WO2013046381A1 - Vehicle control apparatus - Google Patents

Vehicle control apparatus Download PDF

Info

Publication number
WO2013046381A1
WO2013046381A1 PCT/JP2011/072290 JP2011072290W WO2013046381A1 WO 2013046381 A1 WO2013046381 A1 WO 2013046381A1 JP 2011072290 W JP2011072290 W JP 2011072290W WO 2013046381 A1 WO2013046381 A1 WO 2013046381A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control
vehicle speed
information
deceleration
Prior art date
Application number
PCT/JP2011/072290
Other languages
French (fr)
Japanese (ja)
Inventor
種甲 金
浅原 則己
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/072290 priority Critical patent/WO2013046381A1/en
Publication of WO2013046381A1 publication Critical patent/WO2013046381A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a vehicle control device.
  • coasting is carried out by driving the vehicle with inertia by interrupting the power transmission between the engine and drive wheels according to the shape of the road or the driver's operation when the vehicle is traveling.
  • the technique to do is known (for example, patent document 1).
  • deceleration assist control (upshift prohibition or forced downshift) that assists deceleration based on the state of the vehicle when the driver wants to decelerate rapidly, such as when the accelerator is suddenly closed
  • deceleration assist control upshift prohibition or forced downshift
  • inertial running control described in Patent Document 1 and the like and the deceleration assist control described in Patent Document 2 are similar in implementation conditions such as an accelerator off state, for example. May not be able to select a control suitable for the situation.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a vehicle control device that can suppress a driver's uncomfortable feeling while driving a vehicle and can improve fuel efficiency.
  • a vehicle control device shifts and outputs an engine, a clutch that transmits or cuts off power between the engine and drive wheels, and power from the engine.
  • An automatic transmission mechanism wherein there is no acceleration / deceleration request to the vehicle during traveling, and power is transmitted between the engine and the drive wheels by engagement of the clutch.
  • decelerating assist control for executing the control, or by disengaging the clutch to cut off the power transmission between the engine and the driving wheel By decelerating assist control for executing the control, or by disengaging the clutch to cut off the power transmission between the engine and the driving wheel, Wherein the implementing the coasting to run the serial vehicle by selecting one of the coasting control can be implemented.
  • the driving environment information includes gradient information related to a gradient of a road on which the vehicle travels
  • the vehicle control device includes a determination map associated with the vehicle speed and the gradient information. It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertial running control using the determination map based on the current vehicle speed and gradient information of the vehicle.
  • the driving environment information includes a plurality of information including the gradient information, and the fuel cut control selected based on a current vehicle speed of the vehicle and each of the plurality of information. , If any one of the deceleration assist control and the inertial running control is the same, the control method is executed, and based on the current vehicle speed of the vehicle and each of the plurality of pieces of information When any one of the selected fuel cut control, deceleration assist control, and inertial running control is not the same, it is preferable to execute the fuel cut control.
  • the driving environment information includes corner information related to a corner where the vehicle travels
  • the vehicle control device includes a determination map associated with the vehicle speed and the corner information, and the determination It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertia running control based on the current vehicle speed and corner information of the vehicle using a map.
  • the driving environment information includes steering angle information related to a steering angle of the vehicle
  • the vehicle control apparatus includes a determination map associated with the vehicle speed and the steering angle information, It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertial running control based on the current vehicle speed and steering angle information of the vehicle using the determination map.
  • the driving environment information includes accelerator operation information related to an accelerator operation of the vehicle
  • the vehicle control device includes a determination map associated with the vehicle speed and the accelerator operation information, It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertial traveling control based on the current vehicle speed and accelerator operation information of the vehicle using the determination map.
  • the driving environment information includes stop position information related to a stop position of the travel destination of the vehicle, and the vehicle control device uses a determination map associated with the vehicle speed and the stop position information. It is preferable that any one of the fuel cut control, the deceleration assist control, or the inertia traveling control is selected based on the current vehicle speed and stop position information of the vehicle using the determination map.
  • the driving environment information includes inter-vehicle information related to an inter-vehicle distance between the vehicle and a preceding vehicle
  • the vehicle control device includes a determination map associated with the vehicle speed and the inter-vehicle information. It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertial traveling control based on the current vehicle speed and the inter-vehicle distance information of the vehicle using the determination map.
  • the vehicle control device includes inertial traveling control that can improve fuel efficiency, deceleration assist control that can improve drivability, and conventional fuel cut control in consideration of the current vehicle speed and driving environment information of the vehicle. Any one can be appropriately selected and executed. As a result, for example, coasting control with low deceleration is performed when the driver's intention to decelerate is strong, and conversely, deceleration assist control with high deceleration is performed when the driver's intention to decelerate is weak. As a result, it is possible to prevent the driver from feeling uncomfortable while driving the vehicle and to improve fuel efficiency.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a determination map MP1 used by the gradient requirement determination unit in FIG.
  • FIG. 3 is a diagram illustrating an example of a determination map MP2 used by the turning requirement determination unit in FIG.
  • FIG. 4 is a diagram illustrating an example of a determination map MP2 ′ used by the turning requirement determination unit in FIG.
  • FIG. 5 is a diagram illustrating an example of a determination map MP3-1 used by the steering requirement determination unit in FIG.
  • FIG. 6 is a diagram illustrating an example of a determination map MP3-2 used by the steering requirement determination unit in FIG.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a determination map MP1 used by the gradient requirement determination unit in FIG.
  • FIG. 3 is a diagram illustrating an example
  • FIG. 7 is a diagram illustrating an example of a determination map MP4 used by the accelerator requirement determination unit in FIG.
  • FIG. 8 is a diagram illustrating an example of a determination map MP5 used by the stop position requirement determination unit in FIG.
  • FIG. 9 is a diagram illustrating an example of setting of the F / C deceleration G fc and the coasting deceleration G n used for calculating the F / C travelable distance L fc1 and the coasting travelable distance L n1 in FIG. is there.
  • FIG. 10 is a diagram illustrating an example of setting of the coasting permission distance margin L o1 in FIG. 8.
  • FIG. 11 is a diagram showing a comparison between the present embodiment and the conventional fuel cut control during the movement to the stop position.
  • FIG. 12 is a diagram illustrating an example of a determination map MP6 used by the inter-vehicle requirement determination unit in FIG.
  • FIG. 13 is a diagram illustrating an example of setting of the coasting permission distance margin L o2 in FIG. 12.
  • FIG. 14 is a diagram showing an example of setting of the inter-vehicle distance correction coefficient ⁇ L used for calculating the distance L2 from the preceding vehicle in FIG.
  • FIG. 15 is a flowchart of deceleration means arbitration control performed by the vehicle control apparatus according to the present embodiment.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a vehicle control device according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating an example of a determination map MP1 used by a gradient requirement determination unit 11 in FIG.
  • FIG. 3 is a diagram showing an example of the determination map MP2 used by the turning requirement determination unit 12 in FIG. 1
  • FIG. 4 shows a determination map MP2 ′ used by the turning requirement determination unit 12 in FIG.
  • FIG. 5 is a diagram illustrating an example of a determination map MP3-1 used by the steering requirement determination unit 13 in FIG. 1
  • FIG. 6 is a diagram illustrating the steering requirement determination unit 13 in FIG. FIG.
  • FIG. 7 is a diagram illustrating an example of the determination map MP3-2 used
  • FIG. 7 is a diagram illustrating an example of the determination map MP4 used by the accelerator requirement determination unit 14 in FIG. 1
  • FIG. Used by stop position requirement determination unit 15 Is a diagram showing an example of a determination map MP5, 9, F / C deceleration G fc and coasting used for calculating the F / C travelable distance L fc1 and coasting distance L n1 in FIG. 8
  • FIG. 10 is a diagram illustrating an example of the setting of the deceleration Gn
  • FIG. 10 is a diagram illustrating an example of the setting of the coasting permission distance margin L o1 in FIG. 8
  • FIG. 11 is a diagram during the movement to the stop position.
  • FIG. 11 is a diagram during the movement to the stop position.
  • FIG. 12 is a diagram showing a comparison between the embodiment and conventional fuel cut control.
  • FIG. 12 is a diagram illustrating an example of a determination map MP6 used by the inter-vehicle requirement determination unit 16 in FIG. 1
  • FIG. 14 is a diagram illustrating an example of setting of the coasting permitted distance margin L o2 in FIG. 14, and
  • FIG. 14 is a diagram illustrating an example of setting of the inter-vehicle distance correction coefficient ⁇ L used for calculating the distance L2 from the preceding vehicle in FIG. It is.
  • the vehicle control device of this embodiment is mounted on a vehicle 1.
  • the vehicle 1 includes an engine 2, a transmission 3, and drive wheels 4.
  • the engine 2 is an internal combustion engine that is a driving source for driving the vehicle 1, and the driving force is controlled according to the fuel injection amount.
  • the transmission 3 forms a power transmission mechanism that transmits the driving force generated by the engine 2 to the driving wheel 4 side.
  • the drive wheels 4 are rotated by the driving force of the engine 2 transmitted via the transmission 3 and can travel forward or backward in the vehicle 1.
  • the transmission 3 is provided with a clutch 5 that is connected to the rotating shaft of the engine 2 so as to be freely connected and disconnected.
  • the clutch 5 is, for example, a friction engagement type clutch device, which connects the engine 2 and the drive wheel 4 when engaged, transmits the driving force of the engine 2 to the drive wheel 4 side, and separates both when released. Transmission of driving force from the engine 2 to the driving wheel 4 side can be cut off.
  • the transmission 3 is further provided with an automatic transmission mechanism 6.
  • the automatic transmission mechanism 6 is an automatic transmission that automatically changes the transmission gear ratio (gear stage, gear stage) according to the traveling state of the vehicle 1.
  • a stepped automatic type such as a planetary gear type or a parallel spur gear type is used.
  • Transmission (AT) semi-automatic transmission such as dual clutch transmission (DCT), multi-mode manual transmission (MMT), sequential manual transmission (SMT), continuously variable transmission (CVT) such as belt type or toroidal type, etc. Automatic transmission can be applied.
  • Each part of the vehicle 1 such as the engine 2 and the transmission 3 (clutch 5 and automatic transmission mechanism 6) is controlled by an ECU 10 (Electronic Control Unit) based on information from various sensors in the vehicle.
  • ECU 10 Electronic Control Unit
  • the ECU 10 interrupts power transmission between the engine 2 and the drive wheels 4 and makes the vehicle 1 travel by inertia when there is no acceleration / deceleration request to the vehicle 1 during traveling.
  • the coasting control specifically includes at least one of free-run control and N coasting control.
  • the free-run control and the N coasting control are travel controls that cause the vehicle 1 to travel by disengaging the transmission of power between the engine 2 and the drive wheels 4 by disengaging the clutch 5, respectively. Is to execute.
  • Free run control is control in which the vehicle 1 travels while the clutch 5 is released and the engine 2 is stopped. In free-run control, fuel consumption can be improved by stopping fuel consumption in the engine 2.
  • the free-run control is not limited to when the vehicle 1 travels at a reduced speed or stops in response to the driver's braking operation (braking operation), but actively stops the operation of the engine 2 and executes idling stop.
  • N coasting control is to drive the vehicle 1 by releasing the clutch 5 while the engine 2 is operating.
  • the engine brake does not act, so the traveling load can be reduced and the fuel consumption can be improved. Further, since the engine 2 remains rotating, the acceleration response is excellent when returning from the N coasting control.
  • the ECU 10 of the present embodiment can execute “deceleration assist control” that provides (assist) deceleration according to the traveling state of the vehicle such as the traveling environment of the vehicle and the driving operation of the driver. It is comprised so that it can improve.
  • the deceleration assist control specifically includes control for stopping fuel injection to the engine 2 during driving and stopping the engine, and prohibiting upshifting of the gear stage of the automatic transmission mechanism 6. Control for performing a forced downshift, and so on.
  • upshift prohibited means control that maintains the reduction ratio at that time, and “forced downshift”.
  • control means a control for continuously changing the reduction ratio in a direction in which the engine brake increases.
  • the ECU 10 of the present embodiment is also configured to perform “fuel cut control” for stopping fuel injection to the engine 2 during traveling, and to improve fuel consumption.
  • the coasting control, deceleration assist control, and fuel cut control described above are generally executed when no acceleration request is made, such as when the accelerator is off.
  • the execution conditions of each control are determined with respect to, for example, the brake operation state, the vehicle speed, the battery charge amount, the gradient, and the like.
  • the ECU 10 includes an accelerator opening sensor 21, a brake sensor 22, a shift position sensor 23, a vehicle speed sensor 24, a gradient sensor 25, a lateral acceleration sensor 26, a steering angle sensor 27, an inter-vehicle sensor 28, an infrastructure information acquisition device 29, an engine 2 and a transmission. 3 (clutch 5 and automatic transmission mechanism 6).
  • Accelerator opening sensor 21 detects the accelerator opening proportional to the amount of operation of the accelerator pedal.
  • the brake sensor 22 detects the operation amount with respect to the brake pedal and the presence or absence of the brake operation.
  • the operation amount with respect to the brake pedal is, for example, a pedal stroke of the brake pedal or a pedaling force input to the brake pedal.
  • the presence or absence of a brake operation can be detected by, for example, a switch connected to a brake pedal.
  • the shift position sensor 23 detects a shift position corresponding to the position of the shift lever.
  • the vehicle speed sensor 24 detects the traveling speed of the vehicle 1.
  • the vehicle speed sensor 24 can detect the vehicle speed based on, for example, the rotational speed of each wheel of the vehicle 1.
  • the gradient sensor 25 detects the gradient of the road on which the vehicle 1 travels.
  • the gradient sensor 25 can detect or estimate the gradient of the road surface based on, for example, the inclination of the vehicle 1 in the front-rear direction.
  • the lateral acceleration sensor 26 detects lateral acceleration (lateral G) acting on the vehicle 1.
  • the steering angle sensor 27 detects the steering angle of the steering wheel operated by the driver.
  • the steering angle sensor 27 is attached to a steering shaft, for example.
  • the inter-vehicle sensor 28 detects an inter-vehicle distance from another vehicle traveling in front of the vehicle 1 using, for example, millimeter wave radar or ultrasonic waves.
  • the infrastructure information acquisition device 29 acquires infrastructure information (ambient information) around the vehicle 1 that can be acquired by cooperating with the infrastructure.
  • the infrastructure information acquisition device 29 is, for example, a device that transmits / receives various information to / from the road-to-vehicle communication device of the vehicle 1 from a transmission / reception device such as an optical beacon installed on the roadside, a GPS device, a navigation device, a vehicle-to-vehicle communication device, VICS (Vehicle Information and Communication System: Road traffic information communication system) Consists of various devices such as devices that receive information from the center.
  • a transmission / reception device such as an optical beacon installed on the roadside, a GPS device, a navigation device, a vehicle-to-vehicle communication device, VICS (Vehicle Information and Communication System: Road traffic information communication system) Consists of various devices such as devices that receive information from the center.
  • VICS Vehicle Information and Communication System: Road traffic information communication system
  • the infrastructure information acquisition device 29 acquires, as infrastructure information, for example, road information of a road on which the vehicle 1 travels, signal information related to a traffic light ahead of the vehicle 1 in the traveling direction, and the like.
  • the road information typically includes speed limit information on a road on which the vehicle 1 is traveling, stop line position information on an intersection, and the like.
  • the signal information typically includes signal cycle information such as the lighting cycle of the traffic light, the yellow signal, and the red signal, and signal change timing.
  • the infrastructure information acquisition device 29 can acquire information such as the vehicle speed of other vehicles around the vehicle 1.
  • ECU 10 acquires information related to the driving state of the vehicle 1 (the driving environment and the driving operation of the driver) based on the input information from the vehicle, and based on these information, the inertia driving control, deceleration assist control described above, or One of the fuel cut controls is selected and executed.
  • the ECU 10 includes a gradient requirement determination unit 11, a turning requirement determination unit 12, a steering requirement determination unit 13, an accelerator requirement determination unit 14, a stop position requirement determination unit 15, and an inter-vehicle requirement determination unit.
  • the deceleration means arbitration unit 17 the fuel injection control unit 18, the clutch control unit 19, and the shift control unit 20 are configured to realize each function.
  • the gradient requirement determination unit 11 performs inertial traveling control based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the gradient (gradient information) of the road on which the vehicle is detected detected by the gradient sensor 25. , One of the deceleration assist control and the fuel cut control is selected.
  • the gradient requirement determination unit 11 includes a determination map MP1 illustrated in FIG. 2 for selecting this control method.
  • a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with vehicle speed and gradient information.
  • the determination map MP1 in FIG. 2 shows the vehicle speed on the horizontal axis and the gradient on the vertical axis.
  • the positive area on the vertical axis represents the uphill slope
  • the negative area (downward in FIG. 2) represents the downhill slope.
  • the vertical axis value is 0, it represents a flat road. It represents a steep upslope (as it progresses upward in FIG. 2), and it represents a steep downslope as it is negative and its absolute value is large (going downward in FIG. 2). .
  • two boundary lines L 11 and L 12 are provided in a region where the vertical axis (gradient) is negative, that is, a region having a downward slope.
  • Boundary L 11 is the vertical axis than the boundary line L 12 (gradient) is arranged at a position (in FIG. 2 below) greater in the negative direction. Then, when plotted on the determination map MP1 based on the current vehicle speed and the gradient information, if the plot position is below the boundary line L 11 is selected deceleration assist control, border L 11 and border L 12 fuel cut (F / C) control when there between are selected, is configured to coasting control is selected if located above the boundary line L 12 and.
  • dashed control line L 13 shown in determination map MP1 at each vehicle speed, in the case of executing the coasting control, constant speed running line representing the slope the vehicle speed of the vehicle 1 becomes constant.
  • dashed control line L 14 at each vehicle speed, when the fuel-cut control is executed, a constant speed running line representing the slope the vehicle speed of the vehicle 1 becomes constant.
  • the slope is arranged in a negative region, that is, a downward slope region, and on the constant speed running lines L 13 and L 14 , the vehicle 1 receives in the downward direction. Since gravity is in balance with the air resistance and rolling resistance received by the vehicle 1 during traveling and the acceleration is zero, the vehicle speed is constant during inertial traveling control or fuel cut control.
  • the constant speed running lines L 13 and L 14 have a tendency that the gradient of the vertical axis increases in the negative direction as the vehicle speed of the horizontal axis increases, that is, the downward gradient becomes steeper. Further, since the fuel cut control is large deceleration affected engine braking than the coasting control, towards the constant speed running line L 14 of the fuel cut control, compared to the constant speed running line L 13 coasting control The position is large in the negative direction. That is, at the same vehicle speed, the downward gradient that is constant when the fuel cut control is performed is steeper than the downward gradient that is constant when the inertial traveling control is performed.
  • the boundary line L 11 to isolate the deceleration assist control and the fuel cut control is arranged from a constant speed travel line L 14 of the fuel-cut control under (steep side). That is, in this embodiment, when the fuel cut control is performed, the fuel cut control is selected until the gradient in which the acceleration of the predetermined value or more is generated in the downward direction. On the other hand, when the gradient becomes steeper as the acceleration of the predetermined value or more is generated. The deceleration assist control with a large deceleration is selected, and the acceleration of the vehicle 1 is suppressed to make it difficult to give the driver a fear.
  • the boundary line L 12 to isolate the fuel cut control and the coasting control is provided slightly below a certain speed running line L 13 coasting control. That is, in this embodiment, the inertial traveling control is selected in a range (gradual acceleration region, shaded portion in FIG. 2) up to a gradient that gradually accelerates when inertial traveling control is performed. Furthermore, as shown in FIG. 2, moderate acceleration region where the coasting control is selected, Yuki decreases as the horizontal axis in FIG. 2 (vehicle speed) is advanced from the low-speed side to the high-speed side, the boundary line L 12 is constant It is configured to asymptotic to the speed traveling line L 13.
  • the allowable range of acceleration for selecting inertial traveling control is increased as the vehicle speed is low, and the allowable value of acceleration for selecting inertial traveling control is decreased as the vehicle speed is increased.
  • Setting the slow acceleration area in this way increases the driver's fear of acceleration as the vehicle speed increases, so as the vehicle speed increases, the acceleration to switch from inertial running control to fuel cut control is reduced and the vehicle is traveling down This is to suppress the driver's fear and anxiety caused by acceleration of the vehicle.
  • the upper further provided borders L 15 More constant speed running line L 13 coasting control, configured not to perform the coasting control above this boundary line L 15.
  • the boundary line L 15 has a vertical axis gradient that increases in the negative direction as the vehicle speed on the horizontal axis increases, so that the inertial running control can be limited. That is, the downward gradient that permits the execution of inertial running control tends to be steep. This is because if inertial running control is performed at a high load, the frequency of re-acceleration increases in order to adjust the vehicle speed, and the driver feels busy, so the occurrence of such a busy feeling is suppressed. . Fuel cut control is selected above the boundary line L 15.
  • the gradient requirement determination unit 11 uses the gradient information of the travel destination before the vehicle 1 enters the gradient.
  • the control method may be selected based on the determination map MP1.
  • the gradient requirement determination unit 11 selects the control method using the determination map MP1 in this way, the gradient requirement determination unit 11 outputs a determination signal corresponding to the selected control method.
  • the determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
  • the turning requirement determination unit 12 performs inertial traveling control, deceleration assist control, or fuel cut control based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and corner information regarding the corner where the vehicle 1 travels. Select one of the control methods. Specifically, the corner information is a lateral acceleration (lateral G) acting on the vehicle 1 detected by the lateral acceleration sensor 26.
  • lateral G lateral acceleration
  • the turning requirement determination unit 12 includes a determination map MP2 illustrated in FIG. 3 in order to select this control method.
  • a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the lateral G (corner information).
  • the determination map MP2 in FIG. 3 shows the vehicle speed on the horizontal axis and the horizontal G on the vertical axis. As the value of the vertical axis increases (in the upward direction in FIG. 3), the lateral G acting on the traveling vehicle 1 increases, and the corner turning radius (corner R) where the vehicle 1 is currently traveling decreases. This means that the curve is steep.
  • boundary line L 21 and L 22 are provided.
  • the boundary line L 21 is arranged at a position (upward in FIG. 3) having a larger vertical axis (horizontal G) than the boundary line L 22 . Then, when plotted on the determination map MP2 based on the current vehicle speed and lateral G, if the plot position is above the boundary line L 21 is selected deceleration assist control, borderline L 21 and border L 22 fuel cut (F / C) control when there between are selected, is configured to coasting control is selected if there from the lower boundary line L 22 and.
  • the boundary line L 21 that separates the deceleration assist control and the fuel cut control is, for example, an upper limit value (for example, 0.5 G) of the lateral G that does not give the driver a sense of incongruity when the fuel cut control is performed during cornering. Is set according to the vehicle speed, and this upper limit value is connected.
  • the lateral G is larger than the boundary line L 21 is the upper limit value, by selecting the greater deceleration assist control deceleration as compared with the fuel cut control, the fear and discomfort during cornering the driver It is configured to make it difficult to give.
  • the boundary line L 22 that separates the fuel cut control and the inertia traveling control is, for example, an upper limit value of the lateral G in a range that does not give the driver a sense of incongruity even when inertia traveling control with small deceleration is performed during corner traveling (for example, 0). .2G) is set according to the vehicle speed, and this upper limit value is connected.
  • the border L 22 smaller than gentle corner is the upper limit by selecting the coasting control, and is configured to be able to improve fuel consumption.
  • boundary lines L 21 and L 22 gradually decrease the value on the vertical axis (horizontal G) as the horizontal axis (vehicle speed) increases in order to improve turning stability at high vehicle speeds.
  • the boundary lines L 21 and L 22 may have a constant value on the vertical axis (horizontal G) regardless of the vehicle speed.
  • the turning requirement determination unit 12 can acquire information about a corner where the vehicle 1 is traveling, for example, using the infrastructure information acquisition device 29, specifically, corner R (corner turning radius), It is also possible to adopt a configuration in which a corner R that can determine corner information more quickly and with higher accuracy than the horizontal G is used instead of the horizontal G to select a control method.
  • the turning requirement determination unit 12 uses a determination map MP2 ′ illustrated in FIG. 4 to select a control method.
  • a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the corner R.
  • Figure determination map MP2 ' is 4, based on (1), determination map MP2 and substantially similar concerning the lateral G in FIG. 3, so that it is possible to select the control method, two boundary lines L 23, it is obtained by setting the L 24. Then, when plotted on the determination map MP2 'based on the current vehicle speed and corner R, if the plot position is below the boundary line L 23 is selected deceleration assist control, the boundary line L 23 and the boundary line L If there between 24 are selected fuel cut (F / C) control is configured to coasting control is selected if located above the boundary line L 24.
  • the boundary line L 23 that separates the deceleration assist control and the fuel cut control is a range that does not give the driver a sense of incongruity when the fuel cut control is performed during cornering, like the boundary line L 21 in FIG.
  • the value of the corner R that becomes the upper limit value (for example, 0.5 G) of the horizontal G is set according to the vehicle speed and is connected.
  • the boundary line L 23 tends to increase the corner R as the vehicle speed increases on the horizontal axis.
  • the value of the corner R that becomes the upper limit value (for example, 0.2 G) of the lateral G of the range not to be given is set according to the vehicle speed and is connected.
  • the boundary line L 24 also has a tendency for the corner R to increase as the vehicle speed on the horizontal axis increases.
  • the corner information of the travel destination is determined before the turning requirement determination unit 12 enters the corner.
  • the control method may be selected using the determination map MP2 or the determination map MP2 ′ based on the above.
  • the turning requirement determination unit 12 selects the control method using the determination map MP2 or the determination map MP2 ′ as described above, the turning requirement determination unit 12 outputs a determination signal corresponding to the selected control method.
  • the determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
  • the steering requirement determination unit 13 performs inertial traveling control, deceleration assist control, or fuel cut based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the steering angle information detected by the steering angle sensor 27. Select one of the control methods.
  • the steering requirement determination unit 13 includes a determination map MP3-1 illustrated in FIG. 5 in order to select this control method.
  • a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the steering angle.
  • represents the steering angle
  • n represents the steering gear ratio
  • V x represents the vehicle speed
  • kh represents the stability factor
  • L represents the vehicle wheel base
  • G y represents the lateral G.
