PEDOT), polystyrene sulfonic acid (PSS) and water on ITO. did.
  • the active layer contains a chloroform solution containing polymer compound 1 and phenyl C71-butyric acid methyl ester (PC71BM, manufactured by American Dice Source) in an equal amount, and the concentration of the mixture of polymer compound 1 and PC71BM is 15 mg / mL. It was prepared by spin coating on the transport layer.
  • the hole blocking layer is made of titanium oxide (TiO x ) obtained by spin-coating an ethanol solution of titanium (IV) isopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) at 2000 rpm and then left standing at room temperature for 30 minutes. A film was formed on top. The cathode was prepared by evaporating aluminum on the hole block layer.
  • the produced organic thin film solar cell 1 was irradiated with light having an irradiance of 100 mW / cm 2 using a solar simulator (trade name: PEC-L11, manufactured by Pexel Technology), and the generated current and voltage were measured.
  • the organic thin film solar cell 1 has an open circuit voltage (VOC) of 0.48 V, a short circuit current density (Jsc) of 4.11 mA / cm 2 , a fill factor (FF) of 0.54, and a conversion efficiency of 0. 71%.
  • VOC open circuit voltage
  • Jsc short circuit current density
  • FF fill factor
  • Example 4 (Production and Evaluation of Organic Thin Film Solar Cell 2) An organic thin-film solar cell 2 was prepared in the same manner as in Example 3 except that the polymer compound 2 was used in place of the polymer compound 1 and chlorobenzene was used as the dissolving solvent, and the characteristics were evaluated.
  • the open circuit voltage (VOC) of the organic thin film solar cell 2 is 0.55 V
  • the short circuit current density (Jsc) is 1.70 mA / cm 2
  • the fill factor (FF) is 0.32
  • the conversion efficiency is 0. 30%.
  • the action spectrum of the organic thin film solar cell 1 and the organic thin film solar cell 2 is shown in FIG.
  • the vertical axis represents the ratio (IPCE) of the number of electrons flowing through the organic thin film solar cell to the number of photons incident on the active layer of the organic thin film solar cell at a certain wavelength.
  • the horizontal axis indicates the wavelength of the irradiated light. It was found that both the organic thin film solar cell 1 and the organic thin film solar cell 2 photoelectrically convert not only visible light but also infrared light up to 1000 nm.
  • the IPCE in the light of 800 nm wavelength of the organic thin film solar cell 1 was about 8%
  • the IPCE in the light of 800 nm wavelength of the organic thin film solar cell 2 was about 3%.
  • the energy levels of the highest occupied orbitals of the polymer compound 1 and the polymer compound 2 were measured under the following conditions. Cyclic voltammetry of polymer compound 1 thin film or polymer compound 2 thin film on ITO in acetonitrile solution containing decamethylferrocene as internal standard and 0.1 mol / L n-Bu 4 N + PF 6 as supporting electrolyte did. The reduction potential of the polymer compound 1 was ⁇ 1.06 V (vs. Ag / AgNO 3 ), and the oxidation potential was 0.62 V (vs. Ag / AgNO 3 ).
  • the energy level of the highest occupied orbit and the energy level of the lowest unoccupied orbit calculated by converting the energy level under vacuum of the FeCp2 + / 0 reference electrode to ⁇ 4.6 eV are ⁇ 5.4 eV and ⁇ 3, respectively. It was found to be 7 eV. Similarly, it was found that the energy level of the highest occupied orbit and the energy level of the lowest unoccupied orbit of the polymer compound 2 were ⁇ 5.2 eV and ⁇ 3.8 eV, respectively.
  • a chlorobenzene solution of polymer compound 1 was applied to a glass substrate by spin coating to obtain a thin film of polymer compound 1.
  • the absorption wavelength end of the thin film was 1000 nm or more.
  • a chlorobenzene solution of the polymer compound 2 was applied to a glass substrate by spin coating to obtain a polymer compound 2 thin film.
  • the absorption wavelength end of the thin film was 1000 nm or more.
  • Example 5 (Production and Evaluation of Organic Thin Film Solar Cell 3) An organic thin film solar cell 3 was prepared in the same manner as in Example 3 except that the amount of the polymer compound 1 and phenyl C71-butyric acid methyl ester (PC71BM) used was 1: 2 (wt: wt) in weight ratio. Evaluated.
  • the open-circuit voltage (VOC) of the organic thin-film solar cell 3 is 0.53 V
  • the short-circuit current density (Jsc) is 6.58 mA / cm 2
  • the fill factor (FF) is 0.42
  • the conversion efficiency is 1 .44%.
  • the compound 2c which was an orange solid, was synthesized in the same manner as in Synthesis Example 1 except that it was recrystallized from ethanol.
  • the yield of compound 2c was 40%.
  • Polymer compound 3 was obtained by synthesis in the same manner as in Example 2 except that 50.4 mg (0.050 mmol) of compound 3c was used instead of compound 3b. The yield of polymer compound 3 was 32%.
  • Example 7 (Production and Evaluation of Organic Thin Film Solar Cell 4)
  • Example 3 except that polymer compound 3 was used instead of polymer compound 1 and the amount of polymer compound 3 and phenyl C71-butyric acid methyl ester (PC71BM) used was 1: 2 (wt: wt) by weight.
  • the organic thin film solar cell 4 was prepared in the same manner as in Example 3, and the characteristics were evaluated.
  • the organic thin-film solar cell 4 has an open circuit voltage (VOC) of 0.45 V, a short circuit current density (Jsc) of 5.58 mA / cm 2 , a fill factor (FF) of 0.41, and a conversion efficiency of 0. 96%.
  • VOC open circuit voltage
  • Jsc short circuit current density
  • FF fill factor
  • Comparative Example 1 (Production and Evaluation of Organic Thin Film Solar Cell 3) An organic thin film solar cell 3 was prepared in the same manner as in Example 3 except that the compound 1 represented by the following formula was used in place of the polymer compound 1, and the characteristics were evaluated. When the action spectrum of the organic thin-film solar cell 3 was measured, light having a wavelength longer than 800 nm was not photoelectrically converted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Provided is a photoelectric conversion element in which a large amount of charge is converted from long-wavelength light. A photoelectric conversion element having a positive electrode, a negative electrode, and an active layer provided between the positive electrode and the negative electrode; the active layer containing an electron donor compound and an electron acceptor compound; and the electron donor compound and/or the electron acceptor compound being a polymeric compound containing repeating units represented by formula (I-1) and repeating units represented by formula (I-2). (X1 represents a sulfur atom, an oxygen atom, or a divalent group; each of X2 and X3 independently represents =C(R1)- or a nitrogen atom; and R1 represents a hydrogen atom or a substitution group. If X2 and X3 are =C(R1)-, the atom contained in R1 in X2 and the atom contained in R1 in X3 may bond and form a cyclic structure.) (Ar1 represents a divalent fused ring group that may have a substitution group.)

Description

光電変換素子Photoelectric conversion element
 本発明は、光電変換素子に関する。 The present invention relates to a photoelectric conversion element.
 光電変換素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に設けられる活性層とを備える素子である。光電変換素子の諸特性を高めるために、有機半導体材料を光電変換素子の活性層に用いることが検討されている。活性層に有機半導体材料を用いた光電変換素子としては、例えば、下記式で表される化合物1を活性層に用いた光電変換素子が提案されている(非特許文献1)。
Figure JPOXMLDOC01-appb-C000007
A photoelectric conversion element is an element provided with a pair of electrodes consisting of an anode and a cathode, and an active layer provided between the pair of electrodes. In order to improve various characteristics of the photoelectric conversion element, use of an organic semiconductor material for an active layer of the photoelectric conversion element has been studied. As a photoelectric conversion element using an organic semiconductor material for an active layer, for example, a photoelectric conversion element using a compound 1 represented by the following formula for an active layer has been proposed (Non-patent Document 1).
Figure JPOXMLDOC01-appb-C000007
 しかしながら、上記化合物1を活性層に用いた光電変換素子は、長波長の光から変換される電荷の量が少ないという課題がある。 However, the photoelectric conversion element using the compound 1 as an active layer has a problem that the amount of charges converted from light having a long wavelength is small.
 そこで、本発明は、長波長の光から変換される電荷の量が多い光電変換素子を提供することを目的とする。 Therefore, an object of the present invention is to provide a photoelectric conversion element having a large amount of charge converted from light having a long wavelength.
 本発明は下記の[1]から[29]を提供する。
[1] 陽極と、陰極と、該陽極と該陰極との間に設けられた活性層とを有し、該活性層中に電子供与性化合物と電子受容性化合物とを含み、該電子供与性化合物及び該電子受容性化合物の少なくとも一方が、式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物である光電変換素子。
Figure JPOXMLDOC01-appb-C000008
〔式中、Xは、硫黄原子、酸素原子又は2価の基を表す。X及びXは、それぞれ独立に、式:=C(R)-で表される基又は窒素原子を表す。Rは、水素原子又は置換基を表す。X及びXが式:=C(R)-で表される基である場合、X中のRに含まれる原子とX中のRに含まれる原子とが結合して環状構造を形成してもよい。〕
Figure JPOXMLDOC01-appb-C000009
〔式中、Arは、置換基を有していてもよい2価の縮合環基を表す。〕
[2] Xが、硫黄原子、酸素原子、式:-S(=O)-で表される基、式:-S(=O)-で表される基、式:-N(R)-で表される基、式:-CR=CR-で表される基、式:-CR=N-で表される基又は式:-N=N-で表される基を表し、該Rが水素原子又は置換基を表す、[1]に記載の光電変換素子。
[3] Xが、硫黄原子である、[1]又は[2]に記載の光電変換素子。
[4] X及びXが、式:=C(R)-で表される基である、[1]~[3]のいずれか一つに記載の光電変換素子。
[5] 高分子化合物が、さらに式(II)で表される繰り返し単位を含み、該式(II)で表される繰り返し単位が前記式(I-1)で表される繰り返し単位と結合している、[1]~[4]のいずれか一つに記載の光電変換素子。
 =C(R)-    (II)
〔式中、Rは、水素原子又は置換基を表す。〕
[6] Arが、置換基を有していてもよい含窒素縮合環を含有する2価の基である、[1]~[5]のいずれか一つに記載の光電変換素子。
[7] Arが、置換基を有していてもよいジケトピロロピロールジイル基である、[6]に記載の光電変換素子。
[8] 高分子化合物が、さらに、置換基を有していてもよいチオフェンジイル基を繰り返し単位として含む、[1]~[7]のいずれか一つに記載の光電変換素子。
[9] 高分子化合物の吸収波長端が、600nm以上である、[1]~[8]のいずれか一つに記載の光電変換素子。
[10] 高分子化合物の最高被占軌道のエネルギーレベルが、-4.5eV以下である、[1]~[9]のいずれか一つに記載の光電変換素子。
[11] [1]~[10]のいずれか一つに記載の光電変換素子を含む太陽電池モジュール。
[12] [1]~[10]のいずれか一つに記載の光電変換素子を含むイメージセンサー。
[13] 式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物。
Figure JPOXMLDOC01-appb-C000010
〔式中、Xは、硫黄原子、酸素原子又は2価の基を表す。X及びXは、それぞれ独立に、式:=C(R)-で表される基又は窒素原子を表す。Rは、水素原子又は置換基を表す。X及びXが式:=C(R)-で表される基である場合、X中のRに含まれる原子とX中のRに含まれる原子とが結合して環状構造を形成してもよい。〕
Figure JPOXMLDOC01-appb-C000011
〔式中、Arは、置換基を有していてもよい2価の縮合環基を表す。〕
[14] Xが、硫黄原子、酸素原子、式:-S(=O)-で表される基、式:-S(=O)-で表される基、式:-N(R)-で表される基、式:-CR=CR-で表される基、式:-CR=N-で表される基又は式:-N=N-で表される基を表し、該Rが水素原子又は置換基を表す、[13]に記載の高分子化合物。
[15] Xが、硫黄原子である、[13]又は[14]に記載の高分子化合物。
[16] X及びXが、式:=C(R)-で表される基である、[13]~[15]のいずれか一つに記載の高分子化合物。
[17] さらに式(II)で表される繰り返し単位を含み、該式(II)で表される繰り返し単位が前記式(I-1)で表される繰り返し単位と結合している、[13]~[16]のいずれか一つに記載の高分子化合物。
 =C(R)-   (II)
〔式中、Rは、水素原子又は置換基を表す。〕
[18] Arが、置換基を有していてもよいジケトピロロピロールジイル基である、[13]~[17]のいずれか一つに記載の高分子化合物。
[19] さらに置換基を有していてもよいチオフェンジイル基を繰り返し単位として含む、[13]~[18]のいずれか一つに記載の高分子化合物。
[20] 吸収波長端が、600nm以上である、[13]~[19]のいずれか一つに記載の高分子化合物。
[21] 最高被占軌道のエネルギーレベルが、-4.5eV以下である、[13]~[20]のいずれか一つに記載の高分子化合物。
[22] 式(III)で表される基と置換スタンニル基とを含有する化合物。
Figure JPOXMLDOC01-appb-C000012
〔式中、Xは、硫黄原子、酸素原子又は2価の基を表す。X及びXは、それぞれ独立に、式:=C(R)-で表される基又は窒素原子を表す。Rは、水素原子又は置換基を表す。X及びXが式:=C(R)-で表される基である場合、X中のRに含まれる原子とX中のRに含まれる原子とが結合して環状構造を形成してもよい。〕
[23] Xが、硫黄原子、酸素原子、式:-S(=O)-で表される基、式:-S(=O)-で表される基、式:-N(R)-で表される基、式:-CR=CR-で表される基、式:-CR=N-で表される基又は式:-N=N-で表される基を表し、該Rが水素原子又は置換基を表す、[22]に記載の化合物。
[24] Xが、硫黄原子である、[22]又は[23]に記載の化合物。
[25] X及びXが、式:=C(R)-で表される基である、[22]~[24]のいずれか一つに記載の化合物。
[26] さらに式(IV)で表される基を含み、該式(IV)で表される基が前記式(III)で表される基と結合している、[22]~[25]のいずれか一つに記載の化合物。
 =C(R)-   (IV)
〔式中、Rは、水素原子又は置換基を表す。〕
[27] 置換スタンニル基を2個含有する、[22]~[26]のいずれか一つに記載の化合物。
[28] 置換スタンニル基が、式(V)で表される基である、[22]~[27]のいずれか一つに記載の化合物。
Figure JPOXMLDOC01-appb-C000013
〔式中、Rは、アルキル基を表す。3個あるRは同一であっても相異なってもよい。〕
[29] さらに、チオフェン環を含有する、[22]~[28]のいずれか一つに記載の化合物。
The present invention provides the following [1] to [29].
[1] It has an anode, a cathode, and an active layer provided between the anode and the cathode, and the active layer contains an electron donating compound and an electron accepting compound. A photoelectric conversion element, wherein at least one of the compound and the electron-accepting compound is a polymer compound including a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2).
Figure JPOXMLDOC01-appb-C000008
[Wherein, X 1 represents a sulfur atom, an oxygen atom or a divalent group. X 2 and X 3 each independently represent a group represented by the formula: ═C (R 1 ) — or a nitrogen atom. R 1 represents a hydrogen atom or a substituent. X 2 and X 3 has the formula: = C (R 1) - in the case of a group represented, by bonding the atoms contained in R 1 in the atoms and X 3 contained in R 1 in X 2 An annular structure may be formed. ]
Figure JPOXMLDOC01-appb-C000009
[In the formula, Ar 1 represents a divalent fused ring group which may have a substituent. ]
[2] X 1 is a sulfur atom, an oxygen atom, a group represented by the formula: —S (═O) —, a group represented by the formula: —S (═O) 2 —, a formula: —N (R 2) -, a group represented by the formula: -CR 2 = CR 2 -, a group represented by the formula: group, or the formula represented by -CR 2 = N-: -N = group represented by N- The photoelectric conversion element according to [1], wherein R 2 represents a hydrogen atom or a substituent.
[3] The photoelectric conversion element according to [1] or [2], wherein X 1 is a sulfur atom.
[4] The photoelectric conversion element according to any one of [1] to [3], wherein X 2 and X 3 are a group represented by the formula: ═C (R 1 ) —.
[5] The polymer compound further includes a repeating unit represented by the formula (II), and the repeating unit represented by the formula (II) is bonded to the repeating unit represented by the formula (I-1). The photoelectric conversion element according to any one of [1] to [4].
= C (R 3 )-(II)
[Wherein R 3 represents a hydrogen atom or a substituent. ]
[6] The photoelectric conversion element according to any one of [1] to [5], wherein Ar 1 is a divalent group containing a nitrogen-containing condensed ring which may have a substituent.
