WO2013035298A1 - Display device and method for manufacturing same - Google Patents

Display device and method for manufacturing same Download PDF

Info

Publication number
WO2013035298A1
WO2013035298A1 PCT/JP2012/005560 JP2012005560W WO2013035298A1 WO 2013035298 A1 WO2013035298 A1 WO 2013035298A1 JP 2012005560 W JP2012005560 W JP 2012005560W WO 2013035298 A1 WO2013035298 A1 WO 2013035298A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
layer
conductive
separation layer
manufacturing
Prior art date
Application number
PCT/JP2012/005560
Other languages
French (fr)
Japanese (ja)
Inventor
健司 御園
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013035298A1 publication Critical patent/WO2013035298A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates

Definitions

  • the present invention relates to a display device and a method for manufacturing the display device.
  • TFT thin film transistor
  • the TFT substrate body is formed of a highly heat-resistant material such as glass, there are limits to the reduction in thickness, weight, and flexibility.
  • the TFT substrate body in order to enable the TFT substrate body to be formed even with a support base material that is weak in heat resistance, for example, after forming a TFT or the like on a glass plate, a method of sticking the support base material after peeling the glass plate is adopted. ing.
  • a separation layer is formed on a glass plate, a transfer layer such as a TFT element is formed on the separation layer, and a transfer body (flexible support base material) is formed on the transfer layer via an adhesive layer. ), The separation layer is irradiated with laser light from the glass plate side to peel the glass plate and the separation layer from the layer to be transferred, and the layer to be transferred (TFT layer) is laminated on the flexible support substrate Manufacturing a thin film device substrate is described.
  • Non-Patent Document 1 discloses a method for manufacturing an active matrix type organic EL display device formed on a plastic substrate.
  • a conductive layer is formed on the entire surface between a plastic substrate having an organic EL element formed on the main surface and a glass plate.
  • an organic EL display device is obtained by peeling a conductive layer and a glass plate from a plastic substrate by a Joule heat peeling (JILO) process.
  • JILO Joule heat peeling
  • the Joule heat peeling (JILO) process is a process in which the conductive layer is peeled off by melting the surface of the plastic substrate with Joule heat generated by passing an electric current through the conductive layer.
  • the polyimide film is peeled from the glass plate, and at the same time, the surface layer of the polyimide film is burned by the laser, and the burn mark remains as debris (accumulated deposits) along the shape of the laser irradiation window. . Also, the polyimide vaporized by laser irradiation cannot escape from between the polyimide film and the glass plate, but adheres to the polyimide film and solidifies again, which also causes debris. Further, the processing marks due to these debris may cause deterioration of display quality and optical characteristics such as contrast.
  • Non-Patent Document 1 since a conductive layer is provided on the entire surface between the glass plate and the polyimide film, it is difficult to flow a current uniformly through the conductive film due to variations in the interface state between the conductive film and the polyimide film. There is a possibility that the Joule heat generated by the region varies. Specifically, there is a difference in the timing at which the polyimide melts depending on the location, and the polyimide that has been melted into a liquid state gathers at the melted location at an early stage due to surface tension. The collected polyimide liquid is further heated to evaporate into a gas, so that portion becomes melting marks, and there is a risk of deterioration in display quality and optical characteristics such as contrast.
  • the present invention suppresses the processing marks from remaining on the polyimide film in the step of peeling the glass plate from the polyimide film after forming the polyimide film and TFT provided on the glass plate, and has excellent contrast performance.
  • the object is to obtain a device.
  • a method for manufacturing a display device includes forming a conductive layer formed by insulating a plurality of conductive films through an insulating film on a heat-resistant substrate, and then covering the conductive layer. Forming a separation layer, and then forming a display device layer on the separation layer; and after the first step, current is passed through each of the plurality of conductive films to generate Joule heat. And a second step of melting or thermally decomposing the surface of the separation layer in contact with the conductive layer by the Joule heat and peeling the conductive layer and the heat-resistant substrate from the separation layer.
  • the conductive layer and the heat-resistant substrate are peeled from the separation layer by melting or thermally decomposing the surface of the separation layer, so that a laser processing shape is formed on the separation layer as in the case of using a laser. There is no remaining processing mark along.
  • the surface of the separation layer can be uniformly melted or decomposed, and it is possible to prevent melting marks from remaining in the separation layer. Therefore, deterioration of display quality and deterioration of optical characteristics such as contrast due to the presence of peeling processing marks or the like in the separation layer are suppressed.
  • the melting or thermal decomposition of the surface of the separation layer is performed by Joule heat, heat is not transmitted to the surface of the separation layer on the display device layer side. Therefore, deterioration of the characteristics of the display device layer due to heat for melting or thermally decomposing the separation layer is suppressed.
  • the magnitude of the voltage to be applied at one time can be made smaller than when a current is passed over the entire surface of the conductive layer. Simplification and suppression of electric shock accidents are possible.
  • the plurality of conductive films are positioned so as to be exposed on the surface of the conductive layer on the display device layer side, and the plurality of long upper conductive films arranged in parallel to each other. And a plurality of lower conductive films positioned in a corresponding region between the two adjacent upper conductive films so as to be exposed on the heat resistant substrate side surface of the conductive layer, and arranged in parallel with each other. It may be configured.
  • the conductive layer is formed such that each of the plurality of conductive films extends in a long shape and is arranged in parallel to each other, and the insulating film extends in a long shape and is adjacent to the conductive film.
  • a plurality of the conductive films may be arranged in parallel to each other in a corresponding region between the two conductive films.
  • the display device manufacturing method of the present invention forms a display device layer on a heat resistant substrate and then peels the heat resistant substrate. Therefore, the display device layer is a switching element layer in which a plurality of switching elements are arranged in a matrix. It is suitable for the case where a high-temperature step is included in the manufacturing process such as including.
  • the display device layer may have a configuration in which an organic EL element layer in which a plurality of organic EL elements are arranged corresponding to each of the plurality of switching elements is stacked on the switching element layer.
  • the display device manufacturing method includes a first heat-resistant substrate, a first conductive layer formed by insulating a plurality of conductive films on the first heat-resistant substrate via an insulating film, A first separation layer on one conductive layer, a switching element layer in which a plurality of switching elements are arranged in a matrix, and a plurality of pixels provided on the switching element layer and corresponding to each of the plurality of switching elements
  • a second stacked body comprising a display device layer including an electrode, a second heat-resistant substrate, and a plurality of conductive films on the second heat-resistant substrate insulated via an insulating film
  • a liquid crystal layer is formed in a space formed between the first and second display device layers, and the first conductive layer and the first heat-resistant substrate, and the second conductive layer and the second heat-resistant substrate are formed. You may peel from each of a 1st separated layer and a 2nd separated layer through the said 2nd process.
  • the separation layer is preferably formed of a material having a melting point or a thermal decomposition temperature of 400 to 700 ° C.
  • Such a separation layer is preferably formed of polyimide.
  • the display device since polyimide has excellent heat resistance and solvent resistance, a high temperature process can be performed in forming the display device layer.
  • the display device since polyimide has excellent bending resistance, the display device can be used as a flexible device or can be attached to another member that is not a flat plate. Further, when polyimide has excellent light transmittance, the display device can be a light transmission type liquid crystal display device.
  • the method for manufacturing a display device of the present invention may further include a third step of pasting a support base material on the exposed surface of the separation layer after the second step.
  • the above manufacturing method by attaching a support substrate to the exposed surface of the separation layer, the resistance to mechanical stress from the outside of the display device and the environmental resistance such as moisture barrier property and oxygen barrier property are improved. Can be made.
  • the laminate of the separation layer and the display device layer is formed without including a rigid body such as a glass substrate, a support base material of any shape can be affixed and display with a high degree of freedom in design A device can be obtained.
  • the display device of the present invention is manufactured through the first step and the second step, and the separation layer is formed of a material having a melting point or a thermal decomposition temperature of 400 to 700 ° C.
  • the display device of the present invention is suitable when the display device layer includes a switching element layer in which a plurality of switching elements are arranged in a matrix.
  • the separation layer is preferably formed of polyimide.
  • the display device of the present invention may further include a support base material on the surface of the separation layer opposite to the display device layer.
  • the conductive layer and the heat-resistant substrate are peeled from the separation layer by melting or thermally decomposing the surface of the separation layer, so that the laser processing shape is aligned on the separation layer as in the case of using a laser. No processing marks remain.
  • the surface of the separation layer can be uniformly melted or decomposed, and it is possible to prevent melting marks from remaining in the separation layer. Therefore, deterioration of display quality and deterioration of optical characteristics such as contrast due to the presence of peeling processing marks or the like in the separation layer are suppressed.
  • the melting or thermal decomposition of the surface of the separation layer is performed by Joule heat, heat is not transmitted to the surface of the separation layer on the display device layer side. Therefore, the deterioration of the characteristics of the display device layer due to the heat for melting or pyrolyzing the separation layer is suppressed.
  • the magnitude of the voltage applied per time can be made smaller than when a current is passed over the entire surface of the conductive layer, and the equipment is simplified. And electric shock accidents can be suppressed.
  • FIG. 1 is a cross-sectional view of an organic EL display device according to Embodiment 1.
  • FIG. 3 is a flowchart of a method for manufacturing the organic EL display device according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 1.
  • FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 1.
  • FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 1.
  • FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment.
  • (A) And (b) is explanatory drawing of the manufacturing method of the organic electroluminescence display of the modification 1.
  • FIG. It is a schematic sectional drawing of the organic electroluminescence display of the modification 2.
  • It is sectional drawing of the organic electroluminescent display apparatus of Embodiment 2.
  • FIG. 10 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 2.
  • FIG. 10 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 2.
  • FIG. 10 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display device of Embodiment 3.
  • FIG. 6 is an enlarged cross-sectional view of a main part of a liquid crystal display device of Embodiment 3.
  • FIG. 10 is a flowchart of a manufacturing method of the liquid crystal display device of Embodiment 3. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3.
  • FIG. 10 is a flowchart of a manufacturing method of the liquid crystal display device of Embodiment 4. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4. It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4.
  • FIG. 1 shows an organic EL display device 100 according to the first embodiment.
  • the organic EL display device 100 is used as a display of a portable electronic device, a car navigation system, a television, or the like, for example.
  • the organic EL display device 100 has a configuration in which a display device layer is laminated on a separation layer 110 and is bonded to a support substrate 140 via an adhesive 141.
  • the display device layer includes a TFT element layer 120 as a switching element layer and an organic EL element layer 130.
  • a plurality of pixels are arranged in a matrix.
  • the organic EL display device 100 is a top emission type organic EL display device that takes out light from the side opposite to the support base 140 and displays an image.
  • the separation layer 110 is formed of a polyimide film.
  • the separation layer 110 has a thickness of 5 to 15 ⁇ m, for example.
  • the material constituting the separation layer 110 has heat resistance to a high-temperature process when forming the TFT element layer 120 and has a thermal decomposition temperature of about 400 to 700 ° C. Since the light extraction method of the organic EL display device is a top emission type, the polyimide constituting the separation layer 110 is not required to have light transmittance, and may be a transparent polyimide or an opaque polyimide. However, from the viewpoint of having a higher thermal decomposition temperature, opaque polyimide is preferable.
  • a TFT 121 switching element
  • a planarizing film 122 is provided so as to cover the plurality of TFTs 121.
  • the TFT 121 and the planarizing film 122 have a conventionally known configuration.
  • an organic EL element in which a lower electrode 131, an organic EL layer 132, and an upper electrode 133 are stacked is arranged corresponding to each of the plurality of TFTs 121, and these are covered with a sealing film 134. It has a configuration.
  • a plurality of lower electrodes 131 are provided corresponding to each pixel, and are electrically connected to a drain electrode (not shown) through a contact hole 133 provided in the planarization film 122.
  • an edge cover 135 is provided in a region partitioning each of the plurality of pixels so as to cover each peripheral edge of the lower electrode 131.
  • the sealing film 134 is formed of, for example, a laminated body of a silicon nitride film and a silicon oxide film, a paraxylylene-based polymer, or the like.
  • the support substrate 140 is formed of, for example, a flexible film or a rigid body.
  • the flexible film material include cycloolefin polymer, cycloolefin copolymer, polysiloxane composite, polycarbonate, polyethersulfone, polyarylate, polysulfone, polyetherimide, polyphenylene sulfide, polyamideimide, liquid crystal polyester, polyimide, Examples thereof include polyether ether ketone and coloring members thereof.
  • the rigid body include stainless steel (SUS) and glass epoxy resin.
  • the support substrate 140 can realize a thin display by setting the thickness including the adhesive 141 to 50 to 400 ⁇ m, for example.
  • the support substrate 140 can be formed of a material having a lower heat resistance than that required when forming the TFT.
  • the organic EL display device 100 when the TFT 121 is turned on, holes are injected from the first electrode 131 to the organic EL layer 132, and electrons are injected from the second electrode 133 to the organic EL layer 132. Holes and electrons are recombined in the light emitting layer of the organic EL layer 132. Due to recombination, the excited electrons return to the ground state while releasing energy, but the energy released at this time is extracted as light emission and is visually recognized as a desired image as a whole.
  • the conductive layer 160 is formed on the heat resistant substrate 150, the separation layer 110 is formed so as to cover the conductive layer 160, and the TFT element layer 120 and the organic EL element layer 130 are further formed as display device layers.
  • the heat resistant substrate 150 serves as a base support substrate for forming the TFT element layer 120 and the organic EL element layer 130, and is not included in the configuration of the finished product of the organic EL display device 100.
  • a glass plate such as non-alkali glass having a thickness of about 0.7 mm is prepared.
  • the heat-resistant substrate 150 has a size that allows a plurality of organic EL display devices 100 to be manufactured to be formed.
  • the conductive layer 160 is formed on the heat resistant substrate 150.
  • the conductive layer 160 includes an upper conductive film 161, a lower conductive film 162, and an insulating film 163.
  • the upper conductive film 161 is the uppermost layer
  • the lower conductive film 162 is the lowermost layer
  • the insulating film 163 is provided so as to insulate the upper conductive film 161 and the lower conductive film 162 from each other. It has been.
  • a plurality of upper conductive films 161 and a plurality of lower conductive films 162 are provided, and each of them is arranged in parallel with a space therebetween and is formed in a long shape.
  • the lower conductive film 162 is positioned in a corresponding region between the adjacent upper conductive films 161.
  • a titanium (Ti) film having a thickness of, for example, about 50 to 150 nm is formed by sputtering, and is patterned by photolithography so that long patterns having a width of about 5 to 30 ⁇ m are arranged in parallel.
  • a silicon nitride film, a silicon oxide film, or a laminated film thereof is formed by CVD to cover the lower conductive film 162, and is patterned to have a thickness of 150 to 400 nm.
  • An insulating film 163 is formed to a degree.
  • a titanium (Ti) film having a thickness of about 50 to 150 nm is formed by sputtering, and is patterned by photolithography so that long patterns having a width of about 100 to 300 mm are parallel to each other, and the upper conductive film 161 is formed.
  • the distance between adjacent upper conductive films 161 (a1 in FIG. 3) is set to, for example, 5 to 20 ⁇ m.
  • the upper conductive film 161 is arranged so that the side along the longitudinal direction (L1 in FIG. 4) overlaps the lower conductive film 162, and the side along the longitudinal direction is the lower side.
  • the lower conductive film 162 may be thicker than the upper conductive film 161. Since the lower conductive film 162 has a smaller area than the upper conductive film 161, the wiring resistances of both can be matched by increasing the thickness.
  • the material for forming the upper conductive film 161 and the lower conductive film 162 may be a titanium (Mo) film, a transparent conductive film, or the like.
  • a separation layer 110 is formed by forming a polyimide film so as to cover the conductive layer 160 by, for example, a slit coat method, a gravure coat method, a curtain coat method, a spin coat method, or the like. Since the organic EL display device 100 formed here is a top emission type, opaque polyimide is used as the polyimide.
  • the separation layer 110 has a thickness of 5 to 15 ⁇ m, for example.
  • the TFT element layer 120 is formed on the separation layer 110 using a known method. Specifically, for example, a base coat film, a gate electrode, a gate insulating film, a semiconductor film, a source electrode, and a drain electrode are stacked in a predetermined layout, and a plurality of them are arranged in a matrix corresponding to each pixel. After the TFT 121 is formed, a planarizing film 122 is formed so as to cover them.
  • the semiconductor film an amorphous silicon ( ⁇ -Si) film, a low-temperature polysilicon (LTPS) film, an oxide semiconductor film (for example, an IGZO film), or the like can be formed.
  • contact holes 133 reaching the drain electrodes of the TFTs 121 from the surface of the planarizing film 122 are formed.
  • a high temperature process about 250 to 350 ° C. when the semiconductor film is an ⁇ -Si film, about 350 to 450 ° C. when the semiconductor film is an IGZO film, and an LTPS film at the time of baking after the film is formed
  • the TFT 121 is formed on the heat resistant substrate 150 and the separation layer 110, there is no possibility that the characteristics of each component are deteriorated by heat.
  • step S114 the organic EL element layer 130 is formed on the TFT element layer 120 using a known method. Specifically, after the lower electrode 131, the edge cover 135, the organic EL layer 132, and the upper electrode 133 are stacked, a sealing film 134 is stacked so as to cover them.
  • sealing film 145 may be formed so as to cover the entire surface of the substrate, or a plurality of sealing films 145 may be formed separately for each panel. Thereby, the laminated body shown in FIG. 5 is obtained.
  • step S121 the conductive layer 160 and the heat resistant substrate 150 are separated from the separation layer 110 by passing a current through the conductive layer 160 in step S121.
  • the upper conductive film 161 arranged so as to extend in parallel is referred to as the upper conductive films 161a, 161b, 161c, 161d from the end as shown in FIGS.
  • the conductive films 162e, 162f, and 162g are used.
  • the magnitude of the applied voltage is such that Joule heat equal to or higher than the decomposition temperature of the polyimide film can be applied to the surface of the polyimide film constituting the separation layer 110 at the interface between the separation layer 110 and the conductive layer 160.
  • a pulse voltage with a pulse width of about 50 to 150 milliseconds.
  • a voltage is applied to the uppermost upper conductive film 161a. Joule heat is generated by the current flowing through the upper conductive film 161a, and the thickness of the separation layer 110 corresponding to the upper conductive film 161a (the area indicated by 110a in FIG. 7) is about 1 ⁇ m from the surface of the polyimide film. This part is thermally decomposed, and the adhesion state of the separation layer 110 and the conductive layer 160 is released.
  • a predetermined voltage is applied to the upper conductive film 161b adjacent to the upper conductive film 161a, and in the region corresponding to the upper conductive film 161b (the region indicated by 110b in FIG. 7) in the separation layer 110, the separation is performed.
  • the adhesion state between the layer 110 and the conductive layer 160 is released.
  • a predetermined voltage is applied to the corresponding lower conductive film 162e between the upper conductive films 161a and 161b.
  • Joule heat is generated, and this Joule heat is transmitted through the upper insulating film 163 of the lower conductive film 162e to form a region corresponding to the lower conductive film 162e in the separation layer 110.
  • a portion having a thickness of about 1 ⁇ m from the surface of the polyimide film (region indicated by 110e in FIG. 7) is thermally decomposed, and the adhesive state between the separation layer 110 and the conductive layer 160 is released.
  • a predetermined voltage is sequentially applied to the upper conductive film 161c, the lower conductive film 162f, the upper conductive film 161d, and the lower conductive film 162g, and a portion having a thickness of about 1 ⁇ m from the surface of the polyimide film (
  • the regions indicated by 110c, 110f, 110d, and 110g in FIG. 7 are thermally decomposed to peel the conductive layer 160 from the separation layer 110 as shown in FIG.
  • the order of voltage application to the conductive films 161 and 162 described here is an example, and the voltage may be applied to the conductive films 161 and 162 in another order.
  • a voltage is applied in order from the conductive films 161 and 162 located on the end side of the substrate in order to make it difficult for gas generated when the polyimide is thermally decomposed to accumulate between the conductive layer 160 and the separation layer 110. It is preferable.
  • static electricity is generated by peeling charging when the conductive layer 160 is peeled off.
  • peeling off the conductive layer 160 in order from the end facilitates removal of static electricity, and the TFT element layer 120 and the organic EL element layer 130 are damaged by static electricity. From the viewpoint of suppressing this, it is preferable to apply a voltage in order from the conductive films 161 and 162 located on the end side of the substrate.
  • step S131 an adhesive 141 is applied to the surface of the separation layer 110 exposed by peeling the conductive layer 160 and the heat resistant substrate 150 in the second step, as shown in FIG.
  • the support base material 140 is pasted using it.
  • step S132 the mother substrate size formed product is divided into the size of the single organic EL display device 100, and in step S133, peripheral circuits such as LSI chips and flexible printed wiring boards (FPCs) are provided in the peripheral region. Is implemented. Thereby, the organic EL display device 100 is completed.
  • peripheral circuits such as LSI chips and flexible printed wiring boards (FPCs) are provided in the peripheral region. Is implemented. Thereby, the organic EL display device 100 is completed.
  • the conductive layer 160 and the heat-resistant substrate 150 are peeled from the separation layer 110 by thermally decomposing a portion having a thickness of about 1 ⁇ m including the surface of the separation layer 110, so that a laser is used. Processing traces along the laser processing shape do not remain on the separation layer 110.
  • the portion including the surface of the separation layer 110 can be thermally decomposed uniformly, and the separation layer 110 has uneven thermal decomposition. Is suppressed from remaining. Accordingly, display quality deterioration and deterioration of optical characteristics such as contrast due to the presence of peeling process marks and thermal decomposition unevenness in the separation layer 110 are suppressed.
  • the thermal decomposition of the surface of the separation layer 110 is performed by Joule heat, heat is not transmitted to the surface of the separation layer 110 on the TFT element layer 120 side. Therefore, deterioration of the characteristics of the TFT element layer 120 and the organic EL element layer 130 due to heat that thermally decomposes the separation layer 110 is suppressed.
  • the voltage applied per time is larger than when current is passed through the entire surface of the conductive layer 160.
  • the size can be reduced, and facilities can be simplified and electric shock accidents can be suppressed.
  • the upper conductive film 161 and the lower conductive film 162 are arranged in parallel with each other in the conductive layer 160.
  • Each of the conductive film 161 and the lower conductive film 162 may be U-shaped.
  • a voltage is applied to the uppermost conductive film 161 as shown in FIG. 10 (a), and then a voltage is applied to the lowermost conductive film 162 as shown in FIG. 10 (b).
  • the conductive layer 160 and the heat resistant substrate 150 can be peeled from the separation layer 110 by applying and repeating the steps in order.
  • the support substrate 140 is described as having a flat plate shape.
  • the laminate of the separation layer 110, the TFT element layer 120, and the organic EL element layer 130 is flexible. Therefore, various shapes of rigid bodies can be affixed as a support base material.
  • the organic EL display device 100 of the present invention is also suitable when the support base 140 is a rigid body having a curve (for example, a side surface of a cylinder, etc.) as shown as Modification 2 in FIG. Furthermore, it is good also as a flexible display, without sticking a support base material on the surface which the separation layer 110 exposed.
  • the light extraction method is described for the top emission type organic EL display device 100, but even the bottom emission type organic EL display device may be another light extraction method organic EL display device. It doesn't matter.
  • FIG. 12 shows an organic EL display device 200 according to the second embodiment.
  • the organic EL display device 200 is used as a display for a portable electronic device, a car navigation system, a television, or the like, for example.
  • the organic EL display device 200 has a configuration in which a separation layer 210, a TFT element layer 220, and an organic EL element layer 230 are bonded to a support base material 240 via an adhesive 241.
  • a plurality of pixels are arranged in a matrix.
  • This organic EL display device 200 is a top emission type organic EL display device that takes out light from the side opposite to the support base 240 and displays an image.
  • Each configuration of the organic EL display device 200 is the same as that of the first embodiment.
  • the conductive layer 260 is formed on the heat resistant substrate 250, the separation layer 210 is formed so as to cover the conductive layer 260, and the TFT element layer 220 and the organic EL element layer 230 are further formed as display device layers.
  • the heat resistant substrate 250 serves as a base support substrate for forming the TFT element layer 220 and the organic EL element layer 230, and is not included in the configuration of the finished product of the organic EL display device 200.
  • the heat resistant substrate 250 for example, a glass plate such as non-alkali glass having a thickness of about 0.7 mm is prepared.
  • the heat-resistant substrate 250 has a size that allows a plurality of organic EL display devices 200 to be manufactured to be formed in a plurality of shapes.
  • the conductive layer 260 is formed over the heat resistant substrate 250. As illustrated in FIG. 13, the conductive layer 260 includes a conductive film 261 and an insulating film 263. A plurality of the conductive films 261 are provided, and are formed in a long shape so that each of them is arranged in parallel with a space therebetween. Then, an insulating film 263 is formed so as to partition them.
  • a titanium (Ti) film having a thickness of, for example, about 30 to 200 nm is formed by sputtering, and is patterned by photolithography so that long patterns having a width of about 100 to 300 mm are arranged in parallel.
  • a silicon nitride film, a silicon oxide film, a laminated film thereof, or the like is formed by a CVD method so as to partition between the plurality of conductive films 261, and the thickness is patterned.
  • An insulating film 263 with a thickness of about 150 to 400 nm is formed.
  • a part of the conductive film 261 may exist as an extremely thin portion 261 t under the insulating film 263. Since the ultrathin portion 261t of the conductive film 261 has a thickness of about 10 nm, for example, the ultrathin portion 261t substantially becomes an insulating region.
  • the material for forming the conductive film 261 may be a molybdenum (Mo) film, a transparent conductive film, or the like in addition to the titanium film.
  • Mo molybdenum
  • the separation layer 210, the TFT element layer 220, and the organic EL element layer 230 are formed in the same manner as in the first embodiment.
  • the conductive layer 260 and the heat-resistant substrate 250 are separated from the separation layer 210 by passing a current through the conductive layer 260.