  • the determination map MP3-1 in FIG. 5 is based on the equation (2), and two boundary lines L 31 are selected so that the control method can be selected in substantially the same manner as the determination map MP2 regarding the lateral G in FIG. , L 32 is set. Then, when plotted on the determination map MP3-1 based on the current vehicle speed the steering angle, the deceleration assist control is selected when the plot position is above the boundary line L 31, the boundary line L 31 and border If there between L 32 is selected fuel cut (F / C) control is configured to coasting control is selected if there from the lower boundary line L 32.
  • the boundary line L 31 that separates the deceleration assist control and the fuel cut control is a range that does not give the driver a sense of incongruity when the fuel cut control is performed during cornering, as with the boundary line L 21 in FIG.
  • a steering angle value for traveling a corner at an upper limit value (for example, 0.5 G) is set according to the vehicle speed and connected.
  • the boundary line L 31 occurs in response to an increase in the vehicle speed on the horizontal axis, the steering angle tends to decrease asymptotically.
  • the boundary line L 32 that separates the fuel cut control and the inertia traveling control makes the driver feel uncomfortable even when the inertia traveling control with a small deceleration is performed during corner traveling, similarly to the boundary line L 22 in FIG.
  • a steering angle value for driving a corner at an upper limit value (for example, 0.2 G) of the lateral G in a range not to be given is set according to the vehicle speed and connected.
  • the boundary line L 32 is also in response to an increase in the vehicle speed on the horizontal axis, the steering angle tends to decrease asymptotically.
  • inertial running control is performed at a gentle corner with a small steering angle
  • deceleration assist control is performed at a sharp corner with a large steering angle
  • fuel is used at an intermediate corner. Cut control can be selected.
  • the steering requirement determination unit 13 is shown in FIG. 6 in order to further determine whether or not the inertial traveling control can be performed when the inertial traveling control is selected by the determination map MP3-1 in FIG. A determination map MP3-2 is provided.
  • the horizontal axis indicates the steering angle
  • the vertical axis indicates the steering angular velocity.
  • the steering angular velocity is calculated based on the steering angle information detected by the steering angle sensor 27.
  • boundary L 33 is provided. Then, when plotted on the determination map MP3-2 based on the steering angular velocity and the current steering angle, the application of the coasting control is permitted when the plot position is below the boundary line L 33, whereas, the plot position when in the above the boundary line L 33 is such that the application of the coasting control is not permitted (such as a coasting unapplied) is constructed.
  • the boundary line L 33 for applicability of inertial traveling control tends to monotonically decrease the steering angular velocity as the steering angle increases.
  • the lower the steering angle the higher the upper limit of the steering angular speed at which the application of inertial traveling control can be permitted, and the higher the steering angle, the smaller the upper limit of the steering angular speed at which the application of inertial traveling control can be permitted. .
  • This is because it is necessary to further improve the turning stability as the sudden steering operation with a larger operation amount (steering angle) is performed, so that the inertial running control is further suppressed. If the application of inertial running control is not permitted by the determination map MP3-2, fuel cut control can be selected instead.
  • the steering requirement determination unit 13 When the steering requirement determination unit 13 selects the control method using the determination map MP3-1 and the determination map MP3-2 as described above, the steering requirement determination unit 13 outputs a determination signal corresponding to the selected control method.
  • the determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
  • the accelerator requirement determination unit 14 Based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the accelerator operation information detected by the accelerator opening sensor 21, the accelerator requirement determination unit 14 performs inertial running control, deceleration assist control, or fuel. Select one of the cutting control methods.
  • the accelerator operation information is specifically an accelerator return speed indicating a speed at which the accelerator pedal is returned, and is calculated based on the accelerator opening detected by the accelerator opening sensor 21.
  • the accelerator requirement determination unit 14 includes a determination map MP4 illustrated in FIG. 7 for selection of this control method.
  • a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the accelerator return speed (accelerator operation information).
  • the horizontal axis indicates the vehicle speed
  • the vertical axis indicates the accelerator return speed.
  • the boundary line L 41 is arranged at a position (upward in FIG. 7) having a larger vertical axis (accelerator return speed) than the boundary line L 42 . Then, when plotted on the determination map MP4 based on the current vehicle speed and the accelerator return speed, deceleration assist control is selected when the plot position is above the boundary line L 41, the boundary line L 41 and the boundary line L If located between the 42 is selected fuel cut (F / C) control is configured to coasting control is selected if there from the lower boundary line L 42.
  • fuel cut (F / C) control is configured to coasting control is selected if there from the lower boundary line L 42.
  • the boundary line L 41 that separates the deceleration assist control and the fuel cut control is a deceleration having a large deceleration compared to the fuel cut control when the accelerator return speed is extremely high and the accelerator pedal is suddenly returned by the driver. It is set so that the acceleration can be quickly reduced by selecting the assist control.
  • the boundary line L 41 increases as the vehicle speed on the horizontal axis increases so that the value of the accelerator return speed that switches to the deceleration assist control increases as the vehicle speed increases because the deceleration received by the aerodynamic force increases as the vehicle speed increases.
  • the accelerator return speed on the vertical axis also tends to increase.
  • the boundary line L 42 that separates the fuel cut control and the inertial traveling control is smaller than the fuel cut control in a situation where the accelerator return speed is extremely low and it is unlikely that the driver's accelerator operation includes the intention of deceleration. It is set so that fuel efficiency can be improved by selecting coasting control with a low speed. Boundary L 42, since the normal running deceleration frequency the lower the vehicle speed is often limits the scope of coasting, since the aerodynamic by deceleration the higher the vehicle speed is increased, so to expand the scope of coasting loosen the threshold Be placed.
  • the boundary line L 42 has a horizontal axis so that the range of the accelerator return speed for selecting the inertial travel control increases as the vehicle speed increases because sufficient deceleration can be obtained by aerodynamics even when the vehicle speed is high. As the vehicle speed increases, the accelerator return speed on the vertical axis also tends to increase.
  • deceleration assist control can be selected, and fuel cut control can be selected for deceleration intention in the middle.
  • Accelerator requirement determination unit 14 outputs a determination signal corresponding to the selected control method when the control method is selected using determination map MP4.
  • the determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
  • the stop position requirement determination unit 15 is one of inertial travel control, deceleration assist control, or fuel cut control based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the stop position information of the travel destination. Select the control method.
  • the stop position information is specifically the distance to an object (stop position) that stops the vehicle 1 such as a temporary stop line, a signal, a railroad crossing, a toll booth, a destination, etc. It is calculated based on the infrastructure information acquired by the information acquisition device 29.
  • the stop position requirement determination unit 15 includes a determination map MP5 illustrated in FIG. 8 for selection of this control method.
  • a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the distance (L1) to the stop position.
  • the horizontal axis indicates the vehicle speed
  • the vertical axis indicates the distance (L1) to the stop position.
  • two boundary lines L 51 and L 52 are provided. Boundary L 51 is arranged ordinate boundary line L 52 is smaller position (distance L1 to the stop position) (FIG. 8 below). Then, when plotted on the determination map MP5 based on the distance between the current vehicle speed to the stop position (L1), the deceleration assist control is selected when the plot position is below the boundary line L 51, the boundary line L If there between 51 and border L 52 is selected fuel cut (F / C) control is configured to coasting control is selected if located above the boundary line L 52.
  • the boundary line L 51 that separates the deceleration assist control and the fuel cut control indicates the F / C travelable distance L fc1 that indicates the distance that the vehicle 1 can travel (until it stops) when the fuel cut control is performed. It is set at the vehicle speed and connected.
  • the F / C travelable distance L fc1 can be expressed by the following equation (3).
  • V x represents the current vehicle speed of the vehicle 1
  • G fc represents the deceleration (F / C deceleration) of the vehicle 1 during the fuel cut control.
  • the F / C deceleration G fc changes according to the vehicle speed. For example, as shown in FIG. 9, the F / C deceleration G fc tends to increase in the negative direction as the vehicle speed increases, that is, the deceleration tends to increase.
  • Such boundary line L 51 is the distance L1 to the stop position, is shorter than the F / C DTE L fc1, select the larger deceleration assist control deceleration as compared with the fuel cut control, It is set so that acceleration can be reduced quickly. Further, the boundary line L 51 increases the vehicle speed on the horizontal axis so that the value of the distance L1 for switching to the deceleration assist control increases as the vehicle speed increases because the deceleration received by the aerodynamic force increases as the vehicle speed increases. Along with this, the distance L1 on the vertical axis also tends to increase.
  • control line L n1 indicated by a broken line in FIG. 8 indicates the coasting travelable distance L n1 indicating the distance that the vehicle 1 can travel (until it stops) when coasting control is performed at each vehicle speed. It is.
  • the coasting travelable distance L n1 can be expressed by the following equation (4).
  • G n represents the deceleration (coast deceleration) of the vehicle 1 during the coasting control.
  • the coasting deceleration G n changes according to the vehicle speed. For example, as shown in FIG. 9, the coasting deceleration G n increases in the negative direction as the vehicle speed increases. Tend to increase. Further, the coasting deceleration Gn tends to be smaller than the F / C deceleration Gfc over the entire vehicle speed.
  • the boundary line L 52 that separates the fuel cut control and the coasting control can be expressed by the following formula (5) as a coasting allowed distance margin L o1 subtracted from the coasting travelable distance L n1 of the formula (4). it can.
  • L 52 L n1 -L o1 (5)
  • the coasting permission distance margin L o1 is a parameter for increasing the ratio of selecting coasting control in the determination map MP5 of FIG. 8 and is changed according to the size of the distance L1 to the stop position. Can do. More specifically, as shown in FIG. 10, the coasting permission distance margin L o1 is set to be smaller as the distance L1 to the stop position is smaller and larger as the distance L1 is larger. This is because, when the stop position is far, even if the vehicle speed is high, the necessity for deceleration is still low, so it is easy to select inertial traveling control with low deceleration to improve fuel efficiency.
  • the coasting allowance distance margin L o1 is L n1 so that the boundary line L 52 that separates the fuel cut control and the inertia traveling control is always disposed above the boundary line L 51 that separates the deceleration assist control and the fuel cut control.
  • -L fc1 is the upper limit.
  • Such a boundary line L 52 has a low necessity for deceleration when the distance L1 to the stop position is longer than the distance (L n1 -L o1 ) shown in the above equation (5).
  • the inertial running control having a smaller deceleration than that of the vehicle is selected so that the fuel consumption can be improved.
  • the boundary line L 52 has a vertical axis as the vehicle speed on the horizontal axis increases so that the distance L1 at which inertial traveling control can be selected decreases (closes) as the vehicle speed decreases, and increases (distant) as the vehicle speed increases.
  • the distance L1 also tends to increase.
  • the inertial running is performed.
  • deceleration assist control can be selected, and fuel cut control can be selected at an intermediate distance.
  • FIG. 11 shows the travel distance of the vehicle 1 on the horizontal axis and the distance to the stop position as L1.
  • the vertical axis represents the vehicle speed of the vehicle 1.
  • the vehicle 1 is controlled during the period until the vehicle 1 stops at the stop position. This represents the relationship between the vehicle speed and the travel distance at that time.
  • coasting control with low deceleration is performed in a situation where the distance to the stop position is long, and the distance to the stop position is predetermined.
  • Fuel cut control is executed after approaching the value, and the vehicle has reached the stop position without consuming fuel.
  • fuel consumption can be suppressed by this embodiment.
  • the stop position requirement determination unit 15 selects the control method using the determination map MP5 as described above, the stop position requirement determination unit 15 outputs a determination signal corresponding to the selected control method.
  • the determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
  • the inter-vehicle requirement determining unit 16 Based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the inter-vehicle distance information with the preceding vehicle, the inter-vehicle requirement determining unit 16 performs any of inertial running control, deceleration assist control, or fuel cut control. Select a control method.
  • the inter-vehicle requirement determining unit 16 includes a determination map MP6 illustrated in FIG. 12 for selecting this control method.
  • the control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the distance (L2) between the vehicle speed and the preceding vehicle (front vehicle). Has been.
  • the horizontal axis indicates the vehicle speed
  • the vertical axis indicates the distance (L2) from the front vehicle.
  • two boundary lines L 61 and L 62 are provided.
  • Boundary L 61 is arranged ordinate boundary line L 62 is smaller position (distance L2 between the preceding vehicle) (in FIG. 12 below).
  • the deceleration assist control is selected when the plot position is below the boundary line L 61, the boundary line L If located between the 61 and the boundary line L 62 is selected fuel cut (F / C) control is configured to coasting control is selected if located above the boundary line L 62.
  • a boundary line L 61 that separates the deceleration assist control and the fuel cut control indicates a distance that must be secured before the vehicle 1 decelerates by this control and reaches the same speed as the preceding vehicle when the fuel cut control is performed.
  • / C required deceleration speed L fc2 is set at each vehicle speed and connected.
  • the required F / C deceleration distance L fc2 can be expressed by the following equation (6).
  • V 1 represents the current vehicle speed of the vehicle 1
  • V 2 represents the vehicle speed of the preceding vehicle
  • G fc represents the deceleration (F / C deceleration) of the vehicle 1 during the fuel cut control.
  • the F / C deceleration G fc changes according to the vehicle speed, and increases in the negative direction as the vehicle speed increases, that is, the deceleration tends to increase. There is.
  • Such boundary line L 61 is the distance L2 between the preceding vehicle is shorter than the F / C deceleration required distance L fc2, select the larger deceleration assist control deceleration as compared with the fuel cut control, It is set so that acceleration can be reduced quickly.
  • the boundary line L 61 since the deceleration experienced by the vehicle by aerodynamic higher the vehicle speed is increased, so that the value of the distance L2 switching to deceleration assist control as the vehicle speed increases increases, an increase in the vehicle speed on the horizontal axis Accordingly, the distance L2 on the vertical axis also tends to increase.
  • a control line L n2 indicated by a broken line in FIG. 12 indicates a distance to be secured until the vehicle 1 decelerates by this control when the inertial traveling control is performed at each vehicle speed and reaches the same speed as the preceding vehicle.
  • the coasting deceleration required distance Ln2 is shown.
  • the coasting deceleration required distance L n2 can be expressed by the following equation (7).
  • Gn represents the deceleration (coasting deceleration) of the vehicle 1 during the coasting control.
  • the coasting deceleration G n changes according to the vehicle speed, and increases in the negative direction as the vehicle speed increases, as described with reference to FIG. That is, the deceleration tends to increase. Further, the coasting deceleration Gn tends to be smaller than the F / C deceleration Gfc over the entire vehicle speed.
  • the boundary line L 62 that separates the fuel cut control and the coasting control is expressed by the following equation (8) as the coasting deceleration required distance L n2 of the equation (7) is subtracted from the coasting permitted distance margin L o2. Can do.
  • L 62 L n2 ⁇ L o2 (8)
  • the coasting permission distance margin L o2 is a parameter for increasing the rate of selecting coasting control in the determination map MP6 of FIG. 12, similarly to the coasting permission distance margin L o1 shown in FIG. It can be changed according to the size of the distance L2 with the preceding vehicle. More specifically, as shown in FIG. 13, the coasting permission distance margin L o2 is set to be smaller as the distance L2 from the preceding vehicle is smaller and larger as the distance L2 is larger. This is because, when the distance to the front vehicle is far, even if the vehicle speed is high, the necessity for deceleration is still low, so it is easy to select inertial traveling control with low deceleration to improve fuel efficiency.
  • the coasting allowance distance margin L o2 is L n2 so that the boundary line L 62 that separates the fuel cut control and the coasting control is always disposed above the boundary line L 61 that separates the deceleration assist control and the fuel cut control.
  • -L fc2 is the upper limit.
  • Such boundary line L 62 is the distance L2 between the preceding vehicle, when the (8) longer than the distance (L n2 -L o2) shown by the formula, because of the low need for deceleration fuel-cut control
  • the inertial running control having a smaller deceleration than that of the vehicle is selected so that the fuel consumption can be improved.
  • the boundary line L 62 is the vehicle speed is smaller the coasting control reduce the distance L2 as a selectable (near) and, as the vehicle speed is larger greater (distance) so as the vertical axis with an increase in the vehicle speed on the horizontal axis
  • the distance L2 also tends to increase.
  • the inertial traveling is performed.
  • deceleration assist control can be selected, and fuel cut control can be selected at an intermediate distance.
  • the “distance L2 with the preceding vehicle” used in the determination map MP6 in FIG. 12 is obtained by adding the inter-vehicle distance correction coefficient ⁇ L to the distance information Ls detected by the inter-vehicle sensor 28. Yes, it can be expressed by the following equation (9).
  • L2 Ls + ⁇ L (9)
  • the inter-vehicle distance correction coefficient ⁇ L is a parameter set based on the relative speed with the preceding vehicle. For example, as shown in FIG. 14, the inter-vehicle distance correction coefficient ⁇ L increases monotonously in the positive direction as the relative speed increases in the positive direction (the vehicle ahead is faster than the vehicle 1 and the distance from the front vehicle tends to be far). When the relative speed is 0, it is 0, and as the relative speed increases in the negative direction (the vehicle ahead is slower than the vehicle 1 and the distance from the front vehicle tends to be closer), it increases monotonously in the negative direction. Can be set.
  • the relative speed with the preceding vehicle is calculated based on, for example, the vehicle speed information of the preceding vehicle acquired by the infrastructure information acquisition device 29, the vehicle speed information of the vehicle 1 detected by the vehicle speed sensor 24, and the like.
  • the determination criterion for selecting the inertia traveling control in the determination map MP6 is adjusted according to the relative speed with the preceding vehicle. can do. For example, even when the actual distance information Ls detected by the inter-vehicle sensor 28 is the same, if the relative speed with the front vehicle is large in the positive direction, Since the distance L2 increases, inertial traveling control is easily selected. On the other hand, when the relative speed with the front vehicle is large in the negative direction, the distance L2 with the front vehicle calculated by the equation (9) decreases, so that it is difficult to select inertial traveling control.
  • the inter-vehicle requirement determination unit 16 When the control method is selected using the determination map MP6 in this manner, the inter-vehicle requirement determination unit 16 outputs a determination signal corresponding to the selected control method.
  • the determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
  • the deceleration means arbitration unit 17 is based on determination signals from the gradient requirement determination unit 11, the turning requirement determination unit 12, the steering requirement determination unit 13, the accelerator requirement determination unit 14, the stop position requirement determination unit 15, and the inter-vehicle requirement determination unit 16.
  • a control method to be executed is determined from among the three control methods (inertial travel control, fuel cut control, and deceleration assist control). More specifically, the deceleration means arbitration unit 17 is input from the gradient requirement determination unit 11, the turning requirement determination unit 12, the steering requirement determination unit 13, the accelerator requirement determination unit 14, the stop position requirement determination unit 15, and the inter-vehicle requirement determination unit 16.
  • the contents of the determination signals are compared, and if all the determination signals are “ID1”, it is decided to execute inertial running control, and if all the determination signals are “ID3”, the deceleration assist is determined. It is determined to execute the control, and in other cases (all determination signals are ID2 or the determination signals do not match), it is determined to execute the fuel cut control.
  • the fuel injection control unit 18 controls the fuel injection amount of the engine 2. In the present embodiment, control for stopping the fuel injection to the engine 2 is performed in accordance with a control command from the deceleration means arbitration unit 17.
  • the clutch control unit 19 controls the release / engagement operation of the clutch 5 of the transmission 3.
  • the clutch 5 is disengaged in response to a control command from the deceleration means arbitration unit 17.
  • the shift control unit 20 controls the shift operation of the automatic transmission mechanism 6 of the transmission 3.
  • the deceleration means arbitrating unit 17 upshift inhibition or forced downshift control of the automatic transmission mechanism 6 is performed.
  • the ECU 10 is physically an electronic circuit mainly composed of a known microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an interface, and the like.
  • the function of each part of the ECU 10 shown in FIG. 1 is to operate various devices in the vehicle 1 under the control of the CPU by loading an application program held in the ROM into the RAM and executing it by the CPU. It is realized by reading and writing data in and ROM.
  • the ECU 10 is not limited to the functions of the above-described units, and includes various other functions used as the ECU of the vehicle 1.
  • the ECU 10 includes a plurality of engines such as an engine ECU that controls the engine 2, a T / M-ECU that controls the transmission 3, and an S & S-ECU that performs inertial running (S & S (start and stop) control).
  • a configuration including an ECU may also be used.
  • At least the engine 2, the transmission 3 (particularly the clutch 5 and the automatic transmission mechanism 6), and the ECU 10 function as the vehicle control device according to the present embodiment. To do.
  • FIG. 15 is a flowchart of deceleration means arbitration control performed by the vehicle control apparatus according to the present embodiment.
  • the ECU 10 controls the vehicle from an accelerator opening sensor 21, a brake sensor 22, a shift position sensor 23, a vehicle speed sensor 24, a gradient sensor 25, a lateral acceleration sensor 26, a steering angle sensor 27, an inter-vehicle sensor 28, an infrastructure information acquisition device 29, and the like.
  • S101 various pieces of information related to the driving state and the surrounding environment of 1 are acquired (S101)
  • S102 acquired information
  • the conditions for inertial running include, for example, that the current shift position of the vehicle 1 is in the D (drive) range, an accelerator off state in which no accelerator operation is performed, and a brake off in which no brake operation is performed. It is a state.
  • the inertia running condition is satisfied, the process proceeds to step S103. If the inertia running condition is not satisfied, the process returns to step S101.
  • the gradient requirement determining unit 11 subsequently performs control method selection determination based on the gradient requirement (S103). As described above, the gradient requirement determining unit 11 uses the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the gradient (gradient information) of the road on which the vehicle 1 is traveling detected by the gradient sensor 25. Based on the determination map MP1 of FIG. 2, one of the control methods of inertial traveling control, deceleration assist control, or fuel cut control is selected, and a determination signal (inertial traveling control ⁇ “ID1”, fuel cut control ⁇ “ID2”, deceleration assist control ⁇ “ID3”) is transmitted to the deceleration means arbitration unit 17.
  • the turning requirement determination unit 12 performs control method selection determination based on the turning requirement (S104). As described above, the turning requirement determination unit 12 detects the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the lateral acceleration (lateral G) acting on the vehicle 1 detected by the lateral acceleration sensor 26. 3 is selected using inertial running control, deceleration assist control, or fuel cut control using the determination map MP2 of FIG. 3, and the determination signal corresponding to the selected control method is decelerated by the deceleration means. To the unit 17.
  • the steering requirement determination unit 13 performs control method selection determination based on the steering requirement (S105). As described above, the steering requirement determination unit 13 determines the determination map shown in FIGS. 5 and 6 based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the steering angle information detected by the steering angle sensor 27. Using MP3-1 and MP3-2, a control method of inertial running control, deceleration assist control, or fuel cut control is selected, and a determination signal corresponding to the selected control method is sent to the deceleration means arbitration unit 17 Send.
  • the accelerator requirement determining unit 14 determines whether to select a control method based on the accelerator requirement (S106). As described above, the accelerator requirement determining unit 14 determines the determination map MP4 in FIG. 7 based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the accelerator return speed detected by the accelerator opening sensor 21. Is used to select any one of inertial running control, deceleration assist control, or fuel cut control, and a determination signal corresponding to the selected control method is transmitted to the deceleration means arbitration unit 17.
  • the stop position requirement determination unit 15 performs control method selection determination based on the stop position requirement (S107). As described above, the stop position requirement determination unit 15 uses the determination map MP5 of FIG. 8 based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the stop position information of the travel destination, and the inertia. A control method of travel control, deceleration assist control, or fuel cut control is selected, and a determination signal corresponding to the selected control method is transmitted to the deceleration means arbitration unit 17.
  • the selection method of the control method is determined by the inter-vehicle requirement determining unit 16 based on the inter-vehicle requirement (S108).
  • the inter-vehicle requirement determining unit 16 uses the determination map MP6 of FIG. 12 based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the inter-vehicle information with the preceding vehicle, and performs inertia traveling.
  • a control method of any one of control, deceleration assist control, or fuel cut control is selected, and a determination signal corresponding to the selected control method is transmitted to the deceleration means arbitrating unit 17.
  • the determination signals are “ID1” (S109).
  • step S109 if all the determination signals are not “ID1”, it is subsequently confirmed whether or not all the determination signals are “ID3” (S111). When all the determination signals are “ID3”, it is determined that all the determination units have selected the deceleration assist control, and therefore execution of the deceleration assist control is determined. Then, the shift control unit 20 executes deceleration assist control for prohibiting upshifting or forced downshifting of the automatic transmission mechanism 6 (S112).
  • step S111 If all the determination signals are not “ID3” in step S111, the fuel cut control is performed because all the determination units have selected the fuel cut control or the selection results of the determination units are inconsistent. Execution is determined. Then, the fuel injection control unit 18 performs fuel cut control for cutting the fuel injection of the engine 2 (S113).
  • the processes of the determination units in steps S103 to S108 may be appropriately changed in order, or only a part of them may be performed.
  • the deceleration means arbitration unit 17 performs the determination process of steps S109 and S111 using only the determination signal from the determination unit that has performed the process.
  • the vehicle control apparatus has no acceleration / deceleration request for the vehicle 1 during traveling, and power is transmitted between the engine 2 and the drive wheels 4 by the engagement of the clutch 5.
  • the current vehicle speed and driving environment information of the vehicle 1 (specifically, including gradient information, corner information, steering angle information, accelerator operation information, stop position information of the travel destination, and inter-vehicle information with the preceding vehicle)
  • Fuel cut control for stopping fuel injection to the engine 2 (2) Deceleration for stopping fuel injection to the engine 2 and prohibiting or downshifting the automatic transmission mechanism 6 Assist control, or (3)
  • Inertia travel control in which inertial travel is performed to disengage the clutch 5 to cut off the power transmission between the engine 2 and the drive wheels 4 and travel the vehicle 1 by inertia.
  • the in be implemented by selecting one.
  • any one of inertial traveling control that can improve fuel consumption, deceleration assist control that can improve drivability, and conventional fuel cut control Can be selected and executed as appropriate.
  • coasting control with low deceleration is performed when the driver's intention to decelerate is strong
  • deceleration assist control with high deceleration is performed when the driver's intention to decelerate is weak.
  • each functional block of the ECU 10 shown in FIG. 1 is merely illustrated for convenience of explanation, and may have other configurations as long as the same function can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