[7] The photoelectric conversion element according to [6], wherein Ar 1 is a diketopyrrolopyrrole diyl group which may have a substituent.
[8] The photoelectric conversion device according to any one of [1] to [7], wherein the polymer compound further contains a thiophenediyl group which may have a substituent as a repeating unit.
[9] The photoelectric conversion element according to any one of [1] to [8], wherein an absorption wavelength end of the polymer compound is 600 nm or more.
[10] The photoelectric conversion device according to any one of [1] to [9], wherein the energy level of the highest occupied orbit of the polymer compound is −4.5 eV or less.
[11] A solar cell module including the photoelectric conversion element according to any one of [1] to [10].
[12] An image sensor including the photoelectric conversion element according to any one of [1] to [10].
[13] A polymer compound comprising a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2).
Figure JPOXMLDOC01-appb-C000010
[Wherein, X 1 represents a sulfur atom, an oxygen atom or a divalent group. X 2 and X 3 each independently represent a group represented by the formula: ═C (R 1 ) — or a nitrogen atom. R 1 represents a hydrogen atom or a substituent. X 2 and X 3 has the formula: = C (R 1) - in the case of a group represented, by bonding the atoms contained in R 1 in the atoms and X 3 contained in R 1 in X 2 An annular structure may be formed. ]
Figure JPOXMLDOC01-appb-C000011
[In the formula, Ar 1 represents a divalent fused ring group which may have a substituent. ]
[14] X 1 is a sulfur atom, an oxygen atom, a group represented by the formula: —S (═O) —, a group represented by the formula: —S (═O) 2 —, a formula: —N (R 2) -, a group represented by the formula: -CR 2 = CR 2 -, a group represented by the formula: group, or the formula represented by -CR 2 = N-: -N = group represented by N- The polymer compound according to [13], wherein R 2 represents a hydrogen atom or a substituent.
[15] The polymer compound according to [13] or [14], wherein X 1 is a sulfur atom.
[16] The polymer compound according to any one of [13] to [15], wherein X 2 and X 3 are a group represented by the formula: ═C (R 1 ) —.
[17] Further comprising a repeating unit represented by formula (II), wherein the repeating unit represented by formula (II) is bonded to the repeating unit represented by formula (I-1), [13] ] The polymer compound according to any one of [16] to [16].
= C (R 3 )-(II)
[Wherein R 3 represents a hydrogen atom or a substituent. ]
[18] The polymer compound according to any one of [13] to [17], wherein Ar 1 is a diketopyrrolopyrrole diyl group which may have a substituent.
[19] The polymer compound according to any one of [13] to [18], further including a thiophenediyl group which may have a substituent as a repeating unit.
[20] The polymer compound according to any one of [13] to [19], wherein an absorption wavelength end is 600 nm or more.
[21] The polymer compound according to any one of [13] to [20], wherein the energy level of the highest occupied orbit is −4.5 eV or less.
[22] A compound containing a group represented by the formula (III) and a substituted stannyl group.
Figure JPOXMLDOC01-appb-C000012
[Wherein, X 4 represents a sulfur atom, an oxygen atom or a divalent group. X 5 and X 6 each independently represent a group represented by the formula: ═C (R 1 ) — or a nitrogen atom. R 1 represents a hydrogen atom or a substituent. When X 5 and X 6 are a group represented by the formula: ═C (R 1 ) —, an atom contained in R 1 in X 5 is bonded to an atom contained in R 1 in X 6 An annular structure may be formed. ]
[23] X 4 is a sulfur atom, an oxygen atom, a group represented by the formula: —S (═O) —, a group represented by the formula: —S (═O) 2 —, a formula: —N (R 2) -, a group represented by the formula: -CR 2 = CR 2 -, a group represented by the formula: group, or the formula represented by -CR 2 = N-: -N = group represented by N- The compound according to [22], wherein R 2 represents a hydrogen atom or a substituent.
[24] The compound according to [22] or [23], wherein X 4 is a sulfur atom.
[25] The compound according to any one of [22] to [24], wherein X 5 and X 6 are a group represented by the formula: ═C (R 1 ) —.
[26] The method further includes a group represented by formula (IV), and the group represented by formula (IV) is bonded to the group represented by formula (III). [22] to [25] The compound as described in any one of these.
= C (R 4 )-(IV)
[Wherein, R 4 represents a hydrogen atom or a substituent. ]
[27] The compound according to any one of [22] to [26], which contains two substituted stannyl groups.
[28] The compound according to any one of [22] to [27], wherein the substituted stannyl group is a group represented by the formula (V).
Figure JPOXMLDOC01-appb-C000013
[Wherein R 5 represents an alkyl group. Three R 5 may be the same or different. ]
[29] The compound according to any one of [22] to [28], further containing a thiophene ring.
 本発明の光電変換素子は、長波長の光から変換される電荷の量が多いため、本発明は極めて有用である。 Since the photoelectric conversion element of the present invention has a large amount of charge converted from light having a long wavelength, the present invention is extremely useful.
本発明の一実施形態である有機薄膜太陽電池1及び有機薄膜太陽電池2のアクションスペクトルを示す図である。It is a figure which shows the action spectrum of the organic thin film solar cell 1 and the organic thin film solar cell 2 which are one Embodiment of this invention.
 本発明の光電変換素子は、陽極と、陰極と、該陽極と該陰極との間に設けられた活性層とを有し、該活性層中に電子供与性化合物と電子受容性化合物とを含み、該電子供与性化合物及び該電子受容性化合物の少なくとも一方が、式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物であることを特徴とする。
Figure JPOXMLDOC01-appb-C000014
The photoelectric conversion element of the present invention has an anode, a cathode, and an active layer provided between the anode and the cathode, and includes an electron donating compound and an electron accepting compound in the active layer. And at least one of the electron-donating compound and the electron-accepting compound is a polymer compound containing a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2). It is characterized by that.
Figure JPOXMLDOC01-appb-C000014
 式(I-1)中、Xは、硫黄原子、酸素原子又は2価の基を表す。2価の基としては、例えば、式:-S(=O)-で表される基、式:-S(=O)-で表される基、式:-N(R)-で表される基、式:-CR=CR-で表される基、式:-CR=N-で表される基及び式:-N=N-で表される基が挙げられ、該Rは、水素原子又は置換基を表す。Rで表される置換基としては、例えば、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基及び置換されていてもよいアリール基が挙げられる。Xが式:-CR=CR-で表される基である場合、2個あるRは同一であっても相異なってもよい。 In formula (I-1), X 1 represents a sulfur atom, an oxygen atom or a divalent group. Examples of the divalent group include a group represented by the formula: —S (═O) —, a group represented by the formula: —S (═O) 2 —, and a formula: —N (R 2 ) —. group represented by the formula: -CR 2 = CR 2 -, a group represented by the formula: -CR 2 = group and the formula represented by N-: -N = include groups represented by N-, R 2 represents a hydrogen atom or a substituent. Examples of the substituent represented by R 2 include an optionally substituted alkyl group, an optionally substituted alkoxy group, and an optionally substituted aryl group. X 1 has the formula: -CR 2 = CR 2 - if it is a group represented by the two is R 2 may be different from each be the same.
 Rで表される「置換されていてもよいアルキル基」におけるアルキル基は直鎖状でも分岐状でもよく、シクロアルキル基であってもよい。アルキル基の炭素原子数は、通常1~30であり、1~20が好ましく、1~12がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル墓、ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、ヘキシル基、イソヘキシル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。アルキル基中の水素原子は置換基で置換されていてもよく、該置換基としては、例えば、ハロゲン原子が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。置換されたアルキル基としては、例えば、トリフルオロメチル基及びペンタフルオロエチル基が挙げられる。 The alkyl group in the “optionally substituted alkyl group” represented by R 2 may be linear or branched, and may be a cycloalkyl group. The alkyl group generally has 1 to 30 carbon atoms, preferably 1 to 20, and more preferably 1 to 12. Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl tomb, pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl. Group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, nonyl group And chain alkyl groups such as decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl tomb, octadecyl group and eicosyl group, and cycloalkyl groups such as cyclopentyl group, cyclohexyl group and adamantyl group. The hydrogen atom in the alkyl group may be substituted with a substituent, and examples of the substituent include a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Examples of the substituted alkyl group include a trifluoromethyl group and a pentafluoroethyl group.
 Rで表される「置換されていてもよいアルコキシ基」におけるアルコキシ基は、直鎖状でも分岐状でもよく、環状アルキルオキシ基であってもよい。アルコキシ基の炭素原子数は、通常1~20であり、1~15が好ましく、1~12がより好ましい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基及びドデシルオキシ基が挙げられる。アルコキシ基中の水素原子は置換基で置換されていてもよく、該置換基としては、例えば、ハロゲン原子及びアルコキシ基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、該アルコキシ基の定義及び具体例は、Rで表される置換基において説明したアルコキシ基の定義及び具体例と同じである。置換されたアルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基及び2-メトキシエチルオキシ基が挙げられる。 The alkoxy group in the “optionally substituted alkoxy group” represented by R 2 may be linear or branched, and may be a cyclic alkyloxy group. The number of carbon atoms in the alkoxy group is usually 1-20, preferably 1-15, and more preferably 1-12. Specific examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group Group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and dodecyloxy group. The hydrogen atom in the alkoxy group may be substituted with a substituent, and examples of the substituent include a halogen atom and an alkoxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The definition and specific examples of the alkoxy group are the same as the definition and specific examples of the alkoxy group described in the substituent represented by R 2. The same. Examples of the substituted alkoxy group include trifluoromethoxy group, pentafluoroethoxy group, perfluorobutoxy group, perfluorohexyloxy group, perfluorooctyloxy group, methoxymethyloxy group and 2-methoxyethyloxy group. It is done.
 Rで表される「置換されていてもよいアリール基」におけるアリール基とは芳香族炭化水素から芳香環上の水素原子1個を除いた基を意味する。アリール基の炭素原子数は通常6~60であり、6~16が好ましく、6~10がより好ましい。アリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基及びC1~C12アルキルフェニル基(「C1~C12」は、炭素原子数1~12であることを示す。以下も同様である。)が挙げられる。アリール基中の水素原子は置換基で置換されていてもよく、該置換基としては、例えば、ハロゲン原子及びアルコキシ基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。該アルコキシ基の定義及び具体例は、Rで表される置換基において説明したアルコキシ基の定義及び具体例と同じである。置換されたアリール基としては、例えば、ペンタフルオロフェニル基が挙げられる。 The aryl group in the “optionally substituted aryl group” represented by R 2 means a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon. The number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 16, and more preferably 6 to 10. Specific examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and a C1 to C12 alkylphenyl group (“C1 to C12” represents 1 to 12 carbon atoms. The same applies hereinafter. .). The hydrogen atom in the aryl group may be substituted with a substituent, and examples of the substituent include a halogen atom and an alkoxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. The definition and specific examples of the alkoxy group are the same as the definition and specific examples of the alkoxy group described in the substituent represented by R 2 . Examples of the substituted aryl group include a pentafluorophenyl group.
 Rは、水素原子又はアルキル基が好ましい。 R 2 is preferably a hydrogen atom or an alkyl group.
 Xは、硫黄原子が好ましい。 X 1 is preferably a sulfur atom.
 式(I-1)中、X及びXは、それぞれ独立に、式:=C(R)-で表される基又は窒素原子を表す。Rは、水素原子又は置換基を表す。X及びXが式:=C(R)-で表される基である場合、X中のRに含まれる原子とX中のRに含まれる原子とが結合して環状構造を形成してもよい。 In formula (I-1), X 2 and X 3 each independently represent a group represented by the formula: ═C (R 1 ) — or a nitrogen atom. R 1 represents a hydrogen atom or a substituent. X 2 and X 3 has the formula: = C (R 1) - in the case of a group represented, by bonding the atoms contained in R 1 in the atoms and X 3 contained in R 1 in X 2 An annular structure may be formed.
 Rで表される置換基の具体例は、前述のRで表される置換基の具体例と同じである。Rは、水素原子又はアルキル基が好ましい。 Specific examples of the substituent represented by R 1 are the same as the specific examples of the substituent represented by R 2 described above. R 1 is preferably a hydrogen atom or an alkyl group.
 X及びXは、=C(R)-が好ましい。 X 2 and X 3 are preferably ═C (R 1 ) —.
 式(I-1)で表される繰り返し単位としては、例えば、下記繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Examples of the repeating unit represented by the formula (I-1) include the following repeating units.
Figure JPOXMLDOC01-appb-C000015
 式(I-2)中、Arは、置換基を有していてもよい2価の縮合環基を表す。2価の縮合環基とは、縮合環から環上の水素原子2個を除いた基を意味する。2価の縮合環基の炭素原子数は、通常6~60であり、6~30が好ましく、6~15がより好ましい。縮合環としては、例えば、ナフタレン環、アントラセン環、ピレン環、フルオレン環、チエノチオフェン環、キノリン環、イソキノリン環、カルバゾール環、ジベンゾチオフェン環、ジベンゾフラン環、フェノキサジン環、フェノチアジン環及びジケトピロロピロール環が挙げられる。
 2価の縮合環基が有していてもよい置換基の具体例は、前述のRで表される置換基の具体例と同じである。
In formula (I-2), Ar 1 represents a divalent condensed ring group which may have a substituent. The divalent condensed ring group means a group in which two hydrogen atoms on the ring are removed from the condensed ring. The number of carbon atoms in the divalent fused ring group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 15. Examples of the condensed ring include naphthalene ring, anthracene ring, pyrene ring, fluorene ring, thienothiophene ring, quinoline ring, isoquinoline ring, carbazole ring, dibenzothiophene ring, dibenzofuran ring, phenoxazine ring, phenothiazine ring and diketopyrrolopyrrole. A ring is mentioned.
Specific examples of the substituent that the divalent condensed ring group may have are the same as the specific examples of the substituent represented by R 2 described above.
 2価の縮合環基としては、例えば、下記の基が挙げられる。
Figure JPOXMLDOC01-appb-C000016
〔式中、Rは置換基を表す。〕
Examples of the divalent fused ring group include the following groups.
Figure JPOXMLDOC01-appb-C000016
[Wherein, R represents a substituent. ]
 Rで表される置換基の定義及び具体例は、Rで表される置換基の定義及び具体例と同じである。 The definition and specific examples of the substituent represented by R are the same as the definition and specific examples of the substituent represented by R 2 .
 Arは、置換基を有していてもよい含窒素縮合環を含有する2価の基が好ましく、置換基を有していてもよいジケトピロロピロールジイル基がより好ましい。 Ar 1 is preferably a divalent group containing a nitrogen-containing condensed ring which may have a substituent, and more preferably a diketopyrrolopyrrole diyl group which may have a substituent.
 置換基を有していてもよいジケトピロロピロールジイル基としては、例えば、式(VI)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000017
〔式中、Rは、置換されていてもよいアルキル基を表す。2個あるRは、同一でも相異なってもよい。〕
Examples of the diketopyrrolopyrrole diyl group which may have a substituent include a group represented by the formula (VI).
Figure JPOXMLDOC01-appb-C000017
[Wherein, R 7 represents an optionally substituted alkyl group. Two R 7 may be the same or different. ]
 Rで表される置換されていてもよいアルキル基の定義及び具体例は、前述のRで表される置換されていてもよいアルキル基の定義及び具体例と同じである。 The definition and specific examples of the optionally substituted alkyl group represented by R 7 are the same as the definition and specific examples of the optionally substituted alkyl group represented by R 2 described above.
 本発明に用いられる高分子化合物は、さらに式(II)で表される繰り返し単位を含むことが好ましい。該式(II)で表される繰り返し単位は前記式(I-1)で表される繰り返し単位と結合していることが好ましい。
 =C(R)-   (II)
The polymer compound used in the present invention preferably further contains a repeating unit represented by the formula (II). The repeating unit represented by the formula (II) is preferably bonded to the repeating unit represented by the formula (I-1).
= C (R 3 )-(II)
 式(II)中、Rは、水素原子又は置換基を表す。Rで表される置換基の定義及び具体例は、前述のRで表される置換基の定義及び具体例と同じである。Rとしては、置換されていてもよいアリール基が好ましい。 In formula (II), R 3 represents a hydrogen atom or a substituent. The definition and specific examples of the substituent represented by R 3 are the same as the definition and specific examples of the substituent represented by R 2 described above. R 3 is preferably an optionally substituted aryl group.
 式(II)で表される繰り返し単位としては、式(II-1)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000018
〔式中、Rは、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基又は置換されていてもよいアリール基を表す。aは、0~5の整数を表す。Rが複数個ある場合、それらは同一でも相異なってもよい。〕
The repeating unit represented by the formula (II) is preferably a repeating unit represented by the formula (II-1).
Figure JPOXMLDOC01-appb-C000018
[Wherein, R 6 represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group or an optionally substituted aryl group. a represents an integer of 0 to 5. When there are a plurality of R 6 s , they may be the same or different. ]
 Rで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。置換されていてもよいアルキル基、置換されていてもよいアルコキシ基及び置換されていてもよいアリール基の定義及び具体例は、前述のRで表される置換されていてもよいアルキル基、置換されていてもよいアルコキシ基及び置換されていてもよいアリール基の定義及び具体例とそれぞれ同じである。Rとしては、アルキル基が好ましい。aは、0~3の整数が好ましく、1がより好ましい。 Examples of the halogen atom represented by R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Optionally substituted alkyl group, defined and specific examples of the aryl group which is a alkoxy group and substituted also be substituted, an alkyl group which may be substituted represented by the aforementioned R 2, The definitions and specific examples of the alkoxy group which may be substituted and the aryl group which may be substituted are the same. R 6 is preferably an alkyl group. a is preferably an integer of 0 to 3, and more preferably 1.
 本発明に用いられる高分子化合物は、さらに、置換基を有していてもよいチオフェンジイル基を繰り返し単位として含んでいてもよい。チオフェンジイル基が有し得る置換基の具体例は、前述のRで表される置換基の具体例と同じである。
 置換基を有していてもよいチオフェンジイル基としては、式(VII)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000019
〔式中、Rは、水素原子又は置換されていてもよいアルキル基を表す。2個あるRは、同一でも相異なってもよい。〕
The polymer compound used in the present invention may further contain a thiophenediyl group which may have a substituent as a repeating unit. Specific examples of the substituent that the thiophenediyl group may have are the same as the specific examples of the substituent represented by R 2 described above.
As the thiophenediyl group which may have a substituent, a group represented by the formula (VII) is preferable.
Figure JPOXMLDOC01-appb-C000019
[Wherein, R 8 represents a hydrogen atom or an optionally substituted alkyl group. Two R 8 may be the same or different. ]
 Rで表される置換されていてもよいアルキル基の定義及び具体例は、前述のRで表される置換されていてもよいアルキル基の定義及び具体例と同じである。 The definition and specific examples of the optionally substituted alkyl group represented by R 8 are the same as the definition and specific examples of the optionally substituted alkyl group represented by R 2 described above.
 本発明に用いられる高分子化合物は、式(I-1)で表される繰り返し単位、式(I-2)で表される繰り返し単位、式(II)で表される繰り返し単位、及び置換基を有していてもよいチオフェンジイル基からなることが好ましく、式(I-1)で表される繰り返し単位、式(VI)で表される基、式(II)で表される繰り返し単位、及び式(VII)で表される基からなることがより好ましい。 The polymer compound used in the present invention includes a repeating unit represented by the formula (I-1), a repeating unit represented by the formula (I-2), a repeating unit represented by the formula (II), and a substituent. Is preferably a thiophenediyl group optionally having a repeating unit represented by formula (I-1), a group represented by formula (VI), a repeating unit represented by formula (II), And more preferably a group represented by formula (VII).
 本発明に用いられる高分子化合物は、ポリスチレン換算の数平均分子量が、1×10~1×10であることが好ましく、3×10~1×107であることがより好ましく、5×10~1×107であることが更に好ましい。 The polymer compound used in the present invention has a polystyrene-equivalent number average molecular weight of preferably 1 × 10 3 to 1 × 10 8 , more preferably 3 × 10 3 to 1 × 10 7. More preferably, it is from × 10 3 to 1 × 10 7 .
 本発明に用いられる高分子化合物は、該高分子化合物の2個の末端が結合して環状構造を形成していてもよいが、環状構造を形成していないことが好ましい。 The polymer compound used in the present invention may form a cyclic structure by bonding two ends of the polymer compound, but preferably does not form a cyclic structure.
 本発明に用いられる高分子化合物は、その吸収波長端が600nm以上であることが好ましい。吸収波長端が600nm以上である高分子化合物は、太陽光を広い波長域で吸収し、該高分子化合物を活性層に含む光電変換素子は、光電変換効率が高くなる。 The polymer compound used in the present invention preferably has an absorption wavelength end of 600 nm or more. A polymer compound having an absorption wavelength end of 600 nm or more absorbs sunlight in a wide wavelength range, and a photoelectric conversion element including the polymer compound in an active layer has high photoelectric conversion efficiency.
 高分子化合物の吸収波長端は、以下の方法で求めることができる。
 測定には、紫外、可視、近赤外の波長領域で動作する分光光度計(例えば、日本分光製、紫外可視近赤外分光光度計JASCO-V670)を用いる。JASCO-V670を用いる場合、測定可能な波長範囲が200~1500nmであるため、該波長範囲で測定を行う。まず、測定に用いる基板の吸収スペクトルを測定する。基板としては、石英基板、ガラス基板等を用いる。次いで、その基板の上に高分子化合物を含む溶液若しくは高分子化合物を含む溶融体から高分子化合物を含む薄膜を形成する。溶液からの成膜では、成膜後乾燥を行う。その後、薄膜と基板との積層体の吸収スペクトルを得る。薄膜と基板との積層体の吸収スペクトルと基板の吸収スペクトルとの差を、薄膜の吸収スペクトルとして得る。
 該薄膜の吸収スペクトルは、縦軸が高分子化合物の吸光度を、横軸が波長を示す。最も大きい吸収ピークの吸光度が0.5~2程度になるよう、薄膜の膜厚を調整することが望ましい。吸収ピークの中で一番長波長の吸収ピークの吸光度を100%とし、その50%の吸光度を含む横軸(波長軸)に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第1の点とする。また、その25%の吸光度を含む波長軸に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第2の点とする。第1の点と第2の点とを結ぶ直線と基準線の交点を吸収波長端と定義する。ここで、基準線とは、最も長波長の吸収ピークにおいて、該吸収ピークの吸光度を100%とし、その10%の吸光度を含む波長軸に平行な直線と該吸収ピークの交点であって、該吸収ピークのピーク波長よりも長波長である交点の波長を基準波長として、基準波長より100nm長波長である吸収スペクトル上の第3の点と、基準波長より150nm長波長である吸収スペクトル上の第4の点とを結んだ直線をいう。
The absorption wavelength end of the polymer compound can be determined by the following method.
For the measurement, a spectrophotometer (for example, JASCO-V670, UV-visible near infrared spectrophotometer manufactured by JASCO Corporation) operating in the wavelength region of ultraviolet, visible and near infrared is used. When JASCO-V670 is used, the measurable wavelength range is 200 to 1500 nm. Therefore, measurement is performed in this wavelength range. First, the absorption spectrum of the substrate used for measurement is measured. As the substrate, a quartz substrate, a glass substrate, or the like is used. Next, a thin film containing a polymer compound is formed on the substrate from a solution containing the polymer compound or a melt containing the polymer compound. In film formation from a solution, drying is performed after film formation. Thereafter, an absorption spectrum of the laminate of the thin film and the substrate is obtained. The difference between the absorption spectrum of the laminate of the thin film and the substrate and the absorption spectrum of the substrate is obtained as the absorption spectrum of the thin film.
In the absorption spectrum of the thin film, the vertical axis represents the absorbance of the polymer compound, and the horizontal axis represents the wavelength. It is desirable to adjust the thickness of the thin film so that the absorbance at the largest absorption peak is about 0.5 to 2. The absorbance of the absorption peak with the longest wavelength among the absorption peaks is defined as 100%, and the intersection of the absorption peak and a straight line parallel to the horizontal axis (wavelength axis) including the absorbance of 50% of the absorption peak. The intersection point that is longer than the peak wavelength is taken as the first point. The intersection point between the absorption peak and a straight line parallel to the wavelength axis containing 25% of the absorbance and the absorption peak, which is longer than the peak wavelength of the absorption peak, is defined as a second point. The intersection of the straight line connecting the first point and the second point and the reference line is defined as the absorption wavelength end. Here, the reference line is the intersection of the absorption peak and the straight line parallel to the wavelength axis including the absorbance of 10% at the absorption peak of the longest wavelength, where the absorbance of the absorption peak is 100%. The third point on the absorption spectrum which is 100 nm longer than the reference wavelength and the third wavelength on the absorption spectrum which is 150 nm longer than the reference wavelength, with the wavelength of the intersection point being longer than the peak wavelength of the absorption peak as the reference wavelength. A straight line connecting 4 points.
 本発明に用いられる高分子化合物の最高被占軌道のエネルギーレベルは、-4.5eV以下が好ましく、-5.0eV以下がより好ましい。高分子化合物の最高被占軌道のエネルギーレベルが-4.5eV以下であると、該高分子化合物を活性層に含む光電変換素子の開放端電圧が高くなり、光電変換効率が高くなる。 The energy level of the highest occupied orbit of the polymer compound used in the present invention is preferably −4.5 eV or less, more preferably −5.0 eV or less. When the energy level of the highest occupied orbit of the polymer compound is −4.5 eV or less, the open-circuit voltage of the photoelectric conversion element containing the polymer compound in the active layer is increased, and the photoelectric conversion efficiency is increased.
(光電変換素子)
 本発明の光電変換素子を構成する、陽極、活性層、該活性層を構成する電子供与性化合物及び電子受容性化合物、陰極、並びに必要に応じて形成される他の構成要素について、以下に詳しく説明する。
(Photoelectric conversion element)
The anode, the active layer, the electron-donating compound and the electron-accepting compound constituting the active layer, the cathode, and other components formed as necessary in the photoelectric conversion element of the present invention are described in detail below. explain.
(光電変換素子の基本的形態)
 本発明の光電変換素子は、少なくとも一方が透明又は半透明である一対の電極(陽極及び陰極)と、該一対の電極の間に設けられた活性層とを有する。活性層としては、電子供与性化合物(p型の有機半導体など)と電子受容性化合物(n型の有機半導体など)との有機組成物から形成されるバルクへテロ型活性層、及び、電子供与性化合物から形成される第1の活性層と電子受容性化合物から形成される第2の活性層とを積層したp/n積層型活性層が挙げられる。
(Basic form of photoelectric conversion element)
The photoelectric conversion element of the present invention has a pair of electrodes (anode and cathode), at least one of which is transparent or translucent, and an active layer provided between the pair of electrodes. As the active layer, a bulk hetero active layer formed from an organic composition of an electron-donating compound (p-type organic semiconductor, etc.) and an electron-accepting compound (n-type organic semiconductor, etc.), and electron donation And a p / n stacked active layer in which a first active layer formed of a conductive compound and a second active layer formed of an electron accepting compound are stacked.
 本発明の光電変換素子は、その活性層に含まれる式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物が、長波長域の光を吸収するため、長波長の光を含め広範囲の波長の光を光電変換できるため、光電変換効率が高くなる。 In the photoelectric conversion element of the present invention, the polymer compound containing the repeating unit represented by the formula (I-1) and the repeating unit represented by the formula (I-2) contained in the active layer thereof has a long wavelength region. In order to absorb light of a large wavelength, it is possible to photoelectrically convert light of a wide range of wavelengths including light of a long wavelength, so that the photoelectric conversion efficiency is increased.
(基板)
 本発明の光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
(substrate)
The photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
(電極)
 透明又は半透明の電極の材料としては、例えば、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体(例えば、インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)、NESA)等の導電性材料を用いて作製された膜や、金、白金、銀、銅等の金属を用いて作製された膜が用いられ、ITO、IZO、又は酸化スズを用いて作製された膜が好ましい。電極の作製方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。透明又は半透明の電極は、陽極であっても陰極であってもよい。
(electrode)
Examples of the material for the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, using conductive materials such as indium oxide, zinc oxide, tin oxide, and composites thereof (for example, indium tin oxide (ITO), indium zinc oxide (IZO), NESA)). A produced film or a film produced using a metal such as gold, platinum, silver or copper is used, and a film produced using ITO, IZO or tin oxide is preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material. The transparent or translucent electrode may be an anode or a cathode.
 他方の電極は透明でなくてもよい。該電極の材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属;これらの金属のうちの2つ以上の金属の合金;これらの金属のうち1種以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金;グラファイト;グラファイト層間化合物;ポリアニリン及びその誘導体;ポリチオフェン及びその誘導体が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。 The other electrode may not be transparent. As a material for the electrode, a metal, a conductive polymer, or the like can be used. Specific examples of the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. An alloy of two or more of these metals; from one or more of these metals and the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin Alloys with one or more selected metals; graphite; graphite intercalation compounds; polyaniline and its derivatives; polythiophene and its derivatives. Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
(バッファー層)
 光電変換効率を向上させるための手段として、活性層以外の付加的な中間層(電荷輸送層など)を使用してもよい。中間層の材料としては、例えば、アルカリ金属のハロゲン化物、アルカリ金属の酸化物、アルカリ土類金属のハロゲン化物及びアルカリ土類金属の酸化物が挙げられ、具体的には、フッ化リチウムが挙げられる。
 また、酸化チタン等の無機半導体の微粒子、PEDOT(ポリ(3,4-エチレンジオキシチオフェン))とPSS(ポリ(4-スチレンスルホネート))との混合物(PEDOT:PSS)などを中間層の材料として用いてもよい。
(Buffer layer)
As a means for improving the photoelectric conversion efficiency, an additional intermediate layer (such as a charge transport layer) other than the active layer may be used. Examples of the material of the intermediate layer include alkali metal halides, alkali metal oxides, alkaline earth metal halides, and alkaline earth metal oxides. Specifically, lithium fluoride is used. It is done.
In addition, fine particles of inorganic semiconductor such as titanium oxide, PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrenesulfonate)) mixture (PEDOT: PSS), etc. It may be used as
(活性層)
 本発明の光電変換素子に含まれる活性層は、電子供与性化合物と電子受容性化合物とを含み、該電子供与性化合物及び該電子受容性化合物の少なくとも一方が、式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物である。なお、前記電子供与性化合物及び前記電子受容性化合物は、これらの化合物のHOMOまたはLUMOのエネルギー準位から相対的に決定される。
(Active layer)
The active layer included in the photoelectric conversion device of the present invention includes an electron donating compound and an electron accepting compound, and at least one of the electron donating compound and the electron accepting compound is represented by the formula (I-1). And a repeating compound represented by formula (I-2). The electron-donating compound and the electron-accepting compound are relatively determined from the HOMO or LUMO energy levels of these compounds.
(電子供与性化合物)
 式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物を電子受容性化合物として用いる場合、電子供与性化合物は、低分子化合物でも高分子化合物でもよいが、高分子化合物が好ましい。電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、チオフェンを部分骨格として持つ高分子化合物、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられ、中でも、高分子化合物が好ましい。
 電子供与性化合物としては、置換基を有していてもよいポリチオフェン(ポリチオフェン及びその誘導体)、チオフェンの2~5量体を含む構造又はチオフェンの誘導体の2~5量体を含む構造を有する高分子化合物、およびチオフェンを部分骨格として持つ高分子化合物が好ましく、ポリチオフェン及びその誘導体がより好ましい。ここで、ポリチオフェン誘導体とは、置換基を有するチオフェンジイル基を含む高分子化合物である。
 ポリチオフェン及びその誘導体は、ホモポリマーであることが好ましい。ホモポリマーとは、チオフェンジイル基及び置換基を有するチオフェンジイル基からなる群から選ばれる基のみが複数個結合してなるポリマーである。チオフェンジイル基としては、チオフェン-2,5-ジイル基が好ましく、置換基を有するチオフェンジイル基としては、アルキルチオフェン-2、5-ジイル基が好ましい。ホモポリマーであるポリチオフェン及びその誘導体の中では、炭素原子数6~30のアルキル基を置換基として有するチオフェンジイル基からなるポリチオフェンホモポリマーが好ましく、具体例としては、ポリ(3-ヘキシルチオフェン-2,5-ジイル)(P3HT)、ポリ(3-オクチルチオフェン-2,5-ジイル)、ポリ(3-ドデシルチオフェン-2,5-ジイル)、ポリ(3-オクタデシルチオフェン-2,5-ジイル)が挙げられる。
(Electron donating compound)
When a polymer compound containing a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2) is used as an electron accepting compound, the electron donating compound may be a low molecular compound. Although a high molecular compound may be sufficient, a high molecular compound is preferable. Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. Polysiloxane derivatives having polyaniline and derivatives thereof, polythiophene and derivatives thereof, polymer compounds having thiophene as a partial skeleton, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, High molecular compounds are preferred.
Examples of the electron-donating compound include polythiophene (polythiophene and derivatives thereof) which may have a substituent, a structure containing a dithiopentameric thiophene or a structure containing a dithiopentameric thiophene derivative. Molecular compounds and polymer compounds having thiophene as a partial skeleton are preferred, and polythiophene and derivatives thereof are more preferred. Here, the polythiophene derivative is a polymer compound containing a thiophenediyl group having a substituent.
Polythiophene and its derivatives are preferably homopolymers. A homopolymer is a polymer formed by bonding only a plurality of groups selected from the group consisting of a thiophenediyl group and a substituted thiophenediyl group. The thiophene diyl group is preferably a thiophene-2,5-diyl group, and the thiophene diyl group having a substituent is preferably an alkylthiophene-2, 5-diyl group. Among the polythiophenes and derivatives thereof which are homopolymers, polythiophene homopolymers comprising thiophene diyl groups having an alkyl group having 6 to 30 carbon atoms as substituents are preferred. Specific examples include poly (3-hexylthiophene-2 , 5-diyl) (P3HT), poly (3-octylthiophene-2,5-diyl), poly (3-dodecylthiophene-2,5-diyl), poly (3-octadecylthiophene-2,5-diyl) Is mentioned.
 チオフェンを部分骨格として持つ高分子化合物としては、例えば、式(2)で表される高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000020
〔式中、R71及びR72は、それぞれ独立に、水素原子又は置換基を表す。2個あるR71は、同一でも相異なってもよい。6個あるR72は、同一でも相異なってもよい。nは、繰り返しの数を表し、2~1000の数である。〕
Examples of the polymer compound having thiophene as a partial skeleton include a polymer compound represented by the formula (2).
Figure JPOXMLDOC01-appb-C000020
[Wherein, R 71 and R 72 each independently represents a hydrogen atom or a substituent. Two R 71 may be the same or different. Six R <72> may be the same or may be different from each other. n represents the number of repetitions and is a number from 2 to 1000. ]
 R71及びR72で表される置換基の定義及び具体例は、前述のRで表される置換基の定義及び具体例と同じである。該置換基としては、炭素原子数1~20のアルコキシ基又は炭素原子数1~20のアルキル基が好ましい。 The definition and specific examples of the substituent represented by R 71 and R 72 are the same as the definition and specific example of the substituent represented by R 2 described above. As the substituent, an alkoxy group having 1 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms is preferable.
 式(2)で表される高分子化合物としては、R71がアルキル基であり、かつ、R72が水素原子である高分子化合物が好ましい。式(2)で表される高分子化合物の具体例としては、式(2-1)で表される高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000021
〔式中、nは、式(2)と同じ意味を示す。〕
As the polymer compound represented by the formula (2), a polymer compound in which R 71 is an alkyl group and R 72 is a hydrogen atom is preferable. Specific examples of the polymer compound represented by the formula (2) include a polymer compound represented by the formula (2-1).
Figure JPOXMLDOC01-appb-C000021
[Wherein n represents the same meaning as in formula (2). ]
(電子受容性化合物)
 式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物を電子供与性化合物として用いる場合、電子受容性化合物としては、例えば、オキサジアゾール誘導体、ベンゾチアジアゾール誘導体、キノキサリン誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリベンゾチアジアゾール及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、繰り返し単位にキノキサリン構造を含む高分子化合物、C60等のフラーレン及びその誘導体、2、9-ジメチル-4、7-ジフェニル-1、10-フェナントロリン(バソクプロイン)等のフェナントロリン誘導体、酸化チタンなどの金属酸化物、及びカーボンナノチューブが挙げられる。電子受容性化合物は、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物、酸化チタン、カーボンナノチューブ、フラーレン、及びフラーレン誘導体が好ましく、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物、フラーレン、及びフラーレン誘導体がより好ましく、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物、及びフラーレン誘導体がさらに好ましく、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、繰り返し単位にキノキサリン構造を含む高分子化合物、及びフラーレン誘導体が特に好ましい。
(Electron-accepting compound)
When a polymer compound containing a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2) is used as an electron-donating compound, examples of the electron-accepting compound include oxalates. Diazole derivatives, benzothiadiazole derivatives, quinoxaline derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene And derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polybenzothiadiazole and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, Polymer compound containing a benzothiadiazole structure unit returns a polymer compound containing a quinoxaline structure repeating units, fullerene and derivatives thereof such as C 60, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ( Phenanthroline derivatives such as bathocuproin), metal oxides such as titanium oxide, and carbon nanotubes. The electron-accepting compound includes a compound having a benzothiadiazole structure, a polymer compound having a benzothiadiazole structure in a repeating unit, a compound having a quinoxaline structure in a repeating unit, a polymer compound having a quinoxaline structure in a repeating unit, titanium oxide, carbon nanotube, fullerene, And a fullerene derivative, a compound having a benzothiadiazole structure, a polymer compound having a benzothiadiazole structure in a repeating unit, a compound having a quinoxaline structure, a polymer compound having a quinoxaline structure in a repeating unit, fullerene, and a fullerene derivative are more preferable. , A compound containing a benzothiadiazole structure, a polymer compound containing a benzothiadiazole structure in a repeating unit, a compound containing a quinoxaline structure, a polymer containing a quinoxaline structure in a repeating unit Compound, and more preferably a fullerene derivative, polymer compounds containing benzothiadiazole structure in the repeating unit, the polymer compound including a quinoxaline structure repeating units, and fullerene derivatives are particularly preferred.
 繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物としては、例えば、上記の電子供与性化合物として例示した式(2)で表される高分子化合物が挙げられ、式(2-1)で表される高分子化合物が好適である。すなわち、電子供与性化合物として適用する化合物との組み合わせによっては、式(2)で表される高分子化合物を、電子受容性化合物として適用することもできる。 Examples of the polymer compound having a benzothiadiazole structure in the repeating unit include a polymer compound represented by the formula (2) exemplified as the electron donating compound, and represented by the formula (2-1). High molecular compounds are preferred. That is, depending on the combination with the compound applied as the electron donating compound, the polymer compound represented by the formula (2) can be applied as the electron accepting compound.
 フラーレンとしては、例えば、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンが挙げられる。
 フラーレン誘導体としては、例えば、C60フラーレン誘導体、C70フラーレン誘導体、C76フラーレン誘導体、C78フラーレン誘導体、C84フラーレン誘導体が挙げられる。フラーレン誘導体は、フラーレンの少なくとも一部が修飾された化合物を表す。
The fullerene, for example, C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene include C 84 fullerene.
The fullerene derivative, for example, C 60 fullerene derivatives, C 70 fullerene derivatives, C 76 fullerene derivatives, C 78 fullerene derivatives, C 84 fullerene derivatives. The fullerene derivative represents a compound in which at least a part of fullerene is modified.
 C60フラーレン誘導体の具体例としては、以下のような化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022
Specific examples of the C 60 fullerene derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000022
 C70フラーレン誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000023
Specific examples of C 70 fullerene derivatives, there are the following.
Figure JPOXMLDOC01-appb-C000023
 好適なフラーレン誘導体としては、例えば、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。 Suitable fullerene derivatives include, for example, [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -Phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM) , [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] Phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] thienyl- And C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).
 活性層において、電子供与性化合物に対する電子受容性化合物の使用割合は、電子供与性化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。 In the active layer, the use ratio of the electron accepting compound to the electron donating compound is preferably 10 to 1000 parts by weight, more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. preferable.
 活性層の厚さは、1nm~100μmが好ましく、より好ましくは2nm~1000nmであり、さらに好ましくは5nm~500nmであり、特に好ましくは20nm~200nmである。 The thickness of the active layer is preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
(その他の成分)
 活性層には、種々の機能を発現させるために、必要に応じて他の成分を含有させてもよい。他の成分としては、例えば、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するための増感剤、及び、紫外線に対する安定性を増すための光安定剤が挙げられる。
(Other ingredients)
The active layer may contain other components as necessary in order to express various functions. Examples of other components include an ultraviolet absorber, an antioxidant, a sensitizer for sensitizing the function of generating charges by absorbed light, and a light stabilizer for increasing the stability to ultraviolet rays. It is done.
 活性層を構成する電子供与性化合物及び電子受容性化合物以外の成分は、電子供与性化合物及び電子受容性化合物の合計量100重量部に対し、それぞれ、好ましくは5重量部以下、より好ましくは0.01~3重量部の割合で配合する。
 また、活性層は、機械的特性を高めるため、電子供与性化合物及び電子受容性化合物以外の高分子化合物を高分子バインダーとして含んでいてもよい。高分子バインダーとしては、電子輸送性又はホール輸送性を阻害しない高分子化合物が好ましく用いられる。高分子バインダーとしてはまた、可視光に対する吸収が強くない高分子化合物が好ましく用いられる。該高分子バインダーとしては、例えば、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チェニレンビニレン)及びその誘導体、ポリカーポネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
The components other than the electron donating compound and the electron accepting compound constituting the active layer are each preferably 5 parts by weight or less, more preferably 0 with respect to 100 parts by weight of the total amount of the electron donating compound and the electron accepting compound. .01 to 3 parts by weight is blended.
The active layer may contain a polymer compound other than an electron donating compound and an electron accepting compound as a polymer binder in order to improve mechanical properties. As the polymer binder, a polymer compound that does not inhibit the electron transport property or hole transport property is preferably used. As the polymer binder, a polymer compound that does not strongly absorb visible light is preferably used. Examples of the polymer binder include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-chenylene vinylene) and derivatives thereof. Derivatives, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like can be mentioned.
(活性層の製造方法)
 本発明の光電変換素子が有する活性層は、バルクへテロ型の場合、前記電子供与性化合物、前記電子受容性化合物、及び必要に応じて配合される他の成分を含む溶液からの成膜により形成することができる。例えば、該溶液を陽極又は陰極上に塗布し、活性層を形成することができる。その後、活性層上に他の電極を形成し、光電変換素子を製造することができる。
(Method for producing active layer)
In the case of the bulk hetero type, the active layer of the photoelectric conversion element of the present invention is formed by film formation from a solution containing the electron-donating compound, the electron-accepting compound, and other components blended as necessary. Can be formed. For example, the active layer can be formed by applying the solution on an anode or a cathode. Then, another electrode can be formed on an active layer and a photoelectric conversion element can be manufactured.
 溶液からの成膜に用いる溶媒は、上述の電子供与性化合物及び電子受容性化合物を溶解させるものであれば、特に制限はない。かかる溶媒としては、例えば、炭化水素溶媒(例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等)、ハロゲン化炭化水素溶媒(例えば、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、ジクロロプロパン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等)、及びエーテル溶媒(例えば、テトラヒドロフラン、テトラヒドロピラン等)が挙げられる。溶媒は、1種単独で用いてもよく2種以上を組み合わせて用いてもよい。活性層を構成する有機材料は、通常、前記溶媒に0.1重量%以上溶解させることができる。 The solvent used for film formation from a solution is not particularly limited as long as it dissolves the above-described electron-donating compound and electron-accepting compound. Examples of such solvents include hydrocarbon solvents (for example, toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene), halogenated hydrocarbon solvents (for example, four Carbon chloride, chloroform, dichloromethane, dichloroethane, dichloropropane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, trichlorobenzene, etc.), and ether solvents (e.g., Tetrahydrofuran, tetrahydropyran, etc.). A solvent may be used individually by 1 type and may be used in combination of 2 or more type. The organic material constituting the active layer can be usually dissolved in the solvent in an amount of 0.1% by weight or more.
 成膜の方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法が挙げられ、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。 Examples of film formation methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, Examples include gravure printing, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method and the like, spin coating method, flexographic printing method, gravure printing method, inkjet printing method, Dispenser printing is preferred.
(素子の用途)
 本発明の光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
(Application of the element)
The photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by irradiating light such as sunlight from a transparent or translucent electrode to generate a photovoltaic force between the electrodes. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
 また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を入射させることにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。 Also, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
(太陽電池モジュール)
 光電変換素子を有機薄膜太陽電池として用いて太陽電池モジュールを構成する場合、該太陽電池モジュールは、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。太陽電池モジュールの公知のモジュール構造として、例えば、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプ等のモジュール構造、及びアモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が挙げられる。本発明の有機光電変換素子を適用した有機薄膜太陽電池でも、使用目的や使用場所及び環境により、適宜これらのモジュール構造を選択できる。
(Solar cell module)
When a solar cell module is configured using a photoelectric conversion element as an organic thin film solar cell, the solar cell module can basically have the same module structure as a conventional solar cell module. The solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side. Examples of the known module structure of the solar cell module include a module structure such as a super straight type, a substrate type, and a potting type, and a substrate integrated module structure used in an amorphous silicon solar cell. Even in the organic thin-film solar cell to which the organic photoelectric conversion element of the present invention is applied, these module structures can be appropriately selected depending on the purpose of use, the place of use and the environment.
 代表的なモジュール構造であるスーパーストレートタイプあるいはサブストレートタイプの太陽電池モジュールでは、片側又は両側が透明で反射防止処理を施された一対の支持基板の間に一定間隔にセルが配置されている。隣り合うセル同士は金属リード又はフレキシブル配線等の配線によって接続されている。モジュールの外縁部には、集電電極が配置されており、発生した電力を外部に取り出す構造となっている。支持基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルム又は充填樹脂の形で設けてもよい。また、外部からの衝撃が少ない場所など、表面を硬い素材で覆う必要のない場所において太陽電池モジュールを使用する場合には、表面保護層を透明プラスチックフィルムで構成し、又は上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板を省いてもよい。支持基板の周囲は、内部の密封及びモジュールの剛性を確保するため、通常、金属製のフレームでサンドイッチ状に固定されており、支持基板とフレームの間は封止材料で密封シールされている。また、セル自体、支持基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に太陽電池モジュールを構成することもできる。 In a super straight type or substrate type solar cell module having a typical module structure, cells are arranged at regular intervals between a pair of support substrates which are transparent on one side or both sides and subjected to antireflection treatment. Adjacent cells are connected by wiring such as metal leads or flexible wiring. Current collecting electrodes are arranged on the outer edge of the module, and the generated power is taken out to the outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be provided between the support substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency. In addition, when using a solar cell module in a place where the surface does not need to be covered with a hard material, such as a place where there is little impact from the outside, the surface protective layer is made of a transparent plastic film, or the filling resin is cured. Thus, a protective function may be imparted and the support substrate on one side may be omitted. The periphery of the support substrate is usually fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material. Further, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, the solar cell module can be formed on the curved surface.
 ポリマーフィルム等のフレキシブル支持体を用いた太陽電池モジュールの場合、ロール状のフレキシブル支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより太陽電池モジュール本体を作製できる。また、Solar Energy Materials and Solar Cells, 48, p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池モジュールは、曲面ガラス等に接着固定して使用することもできる。 In the case of a solar cell module using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped flexible support, cut into a desired size, and then the periphery is made of a flexible and moisture-proof material. A solar cell module main body can be produced by sealing. Moreover, it can also have a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391. Furthermore, the solar cell module using the flexible support can be used by being bonded and fixed to curved glass or the like.
 本発明の第二の態様は、式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物である。
Figure JPOXMLDOC01-appb-C000024
〔式中、Xは、硫黄原子、酸素原子又は2価の基を表す。X及びXは、それぞれ独立に、式:=C(R)-で表される基又は窒素原子を表す。Rは、水素原子又は置換基を表す。X及びXが式:=C(R)-で表される基である場合、X中のRに含まれる原子とX中のRに含まれる原子とが結合して環状構造を形成してもよい。〕
Figure JPOXMLDOC01-appb-C000025
〔式中、Arは、置換基を有していてもよい2価の縮合環基を表す。〕
The second aspect of the present invention is a polymer compound comprising a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2).
Figure JPOXMLDOC01-appb-C000024
[Wherein, X 1 represents a sulfur atom, an oxygen atom or a divalent group. X 2 and X 3 each independently represent a group represented by the formula: ═C (R 1 ) — or a nitrogen atom. R 1 represents a hydrogen atom or a substituent. X 2 and X 3 has the formula: = C (R 1) - in the case of a group represented, by bonding the atoms contained in R 1 in the atoms and X 3 contained in R 1 in X 2 An annular structure may be formed. ]
Figure JPOXMLDOC01-appb-C000025
[In the formula, Ar 1 represents a divalent fused ring group which may have a substituent. ]
 式(I-1)中のX、X、X及びRの具体例及び好適な例は、上記と同じである。また、式(I-2)中のArの具体例及び好適な例は、上記と同じである。 Specific examples and preferred examples of X 1 , X 2 , X 3 and R 1 in formula (I-1) are the same as described above. Specific examples and preferred examples of Ar 1 in formula (I-2) are the same as described above.
 本発明の高分子化合物は、さらに式(II)で表される繰り返し単位を含むことが好ましい。該式(II)で表される繰り返し単位は前記式(I-1)で表される繰り返し単位と結合していることが好ましい。
 =C(R)-   (II)
〔式中、Rは水素原子又は置換基を表す。〕
The polymer compound of the present invention preferably further contains a repeating unit represented by the formula (II). The repeating unit represented by the formula (II) is preferably bonded to the repeating unit represented by the formula (I-1).
= C (R 3 )-(II)
[Wherein R 3 represents a hydrogen atom or a substituent. ]
 式(II)中のRの具体例及び好適な例は、上記と同じである。 Specific examples and preferred examples of R 3 in formula (II) are the same as described above.
 式(II)で表される繰り返し単位としては、前記式(II-1)で表される繰り返し単位が好ましい。 As the repeating unit represented by the formula (II), the repeating unit represented by the formula (II-1) is preferable.
 本発明の高分子化合物は、さらに、置換基を有していてもよいチオフェンジイル基を繰り返し単位として含むことが好ましい。チオフェンジイル基が有し得る置換基の具体例は、前述のRで表される置換基の具体例と同じである。置換基を有していてもよいチオフェンジイル基としては、前記式(VII)で表される基が好ましい。 The polymer compound of the present invention preferably further contains a thiophenediyl group which may have a substituent as a repeating unit. Specific examples of the substituent that the thiophenediyl group may have are the same as the specific examples of the substituent represented by R 2 described above. The thiophenediyl group which may have a substituent is preferably a group represented by the formula (VII).
 本発明の高分子化合物は、式(I-1)で表される繰り返し単位、式(I-2)で表される繰り返し単位、式(II)で表される繰り返し単位、及び置換基を有していてもよいチオフェンジイル基からなることが好ましく、上記の通り、式(I-1)で表される繰り返し単位、式(VI)で表される基、式(II)で表される繰り返し単位、及び式(VII)で表される基からなることがより好ましい。 The polymer compound of the present invention has a repeating unit represented by the formula (I-1), a repeating unit represented by the formula (I-2), a repeating unit represented by the formula (II), and a substituent. It is preferable that the thiophene diyl group may be optionally substituted. As described above, the repeating unit represented by the formula (I-1), the group represented by the formula (VI), and the repeating unit represented by the formula (II) More preferably, it consists of a unit and a group represented by the formula (VII).
 本発明の高分子化合物は、ポリスチレン換算の数平均分子量が、1×10~1×10であることが好ましく、3×10~1×107であることがより好ましく、5×10~1×107であることが更に好ましい。 The polymer compound of the present invention preferably has a polystyrene-equivalent number average molecular weight of 1 × 10 3 to 1 × 10 8 , more preferably 3 × 10 3 to 1 × 10 7 , and more preferably 5 × 10. More preferably, it is 3 to 1 × 10 7 .
 本発明の高分子化合物は、該高分子化合物の2個の末端が結合して環状構造を形成していてもよいが、環状構造を形成していないことが好ましい。 In the polymer compound of the present invention, two ends of the polymer compound may be bonded to form a cyclic structure, but it is preferable that no cyclic structure is formed.
(高分子化合物の製造方法)
 本発明の高分子化合物を製造する方法としては、特に制限されないが、例えば、Ni触媒を用いた還元的カップリング反応を用いる方法、Stilleカップリング反応を用いる方法、及び、Suzukiカップリング反応を用いる方法が挙げられる。
(Method for producing polymer compound)
A method for producing the polymer compound of the present invention is not particularly limited. For example, a method using a reductive coupling reaction using a Ni catalyst, a method using a Stille coupling reaction, and a Suzuki coupling reaction are used. A method is mentioned.
 例えば、式(I-2)で表される繰り返し単位としてジケトピロロピロールジイル基を含む高分子化合物を、Stilleカップリング反応を用いて製造する方法としては、式(100):
   Q-E-Q   (100)
〔式中、Eは、ジケトピロロピロールジイル基を含む基を表す。Q及びQは、それぞれ独立に、ハロゲン原子又はスルホン酸残基を表す。〕
で表される1種類以上の化合物と、式(200):
   T-E-T   (200)
〔式中、Eは、式(I-1)で表される繰り返し単位を含む基を表す。T及びTは、それぞれ独立に、置換スタンニル基を表す。〕
で表される1種類以上の化合物とを、パラジウム触媒の存在下で反応させる工程を有する製造方法が挙げられる。
For example, as a method for producing a polymer compound containing a diketopyrrolopyrrole diyl group as a repeating unit represented by the formula (I-2) using a Stille coupling reaction, the formula (100):
Q 1 -E 1 -Q 2 (100)
[Wherein E 1 represents a group containing a diketopyrrolopyrrole diyl group. Q 1 and Q 2 each independently represent a halogen atom or a sulfonic acid residue. ]
One or more compounds represented by formula (200):
T 1 -E 2 -T 2 (200)
[Wherein E 2 represents a group containing a repeating unit represented by the formula (I-1). T 1 and T 2 each independently represents a substituted stannyl group. ]
The manufacturing method which has a process with which 1 or more types of compounds represented by these are made to react in presence of a palladium catalyst is mentioned.
 式(200)において、Eは、前記式(II)で表される繰り返し単位を含むことが好ましい。該式(II)で表される繰り返し単位は式(I-1)で表される繰り返し単位と結合していることが好ましい。 In Formula (200), E 2 preferably includes a repeating unit represented by Formula (II). The repeating unit represented by the formula (II) is preferably bonded to the repeating unit represented by the formula (I-1).
 式(II)中のRの具体例及び好適な例は、上記と同じである。 Specific examples and preferred examples of R 3 in formula (II) are the same as described above.
 式(II)で表される繰り返し単位としては、前記式(II-1)で表される繰り返し単位が好ましい。 As the repeating unit represented by the formula (II), the repeating unit represented by the formula (II-1) is preferable.
 式(200)における、T及びTで表される置換スタンニル基としては、例えば、式:-SnR200 で表される基等が挙げられる。ここでR200は1価の有機基を表す。1価の有機基としては、例えば、置換されていてもよいアルキル基及び置換されていてもよいアリール基が挙げられる。R200で表される、置換されていてもよいアルキル基及び置換されていてもよいアリール基の定義及び具体例は、前述のRで表される置換されていてもよいアルキル基及び置換されていてもよいアリール基の定義及び具体例とそれぞれ同じである。
 置換スタンニル基としては、-SnMe、-SnEt、-SnBu、及び-SnPhが好ましく、-SnMe、-SnEt、及び-SnBuが更に好ましい。上記好ましい例において、Meはメチル基を、Etはエチル基を、Buはブチル基を、Phはフェニル基を表す。
Examples of the substituted stannyl group represented by T 1 and T 2 in the formula (200) include a group represented by the formula: —SnR 200 3 . Here, R 200 represents a monovalent organic group. Examples of the monovalent organic group include an optionally substituted alkyl group and an optionally substituted aryl group. Represented by R 200, definitions and specific examples of the aryl group which is a substituted alkyl group and substituted also be substituted, also be an alkyl group and substituted substituted represented by the aforementioned R 2 The definition and specific examples of the aryl group that may be included are the same.
As the substituted stannyl group, —SnMe 3 , —SnEt 3 , —SnBu 3 , and —SnPh 3 are preferable, and —SnMe 3 , —SnEt 3 , and —SnBu 3 are more preferable. In the above preferred examples, Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, and Ph represents a phenyl group.
 反応に用いる式(200)で表わされる1種類以上の化合物のモル数の合計は、式(100)で表わされる1種類以上の化合物のモル数の合計に対して、過剰であることが好ましい。反応に用いる式(200)で表わされる1種類以上の化合物のモル数の合計を1モルとすると、式(100)で表わされる1種類以上の化合物のモル数の合計は、0.6~0.99モルが好ましく、0.7~0.95モルがより好ましい。 The total number of moles of one or more compounds represented by formula (200) used for the reaction is preferably excessive with respect to the total number of moles of one or more compounds represented by formula (100). When the total number of moles of one or more compounds represented by formula (200) used in the reaction is 1 mole, the total number of moles of one or more compounds represented by formula (100) is 0.6-0. .99 mol is preferable, and 0.7 to 0.95 mol is more preferable.
 式(100)における、Q及びQで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。高分子化合物の合成の容易さの観点から、ハロゲン原子としては、臭素原子及びヨウ素原子が好ましく、ヨウ素原子がより好ましい。 Examples of the halogen atom represented by Q 1 and Q 2 in Formula (100) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of ease of synthesis of the polymer compound, the halogen atom is preferably a bromine atom or an iodine atom, and more preferably an iodine atom.
 式(100)における、Q及びQで表されるスルホン酸残基とは、スルホン酸から酸性水素を除いた原子団を意味する。スルホン酸残基の具体例としては、アルキルスルホネート基(例えば、メタンスルホネート基、エタンスルホネート基)、アリールスルホネート基(例えば、ベンゼンスルホネート基、p-トルエンスルホネート基)、アリールアルキルスルホネート基(例えば、ベンジルスルホネート基)及びトリフルオロメタンスルホネート基が挙げられる。 The sulfonic acid residue represented by Q 1 and Q 2 in the formula (100) means an atomic group obtained by removing acidic hydrogen from sulfonic acid. Specific examples of the sulfonic acid residue include alkyl sulfonate groups (for example, methane sulfonate group, ethane sulfonate group), aryl sulfonate groups (for example, benzene sulfonate group, p-toluene sulfonate group), aryl alkyl sulfonate groups (for example, benzyl group) Sulfonate groups) and trifluoromethanesulfonate groups.
 置換基を有していてもよいチオフェンジイル基を含む高分子化合物を製造する場合、置換基を有していてもよいチオフェンジイル基は、式(100)で表される化合物中に含まれていてもよく、式(200)で表される化合物中に含まれていてもよく、両方の化合物中に含まれていてもよい。
 置換基を有していてもよいチオフェンジイル基が式(100)で表される化合物中に含まれる場合、置換基を有していてもよいチオフェンジイル基はE中に含ませることができる。
 置換基を有していてもよいチオフェンジイル基が式(200)で表される化合物中に含まれる場合、置換基を有していてもよいチオフェンジイル基はE中に含ませることができる。
In the case of producing a polymer compound containing a thiophenediyl group which may have a substituent, the thiophenediyl group which may have a substituent is contained in the compound represented by the formula (100). It may be contained in the compound represented by the formula (200), or may be contained in both compounds.
When the optionally substituted thiophenediyl group is contained in the compound represented by the formula (100), the optionally substituted thiophenediyl group can be contained in E 1. .
When the optionally substituted thiophenediyl group is contained in the compound represented by the formula (200), the optionally substituted thiophenediyl group can be contained in E 2. .
 Stilleカップリング反応に用いられるパラジウム触媒としては、例えば、Pd(0)触媒、及び、Pd(II)触媒が挙げられる。パラジウム触媒の具体例としては、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム(II)が挙げられる。反応(重合)操作の容易さ、及び、反応(重合)速度の観点から、パラジウム触媒としては、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、及び、パラジウムアセテート類が好ましい。 Examples of the palladium catalyst used in the Stille coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst. Specific examples of the palladium catalyst include palladium [tetrakis (triphenylphosphine)], palladium acetates, and dichlorobis (triphenylphosphine) palladium (II). From the viewpoints of ease of reaction (polymerization) operation and reaction (polymerization) rate, the palladium catalyst is preferably dichlorobis (triphenylphosphine) palladium (II) and palladium acetates.
 パラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(100)で表される化合物1モルに対して、通常、0.0001モル~0.5モルであり、好ましくは0.0003モル~0.1モルである。 The addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol with respect to 1 mol of the compound represented by the formula (100). Yes, preferably 0.0003 mol to 0.1 mol.
 前記パラジウム触媒としてパラジウムアセテート類を用いる場合は、配位子としてリン化合物を添加してもよい。リン化合物としては、例えば、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、及び、トリ(o-メトキシフェニル)ホスフィンが挙げられる。リン化合物を添加する場合、その添加量は、パラジウム触媒1モルに対して、通常、0.5モル~100モルであり、好ましくは0.9モル~20モルであり、さらに好ましくは1モル~10モルである。 When using palladium acetate as the palladium catalyst, a phosphorus compound may be added as a ligand. Examples of the phosphorus compound include triphenylphosphine, tri (o-tolyl) phosphine, and tri (o-methoxyphenyl) phosphine. When a phosphorus compound is added, the amount added is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 1 mol with respect to 1 mol of the palladium catalyst. 10 moles.
 Stilleカップリング反応において、反応は、通常、溶媒中で行われる。溶媒としては、例えば、N,N-ジメチルホルムアミド、トルエン、キシレン、クロロベンゼン、ジメトキシエタン及びテトラヒドロフランが挙げられる。高分子化合物の溶解性の観点から、溶媒は、トルエン、キシレン及びテトラヒドロフランが好ましい。 In the Stille coupling reaction, the reaction is usually performed in a solvent. Examples of the solvent include N, N-dimethylformamide, toluene, xylene, chlorobenzene, dimethoxyethane, and tetrahydrofuran. From the viewpoint of the solubility of the polymer compound, the solvent is preferably toluene, xylene or tetrahydrofuran.
 Stilleカップリング反応の温度は、前記溶媒にも依存するが、通常、50~200℃である。高分子化合物の高分子量化の観点から、反応温度は60~120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。 The temperature of the Stille coupling reaction is usually 50 to 200 ° C., although it depends on the solvent. From the viewpoint of increasing the molecular weight of the polymer compound, the reaction temperature is preferably 60 to 120 ° C. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed.
 Stilleカップリング反応を行う時間(反応時間)は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間~200時間であり、1時間~30時間が好ましい。 The time for performing the Stille coupling reaction (reaction time) may be the end point when the target degree of polymerization is reached, but is usually 0.1 to 200 hours, preferably 1 to 30 hours.
 Stilleカップリング反応は、アルゴンガス、窒素ガス等の不活性雰囲気下であってパラジウム触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、反応容器(反応系)内を窒素ガスで十分置換し、脱気した後、この反応容器に、式(100)で表される化合物、式(200)で表される化合物、パラジウムアセテート類、配位子類を仕込み、さらに、反応容器を窒素ガスで十分置換し、脱気した後、あらかじめ窒素ガスでバブリングすることにより脱気した溶媒、例えば、脱気したトルエンを加えた後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。 The Stille coupling reaction is performed in a reaction system in which the palladium catalyst is not deactivated under an inert atmosphere such as argon gas or nitrogen gas. For example, it is performed in a system sufficiently deaerated with argon gas or nitrogen gas. Specifically, after the inside of the reaction vessel (reaction system) is sufficiently substituted with nitrogen gas and degassed, the compound represented by the formula (100), the compound represented by the formula (200), Palladium acetates and ligands were charged, the reaction vessel was sufficiently replaced with nitrogen gas, degassed, and a solvent degassed by bubbling with nitrogen gas in advance, for example, degassed toluene was added. Thereafter, the mixture is heated and heated to polymerize, for example, at the reflux temperature for 8 hours while maintaining an inert atmosphere.
 本発明の第三の態様は、式(III)で表される基と置換スタンニル基とを含有する化合物である。
Figure JPOXMLDOC01-appb-C000026
The third aspect of the present invention is a compound containing a group represented by the formula (III) and a substituted stannyl group.
Figure JPOXMLDOC01-appb-C000026
 式(III)中、Xは、硫黄原子、酸素原子又は2価の基を表す。2価の基としては、例えば、式:-S(=O)-で表される基、式:-S(=O)-で表される基、式:-N(R)-で表される基、式:-CR=CR-で表される基、式:-CR=N-で表される基及び式:-N=N-で表される基が挙げられる。ここで、Rの定義及び具体例は、上記と同じである。Xは、硫黄原子が好ましい。 In formula (III), X 4 represents a sulfur atom, an oxygen atom or a divalent group. Examples of the divalent group include a group represented by the formula: —S (═O) —, a group represented by the formula: —S (═O) 2 —, and a formula: —N (R 2 ) —. group represented by the formula: -CR 2 = CR 2 -, a group represented by the formula: -CR 2 = N-, a group represented by and the formula: -N = a group represented by the N-. Here, the definition and specific examples of R 2 are the same as described above. X 4 is preferably a sulfur atom.
 式(III)中、X及びXは、それぞれ独立に、式:=C(R)-で表される基又は窒素原子を表す。ここで、Rの定義及び具体例は、上記と同じである。X及びXが式:=C(R)-で表される基である場合、X中のRに含まれる原子とX中のRに含まれる原子とが結合して環状構造を形成してもよい。X及びXは、式:=C(R)-で表される基が好ましい。 In formula (III), X 5 and X 6 each independently represent a group represented by the formula: ═C (R 1 ) — or a nitrogen atom. Here, the definition and specific examples of R 1 are the same as described above. When X 5 and X 6 are a group represented by the formula: ═C (R 1 ) —, an atom contained in R 1 in X 5 is bonded to an atom contained in R 1 in X 6 An annular structure may be formed. X 5 and X 6 are preferably a group represented by the formula: ═C (R 1 ) —.
 本発明の化合物は、さらに式(IV)で表される基を含むことが好ましい。該式(IV)で表される基は前記式(III)で表される基と結合していることが好ましい。
 =C(R)-   (IV)
The compound of the present invention preferably further contains a group represented by the formula (IV). The group represented by the formula (IV) is preferably bonded to the group represented by the formula (III).
= C (R 4 )-(IV)
 式(IV)中、Rは、水素原子又は置換基を表す。Rで表される置換基の定義及び具体例は、前述のRで表される置換基の定義及び具体例と同じである。 In formula (IV), R 4 represents a hydrogen atom or a substituent. The definition and specific examples of the substituent represented by R 4 are the same as the definition and specific examples of the substituent represented by R 2 described above.
 本発明の化合物が含有する置換スタンニル基の定義及び具体例は、前述の式:-SnR200 で表される置換スタンニル基の定義及び具体例と同じである。本発明の化合物は、置換スタンニル基を2個有することが好ましい。 The definition and specific examples of the substituted stannyl group contained in the compound of the present invention are the same as the definition and specific examples of the substituted stannyl group represented by the above formula: —SnR 200 3 . The compound of the present invention preferably has two substituted stannyl groups.
 置換スタンニル基としては、式(V)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000027
As the substituted stannyl group, a group represented by the formula (V) is preferable.
Figure JPOXMLDOC01-appb-C000027
 式(V)中、Rは、アルキル基を表す。3個あるRは、同一であっても相異なってもよい。Rで表されるアルキル基の定義及び具体例は、前述のRで表される置換基について説明したアルキル基の定義及び具体例と同じである。 In formula (V), R 5 represents an alkyl group. Three R 5 may be the same or different. The definition and specific examples of the alkyl group represented by R 5 are the same as the definition and specific examples of the alkyl group described for the substituent represented by R 2 described above.
 本発明の化合物は、さらにチオフェン環を含有することが好ましい。例えば、前述の置換基を有していてもよいチオフェンジイル基を含有することが好ましい。チオフェンジイル基が有し得る置換基の具体例は、前述のRで表される置換基の具体例と同じである。置換基を有していてもよいチオフェンジイル基としては、前記式(VII)で表される基が好ましい。 The compound of the present invention preferably further contains a thiophene ring. For example, it is preferable to contain a thiophenediyl group which may have the aforementioned substituent. Specific examples of the substituent that the thiophenediyl group may have are the same as the specific examples of the substituent represented by R 2 described above. The thiophenediyl group which may have a substituent is preferably a group represented by the formula (VII).
 本発明の化合物としては、式(VIII)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000028
〔式中、X、X、X、R及びRは、前述と同じ意味を表す。Rは、水素原子又は置換されていてもよいアルキル基を表す。4個あるRは、同一でも相異なってもよい。〕
As the compound of the present invention, a compound represented by the formula (VIII) is preferable.
Figure JPOXMLDOC01-appb-C000028
[Wherein, X 4 , X 5 , X 6 , R 4 and R 5 represent the same meaning as described above. R 9 represents a hydrogen atom or an optionally substituted alkyl group. Four R 9 may be the same or different. ]
 Rで表される置換されていてもよいアルキル基の定義及び具体例は、前述のRで表される置換されていてもよいアルキル基の定義及び具体例と同じである。 The definition and specific examples of the optionally substituted alkyl group represented by R 9 are the same as the definition and specific examples of the optionally substituted alkyl group represented by R 2 described above.
 式(VIII)で表される化合物としては、式(IX)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000029
〔式中、R及びRは、前述と同じ意味を表す。R10は、ハロゲン原子、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基又は置換されていてもよいアリール基を表す。bは、0~5の整数を表す。2個あるbは、同一でも相異なってもよい。R10が複数個ある場合、それらは同一でも相異なってもよい。〕
As the compound represented by the formula (VIII), a compound represented by the formula (IX) is preferable.
Figure JPOXMLDOC01-appb-C000029
[Wherein R 5 and R 9 represent the same meaning as described above. R 10 represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxy group or an optionally substituted aryl group. b represents an integer of 0 to 5. Two b's may be the same or different. When there are a plurality of R 10 , they may be the same or different. ]
 R10で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。R10で表される、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基及び置換されていてもよいアリール基の定義及び具体例は、前述のRで表される置換されていてもよいアルキル基、置換されていてもよいアルコキシ基及び置換されていてもよいアリール基の定義及び具体例と同じである。R10としては、アルキル基が好ましい。bは、0~3の整数が好ましく、1がより好ましい。 Examples of the halogen atom represented by R 10 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Definitions and specific examples of the optionally substituted alkyl group, the optionally substituted alkoxy group, and the optionally substituted aryl group represented by R 10 are the substituted and substituted groups represented by R 2 described above. The definition and specific examples of the alkyl group which may be substituted, the alkoxy group which may be substituted and the aryl group which may be substituted are the same. R 10 is preferably an alkyl group. b is preferably an integer of 0 to 3, and more preferably 1.
 以下、本発明の実施例を説明する。以下に示す実施例は、本発明を説明するための好適な例示であり、本発明を限定するものではない。 Hereinafter, examples of the present invention will be described. The following examples are preferred examples for explaining the present invention, and do not limit the present invention.
 化合物のNMRスペクトルは、核磁気共鳴装置(装置名:JNM-EX400、JEOL社製)により測定した。IRスペクトルは、赤外分光光度計(装置名:FT/IR-470 Plus、日本分光株式会社製)により測定した。高分解能質量分析スペクトルは、高分解能質量分析装置(装置名:JMS-T100CS、JEOL社製)により測定した。高分子化合物のポリスチレン換算の数平均分子量及びポリスチレン換算の重量平均分子量は、ゲルパーミエーションクロマトグラフィー装置(装置名:プロミネンス、島津製作所社製)とGPCカラム(JAIGEL-3HAF、日本分析工業社製)、溶離液としてクロロホルムを用いて測定した。 The NMR spectrum of the compound was measured with a nuclear magnetic resonance apparatus (device name: JNM-EX400, manufactured by JEOL). The IR spectrum was measured with an infrared spectrophotometer (device name: FT / IR-470 Plus, manufactured by JASCO Corporation). The high resolution mass spectrometry spectrum was measured with a high resolution mass spectrometer (device name: JMS-T100CS, manufactured by JEOL). The number average molecular weight in terms of polystyrene and the weight average molecular weight in terms of polystyrene of the polymer compound are as follows: gel permeation chromatography device (device name: Prominence, manufactured by Shimadzu Corporation) and GPC column (JAIGEL-3HAF, manufactured by Nihon Analytical Industries, Ltd.) Measurement was performed using chloroform as an eluent.
 合成例1
(化合物2aの合成)
Figure JPOXMLDOC01-appb-C000030
Synthesis example 1
(Synthesis of Compound 2a)
Figure JPOXMLDOC01-appb-C000030
 アルゴン雰囲気下、50mLの2口丸底フラスコに、無水ヘキサンを7mL添加した。その後、フラスコ内に、テトラメチルエチレンジアミン(TMEDA)0.66mL、チオフェン0.14mL(1.8mmol)、及び1.65mol/Lのn-ブチルリチウム(n-BuLi)のヘキサン溶液2.66mL(n-BuLi含有量:4.4mmol)を、室温下、攪拌しながら添加した。反応液を1時間還流させた後、-40℃に冷却した。その後、4-(2-エチルヘキシル)フェニルチエニルケトンを蒸留したジエチルエーテルに溶解させた溶液7mLを反応液に滴下した。該溶液中に4-(2-エチルヘキシル)フェニルチエニルケトンは1.29g(4.4mmol)含まれていた。その後、反応液を室温まで温めた後、終夜撹拌した。反応液に1mol/Lの塩化アンモニウム水溶液20mLを加えて反応を停止させ、反応液の有機層をジクロロメタン及びエチルアセテートで抽出した。得られた有機層を硫酸マグネシウムで乾燥させ、溶媒を留去した。得られた固体を真空下で乾燥させ、化合物1aを得た。未精製の化合物1aをトルエン30mLに溶解させ、亜ジチオン酸ナトリウム4.6gと57%ヨウ化水素酸4.4mLとを含む水溶液30mLを加えた。2層分離した反応液を、室温下で24時間撹拌した。オレンジ色の反応混合物を炭酸水素ナトリウムで中和し、反応液の有機層をクロロホルムで数回抽出した。その後、有機層を硫酸ナトリウムで乾燥させ、溶媒を留去した。生成物をシリカゲルクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン=1/5(容積比))で精製し、オレンジ色の液体である化合物2aを得た。化合物2aの収率は、25%であった。 In an argon atmosphere, 7 mL of anhydrous hexane was added to a 50 mL 2-neck round bottom flask. Thereafter, 2.66 mL (n) of a hexane solution of tetramethylethylenediamine (TMEDA) 0.66 mL, thiophene 0.14 mL (1.8 mmol), and 1.65 mol / L n-butyllithium (n-BuLi) was placed in the flask. -BuLi content: 4.4 mmol) was added at room temperature with stirring. The reaction was refluxed for 1 hour and then cooled to -40 ° C. Thereafter, 7 mL of a solution of 4- (2-ethylhexyl) phenyl thienyl ketone dissolved in distilled diethyl ether was added dropwise to the reaction solution. The solution contained 1.29 g (4.4 mmol) of 4- (2-ethylhexyl) phenyl thienyl ketone. Thereafter, the reaction solution was warmed to room temperature and stirred overnight. The reaction was stopped by adding 20 mL of a 1 mol / L ammonium chloride aqueous solution, and the organic layer of the reaction was extracted with dichloromethane and ethyl acetate. The obtained organic layer was dried over magnesium sulfate, and the solvent was distilled off. The resulting solid was dried under vacuum to give compound 1a. Unpurified compound 1a was dissolved in 30 mL of toluene, and 30 mL of an aqueous solution containing 4.6 g of sodium dithionite and 4.4 mL of 57% hydroiodic acid was added. The reaction solution separated into two layers was stirred at room temperature for 24 hours. The orange reaction mixture was neutralized with sodium bicarbonate, and the organic layer of the reaction solution was extracted several times with chloroform. Thereafter, the organic layer was dried over sodium sulfate, and the solvent was distilled off. The product was purified by silica gel chromatography (developing solvent: dichloromethane / hexane = 1/5 (volume ratio)) to obtain Compound 2a as an orange liquid. The yield of compound 2a was 25%.
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 合成例2
(化合物3aの合成)
Figure JPOXMLDOC01-appb-C000032
Synthesis example 2
(Synthesis of Compound 3a)
Figure JPOXMLDOC01-appb-C000032
 アルゴン雰囲気下、30mLの2口丸底フラスコに、化合物2aを0.32g(0.5mmol)、及びテトラメチルエチレンジアミン(TMEDA)0.16mLを蒸留したテトラヒドロフラン5mLに溶解させた溶液を加えた。反応液を-78℃まで冷却した後、1.65mol/Lのn-ブチルリチウム(n-BuLi)のヘキサン溶液0.64mL(n-BuLi含有量:1.1mmol)を撹拌しながら反応液中に添加した。反応液を1時間還流し、その後、-78℃に冷却した。その後、反応液に、トリメチル錫クロリドを蒸留したテトラヒドロフランに溶解させた溶液5mLを滴下した。3時間後、反応液を、室温まで温め、終夜撹拌した。反応液に1mol/Lの塩化アンモニウム水溶液を10mL加えて反応を停止させ、反応液の有機層をクロロホルムで抽出し、食塩水で有機層を洗浄後、硫酸ナトリウムで乾燥させた。溶媒を留去後、オレンジ色の液体である化合物3aを得た。化合物3aの収率は、74%であった。 In an argon atmosphere, a solution prepared by dissolving 0.32 g (0.5 mmol) of Compound 2a and 0.16 mL of tetramethylethylenediamine (TMEDA) in 5 mL of distilled tetrahydrofuran was added to a 30 mL 2-neck round bottom flask. After the reaction solution was cooled to −78 ° C., 0.64 mL of a 1.65 mol / L n-butyllithium (n-BuLi) hexane solution (n-BuLi content: 1.1 mmol) was stirred in the reaction solution. Added to. The reaction was refluxed for 1 hour and then cooled to -78 ° C. Thereafter, 5 mL of a solution prepared by dissolving trimethyltin chloride in distilled tetrahydrofuran was added dropwise to the reaction solution. After 3 hours, the reaction was warmed to room temperature and stirred overnight. 10 mL of 1 mol / L ammonium chloride aqueous solution was added to the reaction liquid, reaction was stopped, the organic layer of the reaction liquid was extracted with chloroform, the organic layer was washed with brine, and then dried over sodium sulfate. After distilling off the solvent, Compound 3a, an orange liquid, was obtained. The yield of compound 3a was 74%.
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 実施例1
(高分子化合物1の合成)
Figure JPOXMLDOC01-appb-C000034
Example 1
(Synthesis of polymer compound 1)
Figure JPOXMLDOC01-appb-C000034
 テストチューブに、化合物3aを49mg(0.050mmol)、化合物4を34mg(0.050mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(Pddba)を2.3mg(0.0025mmol)、トリ(o-トリル)ホスフィンを8.8mg(0.029mmol)、無水クロロベンゼンを1mL加え、10分間アルゴンバブリングを行った。反応液を170℃で18時間、マイクロ波照射下で撹拌した。その後、冷却した反応液をメタノール中に注ぎ、黒色沈殿をメンブランフィルターで集めた。生成物をメタノール及びヘキサンで洗浄した。その後、得られた暗青色の固体をクロロホルムで抽出し、クロロホルム溶液をメタノールに注いで固体を再沈殿させ、暗青色の固体である高分子化合物1を得た。高分子化合物1の収率は84%であった。高分子化合物1のポリスチレン換算の数平均分子量は7,800であり、多分散度は2.2であった。 In a test tube, compound 3a 49 mg (0.050 mmol), compound 4 34 mg (0.050 mmol), tris (dibenzylideneacetone) dipalladium (Pd 2 dba 3 ) 2.3 mg (0.0025 mmol), tri ( 8.8 mg (0.029 mmol) of o-tolyl) phosphine and 1 mL of anhydrous chlorobenzene were added, and argon bubbling was performed for 10 minutes. The reaction was stirred at 170 ° C. for 18 hours under microwave irradiation. Thereafter, the cooled reaction solution was poured into methanol, and the black precipitate was collected with a membrane filter. The product was washed with methanol and hexane. Thereafter, the obtained dark blue solid was extracted with chloroform, and the chloroform solution was poured into methanol to reprecipitate the solid, thereby obtaining polymer compound 1 which was a dark blue solid. The yield of polymer compound 1 was 84%. The number average molecular weight in terms of polystyrene of the polymer compound 1 was 7,800, and the polydispersity was 2.2.
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
 合成例3
(化合物2bの合成)
Figure JPOXMLDOC01-appb-C000036
Synthesis example 3
(Synthesis of Compound 2b)
Figure JPOXMLDOC01-appb-C000036
 4-(2-エチルヘキシル)フェニルチエニルケトンに代えて4-(tert-ブチル)フェニルチエニルケトンを用い、生成物をシリカゲルクロマトグラフィー(展開溶媒:クロロホルム/ヘキサン=1/3(容積比))で精製した後、エタノールで再結晶した以外は合成例1と同様に合成し、オレンジ色の固体である化合物2bを得た。化合物2bの収率は、35%であった。 The product was purified by silica gel chromatography (developing solvent: chloroform / hexane = 1/3 (volume ratio)) using 4- (tert-butyl) phenyl thienyl ketone instead of 4- (2-ethylhexyl) phenyl thienyl ketone. Then, synthesis was carried out in the same manner as in Synthesis Example 1 except that recrystallization was performed with ethanol to obtain Compound 2b as an orange solid. The yield of compound 2b was 35%.
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
 合成例4
(化合物3bの合成)
Figure JPOXMLDOC01-appb-C000038
Synthesis example 4
(Synthesis of Compound 3b)
Figure JPOXMLDOC01-appb-C000038
 化合物2aに代えて化合物2bを用い、反応の停止後、反応液の有機層をクロロホルムで抽出し、クロロホルム溶液をメタノールに注いで固体を再沈殿させた以外は合成例2と同様に合成し、オレンジ色の固体である化合物3bを得た。化合物3bの収率は、70%であった。 Compound 2b was used instead of Compound 2a, and after the reaction was stopped, the organic layer of the reaction solution was extracted with chloroform, and synthesized similarly to Synthesis Example 2 except that the chloroform solution was poured into methanol to reprecipitate the solid, Compound 3b, an orange solid, was obtained. The yield of compound 3b was 70%.
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
 実施例2
(高分子化合物2の合成)
Figure JPOXMLDOC01-appb-C000040
Example 2
(Synthesis of polymer compound 2)
Figure JPOXMLDOC01-appb-C000040
 乾燥したシュレンク管に、アルゴン雰囲気下、化合物3bを43mg(0.050mmol)、化合物4を34mg(0.050mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(Pddba)を2.3mg(0.0025mmol)、トリ(o-トリル)ホスフィンを8.8mg(0.029mmol)、無水ジメチルホルムアミドを0.25mL、トルエンを0.75mL加えた。その後、反応液を110℃で48時間攪拌した。その後、冷却した反応液をメタノールに注ぎ、黒色沈殿物をメンブランフィルターで集めた。生成物をメタノール及びヘキサンで洗浄した。その後、得られた暗青色の固体をクロロホルムで抽出し、クロロホルム溶液をメタノールに注いで固体を再沈殿させ、暗青色の固体である高分子化合物2を得た。高分子化合物2の収率は58%であった。高分子化合物2のポリスチレン換算の数平均分子量は4,700であり、多分散度は1.5であった。 In an argon atmosphere, 43 mg (0.050 mmol) of compound 3; 34 mg (0.050 mmol) of compound 4; 2.3 mg of tris (dibenzylideneacetone) dipalladium (Pd 2 dba 3 ) .0025 mmol), 8.8 mg (0.029 mmol) of tri (o-tolyl) phosphine, 0.25 mL of anhydrous dimethylformamide, and 0.75 mL of toluene were added. Thereafter, the reaction solution was stirred at 110 ° C. for 48 hours. Thereafter, the cooled reaction solution was poured into methanol, and the black precipitate was collected with a membrane filter. The product was washed with methanol and hexane. Thereafter, the obtained dark blue solid was extracted with chloroform, and the chloroform solution was poured into methanol to reprecipitate the solid, thereby obtaining a polymer compound 2 which was a dark blue solid. The yield of polymer compound 2 was 58%. The number average molecular weight in terms of polystyrene of the polymer compound 2 was 4,700, and the polydispersity was 1.5.
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 実施例3
(有機薄膜太陽電池1の作製及び評価)
 下記素子構成を有する有機薄膜太陽電池1を作製し、特性を評価した。
 陽極(ITO)/ホール輸送層(PEDOT:PSS)/活性層(高分子化合物1とPC71BMとの組成物)/ホールブロック層(TiO)/陰極(Al)
Example 3
(Production and Evaluation of Organic Thin Film Solar Cell 1)
An organic thin film solar cell 1 having the following element configuration was prepared and evaluated for characteristics.
Anode (ITO) / hole transport layer (PEDOT: PSS) / active layer (composition of polymer compound 1 and PC71BM) / hole block layer (TiO x ) / cathode (Al)
 ホール輸送層は、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、ポリスチレンスルホン酸(PSS)及び水を含む液(商品名:Clevios P VP AI 4083)をITO上にスピンコートして作製した。活性層は、高分子化合物1とフェニルC71-酪酸メチルエステル(PC71BM、アメリカンダイソース社製)を等量含み、高分子化合物1とPC71BMとの混合物の濃度が15mg/mLであるクロロホルム溶液をホール輸送層上にスピンコートして作製した。ホールブロック層は、チタニウム(IV)イソプロポキシド(和光純薬株式会社製)のエタノール溶液を2000rpmでスピンコートした後、30分室温下で放置して得られる酸化チタン(TiO)を活性層上に成膜して作製した。陰極はホールブロック層上にアルミニウムを蒸着させて作製した。
 作製した有機薄膜太陽電池1に、ソーラーシミュレーター(商品名:PEC-L11 、ぺクセルテクノロジー社製)を用いて放射照度100mW/cmの光を照射し、発生する電流と電圧を測定した。有機薄膜太陽電池1の開放電圧(VOC)は0.48Vであり、短絡電流密度(Jsc)は4.11mA/cmであり、フィルファクター(FF)は0.54であり、変換効率は0.71%であった。
The hole transport layer is prepared by spin-coating a liquid (trade name: Clevios P VP AI 4083) containing poly (3,4-ethylenedioxythiophene) (PEDOT), polystyrene sulfonic acid (PSS) and water on ITO. did. The active layer contains a chloroform solution containing polymer compound 1 and phenyl C71-butyric acid methyl ester (PC71BM, manufactured by American Dice Source) in an equal amount, and the concentration of the mixture of polymer compound 1 and PC71BM is 15 mg / mL. It was prepared by spin coating on the transport layer. The hole blocking layer is made of titanium oxide (TiO x ) obtained by spin-coating an ethanol solution of titanium (IV) isopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) at 2000 rpm and then left standing at room temperature for 30 minutes. A film was formed on top. The cathode was prepared by evaporating aluminum on the hole block layer.
The produced organic thin film solar cell 1 was irradiated with light having an irradiance of 100 mW / cm 2 using a solar simulator (trade name: PEC-L11, manufactured by Pexel Technology), and the generated current and voltage were measured. The organic thin film solar cell 1 has an open circuit voltage (VOC) of 0.48 V, a short circuit current density (Jsc) of 4.11 mA / cm 2 , a fill factor (FF) of 0.54, and a conversion efficiency of 0. 71%.
 実施例4
(有機薄膜太陽電池2の作製及び評価)
 高分子化合物1に代えて高分子化合物2を用い、溶解溶媒としてクロロベンゼンを用いた以外は、実施例3と同様に有機薄膜太陽電池2を作製し、特性を評価した。
 有機薄膜太陽電池2の開放電圧(VOC)は0.55Vであり、短絡電流密度(Jsc)は1.70mA/cmであり、フィルファクター(FF)は0.32であり、変換効率は0.30%であった。
Example 4
(Production and Evaluation of Organic Thin Film Solar Cell 2)
An organic thin-film solar cell 2 was prepared in the same manner as in Example 3 except that the polymer compound 2 was used in place of the polymer compound 1 and chlorobenzene was used as the dissolving solvent, and the characteristics were evaluated.
The open circuit voltage (VOC) of the organic thin film solar cell 2 is 0.55 V, the short circuit current density (Jsc) is 1.70 mA / cm 2 , the fill factor (FF) is 0.32, and the conversion efficiency is 0. 30%.
 有機薄膜太陽電池1及び有機薄膜太陽電池2のアクションスペクトルを図1に示す。縦軸は、ある波長において有機薄膜太陽電池の活性層に入射した光子数に対する有機薄膜太陽電池を流れる電子数の割合(IPCE)を示す。横軸は照射した光の波長を示す。
 有機薄膜太陽電池1及び有機薄膜太陽電池2は共に、可視領域の光のみならず、1000nmまでの赤外領域の光をも光電変換することがわかった。有機薄膜太陽電池1の800nmの波長の光におけるIPCEは約8%であり、有機薄膜太陽電池2の800nmの波長の光におけるIPCEは約3%であった。
 高分子化合物1及び高分子化合物2の最高占有軌道のエネルギーレベルを以下の条件で測定した。デカメチルフェロセンを内部標準とし、0.1mol/Lのn-BuN+PFを支持電解質として含むアセトニトリル溶液中で、ITO上の高分子化合物1薄膜もしくは高分子化合物2薄膜のサイクリックボルタンメトリーを実施した。高分子化合物1の還元電位は、-1.06V(vs.Ag/AgNO)であり、酸化電位は、0.62V(vs.Ag/AgNO)であった。この測定結果から、FeCp2+/0参照電極の真空下でのエネルギーレベルを-4.6eVとして換算した最高占有軌道のエネルギーレベルと最低非占有軌道のエネルギーレベルは、それぞれ、-5.4eV 、-3.7eVであることがわかった。同様に高分子化合物2の最高占有軌道のエネルギーレベルと最低非占有軌道のエネルギーレベルは、それぞれ、-5.2eV、-3.8eVであることがわかった。
The action spectrum of the organic thin film solar cell 1 and the organic thin film solar cell 2 is shown in FIG. The vertical axis represents the ratio (IPCE) of the number of electrons flowing through the organic thin film solar cell to the number of photons incident on the active layer of the organic thin film solar cell at a certain wavelength. The horizontal axis indicates the wavelength of the irradiated light.
It was found that both the organic thin film solar cell 1 and the organic thin film solar cell 2 photoelectrically convert not only visible light but also infrared light up to 1000 nm. The IPCE in the light of 800 nm wavelength of the organic thin film solar cell 1 was about 8%, and the IPCE in the light of 800 nm wavelength of the organic thin film solar cell 2 was about 3%.
The energy levels of the highest occupied orbitals of the polymer compound 1 and the polymer compound 2 were measured under the following conditions. Cyclic voltammetry of polymer compound 1 thin film or polymer compound 2 thin film on ITO in acetonitrile solution containing decamethylferrocene as internal standard and 0.1 mol / L n-Bu 4 N + PF 6 as supporting electrolyte did. The reduction potential of the polymer compound 1 was −1.06 V (vs. Ag / AgNO 3 ), and the oxidation potential was 0.62 V (vs. Ag / AgNO 3 ). From this measurement result, the energy level of the highest occupied orbit and the energy level of the lowest unoccupied orbit calculated by converting the energy level under vacuum of the FeCp2 + / 0 reference electrode to −4.6 eV are −5.4 eV and −3, respectively. It was found to be 7 eV. Similarly, it was found that the energy level of the highest occupied orbit and the energy level of the lowest unoccupied orbit of the polymer compound 2 were −5.2 eV and −3.8 eV, respectively.
(吸収波長端の測定)
 ガラス基板に高分子化合物1のクロロベンゼン溶液をスピンコートで塗布し、高分子化合物1の薄膜を得た。吸収スペクトル測定装置で該薄膜の吸収スペクトルを測定したところ、該薄膜の吸収波長端は、1000nm以上であった。
(Measurement of absorption wavelength end)
A chlorobenzene solution of polymer compound 1 was applied to a glass substrate by spin coating to obtain a thin film of polymer compound 1. When the absorption spectrum of the thin film was measured with an absorption spectrum measuring apparatus, the absorption wavelength end of the thin film was 1000 nm or more.
(吸収波長端の測定)
 ガラス基板に高分子化合物2のクロロベンゼン溶液をスピンコートで塗布し、高分子化合物2の薄膜を得た。吸収スペクトル測定装置で該薄膜の吸収スペクトルを測定したところ、該薄膜の吸収波長端は、1000nm以上であった。
(Measurement of absorption wavelength end)
A chlorobenzene solution of the polymer compound 2 was applied to a glass substrate by spin coating to obtain a polymer compound 2 thin film. When the absorption spectrum of the thin film was measured with an absorption spectrum measuring apparatus, the absorption wavelength end of the thin film was 1000 nm or more.
 実施例5
(有機薄膜太陽電池3の作製及び評価)
 高分子化合物1とフェニルC71-酪酸メチルエステル(PC71BM)の使用量を重量比で1:2(wt:wt)とした以外は、実施例3と同様に有機薄膜太陽電池3を作成し、特性を評価した。
 有機薄膜太陽電池3の開放電圧(VOC)は0.53Vであり、短絡電流密度(Jsc)は6.58mA/cmであり、フィルファクター(FF)は0.42であり、変換効率は1.44%であった。
Example 5
(Production and Evaluation of Organic Thin Film Solar Cell 3)
An organic thin film solar cell 3 was prepared in the same manner as in Example 3 except that the amount of the polymer compound 1 and phenyl C71-butyric acid methyl ester (PC71BM) used was 1: 2 (wt: wt) in weight ratio. Evaluated.
The open-circuit voltage (VOC) of the organic thin-film solar cell 3 is 0.53 V, the short-circuit current density (Jsc) is 6.58 mA / cm 2 , the fill factor (FF) is 0.42, and the conversion efficiency is 1 .44%.
 合成例5
(化合物2cの合成)
Figure JPOXMLDOC01-appb-C000042
Synthesis example 5
(Synthesis of Compound 2c)
Figure JPOXMLDOC01-appb-C000042
 4-(2-エチルヘキシル)フェニルチエニルケトンに代えて4-オクチルオキシフェニルチエニルケトンを用い、生成物をシリカゲルクロマトグラフ(展開溶媒:クロロホルム/ヘキサン=1/3(容積比))で精製した後、エタノールで再結晶した以外は、合成例1と同様に合成し、オレンジ色の固体である化合物2cを得た。化合物2cの収率は、40%であった。 The product was purified by silica gel chromatography (developing solvent: chloroform / hexane = 1/3 (volume ratio)) using 4-octyloxyphenyl thienyl ketone instead of 4- (2-ethylhexyl) phenyl thienyl ketone, The compound 2c, which was an orange solid, was synthesized in the same manner as in Synthesis Example 1 except that it was recrystallized from ethanol. The yield of compound 2c was 40%.
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
 合成例6
(化合物3cの合成)
Figure JPOXMLDOC01-appb-C000044
Synthesis Example 6
(Synthesis of Compound 3c)
Figure JPOXMLDOC01-appb-C000044
 化合物2aに代えて化合物2cを用い、反応の停止後、反応液の有機層をクロロホルムで抽出し、クロロホルム溶液をメタノールに注いで固体を再沈殿させた以外は、合成例2と同様に合成し、オレンジ色の固体である化合物3cを得た。化合物3cの収率は、96%であった。 Compound 2c was used in place of compound 2a. After the reaction was stopped, the organic layer of the reaction solution was extracted with chloroform, and the solid was reprecipitated by pouring the chloroform solution into methanol. Compound 3c, an orange solid, was obtained. The yield of compound 3c was 96%.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
 実施例6
(高分子化合物3の合成)
Figure JPOXMLDOC01-appb-C000046
Example 6
(Synthesis of polymer compound 3)
Figure JPOXMLDOC01-appb-C000046
 化合物3bの代わりに化合物3cを50.4mg(0.050mmol)用いた以外は、実施例2と同様に合成して高分子化合物3を得た。高分子化合物3の収率は32%であった。 Polymer compound 3 was obtained by synthesis in the same manner as in Example 2 except that 50.4 mg (0.050 mmol) of compound 3c was used instead of compound 3b. The yield of polymer compound 3 was 32%.
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
 実施例7
(有機薄膜太陽電池4の作製及び評価)
 高分子化合物1の代わりに高分子化合物3を用い、高分子化合物3とフェニルC71-酪酸メチルエステル(PC71BM)の使用量を重量比で1:2(wt:wt)とした以外は、実施例3と同様に有機薄膜太陽電池4を作成し、特性を評価した。
 有機薄膜太陽電池4の開放電圧(VOC)は0.45Vであり、短絡電流密度(Jsc)は5.58mA/cmであり、フィルファクター(FF)は0.41であり、変換効率は0.96%であった。
Example 7
(Production and Evaluation of Organic Thin Film Solar Cell 4)
Example 3 except that polymer compound 3 was used instead of polymer compound 1 and the amount of polymer compound 3 and phenyl C71-butyric acid methyl ester (PC71BM) used was 1: 2 (wt: wt) by weight. The organic thin film solar cell 4 was prepared in the same manner as in Example 3, and the characteristics were evaluated.
The organic thin-film solar cell 4 has an open circuit voltage (VOC) of 0.45 V, a short circuit current density (Jsc) of 5.58 mA / cm 2 , a fill factor (FF) of 0.41, and a conversion efficiency of 0. 96%.
 比較例1
(有機薄膜太陽電池3の作製及び評価)
 高分子化合物1に代えて下式で表される化合物1を用いた以外は、実施例3と同様に有機薄膜太陽電池3を作製し、特性を評価した。有機薄膜太陽電池3のアクションスペクトルを測定したところ、800nmよりも長波長の光を光電変換しなかった。
Figure JPOXMLDOC01-appb-C000048
Comparative Example 1
(Production and Evaluation of Organic Thin Film Solar Cell 3)
An organic thin film solar cell 3 was prepared in the same manner as in Example 3 except that the compound 1 represented by the following formula was used in place of the polymer compound 1, and the characteristics were evaluated. When the action spectrum of the organic thin-film solar cell 3 was measured, light having a wavelength longer than 800 nm was not photoelectrically converted.
Figure JPOXMLDOC01-appb-C000048

Claims (29)

  1.  陽極と、陰極と、該陽極と該陰極との間に設けられた活性層とを有し、該活性層中に電子供与性化合物と電子受容性化合物とを含み、該電子供与性化合物及び該電子受容性化合物の少なくとも一方が、式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物である光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Xは、硫黄原子、酸素原子又は2価の基を表す。X及びXは、それぞれ独立に、式:=C(R)-で表される基又は窒素原子を表す。Rは、水素原子又は置換基を表す。X及びXが式:=C(R)-で表される基である場合、X中のRに含まれる原子とX中のRに含まれる原子とが結合して環状構造を形成してもよい。〕
    Figure JPOXMLDOC01-appb-C000002
    〔式中、Arは、置換基を有していてもよい2価の縮合環基を表す。〕
    An anode, a cathode, and an active layer provided between the anode and the cathode, wherein the active layer includes an electron-donating compound and an electron-accepting compound, the electron-donating compound and the A photoelectric conversion element, wherein at least one of the electron-accepting compounds is a polymer compound including a repeating unit represented by the formula (I-1) and a repeating unit represented by the formula (I-2).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, X 1 represents a sulfur atom, an oxygen atom or a divalent group. X 2 and X 3 each independently represent a group represented by the formula: ═C (R 1 ) — or a nitrogen atom. R 1 represents a hydrogen atom or a substituent. X 2 and X 3 has the formula: = C (R 1) - in the case of a group represented, by bonding the atoms contained in R 1 in the atoms and X 3 contained in R 1 in X 2 An annular structure may be formed. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula, Ar 1 represents a divalent fused ring group which may have a substituent. ]
  2.  Xが、硫黄原子、酸素原子、式:-S(=O)-で表される基、式:-S(=O)-で表される基、式:-N(R)-で表される基、式:-CR=CR-で表される基、式:-CR=N-で表される基又は式:-N=N-で表される基を表し、該Rが水素原子又は置換基を表す、請求項1に記載の光電変換素子。 X 1 is a sulfur atom, an oxygen atom, a group represented by the formula: —S (═O) —, a group represented by the formula: —S (═O) 2 —, a formula: —N (R 2 ) — A group represented by the formula: -CR 2 = CR 2- , a group represented by the formula: -CR 2 = N- or a group represented by the formula: -N = N- The photoelectric conversion element according to claim 1, wherein R 2 represents a hydrogen atom or a substituent.
  3.  Xが、硫黄原子である、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein X 1 is a sulfur atom.
  4.  X及びXが、式:=C(R)-で表される基である、請求項1に記載の光電変換素子。 The photoelectric conversion device according to claim 1, wherein X 2 and X 3 are groups represented by the formula: = C (R 1 )-.
  5.  高分子化合物が、さらに式(II)で表される繰り返し単位を含み、該式(II)で表される繰り返し単位が前記式(I-1)で表される繰り返し単位と結合している、請求項1に記載の光電変換素子。
     =C(R)-    (II)
    〔式中、Rは、水素原子又は置換基を表す。〕
    The polymer compound further includes a repeating unit represented by the formula (II), and the repeating unit represented by the formula (II) is bonded to the repeating unit represented by the formula (I-1). The photoelectric conversion element according to claim 1.
    = C (R 3 )-(II)
    [Wherein R 3 represents a hydrogen atom or a substituent. ]
  6.  Arが、置換基を有していてもよい含窒素縮合環を含有する2価の基である、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein Ar 1 is a divalent group containing a nitrogen-containing condensed ring which may have a substituent.
  7.  Arが、置換基を有していてもよいジケトピロロピロールジイル基である、請求項6に記載の光電変換素子。 The photoelectric conversion element according to claim 6, wherein Ar 1 is a diketopyrrolopyrrole diyl group which may have a substituent.
  8.  高分子化合物が、さらに、置換基を有していてもよいチオフェンジイル基を繰り返し単位として含む、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the polymer compound further contains a thiophenediyl group which may have a substituent as a repeating unit.
  9.  高分子化合物の吸収波長端が、600nm以上である、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein an absorption wavelength end of the polymer compound is 600 nm or more.
  10.  高分子化合物の最高被占軌道のエネルギーレベルが、-4.5eV以下である、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the energy level of the highest occupied orbit of the polymer compound is -4.5 eV or less.
  11.  請求項1に記載の光電変換素子を含む太陽電池モジュール。 A solar cell module including the photoelectric conversion element according to claim 1.
  12.  請求項1に記載の光電変換素子を含むイメージセンサー。 An image sensor including the photoelectric conversion element according to claim 1.
  13.  式(I-1)で表される繰り返し単位と式(I-2)で表される繰り返し単位とを含む高分子化合物。
    Figure JPOXMLDOC01-appb-C000003
    〔式中、Xは、硫黄原子、酸素原子又は2価の基を表す。X及びXは、それぞれ独立に、式:=C(R)-で表される基又は窒素原子を表す。Rは、水素原子又は置換基を表す。X及びXが式:=C(R)-で表される基である場合、X中のRに含まれる原子とX中のRに含まれる原子とが結合して環状構造を形成してもよい。〕
    Figure JPOXMLDOC01-appb-C000004
    〔式中、Arは、置換基を有していてもよい2価の縮合環基を表す。〕
    A polymer compound comprising a repeating unit represented by formula (I-1) and a repeating unit represented by formula (I-2).
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, X 1 represents a sulfur atom, an oxygen atom or a divalent group. X 2 and X 3 each independently represent a group represented by the formula: ═C (R 1 ) — or a nitrogen atom. R 1 represents a hydrogen atom or a substituent. X 2 and X 3 has the formula: = C (R 1) - in the case of a group represented, by bonding the atoms contained in R 1 in the atoms and X 3 contained in R 1 in X 2 An annular structure may be formed. ]
    Figure JPOXMLDOC01-appb-C000004
    [In the formula, Ar 1 represents a divalent fused ring group which may have a substituent. ]
  14.  Xが、硫黄原子、酸素原子、式:-S(=O)-で表される基、式:-S(=O)-で表される基、式:-N(R)-で表される基、式:-CR=CR-で表される基、式:-CR=N-で表される基又は式:-N=N-で表される基を表し、該Rが水素原子又は置換基を表す、請求項13に記載の高分子化合物。 X 1 is a sulfur atom, an oxygen atom, a group represented by the formula: —S (═O) —, a group represented by the formula: —S (═O) 2 —, a formula: —N (R 2 ) — A group represented by the formula: -CR 2 = CR 2- , a group represented by the formula: -CR 2 = N- or a group represented by the formula: -N = N- The polymer compound according to claim 13, wherein R 2 represents a hydrogen atom or a substituent.
  15.  Xが、硫黄原子である、請求項13に記載の高分子化合物。 The polymer compound according to claim 13, wherein X 1 is a sulfur atom.
  16.  X及びXが、式:=C(R)-で表される基である、請求項13に記載の高分子化合物。 The polymer compound according to claim 13, wherein X 2 and X 3 are a group represented by the formula: = C (R 1 )-.
  17.  さらに式(II)で表される繰り返し単位を含み、該式(II)で表される繰り返し単位が前記式(I-1)で表される繰り返し単位と結合している、請求項13に記載の高分子化合物。
     =C(R)-   (II)
    〔式中、Rは、水素原子又は置換基を表す。〕
    14. The repeating unit represented by formula (II), wherein the repeating unit represented by formula (II) is bonded to the repeating unit represented by formula (I-1). High molecular compound.
    = C (R 3 )-(II)
    [Wherein R 3 represents a hydrogen atom or a substituent. ]
  18.  Arが、置換基を有していてもよいジケトピロロピロールジイル基である、請求項13に記載の高分子化合物。 The polymer compound according to claim 13, wherein Ar 1 is a diketopyrrolopyrrole diyl group which may have a substituent.
  19.  さらに置換基を有していてもよいチオフェンジイル基を繰り返し単位として含む、請求項13に記載の高分子化合物。 Furthermore, the high molecular compound of Claim 13 which contains the thiophenediyl group which may have a substituent as a repeating unit.
  20.  吸収波長端が、600nm以上である、請求項13に記載の高分子化合物。 The polymer compound according to claim 13, wherein the absorption wavelength end is 600 nm or more.
  21.  最高被占軌道のエネルギーレベルが、-4.5eV以下である、請求項13に記載の高分子化合物。 The polymer compound according to claim 13, wherein the energy level of the highest occupied orbit is -4.5 eV or less.
  22.  式(III)で表される基と置換スタンニル基とを含有する化合物。
    Figure JPOXMLDOC01-appb-C000005
    〔式中、Xは、硫黄原子、酸素原子又は2価の基を表す。X及びXは、それぞれ独立に、式:=C(R)-で表される基又は窒素原子を表す。Rは、水素原子又は置換基を表す。X及びXが式:=C(R)-で表される基である場合、X中のRに含まれる原子とX中のRに含まれる原子とが結合して環状構造を形成してもよい。〕
    A compound containing a group represented by the formula (III) and a substituted stannyl group.
    Figure JPOXMLDOC01-appb-C000005
    [Wherein, X 4 represents a sulfur atom, an oxygen atom or a divalent group. X 5 and X 6 each independently represent a group represented by the formula: ═C (R 1 ) — or a nitrogen atom. R 1 represents a hydrogen atom or a substituent. When X 5 and X 6 are a group represented by the formula: ═C (R 1 ) —, an atom contained in R 1 in X 5 is bonded to an atom contained in R 1 in X 6 An annular structure may be formed. ]
  23.  Xが、硫黄原子、酸素原子、式:-S(=O)-で表される基、式:-S(=O)-で表される基、式:-N(R)-で表される基、式:-CR=CR-で表される基、式:-CR=N-で表される基又は式:-N=N-で表される基を表し、該Rが水素原子又は置換基を表す、請求項22に記載の化合物。 X 4 is a sulfur atom, an oxygen atom, a group represented by the formula: —S (═O) —, a group represented by the formula: —S (═O) 2 —, a formula: —N (R 2 ) — A group represented by the formula: -CR 2 = CR 2- , a group represented by the formula: -CR 2 = N- or a group represented by the formula: -N = N- The compound according to claim 22, wherein R 2 represents a hydrogen atom or a substituent.
  24.  Xが、硫黄原子である、請求項22に記載の化合物。 The compound according to claim 22, wherein X 4 is a sulfur atom.
  25.  X及びXが、式:=C(R)-で表される基である、請求項22~24のいずれか一項に記載の化合物。 The compound according to any one of claims 22 to 24, wherein X 5 and X 6 are a group represented by the formula: = C (R 1 )-.
  26.  さらに式(IV)で表される基を含み、該式(IV)で表される基が前記式(III)で表される基と結合している、請求項22に記載の化合物。
     =C(R)-   (IV)
    〔式中、Rは、水素原子又は置換基を表す。〕
    The compound according to claim 22, further comprising a group represented by the formula (IV), wherein the group represented by the formula (IV) is bonded to the group represented by the formula (III).
    = C (R 4 )-(IV)
    [Wherein, R 4 represents a hydrogen atom or a substituent. ]
  27.  置換スタンニル基を2個含有する、請求項22に記載の化合物。 23. A compound according to claim 22 containing two substituted stannyl groups.
  28.  置換スタンニル基が、式(V)で表される基である、請求項22に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    〔式中、Rは、アルキル基を表す。3個あるRは同一であっても相異なってもよい。〕
    The compound according to claim 22, wherein the substituted stannyl group is a group represented by formula (V).
    Figure JPOXMLDOC01-appb-C000006
    [Wherein R 5 represents an alkyl group. Three R 5 may be the same or different. ]
  29.  さらに、チオフェン環を含有する、請求項22に記載の化合物。 The compound according to claim 22, further comprising a thiophene ring.
PCT/JP2012/073934 2011-09-30 2012-09-19 Photoelectric conversion element WO2013047293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011216631 2011-09-30
JP2011-216631 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047293A1 true WO2013047293A1 (en) 2013-04-04

Family

ID=47995325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073934 WO2013047293A1 (en) 2011-09-30 2012-09-19 Photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP2013084919A (en)
WO (1) WO2013047293A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360397A (en) * 2013-07-11 2013-10-23 华南理工大学 Bithienyl pyrrolopyrroledione-naphthyl conjugated derivative as well as preparation method and application thereof
EP3901192A4 (en) * 2018-12-19 2022-03-16 Soken Chemical & Engineering Co., Ltd. Conductive polymer composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000678A1 (en) * 1985-07-12 1987-01-29 Secretary Of State For Defence In Her Britannic Ma Electrically conducting polymers
JPS63125513A (en) * 1986-09-08 1988-05-28 ハネウエル・インコーポレーテツド Electrically active polymer and its production
JPH05117270A (en) * 1990-08-29 1993-05-14 Wacker Chemie Gmbh New arylmethylols, process for manufacturing same and use of same
JPH07228650A (en) * 1994-02-22 1995-08-29 Unitika Ltd Polymer for electroluminescent element
JPH1048678A (en) * 1996-03-06 1998-02-20 Basf Ag Nonlinear optical material
WO1999039395A1 (en) * 1998-02-02 1999-08-05 Uniax Corporation Organic diodes with switchable photosensitivity
JP2001151870A (en) * 1999-11-24 2001-06-05 Kokusai Kiban Zairyo Kenkyusho:Kk Electric conductive polymer and photocell by using the same
JP2010031157A (en) * 2008-07-29 2010-02-12 Univ Of Tsukuba Magnetically and optically active polythiophene derivative and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000678A1 (en) * 1985-07-12 1987-01-29 Secretary Of State For Defence In Her Britannic Ma Electrically conducting polymers
JPS63125513A (en) * 1986-09-08 1988-05-28 ハネウエル・インコーポレーテツド Electrically active polymer and its production
JPH05117270A (en) * 1990-08-29 1993-05-14 Wacker Chemie Gmbh New arylmethylols, process for manufacturing same and use of same
JPH07228650A (en) * 1994-02-22 1995-08-29 Unitika Ltd Polymer for electroluminescent element
JPH1048678A (en) * 1996-03-06 1998-02-20 Basf Ag Nonlinear optical material
WO1999039395A1 (en) * 1998-02-02 1999-08-05 Uniax Corporation Organic diodes with switchable photosensitivity
JP2001151870A (en) * 1999-11-24 2001-06-05 Kokusai Kiban Zairyo Kenkyusho:Kk Electric conductive polymer and photocell by using the same
JP2010031157A (en) * 2008-07-29 2010-02-12 Univ Of Tsukuba Magnetically and optically active polythiophene derivative and method for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BADRUZ ZAMAN ET AL.: "A new simple synthesis of poly(thiophene-methine)s", CHEMICAL COMMUNICATIONS (CAMBRIDGE, UNITED KINGDOM), no. 33, 2005, pages 4187 - 4189, XP003030967 *
R. B. ABDELKARIM ET AL.: "Synthesis and properties of polythiophène benzylidene and their photovoltaic applications", MATERIALS SCIENCES AND APPLICATION, vol. 2, no. ISS.8, August 2011 (2011-08-01), pages 1014 - 1021, XP003030968 *
R. KIEBOOMS ET AL: "Synthesis and Characterisation of Poly(isothianaphthene methine)", SYNTHETIC METALS, vol. 101, no. 1-3, May 1999 (1999-05-01), pages 40 - 43, XP003030966 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360397A (en) * 2013-07-11 2013-10-23 华南理工大学 Bithienyl pyrrolopyrroledione-naphthyl conjugated derivative as well as preparation method and application thereof
CN103360397B (en) * 2013-07-11 2016-03-02 华南理工大学 Dithienyl pyrrolo-pyrrole-dione-naphthyl conjugate derivative and its preparation method and application
EP3901192A4 (en) * 2018-12-19 2022-03-16 Soken Chemical & Engineering Co., Ltd. Conductive polymer composition
US11773276B2 (en) 2018-12-19 2023-10-03 Soken Chemical & Engineering Co., Ltd. Conductive polymer composition

Also Published As

Publication number Publication date
JP2013084919A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5720179B2 (en) High molecular compound
JP5720178B2 (en) High molecular compound
JP5720180B2 (en) Photoelectric conversion element
US20120205593A1 (en) Polymeric compound and electronic element
JP5740836B2 (en) Photoelectric conversion element
WO2012050070A1 (en) High molecular compound and organic photoelectric conversion element using same
JP5906803B2 (en) Organic photoelectric conversion element material and method for producing organic photoelectric conversion element
US20110127515A1 (en) Photoelectric conversion element
WO2012070390A1 (en) Organic photoelectric conversion element
JP2013237828A (en) Method for producing nitrogen-containing compound
WO2011052725A1 (en) Polymeric compound
WO2013183549A1 (en) Composition and electronic element using same
JP2012186462A (en) Manufacturing method of organic photoelectric conversion element
JP2015220331A (en) Photoelectric conversion element
JP5639783B2 (en) Photoelectric conversion element
JP2015180621A (en) compound
WO2013047293A1 (en) Photoelectric conversion element
JP5740823B2 (en) Compound and device using the same
WO2012090971A1 (en) Photoelectric conversion element and composition used in same
JP2013207252A (en) Photoelectric conversion element
WO2011148900A1 (en) Polymer compound and photoelectric conversion element using the same
JP5884423B2 (en) Polymer compound and organic photoelectric conversion device using the same
WO2011158831A1 (en) Process for production of high-molecular compounds
JP2013004722A (en) Photoelectric conversion element
JP2011165789A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834898

Country of ref document: EP

Kind code of ref document: A1