  • the plurality of conductive films 261 are referred to as conductive films 261a, 261b, and 261c in order from the end.
  • a voltage is applied from the endmost conductive film 261a. Joule heat is generated by current flowing through the conductive film 261a, and in the region corresponding to the conductive film 261a in the separation layer 210, a portion having a thickness of about 1 ⁇ m from the surface of the polyimide film is thermally decomposed. The adhesion state of the conductive layer 260 is released.
  • the magnitude of the applied voltage is such that Joule heat equal to or higher than the decomposition temperature of the polyimide film can be applied to the surface of the polyimide film constituting the separation layer 210 at the interface between the separation layer 210 and the conductive layer 260.
  • a pulse voltage with a pulse width of about 50 to 150 milliseconds.
  • a predetermined voltage is applied to the conductive film 261b adjacent to the conductive film 261a to which the voltage is applied, and the adhesion state between the separation layer 210 and the conductive layer 260 in the region corresponding to the conductive film 261b in the separation layer 210. Is released.
  • the polyimide in the surface portion of the separation layer 210 between the conductive film 261a and the conductive film 261b (the region corresponding to the insulating film 231) is also thermally decomposed, so that the separation layer 210 and the conductive layer 260 are separated.
  • the adhesive state is released.
  • a predetermined voltage is sequentially applied to the conductive films 261c, 261d,..., And a portion having a thickness of about 1 ⁇ m from the surface of the polyimide film is thermally decomposed. As shown in FIG.
  • the conductive layer 260 is peeled from 210.
  • each conductive film 261 described here is an example, and the voltage may be applied to each conductive film 261 in another order.
  • static electricity is generated by peeling electrification when the conductive layer 260 is peeled off.
  • peeling off the conductive layer 260 in order from the end facilitates removal of static electricity, and the TFT element layer 220 and the organic EL element layer 230 are damaged by static electricity. From the viewpoint of suppressing this, it is preferable to apply a voltage in order from the conductive film 261 located on the end side of the substrate.
  • the support base material 140 is attached to the surface of the separation layer 210 exposed by peeling the conductive layer 260 and the heat-resistant substrate 250 in the second step using the adhesive 241. .
  • peripheral circuits such as LSI chips and flexible printed circuit boards (FPC) are mounted on the peripheral area. Thereby, the organic EL display device 200 is completed.
  • the conductive layer 260 and the heat-resistant substrate 250 are peeled from the separation layer 210 by thermally decomposing a portion having a thickness of about 1 ⁇ m including the surface of the separation layer 210, so that a laser is used. Processing traces along the laser processing shape do not remain on the separation layer 210.
  • a current is passed through each of the plurality of conductive films 261, a portion including the surface of the separation layer 210 can be uniformly thermally decomposed, and uneven decomposition of the separation layer 210 is suppressed from remaining. . Therefore, display quality deterioration and deterioration of optical characteristics such as contrast due to the presence of peeling process marks and thermal decomposition unevenness in the separation layer 210 are suppressed.
  • the thermal decomposition of the surface of the separation layer 210 is performed by Joule heat, heat is not transmitted to the surface of the separation layer 210 on the TFT element layer 220 side. Therefore, deterioration of the characteristics of the TFT element layer 220 and the organic EL element layer 230 due to heat that thermally decomposes the separation layer 210 is suppressed.
  • the magnitude of the voltage applied per time can be made smaller than when a current is passed over the entire surface of the conductive layer 260. Simplification and suppression of electric shock accidents.
  • the conductive film constituting the conductive layer 260 one type of the conductive film 261 may be formed, and thus the manufacturing process of the conductive layer 260 is simplified as compared with the case of the first embodiment. be able to.
  • each of the conductive films 261 is U-shaped. There may be.
  • the conductive layer 260 and the heat-resistant substrate 250 can be peeled from the separation layer 210 by sequentially applying a voltage from the endmost conductive film 261.
  • Embodiment 3 >> ⁇ Liquid crystal display device> 16 and 17 show a liquid crystal display device 3000 according to the third embodiment.
  • the liquid crystal display device 3000 is used as a display of a portable electronic device, a car navigation system, a television, or the like, for example.
  • the liquid crystal display device 3000 has a configuration in which a TFT substrate 3100 and a color filter (hereinafter also referred to as “CF”) substrate 3200 are arranged to face each other, and a liquid crystal layer 3300 is formed between both substrates.
  • the liquid crystal layer 3300 is sealed with a sealing material 3301 provided in a frame shape in the peripheral region between both substrates.
  • the liquid crystal display device 3000 includes a plurality of pixels arranged in a matrix.
  • the liquid crystal display device 3000 is a light transmission type liquid crystal display device.
  • the TFT substrate 3100 has a structure in which a separation layer 3110 and a display device layer 3120 are laminated on a support base material 3140 via an adhesive 3141.
  • An alignment film 3170 is provided on the surface of the TFT substrate 3100 on the display device layer 3120 side, and a polarizing plate 3242 is provided on the surface of the support base material 3240.
  • the separation layer 3110 is formed of a polyimide film.
  • the separation layer 3110 has a thickness of 5 to 15 ⁇ m, for example.
  • As a material for forming the separation layer 3110 there is heat resistance to a high temperature process when forming the TFT 3121, and since the liquid crystal display device 3000 is a light transmissive liquid crystal display device, a light transmissive polyimide. Is used.
  • An example of such a polyimide is a light transmissive polyimide having a thermal decomposition temperature of about 450 ° C.
  • the display device layer 3120 is provided for each of a plurality of pixels, in which a TFT 3121 is formed for each of a plurality of pixels, a TFT element layer provided with a planarization film 3122 so as to cover the plurality of TFTs 3121, and an upper layer of the planarization film 3122.
  • the pixel electrode 3124 is formed.
  • a contact hole 3123 reaching the drain electrode of each TFT 3121 is provided in the planarizing film 3122, and each of the plurality of pixel electrodes 3124 is electrically connected to the drain electrode of the TFT 3121 through a contact hose 3123.
  • the TFT 3121, the planarization film 3122, and the pixel electrode 3124 have a conventionally known configuration.
  • the support base material 3140 is formed of, for example, a flexible film. Since the liquid crystal display device 3000 is a light transmission type liquid crystal display device, the support base material 3140 is required to have high light transmission properties, heat resistance, and low retardation properties. Examples of the material for such a flexible film include cycloolefin polymers, cycloolefin copolymers, polysiloxane composites, and the like.
  • the supporting base material 3140 can realize a thin display by setting the thickness including the part of the adhesive 3141 to, for example, 50 to 400 ⁇ m.
  • the support base material 3140 can be formed of a material having a heat resistance lower than that required when forming the TFT.
  • the CF substrate 3200 has a structure in which a separation layer 3210 and a display device layer 3220 are laminated on a support base material 3240 with an adhesive 3241 interposed therebetween.
  • an alignment film 3270 is provided on the surface of the CF substrate 3200 on the display device layer 3220 side
  • a polarizing plate 3242 is provided on the surface of the support base material 3240 side.
  • the separation layer 3210 is formed of a polyimide film.
  • the separation layer 3210 has a thickness of 5 to 15 ⁇ m, for example.
  • a light-transmitting polyimide is used because the liquid crystal display device 3000 is a light-transmitting liquid crystal display device.
  • Examples of the light-transmitting polyimide include those having a thermal decomposition temperature of about 450 ° C.
  • the display device layer 3220 includes a color filter (CF) 3221 provided for each pixel, a color filter layer including a light shielding film 3222 provided so as to partition them, and a common electrode formed over the entire surface so as to cover them. 3223.
  • the CF 3221, the light shielding film 3222, and the common electrode 3223 have conventionally known configurations.
  • the support substrate 3240 on the CF substrate side is formed of, for example, a flexible film.
  • the support base material 3240 is required to have a high light transmission property and a low retardation property.
  • Examples of the material for the flexible film include cycloolefin polymer, cycloolefin copolymer, polysiloxane composite, polycarbonate, polyethylene terephthalate, and polymethyl methacrylate resin.
  • the support base material 3240 has a thickness of 50 to 400 ⁇ m, for example.
  • the liquid crystal layer 3300 is formed of a liquid crystal material such as nematic liquid crystal.
  • the TFT 3121 when the TFT 3121 is turned on, a predetermined charge is written in the pixel electrode 3124. Then, a potential difference is generated between the pixel electrode 3124 and the common electrode 3223 to which a common potential is applied, and an electric field is generated in the liquid crystal layer 3300.
  • the light transmittance of the liquid crystal layer 3300 is adjusted and an image is displayed.
  • a conductive layer 3160, a separation layer 3110, and a display device layer 3120 are formed over a heat resistant substrate 3150 on the TFT substrate 3100 side.
  • a conductive layer 3260, a separation layer 3210, and a display device layer 3220 are formed over the heat resistant substrate 3250 on the CF substrate 3200 side.
  • the display device layer 3120 on the TFT substrate 3100 side and the display device layer 3220 on the CF substrate 3200 side are bonded together so as to face each other.
  • the heat-resistant substrates 3150 and 3250 serve as base support substrates for forming the display device layers 3120 and 3220, and are not included in the configuration of the finished product of the liquid crystal display device 3000.
  • heat resistant substrates 3150 and 3250 for example, glass plates such as non-alkali glass having a thickness of about 0.7 mm are prepared.
  • the heat-resistant substrates 3150 and 3250 have a size that allows a plurality of liquid crystal display devices 3000 to be manufactured to be formed.
  • a conductive layer 3160 is formed on the heat resistant substrate 3150 through the same process as in the first embodiment.
  • the conductive layer 3160 includes an upper conductive film 3161, a lower conductive film 3162 (see FIG. 23), and an insulating film (not shown).
  • the upper conductive film 3161 constitutes the uppermost layer
  • the lower conductive film 3162 constitutes the lowermost layer
  • the insulating film is provided so as to insulate each of the upper conductive film 3161 and the lower conductive film 3162. ing.
  • a plurality of upper conductive films 3161 and a plurality of lower conductive films 3162 are provided, and each of them is arranged in parallel with a gap therebetween.
  • the upper conductive film 3161 and the lower conductive film 3162 are each formed in a U-shape, as in the first modification of the first embodiment.
  • a separation layer 3110 is formed by depositing a polyimide film by a slit coating method, a gravure coating method, a curtain coating method, a spin coating method, or the like so as to cover the conductive layer 3160.
  • the separation layer 3110 has a thickness of 5 to 15 ⁇ m, for example.
  • the display device layer 3120 is formed on the separation layer 3110 using a known method. Specifically, for example, a base coat film, a gate electrode, a gate insulating film, a semiconductor film, a source electrode, and a drain electrode are stacked in a predetermined layout, and a plurality of them are arranged in a matrix corresponding to each pixel.
  • the TFT 3121 is formed.
  • a planarization film 3122 is formed so as to cover them, and contact holes 3123 reaching the respective drain electrodes of the TFT 3121 from the surface of the planarization film 3122 are formed.
  • a plurality of pixel electrodes 3124 that are electrically connected to the drain electrode through the contact hole and patterned corresponding to each pixel are formed, and an alignment film 3170 is formed in the upper layer of the pixel electrode 3124.
  • an amorphous silicon ( ⁇ -Si) film is preferable in view of the thermal decomposition temperature of the separation layer 3110 being about 450 ° C.
  • a laminated body having a configuration on the CF substrate side is manufactured independently of the above-described steps S311A to S313A.
  • step S311B a conductive layer 3260 is formed on the heat resistant substrate 3250 in the same manner as in step S311A.
  • step S312B a separation layer 3210 is formed so as to cover the conductive layer 3260 as in step S312A.
  • a display device layer 3220 is formed on the separation layer 3210 using a known method. Specifically, for example, by using an inkjet method or the like, each color CF film is formed so as to correspond to each pixel, and a light-shielding film is formed in a lattice shape to partition them, thereby forming a color filter layer. Then, a common electrode 3223 is formed on the entire surface of the substrate by using, for example, a CVD method, and an alignment film 3270 is formed on the common electrode 3223.
  • steps S311A to S313A and steps S311B to S313B may be performed first, or may be performed simultaneously in parallel.
  • step S314 the laminate on the TFT substrate 3100 side manufactured in steps S311A to S313A is bonded to the laminate on the CF substrate 3200 side manufactured in steps S311B to S313B.
  • the seal material 3301 is applied in a frame shape to one peripheral edge of the display device layers 3120 and 3220 of the two laminates, a liquid crystal material is dropped on a region surrounded by the seal material 3301, and the other laminate is overlaid. To bond them together. Thereby, the laminated body shown in FIG. 19 is obtained.
  • FIG. 20 shows a layout of the upper conductive film 3261 and the lower conductive film 3262 in the conductive layer 3260 on the CF substrate 3200 side in the stacked body obtained in step S314.
  • step S321 as in Modification 1 of Embodiment 1, a voltage is applied to each of the upper conductive film 3261 and the lower conductive film 3262 in order from the conductive film located at the end. Thereby, as shown in FIG. 21, the adhesion state of the separation layer 3210 and the conductive layer 3260 is released.
  • step S331 an adhesive 3241 (not shown in FIG. 22) is used on the surface of the separation layer 3210 exposed by peeling the conductive layer 3260 and the heat resistant substrate 3250 as shown in FIG.
  • the support base material 3240 is attached.
  • FIG. 23 shows a layout of the upper conductive film 3161 and the lower conductive film 3162 in the conductive layer 3160 on the TFT substrate 3100 side in the stacked body obtained in step S314.
  • step S322 as in step S321, a voltage is applied to each of the upper conductive film 3161 and the lower conductive film 3162 in order from the conductive film located at the end. Thereby, as shown in FIG. 24, the adhesion state of the separation layer 3110 and the conductive layer 3160 is released.
  • step S332 an adhesive 3141 (not shown in FIG. 25) is used on the surface of the separation layer 3110 exposed by peeling the conductive layer 3160 and the heat resistant substrate 3150 as shown in FIG.
  • the support base material 3140 is attached.
  • step S333 the mother substrate size formed product is divided into the size of the single liquid crystal display device 3000, and then the polarizing plates 3142 and 3242 are bonded to the surfaces of the supporting base materials 3140 and 3240, respectively.
  • step S334 peripheral circuits such as an LSI chip and a flexible printed wiring board (FPC) are mounted in the peripheral area. Thereby, the liquid crystal display device 3000 is completed.
  • FPC flexible printed wiring board
  • the conductive layers 3160 and 3260 and the heat-resistant substrates 3150 and 3250 are peeled from the separation layers 3110 and 3210 by thermally decomposing portions including the surfaces of the separation layers 3110 and 3210 having a thickness of about 1 ⁇ m.
  • the processing traces along the laser processing shape do not remain on the separation layers 3110 and 3210.
  • the portions including the surfaces of the separation layers 3110 and 3210 are thermally decomposed uniformly.
  • the thermal decomposition of the surfaces of the separation layers 3110 and 3210 is performed by Joule heat, heat is not transmitted to the surfaces of the separation layers 3110 and 3210 on the display device layers 3120 and 3220 side. Therefore, deterioration of the characteristics of the display device layers 3120 and 3220 due to heat that thermally decomposes the separation layers 3110 and 3210 is suppressed.
  • the current since current is passed through each of the upper conductive film 3161 and the lower conductive film 3162 and the upper conductive film 3261 and the lower conductive film 3262 which are divided into a plurality of currents, the current flows across the conductive layers 3160 and 3260.
  • the voltage applied per time can be reduced as compared with the case where the electric current is supplied, and the facility can be simplified and the occurrence of an electric shock accident can be suppressed.
  • each of the upper conductive films 3161 and 3261 and the lower conductive films 3162 and 3262 has been described as being U-shaped, but each extends in a long shape in parallel. It may be arranged as follows.
  • the support base materials 3140 and 3240 have been described as having a flat plate shape. Since it has, the rigid body of various shapes can be stuck as a support base material.
  • the liquid crystal display device 3000 is a liquid crystal display device having a configuration in which the TFT substrate 3100 and the CF substrate 3200 are arranged to face each other.
  • the liquid crystal display device may be used.
  • the liquid crystal display device 3000 is described as a transmissive liquid crystal, but may be a reflective liquid crystal display device.
  • an opaque polyimide having a higher melting temperature for example, a thermal decomposition temperature of about 550 ° C.
  • LTPS low-temperature polysilicon
  • IGZO oxide semiconductor film
  • the like that requires a higher temperature process can be used as the semiconductor film of the TFT 3121.
  • FIG. 26 shows a liquid crystal display device 4000 according to the fourth embodiment.
  • the liquid crystal display device 4000 is used as a display for a portable electronic device, a car navigation system, a television, or the like, for example.
  • the liquid crystal display device 4000 has a configuration in which a TFT substrate 4100 and a CF substrate 4200 are arranged to face each other, and a liquid crystal layer 4300 is formed between both substrates.
  • the liquid crystal layer 4300 is sealed with a sealing material 4301 provided in a frame shape in the peripheral region between both substrates.
  • the liquid crystal display device 4000 includes a plurality of pixels arranged in a matrix.
  • the liquid crystal display device 4000 is a light reflective liquid crystal display device.
  • the TFT substrate 4100 has a configuration in which a separation layer 4110 and a display device layer 4120 are laminated on a support base 4140 via an adhesive (not shown). Further, an alignment film (not shown) is provided on the surface of the TFT substrate 4100 on the display device layer 4120 side, and a polarizing plate (not shown) is provided on the surface of the support base material 4240.
  • the separation layer 4110 is formed of a polyimide film.
  • the separation layer 4110 has a thickness of 5 to 15 ⁇ m, for example.
  • polyimide having heat resistance to a high temperature process when forming the TFT 4121 is used. Note that since the liquid crystal display device 4000 is a light reflection type liquid crystal display device, polyimide does not require light transmittance. Examples of such polyimide include opaque polyimide having a thermal decomposition temperature of about 550 ° C.
  • a TFT is formed for each of a plurality of pixels, and a planarizing film is provided so as to cover the plurality of TFTs.
  • a contact hole reaching the drain electrode of each TFT is provided in the planarizing film.
  • a pixel electrode is provided for each of a plurality of pixels on the planarizing film, and is electrically connected to the drain electrode of the TFT.
  • the TFT, the planarizing film, and the pixel electrode have a conventionally known configuration.
  • the support substrate 4140 is formed of, for example, a flexible film. Since the liquid crystal display device 4000 is a reflective liquid crystal display device, the supporting base material 4140 is required to have heat resistance. Examples of the material for the flexible film include polycarbonate, polyarylate, polysulfone, polyetherimide, polyphenylene sulfide, polyamideimide, liquid crystal polyester, polyimide, polyetheretherketone, and coloring members thereof.
  • the supporting substrate 4140 can realize a thin display by setting the thickness including the adhesive 4141 portion to, for example, 50 to 400 ⁇ m.
  • the support base material 4140 can be formed of a material having a heat resistance lower than that required when forming the TFT.
  • the CF substrate 4200 has a configuration in which the display device layer 4220 is bonded to the support base material 4240 via an adhesive (not shown).
  • an alignment film (not shown) is provided on the surface of the TFT substrate 4200 on the display device layer 4220 side, and a polarizing plate (not shown) is provided on the surface of the support base material 4240.
  • the display device layer 4220 includes a CF provided for each pixel, a color filter layer including a light shielding film provided so as to partition them, and a common electrode formed over the entire surface so as to cover them. And is formed.
  • the CF, the light shielding film, and the common electrode have a conventionally known configuration.
  • the support base 4240 is formed of, for example, a flexible film or a rigid body.
  • the flexible film material include cycloolefin polymer, cycloolefin copolymer, polysiloxane composite, polycarbonate, polyethersulfone, polyarylate, polysulfone, polyetherimide, polyphenylene sulfide, polyamideimide, liquid crystal polyester, polyimide, Examples thereof include polyether ether ketone and coloring members thereof.
  • the rigid body include stainless steel (SUS) and glass epoxy resin.
  • the support substrate 4240 on the CF substrate side is formed of, for example, a flexible film or a rigid body.
  • the support base material 4240 is required to have a high light transmission property and a low retardation property.
  • Examples of the material for the flexible film include cycloolefin polymer, cycloolefin copolymer, polysiloxane composite, polycarbonate, polyethylene terephthalate, and polymethyl methacrylate resin.
  • the support base material 3240 has a thickness of 50 to 400 ⁇ m, for example.
  • the liquid crystal layer 4300 is formed of a liquid crystal material such as nematic liquid crystal.
  • this liquid crystal display device 4000 when the TFT is turned on, a predetermined charge is written into the pixel electrode. Then, a potential difference is generated between the pixel electrode and the common electrode to which a common potential is applied, and an electric field is generated in the liquid crystal layer 4300. By changing the alignment state of the liquid crystal molecules in the liquid crystal layer 4300 according to the strength of the electric field generated in the liquid crystal layer 4300 in each pixel, the light transmittance of the liquid crystal layer 4300 is adjusted and an image is displayed.
  • the conductive layer 4160, the separation layer 4110, and the display device layer 4120 are formed over the heat resistant substrate 4150 on the TFT substrate 4100 side, while the CF substrate 4200 is manufactured. Then, the display device layer 4120 on the TFT substrate 4100 side and the display device layer 4220 on the CF substrate 4200 side are bonded together so as to face each other.
  • the heat-resistant substrate 4150 serves as a base support substrate for forming the display device layer 4120 and is not included in the configuration of the finished product of the liquid crystal display device 4000.
  • a glass plate such as non-alkali glass having a thickness of about 0.7 mm is prepared.
  • the heat-resistant substrate 4150 has a size that allows a plurality of liquid crystal display devices 4000 to be manufactured to be formed.
  • the conductive layer 4160 is formed on the heat resistant substrate 4150 through the same process as that of the second embodiment.
  • the conductive layer 4160 includes a conductive film 4161 and an insulating film 4163 (see FIG. 29).
  • a plurality of the conductive films 4161 are provided and are formed in a long shape so that each of the conductive films 4161 is arranged in parallel to each other with a space therebetween. Then, an insulating film 4163 is formed so as to partition them.
  • a separation layer 4110 is formed by depositing a polyimide film by a slit coating method, a gravure coating method, a curtain coating method, a spin coating method, or the like so as to cover the conductive layer 4160.
  • the separation layer 4110 has a thickness of 5 to 15 ⁇ m, for example.
  • step S413 the display device layer 4120 is formed on the separation layer 4110 in the same manner as in step S313A of the third embodiment.
  • the CF substrate 4200 is manufactured by forming the display device layer 4220 on the support base material 4240 in step S414. Specifically, for example, by using an inkjet method or the like, each color CF film is formed so as to correspond to each pixel, and a light-shielding film is formed in a lattice shape to partition them, thereby forming a color filter layer. Then, for example, a CVD method or the like is used to form a common electrode on the entire surface of the substrate, and an alignment film is formed on the common electrode.
  • steps S411 to S413 and step S414 may be performed first, or may be performed in parallel.
  • step S415 the laminate on the TFT substrate 4100 side manufactured in steps S411 to S313 and the CF substrate 4200 manufactured in step S414 are bonded.
  • the seal material 4301 is applied in a frame shape to one peripheral edge of the display device layers 4120 and 4220 of the two stacked bodies, a liquid crystal material is dropped on the region surrounded by the seal material 4301, and the other stacked body is overlaid. To bond them together. Thereby, the laminated body shown in FIG. 28 is obtained.
  • FIG. 29 shows a layout of the conductive film 4161 and the insulating film 4163 in the conductive layer 4160 on the TFT substrate 4100 side in the stacked body obtained in step S415.
  • step S421 as in the second embodiment, a voltage is sequentially applied to each of the conductive films 4161 from the conductive film located at the end. Thereby, as shown in FIG. 30, the adhesion state of the separation layer 4110 and the conductive layer 4160 is released.
  • step S431 a support base material 4140 is attached to the surface of the separation layer 4110 exposed by peeling the conductive layer 4160 and the heat resistant substrate 4150 using an adhesive as shown in FIG. .
  • step S432 the mother substrate size formed product is divided into the size of a single liquid crystal display device 4000, and then a polarizing plate is bonded to the surfaces of the supporting base materials 4140 and 4240, respectively.
  • step S433 peripheral circuits such as an LSI chip and a flexible printed wiring board (FPC) are mounted in the peripheral area. Thereby, the liquid crystal display device 4000 is completed.
  • FPC flexible printed wiring board
  • the conductive layer 4160 and the heat-resistant substrate 4150 are peeled from the separation layer 4110 by thermally decomposing a portion having a thickness of about 1 ⁇ m including the surface of the separation layer 4110, so that a laser is used. Processing traces along the laser processing shape do not remain on the separation layer 4110.
  • the portion including the surface of the separation layer 4110 can be thermally decomposed uniformly, and uneven separation of thermal decomposition in the separation layer 4110 is suppressed. . Accordingly, display quality deterioration and deterioration of optical characteristics such as contrast due to the presence of peeling process marks and thermal decomposition unevenness in the separation layer 4110 are suppressed.
  • the magnitude of the voltage applied per time can be made smaller than when a current is passed over the entire surface of the conductive layer 4160, and the facility Simplification and suppression of electric shock accidents.
  • the support base material 4140 is described as having a flat plate shape.
  • the laminate of the separation layer 4110, the display device layer 4120, the liquid crystal layer 4300, and the CF substrate 4200 is flexible. Therefore, various shapes of rigid bodies can be pasted as a support base material.
  • the liquid crystal display device 4000 has a configuration in which the TFT substrate 4100 and the CF substrate 4200 are arranged to face each other.
  • the liquid crystal display device 4000 is described as being a light reflection type liquid crystal, but may be a light transmission type liquid crystal display device.
  • the material constituting the separation layer 4110 of the TFT substrate 4100 is required to have light transmittance, it is necessary to use transparent polyimide having a thermal decomposition temperature of about 450 ° C.
  • the separation layer may be a material having a thermal decomposition temperature or a melting point in a temperature range reachable by Joule heat generated when a current is passed through the conductive film.
  • aluminum melting point: about 660 ° C.
  • the separation layer may be used as the separation layer.
  • the separation layer does not transmit light when the separation layer is formed of aluminum, the light in the separation layer in the case of a transmissive liquid crystal display device, the reflection type liquid crystal display device, and the top emission type organic EL display device. It is not suitable as a material for the separation layer of the substrate on the take-out side. Moreover, it is preferable to use a polyimide as a material of a separation layer from the point which the bending performance of a separation layer is excellent.
  • the display device 200 is related to an organic EL display device or a liquid crystal display device.
  • the display device 200 is not limited to this.
  • an inorganic EL display device an electrophoretic display device, a plasma display (PD) ), Plasma addressed liquid crystal display (PALC), field emission display (FED), surface field display (SED (surface-conduction electron-emitter display)), etc.
  • PD plasma display
  • PLC Plasma addressed liquid crystal display
  • FED field emission display
  • SED surface-conduction electron-emitter display
  • the present invention is useful for a display device and a method for manufacturing the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This method for manufacturing a display device (100) is provided with a first step for forming a conductive layer (160) constituted such that a plurality of conductive films (161, 162) are insulated via an insulating film (163) on a heat resistant substrate (150), thereafter forming a separation layer (110) so as to cover the conductive layer (160), and thereafter forming display device layers (120, 130) on the separation layer (110) and a second step following the first step wherein current is made to flow in each of the plurality of conductive films (161, 162), Joule heat generated, the surface of the separation layer (110) in contact with the conductive layer (160) melted or thermally decomposed by this Joule heat, and the conductive layer (160) and heat resistant substrate (150) peeled from the separation layer (110).

