WO2013038756A1 - System and method for energy transaction - Google Patents

System and method for energy transaction Download PDF

Info

Publication number
WO2013038756A1
WO2013038756A1 PCT/JP2012/063885 JP2012063885W WO2013038756A1 WO 2013038756 A1 WO2013038756 A1 WO 2013038756A1 JP 2012063885 W JP2012063885 W JP 2012063885W WO 2013038756 A1 WO2013038756 A1 WO 2013038756A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
supply
information
demand
transaction
Prior art date
Application number
PCT/JP2012/063885
Other languages
French (fr)
Japanese (ja)
Inventor
道樹 中野
文乃 田中
権介 松永
正教 神永
平澤 茂樹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2013038756A1 publication Critical patent/WO2013038756A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a system and method for trading a plurality of energy such as electric power and heat.
  • Patent Document 1 discloses an energy electronic trading system and an energy electronic trading method that enable energy trading in consideration of a plurality of factors related to energy demand while optimizing each party's gain from a supplier to a consumer. ing. More specifically, within one group consisting of a customer system and a plurality of supplier systems, a successful bidder is selected based on bid information from a plurality of supplier systems that are bid according to bid information of the customer system. Determine and enable optimal energy trading within the group. In addition, since the bid information includes predetermined constraints defined by the correlation of energy factors such as energy supply unit price and carbon dioxide emission intensity, multiple energy sources such as supply unit price and carbon dioxide emission intensity are included. Energy trading that satisfies the constraints due to factors is possible.
  • Patent Document 1 since the method of Patent Document 1 carries out a transaction for each energy, for example, cogeneration that can supply power and heat can supply a plurality of energy at the same time, and the ratio of electricity and heat to be supplied.
  • a supply system with a fixed (electric heat ratio) and the ratio cannot be changed freely is not considered. Therefore, for example, if a lot of supply transactions can be established in the transaction for electric power, but only a small amount of supply transaction can be established in the transaction for heat, the heat generated with the electric power is generated more than the established supply amount. There is a problem of being wasted. Or, if the transaction for heat was able to close many supply transactions, but only a small amount of supply transaction was successful in the transaction for electric power, the power generated with the heat will occur more than the established supply amount, There is a problem of being wasted.
  • an object of the present invention is to realize an energy trading system that can satisfy the energy demand of a consumer, give priority to the electric heat ratio of the supplier, suppress the generation of surplus power and surplus heat, and reduce the operation cost.
  • the energy transaction device uses the demand information of the other energy transaction device received from the other energy transaction device and the supply capacity information of the other energy transaction device, the demand information created by itself, and Based on the supply capability information, the type and amount of energy exchanged with the other energy trading apparatus are determined.
  • the hardware block diagram of the whole energy trading system regarding embodiment of this invention The flowchart by an energy transaction apparatus.
  • the flowchart which performs transaction for demand The flowchart which performs transaction for supply.
  • FIG. 1 shows a configuration example of an energy trading system.
  • This system includes a plurality of energy traders 100, a heat pipe 300 for exchanging heat and power generated by the energy traders 100, a power line 400, and energy such as heat and power between the energy traders 100. And a communication network 200 for exchanging information regarding transactions.
  • the energy trader 100 exchanges energy such as heat and electric power generated by itself with other energy traders, and automatically trades with the energy trade device 101 and its future demand based on past demand records.
  • Demand forecasting device 102 for forecasting supply capability forecasting device 103 for forecasting its future supply capability based on past supply results, and information on energy transaction information and demand / supply established by energy trading device 101
  • Storage device 104 that retains performance information, power load equipment 105 that consumes power such as home appliances in factory production lines and general households, and heat load equipment that consumes heat such as factory production lines and building air conditioners 106, read out the transaction content established by the energy trading device from the storage device 104, and the thermoelectric supply equipment 107 such as a generator such as a gas engine, a cogeneration system and a heat pump, Thermal load facility 107 in accordance with the pull content, power load facility 106, and a control unit 108 for controlling the cogeneration facility 108.
  • a generator such as a gas engine, a cogeneration system and a heat pump
  • produce with an electric heat supply installation changes with kinds of the installation. For example, there are facilities that efficiently generate power while suppressing the generation of heat, and vice versa. In the present embodiment, more efficient energy trading is realized by combining the power and heat generation ratios in a good manner.
  • the demand forecasting device 102 creates demand forecasting information that forecasts the future demand volume based on the past demand record.
  • the demand prediction information is a predicted value of the amount of energy that the energy trader needs to obtain from the outside, for example, a predicted value of the predicted amount of demand for each type of energy, such as electric power [kW], heat [MJ / h], etc. is there.
  • the supply capacity prediction device 103 creates supply capacity prediction information by predicting its future supply capacity based on past supply results.
  • the supply capacity prediction information is a predicted value of the upper limit of the amount of energy that can be supplied to the outside by the energy trader. For example, supply predicted for each type of energy such as electric power [kW], heat [MJ / h], etc. This is the predicted value of the possible amount.
  • the energy trading apparatus 101 generates and transmits demand information, supply capacity information, supply information, supply request information, and other information such as demand information, supply available information, supply information, supply request information with other energy traders, A transaction relating to the demand or supply of the energy trader 101 at a certain time is established. Further, the established transaction information is stored in the storage device 104.
  • the demand information created by the energy trading device 101 is supplied by an energy trader with an identifier, an energy demand amount such as electric power and heat at a certain time, priority judgment information, and an energy trader with supply capability. It includes supply availability information for determining availability.
  • the supply availability information includes, for example, position information. Since electric power and thermal energy have energy loss due to the resistance of the conveyance path, there is a limit to the distance that can be supplied. The distance for supply can be calculated by using the position information, and whether or not supply is possible is determined based on the distance.
  • the priority determination information is information used when determining the order of selecting a supplier among demanding energy traders, such as total efficiency of energy traders and CO2 emission basic unit. It is also used to determine the order of selecting supply destinations among energy traders with supply capabilities.
  • the total efficiency described above is, for example, the sum of the amount of energy supplied externally from the energy trader and the amount of energy finally consumed inside the energy trader, and the amount of renewable energy taken in and the outside It is the value divided by the sum of the purchased energy and the primary energy equivalent.
  • the total efficiency becomes better as equipment having high operation efficiency and energy generation efficiency is used.
  • Demand information is deployed to all energy traders, and is used when energy traders with a supply capability create supply information at that time. Details of the supply information will be described later.
  • the supply capacity information created by the energy trading device 101 includes an identifier for discriminating an energy trader, an available energy supply amount for each type of energy such as electric power and heat at a certain time, priority judgment information, and , Including information on whether or not to supply energy.
  • the supply capacity information is expanded to all energy traders, and is used when an energy trader in demand at that time creates supply request information. Details of the supply request information will be described later.
  • the supply information created by the energy transaction apparatus 101 includes an identifier of an energy trader representing itself and one or more energy supply destination information.
  • the energy supply destination information includes an identifier representing an energy trader of the supply destination, an energy supply amount, a supply energy unit price, and a supply energy quality.
  • the supply energy quality is, for example, information on the CO2 emission basic unit, the supplier's own overall efficiency, the stability of the energy supply capacity, and the like.
  • the supply request information created by the energy transaction apparatus 101 includes an identifier of the energy trader representing itself, information representing the total efficiency of the self, and one or more supply request destination information.
  • the supply request destination information includes an identifier of an energy trader who is a supply request destination, an energy supply request amount, and an energy supply request unit price.
  • the energy transaction executed by the energy transaction apparatus 101 is a transaction of energy supply and demand in a certain time zone. For example, transactions are performed for a predetermined time interval such as 30 minutes or 1 hour. In addition, the energy transaction processing is performed in advance, and is completed before actual energy supply and demand is implemented. The start timing of prior implementation is decided in advance and shared among energy traders. Details of the processing flow of the energy transaction apparatus 101 will be described later.
  • FIG. 2 shows a processing flow of the energy trading apparatus 101 when performing energy trading at a certain time.
  • Demand information is obtained at the time of transaction from the demand prediction device in S100, and demand information is created.
  • the created demand information is deployed to other energy traders via a communication network.
  • the created supply capacity information is developed for other energy traders.
  • Fig. 3 shows the processing flow of the demand transaction processing S400.
  • priority determination processing is performed.
  • the priority order of the user is confirmed based on the priority determination information included in the demand information from other energy traders in demand.
  • the priority determination process in S402 determines the order in which supply information is selected by the energy trader, giving it a priority over energy traders with high overall efficiency of energy use and energy traders with low CO2 emissions. It becomes possible to make a transaction.
  • supply information selection results which are the results of selection by other energy traders in demand, are collected, and the process waits until the selection process of the other energy traders higher than itself ends. While waiting, the supply information selection result is compared with the supply information held by itself. At this time, the energy trader of the supply destination information included in the supply information selection result is confirmed, and the supply information including this energy trader as the supply destination information is removed from the supply information held by itself. If the supplier information of the supply information selection result, which is the result selected by the other energy trader higher than itself, is included in the supply destination information, the supplier also adopts the supply information selection result and uses the selection result as the other energy After deployment to the trader, the process proceeds to S404 of the next process.
  • one piece of supply information is selected based on selection criteria determined by the user for supply energy unit price, supply energy quality, and the like.
  • the above selection criteria are, for example, supply energy unit price A [ ⁇ / kWh], weighting factor for energy unit price ⁇ , supply energy quality CO2 emission basic unit B [kg-CO2 / kWh], CO2 emission basic unit
  • the weighting coefficient is ⁇
  • the supply stability C is ⁇
  • the supply information with the smallest evaluation value V is selected using Equation 1.
  • S404 it is confirmed whether own demand is satisfied.
  • the supply amount of the supply information selected in S403 is subtracted from the demand information created in S100.
