WO2013042752A1 - Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board - Google Patents

Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board Download PDF

Info

Publication number
WO2013042752A1
WO2013042752A1 PCT/JP2012/074120 JP2012074120W WO2013042752A1 WO 2013042752 A1 WO2013042752 A1 WO 2013042752A1 JP 2012074120 W JP2012074120 W JP 2012074120W WO 2013042752 A1 WO2013042752 A1 WO 2013042752A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
resin composition
layer
laminate
Prior art date
Application number
PCT/JP2012/074120
Other languages
French (fr)
Japanese (ja)
Inventor
真裕 青嶌
佳弘 高橋
由香 山崎
上方 康雄
村井 曜
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2013042752A1 publication Critical patent/WO2013042752A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10697Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer being cross-linked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to a laminate and a laminate suitable for semiconductor packages and printed wiring boards, a printed wiring board using the laminate, a multilayer laminate, and a method for producing the laminate.
  • the low elastic modulus of the laminated plate also causes warpage, it is also effective to increase the elasticity of the laminated plate in order to reduce warpage.
  • it is effective to reduce the expansion coefficient and increase the elasticity of the laminate.
  • a glass film is used as a layer having a coefficient of thermal expansion substantially matching the coefficient of thermal expansion of the electronic component (silicon chip), and the resin and the glass film are pressed and laminated. Attempts have been made to reduce the shock stress (Patent Document 4), but since the elastic modulus of the resin layer is low and the thermal expansion coefficient is high, it is insufficient to realize a low warpage of the substrate.
  • the substrate obtained by the manufacturing method of Patent Document 4 still has a low elastic modulus and a high coefficient of thermal expansion, it is insufficient for realizing a low warpage of the substrate.
  • the present invention has been made in view of such circumstances, and has a low thermal expansion coefficient and a high elastic modulus, can suppress warpage, and is less prone to cracking, and the production of these laminated boards and multilayer laminated boards. It is an object of the present invention to provide a laminate suitable for the above, a printed wiring board using the laminate and the multilayer laminate, and a method for producing the laminate.
  • Patent Document 4 there is no description that a fiber base material is contained in a resin in a substrate formed by laminating a glass film and a resin. From the description of Patent Document 4, it is considered that the resin should contain a fiber base material. That is, in patent document 4, it is set as the essential structure that the thermal expansion effect
  • the resin when the fiber base material is contained in the resin, the resin has a high elastic modulus. Therefore, from the description of Patent Document 4, it should be avoided that the resin contains a fiber base material. Moreover, when a fiber base material is contained in the resin of Patent Document 4, it is considered that the glass substrate easily breaks starting from the fiber base material. Also from this point, in patent document 4, it is estimated that it contains avoiding containing a fiber base material in resin. At present, there is no example of a laminate in which a fiber base material is contained in a resin layer in a laminate of a glass substrate layer and a resin layer as in Patent Document 4.
  • the present inventors have conducted extensive research to solve the above problems, and as a result, in the laminate including the resin cured product layer and the glass substrate layer, the resin cured product layer contains a fiber base material. It has been found that a laminated board having a low thermal expansion coefficient and a high elastic modulus, suppressing warpage, and hardly causing cracks can be obtained.
  • a laminate including one or more resin composition layers and two or more glass substrate layers, wherein at least one of the one or more resin composition layers includes a thermosetting resin and a fiber. It is a fiber containing resin composition layer which consists of a fiber containing resin composition containing a base material, and the laminated body in which the said resin composition layer exists one or more layers between two arbitrary glass substrate layers.
  • the glass substrate layer has a thickness of 30 to 200 ⁇ m.
  • the glass substrate layer on the outermost surface side and the glass substrate layer on the outermost surface side are respectively present on the front surface side and the back surface side of all the resin composition layers.
  • the laminate according to [1] or [2]. [4] The one or more resin composition layers are provided on the back surface of the first resin composition layer that is in contact with the surface of the outermost glass substrate layer and the outermost glass substrate layer.
  • a second resin composition layer that is in contact with the first resin composition layer, and the first resin composition layer and the second resin composition layer include a thermosetting resin and a fiber substrate.
  • the fiber-containing resin composition layer includes an inorganic filler.
  • the inorganic filler is one or more selected from silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and borosilicate glass.
  • the laminated body as described in.
  • the fiber base material is at least one selected from glass fiber, polyimide fiber, polyester fiber, and polytetrafluoroethylene fiber.
  • thermosetting resin is an epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin,
  • the laminate according to any one of [1] to [8], which is one or more selected from silicone resins, triazine resins, and melamine resins.
  • a laminate including one or more resin cured product layers and two or more glass substrate layers, wherein at least one of the one or more resin cured product layers includes a thermosetting resin and a fiber.
  • a laminate comprising a fiber-containing resin cured product layer comprising a fiber-containing resin cured product including a base material, and one or more resin cured material layers are present between any two glass substrate layers.
  • a printed wiring board comprising the laminated board according to any one of [10] to [12] and wiring provided on a surface of the laminated board.
  • the laminate according to [16], wherein the cured resin layer forming step is a step of laminating and curing a film made of the resin composition on the glass substrate using a vacuum laminator or a roll laminator. Manufacturing method.
  • laminates and multilayer laminates that have a low thermal expansion coefficient and a high elastic modulus, can suppress warpage, and are less likely to crack, and laminates suitable for manufacturing these laminates and multilayer laminates And the printed wiring board using these laminated boards and multilayer laminated boards, and the manufacturing method of this laminated board can be provided.
  • FIG. 6 is a schematic cross-sectional view illustrating a method for manufacturing a laminated board according to Example 4.
  • the laminate means that the thermosetting resin that is a constituent component is uncured or semi-cured
  • the laminate means that the thermosetting resin that is a constituent component is cured.
  • the laminate of the present invention is a laminate comprising one or more resin composition layers and two or more glass substrate layers, and at least one of the one or more resin composition layers is thermoset.
  • a fiber-containing resin composition layer comprising a fiber-containing resin composition containing a functional resin and a fiber base material, and one or more resin composition layers are present between any two glass substrate layers It is.
  • the size of the laminate of the present invention is selected in the range of 10 mm to 1000 mm in width and 10 mm to 3000 mm in length (in the case of use in a roll, the length is appropriately applied) from the viewpoint of handleability. preferable.
  • the width is preferably 25 mm to 550 mm and the length is 25 mm to 550 mm.
  • the thickness of the laminate of the present invention is preferably selected in the range of 35 ⁇ m to 20 mm depending on the application.
  • the thickness of the laminate is more preferably 50 to 1000 ⁇ m, still more preferably 80 to 600 ⁇ m, still more preferably 100 to 500 ⁇ m, and still more preferably 110 to 400 ⁇ m. Since the laminate obtained by curing the resin composition layer of the laminate of the present invention to form a cured resin layer has a glass substrate layer having a low thermal expansion coefficient and a high elastic modulus as much as a silicon chip, It becomes a thing with a low coefficient of thermal expansion and a high elastic modulus, warping is suppressed, and cracks are less likely to occur.
  • this laminate since this laminate has a glass substrate layer with high heat resistance, it has a low thermal expansion in a temperature range from 100 ° C. to less than Tg of the cured resin. Moreover, since the fiber-containing organic cured product layer contains a fiber base material, the fiber-containing organic cured product layer has a low thermal expansion coefficient and a high elastic modulus as compared with a resin cured product that does not contain a fiber base material, and includes the fiber-containing resin cured product layer. The plate has a low expansion coefficient and a high elastic modulus. Further, the laminate of the present invention has two or more glass substrate layers, and one or more resin composition layers are interposed between any two glass substrate layers. Compared to a laminate having a single glass substrate layer having the same thickness as the total thickness, the laminate has a lower thermal expansion coefficient and a higher elastic modulus when formed into a laminate as described above.
  • one or more resin composition layers are present between any two glass substrate layers, and at least one of the one or more resin composition layers is heated. If it is a fiber containing resin composition layer which consists of a fiber containing resin composition containing curable resin and a fiber base material, there will be no restriction
  • ⁇ First laminated structure For example, the structure in which the glass substrate layer on the outermost surface side and the glass substrate layer on the outermost surface side in the laminate are present on the front surface side and the back surface side than all of the resin composition layers may be used. Examples of such a structure include the following.
  • Glass substrate layer / resin composition layer means that a glass substrate layer and a resin composition layer are laminated. That is, “/” means that two layers described on the left and right sides of “/” are laminated.
  • the structures when m is 1 and 2 are as follows.
  • Glass substrate layer / resin composition layer / glass substrate layer "Glass substrate layer / resin composition layer / glass substrate layer / resin composition layer / glass substrate layer”
  • At least one of these resin composition layers needs to be a fiber-containing resin composition layer made of a fiber-containing resin composition containing a thermosetting resin and a fiber base material.
  • the laminated board obtained from the laminated body containing a resin base material becomes a low expansion coefficient and a high elasticity modulus.
  • all of the resin composition layer may be composed of the above-mentioned fiber-containing resin composition, but a part thereof is composed of a non-fiber-containing organic composition containing a thermosetting resin and no fiber substrate. It may be.
  • a first resin composition layer that is in contact with the surface of the glass substrate layer on the outermost surface side, and a second surface that is in contact with the rear surface of the glass substrate layer on the outermost surface side.
  • a resin composition layer examples include the following. “First resin composition layer / (glass substrate layer / resin composition layer) n / glass substrate layer / second resin composition layer” (n is an integer of 1 or more)
  • n is an integer of 1 or more
  • First resin composition layer / glass substrate layer / resin composition layer / glass substrate layer / second resin composition layer "First resin composition layer / glass substrate layer / resin composition layer / glass substrate layer / resin composition layer / glass substrate layer / second resin composition layer”
  • First resin composition layer / glass substrate layer / resin composition layer / glass substrate layer / resin composition layer / glass substrate layer / second resin composition layer At least one of these resin composition layers needs to be a fiber-containing resin composition layer made of a fiber-containing resin composition containing a thermosetting resin and a fiber base material.
  • the laminated board obtained from the laminated body containing a resin base material becomes a low expansion coefficient and a high elasticity modulus.
  • the first resin composition layer and the second resin composition layer it is avoided that the glass substrate layer is exposed and directly contacted with an object outside the laminate, and the glass substrate layer is cracked.
  • the first resin composition layer and the second resin composition layer are non-fiber-containing organic composition layers made of a non-fiber-containing organic composition that contains a thermosetting resin and does not contain a fiber base material. preferable. Thereby, it is possible to further improve the prevention of cracking of the glass substrate layer and the handling property (ease of handling). Moreover, by not including a fiber base material in the first resin composition layer and the second resin composition layer, the thickness of the resin composition layer can be reduced, and the laminate can be made more elastic. Can do.
  • thermosetting resin is not particularly limited, and examples thereof include epoxy resins, phenol resins, unsaturated imide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclohexanes. Examples include pentadiene resin, silicone resin, triazine resin, and melamine resin. Among these, an epoxy resin and a cyanate resin are preferable because they are excellent in moldability and electrical insulation.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin.
  • Stilbene type epoxy resin triazine skeleton containing epoxy resin, fluorene skeleton containing epoxy resin, triphenol phenol methane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene -Type epoxy resin, alicyclic epoxy resin, polyfunctional phenols and diglycidyl ether compounds of polycyclic aromatics such as anthracene And the like.
  • the phosphorus containing epoxy resin which introduce
  • biphenylaralkyl type epoxy resins and naphthalene type epoxy resins are preferred from the viewpoint of heat resistance and flame retardancy. These can be used alone or in combination of two or more.
  • the cyanate resin include bisphenol type cyanate resins such as novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethylbisphenol F type cyanate resin, and prepolymers in which these are partially triazine. .
  • a novolak type cyanate resin is preferable from the viewpoint of heat resistance and flame retardancy. These can be used alone or in combination of two or more.
  • the content of the thermosetting resin contained in the fiber-containing resin composition is in the range of 20 to 80% by mass with respect to the mass of the non-fiber substrate component excluding the fiber substrate from the total amount of the fiber-containing resin composition. It is preferably 25 to 60% by mass, more preferably 25 to 50% by mass, still more preferably 25 to 40% by mass.
  • Fiber base material There is no restriction
  • the thickness of the base material is not particularly limited, and can be, for example, about 0.03 to 0.5 mm, and is surface-treated with a silane coupling agent or the like or mechanically subjected to fiber opening treatment. However, it is suitable from the aspects of heat resistance, moisture resistance, and workability.
  • the total content of the fiber base material is preferably in the range of 10 to 80% by volume, more preferably 15 to 75% by weight, still more preferably 20 to 70% by weight, based on the total amount of the fiber-containing resin composition. 30 to 60% by mass is even more preferable, and 30 to 55% by mass is even more preferable.
  • the fiber-containing resin composition may further contain an inorganic filler.
  • the content of the inorganic filler is in the range of 5 to 75% by volume with respect to the non-fiber base component excluding the fiber base from the fiber-containing resin composition. It is preferable that Further, the content of the inorganic filler is more preferably 15 to 70% by mass, and still more preferably 30 to 70% by mass with respect to the non-fiber base component obtained by removing the fiber base from the fiber-containing resin composition.
  • the inorganic filler include silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and borosilicate glass.
  • silica is preferable from the viewpoint of low thermal expansion, and further, the thermal expansion coefficient is as small as about 0.6 ppm / K, and spherical amorphous silica with little decrease in fluidity when highly filled in a resin is used. More preferred.
  • the spherical amorphous silica preferably has a cumulative 50% particle size of 0.01 to 10 ⁇ m, preferably 0.03 to 5 ⁇ m.
  • the cumulative 50% particle diameter is the particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is obtained with the total volume of the powder as 100%.
  • a fine wiring can be formed on the fiber-containing resin cured product layer of the laminate by using silica (nanosilica) having an average primary particle size of 1 ⁇ m or less as the inorganic filler.
  • the nano silica preferably has a specific surface area of 20 m 2 / g or more.
  • the average primary particle size is preferably 100 nm or less. This specific surface area can be measured by the BET method.
  • the “average primary particle size” here refers to the average particle size of aggregated particles, that is, not the secondary particle size, but the average particle size of single particles that are not aggregated.
  • the average primary particle size can be determined by measuring with, for example, a laser diffraction particle size distribution meter.
  • an inorganic filler fumed silica is preferable.
  • the inorganic filler is preferably treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance, and is preferably hydrophobized to improve dispersibility.
  • the content of the inorganic filler is 20% by mass or less in the non-fiber component excluding the fiber substrate from the fiber-containing resin composition. It is preferable.
  • the blending amount is 20% by mass or less, a good surface shape after the roughening treatment can be maintained, and deterioration of plating characteristics and interlayer insulation reliability can be prevented.
  • the fiber-containing resin composition can be expected to have low thermal expansion and high elasticity by containing an inorganic filler, the inclusion of an inorganic filler is important when low thermal expansion and high elasticity are also considered as well as fine wiring formation.
  • the amount is preferably 3 to 20% by mass.
  • this fiber-containing resin composition includes a curing agent, a curing accelerator, a thermoplastic resin, an elastomer, a flame retardant, an ultraviolet absorber, an antioxidant, a photopolymerization initiator, a fluorescent whitening agent, and improved adhesion.
  • An agent or the like can be added.
  • curing agents include, for example, when epoxy resin is used, polyfunctional phenolic compounds such as phenol novolac and cresol novolac; amine compounds such as dicyandiamide, diaminodiphenylmethane, and diaminodiphenylsulfone; phthalic anhydride, pyromellitic anhydride Acid anhydrides such as maleic anhydride and maleic anhydride copolymers; polyimides can be used.
  • curing accelerators include, for example, epoxy resin curing accelerators such as imidazoles and derivatives thereof; organophosphorus compounds; secondary amines, tertiary amines, and quaternary ammonium.
  • ultraviolet absorbers examples include benzotriazole-based ultraviolet absorbers.
  • Antioxidants include hindered phenols and styrenated phenol antioxidants.
  • the photopolymerization initiator examples include photopolymerization initiators such as benzophenones, benzyl ketals, and thioxanthones.
  • fluorescent whitening agents include fluorescent whitening agents such as stilbene derivatives.
  • the adhesion improver include urea compounds such as urea silane, adhesion improvers for silane coupling agents, and the like.
  • a fiber containing resin composition layer consists of said fiber containing resin composition.
  • the fiber-containing resin composition layer includes a semi-cured product in addition to an uncured product of the fiber-containing resin composition.
  • the size of the fiber-containing resin composition layer of the present invention is preferably selected in the range of 10 mm to 1000 mm in width and 10 mm to 3000 mm in length (the length is appropriately applied when used in a roll). In particular, the width of 25 mm to 550 mm and the length of 25 mm to 550 mm are preferable from the viewpoint of handleability.
  • the thickness per layer of the fiber-containing resin composition layer of the present invention is preferably selected in the range of 3 ⁇ m to 200 ⁇ m.
  • the thickness of the resin composition per layer is preferably 3 to 150 ⁇ m, more preferably 10 to 120 ⁇ m, and more preferably 20 to It is further preferably 120 ⁇ m, and further preferably 25 to 110 ⁇ m.
  • the fiber-containing resin composition layer of the present invention is preferably contained in a proportion of 4 to 90% by volume, more preferably 10 to 80% by volume, still more preferably 20 to 70% by volume, more based on the entire laminate. More preferably, it is contained in a proportion of 25 to 60% by volume.
  • the laminated body and laminated board of this invention have the resin composition layer in which at least 1 layer of fiber base material is contained, you may have the resin composition layer which does not contain a fiber base material in addition to that. Absent.
  • the resin composition layer not containing the fiber base material can be used for the purpose of, for example, arranging between the glass layer and the resin composition layer containing the fiber base material to improve the adhesion between the two layers.
  • the resin content after drying of the fiber-containing resin composition layer is preferably 20 to 90% by mass, more preferably 25 to 85% by mass or more, further preferably 30 to 80% by mass or more, and 40 to 70% by mass. Even more preferred is 45 to 70% by weight. When it is 20% by mass or more, processability and handling properties (ease of handling) are improved.
  • resin content means the amount of components other than the fiber base material in the total amount of a fiber containing resin composition.
  • the fiber-containing resin composition contains an inorganic filler
  • the total amount of the thermosetting resin and the inorganic filler is preferably 5 to 75% by volume, more preferably 15 to 70% by volume. 30 to 70% by volume is more preferable.
  • the content of the inorganic filler is 5 to 75% by volume of the total amount of the thermosetting resin and the inorganic filler, the effect of reducing the coefficient of thermal expansion is sufficient, and the moldability is appropriate with appropriate fluidity. Excellent. That is, when the content of the inorganic filler is 5% by volume or more, the effect of reducing the coefficient of thermal expansion is sufficient, and when it is 75% by volume or less, the fluidity is increased and the moldability is improved.
  • the non-fiber-containing resin composition layer is composed of a non-fiber-containing organic composition containing a thermosetting resin and no fiber substrate.
  • This non-fiber-containing resin composition contains a thermosetting resin, and may further contain an inorganic filler and other components. Details of these thermosetting resins, inorganic fillers, and other components are as described for the fiber-containing resin composition.
  • this non-fiber-containing resin composition layer is used as the first and second resin composition layers, 3 ⁇ m from the viewpoint of preventing cracking of the glass substrate layer and improving handling properties (ease of handling). The above is preferable.
  • the thickness of the first and second resin composition layers is preferably 3 to 40 ⁇ m, more preferably 10 to 30 ⁇ m, and further preferably 15 to 25 ⁇ m. Moreover, it is preferable that these 1st and 2nd resin composition layers do not contain an inorganic filler.
  • the non-fiber-containing resin composition layer of the present invention is preferably contained in a proportion of 1 to 40% by volume, more preferably 1 to It is contained in a proportion of 30% by volume, more preferably 1 to 25% by volume.
  • a thin glass film having a thickness of 30 to 200 ⁇ m is preferable for the purpose of reducing the thickness of the laminate and from the viewpoint of workability, In consideration of practicality such as ease of handling, the thickness is more preferably 50 to 150 ⁇ m, and further preferably 80 to 120 ⁇ m.
  • the thickness of a glass substrate layer here refers to the average thickness of a glass substrate layer.
  • the average thickness of the glass substrate layer can be measured using a known thickness measuring instrument such as a micrometer or a film thickness measuring instrument.
  • the thickness of the four corners and the center can be measured using a micrometer, and the average value can be obtained as the average thickness of the glass substrate.
  • glass such as alkali silicate glass, non-alkali glass and quartz glass can be used, but borosilicate glass is preferred from the viewpoint of low thermal expansion.
  • the size of the glass substrate layer of the present invention is preferably selected in the range of 10 mm to 1000 mm in width and 10 mm to 3000 mm in length (the length is appropriately applied when used in a roll). In particular, a width of 25 mm to 550 mm and a length of 25 mm to 550 mm are more preferable from the viewpoint of handleability.
  • the thermal expansion coefficient of the glass substrate layer is closer to the thermal expansion coefficient (about 3 ppm / ° C.) of the silicon chip, warpage of the laminated plate or the laminated plate obtained from the laminated body may be suppressed, but preferably 8 ppm / ° C. It is below, More preferably, it is 6 ppm / degrees C or less, More preferably, it is 4 ppm / degrees C or less.
  • This glass substrate layer is preferably 10 to 70% by volume, more preferably 15 to 70% by volume, still more preferably 20 to 70% by volume, still more preferably 30 to 70% by volume, and more preferably 40 to 70% by volume is even more preferable.
  • the content of the glass substrate layer is 10% by volume or more, it is advantageous to obtain a laminate having low thermal expansion and high elasticity, and conversely, when the content of the glass substrate layer is 70% by volume or less, processing is performed. It is advantageous in terms of the properties and handling properties (ease of handling).
  • the total amount of the resin composition layer that is, the fiber-containing resin composition layer and the non-fiber-containing resin composition layer is preferably 30 to 90% by volume, and 30 to 85% by volume with respect to the entire laminate. More preferably, it is 30 to 80% by volume, still more preferably 30 to 70% by volume, still more preferably 30 to 60% by volume.
  • Said laminated body may have a support body film on the surface.
  • This support body film it demonstrates in detail in description of the manufacturing method of the following laminated body.
  • the manufacturing method of the said laminated body includes the resin cured material layer formation process of forming the said resin cured material layer on the surface of the said glass substrate.
  • This resin cured product layer forming step is not particularly limited, but for example, a step of laminating a film made of a resin composition on a glass substrate by pressure lamination using a vacuum laminator or a roll laminator and curing the film. Is preferred. Vacuum lamination and roll lamination can be performed using a commercially available vacuum laminator or roll laminator.
  • a thermosetting resin in said resin composition layer what melt
  • thermosetting resin when laminating using a vacuum laminator or a roll laminator, since it is generally performed at 140 ° C. or lower, the thermosetting resin is preferably melted at 140 ° C. or lower.
  • a production example of a fiber-containing resin composition layer (prepreg), a production example of a non-fiber-containing resin composition layer, and a production example of a laminate by pressure lamination will be described.
  • prepreg is impregnated or coated on a fiber base material with the thermosetting resin and, if necessary, the resin composition containing the inorganic filler, and then dried by heating to be B-staged (semi-cured). Is preferably obtained.
  • This B-stage can be usually performed by heating and drying at a temperature of 100 to 200 ° C. for about 1 to 30 minutes.
  • a coating device for this resin composition layer a coating device known to those skilled in the art such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, and a die coater can be used. It is preferable to select appropriately.
  • This prepreg may be formed on a support film, and a protective film for protecting the surface may be provided on the surface of the prepreg opposite to the support film forming surface.
  • the support film include polyolefins such as polyethylene and polyvinyl chloride, polyethylene terephthalate (hereinafter may be abbreviated as “PET”), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and release paper and copper.
  • PET polyethylene terephthalate
  • polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and release paper and copper.
  • metal foil such as foil and aluminum foil. When copper foil is used for the support film, the copper foil can be used as a conductor layer as it is to form a circuit.
  • examples of the copper foil include rolled copper and electrolytic copper foil, and those having a thickness of 2 ⁇ m to 36 ⁇ m are generally used.
  • a copper foil with a carrier may be used in order to improve workability.
  • the support film may be subjected to a release treatment in addition to the mat treatment and the corona treatment.
  • the thickness of the support film is usually 10 ⁇ m to 150 ⁇ m, preferably 25 to 50 ⁇ m. If it is thinner than 10 ⁇ m, handling becomes difficult. On the other hand, as described above, since the support film is usually finally peeled or removed, a thickness exceeding 150 ⁇ m is not preferable from the viewpoint of energy saving.
  • the protective film the same material as the support film may be used, or a different material may be used.
  • the thickness of the protective film is not particularly limited and may be the same as that of the support film, but more preferably in the range of 1 to 40 ⁇ m.
  • non-fiber-containing resin composition layer As an example of the method for producing the non-fiber-containing resin composition layer, the non-fiber-containing resin composition is dissolved in an organic solvent to prepare a varnish. Next, the non-fiber-containing resin composition layer may be formed by applying the varnish using the support film as a support and drying the organic solvent by heating, hot air blowing, or the like. Moreover, you may provide the said protective film with respect to the surface in which the support body film is not formed among this non-fiber-containing resin composition layer before drying, during drying, or after drying.
  • a coating device for this resin composition layer a coating device known to those skilled in the art such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, and a die coater can be used. It is preferable to select appropriately.
  • the pressure laminate uses a pressure laminator such as a vacuum laminator or a roll laminator, a prepreg laminated body in which one prepreg or a plurality of (for example, 2 to 20) prepregs are stacked, a glass substrate, As needed, it can carry out by laminating
  • Vacuum lamination and roll lamination can be performed using a commercially available vacuum laminator or roll laminator.
  • pressure lamination is performed after removing these support body films and the protective film.
  • the prepreg constituting the outermost surface of the laminate and the support film of the non-fiber-containing resin composition layer may be subjected to pressure lamination without being removed.
  • the laminating conditions are as follows: a prepreg, a glass substrate, and, if necessary, a non-fiber-containing composition layer are preheated as necessary, and a pressure bonding temperature (laminating temperature) is preferably 60 ° C. to 140 ° C., and a pressure bonding pressure is preferably 1 to It is preferable to laminate at 11 kgf / cm 2 . Moreover, when using a vacuum laminator, it is preferable to laminate under a reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less.
  • the laminating method may be a batch method or a continuous method using a roll. After laminating as above, cool to near room temperature. Thus, a laminated body can be manufactured.
  • thermosetting resin in said resin composition what melt
  • the thermosetting resin in the resin composition is preferably one that melts at 140 ° C. or lower.
  • the laminate of the present invention is a laminate comprising one or more cured resin layers and one or more glass substrate layers, wherein at least one of the one or more cured resin layers is a heat It is a fiber-containing resin cured product layer made of a fiber-containing resin cured product including a curable resin and a fiber base material, and at least one resin cured material layer is present between any two glass substrate layers.
  • the size of the laminate of the present invention is preferably selected in the range of 10 mm to 1000 mm in width and 10 mm to 3000 mm in length (the length is appropriately applied when used in a roll).
  • the thickness of the laminate of the present invention is preferably selected in the range of 36 ⁇ m to 20 mm depending on its application.
  • the thickness of the laminate is more preferably 50 to 1000 ⁇ m, still more preferably 80 to 600 ⁇ m, still more preferably 100 to 500 ⁇ m, and still more preferably 110 to 400 ⁇ m.
  • this laminated board has a structure in which the resin composition layer of the above-described laminated body is a resin cured product layer. In this case, the details of the glass substrate layer and the resin composition are as described in the description regarding the laminate.
  • the thickness of the cured resin layer is preferably equal to the thickness of the resin composition layer described above, and the ratio of the resin cured product and the glass substrate layer in the laminate is the same as the resin composition in the laminate described above. And it is preferable that it is equivalent to the ratio of a glass substrate layer.
  • the thickness of the fiber-containing resin cured product layer is preferably 3 to 200 ⁇ m. If it is 3 ⁇ m or more, cracking of the laminate is suppressed. When the thickness is 200 ⁇ m or less, the thickness of the glass substrate is relatively increased, so that the thermal expansion coefficient and the high elastic modulus of the laminated plate can be reduced. From this viewpoint, the thickness of the fiber-containing cured resin layer is more preferably 3 to 150 ⁇ m, still more preferably 10 to 120 ⁇ m, still more preferably 20 to 120 ⁇ m, and still more preferably 40 to 110 ⁇ m. It is.
  • the appropriate range of the thickness of the fiber-containing resin cured product layer varies depending on the thickness of the glass substrate layer, the number of layers, and the type and number of layers of the fiber-containing resin cured product layer, and thus is not limited to the above range.
  • the storage elastic modulus at 40 ° C. of this fiber-containing resin cured product layer is preferably 10 to 80 GPa.
  • a glass substrate layer is protected as it is 10 GPa or more, and the crack of a laminated board is suppressed.
  • it is 80 GPa or less, the stress due to the difference in thermal expansion coefficient between the glass substrate layer and the fiber-containing resin cured product layer is suppressed, and warpage and cracking of the laminate are suppressed.
  • the storage elastic modulus of the fiber-containing cured resin layer is more preferably 12 to 75 GPa, and further preferably 15 to 70 GPa.
  • the metal foil is not particularly limited as long as it is used for electrical insulating material applications.
  • the storage elastic modulus of the laminate at 40 ° C. is preferably 10 to 70 GPa, more preferably 20 to 60 GPa, and further preferably 25 to 50 GPa, from the viewpoint of suppressing warpage and cracking of the laminate. More preferably, it is 25 to 45 GPa.
  • the average thermal expansion coefficient in the range of 50 to 120 ° C. of the laminate is preferably 1 to 10 ppm / ° C., more preferably 2 to 8 ppm / ° C. from the viewpoint of suppressing warpage and cracking of the laminate. More preferably, it is 2 to 6 ppm / ° C, and still more preferably 2 to 5.5 ppm / ° C.
  • the average coefficient of thermal expansion in the range of 120 to 190 ° C. of the laminate is preferably 1 to 15 ppm / ° C., more preferably 2 to 10 ppm / ° C. from the viewpoint of suppressing warpage and cracking of the laminate. More preferably, it is 2 to 8 ppm / ° C, and still more preferably 2 to 6 ppm / ° C.
  • a laminate can be produced by heating and curing the resin composition layer.
  • the heat curing conditions are selected in the range of 150 ° C. to 220 ° C. for 20 minutes to 80 minutes, more preferably 160 ° C. to 200 ° C. for 30 minutes to 120 minutes.
  • the support film may be peeled off after being cured by heating. According to this method, since it is not necessary to pressurize at the time of manufacture of a laminated board, it is controlled that a crack arises at the time of manufacture.
  • the laminated board which concerns on this invention can be manufactured by the press method.
  • a laminate can be produced by curing the laminate obtained by the above-mentioned laminate by heating and pressurizing by a pressing method.
  • a prepreg superposed body obtained by superimposing one prepreg or a plurality of prepregs (for example, 2 to 20 sheets), a glass substrate, and a non-fiber-containing composition layer as necessary are overlaid by a pressing method.
  • a laminated board can also be manufactured by heating and pressurizing and curing.
  • a laminate may be produced by attaching a support film to the surface of the outermost prepreg and then curing by heating and pressurizing by a pressing method.
  • This pressing method is preferable from the viewpoint of uniform molding, but the lamination conditions may be limited because the glass substrate is easily broken during lamination.
  • the production method by heat curing (laminating method) of the laminate obtained by laminating is preferable from the viewpoint that the glass substrate is hard to break and easy in production, but the fiber-containing resin composition and Molding may be difficult depending on the properties and content of the fiber substrate. Therefore, it is preferable to use the pressing method and the laminating method properly as necessary.
  • the multilayer laminate of the present invention is a multilayer laminate including a plurality of laminates, and at least one laminate is the aforementioned laminate of the present invention.
  • a multilayer laminate can be produced by stacking and laminating a plurality of the above laminates (for example, 2 to 20). Specifically, using a multistage press, a multistage vacuum press, a continuous molding machine, an autoclave molding machine, etc., at a temperature of about 100 to 250 ° C., a pressure of about 2 to 100 MPa, and a heating time of about 0.1 to 5 hours. Can be molded.
  • the printed wiring board of this invention has said laminated board or multilayer laminated board, and the wiring provided in the surface of the laminated board or multilayer laminated board. Next, a method for manufacturing this printed wiring board will be described.
  • the above laminated plate is drilled by a method such as drilling, laser, plasma, or a combination thereof as necessary to form a via hole or a through hole.
  • a method such as drilling, laser, plasma, or a combination thereof as necessary to form a via hole or a through hole.
  • the laser a carbon dioxide laser, a YAG laser, a UV laser, an excimer laser, or the like is generally used.
  • a conductor layer is formed on the laminate by dry plating or wet plating.
  • dry plating a known method such as vapor deposition, sputtering, or ion plating can be used.
  • wet plating first, the surface of the laminate is permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid (ie, hydrogen peroxide and (Rough mixture with sulfuric acid) and an oxidizing agent such as nitric acid to form rough anchors.
  • an aqueous sodium hydroxide solution such as potassium permanganate and sodium permanganate is particularly preferably used.
  • a conductor layer is formed by a method combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • the formation process of this conductor layer can be skipped.
  • ⁇ Formation of wiring pattern> As a subsequent pattern formation method, for example, a known subtractive method or semi-additive method can be used.
  • a multilayer printed wiring board may be formed by laminating a plurality of laminated boards on which wiring patterns are formed as described above.
  • a multilayer is formed by laminating a plurality of laminated boards on which the above wiring patterns are formed via the above-mentioned adhesive film. Thereafter, through holes or blind via holes are formed by drilling or laser processing, and interlayer wiring is formed by plating or conductive paste. In this way, a multilayer printed wiring board can be manufactured.
  • the laminate and multilayer laminate may be a laminate with a metal foil and a multilayer laminate having a metal foil such as copper, aluminum or nickel on one or both sides.
  • a laminate with a metal foil can be produced by using a metal foil as the support film.
  • a laminate with metal foil is obtained by laminating one or a plurality of (for example, 2 to 20) laminates obtained by the above-mentioned laminate and arranging metal foil on one or both sides thereof. It can also be manufactured.
  • the molding conditions can be applied to laminates for electrical insulating materials and multilayer boards.
  • thermomechanical analyzer Thermal Mechanical Analysis
  • DI temperature-dependent three-dimensional displacement measuring device
  • laser interferometry or the like.
  • the elastic modulus of the laminated plate can be measured as a bending elastic modulus as a static elastic modulus, including measurement of storage elastic modulus using a wide area viscoelasticity measuring device.
  • the bending elastic modulus can be obtained by performing a three-point bending test.
  • thermosetting resin composition a solution of a resin composition having the unsaturated maleimide group, (2) Bifunctional naphthalene type epoxy resin (trade name, HP-4032D, manufactured by Dainippon Ink & Chemicals, Inc.) as the thermosetting resin (B), (3) As modified imidazole (C), isocyanate mask imidazole [Daiichi Kogyo Seiyaku Co., Ltd., trade name: G8009L], (4) As an inorganic filler (D), fused silica [manufactured by Admatech Co., Ltd., trade name: SC2050-KC, concentration 70%, average primary particle diameter: 500 nm, specific surface area by BET method: 6.8 m 2 / G], (5) As a phosphorus-containing compound (E) that imparts flame retardancy, a phosphorus-containing phenol resin [manufactured by Sanko Chemical Co., Ltd., trade name: H
  • Examples 1 to 3 and Comparative Examples 1 to 3 As a glass film, a 50 ⁇ m thick glass film “trade name OA-10G” (Nippon Electric Glass Co., Ltd., 250 mm ⁇ 250 mm) and a 100 ⁇ m thick glass film “trade name OA-10G” (Nippon Electric Glass Co., Ltd.) , 250 mm ⁇ 250 mm) (which may be referred to as GF50 ⁇ m and GF100 ⁇ m, respectively).
  • the glass film and the prepreg are overlaid as shown in Table 2, and an electrolytic copper foil with a thickness of 12 ⁇ m is placed up and down, and pressed at a pressure of 3.0 MPa and a temperature of 235 ° C.
  • Example 4 [Production of varnish for non-fiber-containing resin composition layer containing a thermosetting resin composition] Nippon Kayaku Co., Ltd. as a thermosetting resin for 135.4 parts of polyamide resin “BPAM-155” (product name) manufactured by Nippon Kayaku Co., Ltd. dissolved in a dimethylacetamide solvent to a concentration of 10%. 62.0 parts of an epoxy resin “NC3000-H” (trade name, concentration: 100%) manufactured by DIC, and a triazine-containing phenolic novolak resin “LA-1356-60P” (trade name, concentration: 60) manufactured by DIC Corporation as a curing agent.
  • Nippon Kayaku Co., Ltd. as a thermosetting resin for 135.4 parts of polyamide resin “BPAM-155” (product name) manufactured by Nippon Kayaku Co., Ltd. dissolved in a dimethylacetamide solvent to a concentration of 10%. 62.0 parts of an epoxy resin “NC3000-H” (trade name, concentration: 100%) manufactured by DIC, and a tri
  • a varnish for a non-fiber-containing resin composition layer is dried on a release-treated surface of a release-treated polyethylene terephthalate (PET) film (PET-38X, manufactured by Lintec Co., Ltd.) as a support film, and then dried to 20 ⁇ m It applied so that it might become, and it was made to dry at 140 degreeC for 5 minute (s), and the adhesive film 3 of width 270mm which consists of the resin composition layer 2 and the support body film 1 was formed (FIG. 1 (a)).
  • PET polyethylene terephthalate
  • the prepreg (PP # 1078) 5 and the glass substrate layer 4 are laminated in the order of glass substrate layer / prepreg (PP # 1078) / glass substrate layer, and a batch type vacuum pressure laminator “MVLP-500” (Product name, manufactured by Meiki Co., Ltd.) was used for lamination (FIG. 1 (b)).
  • the degree of vacuum at this time was 30 mmHg or less, the temperature was set to 140 ° C., and the pressure was set to 0.5 MPa.
  • the laminated body is heated at 235 ° C.
  • the laminated board 6 which consists of was obtained (FIG.1 (c)).
  • the adhesive film 3 is disposed above and below the laminated plate 6 so that the resin composition layer 2 of the adhesive film 3 is in contact with the glass substrate layer 4 of the laminated plate 6, and a batch type vacuum pressure laminator “MVLP-500” is arranged. "(Trade name, manufactured by Meiki Co., Ltd.) was laminated by lamination (FIG. 1 (d)).
  • the degree of vacuum at this time was 30 mmHg or less, the temperature was set to 120 ° C., and the pressure was set to 0.5 MPa. Thereby, the resin composition layer 2 became the resin cured material layer 2a.
  • the support film is peeled off and cured in a dry atmosphere set at 180 ° C. for 60 minutes to obtain a laminate of 5 layers (non-fiber-containing resin cured layer / glass substrate layer / fiber-containing resin) Cured product layer / glass substrate layer / non-fiber-containing resin cured product layer) 7 was obtained (FIG. 1 (e)).
  • the temperature measurement was performed at a rate of 5 ° C./min, 1 st run, measurement range 20 to 200 ° C., 2nd run measurement range ⁇ 10 to 280 ° C., load 5 g, 10 mm between chucks, and 50 to 120
  • the average coefficient of thermal expansion in the range of ° C and in the range of 120 to 190 ° C was determined.
  • the results are shown in Table 2.
  • (2) Measurement of storage elastic modulus A test piece of 5 mm ⁇ 30 mm was cut out from the laminate. When using a copper clad laminated board, after removing copper foil by being immersed in copper etching liquid, the test piece was cut out.
  • Examples 1 to 4 of the present invention containing a glass film are excellent in low thermal expansion at 50 to 120 ° C. and high elasticity at 40 ° C. as compared with Comparative Example 1 not containing a glass film. . Also, in the high temperature region of 120 to 190 ° C., the coefficient of thermal expansion is higher in Comparative Example 1 than in the low temperature region (50 to 120 ° C.), whereas in Examples 1 to 4, it is almost the same as the low temperature region. It can be seen that it has a low thermal expansion property. Therefore, Examples 1 to 4 of the present invention maintain low thermal expansion properties not only in the low temperature region but also in the high temperature region.
  • Example 2 and Comparative Example 2 in which the glass ratios are both 50% by volume are compared, any of low thermal expansion at 50 to 120 ° C., low thermal expansion at 120 to 190 ° C., and high elasticity at 40 ° C.
  • Example 2 having a glass film as the outermost layer is superior.
  • Example 3 and Comparative Example 3 in which the glass ratio is approximated are compared, any of low thermal expansion at 50 to 120 ° C., low thermal expansion at 120 to 190 ° C., and high elasticity at 40 ° C.
  • Example 3 having a glass film as the outermost layer is superior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A laminated body including at least one resin composition layer and at least two glass substrate layers, wherein: at least one of the at least one resin composition layers is a fiber-containing resin composition layer comprising a fiber-containing resin composition including a heat-curable resin and a fiber base material; and at least one resin composition layer exists between any two glass substrate layers. A laminated board including at least one cured resin layer and at least two glass substrate layers, wherein: at least one of the at least one cured resin layers is a fiber-containing cured resin layer comprising a fiber-containing cured resin product including a heat-curable resin and a fiber base material; and at least one cured resin layer exists between any two glass substrate layers. A printed wiring board having the laminated board, and wiring provided on the surface of the laminated board. A production method for the laminated board, including a cured resin layer-forming step in which the cured resin layer is formed on the surface of the glass substrate.

Description

積層体、積層板、多層積層板、プリント配線板及び積層板の製造方法LAMINATE, LAMINATE, MULTILAYER LAMINATE, PRINTED WIRING BOARD AND METHOD FOR PRODUCING LAMINATE
 本発明は、半導体パッケージ用やプリント配線板用に好適な積層体及び積層板、この積層板を用いたプリント配線板、多層積層板、及び積層板の製造方法に関する。 The present invention relates to a laminate and a laminate suitable for semiconductor packages and printed wiring boards, a printed wiring board using the laminate, a multilayer laminate, and a method for producing the laminate.
 近年、電子機器の薄型化、軽量化に対する要求がますます強くなり、半導体パッケージやプリント配線板の薄型化、高密度化が進んでいる。これらの薄型化、高密度化に対応して電子部品を安定に実装するためには、実装時に生じるそりを抑えることが重要になる。
 実装時、半導体パッケージに生じるそりの主な原因の1つが、半導体パッケージに使われている積層板と当該積層板の表面に実装されるシリコンチップとの熱膨張率差である。そのため、半導体パッケージ用積層板においては、熱膨張率をシリコンチップの熱膨張率に近付ける、すなわち低熱膨張率化する努力が行われている。また、積層板の弾性率が低いこともそりの原因となるため、そりを低減するには積層板を高弾性化することも有効である。このように、積層板のそりの低減のためには、積層板の低膨張率化及び高弾性化が有効である。
In recent years, demands for thinner and lighter electronic devices have become stronger, and semiconductor packages and printed wiring boards are becoming thinner and higher in density. In order to stably mount electronic components corresponding to these reductions in thickness and density, it is important to suppress warpage that occurs during mounting.
One of the main causes of warpage occurring in the semiconductor package during mounting is a difference in thermal expansion coefficient between the laminated plate used in the semiconductor package and the silicon chip mounted on the surface of the laminated plate. For this reason, efforts are being made to bring the coefficient of thermal expansion close to the coefficient of thermal expansion of the silicon chip, that is, to lower the coefficient of thermal expansion, in the laminated sheet for semiconductor packages. Further, since the low elastic modulus of the laminated plate also causes warpage, it is also effective to increase the elasticity of the laminated plate in order to reduce warpage. Thus, in order to reduce the warpage of the laminate, it is effective to reduce the expansion coefficient and increase the elasticity of the laminate.
 積層板を低熱膨張率化、高弾性化する手法は種々考えられるが、その中でも積層板用の樹脂の低熱膨張率化や樹脂中の無機充填材の高充填化が知られている。特に無機充填材の高充填化は、低熱膨張率化とともに耐熱性や難燃性の向上も期待できる手法である(特許文献1)。しかし、このように無機充填材の充填量を増やすことは、絶縁信頼性の低下や樹脂とその表面に形成される配線層との密着不足、積層板製造時におけるプレス成形不良を起こすことが知られており、高充填化には限界がある。
 また、樹脂の選択或いは改良により、低熱膨張率を達成することが試みられている。例えば、配線板用の樹脂の架橋密度を高め、Tgを高くして熱膨張率を低減する方法が一般的である(特許文献2、及び3)。しかしながら、架橋密度を高めることは官能基間の分子鎖を短くすることであるが、一定以上分子鎖を短くすることは、反応の点で限界があり、樹脂強度の低下を引き起こすという問題もある。このため、架橋密度を高める手法での低熱膨張率化にも限界がある。
 このように、従来の積層板では、無機充填材の高充填や低熱膨張率樹脂の採用による低熱膨張率化・高弾性化が図られてきたが、限界に達しつつある。
Various methods for lowering the thermal expansion coefficient and increasing the elasticity of the laminated board are conceivable. Among them, it is known to lower the thermal expansion coefficient of the resin for the laminated board and to increase the inorganic filler in the resin. In particular, the high filling of the inorganic filler is a technique that can be expected to improve the heat resistance and flame retardancy as well as the low thermal expansion coefficient (Patent Document 1). However, increasing the filling amount of the inorganic filler in this way is known to cause a decrease in insulation reliability, insufficient adhesion between the resin and the wiring layer formed on the surface, and press molding failure during the production of the laminate. Therefore, there is a limit to high filling.
In addition, attempts have been made to achieve a low coefficient of thermal expansion by selecting or improving the resin. For example, a method of increasing the crosslink density of the resin for wiring boards and increasing the Tg to reduce the coefficient of thermal expansion is generally used (Patent Documents 2 and 3). However, increasing the crosslinking density shortens the molecular chain between the functional groups, but shortening the molecular chain beyond a certain level has a limit in terms of reaction and causes a problem of causing a decrease in resin strength. . For this reason, there is a limit to the reduction in the coefficient of thermal expansion by the method of increasing the crosslinking density.
As described above, in the conventional laminated plate, a low thermal expansion coefficient and a high elasticity have been achieved by high filling with an inorganic filler and adoption of a low thermal expansion coefficient resin, but the limit has been reached.
 また、上記とは異なる手法として、電子部品(シリコンチップ)の熱膨張率とほぼ合致した熱膨張率を有する層としてガラスフィルムを用い、樹脂とガラスフィルムとをプレスして積層することによって、熱ショックストレスを軽減する試みがなされているが(特許文献4)、樹脂層の弾性率が低く熱膨張率が高いため、基板の低そりを実現するには不十分であった。 Further, as a method different from the above, a glass film is used as a layer having a coefficient of thermal expansion substantially matching the coefficient of thermal expansion of the electronic component (silicon chip), and the resin and the glass film are pressed and laminated. Attempts have been made to reduce the shock stress (Patent Document 4), but since the elastic modulus of the resin layer is low and the thermal expansion coefficient is high, it is insufficient to realize a low warpage of the substrate.
特開2004-182851号公報JP 2004-182851 A 特開2000-243864号公報JP 2000-243864 A 特開2000-114727号公報JP 2000-114727 A 特許第4657554号Japanese Patent No. 4657554
 上述した様に、特許文献4の製造方法によって得られた基板は、依然として弾性率が低いとともに熱膨張率が高いため、基板の低そりを実現するには不十分であった。
 本発明はかかる事情に鑑みなされたものであり、低熱膨張率及び高弾性率を有し、そりが抑制でき、割れの生じ難い積層板及び多層積層板と、これら積層板及び多層積層板の製造に好適な積層体と、これら積層板及び多層積層板を用いたプリント配線板と、この積層板の製造方法とを提供することを目的とするものである。
As described above, since the substrate obtained by the manufacturing method of Patent Document 4 still has a low elastic modulus and a high coefficient of thermal expansion, it is insufficient for realizing a low warpage of the substrate.
The present invention has been made in view of such circumstances, and has a low thermal expansion coefficient and a high elastic modulus, can suppress warpage, and is less prone to cracking, and the production of these laminated boards and multilayer laminated boards. It is an object of the present invention to provide a laminate suitable for the above, a printed wiring board using the laminate and the multilayer laminate, and a method for producing the laminate.
 特許文献4には、ガラスフィルムと樹脂とを積層してなる基板において、樹脂に繊維基材を含有することの記載が一切ない。特許文献4の記載からすると、樹脂に繊維基材を含有することは回避すべきであると考えられる。
 すなわち、特許文献4では、ガラスフィルムにより実質的に基板全体の熱膨張作用が決定されることを、必須の構成としている(特許文献4の請求項1)。これに鑑みると、樹脂が基板の熱膨張作用に与える影響をできるだけ小さくする必要があり、そのためには樹脂の弾性率を低く抑える必要がある(仮に樹脂が高弾性率であると、この高弾性率の樹脂によって基板全体の熱膨張作用が大きな影響を受けることになる)。一方、樹脂に繊維基材を含有させると、樹脂が高弾性率化してしまう。従って、特許文献4の記載からすると、樹脂に繊維基材を含有することは回避すべきである。
 また、特許文献4の樹脂に繊維基材を含有すると、繊維基材が起点となってガラス基板が容易に割れることが考えられる。この点からも、特許文献4では、樹脂に繊維基材を含有することを避けているものと推測される。
 現在、特許文献4のようなガラス基板層と樹脂層との積層板において、樹脂層中に繊維基材を含有させた積層板の例は無い。
In Patent Document 4, there is no description that a fiber base material is contained in a resin in a substrate formed by laminating a glass film and a resin. From the description of Patent Document 4, it is considered that the resin should contain a fiber base material.
That is, in patent document 4, it is set as the essential structure that the thermal expansion effect | action of the whole board | substrate is substantially determined by the glass film (Claim 1 of patent document 4). In view of this, it is necessary to minimize the influence of the resin on the thermal expansion action of the substrate. To that end, it is necessary to keep the elastic modulus of the resin low (if the resin has a high elastic modulus, this high elasticity The thermal expansion effect of the entire substrate is greatly affected by the resin of the rate). On the other hand, when the fiber base material is contained in the resin, the resin has a high elastic modulus. Therefore, from the description of Patent Document 4, it should be avoided that the resin contains a fiber base material.
Moreover, when a fiber base material is contained in the resin of Patent Document 4, it is considered that the glass substrate easily breaks starting from the fiber base material. Also from this point, in patent document 4, it is estimated that it contains avoiding containing a fiber base material in resin.
At present, there is no example of a laminate in which a fiber base material is contained in a resin layer in a laminate of a glass substrate layer and a resin layer as in Patent Document 4.
 ところが驚くべきことに、本発明者らは上記の課題を解決するために鋭意研究を行った結果、樹脂硬化物層及びガラス基板層を含む積層板において、樹脂硬化物層に繊維基材を含有させることにより、低熱膨張率及び高弾性率を有し、そりが抑制され、割れの生じ難い積層板が得られることを見出した。 Surprisingly, however, the present inventors have conducted extensive research to solve the above problems, and as a result, in the laminate including the resin cured product layer and the glass substrate layer, the resin cured product layer contains a fiber base material. It has been found that a laminated board having a low thermal expansion coefficient and a high elastic modulus, suppressing warpage, and hardly causing cracks can be obtained.
 本発明は当該知見に基づいて完成されたものであって、以下の[1]~[18]を要旨とするものである。
[1]1層以上の樹脂組成物層及び2層以上のガラス基板層を含む積層体であって、前記1層以上の樹脂組成物層のうちの少なくとも1層は、熱硬化性樹脂及び繊維基材を含む繊維含有樹脂組成物からなる繊維含有樹脂組成物層であり、任意の2層の前記ガラス基板層の間には、前記樹脂組成物層が1層以上存在する積層体。
[2]前記ガラス基板層の厚さが30~200μmである[1]に記載の積層体。
[3]前記2層以上のガラス基板層のうち最表面側のガラス基板層及び最裏面側のガラス基板層が、それぞれ、総ての前記樹脂組成物層よりも表面側及び裏面側に存在する[1]又は[2]に記載の積層体。
[4]前記1層以上の樹脂組成物層は、最表面側のガラス基板層の表面に対して接面している第1の樹脂組成物層と、最裏面側のガラス基板層の裏面に対して接面している第2の樹脂組成物層とを含んでおり、前記第1の樹脂組成物層及び第2の樹脂組成物層は、熱硬化性樹脂を含みかつ繊維基材を含まない非繊維含有有機組成物からなる非繊維含有有機組成物層である[1]~[3]のいずれか1項に記載の積層体。
[5]前記第1の樹脂組成物層及び前記第2の樹脂組成物層は、厚さ3~40μmである[4]に記載の積層体。
[6]前記繊維含有樹脂組成物層が無機充填材を含む[1]~[5]のいずれかに記載の積層体。
[7]前記無機充填材が、シリカ、アルミナ、タルク、マイカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、ホウ酸アルミニウム及びホウ珪酸ガラスから選択される1種又は2種以上である[6]に記載の積層体。
[8]前記繊維基材が、ガラス繊維、ポリイミド繊維、ポリエステル繊維、ポリテトラフルオロエチレン繊維から選択されるいずれか1つ以上である[1]~[7]のいずれかに記載の積層体。
[9]前記熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂及びメラミン樹脂から選択される1種又は2種以上である[1]~[8]のいずれかに記載の積層体。
[10]1層以上の樹脂硬化物層及び2層以上のガラス基板層を含む積層板であって、前記1層以上の樹脂硬化物層のうちの少なくとも1層は、熱硬化性樹脂及び繊維基材を含む繊維含有樹脂硬化物からなる繊維含有樹脂硬化物層であり、任意の2層の前記ガラス基板層の間には、前記樹脂硬化物層が1層以上存在する積層板。
[11]40℃における貯蔵弾性率が10GPa~70GPaである[10]に記載の積層板。
[12][1]~[9]のいずれか1項に記載の積層体を加熱して得られる[10]又は[11]に記載の積層板。
[13]複数個の積層板を含む多層積層板であって、少なくとも1個の積層板が[10]~[12]のいずれかに記載の積層板である多層積層板。
[14][10]~[12]のいずれか1項に記載の積層板と、前記積層板の表面に設けられた配線とを有するプリント配線板。
[15][13]に記載の多層積層板と、前記多層積層板の表面に設けられた配線とを有するプリント配線板。
[16]ガラス基板の表面に樹脂硬化物層を形成する樹脂硬化物層形成工程を含む[10]~[12]いずれか1項に記載の積層板の製造方法。
[17]前記樹脂硬化物層形成工程が、前記樹脂組成物からなるフィルムを、真空ラミネーター又はロールラミネーターを用いて前記ガラス基板上に積層し、硬化する工程である[16]に記載の積層板の製造方法。
[18]前記樹脂硬化物層形成工程が、前記ガラス基板上に前記樹脂組成物からなるフィルムを配置した後、プレスし、硬化する工程である[16]に記載の積層板の製造方法。
The present invention has been completed based on the above findings, and has the following [1] to [18].
[1] A laminate including one or more resin composition layers and two or more glass substrate layers, wherein at least one of the one or more resin composition layers includes a thermosetting resin and a fiber. It is a fiber containing resin composition layer which consists of a fiber containing resin composition containing a base material, and the laminated body in which the said resin composition layer exists one or more layers between two arbitrary glass substrate layers.
[2] The laminate according to [1], wherein the glass substrate layer has a thickness of 30 to 200 μm.
[3] Of the two or more glass substrate layers, the glass substrate layer on the outermost surface side and the glass substrate layer on the outermost surface side are respectively present on the front surface side and the back surface side of all the resin composition layers. The laminate according to [1] or [2].
[4] The one or more resin composition layers are provided on the back surface of the first resin composition layer that is in contact with the surface of the outermost glass substrate layer and the outermost glass substrate layer. A second resin composition layer that is in contact with the first resin composition layer, and the first resin composition layer and the second resin composition layer include a thermosetting resin and a fiber substrate. The laminate according to any one of [1] to [3], which is a non-fiber-containing organic composition layer comprising a non-fiber-containing organic composition.
[5] The laminate according to [4], wherein the first resin composition layer and the second resin composition layer have a thickness of 3 to 40 μm.
[6] The laminate according to any one of [1] to [5], wherein the fiber-containing resin composition layer includes an inorganic filler.
[7] The inorganic filler is one or more selected from silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and borosilicate glass. [6] The laminated body as described in.
[8] The laminate according to any one of [1] to [7], wherein the fiber base material is at least one selected from glass fiber, polyimide fiber, polyester fiber, and polytetrafluoroethylene fiber.
[9] The thermosetting resin is an epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, The laminate according to any one of [1] to [8], which is one or more selected from silicone resins, triazine resins, and melamine resins.
[10] A laminate including one or more resin cured product layers and two or more glass substrate layers, wherein at least one of the one or more resin cured product layers includes a thermosetting resin and a fiber. A laminate comprising a fiber-containing resin cured product layer comprising a fiber-containing resin cured product including a base material, and one or more resin cured material layers are present between any two glass substrate layers.
[11] The laminated board according to [10], wherein the storage elastic modulus at 40 ° C. is 10 GPa to 70 GPa.
[12] The laminated plate according to [10] or [11], which is obtained by heating the laminated body according to any one of [1] to [9].
[13] A multilayer laminate including a plurality of laminates, wherein at least one laminate is the laminate according to any one of [10] to [12].
[14] A printed wiring board comprising the laminated board according to any one of [10] to [12] and wiring provided on a surface of the laminated board.
[15] A printed wiring board having the multilayer laminated board according to [13] and wiring provided on the surface of the multilayer laminated board.
[16] The method for producing a laminated board according to any one of [10] to [12], including a resin cured product layer forming step of forming a resin cured product layer on the surface of the glass substrate.
[17] The laminate according to [16], wherein the cured resin layer forming step is a step of laminating and curing a film made of the resin composition on the glass substrate using a vacuum laminator or a roll laminator. Manufacturing method.
[18] The method for producing a laminated board according to [16], wherein the resin cured product layer forming step is a step of pressing and curing the film made of the resin composition on the glass substrate.
 本発明によると、低熱膨張率及び高弾性率を有し、そりの抑制が可能であり、割れの生じ難い積層板及び多層積層板と、これら積層板及び多層積層板の製造に好適な積層体と、これら積層板及び多層積層板を用いたプリント配線板と、この積層板の製造方法とを提供することができる。 According to the present invention, laminates and multilayer laminates that have a low thermal expansion coefficient and a high elastic modulus, can suppress warpage, and are less likely to crack, and laminates suitable for manufacturing these laminates and multilayer laminates And the printed wiring board using these laminated boards and multilayer laminated boards, and the manufacturing method of this laminated board can be provided.
実施例4に係る積層板の製造方法を説明する模式的な断面図である。6 is a schematic cross-sectional view illustrating a method for manufacturing a laminated board according to Example 4. FIG.
 以下、本発明の積層体、積層板、多層積層板、プリント配線板、及び積層板の製造方法について詳細に説明する。
 なお、本発明において、積層体とは、その構成成分である熱硬化性樹脂が未硬化又は半硬化であるものを意味し、積層板とは、その構成成分である熱硬化性樹脂が硬化しているものを意味する。
Hereinafter, the laminate, the laminate, the multilayer laminate, the printed wiring board, and the method for producing the laminate of the present invention will be described in detail.
In the present invention, the laminate means that the thermosetting resin that is a constituent component is uncured or semi-cured, and the laminate means that the thermosetting resin that is a constituent component is cured. Means what
[積層体]
 本発明の積層体は、1層以上の樹脂組成物層及び2層以上のガラス基板層を含む積層体であって、前記1層以上の樹脂組成物層のうちの少なくとも1層は、熱硬化性樹脂及び繊維基材を含む繊維含有樹脂組成物からなる繊維含有樹脂組成物層であり、任意の2層の前記ガラス基板層の間には、前記樹脂組成物層が1層以上存在するものである。
 本発明の積層体の大きさは、取扱い性の観点から、幅10mm~1000mm、長さ10mm~3000mm(ロールで用いる場合は、長さは適宜適用される。)の範囲で選択されることが好ましい。特に、幅25mm~550mm、長さ25mm~550mmの範囲であることが好ましい。
 本発明の積層体の厚さは、その用途により35μm~20mmの範囲で選択されることが好ましい。積層体の厚さは、より好ましくは50~1000μmであり、更に好ましくは80~600μmであり、より更に好ましくは100~500μmであり、より更に好ましくは110~400μmである。
 本発明の積層体の樹脂組成物層を硬化させて樹脂硬化物層とすることにより得られる積層板は、シリコンチップと同程度に低熱膨張率かつ高弾性率であるガラス基板層を有するため、低熱膨張率及び高弾性率なものとなり、そりが抑制され、割れが生じ難いものとなる。特に、この積層板は耐熱性の高いガラス基板層を有するため、100℃から樹脂硬化物のTg未満の温度領域において低熱膨張性を顕著に有する。また、繊維含有有機硬化物層は繊維基材を含有するために、繊維基材を含有しない樹脂硬化物と比べて低熱膨張率かつ高弾性率であり、当該繊維含有樹脂硬化物層を含む積層板は低膨張係数かつ高弾性率なものとなる。更に、本発明の積層体は、ガラス基板層を2層以上有しており、任意の2層のガラス基板層の間に樹脂組成物層が1層以上介在するため、これらのガラス基板層の合計厚さと同一厚さの1層のガラス基板層を有する積層体よりも、上記のようにして積層板としたときに、低熱膨張率及び高弾性率なものとなる。
[Laminate]
The laminate of the present invention is a laminate comprising one or more resin composition layers and two or more glass substrate layers, and at least one of the one or more resin composition layers is thermoset. A fiber-containing resin composition layer comprising a fiber-containing resin composition containing a functional resin and a fiber base material, and one or more resin composition layers are present between any two glass substrate layers It is.
The size of the laminate of the present invention is selected in the range of 10 mm to 1000 mm in width and 10 mm to 3000 mm in length (in the case of use in a roll, the length is appropriately applied) from the viewpoint of handleability. preferable. In particular, the width is preferably 25 mm to 550 mm and the length is 25 mm to 550 mm.
The thickness of the laminate of the present invention is preferably selected in the range of 35 μm to 20 mm depending on the application. The thickness of the laminate is more preferably 50 to 1000 μm, still more preferably 80 to 600 μm, still more preferably 100 to 500 μm, and still more preferably 110 to 400 μm.
Since the laminate obtained by curing the resin composition layer of the laminate of the present invention to form a cured resin layer has a glass substrate layer having a low thermal expansion coefficient and a high elastic modulus as much as a silicon chip, It becomes a thing with a low coefficient of thermal expansion and a high elastic modulus, warping is suppressed, and cracks are less likely to occur. In particular, since this laminate has a glass substrate layer with high heat resistance, it has a low thermal expansion in a temperature range from 100 ° C. to less than Tg of the cured resin. Moreover, since the fiber-containing organic cured product layer contains a fiber base material, the fiber-containing organic cured product layer has a low thermal expansion coefficient and a high elastic modulus as compared with a resin cured product that does not contain a fiber base material, and includes the fiber-containing resin cured product layer. The plate has a low expansion coefficient and a high elastic modulus. Further, the laminate of the present invention has two or more glass substrate layers, and one or more resin composition layers are interposed between any two glass substrate layers. Compared to a laminate having a single glass substrate layer having the same thickness as the total thickness, the laminate has a lower thermal expansion coefficient and a higher elastic modulus when formed into a laminate as described above.
<積層体の積層構造>
 上記の積層体の積層構造は、任意の2層のガラス基板層の間に樹脂組成物層が1層以上存在するものであり、1層以上の樹脂組成物層のうちの少なくとも1層が熱硬化性樹脂及び繊維基材を含む繊維含有樹脂組成物からなる繊維含有樹脂組成物層であれば特に制限はない。
≪第1の積層構造≫
 例えば、積層体中における最表面側のガラス基板層及び最裏面側のガラス基板層が、それぞれ、総ての樹脂組成物層よりも表面側及び裏面側に存在する構造であってもよい。このような構造としては、次のようなものが例示される。
   「(ガラス基板層/樹脂組成物層)m/ガラス基板層」(mは1以上の整数)
 ここで、「ガラス基板層/樹脂組成物層」とは、ガラス基板層と樹脂組成物層とが積層していることを意味する。すなわち、「/」とは、「/」の左右両側に記載されている2層が積層していることを意味する。
 例えば、mが1及び2の場合の構造は、それぞれ、次のとおりとなる。
   「ガラス基板層/樹脂組成物層/ガラス基板層」
   「ガラス基板層/樹脂組成物層/ガラス基板層/樹脂組成物層/ガラス基板層」
 これら樹脂組成物層のうち少なくとも1層は、熱硬化性樹脂及び繊維基材を含む繊維含有樹脂組成物からなる繊維含有樹脂組成物層である必要がある。このように樹脂基材を含む積層体から得られる積層板は、より低膨張率及び高弾性率になる。
 また、樹脂組成物層の総てが上記の繊維含有樹脂組成物からなっていてもよいが、その一部が、熱硬化性樹脂を含みかつ繊維基材を含まない非繊維含有有機組成物からなっていてもよい。
<Laminated structure of laminated body>
In the laminate structure of the laminate, one or more resin composition layers are present between any two glass substrate layers, and at least one of the one or more resin composition layers is heated. If it is a fiber containing resin composition layer which consists of a fiber containing resin composition containing curable resin and a fiber base material, there will be no restriction | limiting in particular.
≪First laminated structure≫
For example, the structure in which the glass substrate layer on the outermost surface side and the glass substrate layer on the outermost surface side in the laminate are present on the front surface side and the back surface side than all of the resin composition layers may be used. Examples of such a structure include the following.
“(Glass substrate layer / resin composition layer) m / glass substrate layer” (m is an integer of 1 or more)
Here, “glass substrate layer / resin composition layer” means that a glass substrate layer and a resin composition layer are laminated. That is, “/” means that two layers described on the left and right sides of “/” are laminated.
For example, the structures when m is 1 and 2 are as follows.
"Glass substrate layer / resin composition layer / glass substrate layer"
"Glass substrate layer / resin composition layer / glass substrate layer / resin composition layer / glass substrate layer"
At least one of these resin composition layers needs to be a fiber-containing resin composition layer made of a fiber-containing resin composition containing a thermosetting resin and a fiber base material. Thus, the laminated board obtained from the laminated body containing a resin base material becomes a low expansion coefficient and a high elasticity modulus.
Further, all of the resin composition layer may be composed of the above-mentioned fiber-containing resin composition, but a part thereof is composed of a non-fiber-containing organic composition containing a thermosetting resin and no fiber substrate. It may be.
≪第2の積層構造≫
 また、例えば、最表面側のガラス基板層の表面に対して接面している第1の樹脂組成物層と、最裏面側のガラス基板層の裏面に対して接面している第2の樹脂組成物層と、を有する構造であってもよい。このような構造としては、次のようなものが例示される。
   「第1の樹脂組成物層/(ガラス基板層/樹脂組成物層)n/ガラス基板層
   /第2の樹脂組成物層」(nは1以上の整数)
 例えば、nが1及び2の場合の構造は、それぞれ、次のとおりとなる。
   「第1の樹脂組成物層/ガラス基板層/樹脂組成物層/ガラス基板層
    /第2の樹脂組成物層」
   「第1の樹脂組成物層/ガラス基板層/樹脂組成物層/ガラス基板層
    /樹脂組成物層/ガラス基板層/第2の樹脂組成物層」
 これら樹脂組成物層のうち少なくとも1層は、熱硬化性樹脂及び繊維基材を含む繊維含有樹脂組成物からなる繊維含有樹脂組成物層である必要がある。このように樹脂基材を含む積層体から得られる積層板は、より低膨張率及び高弾性率になる。
 また、第1の樹脂組成物層及び第2の樹脂組成物層を有することにより、ガラス基板層が露出して積層体の外部の物体と直接に接触することが回避され、ガラス基板層の割れ防止やハンドリング性(取扱い易さ)の向上が可能である。これら第1の樹脂組成物層及び第2の樹脂組成物層は、熱硬化性樹脂を含みかつ繊維基材を含まない非繊維含有有機組成物からなる非繊維含有有機組成物層であることが好ましい。これにより、ガラス基板層の割れ防止やハンドリング性(取扱い易さ)の更なる向上が可能である。また、第1の樹脂組成物層及び第2の樹脂組成物層に繊維基材を含まないことにより、樹脂組成物層の厚さを薄くすることができ、積層板をより高弾性にすることができる。
≪Second laminated structure≫
Also, for example, a first resin composition layer that is in contact with the surface of the glass substrate layer on the outermost surface side, and a second surface that is in contact with the rear surface of the glass substrate layer on the outermost surface side. And a resin composition layer. Examples of such a structure include the following.
“First resin composition layer / (glass substrate layer / resin composition layer) n / glass substrate layer / second resin composition layer” (n is an integer of 1 or more)
For example, the structures when n is 1 and 2 are as follows.
"First resin composition layer / glass substrate layer / resin composition layer / glass substrate layer / second resin composition layer"
"First resin composition layer / glass substrate layer / resin composition layer / glass substrate layer / resin composition layer / glass substrate layer / second resin composition layer"
At least one of these resin composition layers needs to be a fiber-containing resin composition layer made of a fiber-containing resin composition containing a thermosetting resin and a fiber base material. Thus, the laminated board obtained from the laminated body containing a resin base material becomes a low expansion coefficient and a high elasticity modulus.
Further, by having the first resin composition layer and the second resin composition layer, it is avoided that the glass substrate layer is exposed and directly contacted with an object outside the laminate, and the glass substrate layer is cracked. It is possible to improve prevention and handling (ease of handling). The first resin composition layer and the second resin composition layer are non-fiber-containing organic composition layers made of a non-fiber-containing organic composition that contains a thermosetting resin and does not contain a fiber base material. preferable. Thereby, it is possible to further improve the prevention of cracking of the glass substrate layer and the handling property (ease of handling). Moreover, by not including a fiber base material in the first resin composition layer and the second resin composition layer, the thickness of the resin composition layer can be reduced, and the laminate can be made more elastic. Can do.
<繊維含有樹脂組成物>
 上記の繊維含有樹脂組成物は、熱硬化性樹脂及び繊維基材を含むものである。
≪熱硬化性樹脂≫
 熱硬化性樹脂としては特に制限はなく、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂が挙げられる。これらの中で、成形性や電気絶縁性に優れる点で、エポキシ樹脂及びシアネート樹脂が好ましい。
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、多官能フェノール類及びアントラセン等の多環芳香族類のジグリシジルエーテル化合物が挙げられる。また、これらエポキシ樹脂にリン化合物を導入したリン含有エポキシ樹脂が挙げられる。これらの中で、耐熱性、難燃性の点からはビフェニルアラルキル型エポキシ樹脂及びナフタレン型エポキシ樹脂が好ましい。これらは1種又は2種以上を混合して使用できる。
 シアネート樹脂としては、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂などのビスフェノール型シアネート樹脂、これらが一部トリアジン化したプレポリマーが挙げられる。これらの中で耐熱性、難燃性の点からはノボラック型シアネート樹脂が好ましい。これらは1種又は2種以上を混合して使用できる。
 繊維含有樹脂組成物に含まれる熱硬化性樹脂の含有量は、繊維含有樹脂組成物の総量から繊維基材を除いた非繊維基材成分の質量に対して、20~80質量%の範囲であることが好ましく、25~60質量%がより好ましく、25~50質量%がさらに好ましく、25~40質量%がより更に好ましい。
<Fiber-containing resin composition>
Said fiber-containing resin composition contains a thermosetting resin and a fiber base material.
≪Thermosetting resin≫
The thermosetting resin is not particularly limited, and examples thereof include epoxy resins, phenol resins, unsaturated imide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclohexanes. Examples include pentadiene resin, silicone resin, triazine resin, and melamine resin. Among these, an epoxy resin and a cyanate resin are preferable because they are excellent in moldability and electrical insulation.
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin. , Stilbene type epoxy resin, triazine skeleton containing epoxy resin, fluorene skeleton containing epoxy resin, triphenol phenol methane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene -Type epoxy resin, alicyclic epoxy resin, polyfunctional phenols and diglycidyl ether compounds of polycyclic aromatics such as anthracene And the like. Moreover, the phosphorus containing epoxy resin which introduce | transduced the phosphorus compound into these epoxy resins is mentioned. Among these, biphenylaralkyl type epoxy resins and naphthalene type epoxy resins are preferred from the viewpoint of heat resistance and flame retardancy. These can be used alone or in combination of two or more.
Examples of the cyanate resin include bisphenol type cyanate resins such as novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethylbisphenol F type cyanate resin, and prepolymers in which these are partially triazine. . Among these, a novolak type cyanate resin is preferable from the viewpoint of heat resistance and flame retardancy. These can be used alone or in combination of two or more.
The content of the thermosetting resin contained in the fiber-containing resin composition is in the range of 20 to 80% by mass with respect to the mass of the non-fiber substrate component excluding the fiber substrate from the total amount of the fiber-containing resin composition. It is preferably 25 to 60% by mass, more preferably 25 to 50% by mass, still more preferably 25 to 40% by mass.
≪繊維基材≫
 繊維基材としては特に制限はなく、Eガラス、Dガラス、Sガラス及びQガラスなどの無機物繊維、ポリイミド、ポリエステル及びポリテトラフルオロエチレンなどの有機繊維、並びにそれらの混合物などが挙げられる。これらの繊維基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマットなどの形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独または2種類以上の材質及び形状を組み合わせることができる。
 基材の厚さは、特に制限されず、例えば、約0.03~0.5mmを使用することができ、シランカップリング剤などで表面処理したものまたは機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。
 繊維基材の合計含有量は、繊維含有樹脂組成物の総量に対して、10~80体積%の範囲であることが好ましく、15~75質量%がより好ましく20~70質量%が更に好ましく、30~60質量%がより更に好ましく、30~55質量%がより更に好ましい。
≪Fiber base material≫
There is no restriction | limiting in particular as a fiber base material, Organic fiber, such as E glass, D glass, S glass, and Q glass, Organic fibers, such as a polyimide, polyester, and polytetrafluoroethylene, those mixtures, etc. are mentioned. These fiber base materials have shapes such as woven fabric, non-woven fabric, robink, chopped strand mat, and surfacing mat, but the material and shape are selected depending on the intended use and performance of the molded product, and if necessary. , Alone or in combination of two or more materials and shapes.
The thickness of the base material is not particularly limited, and can be, for example, about 0.03 to 0.5 mm, and is surface-treated with a silane coupling agent or the like or mechanically subjected to fiber opening treatment. However, it is suitable from the aspects of heat resistance, moisture resistance, and workability.
The total content of the fiber base material is preferably in the range of 10 to 80% by volume, more preferably 15 to 75% by weight, still more preferably 20 to 70% by weight, based on the total amount of the fiber-containing resin composition. 30 to 60% by mass is even more preferable, and 30 to 55% by mass is even more preferable.
≪無機充填材≫
 繊維含有樹脂組成物は、更に無機充填材を含有してもよい。
 繊維含有樹脂組成物に無機充填材が含まれる場合、無機充填材の含有量は、繊維含有樹脂組成物から繊維基剤を除いた非繊維基材成分に対して、5~75体積%の範囲であることが好ましい。また、無機充填材の含有量は、繊維含有樹脂組成物から繊維基材を除いた非繊維基材成分に対して、15~70質量%がより好ましく、30~70質量%が更に好ましい。
 無機充填材としては、例えば、シリカ、アルミナ、タルク、マイカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、ホウ酸アルミニウム、ホウ珪酸ガラス等が挙げられる。
 これらの中で、低熱膨張性の点からシリカが好ましく、さらに熱膨張率が0.6ppm/K程度と非常に小さく、樹脂に高充填した際の流動性の低下が少ない球状非晶質シリカがより好ましい。
 球状非晶質シリカとしては、累積50%粒子径が0.01~10μm、好ましくは0.03~5μmのものが好ましい。
 ここで累積50%粒子径とは、粉末の全体積を100%として粒子径による累積度数分布曲線を求めた時、ちょうど体積50%に相当する点の粒子径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
 また、無機充填材に平均一次粒径が1μm以下のシリカ(ナノシリカ)を用いることによって、積層板の繊維含有樹脂硬化物層上に微細な配線を形成することができる。ナノシリカとしては、比表面積が20m2/g以上であることが好ましい。また、めっきプロセスにおける粗化処理後の表面形状を小さくする観点から、平均一次粒径は100nm以下であることが好ましい。この比表面積は、BET法によって測定することができる。
 なお、ここでいう「平均一次粒径」とは、凝集した粒子の平均径、つまり二次粒子径ではなく、凝集していない単体での平均粒子径をいう。当該平均一次粒径は、例えば、レーザー回折式粒度分布計により測定して求めることができる。このような無機充填材としては、ヒュームドシリカが好ましい。
 さらに、無機充填材は、耐湿性を向上させるためにシランカップリング剤等の表面処理剤で処理を行っていることが好ましく、分散性を向上させるために疎水化処理されていることが好ましい。
 積層板の繊維含有樹脂硬化物層上に微細配線を形成する場合、無機充填材の含有量としては、繊維含有樹脂組成物から繊維基材を除いた非繊維成分中の20質量%以下であることが好ましい。配合量が20質量%以下であると、粗化処理後の良好な表面形状を維持することができ、めっき特性及び層間の絶縁信頼性の低下を防ぐことができる。一方で、無機充填材を含有することで繊維含有樹脂組成物の低熱膨張化、高弾性化が期待できることから、微細配線形成と共に低熱膨張化、高弾性化も重視する場合、無機充填材の含有量は3~20質量%とするのが好ましい。
≪Inorganic filler≫
The fiber-containing resin composition may further contain an inorganic filler.
When the fiber-containing resin composition contains an inorganic filler, the content of the inorganic filler is in the range of 5 to 75% by volume with respect to the non-fiber base component excluding the fiber base from the fiber-containing resin composition. It is preferable that Further, the content of the inorganic filler is more preferably 15 to 70% by mass, and still more preferably 30 to 70% by mass with respect to the non-fiber base component obtained by removing the fiber base from the fiber-containing resin composition.
Examples of the inorganic filler include silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and borosilicate glass.
Of these, silica is preferable from the viewpoint of low thermal expansion, and further, the thermal expansion coefficient is as small as about 0.6 ppm / K, and spherical amorphous silica with little decrease in fluidity when highly filled in a resin is used. More preferred.
The spherical amorphous silica preferably has a cumulative 50% particle size of 0.01 to 10 μm, preferably 0.03 to 5 μm.
Here, the cumulative 50% particle diameter is the particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is obtained with the total volume of the powder as 100%. It can be measured with a particle size distribution measuring apparatus using
Moreover, a fine wiring can be formed on the fiber-containing resin cured product layer of the laminate by using silica (nanosilica) having an average primary particle size of 1 μm or less as the inorganic filler. The nano silica preferably has a specific surface area of 20 m 2 / g or more. Further, from the viewpoint of reducing the surface shape after the roughening treatment in the plating process, the average primary particle size is preferably 100 nm or less. This specific surface area can be measured by the BET method.
The “average primary particle size” here refers to the average particle size of aggregated particles, that is, not the secondary particle size, but the average particle size of single particles that are not aggregated. The average primary particle size can be determined by measuring with, for example, a laser diffraction particle size distribution meter. As such an inorganic filler, fumed silica is preferable.
Furthermore, the inorganic filler is preferably treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance, and is preferably hydrophobized to improve dispersibility.
When forming fine wiring on the fiber-containing resin cured product layer of the laminate, the content of the inorganic filler is 20% by mass or less in the non-fiber component excluding the fiber substrate from the fiber-containing resin composition. It is preferable. When the blending amount is 20% by mass or less, a good surface shape after the roughening treatment can be maintained, and deterioration of plating characteristics and interlayer insulation reliability can be prevented. On the other hand, since the fiber-containing resin composition can be expected to have low thermal expansion and high elasticity by containing an inorganic filler, the inclusion of an inorganic filler is important when low thermal expansion and high elasticity are also considered as well as fine wiring formation. The amount is preferably 3 to 20% by mass.
≪その他の成分≫
 この繊維含有樹脂組成物には、上記成分以外に硬化剤、硬化促進剤、熱可塑性樹脂、エラストマー、難燃剤、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、密着性向上剤等を添加することができる。
 硬化剤の例としては、例えば、エポキシ樹脂を用いる場合には、フェノールノボラック、クレゾールノボラック等の多官能フェノール化合物;ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン等のアミン化合物;無水フタル酸、無水ピロメリット酸、無水マレイン酸、無水マレイン酸共重合体等の酸無水物;ポリイミドを用いることができる。これら硬化剤は何種類かを併用することもできる。
 硬化促進剤の例としては、例えばエポキシ樹脂の硬化促進剤として、イミダゾール類及びその誘導体;有機リン系化合物;第二級アミン類、第三級アミン類、及び第四級アンモニウムが挙げられる。
 紫外線吸収剤の例としては、ベンゾトリアゾール系の紫外線吸収剤等が挙げられる。
 酸化防止剤としては、ヒンダードフェノール系やスチレン化フェノールの酸化防止剤等が挙げられる。
 光重合開始剤の例としては、ベンゾフェノン類、ベンジルケタール類、チオキサントン系などの光重合開始剤が挙げられる。
 蛍光増白剤の例としては、スチルベン誘導体などの蛍光増白剤が挙げられる。
 密着性向上剤の例としては、尿素シランなどの尿素化合物やシランカップリング剤の密着性向上剤等が挙げられる。