Description

表示装置及びその製造方法Display device and manufacturing method thereof
 本発明は、表示装置及び表示装置の製造方法に関する。 The present invention relates to a display device and a method for manufacturing the display device.
 液晶表示装置や有機EL表示装置等の表示装置では、各画素毎に薄膜トランジスタ(Thin Film Transistor:以下、「TFT」とも称する)が設けられたアクティブマトリクス型のものが広く用いられている。TFTが設けられたTFT基板としては、TFTの形成時に高温プロセスを伴うため、一般に、耐熱性に優れたガラス基板等を基板本体として使用する。 In a display device such as a liquid crystal display device or an organic EL display device, an active matrix type device in which a thin film transistor (hereinafter referred to as “TFT”) is provided for each pixel is widely used. Since a TFT substrate provided with a TFT involves a high temperature process when forming the TFT, a glass substrate having excellent heat resistance is generally used as the substrate body.
 ところで、近年、薄型化、軽量化された表示装置や、フレキシブル性を有する表示装置が求められている。しかしながら、TFT基板本体をガラス等の高耐熱性の材料で形成する場合、薄型化や軽量化、フレキシブル性の改善には限度がある。 By the way, in recent years, there has been a demand for display devices that are thinner and lighter and display devices that are flexible. However, when the TFT substrate body is formed of a highly heat-resistant material such as glass, there are limits to the reduction in thickness, weight, and flexibility.
 そこで、TFT基板本体を耐熱性に弱い支持基材でも形成可能とするため、例えば、ガラス板上にTFT等を形成した後、ガラス板を剥離してから支持基材を貼付する方法が採用されている。 Therefore, in order to enable the TFT substrate body to be formed even with a support base material that is weak in heat resistance, for example, after forming a TFT or the like on a glass plate, a method of sticking the support base material after peeling the glass plate is adopted. ing.
 特許文献1には、ガラス板上に分離層を形成し、分離層上にTFT素子等の被転写層を形成し、さらに、被転写層上に接着層を介して転写体(フレキシブル支持基材)を貼付した後、ガラス板側から分離層にレーザー光を照射することにより、ガラス板及び分離層を被転写層から剥離し、フレキシブルな支持基材上に被転写層(TFT層)が積層された薄膜素子基板を製造することが記載されている。 In Patent Document 1, a separation layer is formed on a glass plate, a transfer layer such as a TFT element is formed on the separation layer, and a transfer body (flexible support base material) is formed on the transfer layer via an adhesive layer. ), The separation layer is irradiated with laser light from the glass plate side to peel the glass plate and the separation layer from the layer to be transferred, and the layer to be transferred (TFT layer) is laminated on the flexible support substrate Manufacturing a thin film device substrate is described.
 非特許文献1には、プラスチック基板上に形成されたアクティブマトリクス型の有機EL表示装置の製造方法について、主面上に有機EL素子を形成したプラスチック基板とガラス板との間に全面に導電層を設け、ジュール熱による剥離(JILO)のプロセスによりプラスチック基板から導電層及びガラス板を剥離して有機EL表示装置を得ることが記載されている。ジュール熱による剥離(JILO)のプロセスは、具体的には、導電層に電流を流すことにより発生するジュール熱でプラスチック基板の表面を溶融して導電層を剥離するプロセスである。 Non-Patent Document 1 discloses a method for manufacturing an active matrix type organic EL display device formed on a plastic substrate. A conductive layer is formed on the entire surface between a plastic substrate having an organic EL element formed on the main surface and a glass plate. And an organic EL display device is obtained by peeling a conductive layer and a glass plate from a plastic substrate by a Joule heat peeling (JILO) process. Specifically, the Joule heat peeling (JILO) process is a process in which the conductive layer is peeled off by melting the surface of the plastic substrate with Joule heat generated by passing an electric current through the conductive layer.
特開平10-125931号公報Japanese Patent Laid-Open No. 10-125931
 しかしながら、特許文献1によれば、レーザーアブレーションにより分離層の層内や界面において分離層及びガラス板を剥離するので、レーザーの照射ウインドウの形状に沿った加工痕がポリイミド膜上に残ることになる。具体的には、例えば、ガラス板を透過してポリイミド膜等の分離層に、1辺が数mmの照射ウインドウを用いて波長308nmのエキシマレーザーをパルス的に照射する場合、ガラス板と分離層との界面付近において、ポリイミド膜の分子結合が切断される。このとき、ポリイミド膜がガラス板から剥離されると同時に、レーザーによってポリイミド膜の表層が焼かれ、焼け痕がレーザーの照射ウインドウの形状に沿ってデブリ(アブレーションによる堆積物)となって残ってしまう。また、レーザー照射で気化したポリイミドは、ポリイミド膜とガラス板の間から逃げることができず、ポリイミド膜に付着して再び凝固し、これも、デブリの原因となる。そして、これらのデブリによる加工痕により、表示品位の劣化やコントラスト等の光学的特性の劣化が起こる虞がある。 However, according to Patent Document 1, since the separation layer and the glass plate are peeled off in the layer of the separation layer or at the interface by laser ablation, a processing mark along the shape of the laser irradiation window remains on the polyimide film. . Specifically, for example, when an excimer laser having a wavelength of 308 nm is irradiated in a pulsed manner to a separation layer such as a polyimide film through a glass plate using an irradiation window with a side of several mm, the glass plate and the separation layer In the vicinity of the interface, the molecular bond of the polyimide film is broken. At this time, the polyimide film is peeled from the glass plate, and at the same time, the surface layer of the polyimide film is burned by the laser, and the burn mark remains as debris (accumulated deposits) along the shape of the laser irradiation window. . Also, the polyimide vaporized by laser irradiation cannot escape from between the polyimide film and the glass plate, but adheres to the polyimide film and solidifies again, which also causes debris. Further, the processing marks due to these debris may cause deterioration of display quality and optical characteristics such as contrast.
 非特許文献1によれば、ガラス板とポリイミド膜との間の全面に導電層が設けられるので、導電膜とポリイミド膜との界面状態のバラツキにより導電膜に均一に電流を流すことが難しく、領域によって発生するジュール熱にバラツキが生じる虞がある。具体的には、場所によってポリイミドの溶融が起こるタイミングに差があり、溶融して液体状態となったポリイミドは、表面張力により、早い段階で溶融した場所に集まってくる。そして、集まってきたポリイミドの液体がさらに加熱されて蒸発して気体となるため、その部分が溶融痕となり、表示品位の劣化やコントラスト等の光学的特性の劣化が起こる虞がある。 According to Non-Patent Document 1, since a conductive layer is provided on the entire surface between the glass plate and the polyimide film, it is difficult to flow a current uniformly through the conductive film due to variations in the interface state between the conductive film and the polyimide film. There is a possibility that the Joule heat generated by the region varies. Specifically, there is a difference in the timing at which the polyimide melts depending on the location, and the polyimide that has been melted into a liquid state gathers at the melted location at an early stage due to surface tension. The collected polyimide liquid is further heated to evaporate into a gas, so that portion becomes melting marks, and there is a risk of deterioration in display quality and optical characteristics such as contrast.
 本発明は、ガラス板上に設けられたポリイミド膜及びTFT等を形成した後ポリイミド膜からガラス板を剥離する工程において、ポリイミド膜に加工痕が残るのを抑制し、優れたコントラスト性能を有する表示装置を得ることを目的とする。 The present invention suppresses the processing marks from remaining on the polyimide film in the step of peeling the glass plate from the polyimide film after forming the polyimide film and TFT provided on the glass plate, and has excellent contrast performance. The object is to obtain a device.
 上記課題を解決するための本発明の表示装置の製造方法は、耐熱性基板上に複数の導電膜が絶縁膜を介して絶縁されて構成された導電層を形成した後、該導電層を覆うように分離層を形成し、その後、該分離層上に表示デバイス層を形成する第1の工程と、上記第1の工程の後、上記複数の導電膜の各々に電流を流してジュール熱を発生させ、このジュール熱により上記分離層の導電層に接する面を溶融又は熱分解し、該分離層から導電層及び耐熱性基板を剥離する第2の工程と、を含む。 In order to solve the above problems, a method for manufacturing a display device according to the present invention includes forming a conductive layer formed by insulating a plurality of conductive films through an insulating film on a heat-resistant substrate, and then covering the conductive layer. Forming a separation layer, and then forming a display device layer on the separation layer; and after the first step, current is passed through each of the plurality of conductive films to generate Joule heat. And a second step of melting or thermally decomposing the surface of the separation layer in contact with the conductive layer by the Joule heat and peeling the conductive layer and the heat-resistant substrate from the separation layer.
 上記の製造方法によれば、分離層の表面を溶融又は熱分解することにより分離層から導電層及び耐熱性基板を剥離するので、レーザーを用いる場合のように分離層上にレーザーの加工形状に沿った加工痕が残ることがない。また、複数に分かれた導電膜の各々に電流を流すので、分離層の表面の溶融状態又は分解の状態を均一にすることができ、分離層に溶融痕が残るのが抑制される。従って、分離層に剥離の加工痕等が存在することによる表示品位の劣化やコントラスト等の光学的特性の劣化が抑制される。 According to the above manufacturing method, the conductive layer and the heat-resistant substrate are peeled from the separation layer by melting or thermally decomposing the surface of the separation layer, so that a laser processing shape is formed on the separation layer as in the case of using a laser. There is no remaining processing mark along. In addition, since a current is passed through each of the plurality of conductive films, the surface of the separation layer can be uniformly melted or decomposed, and it is possible to prevent melting marks from remaining in the separation layer. Therefore, deterioration of display quality and deterioration of optical characteristics such as contrast due to the presence of peeling processing marks or the like in the separation layer are suppressed.
 また、上記の製造方法によれば、分離層の表面の溶融又は熱分解をジュール熱により行うので、分離層の表示デバイス層側の面にまで熱が伝わらない。そのため、分離層を溶融又は熱分解するための熱による表示デバイス層の特性の劣化が抑制される。 Further, according to the above manufacturing method, since the melting or thermal decomposition of the surface of the separation layer is performed by Joule heat, heat is not transmitted to the surface of the separation layer on the display device layer side. Therefore, deterioration of the characteristics of the display device layer due to heat for melting or thermally decomposing the separation layer is suppressed.
 さらに、上記の製造方法によれば、複数に分かれた導電膜の各々に電流を流すので、導電層全面に電流を流す場合よりも1回あたりに印加する電圧の大きさを小さくでき、設備の簡素化や感電事故発生の抑制が可能となる。 Furthermore, according to the above manufacturing method, since a current is passed through each of the plurality of conductive films, the magnitude of the voltage to be applied at one time can be made smaller than when a current is passed over the entire surface of the conductive layer. Simplification and suppression of electric shock accidents are possible.
 本発明の表示装置の製造方法は、上記複数の導電膜は、上記導電層の上記表示デバイス層側表面に露出するように位置付けられ、互いに並列に配置された長尺状の複数の上側導電膜、及び、上記導電層の上記耐熱性基板側表面に露出するように上記隣り合う2つの上側導電膜の間に対応する領域に位置付けられ、互いに並列して配置された複数の下側導電膜で構成されていてもよい。 In the method for manufacturing a display device of the present invention, the plurality of conductive films are positioned so as to be exposed on the surface of the conductive layer on the display device layer side, and the plurality of long upper conductive films arranged in parallel to each other. And a plurality of lower conductive films positioned in a corresponding region between the two adjacent upper conductive films so as to be exposed on the heat resistant substrate side surface of the conductive layer, and arranged in parallel with each other. It may be configured.
 また、本発明の表示装置の製造方法は、上記導電層は、上記複数の導電膜の各々が長尺状に延び且つ互いに並列に配置され、上記絶縁膜が長尺状に延び且つ上記隣り合う2つの導電膜の間に対応する領域に互いに並列に複数配置されていてもよい。 In the method for manufacturing a display device according to the present invention, the conductive layer is formed such that each of the plurality of conductive films extends in a long shape and is arranged in parallel to each other, and the insulating film extends in a long shape and is adjacent to the conductive film. A plurality of the conductive films may be arranged in parallel to each other in a corresponding region between the two conductive films.
 本発明の表示装置の製造方法は、耐熱性基板上に表示デバイス層を形成した後耐熱性基板を剥離するので、上記表示デバイス層が、複数のスイッチング素子がマトリクス状に配置されたスイッチング素子層を含む等の製造プロセス中に高温の工程を含むものである場合に好適である。 The display device manufacturing method of the present invention forms a display device layer on a heat resistant substrate and then peels the heat resistant substrate. Therefore, the display device layer is a switching element layer in which a plurality of switching elements are arranged in a matrix. It is suitable for the case where a high-temperature step is included in the manufacturing process such as including.
 この場合、上記表示デバイス層は、上記複数のスイッチング素子の各々に対応して複数の有機EL素子が配置された有機EL素子層を上記スイッチング素子層上に積層した構成を有していてもよい。 In this case, the display device layer may have a configuration in which an organic EL element layer in which a plurality of organic EL elements are arranged corresponding to each of the plurality of switching elements is stacked on the switching element layer. .
 本発明の表示装置の製造方法は、第1の耐熱性基板、該第1の耐熱性基板上の複数の導電膜が絶縁膜を介して絶縁されて構成された第1の導電層、該第1の導電層上の第1の分離層、並びに、複数のスイッチング素子がマトリクス状に配置されたスイッチング素子層及び該スイッチング素子層上に設けられ該複数のスイッチング素子の各々に対応する複数の画素電極を含む表示デバイス層からなる第1の積層体と、第2の耐熱性基板、該第2の耐熱性基板上の複数の導電膜が絶縁膜を介して絶縁されて構成された第2の導電層、該第2の導電層上の第2の分離層、及び、共通電極を含む第2の表示デバイス層からなる第2の積層体の各々を上記第1の工程を経て形成した後、上記第1及び第2の表示デバイス層が対向するようにそれらを配置して該第1及び第2表示デバイス層間に形成される空間に液晶層を形成し、第1の導電層及び第1の耐熱性基板、並びに第2の導電層及び第2の耐熱性基板を上記第2の工程を経て第1の分離層及び第2の分離層のそれぞれから剥離してもよい。 The display device manufacturing method according to the present invention includes a first heat-resistant substrate, a first conductive layer formed by insulating a plurality of conductive films on the first heat-resistant substrate via an insulating film, A first separation layer on one conductive layer, a switching element layer in which a plurality of switching elements are arranged in a matrix, and a plurality of pixels provided on the switching element layer and corresponding to each of the plurality of switching elements A second stacked body comprising a display device layer including an electrode, a second heat-resistant substrate, and a plurality of conductive films on the second heat-resistant substrate insulated via an insulating film After forming each of the conductive layer, the second separation layer on the second conductive layer, and the second stacked body including the second display device layer including the common electrode through the first step, Arrange them so that the first and second display device layers face each other. Then, a liquid crystal layer is formed in a space formed between the first and second display device layers, and the first conductive layer and the first heat-resistant substrate, and the second conductive layer and the second heat-resistant substrate are formed. You may peel from each of a 1st separated layer and a 2nd separated layer through the said 2nd process.
 本発明の表示装置の製造方法は、上記分離層は、融点又は熱分解温度が400~700℃の材料で形成されていることが好ましい。 In the method for manufacturing a display device of the present invention, the separation layer is preferably formed of a material having a melting point or a thermal decomposition temperature of 400 to 700 ° C.
 かかる分離層としては、ポリイミドで形成されていることが好ましい。 Such a separation layer is preferably formed of polyimide.
 上記の製造方法によれば、ポリイミドが優れた耐熱性及び耐溶剤性を有するので、表示デバイス層の形成において高温プロセスを経ることができる。また、ポリイミドが優れた耐屈曲性を有するので、表示装置をフレキシブルデバイスとして用いたり、平板形状ではない他の部材に貼り付けたりすることができる。さらに、ポリイミドが優れた光透過性を有する場合には、表示装置を光透過型の液晶表示装置とすることも可能である。 According to the above manufacturing method, since polyimide has excellent heat resistance and solvent resistance, a high temperature process can be performed in forming the display device layer. In addition, since polyimide has excellent bending resistance, the display device can be used as a flexible device or can be attached to another member that is not a flat plate. Further, when polyimide has excellent light transmittance, the display device can be a light transmission type liquid crystal display device.
 本発明の表示装置の製造方法は、上記第2の工程の後、上記分離層の露出した表面に支持基材を貼設する第3の工程をさらに備えていてもよい。 The method for manufacturing a display device of the present invention may further include a third step of pasting a support base material on the exposed surface of the separation layer after the second step.
 上記の製造方法によれば、分離層の露出した表面に支持基材を貼り付けることにより、表示装置の外部からの機械的ストレスへの耐性や水分バリア性、酸素バリア性等の環境耐性を向上させることができる。また、分離層と表示デバイス層との積層体がガラス基板等の剛体を含まないで形成されているので、任意の形状の支持基材を貼設することができ、デザインの自由度の高い表示装置を得ることができる。 According to the above manufacturing method, by attaching a support substrate to the exposed surface of the separation layer, the resistance to mechanical stress from the outside of the display device and the environmental resistance such as moisture barrier property and oxygen barrier property are improved. Can be made. In addition, since the laminate of the separation layer and the display device layer is formed without including a rigid body such as a glass substrate, a support base material of any shape can be affixed and display with a high degree of freedom in design A device can be obtained.
 本発明の表示装置は、上記第1工程及び第2工程を経て製造されるものであって、分離層が融点又は熱分解温度が400~700℃の材料で形成されている。 The display device of the present invention is manufactured through the first step and the second step, and the separation layer is formed of a material having a melting point or a thermal decomposition temperature of 400 to 700 ° C.
 本発明の表示装置は、上記表示デバイス層は、複数のスイッチング素子がマトリクス状に配置されたスイッチング素子層を含む場合に好適である。 The display device of the present invention is suitable when the display device layer includes a switching element layer in which a plurality of switching elements are arranged in a matrix.
 本発明の表示装置は、上記分離層がポリイミドで形成されていることが好ましい。 In the display device of the present invention, the separation layer is preferably formed of polyimide.
 本発明の表示装置は、上記分離層の上記表示デバイス層とは反対側表面に支持基材をさらに備えていてもよい。 The display device of the present invention may further include a support base material on the surface of the separation layer opposite to the display device layer.
 本発明によれば、分離層の表面を溶融又は熱分解することにより分離層から導電層及び耐熱性基板を剥離するので、レーザーを用いる場合のように分離層上にレーザーの加工形状に沿った加工痕が残ることがない。また、複数に分かれた導電膜の各々に電流を流すので、分離層の表面の溶融状態又は分解の状態を均一にすることができ、分離層に溶融痕が残るのが抑制される。従って、分離層に剥離の加工痕等が存在することによる表示品位の劣化やコントラスト等の光学的特性の劣化が抑制される。 According to the present invention, the conductive layer and the heat-resistant substrate are peeled from the separation layer by melting or thermally decomposing the surface of the separation layer, so that the laser processing shape is aligned on the separation layer as in the case of using a laser. No processing marks remain. In addition, since a current is passed through each of the plurality of conductive films, the surface of the separation layer can be uniformly melted or decomposed, and it is possible to prevent melting marks from remaining in the separation layer. Therefore, deterioration of display quality and deterioration of optical characteristics such as contrast due to the presence of peeling processing marks or the like in the separation layer are suppressed.
 また、本発明によれば、分離層の表面の溶融又は熱分解をジュール熱により行うので、分離層の表示デバイス層側の面にまで熱が伝わらない。そのため、分離層溶融又は熱分解するための熱による表示デバイス層の特性の劣化が抑制される。 In addition, according to the present invention, since the melting or thermal decomposition of the surface of the separation layer is performed by Joule heat, heat is not transmitted to the surface of the separation layer on the display device layer side. Therefore, the deterioration of the characteristics of the display device layer due to the heat for melting or pyrolyzing the separation layer is suppressed.
 さらに、本発明によれば、複数に分かれた導電膜の各々に電流を流すので、導電層全面に電流を流す場合よりも1回あたりに印加する電圧の大きさを小さくでき、設備の簡素化や感電事故発生の抑制が可能となる。 Furthermore, according to the present invention, since a current is passed through each of the plurality of conductive films, the magnitude of the voltage applied per time can be made smaller than when a current is passed over the entire surface of the conductive layer, and the equipment is simplified. And electric shock accidents can be suppressed.
実施形態1の有機EL表示装置の断面図である。1 is a cross-sectional view of an organic EL display device according to Embodiment 1. FIG. 実施形態1の有機EL表示装置の製造方法のフローチャートである。3 is a flowchart of a method for manufacturing the organic EL display device according to the first embodiment. 実施形態1の有機EL表示装置の製造方法の説明図である。FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment. 実施形態1の有機EL表示装置の製造方法の説明図である。FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment. 実施形態1の有機EL表示装置の製造方法の説明図である。FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment. 実施形態1の有機EL表示装置の製造方法の説明図である。FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment. 実施形態1の有機EL表示装置の製造方法の説明図である。FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 1. 実施形態1の有機EL表示装置の製造方法の説明図である。FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 1. 実施形態1の有機EL表示装置の製造方法の説明図である。FIG. 3 is an explanatory diagram of a method for manufacturing the organic EL display device according to the first embodiment. (a)及び(b)は、変形例1の有機EL表示装置の製造方法の説明図である。(A) And (b) is explanatory drawing of the manufacturing method of the organic electroluminescence display of the modification 1. As shown in FIG. 変形例2の有機EL表示装置の概略断面図である。It is a schematic sectional drawing of the organic electroluminescence display of the modification 2. 実施形態2の有機EL表示装置の断面図である。It is sectional drawing of the organic electroluminescent display apparatus of Embodiment 2. FIG. 実施形態2の有機EL表示装置の製造方法の説明図である。10 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 2. FIG. 実施形態2の有機EL表示装置の製造方法の説明図である。10 is an explanatory diagram of a method for manufacturing the organic EL display device of Embodiment 2. FIG. 変形例3の有機EL表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the organic electroluminescent display apparatus of the modification 3. 実施形態3の液晶表示装置の概略断面図である。6 is a schematic cross-sectional view of a liquid crystal display device of Embodiment 3. FIG. 実施形態3の液晶表示装置の要部拡大断面図である。6 is an enlarged cross-sectional view of a main part of a liquid crystal display device of Embodiment 3. FIG. 実施形態3の液晶表示装置の製造方法のフローチャートである。10 is a flowchart of a manufacturing method of the liquid crystal display device of Embodiment 3. 実施形態3の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. 実施形態3の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. 実施形態3の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. 実施形態3の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. 実施形態3の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. 実施形態3の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. 実施形態3の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 3. 実施形態4の液晶表示装置の概略断面図である。6 is a schematic cross-sectional view of a liquid crystal display device of Embodiment 4. FIG. 実施形態4の液晶表示装置の製造方法のフローチャートである。10 is a flowchart of a manufacturing method of the liquid crystal display device of Embodiment 4. 実施形態4の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4. 実施形態4の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4. 実施形態4の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4. 実施形態4の液晶表示装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the liquid crystal display device of Embodiment 4.
 以下、本発明の例示的実施形態について、図面を参照して詳細に説明する。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
  《実施形態1》
  <有機EL表示装置>
 図1は、実施形態1に係る有機EL表示装置100を示す。この有機EL表示装置100は、例えば、携帯用電子機器やカーナビ、テレビ等のディスプレイとして用いられる。
Embodiment 1
<Organic EL display device>
FIG. 1 shows an organic EL display device 100 according to the first embodiment. The organic EL display device 100 is used as a display of a portable electronic device, a car navigation system, a television, or the like, for example.
 有機EL表示装置100は、分離層110上に表示デバイス層を積層したものが支持基材140上に接着剤141を介して接着された構成を有する。表示デバイス層は、スイッチング素子層としてのTFT素子層120、及び有機EL素子層130で構成されている。また、有機EL表示装置100は、複数の画素がマトリクス状に配置されている。この有機EL表示装置100は、支持基材140とは反対側から光を取り出して画像表示を行うトップエミッション型の有機EL表示装置である。 The organic EL display device 100 has a configuration in which a display device layer is laminated on a separation layer 110 and is bonded to a support substrate 140 via an adhesive 141. The display device layer includes a TFT element layer 120 as a switching element layer and an organic EL element layer 130. In the organic EL display device 100, a plurality of pixels are arranged in a matrix. The organic EL display device 100 is a top emission type organic EL display device that takes out light from the side opposite to the support base 140 and displays an image.
 分離層110は、ポリイミド膜で形成されている。分離層110は、例えば厚さが5~15μmである。分離層110を構成する材料は、TFT素子層120を形成するときの高温プロセスへの耐熱性を有すると共に、熱分解温度が400~700℃程度の熱分解温度を有するものである。有機EL表示装置の光取り出し方式がトップエミッション型なので、分離層110を構成するポリイミドには光透過性は要求されず、透明ポリイミドであっても不透明ポリイミドであってもよい。但し、より高い熱分解温度を有する点からは、不透明ポリイミドであることが好ましい。 The separation layer 110 is formed of a polyimide film. The separation layer 110 has a thickness of 5 to 15 μm, for example. The material constituting the separation layer 110 has heat resistance to a high-temperature process when forming the TFT element layer 120 and has a thermal decomposition temperature of about 400 to 700 ° C. Since the light extraction method of the organic EL display device is a top emission type, the polyimide constituting the separation layer 110 is not required to have light transmittance, and may be a transparent polyimide or an opaque polyimide. However, from the viewpoint of having a higher thermal decomposition temperature, opaque polyimide is preferable.
 TFT素子層120は、複数の画素毎にTFT121(スイッチング素子)が形成され、複数のTFT121を覆うように平坦化膜122が設けられている。TFT121や平坦化膜122は従来公知の構成を有する。 In the TFT element layer 120, a TFT 121 (switching element) is formed for each of a plurality of pixels, and a planarizing film 122 is provided so as to cover the plurality of TFTs 121. The TFT 121 and the planarizing film 122 have a conventionally known configuration.
 有機EL素子層130は、下部電極131、有機EL層132、及び上部電極133が積層された有機EL素子が複数のTFT121のそれぞれに対応して配置され、それらが封止膜134で被覆された構成を有する。下部電極131は、各画素に対応して複数設けられ、平坦化膜122に設けられたコンタクトホール133を介してドレイン電極(不図示)と電気的に接続されている。なお、複数の画素のそれぞれを区画する領域には、下部電極131の各々の周縁部を覆うようにエッジカバー135が設けられている。下部電極131、有機EL層132、上部電極133及びエッジカバー135のそれぞれは、従来公知の構成を有する。封止膜134は、例えば窒化ケイ素膜及び酸化ケイ素膜の積層体や、パラキシリレン系ポリマー等で形成されている。 In the organic EL element layer 130, an organic EL element in which a lower electrode 131, an organic EL layer 132, and an upper electrode 133 are stacked is arranged corresponding to each of the plurality of TFTs 121, and these are covered with a sealing film 134. It has a configuration. A plurality of lower electrodes 131 are provided corresponding to each pixel, and are electrically connected to a drain electrode (not shown) through a contact hole 133 provided in the planarization film 122. Note that an edge cover 135 is provided in a region partitioning each of the plurality of pixels so as to cover each peripheral edge of the lower electrode 131. Each of the lower electrode 131, the organic EL layer 132, the upper electrode 133, and the edge cover 135 has a conventionally known configuration. The sealing film 134 is formed of, for example, a laminated body of a silicon nitride film and a silicon oxide film, a paraxylylene-based polymer, or the like.