This vehicle control apparatus can selectively implement one of fuel cut control in which, when there is no acceleration/deceleration request to a vehicle (1) as the vehicle travels and in a state in which motive power is transmitted between an engine (2) and a drive wheel (4) by the engagement of a clutch (5), fuel injection into the engine (2) is terminated on the basis of the current vehicle speed of the vehicle (1) and operation environment information, deceleration assist control in which an upshift of an automatic transmission mechanism (6) is prohibited or a downshift is performed while fuel injection into the engine (2) is terminated, or coasting travel control implementing inertial travel in which the vehicle (1) is caused to travel by inertia by disengaging the clutch (5) such that the transmission of motive power between the engine (2) and the drive wheel (4) is terminated. Thus, a discomfort that the driver feels during the travel of the vehicle can be suppressed and fuel efficiency can be improved.

Description

車両制御装置Vehicle control device
 本発明は、車両制御装置に関する。 The present invention relates to a vehicle control device.
 従来の車両において、主に燃費の向上を目的として、車両の走行時に道路形状やドライバ操作などに応じて、エンジンと駆動輪との動力伝達を遮断し、惰性により車両を走行させる惰性走行を実施する技術が知られている(例えば特許文献1)。 In conventional vehicles, mainly for the purpose of improving fuel efficiency, coasting is carried out by driving the vehicle with inertia by interrupting the power transmission between the engine and drive wheels according to the shape of the road or the driver's operation when the vehicle is traveling. The technique to do is known (for example, patent document 1).
 一方、主にドライバビリティ向上を目的として、アクセル急閉時などドライバが急減速を望む場面において、車両の状態に基づいて減速度をアシストする減速度アシスト制御(アップシフト禁止または強制ダウンシフト)を実施する技術が知られている(例えば特許文献2)。 On the other hand, mainly for the purpose of improving drivability, deceleration assist control (upshift prohibition or forced downshift) that assists deceleration based on the state of the vehicle when the driver wants to decelerate rapidly, such as when the accelerator is suddenly closed The technique to implement is known (for example, patent document 2).
特開2011-79424号公報JP 2011-79424 A 特開2007-170444号公報JP 2007-170444 A
 ここで、特許文献1などに記載される従来の惰性走行を実施可能な車両では、車両の走行環境や運転操作によっては、惰性走行の実施時にドライバの減速意図とズレが生じてドライバに違和感や不安感を与える虞がある。このため、燃費向上に併せてドライバビリティを向上させる余地がある。 Here, in a vehicle capable of performing the conventional inertial running described in Patent Document 1 or the like, depending on the traveling environment or driving operation of the vehicle, the driver's intention to decelerate and shift when performing inertial running may cause the driver to feel uncomfortable. May cause anxiety. For this reason, there is room for improving drivability as fuel efficiency is improved.
 また、特許文献2などに記載される減速度アシスト制御では、この制御の実行中にドライバが急減速を望まない場面では、速度を維持するために高頻度のアクセルオン操作が行われるため、燃費の点で問題があった。 In addition, in the deceleration assist control described in Patent Document 2 and the like, in a scene where the driver does not want rapid deceleration during the execution of this control, the accelerator-on operation is frequently performed to maintain the speed. There was a problem in terms of.
 さらに、特許文献1などに記載される惰性走行制御と、特許文献2に記載される減速度アシスト制御とは、例えばアクセルオフ状態など実施条件が類似しているため、両者を併用しようとした場合には、状況に適合した制御を選択できない虞があった。 Furthermore, the inertial running control described in Patent Document 1 and the like and the deceleration assist control described in Patent Document 2 are similar in implementation conditions such as an accelerator off state, for example. May not be able to select a control suitable for the situation.
 本発明は、上記に鑑みてなされたものであって、車両走行中に運転者の違和感を抑制できると共に、燃費を向上することができる車両制御装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a vehicle control device that can suppress a driver's uncomfortable feeling while driving a vehicle and can improve fuel efficiency.
 上記課題を解決するために、本発明に係る車両制御装置は、エンジンと、前記エンジンと駆動輪との間での動力を伝達または遮断するクラッチと、前記エンジンからの動力を変速して出力する自動変速機構と、を備える車両制御装置であって、走行時に車両に対する加減速要求が無く、前記クラッチの係合により前記エンジンと前記駆動輪との間で動力が伝達される状態である場合に、前記車両の現在の車速及び運転環境情報に基づいて、前記エンジンへの燃料噴射を停止するフューエルカット制御、前記エンジンへの燃料噴射を停止すると共に、前記自動変速機構のアップシフト禁止またはダウンシフトを実行する減速度アシスト制御、または前記クラッチの係合を解除して前記エンジンと前記駆動輪との動力伝達を遮断し、惰性により前記車両を走行させる惰性走行を実施する惰性走行制御のいずれか1つを選択して実施可能であることを特徴とする。 In order to solve the above-described problems, a vehicle control device according to the present invention shifts and outputs an engine, a clutch that transmits or cuts off power between the engine and drive wheels, and power from the engine. An automatic transmission mechanism, wherein there is no acceleration / deceleration request to the vehicle during traveling, and power is transmitted between the engine and the drive wheels by engagement of the clutch. Fuel cut control for stopping fuel injection to the engine based on current vehicle speed and operating environment information of the vehicle, stopping fuel injection to the engine, and prohibiting upshifting or downshifting of the automatic transmission mechanism By decelerating assist control for executing the control, or by disengaging the clutch to cut off the power transmission between the engine and the driving wheel, Wherein the implementing the coasting to run the serial vehicle by selecting one of the coasting control can be implemented.
 また、上記の車両制御装置において、前記運転環境情報は、前記車両が走行する道路の勾配に関する勾配情報を含み、車両制御装置は、前記車速と前記勾配情報とに関連付けられた判定マップを備え、前記車両の現在の車速及び勾配情報に基づき、前記判定マップを用いて、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することが好ましい。 In the vehicle control device, the driving environment information includes gradient information related to a gradient of a road on which the vehicle travels, and the vehicle control device includes a determination map associated with the vehicle speed and the gradient information. It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertial running control using the determination map based on the current vehicle speed and gradient information of the vehicle.
 また、上記の車両制御装置において、前記運転環境情報は、前記勾配情報を含む複数の情報を含み、前記車両の現在の車速と、前記複数の情報のそれぞれとに基づき選択された前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つの制御手法が同一の場合には、該制御手法を実行し、前記車両の現在の車速と、前記複数の情報のそれぞれとに基づき選択された前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つの制御手法が非同一の場合には、前記フューエルカット制御を実行することが好ましい。 In the vehicle control device, the driving environment information includes a plurality of information including the gradient information, and the fuel cut control selected based on a current vehicle speed of the vehicle and each of the plurality of information. , If any one of the deceleration assist control and the inertial running control is the same, the control method is executed, and based on the current vehicle speed of the vehicle and each of the plurality of pieces of information When any one of the selected fuel cut control, deceleration assist control, and inertial running control is not the same, it is preferable to execute the fuel cut control.
 また、上記の車両制御装置において、前記運転環境情報は、前記車両が走行するコーナーに関するコーナー情報を含み、車両制御装置は、前記車速と前記コーナー情報とに関連付けられた判定マップを備え、前記判定マップを用いて、前記車両の現在の車速及びコーナー情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することが好ましい。 In the vehicle control device, the driving environment information includes corner information related to a corner where the vehicle travels, and the vehicle control device includes a determination map associated with the vehicle speed and the corner information, and the determination It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertia running control based on the current vehicle speed and corner information of the vehicle using a map.
 また、上記の車両制御装置において、前記運転環境情報は、前記車両の操舵角に関する操舵角情報を含み、車両制御装置は、前記車速と前記操舵角情報とに関連付けられた判定マップを備え、前記判定マップを用いて、前記車両の現在の車速及び操舵角情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することが好ましい。 In the vehicle control apparatus, the driving environment information includes steering angle information related to a steering angle of the vehicle, and the vehicle control apparatus includes a determination map associated with the vehicle speed and the steering angle information, It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertial running control based on the current vehicle speed and steering angle information of the vehicle using the determination map.
 また、上記の車両制御装置において、前記運転環境情報は、前記車両のアクセル操作に関するアクセル操作情報を含み、車両制御装置は、前記車速と前記アクセル操作情報とに関連付けられた判定マップを備え、前記判定マップを用いて、前記車両の現在の車速及びアクセル操作情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することが好ましい。 In the vehicle control device, the driving environment information includes accelerator operation information related to an accelerator operation of the vehicle, and the vehicle control device includes a determination map associated with the vehicle speed and the accelerator operation information, It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertial traveling control based on the current vehicle speed and accelerator operation information of the vehicle using the determination map.
 また、上記の車両制御装置において、前記運転環境情報は、前記車両の走行先の停止位置に関する停止位置情報を含み、車両制御装置は、前記車速と前記停止位置情報とに関連付けられた判定マップを備え、前記判定マップを用いて、前記車両の現在の車速及び停止位置情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することが好ましい。 In the vehicle control device, the driving environment information includes stop position information related to a stop position of the travel destination of the vehicle, and the vehicle control device uses a determination map associated with the vehicle speed and the stop position information. It is preferable that any one of the fuel cut control, the deceleration assist control, or the inertia traveling control is selected based on the current vehicle speed and stop position information of the vehicle using the determination map.
 また、上記の車両制御装置において、前記運転環境情報は、前記車両と前方車両との車間距離に関する車間情報を含み、車両制御装置は、前記車速と前記車間情報とに関連付けられた判定マップを備え、前記判定マップを用いて、前記車両の現在の車速及び車間情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することが好ましい。 In the vehicle control device, the driving environment information includes inter-vehicle information related to an inter-vehicle distance between the vehicle and a preceding vehicle, and the vehicle control device includes a determination map associated with the vehicle speed and the inter-vehicle information. It is preferable to select any one of the fuel cut control, the deceleration assist control, or the inertial traveling control based on the current vehicle speed and the inter-vehicle distance information of the vehicle using the determination map.
 本発明に係る車両制御装置は、車両の現在の車速及び運転環境情報を考慮して、燃費を向上できる惰性走行制御と、ドライバビリティを向上できる減速度アシスト制御と、従来のフューエルカット制御とのいずれかを適宜選択して実行することができる。これにより、例えば、ドライバの減速意図が強い場面で減速度の低い惰性走行制御が実施されたり、これと反対に、ドライバの減速意図が弱い場面で減速度の高い減速度アシスト制御が実施されたりする状況を回避することが可能となり、この結果、車両走行中に運転者の違和感を抑制できると共に、燃費を向上することができるという効果を奏する。 The vehicle control device according to the present invention includes inertial traveling control that can improve fuel efficiency, deceleration assist control that can improve drivability, and conventional fuel cut control in consideration of the current vehicle speed and driving environment information of the vehicle. Any one can be appropriately selected and executed. As a result, for example, coasting control with low deceleration is performed when the driver's intention to decelerate is strong, and conversely, deceleration assist control with high deceleration is performed when the driver's intention to decelerate is weak. As a result, it is possible to prevent the driver from feeling uncomfortable while driving the vehicle and to improve fuel efficiency.
図1は、本発明の一実施形態に係る車両制御装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a vehicle control apparatus according to an embodiment of the present invention. 図2は、図1中の勾配要件判定部により用いられる判定マップMP1の一例を示す図である。FIG. 2 is a diagram illustrating an example of a determination map MP1 used by the gradient requirement determination unit in FIG. 図3は、図1中の旋回要件判定部により用いられる判定マップMP2の一例を示す図である。FIG. 3 is a diagram illustrating an example of a determination map MP2 used by the turning requirement determination unit in FIG. 図4は、図1中の旋回要件判定部により用いられる判定マップMP2′の一例を示す図である。FIG. 4 is a diagram illustrating an example of a determination map MP2 ′ used by the turning requirement determination unit in FIG. 図5は、図1中の操舵要件判定部により用いられる判定マップMP3-1の一例を示す図である。FIG. 5 is a diagram illustrating an example of a determination map MP3-1 used by the steering requirement determination unit in FIG. 図6は、図1中の操舵要件判定部により用いられる判定マップMP3-2の一例を示す図である。FIG. 6 is a diagram illustrating an example of a determination map MP3-2 used by the steering requirement determination unit in FIG. 図7は、図1中のアクセル要件判定部により用いられる判定マップMP4の一例を示す図である。FIG. 7 is a diagram illustrating an example of a determination map MP4 used by the accelerator requirement determination unit in FIG. 図8は、図1中の停止位置要件判定部により用いられる判定マップMP5の一例を示す図である。FIG. 8 is a diagram illustrating an example of a determination map MP5 used by the stop position requirement determination unit in FIG. 図9は、図8中のF/C走行可能距離Lfc1及び惰行走行可能距離Ln1を算出するために用いるF/C減速度Gfc及び惰行減速度Gの設定の一例を示す図である。FIG. 9 is a diagram illustrating an example of setting of the F / C deceleration G fc and the coasting deceleration G n used for calculating the F / C travelable distance L fc1 and the coasting travelable distance L n1 in FIG. is there. 図10は、図8中の惰行許可距離マージンLo1の設定の一例を示す図である。FIG. 10 is a diagram illustrating an example of setting of the coasting permission distance margin L o1 in FIG. 8. 図11は、停止位置までの移動中における本実施形態と従来のフューエルカット制御との比較を示す図である。FIG. 11 is a diagram showing a comparison between the present embodiment and the conventional fuel cut control during the movement to the stop position. 図12は、図1中の車間要件判定部により用いられる判定マップMP6の一例を示す図である。FIG. 12 is a diagram illustrating an example of a determination map MP6 used by the inter-vehicle requirement determination unit in FIG. 図13は、図12中の惰行許可距離マージンLo2の設定の一例を示す図である。FIG. 13 is a diagram illustrating an example of setting of the coasting permission distance margin L o2 in FIG. 12. 図14は、図12中の前車との距離L2を算出するために用いる車間距離補正係数ΔLの設定の一例を示す図である。FIG. 14 is a diagram showing an example of setting of the inter-vehicle distance correction coefficient ΔL used for calculating the distance L2 from the preceding vehicle in FIG. 図15は、本実施形態に係る車両制御装置により実施される減速手段調停制御のフローチャートである。FIG. 15 is a flowchart of deceleration means arbitration control performed by the vehicle control apparatus according to the present embodiment.
 以下に、本発明に係る車両制御装置の実施形態を図面に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of a vehicle control device according to the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
 まず、図1~14を参照して、本発明の一実施形態に係る車両制御装置の構成について説明する。図1は、本発明の一実施形態に係る車両制御装置の概略構成を示すブロック図であり、図2は、図1中の勾配要件判定部11により用いられる判定マップMP1の一例を示す図であり、図3は、図1中の旋回要件判定部12により用いられる判定マップMP2の一例を示す図であり、図4は、図1中の旋回要件判定部12により用いられる判定マップMP2′の一例を示す図であり、図5は、図1中の操舵要件判定部13により用いられる判定マップMP3-1の一例を示す図であり、図6は、図1中の操舵要件判定部13により用いられる判定マップMP3-2の一例を示す図であり、図7は、図1中のアクセル要件判定部14により用いられる判定マップMP4の一例を示す図であり、図8は、図1中の停止位置要件判定部15により用いられる判定マップMP5の一例を示す図であり、図9は、図8中のF/C走行可能距離Lfc1及び惰行走行可能距離Ln1を算出するために用いるF/C減速度Gfc及び惰行減速度Gの設定の一例を示す図であり、図10は、図8中の惰行許可距離マージンLo1の設定の一例を示す図であり、図11は、停止位置までの移動中における本実施形態と従来のフューエルカット制御との比較を示す図であり、図12は、図1中の車間要件判定部16により用いられる判定マップMP6の一例を示す図であり、図13は、図12中の惰行許可距離マージンLo2の設定の一例を示す図であり、図14は、図12中の前車との距離L2を算出するために用いる車間距離補正係数ΔLの設定の一例を示す図である。 First, the configuration of a vehicle control device according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram illustrating a schematic configuration of a vehicle control device according to an embodiment of the present invention, and FIG. 2 is a diagram illustrating an example of a determination map MP1 used by a gradient requirement determination unit 11 in FIG. FIG. 3 is a diagram showing an example of the determination map MP2 used by the turning requirement determination unit 12 in FIG. 1, and FIG. 4 shows a determination map MP2 ′ used by the turning requirement determination unit 12 in FIG. FIG. 5 is a diagram illustrating an example of a determination map MP3-1 used by the steering requirement determination unit 13 in FIG. 1, and FIG. 6 is a diagram illustrating the steering requirement determination unit 13 in FIG. FIG. 7 is a diagram illustrating an example of the determination map MP3-2 used, FIG. 7 is a diagram illustrating an example of the determination map MP4 used by the accelerator requirement determination unit 14 in FIG. 1, and FIG. Used by stop position requirement determination unit 15 Is a diagram showing an example of a determination map MP5, 9, F / C deceleration G fc and coasting used for calculating the F / C travelable distance L fc1 and coasting distance L n1 in FIG. 8 FIG. 10 is a diagram illustrating an example of the setting of the deceleration Gn , FIG. 10 is a diagram illustrating an example of the setting of the coasting permission distance margin L o1 in FIG. 8, and FIG. 11 is a diagram during the movement to the stop position. FIG. 12 is a diagram showing a comparison between the embodiment and conventional fuel cut control. FIG. 12 is a diagram illustrating an example of a determination map MP6 used by the inter-vehicle requirement determination unit 16 in FIG. 1, and FIG. FIG. 14 is a diagram illustrating an example of setting of the coasting permitted distance margin L o2 in FIG. 14, and FIG. 14 is a diagram illustrating an example of setting of the inter-vehicle distance correction coefficient ΔL used for calculating the distance L2 from the preceding vehicle in FIG. It is.
 図1に示すように、本実施形態の車両制御装置は車両1に搭載される。この車両1は、エンジン2、トランスミッション3、及び駆動輪4を備える。エンジン2は、車両1の走行用駆動源である内燃機関であり、燃料噴射量に応じて駆動力が制御される。トランスミッション3は、エンジン2が発生した駆動力を駆動輪4側へ伝達する動力伝達機構をなす。駆動輪4は、トランスミッション3を介して伝達されるエンジン2の駆動力によって回転し、車両1を前進走行または後退走行することができる。 As shown in FIG. 1, the vehicle control device of this embodiment is mounted on a vehicle 1. The vehicle 1 includes an engine 2, a transmission 3, and drive wheels 4. The engine 2 is an internal combustion engine that is a driving source for driving the vehicle 1, and the driving force is controlled according to the fuel injection amount. The transmission 3 forms a power transmission mechanism that transmits the driving force generated by the engine 2 to the driving wheel 4 side. The drive wheels 4 are rotated by the driving force of the engine 2 transmitted via the transmission 3 and can travel forward or backward in the vehicle 1.
 また、トランスミッション3には、エンジン2の回転軸に対して断・接自在に接続されるクラッチ5が設けられている。このクラッチ5は、例えば摩擦係合式のクラッチ装置であり、係合時にはエンジン2と駆動輪4とを接続し、エンジン2の駆動力を駆動輪4側へ伝達し、開放時には両者を離間し、エンジン2から駆動輪4側への駆動力の伝達を遮断することができる。 Further, the transmission 3 is provided with a clutch 5 that is connected to the rotating shaft of the engine 2 so as to be freely connected and disconnected. The clutch 5 is, for example, a friction engagement type clutch device, which connects the engine 2 and the drive wheel 4 when engaged, transmits the driving force of the engine 2 to the drive wheel 4 side, and separates both when released. Transmission of driving force from the engine 2 to the driving wheel 4 side can be cut off.
 トランスミッション3には、さらに自動変速機構6が設けられている。自動変速機構6は、車両1の走行状態に応じて自動で変速比(変速段、ギヤ段)を変更する自動変速機であり、例えば遊星歯車式や平行平歯車式などの有段式のオートマチックトランスミッション(AT)や、デュアルクラッチトランスミッション(DCT)などのセミオートマチックトランスミッション、マルチモードマニュアルトランスミッション(MMT)、シーケンシャルマニュアルトランスミッション(SMT)、ベルト式またはトロイダル式などの無段変速機(CVT)等、種々の自動変速機を適用できる。 The transmission 3 is further provided with an automatic transmission mechanism 6. The automatic transmission mechanism 6 is an automatic transmission that automatically changes the transmission gear ratio (gear stage, gear stage) according to the traveling state of the vehicle 1. For example, a stepped automatic type such as a planetary gear type or a parallel spur gear type is used. Transmission (AT), semi-automatic transmission such as dual clutch transmission (DCT), multi-mode manual transmission (MMT), sequential manual transmission (SMT), continuously variable transmission (CVT) such as belt type or toroidal type, etc. Automatic transmission can be applied.
 エンジン2やトランスミッション3(クラッチ5、自動変速機構6)などの車両1の各部は、車両内の各種センサ類の情報に基づき、ECU10(Electronic Control Unit:電子制御ユニット)により制御される。 Each part of the vehicle 1 such as the engine 2 and the transmission 3 (clutch 5 and automatic transmission mechanism 6) is controlled by an ECU 10 (Electronic Control Unit) based on information from various sensors in the vehicle.
 特に本実施形態では、ECU10は、走行時に車両1に対する加減速要求が無い場合に、エンジン2と駆動輪4との間の動力伝達を遮断し、惰性により車両1を走行させる「惰性走行制御」を実行することができるよう構成されている。惰性走行制御は、具体的には、フリーラン制御及びN惰行制御の少なくとも一方を含むものである。フリーラン制御及びN惰行制御は、それぞれクラッチ5を開放してエンジン2と駆動輪4との動力の伝達を遮断して車両1を走行させる走行制御であり、惰性により車両1を走行させる惰性走行を実行するものである。 In particular, in the present embodiment, the ECU 10 interrupts power transmission between the engine 2 and the drive wheels 4 and makes the vehicle 1 travel by inertia when there is no acceleration / deceleration request to the vehicle 1 during traveling. Is configured to be able to run. The coasting control specifically includes at least one of free-run control and N coasting control. The free-run control and the N coasting control are travel controls that cause the vehicle 1 to travel by disengaging the transmission of power between the engine 2 and the drive wheels 4 by disengaging the clutch 5, respectively. Is to execute.
 フリーラン制御は、クラッチ5を開放し、かつエンジン2を停止したままで車両1を走行させる制御である。フリーラン制御では、エンジン2における燃料消費が停止することで、燃費の向上を図ることができる。なお、フリーラン制御は、運転者のブレーキ操作(制動操作)に伴った車両1の減速走行時や停車時に限らず、積極的にエンジン2の作動を停止してアイドリングストップを実行する。 Free run control is control in which the vehicle 1 travels while the clutch 5 is released and the engine 2 is stopped. In free-run control, fuel consumption can be improved by stopping fuel consumption in the engine 2. The free-run control is not limited to when the vehicle 1 travels at a reduced speed or stops in response to the driver's braking operation (braking operation), but actively stops the operation of the engine 2 and executes idling stop.
 N惰行制御は、エンジン2を運転したままでクラッチ5を開放して車両1を走行させるものである。N惰行制御では、エンジンブレーキが作用しなくなることから、走行負荷を低減して燃費の向上を図ることができる。また、エンジン2が回転したままであることから、N惰行制御からの復帰時における加速応答性に優れる。 N coasting control is to drive the vehicle 1 by releasing the clutch 5 while the engine 2 is operating. In the N coasting control, the engine brake does not act, so the traveling load can be reduced and the fuel consumption can be improved. Further, since the engine 2 remains rotating, the acceleration response is excellent when returning from the N coasting control.
 また、本実施形態のECU10は、車両の走行環境や運転者の運転操作など車両の走行状態に応じて減速度を付与(アシスト)する「減速度アシスト制御」を実行することができ、ドライバビリティを向上できるよう構成されている。本実施形態では、減速度アシスト制御は、具体的には、走行中にエンジン2への燃料噴射を中止してエンジンを停止すると共に、自動変速機構6のギヤ段のアップシフトを禁止する制御や、強制的なダウンシフトを実行する制御などを含むことができる。なお、自動変速機構6にCVTなどの無段式のタイプを適用した場合には、「アップシフト禁止」とは、その時点の減速比を維持する制御を意味するものとし、「強制ダウンシフト」とは、エンジンブレーキが増大する方向へ減速比を連続的に変更する制御を意味するものとする。 In addition, the ECU 10 of the present embodiment can execute “deceleration assist control” that provides (assist) deceleration according to the traveling state of the vehicle such as the traveling environment of the vehicle and the driving operation of the driver. It is comprised so that it can improve. In the present embodiment, the deceleration assist control specifically includes control for stopping fuel injection to the engine 2 during driving and stopping the engine, and prohibiting upshifting of the gear stage of the automatic transmission mechanism 6. Control for performing a forced downshift, and so on. When a continuously variable type such as CVT is applied to the automatic transmission mechanism 6, “upshift prohibited” means control that maintains the reduction ratio at that time, and “forced downshift”. The term “control” means a control for continuously changing the reduction ratio in a direction in which the engine brake increases.
 また、本実施形態のECU10は、走行中にエンジン2への燃料噴射を停止する「フューエルカット制御」も実行することができ、燃費の向上を図ることができるよう構成されている。 Further, the ECU 10 of the present embodiment is also configured to perform “fuel cut control” for stopping fuel injection to the engine 2 during traveling, and to improve fuel consumption.
 上記の惰行走行制御、減速度アシスト制御、フューエルカット制御は、一般には、例えばアクセルOFFの場合など、加速要求がなされていない場合に実行される。各制御の実行条件は、例えば、ブレーキ操作状態、車速、バッテリ充電量、勾配等に関して定められている。 The coasting control, deceleration assist control, and fuel cut control described above are generally executed when no acceleration request is made, such as when the accelerator is off. The execution conditions of each control are determined with respect to, for example, the brake operation state, the vehicle speed, the battery charge amount, the gradient, and the like.
 ECU10は、アクセル開度センサ21、ブレーキセンサ22、シフトポジションセンサ23、車速センサ24、勾配センサ25、横加速度センサ26、操舵角センサ27、車間センサ28、インフラ情報取得装置29、エンジン2及びトランスミッション3(クラッチ5及び自動変速機構6)と接続されている。 The ECU 10 includes an accelerator opening sensor 21, a brake sensor 22, a shift position sensor 23, a vehicle speed sensor 24, a gradient sensor 25, a lateral acceleration sensor 26, a steering angle sensor 27, an inter-vehicle sensor 28, an infrastructure information acquisition device 29, an engine 2 and a transmission. 3 (clutch 5 and automatic transmission mechanism 6).
 アクセル開度センサ21は、アクセルペダルの操作量に比例するアクセル開度を検出する。 Accelerator opening sensor 21 detects the accelerator opening proportional to the amount of operation of the accelerator pedal.
 ブレーキセンサ22は、ブレーキペダルに対する操作量やブレーキ操作の有無を検出する。ブレーキペダルに対する操作量は、例えば、ブレーキペダルのペダルストロークやブレーキペダルに入力される踏力等である。また、ブレーキ操作の有無は、例えばブレーキペダルに接続されるスイッチによって検出することができる。 The brake sensor 22 detects the operation amount with respect to the brake pedal and the presence or absence of the brake operation. The operation amount with respect to the brake pedal is, for example, a pedal stroke of the brake pedal or a pedaling force input to the brake pedal. The presence or absence of a brake operation can be detected by, for example, a switch connected to a brake pedal.
 シフトポジションセンサ23は、シフトレバーの位置に応じたシフトポジションを検出する。車速センサ24は、車両1の走行速度を検出する。車速センサ24は、例えば車両1の各車輪の回転速度に基づいて車速を検出することができる。 The shift position sensor 23 detects a shift position corresponding to the position of the shift lever. The vehicle speed sensor 24 detects the traveling speed of the vehicle 1. The vehicle speed sensor 24 can detect the vehicle speed based on, for example, the rotational speed of each wheel of the vehicle 1.
 勾配センサ25は、車両1が走行する道路の勾配を検出する。勾配センサ25は、例えば、車両1の前後方向の傾きに基づいて、路面の勾配を検出あるいは推定することができる。横加速度センサ26は、車両1に作用している横加速度(横G)を検出する。 The gradient sensor 25 detects the gradient of the road on which the vehicle 1 travels. The gradient sensor 25 can detect or estimate the gradient of the road surface based on, for example, the inclination of the vehicle 1 in the front-rear direction. The lateral acceleration sensor 26 detects lateral acceleration (lateral G) acting on the vehicle 1.
 操舵角センサ27は、ドライバにより操作されたハンドルの操舵角を検出する。操舵角センサ27は例えばステアリングシャフトに取り付けられている。車間センサ28は、たとえばミリ波レーダーや超音波を利用して、車両1の前方を走行する他車両との車間距離を検出する。 The steering angle sensor 27 detects the steering angle of the steering wheel operated by the driver. The steering angle sensor 27 is attached to a steering shaft, for example. The inter-vehicle sensor 28 detects an inter-vehicle distance from another vehicle traveling in front of the vehicle 1 using, for example, millimeter wave radar or ultrasonic waves.