  • the demand transaction processing is terminated. If the demand is not satisfied, the process proceeds to S407.
  • the demand amount of the demand information created in S100 is updated to the shortage of demand confirmed in S404, and is expanded to other energy traders again.
  • the availability of supply is determined using the availability information included in the supply capability information. For example, in consideration of distance restrictions when supplying electric power and heat, position information is given as supply availability information, and supply availability information of energy traders that are more than a predetermined distance is removed. Proceed to S405 of the next process.
  • supply request information is created from the supply capacity information of other energy traders acquired in S409 so that its own demand can be satisfied and the value is closest to the demand amount, and is developed to other energy traders.
  • a method for creating supply request destination information included in supply request information a case where the demand amount thereof is 12 [kW] for electric power and 25 [MJ / h] for heat will be described.
  • supply capacity information As supply capacity information, supply capacity information a with power 5 [kW] and heat 16 [MJ / h], supply capacity information b with power 6 [kW] and heat 15 [MJ / h], and power 8 [
  • supply capacity information c When there is supply capacity information c that is kW] and heat 11 [MJ / h], it is a combination that exceeds 12 [kW] of power demand and 25 [MJ / h] of heat demand as supply request destination information
  • Select supply capability information b and c The energy unit price of the supply request information is set to be higher than the price established in the transaction at this time. After the supply request information is expanded, the process proceeds to S406 of the next process.
  • an energy trader with demand specifies a combination of energy traders with supply capability. This prevents the situation where demand is not met.
  • Fig. 4 shows the processing flow of transaction processing for supply S500.
  • the availability of supply is determined using the availability information included in the demand information. For example, in consideration of distance limitations when supplying power and heat, position information is given as supply availability information, and demand information of energy traders that are more than a predetermined distance is removed. Proceed to S502 of the next process.
  • S502 based on the collected demand information, search for a combination of demand information that provides the best energy supply efficiency, and create supply information.
  • a combination of demand information that provides the best energy supply efficiency
  • create supply information As one example of the method of creating the supply destination information included in the supply information, if the supply capacity is the highest and the supply efficiency is the best when the supply capacity is 10 [kW] and the heat is 20 [MJ / h], this supply capacity is A combination of demand information is searched so as to exceed and become the closest value, and supply destination information is created.
  • Collected demand information is electricity 5 [kW], heat 9 [MJ / h] demand information a, electricity 6 [kW], heat 15 [MJ / h] ⁇ demand information b, and electricity 8 [kW]
  • demand information c is heat 11 [MJ / h]
  • Allocation of supply amount to demand information a and demand information c is performed in descending order of priority based on priority determination information included in demand information.
  • the electric power 5 [kW], the heat 9 [MJ / h], and 5 [kW] and heat 11 [MJ / h] are allocated to the energy trader of the demand information c.
  • the combination with the highest supply efficiency is adopted and the supplier Create information.
  • supply efficiency does not exceed a predetermined threshold value
  • supply destination information is created as no supply.
  • Supply energy unit price and supply energy quality are calculated based on past supply results. The generated supply information is expanded to other energy traders, and the process proceeds to S503 of the next process.
  • an energy trader with a supply capability can select a supply destination that prioritizes his supply capability, and a transaction considering supply efficiency is possible.
  • a confirmation process of the demand side response is performed.
  • the demand side response means that after the supply information is expanded, the demand side selects the supply information and expands the selection result.
  • the process proceeds to the next process S504. Otherwise, the process proceeds to the next process S506.
  • priority determination processing is performed.
  • priority determination information included in supply capacity information developed from other energy traders with supply capacity is collected, and its priority order is confirmed.
  • the information used to determine priority is shared in advance between all energy traders.For example, the energy efficiency between energy traders with the supply capacity using the overall efficiency of energy traders, CO2 emission basic unit, etc. This information is used when determining the order of selecting the supply destination.
  • the supply request selection results by other energy traders with supply capability are collected, and the process waits until the selection process of the other higher energy traders is completed. While waiting, the collected supply request information selection result is compared with the supply request information held by itself. At this time, the energy trader included in the supply request destination information of the supply request information is confirmed, and the supply request information including the same energy trader in the supply request destination information is removed from the supply request information held by itself. In addition, if the supply request destination information of the supply request information selected by the other energy trader higher than itself is included in the supply request destination information, it also adopts the supply request information and deploys the selection result to other energy traders. Thereafter, the process proceeds to S506 of the next process. When selecting the supply request information by itself, one supply request information is selected based on the criteria determined by the user such as the required supply unit price and the overall efficiency.
  • the above selection criteria are, for example, that the required supply unit price is D [ ⁇ / kWh], the weighting coefficient for the energy unit price is ⁇ , the total efficiency is E [%], the weighting coefficient for the total efficiency is ⁇ , and the evaluation value W is The supply request information that is the smallest is selected.
  • the process proceeds to S506 of the next process. If all selectable supply request information is removed according to the selection result of the higher-order other energy trader, the selection result is expanded to other energy traders as no selection, and the process proceeds to S506 of the next process.
  • the energy trader 100 serving as a supplier creates a supply information by selecting a combination of demand information so that his / her supply efficiency is optimal, and the energy trader 100 serving as a consumer The processing is such that the energy trader 100 as a consumer selects one supply information from the superior based on the priority determination information.
  • the energy trader 100 as a supplier creates multiple patterns of supply information, presents it to the energy trader 100 as a consumer, and the energy trader 100 as a consumer uses priority determination information.
  • the configuration example of the energy trading system in the second embodiment is the same as the configuration example of the energy trading system in the first embodiment shown in FIG.
  • the process flow of the energy transaction apparatus 101 in the second embodiment is the same as the process flow of the energy transaction apparatus 101 in the first embodiment shown in FIG. 2, but the demand transaction process S400 and the supply transaction process S500 are the same. Some details are different. In addition, the supply information created by the energy transaction apparatus 101 is partially different.
  • the supply information in the second embodiment includes an identifier of an energy trader representing itself, an energy supply amount, a supply energy unit price, and a supply energy quality.
  • the supplied energy quality is, for example, information on the CO2 emission basic unit, the supplier's own overall efficiency, the stability of the energy supply capacity, and the like, and is the same as in the first embodiment.
  • the supply information in the second embodiment differs from the supply information in the first embodiment in that it does not include information on the supply destination.
  • the energy trader 100 having the supply capability in the second embodiment creates a plurality of patterns of the supply information and deploys it to other energy traders 100. Details of the supply information creation processing will be described later.
  • FIG. 5 shows detailed processing of the demand transaction processing S400 in the second embodiment. A different part from FIG. 3 which shows the detailed process of the demand transaction process S400 in 1st embodiment is demonstrated.
  • the processes between the priority determination process S402 and the demand information determination process S404 are different. After the priority determination process S402, supply availability determination S508 is performed, supply information that cannot be supplied is removed from the supply information collected in S401, and the process proceeds to S4031 of the next process.
  • supply information selection processing is performed.
  • the supply information determined to be supplyable in S508 satisfies the own demand, and the difference between the own demand amount and the total amount by the combination of the supply information is the smallest. Select a combination and notify other energy traders of the selection result. For example, a case will be described in which there are two types of supply information from an energy trader 100, a and b, and two types of supply information from another energy trader 100, c and d.
  • Supply information a is supply power 5 [kW], unit price of electricity 10 [ ⁇ / kWh], supply heat 10 [MJ / h], unit price of supply heat 10 [ ⁇ / MJ], and CO2 emission basic unit as supply energy quality 0.4 [kg-CO2 / kWh]
  • supply information b is supply power 3 [kW], power unit price 12 [ ⁇ / kWh], supply heat 6 [MJ / h], supply heat unit price 12 [ ⁇ / MJ]
  • CO2 emission basic unit is 0.5 [kg-CO2 / kWh] as supply energy quality
  • supply information c is supply power 8 [kW]
  • unit price is 8 [ ⁇ / kWh]
  • Supply heat unit price is 8 [ ⁇ / MJ]
  • supply energy quality is CO2 emission basic unit is 0.3 [kg-CO2 / kWh]
  • supply information d is supply power 6 [kW]
  • power unit price is 11 [ ⁇ / kWh]
  • a combination of supply information is selected based on a selection criterion that satisfies the demand and is determined by itself.
  • the above selection criteria are, for example, the difference between the sum of the supply energy and the total amount of own demand by the combination of supply information is X [kw], the weighting coefficient for the sum difference is ⁇ ′, and the total supply by the combination of supply information is Y [ ⁇ ], ⁇ 'is the weight for the total supply, Z [kg-CO2] is the total amount of CO2 emissions by the combination of supply information, ⁇ ' is the weighting coefficient for the CO2 emissions, and the supply with the smallest evaluation value U is calculated using Equation 3 Select a combination of information.
  • FIG. 6 shows the detailed process of the supply transaction process S500 in the second embodiment. A different part from FIG. 4 which shows the detailed process of supply transaction process S500 in 1st embodiment is demonstrated. The processing from the demand information confirmation processing S507 to the demand side response confirmation processing S503 is different. After the demand information confirmation process S507, the process proceeds to S5021 of the next process.
  • supply information creation processing is performed.
  • a plurality of patterns of supply information in the second embodiment are created. For example, a plurality of pieces of supply information are created in which the supply amount that provides the best supply efficiency is set to the lowest value, and the supply unit price is increased as the supply efficiency decreases.
  • supply information a is supply power 5 [kW]
  • unit price of electricity 10 [ ⁇ / kWh] supply heat 10 [MJ / h]
  • supply heat unit price 10 [ ⁇ / MJ] supply energy CO2 emissions per unit of production is 0.4 [kg-CO2 / kWh]
  • supply information b is supply power 3 [kW]
  • power unit price is 12 [ ⁇ / kWh]
  • two patterns of supply information such as supply information a that can be operated most efficiently and supply information b that decreases in efficiency due to partial load operation, are created. Deploy the created supply information to other energy traders 100.
  • the energy trading apparatus 101 of each energy trader 100 to be distributed communicates with each other to establish a trade.
  • a central server that manages transaction information is used, and the central server and each energy trader are used.
  • the energy transaction apparatus 101 may communicate to establish a transaction.