 支持基材140は、例えば、可撓性を有するフィルムや剛体で形成されている。可撓性フィルムの材料としては、例えば、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリシロキサン複合体、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリスルホン、ポリエーテルイミド、ポリフェニレンスルフィド、ポリアミドイミド、液晶ポリエステル、ポリイミド、ポリエーテルエーテルケトン、それらの着色部材等が挙げられる。剛体としては、例えば、ステンレス鋼(SUS)やガラスエポキシ樹脂等が挙げられる。支持基材140は、接着剤141の部分を含めた厚さを例えば50~400μmとすることにより薄型ディスプレイを実現できる。支持基材140は、TFT形成時に必要とされるよりも低い耐熱性の材料で形成することができる。 The support substrate 140 is formed of, for example, a flexible film or a rigid body. Examples of the flexible film material include cycloolefin polymer, cycloolefin copolymer, polysiloxane composite, polycarbonate, polyethersulfone, polyarylate, polysulfone, polyetherimide, polyphenylene sulfide, polyamideimide, liquid crystal polyester, polyimide, Examples thereof include polyether ether ketone and coloring members thereof. Examples of the rigid body include stainless steel (SUS) and glass epoxy resin. The support substrate 140 can realize a thin display by setting the thickness including the adhesive 141 to 50 to 400 μm, for example. The support substrate 140 can be formed of a material having a lower heat resistance than that required when forming the TFT.
 この有機EL表示装置100では、TFT121をオンさせると、第1電極131から有機EL層132へホールが注入され、第2電極133から有機EL層132へ電子が注入される。ホールと電子とが有機EL層132の発光層内で再結合する。再結合により、励起状態となった電子がエネルギーを放出しながら基底状態に戻るが、このときに放出されるエネルギーが発光として取り出され、全体として所望の画像として視認される。 In the organic EL display device 100, when the TFT 121 is turned on, holes are injected from the first electrode 131 to the organic EL layer 132, and electrons are injected from the second electrode 133 to the organic EL layer 132. Holes and electrons are recombined in the light emitting layer of the organic EL layer 132. Due to recombination, the excited electrons return to the ground state while releasing energy, but the energy released at this time is extracted as light emission and is visually recognized as a desired image as a whole.
  <有機EL表示装置の製造方法>
 次に、有機EL表示装置100の製造方法について、図2のフローチャート及び図3~9を用いて、第1の工程~第3の工程に分けて説明する。
<Method for Manufacturing Organic EL Display Device>
Next, a method for manufacturing the organic EL display device 100 will be described by dividing it into first to third steps by using the flowchart of FIG. 2 and FIGS. 3 to 9.
  (第1の工程)
 第1の工程では、耐熱性基板150上に導電層160を形成し、導電層160を覆うように分離層110を形成し、さらに、表示デバイス層としてTFT素子層120及び有機EL素子層130を形成する。ここで、耐熱性基板150は、TFT素子層120や有機EL素子層130を形成するためのベースの支持基板となるものであり、有機EL表示装置100の完成品の構成には含まれない。耐熱性基板150としては、例えば、厚さ0.7mm程度の無アルカリガラス等のガラス板を用意する。この耐熱性基板150は、作製する有機EL表示装置100を多面取りして複数形成することが可能な大きさのものである。
(First step)
In the first step, the conductive layer 160 is formed on the heat resistant substrate 150, the separation layer 110 is formed so as to cover the conductive layer 160, and the TFT element layer 120 and the organic EL element layer 130 are further formed as display device layers. Form. Here, the heat resistant substrate 150 serves as a base support substrate for forming the TFT element layer 120 and the organic EL element layer 130, and is not included in the configuration of the finished product of the organic EL display device 100. As the heat resistant substrate 150, for example, a glass plate such as non-alkali glass having a thickness of about 0.7 mm is prepared. The heat-resistant substrate 150 has a size that allows a plurality of organic EL display devices 100 to be manufactured to be formed.
  -導電層-
 まず、ステップS111において、耐熱性基板150上に導電層160を形成する。導電層160は、図3及び4に示すように、上側導電膜161,下側導電膜162及び絶縁膜163で構成されている。導電層160のうち、上側導電膜161が最上層を、下側導電膜162が最下層を構成し、絶縁膜163は、上側導電膜161及び下側導電膜162のそれぞれを絶縁するように設けられている。上側導電膜161及び下側導電膜162は複数設けられ、それぞれが互いに並列に間隔をあけて配置され長尺状に形成されている。また、下側導電膜162は、隣り合う上側導電膜161の間に対応する領域に位置付けられている。
-Conductive layer-
First, in step S <b> 111, the conductive layer 160 is formed on the heat resistant substrate 150. As shown in FIGS. 3 and 4, the conductive layer 160 includes an upper conductive film 161, a lower conductive film 162, and an insulating film 163. Of the conductive layer 160, the upper conductive film 161 is the uppermost layer, the lower conductive film 162 is the lowermost layer, and the insulating film 163 is provided so as to insulate the upper conductive film 161 and the lower conductive film 162 from each other. It has been. A plurality of upper conductive films 161 and a plurality of lower conductive films 162 are provided, and each of them is arranged in parallel with a space therebetween and is formed in a long shape. The lower conductive film 162 is positioned in a corresponding region between the adjacent upper conductive films 161.
 はじめに、スパッタ法で例えば厚さ50~150nm程度のチタン(Ti)膜を成膜し、幅5~30μm程度の長尺状パターンが並行するようにフォトリソグラフィでパターニングして、下側導電膜162を形成する。 First, a titanium (Ti) film having a thickness of, for example, about 50 to 150 nm is formed by sputtering, and is patterned by photolithography so that long patterns having a width of about 5 to 30 μm are arranged in parallel. Form.
 次に、下側導電膜162を覆うように、CVD法で例えば厚さが窒化ケイ素膜、酸化ケイ素膜、それらの積層膜等を成膜し、それをパターニングして、厚さが150~400nm程度の絶縁膜163を形成する。 Next, for example, a silicon nitride film, a silicon oxide film, or a laminated film thereof is formed by CVD to cover the lower conductive film 162, and is patterned to have a thickness of 150 to 400 nm. An insulating film 163 is formed to a degree.
 そして、スパッタ法で例えば厚さ50~150nm程度のチタン(Ti)膜を成膜し、幅100~300mm程度の長尺状パターンが並行するようにフォトリソグラフィでパターニングして、上側導電膜161を形成する。このとき、隣り合う上側導電膜161との間の距離(図3におけるa1)は、例えば5~20μmとする。上側導電膜161は、図4に示すように長尺方向に沿った辺(図4におけるL1)が、下側導電膜162と重なるように配置する他、長尺方向に沿った辺が下側導電膜の長尺方向の辺と平面視で重なる(つまり、上側導電膜161と下側導電膜162の平面視での重なり面積が0である)ように配置してもよい。 Then, for example, a titanium (Ti) film having a thickness of about 50 to 150 nm is formed by sputtering, and is patterned by photolithography so that long patterns having a width of about 100 to 300 mm are parallel to each other, and the upper conductive film 161 is formed. Form. At this time, the distance between adjacent upper conductive films 161 (a1 in FIG. 3) is set to, for example, 5 to 20 μm. As shown in FIG. 4, the upper conductive film 161 is arranged so that the side along the longitudinal direction (L1 in FIG. 4) overlaps the lower conductive film 162, and the side along the longitudinal direction is the lower side. You may arrange | position so that it may overlap with the edge | side of the elongate direction of a conductive film in planar view (that is, the overlapping area in planar view of the upper side conductive film 161 and the lower side conductive film 162 is 0).
 なお、下側導電膜162は、上側導電膜161よりも厚さを大きくしてもよい。下側導電膜162は上側導電膜161よりも面積が小さいので、厚さを大きくすることにより、両者の配線抵抗を一致させることができる。 Note that the lower conductive film 162 may be thicker than the upper conductive film 161. Since the lower conductive film 162 has a smaller area than the upper conductive film 161, the wiring resistances of both can be matched by increasing the thickness.
 なお、上側導電膜161及び下側導電膜162を形成する材料としては、チタン膜の他モリブデン(Mo)膜や透明導電膜等であってもよい。 The material for forming the upper conductive film 161 and the lower conductive film 162 may be a titanium (Mo) film, a transparent conductive film, or the like.
  -分離層-
 次に、ステップS112において、導電層160を覆うように、例えば、スリットコート法、グラビアコート法、カーテンコート法、スピンコート法等でポリイミド膜を成膜することにより、分離層110を形成する。ここで形成する有機EL表示装置100はトップエミッション型であるので、ポリイミドとしては、不透明のポリイミドを使用する。分離層110は、例えば厚さが5~15μmとする。
-Separation layer-
Next, in step S <b> 112, a separation layer 110 is formed by forming a polyimide film so as to cover the conductive layer 160 by, for example, a slit coat method, a gravure coat method, a curtain coat method, a spin coat method, or the like. Since the organic EL display device 100 formed here is a top emission type, opaque polyimide is used as the polyimide. The separation layer 110 has a thickness of 5 to 15 μm, for example.
  -TFT素子層-
 続いて、ステップS113において、公知の方法を用いて分離層110の上層にTFT素子層120を形成する。具体的には、例えば、ベースコート膜、ゲート電極、ゲート絶縁膜、半導体膜、ソース電極、及びドレイン電極を所定のレイアウトで積層形成して、各画素に対応してマトリクス状に配列するように複数のTFT121を形成した後、それらを覆うように平坦化膜122を形成する。半導体膜としては、アモルファスシリコン(α-Si)膜、低温ポリシリコン(LTPS)膜、酸化物半導体膜(例えば、IGZO膜)等を形成することができる。そして、平坦化膜122の表面からTFT121のドレイン電極のそれぞれに達するコンタクトホール133を形成する。なお、各膜を成膜するときや成膜後にベーク処理時には高温プロセス(半導体膜がα-Si膜の場合には250~350℃程度、IGZO膜の場合には350~450℃程度、LTPS膜の場合には450~500℃程度)となるが、耐熱性基板150や分離層110の上にTFT121を形成するので、各構成の特性が熱により劣化する虞がない。
-TFT element layer-
Subsequently, in step S113, the TFT element layer 120 is formed on the separation layer 110 using a known method. Specifically, for example, a base coat film, a gate electrode, a gate insulating film, a semiconductor film, a source electrode, and a drain electrode are stacked in a predetermined layout, and a plurality of them are arranged in a matrix corresponding to each pixel. After the TFT 121 is formed, a planarizing film 122 is formed so as to cover them. As the semiconductor film, an amorphous silicon (α-Si) film, a low-temperature polysilicon (LTPS) film, an oxide semiconductor film (for example, an IGZO film), or the like can be formed. Then, contact holes 133 reaching the drain electrodes of the TFTs 121 from the surface of the planarizing film 122 are formed. It should be noted that a high temperature process (about 250 to 350 ° C. when the semiconductor film is an α-Si film, about 350 to 450 ° C. when the semiconductor film is an IGZO film, and an LTPS film at the time of baking after the film is formed) However, since the TFT 121 is formed on the heat resistant substrate 150 and the separation layer 110, there is no possibility that the characteristics of each component are deteriorated by heat.
  -有機EL素子層-
 次に、ステップS114において、公知の方法を用いてTFT素子層120の上層に有機EL素子層130を形成する。具体的には、下部電極131、エッジカバー135、有機EL層132、及び上部電極133を積層形成した後、それらを覆うように封止膜134を積層する。
-Organic EL element layer-
Next, in step S114, the organic EL element layer 130 is formed on the TFT element layer 120 using a known method. Specifically, after the lower electrode 131, the edge cover 135, the organic EL layer 132, and the upper electrode 133 are stacked, a sealing film 134 is stacked so as to cover them.
 なお、基板全面を覆うよう封止膜145を形成してもよく、各パネル毎に分けて封止膜145を複数形成してもよい。これにより、図5に示す積層体を得る。 Note that the sealing film 145 may be formed so as to cover the entire surface of the substrate, or a plurality of sealing films 145 may be formed separately for each panel. Thereby, the laminated body shown in FIG. 5 is obtained.
  (第2の工程)
 第2の工程では、ステップS121において、導電層160に電流を流すことにより、分離層110から導電層160及び耐熱性基板150を剥離する。
(Second step)
In the second step, the conductive layer 160 and the heat resistant substrate 150 are separated from the separation layer 110 by passing a current through the conductive layer 160 in step S121.
 ここでは、便宜上、並行して延びるように配置された上側導電膜161を、図6及び7に示すように、端から上側導電膜161a、161b、161c、161dとし、下側導電膜を下側導電膜162e、162f、162gとする。 Here, for the sake of convenience, the upper conductive film 161 arranged so as to extend in parallel is referred to as the upper conductive films 161a, 161b, 161c, 161d from the end as shown in FIGS. The conductive films 162e, 162f, and 162g are used.
 印加する電圧の大きさは、分離層110と導電層160の界面において、分離層110を構成するポリイミド膜の表面にポリイミド膜の分解温度以上のジュール熱を与えることが可能な大きさとする。分離層110の表面を含む部分を熱分解し且つそのジュール熱が分離層110のTFT素子層120側表面にまで伝わらないようにする点からは、例えば、正弦波、のこぎり波、矩形波等のパルス電圧を50~150m秒程度のパルス幅で印加することが好適である。 The magnitude of the applied voltage is such that Joule heat equal to or higher than the decomposition temperature of the polyimide film can be applied to the surface of the polyimide film constituting the separation layer 110 at the interface between the separation layer 110 and the conductive layer 160. From the viewpoint of thermally decomposing a portion including the surface of the separation layer 110 and preventing the Joule heat from being transmitted to the surface of the separation layer 110 on the TFT element layer 120 side, for example, a sine wave, a sawtooth wave, a rectangular wave, etc. It is preferable to apply a pulse voltage with a pulse width of about 50 to 150 milliseconds.
 まず、図6において、一番端の上側導電膜161aに電圧を印加する。上側導電膜161aに電流が流れることによりジュール熱が発生し、分離層110のうち上側導電膜161aに対応する領域(図7の110aで示す領域)において、ポリイミド膜の表面から1μm程度の厚さの部分が熱分解され、分離層110と導電層160の接着状態が解除される。 First, in FIG. 6, a voltage is applied to the uppermost upper conductive film 161a. Joule heat is generated by the current flowing through the upper conductive film 161a, and the thickness of the separation layer 110 corresponding to the upper conductive film 161a (the area indicated by 110a in FIG. 7) is about 1 μm from the surface of the polyimide film. This part is thermally decomposed, and the adhesion state of the separation layer 110 and the conductive layer 160 is released.
 続いて、同様に、上側導電膜161aに隣接する上側導電膜161bに所定の電圧を印加し、分離層110のうち上側導電膜161bに対応する領域(図7の110bで示す領域)において、分離層110と導電層160との接着状態を解除する。 Subsequently, similarly, a predetermined voltage is applied to the upper conductive film 161b adjacent to the upper conductive film 161a, and in the region corresponding to the upper conductive film 161b (the region indicated by 110b in FIG. 7) in the separation layer 110, the separation is performed. The adhesion state between the layer 110 and the conductive layer 160 is released.
 次に、上側導電膜161aと161bとの間に対応する下側導電膜162eに所定の電圧を印加する。下側導電膜162eに電流が流れることによりジュール熱が発生し、このジュール熱が下側導電膜162eの上層の絶縁膜163を伝わって分離層110のうち下側導電膜162eに対応する領域のポリイミド膜の表面から1μm程度の厚さの部分(図7の110eで示す領域)が熱分解され、分離層110と導電層160の接着状態が解除される。 Next, a predetermined voltage is applied to the corresponding lower conductive film 162e between the upper conductive films 161a and 161b. When current flows through the lower conductive film 162e, Joule heat is generated, and this Joule heat is transmitted through the upper insulating film 163 of the lower conductive film 162e to form a region corresponding to the lower conductive film 162e in the separation layer 110. A portion having a thickness of about 1 μm from the surface of the polyimide film (region indicated by 110e in FIG. 7) is thermally decomposed, and the adhesive state between the separation layer 110 and the conductive layer 160 is released.
 続いて、同様に、上側導電膜161c、下側導電膜162f、上側導電膜161d、下側導電膜162g、と順に所定の電圧を印加し、ポリイミド膜の表面から1μm程度の厚さの部分(それぞれ、図7の110c、110f、110d、110gで示す領域)を熱分解して、図8に示すように、分離層110から導電層160を剥離する。 Subsequently, similarly, a predetermined voltage is sequentially applied to the upper conductive film 161c, the lower conductive film 162f, the upper conductive film 161d, and the lower conductive film 162g, and a portion having a thickness of about 1 μm from the surface of the polyimide film ( The regions indicated by 110c, 110f, 110d, and 110g in FIG. 7 are thermally decomposed to peel the conductive layer 160 from the separation layer 110 as shown in FIG.
 なお、ここで説明した各導電膜161,162への電圧の印加の順番は一例であり、他の順番で各導電膜161,162へ電圧の印加を行ってもよい。但し、ポリイミドが熱分解されたときに発生するガスが導電層160と分離層110との間に溜まりにくくする点から、基板の端側に位置する導電膜161,162から順番に電圧を印加することが好ましい。また、導電層160の剥離時に剥離帯電により静電気が発生するが、端から順に導電層160を剥離することにより静電気が抜けやすくなり、TFT素子層120や有機EL素子層130が静電気により損傷を受けるのが抑制される点からも、基板の端側に位置する導電膜161,162から順番に電圧を印加することが好ましい。 Note that the order of voltage application to the conductive films 161 and 162 described here is an example, and the voltage may be applied to the conductive films 161 and 162 in another order. However, a voltage is applied in order from the conductive films 161 and 162 located on the end side of the substrate in order to make it difficult for gas generated when the polyimide is thermally decomposed to accumulate between the conductive layer 160 and the separation layer 110. It is preferable. In addition, static electricity is generated by peeling charging when the conductive layer 160 is peeled off. However, peeling off the conductive layer 160 in order from the end facilitates removal of static electricity, and the TFT element layer 120 and the organic EL element layer 130 are damaged by static electricity. From the viewpoint of suppressing this, it is preferable to apply a voltage in order from the conductive films 161 and 162 located on the end side of the substrate.
  (第3の工程)
 第3の工程では、まず、ステップS131において、第2の工程において導電層160と耐熱性基板150を剥離することにより露出した分離層110の表面に、図9に示すように、接着剤141を用いて支持基材140の貼り付けを行う。
(Third step)
In the third step, first, in step S131, an adhesive 141 is applied to the surface of the separation layer 110 exposed by peeling the conductive layer 160 and the heat resistant substrate 150 in the second step, as shown in FIG. The support base material 140 is pasted using it.
 そして、ステップS132においてマザー基板サイズの形成物を分断して単一の有機EL表示装置100のサイズにした後、ステップS133において、周辺領域にLSIチップやフレキシブルプリント配線板(FPC)等の周辺回路の実装を行う。これにより、有機EL表示装置100が完成する。 In step S132, the mother substrate size formed product is divided into the size of the single organic EL display device 100, and in step S133, peripheral circuits such as LSI chips and flexible printed wiring boards (FPCs) are provided in the peripheral region. Is implemented. Thereby, the organic EL display device 100 is completed.
  <実施形態1の効果>
 実施形態1によれば、分離層110の表面を含む厚さ1μm程度の部分を熱分解することにより分離層110から導電層160及び耐熱性基板150を剥離するので、レーザーを用いる場合のように分離層110上にレーザーの加工形状に沿った加工痕が残ることがない。また、複数に分かれた上側導電膜161及び下側導電膜162の各々に電流を流すので、分離層110の表面を含む部分を均一に熱分解することができ、分離層110に熱分解のムラが残るのが抑制される。従って、分離層110に剥離の加工痕や熱分解のムラが存在することによる表示品位の劣化やコントラスト等の光学的特性の劣化が抑制される。
<Effect of Embodiment 1>
According to the first embodiment, the conductive layer 160 and the heat-resistant substrate 150 are peeled from the separation layer 110 by thermally decomposing a portion having a thickness of about 1 μm including the surface of the separation layer 110, so that a laser is used. Processing traces along the laser processing shape do not remain on the separation layer 110. In addition, since a current is passed through each of the upper conductive film 161 and the lower conductive film 162 that are divided into a plurality of portions, the portion including the surface of the separation layer 110 can be thermally decomposed uniformly, and the separation layer 110 has uneven thermal decomposition. Is suppressed from remaining. Accordingly, display quality deterioration and deterioration of optical characteristics such as contrast due to the presence of peeling process marks and thermal decomposition unevenness in the separation layer 110 are suppressed.
 また、実施形態1によれば、分離層110の表面の熱分解をジュール熱により行うので、分離層110のTFT素子層120側の面にまで熱が伝わらない。そのため、分離層110を熱分解する熱によるTFT素子層120や有機EL素子層130の特性の劣化が抑制される。 Further, according to the first embodiment, since the thermal decomposition of the surface of the separation layer 110 is performed by Joule heat, heat is not transmitted to the surface of the separation layer 110 on the TFT element layer 120 side. Therefore, deterioration of the characteristics of the TFT element layer 120 and the organic EL element layer 130 due to heat that thermally decomposes the separation layer 110 is suppressed.
 さらに、実施形態1によれば、複数に分かれた上側導電膜161及び下側導電膜162の各々に電流を流すので、導電層160全面に電流を流す場合よりも1回あたりに印加する電圧の大きさを小さくでき、設備の簡素化や感電事故発生の抑制が可能となる。 Furthermore, according to the first embodiment, since a current is passed through each of the upper conductive film 161 and the lower conductive film 162 divided into a plurality of voltages, the voltage applied per time is larger than when current is passed through the entire surface of the conductive layer 160. The size can be reduced, and facilities can be simplified and electric shock accidents can be suppressed.
  <実施形態1の変形例>
 実施形態1では、導電層160において、上側導電膜161及び下側導電膜162のそれぞれが互いに並列して配置されているとして説明したが、例えば、図10に変形例1として示すように、上側導電膜161及び下側導電膜162の各々がU字型であってもよい。この場合、図10(a)に示すように一番端の上側導電膜161に電圧を印加し、続いて、図10(b)に示すように一番端の下側導電膜162に電圧を印加し、これを順に繰り返してゆくことにより分離層110から導電層160及び耐熱性基板150を剥離することができる。
<Modification of Embodiment 1>
In the first embodiment, it has been described that the upper conductive film 161 and the lower conductive film 162 are arranged in parallel with each other in the conductive layer 160. For example, as shown in FIG. Each of the conductive film 161 and the lower conductive film 162 may be U-shaped. In this case, a voltage is applied to the uppermost conductive film 161 as shown in FIG. 10 (a), and then a voltage is applied to the lowermost conductive film 162 as shown in FIG. 10 (b). The conductive layer 160 and the heat resistant substrate 150 can be peeled from the separation layer 110 by applying and repeating the steps in order.
 実施形態1では、支持基材140が平板形状であるとして説明したが、本発明の有機EL表示装置100は、分離層110、TFT素子層120及び有機EL素子層130の積層体は可撓性を有するので、様々な形状の剛体を支持基材として貼設することができる。例えば、本発明の有機EL表示装置100は、図11に変形例2として示すように、支持基材140がカーブを有する剛体(例えば、円柱の側面等)等である場合にも好適である。さらに、分離層110の露出した表面に支持基材を貼付しないでフレキシブルなディスプレイとしてもよい。 In the first embodiment, the support substrate 140 is described as having a flat plate shape. However, in the organic EL display device 100 of the present invention, the laminate of the separation layer 110, the TFT element layer 120, and the organic EL element layer 130 is flexible. Therefore, various shapes of rigid bodies can be affixed as a support base material. For example, the organic EL display device 100 of the present invention is also suitable when the support base 140 is a rigid body having a curve (for example, a side surface of a cylinder, etc.) as shown as Modification 2 in FIG. Furthermore, it is good also as a flexible display, without sticking a support base material on the surface which the separation layer 110 exposed.
 さらに、実施形態1では光の取り出し方式がトップエミッション型の有機EL表示装置100について説明したが、ボトムエミッション型の有機EL表示装置であっても、その他の光取り出し方式の有機EL表示装置であっても構わない。 Furthermore, in the first embodiment, the light extraction method is described for the top emission type organic EL display device 100, but even the bottom emission type organic EL display device may be another light extraction method organic EL display device. It doesn't matter.
  《実施形態2》
  <有機EL表示装置>
 図12は、実施形態2に係る有機EL表示装置200を示す。この有機EL表示装置200は、例えば、携帯用電子機器やカーナビ、テレビ等のディスプレイとして用いられる。
<< Embodiment 2 >>
<Organic EL display device>
FIG. 12 shows an organic EL display device 200 according to the second embodiment. The organic EL display device 200 is used as a display for a portable electronic device, a car navigation system, a television, or the like, for example.
 有機EL表示装置200は、分離層210、TFT素子層220、及び有機EL素子層230が支持基材240上に接着剤241を介して接着された構成を有する。また、有機EL表示装置200は、複数の画素がマトリクス状に配置されている。この有機EL表示装置200は、支持基材240とは反対側から光を取り出して画像表示を行うトップエミッション型の有機EL表示装置である。有機EL表示装置200の各構成については実施形態1と同様である。 The organic EL display device 200 has a configuration in which a separation layer 210, a TFT element layer 220, and an organic EL element layer 230 are bonded to a support base material 240 via an adhesive 241. In the organic EL display device 200, a plurality of pixels are arranged in a matrix. This organic EL display device 200 is a top emission type organic EL display device that takes out light from the side opposite to the support base 240 and displays an image. Each configuration of the organic EL display device 200 is the same as that of the first embodiment.
  <有機EL表示装置の製造方法>
 次に、有機EL表示装置200の製造方法について、図13及び14を用いて第1の工程~第3の工程に分けて説明する。
<Method for Manufacturing Organic EL Display Device>
Next, a method for manufacturing the organic EL display device 200 will be described separately for the first to third steps with reference to FIGS.
  (第1の工程)
 第1の工程では、耐熱性基板250上に導電層260を形成し、導電層260を覆うように分離層210を形成し、さらに、表示デバイス層としてTFT素子層220及び有機EL素子層230を形成する。ここで、耐熱性基板250は、TFT素子層220や有機EL素子層230を形成するためのベースの支持基板となるものであり、有機EL表示装置200の完成品の構成には含まれない。耐熱性基板250としては、例えば、厚さ0.7mm程度の無アルカリガラス等のガラス板を用意する。この耐熱性基板250は、作製する有機EL表示装置200を多面取りして複数形成することが可能な大きさのものである。
(First step)
In the first step, the conductive layer 260 is formed on the heat resistant substrate 250, the separation layer 210 is formed so as to cover the conductive layer 260, and the TFT element layer 220 and the organic EL element layer 230 are further formed as display device layers. Form. Here, the heat resistant substrate 250 serves as a base support substrate for forming the TFT element layer 220 and the organic EL element layer 230, and is not included in the configuration of the finished product of the organic EL display device 200. As the heat resistant substrate 250, for example, a glass plate such as non-alkali glass having a thickness of about 0.7 mm is prepared. The heat-resistant substrate 250 has a size that allows a plurality of organic EL display devices 200 to be manufactured to be formed in a plurality of shapes.
  -導電層-
 まず、耐熱性基板250上に導電層260を形成する。導電層260は、図13に示すように、導電膜261及び絶縁膜263で構成されている。導電膜261は複数設けられ、それぞれが互いに並列に間隔をあけて配置されるように長尺状に形成する。そして、それらをそれぞれ区画するように絶縁膜263を形成する。
-Conductive layer-
First, the conductive layer 260 is formed over the heat resistant substrate 250. As illustrated in FIG. 13, the conductive layer 260 includes a conductive film 261 and an insulating film 263. A plurality of the conductive films 261 are provided, and are formed in a long shape so that each of them is arranged in parallel with a space therebetween. Then, an insulating film 263 is formed so as to partition them.
 はじめに、スパッタ法で例えば厚さ30~200nm程度のチタン(Ti)膜を成膜し、幅100~300mm程度の長尺状パターンが並行するようにフォトリソグラフィでパターニングして、複数の導電膜261形成する。 First, a titanium (Ti) film having a thickness of, for example, about 30 to 200 nm is formed by sputtering, and is patterned by photolithography so that long patterns having a width of about 100 to 300 mm are arranged in parallel. Form.
 次に、複数の導電膜261の間を区画するように、CVD法で例えば厚さが窒化ケイ素膜、酸化ケイ素膜、それらの積層膜等を成膜し、それをパターニングして、厚さが150~400nm程度の絶縁膜263を形成する。 Next, for example, a silicon nitride film, a silicon oxide film, a laminated film thereof, or the like is formed by a CVD method so as to partition between the plurality of conductive films 261, and the thickness is patterned. An insulating film 263 with a thickness of about 150 to 400 nm is formed.
 なお、図13に示すように、絶縁膜263の下層に導電膜261の一部が極薄部分261tとして存在していてもよい。導電膜261の極薄部分261tは、例えば厚さが10nm程度であるので、極薄部分261tは実質的に絶縁領域となる。 Note that as shown in FIG. 13, a part of the conductive film 261 may exist as an extremely thin portion 261 t under the insulating film 263. Since the ultrathin portion 261t of the conductive film 261 has a thickness of about 10 nm, for example, the ultrathin portion 261t substantially becomes an insulating region.
 なお、導電膜261を形成する材料としては、チタン膜の他モリブデン(Mo)膜や透明導電膜等であってもよい。 Note that the material for forming the conductive film 261 may be a molybdenum (Mo) film, a transparent conductive film, or the like in addition to the titanium film.
  -分離層~有機EL素子層-
 次に、実施形態1と同様にして分離層210,TFT素子層220及び有機EL素子層230を形成する。
-Separation layer to organic EL element layer-
Next, the separation layer 210, the TFT element layer 220, and the organic EL element layer 230 are formed in the same manner as in the first embodiment.
  (第2の工程)
 第2の工程では、導電層260に電流を流すことにより、分離層210から導電層260及び耐熱性基板250を剥離する。ここでは、複数の導電膜261を、図14に示すように、端から順に導電膜261a、261b、261cとする。
(Second step)
In the second step, the conductive layer 260 and the heat-resistant substrate 250 are separated from the separation layer 210 by passing a current through the conductive layer 260. Here, as shown in FIG. 14, the plurality of conductive films 261 are referred to as conductive films 261a, 261b, and 261c in order from the end.
 まず、図14に示すように、一番端の導電膜261aから電圧を印加する。導電膜261aに電流が流れることによりジュール熱が発生し、分離層210のうち導電膜261aに対応する領域において、ポリイミド膜の表面から1μm程度の厚さの部分が熱分解され、分離層210と導電層260の接着状態が解除される。 First, as shown in FIG. 14, a voltage is applied from the endmost conductive film 261a. Joule heat is generated by current flowing through the conductive film 261a, and in the region corresponding to the conductive film 261a in the separation layer 210, a portion having a thickness of about 1 μm from the surface of the polyimide film is thermally decomposed. The adhesion state of the conductive layer 260 is released.