 インフラ情報取得装置29は、インフラストラクチャーと協調することで取得可能な車両1の周囲のインフラ情報(周囲情報)を取得するものである。インフラ情報取得装置29は、例えば、路側に設置された光ビーコン等の送受信機器から車両1の路車間通信機に各種情報を送受信する装置、GPS装置、ナビゲーション装置、車車間通信機器、VICS(Vehicle Information and Communication System:道路交通情報通信システム)センタなどからの情報を受信する装置など、種々の装置によって構成される。インフラ情報取得装置29は、インフラ情報として、例えば、車両1が走行する道路の道路情報や車両1の走行方向前方の信号機に関する信号情報等を取得する。道路情報は、典型的には、車両1が走行する道路の制限速度情報、交差点の停止線位置情報等を含む。信号情報は、典型的には、信号機の青信号、黄信号、赤信号の点灯サイクルや信号変化タイミング等の信号サイクル情報を含む。また、インフラ情報取得装置29は、車両1の周囲の他の車両の車速などの情報を取得することができる。 The infrastructure information acquisition device 29 acquires infrastructure information (ambient information) around the vehicle 1 that can be acquired by cooperating with the infrastructure. The infrastructure information acquisition device 29 is, for example, a device that transmits / receives various information to / from the road-to-vehicle communication device of the vehicle 1 from a transmission / reception device such as an optical beacon installed on the roadside, a GPS device, a navigation device, a vehicle-to-vehicle communication device, VICS (Vehicle Information and Communication System: Road traffic information communication system) Consists of various devices such as devices that receive information from the center. The infrastructure information acquisition device 29 acquires, as infrastructure information, for example, road information of a road on which the vehicle 1 travels, signal information related to a traffic light ahead of the vehicle 1 in the traveling direction, and the like. The road information typically includes speed limit information on a road on which the vehicle 1 is traveling, stop line position information on an intersection, and the like. The signal information typically includes signal cycle information such as the lighting cycle of the traffic light, the yellow signal, and the red signal, and signal change timing. The infrastructure information acquisition device 29 can acquire information such as the vehicle speed of other vehicles around the vehicle 1.
 本実施形態では、このようなアクセル開度センサ21、ブレーキセンサ22、シフトポジションセンサ23、車速センサ24、勾配センサ25、横加速度センサ26、操舵角センサ27、車間センサ28、インフラ情報取得装置29からの入力情報に基づき、ECU10が、車両1の走行状態(走行環境や運転者の運転操作)に関する情報を取得し、これらの情報に基づいて、上述の惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかを選択して実行するよう構成される。 In the present embodiment, such an accelerator opening sensor 21, brake sensor 22, shift position sensor 23, vehicle speed sensor 24, gradient sensor 25, lateral acceleration sensor 26, steering angle sensor 27, inter-vehicle sensor 28, and infrastructure information acquisition device 29 ECU 10 acquires information related to the driving state of the vehicle 1 (the driving environment and the driving operation of the driver) based on the input information from the vehicle, and based on these information, the inertia driving control, deceleration assist control described above, or One of the fuel cut controls is selected and executed.
 具体的には、ECU10は、図1に示すように、勾配要件判定部11、旋回要件判定部12、操舵要件判定部13、アクセル要件判定部14、停止位置要件判定部15、車間要件判定部16、減速手段調停部17、燃料噴射制御部18、クラッチ制御部19、変速制御部20の各機能を実現するよう構成されている。 Specifically, as shown in FIG. 1, the ECU 10 includes a gradient requirement determination unit 11, a turning requirement determination unit 12, a steering requirement determination unit 13, an accelerator requirement determination unit 14, a stop position requirement determination unit 15, and an inter-vehicle requirement determination unit. 16, the deceleration means arbitration unit 17, the fuel injection control unit 18, the clutch control unit 19, and the shift control unit 20 are configured to realize each function.
 勾配要件判定部11は、車速センサ24により検出される車両1の現在の車速と、勾配センサ25により検出される車両が走行している道路の勾配(勾配情報)とに基づいて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択する。本実施形態では、勾配要件判定部11は、この制御手法の選択のために、図2に例示する判定マップMP1を備える。図2の判定マップMP1では、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のうち選択すべき制御手法が、車速と勾配情報とに関連付けられて設定されている。 The gradient requirement determination unit 11 performs inertial traveling control based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the gradient (gradient information) of the road on which the vehicle is detected detected by the gradient sensor 25. , One of the deceleration assist control and the fuel cut control is selected. In the present embodiment, the gradient requirement determination unit 11 includes a determination map MP1 illustrated in FIG. 2 for selecting this control method. In the determination map MP1 of FIG. 2, a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with vehicle speed and gradient information.
 図2の判定マップMP1は、横軸に車速、縦軸に勾配を示している。縦軸の正領域は上り勾配、負領域(図2では下方)は下り勾配を表しており、縦軸の値が0である場合には平坦路を表し、正でありその絶対値が大きいほど(図2では上方向に進むほど)より急な上り勾配であることを表し、負でありその絶対値が大きいほど(図2では下方向に進むほど)より急な下り勾配であることを表す。 The determination map MP1 in FIG. 2 shows the vehicle speed on the horizontal axis and the gradient on the vertical axis. The positive area on the vertical axis represents the uphill slope, and the negative area (downward in FIG. 2) represents the downhill slope. When the vertical axis value is 0, it represents a flat road. It represents a steep upslope (as it progresses upward in FIG. 2), and it represents a steep downslope as it is negative and its absolute value is large (going downward in FIG. 2). .
 この判定マップMP1において、縦軸(勾配)が負の領域、すなわち下り勾配となる領域に2つの境界線L11,L12が設けられている。境界線L11は、境界線L12より縦軸(勾配)が負方向に大きい位置(図2では下方)に配置される。そして、現在の車速と勾配情報に基づき判定マップMP1にプロットしたときに、プロット位置が境界線L11より下方にある場合には減速度アシスト制御が選択され、境界線L11と境界線L12との間にある場合にはフューエルカット(F/C)制御が選択され、境界線L12より上方にある場合には惰性走行制御が選択されるよう構成されている。 In this determination map MP1, two boundary lines L 11 and L 12 are provided in a region where the vertical axis (gradient) is negative, that is, a region having a downward slope. Boundary L 11 is the vertical axis than the boundary line L 12 (gradient) is arranged at a position (in FIG. 2 below) greater in the negative direction. Then, when plotted on the determination map MP1 based on the current vehicle speed and the gradient information, if the plot position is below the boundary line L 11 is selected deceleration assist control, border L 11 and border L 12 fuel cut (F / C) control when there between are selected, is configured to coasting control is selected if located above the boundary line L 12 and.
 ここで、判定マップMP1に示される破線の制御線L13は、各車速において、惰性走行制御を実行した場合に、車両1の車速が一定となる勾配を表す一定速走行線である。同様に、破線の制御線L14は、各車速において、フューエルカット制御を実行した場合に、車両1の車速が一定となる勾配を表す一定速走行線である。これらの一定速走行線L13,L14上は、勾配が負の領域、すなわち下り勾配の領域に配置されており、一定速走行線L13,L14上では、車両1が下り方向へ受ける重力と、走行時に車両1が受ける空気抵抗や転がり抵抗とが釣り合った状態であり、加速度が0であるので、惰性走行制御またはフューエルカット制御の実施中には一定の車速となる。一定速走行線L13,L14は、横軸の車速が増大するほど、縦軸の勾配が負方向に増大する、すなわち下り勾配が急になる傾向にある。また、フューエルカット制御が惰性走行制御に比べてエンジンブレーキの影響を受け減速度が大きいので、フューエルカット制御の一定速走行線L14のほうが、惰性走行制御の一定速走行線L13に比べて負方向に大きい位置となる。すなわち、同一の車速において、フューエルカット制御を実施したときに一定速となる下り勾配は、惰性走行制御を実施したときに一定速となる下り勾配より急勾配となる。 Here, dashed control line L 13 shown in determination map MP1, at each vehicle speed, in the case of executing the coasting control, constant speed running line representing the slope the vehicle speed of the vehicle 1 becomes constant. Similarly, dashed control line L 14, at each vehicle speed, when the fuel-cut control is executed, a constant speed running line representing the slope the vehicle speed of the vehicle 1 becomes constant. On these constant speed running lines L 13 and L 14 , the slope is arranged in a negative region, that is, a downward slope region, and on the constant speed running lines L 13 and L 14 , the vehicle 1 receives in the downward direction. Since gravity is in balance with the air resistance and rolling resistance received by the vehicle 1 during traveling and the acceleration is zero, the vehicle speed is constant during inertial traveling control or fuel cut control. The constant speed running lines L 13 and L 14 have a tendency that the gradient of the vertical axis increases in the negative direction as the vehicle speed of the horizontal axis increases, that is, the downward gradient becomes steeper. Further, since the fuel cut control is large deceleration affected engine braking than the coasting control, towards the constant speed running line L 14 of the fuel cut control, compared to the constant speed running line L 13 coasting control The position is large in the negative direction. That is, at the same vehicle speed, the downward gradient that is constant when the fuel cut control is performed is steeper than the downward gradient that is constant when the inertial traveling control is performed.
 そして、減速度アシスト制御とフューエルカット制御とを切り分ける境界線L11は、フューエルカット制御の一定速走行線L14より下方(急勾配側)に配置される。すなわち、本実施形態では、フューエルカット制御を実施したときに下り方向に所定値以上の加速度が生じる勾配まではフューエルカット制御が選択され、一方、所定値以上の加速度が生じるほど勾配が急になると、減速度の大きい減速度アシスト制御が選択され、車両1の加速を抑制して、運転者に恐怖感を与えにくくするよう構成されている。 Then, the boundary line L 11 to isolate the deceleration assist control and the fuel cut control is arranged from a constant speed travel line L 14 of the fuel-cut control under (steep side). That is, in this embodiment, when the fuel cut control is performed, the fuel cut control is selected until the gradient in which the acceleration of the predetermined value or more is generated in the downward direction. On the other hand, when the gradient becomes steeper as the acceleration of the predetermined value or more is generated. The deceleration assist control with a large deceleration is selected, and the acceleration of the vehicle 1 is suppressed to make it difficult to give the driver a fear.
 また、フューエルカット制御と惰性走行制御とを切り分ける境界線L12は、惰性走行制御の一定速走行線L13より僅かに下方に設けられる。すなわち、本実施形態では、惰性走行制御を実施したときに緩やかに加速する程度の勾配までの範囲(緩加速領域。図2の網掛け部分)では惰性走行制御を選択するよう構成されている。さらに、図2に示すように、この惰性走行制御が選択される緩加速領域は、図2の横軸(車速)が低速側から高速側に進むにつれて減少してゆき、境界線L12が一定速走行線L13に漸近するよう設定されている。すなわち、本実施形態では、車速が低いほど、惰性走行制御を選択する加速度の許容範囲を大きくとり、車速が高くなるほど、惰性走行制御を選択する加速度の許容値を小さくしてゆく。このように緩加速領域を設定するのは、車速が高くなるほど加速による運転者の恐怖感が増幅するので、車速が増すほど惰性走行制御からフューエルカット制御に切り替える加速度を小さくして、下り走行中の加速により生じる運転者の恐怖感や不安感を抑制するためである。 The boundary line L 12 to isolate the fuel cut control and the coasting control is provided slightly below a certain speed running line L 13 coasting control. That is, in this embodiment, the inertial traveling control is selected in a range (gradual acceleration region, shaded portion in FIG. 2) up to a gradient that gradually accelerates when inertial traveling control is performed. Furthermore, as shown in FIG. 2, moderate acceleration region where the coasting control is selected, Yuki decreases as the horizontal axis in FIG. 2 (vehicle speed) is advanced from the low-speed side to the high-speed side, the boundary line L 12 is constant It is configured to asymptotic to the speed traveling line L 13. That is, in this embodiment, the allowable range of acceleration for selecting inertial traveling control is increased as the vehicle speed is low, and the allowable value of acceleration for selecting inertial traveling control is decreased as the vehicle speed is increased. Setting the slow acceleration area in this way increases the driver's fear of acceleration as the vehicle speed increases, so as the vehicle speed increases, the acceleration to switch from inertial running control to fuel cut control is reduced and the vehicle is traveling down This is to suppress the driver's fear and anxiety caused by acceleration of the vehicle.
 本実施形態では、このような境界線L11,L12の設定により、緩下りでは惰性走行制御、急下りでは減速度アシスト制御、その中間ではフューエルカット制御を選択することができる。 In the present embodiment, by setting the boundary lines L 11 and L 12 as described above, it is possible to select inertial running control for slow descent, deceleration assist control for sudden descent, and fuel cut control in the middle.
 さらに、図2に示すように、惰性走行制御の一定速走行線L13より上方に境界線L15がさらに設けられ、この境界線L15より上方では惰性走行制御を実施しないよう構成される。特に、車速が増大し高負荷となる領域では、惰性走行制御の実施を制限できるように、境界線L15は、横軸の車速が増大するほど、縦軸の勾配が負方向に増大する、すなわち惰性走行制御の実施を許可する下り勾配が急になる傾向にある。これは、高負荷で惰性走行制御を実施すると、車速を調整するために再加速する頻度が大きくなり、運転者にビジー感が発生するので、このようなビジー感の発生を抑制するためである。境界線L15より上方ではフューエルカット制御が選択される。 Furthermore, as shown in FIG. 2, the upper further provided borders L 15 More constant speed running line L 13 coasting control, configured not to perform the coasting control above this boundary line L 15. In particular, in a region where the vehicle speed increases and the load is high, the boundary line L 15 has a vertical axis gradient that increases in the negative direction as the vehicle speed on the horizontal axis increases, so that the inertial running control can be limited. That is, the downward gradient that permits the execution of inertial running control tends to be steep. This is because if inertial running control is performed at a high load, the frequency of re-acceleration increases in order to adjust the vehicle speed, and the driver feels busy, so the occurrence of such a busy feeling is suppressed. . Fuel cut control is selected above the boundary line L 15.
 なお、インフラ情報取得装置29などを利用して車両1の走行先の勾配情報を取得できる場合には、勾配要件判定部11が、車両1が勾配に進入する前に、走行先の勾配情報に基づいて判定マップMP1を用いて制御手法を選択する構成としてもよい。 In addition, when the gradient information of the travel destination of the vehicle 1 can be acquired using the infrastructure information acquisition device 29 or the like, the gradient requirement determination unit 11 uses the gradient information of the travel destination before the vehicle 1 enters the gradient. The control method may be selected based on the determination map MP1.
 勾配要件判定部11は、このように判定マップMP1を用いて制御手法を選択すると、選択した制御手法に応じた判定信号を出力する。判定信号は、惰性走行制御を選択した場合には「ID1」、フューエルカット制御を選択した場合には「ID2」、減速度アシスト制御を選択した場合には「ID3」となる。 When the gradient requirement determination unit 11 selects the control method using the determination map MP1 in this way, the gradient requirement determination unit 11 outputs a determination signal corresponding to the selected control method. The determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
 旋回要件判定部12は、車速センサ24により検出される車両1の現在の車速と、車両1が走行するコーナーに関するコーナー情報とに基づいて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択する。コーナー情報とは、具体的には、横加速度センサ26により検出される、車両1に作用している横加速度(横G)である。 The turning requirement determination unit 12 performs inertial traveling control, deceleration assist control, or fuel cut control based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and corner information regarding the corner where the vehicle 1 travels. Select one of the control methods. Specifically, the corner information is a lateral acceleration (lateral G) acting on the vehicle 1 detected by the lateral acceleration sensor 26.
 本実施形態では、旋回要件判定部12は、この制御手法の選択のために、図3に例示する判定マップMP2を備える。図3の判定マップMP2では、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のうち選択すべき制御手法が、車速と横G(コーナー情報)とに関連付けられて設定されている。 In the present embodiment, the turning requirement determination unit 12 includes a determination map MP2 illustrated in FIG. 3 in order to select this control method. In the determination map MP2 of FIG. 3, a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the lateral G (corner information).
 図3の判定マップMP2は、横軸に車速、縦軸に横Gを示している。縦軸の値が大きいほど(図3では上方向に進むほど)、走行中の車両1に作用する横Gが大きくなり、現在車両1が走行しているコーナーの旋回半径(コーナーR)が小さく、曲がり具合が急であることを表す。 The determination map MP2 in FIG. 3 shows the vehicle speed on the horizontal axis and the horizontal G on the vertical axis. As the value of the vertical axis increases (in the upward direction in FIG. 3), the lateral G acting on the traveling vehicle 1 increases, and the corner turning radius (corner R) where the vehicle 1 is currently traveling decreases. This means that the curve is steep.
 この判定マップMP2において、2つの境界線L21,L22が設けられている。境界線L21は、境界線L22より縦軸(横G)が大きい位置(図3では上方)に配置される。そして、現在の車速と横Gに基づき判定マップMP2にプロットしたときに、プロット位置が境界線L21より上方にある場合には減速度アシスト制御が選択され、境界線L21と境界線L22との間にある場合にはフューエルカット(F/C)制御が選択され、境界線L22より下方にある場合には惰性走行制御が選択されるよう構成されている。 In this determination map MP2, two boundary lines L 21 and L 22 are provided. The boundary line L 21 is arranged at a position (upward in FIG. 3) having a larger vertical axis (horizontal G) than the boundary line L 22 . Then, when plotted on the determination map MP2 based on the current vehicle speed and lateral G, if the plot position is above the boundary line L 21 is selected deceleration assist control, borderline L 21 and border L 22 fuel cut (F / C) control when there between are selected, is configured to coasting control is selected if there from the lower boundary line L 22 and.
 減速度アシスト制御とフューエルカット制御とを切り分ける境界線L21は、例えばコーナー走行中にフューエルカット制御を実施した場合に運転者に違和感を与えない範囲の横Gの上限値(例えば0.5G)を車速に応じて設定し、この上限値を結線したものである。そして、横Gが上限値である境界線L21より大きくなったときには、フューエルカット制御に比べて減速度の大きい減速度アシスト制御を選択して、運転者にコーナー走行中の恐怖感や違和感を与えにくくするよう構成されている。 The boundary line L 21 that separates the deceleration assist control and the fuel cut control is, for example, an upper limit value (for example, 0.5 G) of the lateral G that does not give the driver a sense of incongruity when the fuel cut control is performed during cornering. Is set according to the vehicle speed, and this upper limit value is connected. When the lateral G is larger than the boundary line L 21 is the upper limit value, by selecting the greater deceleration assist control deceleration as compared with the fuel cut control, the fear and discomfort during cornering the driver It is configured to make it difficult to give.
 フューエルカット制御と惰性走行制御とを切り分ける境界線L22は、例えばコーナー走行中に減速度の小さい惰性走行制御を実施した場合でも運転者に違和感を与えない範囲の横Gの上限値(例えば0.2G)を車速に応じて設定し、この上限値を結線したものである。そして、横Gが上限値である境界線L22より小さい緩やかなコーナーを走行している場合に惰性走行制御を選択して、燃費向上を図ることができるよう構成されている。 The boundary line L 22 that separates the fuel cut control and the inertia traveling control is, for example, an upper limit value of the lateral G in a range that does not give the driver a sense of incongruity even when inertia traveling control with small deceleration is performed during corner traveling (for example, 0). .2G) is set according to the vehicle speed, and this upper limit value is connected. When the lateral G is traveling the border L 22 smaller than gentle corner is the upper limit by selecting the coasting control, and is configured to be able to improve fuel consumption.
 また、境界線L21,L22は、高車速での旋回安定性を高めるため、横軸(車速)の増加方向に進むにつれて縦軸の値(横G)を徐々に下げている。なお、境界線L21,L22を、車速によらず縦軸の値(横G)を一定値としてもよい。 In addition, the boundary lines L 21 and L 22 gradually decrease the value on the vertical axis (horizontal G) as the horizontal axis (vehicle speed) increases in order to improve turning stability at high vehicle speeds. The boundary lines L 21 and L 22 may have a constant value on the vertical axis (horizontal G) regardless of the vehicle speed.
 本実施形態では、このような境界線L21,L22の設定により、緩やかなコーナーでは惰性走行制御、急なコーナーでは減速度アシスト制御、その中間のコーナーではフューエルカット制御を選択することができる。 In the present embodiment, by setting the boundary lines L 21 and L 22 as described above, it is possible to select inertial running control at a gentle corner, deceleration assist control at a sharp corner, and fuel cut control at an intermediate corner. .
 なお、旋回要件判定部12は、例えばインフラ情報取得装置29などを利用して車両1が走行しているコーナーに関する情報、具体的にはコーナーR(コーナーの旋回半径)を取得できる場合には、横Gより迅速かつ高精度にコーナー情報を判定可能なコーナーRを横Gの代わりに利用して、制御手法を選択する構成とすることもできる。 In addition, when the turning requirement determination unit 12 can acquire information about a corner where the vehicle 1 is traveling, for example, using the infrastructure information acquisition device 29, specifically, corner R (corner turning radius), It is also possible to adopt a configuration in which a corner R that can determine corner information more quickly and with higher accuracy than the horizontal G is used instead of the horizontal G to select a control method.
 この場合、旋回要件判定部12は、制御手法の選択のために、図4に例示する判定マップMP2′を用いる。図4の判定マップMP2′では、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のうち選択すべき制御手法が、車速とコーナーRとに関連付けられて設定されている。 In this case, the turning requirement determination unit 12 uses a determination map MP2 ′ illustrated in FIG. 4 to select a control method. In the determination map MP2 ′ in FIG. 4, a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the corner R.
 ここで、横GとコーナーRとは次の(1)式の関係が成り立つ。
   横G=車速^2/コーナーR   ・・・(1)
Here, the relationship of the following formula (1) is established between the lateral G and the corner R.
Horizontal G = Vehicle speed ^ 2 / Corner R (1)
 図4の判定マップMP2′は、(1)式に基づき、図3の横Gに関する判定マップMP2と実質的に同様に、制御手法の選択を行うことができるよう、2つの境界線L23,L24を設定したものである。そして、現在の車速とコーナーRに基づき判定マップMP2′にプロットしたときに、プロット位置が境界線L23より下方にある場合には減速度アシスト制御が選択され、境界線L23と境界線L24との間にある場合にはフューエルカット(F/C)制御が選択され、境界線L24より上方にある場合には惰性走行制御が選択されるよう構成されている。 Figure determination map MP2 'is 4, based on (1), determination map MP2 and substantially similar concerning the lateral G in FIG. 3, so that it is possible to select the control method, two boundary lines L 23, it is obtained by setting the L 24. Then, when plotted on the determination map MP2 'based on the current vehicle speed and corner R, if the plot position is below the boundary line L 23 is selected deceleration assist control, the boundary line L 23 and the boundary line L If there between 24 are selected fuel cut (F / C) control is configured to coasting control is selected if located above the boundary line L 24.
 つまり、減速度アシスト制御とフューエルカット制御とを切り分ける境界線L23は、図3の境界線L21と同様に、コーナー走行中にフューエルカット制御を実施した場合に運転者に違和感を与えない範囲の横Gの上限値(例えば0.5G)となるコーナーRの値を車速に応じて設定し、これを結線したものである。この境界線L23は、横軸の車速の増加に応じて、コーナーRも増加する傾向にある。 That is, the boundary line L 23 that separates the deceleration assist control and the fuel cut control is a range that does not give the driver a sense of incongruity when the fuel cut control is performed during cornering, like the boundary line L 21 in FIG. The value of the corner R that becomes the upper limit value (for example, 0.5 G) of the horizontal G is set according to the vehicle speed and is connected. The boundary line L 23 tends to increase the corner R as the vehicle speed increases on the horizontal axis.
 また、フューエルカット制御と惰性走行制御とを切り分ける境界線L24は、図3の境界線L22と同様に、コーナー走行中に減速度の小さい惰性走行制御を実施した場合でも運転者に違和感を与えない範囲の横Gの上限値(例えば0.2G)となるコーナーRの値を車速に応じて設定し、これを結線したものである。この境界線L24も、横軸の車速の増加に応じて、コーナーRが増加する傾向にある。 The boundary line L 24 to isolate the fuel cut control and the coasting control, similar to the boundary line L 22 in FIG. 3, the driver a sense of discomfort even when carrying out the small coasting control with deceleration during cornering The value of the corner R that becomes the upper limit value (for example, 0.2 G) of the lateral G of the range not to be given is set according to the vehicle speed and is connected. The boundary line L 24 also has a tendency for the corner R to increase as the vehicle speed on the horizontal axis increases.
 なお、インフラ情報取得装置29などを利用して車両1の走行先のコーナーに関する情報を取得できる場合には、旋回要件判定部12が、車両1がコーナーに進入する前に、走行先のコーナー情報に基づいて判定マップMP2または判定マップMP2′を用いて制御手法を選択する構成としてもよい。 In addition, when the information regarding the corner of the travel destination of the vehicle 1 can be acquired using the infrastructure information acquisition device 29 or the like, the corner information of the travel destination is determined before the turning requirement determination unit 12 enters the corner. The control method may be selected using the determination map MP2 or the determination map MP2 ′ based on the above.
 旋回要件判定部12は、このように判定マップMP2または判定マップMP2′を用いて制御手法を選択すると、選択した制御手法に応じた判定信号を出力する。判定信号は、惰性走行制御を選択した場合には「ID1」、フューエルカット制御を選択した場合には「ID2」、減速度アシスト制御を選択した場合には「ID3」となる。 When the turning requirement determination unit 12 selects the control method using the determination map MP2 or the determination map MP2 ′ as described above, the turning requirement determination unit 12 outputs a determination signal corresponding to the selected control method. The determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
 操舵要件判定部13は、車速センサ24により検出される車両1の現在の車速と、操舵角センサ27により検出される操舵角情報とに基づいて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択する。 The steering requirement determination unit 13 performs inertial traveling control, deceleration assist control, or fuel cut based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the steering angle information detected by the steering angle sensor 27. Select one of the control methods.
 本実施形態では、操舵要件判定部13は、この制御手法の選択のために、図5に例示する判定マップMP3-1を備える。図5の判定マップMP3-1では、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のうち選択すべき制御手法が、車速と操舵角とに関連付けられて設定されている。 In the present embodiment, the steering requirement determination unit 13 includes a determination map MP3-1 illustrated in FIG. 5 in order to select this control method. In the determination map MP3-1 in FIG. 5, a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the steering angle.
 ここで、操舵角と横Gとは次式の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000001
上記(2)式では、δは操舵角、nはステアリングギヤ比、Vは車速、khはスタビリティファクタ、Lは車両ホイルベース、Gは横Gを表す。
Here, the relationship of the following equation is established between the steering angle and the lateral G.
Figure JPOXMLDOC01-appb-M000001
In the above equation (2), δ represents the steering angle, n represents the steering gear ratio, V x represents the vehicle speed, kh represents the stability factor, L represents the vehicle wheel base, and G y represents the lateral G.
 図5の判定マップMP3-1は、(2)式に基づき、図3の横Gに関する判定マップMP2と実質的に同様に、制御手法の選択を行うことができるよう、2つの境界線L31,L32を設定したものである。そして、現在の車速と操舵角に基づき判定マップMP3-1にプロットしたときに、プロット位置が境界線L31より上方にある場合には減速度アシスト制御が選択され、境界線L31と境界線L32との間にある場合にはフューエルカット(F/C)制御が選択され、境界線L32より下方にある場合には惰性走行制御が選択されるよう構成されている。 The determination map MP3-1 in FIG. 5 is based on the equation (2), and two boundary lines L 31 are selected so that the control method can be selected in substantially the same manner as the determination map MP2 regarding the lateral G in FIG. , L 32 is set. Then, when plotted on the determination map MP3-1 based on the current vehicle speed the steering angle, the deceleration assist control is selected when the plot position is above the boundary line L 31, the boundary line L 31 and border If there between L 32 is selected fuel cut (F / C) control is configured to coasting control is selected if there from the lower boundary line L 32.
 つまり、減速度アシスト制御とフューエルカット制御とを切り分ける境界線L31は、図3の境界線L21と同様に、コーナー走行中にフューエルカット制御を実施した場合に運転者に違和感を与えない範囲の横Gの上限値(例えば0.5G)でコーナーを走行するための操舵角の値を車速に応じて設定し、これを結線したものである。この境界線L31は、横軸の車速の増加に応じて、操舵角が漸近的に減少する傾向にある。 That is, the boundary line L 31 that separates the deceleration assist control and the fuel cut control is a range that does not give the driver a sense of incongruity when the fuel cut control is performed during cornering, as with the boundary line L 21 in FIG. A steering angle value for traveling a corner at an upper limit value (for example, 0.5 G) is set according to the vehicle speed and connected. The boundary line L 31 occurs in response to an increase in the vehicle speed on the horizontal axis, the steering angle tends to decrease asymptotically.
 また、フューエルカット制御と惰性走行制御とを切り分ける境界線L32は、図3の境界線L22と同様に、コーナー走行中に減速度の小さい惰性走行制御を実施した場合でも運転者に違和感を与えない範囲の横Gの上限値(例えば0.2G)でコーナーを走行するための操舵角の値を車速に応じて設定し、これを結線したものである。この境界線L32も、横軸の車速の増加に応じて、操舵角が漸近的に減少する傾向にある。 In addition, the boundary line L 32 that separates the fuel cut control and the inertia traveling control makes the driver feel uncomfortable even when the inertia traveling control with a small deceleration is performed during corner traveling, similarly to the boundary line L 22 in FIG. A steering angle value for driving a corner at an upper limit value (for example, 0.2 G) of the lateral G in a range not to be given is set according to the vehicle speed and connected. The boundary line L 32 is also in response to an increase in the vehicle speed on the horizontal axis, the steering angle tends to decrease asymptotically.
 本実施形態では、このような境界線L31,L32の設定により、操舵角の小さい緩やかなコーナーでは惰性走行制御、操舵角の大きい急なコーナーでは減速度アシスト制御、その中間のコーナーではフューエルカット制御を選択することができる。 In this embodiment, by setting the boundary lines L 31 and L 32 as described above, inertial running control is performed at a gentle corner with a small steering angle, deceleration assist control is performed at a sharp corner with a large steering angle, and fuel is used at an intermediate corner. Cut control can be selected.
 ここで、運転者により急なハンドル操作が行われた場合について考える。このような操作があったときには、減速度を上げ旋回安定性を高める必要があるので、減速度の低い惰性走行制御を実施するのを回避することが望ましい。そこで、本実施形態では、操舵要件判定部13は、図5の判定マップMP3-1により惰性走行制御が選択された場合に、さらに惰性走行制御の実施可否を判定するために、図6に示す判定マップMP3-2を備える。 Here, consider the case where the driver suddenly operated the steering wheel. When such an operation is performed, it is necessary to increase the deceleration and improve the turning stability. Therefore, it is desirable to avoid performing inertial traveling control with a low deceleration. Therefore, in the present embodiment, the steering requirement determination unit 13 is shown in FIG. 6 in order to further determine whether or not the inertial traveling control can be performed when the inertial traveling control is selected by the determination map MP3-1 in FIG. A determination map MP3-2 is provided.
 図6の判定マップMP3-2は、横軸に操舵角、縦軸に操舵角速度を示している。操舵角速度は、操舵角センサ27により検出される操舵角情報に基づき算出される。この判定マップMP3-2には、境界線L33が設けられている。そして、現在の操舵角と操舵角速度に基づき判定マップMP3-2にプロットしたときに、プロット位置が境界線L33より下方にある場合には惰性走行制御の適用が許可され、一方、プロット位置が境界線L33より上方にある場合には惰性走行制御の適用が許可されないよう(惰性走行未適用となるよう)構成されている。 In the determination map MP3-2 in FIG. 6, the horizontal axis indicates the steering angle, and the vertical axis indicates the steering angular velocity. The steering angular velocity is calculated based on the steering angle information detected by the steering angle sensor 27. The determination map MP3-2, boundary L 33 is provided. Then, when plotted on the determination map MP3-2 based on the steering angular velocity and the current steering angle, the application of the coasting control is permitted when the plot position is below the boundary line L 33, whereas, the plot position when in the above the boundary line L 33 is such that the application of the coasting control is not permitted (such as a coasting unapplied) is constructed.
 惰性走行制御の適用可否のための境界線L33は、操舵角の増加に応じて操舵角速度が単調減少する傾向にある。つまり、操舵角が小さいほど惰性走行制御の適用を許可できる操舵角速度の上限を大きくとり、また、操舵角が大きいほど惰性走行制御の適用を許可できる操舵角速度の上限を小さくとるよう設定されている。これは、操作量(操舵角)の大きい急ハンドル操作になるほど、より一層旋回安定性を高める必要があり、惰性走行制御の実施をより一層抑制するためである。なお、判定マップMP3-2により惰性走行制御の適用が許可されない場合には、代わりにフューエルカット制御を選択することができる。 The boundary line L 33 for applicability of inertial traveling control tends to monotonically decrease the steering angular velocity as the steering angle increases. In other words, the lower the steering angle, the higher the upper limit of the steering angular speed at which the application of inertial traveling control can be permitted, and the higher the steering angle, the smaller the upper limit of the steering angular speed at which the application of inertial traveling control can be permitted. . This is because it is necessary to further improve the turning stability as the sudden steering operation with a larger operation amount (steering angle) is performed, so that the inertial running control is further suppressed. If the application of inertial running control is not permitted by the determination map MP3-2, fuel cut control can be selected instead.
 操舵要件判定部13は、このように判定マップMP3-1及び判定マップMP3-2を用いて制御手法を選択すると、選択した制御手法に応じた判定信号を出力する。判定信号は、惰性走行制御を選択した場合には「ID1」、フューエルカット制御を選択した場合には「ID2」、減速度アシスト制御を選択した場合には「ID3」となる。 When the steering requirement determination unit 13 selects the control method using the determination map MP3-1 and the determination map MP3-2 as described above, the steering requirement determination unit 13 outputs a determination signal corresponding to the selected control method. The determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
 アクセル要件判定部14は、車速センサ24により検出される車両1の現在の車速と、アクセル開度センサ21により検出されるアクセル操作情報とに基づいて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択する。アクセル操作情報とは、具体的には、アクセルペダルが戻されるスピードを示すアクセル戻しスピードであり、アクセル開度センサ21により検出されるアクセル開度に基づいて算出される。 Based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the accelerator operation information detected by the accelerator opening sensor 21, the accelerator requirement determination unit 14 performs inertial running control, deceleration assist control, or fuel. Select one of the cutting control methods. The accelerator operation information is specifically an accelerator return speed indicating a speed at which the accelerator pedal is returned, and is calculated based on the accelerator opening detected by the accelerator opening sensor 21.
 本実施形態では、アクセル要件判定部14は、この制御手法の選択のために、図7に例示する判定マップMP4を備える。図7の判定マップMP4では、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のうち選択すべき制御手法が、車速とアクセル戻しスピード(アクセル操作情報)とに関連付けられて設定されている。 In this embodiment, the accelerator requirement determination unit 14 includes a determination map MP4 illustrated in FIG. 7 for selection of this control method. In the determination map MP4 of FIG. 7, a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the accelerator return speed (accelerator operation information).
 図7の判定マップMP4は、横軸に車速、縦軸にアクセル戻しスピードを示している。縦軸の値が大きいほど(図7では上方向に進むほど)、アクセル戻しスピードが大きくなり、アクセルペダルが急激に戻されることを表す。一方、縦軸の値が小さくなるほど(図7では下方向に進むほど)、アクセル戻しスピードが小さくなり、アクセルペダルがゆっくり戻されることを表す。 In the determination map MP4 of FIG. 7, the horizontal axis indicates the vehicle speed, and the vertical axis indicates the accelerator return speed. The larger the value on the vertical axis (the higher the direction in FIG. 7), the higher the accelerator return speed, indicating that the accelerator pedal is suddenly returned. On the other hand, the smaller the value on the vertical axis (the lower the direction in FIG. 7), the lower the accelerator return speed and the slower the accelerator pedal is returned.
 この判定マップMP4において、2つの境界線L41,L42が設けられている。境界線L41は、境界線L42より縦軸(アクセル戻しスピード)が大きい位置(図7では上方)に配置される。そして、現在の車速とアクセル戻しスピードに基づき判定マップMP4にプロットしたときに、プロット位置が境界線L41より上方にある場合には減速度アシスト制御が選択され、境界線L41と境界線L42との間にある場合にはフューエルカット(F/C)制御が選択され、境界線L42より下方にある場合には惰性走行制御が選択されるよう構成されている。 In this determination map MP4, two boundary lines L 41 and L 42 are provided. The boundary line L 41 is arranged at a position (upward in FIG. 7) having a larger vertical axis (accelerator return speed) than the boundary line L 42 . Then, when plotted on the determination map MP4 based on the current vehicle speed and the accelerator return speed, deceleration assist control is selected when the plot position is above the boundary line L 41, the boundary line L 41 and the boundary line L If located between the 42 is selected fuel cut (F / C) control is configured to coasting control is selected if there from the lower boundary line L 42.
 減速度アシスト制御とフューエルカット制御とを切り分ける境界線L41は、アクセル戻しスピードが極めて大きく、運転者によりアクセルペダルが急激に戻された場合に、フューエルカット制御に比べて減速度の大きい減速度アシスト制御を選択して、迅速に加速度を減少させることができるよう設定されている。境界線L41は、高車速ほど空力により車両が受ける減速度が強くなるため、車速が増加するにつれて減速度アシスト制御に切り替わるアクセル戻しスピードの値が大きくなるよう、横軸の車速の増加に伴い縦軸のアクセル戻しスピードも増加する傾向にある。 The boundary line L 41 that separates the deceleration assist control and the fuel cut control is a deceleration having a large deceleration compared to the fuel cut control when the accelerator return speed is extremely high and the accelerator pedal is suddenly returned by the driver. It is set so that the acceleration can be quickly reduced by selecting the assist control. As the vehicle speed increases, the boundary line L 41 increases as the vehicle speed on the horizontal axis increases so that the value of the accelerator return speed that switches to the deceleration assist control increases as the vehicle speed increases because the deceleration received by the aerodynamic force increases as the vehicle speed increases. The accelerator return speed on the vertical axis also tends to increase.
 フューエルカット制御と惰性走行制御とを切り分ける境界線L42は、アクセル戻しスピードが極めて小さく、運転者によるアクセル操作に減速意図が含まれているとは考えにくい状況において、フューエルカット制御に比べて減速度の小さい惰性走行制御を選択して、燃費向上を図ることができるよう設定されている。境界線L42は、通常走行では低車速ほど加減速頻度が多いので惰性走行の適用範囲を制限し、高車速ほど空力により減速度が強くなるため、閾値を緩め惰性走行の適用範囲を広げるよう配置される。つまり、境界線L42は、高車速であれば惰性走行でも空力により充分な減速度が得られるため、車速が増加するにつれて惰性走行制御を選択するアクセル戻しスピードの範囲が大きくなるよう、横軸の車速の増加に伴い縦軸のアクセル戻しスピードも増加する傾向にある。 The boundary line L 42 that separates the fuel cut control and the inertial traveling control is smaller than the fuel cut control in a situation where the accelerator return speed is extremely low and it is unlikely that the driver's accelerator operation includes the intention of deceleration. It is set so that fuel efficiency can be improved by selecting coasting control with a low speed. Boundary L 42, since the normal running deceleration frequency the lower the vehicle speed is often limits the scope of coasting, since the aerodynamic by deceleration the higher the vehicle speed is increased, so to expand the scope of coasting loosen the threshold Be placed. In other words, the boundary line L 42 has a horizontal axis so that the range of the accelerator return speed for selecting the inertial travel control increases as the vehicle speed increases because sufficient deceleration can be obtained by aerodynamics even when the vehicle speed is high. As the vehicle speed increases, the accelerator return speed on the vertical axis also tends to increase.
 本実施形態では、このような境界線L41,L42の設定により、アクセル戻しスピードが小さく運転者による減速意図が弱い場合には惰性走行制御、アクセル戻しスピードが大きく運転者による減速意図が強い場合には減速度アシスト制御、その中間の減速意図ではフューエルカット制御を選択することができる。 In the present embodiment, by setting the boundary lines L 41 and L 42 as described above, when the accelerator return speed is small and the driver's intention to decelerate is weak, inertia driving control and the accelerator return speed are large and the driver's intention to decelerate is strong. In this case, deceleration assist control can be selected, and fuel cut control can be selected for deceleration intention in the middle.
 アクセル要件判定部14は、このように判定マップMP4を用いて制御手法を選択すると、選択した制御手法に応じた判定信号を出力する。判定信号は、惰性走行制御を選択した場合には「ID1」、フューエルカット制御を選択した場合には「ID2」、減速度アシスト制御を選択した場合には「ID3」となる。 Accelerator requirement determination unit 14 outputs a determination signal corresponding to the selected control method when the control method is selected using determination map MP4. The determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
 停止位置要件判定部15は、車速センサ24により検出される車両1の現在の車速と、走行先の停止位置情報とに基づいて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択する。停止位置情報とは、具体的には、走行先の道路上の一時停止線、信号、踏み切り、料金所、目的地などの車両1を停止させる対象物(停止位置)までの距離であり、インフラ情報取得装置29により取得されたインフラ情報などに基づいて算出される。 The stop position requirement determination unit 15 is one of inertial travel control, deceleration assist control, or fuel cut control based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the stop position information of the travel destination. Select the control method. The stop position information is specifically the distance to an object (stop position) that stops the vehicle 1 such as a temporary stop line, a signal, a railroad crossing, a toll booth, a destination, etc. It is calculated based on the infrastructure information acquired by the information acquisition device 29.
 本実施形態では、停止位置要件判定部15は、この制御手法の選択のために、図8に例示する判定マップMP5を備える。図8の判定マップMP5では、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のうち選択すべき制御手法が、車速と停止位置までの距離(L1)とに関連付けられて設定されている。 In the present embodiment, the stop position requirement determination unit 15 includes a determination map MP5 illustrated in FIG. 8 for selection of this control method. In the determination map MP5 of FIG. 8, a control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the vehicle speed and the distance (L1) to the stop position.
 図8の判定マップMP5は、横軸に車速、縦軸に停止位置までの距離(L1)を示している。この判定マップMP5において、2つの境界線L51,L52が設けられている。境界線L51は、境界線L52より縦軸(停止位置までの距離L1)が小さい位置(図8では下方)に配置される。そして、現在の車速と停止位置までの距離(L1)に基づき判定マップMP5にプロットしたときに、プロット位置が境界線L51より下方にある場合には減速度アシスト制御が選択され、境界線L51と境界線L52との間にある場合にはフューエルカット(F/C)制御が選択され、境界線L52より上方にある場合には惰性走行制御が選択されるよう構成されている。 In the determination map MP5 of FIG. 8, the horizontal axis indicates the vehicle speed, and the vertical axis indicates the distance (L1) to the stop position. In this determination map MP5, two boundary lines L 51 and L 52 are provided. Boundary L 51 is arranged ordinate boundary line L 52 is smaller position (distance L1 to the stop position) (FIG. 8 below). Then, when plotted on the determination map MP5 based on the distance between the current vehicle speed to the stop position (L1), the deceleration assist control is selected when the plot position is below the boundary line L 51, the boundary line L If there between 51 and border L 52 is selected fuel cut (F / C) control is configured to coasting control is selected if located above the boundary line L 52.
 減速度アシスト制御とフューエルカット制御とを切り分ける境界線L51は、フューエルカット制御を実施した場合に車両1が走行可能な(停止するまでの)距離を示すF/C走行可能距離Lfc1を各車速において設定し、これを結線したものである。F/C走行可能距離Lfc1は以下の(3)式により表すことができる。
Figure JPOXMLDOC01-appb-M000002
The boundary line L 51 that separates the deceleration assist control and the fuel cut control indicates the F / C travelable distance L fc1 that indicates the distance that the vehicle 1 can travel (until it stops) when the fuel cut control is performed. It is set at the vehicle speed and connected. The F / C travelable distance L fc1 can be expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000002
 上記(3)式で、Vは現在の車両1の車速、Gfcはフューエルカット制御の実施中の車両1の減速度(F/C減速度)を表す。また、F/C減速度Gfcは、車速に応じて変化するものであり、例えば図9に示すように、車速の増加に伴い負方向に増大する、すなわち減速度が増加する傾向がある。 In the above equation (3), V x represents the current vehicle speed of the vehicle 1, and G fc represents the deceleration (F / C deceleration) of the vehicle 1 during the fuel cut control. The F / C deceleration G fc changes according to the vehicle speed. For example, as shown in FIG. 9, the F / C deceleration G fc tends to increase in the negative direction as the vehicle speed increases, that is, the deceleration tends to increase.
 このような境界線L51は、停止位置までの距離L1が、F/C走行可能距離Lfc1より短い場合には、フューエルカット制御に比べて減速度の大きい減速度アシスト制御を選択して、迅速に加速度を減少させることができるよう設定されている。また、境界線L51は、高車速ほど空力により車両が受ける減速度が強くなるため、車速が増加するにつれて減速度アシスト制御に切り替わる距離L1の値が大きくなるよう、横軸の車速の増加に伴い縦軸の距離L1も増加する傾向にある。 Such boundary line L 51 is the distance L1 to the stop position, is shorter than the F / C DTE L fc1, select the larger deceleration assist control deceleration as compared with the fuel cut control, It is set so that acceleration can be reduced quickly. Further, the boundary line L 51 increases the vehicle speed on the horizontal axis so that the value of the distance L1 for switching to the deceleration assist control increases as the vehicle speed increases because the deceleration received by the aerodynamic force increases as the vehicle speed increases. Along with this, the distance L1 on the vertical axis also tends to increase.
 ここで、図8に破線で示す制御線Ln1は、各車速において惰性走行制御を実施した場合に車両1が走行可能な(停止するまでの)距離を示す惰行走行可能距離Ln1を示すものである。惰行走行可能距離Ln1は以下の(4)式により表すことができる。
Figure JPOXMLDOC01-appb-M000003
Here, the control line L n1 indicated by a broken line in FIG. 8 indicates the coasting travelable distance L n1 indicating the distance that the vehicle 1 can travel (until it stops) when coasting control is performed at each vehicle speed. It is. The coasting travelable distance L n1 can be expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000003
 上記(4)式で、Gは惰性走行制御の実施中の車両1の減速度(惰行減速度)を表す。惰行減速度Gは、F/C減速度Gfcと同様に、車速に応じて変化するものであり、例えば図9に示すように、車速の増加に伴い負方向に増大する、すなわち減速度が増加する傾向がある。また、惰行減速度Gは、車速の全体にわたりF/C減速度Gfcと比べて減速度が小さくなる傾向がある。 In the above equation (4), G n represents the deceleration (coast deceleration) of the vehicle 1 during the coasting control. Like the F / C deceleration G fc , the coasting deceleration G n changes according to the vehicle speed. For example, as shown in FIG. 9, the coasting deceleration G n increases in the negative direction as the vehicle speed increases. Tend to increase. Further, the coasting deceleration Gn tends to be smaller than the F / C deceleration Gfc over the entire vehicle speed.
 フューエルカット制御と惰性走行制御とを切り分ける境界線L52は、(4)式の惰行走行可能距離Ln1から、惰行許可距離マージンLo1を差し引いたものとして以下の(5)式で表すことができる。
   L52=Ln1-Lo1   ・・・(5)
The boundary line L 52 that separates the fuel cut control and the coasting control can be expressed by the following formula (5) as a coasting allowed distance margin L o1 subtracted from the coasting travelable distance L n1 of the formula (4). it can.
L 52 = L n1 -L o1 (5)
 ここで、惰行許可距離マージンLo1とは、図8の判定マップMP5において惰性走行制御を選択する割合を高めるためのパラメータであって、停止位置までの距離L1の大きさに応じて変更することができる。より詳細には、図10に示すように、惰行許可距離マージンLo1は、停止位置までの距離L1が小さいほど小さく、距離L1が大きいほど大きく設定されている。これは、停止位置が遠い場合には、車速が高くても、まだ減速する必要性が低いため、減速度の低い惰性走行制御を選択しやすくして燃費向上を図るためである。但し、フューエルカット制御と惰性走行制御とを切り分ける境界線L52が、減速度アシスト制御とフューエルカット制御とを切り分ける境界線L51より常に上方に配置させるよう、惰行許可距離マージンLo1はLn1-Lfc1を上限とされている。 Here, the coasting permission distance margin L o1 is a parameter for increasing the ratio of selecting coasting control in the determination map MP5 of FIG. 8 and is changed according to the size of the distance L1 to the stop position. Can do. More specifically, as shown in FIG. 10, the coasting permission distance margin L o1 is set to be smaller as the distance L1 to the stop position is smaller and larger as the distance L1 is larger. This is because, when the stop position is far, even if the vehicle speed is high, the necessity for deceleration is still low, so it is easy to select inertial traveling control with low deceleration to improve fuel efficiency. However, the coasting allowance distance margin L o1 is L n1 so that the boundary line L 52 that separates the fuel cut control and the inertia traveling control is always disposed above the boundary line L 51 that separates the deceleration assist control and the fuel cut control. -L fc1 is the upper limit.
 このような境界線L52は、停止位置までの距離L1が、上記(5)式で示した距離(Ln1-Lo1)より長い場合には、減速の必要性が低いので、フューエルカット制御に比べて減速度の小さい惰性走行制御を選択して、燃費向上を図ることができるよう設定されている。また、境界線L52は、車速が小さいほど惰性走行制御を選択可能となる距離L1を小さく(近く)し、車速が大きいほど大きく(遠く)なるよう、横軸の車速の増加に伴い縦軸の距離L1も増加する傾向にある。 Such a boundary line L 52 has a low necessity for deceleration when the distance L1 to the stop position is longer than the distance (L n1 -L o1 ) shown in the above equation (5). The inertial running control having a smaller deceleration than that of the vehicle is selected so that the fuel consumption can be improved. In addition, the boundary line L 52 has a vertical axis as the vehicle speed on the horizontal axis increases so that the distance L1 at which inertial traveling control can be selected decreases (closes) as the vehicle speed decreases, and increases (distant) as the vehicle speed increases. The distance L1 also tends to increase.
 本実施形態では、このような境界線L51,L52の設定により、停止位置までの距離L1が所定値(L52)より大きく(遠く)、まだ減速の必要性が低い場合には惰性走行制御、停止位置までの距離L1が所定値(L51)より小さく(近く)、減速の必要性が高い場合には減速度アシスト制御、その中間の距離ではフューエルカット制御を選択することができる。 In the present embodiment, by setting the boundary lines L 51 and L 52 as described above, when the distance L1 to the stop position is larger (far) than the predetermined value (L 52 ) and the necessity for deceleration is still low, the inertial running is performed. When the distance L1 to the control / stop position is smaller (near) than the predetermined value (L 51 ) and the necessity for deceleration is high, deceleration assist control can be selected, and fuel cut control can be selected at an intermediate distance.
 このような本実施形態の構成により、燃料消費を抑制し燃費向上できる。この点について図11を参照して説明する。図11は、横軸に車両1の走行距離を示し、停止位置までの距離をL1として示している。また縦軸は車両1の車速を示している。図11に示す例では、ある時点で車速がV1であり停止位置までの距離がL1である場合において、車両1が停止位置にて停止するまでの期間において、車両1が実施する走行制御手法と、そのときの車速と走行距離との関係を表している。 Such a configuration of the present embodiment can suppress fuel consumption and improve fuel efficiency. This point will be described with reference to FIG. FIG. 11 shows the travel distance of the vehicle 1 on the horizontal axis and the distance to the stop position as L1. The vertical axis represents the vehicle speed of the vehicle 1. In the example shown in FIG. 11, when the vehicle speed is V1 at a certain time and the distance to the stop position is L1, the vehicle 1 is controlled during the period until the vehicle 1 stops at the stop position. This represents the relationship between the vehicle speed and the travel distance at that time.
 図11に細線で示すように、従来のフューエルカット(F/C)制御のみを適用した場合には、まずフューエルカット制御を実施した後に、車速が必要以上に低下してこのままでは停止位置より手前で車両1が停止してしまうと運転者に判断され、運転者によりアクセルオン(ON)操作が行われる。このアクセルオン操作により車速が増加した後に、再びフューエルカット制御が行われている。すなわち、従来ではアクセルオン操作が行われているため、燃料消費量が増える。 As indicated by a thin line in FIG. 11, when only the conventional fuel cut (F / C) control is applied, first the fuel cut control is performed, and then the vehicle speed drops more than necessary, and if this is the case, it is closer to the stop position. When the vehicle 1 stops, it is determined by the driver, and the driver performs an accelerator on (ON) operation. After the vehicle speed is increased by this accelerator-on operation, the fuel cut control is performed again. That is, since the accelerator-on operation is conventionally performed, the fuel consumption increases.
 これに対して、本実施形態の構成によれば、図11に太線で示すように、停止位置までの距離が遠い状況では減速度の低い惰性走行制御を実施し、停止位置までの距離が所定値より近づいた後にフューエルカット制御を実行し、燃料を消費することなく停止位置に到達している。このように、本実施形態によって、燃料消費を抑制することが可能である。 On the other hand, according to the configuration of the present embodiment, as shown by a thick line in FIG. 11, coasting control with low deceleration is performed in a situation where the distance to the stop position is long, and the distance to the stop position is predetermined. Fuel cut control is executed after approaching the value, and the vehicle has reached the stop position without consuming fuel. Thus, fuel consumption can be suppressed by this embodiment.
 停止位置要件判定部15は、このように判定マップMP5を用いて制御手法を選択すると、選択した制御手法に応じた判定信号を出力する。判定信号は、惰性走行制御を選択した場合には「ID1」、フューエルカット制御を選択した場合には「ID2」、減速度アシスト制御を選択した場合には「ID3」となる。 When the stop position requirement determination unit 15 selects the control method using the determination map MP5 as described above, the stop position requirement determination unit 15 outputs a determination signal corresponding to the selected control method. The determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
 車間要件判定部16は、車速センサ24により検出される車両1の現在の車速と、前方車両との車間情報とに基づいて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択する。  Based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the inter-vehicle distance information with the preceding vehicle, the inter-vehicle requirement determining unit 16 performs any of inertial running control, deceleration assist control, or fuel cut control. Select a control method. *
 本実施形態では、車間要件判定部16は、この制御手法の選択のために、図12に例示する判定マップMP6を備える。図12の判定マップMP6では、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のうち選択すべき制御手法が、車速と前方車両(前車)との距離(L2)とに関連付けられて設定されている。 In the present embodiment, the inter-vehicle requirement determining unit 16 includes a determination map MP6 illustrated in FIG. 12 for selecting this control method. In the determination map MP6 of FIG. 12, the control method to be selected from inertial running control, deceleration assist control, or fuel cut control is set in association with the distance (L2) between the vehicle speed and the preceding vehicle (front vehicle). Has been.
 図12の判定マップMP6は、横軸に車速、縦軸に前車との距離(L2)を示している。この判定マップMP6において、2つの境界線L61,L62が設けられている。境界線L61は、境界線L62より縦軸(前車との距離L2)が小さい位置(図12では下方)に配置される。そして、現在の車速と前車との距離(L2)に基づき判定マップMP6にプロットしたときに、プロット位置が境界線L61より下方にある場合には減速度アシスト制御が選択され、境界線L61と境界線L62との間にある場合にはフューエルカット(F/C)制御が選択され、境界線L62より上方にある場合には惰性走行制御が選択されるよう構成されている。 In the determination map MP6 of FIG. 12, the horizontal axis indicates the vehicle speed, and the vertical axis indicates the distance (L2) from the front vehicle. In this determination map MP6, two boundary lines L 61 and L 62 are provided. Boundary L 61 is arranged ordinate boundary line L 62 is smaller position (distance L2 between the preceding vehicle) (in FIG. 12 below). Then, when plotted on the determination map MP6 based on the distance between the current vehicle speed and the preceding vehicle (L2), the deceleration assist control is selected when the plot position is below the boundary line L 61, the boundary line L If located between the 61 and the boundary line L 62 is selected fuel cut (F / C) control is configured to coasting control is selected if located above the boundary line L 62.
 減速度アシスト制御とフューエルカット制御とを切り分ける境界線L61は、フューエルカット制御を実施した場合に車両1がこの制御により減速し、前方車両と同じ速度になるまでに確保すべき距離を示すF/C減速所要距離Lfc2を各車速において設定し、これを結線したものである。F/C減速所要距離Lfc2は以下の(6)式により表すことができる。
Figure JPOXMLDOC01-appb-M000004
A boundary line L 61 that separates the deceleration assist control and the fuel cut control indicates a distance that must be secured before the vehicle 1 decelerates by this control and reaches the same speed as the preceding vehicle when the fuel cut control is performed. / C required deceleration speed L fc2 is set at each vehicle speed and connected. The required F / C deceleration distance L fc2 can be expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000004
 上記(6)式で、Vは現在の車両1の車速、Vは前車の車速、Gfcはフューエルカット制御の実施中の車両1の減速度(F/C減速度)を表す。また、F/C減速度Gfcは、図9を参照して説明したように、車速に応じて変化するものであり、車速の増加に伴い負方向に増大する、すなわち減速度が増加する傾向がある。 In the above equation (6), V 1 represents the current vehicle speed of the vehicle 1, V 2 represents the vehicle speed of the preceding vehicle, and G fc represents the deceleration (F / C deceleration) of the vehicle 1 during the fuel cut control. Further, as described with reference to FIG. 9, the F / C deceleration G fc changes according to the vehicle speed, and increases in the negative direction as the vehicle speed increases, that is, the deceleration tends to increase. There is.
 このような境界線L61は、前車との距離L2が、F/C減速所要距離Lfc2より短い場合には、フューエルカット制御に比べて減速度の大きい減速度アシスト制御を選択して、迅速に加速度を減少させることができるよう設定されている。また、境界線L61は、高車速ほど空力により車両が受ける減速度が強くなるため、車速が増加するにつれて減速度アシスト制御に切り替わる距離L2の値が大きくなるよう、横軸の車速の増加に伴い縦軸の距離L2も増加する傾向にある。 Such boundary line L 61 is the distance L2 between the preceding vehicle is shorter than the F / C deceleration required distance L fc2, select the larger deceleration assist control deceleration as compared with the fuel cut control, It is set so that acceleration can be reduced quickly. The boundary line L 61, since the deceleration experienced by the vehicle by aerodynamic higher the vehicle speed is increased, so that the value of the distance L2 switching to deceleration assist control as the vehicle speed increases increases, an increase in the vehicle speed on the horizontal axis Accordingly, the distance L2 on the vertical axis also tends to increase.
 ここで、図12に破線で示す制御線Ln2は、各車速において惰性走行制御を実施した場合に車両1がこの制御により減速し、前方車両と同じ速度になるまでに確保すべき距離を示す惰行減速所要距離Ln2を示すものである。惰行減速所要距離Ln2は以下の(7)式により表すことができる。
Figure JPOXMLDOC01-appb-M000005
Here, a control line L n2 indicated by a broken line in FIG. 12 indicates a distance to be secured until the vehicle 1 decelerates by this control when the inertial traveling control is performed at each vehicle speed and reaches the same speed as the preceding vehicle. The coasting deceleration required distance Ln2 is shown. The coasting deceleration required distance L n2 can be expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000005
 ここで、Gは惰性走行制御の実施中の車両1の減速度(惰行減速度)を表す。惰行減速度Gは、F/C減速度Gfcと同様に、車速に応じて変化するものであり、図9を参照して説明したように、車速の増加に伴い負方向に増大する、すなわち減速度が増加する傾向がある。また、惰行減速度Gは、車速の全体にわたりF/C減速度Gfcと比べて減速度が小さくなる傾向がある。 Here, Gn represents the deceleration (coasting deceleration) of the vehicle 1 during the coasting control. Like the F / C deceleration G fc , the coasting deceleration G n changes according to the vehicle speed, and increases in the negative direction as the vehicle speed increases, as described with reference to FIG. That is, the deceleration tends to increase. Further, the coasting deceleration Gn tends to be smaller than the F / C deceleration Gfc over the entire vehicle speed.
 フューエルカット制御と惰性走行制御とを切り分ける境界線L62は、上記(7)式の惰行減速所要距離Ln2から、惰行許可距離マージンLo2を差し引いたものとして以下の(8)式で表すことができる。
   L62=Ln2-Lo2   ・・・(8)
The boundary line L 62 that separates the fuel cut control and the coasting control is expressed by the following equation (8) as the coasting deceleration required distance L n2 of the equation (7) is subtracted from the coasting permitted distance margin L o2. Can do.
L 62 = L n2 −L o2 (8)
 ここで、惰行許可距離マージンLo2とは、図8に示した惰行許可距離マージンLo1と同様に、図12の判定マップMP6において惰性走行制御を選択する割合を高めるためのパラメータであって、前車との距離L2の大きさに応じて変更することができる。より詳細には、図13に示すように、惰行許可距離マージンLo2は、前車との距離L2が小さいほど小さく、距離L2が大きいほど大きく設定されている。これは、前車までの距離が遠い場合には、車速が高くても、まだ減速する必要性が低いため、減速度の低い惰性走行制御を選択しやすくして燃費向上を図るためである。但し、フューエルカット制御と惰性走行制御とを切り分ける境界線L62が、減速度アシスト制御とフューエルカット制御とを切り分ける境界線L61より常に上方に配置させるよう、惰行許可距離マージンLo2はLn2-Lfc2を上限とされている。 Here, the coasting permission distance margin L o2 is a parameter for increasing the rate of selecting coasting control in the determination map MP6 of FIG. 12, similarly to the coasting permission distance margin L o1 shown in FIG. It can be changed according to the size of the distance L2 with the preceding vehicle. More specifically, as shown in FIG. 13, the coasting permission distance margin L o2 is set to be smaller as the distance L2 from the preceding vehicle is smaller and larger as the distance L2 is larger. This is because, when the distance to the front vehicle is far, even if the vehicle speed is high, the necessity for deceleration is still low, so it is easy to select inertial traveling control with low deceleration to improve fuel efficiency. However, the coasting allowance distance margin L o2 is L n2 so that the boundary line L 62 that separates the fuel cut control and the coasting control is always disposed above the boundary line L 61 that separates the deceleration assist control and the fuel cut control. -L fc2 is the upper limit.
 このような境界線L62は、前車との距離L2が、上記(8)式で示した距離(Ln2-Lo2)より長い場合には、減速の必要性が低いので、フューエルカット制御に比べて減速度の小さい惰性走行制御を選択して、燃費向上を図ることができるよう設定されている。また、境界線L62は、車速が小さいほど惰性走行制御を選択可能となる距離L2を小さく(近く)し、車速が大きいほど大きく(遠く)なるよう、横軸の車速の増加に伴い縦軸の距離L2も増加する傾向にある。 Such boundary line L 62 is the distance L2 between the preceding vehicle, when the (8) longer than the distance (L n2 -L o2) shown by the formula, because of the low need for deceleration fuel-cut control The inertial running control having a smaller deceleration than that of the vehicle is selected so that the fuel consumption can be improved. The boundary line L 62 is the vehicle speed is smaller the coasting control reduce the distance L2 as a selectable (near) and, as the vehicle speed is larger greater (distance) so as the vertical axis with an increase in the vehicle speed on the horizontal axis The distance L2 also tends to increase.
 本実施形態では、このような境界線L61,L62の設定により、前車までの距離L2が所定値(L62)より大きく(遠く)、まだ減速の必要性が低い場合には惰性走行制御、前車までの距離L2が所定値(L61)より小さく(近く)、減速の必要性が高い場合には減速度アシスト制御、その中間の距離ではフューエルカット制御を選択することができる。 In the present embodiment, by setting the boundary lines L 61 and L 62 as described above, when the distance L2 to the front vehicle is larger (far) than the predetermined value (L 62 ) and the necessity for deceleration is still low, the inertial traveling is performed. When the distance L2 to the control and the front vehicle is smaller (closer) than the predetermined value (L 61 ) and the necessity for deceleration is high, deceleration assist control can be selected, and fuel cut control can be selected at an intermediate distance.
 さらに、本実施形態では、上記の図12の判定マップMP6に用いる「前車との距離L2」とは、車間センサ28により検出された距離情報Lsに、車間距離補正係数ΔLを足したものであり、以下の(9)式で表すことができる。
   L2=Ls+ΔL   ・・・(9)
Furthermore, in the present embodiment, the “distance L2 with the preceding vehicle” used in the determination map MP6 in FIG. 12 is obtained by adding the inter-vehicle distance correction coefficient ΔL to the distance information Ls detected by the inter-vehicle sensor 28. Yes, it can be expressed by the following equation (9).
L2 = Ls + ΔL (9)
 ここで、車間距離補正係数ΔLとは、前方車両との相対速度に基づき設定されるパラメータである。例えば図14に示すように、車間距離補正係数ΔLは、相対速度が正方向に大きくなるほど(前方車両が車両1より速く、前車との距離が遠くなる傾向であるほど)正方向に単調増加し、相対速度が0のときには0とし、また、相対速度が負方向に大きくなるほど(前方車両が車両1より遅く、前車との距離が近くなる傾向であるほど)負方向に単調増加するよう設定することができる。なお、前方車両との相対速度は、例えばインフラ情報取得装置29により取得された前方車両の車速情報や、車速センサ24により検出された車両1の車速情報などに基づいて算出される。 Here, the inter-vehicle distance correction coefficient ΔL is a parameter set based on the relative speed with the preceding vehicle. For example, as shown in FIG. 14, the inter-vehicle distance correction coefficient ΔL increases monotonously in the positive direction as the relative speed increases in the positive direction (the vehicle ahead is faster than the vehicle 1 and the distance from the front vehicle tends to be far). When the relative speed is 0, it is 0, and as the relative speed increases in the negative direction (the vehicle ahead is slower than the vehicle 1 and the distance from the front vehicle tends to be closer), it increases monotonously in the negative direction. Can be set. The relative speed with the preceding vehicle is calculated based on, for example, the vehicle speed information of the preceding vehicle acquired by the infrastructure information acquisition device 29, the vehicle speed information of the vehicle 1 detected by the vehicle speed sensor 24, and the like.
 このように車間距離補正係数ΔLを加算して前車との距離L2を算出することにより、前車との相対速度に応じて、判定マップMP6において惰性走行制御を選択させるための判定基準を調整することができる。例えば、車間センサ28により検出された実際の距離情報Lsが同一の場合であっても、前車との相対速度が正方向に大きい場合には、(9)式で算出される前車との距離L2が増大するので、惰性走行制御が選択されやすくなる。一方、前車との相対速度が負方向に大きい場合には、(9)式で算出される前車との距離L2が減少するので、惰性走行制御が選択されにくくなる。 In this way, by adding the inter-vehicle distance correction coefficient ΔL to calculate the distance L2 with the preceding vehicle, the determination criterion for selecting the inertia traveling control in the determination map MP6 is adjusted according to the relative speed with the preceding vehicle. can do. For example, even when the actual distance information Ls detected by the inter-vehicle sensor 28 is the same, if the relative speed with the front vehicle is large in the positive direction, Since the distance L2 increases, inertial traveling control is easily selected. On the other hand, when the relative speed with the front vehicle is large in the negative direction, the distance L2 with the front vehicle calculated by the equation (9) decreases, so that it is difficult to select inertial traveling control.
 車間要件判定部16は、このように判定マップMP6を用いて制御手法を選択すると、選択した制御手法に応じた判定信号を出力する。判定信号は、惰性走行制御を選択した場合には「ID1」、フューエルカット制御を選択した場合には「ID2」、減速度アシスト制御を選択した場合には「ID3」となる。 When the control method is selected using the determination map MP6 in this manner, the inter-vehicle requirement determination unit 16 outputs a determination signal corresponding to the selected control method. The determination signal is “ID1” when inertial running control is selected, “ID2” when fuel cut control is selected, and “ID3” when deceleration assist control is selected.
 減速手段調停部17は、勾配要件判定部11、旋回要件判定部12、操舵要件判定部13、アクセル要件判定部14、停止位置要件判定部15、車間要件判定部16からの判定信号に基づいて、3つの制御手法(惰性走行制御、フューエルカット制御、減速度アシスト制御)のうち実行する制御手法を決定する。より詳細には、減速手段調停部17は、勾配要件判定部11、旋回要件判定部12、操舵要件判定部13、アクセル要件判定部14、停止位置要件判定部15、車間要件判定部16から入力された判定信号の内容を比較し、全ての判定信号が「ID1」である場合には惰性走行制御を実行することを決定し、全ての判定信号が「ID3」である場合には減速度アシスト制御を実行することを決定し、それ以外(全判定信号がID2、または判定信号が一致しない)の場合にはフューエルカット制御を実行することを決定する。 The deceleration means arbitration unit 17 is based on determination signals from the gradient requirement determination unit 11, the turning requirement determination unit 12, the steering requirement determination unit 13, the accelerator requirement determination unit 14, the stop position requirement determination unit 15, and the inter-vehicle requirement determination unit 16. A control method to be executed is determined from among the three control methods (inertial travel control, fuel cut control, and deceleration assist control). More specifically, the deceleration means arbitration unit 17 is input from the gradient requirement determination unit 11, the turning requirement determination unit 12, the steering requirement determination unit 13, the accelerator requirement determination unit 14, the stop position requirement determination unit 15, and the inter-vehicle requirement determination unit 16. The contents of the determination signals are compared, and if all the determination signals are “ID1”, it is decided to execute inertial running control, and if all the determination signals are “ID3”, the deceleration assist is determined. It is determined to execute the control, and in other cases (all determination signals are ID2 or the determination signals do not match), it is determined to execute the fuel cut control.
 燃料噴射制御部18は、エンジン2の燃料噴射量を制御する。本実施形態では、減速手段調停部17からの制御指令に応じて、エンジン2への燃料噴射を中止する制御を行う。 The fuel injection control unit 18 controls the fuel injection amount of the engine 2. In the present embodiment, control for stopping the fuel injection to the engine 2 is performed in accordance with a control command from the deceleration means arbitration unit 17.
 クラッチ制御部19は、トランスミッション3のクラッチ5の開放/係合動作を制御する。本実施形態では、減速手段調停部17からの制御指令に応じて、クラッチ5の開放動作を行う。 The clutch control unit 19 controls the release / engagement operation of the clutch 5 of the transmission 3. In the present embodiment, the clutch 5 is disengaged in response to a control command from the deceleration means arbitration unit 17.
 変速制御部20は、トランスミッション3の自動変速機構6の変速動作を制御する。本実施形態では、減速手段調停部17からの制御指令に応じて、自動変速機構6のアップシフト禁止または強制ダウンシフトの制御を行う。 The shift control unit 20 controls the shift operation of the automatic transmission mechanism 6 of the transmission 3. In the present embodiment, in accordance with a control command from the deceleration means arbitrating unit 17, upshift inhibition or forced downshift control of the automatic transmission mechanism 6 is performed.
 ここで、ECU10は、物理的には、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)及びインターフェースなどを含む周知のマイクロコンピュータを主体とする電子回路である。図1に示すECU10の各部の機能は、ROMに保持されるアプリケーションプログラムをRAMにロードしてCPUで実行することによって、CPUの制御のもとで車両1内の各種装置を動作させると共に、RAMやROMにおけるデータの読み出し及び書き込みを行うことで実現される。 Here, the ECU 10 is physically an electronic circuit mainly composed of a known microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an interface, and the like. The function of each part of the ECU 10 shown in FIG. 1 is to operate various devices in the vehicle 1 under the control of the CPU by loading an application program held in the ROM into the RAM and executing it by the CPU. It is realized by reading and writing data in and ROM.
 また、ECU10は、上記の各部の機能に限定されず、車両1のECUとして用いるその他の各種機能を備えている。また、上記のECU10とは、エンジン2を制御するエンジンECU、トランスミッション3を制御するT/M-ECU、惰性走行(S&S(スタート&ストップ)制御)を実行するためのS&S-ECUなどの複数のECUを備える構成であってもよい。 Further, the ECU 10 is not limited to the functions of the above-described units, and includes various other functions used as the ECU of the vehicle 1. The ECU 10 includes a plurality of engines such as an engine ECU that controls the engine 2, a T / M-ECU that controls the transmission 3, and an S & S-ECU that performs inertial running (S & S (start and stop) control). A configuration including an ECU may also be used.
 なお、本実施形態では、以上に述べた車両1の構成要素のうち、少なくともエンジン2、トランスミッション3(特にクラッチ5及び自動変速機構6)、及びECU10が、本実施形態に係る車両制御装置として機能するものである。 In the present embodiment, among the components of the vehicle 1 described above, at least the engine 2, the transmission 3 (particularly the clutch 5 and the automatic transmission mechanism 6), and the ECU 10 function as the vehicle control device according to the present embodiment. To do.
 次に、図15を参照して、本実施形態に係る車両制御装置の動作について説明する。図15は、本実施形態に係る車両制御装置により実施される減速手段調停制御のフローチャートである。 Next, the operation of the vehicle control device according to the present embodiment will be described with reference to FIG. FIG. 15 is a flowchart of deceleration means arbitration control performed by the vehicle control apparatus according to the present embodiment.
 まず、ECU10により、アクセル開度センサ21、ブレーキセンサ22、シフトポジションセンサ23、車速センサ24、勾配センサ25、横加速度センサ26、操舵角センサ27、車間センサ28、インフラ情報取得装置29などから車両1の走行状態や周囲環境に関する各種情報が取得されると(S101)、これらの取得された情報に基づいて惰性走行を実施する条件を満たすか否かが確認される(S102)。惰性走行の条件とは、例えば、車両1の現在のシフトポジションがD(ドライブ)レンジであることや、アクセル操作が行われていないアクセルオフ状態であること、ブレーキ操作が行われていないブレーキオフ状態であることなどが挙げられる。惰性走行条件を満たす場合にはステップS103に移行する。惰性走行条件を満たしていない場合にはステップS101に戻る。 First, the ECU 10 controls the vehicle from an accelerator opening sensor 21, a brake sensor 22, a shift position sensor 23, a vehicle speed sensor 24, a gradient sensor 25, a lateral acceleration sensor 26, a steering angle sensor 27, an inter-vehicle sensor 28, an infrastructure information acquisition device 29, and the like. When various pieces of information related to the driving state and the surrounding environment of 1 are acquired (S101), it is confirmed whether or not the conditions for carrying out inertial driving are satisfied based on the acquired information (S102). The conditions for inertial running include, for example, that the current shift position of the vehicle 1 is in the D (drive) range, an accelerator off state in which no accelerator operation is performed, and a brake off in which no brake operation is performed. It is a state. When the inertia running condition is satisfied, the process proceeds to step S103. If the inertia running condition is not satisfied, the process returns to step S101.
 ステップS102において惰性走行条件が満たされたと判定された場合には、続いて勾配要件判定部11により、勾配要件に基づき制御手法の選択判定が行われる(S103)。勾配要件判定部11は、上述したように、車速センサ24により検出される車両1の現在の車速と、勾配センサ25により検出される車両1が走行している道路の勾配(勾配情報)とに基づいて、図2の判定マップMP1を用いて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択し、選択した制御手法に応じた判定信号(惰性走行制御→「ID1」、フューエルカット制御→「ID2」、減速度アシスト制御→「ID3」)を減速手段調停部17に送信する。 If it is determined in step S102 that the inertial running condition is satisfied, the gradient requirement determining unit 11 subsequently performs control method selection determination based on the gradient requirement (S103). As described above, the gradient requirement determining unit 11 uses the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the gradient (gradient information) of the road on which the vehicle 1 is traveling detected by the gradient sensor 25. Based on the determination map MP1 of FIG. 2, one of the control methods of inertial traveling control, deceleration assist control, or fuel cut control is selected, and a determination signal (inertial traveling control → “ID1”, fuel cut control → “ID2”, deceleration assist control → “ID3”) is transmitted to the deceleration means arbitration unit 17.
 次に、旋回要件判定部12により、旋回要件に基づき制御手法の選択判定が行われる(S104)。旋回要件判定部12は、上述したように、車速センサ24により検出される車両1の現在の車速と、横加速度センサ26により検出される、車両1に作用している横加速度(横G)とに基づいて、図3の判定マップMP2を用いて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択し、選択した制御手法に応じた判定信号を減速手段調停部17に送信する。 Next, the turning requirement determination unit 12 performs control method selection determination based on the turning requirement (S104). As described above, the turning requirement determination unit 12 detects the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the lateral acceleration (lateral G) acting on the vehicle 1 detected by the lateral acceleration sensor 26. 3 is selected using inertial running control, deceleration assist control, or fuel cut control using the determination map MP2 of FIG. 3, and the determination signal corresponding to the selected control method is decelerated by the deceleration means. To the unit 17.
 次に、操舵要件判定部13により、操舵要件に基づき制御手法の選択判定が行われる(S105)。操舵要件判定部13は、上述したように、車速センサ24により検出される車両1の現在の車速と、操舵角センサ27により検出される操舵角情報とに基づいて、図5,6の判定マップMP3-1,MP3-2を用いて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択し、選択した制御手法に応じた判定信号を減速手段調停部17に送信する。 Next, the steering requirement determination unit 13 performs control method selection determination based on the steering requirement (S105). As described above, the steering requirement determination unit 13 determines the determination map shown in FIGS. 5 and 6 based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the steering angle information detected by the steering angle sensor 27. Using MP3-1 and MP3-2, a control method of inertial running control, deceleration assist control, or fuel cut control is selected, and a determination signal corresponding to the selected control method is sent to the deceleration means arbitration unit 17 Send.
 次に、アクセル要件判定部14により、アクセル要件に基づき制御手法の選択判定が行われる(S106)。アクセル要件判定部14は、上述したように、車速センサ24により検出される車両1の現在の車速と、アクセル開度センサ21により検出されるアクセル戻しスピードとに基づいて、図7の判定マップMP4を用いて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択し、選択した制御手法に応じた判定信号を減速手段調停部17に送信する。 Next, the accelerator requirement determining unit 14 determines whether to select a control method based on the accelerator requirement (S106). As described above, the accelerator requirement determining unit 14 determines the determination map MP4 in FIG. 7 based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the accelerator return speed detected by the accelerator opening sensor 21. Is used to select any one of inertial running control, deceleration assist control, or fuel cut control, and a determination signal corresponding to the selected control method is transmitted to the deceleration means arbitration unit 17.
 次に、停止位置要件判定部15により、停止位置要件に基づき制御手法の選択判定が行われる(S107)。停止位置要件判定部15は、上述したように、車速センサ24により検出される車両1の現在の車速と、走行先の停止位置情報とに基づいて、図8の判定マップMP5を用いて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択し、選択した制御手法に応じた判定信号を減速手段調停部17に送信する。 Next, the stop position requirement determination unit 15 performs control method selection determination based on the stop position requirement (S107). As described above, the stop position requirement determination unit 15 uses the determination map MP5 of FIG. 8 based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the stop position information of the travel destination, and the inertia. A control method of travel control, deceleration assist control, or fuel cut control is selected, and a determination signal corresponding to the selected control method is transmitted to the deceleration means arbitration unit 17.
 次に、車間要件判定部16により、車間要件に基づき制御手法の選択判定が行われる(S108)。車間要件判定部16は、上述したように、車速センサ24により検出される車両1の現在の車速と、前方車両との車間情報とに基づいて、図12の判定マップMP6を用いて、惰性走行制御、減速度アシスト制御、またはフューエルカット制御のいずれかの制御手法を選択し、選択した制御手法に応じた判定信号を減速手段調停部17に送信する。 Next, the selection method of the control method is determined by the inter-vehicle requirement determining unit 16 based on the inter-vehicle requirement (S108). As described above, the inter-vehicle requirement determining unit 16 uses the determination map MP6 of FIG. 12 based on the current vehicle speed of the vehicle 1 detected by the vehicle speed sensor 24 and the inter-vehicle information with the preceding vehicle, and performs inertia traveling. A control method of any one of control, deceleration assist control, or fuel cut control is selected, and a determination signal corresponding to the selected control method is transmitted to the deceleration means arbitrating unit 17.
 そして、減速手段調停部17により、勾配要件判定部11、旋回要件判定部12、操舵要件判定部13、アクセル要件判定部14、停止位置要件判定部15、車間要件判定部16から受信した判定信号が比較され、まずは全ての判定信号が「ID1」であるか否かが確認される(S109)。 Then, the determination signal received from the gradient requirement determining unit 11, the turning requirement determining unit 12, the steering requirement determining unit 13, the accelerator requirement determining unit 14, the stop position requirement determining unit 15, and the inter-vehicle requirement determining unit 16 by the deceleration means arbitrating unit 17. First, it is confirmed whether or not all the determination signals are “ID1” (S109).
 全ての判定信号が「ID1」である場合には、すべての判定部が惰性走行制御を選択している状況であるので、惰性走行制御の実行が決定される。そして、クラッチ制御部19により、クラッチ5が解放されてエンジン2と駆動輪4との切り離しが実行され、エンジン2と駆動輪4との間の動力伝達が遮断されて、車両1は惰性走行状態となる(S110)。また、併せて燃料噴射制御部18が、エンジン2の燃料噴射をカットする制御を実施してもよい。 When all the determination signals are “ID1”, since all the determination units have selected inertial traveling control, execution of inertial traveling control is determined. Then, the clutch 5 is released by the clutch control unit 19 so that the engine 2 and the drive wheels 4 are disconnected, the power transmission between the engine 2 and the drive wheels 4 is cut off, and the vehicle 1 is in the inertial running state. (S110). In addition, the fuel injection control unit 18 may perform control to cut the fuel injection of the engine 2.
 ステップS109において、全ての判定信号が「ID1」ではなかった場合には、続いて全ての判定信号が「ID3」であるか否かが確認される(S111)。全ての判定信号が「ID3」である場合には、すべての判定部が減速度アシスト制御を選択している状況であるので、減速度アシスト制御の実行が決定される。そして、変速制御部20により、自動変速機構6のアップシフト禁止または強制ダウンシフトを行う減速度アシスト制御が実行される(S112)。 In step S109, if all the determination signals are not “ID1”, it is subsequently confirmed whether or not all the determination signals are “ID3” (S111). When all the determination signals are “ID3”, it is determined that all the determination units have selected the deceleration assist control, and therefore execution of the deceleration assist control is determined. Then, the shift control unit 20 executes deceleration assist control for prohibiting upshifting or forced downshifting of the automatic transmission mechanism 6 (S112).
 ステップS111において全ての判定信号が「ID3」ではなかった場合には、すべての判定部がフューエルカット制御を選択しているか、または各判定部の選択結果が不一致な状況であるので、フューエルカット制御の実行が決定される。そして、燃料噴射制御部18が、エンジン2の燃料噴射をカットするフューエルカット制御が実施される(S113)。 If all the determination signals are not “ID3” in step S111, the fuel cut control is performed because all the determination units have selected the fuel cut control or the selection results of the determination units are inconsistent. Execution is determined. Then, the fuel injection control unit 18 performs fuel cut control for cutting the fuel injection of the engine 2 (S113).
 なお、上記のフローチャートにおいて、ステップS103~S108の各判定部の処理は、適宜順序を入れ替えてもよいし、一部のみを実施してもよい。また、一部の判定部のみを使用する場合には、減速手段調停部17は、処理を実施した判定部からの判定信号のみを用いてステップS109、S111の判定処理を実施する。 In the above flowchart, the processes of the determination units in steps S103 to S108 may be appropriately changed in order, or only a part of them may be performed. In addition, when only a part of the determination units is used, the deceleration means arbitration unit 17 performs the determination process of steps S109 and S111 using only the determination signal from the determination unit that has performed the process.
 以上に説明したように、本実施形態に係る車両制御装置は、走行時に車両1に対する加減速要求が無く、クラッチ5の係合によりエンジン2と駆動輪4との間で動力が伝達される状態である場合に、車両1の現在の車速及び運転環境情報(具体的には勾配情報、コーナー情報、操舵角情報、アクセル操作情報、走行先の停止位置情報、前方車両との車間情報を含む)に基づいて、(1)エンジン2への燃料噴射を停止するフューエルカット制御、(2)エンジン2への燃料噴射を停止すると共に、自動変速機構6のアップシフト禁止またはダウンシフトを実行する減速度アシスト制御、または(3)クラッチ5の係合を解除してエンジン2と駆動輪4との動力伝達を遮断し、惰性により車両1を走行させる惰性走行を実施する惰性走行制御、のいずれか1つを選択して実施可能であることを特徴とする。 As described above, the vehicle control apparatus according to the present embodiment has no acceleration / deceleration request for the vehicle 1 during traveling, and power is transmitted between the engine 2 and the drive wheels 4 by the engagement of the clutch 5. In this case, the current vehicle speed and driving environment information of the vehicle 1 (specifically, including gradient information, corner information, steering angle information, accelerator operation information, stop position information of the travel destination, and inter-vehicle information with the preceding vehicle) (1) Fuel cut control for stopping fuel injection to the engine 2; (2) Deceleration for stopping fuel injection to the engine 2 and prohibiting or downshifting the automatic transmission mechanism 6 Assist control, or (3) Inertia travel control in which inertial travel is performed to disengage the clutch 5 to cut off the power transmission between the engine 2 and the drive wheels 4 and travel the vehicle 1 by inertia. Wherein the in be implemented by selecting one.
 このような構成により、車両1の現在の車速及び運転環境情報を考慮して、燃費を向上できる惰性走行制御と、ドライバビリティを向上できる減速度アシスト制御と、従来のフューエルカット制御とのいずれかを適宜選択して実行することができる。これにより、例えば、ドライバの減速意図が強い場面で減速度の低い惰性走行制御が実施されたり、これと反対に、ドライバの減速意図が弱い場面で減速度の高い減速度アシスト制御が実施されたりする状況を回避することが可能となり、この結果、車両走行中に運転者の違和感を抑制できると共に、燃費を向上することができる。 With such a configuration, in consideration of the current vehicle speed and driving environment information of the vehicle 1, any one of inertial traveling control that can improve fuel consumption, deceleration assist control that can improve drivability, and conventional fuel cut control Can be selected and executed as appropriate. As a result, for example, coasting control with low deceleration is performed when the driver's intention to decelerate is strong, and conversely, deceleration assist control with high deceleration is performed when the driver's intention to decelerate is weak. As a result, it is possible to suppress the driver's uncomfortable feeling while driving the vehicle and to improve fuel efficiency.
 以上、本発明について好適な実施形態を示して説明したが、本発明はこれらの実施形態により限定されるものではない。例えば、図1に示すECU10の各機能ブロックは、あくまで説明の便宜上例示したものであり、同様の機能を実現できれば他の構成としてもよい。 As mentioned above, although preferred embodiment was shown and demonstrated about this invention, this invention is not limited by these embodiment. For example, each functional block of the ECU 10 shown in FIG. 1 is merely illustrated for convenience of explanation, and may have other configurations as long as the same function can be realized.
 1 車両
 2 エンジン
 4 駆動輪
 5 クラッチ
 6 自動変速機構
 10 ECU
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Engine 4 Drive wheel 5 Clutch 6 Automatic transmission mechanism 10 ECU