≪Other ingredients≫
In addition to the above components, this fiber-containing resin composition includes a curing agent, a curing accelerator, a thermoplastic resin, an elastomer, a flame retardant, an ultraviolet absorber, an antioxidant, a photopolymerization initiator, a fluorescent whitening agent, and improved adhesion. An agent or the like can be added.
Examples of curing agents include, for example, when epoxy resin is used, polyfunctional phenolic compounds such as phenol novolac and cresol novolac; amine compounds such as dicyandiamide, diaminodiphenylmethane, and diaminodiphenylsulfone; phthalic anhydride, pyromellitic anhydride Acid anhydrides such as maleic anhydride and maleic anhydride copolymers; polyimides can be used. Several kinds of these curing agents can be used in combination.
Examples of curing accelerators include, for example, epoxy resin curing accelerators such as imidazoles and derivatives thereof; organophosphorus compounds; secondary amines, tertiary amines, and quaternary ammonium.
Examples of ultraviolet absorbers include benzotriazole-based ultraviolet absorbers.
Antioxidants include hindered phenols and styrenated phenol antioxidants.
Examples of the photopolymerization initiator include photopolymerization initiators such as benzophenones, benzyl ketals, and thioxanthones.
Examples of fluorescent whitening agents include fluorescent whitening agents such as stilbene derivatives.
Examples of the adhesion improver include urea compounds such as urea silane, adhesion improvers for silane coupling agents, and the like.
<繊維含有樹脂組成物層>
 繊維含有樹脂組成物層は、上記の繊維含有樹脂組成物からなるものである。なお、繊維含有樹脂組成物層には、繊維含有樹脂組成物の未硬化物のほか、半硬化物も含まれる。
 本発明の繊維含有樹脂組成物層の大きさは、幅10mm~1000mm、長さ10mm~3000mm(ロールで用いる場合は、長さは適宜適用される。)の範囲で選択されることが好ましい。特に、幅25mm~550mm、長さ25mm~550mmの範囲であることが取り扱い性の面から好ましい。
 本発明の繊維含有樹脂組成物層の1層あたりの厚さは、3μm~200μmの範囲で選択されることが好ましい。積層体および積層板の低熱膨張化、高弾性率化の観点から、樹脂組成物の1層あたりの厚さは3~150μmであることが好ましく、10~120μmであることがより好ましく、20~120μmであることが更に好ましく、25~110μmであることがより更に好ましい。
 本発明の繊維含有樹脂組成物層は、積層体全体に対して4~90体積%の割合で含まれることが好ましく、より好ましくは10~80体積%、更に好ましくは20~70体積%、より更に好ましくは25~60体積%の割合で含まれる。
 また、本発明の積層体および積層板は、少なくとも1層の繊維基材が含まれる樹脂組成物層を有するが、それ以外に繊維基材を含まない樹脂組成物層を有していても構わない。繊維基材を含まない樹脂組成物層は、例えばガラス層と繊維基材を含む樹脂組成物層の間に配置し、両層の接着性を高めるなどの目的で使用することができる。
 この繊維含有樹脂組成物層の乾燥後における樹脂含有率は、20~90質量%が好ましく、25~85質量%以上がより好ましく、30~80質量%以上が更に好ましく、40~70質量%がより更に好ましく、45~70質量%がより更に好ましい。20質量%以上であると、加工性及びハンドリング性(取扱い易さ)が向上する。90質量%以下であると、繊維基材の含有量が多くなり、この積層体の繊維含有樹脂組成物層を硬化してなる積層板が低熱膨張率及び高弾性なものとなる。なお、樹脂含有率とは、繊維含有樹脂組成物の総量中における繊維基材以外の成分量を意味する。
 また、繊維含有樹脂組成物中に無機充填材を含有する場合には、熱硬化性樹脂及び無機充填材の合計量の5~75体積%が好ましく、15~70体積%であることがより好ましく、30~70体積%であることが更に好ましい。無機充填材の含有量が熱硬化性樹脂及び無機充填材の合計量の5~75体積%であると、熱膨張率の低減効果が十分となり、かつ適度な流動性を有して成形性が優れる。すなわち、無機充填材の含有量が5体積%以上であると、熱膨張率の低減効果が十分なものとなり、75体積%以下であると、流動性が増加して成形性が良好になる。
<Fiber-containing resin composition layer>
A fiber containing resin composition layer consists of said fiber containing resin composition. The fiber-containing resin composition layer includes a semi-cured product in addition to an uncured product of the fiber-containing resin composition.
The size of the fiber-containing resin composition layer of the present invention is preferably selected in the range of 10 mm to 1000 mm in width and 10 mm to 3000 mm in length (the length is appropriately applied when used in a roll). In particular, the width of 25 mm to 550 mm and the length of 25 mm to 550 mm are preferable from the viewpoint of handleability.
The thickness per layer of the fiber-containing resin composition layer of the present invention is preferably selected in the range of 3 μm to 200 μm. From the viewpoint of lowering the thermal expansion and increasing the elastic modulus of the laminate and laminate, the thickness of the resin composition per layer is preferably 3 to 150 μm, more preferably 10 to 120 μm, and more preferably 20 to It is further preferably 120 μm, and further preferably 25 to 110 μm.
The fiber-containing resin composition layer of the present invention is preferably contained in a proportion of 4 to 90% by volume, more preferably 10 to 80% by volume, still more preferably 20 to 70% by volume, more based on the entire laminate. More preferably, it is contained in a proportion of 25 to 60% by volume.
Moreover, although the laminated body and laminated board of this invention have the resin composition layer in which at least 1 layer of fiber base material is contained, you may have the resin composition layer which does not contain a fiber base material in addition to that. Absent. The resin composition layer not containing the fiber base material can be used for the purpose of, for example, arranging between the glass layer and the resin composition layer containing the fiber base material to improve the adhesion between the two layers.
The resin content after drying of the fiber-containing resin composition layer is preferably 20 to 90% by mass, more preferably 25 to 85% by mass or more, further preferably 30 to 80% by mass or more, and 40 to 70% by mass. Even more preferred is 45 to 70% by weight. When it is 20% by mass or more, processability and handling properties (ease of handling) are improved. When the content is 90% by mass or less, the content of the fiber base material increases, and a laminate obtained by curing the fiber-containing resin composition layer of the laminate has a low coefficient of thermal expansion and high elasticity. In addition, resin content means the amount of components other than the fiber base material in the total amount of a fiber containing resin composition.
Further, when the fiber-containing resin composition contains an inorganic filler, the total amount of the thermosetting resin and the inorganic filler is preferably 5 to 75% by volume, more preferably 15 to 70% by volume. 30 to 70% by volume is more preferable. When the content of the inorganic filler is 5 to 75% by volume of the total amount of the thermosetting resin and the inorganic filler, the effect of reducing the coefficient of thermal expansion is sufficient, and the moldability is appropriate with appropriate fluidity. Excellent. That is, when the content of the inorganic filler is 5% by volume or more, the effect of reducing the coefficient of thermal expansion is sufficient, and when it is 75% by volume or less, the fluidity is increased and the moldability is improved.
<非繊維含有樹脂組成物層>
 非繊維含有樹脂組成物層は、熱硬化性樹脂を含みかつ繊維基材を含まない非繊維含有有機組成物からなるものである。この非繊維含有樹脂組成物は、熱硬化性樹脂を含むものであり、更に無機充填材やその他の成分を含有していてもよい。これら熱硬化性樹脂、無機充填材、及びその他の成分の詳細は、前記の繊維含有樹脂組成物に関して説明したとおりである。
 この非繊維含有樹脂組成物層を、前記の第1及び第2の樹脂組成物層として用いる場合には、ガラス基板層の割れ防止やハンドリング性(取扱い易さ)の向上を図る観点から、3μm以上が好ましい。一方、この樹脂組成物層を硬化してなる積層板の低熱膨張率及び高弾性率を確保する観点から、40μm以下が好ましい。これらの観点から、第1及び第2の樹脂組成物層の厚さは、好ましくは3~40μmであり、より好ましくは10~30μmであり、更に好ましくは15~25μmである。また、これら第1及び第2の樹脂組成物層は、無機充填材を含有しないことが好ましい。
 本発明の非繊維含有樹脂組成物層を用いる場合には、非繊維含有樹脂組成物層は、積層体全体に対して1~40体積%の割合で含まれることが好ましく、より好ましくは1~30体積%、更に好ましくは1~25体積%の割合で含まれる。
<Non-fiber-containing resin composition layer>
The non-fiber-containing resin composition layer is composed of a non-fiber-containing organic composition containing a thermosetting resin and no fiber substrate. This non-fiber-containing resin composition contains a thermosetting resin, and may further contain an inorganic filler and other components. Details of these thermosetting resins, inorganic fillers, and other components are as described for the fiber-containing resin composition.
When this non-fiber-containing resin composition layer is used as the first and second resin composition layers, 3 μm from the viewpoint of preventing cracking of the glass substrate layer and improving handling properties (ease of handling). The above is preferable. On the other hand, 40 μm or less is preferable from the viewpoint of ensuring a low thermal expansion coefficient and a high elastic modulus of a laminate obtained by curing the resin composition layer. From these viewpoints, the thickness of the first and second resin composition layers is preferably 3 to 40 μm, more preferably 10 to 30 μm, and further preferably 15 to 25 μm. Moreover, it is preferable that these 1st and 2nd resin composition layers do not contain an inorganic filler.
When the non-fiber-containing resin composition layer of the present invention is used, the non-fiber-containing resin composition layer is preferably contained in a proportion of 1 to 40% by volume, more preferably 1 to It is contained in a proportion of 30% by volume, more preferably 1 to 25% by volume.
<ガラス基板層>
 ガラス基板層を構成するガラス基板としては、積層体の薄型化を目的としていることや加工性の観点からガラス基板層の1層あたりの厚さは、30~200μmの薄型のガラスフィルムが好ましく、取り扱いの容易性など実用性を勘案すると厚さは50~150μmがより好ましく、さらに80~120μmが好ましい。ここでいうガラス基板層の厚さとは、ガラス基板層の平均の厚さを指す。ガラス基板層の平均の厚さは、マイクロメーターや膜厚測定器など、公知の厚さ測定機器を使用して測定することができる。例えば、長方形あるいは正方形のガラス基板層の場合は、4角および中央の厚さを、マイクロメーターを使用して測定し、その平均値をガラス基板の平均の厚さとして求めることができる。また、ガラス基板層の素材としては、ケイ酸アルカリ系ガラス、無アルカリガラス、石英ガラス等のガラスを使用することができるが、低熱膨張性の観点からホウケイ酸ガラスが好ましい。
 本発明のガラス基板層の大きさは、幅10mm~1000mm、長さ10mm~3000mm(ロールで用いる場合は、長さは適宜適用される。)の範囲で選択されることが好ましい。特に、幅25mm~550mm、長さ25mm~550mmの範囲であることが取り扱い性の面からより好ましい。
 このガラス基板層の熱膨張率は、シリコンチップの熱膨張率(3ppm/℃程度)に近いほど積層板又はこの積層体から得られる積層板のそりが抑制されてよいが、好ましくは8ppm/℃以下であり、より好ましくは6ppm/℃以下であり、更に好ましくは4ppm/℃以下である。
 このガラス基板層の40℃における貯蔵弾性率は、大きいほどよいが、好ましくは20GPa以上、より好ましくは25GPa以上、更に好ましくは30GPa以上である。
 このガラス基板層は、積層体全体に対して10~70体積%が好ましく、15~70体積%がより好ましく、20~70体積%が更に好ましく、30~70体積%がより更に好ましく、40~70体積%がより更に好ましい。ガラス基板層の含有量が10体積%以上であると、低熱膨張性、高弾性の積層体を得るうえで有利であり、逆にガラス基板層の含有量が70体積%以下であると、加工性やハンドリング性(取り扱いのしやすさ)の点で有利となる。
 同様の観点から、樹脂組成物層、すなわち繊維含有樹脂組成物層と非繊維含有樹脂組成物層との総量は、積層体全体に対して30~90体積%が好ましく、30~85体積%がより好ましく、30~80体積%が更に好ましく、30~70体積%がより更に好ましく、30~60体積%がより更に好ましい。
<Glass substrate layer>
As the glass substrate constituting the glass substrate layer, a thin glass film having a thickness of 30 to 200 μm is preferable for the purpose of reducing the thickness of the laminate and from the viewpoint of workability, In consideration of practicality such as ease of handling, the thickness is more preferably 50 to 150 μm, and further preferably 80 to 120 μm. The thickness of a glass substrate layer here refers to the average thickness of a glass substrate layer. The average thickness of the glass substrate layer can be measured using a known thickness measuring instrument such as a micrometer or a film thickness measuring instrument. For example, in the case of a rectangular or square glass substrate layer, the thickness of the four corners and the center can be measured using a micrometer, and the average value can be obtained as the average thickness of the glass substrate. Further, as the material for the glass substrate layer, glass such as alkali silicate glass, non-alkali glass and quartz glass can be used, but borosilicate glass is preferred from the viewpoint of low thermal expansion.
The size of the glass substrate layer of the present invention is preferably selected in the range of 10 mm to 1000 mm in width and 10 mm to 3000 mm in length (the length is appropriately applied when used in a roll). In particular, a width of 25 mm to 550 mm and a length of 25 mm to 550 mm are more preferable from the viewpoint of handleability.
As the thermal expansion coefficient of the glass substrate layer is closer to the thermal expansion coefficient (about 3 ppm / ° C.) of the silicon chip, warpage of the laminated plate or the laminated plate obtained from the laminated body may be suppressed, but preferably 8 ppm / ° C. It is below, More preferably, it is 6 ppm / degrees C or less, More preferably, it is 4 ppm / degrees C or less.
The larger the storage elastic modulus of this glass substrate layer at 40 ° C., the better, but it is preferably 20 GPa or more, more preferably 25 GPa or more, and further preferably 30 GPa or more.
This glass substrate layer is preferably 10 to 70% by volume, more preferably 15 to 70% by volume, still more preferably 20 to 70% by volume, still more preferably 30 to 70% by volume, and more preferably 40 to 70% by volume is even more preferable. When the content of the glass substrate layer is 10% by volume or more, it is advantageous to obtain a laminate having low thermal expansion and high elasticity, and conversely, when the content of the glass substrate layer is 70% by volume or less, processing is performed. It is advantageous in terms of the properties and handling properties (ease of handling).
From the same viewpoint, the total amount of the resin composition layer, that is, the fiber-containing resin composition layer and the non-fiber-containing resin composition layer is preferably 30 to 90% by volume, and 30 to 85% by volume with respect to the entire laminate. More preferably, it is 30 to 80% by volume, still more preferably 30 to 70% by volume, still more preferably 30 to 60% by volume.
<支持体フィルム>
 上記の積層体は、その表面に支持体フィルムを有していてもよい。この支持体フィルムについては、次の積層体の製造方法の説明において詳細に説明する。
<Support film>
Said laminated body may have a support body film on the surface. About this support body film, it demonstrates in detail in description of the manufacturing method of the following laminated body.
[積層体の製造方法]
 上記積層体の製造方法は、前記のガラス基板の表面に前記の樹脂硬化物層を形成する樹脂硬化物層形成工程を含むものである。この樹脂硬化物層形成工程は特に限定はないが、例えば、樹脂組成物からなるフィルムを、真空ラミネーターやロールラミネーター等を用いた加圧ラミネートによりガラス基板上に積層し、硬化する工程であることが好ましい。真空ラミネートやロールラミネートは、市販の真空ラミネーター、ロールラミネーターを使用して行うことができる。
 なお、上記の樹脂組成物層中の熱硬化性樹脂としては、ラミネート時の温度以下で溶融するものが好適に用いられる。例えば、真空ラミネーター又はロールラミネーターを用いてラミネートする場合、一般には140℃以下で行うことから、熱硬化性樹脂は、140℃以下で溶融するものが好ましい。
 次に、繊維含有樹脂組成物層(プリプレグ)の製造例、非繊維含有樹脂組成物層の製造例、及び加圧ラミネートによる積層体の製造例について説明する。
[Manufacturing method of laminate]
The manufacturing method of the said laminated body includes the resin cured material layer formation process of forming the said resin cured material layer on the surface of the said glass substrate. This resin cured product layer forming step is not particularly limited, but for example, a step of laminating a film made of a resin composition on a glass substrate by pressure lamination using a vacuum laminator or a roll laminator and curing the film. Is preferred. Vacuum lamination and roll lamination can be performed using a commercially available vacuum laminator or roll laminator.
In addition, as a thermosetting resin in said resin composition layer, what melt | dissolves below the temperature at the time of lamination is used suitably. For example, when laminating using a vacuum laminator or a roll laminator, since it is generally performed at 140 ° C. or lower, the thermosetting resin is preferably melted at 140 ° C. or lower.
Next, a production example of a fiber-containing resin composition layer (prepreg), a production example of a non-fiber-containing resin composition layer, and a production example of a laminate by pressure lamination will be described.
<繊維含有樹脂組成物層(プリプレグ)の製造例>
 プリプレグは、前記の熱硬化性樹脂及び必要に応じて前記の無機充填材を含む樹脂組成物を、繊維基材に含浸または塗工した後、加熱乾燥してBステージ化(半硬化)することにより好適に得られる。このBステージ化は、通常、100~200℃の温度で1~30分程度加熱乾燥することにより行うことができる。
<Production example of fiber-containing resin composition layer (prepreg)>
The prepreg is impregnated or coated on a fiber base material with the thermosetting resin and, if necessary, the resin composition containing the inorganic filler, and then dried by heating to be B-staged (semi-cured). Is preferably obtained. This B-stage can be usually performed by heating and drying at a temperature of 100 to 200 ° C. for about 1 to 30 minutes.
 この樹脂組成物層の塗工装置としては、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーターなど、当業者に公知の塗工装置を用いることができ、作製する膜厚によって、適宜選択することが好ましい。 As a coating device for this resin composition layer, a coating device known to those skilled in the art such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, and a die coater can be used. It is preferable to select appropriately.
 このプリプレグは、支持体フィルム上に形成してもよく、また、プリプレグのうち支持体フィルム形成面と反対側の表面に、当該表面を保護するための保護フィルムを設けてもよい。
 支持体フィルムとしては、例えば、ポリエチレン、ポリ塩化ビニルなどのポリオレフィン、ポリエチレンテレフタレート(以下、「PET」と省略することがある)、ポリエチレンナフタレートなどのポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔などの金属箔などを挙げることができる。支持体フィルムに銅箔を用いた場合には、銅箔をそのまま導体層とし、回路形成することもできる。この場合、銅箔としては、圧延銅、電解銅箔などがあげられ、厚さが2μm~36μmのものが一般的に用いられる。厚さの薄い銅箔を用いる場合には、作業性を向上させるために、キャリア付き銅箔を使用してもよい。
 支持体フィルムには、マット処理、コロナ処理の他、離型処理を施してあってもよい。
This prepreg may be formed on a support film, and a protective film for protecting the surface may be provided on the surface of the prepreg opposite to the support film forming surface.
Examples of the support film include polyolefins such as polyethylene and polyvinyl chloride, polyethylene terephthalate (hereinafter may be abbreviated as “PET”), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and release paper and copper. Examples thereof include metal foil such as foil and aluminum foil. When copper foil is used for the support film, the copper foil can be used as a conductor layer as it is to form a circuit. In this case, examples of the copper foil include rolled copper and electrolytic copper foil, and those having a thickness of 2 μm to 36 μm are generally used. When using a thin copper foil, a copper foil with a carrier may be used in order to improve workability.
The support film may be subjected to a release treatment in addition to the mat treatment and the corona treatment.
 支持体フィルムの厚さは、通常、10μm~150μmであり、好ましくは、25~50μmである。10μmよりも薄い場合、取扱い性が困難となる。一方、支持体フィルムは、前記のとおり、通常、最終的に剥離、又は除去されるため、150μmを超える厚さになると、省エネの観点から好ましくない。
 保護フィルムとしては、支持体フィルムと同様の材料を用いてもよく、異なる材料を用いてもよい。保護フィルムの厚さは特に限定されるものではなく支持フィルムと同様でよいが、より好ましくは1~40μmの範囲である。
The thickness of the support film is usually 10 μm to 150 μm, preferably 25 to 50 μm. If it is thinner than 10 μm, handling becomes difficult. On the other hand, as described above, since the support film is usually finally peeled or removed, a thickness exceeding 150 μm is not preferable from the viewpoint of energy saving.
As the protective film, the same material as the support film may be used, or a different material may be used. The thickness of the protective film is not particularly limited and may be the same as that of the support film, but more preferably in the range of 1 to 40 μm.
<非繊維含有樹脂組成物層の製造例>
 非繊維含有樹脂組成物層の製造方法の一例としては、有機溶剤に非繊維含有樹脂組成物を溶解し、ワニスを調製する。次いで、前記の支持体フィルムを支持体として、このワニスを塗布し、加熱や熱風吹きつけ等によって有機溶剤を乾燥させることにより、非繊維含有樹脂組成物層を形成すればよい。また、乾燥前、乾燥中、又は乾燥後に、この非繊維含有樹脂組成物層のうち支持体フィルムが形成されていない面に対して、前記の保護フィルムを設けてもよい。
<Example of production of non-fiber-containing resin composition layer>
As an example of the method for producing the non-fiber-containing resin composition layer, the non-fiber-containing resin composition is dissolved in an organic solvent to prepare a varnish. Next, the non-fiber-containing resin composition layer may be formed by applying the varnish using the support film as a support and drying the organic solvent by heating, hot air blowing, or the like. Moreover, you may provide the said protective film with respect to the surface in which the support body film is not formed among this non-fiber-containing resin composition layer before drying, during drying, or after drying.
 この樹脂組成物層の塗工装置としては、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーターなど、当業者に公知の塗工装置を用いることができ、作製する膜厚によって、適宜選択することが好ましい。 As a coating device for this resin composition layer, a coating device known to those skilled in the art such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, and a die coater can be used. It is preferable to select appropriately.
<加圧ラミネートによる積層体の製造例>
 加圧ラミネートは、真空ラミネーターやロールラミネーターのような加圧ラミネーターを用いて、1枚のプリプレグ又は複数枚(例えば2~20枚)のプリプレグを重ねてなるプリプレグ重ね合せ体と、ガラス基板と、必要に応じて上記の非繊維含有樹脂組成物層とを、ラミネートすることにより行うことができる。真空ラミネートやロールラミネートは、市販の真空ラミネーター、ロールラミネーターを使用して行うことができる。
 なお、これらプリプレグ及び非繊維含有樹脂組成物層として、支持体フィルムや保護フィルムが付着したものを用いる場合には、これら支持体フィルムや保護フィルムを除去してから加圧ラミネートを行う。ただし、積層体の最表面を構成するプリプレグ及び非繊維含有樹脂組成物層の支持体フィルムは、除去することなく加圧ラミネートに供してもよい。
<Example of production of laminate by pressure lamination>
The pressure laminate uses a pressure laminator such as a vacuum laminator or a roll laminator, a prepreg laminated body in which one prepreg or a plurality of (for example, 2 to 20) prepregs are stacked, a glass substrate, As needed, it can carry out by laminating | stacking said non-fiber containing resin composition layer. Vacuum lamination and roll lamination can be performed using a commercially available vacuum laminator or roll laminator.
In addition, when using the thing to which the support body film and the protective film adhered as these prepregs and non-fiber containing resin composition layers, pressure lamination is performed after removing these support body films and the protective film. However, the prepreg constituting the outermost surface of the laminate and the support film of the non-fiber-containing resin composition layer may be subjected to pressure lamination without being removed.
 ラミネートの条件は、プリプレグ、ガラス基板、及び必要に応じて非繊維含有組成物層を、必要によりプレヒートし、圧着温度(ラミネート温度)を好ましくは60℃~140℃、圧着圧力を好ましくは1~11kgf/cm2でラミネートすることが好ましい。また、真空ラミネーターを用いる場合、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。また、ラミネートの方法は、バッチ式であっても、ロールでの連続式であっても良い。
 上記のようにラミネートした後、室温付近に冷却する。このようにして、積層体を製造することができる。
 なお、上記の樹脂組成物中の熱硬化性樹脂としては、ラミネート時の温度以下で溶融するものが好適に用いられる。例えば、真空ラミネーター又はロールラミネーターを用いてラミネートする場合、一般には140℃以下で行うことから、上記の樹脂組成物中の熱硬化性樹脂は、140℃以下で溶融するものが好ましい。
The laminating conditions are as follows: a prepreg, a glass substrate, and, if necessary, a non-fiber-containing composition layer are preheated as necessary, and a pressure bonding temperature (laminating temperature) is preferably 60 ° C. to 140 ° C., and a pressure bonding pressure is preferably 1 to It is preferable to laminate at 11 kgf / cm 2 . Moreover, when using a vacuum laminator, it is preferable to laminate under a reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less. The laminating method may be a batch method or a continuous method using a roll.
After laminating as above, cool to near room temperature. Thus, a laminated body can be manufactured.
In addition, as a thermosetting resin in said resin composition, what melt | dissolves below the temperature at the time of lamination is used suitably. For example, when laminating using a vacuum laminator or a roll laminator, since it is generally performed at 140 ° C. or lower, the thermosetting resin in the resin composition is preferably one that melts at 140 ° C. or lower.
[積層板]
 本発明の積層板は、1層以上の樹脂硬化物層及び1層以上のガラス基板層をを含む積層板であって、前記1層以上の樹脂硬化物層のうちの少なくとも1層は、熱硬化性樹脂及び繊維基材を含む繊維含有樹脂硬化物からなる繊維含有樹脂硬化物層であり、任意の2層の前記ガラス基板層の間には、前記樹脂硬化物層が1層以上存在するものである。
 本発明の積層板の大きさは、幅10mm~1000mm、長さ10mm~3000mm(ロールで用いる場合は、長さは適宜適用される。)の範囲で選択されることが好ましい。特に、幅25mm~550mm、長さ25mm~550mmの範囲であることが取り扱い性の面からより好ましい。
 本発明の積層板の厚さは、その用途により36μm~20mmの範囲で選択されることが好ましい。積層板の厚さは、より好ましくは50~1000μmであり、更に好ましくは80~600μmであり、より更に好ましくは100~500μmであり、より更に好ましくは110~400μmである。
 この積層板は、前述の積層体の樹脂組成物層を樹脂硬化物層とした構造であることが好適である。この場合、このガラス基板層及び樹脂組成物の詳細は、前述の積層体に関する記載で説明したとおりである。また、樹脂硬化物層の厚さは前述した樹脂組成物層の厚さと同等であることが好ましく、積層板中における樹脂硬化物及びガラス基板層の割合は、前述した積層体中における樹脂組成物及びガラス基板層の割合と同等であることが好ましい。
[Laminated board]
The laminate of the present invention is a laminate comprising one or more cured resin layers and one or more glass substrate layers, wherein at least one of the one or more cured resin layers is a heat It is a fiber-containing resin cured product layer made of a fiber-containing resin cured product including a curable resin and a fiber base material, and at least one resin cured material layer is present between any two glass substrate layers. Is.
The size of the laminate of the present invention is preferably selected in the range of 10 mm to 1000 mm in width and 10 mm to 3000 mm in length (the length is appropriately applied when used in a roll). In particular, a width of 25 mm to 550 mm and a length of 25 mm to 550 mm are more preferable from the viewpoint of handleability.
The thickness of the laminate of the present invention is preferably selected in the range of 36 μm to 20 mm depending on its application. The thickness of the laminate is more preferably 50 to 1000 μm, still more preferably 80 to 600 μm, still more preferably 100 to 500 μm, and still more preferably 110 to 400 μm.
It is preferable that this laminated board has a structure in which the resin composition layer of the above-described laminated body is a resin cured product layer. In this case, the details of the glass substrate layer and the resin composition are as described in the description regarding the laminate. The thickness of the cured resin layer is preferably equal to the thickness of the resin composition layer described above, and the ratio of the resin cured product and the glass substrate layer in the laminate is the same as the resin composition in the laminate described above. And it is preferable that it is equivalent to the ratio of a glass substrate layer.
<繊維含有樹脂硬化物層>
 この繊維含有樹脂硬化物層の厚さは、好ましくは3~200μmである。3μm以上であると、積層板の割れが抑制される。200μm以下であると、相対的にガラス基板の厚さが大きくなって積層板の低熱膨張率化及び高弾性率化が可能となる。この観点から、繊維含有樹脂硬化物層の厚さは、より好ましくは3~150μmであり、更に好ましくは10~120μmであり、より更に好ましくは20~120μmであり、より更に好ましくは40~110μmである。ただし、ガラス基板層の厚さや層の数、及び繊維含有樹脂硬化物層の種類や層の数によって繊維含有樹脂硬化物層の厚さの適正範囲は異なるため、上記の範囲に限定されない。
 この繊維含有樹脂硬化物層の40℃における貯蔵弾性率は、好ましくは10~80GPaである。10GPa以上であると、ガラス基板層が保護され、積層板の割れが抑制される。80GPa以下であると、ガラス基板層と繊維含有樹脂硬化物層との熱膨張率の差による応力が抑制され、積層板のそり及び割れが抑制される。この観点から、繊維含有樹脂硬化物層の貯蔵弾性率は、より好ましくは12~75GPaであり、更に好ましくは15~70GPaである。
 積層板の片面又は両面に、銅やアルミニウムやニッケルなどの金属箔を有していてもよい。金属箔は、電気絶縁材料用途で用いるものであれば、特に制限されない。
<Fiber-containing cured resin layer>
The thickness of the fiber-containing resin cured product layer is preferably 3 to 200 μm. If it is 3 μm or more, cracking of the laminate is suppressed. When the thickness is 200 μm or less, the thickness of the glass substrate is relatively increased, so that the thermal expansion coefficient and the high elastic modulus of the laminated plate can be reduced. From this viewpoint, the thickness of the fiber-containing cured resin layer is more preferably 3 to 150 μm, still more preferably 10 to 120 μm, still more preferably 20 to 120 μm, and still more preferably 40 to 110 μm. It is. However, the appropriate range of the thickness of the fiber-containing resin cured product layer varies depending on the thickness of the glass substrate layer, the number of layers, and the type and number of layers of the fiber-containing resin cured product layer, and thus is not limited to the above range.
The storage elastic modulus at 40 ° C. of this fiber-containing resin cured product layer is preferably 10 to 80 GPa. A glass substrate layer is protected as it is 10 GPa or more, and the crack of a laminated board is suppressed. When it is 80 GPa or less, the stress due to the difference in thermal expansion coefficient between the glass substrate layer and the fiber-containing resin cured product layer is suppressed, and warpage and cracking of the laminate are suppressed. From this viewpoint, the storage elastic modulus of the fiber-containing cured resin layer is more preferably 12 to 75 GPa, and further preferably 15 to 70 GPa.
You may have metal foil, such as copper, aluminum, and nickel, on the single side | surface or both surfaces of a laminated board. The metal foil is not particularly limited as long as it is used for electrical insulating material applications.
<積層板の特性>
 積層板の40℃における貯蔵弾性率は、積層板のそり及び割れを抑制する観点から、好ましくは10~70GPaであり、より好ましくは20~60GPaであり、更に好ましくは25~50GPaであり、より更に好ましくは25~45GPaである。
 積層板の50~120℃の範囲における平均の熱膨張率は、積層板のそり及び割れを抑制する観点から、好ましくは1~10ppm/℃であり、より好ましくは2~8ppm/℃であり、更に好ましくは2~6ppm/℃であり、より更に好ましくは2~5.5ppm/℃である。
 積層板の120~190℃の範囲における平均の熱膨張率は、積層板のそり及び割れを抑制する観点から、好ましくは1~15ppm/℃であり、より好ましくは2~10ppm/℃であり、更に好ましくは2~8ppm/℃であり、より更に好ましくは2~6ppm/℃である。
<Characteristics of laminated board>
The storage elastic modulus of the laminate at 40 ° C. is preferably 10 to 70 GPa, more preferably 20 to 60 GPa, and further preferably 25 to 50 GPa, from the viewpoint of suppressing warpage and cracking of the laminate. More preferably, it is 25 to 45 GPa.
The average thermal expansion coefficient in the range of 50 to 120 ° C. of the laminate is preferably 1 to 10 ppm / ° C., more preferably 2 to 8 ppm / ° C. from the viewpoint of suppressing warpage and cracking of the laminate. More preferably, it is 2 to 6 ppm / ° C, and still more preferably 2 to 5.5 ppm / ° C.
The average coefficient of thermal expansion in the range of 120 to 190 ° C. of the laminate is preferably 1 to 15 ppm / ° C., more preferably 2 to 10 ppm / ° C. from the viewpoint of suppressing warpage and cracking of the laminate. More preferably, it is 2 to 8 ppm / ° C, and still more preferably 2 to 6 ppm / ° C.
[積層板の製造方法]
 上記の積層板の製造方法には特に制限はない。次に、積層板の製造方法の具体例を説明する。
<ラミネートによって得られた積層体の加熱硬化による製造例>
 前記のラミネートによって得られた積層体において、樹脂組成物層を加熱硬化させることにより、積層板を製造することができる。
 加熱硬化の条件は、150℃~220℃で20分~80分の範囲で選択され、より好ましくは、160℃~200℃で30分~120分である。離型処理の施された支持体フィルムを使用した場合には、加熱硬化させた後に、支持体フィルムを剥離してもよい。
 この方法によると、積層板の製造時に加圧する必要がないため、製造時に割れが生じることが抑制される。
[Manufacturing method of laminate]
There is no restriction | limiting in particular in the manufacturing method of said laminated board. Next, a specific example of a method for manufacturing a laminated board will be described.
<Example of production by heat curing of a laminate obtained by laminating>
In the laminate obtained by the above-described lamination, a laminate can be produced by heating and curing the resin composition layer.
The heat curing conditions are selected in the range of 150 ° C. to 220 ° C. for 20 minutes to 80 minutes, more preferably 160 ° C. to 200 ° C. for 30 minutes to 120 minutes. When a support film subjected to a release treatment is used, the support film may be peeled off after being cured by heating.
According to this method, since it is not necessary to pressurize at the time of manufacture of a laminated board, it is controlled that a crack arises at the time of manufacture.
<プレス法による製造例>
 また、本発明に係る積層板は、プレス法によって製造することができる。
 例えば、前記のラミネートによって得られた積層体を、プレス法により加熱、加圧して硬化することにより、積層板を製造することができる。
 また、1枚のプリプレグ又は複数枚(例えば2~20枚)のプリプレグを重ねてなるプリプレグ重ね合せ体と、ガラス基板と、必要に応じて非繊維含有組成物層とを重ね合せ、プレス法により加熱、加圧して硬化することにより、積層板を製造することもできる。このとき、更に最外側のプリプレグの表面に支持体フィルムを添えてから、プレス法により加熱、加圧して硬化することにより、積層板を製造してもよい。
 このプレス法は、均一に成形する点からは好ましいが、ガラス基板が積層時に割れやすいため積層条件が制限されることがある。一方、前記のように、ラミネートによって得られた積層体の加熱硬化(ラミネート法)による製造法は、ガラス基板が割れにくい点や生産上容易である点からは好ましいが、繊維含有樹脂組成物および繊維基材の性状や含有量によっては成形が困難なことがある。そのため、必要に応じてプレス法とラミネート法とを使い分けることが好ましい。
<Example of production by the press method>
Moreover, the laminated board which concerns on this invention can be manufactured by the press method.
For example, a laminate can be produced by curing the laminate obtained by the above-mentioned laminate by heating and pressurizing by a pressing method.
In addition, a prepreg superposed body obtained by superimposing one prepreg or a plurality of prepregs (for example, 2 to 20 sheets), a glass substrate, and a non-fiber-containing composition layer as necessary are overlaid by a pressing method. A laminated board can also be manufactured by heating and pressurizing and curing. At this time, a laminate may be produced by attaching a support film to the surface of the outermost prepreg and then curing by heating and pressurizing by a pressing method.
This pressing method is preferable from the viewpoint of uniform molding, but the lamination conditions may be limited because the glass substrate is easily broken during lamination. On the other hand, as described above, the production method by heat curing (laminating method) of the laminate obtained by laminating is preferable from the viewpoint that the glass substrate is hard to break and easy in production, but the fiber-containing resin composition and Molding may be difficult depending on the properties and content of the fiber substrate. Therefore, it is preferable to use the pressing method and the laminating method properly as necessary.
[多層積層板及びその製造方法]
 本発明の多層積層板は、複数個の積層板を含む多層積層板であって、少なくとも1個の積層板が前述した本発明の積層板であるものである。
 この多層積層板の製造方法には特に制限はない。
 例えば、前記の積層体を複数枚(例えば、2~20枚)重ね、積層成形することにより、多層積層板を製造することができる。具体的には、多段プレス、多段真空プレス、連続成形機、オートクレーブ成形機などを使用し、温度100~250℃程度、圧力2~100MPa程度、及び加熱時間0.1~5時間程度の範囲で成形することができる。
[Multi-layer laminate and its manufacturing method]
The multilayer laminate of the present invention is a multilayer laminate including a plurality of laminates, and at least one laminate is the aforementioned laminate of the present invention.
There is no restriction | limiting in particular in the manufacturing method of this multilayer laminated board.
For example, a multilayer laminate can be produced by stacking and laminating a plurality of the above laminates (for example, 2 to 20). Specifically, using a multistage press, a multistage vacuum press, a continuous molding machine, an autoclave molding machine, etc., at a temperature of about 100 to 250 ° C., a pressure of about 2 to 100 MPa, and a heating time of about 0.1 to 5 hours. Can be molded.
[プリント配線板及びその製造方法]
 本発明のプリント配線板は、上記の積層板又は多層積層板と、積層板又は多層積層板の表面に設けられた配線とを有するものである。
 次に、このプリント配線板の製造方法について説明する。
[Printed wiring board and manufacturing method thereof]
The printed wiring board of this invention has said laminated board or multilayer laminated board, and the wiring provided in the surface of the laminated board or multilayer laminated board.
Next, a method for manufacturing this printed wiring board will be described.
<ビアホール等の形成>
 上記の積層板を、必要に応じてドリル、レーザー、プラズマ、又はこれらの組み合わせ等の方法により穴あけを行い、ビアホールやスルーホールを形成する。レーザーとしては、炭酸ガスレーザーやYAGレーザー、UVレーザー、エキシマレーザーなどが一般的に用いられる。
<Formation of via holes>
The above laminated plate is drilled by a method such as drilling, laser, plasma, or a combination thereof as necessary to form a via hole or a through hole. As the laser, a carbon dioxide laser, a YAG laser, a UV laser, an excimer laser, or the like is generally used.
<導体層の形成>
 次いで、乾式メッキ又は湿式メッキにより積層板上に導体層を形成する。
 乾式メッキとしては、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。
 湿式メッキの場合は、まず、積層板の表面を、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸(すなわち、過酸化水素と硫酸との混合物)、硝酸等の酸化剤で粗化処理し、凸凹のアンカーを形成する。酸化剤としては、特に過マンガン酸カリウム、過マンガン酸ナトリウム等の水酸化ナトリウム水溶液(アルカリ性過マンガン酸水溶液)が好ましく用いられる。次いで、無電解メッキと電解メッキとを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。
 なお、積層体として、表面に金属箔よりなる支持体フィルムを有するものを用いる場合には、この導体層の形成工程は省略することができる。
<Formation of conductor layer>
Next, a conductor layer is formed on the laminate by dry plating or wet plating.
As the dry plating, a known method such as vapor deposition, sputtering, or ion plating can be used.
In the case of wet plating, first, the surface of the laminate is permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid (ie, hydrogen peroxide and (Rough mixture with sulfuric acid) and an oxidizing agent such as nitric acid to form rough anchors. As the oxidizing agent, an aqueous sodium hydroxide solution (alkaline permanganate aqueous solution) such as potassium permanganate and sodium permanganate is particularly preferably used. Next, a conductor layer is formed by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
In addition, when using what has the support body film which consists of metal foil on the surface as a laminated body, the formation process of this conductor layer can be skipped.
<配線パターンの形成>
 その後のパターン形成の方法として、例えば、公知のサブトラクティブ法、セミアディティブ法などを用いることができる。
<Formation of wiring pattern>
As a subsequent pattern formation method, for example, a known subtractive method or semi-additive method can be used.
[多層プリント配線板及びその製造方法]
 上記のプリント配線板の一形態として、上記のようにして配線パターンを形成した積層板を複数積層して、多層プリント配線板としてもよい。
 この多層プリント配線板を製造するには、上記の配線パターンを形成した積層板を、前述の接着フィルムを介して複数積層することによって多層化する。その後、ドリル加工又はレーザー加工によるスルーホール又はブラインドビアホールの形成と、メッキ又は導電性ペーストによる層間配線の形成を行う。このようにして、多層プリント配線板を製造することができる。
[Multilayer printed wiring board and manufacturing method thereof]
As one form of the printed wiring board described above, a multilayer printed wiring board may be formed by laminating a plurality of laminated boards on which wiring patterns are formed as described above.
In order to manufacture this multilayer printed wiring board, a multilayer is formed by laminating a plurality of laminated boards on which the above wiring patterns are formed via the above-mentioned adhesive film. Thereafter, through holes or blind via holes are formed by drilling or laser processing, and interlayer wiring is formed by plating or conductive paste. In this way, a multilayer printed wiring board can be manufactured.
[金属箔付きの積層板及び多層積層板、並びにそれらの製造方法]
 なお、前記の積層板及び多層積層板は、片面又は両面に銅やアルミニウムやニッケル等の金属箔を有する金属箔付きの積層板及び多層積層板であってもよい。
 この金属箔付き積層板の製造方法には特に制限はない。例えば、前述のとおり、支持体フィルムとして金属箔を用いることにより、金属箔付き積層板を製造することができる。また、前記のラミネートにより得られた積層体を1枚又は複数枚(例えば2~20枚)重ね、その片面又は両面に金属箔を配置した構成で積層成形することにより、金属箔付き積層板を製造することもできる。
 成形条件は、電気絶縁材料用積層板や多層板の手法が適用でき、例えば、多段プレス、多段真空プレス、連続成形機、オートクレーブ成形機などを使用し、温度100~250℃程度、圧力2~100MPa程度、及び加熱時間0.1~5時間程度の範囲で成形することができる。
<熱膨張率の評価方法>
 積層板の熱膨張率は、熱機械分析装置(TMA:Thermal Mecanical Analysis)、温度依存3次元変位測定装置(DIC:Degital Image Correlation)、レーザー干渉法などの装置を用いて測定することができる。
<弾性率の評価方法>
 積層板の弾性率は、広域粘弾性測定装置による貯蔵弾性率の測定をはじめ、静的な弾性率として曲げ弾性率を測定することができる。曲げ弾性率は、3点曲げ試験を行うことなどにより求めることができる。
[Laminated plate and multilayer laminated plate with metal foil, and methods for producing them]
The laminate and multilayer laminate may be a laminate with a metal foil and a multilayer laminate having a metal foil such as copper, aluminum or nickel on one or both sides.
There is no restriction | limiting in particular in the manufacturing method of this laminated sheet with metal foil. For example, as described above, a laminate with a metal foil can be produced by using a metal foil as the support film. Further, by laminating one or a plurality of (for example, 2 to 20) laminates obtained by the above-mentioned laminate and arranging metal foil on one or both sides thereof, a laminate with metal foil is obtained. It can also be manufactured.
The molding conditions can be applied to laminates for electrical insulating materials and multilayer boards. For example, a multistage press, a multistage vacuum press, a continuous molding machine, an autoclave molding machine, etc. are used, and the temperature is about 100 to 250 ° C., the pressure is 2 to Molding can be performed in a range of about 100 MPa and a heating time of about 0.1 to 5 hours.
<Evaluation method of thermal expansion coefficient>
The thermal expansion coefficient of the laminated plate can be measured by using a thermomechanical analyzer (TMA: Thermal Mechanical Analysis), a temperature-dependent three-dimensional displacement measuring device (DIC: Digital Image Correlation), a laser interferometry, or the like.
<Evaluation method of elastic modulus>
The elastic modulus of the laminated plate can be measured as a bending elastic modulus as a static elastic modulus, including measurement of storage elastic modulus using a wide area viscoelasticity measuring device. The bending elastic modulus can be obtained by performing a three-point bending test.
 次に、実施例及び比較例を用いて本発明を更に詳しく説明するが、本発明はこれらの記載に限定されるものではない。
 なお、実施例及び比較例において、「部」及び「%」とは、それぞれ「質量部」及び「質量%」を意味する。
Next, the present invention will be described in more detail using Examples and Comparative Examples, but the present invention is not limited to these descriptions.
In the examples and comparative examples, “parts” and “%” mean “parts by mass” and “% by mass”, respectively.
[不飽和マレイミド基を有する樹脂組成物の溶液の製造]
 温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、4、4'-ビス(4-アミノフェノキシ)ビフェニル:69.10g、ビス(4-マレイミドフェニル)スルホン:429.90g、p-アミノフェノール:41.00g、及びプロピレングリコールモノメチルエーテル:360.00gを入れ、還流温度で2時間反応させて、酸性置換基と不飽和マレイミド基を有する樹脂組成物の溶液を得た。
[Production of a resin composition solution having an unsaturated maleimide group]
In a reaction vessel with a volume of 2 liters that can be heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser, 4,4′-bis (4-aminophenoxy) biphenyl: 69.10 g, bis (4 -Maleimidophenyl) sulfone: 429.90 g, p-aminophenol: 41.00 g, and propylene glycol monomethyl ether: 360.00 g, reacted at reflux temperature for 2 hours to have an acidic substituent and an unsaturated maleimide group A solution of the resin composition was obtained.
[熱硬化性樹脂組成物を含有するワニスの製造]
(1)硬化剤(A)として、上記の不飽和マレイミド基を有する樹脂組成物の溶液、
(2)熱硬化性樹脂(B)として、2官能ナフタレン型エポキシ樹脂〔大日本インキ化学工業(株)製、商品名、HP-4032D〕、
(3)変性イミダゾール(C)として、イソシアネートマスクイミダゾール〔第一工業製薬(株)製、商品名:G8009L〕、
(4)無機充填材(D)として、溶融シリカ〔アドマテック(株)製、商品名:SC2050-KC、濃度70%、一次粒子の平均粒子径:500nm、BET法による比表面積:6.8m2/g〕、
(5)難燃性を付与するリン含有化合物(E)として、リン含有フェノール樹脂〔三光化学(株)製、商品名:HCA-HQ、リン含有量9.6質量%〕、
(6)化学粗化可能な化合物(F)として、架橋アクリロニトリルブタジエンゴム(NBR)粒子[〔JSR(株)製、商品名:XER-91〕、
(7)希釈溶剤として、メチルエチルケトン、
を使用し、表1に示した配合割合(質量部)で混合して、樹脂含有量(樹脂成分の合計)65質量%、溶剤35質量%の均一なワニス(G)を作製した。
[Production of varnish containing thermosetting resin composition]
(1) As a curing agent (A), a solution of a resin composition having the unsaturated maleimide group,
(2) Bifunctional naphthalene type epoxy resin (trade name, HP-4032D, manufactured by Dainippon Ink & Chemicals, Inc.) as the thermosetting resin (B),
(3) As modified imidazole (C), isocyanate mask imidazole [Daiichi Kogyo Seiyaku Co., Ltd., trade name: G8009L],
(4) As an inorganic filler (D), fused silica [manufactured by Admatech Co., Ltd., trade name: SC2050-KC, concentration 70%, average primary particle diameter: 500 nm, specific surface area by BET method: 6.8 m 2 / G],
(5) As a phosphorus-containing compound (E) that imparts flame retardancy, a phosphorus-containing phenol resin [manufactured by Sanko Chemical Co., Ltd., trade name: HCA-HQ, phosphorus content 9.6% by mass],
(6) As a compound (F) capable of chemical roughening, crosslinked acrylonitrile butadiene rubber (NBR) particles [manufactured by JSR Corporation, trade name: XER-91],
(7) As a diluent solvent, methyl ethyl ketone,
Were mixed at a blending ratio (parts by mass) shown in Table 1 to prepare a uniform varnish (G) having a resin content (total of resin components) of 65% by mass and a solvent of 35% by mass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[プリプレグの製造]
 上記ワニス(G)を厚さの異なるEガラスクロスにそれぞれ含浸塗工し、160℃で10分加熱乾燥して250mm×250mmのプリプレグを得た。Eガラスクロスの種類は、旭化成イーマテリアルズのIPC規格1027、1078、2116の3種を用いた。これら3種のガラスクロスを用いて作製したプリプレグ(それぞれ、PP#1027、PP#1078及びPP#2116と称することがある。)の樹脂含有量は、それぞれ66、54、及び50質量%であった。また、これらプリプレグのEガラスクロス含有量は、それぞれ34、46、及び50質量%であった。
[Manufacture of prepreg]
The above-mentioned varnish (G) was impregnated and coated on E glass cloths having different thicknesses and dried by heating at 160 ° C. for 10 minutes to obtain 250 mm × 250 mm prepregs. As the type of E glass cloth, three types of IPC standards 1027, 1078, and 2116 of Asahi Kasei E-materials were used. The resin contents of the prepregs prepared using these three types of glass cloth (sometimes referred to as PP # 1027, PP # 1078, and PP # 2116, respectively) were 66, 54, and 50% by mass, respectively. It was. Moreover, E glass cloth content of these prepregs was 34, 46, and 50 mass%, respectively.
[実施例1~3及び比較例1~3]
 ガラスフィルムとして、厚さ50μmのガラスフィルム「商品名OA-10G」(日本電気硝子(株)製、250mm×250mm)及び厚さ100μmのガラスフィルム「商品名OA-10G」(日本電気硝子(株)製、250mm×250mm)を用意した(それぞれ、GF50μm及びGF100μmと称することがある)。
 上記ガラスフィルムと前記プリプレグとを、表2に示すとおりに重ね合せ、厚さ12μmの電解銅箔を上下に配置し、圧力3.0MPa、温度235℃で120分間プレスを行って、銅張積層板を作製した。
[実施例4]
[熱硬化性樹脂組成物を含有する、非繊維含有樹脂組成物層用ワニスの製造]
 ジメチルアセトアミド溶剤で濃度10%になるように溶解した日本化薬株式会社製のポリアミド樹脂「BPAM-155」(製品名)を135.4部に対して、熱硬化性樹脂として日本化薬株式会社製のエポキシ樹脂「NC3000-H」(商品名、濃度100%)を62.0部、硬化剤としてDIC株式会社製のトリアジン含有フェノール性ノボラック樹脂「LA-1356-60P」(商品名、濃度60%)を23.5部、硬化促進剤として四国化成工業株式会社製の2-フェニルイミダゾール「2PZ」(商品名、濃度100%)を0.6部、無機充填材として日本アエロジル株式会社製のヒュームドシリカ「AEROSIL R972」(商品名、濃度100%)を4.8部、その他の成分としてBYKケミー・ジャパン株式会社製のポリエステル変性ポリジメチルシロキサン「BYK-310」(商品名、濃度25%)を1.7部添加した後、更にジメチルアセトアミド溶剤を66.3部追加した。その後、分散機(ナノマイザー、商品名、吉田機械興業株式会社製)を用いて、均一な樹脂ワニスを得た。
<接着フィルム(支持体フィルム1/樹脂組成物層2)3の製造>
 支持体フィルム1の上に、樹脂組成物層2を形成することにより、接着フィルム3を製造した。方法としては、非繊維含有樹脂組成物層用ワニスを支持体フィルムである離型処理ポリエチレンテレフタレート(PET)フィルム(PET-38X、リンテック社製、商品名)の離型処理面に乾燥後20μmになるようにコンマコーターを用いて塗布し、140℃で5分間乾燥させて樹脂組成物層2と支持体フィルム1からなる幅270mmの接着フィルム3を形成した(図1(a))。
<積層板(非繊維含有樹脂硬化物層/ガラス基板層/繊維含有樹脂硬化物層/ガラス基板層/非繊維含有樹脂硬化物層)の製造>
ガラス基板層4として、日本電気硝子製の極薄ガラスフィルム「OA-10G」(商品名、厚さ50μm、250mm×250mm)を用いた。前記プリプレグ(PP#1078)5とガラス基板層4を、ガラス基板層/プリプレグ(PP#1078)/ガラス基板層の順となるように重ね合わせ、バッチ式の真空加圧ラミネーター「MVLP-500」(名機株式会社製、商品名)を用いてラミネートによって積層した(図1(b))。この際の真空度は30mmHg以下であり、温度は140℃、圧力は0.5MPaの設定とした。この重ね合わせ体を窒素雰囲気下で235℃、120分間加熱を行い、プリプレグ中の樹脂が硬化して繊維含有樹脂硬化物となることで、ガラス基板層/繊維含有樹脂硬化物層/ガラス基板層からなる積層板6を得た(図1(c))。次いで、接着フィルム3の樹脂組成物層2が積層板6のガラス基板層4に当接するように、積層板6の上下に接着フィルム3を配置し、バッチ式の真空加圧ラミネーター「MVLP-500」(名機株式会社製、商品名)を用いてラミネートによって積層した(図1(d))。この際の真空度は30mmHg以下であり、温度は120℃、圧力は0.5MPaの設定とした。これにより、樹脂組成物層2は樹脂硬化物層2aとなった。室温に冷却後、支持体フィルムを剥離して180℃の設定の乾燥気中で60分間硬化することによって、5層構造の積層板(非繊維含有樹脂硬化物層/ガラス基板層/繊維含有樹脂硬化物層/ガラス基板層/非繊維含有樹脂硬化物層)7を得た(図1(e))。
[Examples 1 to 3 and Comparative Examples 1 to 3]
As a glass film, a 50 μm thick glass film “trade name OA-10G” (Nippon Electric Glass Co., Ltd., 250 mm × 250 mm) and a 100 μm thick glass film “trade name OA-10G” (Nippon Electric Glass Co., Ltd.) , 250 mm × 250 mm) (which may be referred to as GF50 μm and GF100 μm, respectively).
The glass film and the prepreg are overlaid as shown in Table 2, and an electrolytic copper foil with a thickness of 12 μm is placed up and down, and pressed at a pressure of 3.0 MPa and a temperature of 235 ° C. for 120 minutes to obtain a copper-clad laminate. A plate was made.
[Example 4]
[Production of varnish for non-fiber-containing resin composition layer containing a thermosetting resin composition]
Nippon Kayaku Co., Ltd. as a thermosetting resin for 135.4 parts of polyamide resin “BPAM-155” (product name) manufactured by Nippon Kayaku Co., Ltd. dissolved in a dimethylacetamide solvent to a concentration of 10%. 62.0 parts of an epoxy resin “NC3000-H” (trade name, concentration: 100%) manufactured by DIC, and a triazine-containing phenolic novolak resin “LA-1356-60P” (trade name, concentration: 60) manufactured by DIC Corporation as a curing agent. %) 23.5 parts, 2-phenylimidazole “2PZ” (trade name, concentration 100%) manufactured by Shikoku Kasei Kogyo Co., Ltd. as a curing accelerator, 0.6 parts, and Nippon Aerosil Co., Ltd. as an inorganic filler. 4.8 parts of fumed silica “AEROSIL R972” (trade name, concentration 100%), other components manufactured by BYK Chemie Japan Co., Ltd. After adding 1.7 parts of polyester-modified polydimethylsiloxane “BYK-310” (trade name, concentration 25%), 66.3 parts of dimethylacetamide solvent was further added. Thereafter, a uniform resin varnish was obtained using a disperser (Nanomizer, trade name, manufactured by Yoshida Kikai Kogyo Co., Ltd.).
<Manufacture of adhesive film (support film 1 / resin composition layer 2) 3>
An adhesive film 3 was produced by forming a resin composition layer 2 on the support film 1. As a method, a varnish for a non-fiber-containing resin composition layer is dried on a release-treated surface of a release-treated polyethylene terephthalate (PET) film (PET-38X, manufactured by Lintec Co., Ltd.) as a support film, and then dried to 20 μm It applied so that it might become, and it was made to dry at 140 degreeC for 5 minute (s), and the adhesive film 3 of width 270mm which consists of the resin composition layer 2 and the support body film 1 was formed (FIG. 1 (a)).
<Manufacture of Laminated Plate (Non-Fiber-Containing Resin Cured Material Layer / Glass Substrate Layer / Fiber-Containing Resin Cured Material Layer / Glass Substrate Layer / Non-Fiber-Containing Resin Cured Material Layer)>
As the glass substrate layer 4, an ultrathin glass film “OA-10G” (trade name, thickness 50 μm, 250 mm × 250 mm) manufactured by Nippon Electric Glass was used. The prepreg (PP # 1078) 5 and the glass substrate layer 4 are laminated in the order of glass substrate layer / prepreg (PP # 1078) / glass substrate layer, and a batch type vacuum pressure laminator “MVLP-500” (Product name, manufactured by Meiki Co., Ltd.) was used for lamination (FIG. 1 (b)). The degree of vacuum at this time was 30 mmHg or less, the temperature was set to 140 ° C., and the pressure was set to 0.5 MPa. The laminated body is heated at 235 ° C. for 120 minutes in a nitrogen atmosphere, and the resin in the prepreg is cured to become a fiber-containing resin cured product, whereby a glass substrate layer / fiber-containing cured resin layer / glass substrate layer is obtained. The laminated board 6 which consists of was obtained (FIG.1 (c)). Next, the adhesive film 3 is disposed above and below the laminated plate 6 so that the resin composition layer 2 of the adhesive film 3 is in contact with the glass substrate layer 4 of the laminated plate 6, and a batch type vacuum pressure laminator “MVLP-500” is arranged. "(Trade name, manufactured by Meiki Co., Ltd.) was laminated by lamination (FIG. 1 (d)). The degree of vacuum at this time was 30 mmHg or less, the temperature was set to 120 ° C., and the pressure was set to 0.5 MPa. Thereby, the resin composition layer 2 became the resin cured material layer 2a. After cooling to room temperature, the support film is peeled off and cured in a dry atmosphere set at 180 ° C. for 60 minutes to obtain a laminate of 5 layers (non-fiber-containing resin cured layer / glass substrate layer / fiber-containing resin) Cured product layer / glass substrate layer / non-fiber-containing resin cured product layer) 7 was obtained (FIG. 1 (e)).
[測定]
 上記の実施例及び比較例で得られた積層板について、以下の方法で性能を測定・評価した。
(1)熱膨張率の測定
 積層板から4mm×30mmの試験片を切り出した。銅張積層板を使用する場合は、銅エッチング液に浸漬することにより銅箔を取り除いた後、試験片を切り出した。
 TMA試験装置(デュポン社製、TMA2940)を用い、試験片のTg未満の熱膨張特性を観察することにより評価した。具体的には、昇温速度5℃/min、1st run、測定範囲20~200℃、2nd run測定範囲-10~280℃、加重5g、チャック間10mmで引っ張り法にて測定し、50~120℃の範囲及び120~190℃の範囲の平均の熱膨張率をそれぞれ求めた。その結果を表2に示す。
(2)貯蔵弾性率の測定
 積層板から5mm×30mmの試験片を切り出した。銅張積層板を使用する場合は、銅エッチング液に浸漬することにより銅箔を取り除いた後、試験片を切り出した。
 広域粘弾性測定装置(レオロジ社製、DVE-V4型)を用い、スパン間を20mm、周波数を10Hz、振動変位1~3μm(ストップ加振)の条件で、40℃における引張貯蔵弾性率を測定した。その結果を表2に示す。
[Measurement]
About the laminated board obtained by said Example and comparative example, performance was measured and evaluated with the following method.
(1) Measurement of coefficient of thermal expansion A test piece of 4 mm × 30 mm was cut out from the laminate. When using a copper clad laminated board, after removing copper foil by being immersed in copper etching liquid, the test piece was cut out.
Using a TMA test apparatus (manufactured by DuPont, TMA2940), it was evaluated by observing the thermal expansion characteristics of the test piece below Tg. Specifically, the temperature measurement was performed at a rate of 5 ° C./min, 1 st run, measurement range 20 to 200 ° C., 2nd run measurement range −10 to 280 ° C., load 5 g, 10 mm between chucks, and 50 to 120 The average coefficient of thermal expansion in the range of ° C and in the range of 120 to 190 ° C was determined. The results are shown in Table 2.
(2) Measurement of storage elastic modulus A test piece of 5 mm × 30 mm was cut out from the laminate. When using a copper clad laminated board, after removing copper foil by being immersed in copper etching liquid, the test piece was cut out.
Using a viscoelasticity measuring device (DVE-V4, manufactured by Rheology), measuring the tensile storage modulus at 40 ° C under the conditions of 20 mm span, 10 Hz frequency, 1 to 3 μm vibration displacement (stop vibration) did. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、ガラスフィルムを含有する本発明の実施例1~4はガラスフィルムを含有しない比較例1と比べて、50~120℃における低熱膨張性、40℃における高弾性に優れる。また、120~190℃の高温領域においても、比較例1では低温領域(50~120℃)に比べて熱膨張率が上昇しているのに対し、実施例1~4では低温領域とほぼ同程度の低熱膨張性を有することが分かる。したがって本発明の実施例1~4は、低温領域だけでなく高温領域においても低熱膨張性を維持している。
 また、ガラス比率が共に50体積%である実施例2と比較例2とを比較すると、50~120℃における低熱膨張性、120~190℃における低熱膨張性、及び40℃における高弾性のいずれにおいても、最外層にガラスフィルムを有する実施例2の方が優れている。
 同様に、ガラス比率が近似している実施例3と比較例3とを比較しても、50~120℃における低熱膨張性、120~190℃における低熱膨張性、及び40℃における高弾性のいずれにおいても、最外層にガラスフィルムを有する実施例3の方が優れている。
As is apparent from Table 2, Examples 1 to 4 of the present invention containing a glass film are excellent in low thermal expansion at 50 to 120 ° C. and high elasticity at 40 ° C. as compared with Comparative Example 1 not containing a glass film. . Also, in the high temperature region of 120 to 190 ° C., the coefficient of thermal expansion is higher in Comparative Example 1 than in the low temperature region (50 to 120 ° C.), whereas in Examples 1 to 4, it is almost the same as the low temperature region. It can be seen that it has a low thermal expansion property. Therefore, Examples 1 to 4 of the present invention maintain low thermal expansion properties not only in the low temperature region but also in the high temperature region.
Further, when Example 2 and Comparative Example 2 in which the glass ratios are both 50% by volume are compared, any of low thermal expansion at 50 to 120 ° C., low thermal expansion at 120 to 190 ° C., and high elasticity at 40 ° C. However, Example 2 having a glass film as the outermost layer is superior.
Similarly, when Example 3 and Comparative Example 3 in which the glass ratio is approximated are compared, any of low thermal expansion at 50 to 120 ° C., low thermal expansion at 120 to 190 ° C., and high elasticity at 40 ° C. In Example 3, Example 3 having a glass film as the outermost layer is superior.
 1 支持体フィルム
 2 樹脂組成物層
 2a 非繊維含有樹脂硬化物層
 3 樹脂フィルム
 4 ガラス基板層
 5 プリプレグ
 5a 繊維含有樹脂硬化物層
 6 積層板(中間体)
 7 積層板
DESCRIPTION OF SYMBOLS 1 Support film 2 Resin composition layer 2a Non-fiber containing resin hardened material layer 3 Resin film 4 Glass substrate layer 5 Prepreg 5a Fiber containing resin hardened material layer 6 Laminate (intermediate body)
7 Laminated board

Claims (18)

  1.  1層以上の樹脂組成物層及び2層以上のガラス基板層を含む積層体であって、
     前記1層以上の樹脂組成物層のうちの少なくとも1層は、熱硬化性樹脂及び繊維基材を含む繊維含有樹脂組成物からなる繊維含有樹脂組成物層であり、
     任意の2層の前記ガラス基板層の間には、前記樹脂組成物層が1層以上存在する積層体。
    A laminate comprising one or more resin composition layers and two or more glass substrate layers,
    At least one of the one or more resin composition layers is a fiber-containing resin composition layer comprising a fiber-containing resin composition including a thermosetting resin and a fiber base material,
    A laminate in which one or more resin composition layers are present between any two glass substrate layers.
  2.  前記ガラス基板層の厚さが30~200μmである請求項1に記載の積層体。 The laminate according to claim 1, wherein the glass substrate layer has a thickness of 30 to 200 µm.
  3.  前記2層以上のガラス基板層のうち最表面側のガラス基板層及び最裏面側のガラス基板層が、それぞれ、総ての前記樹脂組成物層よりも表面側及び裏面側に存在する請求項1又は2に記載の積層体。 2. The glass substrate layer on the outermost surface side and the glass substrate layer on the outermost surface side among the two or more glass substrate layers are respectively present on the front surface side and the back surface side with respect to all the resin composition layers. Or the laminated body of 2.
  4.  前記1層以上の樹脂組成物層は、最表面側のガラス基板層の表面に対して接面している第1の樹脂組成物層と、最裏面側のガラス基板層の裏面に対して接面している第2の樹脂組成物層とを含んでおり、
     前記第1の樹脂組成物層及び第2の樹脂組成物層は、熱硬化性樹脂を含みかつ繊維基材を含まない非繊維含有有機組成物からなる非繊維含有有機組成物層である請求項1~3のいずれか1項に記載の積層体。
    The one or more resin composition layers are in contact with the first resin composition layer contacting the surface of the outermost glass substrate layer and the rear surface of the outermost glass substrate layer. A second resin composition layer facing;
    The first resin composition layer and the second resin composition layer are non-fiber-containing organic composition layers comprising a non-fiber-containing organic composition containing a thermosetting resin and no fiber substrate. 4. The laminate according to any one of 1 to 3.
  5.  前記第1の樹脂組成物層及び前記第2の樹脂組成物層は、厚さ3~40μmである請求項4に記載の積層体。 The laminate according to claim 4, wherein the first resin composition layer and the second resin composition layer have a thickness of 3 to 40 µm.
  6.  前記繊維含有樹脂組成物層が無機充填材を含む請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the fiber-containing resin composition layer contains an inorganic filler.
  7.  前記無機充填材が、シリカ、アルミナ、タルク、マイカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、ホウ酸アルミニウム及びホウ珪酸ガラスから選択される1種又は2種以上である請求項6に記載の積層体。 The inorganic filler is one or more selected from silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and borosilicate glass. Laminated body.
  8.  前記繊維基材が、ガラス繊維、ポリイミド繊維、ポリエステル繊維、ポリテトラフルオロエチレン繊維から選択されるいずれか1つ以上である請求項1~7のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the fiber base material is at least one selected from glass fiber, polyimide fiber, polyester fiber, and polytetrafluoroethylene fiber.
  9.  前記熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂及びメラミン樹脂から選択される1種又は2種以上である請求項1~8のいずれか1項に記載の積層体。 The thermosetting resin is epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, silicone resin, The laminate according to any one of claims 1 to 8, which is one or more selected from triazine resins and melamine resins.
  10.  1層以上の樹脂硬化物層及び2層以上のガラス基板層を含む積層板であって、
     前記1層以上の樹脂硬化物層のうちの少なくとも1層は、熱硬化性樹脂及び繊維基材を含む繊維含有樹脂硬化物からなる繊維含有樹脂硬化物層であり、
     任意の2層の前記ガラス基板層の間には、前記樹脂硬化物層が1層以上存在する積層板。
    A laminate including one or more cured resin layers and two or more glass substrate layers,
    At least one of the one or more resin cured product layers is a fiber-containing resin cured product layer made of a fiber-containing resin cured product including a thermosetting resin and a fiber substrate,
    A laminate in which one or more of the cured resin layers are present between any two glass substrate layers.
  11.  40℃における貯蔵弾性率が10GPa~70GPaである請求項10に記載の積層板。 The laminate according to claim 10, wherein the storage elastic modulus at 40 ° C is 10 GPa to 70 GPa.
  12.  請求項1~9のいずれか1項に記載の積層体を加熱して得られる請求項10又は11に記載の積層板。 The laminate according to claim 10 or 11, which is obtained by heating the laminate according to any one of claims 1 to 9.
  13.  複数個の積層板を含む多層積層板であって、
     少なくとも1個の積層板が請求項10~12のいずれか1項に記載の積層板である多層積層板。
    A multilayer laminate comprising a plurality of laminates,
    A multilayer laminate, wherein the at least one laminate is the laminate according to any one of claims 10 to 12.
  14.  請求項10~12のいずれか1項に記載の積層板と、前記積層板の表面に設けられた配線とを有するプリント配線板。 A printed wiring board comprising: the laminated board according to any one of claims 10 to 12; and wiring provided on a surface of the laminated board.
  15.  請求項13に記載の多層積層板と、前記多層積層板の表面に設けられた配線とを有するプリント配線板。 A printed wiring board comprising the multilayer laminated board according to claim 13 and wiring provided on a surface of the multilayer laminated board.
  16.  ガラス基板の表面に樹脂硬化物層を形成する樹脂硬化物層形成工程を含む請求項10~12のいずれか1項に記載の積層板の製造方法。 The method for producing a laminate according to any one of claims 10 to 12, comprising a resin cured product layer forming step of forming a resin cured product layer on the surface of the glass substrate.
  17.  前記樹脂硬化物層形成工程が、前記樹脂組成物からなるフィルムを、真空ラミネーター又はロールラミネーターを用いて前記ガラス基板上に積層し、硬化する工程である請求項16に記載の積層板の製造方法。 The method for producing a laminate according to claim 16, wherein the resin cured product layer forming step is a step of laminating and curing a film made of the resin composition on the glass substrate using a vacuum laminator or a roll laminator. .
  18.  前記樹脂硬化物層形成工程が、前記ガラス基板上に前記樹脂組成物からなるフィルムを配置した後、プレスし、硬化する工程である請求項16に記載の積層板の製造方法。 The method for producing a laminated board according to claim 16, wherein the cured resin layer forming step is a step of placing and curing the film made of the resin composition on the glass substrate.
PCT/JP2012/074120 2011-09-22 2012-09-20 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board WO2013042752A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011207984 2011-09-22
JP2011-207984 2011-09-22
JP2012200954 2012-09-12
JP2012-200954 2012-09-12

Publications (1)

Publication Number Publication Date
WO2013042752A1 true WO2013042752A1 (en) 2013-03-28

Family

ID=47914512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074120 WO2013042752A1 (en) 2011-09-22 2012-09-20 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board

Country Status (4)

Country Link
JP (1) JPWO2013042752A1 (en)
CN (2) CN203351575U (en)
TW (1) TW201343010A (en)
WO (1) WO2013042752A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098099A1 (en) * 2012-12-18 2014-06-26 日立化成株式会社 Multilayer body, laminate, printed wiring board, method for producing multilayer body, and method for manufacturing laminate
CN105774138A (en) * 2016-03-04 2016-07-20 安徽农业大学 Decorative finishing bamboo-plastic geothermal floor and hot-pressing processing method thereof
JP2016536373A (en) * 2013-10-04 2016-11-24 アクロン ポリマー システムズ,インク. Method for manufacturing substrate for manufacturing electronic device, resin composition, substrate for manufacturing electronic device, and method for manufacturing electronic device
CN111278639A (en) * 2017-11-02 2020-06-12 积水化学工业株式会社 Laminated film and method for producing laminated film
CN115835956A (en) * 2020-06-17 2023-03-21 昭和电工材料株式会社 Laminate board, printed circuit board, semiconductor package, and method for manufacturing laminate board

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042752A1 (en) * 2011-09-22 2013-03-28 日立化成株式会社 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
CN105578738B (en) * 2015-12-21 2019-01-25 上海交通大学 The preparation method of stretchable circuit board based on elastic substrate and stretchable circuit board
WO2019049519A1 (en) * 2017-09-06 2019-03-14 日本ピラー工業株式会社 Circuit board and manufacturing method therefor
CN111465221B (en) * 2020-04-15 2022-06-21 江苏普诺威电子股份有限公司 Manufacturing method of packaging substrate based on radio frequency filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219233A (en) * 1990-12-20 1992-08-10 Dainippon Ink & Chem Inc Molded form with inorganic glass layer
JP2001162721A (en) * 1999-12-06 2001-06-19 Mitsubishi Plastics Ind Ltd Thermosetting resin composite article and method of manufacturing the same
JP2004512667A (en) * 1999-12-21 2004-04-22 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Multilayer printed circuit board
JP2010519089A (en) * 2007-02-22 2010-06-03 ダウ・コーニング・コーポレイション Composite product having excellent fire resistance and impact resistance and method for producing the same
JP2010519088A (en) * 2007-02-22 2010-06-03 ダウ・コーニング・コーポレイション Composite product with excellent fire resistance
WO2011030716A1 (en) * 2009-09-08 2011-03-17 旭硝子株式会社 Glass/resin laminate, and electronic device using same
JP2011088355A (en) * 2009-10-22 2011-05-06 Fujifilm Corp Composite film and method for manufacturing electronic component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2113524A4 (en) * 2007-02-23 2011-03-30 Panasonic Elec Works Co Ltd Epoxy resin composition, prepreg, laminates and printed wiring boards
EP2273476A4 (en) * 2008-04-24 2014-04-23 Nitto Denko Corp Transparent substrate
WO2013042752A1 (en) * 2011-09-22 2013-03-28 日立化成株式会社 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219233A (en) * 1990-12-20 1992-08-10 Dainippon Ink & Chem Inc Molded form with inorganic glass layer
JP2001162721A (en) * 1999-12-06 2001-06-19 Mitsubishi Plastics Ind Ltd Thermosetting resin composite article and method of manufacturing the same
JP2004512667A (en) * 1999-12-21 2004-04-22 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Multilayer printed circuit board
JP2010519089A (en) * 2007-02-22 2010-06-03 ダウ・コーニング・コーポレイション Composite product having excellent fire resistance and impact resistance and method for producing the same
JP2010519088A (en) * 2007-02-22 2010-06-03 ダウ・コーニング・コーポレイション Composite product with excellent fire resistance
WO2011030716A1 (en) * 2009-09-08 2011-03-17 旭硝子株式会社 Glass/resin laminate, and electronic device using same
JP2011088355A (en) * 2009-10-22 2011-05-06 Fujifilm Corp Composite film and method for manufacturing electronic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098099A1 (en) * 2012-12-18 2014-06-26 日立化成株式会社 Multilayer body, laminate, printed wiring board, method for producing multilayer body, and method for manufacturing laminate
JP2016536373A (en) * 2013-10-04 2016-11-24 アクロン ポリマー システムズ,インク. Method for manufacturing substrate for manufacturing electronic device, resin composition, substrate for manufacturing electronic device, and method for manufacturing electronic device
CN105774138A (en) * 2016-03-04 2016-07-20 安徽农业大学 Decorative finishing bamboo-plastic geothermal floor and hot-pressing processing method thereof
CN111278639A (en) * 2017-11-02 2020-06-12 积水化学工业株式会社 Laminated film and method for producing laminated film
CN111278639B (en) * 2017-11-02 2022-06-24 积水化学工业株式会社 Laminated film and method for producing laminated film
CN115835956A (en) * 2020-06-17 2023-03-21 昭和电工材料株式会社 Laminate board, printed circuit board, semiconductor package, and method for manufacturing laminate board

Also Published As

Publication number Publication date
CN203351575U (en) 2013-12-18
CN103009720A (en) 2013-04-03
TW201343010A (en) 2013-10-16
JPWO2013042752A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP6801632B2 (en) Manufacturing method of laminate, laminate, multilayer laminate, printed wiring board and laminate
JP6801631B2 (en) Manufacturing method of laminate, laminate, multilayer laminate, printed wiring board and laminate
WO2013042752A1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
WO2013042750A1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
WO2013042751A1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
US9050780B2 (en) Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
US20130112459A1 (en) Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
US9101061B2 (en) Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
JP2018029204A (en) Laminated body, laminate, multilayer board, printed-wiring board, multilayer printed-wiring board, and laminate manufacturing method
JP6248390B2 (en) Laminated body, laminated board, multilayer laminated board, printed wiring board, multilayer printed wiring board, and laminated board manufacturing method
US20130180760A1 (en) Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
US20130180769A1 (en) Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
JP2014120687A (en) Laminated plate, multilayer laminated plate, printed wiring board, multilayer printed wiring board, and method for manufacturing laminated plate
JP6322887B2 (en) Laminated body, laminated board, multilayer laminated board, printed wiring board, multilayer printed wiring board, and laminated board manufacturing method
JP7243077B2 (en) Prepregs, cured prepregs, laminates, printed wiring boards and semiconductor packages
JP6179096B2 (en) Laminate board, multilayer laminate board, printed wiring board, multilayer printed wiring board, and method for producing laminate board
JP6326948B2 (en) Laminated body, laminated board, and multilayer printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833003

Country of ref document: EP

Kind code of ref document: A1