 印加する電圧の大きさは、分離層210と導電層260の界面において、分離層210を構成するポリイミド膜の表面にポリイミド膜の分解温度以上のジュール熱を与えることが可能な大きさとする。分離層210の表面を含む部分を熱分解し且つそのジュール熱が分離層210のTFT素子層220側表面にまで伝わらないようにする点からは、例えば、正弦波、のこぎり波、矩形波等のパルス電圧を50~150m秒程度のパルス幅で印加することが好適である。 The magnitude of the applied voltage is such that Joule heat equal to or higher than the decomposition temperature of the polyimide film can be applied to the surface of the polyimide film constituting the separation layer 210 at the interface between the separation layer 210 and the conductive layer 260. From the viewpoint of thermally decomposing a portion including the surface of the separation layer 210 and preventing the Joule heat from being transmitted to the surface of the separation layer 210 on the TFT element layer 220 side, for example, a sine wave, a sawtooth wave, a rectangular wave, etc. It is preferable to apply a pulse voltage with a pulse width of about 50 to 150 milliseconds.
 続いて、上記電圧を印加した導電膜261aに隣接する導電膜261bに所定の電圧を印加し、分離層210のうち導電膜261bに対応する領域において、分離層210と導電層260との接着状態を解除する。このとき、同時に、分離層210のうち導電膜261a及び導電膜261bで挟まれた領域(絶縁膜231に対応する領域)についても表面部分のポリイミドが熱分解されて、分離層210と導電層260との接着状態が解除される。 Subsequently, a predetermined voltage is applied to the conductive film 261b adjacent to the conductive film 261a to which the voltage is applied, and the adhesion state between the separation layer 210 and the conductive layer 260 in the region corresponding to the conductive film 261b in the separation layer 210. Is released. At the same time, the polyimide in the surface portion of the separation layer 210 between the conductive film 261a and the conductive film 261b (the region corresponding to the insulating film 231) is also thermally decomposed, so that the separation layer 210 and the conductive layer 260 are separated. The adhesive state is released.
 続いて、同様に、導電膜261c、261d・・・と順に所定の電圧を印加し、ポリイミド膜の表面から1μm程度の厚さの部分を熱分解して、図8に示すように、分離層210から導電層260を剥離する。 Subsequently, similarly, a predetermined voltage is sequentially applied to the conductive films 261c, 261d,..., And a portion having a thickness of about 1 μm from the surface of the polyimide film is thermally decomposed. As shown in FIG. The conductive layer 260 is peeled from 210.
 なお、ここで説明した各導電膜261への電圧の印加の順番は一例であり、他の順番で各導電膜261へ電圧の印加を行ってもよい。但し、ポリイミドが熱分解されたときに発生するガスが導電層260と分離層210との間に溜まりにくくする点から、基板の端側に位置する導電膜261から順番に電圧を印加することが好ましい。また、導電層260の剥離時に剥離帯電により静電気が発生するが、端から順に導電層260を剥離することにより静電気が抜けやすくなり、TFT素子層220や有機EL素子層230が静電気により損傷を受けるのが抑制される点からも、基板の端側に位置する導電膜261から順番に電圧を印加することが好ましい。 In addition, the order of voltage application to each conductive film 261 described here is an example, and the voltage may be applied to each conductive film 261 in another order. However, in order to make it difficult for the gas generated when the polyimide is thermally decomposed to accumulate between the conductive layer 260 and the separation layer 210, it is possible to sequentially apply a voltage from the conductive film 261 located on the end side of the substrate. preferable. In addition, static electricity is generated by peeling electrification when the conductive layer 260 is peeled off. However, peeling off the conductive layer 260 in order from the end facilitates removal of static electricity, and the TFT element layer 220 and the organic EL element layer 230 are damaged by static electricity. From the viewpoint of suppressing this, it is preferable to apply a voltage in order from the conductive film 261 located on the end side of the substrate.
  (第3の工程)
 第3の工程では、まず、第2の工程において導電層260と耐熱性基板250を剥離することにより露出した分離層210の表面に、接着剤241を用いて支持基材140の貼り付けを行う。
(Third step)
In the third step, first, the support base material 140 is attached to the surface of the separation layer 210 exposed by peeling the conductive layer 260 and the heat-resistant substrate 250 in the second step using the adhesive 241. .
 そして、マザー基板サイズの形成物を分断して単一の有機EL表示装置200のサイズにした後、周辺領域にLSIチップやフレキシブルプリント配線板(FPC)等の周辺回路の実装を行う。これにより、有機EL表示装置200が完成する。 Then, after the mother substrate size formed product is divided into the size of a single organic EL display device 200, peripheral circuits such as LSI chips and flexible printed circuit boards (FPC) are mounted on the peripheral area. Thereby, the organic EL display device 200 is completed.
  <実施形態2の効果>
 実施形態2によれば、分離層210の表面を含む厚さ1μm程度の部分を熱分解することにより分離層210から導電層260及び耐熱性基板250を剥離するので、レーザーを用いる場合のように分離層210上にレーザーの加工形状に沿った加工痕が残ることがない。また、複数に分かれた導電膜261の各々に電流を流すので、分離層210の表面を含む部分を均一に熱分解することができ、分離層210に熱分解のムラが残るのが抑制される。従って、分離層210に剥離の加工痕や熱分解のムラが存在することによる表示品位の劣化やコントラスト等の光学的特性の劣化が抑制される。
<Effect of Embodiment 2>
According to the second embodiment, the conductive layer 260 and the heat-resistant substrate 250 are peeled from the separation layer 210 by thermally decomposing a portion having a thickness of about 1 μm including the surface of the separation layer 210, so that a laser is used. Processing traces along the laser processing shape do not remain on the separation layer 210. In addition, since a current is passed through each of the plurality of conductive films 261, a portion including the surface of the separation layer 210 can be uniformly thermally decomposed, and uneven decomposition of the separation layer 210 is suppressed from remaining. . Therefore, display quality deterioration and deterioration of optical characteristics such as contrast due to the presence of peeling process marks and thermal decomposition unevenness in the separation layer 210 are suppressed.
 また、実施形態2によれば、分離層210の表面の熱分解をジュール熱により行うので、分離層210のTFT素子層220側の面にまで熱が伝わらない。そのため、分離層210を熱分解する熱によるTFT素子層220や有機EL素子層230の特性の劣化が抑制される。 Further, according to the second embodiment, since the thermal decomposition of the surface of the separation layer 210 is performed by Joule heat, heat is not transmitted to the surface of the separation layer 210 on the TFT element layer 220 side. Therefore, deterioration of the characteristics of the TFT element layer 220 and the organic EL element layer 230 due to heat that thermally decomposes the separation layer 210 is suppressed.
 さらに、実施形態2によれば、複数に分かれた導電膜261の各々に電流を流すので、導電層260全面に電流を流す場合よりも1回あたりに印加する電圧の大きさを小さくでき、設備の簡素化や感電事故発生の抑制が可能となる。 Furthermore, according to the second embodiment, since a current is passed through each of the plurality of conductive films 261, the magnitude of the voltage applied per time can be made smaller than when a current is passed over the entire surface of the conductive layer 260. Simplification and suppression of electric shock accidents.
 また、実施形態2によれば、導電層260を構成する導電膜としては導電膜261の1種類を形成すればよいので、実施形態1の場合よりも、導電層260の製造工程を簡素化することができる。 Further, according to the second embodiment, as the conductive film constituting the conductive layer 260, one type of the conductive film 261 may be formed, and thus the manufacturing process of the conductive layer 260 is simplified as compared with the case of the first embodiment. be able to.
  <実施形態2の変形例>
 実施形態2では、導電層260において、導電膜261が互いに並列して配置されているとして説明したが、例えば、図15に変形例3として示すように、導電膜261の各々がU字型であってもよい。この場合、図15に示すように一番端の導電膜261から順に電圧を印加してゆくことにより分離層210から導電層260及び耐熱性基板250を剥離することができる。
<Modification of Embodiment 2>
In the second embodiment, it has been described that the conductive films 261 are arranged in parallel with each other in the conductive layer 260. For example, as shown in FIG. 15 as Modification 3, each of the conductive films 261 is U-shaped. There may be. In this case, as shown in FIG. 15, the conductive layer 260 and the heat-resistant substrate 250 can be peeled from the separation layer 210 by sequentially applying a voltage from the endmost conductive film 261.
  《実施形態3》
  <液晶表示装置>
 図16及び17は、実施形態3に係る液晶表示装置3000を示す。この液晶表示装置3000は、例えば、携帯用電子機器やカーナビ、テレビ等のディスプレイとして用いられる。
<< Embodiment 3 >>
<Liquid crystal display device>
16 and 17 show a liquid crystal display device 3000 according to the third embodiment. The liquid crystal display device 3000 is used as a display of a portable electronic device, a car navigation system, a television, or the like, for example.
 液晶表示装置3000は、TFT基板3100とカラーフィルタ(以下「CF」とも称する)基板3200とが対向して配置され、両基板間に液晶層3300が形成された構成を有する。液晶層3300は、両基板間の周縁領域に枠状に設けられたシール材3301で封止されている。また、液晶表示装置3000は、複数の画素がマトリクス状に配置されている。液晶表示装置3000は、光透過型の液晶表示装置である。 The liquid crystal display device 3000 has a configuration in which a TFT substrate 3100 and a color filter (hereinafter also referred to as “CF”) substrate 3200 are arranged to face each other, and a liquid crystal layer 3300 is formed between both substrates. The liquid crystal layer 3300 is sealed with a sealing material 3301 provided in a frame shape in the peripheral region between both substrates. The liquid crystal display device 3000 includes a plurality of pixels arranged in a matrix. The liquid crystal display device 3000 is a light transmission type liquid crystal display device.
 TFT基板3100は、分離層3110及び表示デバイス層3120を積層したものが支持基材3140上に接着剤3141を介して接着された構成を有する。また、TFT基板3100の表示デバイス層3120側表面には配向膜3170が、支持基材3240側表面には偏光板3242が設けられている。 The TFT substrate 3100 has a structure in which a separation layer 3110 and a display device layer 3120 are laminated on a support base material 3140 via an adhesive 3141. An alignment film 3170 is provided on the surface of the TFT substrate 3100 on the display device layer 3120 side, and a polarizing plate 3242 is provided on the surface of the support base material 3240.
 分離層3110は、ポリイミド膜で形成されている。分離層3110は、例えば厚さが5~15μmである。分離層3110を構成する材料としては、TFT3121を形成するときの高温プロセスへの耐熱性を有し、また、液晶表示装置3000が光透過型の液晶表示装置であることから光透過性を有するポリイミドを用いる。このようなポリイミドとしては、例えば、熱分解温度が450℃程度の光透過性のポリイミドが挙げられる。 The separation layer 3110 is formed of a polyimide film. The separation layer 3110 has a thickness of 5 to 15 μm, for example. As a material for forming the separation layer 3110, there is heat resistance to a high temperature process when forming the TFT 3121, and since the liquid crystal display device 3000 is a light transmissive liquid crystal display device, a light transmissive polyimide. Is used. An example of such a polyimide is a light transmissive polyimide having a thermal decomposition temperature of about 450 ° C.
 表示デバイス層3120は、複数の画素毎にTFT3121が形成され、複数のTFT3121を覆うように平坦化膜3122が設けられたTFT素子層と、平坦化膜3122の上層に複数の画素毎に設けられた画素電極3124で構成されている。平坦化膜3122には各TFT3121のドレイン電極に達するコンタクトホール3123が設けられて、コンタクトホース3123を介して複数の画素電極3124のそれぞれがTFT3121のドレイン電極と電気的に接続されている。TFT3121や平坦化膜3122、画素電極3124は従来公知の構成を有する。 The display device layer 3120 is provided for each of a plurality of pixels, in which a TFT 3121 is formed for each of a plurality of pixels, a TFT element layer provided with a planarization film 3122 so as to cover the plurality of TFTs 3121, and an upper layer of the planarization film 3122. The pixel electrode 3124 is formed. A contact hole 3123 reaching the drain electrode of each TFT 3121 is provided in the planarizing film 3122, and each of the plurality of pixel electrodes 3124 is electrically connected to the drain electrode of the TFT 3121 through a contact hose 3123. The TFT 3121, the planarization film 3122, and the pixel electrode 3124 have a conventionally known configuration.
 支持基材3140は、例えば、可撓性を有するフィルム等で形成されている。液晶表示装置3000は光透過型の液晶表示装置であるので、支持基材3140には、高光透過性、耐熱性、及び低位相差の性質が要求される。かかる可撓性フィルムの材料としては、例えば、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリシロキサン複合体等が挙げられる。支持基材3140は、接着剤3141の部分を含めた厚さを例えば50~400μmとすることにより薄型ディスプレイを実現できる。支持基材3140は、TFT形成時に必要とされるよりも低い耐熱性の材料で形成することができる。 The support base material 3140 is formed of, for example, a flexible film. Since the liquid crystal display device 3000 is a light transmission type liquid crystal display device, the support base material 3140 is required to have high light transmission properties, heat resistance, and low retardation properties. Examples of the material for such a flexible film include cycloolefin polymers, cycloolefin copolymers, polysiloxane composites, and the like. The supporting base material 3140 can realize a thin display by setting the thickness including the part of the adhesive 3141 to, for example, 50 to 400 μm. The support base material 3140 can be formed of a material having a heat resistance lower than that required when forming the TFT.
 CF基板3200は、分離層3210及び表示デバイス層3220を積層したものが接着剤3241を介して支持基材3240上に接着された構成を有する。また、CF基板3200の表示デバイス層3220側表面には配向膜3270が、支持基材3240側表面には偏光板3242が設けられている。 The CF substrate 3200 has a structure in which a separation layer 3210 and a display device layer 3220 are laminated on a support base material 3240 with an adhesive 3241 interposed therebetween. In addition, an alignment film 3270 is provided on the surface of the CF substrate 3200 on the display device layer 3220 side, and a polarizing plate 3242 is provided on the surface of the support base material 3240 side.
 分離層3210は、ポリイミド膜で形成されている。分離層3210は、例えば厚さが5~15μmである。分離層3210を構成する材料としては、液晶表示装置3000が光透過型の液晶表示装置であることから光透過性を有するポリイミドを用いる。光透過性を有するポリイミドとしては、例えば、熱分解温度が450℃程度のものが挙げられる。 The separation layer 3210 is formed of a polyimide film. The separation layer 3210 has a thickness of 5 to 15 μm, for example. As a material for forming the separation layer 3210, a light-transmitting polyimide is used because the liquid crystal display device 3000 is a light-transmitting liquid crystal display device. Examples of the light-transmitting polyimide include those having a thermal decomposition temperature of about 450 ° C.
 表示デバイス層3220は、画素毎に設けられたカラーフィルタ(CF)3221とそれらを区画するように設けられた遮光膜3222からなるカラーフィルタ層と、それらを覆うように全面に形成された共通電極3223とで形成されている。CF3221や遮光膜3222、共通電極3223は従来公知の構成を有する。 The display device layer 3220 includes a color filter (CF) 3221 provided for each pixel, a color filter layer including a light shielding film 3222 provided so as to partition them, and a common electrode formed over the entire surface so as to cover them. 3223. The CF 3221, the light shielding film 3222, and the common electrode 3223 have conventionally known configurations.
 CF基板側の支持基材3240は、例えば、可撓性を有するフィルム等で形成されている。支持基材3240には、高光透過性及び低位相差の性質が要求される。かかる可撓性フィルムの材料としては、例えば、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリシロキサン複合体、ポリカーボネート、ポリエチレンテレフタラート、ポリメタクリル酸メチル樹脂等が挙げられる。支持基材3240は、例えば、厚さが50~400μmである。 The support substrate 3240 on the CF substrate side is formed of, for example, a flexible film. The support base material 3240 is required to have a high light transmission property and a low retardation property. Examples of the material for the flexible film include cycloolefin polymer, cycloolefin copolymer, polysiloxane composite, polycarbonate, polyethylene terephthalate, and polymethyl methacrylate resin. The support base material 3240 has a thickness of 50 to 400 μm, for example.
 液晶層3300は、ネマチック液晶等の液晶材料で形成されている。 The liquid crystal layer 3300 is formed of a liquid crystal material such as nematic liquid crystal.
 この液晶表示装置3000では、TFT3121をオンさせると、画素電極3124に所定の電荷が書き込まれる。そして、画素電極3124と共通電位が与えられた共通電極3223との間に電位差が生じ、液晶層3300において電界が発生する。各画素において液晶層3300に発生する電界の強度によって、液晶層3300の液晶分子の配向状態を変えることにより、液晶層3300の光透過率が調整されて画像が表示される。 In the liquid crystal display device 3000, when the TFT 3121 is turned on, a predetermined charge is written in the pixel electrode 3124. Then, a potential difference is generated between the pixel electrode 3124 and the common electrode 3223 to which a common potential is applied, and an electric field is generated in the liquid crystal layer 3300. By changing the alignment state of the liquid crystal molecules in the liquid crystal layer 3300 according to the strength of the electric field generated in the liquid crystal layer 3300 in each pixel, the light transmittance of the liquid crystal layer 3300 is adjusted and an image is displayed.
  <液晶表示装置の製造方法>
 次に、液晶表示装置3000の製造方法について、図18のフローチャート及び図19~25を用いて、第1の工程~第3の工程に分けて説明する。
<Method for manufacturing liquid crystal display device>
Next, a manufacturing method of the liquid crystal display device 3000 will be described by dividing it into a first process to a third process using the flowchart of FIG. 18 and FIGS. 19 to 25.
  (第1の工程)
 第1の工程では、TFT基板3100側の耐熱性基板3150上に導電層3160、分離層3110、表示デバイス層3120を形成する。また、CF基板3200側の耐熱性基板3250上に導電層3260、分離層3210、表示デバイス層3220を形成する。そして、TFT基板3100側の表示デバイス層3120とCF基板3200側の表示デバイス層3220が対向するように両者の貼り合わせを行う。ここで、耐熱性基板3150,3250は、表示デバイス層3120,3220を形成するためのベースの支持基板となるものであり、液晶表示装置3000の完成品の構成には含まれない。耐熱性基板3150,3250としては、例えば、厚さ0.7mm程度の無アルカリガラス等のガラス板を用意する。耐熱性基板3150,3250は、作製する液晶表示装置3000を多面取りして複数形成することが可能な大きさのものである。
(First step)
In the first step, a conductive layer 3160, a separation layer 3110, and a display device layer 3120 are formed over a heat resistant substrate 3150 on the TFT substrate 3100 side. In addition, a conductive layer 3260, a separation layer 3210, and a display device layer 3220 are formed over the heat resistant substrate 3250 on the CF substrate 3200 side. Then, the display device layer 3120 on the TFT substrate 3100 side and the display device layer 3220 on the CF substrate 3200 side are bonded together so as to face each other. Here, the heat- resistant substrates 3150 and 3250 serve as base support substrates for forming the display device layers 3120 and 3220, and are not included in the configuration of the finished product of the liquid crystal display device 3000. As the heat resistant substrates 3150 and 3250, for example, glass plates such as non-alkali glass having a thickness of about 0.7 mm are prepared. The heat- resistant substrates 3150 and 3250 have a size that allows a plurality of liquid crystal display devices 3000 to be manufactured to be formed.
  -導電層-
 まず、ステップS311Aにおいて、実施形態1と同様の工程を経て耐熱性基板3150上に導電層3160を形成する。導電層3160は、上側導電膜3161,下側導電膜3162(図23参照)及び絶縁膜(不図示)で構成されている。導電層3160のうち、上側導電膜3161が最上層を、下側導電膜3162が最下層を構成し、絶縁膜は、上側導電膜3161及び下側導電膜3162のそれぞれを絶縁するように設けられている。上側導電膜3161及び下側導電膜3162は複数設けられ、それぞれが互いに並列に間隔をあけて配置されている。上側導電膜3161及び下側導電膜3162は、実施形態1の変形例1と同様に、各々がU字型に形成されている。
-Conductive layer-
First, in step S <b> 311 </ b> A, a conductive layer 3160 is formed on the heat resistant substrate 3150 through the same process as in the first embodiment. The conductive layer 3160 includes an upper conductive film 3161, a lower conductive film 3162 (see FIG. 23), and an insulating film (not shown). Of the conductive layer 3160, the upper conductive film 3161 constitutes the uppermost layer, the lower conductive film 3162 constitutes the lowermost layer, and the insulating film is provided so as to insulate each of the upper conductive film 3161 and the lower conductive film 3162. ing. A plurality of upper conductive films 3161 and a plurality of lower conductive films 3162 are provided, and each of them is arranged in parallel with a gap therebetween. The upper conductive film 3161 and the lower conductive film 3162 are each formed in a U-shape, as in the first modification of the first embodiment.
  -分離層(TFT基板側)-
 次に、ステップS312Aにおいて、導電層3160を覆うように、例えば、スリットコート法、グラビアコート法、カーテンコート法、スピンコート法等でポリイミド膜を成膜することにより、分離層3110を形成する。分離層3110は、例えば厚さが5~15μmとする。
-Separation layer (TFT substrate side)-
Next, in step S <b> 312 </ b> A, a separation layer 3110 is formed by depositing a polyimide film by a slit coating method, a gravure coating method, a curtain coating method, a spin coating method, or the like so as to cover the conductive layer 3160. The separation layer 3110 has a thickness of 5 to 15 μm, for example.
  -表示デバイス層(TFT基板側)-
 続いて、ステップS313Aにおいて、公知の方法を用いて、分離層3110の上層に表示デバイス層3120を形成する。具体的には、例えば、ベースコート膜、ゲート電極、ゲート絶縁膜、半導体膜、ソース電極、及びドレイン電極を所定のレイアウトで積層形成して、各画素に対応してマトリクス状に配列するように複数のTFT3121を形成する。その後、それらを覆うように平坦化膜3122を形成し、平坦化膜3122の表面からTFT3121のドレイン電極のそれぞれに達するコンタクトホール3123を形成する。そして、コンタクトホールを介してドレイン電極と導通すると共に各画素に対応してパターニングされた複数の画素電極3124を形成し、画素電極3124の上層に配向膜3170を形成する。半導体膜としては、分離層3110の熱分解温度が450℃程度である点を鑑み、アモルファスシリコン(αーSi)膜が好適である。
-Display device layer (TFT substrate side)-
Subsequently, in step S313A, the display device layer 3120 is formed on the separation layer 3110 using a known method. Specifically, for example, a base coat film, a gate electrode, a gate insulating film, a semiconductor film, a source electrode, and a drain electrode are stacked in a predetermined layout, and a plurality of them are arranged in a matrix corresponding to each pixel. The TFT 3121 is formed. Thereafter, a planarization film 3122 is formed so as to cover them, and contact holes 3123 reaching the respective drain electrodes of the TFT 3121 from the surface of the planarization film 3122 are formed. Then, a plurality of pixel electrodes 3124 that are electrically connected to the drain electrode through the contact hole and patterned corresponding to each pixel are formed, and an alignment film 3170 is formed in the upper layer of the pixel electrode 3124. As the semiconductor film, an amorphous silicon (α-Si) film is preferable in view of the thermal decomposition temperature of the separation layer 3110 being about 450 ° C.
  -CF基板側の積層体-
 一方、上記説明したステップS311A~S313Aとは独立に、CF基板側の構成となる積層体を作製する。
-CF substrate side laminate-
On the other hand, a laminated body having a configuration on the CF substrate side is manufactured independently of the above-described steps S311A to S313A.
 まず、ステップS311Bにおいて、ステップS311Aと同様にして耐熱性基板3250上に導電層3260を形成する。 First, in step S311B, a conductive layer 3260 is formed on the heat resistant substrate 3250 in the same manner as in step S311A.
 次いで、ステップS312Bにおいて、ステップS312Aと同様にして導電層3260を覆うように分離層3210を形成する。 Next, in step S312B, a separation layer 3210 is formed so as to cover the conductive layer 3260 as in step S312A.
 続いて、ステップS313Bにおいて、公知の方法を用いて、分離層3210の上層に表示デバイス層3220を形成する。具体的には、例えばインクジェット法等を用いて、各画素に対応するように各色CF膜を成膜し、それらを区画する格子状に遮光膜を成膜することによりカラーフィルタ層を形成する。そして、例えばCVD法等を用いて、基板全面に共通電極3223を形成し、さらに、共通電極3223の上層に配向膜3270を形成する。 Subsequently, in step S313B, a display device layer 3220 is formed on the separation layer 3210 using a known method. Specifically, for example, by using an inkjet method or the like, each color CF film is formed so as to correspond to each pixel, and a light-shielding film is formed in a lattice shape to partition them, thereby forming a color filter layer. Then, a common electrode 3223 is formed on the entire surface of the substrate by using, for example, a CVD method, and an alignment film 3270 is formed on the common electrode 3223.
 なお、ステップS311A~S313AとステップS311B~S313Bとは、いずれを先に行ってもよく、同時に並行して行ってもよい。 Note that any of steps S311A to S313A and steps S311B to S313B may be performed first, or may be performed simultaneously in parallel.
  -基板貼り合わせ-
 続いて、ステップS314において、ステップS311A~S313Aにおいて作製したTFT基板3100側の積層体とステップS311B~S313Bにおいて作製したCF基板3200側の積層体との貼り合わせを行う。2つの積層体の表示デバイス層3120,3220の一方の周縁部に枠状にシール材3301を塗布した後、シール材3301に囲まれた領域に液晶材料を滴下し、他方の積層体を重ね合わせて両者を接着させる。これにより、図19に示す積層体を得る。
-Board bonding-
Subsequently, in step S314, the laminate on the TFT substrate 3100 side manufactured in steps S311A to S313A is bonded to the laminate on the CF substrate 3200 side manufactured in steps S311B to S313B. After the seal material 3301 is applied in a frame shape to one peripheral edge of the display device layers 3120 and 3220 of the two laminates, a liquid crystal material is dropped on a region surrounded by the seal material 3301, and the other laminate is overlaid. To bond them together. Thereby, the laminated body shown in FIG. 19 is obtained.
  (第2~第3の工程)
  -CF基板側-
 図20は、ステップS314で得られた積層体のうちCF基板3200側の導電層3260における上側導電膜3261及び下側導電膜3262のレイアウトを示す。ステップS321においては、実施形態1の変形例1と同様に、これらの上側導電膜3261及び下側導電膜3262の各々に、端に位置する導電膜から順番に電圧の印加を行う。これにより、図21に示すように、分離層3210と導電層3260の接着状態が解除される。
(Second to third steps)
-CF substrate side-
FIG. 20 shows a layout of the upper conductive film 3261 and the lower conductive film 3262 in the conductive layer 3260 on the CF substrate 3200 side in the stacked body obtained in step S314. In step S321, as in Modification 1 of Embodiment 1, a voltage is applied to each of the upper conductive film 3261 and the lower conductive film 3262 in order from the conductive film located at the end. Thereby, as shown in FIG. 21, the adhesion state of the separation layer 3210 and the conductive layer 3260 is released.
 続いて、ステップS331において、導電層3260と耐熱性基板3250を剥離することにより露出した分離層3210の表面に、図22に示すように、接着剤3241(図22には不図示)を用いて支持基材3240の貼り付けを行う。 Subsequently, in step S331, an adhesive 3241 (not shown in FIG. 22) is used on the surface of the separation layer 3210 exposed by peeling the conductive layer 3260 and the heat resistant substrate 3250 as shown in FIG. The support base material 3240 is attached.
  -TFT基板側-
 図23は、ステップS314で得られた積層体のうちTFT基板3100側の導電層3160における上側導電膜3161及び下側導電膜3162のレイアウトを示す。ステップS322においては、ステップS321と同様に、これらの上側導電膜3161及び下側導電膜3162の各々に、端に位置する導電膜から順番に電圧の印加を行う。これにより、図24に示すように、分離層3110と導電層3160の接着状態が解除される。
-TFT substrate side-
FIG. 23 shows a layout of the upper conductive film 3161 and the lower conductive film 3162 in the conductive layer 3160 on the TFT substrate 3100 side in the stacked body obtained in step S314. In step S322, as in step S321, a voltage is applied to each of the upper conductive film 3161 and the lower conductive film 3162 in order from the conductive film located at the end. Thereby, as shown in FIG. 24, the adhesion state of the separation layer 3110 and the conductive layer 3160 is released.
 続いて、ステップS332において、導電層3160と耐熱性基板3150を剥離することにより露出した分離層3110の表面に、図25に示すように、接着剤3141(図25には不図示)を用いて支持基材3140の貼り付けを行う。 Subsequently, in step S332, an adhesive 3141 (not shown in FIG. 25) is used on the surface of the separation layer 3110 exposed by peeling the conductive layer 3160 and the heat resistant substrate 3150 as shown in FIG. The support base material 3140 is attached.
 そして、ステップS333においてマザー基板サイズの形成物を分断して単一の液晶表示装置3000のサイズにした後、支持基材3140,3240の表面にそれぞれ偏光板3142,3242を接着する。そして、ステップS334において、周辺領域にLSIチップやフレキシブルプリント配線板(FPC)等の周辺回路の実装を行う。これにより、液晶表示装置3000が完成する。 In step S333, the mother substrate size formed product is divided into the size of the single liquid crystal display device 3000, and then the polarizing plates 3142 and 3242 are bonded to the surfaces of the supporting base materials 3140 and 3240, respectively. In step S334, peripheral circuits such as an LSI chip and a flexible printed wiring board (FPC) are mounted in the peripheral area. Thereby, the liquid crystal display device 3000 is completed.
  <実施形態3の効果>
 実施形態3によれば、分離層3110,3210の表面を含む厚さ1μm程度の部分を熱分解することにより分離層3110,3210から導電層3160,3260及び耐熱性基板3150,3250を剥離するので、レーザーを用いる場合のように分離層3110,3210上にレーザーの加工形状に沿った加工痕が残ることがない。また、複数に分かれた上側導電膜3161及び下側導電膜3162や上側導電膜3261及び下側導電膜3262の各々に電流を流すので、分離層3110,3210の表面を含む部分を均一に熱分解することができ、分離層3110,3210に熱分解のムラが残るのが抑制される。従って、分離層3110,3210に剥離の加工痕や熱分解のムラが存在することによる表示品位の劣化やコントラスト等の光学的特性の劣化が抑制される。
<Effect of Embodiment 3>
According to the third embodiment, the conductive layers 3160 and 3260 and the heat- resistant substrates 3150 and 3250 are peeled from the separation layers 3110 and 3210 by thermally decomposing portions including the surfaces of the separation layers 3110 and 3210 having a thickness of about 1 μm. As in the case of using a laser, the processing traces along the laser processing shape do not remain on the separation layers 3110 and 3210. In addition, since a current is passed through each of the upper conductive film 3161 and the lower conductive film 3162 and the upper conductive film 3261 and the lower conductive film 3262, the portions including the surfaces of the separation layers 3110 and 3210 are thermally decomposed uniformly. It is possible to suppress uneven thermal decomposition in the separation layers 3110 and 3210. Therefore, display quality deterioration and deterioration of optical properties such as contrast due to the presence of peeling process marks and thermal decomposition unevenness in the separation layers 3110 and 3210 are suppressed.
 また、実施形態3によれば、分離層3110,3210の表面の熱分解をジュール熱により行うので、分離層3110,3210の表示デバイス層3120,3220側の面にまで熱が伝わらない。そのため、分離層3110,3210を熱分解する熱による表示デバイス層3120,3220の特性の劣化が抑制される。 Further, according to the third embodiment, since the thermal decomposition of the surfaces of the separation layers 3110 and 3210 is performed by Joule heat, heat is not transmitted to the surfaces of the separation layers 3110 and 3210 on the display device layers 3120 and 3220 side. Therefore, deterioration of the characteristics of the display device layers 3120 and 3220 due to heat that thermally decomposes the separation layers 3110 and 3210 is suppressed.
 さらに、実施形態3によれば、複数に分かれた上側導電膜3161及び下側導電膜3162や上側導電膜3261及び下側導電膜3262の各々に電流を流すので、導電層3160,3260全面に電流を流す場合よりも1回あたりに印加する電圧の大きさを小さくでき、設備の簡素化や感電事故発生の抑制が可能となる。 Furthermore, according to the third embodiment, since current is passed through each of the upper conductive film 3161 and the lower conductive film 3162 and the upper conductive film 3261 and the lower conductive film 3262 which are divided into a plurality of currents, the current flows across the conductive layers 3160 and 3260. The voltage applied per time can be reduced as compared with the case where the electric current is supplied, and the facility can be simplified and the occurrence of an electric shock accident can be suppressed.
  <実施形態3の変形例>
 実施形態3では、導電層3160、3260において、上側導電膜3161、3261及び下側導電膜3162、3262の各々がU字型であるとして説明したが、それぞれが、長尺状に並行して延びるように配置されていてもよい。
<Modification of Embodiment 3>
In the third embodiment, in the conductive layers 3160 and 3260, each of the upper conductive films 3161 and 3261 and the lower conductive films 3162 and 3262 has been described as being U-shaped, but each extends in a long shape in parallel. It may be arranged as follows.
 実施形態3では、支持基材3140,3240が平板形状であるとして説明したが、本発明の液晶表示装置3000は、分離層3110,3210及び表示デバイス層3120,3220の積層体は可撓性を有するので、様々な形状の剛体を支持基材として貼設することができる。 In Embodiment 3, the support base materials 3140 and 3240 have been described as having a flat plate shape. Since it has, the rigid body of various shapes can be stuck as a support base material.
 実施形態3では液晶表示装置3000がTFT基板3100とCF基板3200とが対向配置された構成の液晶表示装置としたが、TFT基板3100と、CFを有さない対向基板とが対向配置された構成の液晶表示装置であってもよい。 In the third embodiment, the liquid crystal display device 3000 is a liquid crystal display device having a configuration in which the TFT substrate 3100 and the CF substrate 3200 are arranged to face each other. However, the configuration in which the TFT substrate 3100 and a counter substrate having no CF are arranged to face each other. The liquid crystal display device may be used.
 また、実施形態3では液晶表示装置3000が透過型液晶であるとして説明したが、反射型の液晶表示装置であってもよい。この場合には、TFT基板3100の分離層3110を構成する材料に光透過性が要求されないので、融解温度のより高い不透明なポリイミド(例えば、熱分解温度550℃程度)を使用することができる。従って、TFT3121の半導体膜として、より高温のプロセスを必要とする低温ポリシリコン(LTPS)や酸化物半導体膜(IGZO)等を使用することができる。 In the third embodiment, the liquid crystal display device 3000 is described as a transmissive liquid crystal, but may be a reflective liquid crystal display device. In this case, since the material constituting the separation layer 3110 of the TFT substrate 3100 is not required to be light transmissive, an opaque polyimide having a higher melting temperature (for example, a thermal decomposition temperature of about 550 ° C.) can be used. Therefore, low-temperature polysilicon (LTPS), oxide semiconductor film (IGZO), or the like that requires a higher temperature process can be used as the semiconductor film of the TFT 3121.
  《実施形態4》
  <液晶表示装置>
 図26は、実施形態4に係る液晶表示装置4000を示す。この液晶表示装置4000は、例えば、携帯用電子機器やカーナビ、テレビ等のディスプレイとして用いられる。
<< Embodiment 4 >>
<Liquid crystal display device>
FIG. 26 shows a liquid crystal display device 4000 according to the fourth embodiment. The liquid crystal display device 4000 is used as a display for a portable electronic device, a car navigation system, a television, or the like, for example.
 液晶表示装置4000は、TFT基板4100とCF基板4200とが対向して配置され、両基板間に液晶層4300が形成された構成を有する。液晶層4300は、両基板間の周縁領域に枠状に設けられたシール材4301で封止されている。また、液晶表示装置4000は、複数の画素がマトリクス状に配置されている。液晶表示装置4000は、光反射性の液晶表示装置である。 The liquid crystal display device 4000 has a configuration in which a TFT substrate 4100 and a CF substrate 4200 are arranged to face each other, and a liquid crystal layer 4300 is formed between both substrates. The liquid crystal layer 4300 is sealed with a sealing material 4301 provided in a frame shape in the peripheral region between both substrates. The liquid crystal display device 4000 includes a plurality of pixels arranged in a matrix. The liquid crystal display device 4000 is a light reflective liquid crystal display device.
 TFT基板4100は、分離層4110及び表示デバイス層4120を積層したものが支持基材4140上に接着剤(不図示)を介して接着された構成を有する。また、TFT基板4100の表示デバイス層4120側表面には配向膜(不図示)が、支持基材4240側表面には偏光板(不図示)が設けられている。 The TFT substrate 4100 has a configuration in which a separation layer 4110 and a display device layer 4120 are laminated on a support base 4140 via an adhesive (not shown). Further, an alignment film (not shown) is provided on the surface of the TFT substrate 4100 on the display device layer 4120 side, and a polarizing plate (not shown) is provided on the surface of the support base material 4240.
 分離層4110は、ポリイミド膜で形成されている。分離層4110は、例えば厚さが5~15μmである。分離層4110を構成する材料としては、TFT4121を形成するときの高温プロセスへの耐熱性を有するポリイミドを用いる。なお、液晶表示装置4000が光反射型の液晶表示装置であることから、ポリイミドには光透過性は要求されない。かかるポリイミドとしては、例えば、熱分解温度が550℃程度の不透明なポリイミドが挙げられる。 The separation layer 4110 is formed of a polyimide film. The separation layer 4110 has a thickness of 5 to 15 μm, for example. As a material for forming the separation layer 4110, polyimide having heat resistance to a high temperature process when forming the TFT 4121 is used. Note that since the liquid crystal display device 4000 is a light reflection type liquid crystal display device, polyimide does not require light transmittance. Examples of such polyimide include opaque polyimide having a thermal decomposition temperature of about 550 ° C.
 表示デバイス層4120は、実施形態3と同様、複数の画素毎にTFTが形成され、複数のTFTを覆うように平坦化膜が設けられている。平坦化膜には各TFTのドレイン電極に達するコンタクトホールが設けられている。そして、平坦化膜の上層には、複数の画素毎に画素電極が設けられ、TFTのドレイン電極と電気的に接続されている。TFTや平坦化膜、画素電極は従来公知の構成を有する。 In the display device layer 4120, as in the third embodiment, a TFT is formed for each of a plurality of pixels, and a planarizing film is provided so as to cover the plurality of TFTs. A contact hole reaching the drain electrode of each TFT is provided in the planarizing film. A pixel electrode is provided for each of a plurality of pixels on the planarizing film, and is electrically connected to the drain electrode of the TFT. The TFT, the planarizing film, and the pixel electrode have a conventionally known configuration.
 支持基材4140は、例えば、可撓性を有するフィルム等で形成されている。液晶表示装置4000は反射型の液晶表示装置であるので、支持基材4140には、耐熱性が要求される。かかる可撓性フィルムの材料としては、例えば、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルイミド、ポリフェニレンスルフィド、ポリアミドイミド、液晶ポリエステル、ポリイミド、ポリエーテルエーテルケトン、それらの着色部材等が挙げられる。支持基材4140は、接着剤4141の部分を含めた厚さを例えば50~400μmとすることにより薄型ディスプレイを実現できる。支持基材4140は、TFT形成時に必要とされるよりも低い耐熱性の材料で形成することができる。 The support substrate 4140 is formed of, for example, a flexible film. Since the liquid crystal display device 4000 is a reflective liquid crystal display device, the supporting base material 4140 is required to have heat resistance. Examples of the material for the flexible film include polycarbonate, polyarylate, polysulfone, polyetherimide, polyphenylene sulfide, polyamideimide, liquid crystal polyester, polyimide, polyetheretherketone, and coloring members thereof. The supporting substrate 4140 can realize a thin display by setting the thickness including the adhesive 4141 portion to, for example, 50 to 400 μm. The support base material 4140 can be formed of a material having a heat resistance lower than that required when forming the TFT.
 CF基板4200は、表示デバイス層4220が支持基材4240上に接着剤(不図示)を介して接着された構成を有する。また、TFT基板4200の表示デバイス層4220側表面には配向膜(不図示)が、支持基材4240側表面には偏光板(不図示)が設けられている。 The CF substrate 4200 has a configuration in which the display device layer 4220 is bonded to the support base material 4240 via an adhesive (not shown). In addition, an alignment film (not shown) is provided on the surface of the TFT substrate 4200 on the display device layer 4220 side, and a polarizing plate (not shown) is provided on the surface of the support base material 4240.
 表示デバイス層4220は、実施形態3と同様、画素毎に設けられたCFとそれらを区画するように設けられた遮光膜からなるカラーフィルタ層と、それらを覆うように全面に形成された共通電極とで形成されている。CFや遮光膜、共通電極は従来公知の構成を有する。 Similar to the third embodiment, the display device layer 4220 includes a CF provided for each pixel, a color filter layer including a light shielding film provided so as to partition them, and a common electrode formed over the entire surface so as to cover them. And is formed. The CF, the light shielding film, and the common electrode have a conventionally known configuration.
 支持基材4240は、例えば、可撓性を有するフィルムや剛体で形成されている。可撓性フィルムの材料としては、例えば、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリシロキサン複合体、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリスルホン、ポリエーテルイミド、ポリフェニレンスルフィド、ポリアミドイミド、液晶ポリエステル、ポリイミド、ポリエーテルエーテルケトン、それらの着色部材等が挙げられる。剛体としては、例えば、ステンレス鋼(SUS)やガラスエポキシ樹脂等が挙げられる。 The support base 4240 is formed of, for example, a flexible film or a rigid body. Examples of the flexible film material include cycloolefin polymer, cycloolefin copolymer, polysiloxane composite, polycarbonate, polyethersulfone, polyarylate, polysulfone, polyetherimide, polyphenylene sulfide, polyamideimide, liquid crystal polyester, polyimide, Examples thereof include polyether ether ketone and coloring members thereof. Examples of the rigid body include stainless steel (SUS) and glass epoxy resin.
 CF基板側の支持基材4240は、例えば、可撓性を有するフィルムや剛体等で形成されている。支持基材4240には、高光透過性及び低位相差の性質が要求される。かかる可撓性フィルムの材料としては、例えば、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリシロキサン複合体、ポリカーボネート、ポリエチレンテレフタラート、ポリメタクリル酸メチル樹脂等が挙げられる。支持基材3240は、例えば、厚さが50~400μmである。 The support substrate 4240 on the CF substrate side is formed of, for example, a flexible film or a rigid body. The support base material 4240 is required to have a high light transmission property and a low retardation property. Examples of the material for the flexible film include cycloolefin polymer, cycloolefin copolymer, polysiloxane composite, polycarbonate, polyethylene terephthalate, and polymethyl methacrylate resin. The support base material 3240 has a thickness of 50 to 400 μm, for example.
 液晶層4300は、ネマチック液晶等の液晶材料で形成されている。 The liquid crystal layer 4300 is formed of a liquid crystal material such as nematic liquid crystal.
 この液晶表示装置4000では、TFTをオンさせると、画素電極に所定の電荷が書き込まれる。そして、画素電極と共通電位が与えられた共通電極との間に電位差が生じ、液晶層4300において電界が発生する。各画素において液晶層4300に発生する電界の強度によって、液晶層4300の液晶分子の配向状態を変えることにより、液晶層4300の光透過率が調整されて画像が表示される。 In this liquid crystal display device 4000, when the TFT is turned on, a predetermined charge is written into the pixel electrode. Then, a potential difference is generated between the pixel electrode and the common electrode to which a common potential is applied, and an electric field is generated in the liquid crystal layer 4300. By changing the alignment state of the liquid crystal molecules in the liquid crystal layer 4300 according to the strength of the electric field generated in the liquid crystal layer 4300 in each pixel, the light transmittance of the liquid crystal layer 4300 is adjusted and an image is displayed.
  <液晶表示装置の製造方法>
 次に、液晶表示装置4000の製造方法について、図27のフローチャート及び図28~31を用いて、第1の工程~第3の工程に分けて説明する。
<Method for manufacturing liquid crystal display device>
Next, a manufacturing method of the liquid crystal display device 4000 will be described by dividing it into a first process to a third process with reference to the flowchart of FIG. 27 and FIGS.
  (第1の工程)
 第1の工程では、TFT基板4100側の耐熱性基板4150上に導電層4160、分離層4110、表示デバイス層4120を形成する一方、CF基板4200の作製を行う。そして、TFT基板4100側の表示デバイス層4120とCF基板4200側の表示デバイス層4220が対向するように両者の貼り合わせを行う。ここで、耐熱性基板4150は、表示デバイス層4120を形成するためのベースの支持基板となるものであり、液晶表示装置4000の完成品の構成には含まれない。耐熱性基板4150としては、例えば、厚さ0.7mm程度の無アルカリガラス等のガラス板を用意する。耐熱性基板4150は、作製する液晶表示装置4000を多面取りして複数形成することが可能な大きさのものである。
(First step)
In the first step, the conductive layer 4160, the separation layer 4110, and the display device layer 4120 are formed over the heat resistant substrate 4150 on the TFT substrate 4100 side, while the CF substrate 4200 is manufactured. Then, the display device layer 4120 on the TFT substrate 4100 side and the display device layer 4220 on the CF substrate 4200 side are bonded together so as to face each other. Here, the heat-resistant substrate 4150 serves as a base support substrate for forming the display device layer 4120 and is not included in the configuration of the finished product of the liquid crystal display device 4000. As the heat resistant substrate 4150, for example, a glass plate such as non-alkali glass having a thickness of about 0.7 mm is prepared. The heat-resistant substrate 4150 has a size that allows a plurality of liquid crystal display devices 4000 to be manufactured to be formed.
  -導電層-
 まず、ステップS411において、実施形態2と同様の工程を経て耐熱性基板4150上に導電層4160を形成する。導電層4160は、導電膜4161及び絶縁膜4163(図29参照)で構成されている。導電膜4161は複数設けられ、それぞれが互いに並列に間隔をあけて配置されるように長尺状に形成する。そして、それらをそれぞれ区画するように絶縁膜4163を形成する。
-Conductive layer-
First, in step S411, the conductive layer 4160 is formed on the heat resistant substrate 4150 through the same process as that of the second embodiment. The conductive layer 4160 includes a conductive film 4161 and an insulating film 4163 (see FIG. 29). A plurality of the conductive films 4161 are provided and are formed in a long shape so that each of the conductive films 4161 is arranged in parallel to each other with a space therebetween. Then, an insulating film 4163 is formed so as to partition them.
  -分離層-
 次に、ステップS412において、導電層4160を覆うように、例えば、スリットコート法、グラビアコート法、カーテンコート法、スピンコート法等でポリイミド膜を成膜することにより、分離層4110を形成する。分離層4110は、例えば厚さが5~15μmとする。
-Separation layer-
Next, in step S412, a separation layer 4110 is formed by depositing a polyimide film by a slit coating method, a gravure coating method, a curtain coating method, a spin coating method, or the like so as to cover the conductive layer 4160. The separation layer 4110 has a thickness of 5 to 15 μm, for example.
  -表示デバイス層-
 続いて、ステップS413において、実施形態3のステップS313Aと同様にして、分離層4110の上層に表示デバイス層4120を形成する。
-Display device layer-
Subsequently, in step S413, the display device layer 4120 is formed on the separation layer 4110 in the same manner as in step S313A of the third embodiment.
  -CF基板-
 一方、上記説明したステップS411~S413とは独立に、ステップS414において、支持基材4240の上に表示デバイス層4220を形成することによりCF基板4200を作製する。具体的には、例えばインクジェット法等を用いて、各画素に対応するように各色CF膜を成膜し、それらを区画する格子状に遮光膜を成膜することによりカラーフィルタ層を形成する。そして、例えばCVD法等を用いて、基板全面に共通電極を形成し、さらに、共通電極の上層に配向膜を形成する。
-CF substrate-
On the other hand, independently of the above-described steps S411 to S413, the CF substrate 4200 is manufactured by forming the display device layer 4220 on the support base material 4240 in step S414. Specifically, for example, by using an inkjet method or the like, each color CF film is formed so as to correspond to each pixel, and a light-shielding film is formed in a lattice shape to partition them, thereby forming a color filter layer. Then, for example, a CVD method or the like is used to form a common electrode on the entire surface of the substrate, and an alignment film is formed on the common electrode.
 なお、ステップS411~S413とステップS414とは、いずれを先に行ってもよく、同時に並行して行ってもよい。 Note that any of steps S411 to S413 and step S414 may be performed first, or may be performed in parallel.
  -基板貼り合わせ-
 続いて、ステップS415において、ステップS411~S313において作製したTFT基板4100側の積層体とステップS414において作製したCF基板4200との貼り合わせを行う。2つの積層体の表示デバイス層4120,4220の一方の周縁部に枠状にシール材4301を塗布した後、シール材4301に囲まれた領域に液晶材料を滴下し、他方の積層体を重ね合わせて両者を接着させる。これにより、図28に示す積層体を得る。
-Board bonding-
Subsequently, in step S415, the laminate on the TFT substrate 4100 side manufactured in steps S411 to S313 and the CF substrate 4200 manufactured in step S414 are bonded. After the seal material 4301 is applied in a frame shape to one peripheral edge of the display device layers 4120 and 4220 of the two stacked bodies, a liquid crystal material is dropped on the region surrounded by the seal material 4301, and the other stacked body is overlaid. To bond them together. Thereby, the laminated body shown in FIG. 28 is obtained.
  (第2の工程)
 図29は、ステップS415で得られた積層体のうちTFT基板4100側の導電層4160における導電膜4161及び絶縁膜4163のレイアウトを示す。ステップS421においては、実施形態2と同様に、これらの導電膜4161の各々に、端に位置する導電膜から順番に電圧の印加を行う。これにより、図30に示すように、分離層4110と導電層4160の接着状態が解除される。
(Second step)
FIG. 29 shows a layout of the conductive film 4161 and the insulating film 4163 in the conductive layer 4160 on the TFT substrate 4100 side in the stacked body obtained in step S415. In step S421, as in the second embodiment, a voltage is sequentially applied to each of the conductive films 4161 from the conductive film located at the end. Thereby, as shown in FIG. 30, the adhesion state of the separation layer 4110 and the conductive layer 4160 is released.
  (第3の工程)
 続いて、ステップS431において、導電層4160と耐熱性基板4150を剥離することにより露出した分離層4110の表面に、図31に示すように、接着剤を用いて支持基材4140の貼り付けを行う。
(Third step)
Subsequently, in step S431, a support base material 4140 is attached to the surface of the separation layer 4110 exposed by peeling the conductive layer 4160 and the heat resistant substrate 4150 using an adhesive as shown in FIG. .
 そして、ステップS432においてマザー基板サイズの形成物を分断して単一の液晶表示装置4000のサイズにした後、支持基材4140,4240の表面にそれぞれ偏光板を接着する。そして、ステップS433において、周辺領域にLSIチップやフレキシブルプリント配線板(FPC)等の周辺回路の実装を行う。これにより、液晶表示装置4000が完成する。 Then, in step S432, the mother substrate size formed product is divided into the size of a single liquid crystal display device 4000, and then a polarizing plate is bonded to the surfaces of the supporting base materials 4140 and 4240, respectively. In step S433, peripheral circuits such as an LSI chip and a flexible printed wiring board (FPC) are mounted in the peripheral area. Thereby, the liquid crystal display device 4000 is completed.
  <実施形態4の効果>
 実施形態4によれば、分離層4110の表面を含む厚さ1μm程度の部分を熱分解することにより分離層4110から導電層4160及び耐熱性基板4150を剥離するので、レーザーを用いる場合のように分離層4110上にレーザーの加工形状に沿った加工痕が残ることがない。また、複数に分かれた導電膜4161の各々に電流を流すので、分離層4110の表面を含む部分を均一に熱分解することができ、分離層4110に熱分解のムラが残るのが抑制される。従って、分離層4110に剥離の加工痕や熱分解のムラが存在することによる表示品位の劣化やコントラスト等の光学的特性の劣化が抑制される。
<Effect of Embodiment 4>
According to the fourth embodiment, the conductive layer 4160 and the heat-resistant substrate 4150 are peeled from the separation layer 4110 by thermally decomposing a portion having a thickness of about 1 μm including the surface of the separation layer 4110, so that a laser is used. Processing traces along the laser processing shape do not remain on the separation layer 4110. In addition, since a current is passed through each of the plurality of conductive films 4161, the portion including the surface of the separation layer 4110 can be thermally decomposed uniformly, and uneven separation of thermal decomposition in the separation layer 4110 is suppressed. . Accordingly, display quality deterioration and deterioration of optical characteristics such as contrast due to the presence of peeling process marks and thermal decomposition unevenness in the separation layer 4110 are suppressed.
 また、実施形態4によれば、分離層4110の表面の熱分解をジュール熱により行うので、分離層4110の表示デバイス層4120側の面にまで熱が伝わらない。そのため、分離層4110を熱分解する熱による表示デバイス層4120の特性の劣化が抑制される。 Further, according to Embodiment 4, since the thermal decomposition of the surface of the separation layer 4110 is performed by Joule heat, heat is not transmitted to the surface of the separation layer 4110 on the display device layer 4120 side. Therefore, deterioration of the characteristics of the display device layer 4120 due to heat that thermally decomposes the separation layer 4110 is suppressed.
 さらに、実施形態4によれば、複数に分かれた導電膜4161の各々に電流を流すので、導電層4160全面に電流を流す場合よりも1回あたりに印加する電圧の大きさを小さくでき、設備の簡素化や感電事故発生の抑制が可能となる。 Furthermore, according to the fourth embodiment, since a current is passed through each of the plurality of conductive films 4161, the magnitude of the voltage applied per time can be made smaller than when a current is passed over the entire surface of the conductive layer 4160, and the facility Simplification and suppression of electric shock accidents.
  <実施形態4の変形例>
 実施形態4では、支持基材4140が平板形状であるとして説明したが、本発明の液晶表示装置4000は、分離層4110、表示デバイス層4120、液晶層4300及びCF基板4200の積層体が可撓性を有するので、様々な形状の剛体を支持基材として貼設することができる。
<Modification of Embodiment 4>
In the fourth embodiment, the support base material 4140 is described as having a flat plate shape. However, in the liquid crystal display device 4000 of the present invention, the laminate of the separation layer 4110, the display device layer 4120, the liquid crystal layer 4300, and the CF substrate 4200 is flexible. Therefore, various shapes of rigid bodies can be pasted as a support base material.
 実施形態4では液晶表示装置4000がTFT基板4100とCF基板4200とが対向配置された構成を有するとしたが、TFT基板4100と、CFを有さない対向基板とが対向配置された構成の液晶表示装置であってもよい。 In the fourth embodiment, the liquid crystal display device 4000 has a configuration in which the TFT substrate 4100 and the CF substrate 4200 are arranged to face each other. However, a liquid crystal having a configuration in which the TFT substrate 4100 and a counter substrate having no CF are arranged to face each other. It may be a display device.
 また、実施形態4では液晶表示装置4000が光反射型液晶であるとして説明したが、光透過型の液晶表示装置であってもよい。この場合には、TFT基板4100の分離層4110を構成する材料に光透過性が要求されるので、熱分解温度が450℃程度の透明なポリイミドを使用する必要がある。 In the fourth embodiment, the liquid crystal display device 4000 is described as being a light reflection type liquid crystal, but may be a light transmission type liquid crystal display device. In this case, since the material constituting the separation layer 4110 of the TFT substrate 4100 is required to have light transmittance, it is necessary to use transparent polyimide having a thermal decomposition temperature of about 450 ° C.
  《その他の実施形態》
 上記実施形態では、分離層としてポリイミド樹脂を用いる場合について説明したが、特にこれに限られない。分離層としては、導電膜に電流を流したときに発生するジュール熱により到達可能な温度範囲に熱分解温度又は融点を有する材料であればよい。例えば、分離層としてアルミニウム(融点約660℃程度)等を用いてもよい。
<< Other Embodiments >>
In the above embodiment, the case where a polyimide resin is used as the separation layer has been described. However, the present invention is not limited to this. The separation layer may be a material having a thermal decomposition temperature or a melting point in a temperature range reachable by Joule heat generated when a current is passed through the conductive film. For example, aluminum (melting point: about 660 ° C.) or the like may be used as the separation layer.
 但し、分離層をアルミニウムで形成する場合には分離層が光を透過しないので、透過型の液晶表示装置の場合の分離層や、反射型液晶表示装置及びトップエミッション型の有機EL表示装置における光取り出し側の基板の分離層の材料としては適さない。また、分離層の屈曲性能が優れている点からは、分離層の材料としてはポリイミドを用いることが好ましい。 However, since the separation layer does not transmit light when the separation layer is formed of aluminum, the light in the separation layer in the case of a transmissive liquid crystal display device, the reflection type liquid crystal display device, and the top emission type organic EL display device. It is not suitable as a material for the separation layer of the substrate on the take-out side. Moreover, it is preferable to use a polyimide as a material of a separation layer from the point which the bending performance of a separation layer is excellent.
 上記実施形態では、表示装置200として有機EL表示装置や液晶表示装置に係るものについて示したが、これに限らず、例えば、無機EL表示装置、電気泳動表示装置、プラズマディスプレイ(PD(plasma display))、プラズマアドレス液晶ディスプレイ(PALC(plasma addressed liquid crystal display))、電界放出ディスプレイ(FED(field emission display))、又は、表面電界ディスプレイ(SED(surface-conduction electron-emitter display))等であってもよい。 In the above-described embodiment, the display device 200 is related to an organic EL display device or a liquid crystal display device. However, the display device 200 is not limited to this. For example, an inorganic EL display device, an electrophoretic display device, a plasma display (PD) ), Plasma addressed liquid crystal display (PALC), field emission display (FED), surface field display (SED (surface-conduction electron-emitter display)), etc. Also good.
 本発明は、表示装置及び表示装置の製造方法について有用である。 The present invention is useful for a display device and a method for manufacturing the display device.
    100,200  有機EL表示装置
    110,210  分離層
    120,220  TFT素子層(スイッチング素子層)
    121,221  TFT(スイッチング素子)
    130,230  有機EL素子層
    140,240  支持基材
    150,250  耐熱性基板
    160,260  導電層
    161      上側導電膜
    162      下側導電膜
    163,263  絶縁膜
    261      導電膜
  3000,4000  液晶表示装置
  3100,4100  TFT基板
  3121,4121  TFT
  3161,3261  上側導電膜
  3162,3262  下側導電膜
  4161       導電膜
  3200,4200  CF基板
  3223       共通電極
  3300,4300  液晶層
  4163       絶縁膜
  3110,3210,4110  分離層
  3150,3250,4150  耐熱性基板
  3160,3260,4160  導電層
  3120,3220,4120,4220  表示デバイス層
  3140,3240,4140,4240  支持基材
100,200 Organic EL display device 110,210 Separation layer 120,220 TFT element layer (switching element layer)
121,221 TFT (switching element)
130, 230 Organic EL element layer 140, 240 Support base material 150, 250 Heat resistant substrate 160, 260 Conductive layer 161 Upper conductive film 162 Lower conductive film 163, 263 Insulating film 261 Conductive film 3000, 4000 Liquid crystal display device 3100, 4100 TFT substrate 3121, 4121 TFT
3161, 3261 Upper conductive film 3162, 3262 Lower conductive film 4161 Conductive film 3200, 4200 CF substrate 3223 Common electrode 3300, 4300 Liquid crystal layer 4163 Insulating film 3110, 3210, 4110 Separation layer 3150, 3250, 4150 Heat resistant substrate 3160, 3260 , 4160 Conductive layer 3120, 3220, 4120, 4220 Display device layer 3140, 3240, 4140, 4240 Support base material

Claims (13)

  1.  耐熱性基板上に複数の導電膜が絶縁膜を介して絶縁されて構成された導電層を形成した後、該導電層を覆うように分離層を形成し、その後、該分離層上に表示デバイス層を形成する第1の工程と、
     上記第1の工程の後、上記複数の導電膜の各々に電流を流してジュール熱を発生させ、このジュール熱により上記分離層の導電層に接する面を溶融又は熱分解して、該分離層から導電層及び耐熱性基板を剥離する第2の工程と、
    を含む表示装置の製造方法。
    A conductive layer formed by insulating a plurality of conductive films through an insulating film is formed on a heat resistant substrate, and then a separation layer is formed so as to cover the conductive layer, and then a display device is formed on the separation layer A first step of forming a layer;
    After the first step, a current is supplied to each of the plurality of conductive films to generate Joule heat, and the surface of the separation layer in contact with the conductive layer is melted or pyrolyzed by the Joule heat, and the separation layer A second step of peeling the conductive layer and the heat-resistant substrate from,
    A manufacturing method of a display device including:
  2.  請求項1に記載された表示装置の製造方法において、
     上記複数の導電膜は、上記導電層の上記表示デバイス層側表面に露出するように位置付けられ、互いに並列に配置された長尺状の複数の上側導電膜、及び、上記導電層の上記耐熱性基板側表面に露出するように上記隣り合う2つの上側導電膜の間に対応する領域に位置付けられ、互いに並列して配置された複数の下側導電膜で構成されている
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to claim 1,
    The plurality of conductive films are positioned so as to be exposed on the surface of the conductive layer on the display device layer side, and are arranged in parallel to each other in a plurality of elongated upper conductive films, and the heat resistance of the conductive layer A display comprising a plurality of lower conductive films positioned in a corresponding region between the two adjacent upper conductive films so as to be exposed on the substrate side surface, and arranged in parallel to each other Device manufacturing method.
  3.  請求項1に記載された表示装置の製造方法において、
     上記導電層は、上記複数の導電膜の各々が長尺状に延び且つ互いに並列に配置され、上記絶縁膜が長尺状に延び且つ上記隣り合う2つの導電膜の間に対応する領域に互いに並列に複数配置されている
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to claim 1,
    In the conductive layer, each of the plurality of conductive films extends in a long shape and is arranged in parallel to each other, and the insulating film extends in a long shape and is disposed in a region corresponding to the space between the two adjacent conductive films. A method of manufacturing a display device, wherein a plurality of the display devices are arranged in parallel.
  4.  請求項1~3のいずれか1項に記載された表示装置の製造方法において、
     上記表示デバイス層は、複数のスイッチング素子がマトリクス状に配置されたスイッチング素子層を含む
    ことを特徴とする表示装置の製造方法。
    In the method for manufacturing a display device according to any one of claims 1 to 3,
    The display device layer includes a switching element layer in which a plurality of switching elements are arranged in a matrix.
  5.  請求項4に記載された表示装置の製造方法において、
     上記表示デバイス層は、上記複数のスイッチング素子の各々に対応して複数の有機EL素子が配置された有機EL素子層を上記スイッチング素子層上に積層した構成を有する
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to claim 4,
    The display device layer has a configuration in which an organic EL element layer in which a plurality of organic EL elements are arranged corresponding to each of the plurality of switching elements is stacked on the switching element layer. Production method.
  6.  請求項1~3のいずれか1項に記載された表示装置の製造方法において、
     第1の耐熱性基板、該第1の耐熱性基板上の複数の導電膜が絶縁膜を介して絶縁されて構成された第1の導電層、該第1の導電層上の第1の分離層、並びに、複数のスイッチング素子がマトリクス状に配置されたスイッチング素子層及び該スイッチング素子層上に設けられ該複数のスイッチング素子の各々に対応する複数の画素電極を含む表示デバイス層からなる第1の積層体と、第2の耐熱性基板、該第2の耐熱性基板上の複数の導電膜が絶縁膜を介して絶縁されて構成された第2の導電層、該第2の導電層上の第2の分離層、及び、共通電極を含む第2の表示デバイス層からなる第2の積層体の各々を上記第1の工程を経て形成した後、上記第1及び第2の表示デバイス層が対向するようにそれらを配置して該第1及び第2表示デバイス層間に形成される空間に液晶層を形成し、
     第1の導電層及び第1の耐熱性基板、並びに第2の導電層及び第2の耐熱性基板を上記第2の工程を経て第1の分離層及び第2の分離層のそれぞれから剥離する
    ことを特徴とする表示装置の製造方法。
    In the method for manufacturing a display device according to any one of claims 1 to 3,
    A first heat-resistant substrate, a first conductive layer formed by insulating a plurality of conductive films on the first heat-resistant substrate via an insulating film, and a first separation on the first conductive layer And a display device layer including a switching element layer in which a plurality of switching elements are arranged in a matrix and a plurality of pixel electrodes provided on the switching element layer and corresponding to each of the plurality of switching elements. And a second heat-resistant substrate, a second conductive layer formed by insulating a plurality of conductive films on the second heat-resistant substrate through an insulating film, and on the second conductive layer After forming each of the second stacked layers including the second separation layer and the second display device layer including the common electrode through the first step, the first and second display device layers are formed. Are arranged so that they face each other, and the first and second display devices The liquid crystal layer is formed in a space formed between,
    The first conductive layer and the first heat-resistant substrate, and the second conductive layer and the second heat-resistant substrate are peeled from each of the first separation layer and the second separation layer through the second step. A manufacturing method of a display device characterized by the above.
  7.  請求項1~6のいずれか1項に記載された表示装置の製造方法において、
     上記分離層は、融点又は熱分解温度が400~700℃の材料で形成されている
    ことを特徴とする表示装置の製造方法。
    The method for manufacturing a display device according to any one of claims 1 to 6,
    The method for manufacturing a display device, wherein the separation layer is formed of a material having a melting point or a thermal decomposition temperature of 400 to 700 ° C.
  8.  請求項7に記載された表示装置の製造方法において、
     上記分離層は、ポリイミドで形成されている
    ことを特徴とする表示装置の製造方法。
    In the manufacturing method of the display device according to claim 7,
    The method for manufacturing a display device, wherein the separation layer is made of polyimide.
  9.  請求項1~8のいずれか1項に記載された表示装置の製造方法において、
     上記第2の工程の後、上記分離層の露出した表面に支持基材を貼設する第3の工程をさらに備える
    ことを特徴とする表示装置の製造方法。
    The method for manufacturing a display device according to any one of claims 1 to 8,
    After the said 2nd process, the manufacturing method of the display apparatus further provided with the 3rd process of sticking a support base material on the surface which the said separated layer exposed.
  10.  請求項1の製造方法により製造される表示装置であって、
     上記分離層は、融点又は熱分解温度が400~700℃の材料で形成されている
    ことを特徴とする表示装置。
    A display device manufactured by the manufacturing method according to claim 1,
    The display device, wherein the separation layer is formed of a material having a melting point or a thermal decomposition temperature of 400 to 700 ° C.
  11.  請求項10に記載された表示装置において、
     上記表示デバイス層は、複数のスイッチング素子がマトリクス状に配置されたスイッチング素子層を含む
    ことを特徴とする表示装置。
    The display device according to claim 10,
    The display device layer includes a switching element layer in which a plurality of switching elements are arranged in a matrix.
  12.  請求項10又は11に記載された表示装置において、
     上記分離層はポリイミドで形成されている
    ことを特徴とする表示装置。
    The display device according to claim 10 or 11,
    The display device, wherein the separation layer is made of polyimide.
  13.  請求項10~12のいずれか1項に記載された表示装置において、
     上記分離層の上記表示デバイス層とは反対側表面に支持基材をさらに備える
    ことを特徴とする表示装置。
    The display device according to any one of claims 10 to 12,
    A display device, further comprising a support substrate on a surface of the separation layer opposite to the display device layer.
PCT/JP2012/005560 2011-09-08 2012-09-03 Display device and method for manufacturing same WO2013035298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011195844 2011-09-08
JP2011-195844 2011-09-08