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Provided is an energy transaction system that can satisfy energy demands of consumers, inhibit generation of surplus power or surplus heat by prioritizing the ratio of energies to be supplied by suppliers, and reduce operation cost, in a supplying system exists wherein a plurality of types of energy can be supplied simultaneously and the ratio of the plurality of types of energy to be supplied (power/heat ratio, etc.) is fixed and the ratio cannot be changed freely. By incorporating, within energy transaction processing, processing wherein an energy dealer who can supply energy is allowed to select a combination of consumers who are to be supplying destinations such that the energy supplying ratio of the energy dealer becomes optimum, or wherein information such as an energy supplying ratio that is optimum for the suppliers or supplying price is presented to the consumers and the consumers are allowed to select the suppliers, the energy transaction system, wherein supplying efficiency of the suppliers can be taken into consideration and demands of consumers can be satisfied, is provided

Description

エネルギー取引システム及び方法Energy trading system and method 参照による取り込みImport by reference
 本出願は、2011年9月16日に出願された日本特許出願第2011-202565号の優先権を主張し、その内容を参照することにより本出願に取り込む。 This application claims the priority of Japanese Patent Application No. 2011-202565 filed on September 16, 2011, and is incorporated herein by reference.
 本発明は、電力、熱等の複数のエネルギーを取引するためのシステム及び方法に関する。 The present invention relates to a system and method for trading a plurality of energy such as electric power and heat.
 近年、環境負荷の低減に向け、再生可能エネルギーや天然ガス等を利用した分散型エネルギー源の普及に向けた活動が活発になっている。分散エネルギー源の普及に伴い、余剰電力や余剰熱等、様々な形態のエネルギーを自由に取引するための仕組みが必要になってくる。例えば、特許文献1では、供給者から需要家へ各者の利得を最適化しつつ、エネルギー需要に関する複数の要因を考慮したエネルギーの取引を可能にするエネルギー電子取引システム及びエネルギー電子取引方法が開示されている。より具体的には、需要家システムと複数の供給者システムとからなる一つの群内において、需要家システムの入札情報に応じて応札される複数の供給者システムからの応札情報に基づき落札者を決定し、上記群内において最適なエネルギーの取引を可能にする。また、入札情報にはエネルギーに関する供給単価や二酸化炭素排出量原単位等のエネルギー要因の相関関係によって規定される所定の制約条件を含むため、供給単価や二酸化炭素排出量原単位等の複数のエネルギー要因による制約を同時に満足するエネルギー取引が可能である。 In recent years, activities for the spread of distributed energy sources using renewable energy, natural gas, etc. have become active in order to reduce environmental impact. With the spread of distributed energy sources, a mechanism for freely trading various forms of energy such as surplus power and surplus heat is required. For example, Patent Document 1 discloses an energy electronic trading system and an energy electronic trading method that enable energy trading in consideration of a plurality of factors related to energy demand while optimizing each party's gain from a supplier to a consumer. ing. More specifically, within one group consisting of a customer system and a plurality of supplier systems, a successful bidder is selected based on bid information from a plurality of supplier systems that are bid according to bid information of the customer system. Determine and enable optimal energy trading within the group. In addition, since the bid information includes predetermined constraints defined by the correlation of energy factors such as energy supply unit price and carbon dioxide emission intensity, multiple energy sources such as supply unit price and carbon dioxide emission intensity are included. Energy trading that satisfies the constraints due to factors is possible.
特開2005‐258880号公報JP-A-2005-258880
 しかし、上記特許文献1の方式はエネルギー毎に取引を実施するため、例えば電力と熱を供給可能なコジェネレーションの様に、複数のエネルギーを同時に供給可能であり、かつ供給する電気、熱の比率(電熱比)が固定的で比率を自由に変更できない供給システムについては考慮されていない。そのため例えば、電力についての取引では多くの供給取引を成立できたが、熱についての取引では少量の供給取引しか成立できなかった場合、電力に伴って生成する熱が成立した供給量以上に発生し、無駄になるという問題がある。または、熱についての取引では多くの供給取引を成立できたが、電力についての取引では少量の供給取引しか成立できなかった場合、熱に伴って生成する電力が成立した供給量以上に発生し、無駄になるという問題がある。 However, since the method of Patent Document 1 carries out a transaction for each energy, for example, cogeneration that can supply power and heat can supply a plurality of energy at the same time, and the ratio of electricity and heat to be supplied. A supply system with a fixed (electric heat ratio) and the ratio cannot be changed freely is not considered. Therefore, for example, if a lot of supply transactions can be established in the transaction for electric power, but only a small amount of supply transaction can be established in the transaction for heat, the heat generated with the electric power is generated more than the established supply amount. There is a problem of being wasted. Or, if the transaction for heat was able to close many supply transactions, but only a small amount of supply transaction was successful in the transaction for electric power, the power generated with the heat will occur more than the established supply amount, There is a problem of being wasted.
 そこで本発明の目的は、需要家のエネルギー需要を満たし、供給者の電熱比を優先し余剰電力や余剰熱の発生を抑え、運転コストを削減する事が可能なエネルギー取引システムを実現する。 Therefore, an object of the present invention is to realize an energy trading system that can satisfy the energy demand of a consumer, give priority to the electric heat ratio of the supplier, suppress the generation of surplus power and surplus heat, and reduce the operation cost.
 上記目的を達成するため、本願発明では、エネルギー取引装置により、他のエネルギー取引装置から受信した他のエネルギー取引装置の需要情報及び他のエネルギー取引装置の供給能力情報と、自ら作成した需要情報及び供給能力情報と、に基き、前記他のエネルギー取引装置との間でやり取りするエネルギーの種類及び量を決定する。 In order to achieve the above-mentioned object, in the present invention, the energy transaction device uses the demand information of the other energy transaction device received from the other energy transaction device and the supply capacity information of the other energy transaction device, the demand information created by itself, and Based on the supply capability information, the type and amount of energy exchanged with the other energy trading apparatus are determined.
 本発明によれば、需要家のエネルギー需要を満たし、供給者は自身にとって効率的な電熱比を優先した取引を成立させる事が可能となる。それより、運転コストを削減する事ができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
ADVANTAGE OF THE INVENTION According to this invention, the energy demand of a consumer is satisfy | filled and it becomes possible for a supplier to establish the transaction which gave priority to an efficient electric heat ratio for self. As a result, the operating cost can be reduced.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
本発明の実施形態に関するエネルギー取引システム全体のハードウェア構成図。The hardware block diagram of the whole energy trading system regarding embodiment of this invention. エネルギー取引装置によるフロー図。The flowchart by an energy transaction apparatus. 需要用取引を実行するフロー図。The flowchart which performs transaction for demand. 供給用取引を実行するフロー図。The flowchart which performs transaction for supply. 第二の実施形態における需要用取引を実行するフロー図。The flowchart which performs the transaction for demand in 2nd embodiment. 第二の実施形態における供給用取引を実行するフロー図。The flowchart which performs the transaction for supply in 2nd embodiment.
 以下図面を参照しつつ、本発明を実施するための最良の形態について説明する。 The best mode for carrying out the present invention will be described below with reference to the drawings.
 <第一の実施形態>
 図1にエネルギー取引システムの構成例を示す。このシステムは、複数のエネルギー取引者100と、エネルギー取引者100が生成する熱、電力を互いにやり取りするための熱配管300と、電力線400と、エネルギー取引者100の間で熱、電力等のエネルギー取引に関する情報をやり取りするための通信ネットワーク200とを備えている。
<First embodiment>
FIG. 1 shows a configuration example of an energy trading system. This system includes a plurality of energy traders 100, a heat pipe 300 for exchanging heat and power generated by the energy traders 100, a power line 400, and energy such as heat and power between the energy traders 100. And a communication network 200 for exchanging information regarding transactions.
 エネルギー取引者100は、自身が生成する熱、電力等のエネルギーを他エネルギー取引者とやりとりし自動的に取引を行うエネルギー取引装置101と、過去の需要実績をもとに自身の将来の需要量を予測する需要予測装置102と、過去の供給実績をもとに自身の将来の供給能力を予測する供給能力予測装置103と、エネルギー取引装置101が成立させたエネルギーの取引情報や需要・供給の実績情報を保持する記憶装置104と、工場の生産ラインや一般家庭における家電製品等の電力を消費する電力負荷設備105と、工場の生産ラインやビルの空調機等の熱を消費する熱負荷設備106と、ガスエンジン等の発電機やコージェネレーションシステムやヒートポンプ等の熱電供給設備107と、エネルギー取引装置が成立させた取引内容を記憶装置104から読み出し、取引内容に合わせて熱負荷設備107、電力負荷設備106、熱電供給設備108を制御する制御装置108とを備えている。ここで、電熱供給設備により発生する電力と熱の割合は、その設備の種類によって異なる。例えば、熱の発生を抑えつつ効率的に電力を発電する設備もあれば、その逆もある。本実施例では、この電力と熱の発生する割合を考慮して、うまく組み合わせることで、より効率的なエネルギー取引を実現する。 The energy trader 100 exchanges energy such as heat and electric power generated by itself with other energy traders, and automatically trades with the energy trade device 101 and its future demand based on past demand records. Demand forecasting device 102 for forecasting, supply capability forecasting device 103 for forecasting its future supply capability based on past supply results, and information on energy transaction information and demand / supply established by energy trading device 101 Storage device 104 that retains performance information, power load equipment 105 that consumes power such as home appliances in factory production lines and general households, and heat load equipment that consumes heat such as factory production lines and building air conditioners 106, read out the transaction content established by the energy trading device from the storage device 104, and the thermoelectric supply equipment 107 such as a generator such as a gas engine, a cogeneration system and a heat pump, Thermal load facility 107 in accordance with the pull content, power load facility 106, and a control unit 108 for controlling the cogeneration facility 108. Here, the ratio of the electric power and heat which generate | occur | produce with an electric heat supply installation changes with kinds of the installation. For example, there are facilities that efficiently generate power while suppressing the generation of heat, and vice versa. In the present embodiment, more efficient energy trading is realized by combining the power and heat generation ratios in a good manner.
 需要予測装置102は、過去の需要実績をもとに自身の将来の需要量を予測した需要予測情報を作成する。需要予測情報はエネルギー取引者が外部から取得する必要のあるエネルギー量の予測値であり、例えば電力[kW]、熱[MJ/h]等、エネルギーの種別毎に予測した需要量の予測値である。 The demand forecasting device 102 creates demand forecasting information that forecasts the future demand volume based on the past demand record. The demand prediction information is a predicted value of the amount of energy that the energy trader needs to obtain from the outside, for example, a predicted value of the predicted amount of demand for each type of energy, such as electric power [kW], heat [MJ / h], etc. is there.
 供給能力予測装置103は、過去の供給実績をもとに自身の将来の供給能力を予測した供給能力予測情報を作成する。供給能力予測情報は、エネルギー取引者が外部に対して供給可能なエネルギー量の上限値の予測値であり、例えば電力[kW]、熱[MJ/h]等、エネルギーの種別毎に予測した供給可能量の予測値である。 The supply capacity prediction device 103 creates supply capacity prediction information by predicting its future supply capacity based on past supply results. The supply capacity prediction information is a predicted value of the upper limit of the amount of energy that can be supplied to the outside by the energy trader. For example, supply predicted for each type of energy such as electric power [kW], heat [MJ / h], etc. This is the predicted value of the possible amount.
 エネルギー取引装置101は、需要情報、供給能力情報、供給情報、供給要求情報等の作成と、他エネルギー取引者と需要情報、供給可能情報、供給情報、供給要求情報等の各種情報を送受信し、ある時刻におけるエネルギー取引者101の需要、若しくは供給に関する取引を成立させる。また、成立した取引情報を記憶装置104に格納する。 The energy trading apparatus 101 generates and transmits demand information, supply capacity information, supply information, supply request information, and other information such as demand information, supply available information, supply information, supply request information with other energy traders, A transaction relating to the demand or supply of the energy trader 101 at a certain time is established. Further, the established transaction information is stored in the storage device 104.
 エネルギー取引装置101が作成する需要情報は、エネルギー取引者を判別するための識別子と、ある時刻における電力や熱等のエネルギー需要量と、優先権判定情報と、供給能力のあるエネルギー取引者が供給可否を判断するための供給可否情報を含む。供給可否情報は例えば位置情報等がある。電力、熱エネルギーは搬送経路の抵抗によるエネルギーロスがあることから、供給可能な距離に制限がある。位置情報を用いる事で供給するための距離を算出でき、その距離をもとに供給可否を判断する。優先権判定情報は、エネルギー取引者のエネルギー利用に関する総合効率や、CO2排出量原単位等であり、需要のあるエネルギー取引者間で供給元を選択する順位を決める際に利用する情報である。また、供給能力のあるエネルギー取引者間で供給先を選択する順位を決める際にも利用される。上記記載の総合効率とは、例えば、エネルギー取引者から外部へ供給されるエネルギー量とエネルギー取引者の内部で最終的に消費されるエネルギー量との総和を、取り込んだ再生可能エネルギー量と外部から購入したエネルギーの一次エネルギー換算量との総和で除した値である。この総合効率は、運転効率やエネルギーの生成効率の良い設備を用いている程値は良くなる。 The demand information created by the energy trading device 101 is supplied by an energy trader with an identifier, an energy demand amount such as electric power and heat at a certain time, priority judgment information, and an energy trader with supply capability. It includes supply availability information for determining availability. The supply availability information includes, for example, position information. Since electric power and thermal energy have energy loss due to the resistance of the conveyance path, there is a limit to the distance that can be supplied. The distance for supply can be calculated by using the position information, and whether or not supply is possible is determined based on the distance. The priority determination information is information used when determining the order of selecting a supplier among demanding energy traders, such as total efficiency of energy traders and CO2 emission basic unit. It is also used to determine the order of selecting supply destinations among energy traders with supply capabilities. The total efficiency described above is, for example, the sum of the amount of energy supplied externally from the energy trader and the amount of energy finally consumed inside the energy trader, and the amount of renewable energy taken in and the outside It is the value divided by the sum of the purchased energy and the primary energy equivalent. The total efficiency becomes better as equipment having high operation efficiency and energy generation efficiency is used.
 需要情報は全てのエネルギー取引者に展開され、その時刻において供給能力のあるエネルギー取引者が供給情報を作成する際に利用される。供給情報の詳細は後述する。 Demand information is deployed to all energy traders, and is used when energy traders with a supply capability create supply information at that time. Details of the supply information will be described later.
 エネルギー取引装置101が作成する供給能力情報は、エネルギー取引者を判別するための識別子と、ある時刻における電力や熱等のエネルギーの種類毎の供給可能なエネルギー供給可能量と、優先権判定情報と、エネルギーの供給可否情報を含む。供給能力情報は全てのエネルギー取引者に展開され、その時刻において需要のあるエネルギー取引者が供給要求情報を作成する際に利用される。供給要求情報の詳細は後述する。 The supply capacity information created by the energy trading device 101 includes an identifier for discriminating an energy trader, an available energy supply amount for each type of energy such as electric power and heat at a certain time, priority judgment information, and , Including information on whether or not to supply energy. The supply capacity information is expanded to all energy traders, and is used when an energy trader in demand at that time creates supply request information. Details of the supply request information will be described later.
 エネルギー取引装置101が作成する供給情報は、自身を表すエネルギー取引者の識別子と、1つ以上のエネルギー供給先情報を含む。エネルギー供給先情報は供給先のエネルギー取引者を表す識別子と、エネルギー供給量と、供給エネルギー単価と、供給エネルギー品質とを含む。供給エネルギー品質とは、例えばCO2排出量原単位や、供給者自身の総合効率や、エネルギー供給能力の安定性等に関する情報である。 The supply information created by the energy transaction apparatus 101 includes an identifier of an energy trader representing itself and one or more energy supply destination information. The energy supply destination information includes an identifier representing an energy trader of the supply destination, an energy supply amount, a supply energy unit price, and a supply energy quality. The supply energy quality is, for example, information on the CO2 emission basic unit, the supplier's own overall efficiency, the stability of the energy supply capacity, and the like.
 エネルギー取引装置101が作成する供給要求情報は、自身を表すエネルギー取引者の識別子と、自身の総合効率を表す情報と、1つ以上の供給要求先情報を含む。供給要求先情報は、供給要求先であるエネルギー取引者の識別子と、エネルギー供給要求量と、エネルギー供給要求単価とを含む。 The supply request information created by the energy transaction apparatus 101 includes an identifier of the energy trader representing itself, information representing the total efficiency of the self, and one or more supply request destination information. The supply request destination information includes an identifier of an energy trader who is a supply request destination, an energy supply request amount, and an energy supply request unit price.
 エネルギー取引装置101により実施されるエネルギー取引は、ある時間帯におけるエネルギーの需要と供給の取引である。例えば30分単位、1時間単位など予め決められた時間間隔について取引を行う。また、エネルギーの取引処理は事前実施し、実際にエネルギーの需給を実施する以前に完了させておく。事前実施の開始タイミングは、予め取り決めておきエネルギー取引者間で共有しておく。エネルギー取引装置101の処理フローの詳細は後述する。 The energy transaction executed by the energy transaction apparatus 101 is a transaction of energy supply and demand in a certain time zone. For example, transactions are performed for a predetermined time interval such as 30 minutes or 1 hour. In addition, the energy transaction processing is performed in advance, and is completed before actual energy supply and demand is implemented. The start timing of prior implementation is decided in advance and shared among energy traders. Details of the processing flow of the energy transaction apparatus 101 will be described later.
 図2を用いて、ある時刻におけるエネルギー取引を実施する際のエネルギー取引装置101の処理フローを示す。 FIG. 2 shows a processing flow of the energy trading apparatus 101 when performing energy trading at a certain time.
 S100で需要予測装置より取引を行う時刻における需要予測情報を取得し、需要情報を作成する。作成した需要情報は、他エネルギー取引者に対して通信ネットワークを介して展開する。 Demand information is obtained at the time of transaction from the demand prediction device in S100, and demand information is created. The created demand information is deployed to other energy traders via a communication network.
 S200で供給能力予測装置より取引を行う時間における供給能力予測情報を取得し、供給能力情報を作成する。作成した供給能力情報は、他エネルギー取引者に対して展開する。 Supplied supply capacity prediction information at the time of transaction from the supply capacity prediction device in S200 and create supply capacity information. The created supply capacity information is developed for other energy traders.
 S300でS100、S200での処理結果から需要、供給の有無を判定し今後の処理を確定する。需要が有り供給能力が無い場合は需要用取引処理S400を実施する。需要用取引処理S400の詳細は後述する。需要が無く供給能力がある場合は供給用取引処理S500を実施する。供給用取引処理S500の詳細は後述する。需要も有り供給能力も有る場合は、S600で需要用取引処理S400と供給用取引処理S500を並行して実施する。なお、エネルギー取引装置の性能によっては、これら処理は同時でなくても構わない。例えば、S400を先に実行し、次にS500を実行してもよい。また、S500を先に実行し、次にS400を実行しても良い。 ∙ Determine whether there is demand or supply from the processing results in S100 and S200 in S300, and confirm future processing. When there is demand and there is no supply capacity, transaction processing for demand S400 is performed. Details of the transaction processing for demand S400 will be described later. When there is no demand and supply capability, supply transaction processing S500 is performed. Details of supply transaction processing S500 will be described later. If there is demand and supply capability, the transaction processing for demand S400 and the transaction processing for supply S500 are executed in parallel in S600. Depending on the performance of the energy transaction apparatus, these processes may not be performed simultaneously. For example, S400 may be executed first and then S500 may be executed. Alternatively, S500 may be executed first and then S400 may be executed.
 需要も有り供給も有る状況とは、例えば電動式のヒートポンプ等のように電力を利用して熱を供給する場合等である。この場合ヒートポンプで必要となる電力が需要であり、ヒートポンプが供給する熱が供給可能なエネルギーである。 The situation where there is both demand and supply is the case where heat is supplied using electric power, such as an electric heat pump. In this case, electric power necessary for the heat pump is demand, and heat supplied by the heat pump is energy that can be supplied.
 図3に需要用取引処理S400の処理フローを示す。 Fig. 3 shows the processing flow of the demand transaction processing S400.
 S401で他エネルギー取引者からの供給情報を取得する。S200にて供給可能情報を展開した他エネルギー取引者からの供給情報が全て揃い次第、次処理のS408へ進む。 Supplied supply information from other energy traders in S401. As soon as all the supply information from other energy traders who have developed the supplyable information in S200 is available, the process proceeds to S408 of the next process.
 S408では、取得した供給情報を確認する。展開された全ての供給情報の供給量が0である場合、次処理S409へ進む。そうでない場合は、次処理S402へ進む。 In S408, the acquired supply information is confirmed. If the supply amount of all the expanded supply information is 0, the process proceeds to the next process S409. Otherwise, the process proceeds to the next process S402.
 S402では優先権確定処理を実施する。優先権確定処理とは、需要のある他エネルギー取引者からの需要情報に含まれる優先権判定情報をもとに、自身の優先権順位を確認する。 In S402, priority determination processing is performed. In the priority determination process, the priority order of the user is confirmed based on the priority determination information included in the demand information from other energy traders in demand.
 上記S402における優先権確定処理により、エネルギー取引者に供給情報を選択する順番を決める事で、エネルギー利用の総合効率の高いエネルギー取引者や、CO2排出量の少ないエネルギー取引者から優先的に優位な取引を成立させる事が可能になる。 The priority determination process in S402 determines the order in which supply information is selected by the energy trader, giving it a priority over energy traders with high overall efficiency of energy use and energy traders with low CO2 emissions. It becomes possible to make a transaction.
 S403では、需要のある他エネルギー取引者が選択した結果である供給情報選択結果を収集し、自身より上位の他エネルギー取引者の選択処理が終了する迄待機する。待機する間、供給情報選択結果と、自身が持つ供給情報を比較する。この時、供給情報選択結果に含まれる供給先情報のエネルギー取引者を確認し、このエネルギー取引者を供給先情報として含む供給情報を、自身が持つ供給情報から除去する。また、自身より上位の他エネルギー取引者が選択した結果である供給情報選択結果の供給先情報に自身が含まれている場合は、自身もその供給情報選択結果を採用し、選択結果を他エネルギー取引者へ展開後、次処理のS404へ進む。自身で供給情報を選択する際は、供給エネルギー単価、供給エネルギー品質等について、自身が定める選択基準に基づいて供給情報を1つ選択する。上記選択基準は例えば、供給エネルギー単価をA[\/kWh]、エネルギー単価に対する重み付け係数をα、供給エネルギー品質としてCO2排出量原単位をB[kg-CO2/kWh]、CO2排出量原単位に対する重み付け係数をβ、供給安定度C、供給安定度に対する重み付け係数をδとし、数1を用い評価値Vが最も小さくなる供給情報を選択する。 In S403, supply information selection results, which are the results of selection by other energy traders in demand, are collected, and the process waits until the selection process of the other energy traders higher than itself ends. While waiting, the supply information selection result is compared with the supply information held by itself. At this time, the energy trader of the supply destination information included in the supply information selection result is confirmed, and the supply information including this energy trader as the supply destination information is removed from the supply information held by itself. If the supplier information of the supply information selection result, which is the result selected by the other energy trader higher than itself, is included in the supply destination information, the supplier also adopts the supply information selection result and uses the selection result as the other energy After deployment to the trader, the process proceeds to S404 of the next process. When selecting supply information by itself, one piece of supply information is selected based on selection criteria determined by the user for supply energy unit price, supply energy quality, and the like. The above selection criteria are, for example, supply energy unit price A [\ / kWh], weighting factor for energy unit price α, supply energy quality CO2 emission basic unit B [kg-CO2 / kWh], CO2 emission basic unit The weighting coefficient is β, the supply stability C, the weighting coefficient for the supply stability is δ, and the supply information with the smallest evaluation value V is selected using Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 選択結果を他エネルギー取引者へ展開後、次処理のS404へ進む。上位の他エネルギー取引者の選択結果により、選択可能な供給情報が全て除去された場合、選択無しとして選択結果を他エネルギー取引者へ展開後、次処理のS404へ進む。 After expanding the selection result to other energy traders, proceed to S404 of the next process. If all selectable supply information is removed according to the selection result of the higher-order other energy trader, the selection result is expanded to other energy traders without selection, and the process proceeds to S404 of the next process.
 上記S403の処理により、既に取引の確定した供給情報を、各エネルギー取引者の選択肢から削除して行く事で、矛盾した取引の成立を防ぐ。 <By the process of S403 above, the supply information that has already been confirmed for the transaction is deleted from the options of each energy trader to prevent the establishment of contradictory transactions.
 S404では、自身の需要が満たされているか確認する。S100で作成した需要情報から、S403にて選択した供給情報の供給量を差し引き、需要が充足した場合は需要取引の処理を終了する。需要が充足していない場合はS407へ進む。 In S404, it is confirmed whether own demand is satisfied. The supply amount of the supply information selected in S403 is subtracted from the demand information created in S100. When the demand is satisfied, the demand transaction processing is terminated. If the demand is not satisfied, the process proceeds to S407.
 S407では、S100で作成した需要情報の需要量をS404で確認した需要不足分に更新し、再度他エネルギー取引者へ展開する。 In S407, the demand amount of the demand information created in S100 is updated to the shortage of demand confirmed in S404, and is expanded to other energy traders again.
 S409では、他エネルギー取引者から再度、その時点での供給能力情報を収集し、次処理のS410へ進む。 In S409, the supply capacity information at that time is collected again from other energy traders, and the process proceeds to S410 of the next process.
 S410では、供給能力情報に含まれる供給可否情報を用いて供給の可否を判定する。例えば、電力、熱を供給する際の距離的な制限を考慮し、供給可否情報として位置情報を付与させ、所定の距離以上に離れているエネルギー取引者の供給可能情報については除去する。次処理のS405へ進む。 In S410, the availability of supply is determined using the availability information included in the supply capability information. For example, in consideration of distance restrictions when supplying electric power and heat, position information is given as supply availability information, and supply availability information of energy traders that are more than a predetermined distance is removed. Proceed to S405 of the next process.
 以上に示すS410における処理により、エネルギー供給の物理的な制約を考慮し、供給不可となる取引の成立を防ぐ。なお、このS410の供給可否判定処理は、S408で供給情報有りとして処理を進めるときに実施しても良い。 By the processing in S410 described above, physical constraints on energy supply are taken into consideration, and the establishment of a transaction that cannot be supplied is prevented. Note that the supply availability determination process in S410 may be performed when the process proceeds in S408 with supply information present.
 S405では、S409で取得した他エネルギー取引者の供給能力情報より、自身の需要を充足でき、かつ需要量に最も値が近くなるように供給要求情報を作成し、他エネルギー取引者へ展開する。供給要求情報に含まれる供給要求先情報の作成方法の一つの例として、自身の需要量が電力12[kW]、熱25[MJ/h]とした場合について説明する。供給能力情報として、電力5[kW]、熱16[MJ/h]である供給能力情報aと、電力6[kW]、熱15[MJ/h] である供給能力情報bと、電力8[kW]、熱11[MJ/h] である供給能力情報cとがあった場合、供給要求先情報として、電力需要12[kW]と、熱需要の25[MJ/h]を上回る組合せである供給能力情報b、cを選択する。供給要求情報のエネルギー単価については、この時刻における取引内で成立した価格よりも高く設定するように制約を設ける。供給要求情報を展開後、次処理のS406へ進む。 In S405, supply request information is created from the supply capacity information of other energy traders acquired in S409 so that its own demand can be satisfied and the value is closest to the demand amount, and is developed to other energy traders. As an example of a method for creating supply request destination information included in supply request information, a case where the demand amount thereof is 12 [kW] for electric power and 25 [MJ / h] for heat will be described. As supply capacity information, supply capacity information a with power 5 [kW] and heat 16 [MJ / h], supply capacity information b with power 6 [kW] and heat 15 [MJ / h], and power 8 [ When there is supply capacity information c that is kW] and heat 11 [MJ / h], it is a combination that exceeds 12 [kW] of power demand and 25 [MJ / h] of heat demand as supply request destination information Select supply capability information b and c. The energy unit price of the supply request information is set to be higher than the price established in the transaction at this time. After the supply request information is expanded, the process proceeds to S406 of the next process.
 S406では、他エネルギー取引者の供給要求情報の選択結果を収集し、自身の需要を充足できたかどうか確認する。充足できた場合は処理を終了する。充足できていない場合は不足分を再計算し、S409へ進む。 In S406, the selection result of the supply request information of other energy traders is collected, and it is confirmed whether or not its own demand has been satisfied. If it is satisfied, the process ends. If it is not satisfied, the shortage is recalculated and the process proceeds to S409.
 以上に示すS409、S410、S405、S406における処理により、供給能力のあるエネルギー取引者から供給情報を提供されない場合において、需要のあるエネルギー取引者が供給能力のあるエネルギー取引者の組合せを指定する事で、需要が満たされない状況の発生を防ぐ。 When supply information is not provided from an energy trader with supply capability by the processing in S409, S410, S405, and S406 described above, an energy trader with demand specifies a combination of energy traders with supply capability. This prevents the situation where demand is not met.
 図4に供給用取引処理S500の処理フローを示す。 Fig. 4 shows the processing flow of transaction processing for supply S500.
 S501では、他エネルギー取引者が展開する需要情報を収集する。需要情報が出そろった後、次処理のS507へ進む。 In S501, demand information developed by other energy traders is collected. After the demand information is gathered, the process proceeds to the next process S507.
 S507では、需要情報内の需要量の有無を確認する。需要が有る場合は、次処理のS508へ進む。需要量が無い場合は処理を終了する。 In S507, the presence / absence of demand in the demand information is confirmed. When there is a demand, it progresses to S508 of the next process. If there is no demand, the process is terminated.
 S508では、需要情報に含まれる供給可否情報を用いて供給の可否を判定する。例えば、電力、熱を供給する際の距離的な制限を考慮し、供給可否情報として位置情報を付与させ、所定の距離以上に離れているエネルギー取引者の需要情報については除去する。次処理のS502へ進む。 In S508, the availability of supply is determined using the availability information included in the demand information. For example, in consideration of distance limitations when supplying power and heat, position information is given as supply availability information, and demand information of energy traders that are more than a predetermined distance is removed. Proceed to S502 of the next process.
 以上に示すS508における処理により、エネルギー供給の物理的な制約を考慮し、供給不可となる取引の成立を防ぐ。 By the processing in S508 described above, the physical restriction of energy supply is taken into consideration, and the establishment of a transaction that cannot be supplied is prevented.
 S502では、収集した需要情報をもとに、自身のエネルギー供給効率が最も良くなるような需要情報の組合せを探索し、供給情報を作成する。供給情報に含まれる供給先情報の作成方法の一つの例として、自身の供給能力が電力10[kW]、熱20[MJ/h]とした場合に最も供給効率が良い場合、この供給能力を超え、かつ最も値が近くなるように需要情報の組合せを探索し供給先情報を作成する。収集した需要情報が電力5[kW]、熱9[MJ/h]である需要情報aと、電力6[kW]、熱15[MJ/h] である需要情報bと、電力8[kW]、熱11[MJ/h] である需要情報cとであった場合、需要情報a、cの組合せを採用し供給先情報を作成する。需要情報a、需要情報cに対する供給量の割り当ては、需要情報に含まれる優先権判定情報に基づき、優先度が高い順に割り当てていく。例えば、需要情報aの優先権判定情報の値が、需要情報cの優先権判定情報の値よりも高い場合、需要情報aのエネルギー取引者に対して電力5[kW]、熱9[MJ/h]を割当て、需要情報cのエネルギー取引者に対して電力5[kW]、熱11[MJ/h]を割り当てる。上記条件である供給能力を超え、かつ最も値が近くなるような条件を満たす需要情報の組合せが無い場合は、需要情報の全ての組合せの内、最も供給効率が高くなる組合せを採用し供給先情報を作成する。どのような組合せにおいても、供給効率が予め独自に定めた閾値を超えない場合は、供給無しとして供給先情報を作成する。供給エネルギー単価、供給エネルギー品質は、過去の自身の供給実績に基づき算出する。作成した供給情報を、他エネルギー取引者へ展開し、次処理のS503へ進む。 In S502, based on the collected demand information, search for a combination of demand information that provides the best energy supply efficiency, and create supply information. As one example of the method of creating the supply destination information included in the supply information, if the supply capacity is the highest and the supply efficiency is the best when the supply capacity is 10 [kW] and the heat is 20 [MJ / h], this supply capacity is A combination of demand information is searched so as to exceed and become the closest value, and supply destination information is created. Collected demand information is electricity 5 [kW], heat 9 [MJ / h] demand information a, electricity 6 [kW], heat 15 [MJ / h] 需要 demand information b, and electricity 8 [kW] When the demand information c is heat 11 [MJ / h], the combination of the demand information a and c is used to create the supplier information. Allocation of supply amount to demand information a and demand information c is performed in descending order of priority based on priority determination information included in demand information. For example, if the value of the priority determination information of the demand information a is higher than the value of the priority determination information of the demand information c, the electric power 5 [kW], the heat 9 [MJ / h], and 5 [kW] and heat 11 [MJ / h] are allocated to the energy trader of the demand information c. If there is no combination of demand information that satisfies the supply conditions that exceed the supply capacity, which is the above condition, and that satisfies the closest value, among all the combinations of demand information, the combination with the highest supply efficiency is adopted and the supplier Create information. In any combination, if the supply efficiency does not exceed a predetermined threshold value, supply destination information is created as no supply. Supply energy unit price and supply energy quality are calculated based on past supply results. The generated supply information is expanded to other energy traders, and the process proceeds to S503 of the next process.
 以上に示すS502における処理により、供給能力のあるエネルギー取引者が、自身の供給能力を優先した供給先の選択が可能になり、供給効率を考慮した取引が可能になる。 Through the above-described processing in S502, an energy trader with a supply capability can select a supply destination that prioritizes his supply capability, and a transaction considering supply efficiency is possible.
 S503では、需要側応答の確認処理をする。需要側応答とは、供給情報を展開した後に、需要側が供給情報を選択し、その選択結果を展開することである。需要側応答が供給要求情報である場合、次処理S504へ進む。それ以外の場合は、次処理S506へ進む。 In S503, a confirmation process of the demand side response is performed. The demand side response means that after the supply information is expanded, the demand side selects the supply information and expands the selection result. When the demand side response is supply request information, the process proceeds to the next process S504. Otherwise, the process proceeds to the next process S506.
 S504では、優先権確定処理を行う。優先権確定処理とは、供給能力のある他エネルギー取引者から展開される供給能力情報に含まれる優先権判定情報を収集し、自身の優先権順位を確認する。優先権の判定に用いる情報は、予め全エネルギー取引者間で共有されたものであり、例えばエネルギー取引者の総合効率や、CO2排出量原単位等を用いて、供給能力のあるエネルギー取引者間で供給先を選択する順位を決める際に利用する情報である。 In S504, priority determination processing is performed. In the priority determination process, priority determination information included in supply capacity information developed from other energy traders with supply capacity is collected, and its priority order is confirmed. The information used to determine priority is shared in advance between all energy traders.For example, the energy efficiency between energy traders with the supply capacity using the overall efficiency of energy traders, CO2 emission basic unit, etc. This information is used when determining the order of selecting the supply destination.
 上記S504における優先権確定処理により、エネルギー取引者に供給要求情報を選択する順番を決める事で、エネルギー利用の総合効率の高いエネルギー取引者や、CO2排出量の少ないエネルギー取引者から優先的に優位な取引を成立させる事が可能になる。 By deciding the order of selection of supply request information to energy traders by the priority determination process in S504 above, it is preferentially superior to energy traders with high overall efficiency of energy use and energy traders with low CO2 emissions. It is possible to make a successful transaction.
 S505では、供給能力のある他エネルギー取引者による供給要求選択結果を収集し、上位の他エネルギー取引者の選択処理が終了する迄待機する。待機する間、収集した供給要求情報選択結果と、自身が持つ供給要求情報を比較する。この時、供給要求情報の供給要求先情報に含まれるエネルギー取引者を確認し、供給要求先情報に同じエネルギー取引者を含む供給要求情報を、自身が保持する供給要求情報から除去する。また、自身より上位の他エネルギー取引者が選択した供給要求情報の供給要求先情報に自身が含まれている場合は、自身もその供給要求情報を採用し、選択結果を他エネルギー取引者へ展開後、次処理のS506へ進む。自身で供給要求情報を選択する際は、供給要求単価、総合効率等、自身が定める基準に基づいて供給要求情報を1つ選択する。 In S505, the supply request selection results by other energy traders with supply capability are collected, and the process waits until the selection process of the other higher energy traders is completed. While waiting, the collected supply request information selection result is compared with the supply request information held by itself. At this time, the energy trader included in the supply request destination information of the supply request information is confirmed, and the supply request information including the same energy trader in the supply request destination information is removed from the supply request information held by itself. In addition, if the supply request destination information of the supply request information selected by the other energy trader higher than itself is included in the supply request destination information, it also adopts the supply request information and deploys the selection result to other energy traders. Thereafter, the process proceeds to S506 of the next process. When selecting the supply request information by itself, one supply request information is selected based on the criteria determined by the user such as the required supply unit price and the overall efficiency.
 上記選択基準は例えば、供給要求単価をD[\/kWh]、エネルギー単価に対する重み付け係数をλ、総合効率をE[%]、総合効率に対する重み付け係数をηとし、数2を用い評価値Wが最も小さくなる供給要求情報を選択する。 The above selection criteria are, for example, that the required supply unit price is D [\ / kWh], the weighting coefficient for the energy unit price is λ, the total efficiency is E [%], the weighting coefficient for the total efficiency is η, and the evaluation value W is The supply request information that is the smallest is selected.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 選択結果を他エネルギー取引者へ展開後、次処理のS506へ進む。上位の他エネルギー取引者の選択結果により、選択可能な供給要求情報が全て除去された場合、選択無しとして選択結果を他エネルギー取引者へ展開後、次処理のS506へ進む。 After expanding the selection result to other energy traders, the process proceeds to S506 of the next process. If all selectable supply request information is removed according to the selection result of the higher-order other energy trader, the selection result is expanded to other energy traders as no selection, and the process proceeds to S506 of the next process.
 上記S505の処理により、既に取引の確定した供給要求情報を、各エネルギー取引者の選択肢から削除して行く事で、矛盾した取引の成立を防ぐ。 <By the process of S505 above, the supply request information that has already been confirmed for the transaction is deleted from the options of each energy trader to prevent the establishment of contradictory transactions.
 S506では、S503で確定した取引情報と、S200で作成した供給能力情報をもとに自身の供給能力情報を更新し他エネルギー取引者へ展開する、供給能力が有る場合は次処理S501へ進み需要情報を収集する。供給余力が無い場合は処理を終了する。 In S506, based on the transaction information confirmed in S503 and the supply capacity information created in S200, update own supply capacity information and deploy it to other energy traders. If there is a supply capacity, proceed to the next process S501 and demand Collect information. If there is no supply capacity, the process ends.
 上記需要用取引処理400及び供給用取引処理500をエネルギー取引者100間で実施することで、需要者の需要を満たしかつ、供給者のエネルギー供給効率を踏まえた取引が可能になる。なお、需要用取引処理400及び供給用取引処理500は、各エネルギー取引者100のエネルギー取引装置101が互いに通信し合い、協調しながら順次進めて行く。 Execute the above-described transaction processing for demand 400 and transaction processing for supply 500 between the energy traders 100, thereby making it possible to fulfill the demands of the demanders and trade based on the energy supply efficiency of the suppliers. The demand transaction process 400 and the supply transaction process 500 are sequentially performed while the energy transaction apparatuses 101 of the respective energy traders 100 communicate with each other and cooperate with each other.
 <第二の実施形態>
 第一の実施形態では供給者となるエネルギー取引者100が、自身の供給効率等が最適となるように需要情報の組合せを選択して供給情報を作成し、需要者となるエネルギー取引者100へ提示、需要者となるエネルギー取引者100が優先権判定情報に基づいて上位者から供給情報を1つ選択して行く処理とした。第二の実施形態では、供給者となるエネルギー取引者100が複数パターンの供給情報を作成し、需要者となるエネルギー取引者100へ提示、需要者となるエネルギー取引者100が優先権判定情報に基づいて上位者から自身の需要を満たすように供給情報の組合せを選択して行く処理となるエネルギー取引システムについて説明する。
<Second Embodiment>
In the first embodiment, the energy trader 100 serving as a supplier creates a supply information by selecting a combination of demand information so that his / her supply efficiency is optimal, and the energy trader 100 serving as a consumer The processing is such that the energy trader 100 as a consumer selects one supply information from the superior based on the priority determination information. In the second embodiment, the energy trader 100 as a supplier creates multiple patterns of supply information, presents it to the energy trader 100 as a consumer, and the energy trader 100 as a consumer uses priority determination information. An energy trading system that is a process of selecting a combination of supply information so as to satisfy its own demand from a superior will be described.
 第二の実施形態におけるエネルギー取引システムの構成例は、図1に示す第一の実施形態におけるエネルギー取引システムの構成例と同じである。第二の実施形態におけるエネルギー取引装置101の処理フローは、図2に示す第一の実施形態におけるエネルギー取引装置101の処理フローと同じであるが、需要用取引処理S400、供給用取引処理S500の詳細処理が一部異なる。また、エネルギー取引装置101が作成する供給情報も一部異なる。 The configuration example of the energy trading system in the second embodiment is the same as the configuration example of the energy trading system in the first embodiment shown in FIG. The process flow of the energy transaction apparatus 101 in the second embodiment is the same as the process flow of the energy transaction apparatus 101 in the first embodiment shown in FIG. 2, but the demand transaction process S400 and the supply transaction process S500 are the same. Some details are different. In addition, the supply information created by the energy transaction apparatus 101 is partially different.
 第二の実施形態における供給情報は、自身を表すエネルギー取引者の識別子と、エネルギー供給量と、供給エネルギー単価と、供給エネルギー品質とを含む。供給エネルギー品質とは、例えばCO2排出量原単位や、供給者自身の総合効率や、エネルギー供給能力の安定性等に関する情報であり、第一の実施形態と同じである。第二の実施形態における供給情報は、供給先に関する情報を含まない点で第一の実施形態における供給情報と異なる。第二の実施形態における供給能力のあるエネルギー取引者100は、上記供給情報を複数パターン作成し他エネルギー取引者100へ展開する。供給情報作成処理の詳細については後述する。 The supply information in the second embodiment includes an identifier of an energy trader representing itself, an energy supply amount, a supply energy unit price, and a supply energy quality. The supplied energy quality is, for example, information on the CO2 emission basic unit, the supplier's own overall efficiency, the stability of the energy supply capacity, and the like, and is the same as in the first embodiment. The supply information in the second embodiment differs from the supply information in the first embodiment in that it does not include information on the supply destination. The energy trader 100 having the supply capability in the second embodiment creates a plurality of patterns of the supply information and deploys it to other energy traders 100. Details of the supply information creation processing will be described later.
 図5に第二の実施形態における需要用取引処理S400の詳細処理を示す。第一の実施形態における需要用取引処理S400の詳細処理を示す図3と異なる部分について説明する。優先権確定処理S402から需要情報の確定処理S404の間の処理が異なる。優先権確定処理S402の処理後、供給可否判定S508を実施し、S401で収集した供給情報から供給不可となる供給情報を除去し、次処理のS4031へ進む。 FIG. 5 shows detailed processing of the demand transaction processing S400 in the second embodiment. A different part from FIG. 3 which shows the detailed process of the demand transaction process S400 in 1st embodiment is demonstrated. The processes between the priority determination process S402 and the demand information determination process S404 are different. After the priority determination process S402, supply availability determination S508 is performed, supply information that cannot be supplied is removed from the supply information collected in S401, and the process proceeds to S4031 of the next process.
 S4031では供給情報選択処理を実施する。第二の実施形態の供給情報選択処理S4031では、S508で供給可能と判断された供給情報から、自身の需要を満たしかつ、自身の需要量と供給情報の組合せによる総量との差が最も小さくなる組合せを選択し、他エネルギー取引者へ選択結果を通知する。例えば供給情報として、あるエネルギー取引者100からの供給情報がa、bの2種類と、別のエネルギー取引者100からの供給情報がc、dの2種類ある場合について説明する。供給情報aが供給電力5[kW]、電力単価を10[\/kWh]、供給熱10[MJ/h]、供給熱単価を10[\/MJ]、供給エネルギー品質としてCO2排出量原単位を0.4[kg-CO2/kWh]、供給情報bが供給電力3[kW]、電力単価を12[\/kWh]、供給熱6[MJ/h]、供給熱単価を12[\/MJ]、供給エネルギー品質としてCO2排出量原単位を0.5[kg-CO2/kWh]、供給情報cが供給電力8[kW]、電力単価を8[\/kWh]、供給熱12[MJ/h]、供給熱単価を8[\/MJ]、供給エネルギー品質としてCO2排出量原単位を0.3[kg-CO2/kWh]、供給情報dが供給電力6[kW]、電力単価を11[\/kWh]、供給熱9[MJ/h]、供給熱単価を11[\/MJ]、供給エネルギー品質としてCO2排出量原単位を0.4[kg-CO2/kWh]とする。この時自身の需要量が電力11[kW]、熱19[MJ/h]である場合、需要を満たしかつ、自身が定める選択基準に基づいて供給情報の組合せを選択する。上記選択基準は例えば、供給情報の組合せによる供給エネルギーの総和と自身の需要量の総和の差をX[kw]、総和の差に対する重み付け係数をα’、供給情報の組合せによる供給総額をY[\]、供給総額に対する重み付けをβ’、 供給情報の組合せによるCO2排出総量をZ[kg-CO2]、CO2排出量に対する重み付け係数をγ’とし、数3を用い評価値Uが最も小さくなる供給情報の組合せを選択する。 In S4031, supply information selection processing is performed. In the supply information selection process S4031 of the second embodiment, the supply information determined to be supplyable in S508 satisfies the own demand, and the difference between the own demand amount and the total amount by the combination of the supply information is the smallest. Select a combination and notify other energy traders of the selection result. For example, a case will be described in which there are two types of supply information from an energy trader 100, a and b, and two types of supply information from another energy trader 100, c and d. Supply information a is supply power 5 [kW], unit price of electricity 10 [\ / kWh], supply heat 10 [MJ / h], unit price of supply heat 10 [\ / MJ], and CO2 emission basic unit as supply energy quality 0.4 [kg-CO2 / kWh], supply information b is supply power 3 [kW], power unit price 12 [\ / kWh], supply heat 6 [MJ / h], supply heat unit price 12 [\ / MJ] , CO2 emission basic unit is 0.5 [kg-CO2 / kWh] as supply energy quality, supply information c is supply power 8 [kW], unit price is 8 [\ / kWh], supply heat 12 [MJ / h], Supply heat unit price is 8 [\ / MJ], supply energy quality is CO2 emission basic unit is 0.3 [kg-CO2 / kWh], supply information d is supply power 6 [kW], power unit price is 11 [\ / kWh] Supply heat 9 [MJ / h], supply heat unit price 11 [\ / MJ], and CO2 emission basic unit as supply energy quality 0.4 [kg-CO2 / kWh]. At this time, if the own demand is 11 [kW] for electric power and 19 [MJ / h] for heat, a combination of supply information is selected based on a selection criterion that satisfies the demand and is determined by itself. The above selection criteria are, for example, the difference between the sum of the supply energy and the total amount of own demand by the combination of supply information is X [kw], the weighting coefficient for the sum difference is α ′, and the total supply by the combination of supply information is Y [ \], Β 'is the weight for the total supply, Z [kg-CO2] is the total amount of CO2 emissions by the combination of supply information, γ' is the weighting coefficient for the CO2 emissions, and the supply with the smallest evaluation value U is calculated using Equation 3 Select a combination of information.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記供給情報a、b、及びc、dについて、例えばα’=2、β’=1、γ’=2のように、供給量と需要量の差と、CO2排出量を小さくする事を重視し、価格に関する重み付けを小さくする場合、Uを最小とする供給情報の組合せはa、dの組合せとなる。逆に、α’=1、β’=2、γ’=1のように価格を重視する場合、Uを最小とする供給情報の組合せはa、cの組合せとなる。なお、一つの供給者からは一つの供給情報しか選べない。供給情報の組合せを選択後、次処理のS404へ進む。 For the supply information a, b, and c, d, for example, α ′ = 2, β ′ = 1, γ ′ = 2. Emphasis on reducing the difference between supply and demand and reducing CO2 emissions. If the weighting related to the price is reduced, the combination of supply information that minimizes U is a combination of a and d. Conversely, when the price is important such as α ′ = 1, β ′ = 2, and γ ′ = 1, the combination of supply information that minimizes U is a combination of a and c. Only one supply information can be selected from one supplier. After selecting a combination of supply information, the process proceeds to S404 of the next process.
 図6に第二の実施形態における供給用取引処理S500の詳細処理を示す。第一の実施形態における供給用取引処理S500の詳細処理を示す図4と異なる部分について説明する。需要情報の確認処理S507から需要側応答の確定処理S503の間の処理が異なる。需要情報の確認処理S507の処理後、次処理のS5021へ進む。 FIG. 6 shows the detailed process of the supply transaction process S500 in the second embodiment. A different part from FIG. 4 which shows the detailed process of supply transaction process S500 in 1st embodiment is demonstrated. The processing from the demand information confirmation processing S507 to the demand side response confirmation processing S503 is different. After the demand information confirmation process S507, the process proceeds to S5021 of the next process.
 S5021では供給情報作成処理を実施する。第二の実施形態の供給情報作成処理S5021では、第二の実施形態における供給情報を複数パターン作成する。例えば、自身の供給効率が最も良くなる供給量を最安値として、供給効率が悪くなるに従い供給単価を高くする供給情報を複数作成する。より具体的な例として、供給情報aが供給電力5[kW]、電力単価を10[\/kWh]、供給熱10[MJ/h]、供給熱単価を10[\/MJ]、供給エネルギー品質としてCO2排出量原単位を0.4[kg-CO2/kWh]、供給情報bが供給電力3[kW]、電力単価を12[\/kWh]、供給熱6[MJ/h]、供給熱単価を12[\/MJ]として、最も効率良く運転できる供給情報aと、部分負荷運転により効率が低下する供給情報bとの、2パターンの供給情報を作成する等がある。作成した複数の供給情報を他エネルギー取引者100へ展開する。 In S5021, supply information creation processing is performed. In the supply information creation process S5021 of the second embodiment, a plurality of patterns of supply information in the second embodiment are created. For example, a plurality of pieces of supply information are created in which the supply amount that provides the best supply efficiency is set to the lowest value, and the supply unit price is increased as the supply efficiency decreases. As a more specific example, supply information a is supply power 5 [kW], unit price of electricity 10 [\ / kWh], supply heat 10 [MJ / h], supply heat unit price 10 [\ / MJ], supply energy CO2 emissions per unit of production is 0.4 [kg-CO2 / kWh], supply information b is supply power 3 [kW], power unit price is 12 [\ / kWh], supply heat 6 [MJ / h], supply heat unit price 12 [\ / MJ], two patterns of supply information, such as supply information a that can be operated most efficiently and supply information b that decreases in efficiency due to partial load operation, are created. Deploy the created supply information to other energy traders 100.
 以上、本発明を実施するための最良の形態について具体的に説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば上記実施形態では、分散する各エネルギー取引者100のエネルギー取引装置101が互いに通信し合い取引を成立させる例について説明したが、取引情報を管理する集中サーバを用い、集中サーバと各エネルギー取引者のエネルギー取引装置101が通信し取引を成立させても構わない。 The best mode for carrying out the present invention has been specifically described above. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, the energy trading apparatus 101 of each energy trader 100 to be distributed communicates with each other to establish a trade. However, a central server that manages transaction information is used, and the central server and each energy trader are used. The energy transaction apparatus 101 may communicate to establish a transaction.
 また、上記実施形態ではエネルギーとして電力、熱の2つのエネルギーを例として説明したが電力、温水、蒸気等、3つ以上のエネルギーについても適用可能である。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
In the above-described embodiment, two energies of electric power and heat have been described as examples of energy, but it is also applicable to three or more energies such as electric power, hot water, and steam.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
 101 エネルギー取引装置
 102 需要予測装置
 103 供給能力予測装置
 104 記憶装置
 105 電力負荷設備
 106 熱負荷設備
 107 熱電供給設備
 108 制御装置
DESCRIPTION OF SYMBOLS 101 Energy transaction apparatus 102 Demand prediction apparatus 103 Supply capability prediction apparatus 104 Memory | storage device 105 Electric power load equipment 106 Thermal load equipment 107 Thermoelectric supply equipment 108 Control apparatus

Claims (17)

  1.  エネルギー取引装置と、需要予測装置と、供給能力予測装置と、通信装置と、を用いて複数の前記エネルギー取引装置間で送受するエネルギーの種類及び量を決定するエネルギー取引システムであって、
     前記需要予測装置は、予定されているエネルギー需要量を前記エネルギーの種類毎に予測し、当該エネルギー需要量に関する情報である需要情報を作成し、
     前記供給能力予測装置は、供給可能なエネルギー量を前記エネルギーの種類毎に予測し、当該供給可能なエネルギー量に関する情報である供給能力情報を作成し、
     前記通信装置は、他のエネルギー取引装置と通信し、前記需要情報及び/又は前記供給能力情報を送受信し、
     前記エネルギー取引装置は、前記通信手段によって他のエネルギー取引装置より受信した、他のエネルギー取引装置の需要情報又は他のエネルギー取引装置の供給能力情報と、前記作成した需要情報又は供給能力情報と、に基き、前記他のエネルギー取引装置との間でやり取りするエネルギーの種類及び量を決定する、
    ことを特徴とするエネルギー取引システム。
    An energy transaction system that determines the type and amount of energy to be transmitted and received between the plurality of energy transaction devices using an energy transaction device, a demand prediction device, a supply capacity prediction device, and a communication device,
    The demand prediction device predicts a planned energy demand for each type of energy, creates demand information that is information related to the energy demand,
    The supply capacity prediction device predicts the amount of energy that can be supplied for each type of energy, creates supply capacity information that is information relating to the amount of energy that can be supplied,
    The communication device communicates with other energy transaction devices, transmits and receives the demand information and / or the supply capacity information,
    The energy transaction device receives demand information of other energy transaction devices or supply capability information of other energy transaction devices received from other energy transaction devices by the communication means, and the created demand information or supply capability information, To determine the type and amount of energy exchanged with the other energy trading device,
    Energy trading system characterized by that.
  2.  請求項1に記載のエネルギー取引システムにおいて、
     前記エネルギーは電気と熱であり、
     前記需要情報及び供給能力情報は、電気に関する量と、熱に関する量を備えており、
     前記エネルギー取引装置は、複数の前記供給能力情報を組み合わせることで、前記作成した需要情報に定める電気と熱の需要量の要求を満たすことを特徴とするエネルギー取引システム。
    The energy trading system according to claim 1,
    The energy is electricity and heat,
    The demand information and supply capacity information comprise an amount relating to electricity and an amount relating to heat,
    The energy trading apparatus satisfies the demand for electricity and heat demand determined in the created demand information by combining a plurality of the supply capacity information.
  3.  請求項2に記載のエネルギー取引システムにおいて、
     前記供給能力情報が備える電気に関する量と熱に関する量の割合は、当該エネルギーを供給する機器の種類により異なることを特徴とするエネルギー取引システム。
    The energy trading system according to claim 2,
    The ratio of the amount related to electricity and the amount related to heat included in the supply capability information varies depending on the type of equipment supplying the energy.
  4.  請求項1に記載のエネルギー取引システムにおいて、
     前記需要情報は供給可否情報を備え、前記他のエネルギー取引装置の供給能力情報は、当該供給可否情報に基づき作成されることを特徴とするエネルギー取引システム。
    The energy trading system according to claim 1,
    The demand information includes supply availability information, and the supply capability information of the other energy transaction apparatus is created based on the supply availability information.
  5.  請求項2に記載のエネルギー取引システムにおいて、
     前記需要情報は供給可否情報を備え、前記他のエネルギー取引装置の供給能力情報は、当該供給可否情報に基づき作成されることを特徴とするエネルギー取引システム。
    The energy trading system according to claim 2,
    The demand information includes supply availability information, and the supply capability information of the other energy transaction apparatus is created based on the supply availability information.
  6.  請求項3に記載のエネルギー取引システムにおいて、
     前記需要情報は供給可否情報を備え、前記他のエネルギー取引装置の供給能力情報は、当該供給可否情報に基づき作成されることを特徴とするエネルギー取引システム。
    In the energy trading system according to claim 3,
    The demand information includes supply availability information, and the supply capability information of the other energy transaction apparatus is created based on the supply availability information.
  7.  請求項6に記載のエネルギー取引システムにおいて、
     前記供給可否情報は、前記エネルギー取引装置の所在地情報であることを特徴とするエネルギー取引システム。
    The energy trading system according to claim 6,
    The energy supply system according to claim 1, wherein the supply availability information is location information of the energy transaction apparatus.
  8.  請求項1記載のエネルギー取引システムにおいて、
     前記需要情報は、エネルギー取引者が必要とするエネルギー量を表すエネルギー需要量と、取引の優先順位を決定するための優先権判定情報と、供給元となるエネルギー取引者が供給可能かどうかを判定するための供給可否判定情報とであり、
     前記供給能力情報は、供給可能なエネルギー量を表すエネルギー供給可能量と、優先権判定情報と、供給可否情報とであり、
     前記供給情報は、どのエネルギー取引者に対してエネルギーを供給するかに関するエネルギー供給先情報を複数含むことを特徴とするエネルギー取引システム。
    The energy trading system according to claim 1,
    The demand information includes an energy demand amount representing the amount of energy required by the energy trader, priority determination information for determining the priority of the transaction, and whether or not the energy trader serving as the supply source can supply. Supply availability determination information for
    The supply capacity information is an energy supply possible amount that represents the amount of energy that can be supplied, priority determination information, and supply availability information,
    The energy supply system according to claim 1, wherein the supply information includes a plurality of energy supplier information relating to which energy trader supplies energy.
  9.  請求項8に記載のエネルギー取引システムにおいて、
     前記優先権判定情報は、エネルギー取引者内におけるエネルギー利用効率、もしくはエネルギー取引者におけるCO2排出量原単位であり、
     前記供給可否情報は、供給先との距離算出に利用可能な位置情報であり、
     前記供給先情報は、エネルギーの供給先と、エネルギーの供給量と、エネルギーの供給単価と、CO2排出量原単位や供給時のエネルギー生成効率等を表す供給エネルギー品質に関する情報とを含むことを特徴とするエネルギー取引システム。
    The energy trading system according to claim 8,
    The priority determination information is energy use efficiency in the energy trader or CO2 emission basic unit in the energy trader,
    The supply availability information is position information that can be used for calculating the distance to the supply destination,
    The supplier information includes energy supplier, energy supply amount, energy supply unit price, CO2 emission basic unit, energy generation efficiency at the time of supply, etc. Energy trading system.
  10.  請求項9に記載のエネルギー取引システムにおいて、
     前記エネルギー取引装置は、
     需要のあるエネルギー取引者内において前記優先権判定情報を用いて自身の取引優先順位を決める処理と、他エネルギー取引者が決定した供給情報の供給先情報に自身が含まれている場合に、自身もその供給情報を取引成立として選択する処理と、他エネルギー取引者が決定した供給情報を自身が収集した供給情報から除去する処理と、決定した該取引優先順位に従って除去されることなく残っている該供給情報を、供給要因からなる制約条件に基づき評価し選択する処理とを含む需要用取引処理と、
     供給能力のあるエネルギー取引者内において前記優先権判定情報を用いて自身の取引優先順位を決める処理と、前記供給可否情報に基づいて供給可能なエネルギー取引者に関する需要情報を抽出する処理と、抽出した該需要情報を、自身にとって最適な供給条件となるように需要情報の組合せを探索する処理とを含む供給用取引処理とを行う事を特徴とするエネルギー取引システム。
    The energy trading system according to claim 9,
    The energy trading device
    In the case where self is included in the supply information of the supply information determined by the other energy trader and the process of determining the trade priority of the self using the priority determination information in the energy trader in demand In addition, the process of selecting the supply information as a transaction establishment, the process of removing the supply information determined by other energy traders from the supply information collected by itself, and remaining without being removed according to the determined transaction priority. A transaction process for demand including a process for evaluating and selecting the supply information based on a constraint condition including supply factors;
    A process of determining own transaction priority using the priority determination information within an energy trader having a supply capability, a process of extracting demand information regarding an energy trader that can be supplied based on the supply availability information, and extraction An energy transaction system characterized in that the demand information is subjected to supply transaction processing including processing for searching for a combination of demand information so as to be the optimum supply condition for itself.
  11.  請求項10に記載のエネルギー取引システムにおいて、
     前記供給要因は、エネルギーの供給単価、エネルギー生成時のCO2排出量原単位、エネルギー供給の安定度を表す供給安定度である ことを特徴とするエネルギー取引システム。
    The energy trading system according to claim 10,
    The energy supply system is characterized in that the supply factors are energy supply unit price, CO2 emission basic unit at the time of energy generation, and supply stability indicating stability of energy supply.
  12.  請求項11に記載のエネルギー取引システムにおいて、
     前記需要取引処理は、他エネルギー取引者からの供給情報が取得できない際に、前記供給可能情報に基づいて、自身の需要を満たすように供給可能情報を組合せた供給要求情報を作成する処理を含み、
     前記供給用取引処理は、需要のある他エネルギー取引者から取得した該供給要求情報から、指定された供給エネルギー単価と、供給要求情報の作成元のエネルギー利用効率とからなる制約条件に基づき、供給要求情報を一つ選択する処理を含む事を特徴とするエネルギー取引システム。
    The energy trading system according to claim 11,
    The demand transaction process includes a process of creating supply request information combining supplyable information so as to satisfy its own demand based on the supplyable information when supply information from other energy traders cannot be acquired. ,
    The supply transaction processing is based on the supply request information acquired from other energy traders in demand, based on the constraint condition consisting of the specified supply energy unit price and the energy use efficiency of the supply request information creation source. An energy trading system characterized by including a process of selecting one piece of request information.
  13.  請求項1に記載のエネルギー取引システムにおいて、
     前記需要情報は、エネルギー取引者が必要とするエネルギー量を表すエネルギー需要量と、取引の優先順位を決定するための優先権判定情報と、供給元となるエネルギー取引者が供給可能かどうかを判定するための供給可否判定情報とを含み、
     前記供給能力情報は、供給可能なエネルギー量を表すエネルギー供給可能量と、該優先権判定情報と、該供給可否情報とを含み、
     該供給情報は、供給可能なエネルギー量と、供給単価と、CO2排出量原単位や供給時のエネルギー生成効率等を表す供給エネルギー品質とを含むことを特徴とするエネルギー取引システム。
    The energy trading system according to claim 1,
    The demand information includes an energy demand amount representing the amount of energy required by the energy trader, priority determination information for determining the priority of the transaction, and whether or not the energy trader serving as the supply source can supply. Supply availability determination information for
    The supply capability information includes an energy supply possible amount representing the amount of energy that can be supplied, the priority determination information, and the supply availability information,
    The supply information includes an energy amount that can be supplied, a supply unit price, and a supply energy quality that represents a CO2 emission basic unit, energy generation efficiency at the time of supply, and the like.
  14.  請求項13に記載のエネルギー取引システムにおいて、
     前記エネルギー取引装置は、
     需要のあるエネルギー取引者内において前記優先権判定情報を用いて自身の取引優先順位を決める処理と、他エネルギー取引者が決定した供給情報の供給先情報に自身が含まれている場合に、自身もその供給情報を取引成立として選択する処理と、他エネルギー取引者が決定した供給情報を自身が収集した供給情報から除去する処理と、決定した該取引優先順位に従って除去されることなく残っている該供給情報から、供給要因からなる制約条件に基づき評価し、最適となる供給情報の組合せを選択する処理とを含む需要用取引処理と、
     供給能力のあるエネルギー取引者内において前記優先権判定情報を用いて自身の取引優先順位を決める処理を含む供給用取引処理とを行う事を特徴とするエネルギー取引システム。
    The energy trading system according to claim 13,
    The energy trading device
    In the case where self is included in the supply information of the supply information determined by the other energy trader and the process of determining the trade priority of the self using the priority determination information in the energy trader in demand In addition, the process of selecting the supply information as a transaction establishment, the process of removing the supply information determined by other energy traders from the supply information collected by itself, and remaining without being removed according to the determined transaction priority. From the supply information, a transaction process for demand including a process of evaluating based on a constraint condition consisting of supply factors and selecting an optimal combination of supply information;
    An energy trading system that performs supply transaction processing including processing for determining own transaction priority using the priority determination information in an energy trader having supply capability.
  15.  請求項14に記載のエネルギー取引システムにおいて、
     前記供給要因は、供給情報を組み合せたことによる総供給量と自身の需要量との差と、供給情報を組み合せたことによる供給エネルギーの供給総額と、供給情報を組み合せたことによるエネルギー供給によるCO2排出総量と、であることを特徴とするエネルギー取引システム。
    The energy trading system according to claim 14,
    The supply factors are the difference between the total supply amount by combining the supply information and its own demand, the total supply energy supply by combining the supply information, and the CO2 by energy supply by combining the supply information. An energy trading system characterized by total emissions.
  16.  請求項15に記載のエネルギー取引システムにおいて、
     前記需要取引処理は、他エネルギー取引者からの供給情報が取得できない際に、前記供給可能情報に基づいて、自身の需要を満たすように供給可能情報を組合せた供給要求情報を作成する処理を含み、
     前記供給用取引処理は、需要のある他エネルギー取引者から取得した該供給要求情報から、指定された供給エネルギー単価と、供給要求情報の作成元のエネルギー利用効率とからなる制約条件に基づき、供給要求情報を一つ選択する処理を含む事を特徴とするエネルギー取引システム。
    The energy trading system according to claim 15,
    The demand transaction process includes a process of creating supply request information combining supplyable information so as to satisfy its own demand based on the supplyable information when supply information from other energy traders cannot be acquired. ,
    The supply transaction processing is based on the supply request information acquired from other energy traders in demand, based on the constraint condition consisting of the specified supply energy unit price and the energy use efficiency of the supply request information creation source. An energy trading system characterized by including a process of selecting one piece of request information.
  17.  エネルギー取引装置と、需要予測装置と、供給能力予測装置と、通信装置と、を用いて複数の前記エネルギー取引装置間で送受するエネルギーの種類及び量を決定するエネルギー取引方法であって、
     前記需要予測装置により、予定されているエネルギー需要量を前記エネルギーの種類毎に予測し、当該エネルギー需要量に関する情報である需要情報を作成し、
     前記供給能力予測装置により、供給可能なエネルギー量を前記エネルギーの種類毎に予測し、当該供給可能なエネルギー量に関する情報である供給能力情報を作成し、
     前記通信装置により、他のエネルギー取引装置と通信し、前記需要情報及び/又は前記供給能力情報を送受信し、
     前記エネルギー取引装置により、前記通信手段によって他のエネルギー取引装置より受信した、他のエネルギー取引装置の需要情報又は他のエネルギー取引装置の供給能力情報と、前記作成した需要情報又は供給能力情報と、に基き、前記他のエネルギー取引装置との間でやり取りするエネルギーの種類及び量を決定する、
    ことを特徴とするエネルギー取引方法。
    An energy trading method for determining the type and amount of energy to be transmitted and received between a plurality of energy trading devices using an energy trading device, a demand forecasting device, a supply capacity forecasting device, and a communication device,
    The demand prediction device predicts a planned energy demand for each type of energy, creates demand information that is information on the energy demand,
    The supply capacity prediction device predicts the amount of energy that can be supplied for each type of energy, and creates supply capacity information that is information relating to the amount of energy that can be supplied,
    The communication device communicates with other energy transaction devices, transmits and receives the demand information and / or the supply capacity information,
    Demand information of other energy transaction devices or supply capability information of other energy transaction devices received from other energy transaction devices by the communication means, and the created demand information or supply capability information by the energy transaction device, To determine the type and amount of energy exchanged with the other energy trading device,
    An energy trading method characterized by that.
PCT/JP2012/063885 2011-09-16 2012-05-30 System and method for energy transaction WO2013038756A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-202565 2011-09-16
JP2011202565A JP2013065134A (en) 2011-09-16 2011-09-16 Energy trading system and method

Publications (1)

Publication Number Publication Date
WO2013038756A1 true WO2013038756A1 (en) 2013-03-21

Family

ID=47883000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063885 WO2013038756A1 (en) 2011-09-16 2012-05-30 System and method for energy transaction

Country Status (2)

Country Link
JP (1) JP2013065134A (en)
WO (1) WO2013038756A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324571A (en) * 2017-08-01 2019-02-12 智能云科信息科技有限公司 Publication, exchange management method and the system and storage medium of idle production capacity
CN111367169A (en) * 2020-02-07 2020-07-03 大连富士冰山智控系统有限公司 Control system, control device, and control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101505B2 (en) * 2018-03-26 2022-07-15 大阪瓦斯株式会社 Electric power trading method and electric power trading system that executes the electric power trading method
KR20200118953A (en) * 2019-04-09 2020-10-19 (주)누리텔레콤 Methods and apparatuses for trading distributed resource using reference index

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075968A (en) * 2006-09-21 2008-04-03 Kurimoto Ltd Exhaust heat supply-demand method and co2 emission trading method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075968A (en) * 2006-09-21 2008-04-03 Kurimoto Ltd Exhaust heat supply-demand method and co2 emission trading method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOSHI SUSAMI ET AL.: "A development of simulator of energy transaction systems in consideration of environmental loads", IEICE TECHNICAL REPORT, vol. 104, no. 105, 3 June 2004 (2004-06-03), pages 7 - 12 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324571A (en) * 2017-08-01 2019-02-12 智能云科信息科技有限公司 Publication, exchange management method and the system and storage medium of idle production capacity
CN111367169A (en) * 2020-02-07 2020-07-03 大连富士冰山智控系统有限公司 Control system, control device, and control method

Also Published As

Publication number Publication date
JP2013065134A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2019140279A1 (en) Building energy optimization system with battery powered vehicle cost optimization
EP2485189A1 (en) Energy management system and power feed control device
CN107078542B (en) Controller and control method
WO2015002092A1 (en) Energy management server, energy management method, and program
CN104620457B (en) Power storage controller
WO2013038756A1 (en) System and method for energy transaction
EP3631928B1 (en) Power distribution control with asset assimilation and optimization
JP6257461B2 (en) Energy management system
US10361584B2 (en) System for managing energy, method of managing energy, and method of predicting energy demand
EP3221666B1 (en) Automatic system for monitoring electric power consumption
CN106575421A (en) Device operation setting value determination apparatus, device operation setting value determination method, and device operation setting value determination program
JP6157739B2 (en) Energy management system and power interchange method
JP4919460B2 (en) Power grid system
JP2007104775A (en) Energy demanding/supplying method in combined power supply, and energy demanding/supplying apparatus
JP6293935B2 (en) Demand side management method and system
WO2018203423A1 (en) Power management apparatus and program
JP2016134933A (en) Energy management system, computer program, and calculation method for operation plan
JP6315563B2 (en) Equipment operation system and equipment operation method
JP2016032336A (en) Energy management system and power demand plan optimization method
JP7265931B2 (en) Power plan support device, power plan support method, and power plan support program
US20230280732A1 (en) Central plant with automatic subplant models
JP7033370B2 (en) Information processing equipment, information processing methods, and their programs
JP6698804B2 (en) Electricity meter
JP2018042420A (en) Energy system management device, energy system management method, and energy system
JP4617290B2 (en) Power generation planning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831537

Country of ref document: EP

Kind code of ref document: A1