Claims (8)

  1.  エンジンと、
     前記エンジンと駆動輪との間での動力を伝達または遮断するクラッチと、
     前記エンジンからの動力を変速して出力する自動変速機構と、
    を備える車両制御装置であって、
     走行時に車両に対する加減速要求が無く、前記クラッチの係合により前記エンジンと前記駆動輪との間で動力が伝達される状態である場合に、前記車両の現在の車速及び運転環境情報に基づいて、
     前記エンジンへの燃料噴射を停止するフューエルカット制御、
     前記エンジンへの燃料噴射を停止すると共に、前記自動変速機構のアップシフト禁止またはダウンシフトを実行する減速度アシスト制御、または
     前記クラッチの係合を解除して前記エンジンと前記駆動輪との動力伝達を遮断し、惰性により前記車両を走行させる惰性走行を実施する惰性走行制御
    のいずれか1つを選択して実施可能であることを特徴とする車両制御装置。
    Engine,
    A clutch for transmitting or interrupting power between the engine and the drive wheels;
    An automatic transmission mechanism that shifts and outputs power from the engine;
    A vehicle control device comprising:
    Based on the current vehicle speed and driving environment information of the vehicle when there is no acceleration / deceleration request to the vehicle during traveling and power is transmitted between the engine and the drive wheels by engagement of the clutch. ,
    Fuel cut control to stop fuel injection to the engine;
    Deceleration assist control for stopping fuel injection to the engine and prohibiting upshifting or downshifting of the automatic transmission mechanism, or disengaging the clutch to transmit power between the engine and the drive wheels A vehicle control device characterized by being able to select and execute any one of inertial traveling control for performing inertial traveling in which the vehicle is driven by inertia.
  2.  前記運転環境情報は、前記車両が走行する道路の勾配に関する勾配情報を含み、
     前記車速と前記勾配情報とに関連付けられた判定マップを備え、
     前記車両の現在の車速及び勾配情報に基づき、前記判定マップを用いて、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することを特徴とする、請求項1に記載の車両制御装置。
    The driving environment information includes gradient information regarding a gradient of a road on which the vehicle travels,
    A determination map associated with the vehicle speed and the gradient information;
    The fuel cut control, the deceleration assist control, or the inertial running control is selected using the determination map based on the current vehicle speed and gradient information of the vehicle. Item 4. The vehicle control device according to Item 1.
  3.  前記運転環境情報は、前記勾配情報を含む複数の情報を含み、
     前記車両の現在の車速と、前記複数の情報のそれぞれとに基づき選択された前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つの制御手法が同一の場合には、該制御手法を実行し、
     前記車両の現在の車速と、前記複数の情報のそれぞれとに基づき選択された前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つの制御手法が非同一の場合には、前記フューエルカット制御を実行する
    ことを特徴とする、請求項2に記載の車両制御装置。
    The driving environment information includes a plurality of information including the gradient information,
    When any one of the fuel cut control selected based on the current vehicle speed of the vehicle and each of the plurality of information, the deceleration assist control, or the inertial running control is the same, Executing the control technique;
    When any one of the control methods selected from the fuel cut control, the deceleration assist control, and the inertial traveling control selected based on the current vehicle speed of the vehicle and each of the plurality of pieces of information is not the same The vehicle control device according to claim 2, wherein the fuel cut control is executed.
  4.  前記運転環境情報は、前記車両が走行するコーナーに関するコーナー情報を含み、
     前記車速と前記コーナー情報とに関連付けられた判定マップを備え、
     前記判定マップを用いて、前記車両の現在の車速及びコーナー情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することを特徴とする、請求項1~3のいずれか1項に記載の車両制御装置。
    The driving environment information includes corner information related to a corner where the vehicle travels,
    A determination map associated with the vehicle speed and the corner information;
    The fuel cell control, the deceleration assist control, or the inertial traveling control is selected using the determination map based on the current vehicle speed and corner information of the vehicle. Item 4. The vehicle control device according to any one of Items 1 to 3.
  5.  前記運転環境情報は、前記車両の操舵角に関する操舵角情報を含み、
     前記車速と前記操舵角情報とに関連付けられた判定マップを備え、
     前記判定マップを用いて、前記車両の現在の車速及び操舵角情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することを特徴とする、請求項1~4のいずれか1項に記載の車両制御装置。
    The driving environment information includes steering angle information related to a steering angle of the vehicle,
    A determination map associated with the vehicle speed and the steering angle information;
    Based on the current vehicle speed and steering angle information of the vehicle, using the determination map, any one of the fuel cut control, the deceleration assist control, or the inertia traveling control is selected. The vehicle control device according to any one of claims 1 to 4.
  6.  前記運転環境情報は、前記車両のアクセル操作に関するアクセル操作情報を含み、
     前記車速と前記アクセル操作情報とに関連付けられた判定マップを備え、
     前記判定マップを用いて、前記車両の現在の車速及びアクセル操作情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することを特徴とする、請求項1~5のいずれか1項に記載の車両制御装置。
    The driving environment information includes accelerator operation information related to an accelerator operation of the vehicle,
    A determination map associated with the vehicle speed and the accelerator operation information;
    The determination map is used to select any one of the fuel cut control, the deceleration assist control, or the inertia traveling control based on the current vehicle speed and accelerator operation information of the vehicle. The vehicle control device according to any one of claims 1 to 5.
  7.  前記運転環境情報は、前記車両の走行先の停止位置に関する停止位置情報を含み、
     前記車速と前記停止位置情報に関連付けられた判定マップを備え、
     前記判定マップを用いて、前記車両の現在の車速及び停止位置情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することを特徴とする、請求項1~6のいずれか1項に記載の車両制御装置。
    The driving environment information includes stop position information related to a stop position of the travel destination of the vehicle,
    A determination map associated with the vehicle speed and the stop position information;
    Based on the current vehicle speed and stop position information of the vehicle, the fuel cut control, the deceleration assist control, or the inertial running control is selected using the determination map. The vehicle control device according to any one of claims 1 to 6.
  8.  前記運転環境情報は、前記車両と前方車両との車間距離に関する車間情報を含み、
     前記車速と前記車間情報とに関連付けられた判定マップを備え、
     前記判定マップを用いて、前記車両の現在の車速及び車間情報に基づき、前記フューエルカット制御、前記減速度アシスト制御、または前記惰性走行制御のいずれか1つを選択することを特徴とする、請求項1~7のいずれか1項に記載の車両制御装置。
    The driving environment information includes inter-vehicle information related to an inter-vehicle distance between the vehicle and a preceding vehicle,
    A determination map associated with the vehicle speed and the inter-vehicle information,
    The fuel cell control, the deceleration assist control, or the inertial traveling control is selected using the determination map based on the current vehicle speed and distance information of the vehicle. Item 8. The vehicle control device according to any one of Items 1 to 7.
PCT/JP2011/072290 2011-09-28 2011-09-28 Vehicle control apparatus WO2013046381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072290 WO2013046381A1 (en) 2011-09-28 2011-09-28 Vehicle control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072290 WO2013046381A1 (en) 2011-09-28 2011-09-28 Vehicle control apparatus