Publications (1)

Publication Number Publication Date
WO2013035298A1 true WO2013035298A1 (en) 2013-03-14

Family

ID=47831770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005560 WO2013035298A1 (en) 2011-09-08 2012-09-03 Display device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013035298A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083029A1 (en) * 2013-12-02 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2016537788A (en) * 2013-12-16 2016-12-01 深▲セン▼市華星光電技術有限公司 Method for manufacturing flexible OLED panel
WO2018180592A1 (en) * 2017-03-28 2018-10-04 東レ株式会社 Photosensitive resin composition, cured film, element equipped with cured film, organic el display device equipped with cured film, cured film production method, and organic el display device production method
WO2018179332A1 (en) * 2017-03-31 2018-10-04 シャープ株式会社 Display device, display device manufacturing method, and display device manufacturing apparatus
CN109100884A (en) * 2018-10-10 2018-12-28 业成科技(成都)有限公司 Optical modulator and the laser radar for using it
US10185190B2 (en) 2016-05-11 2019-01-22 Semiconductor Energy Laboratory Co., Ltd. Display device, module, and electronic device
US10528198B2 (en) 2016-09-16 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Display panel, display device, input/output device, data processing device, and method for manufacturing the display panel
US10586817B2 (en) 2016-03-24 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and separation apparatus
US10629831B2 (en) 2016-07-29 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Separation method, display device, display module, and electronic device
US10861733B2 (en) 2016-08-09 2020-12-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP2021121852A (en) * 2014-12-29 2021-08-26 株式会社半導体エネルギー研究所 Manufacturing method for function panel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126733A (en) * 1997-07-03 1999-01-29 Seiko Epson Corp Transfer method of thin film device, thin film device, thin film integrated circuit device, active matrix substrate, liquid crystal display and electronic equipment
JP2000306441A (en) * 1999-04-19 2000-11-02 Kyodo Printing Co Ltd Transfer method for transparent conductive film
JP2001057432A (en) * 1999-08-18 2001-02-27 Seiko Epson Corp Method for transferring thin film element
JP2002214588A (en) * 2001-01-15 2002-07-31 Seiko Epson Corp Electro-optic device and method for producing the same
JP2003318195A (en) * 2002-04-24 2003-11-07 Ricoh Co Ltd Thin-film device and its manufacturing method
JP2004199088A (en) * 1994-08-22 2004-07-15 Dainippon Printing Co Ltd Base substrate and active matrix substrate for film liquid crystal panel manufacturing
JP2006120720A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, active matrix substrate, electro-optical device, electronic apparatus
WO2007007396A1 (en) * 2005-07-12 2007-01-18 Fujitsu Hitachi Plasma Display Limited Display device provided with glass panel and method for separating same
JP2009027150A (en) * 2007-06-20 2009-02-05 Semiconductor Energy Lab Co Ltd Substrate for manufacturing semiconductor device, and method for manufacturing the same
JP2012189974A (en) * 2011-03-10 2012-10-04 Samsung Mobile Display Co Ltd Flexible display device and manufacturing method for the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199088A (en) * 1994-08-22 2004-07-15 Dainippon Printing Co Ltd Base substrate and active matrix substrate for film liquid crystal panel manufacturing
JPH1126733A (en) * 1997-07-03 1999-01-29 Seiko Epson Corp Transfer method of thin film device, thin film device, thin film integrated circuit device, active matrix substrate, liquid crystal display and electronic equipment
JP2000306441A (en) * 1999-04-19 2000-11-02 Kyodo Printing Co Ltd Transfer method for transparent conductive film
JP2001057432A (en) * 1999-08-18 2001-02-27 Seiko Epson Corp Method for transferring thin film element
JP2002214588A (en) * 2001-01-15 2002-07-31 Seiko Epson Corp Electro-optic device and method for producing the same
JP2003318195A (en) * 2002-04-24 2003-11-07 Ricoh Co Ltd Thin-film device and its manufacturing method
JP2006120720A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, active matrix substrate, electro-optical device, electronic apparatus
WO2007007396A1 (en) * 2005-07-12 2007-01-18 Fujitsu Hitachi Plasma Display Limited Display device provided with glass panel and method for separating same
JP2009027150A (en) * 2007-06-20 2009-02-05 Semiconductor Energy Lab Co Ltd Substrate for manufacturing semiconductor device, and method for manufacturing the same
JP2012189974A (en) * 2011-03-10 2012-10-04 Samsung Mobile Display Co Ltd Flexible display device and manufacturing method for the same

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10872947B2 (en) 2013-12-02 2020-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2016184166A (en) * 2013-12-02 2016-10-20 株式会社半導体エネルギー研究所 Method for manufacturing display device
US9437831B2 (en) 2013-12-02 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11672148B2 (en) 2013-12-02 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2016186634A (en) * 2013-12-02 2016-10-27 株式会社半導体エネルギー研究所 Portable electronic apparatus
US10854697B2 (en) 2013-12-02 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US9559316B2 (en) 2013-12-02 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US9559317B2 (en) 2013-12-02 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2017040923A (en) * 2013-12-02 2017-02-23 株式会社半導体エネルギー研究所 Display device manufacture method
CN106663391A (en) * 2013-12-02 2017-05-10 株式会社半导体能源研究所 Display device and method for manufacturing the same
JP2018106177A (en) * 2013-12-02 2018-07-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
CN108281433A (en) * 2013-12-02 2018-07-13 株式会社半导体能源研究所 Display device and its manufacturing method
WO2015083029A1 (en) * 2013-12-02 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10879331B2 (en) 2013-12-02 2020-12-29 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
CN110010625A (en) * 2013-12-02 2019-07-12 株式会社半导体能源研究所 Display device and its manufacturing method
JP2015187701A (en) * 2013-12-02 2015-10-29 株式会社半導体エネルギー研究所 Display device and method for manufacturing the same
US10312315B2 (en) 2013-12-02 2019-06-04 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
CN110676395A (en) * 2013-12-02 2020-01-10 株式会社半导体能源研究所 Display device and method for manufacturing the same
US10355067B2 (en) 2013-12-02 2019-07-16 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
TWI668894B (en) * 2013-12-02 2019-08-11 日商半導體能源研究所股份有限公司 Display device and method for manufacturing the same
CN106663391B (en) * 2013-12-02 2019-09-03 株式会社半导体能源研究所 Display device and its manufacturing method
US11004925B2 (en) 2013-12-02 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10763322B2 (en) 2013-12-02 2020-09-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2016537788A (en) * 2013-12-16 2016-12-01 深▲セン▼市華星光電技術有限公司 Method for manufacturing flexible OLED panel
JP2021121852A (en) * 2014-12-29 2021-08-26 株式会社半導体エネルギー研究所 Manufacturing method for function panel
JP7110440B2 (en) 2014-12-29 2022-08-01 株式会社半導体エネルギー研究所 How to make a functional panel
US11107846B2 (en) 2016-03-24 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and separation apparatus
US10586817B2 (en) 2016-03-24 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and separation apparatus
US10185190B2 (en) 2016-05-11 2019-01-22 Semiconductor Energy Laboratory Co., Ltd. Display device, module, and electronic device
US11616206B2 (en) 2016-07-29 2023-03-28 Semiconductor Energy Laboratory Co., Ltd. Separation method, display device, display module, and electronic device
US10930870B2 (en) 2016-07-29 2021-02-23 Semiconductor Energy Laboratory Co., Ltd. Separation method, display device, display module, and electronic device
US10629831B2 (en) 2016-07-29 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Separation method, display device, display module, and electronic device
US10861733B2 (en) 2016-08-09 2020-12-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10528198B2 (en) 2016-09-16 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Display panel, display device, input/output device, data processing device, and method for manufacturing the display panel
KR20190125983A (en) * 2017-03-28 2019-11-07 도레이 카부시키가이샤 The photosensitive resin composition, the cured film, the element provided with a cured film, the organic electroluminescence display provided with a cured film, the manufacturing method of a cured film, and the manufacturing method of an organic electroluminescence display
JPWO2018180592A1 (en) * 2017-03-28 2020-02-06 東レ株式会社 Photosensitive resin composition, cured film, element having cured film, organic EL display device having cured film, method of producing cured film, and method of producing organic EL display device
KR102254366B1 (en) 2017-03-28 2021-05-24 도레이 카부시키가이샤 Photosensitive resin composition, cured film, element provided with cured film, organic EL display device provided with cured film, method for producing cured film, and method for producing organic EL display device
WO2018180592A1 (en) * 2017-03-28 2018-10-04 東レ株式会社 Photosensitive resin composition, cured film, element equipped with cured film, organic el display device equipped with cured film, cured film production method, and organic el display device production method
US10553822B2 (en) 2017-03-31 2020-02-04 Sharp Kabushiki Kaisha Display device, display device production method, and display device production device
CN110506306B (en) * 2017-03-31 2021-07-13 夏普株式会社 Display device, method of manufacturing display device, and apparatus for manufacturing display device
WO2018179332A1 (en) * 2017-03-31 2018-10-04 シャープ株式会社 Display device, display device manufacturing method, and display device manufacturing apparatus
JPWO2018179332A1 (en) * 2017-03-31 2020-02-06 シャープ株式会社 Display device, display device manufacturing method, and display device manufacturing apparatus
CN110506306A (en) * 2017-03-31 2019-11-26 夏普株式会社 Display device, the manufacturing method of display device, display device producing device
CN109100884B (en) * 2018-10-10 2021-06-22 业成科技(成都)有限公司 Optical modulator and laser radar using the same
CN109100884A (en) * 2018-10-10 2018-12-28 业成科技(成都)有限公司 Optical modulator and the laser radar for using it

Similar Documents

Publication Publication Date Title
WO2013035298A1 (en) Display device and method for manufacturing same
TWI375193B (en)
JP5764694B2 (en) Light emitting device
JP2021081736A (en) Light-emitting device
US8182633B2 (en) Method of fabricating a flexible display device
US9239495B2 (en) Display device, electronic device including display device, and method for manufacturing display device
US20090266471A1 (en) Method of fabricating flexible display device
US10952342B2 (en) Window panel, display device including the window panel, and manufacturing method of the window panel
TWI486694B (en) Liquid crystal display and method of manufacturing the same
WO2009110042A1 (en) Display device, liquid crystal display device, organic el display device, thin-film substrate, and method for manufacturing display device
US20180157375A1 (en) Decoration film, cover panel comprising decoration film and method for manufacturing decoration film
WO2011125307A1 (en) Display apparatus
US20110255034A1 (en) Display device
KR101230310B1 (en) Adhesive and method for manufacturing display device using the same
JP2006330739A (en) Manufacturing method of flexible display device
US20170357114A1 (en) Driver of display device and manufacturing method of the same
KR101633116B1 (en) Display Device And Manufacturing Method Of The Same
JP2013145808A (en) Peeling method, manufacturing method of liquid crystal display, manufacturing method of organic el display, and manufacturing method of touch panel
KR102336684B1 (en) Method for manufacturing flexible display apparatus
KR20170032953A (en) Display device and the method of manufacturing thereof
KR101375855B1 (en) Method of fabricating oxide thin film transistor
US9991469B2 (en) Display device
JP2013235196A (en) Liquid crystal display device and method of manufacturing the same
JP6294670B2 (en) Display device and manufacturing method of display device
JP2017044714A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP