WO2013046123A1 - Apparatus, computer programs and methods for enabling filtering of neighbour cells or frequencies - Google Patents

Apparatus, computer programs and methods for enabling filtering of neighbour cells or frequencies Download PDF

Info

Publication number
WO2013046123A1
WO2013046123A1 PCT/IB2012/055103 IB2012055103W WO2013046123A1 WO 2013046123 A1 WO2013046123 A1 WO 2013046123A1 IB 2012055103 W IB2012055103 W IB 2012055103W WO 2013046123 A1 WO2013046123 A1 WO 2013046123A1
Authority
WO
WIPO (PCT)
Prior art keywords
neighbour
frequency
frequency bands
frequencies
cell
Prior art date
Application number
PCT/IB2012/055103
Other languages
French (fr)
Inventor
Keiichi Kubota
Brian Alexander Martin
Original Assignee
Renesas Mobile Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/246,285 external-priority patent/US20130078989A1/en
Priority claimed from GB1116642.8A external-priority patent/GB2484783B/en
Application filed by Renesas Mobile Corporation filed Critical Renesas Mobile Corporation
Publication of WO2013046123A1 publication Critical patent/WO2013046123A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • H04W36/008355Determination of target cell based on user equipment [UE] properties, e.g. UE service capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment UE receives (302) from a serving cell indications of frequency bands supported by neighbour cells/frequencies, at least one individual neighbour cell/frequency supporting a plurality of frequency bands. The neighbour cells/frequencies are filtered (304) to retain only those that are indicated to support a frequency band or frequency bands which are also supported by the UE. Examples are given of various system information blocks for sending the frequency band indications to the UE. In one embodiment (310), they are arranged in an information element IE having an entry for each of the neighbour cells/frequencies and a list of frequency bands for each entry. In another (312), the IE has an index and an associated frequency band(s) where a value of the index indicates that one or more of the neighbour cells/frequencies referred to by the index belongs to the associated frequency band(s).

Description

APPARATUS, COMPUTER PROGRAMS AND METHODS FOR
ENABLING FILTERING OF NEIGHBOUR CELLS OR FREQUENCIES
Cross Reference to Related Applications
This application claims benefit under 35 U.S.C. § 119(a) and 37 CFR 1.55 to
UK patent application no. 1116642.8, filed on September 27, 2011, the entire content of which is hereby incorporated by reference.
This also application claims the benefit of US patent application no. 13/246,285, filed on September 27, 2011, and US patent application no. 13/472,611, filed on May 16, 2012, the entire contents of which are hereby incorporated by reference.
Technical Field
The present invention relates to apparatus, computer programs and methods for enabling filtering of neighbour cells or frequencies. The exemplary and non- limiting embodiments of this invention relate generally to wireless communication systems, methods, devices and computer programs and, more specifically, relate to their use in connection with neighbour cells that support multiple frequency bands.
Background
The following abbreviations which may be found in the specification and/or the drawing figures are defined as follows:
3 GPP Third Generation Partnership Project
EARFCN EUTRA absolute radio frequency channel number
EUTRA Evolved Universal Terrestrial Radio Access
IE information element
LTE Long Term Evolution (EUTRA network)
LTE-A LTE-advanced
RAN radio access network RF radio frequency
SI system information
SIB system information block
UARFCN UTRA absolute radio frequency channel number
UMTS Universal Mobile Telecommunication System
UE user equipment
Cellular radio communications now include individual cells operating on multiple radio frequency channels in order to better support a variety of different UEs, some of which may be capable of operating on only one of these frequency bands which is different from a band for which another UE in the cell is capable. Additionally, some bands in use by one cell may have some frequency portion overlapping with bands in an adjacent neighbour cell, particularly where such neighbour cells operate under different radio access technologies, such as for example UMTS and LTE. For example, in the HSPA (High Speed Packet Access) version of UMTS, bands II and XXV have respective frequency bands 1930-1990 MHz and 1930-1995 MHz and thus are overlapping in frequency. There is a similar overlap among bands V (869-894 MHz), VI (875-885 MHz) and new band XXVI (814-849 and 859-894 MHz); bands IV (2110-2115 MHz) and X (2110-2170 MHz); and bands III (1805-1880 MHz) and IX (1844.9-1879.9 MHz).
Relevant to the above scenarios are certain proposals for LTE Release 10 set forth in document R2-114158 by Qualcomm entitled "Multiple harmonised bands per cell" and in document R2- 114299 by Ericsson and ST-Ericsson entitled "Multiple frequency band indicators in a cell" (both from 3 GPP TSG-RAN WG2 meeting #75; Athens, Greece; 22-26 August 2011). Specifically, these documents propose that some cells which belong to a frequency in an overlapping band will broadcast the multiple bands they support according to variously named extension fields for the SIB1. In the examples given, these are in the context of a new band 26 which was recently introduced into Release 10 discussions. This broadcast that multiple bands are supported is to allow new UEs which support the new band 26 to relax their RF requirements as compared to the older defined bands so that, when roaming onto an operator's band, they may then apply the new relaxed requirements, and thereby avoid the UE having to perform interoperability testing (IOT). These proposals are to additionally allow older UEs supporting the older bands to camp on the same cell as well as to allow legacy UEs to camp on the newer band. These proposals seek to adapt the requirement at section 5.4 of 3GPP TS 25.101 vlO.2.0 (2011-06) that a cell is allowed to indicate in SI only one frequency band that it supports.
A problem arises in the above solutions when considering UE mobility between cells. A UE performs mobility based on a neighbour list given to it by SI. The conventional practice is that for UMTS, the individual cells on each frequency are listed, and for LTE only the frequency is listed. But if the above proposals of introducing multiple bands support in a cell were adopted, the UE would not know whether the neighbour cell (UMTS) or neighbour frequency (LTE) belongs to a frequency band which the UE supports until after that UE reads SI from the target cell (specifically, SIB5 if the target cell is UMTS and SIB1 if the target cell is LTE). So in some cases the UE will give up on re-selecting to the neighbour cell because of a non-supported frequency band only after the UE performed some mobility related processes (such as neighbour cell measurement, cell quality evaluation, cell reselection, target cell SI reading), which depletes the battery or other portable power source of the UE. Since the UARFCN (UTRA absolute radio frequency channel number) or EARFCN (EUTRA absolute radio frequency channel number) indicated in the neighbour cell/frequency list may belong to multiple bands, the UE cannot determine which band to which it refers.
Further, the serving cell's broadcast of its own UARFCN/EARPCN referring to a specific frequency can be different for a different band; different UARPCN/EARFCN can refer to the same frequency but in a different band/channel. In this case, the neighbour cell/frequency list which the UE uses for mobility purposes would need to be updated to broadcast the same frequency multiple times so that all UEs can reselect. But this then causes a problem in that there is a limited number of cells which can be broadcast in the UTRAN neighbour cell list. Even in some of today's networks, the size limitation imposed by the signalling restrictions of the UTRAN neighbour cell list can restrict the neighbour cell configuration and therefore increasing the size further is not practical. This also causes a problem due to there being a maximum number of frequencies in UTRAN and/or EUTRAN which the UE which is required to measure. In UMTS, the UE is required to be able to measure two frequencies in addition to the carrier (serving cell) frequency, and in LTE the UE is required to measure three frequencies in addition to the carrier frequency. If for example the serving cell supports three bands, the neighbour cell/frequency list size may increase by a factor of three. In principle, the UE could measure three bands if the frequencies are all identical, but this is not required by current radio specifications because currently there is no possibility for a cell to belong to more than one band.
For that reason, this issue was not a concern in the past. While there were some overlapping frequency bands (for example, Band V and Band VI overlap), there was no practical situation that the Band V cell could be signalled as a neighbour cell of a Band VI serving cell and additionally there was no possibility for either the serving or neighbour cell to support multiple bands. The detailed teachings below resolve the above problem which is wasteful of the UE's limited power source.
Summary
According to a first aspect of the present invention, there is provided apparatus comprising: a processing system constructed and arranged to cause the apparatus at least to filter neighbour cells or frequencies from indications received from a serving cell of frequency bands that are supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency for which there is indicated a plurality of frequency bands supported, to retain only those that are indicated to support a frequency band or frequency bands that are also supported by a user equipment. According to a second aspect of the present invention, there is provided a method comprising: receiving from a serving cell indications of frequency bands supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency for which there is indicated a plurality of frequency bands supported; and filtering the neighbour cells or frequencies to retain only those that are indicated to support a frequency band or bands that are also supported by a user equipment.
According to a third aspect of the present invention, there is provided a computer program that is executable by at least one processor, the computer program comprising code for causing the at least one processor at least to filter neighbour cells or frequencies from indications received from a serving cell of frequency bands that are supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency for which there is indicated a plurality of frequency bands supported, to retain only those that are indicated to support a frequency band or frequency bands that are also supported by a user equipment.
According to a fourth aspect of the present invention, there is provided apparatus comprising a processing system constructed and arranged to cause the apparatus at least to: obtain frequency bands supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency which supports a plurality of frequency bands; and send to user equipments indications of the frequency bands associated with the respective neighbour cells or frequencies that support them, including the plurality of frequency bands supported by the at least one individual neighbour cell or frequency.
According to a fifth aspect of the present invention, there is provided a method comprising: obtaining frequency bands supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency which supports a plurality of frequency bands; and sending to user equipments indications of the frequency bands associated with the respective neighbour cells or frequencies that support them, including the plurality of frequency bands supported by the at least one individual neighbour cell or frequency.
According to a sixth aspect of the present invention, there is provided a computer program that is executable by at least one processor, in which the computer program comprises code for obtaining frequency bands supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency which supports a plurality of frequency bands; and code for sending to user equipments indications of the frequency bands associated with the respective neighbour cells or frequencies that support them, including the plurality of frequency bands supported by the at least one individual neighbour cell or frequency.
The processing systems described above may comprise at least one processor; and at least one memory including computer program code. The computer programs described above may be tangibly stored in a computer readable memory.
Further features and advantages of the invention will become apparent from the following description of preferred embodiments of the invention, given by way of example only, which is made with reference to the accompanying drawings.
Brief Description of the Drawings
Figure 1 shows a plan view of a conceptual radio environment in which the various exemplary embodiments detailed herein may be practised to advantage; Figure 2 shows an exemplary signalling diagram showing signalling and internal processes according to exemplary embodiments detailed herein;
Figure 3 shows a logic flow diagram illustrating from the perspective of the UE the operation of a method, and a result of execution of computer program instructions embodied on a computer readable memory, for practising exemplary embodiments of these teachings; Figure 4 shows a logic flow diagram illustrating from the perspective of the serving cell/serving access node the operation of a method, and a result of execution of computer program instructions embodied on a computer readable memory, for practising exemplary embodiments of these teachings; and
Figure 5 shows a simplified block diagram of some of the devices shown at Figure 1 which are exemplary electronic devices suitable for use in practising the exemplary embodiments of this invention.
Detailed Description
While the two documents noted in the background section above refer to the cell broadcasting in its own SI the additional bands which it supports, those proposals do not go far enough. To avoid the UE undertaking certain mobility procedures as noted above which will in the end prove fruitless due to the UE's incompatibility with a neighbour cell, in an embodiment of these teachings the serving cell will broadcast in its SI an indication of the multiple frequency bands that its individual neighbour cells or neighbour frequencies support. For example, a UTRAN serving cell will broadcast in its own SI indications of the frequency bands which its neighbour UTRAN cells support and which its neighbour LTE frequencies support. For the case of a LTE serving cell, it will broadcast in its own SI indications of the frequency bands which its neighbour frequencies (UTRAN and LTE) support. In this manner, the UE can see the entire list of bands which each neighbour cell or frequency supports, and construct its own locally stored neighbour cell list or neighbour frequency list (which it uses for its mobility choices) by filtering according to the UE's own capabilities on those channels/bands. Since the UE will have the relevant information before reading SI of the neighbour cell, it can avoid performing mobility- related processes directed toward cell reselection to a neighbour cell with which it is incompatible. In case a network does not update the neighbour cell or frequency list, the UE can still use the frequency band information in its previously-defined filtered list to avoid performing measurements in preparation for handover in a particular radio access technology. In these teachings, a new cell which belongs to more than one frequency band can broadcast in the neighbour cell or frequency list that another cell or frequency also belongs to more than one frequency band, such as by indicating the frequency bands in the neighbours' UARFCN and/or EARFCN (depending on whether the neighbour cell is a UMTS or a LTE cell).
Before detailing further specific implementations, reference is made to Figure 1 for illustrating an exemplary radio environment in which these teachings can be practised to advantage. There is a UE 20 operating in the vicinity of a serving cell 22 and there are multiple neighbour cells operating on multiple neighbour frequencies, of which neighbour cell 26 is exemplary. The specifics vary depending on whether the serving cell 22 and the neighbour cell 26 are operating in the UMTS or the LTE systems, but in general the serving cell 22 will broadcast in its system information indications about all of the frequency bands which the neighbour cells and neighbour frequencies support. The UE 20 will of course get the SI broadcast from the serving cell 22 prior to performing any mobility-related procedures towards a given neighbour cell or neighbour frequency. From the list of frequency bands for the neighbour cells/frequencies, the UE 20 will determine which if any of those bands it supports. The UE 20 will then construct the neighbour cell list using all the neighbour cells and neighbour frequencies it learned from the SI of its serving cell 22, excluding those the UE 20 does not support. When the UE needs to perform some neighbour cell measurement, cell reselection, or other mobility-related process, it will use only those channels on the neighbour cell list that it constructed by filtering using the UE's own capabilities, and so all neighbour cells and frequencies on the UE's locally stored list will be viable to use for cell reselection (assuming sufficient signal strength and other dynamic parameters of the radio environment).
Figure 2 shows an exemplary signalling diagram illustrating signalling and internal processes in the serving cell 22 and the UE 20 according to the above overview. At 202 the serving cell 22 broadcasts its SI, which according to these teachings includes the frequency band information for the UARFCN and/or the EARFCN of each of its neighbour cells/frequencies. At 204 the UE 20, having received the serving cell's broadcast SI 202, then filters all of those neighbour cells/frequencies according to the UE's own frequency band capabilities. Each band the UE supports gets filtered in and each band it does not gets filtered out. In one embodiment, the UE 20 constructs its neighbour cell list with this filtering and stores it in its local memory for use in the cell. That neighbour cell list will include every neighbour cell frequency band that the UE 20 learned from the serving cell's SI 202, as filtered at 204 to exclude all bands which the UE 20 does not support. If for example a particular neighbour cell 26 is assigned to only one frequency band according to the serving cell's SI 202 and if the UE does not support the frequency band, then the UE 20 can exclude the cell from its neighbour cell list. If for example the neighbour cell 26 supports three frequency bands which the UE 20 learns at 202 from the serving cell's SI and the UE 20 supports two of them, then the UE 20 will include the cell into the neighbour cell list, and it keeps those two frequency bands in its memory. The UE 20 uses the neighbour cell list to select which cells/frequencies to measure and re-select on. The reader will recognise that typically there will be multiple neighbour cells and neighbour frequencies whose frequency band or bands (as the case may be) are indicated by the SI of the serving cell 22. In another embodiment, the UE 20 stores the list it receives from the network, and filters at block 204 on a case by case basis any time the UE 20 is about to start a mobility related procedure, and continues that procedure only if the band relevant to the procedure passes the UE-capability filtering. In this embodiment, the UE does not store the filtered list but runs a stored algorithm that filters the network-supplied list each time it is needed and the same result is obtained. However the filtering of block 204 is implemented, at 206 the UE uses only the neighbour cells/frequencies which are indicated to support a frequency band which is also supported by the UE itself for any mobility related procedure. From the network perspective, if the neighbour cell 26 is a UMTS cell, the serving cell 22 signals the frequency band information for the UARFCN of that UMTS neighbour cell in the system information broadcasted on the serving cell's broadcast control channel. If the neighbour cell 26 is an LTE cell, the serving cell 22 signals the frequency band information for the EARFCN of the neighbour frequencies in the serving cell's system information. In case the frequency is associated with different bands, the serving cell 22 will signal all of the potential bands that can be found on that frequency.
From the UE's perspective, the UE 20 will collect all of the neighbour cells' associated frequency bands signalled in the serving cell's SI. For those neighbour cells which are UMTS cells, the UE 20 checks that neighbour cell's frequency band information before performing any mobility procedures to that neighbour cell. For a neighbour cell for which all of its assigned frequency bands are not supported by the UE 20, the UE 20 simply discards the UTRAN neighbour cell from its locally stored list. That is, the UE 20 will not attempt any mobility procedure to move to that neighbour UMTS cell whose frequency band or frequency bands the UE 20 does not support. For a neighbour UMTS cell whose frequency band the UE does support, the UE 20 may perform the necessary mobility procedures for that neighbour UMTS cell (assuming it is a good cell reselection candidate in other respects, such as signal strength).
Again from the UE's perspective, for those neighbour frequencies which are associated with LTE cells, the UE 20 simply does not attempt to measure or perform any mobility procedures on that frequency if the UE 20 does not support the frequency bands indicated in the serving cell's SI. This is similar to the UMTS cell procedure except that the LTE cell frequency band information is always given per frequency instead of per cell. There may be cases where there is a mixture of different frequency band cells on one frequency. To address that case, the serving cell 22 can signal in its SI the cell PCI range, a list of each frequency band on a cell or frequency, in order to optimise the UE mobility/reselection attempts. This case is expected to be atypical and likely not even needed due to the increased signalling overhead in SI it represents. There are multiple ways to implement this increased signalling in the serving cell's SI. The following examples do so by adding an information element to the serving cell's system information which includes a list of frequency band information for all the neighbour cells and neighbour frequencies that support more than one frequency band. For example, if the serving cell 22 is UMTS, it can add that new IE which carries the band information for its multi-band UMTS neighbour cell(s) in the serving cell's system information block type 11 (SIB11) or system information block type 1 Ibis (SIBl lbis) or possibly its system information block type 12 (SIB12), and can also add that new IE which carries the band information for its multi-band LTE neighbour frequencies in its system information block type 19 (SIB 19). If the serving cell 22 is LTE, it can add the new IE which carries the band information for its multi- band LTE neighbour frequencies in the serving cell's system information block type 3 (SIB3). The number of entries in this new IE is the same as the number of neighbour cells for UMTS and the number of neighbour frequencies for LTE. Each entry indicates the frequency band(s) associated with the corresponding neighbour cell or neighbour frequency in the neighbour cell list or neighbour frequency list. When the UE 20 filters the network supplied neighbour cell list or neighbour frequency list, the UE 20 excludes the cells/frequencies not belonging to the UE supported frequency bands. Then the UE 20 performs cell reselection only on the filtered neighbour cell list or the filtered neighbour frequency list.
In another embodiment, the IE is added by the UMTS serving cell 22 to its SIB11 or SIB 1 Ibis (and possibly also its SIB 12) for the UMTS neighbour cells and in its SIB 19 for its LTE neighbour frequencies. Or if the serving cell 22 is an LTE cell it can add the new IE to its SIB3 for all its neighbour frequencies. In these embodiments, the IE can indicate an index and one or more frequency bands for each neighbour cell/frequency. The index, X for example, would indicate that the neighbour cells/frequencies from the 1st neighbour cell/frequency to the Xth neighbour cell/frequency in the neighbour cell/frequency list belong to the frequency band(s) signalled in the same new IE. If more than one new IE is included in the SIB, then the subsequent IE's index, Y for example, would indicate that the neighbour cells/frequencies from (the previous IE's index + l)th neighbour cell/frequency to the Yth neighbour cell/frequency in the neighbour cell/frequency list belong to the frequency band(s) signalled in the same IE. This can be repeated for additional indices. The UE 20 would then filter and exclude as in the above paragraph and perform cell reselection using its filtered neighbour cell/frequency list.
In another embodiment, instead of a new IE in an existing SIB, the information on the neighbour cell frequency bands is informed to the UEs via a new SIB, for example SIB21 in the case of UMTS cells and SIB14 in the case of LTE frequencies. Including the IE similar to that noted above in one or both of these new SIBs is a simple way to present the frequency band information to the UEs. In one implementation, there is one entry in this new IE for each of the neighbour cells/frequencies, and each entry indicates the frequency band(s) associated with the corresponding neighbour cell/frequency in the neighbour cell/frequency list. In another implementation, the IE indicates the index and the frequency band(s) for each neighbour cell/frequency as detailed above.
One technical effect of these teachings is that the UE 20 can identify from its serving cell SI which neighbour cells/frequencies, including all cells/frequencies on a frequency band, can be considered as a candidate suitable cell/frequency for cell reselection before performing any mobility procedures. This saves on UE battery consumption as noted in the background section above. Relatedly, implementing these teachings are seen to result in more effective cell reselection by the UE since there will be fewer failed/aborted cell reselections.
On the network side, one technical effect is that the network operator can deploy multiple harmonised band cells without affecting UE battery life. The size of the neighbour cell/frequency list is unaffected, and so there is no need to utilise additional entries to refer to the same cell since the additional frequency band information can extend the applicability of a single UARFCN/EARFCN to refer to multiple bands. For this reason, implementation of these teachings is not seen to affect the stipulated performance requirements.
Figures 3 and 4 show logic flow diagrams which may each be considered to illustrate the operation of a method, and a result of execution of a computer program stored in a computer readable memory, and a specific manner in which components of an electronic device are configured to cause that electronic device to operate. The various blocks shown in each of Figures 3 and 4 may also be considered as a plurality of coupled logic circuit elements constructed to carry out the associated function(s), or specific result of strings of computer program code stored in a memory.
Such blocks and the functions they represent are non-limiting examples, and may be practised in various components such as integrated circuit chips and modules, and the exemplary embodiments of this invention may be realised in an apparatus that is embodied as an integrated circuit. The integrated circuit, or circuits, may comprise circuitry (as well as possibly firmware) for embodying at least one or more of a data processor or data processors, a digital signal processor or processors, baseband circuitry and radio frequency circuitry that are configurable so as to operate in accordance with the exemplary embodiments of this invention.
Figure 3 details particular exemplary embodiments of the invention from the perspective of the UE. The logic of Figure 3 may be implemented by the entire UE or by one or more components thereof, more generally termed an apparatus. At block 302 of Figure 3, the UE receives from its serving cell indications of frequency bands supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency for which there is indicated a plurality of frequency bands supported. At block 304 the UE 20 filters the neighbour cells or frequencies to retain only those that are indicated to support a frequency band or bands which are also supported by the UE itself. As in the above examples, the UE may filter to generate a new list which it stores in its local memory and checks each time it needs to run a mobility procedure on a new band, or it may store the network-provided neighbour cell/frequency list and filter out those that only support a band or bands for which the UE is not capable on an as needed basis when checking each new neighbour cell/frequency for a mobility related procedure. Further portions of Figure 3 are optional and may or may not be combined with one another in various embodiments. Block 306 details that the indications are received in system information broadcast by the serving cell and the at least one individual neighbour cell or neighbour frequency is a neighbour cell or frequency to the serving cell. Block 308 specifies that the system information comprises at least one of system information block types 1 1, 1 Ibis, 12, 19 and 3 as detailed in the examples above.
Block 310 specifies one embodiment of the IE above, that the received indications are arranged in an information element having an entry for each of the neighbour cells or neighbour frequencies and a list of frequency bands for each entry. Block 312 specifies another embodiment of the IE above, that the received indications are arranged in an information element having an index and one or more associated frequency bands, in which a value of the index (X) indicates that one or more of the neighbour cells/frequencies referred to by the index (1st through the Xth) belongs to the one or more frequency bands associated with the index. There can of course be more than one index in the IE of this embodiment with different indices referring to a different plurality of neighbour cells/frequencies and associated with a different band or bands. From the above description and examples, the UE functioning according to the
Figure 3 embodiment is configured to utilise that filtered neighbour cell/neighbour frequency list for its own cell reselection processes.
Figure 4 details particular exemplary embodiments of the invention from the perspective of the serving cell 22 which sends its SI with all of the neighbour cells' or neighbour frequencies' associated frequency bands. The logic of Figure 4 may be implemented by the entire serving cell (more generally a wireless network access node) or by one or more components thereof, which is also more generally termed an apparatus. At block 402 of Figure 4, the serving cell obtains frequency bands supported by neighbour cells or neighbour frequencies, in which there is at least one individual neighbour cell or neighbour frequency that supports a plurality of frequency bands. The serving cell may determine this band information itself, such as by collecting that information from the neighbour cells directly via an X2 or similar interface, or the neighbour cells and associated frequency bands may be obtained from a higher network node, such as a radio network controller or mobility management entity. At block 402 the "individual neighbour cell or neighbour frequency" is used to better specify that, from among the whole neighbour cell/frequency list which the serving cell compiles, there is at least one of them that supports multiple frequency bands since not all of the neighbour cells/frequencies may be multi-band capable. However the serving cell obtains this frequency band data, it then at block 404 sends to UEs indications of the frequency bands associated with the respective neighbour cells/neighbour frequencies that support them, including the plurality of frequency bands supported by the at least one individual neighbour cell or neighbour frequency.
Further portions of Figure 4 are optional and may or may not be combined with one another in various embodiments. Block 406 states as with the above exemplary examples that the indications are sent to the UEs in system information broadcast by the serving cell, and the at least one individual neighbour cell/neighbour frequency is a neighbour cell/frequency to the serving cell. Block 408 recites the SIBs from the above examples: the indications are added to at least one of system information block types 11, 1 Ibis, 12, 19 and 3.
Blocks 410 and 412 show the different embodiments of the new IE that are detailed above. At block 410 the serving cell sends the indications of block 404 by first arranging the indications in an IE having an entry for each of the neighbour cells/neighbour frequencies and a list of frequency bands for each entry, and then sends the IE in SI. The other embodiment from the above examples is at block 412, where the sending of block 404 is implemented by the serving cell first arranging the indications in an information element having an index and one or more associated frequency bands, in which a value of the index indicates that one or more of the neighbour cells or frequencies that are referred to by the index belongs to the one or more frequency bands associated with the index; and then the serving cell sends this IE in its SI.
Reference is now made to Figure 5 for illustrating a simplified block diagram of various electronic devices and apparatus that are suitable for use in practising the exemplary embodiments of this invention. In Figure 5 there is a serving cell/serving network access node 22 and a neighbour cell/neighbour network access node 26, which are adapted for communication over respective wireless links 21, 23 with an apparatus 20 such as mobile terminals or termed more generally as a user equipment UE. In certain networks, such as LTE, there is also an interface 27 between the serving 22 and neighbour 26 cell. The illustrated neighbour cell 26 stands in the place of the "at least one individual neighbour cell or neighbour frequency" noted above for Figures 3 and 4, but there are typically other neighbour cells/frequencies to the serving cell 22 some or all of which may also support multiple frequency bands. The serving cell 22 may be further communicatively coupled via link 25 to a higher network node 24, such as a mobility management entity/serving gateway MME/S-GW 24 in the case of the LTE system or a radio network controller in the case of the UMTS system.
The UE 20 includes processing means such as at least one data processor (DP) 20A, storing means such as at least one computer-readable memory (MEM) 20B storing at least one computer program (PROG) 20C, communicating means such as a transmitter TX 20D and a receiver RX 20E for bidirectional wireless communications with the serving cell 22 and with the neighbour cell 26 via one or more antennas 20F. Within the memory 20B of the UE 20 but shown separately as reference number 20G is also a computer program for filtering, according to the UE capabilities, the list of neighbour cells/neighbour frequencies which the UE 20 receives from the serving cell's system information as is detailed above in various embodiments.
The serving cell 22 also includes processing means such as at least one data processor (DP) 22A, storing means such as at least one computer-readable memory (MEM) 22B storing at least one computer program (PROG) 22C, and communicating means such as a transmitter TX 22D and a receiver RX 22E for bidirectional wireless communications with its associated user devices 20 via one or more antennas 22F and a modem. The serving cell 22 also has stored in its memory at 22G software to assemble in its system information broadcasts all of the neighbour cells/frequencies and all of their associated frequency bands as is detailed by example above. The serving cell 26 is similarly functional with blocks 26A, 26B, 26C, 26D, 26E and 26F, but its block 26G simply has its own multi-channel capability which the serving cell 22 learns via the interface 27 (if the LTE system) or via the higher network node 24/radio network controller (if a UMTS system). It should be noted that the neighbour cell 26 has the same functionality according to these teachings as the serving cell 22 which it uses when sending its own SI to its UEs. By example, the serving cell 22 may be a node B (UMTS) or an e-NodeB (LTE), the neighbour cell 26 may be a node B (UMTS) or an e-NodeB (LTE), and in the case of the LTE system the interface 27 may be an X2 interface between them.
For completeness the higher network node 24 is also shown to include a DP 24A, and a MEM 24B storing a PROG 24C, and additionally a modem 24H for communicating with at least the serving cell 22 (to show embodiments in which the neighbour cell is not under the same higher network node). Whilst not particularly illustrated for the UE 20 or cells 22, 26, those devices are also assumed to include as part of their wireless communicating means a modem which may in one exemplary but non-limiting embodiment be inbuilt on an RF front end chip so as to carry the respective TX 20D/22D/26D and RX 20E/22E/26E. At least one of the PROGs 20C, 22C, 26C in the UE 20 and in the serving and neighbour cells 22, 26 is assumed to include program instructions that, when executed by the associated DP 20A, 22A, 26A, enable the device to operate in accordance with the exemplary embodiments of this invention as detailed more fully above. In this regard, the exemplary embodiments of this invention may be implemented at least in part by computer software stored on the MEM 20B, 22B, 26B which is executable by the DP 20A, 22A, 26A of the respective devices 20, 22, 26; or by hardware, or by a combination of tangibly stored software and hardware (and tangibly stored firmware). Electronic devices implementing these aspects of the invention need not be the entire UE 20, or serving cell 22, or neighbour cell 26, but exemplary embodiments may be implemented by one or more components of same such as the above described tangibly stored software, hardware, firmware and DP, or a system-on-a-chip SOC or an application specific integrated circuit ASIC or a digital signal processor DSP or a modem or a subscriber identity module (such as a SIM card).
Various embodiments of the UE 20 can include, but are not limited to: cellular telephones; data cards, USB dongles, personal portable digital devices having wireless communication capabilities including but not limited to laptop/palmtop/tablet computers, digital cameras and music devices, and Internet appliances.
Various embodiments of the computer readable MEM 20B, 22B, 26B include any data storage technology type which is suitable to the local technical environment, including but not limited to semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory, removable memory, disc memory, flash memory, DRAM, SRAM, EEPROM and the like. Various embodiments of the DP 20A, 22A, 26A include but are not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and multi-core processors. Various modifications and adaptations to the foregoing exemplary embodiments of this invention may become apparent to those skilled in the relevant art in view of the foregoing description. While the exemplary embodiments have been described above principally in the context of the UMTS and LTE/LTE-A systems, it should be appreciated that the exemplary embodiments of this invention are not limited for use with only these particular types of wireless communication system, and that they may be used to advantage in other wireless communication systems, such as for example WCDMA and others which may interface with a neighbour cell that supports multiple frequency bands.
The above embodiments are to be understood as illustrative examples of the invention. Further embodiments of the invention are envisaged. It is to be understood that any feature described in relation to any one embodiment may be used alone, or in combination with other features described, and may also be used in combination with one or more features of any other of the embodiments, or any combination of any other of the embodiments. Furthermore, equivalents and modifications not described above may also be employed without departing from the scope of the invention, which is defined in the accompanying claims.

Claims

1. Apparatus comprising:
a processing system constructed and arranged to cause the apparatus at least to filter neighbour cells or frequencies from indications received from a serving cell of frequency bands that are supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency for which there is indicated a plurality of frequency bands supported, to retain only those that are indicated to support a frequency band or frequency bands that are also supported by a user equipment.
2. Apparatus according to claim 1 , in which the indications are received in system information broadcast by the serving cell and the at least one individual neighbour cell or frequency is a neighbour cell or frequency to the serving cell.
3. Apparatus according to claim 2, in which the system information comprises at least one of system information block types 11, 1 Ibis, 12, 19 and 3.
4. Apparatus according to any of claims 1 to 3, in which the received indications are arranged in an information element having an entry for each of the neighbour cells or frequencies and a list of frequency bands for each entry.
5. Apparatus according to any of claims 1 to 3, in which the received indications are arranged in an information element having an index and one or more associated frequency bands, in which a value of the index indicates that one or more of the neighbour cells or frequencies referred to by the index belongs to the one or more frequency bands associated with the index.
6. Apparatus according to any of claims 1 to 5, in which the apparatus comprises said user equipment which is configured to utilise only the filtered neighbour cells or frequencies for cell reselection.
7. A method comprising:
receiving from a serving cell indications of frequency bands supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency for which there is indicated a plurality of frequency bands supported; and
filtering the neighbour cells or frequencies to retain only those that are indicated to support a frequency band or bands that are also supported by a user equipment.
8. A method according to claim 7, in which the indications are received in system information broadcast by the serving cell.
9. A method according to claim 7 or claim 8, in which the received indications are arranged in an information element having an entry for each of the neighbour cells or frequencies and a list of frequency bands for each entry.
10. A method according to claim 7 or claim 8, in which the received indications are arranged in an information element having an index and one or more associated frequency bands, in which a value of the index indicates that one or more of the neighbour cells or frequencies referred to by the index belongs to the one or more frequency bands associated with the index.
11. A computer program that is executable by at least one processor, in which the computer program comprises:
code for causing the at least one processor at least to filter neighbour cells or frequencies from indications received from a serving cell of frequency bands that are supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency for which there is indicated a plurality of frequency bands supported, to retain only those that are indicated to support a frequency band or frequency bands that are also supported by a user equipment.
12. A computer program according to claim 11 , in which the received indications are arranged in an information element having an entry for each of the neighbour cells or frequencies and a list of frequency bands for each entry.
13. A computer program according to claim 11 , in which the received indications are arranged in an information element having an index and one or more associated frequency bands, in which a value of the index indicates that one or more of the neighbour cells or frequencies referred to by the index belongs to the one or more frequency bands associated with the index.
14. Apparatus comprising:
a processing system constructed and arranged to cause the apparatus at least to:
obtain frequency bands supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency which supports a plurality of frequency bands; and
send to user equipments indications of the frequency bands associated with the respective neighbour cells or frequencies that support them, including the plurality of frequency bands supported by the at least one individual neighbour cell or frequency.
15. Apparatus according to claim 14, in which the indications are sent to the user equipments in system information broadcast by the apparatus which comprises a serving cell, and the at least one individual neighbour cell or frequency is a neighbour cell or frequency to the serving cell.
16. Apparatus according to claim 15, in which the system information comprises at least one of system information block types 11, 1 Ibis, 12, 19 and 3.
17. Apparatus according to any of claims 14 to 16, in which the processing system is constructed and arranged to cause the apparatus to send to the user equipments the indications by:
arranging the indications in an information element having an entry for each of the neighbour cells or frequencies and a list of frequency bands for each entry; and sending the information element in system information.
18. Apparatus according to any of claims 14 to 16, in which the processing system is constructed and arranged to cause the apparatus to send to the user equipments the indications by:
arranging the indications in an information element having an index and one or more associated frequency bands, in which a value of the index indicates that one or more of the neighbour cells or frequencies referred to by the index belongs to the one or more frequency bands associated with the index; and
sending the information element in system information.
19. A method comprising :
obtaining frequency bands supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency which supports a plurality of frequency bands; and
sending to user equipments indications of the frequency bands associated with the respective neighbour cells or frequencies that support them, including the plurality of frequency bands supported by the at least one individual neighbour cell or frequency.
20. A method according to claim 19, in which the indications are sent to the user equipments in broadcast system information, and the at least one individual neighbour cell is a neighbour cell or frequency to a serving cell executing the method.
21. A method according to claim 19 or claim 20, in which sending to the user equipments the indications comprises: arranging the indications in an information element having an entry for each of ghbour cells or frequencies and a list of frequency bands for each entry; and sending the information element in system information.
22. A method according to claim 19 or claim 20, in which sending to the user equipments the indications comprises:
arranging the indications in an information element having an index and one or more associated frequency bands, in which a value of the index indicates that one or more of the neighbour cells or frequencies referred to by the index belongs to the one or more frequency bands associated with the index; and
sending the information element in system information.
23. A computer program that is executable by at least one processor, in which the computer program comprises:
code for obtaining frequency bands supported by neighbour cells or frequencies, in which there is at least one individual neighbour cell or frequency which supports a plurality of frequency bands; and
code for sending to user equipments indications of the frequency bands associated with the respective neighbour cells or frequencies that support them, including the plurality of frequency bands supported by the at least one individual neighbour cell or frequency.
PCT/IB2012/055103 2011-09-27 2012-09-25 Apparatus, computer programs and methods for enabling filtering of neighbour cells or frequencies WO2013046123A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13/246,285 2011-09-27
US13/246,285 US20130078989A1 (en) 2011-09-27 2011-09-27 Neighbor List Distribution for Smart Mobility
GB1116642.8A GB2484783B (en) 2011-09-27 2011-09-27 Apparatus,computer programs and methods for enabling filtering of neighbour cells or frequencies
GB1116642.8 2011-09-27
US13/472,611 2012-05-16
US13/472,611 US8437754B2 (en) 2011-09-27 2012-05-16 Apparatus, computer programs and methods for enabling filtering of neighbor cells or frequencies

Publications (1)

Publication Number Publication Date
WO2013046123A1 true WO2013046123A1 (en) 2013-04-04

Family

ID=47994356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/055103 WO2013046123A1 (en) 2011-09-27 2012-09-25 Apparatus, computer programs and methods for enabling filtering of neighbour cells or frequencies

Country Status (1)

Country Link
WO (1) WO2013046123A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830491A (en) * 2013-08-23 2016-08-03 瑞典爱立信有限公司 Extending EARFCN value range in GERAN
WO2019032908A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated Per frequency indication of deployment schemes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051103A2 (en) * 1997-05-08 1998-11-12 Northern Telecom Limited Wireless communication system supporting multiple frequency bands and multiple protocols
EP2214441A1 (en) * 2009-01-30 2010-08-04 Research In Motion Limited Method and apparatus for network scanning based on neighbor information
US20110143755A1 (en) * 2009-12-16 2011-06-16 Research In Motion Limited System and method for identifying a telecommunication cell based on broadcast cell parameters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051103A2 (en) * 1997-05-08 1998-11-12 Northern Telecom Limited Wireless communication system supporting multiple frequency bands and multiple protocols
EP2214441A1 (en) * 2009-01-30 2010-08-04 Research In Motion Limited Method and apparatus for network scanning based on neighbor information
US20110143755A1 (en) * 2009-12-16 2011-06-16 Research In Motion Limited System and method for identifying a telecommunication cell based on broadcast cell parameters

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL: "Multiple frequency band indicators per cell", 3GPP DRAFT; R2-114299 MULTIPLE FBI, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece; 20110822, 16 August 2011 (2011-08-16), XP050540038 *
ERICSSON; ST-ERICSSON: "Multiple frequency band indicators in a cell", 3GPP TSG-RAN WG2 MEETING #75, 22 August 2011 (2011-08-22)
QUALCOMM: "Broadcasting multiple harmonized frequency bands per cell", 3GPP DRAFT; R2-114158_BROADCASTING MULTIPLE HARMONIZED BANDS PER CELL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece; 20110822, 16 August 2011 (2011-08-16), XP050539979 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830491A (en) * 2013-08-23 2016-08-03 瑞典爱立信有限公司 Extending EARFCN value range in GERAN
CN105830491B (en) * 2013-08-23 2020-01-21 瑞典爱立信有限公司 Extending EARFCN value range in GERAN
WO2019032908A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated Per frequency indication of deployment schemes
US20190053175A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated Per frequency indication of deployment schemes
US11032783B2 (en) * 2017-08-11 2021-06-08 Qualcomm Incorporated Per frequency indication of deployment schemes

Similar Documents

Publication Publication Date Title
US9288723B2 (en) Apparatus, computer programs and methods for enabling filtering of neighbor cells or frequencies
US9843980B2 (en) Method and apparatus for cell reselection
AU2011292475B2 (en) Methods and arrangements in cellular communication systems
CN107925953B (en) Wireless device, network node and methods therein for receiving and transmitting system information in a wireless communication network
US9026058B2 (en) Measurement configuration and reporting of CSG cells in connected mode
US10813016B2 (en) Measurement method for wireless communication network, base station, and terminal
US9485696B2 (en) Systems, methods and apparatus for switching networks in active mode
EP3539325B1 (en) Mechanisms for initial access to a radio access network
CN112584445B (en) Cell selection method and related equipment
US11540185B2 (en) ULI cell selection prioritization
EP2490468B1 (en) Storage of radio information on a removable memory
US20130252614A1 (en) Methods for preferably camping on and staying in a cell belonging to a high data transmission throughput rat and communications apparatuses utilizing the same
US8615246B2 (en) Method for receiving information on network configuration
CN112243275A (en) Method for receiving neighbor cell information, method for sending neighbor cell information, terminal and base station
KR20210005694A (en) Measurement control method, UE, network device and computer storage medium
WO2013046123A1 (en) Apparatus, computer programs and methods for enabling filtering of neighbour cells or frequencies
GB2484783A (en) Filtering neighbour cells or frequencies to determine those that support frequency bands also supported by user equipment
KR101712910B1 (en) Method for performing cell reselection procedure in multi mode device and apparatus therefor
WO2022112438A1 (en) Establishing a wireless connection with a mobile device
CN116209031A (en) Cell selection method, cell reselection method and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12798368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12798368

Country of ref document: EP

Kind code of ref document: A1