Publications (1)

Publication Number Publication Date
WO2013046381A1 true WO2013046381A1 (en) 2013-04-04

Family

ID=47994490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072290 WO2013046381A1 (en) 2011-09-28 2011-09-28 Vehicle control apparatus

Country Status (1)

Country Link
WO (1) WO2013046381A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564364A (en) * 2013-10-14 2015-04-29 通用汽车环球科技运作有限责任公司 Method of controlling an automatic engine stop during coasting phase
DE102015109011A1 (en) 2014-06-09 2015-12-10 Toyota Jidosha Kabushiki Kaisha Control device for a vehicle and control method for a vehicle
JP2016531045A (en) * 2013-09-11 2016-10-06 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited Vehicle controller and method
WO2017006743A1 (en) * 2015-07-03 2017-01-12 日立オートモティブシステムズ株式会社 Control apparatus for vehicle
JPWO2015045496A1 (en) * 2013-09-26 2017-03-09 日立オートモティブシステムズ株式会社 Vehicle control device
WO2017149948A1 (en) * 2016-02-29 2017-09-08 日立オートモティブシステムズ株式会社 Vehicle control device
JP2017198173A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Vehicle control device
CN110304060A (en) * 2018-03-20 2019-10-08 本田技研工业株式会社 Controller of vehicle and control method for vehicle
JP2019202781A (en) * 2019-08-19 2019-11-28 株式会社デンソー Vehicle control device
CN112776806A (en) * 2019-10-23 2021-05-11 现代自动车株式会社 Vehicle and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112680A (en) * 1995-10-12 1997-05-02 Nissan Motor Co Ltd Shift control device of continuously variable transmission
JPH09303543A (en) * 1996-05-10 1997-11-25 Toyota Motor Corp Shift control device of automatic transmission for vehicle
JPH11280880A (en) * 1998-03-30 1999-10-15 Nissan Motor Co Ltd Vehicular drive force control device
JP2005075179A (en) * 2003-09-01 2005-03-24 Toyota Motor Corp Control device for vehicle
JP2008151334A (en) * 2006-11-22 2008-07-03 Nissan Motor Co Ltd Speed-change control device of automatic transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112680A (en) * 1995-10-12 1997-05-02 Nissan Motor Co Ltd Shift control device of continuously variable transmission
JPH09303543A (en) * 1996-05-10 1997-11-25 Toyota Motor Corp Shift control device of automatic transmission for vehicle
JPH11280880A (en) * 1998-03-30 1999-10-15 Nissan Motor Co Ltd Vehicular drive force control device
JP2005075179A (en) * 2003-09-01 2005-03-24 Toyota Motor Corp Control device for vehicle
JP2008151334A (en) * 2006-11-22 2008-07-03 Nissan Motor Co Ltd Speed-change control device of automatic transmission

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016531045A (en) * 2013-09-11 2016-10-06 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited Vehicle controller and method
US9694822B2 (en) 2013-09-11 2017-07-04 Jaguar Land Rover Limited Vehicle controller and method
JPWO2015045496A1 (en) * 2013-09-26 2017-03-09 日立オートモティブシステムズ株式会社 Vehicle control device
CN104564364A (en) * 2013-10-14 2015-04-29 通用汽车环球科技运作有限责任公司 Method of controlling an automatic engine stop during coasting phase
DE102015109011A1 (en) 2014-06-09 2015-12-10 Toyota Jidosha Kabushiki Kaisha Control device for a vehicle and control method for a vehicle
WO2017006743A1 (en) * 2015-07-03 2017-01-12 日立オートモティブシステムズ株式会社 Control apparatus for vehicle
JP2017015030A (en) * 2015-07-03 2017-01-19 日立オートモティブシステムズ株式会社 Control device of automobile
CN107683230A (en) * 2015-07-03 2018-02-09 日立汽车系统株式会社 The control device of automobile
EP3318460A4 (en) * 2015-07-03 2019-03-13 Hitachi Automotive Systems, Ltd. Control apparatus for vehicle
US10583836B2 (en) 2015-07-03 2020-03-10 Hitachi Automotive Systems, Ltd. Control apparatus for vehicle
WO2017149948A1 (en) * 2016-02-29 2017-09-08 日立オートモティブシステムズ株式会社 Vehicle control device
US10556591B2 (en) 2016-02-29 2020-02-11 Hitachi Automotive Systems, Ltd. Vehicle control device
JPWO2017149948A1 (en) * 2016-02-29 2018-11-01 日立オートモティブシステムズ株式会社 Vehicle control device
JP2017198173A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Vehicle control device
CN110304060A (en) * 2018-03-20 2019-10-08 本田技研工业株式会社 Controller of vehicle and control method for vehicle
JP2019202781A (en) * 2019-08-19 2019-11-28 株式会社デンソー Vehicle control device
CN112776806A (en) * 2019-10-23 2021-05-11 现代自动车株式会社 Vehicle and control method thereof
CN112776806B (en) * 2019-10-23 2024-04-19 现代自动车株式会社 Vehicle and control method thereof

Similar Documents

Publication Publication Date Title
WO2013046381A1 (en) Vehicle control apparatus
EP2738412B1 (en) Vehicle control device
EP3072761B1 (en) Control device of vehicle
WO2018061469A1 (en) Vehicle control device
JP7081110B2 (en) Driving control device, vehicle, and driving control method
US20210300378A1 (en) Control device and control method for a vehicle, and storage medium
KR20090062527A (en) System for automatic controlling the speed of a vehicle
CN110382924B (en) Transmission control device for vehicle
JP5999323B2 (en) Shift control device for automatic transmission
JP2018034597A (en) Vehicle control device
JP5729539B2 (en) Auto cruise control device
JP6986499B2 (en) Vehicle control device
JP6958082B2 (en) Driving control device, vehicle and driving control method
JP2018127095A (en) Travel control device, vehicle, and travel control method
JP6859783B2 (en) Driving control device, vehicle and driving control method
JP2014000900A (en) Vehicle control device
JP6932939B2 (en) Driving control device, vehicle and driving control method
JP6994007B2 (en) Vehicle control device
EP4170203B1 (en) Control apparatus for vehicle
JP2006312997A (en) Shift control system of transmission
JP6379915B2 (en) Vehicle control device
JP2018034600A (en) Vehicle control device
JP2011185377A (en) System for control of vehicle
JP2005265176A (en) Running control device of vehicle
JP6452423B2 (en) Vehicle shift control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP