WO2013031912A1 - Substrate and analysis method - Google Patents

Substrate and analysis method Download PDF

Info

Publication number
WO2013031912A1
WO2013031912A1 PCT/JP2012/072051 JP2012072051W WO2013031912A1 WO 2013031912 A1 WO2013031912 A1 WO 2013031912A1 JP 2012072051 W JP2012072051 W JP 2012072051W WO 2013031912 A1 WO2013031912 A1 WO 2013031912A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
substrate
polymer
molecule
dna
Prior art date
Application number
PCT/JP2012/072051
Other languages
French (fr)
Japanese (ja)
Inventor
理 額賀
山本 敏
和仁 田端
正和 杉山
Original Assignee
株式会社フジクラ
技術研究組合Beans研究所
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ, 技術研究組合Beans研究所, 国立大学法人東京大学 filed Critical 株式会社フジクラ
Priority to JP2013531404A priority Critical patent/JP6134645B2/en
Publication of WO2013031912A1 publication Critical patent/WO2013031912A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/55Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the present invention relates to a substrate having a through hole and an analysis method using the substrate. More specifically, the present invention relates to a substrate having a through-hole in which a polymer molecule can be extended and arranged, and a method for analyzing the arrangement of structural units of the polymer molecule using the substrate.
  • DNA sequencers DNA sequencers
  • Patent Document 1 discloses a technique in which a nucleic acid molecule such as DNA extracted from a specimen is handled as a single DNA molecule without being amplified by PCR or the like, and its base sequence is analyzed.
  • DNA strands are easily cleaved by a physical shearing force.
  • the DNA strand to be analyzed is donated to the immobilized DNA synthase in a state in which it is dissolved in the solution. Therefore, the DNA strand is unstable, and due to the shear force generated in the solution, the DNA strand is There is a risk of being cut. For this reason, it is considered that the length of a DNA strand that can be reliably read remains at about 600 to 1000 base pairs as before.
  • the present invention has been made in view of the above circumstances, and a substrate having a through-hole capable of stably arranging a polymer molecule such as a DNA chain to be analyzed, and the polymer using the substrate It is an object of the present invention to provide a method for analyzing the arrangement of molecular constituent units.
  • the substrate according to the first aspect of the present invention includes a base material provided with a space into which a solution containing polymer-like molecules is allowed to flow therein, and is formed inside the base material, and is open to the space.
  • a through-hole having a shape capable of extending and arranging the polymer-like molecule therein, and at least a portion of the base material constituting the through-hole is formed of a single member.
  • the polymer molecule can be kept stable by extending and arranging at least a part of the polymer molecule in the through hole. This is because a turbulent flow with a large shearing force that cuts the polymer-like molecule hardly occurs within the through-hole. Moreover, since the site
  • the strength refers to heat resistance, cold resistance, pressure resistance, chemical resistance, and deformation resistance.
  • part which comprises the said through-hole is formed with the single member, and there is no location and seam bonded together in the said through-hole, it generate
  • the optical signal is refracted and becomes stray light. For this reason, it is easy to optically observe the inside of the through hole.
  • At least a part of the through hole is columnar.
  • the direction in which the polymer molecules extend can be arranged along the longitudinal direction of the columnar through hole. For this reason, it becomes easier to control the arrangement of the polymer-like molecules.
  • the length of the through hole in the longitudinal direction is preferably 0.1 ⁇ m to 10 mm.
  • the length of the through hole in the longitudinal direction is within the above range, it becomes easier to introduce the polymer molecule into the through hole.
  • the through-hole is relatively short, it becomes easier to transport and arrange the polymer-like molecule in the through-hole by a direct method such as optical tweezers.
  • the through hole is relatively long, it is easier to place the polymer molecule in the through hole by sucking the polymer molecule into the through hole. That is, it becomes easier to arrange the polymer-like molecules in the through holes together with the flow of the solution without directly transporting the polymer-like molecules.
  • the minor axis of the cross section perpendicular to the longitudinal direction of the through hole is preferably 1 nm to 1000 nm.
  • the polymer molecule can be kept more stably in the through hole.
  • shear force such as turbulent flow is generated in the solution in the through hole.
  • by making the inside of the through hole a thinner (narrow) space it becomes easier to match the longitudinal direction of the polymer molecule with the longitudinal direction of the through hole.
  • the inside of the through-hole a thinner (narrow) space
  • the kinetic energy due to thermal motion and diffusion of the polymer-like molecule is reduced (entropy of the polymer-like molecule is lowered), and the polymer-like molecule is reduced. Is more stable, and it becomes easier to dispose the polymer-like molecule in the through hole in a state where the polymer molecule is stretched in the longitudinal direction of the through hole.
  • the base material is a substrate having a main surface
  • the shape of the cross section perpendicular to the longitudinal direction of the through hole is substantially elliptical
  • the orientation of the major axis of the elliptical shape it is preferable to be inclined with respect to the main surface.
  • the orientation of the elliptical minor axis and the plane direction of the main surface can be made non-parallel.
  • the base body of the first aspect of the present invention it is preferable that the base body further has a vertical hole communicating the through hole and the outside of the base material. According to this configuration, a liquid containing a gas or a drug is caused to flow into the through hole 1 from the outside of the base material through the vertical hole, and a liquid or gas containing a molecule or a drug in the through hole 1 is supplied. It can be taken out of the substrate.
  • a fixing portion for fixing at least a part of the polymer molecule is provided in the through hole.
  • the fixing part it becomes easier to keep a part of the polymer-like molecule closer to or in contact with the inner wall surface in the through hole.
  • the polymer molecule close to the inner wall surface of the through hole in this way, the kinetic energy due to thermal motion and diffusion of the polymer molecule is further reduced, and the polymer molecule is further stabilized. While maintaining, it becomes much easier to arrange the polymer-like molecules in a state stretched in the longitudinal direction of the through-hole.
  • the fixing portion is made of metal.
  • the portion having a functional group or molecular structure having a high affinity for the metal in the polymer molecule binds to the fixing portion by the fixing portion being a metal, the polymer is fixed to the fixing portion. It becomes easier to fix to.
  • the polymer molecule with the functional group or linking molecule it becomes easier to fix a part of the polymer molecule to the fixing part. As a result, the arrangement of the polymer-like molecules in the through-hole can be controlled more easily.
  • the polymer molecule is preferably DNA, RNA, or polypeptide.
  • the polymer molecule disposed in the through-hole is a polymer composed of a single-stranded or double-stranded DNA molecule, a polymer composed of a single-stranded or double-stranded RNA molecule, or a polymer composed of a polypeptide chain. It is easier to stretch the polymer molecules and arrange them in the through holes in a substantially linear state. For this reason, it becomes easier to analyze the arrangement
  • a base material in which a space for allowing a solution containing polymer-like molecules to flow is provided, and the base material is formed inside the base material, and is open to the space.
  • a through hole having a shape capable of extending and arranging the polymer-like molecule therein, and at least a portion of the base material constituting the through hole is a single member.
  • Step A2 for fixing at least a part of the substrate to the inner wall of the through-hole
  • Step A3 for introducing a binding body binding to the polymer molecule into the through-hole, and a signal generated as a result of the binding to the substrate
  • step A4 to observe from the outside optically, at least.
  • the step A1 at least a part of the polymer molecule introduced into the through hole can be stably maintained in a state of being stretched in the through hole.
  • the subsequent step A2 by fixing at least a part of the polymer molecule to the inner wall of the through hole, the polymer molecule can be prevented from flowing out of the through hole.
  • the combined body is introduced into the through hole.
  • the signal is optically observed.
  • molecules that cause noise include molecules that emit autofluorescence.
  • the polymer-like molecules in the through-holes that are relatively narrow and limited spaces, the number of molecules that become noise sources contained in the spaces is reduced as much as possible, and the observation target is The relative amount of the polymeric molecule and the signal source molecule can be increased. Thereby, a signal with a high S / N ratio can be obtained.
  • the effects described above in the analysis method of the present invention are equivalent to or better than the “optical section effect” obtained using a conventional total reflection microscope or the like, and hereinafter referred to as the “spatial section effect”. .
  • the conjugate is bound to each of a plurality of locations in the polymer molecule, and a plurality of signals resulting from the binding are detected in association with positional information of the plurality of locations. It is preferable to do.
  • the polymer molecule is DNA or RNA
  • the conjugate is a labeled deoxynucleotide
  • the signal is generated by a DNA or RNA replication reaction by a polymerase
  • the optical It is preferable to analyze the base sequence of the DNA or RNA by careful observation.
  • the through-hole can stably arrange a polymer molecule formed of single-stranded or double-stranded DNA or RNA. For this reason, DNA strands or RNA strands longer than 600 to 1000 base pairs used in conventional nucleic acid sequence analysis can be stably arranged and fixed in the through-holes. For this reason, it is possible to stably analyze the base sequence of the DNA chain or RNA chain and obtain more accurate base sequence information.
  • the second solution is preferably passed through the through hole.
  • the polymer molecule is fixed to the inner wall of the through hole. Therefore, even when the second solution is allowed to flow through the through-hole, there is no possibility that the polymer molecule flows out of the through-hole. It is easier to optically observe the signal by controlling the flow of the second solution by including the conjugate or the molecule used for the optical observation in the second solution. It becomes. For example, when the signal is generated by molecules released from the polymer-like molecule at regular intervals, the released molecules are carried on the flow of the second solution, thereby generating signals between the molecules The spatial distance can be increased.
  • the polymer molecule is stretched in the flow direction, and the longitudinal direction of the through-hole and the direction in which the polymer molecule extends are determined. Can be matched. As a result, it becomes easier to optically observe the polymer molecule.
  • the substrate of the present invention it is possible to stably arrange polymer molecules such as DNA strands to be analyzed in the through-holes arranged inside the substrate.
  • the arrangement of the structural units of the polymer-like molecule can be analyzed by using the substrate.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a schematic diagram showing a state in which polymer molecules T are arranged inside a through hole 1 in the cross-sectional view of FIG. 2. It is a schematic diagram of the cross section orthogonal to the longitudinal direction of the through-hole 1 of FIG. It is a typical perspective view which shows an example of the base
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. It is a typical perspective view which shows an example of the base
  • FIG. 8 is a cross-sectional view taken along line AA in FIG. 7.
  • FIG. 2 is a schematic perspective view showing a laser irradiation method S.
  • FIG. It is a figure which shows typically the relationship between the laser irradiation energy and the modification part (oxygen deficient part) formed. It is a figure which shows typically the relationship between the laser irradiation energy and the modification part (oxygen deficient part) formed.
  • FIG. 1 is a perspective view of a base body 10A that is a first embodiment of a base body according to the present invention.
  • FIG. 2 is a schematic diagram showing a cross section taken along line AA of FIG.
  • FIG. 3 is a schematic diagram showing an example of a state in which the polymer-like molecules are arranged inside the through hole 1 of FIG.
  • the base 10 ⁇ / b> A is provided inside the base 4, the spaces 2 and 3 into which the solution containing polymer molecules flows, and the base 10 ⁇ / b> A formed inside the base 4 and open to the spaces 2 and 3.
  • the through-hole 1 is a substrate on which at least the substrate 4 is arranged, and at least a portion of the substrate 4 constituting the through-hole 4 is formed of a single member, and the through-hole 1 is formed in the inside thereof. It is a shape in which at least a part of the polymer molecule can be stretched and arranged.
  • the spaces 2 and 3 constitute a first flow path 2 and a second flow path 3, respectively.
  • the solution can flow or flow through each channel.
  • the spaces 2 and 3 are not particularly limited as long as the solution can be introduced or circulated.
  • the spaces 2 and 3 constitute flow paths or wells.
  • the shape and volume of the flow channel and well may be appropriately designed according to the amount, viscosity, or various chemical characteristics of the solution to be introduced or circulated.
  • “flowing the solution into the space” means that the solution is introduced (introduced) into the space from the outside of the space.
  • the solution that has flowed in may stay in the space and stay (or be completely stationary), or may flow out of the space. In the latter case, the solution flow is generated in the space by continuously flowing the solution into the space. This applies to all the substrates according to the invention.
  • the through hole 1 is formed inside the substrate 4, one opening of the through hole 1 opens to the side surface 2 a of the first flow path 2, and the other opening of the through hole 1 is the side surface 3 a of the second flow path 3. Open to. That is, the through hole 1 communicates the first flow path 2 and the second flow path 3.
  • the first flow path 2 and the second flow path 3 that are the spaces 2 and 3 are provided on the upper surface 4 a that is the main surface of the base material 4, and face the outside of the base material 4. Therefore, the through hole 1 communicates with the outside of the base material 4 through the first flow path 2 and the second flow path 3.
  • a known fluid control device such as a syringe or a pump is provided in the first flow path 2 and the second flow path 3.
  • a member serving as a lid that covers the first flow path 2 and the second flow path 3 it is possible to send the liquid while applying pressure to the solution using the pump or the like.
  • cover is not drawn in order to make a figure easy to understand.
  • the through-hole is controlled in a controlled direction and a controlled flow rate. 1 can flow in or flow through.
  • a liquid delivery means such as a pump
  • the through-hole is controlled in a controlled direction and a controlled flow rate. 1 can flow in or flow through.
  • the solution is caused to flow into the through-hole 1 from the opening that opens to the first flow path 2, and the second flow path 3 It is possible to make the solution flow out from an opening that opens to the bottom.
  • part which comprises the through-hole 1 is formed with a single member.
  • a single member means that it is different from a member obtained by bonding two or more members by adhesion or the like. That is, the through-hole 1 is formed by perforating a single member, and is not a hole formed by covering a grooved member with a lid.
  • the strength characteristics of the through hole 1 are excellent.
  • the strength characteristics refer to heat resistance, cold resistance, pressure resistance, chemical resistance, and deformation resistance.
  • the substrate 10 of the present invention can withstand heat treatment, cooling treatment, pressurization / negative pressure treatment, chemical treatment, and treatment that causes mechanical deformation. Furthermore, since the site
  • the single member constitutes not only the through hole 1 but also the entire base material 4.
  • the material of the single member include silicon, glass, quartz, and sapphire. Since these materials are excellent in the workability of the through-hole 1, they are preferable. Among these, it is preferable that the material is amorphous so that it is not easily affected by processing anisotropy due to crystal orientation. Furthermore, when observing the inside of the through-hole 1 by optical means such as a microscope, it is more preferable to use glass, quartz, or sapphire because it transmits visible light (wavelength: 0.36 ⁇ m to 0.83 ⁇ m). .
  • a single member constituting the base 4 of the base 10A is a transparent glass substrate.
  • the material of the single member preferably transmits at least part of light having a wavelength of 0.1 ⁇ m to 10 ⁇ m. Specifically, it is preferable to transmit at least part of general light (wavelength of 0.1 ⁇ m to 10 ⁇ m) used as a processing laser. By transmitting such laser light, the modified portion can be formed on the member by laser irradiation as described later. More preferably, the material of the single member transmits light in the visible light region (wavelength of about 0.36 ⁇ m to about 0.83 ⁇ m). By transmitting light in the visible light region, the polymer molecule disposed in the through hole 1 can be observed through the single member using an optical technique such as an optical microscope or a high-resolution CCD camera. .
  • “transmission (transparent)” refers to all states in which light enters the member and transmitted light is obtained from the member.
  • the shape of the through-hole 1 is a shape in which at least a part of the polymer molecule can be stretched and arranged.
  • the stretched polymer molecule is regarded as a linear polymer such as a flexible string (see FIG. 3). That is, the shape of the through hole 1 may be any shape as long as a linear polymer can be disposed therein. For this reason, it is preferable that at least a part of the through hole 1 is columnar.
  • the columnar shape means a three-dimensional shape having a longitudinal direction, and examples thereof include a prism, a polygonal column, a cylinder, and an elliptical column.
  • the longitudinal direction means the height direction with respect to the bottom surface.
  • the polygonal column include a triangular column, a quadrangular column, a pentagonal column, and a hexagonal column.
  • These three-dimensional shapes may include deformations or scratches generated in the formation process of the through-hole 1 other than those strictly defined geometrically. Examples of the deformation include partial or total distortion, extension, or reduction of the three-dimensional shape.
  • the shape of the through hole 1 is preferably an elliptic cylinder, a cylinder, and a quadrangular cylinder.
  • the through holes 1 having these preferable three-dimensional shapes are easier to form.
  • the shape of the inner wall of the through hole 1 having these preferable three-dimensional shapes is relatively simple, it is difficult for turbulent flow to occur in the solution flowing through the through hole 1. For this reason, the polymer molecule can be kept more stable at the columnar portion in the through hole 1.
  • the shape of at least a part of the through-hole 1 is the columnar shape, the direction in which the polymer molecules extend can be arranged along the longitudinal direction of the columnar shape. As a result, it becomes easier to control the arrangement of the polymer molecules in the through-hole 1.
  • the length of the columnar part in the through-hole 1 is not particularly limited, and may be set as appropriate according to the length of the polymer molecule stretched. In that case, it is preferable to make it longer than the stretched length of the polymer molecule from the viewpoint of stably arranging the polymer molecule in the columnar portion.
  • the length of the columnar portion is preferably 100 to 1000%, more preferably 200 to 800% with respect to the length of the polymer molecule.
  • the length of the columnar part is preferably 0.01 ⁇ m to 10 mm, and more preferably 0.1 ⁇ m to 10 mm.
  • the columnar part may be provided at one place of the through hole 1 or may be provided at two or more places. When provided in two or more places, the one columnar portion and the other columnar portion may have the same three-dimensional shape or different three-dimensional shapes.
  • the length in the longitudinal direction (extending direction) of the through-hole 1 is not particularly limited, and may be set as appropriate according to the length of the polymer molecule stretched. At that time, from the viewpoint of stably arranging the polymer molecule in the through-hole 1, it is preferable that the polymer molecule be longer than the stretched length of the polymer molecule.
  • the length in the longitudinal direction is preferably 100 to 1000%, more preferably 200 to 800% with respect to the length of the polymer molecule.
  • the length of the through hole 1 in the longitudinal direction is preferably 0.01 ⁇ m to 10 mm, and more preferably 0.1 ⁇ m to 10 mm.
  • the length of the through hole in the longitudinal direction When the length of the through hole in the longitudinal direction is within the above range, it becomes easier to introduce the polymer molecule into the through hole 1. When it is not less than the lower limit (0.01 ⁇ m) of the range, it becomes easier to suck the polymer molecules together with the solution and arrange them in the through-holes 1. When the length in the longitudinal direction is less than the lower limit, for example, an extremely short length of 1 nm, the polymer molecule flows out of the through hole 1 immediately after the polymer molecule is sucked into the through hole 1. Thus, it may be difficult to place the polymer molecule in the through-hole 1 while being fastened.
  • the upper limit value (10 mm) is not more than the above range, it is possible to prevent an excessive increase in pressure when the solution is sucked or circulated into the through hole, and the polymer molecule is sucked into the through hole 1 together with the solution. It will be easier to do. That is, it becomes easier to arrange the polymer molecules in the through-hole 1 together with the flow of the solution without directly transporting the polymer molecules using optical tweezers or the like.
  • the shape of the cross section orthogonal to the longitudinal direction (extending direction) of the through-hole 1 is not particularly limited, and may be, for example, a shape reflecting the columnar shape, for example, a circle, a substantially circle, an ellipse, a substantially ellipse, a rectangle, or a triangle It can be.
  • the cross-sectional shape is a circle, a substantially circle, an ellipse, a substantially ellipse, a rectangle, or a triangle
  • the diameter, the short diameter, the long diameter, or the length of one side is 0.02 ⁇ m to 5 ⁇ m. be able to.
  • the diameter, the short diameter, or the length of one side can be further reduced.
  • the diameter, the short diameter, or the length of one side can be set to 0.02 to 0.8 ⁇ m, and further can be set to 1 nm to 1000 nm.
  • the short axis (short axis) of the cross section perpendicular to the longitudinal direction of the through hole 1 or the length of the shortest side constituting the circumference of the cross section is between 1 nm and 1000 nm. With this length, the polymer-like molecule can be kept in the through-hole 1 in a more stable and entropically more advantageous state (lower thermal motion or diffusion motion).
  • the shape of the opening where the through hole 1 opens to the first flow path 2 and the second flow path 3 may be any shape, for example, a circle or a substantially circle, an ellipse or a substantially ellipse, a rectangle, or a triangle. can do.
  • the shape of the cross section perpendicular to the longitudinal direction of the through hole 1 may be the same. In this case, the possibility of the turbulent flow of the solution in the through hole 1 can be further reduced, and the polymer molecule can be kept more stable.
  • the through hole 1 is formed to be substantially perpendicular to the side surface 2 a of the first flow path 2 and the side surface 3 a of the second flow path 3.
  • it does not necessarily have to be substantially vertical, and can be freely arranged according to the design of the base 10A.
  • the base material 4 is a substrate having a main surface 4a, the cross-sectional shape orthogonal to the longitudinal direction of the through hole 1 is substantially elliptical, and the orientation of the major axis of the elliptical shape is mainly It is inclined with respect to the surface 4a.
  • the area of the through hole 1 projected onto the main surface 4a is larger, and the inside of the through hole 1 from the main surface 4a is larger. The area that can be observed increases. This point will be described with reference to FIG.
  • FIG. 4 is a schematic diagram showing a cross section of the through hole 1 in the base body 10A perpendicular to the longitudinal direction.
  • the cross-sectional shape is substantially elliptical, and the major axis direction (major axis direction) of the elliptical shape is inclined with respect to the main surface 4 a of the substrate 4.
  • the angle formed by the major axis direction with respect to the main surface 4a is about 30 degrees.
  • the minor axis direction (minor axis direction) of the ellipse is not parallel to the major surface 4a, and the angle formed by the minor axis direction with respect to the major surface 4a is about 60 degrees.
  • the through hole is formed from the main surface 4a side (the direction of the arrow Z). It becomes easier to optically observe the inside of 1. That is, it becomes easier to observe the polymer-like molecule arranged in the through hole 1.
  • a fixing portion for fixing at least a part of the polymer molecule is provided in the through hole 1.
  • the fixing part it becomes easier for a part of the polymer molecules to be kept closer to or in contact with the inner wall surface in the through-hole 1.
  • the kinetic energy due to thermal motion and diffusion of the polymer molecule is further reduced, and the polymer molecule is further stabilized. It is even easier to arrange the polymer-like molecules in a state where they are stretched in the longitudinal direction of the through-hole 1.
  • the fixing part is not particularly limited as long as it has affinity, adsorptivity, or binding property to at least a part of the polymer molecule.
  • fixed part is not restrict
  • the position near the opening of the through hole 1, the end of the through hole 1, or the center of the through hole 1 may be used.
  • the size of the fixing portion and the area of the region where the fixing portion is arranged are not particularly limited, and can be appropriately set according to the diameter of the through hole 1, the type of fixing portion to be used, and the type and length of the polymer molecule. .
  • the size of the fixed portion can be set to, for example, about 0.5 nm to 100 nm.
  • the area of the region where the fixing portion is arranged is provided in, for example, 1 to 100% of the inner wall of the through hole 1.
  • the bond between the fixing part and the polymer molecule may be reversible or irreversible.
  • the fixing portion for example, a pile (metal post) formed of metal or a molecule having specific binding properties is preferable.
  • the metal post examples include nickel, cobalt, magnesium, and gold. It is well known that a thiol group (—SH) can be chemically bonded to the gold. Therefore, for example, one end of the polymer molecule is previously modified with a functional group having a thiol group, and the polymer molecule is disposed in the through hole 1 provided with a metal post formed of gold. In 1, the metal post formed of gold and the functional group are adsorbed to bond and fix the fixing part and one end of the polymer molecule. Further, it is well known that a peptide chain (so-called His-tag) in which six histidines, which are one type of amino acid, are peptide-bonded to nickel and cobalt has a high affinity.
  • His-tag a peptide chain in which six histidines, which are one type of amino acid, are peptide-bonded to nickel and cobalt has a high affinity.
  • one end of the polymer molecule is previously modified with the His tag, and the polymer molecule is disposed in the through hole 1 provided with a metal post formed of nickel or cobalt. Inside, by adsorbing a metal post formed of nickel or cobalt and the histag, the fixing part and one end of the polymer molecule can be bonded and fixed.
  • chelate compounds such as ethylenediaminetetraacetic acid (EDTA) are chemically adsorbed to the magnesium. Therefore, for example, one end of the polymer molecule is previously modified with the EDTA or EDTA derivative, and the polymer molecule is disposed in the through hole 1 having a metal post formed of magnesium. Inside, by adsorbing the metal post formed of magnesium and the EDTA or EDTA derivative, the fixing part and one end of the polymer molecule can be bonded and fixed.
  • a molecule having a specific binding well known among biomolecules, or a linker molecule (linking agent) used in the field of organic chemistry or inorganic chemistry is preferable.
  • Specific examples include avidin, biotin, antibodies against various antigens, and silane coupling agents. It is well known that avidin and biotin bind to each other with high specificity. Therefore, by using one as the fixing part and bonding the other to the polymer molecule in advance, the fixing part and one end of the polymer molecule can be bonded and fixed. The antigen and the antibody can be used in the same manner.
  • the silane coupling agent is well known as a linker molecule that connects an inorganic substance and an organic substance.
  • a method of binding the polymer molecule previously modified with a silane coupling agent to silicon dioxide (silica) constituting glass is well known.
  • a method of chemically introducing a silane coupling agent into a polymer silation method
  • a method of reacting a silane coupling agent with a terminal or a side chain of a polymer, a silane coupling agent together with a monomer constituting the polymer The method of copolymerization is well known.
  • the end of the polymer-like molecule is modified in advance with a known silane coupling molecule, and the polymer-like molecule is provided with a through-hole provided with a fixing portion formed of a material to which the silane coupling molecule can be bonded.
  • the terminal of the polymer molecule can be bonded to the fixing part in the through-hole 1 and fixed.
  • Examples of the polymer molecule disposed in the through-hole 1 of the base body 10A according to the present invention include various known polymer molecules such as a bio-derived polymer and an organic chemically synthesized polymer (resin). It is done. Among these, a polymer derived from a living body is preferable, a polymer composed of a single-stranded or double-stranded DNA molecule, a polymer formed from a single-stranded or double-stranded RNA molecule, or a polymer formed from a polypeptide chain. Is more preferable.
  • these polymer-like molecules can be dissolved in an aqueous solvent, they are easy to handle, and it is easier to arrange the polymer-like molecules in the through-hole 1 in a substantially linear state where the polymer-like molecules are stretched. For this reason, it becomes easier to analyze the arrangement
  • the number, path, and shape of the through holes provided in the base body of the present invention can be appropriately designed according to the purpose of use of the base body or the type and length of the polymer shape disposed inside the through hole.
  • Substrate 10B (10) In the base body 10B according to the present invention shown in FIGS. 5 and 6, three through holes 1 are provided, and two vertical holes 6 are provided in each through hole 1. One end of the vertical hole 6 opens to the through hole 1, and the other end opens to the main surface 4 a of the substrate 4.
  • the solution in the through hole 1 can be circulated through the vertical hole 6. Further, another gas or liquid can be flowed into the through hole 1 or recovered through the vertical hole 6. Therefore, a drug or gas necessary for analysis or the like can be supplied to the polymer molecules arranged in the through hole 1 through the vertical hole 6. As a result, the polymer molecule can be analyzed more easily.
  • the other end of the vertical hole 6 may be opened on a surface other than the main surface 4 a of the substrate 4, for example, a side surface of the substrate 4.
  • the opening can be made at a position required by design. In the case of opening to any surface, the same effect as the case of opening to the main surface 4a is achieved.
  • first through-hole 1 the vertical hole 6 refers to the “second through-hole 6 that communicates the through-hole 1 with the outside of the substrate 4. Can be called.
  • Substrate 10C (10) In the base body 10C according to the present invention shown in FIGS. 7 and 8, the configuration in which the three through holes 1 are provided and the two vertical holes 6 are provided in each through hole 1 is the same as the base body 10B described above. is there. Further, a member (lid material) 5 serving as a lid that covers the main surface 4 a of the base material 4 is provided. On the lower surface of the member 5 facing the main surface 4a, two grooves for connecting a plurality of vertical holes 6 provided in the base material 4 are dug to constitute a third flow path 7 and a fourth flow path, respectively. is doing. With this configuration, the third flow path 7 and the through hole 1 and the fourth flow path and the through hole 1 can be communicated with each other through the vertical holes 6.
  • the third flow path 7 when the third flow path 7 is set to a positive pressure and the fourth flow path 8 is set to a negative pressure, a predetermined liquid or gas flows into the through hole 1 from the third flow path 7 through one vertical hole 6. Furthermore, it can be made to flow from the through hole 1 to the fourth flow path 8 through the other vertical hole 6.
  • the direction in which the liquid or gas in the channel flows is controlled. Therefore, by controlling the third flow path 7, the fourth flow path 8 and the respective vertical holes 6, supply or recovery of chemicals and gases necessary for the analysis etc. with respect to the polymer molecules arranged in the through holes 1 can do. As a result, the polymer molecule can be analyzed more easily. Further, by controlling the third flow path 7, the fourth flow path 8, and each vertical hole 6, the polymer can be effectively allowed to flow into the through hole.
  • the through-hole 1 is provided so as to be bent inside the base material 4 and to have an S shape when viewed from the main surface 4a.
  • the length of the through hole 1 is longer than the through hole of the base body 10A. That is, the through hole 1 can be lengthened without increasing the overall size of the substrate 10. As a result, the longer polymer molecule can be arranged inside the through hole 1.
  • Substrate 10E (10) In the base body 10E according to the present invention shown in FIG. 10, the configuration in which the through-hole 1 is bent inside the base material 4 so as to be S-shaped when viewed from the main surface 4a is the same as the base body 10D described above. It is the same. Further, a plurality of vertical holes 6 are provided in the through hole 1 of the base body 10E. The advantage by having the vertical hole 6 is the same as that of the above-mentioned base
  • Substrate 10F (10) In the base body 10F according to the present invention shown in FIG. 11, the configuration in which the through hole 1 is bent inside the base material 4 so as to have an S shape when viewed from the main surface 4a is the same as that of the base body 10D described above. It is the same. Further, a plurality of landings 9 are provided in the through hole 1 of the base body 10F. By providing the landing 9 in the middle from one end of the through hole 1 to the other end, the flow rate of the solution flowing through the through hole 1 can be relaxed. As a result, the polymer-like molecule disposed in the through hole 1 can be kept more stable. The plurality of landings 9 do not correspond to the columnar part. In the base body 10F, the three cylindrical through holes 1 connected to the two landings 9 correspond to the columnar portion.
  • the through hole 1 is provided to be bent inside the base material 4 so as to be S-shaped when viewed from the main surface 4a.
  • the structure in which the landing 9 is provided is the same as that of the base body 10F described above.
  • a plurality of vertical holes 6 are provided in the through hole 1 of the base body 10G. The advantage by having the vertical hole 6 is the same as that of the above-mentioned base
  • Substrate 10H (10) In the base body 10H according to the present invention shown in FIG. 13, a plurality of temperature control devices 11 are provided in the lower part of the through hole 1 inside the base material 4.
  • Examples of the temperature control device 11 include a heater and a Peltier element. By providing the heater, the temperature in the through hole 1 can be raised. Moreover, the temperature in the through-hole 1 can be lowered
  • the method for disposing the polymer-like molecule inside the through-hole provided in the substrate of the present invention is not particularly limited.
  • a case where the base body 10B (FIG. 5) is used will be described.
  • a solution in which the polymer molecule is contained in a solvent capable of dissolving or dispersing is prepared.
  • the solution can be drawn into the through-hole 1 by causing the solution to flow into the first flow path 2 by a liquid feeding means such as a pump, and then setting the second flow path 3 to a negative pressure.
  • the polymer molecule Since the polymer molecule is contained in the solution drawn into the through hole 1, the polymer molecule is kept in the through hole 1 when the flow of the solution in the through hole 1 is stopped. Can do. At this time, by bringing the polymer molecule into contact with the fixing part, the polymer molecule can be bonded and fixed to the fixing part.
  • the polymer-like molecule may not be fixed after the polymer-like molecule is arranged in the through-hole 1. However, when the solution or a separately prepared solution is circulated in the through-hole 1, the polymer-like molecule may be used. Is preferably fixed in the through-hole 1 to fix the polymer molecule.
  • the polymer-like molecules arranged in the through-hole 1 can be entropically advantageous by being kept in the through-hole 1, that is, a stretched substantially straight string-like state. At this time, by appropriately adjusting the composition of the solution in the through-hole 1, it becomes easier to make the polymer molecule stretched. For example, use of a good solvent or a poor solvent for the polymer-like molecule, or an acidic solvent or an alkaline solvent that can modify the higher-order structure of the polymer-like molecule to form a primary structure.
  • the extraction treatment can be performed using the substrate of the present invention.
  • an opening facing the first flow path 2 of the through hole 1 is obtained by flowing the solution containing the cells U into the first flow path 2 and drawing the solution into the through hole 1 as described above.
  • the cell can be adsorbed to the part.
  • the suction force is further increased, a part of the cell membrane is broken, and the polymer molecules T such as nucleic acids, proteins and sugar chains existing in the cells or on the surface of the cell membrane can be arranged in the through-hole 1. it can.
  • the base 10A to base 10H described above have a configuration in which one or three through holes 1 are provided.
  • the number of through holes, the shape, the path, and the distance between the through holes are not limited to the above example, and can be appropriately designed according to the purpose of use of the substrate.
  • the analysis method of the present invention is a method of analyzing the arrangement of structural units of the polymer-like molecule using the substrate according to the present invention, and includes at least the following steps A1 to A4.
  • the structural unit refers to a molecule corresponding to a monomer constituting the polymer molecule.
  • the polymer molecule is DNA
  • the structural unit is deoxyribonucleotide
  • the sequence of the structural unit is a base sequence of deoxyribonucleotide, that is, adenine (A) guanine (G), cytosine (C ) And thymine (T).
  • the structural unit is a ribonucleotide
  • the sequence of the structural unit is the sequence order of the bases of the ribonucleotide, that is, adenine (A), guanine (G). , Cytosine (C), and uracil (U).
  • the polymer molecule is a protein
  • the structural unit is an amino acid
  • the sequence of the structural unit is a sequence order of 20 or more known amino acids.
  • Step A1 of the analysis method of the present invention is a step of introducing a first solution containing the polymer molecule into the space and introducing the polymer molecule into the through hole.
  • the first solution is drawn into the through hole 1 by flowing the first solution into the first flow path 2, which is the space, and setting the second flow path 3 to a negative pressure. Details of this method are as described above.
  • a method of transporting the polymer molecule into the through-hole 1 using optical tweezers can be exemplified.
  • Step A2 of the analysis method of the present invention is a step of fixing at least a part of the polymer molecule to the inner wall of the through hole.
  • a method of fixing at least a part of the polymer molecule arranged in the through hole 1 in the base body 10B to the inner wall of the through hole for example, using the physicochemical properties inherent in the polymer molecule And a method of adsorbing or bonding to the inner wall of the through hole 1.
  • Examples of the bond that can be generated by the physicochemical property include hydrogen bond, hydrophobic bond (hydrophobic interaction), adsorption by van der Waals force (adsorption by intermolecular force), and the like.
  • a method of fixing via the fixing part is preferable. If the fixing is performed via the fixing portion, the fixing can be performed more reliably. Moreover, the fixed binding force can be adjusted by appropriately selecting the type of the fixing portion. Further, the fixing portion is provided in the through hole 1, and the position where the fixing portion is provided is adjusted.
  • Step A3 of the analysis method of the present invention is a step of introducing a conjugate that binds to the polymer molecule into the through-hole.
  • a conjugate that binds to the polymer molecule fixed to the substrate 10B into the through-hole for example, the conjugate is dissolved or dispersed in a solvent to prepare a solution of the conjugate, and this solution Is allowed to flow into the through hole 1.
  • the combined body can be introduced into the through hole 1.
  • the conjugate binds to the polymer molecule.
  • the conjugate is preferably a labeled deoxynucleotide
  • the signal is preferably generated by a DNA or RNA replication reaction by DNA polymerase or RNA polymerase.
  • the analysis target is DNA
  • the analysis target is DNA
  • the analysis target is DNA
  • the analysis target is RNA
  • the analysis target when the analysis target is RNA, it can be analyzed in the same manner as when the analysis target is DNA by using RNA-dependent RNA polymerase (RNA replicase) and labeled ribonucleotide instead of DNA polymerase and labeled deoxyribonucleotide.
  • RNA-dependent RNA polymerase RNA replicase
  • labeled ribonucleotide instead of DNA polymerase and labeled deoxyribonucleotide.
  • Step A4 of the analysis method of the present invention is a step of optically observing a signal generated as a result of the binding from the outside of the substrate.
  • a primer having a known sequence or a random primer is bound to a predetermined position of the DNA strand, and the polymerase is bound to the DNA strand.
  • a plurality of polymerases may be bound to one DNA strand.
  • labeled dATP deoxyadenosine triphosphate
  • labeled dGTP deoxyguanosine triphosphate
  • labeled dCTP deoxycytidine triphosphate
  • labeled dTTP deoxythymidine triphosphate
  • dNTP complementary labeled deoxynucleotide
  • the signal is obtained from the location where the polymerase is bound, when the primer, polymerase, and dNTP are bound to a plurality of locations on a single DNA, a plurality of signals generated from the respective locations are converted into position information and In association, detection can be performed during unit time.
  • detection can be performed during unit time.
  • four types of fluorescent signals can be observed. Therefore, as the DNA replication reaction proceeds, fluorescence signals corresponding to the base sequence of the DNA strand are observed sequentially.
  • the base sequence of the DNA strand can be obtained by measuring and analyzing the type, generation order, and position of the fluorescent signal.
  • the FRET system disclosed in Patent Document 1 can be applied to the method for generating a fluorescent signal associated with the DNA replication reaction without departing from the gist of the present invention. Further, the position of the signal can be determined with sub-nanometer accuracy by using a known position determination method such as FIONA (Fluorescence Imaging One-Nanometer Accuracy). Thereby, the difference in the position of one base can be detected.
  • FIONA Fluorescence Imaging One-Nanometer Accuracy
  • the method of optically observing the fluorescence signal generated as a result of binding of the labeled deoxynucleotide as the conjugate to the DNA strand as the polymer molecule in the DNA replication reaction by the polymerase from the outside of the substrate 10B is particularly limited.
  • a high-resolution CCD camera used in combination with an optical microscope can be used.
  • the polymer molecule When the polymer molecule is a protein, it is denatured into a linear polypeptide and introduced into the through-hole 1 in the presence of a known denaturant. Thereafter, a buffer solution or the like under physiological conditions is introduced to remove the denaturing agent. Next, an antibody, DNA / RNA aptamer, or organic compound that recognizes 3 to 4 amino acids is introduced. These substances are called amino acid determining molecules. These strictly identify (recognize) only the first amino acid, and the remaining 2 to 3 residues may be bound to any kind of amino acid. Only such types of amino acid determining molecules corresponding to all amino acids are prepared and sequentially introduced into the through hole 1.
  • These molecules are fluorescently labeled, and a signal derived from an amino acid determinant molecule bound on the stretched polypeptide can be detected by using a fluorescence microscope or a fluorescence detector.
  • the obtained signal includes a plurality of the same amino acids in the polypeptide. Therefore, a plurality of detections are simultaneously made at predetermined positions corresponding to the amino acids constituting the polypeptide.
  • the position of the fluorescence signal is determined with sub-nanometer accuracy using a known position determination method such as FIONA. Thereafter, heat or a denaturant is introduced to remove the amino acid determinant molecules bound thereto.
  • Examples of the method for producing the “antibody recognizing 3 to 4 amino acids” include the following methods.
  • the first one is uniquely determined as the type (degree of freedom) of the amino acid sequence formed by the 4 residues recognized by the antibody.
  • 20 to the third power 8000 types.
  • 8000 kinds of peptides can be prepared by determining only the first one amino acid as one kind and then chemically synthesizing the subsequent sequences randomly.
  • the limit of the library size in chemical synthesis is said to be about 10 to the 8th power (10 8 ), so it is theoretically possible to cover all of peptides composed of 6 random amino acids. .
  • the C-terminus of the synthesized peptide is immobilized on latex beads via an appropriate linker such as PEG (polyethylene glycol).
  • an animal such as a mouse or a rabbit is immunized by a conventional method to obtain a polyclonal antibody.
  • the type of antibody obtained depends on the number of B cells possessed by the animal to be immunized. Normally, B cells are present in the order of about 10 9 (10 9 ) to 10 10 (10 10 ), so that antibodies capable of recognizing all 8000 types can be produced with sufficient redundancy.
  • an antibody capable of binding to an amino acid sequence formed by 4 residues having the first determined “one kind” amino acid at the beginning can be obtained.
  • a polyclonal antibody can be obtained by using 8000 types of antigens for each of the remaining 19 types of amino acids.
  • a total of 20 lots of polyclonal antibodies may be prepared corresponding to 20 kinds of amino acids.
  • the amino acid sequence of the polypeptide can be determined.
  • Step M1 for forming the mass portion 51
  • Step M2 for forming the first flow path 2 and the second flow path 3 forming the space in the single member 4
  • a single member 4 and at least a step M3 for removing the modified portion 51 by etching.
  • the laser L laser light L
  • a laser light having a pulse width of a pulse time width of picosecond order or less For example, a titanium sapphire laser, a fiber laser having the pulse width, or the like can be used.
  • the laser L laser light L
  • light in a general wavelength region 0.1 to 10 ⁇ m
  • the member 4 which is a workpiece.
  • the modified portion 51 can be formed in the member 59.
  • Examples of the material of the member 4 include silicon, glass, quartz, and sapphire. These materials are preferable because they are excellent in workability when forming the through hole 1.
  • the material is preferably amorphous so as not to be affected by processing anisotropy due to crystal orientation.
  • the material of the member 4 transmits light having at least some wavelengths among light having wavelengths of 0.1 ⁇ m to 10 ⁇ m. Specifically, it is preferable to transmit at least a part of light in a general wavelength region (0.1 ⁇ m to 10 ⁇ m) used as a processing laser beam.
  • the modified portion can be formed by irradiating the member with laser as described later.
  • the material of the member 4 is transparent to light in the visible light region (wavelength of about 0.36 ⁇ m to about 0.83 ⁇ m).
  • the material of the member 4 transmits light in the visible light region, the polymer molecule introduced into the through hole 1 can be optically observed.
  • the single member 4 is a transparent glass substrate (hereinafter referred to as a glass substrate 4).
  • a glass substrate 4 a transparent glass substrate
  • Silicon, quartz, and glass are more suitable for the workability in the process M2 to be described later.
  • the glass substrate 4 for example, a glass substrate formed of quartz, a glass substrate mainly composed of silicate, a glass substrate formed of borosilicate glass, or the like can be used.
  • a glass substrate formed of synthetic quartz is preferable because of good workability.
  • the thickness of the glass substrate 4 is not particularly limited.
  • the modified part 51 in which the glass is modified is formed by irradiating the laser beam L so as to be focused and focused on the inside of the glass substrate 4 and scanning the focal point in the direction of the arrow.
  • the modified portion 51 having a desired shape can be formed.
  • the “modified portion” means a portion having low etching resistance and selectively or preferentially removed by etching.
  • the irradiation intensity is set to a value close to the processing upper limit threshold (processing appropriate value) of the glass substrate 4 or less than the processing upper limit threshold, and the polarization direction (electric field direction) of the laser light L is set to the scanning direction. It is preferable to be perpendicular to the surface.
  • this laser irradiation method is referred to as a laser irradiation method S.
  • the laser irradiation method S will be described with reference to FIG.
  • the propagation direction of the laser light L is an arrow Z
  • the polarization direction (electric field direction) of the laser light L is an arrow Y.
  • the irradiation region of the laser light L is set within a plane 50 formed by the propagation direction Z of the laser light and a direction perpendicular to the polarization direction of the laser light.
  • the laser irradiation intensity is set to a value close to the processing upper limit threshold of the glass substrate 4 or less than the processing upper limit threshold.
  • the modified portion 51 having a nano-order aperture can be formed in the glass substrate 4.
  • the modified portion 51 having a substantially elliptical cross section with a minor axis of about 20 nm and a major axis of about 0.2 ⁇ m to 5 ⁇ m is obtained.
  • the direction along the laser propagation direction is the major axis
  • the direction along the laser electric field direction is the minor axis.
  • the cross section may have a shape close to a rectangle.
  • the obtained modified portion 51 may be formed with a periodic structure.
  • a periodic structure having periodicity along the direction may be formed in a self-forming manner.
  • the formed periodic structure is a layer with low etching resistance.
  • the oxygen-deficient layer and the oxygen-enriched layer are periodically arranged (FIG. 17B), and the etching resistance of the oxygen-deficient portion is weakened. A portion can be formed. Such periodic recesses and protrusions are not necessary in the formation of the through holes 1 described later.
  • the laser irradiation intensity is less than the processing upper limit threshold value of the glass substrate 4 and the laser irradiation intensity can be reduced by reducing the etching resistance by modifying the glass substrate 4.
  • the periodic structure is not formed, and one oxygen-deficient portion (a layer having low etching resistance) is formed by laser irradiation (FIG. 17A). Further, when the one oxygen-deficient portion is etched, one through hole 1 can be formed.
  • the shape of the cross section perpendicular to the longitudinal direction of the through-hole 1 can be an ellipse or a substantially ellipse.
  • the minor axis can be controlled to a nano-order size by etching.
  • microorganisms can be captured by making the minor axis smaller than, for example, the microorganism size. At this time, since the major axis can be made larger than the nano-order size, the pressure loss of the fluid flowing into the through hole 1 can be reduced.
  • the through-hole 1 it is preferable to fill the through-hole 1 with a solution in advance as a preparation for introducing the polymer molecule or a preparation for capturing cells and microorganisms.
  • a solution in advance as a preparation for introducing the polymer molecule or a preparation for capturing cells and microorganisms.
  • the capillary force increases as the through hole becomes finer, there may be a problem that the solution does not come out of the through hole 1 from the through hole 1.
  • the major axis is made sufficiently large even if the polymer molecule is introduced or the minor axis is sufficient to capture the microorganism.
  • the capillary force can be suppressed, and the adverse effect that the solution does not come out of the through hole 1 can be suppressed.
  • the oxygen-deficient portion 51 in this specification Even when a layer with low etching resistance (oxygen-deficient portion in quartz or glass) is formed by a single layer by laser irradiation (referred to as the modified portion 51 in this specification), the oxygen-deficient portion is extremely selective for etching. It becomes a layer with high properties. This has been found by the inventors' diligent study.
  • the processing upper limit threshold is defined as the lower limit value of the laser pulse power at which the periodic structure can be formed (upper limit value in the range of laser pulse power at which the periodic structure is not formed).
  • the “lower limit (threshold value) of laser irradiation intensity that can reduce the etching resistance by modifying the glass substrate 4” is a limit value at which the through-hole 1 can be formed in the glass substrate 4 by the etching process. is there. If it is lower than this lower limit value, a layer having low etching resistance cannot be formed by laser irradiation, and therefore there is no through hole 1.
  • the “processing upper limit threshold” means an electron plasma wave generated by the interaction between the base material and the laser light at the focal point (condensing region) of the laser light irradiated into the base material. It means the lower limit value of the laser irradiation intensity at which interference with the incident laser beam occurs, and due to the interference, a striped modified portion can be formed in a self-forming manner.
  • the “processing lower limit threshold (threshold value)” means a modified portion obtained by modifying the base material at the focal point (condensing area) of the laser light irradiated into the base material.
  • the lower limit value of the laser irradiation intensity that can reduce the etching resistance of the modified portion to such an extent that it can be formed and selectively or preferentially etched by the subsequent etching process.
  • a region irradiated with laser with a laser irradiation intensity lower than the lower limit value is difficult to be selectively or preferentially etched in the subsequent etching process. For this reason, in order to form a modified portion that becomes a fine hole after etching, it is preferable to set the laser irradiation intensity to be equal to or higher than the processing lower limit threshold.
  • the processing upper limit threshold (process appropriate value) and the processing lower limit threshold (threshold) are generally determined by the wavelength of the laser light, the material (material) of the substrate that is the target of laser irradiation, and the laser irradiation conditions. However, when the relative directions of the polarization direction of the laser beam and the scanning direction are different, the processing upper limit threshold and the processing lower limit threshold may be slightly different. For example, the processing upper limit threshold and the processing lower limit threshold may differ between when the scanning direction is perpendicular to the polarization direction and when the scanning direction is parallel to the polarization direction. Therefore, the processing upper limit threshold and the processing lower limit threshold when the relative relationship between the polarization direction of the laser light and the scanning direction is changed in the wavelength of the laser light to be used and the base material to be used are examined in advance. It is preferable.
  • the method of scanning the focal point of the laser beam L is not particularly limited, but the modified portion 51 that can be formed by one continuous scanning is a direction perpendicular to the propagation direction Z of the laser beam L and the polarization direction Y of the laser beam L. It is limited within the plane 50 comprised by these. If it exists in this plane 50, the shape of the modification part formed can be adjusted.
  • the propagation direction of the laser light L is shown as being perpendicular to the upper surface of the glass substrate 4, but is not necessarily perpendicular.
  • the laser L may be irradiated at a desired incident angle with respect to the upper surface.
  • the cross-sectional shape orthogonal to the propagation direction of the laser light L and the longitudinal direction of the modified portion 51 is the substantially ellipse, the major axis direction of the ellipse and the propagation direction of the laser light L substantially coincide. Therefore, as shown in FIG.
  • the propagation direction of the laser beam L that is, the irradiation angle is set to the upper surface (main Irradiation may be performed with a desired angle with respect to the surface 4a).
  • the laser transmittance of the modified part is different from the laser transmittance of the unmodified part. For this reason, it is usually difficult to control the focal position of the laser light transmitted through the modified portion. Therefore, it is desirable to form the modified portion from a region located in the back as viewed from the surface on the laser irradiation side.
  • the modified portion 51 may be formed by condensing the laser light L with a lens and irradiating it as described above.
  • a lens for example, a refractive objective lens or a refractive lens can be used, but it is also possible to irradiate with, for example, Fresnel, reflection type, oil immersion, water immersion type.
  • a cylindrical lens it is possible to irradiate a wide area of the glass substrate 4 with a laser at a time.
  • the laser beam L can be irradiated at once in a wide range in the vertical direction of the glass substrate 4.
  • the polarization of the laser light L needs to be horizontal with respect to the direction in which the lens has a curvature.
  • the laser irradiation condition S include the following various conditions.
  • a titanium sapphire laser (a laser using a crystal in which sapphire is doped with titanium as a laser medium) is used.
  • the laser light to be irradiated for example, a wavelength of 800 nm and a repetition frequency of 200 kHz are used, and the laser light L is condensed and irradiated at a laser scanning speed of 1 mm / second.
  • These values of wavelength, repetition frequency, and scanning speed are examples, and the present invention is not limited to this, and can be changed as necessary.
  • the pulse intensity when irradiating the glass substrate is preferably a value close to the processing upper limit threshold, for example, a power of about 80 nJ / pulse or less. If the power is higher than that, a periodic structure is formed and they are connected by etching, so that it is difficult to form the through-hole 1 having a nano-order diameter. In some cases, the diameter becomes a micron order, or the periodic structure is formed. N. Processing is possible even if A. ⁇ 0.7, but the spot size becomes smaller and the laser fluence increases, so that laser irradiation with a smaller pulse intensity is required.
  • Step M2 Next, the first flow path 2 and the third flow path 3 that form the space are formed on a single glass substrate 4.
  • a resist 52 is patterned and arranged on the upper surface of the glass substrate 4 by, for example, photolithography (FIG. 15B).
  • the region where the resist 52 is not provided on the upper surface of the glass substrate 4 is etched and removed until reaching a predetermined depth by a method such as dry etching, wet etching, or sand blasting (FIG. 15C).
  • a method such as dry etching, wet etching, or sand blasting
  • step M2 it is preferable to expose the cross section of the modified portion 51 formed in step M1 on the side surface 2a of the first flow path 2 and the side surface 3a of the second flow path 3 to be formed. By doing so, it becomes easier to form the through hole 1 by the etching process in the subsequent step M3.
  • Step M3 the modified portion 51 formed in step M1 is removed from the single glass substrate 4 by etching (FIG. 15D).
  • etching As an etching method, wet etching is preferable.
  • the modified portion 51 having a cross section exposed to the side surface 2a of the first flow path 2 and the side surface 3a of the second flow path 3 has low etching resistance, and can be selectively or preferentially etched.
  • This etching utilizes the phenomenon that the modified portion 51 is etched much faster than the unmodified portion of the glass substrate 4. As a result, the through hole 1 corresponding to the shape of the modified portion 51 is used. Can be formed.
  • the etching solution is not particularly limited, and for example, a solution containing hydrofluoric acid (HF) as a main component, or a hydrofluoric acid-based mixed acid obtained by adding an appropriate amount of nitric acid or the like to hydrofluoric acid can be used. Also, other chemicals can be used depending on the material of the member 4.
  • the through-hole 1 having a nano-order diameter can be formed at a predetermined position in the glass substrate 4 so as to communicate the first flow path 2 and the second flow path 3.
  • the size of the through-hole 1 can be, for example, a through-hole having a substantially elliptical cross section with a minor axis of about 20 nm to 200 nm and a major axis of about 0.2 ⁇ m to 5 ⁇ m.
  • the cross section may be a shape close to a rectangle.
  • the size difference between the modified portion 51 and the through hole 1 can be reduced or increased. It is theoretically possible to make the minor axis several nanometers to several tens of nanometers by shortening the treatment time. On the contrary, by increasing the processing time, the minor axis can be set to about 1 ⁇ m to 2 ⁇ m and the major axis can be set to about 5 ⁇ m to 10 ⁇ m.
  • a member serving as a lid may be bonded to the upper surface of the glass substrate 4 so as to cover the upper surfaces of the formed first flow path 2 and second flow path 3 as necessary.
  • the method for bonding the member to be the lid and the upper surface of the glass substrate 4 may be performed by a known method according to the material of the member to be the lid.
  • the material of the member to be the lid is not particularly limited, and a resin substrate such as PDMS or PMMA, or a glass substrate can be used. Moreover, it is preferable that the material of the member used as the lid transmits light (for example, visible light) of the optical observation means.
  • wet etching or dry etching can be applied.
  • wet etching it is most preferable to use, for example, 1% or less hydrofluoric acid, but other acid or basic containers may be used.
  • isotropic etching methods include various dry etching methods such as barrel type plasma etching, parallel plate type plasma etching, and downflow type chemical dry etching.
  • anisotropic dry etching method for example, a parallel plate type RIE, a magnetron type RIE, an ICP type RIE, an NLD type RIE, etc. can be used as reactive ion etching (hereinafter referred to as RIE).
  • RIE reactive ion etching
  • a process close to isotropic etching can be performed by shortening the mean free path of ions by a method such as increasing the process pressure.
  • the gas used is mainly a gas capable of chemically etching materials such as fluorocarbon, SF, CHF3, fluorine gas, and chlorine gas, and other gases such as oxygen, argon, and helium are appropriately used. They can be mixed and used, and can be processed by other dry etching methods.
  • step M2 a more preferable etching is anisotropic etching, and in step M3, a more preferable etching is isotropic etching.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

At least a base material, spaces, and through holes are disposed in the substrate. The spaces are provided in the base material and a solution containing a polymeric molecule is poured therein. The through holes are formed inside the base material, are open to the spaces and have a shape such that the polymeric molecules can be elongated and disposed therein. In the base material, at least the area configuring the through holes is formed as a single member.

Description

基体、及び分析方法Substrate and analysis method
 本発明は、貫通孔を備えた基体、及び前記基体を用いた分析方法に関する。より詳しくは、本発明は、内部にポリマー状分子を引き伸ばして配置することが可能な貫通孔を備えた基体、及び前記基体を用いてポリマー状分子の構成単位の配列を分析する方法に関する。
 本願は、2011年8月30日に、日本に出願された特願2011-187510号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a substrate having a through hole and an analysis method using the substrate. More specifically, the present invention relates to a substrate having a through-hole in which a polymer molecule can be extended and arranged, and a method for analyzing the arrangement of structural units of the polymer molecule using the substrate.
This application claims priority based on Japanese Patent Application No. 2011-187510 filed in Japan on August 30, 2011, the contents of which are incorporated herein by reference.
 ヒトの遺伝情報を全て解読することを目的としたヒトゲノム計画によって、2003年にヒトゲノムを構成する全DNA塩基配列の完全版が公開された。この全DNA塩基配列の長さは30億塩基対と長大であり、一直線に伸ばすと約2メートルの長さになるといわれる。上述のヒトの遺伝情報は、国際ヒトゲノム配列コンソーシアム主導の下、実に10年以上の歳月と膨大な資金を費やして解読された。ヒトゲノム計画の完了後も、DNA塩基配列の分析方法及び分析装置(DNAシーケンサー)の開発は着実に進んでいる。その目的は、個人のヒトゲノムを数日のうちに、1000ドル以下の費用で解析できるシステムを開発することである。このシステムによって、個人の遺伝特性に合わせたオーダーメイドの医療の提供を実現できると考えられている。 A complete version of the entire DNA base sequence constituting the human genome was released in 2003 by the Human Genome Project aimed at decoding all human genetic information. The total length of this DNA base sequence is as long as 3 billion base pairs, and it is said that the length is about 2 meters when stretched straight. The above-described human genetic information has been deciphered with the help of an international human genome sequence consortium, spending more than 10 years and a huge amount of money. Even after the completion of the Human Genome Project, the development of DNA base sequence analysis methods and analyzers (DNA sequencers) are steadily progressing. The goal is to develop a system that can analyze an individual's human genome in less than $ 1000 in a few days. This system is thought to be able to provide tailor-made medical care tailored to individual genetic characteristics.
 近年では、DNAシーケンサーの分析スピードが飛躍的に向上しつつあり、ヒトゲノム計画に使用されたDNAシーケンサーを第一世代とすると、次世代及び次々世代の分析装置が続々と開発・提案されている。また、スピードだけでなく、配列情報の精度等を高める技術も開発されつつある。例えば、特許文献1は、検体から抽出したDNA等の核酸分子を、PCR等で増幅することなく単一のDNA分子として取り扱い、その塩基配列を分析する技術を開示している。 In recent years, the analysis speed of DNA sequencers has been dramatically improved. If the DNA sequencer used in the human genome project is the first generation, next-generation and next-generation analyzers have been developed and proposed one after another. In addition to the speed, a technique for improving the accuracy of sequence information is being developed. For example, Patent Document 1 discloses a technique in which a nucleic acid molecule such as DNA extracted from a specimen is handled as a single DNA molecule without being amplified by PCR or the like, and its base sequence is analyzed.
特開2010-142250号公報JP 2010-142250 A
 特許文献1に開示される方法では、ガラス基板の表面にDNA合成酵素を固定し、その基板表面の近傍で分析対象であるDNA鎖の複製反応を生じさせ、生成物の蛍光を光学的に観察することによって、前記DNA鎖の塩基配列を読み取る。この際、蛍光測定のシグナル/ノイズ比(S/N比)を高めるために、基板表面の近傍のみに励起光を発生させることが可能な、複雑で高価な装置(全反射照明蛍光顕微鏡)が必要である。しかし、この装置を用いた場合でも、エバネッセント光を励起光として使用するので、観察条件が厳しく制限され、シグナルを充分に検出できない虞がある。また、一般に長いDNA鎖は物理的な剪断力によって切断され易い。分析の際、固定されたDNA合成酵素に対して、分析対象のDNA鎖を溶液に溶かした状態で供与するため、DNA鎖は不安定であり、溶液に生じた剪断力によって、当該DNA鎖が切断される虞がある。このため、確実に読み取り可能なDNA鎖の長さは従来通り、600~1000塩基対程度に留まると考えられる。 In the method disclosed in Patent Document 1, DNA synthase is immobilized on the surface of a glass substrate, a DNA strand replication reaction is caused in the vicinity of the substrate surface, and the fluorescence of the product is optically observed. By doing so, the base sequence of the DNA strand is read. At this time, in order to increase the signal / noise ratio (S / N ratio) of fluorescence measurement, a complicated and expensive apparatus (total reflection illumination fluorescence microscope) capable of generating excitation light only near the substrate surface is necessary. However, even when this apparatus is used, since evanescent light is used as excitation light, observation conditions are severely limited, and there is a possibility that signals cannot be sufficiently detected. In general, long DNA strands are easily cleaved by a physical shearing force. At the time of analysis, the DNA strand to be analyzed is donated to the immobilized DNA synthase in a state in which it is dissolved in the solution. Therefore, the DNA strand is unstable, and due to the shear force generated in the solution, the DNA strand is There is a risk of being cut. For this reason, it is considered that the length of a DNA strand that can be reliably read remains at about 600 to 1000 base pairs as before.
 本発明は上記事情に鑑みてなされたものであり、分析対象であるDNA鎖等のポリマー状分子を安定に配置することが可能な貫通孔を備えた基体、及び前記基体を用いた前記ポリマー状分子の構成単位の配列を分析する方法の提供を課題とする。 The present invention has been made in view of the above circumstances, and a substrate having a through-hole capable of stably arranging a polymer molecule such as a DNA chain to be analyzed, and the polymer using the substrate It is an object of the present invention to provide a method for analyzing the arrangement of molecular constituent units.
 本発明の第1態様の基体は、ポリマー状分子を含む溶液を流入させる空間が内部に設けられている基材と、前記基材の内部に形成され、前記空間に対して開口しており、内部に前記ポリマー状分子を引き伸ばして配置することが可能な形状を有する貫通孔とを備え、前記基材のうち、少なくとも前記貫通孔を構成する部位は、単一の部材からなる。 The substrate according to the first aspect of the present invention includes a base material provided with a space into which a solution containing polymer-like molecules is allowed to flow therein, and is formed inside the base material, and is open to the space. A through-hole having a shape capable of extending and arranging the polymer-like molecule therein, and at least a portion of the base material constituting the through-hole is formed of a single member.
 本発明の第1態様の基体によれば、前記貫通孔内に前記ポリマー状分子の少なくとも一部を引き伸ばして配置することによって、前記ポリマー状分子を安定に保つことができる。これは、前記貫通孔内であれば、前記ポリマー状分子を切断するような大きな剪断力を伴った乱流が生じ難いためである。また、前記貫通孔を構成する部位は単一の部材で形成され、前記貫通孔内に貼り合せた箇所及び継ぎ目が無いため、前記貫通孔の強度に優れる。ここで、前記強度とは、耐熱性、耐冷性、耐圧性、耐薬品性、及び耐変形性をいう。さらに、前記貫通孔を構成する部位は単一の部材で形成され、前記貫通孔内に貼り合せた箇所及び継ぎ目が無いため、貫通孔内へ照射した観察用の光又は貫通孔内で発生した光シグナルが屈折されて迷光となる虞がない。このため、前記貫通孔内を光学的に観察することが容易である。 According to the substrate of the first aspect of the present invention, the polymer molecule can be kept stable by extending and arranging at least a part of the polymer molecule in the through hole. This is because a turbulent flow with a large shearing force that cuts the polymer-like molecule hardly occurs within the through-hole. Moreover, since the site | part which comprises the said through-hole is formed with a single member, and there is no location and seam bonded together in the said through-hole, it is excellent in the intensity | strength of the said through-hole. Here, the strength refers to heat resistance, cold resistance, pressure resistance, chemical resistance, and deformation resistance. Furthermore, since the site | part which comprises the said through-hole is formed with the single member, and there is no location and seam bonded together in the said through-hole, it generate | occur | produced in the light for observation irradiated into the through-hole, or in a through-hole There is no possibility that the optical signal is refracted and becomes stray light. For this reason, it is easy to optically observe the inside of the through hole.
 本発明の第1態様の基体においては、前記貫通孔は、少なくとも一部が柱状であることが好ましい。
 前記貫通孔の少なくとも一部が柱状であることによって、前記ポリマー状分子が伸びる方向を前記柱状の貫通孔の長手方向に沿わせて配置することができる。このため、ポリマー状分子の配置を制御することがより容易となる。
In the substrate according to the first aspect of the present invention, it is preferable that at least a part of the through hole is columnar.
When at least a part of the through hole is columnar, the direction in which the polymer molecules extend can be arranged along the longitudinal direction of the columnar through hole. For this reason, it becomes easier to control the arrangement of the polymer-like molecules.
 本発明の第1態様の基体においては、前記貫通孔の長手方向の長さが0.1μm~10mmであることが好ましい。
 前記貫通孔の長手方向の長さが前記範囲であることによって、前記貫通孔内に前記ポリマー状分子を導入することがより容易となる。前記貫通孔が比較的短い場合は、前記ポリマー状分子を光ピンセット等の直接的な方法によって前記貫通孔内に運搬して配置することがより容易となる。一方、前記貫通孔が比較的長い場合は、前記ポリマー状分子を貫通孔内に吸引することによって、前記貫通孔に前記ポリマー状分子を配置することがより容易となる。つまり、前記ポリマー状分子を直接的に運搬することなく、前記溶液の流れとともに貫通孔内に配置することがより容易となる。
In the substrate according to the first aspect of the present invention, the length of the through hole in the longitudinal direction is preferably 0.1 μm to 10 mm.
When the length of the through hole in the longitudinal direction is within the above range, it becomes easier to introduce the polymer molecule into the through hole. When the through-hole is relatively short, it becomes easier to transport and arrange the polymer-like molecule in the through-hole by a direct method such as optical tweezers. On the other hand, when the through hole is relatively long, it is easier to place the polymer molecule in the through hole by sucking the polymer molecule into the through hole. That is, it becomes easier to arrange the polymer-like molecules in the through holes together with the flow of the solution without directly transporting the polymer-like molecules.
 本発明の第1態様の基体においては、前記貫通孔の長手方向に直交する断面の短径が、1nm~1000nmであることが好ましい。
 前記貫通孔の長手方向に直交する断面の短径が前記範囲であることによって、前記ポリマー状分子を前記貫通孔内に、より安定に保つことができる。前記範囲であることによって、前記貫通孔内の溶液に乱流等の剪断力が生じる虞をさらに低減できる。また、前記貫通孔内をより細い(狭い)空間とすることによって、前記ポリマー状分子の長手方向と当該貫通孔の長手方向とを合わせることが一層容易となる。さらに、前記貫通孔内をより細い(狭い)空間とすることによって、前記ポリマー状分子の熱運動及び拡散による運動エネルギーを低減させて(前記ポリマー状分子のエントロピーを下げて)、前記ポリマー状分子をより安定に保つと共に、前記ポリマー状分子を前記貫通孔の長手方向に引き伸ばした状態で前記貫通孔内に配置することがより容易となる。
In the substrate according to the first aspect of the present invention, the minor axis of the cross section perpendicular to the longitudinal direction of the through hole is preferably 1 nm to 1000 nm.
When the minor axis of the cross section perpendicular to the longitudinal direction of the through hole is within the above range, the polymer molecule can be kept more stably in the through hole. By being in the range, it is possible to further reduce the possibility that shear force such as turbulent flow is generated in the solution in the through hole. In addition, by making the inside of the through hole a thinner (narrow) space, it becomes easier to match the longitudinal direction of the polymer molecule with the longitudinal direction of the through hole. Furthermore, by making the inside of the through-hole a thinner (narrow) space, the kinetic energy due to thermal motion and diffusion of the polymer-like molecule is reduced (entropy of the polymer-like molecule is lowered), and the polymer-like molecule is reduced. Is more stable, and it becomes easier to dispose the polymer-like molecule in the through hole in a state where the polymer molecule is stretched in the longitudinal direction of the through hole.
 本発明の第1態様の基体においては、前記基材が主面を有する基板であり、前記貫通孔の長手方向に直交する断面の形状が略楕円形であり、前記楕円形の長軸の向きが、前記主面に対して傾斜していることが好ましい。
 この構成によれば、前記楕円形の短軸の向きと前記主面の平面方向とを非平行にできる。このような相対関係となるように、基体内に前記貫通孔を備えることによって、前記貫通孔内を前記主面側から光学的に観察することがより容易となる。前記貫通孔を前記主面に投影した面積がより大きくなることから理解されるように、前記主面から前記貫通孔内を観察しうる面積が拡がる。
In the substrate of the first aspect of the present invention, the base material is a substrate having a main surface, the shape of the cross section perpendicular to the longitudinal direction of the through hole is substantially elliptical, and the orientation of the major axis of the elliptical shape However, it is preferable to be inclined with respect to the main surface.
According to this configuration, the orientation of the elliptical minor axis and the plane direction of the main surface can be made non-parallel. By providing the through hole in the base so as to have such a relative relationship, it becomes easier to optically observe the inside of the through hole from the main surface side. As can be understood from the fact that the projected area of the through hole on the main surface becomes larger, the area where the inside of the through hole can be observed is expanded from the main surface.
 本発明の第1態様の基体においては、前記貫通孔と前記基材の外部とを連通する縦孔をさらに有することが好ましい。
 この構成によれば、前記縦孔を介して、前記基材の外部から貫通孔1内にガスや薬剤を含む液体を流入させること、及び貫通孔1内の分子もしくは薬剤を含む液体またはガスを前記基材の外部へ取り出すことができる。
In the base body of the first aspect of the present invention, it is preferable that the base body further has a vertical hole communicating the through hole and the outside of the base material.
According to this configuration, a liquid containing a gas or a drug is caused to flow into the through hole 1 from the outside of the base material through the vertical hole, and a liquid or gas containing a molecule or a drug in the through hole 1 is supplied. It can be taken out of the substrate.
 本発明の第1態様の基体においては、前記貫通孔内に、前記ポリマー状分子の少なくとも一部を固定する固定部が備えられていることが好ましい。
 前記固定部を備えることによって前記ポリマー状分子の一部が貫通孔内の内壁面に、より近づいた状態又は接した状態で保つことがより容易となる。このように貫通孔の内壁面に接する様に近づけて前記ポリマー状分子を保つことによって、前記ポリマー状分子の熱運動及び拡散による運動エネルギーを一層低減させて、前記ポリマー状分子をより一層安定に保つと共に、前記ポリマー状分子を前記貫通孔の長手方向に引き伸ばした状態で配置することがより一層容易となる。
In the substrate of the first aspect of the present invention, it is preferable that a fixing portion for fixing at least a part of the polymer molecule is provided in the through hole.
By providing the fixing part, it becomes easier to keep a part of the polymer-like molecule closer to or in contact with the inner wall surface in the through hole. By keeping the polymer molecule close to the inner wall surface of the through hole in this way, the kinetic energy due to thermal motion and diffusion of the polymer molecule is further reduced, and the polymer molecule is further stabilized. While maintaining, it becomes much easier to arrange the polymer-like molecules in a state stretched in the longitudinal direction of the through-hole.
 本発明の第1態様の基体においては、前記固定部が、金属で形成されることが好ましい。
 前記固定部が金属であることによって、前記ポリマー状分子における前記金属に親和性が高い官能基又は分子構造を有する部分が、前記固定部に結合することを利用して、前記ポリマーを前記固定部に固定することがより容易となる。前記ポリマー状分子を、前記官能基又は連結用分子で部分的に修飾することによって、前記ポリマー状分子の一部を前記固定部に固定することがより一層容易となる。この結果、前記ポリマー状分子の前記貫通孔内における配置をより容易に制御することが可能となる。
In the base according to the first aspect of the present invention, it is preferable that the fixing portion is made of metal.
By utilizing the fact that the portion having a functional group or molecular structure having a high affinity for the metal in the polymer molecule binds to the fixing portion by the fixing portion being a metal, the polymer is fixed to the fixing portion. It becomes easier to fix to. By partially modifying the polymer molecule with the functional group or linking molecule, it becomes easier to fix a part of the polymer molecule to the fixing part. As a result, the arrangement of the polymer-like molecules in the through-hole can be controlled more easily.
 本発明の第1態様の基体においては、前記ポリマー状分子が、DNA、RNA、又はポリペプチドであることが好ましい。
 前記貫通孔に配置するポリマー状分子が、一本鎖若しくは二本鎖のDNA分子からなるポリマー、一本鎖若しくは二本鎖のRNA分子からなるポリマー、又はポリペプチド鎖からなるポリマーであると、前記ポリマー状分子を引き伸ばして、略直線的な状態として、前記貫通孔内に配置することがより容易である。このため、前記ポリマー状分子を構成する構成単位(モノマー)の配列を分析することがより容易となる。
In the substrate of the first aspect of the present invention, the polymer molecule is preferably DNA, RNA, or polypeptide.
When the polymer molecule disposed in the through-hole is a polymer composed of a single-stranded or double-stranded DNA molecule, a polymer composed of a single-stranded or double-stranded RNA molecule, or a polymer composed of a polypeptide chain, It is easier to stretch the polymer molecules and arrange them in the through holes in a substantially linear state. For this reason, it becomes easier to analyze the arrangement | sequence of the structural unit (monomer) which comprises the said polymer-like molecule | numerator.
 本発明の第2態様の分析方法においては、ポリマー状分子を含む溶液を流入させる空間が内部に設けられている基材と、前記基材の内部に形成され、前記空間に対して開口しており、内部に前記ポリマー状分子を引き伸ばして配置することが可能な形状を有する貫通孔と、が少なくとも配され、前記基材のうち、少なくとも前記貫通孔を構成する部位は、単一の部材で形成される第1態様の基体を使用し、前記空間に前記ポリマー状分子を含む第一の溶液を流入させ、前記ポリマー状分子を前記貫通孔の内部へ導入する工程A1と、前記ポリマー状分子の少なくとも一部を、前記貫通孔の内壁に固定する工程A2と、前記ポリマー状分子に結合する結合体を前記貫通孔内に導入する工程A3と、前記結合した結果生じるシグナルを前記基体の外部から光学的に観察する工程A4と、を少なくとも含む。 In the analysis method of the second aspect of the present invention, a base material in which a space for allowing a solution containing polymer-like molecules to flow is provided, and the base material is formed inside the base material, and is open to the space. A through hole having a shape capable of extending and arranging the polymer-like molecule therein, and at least a portion of the base material constituting the through hole is a single member. Using the substrate of the first embodiment to be formed, allowing the first solution containing the polymer molecule to flow into the space and introducing the polymer molecule into the through-hole; and the polymer molecule Step A2 for fixing at least a part of the substrate to the inner wall of the through-hole, Step A3 for introducing a binding body binding to the polymer molecule into the through-hole, and a signal generated as a result of the binding to the substrate Including the step A4 to observe from the outside optically, at least.
 本発明の分析方法によれば、前記工程A1において、前記貫通孔内に導入した前記ポリマー状分子の少なくとも一部を、前記貫通孔内で引き伸ばした状態で安定に保つことができる。つづく前記工程A2において、前記ポリマー状分子の少なくとも一部を、前記貫通孔の内壁に固定することによって、前記ポリマー状分子が前記貫通孔から流出することを防ぐことができる。その後、前記工程A3において、前記結合体を前記貫通孔内に導入する。次の工程A4において、前記シグナルを光学的に観察する。この際、前記貫通孔内は限定された量の溶液しか含まないため、前記溶液に含まれるノイズ源となる分子が限定された量だけしか存在しない。前記ノイズ源となる分子としては例えば自家蛍光を発するような分子が挙げられる。このように、前記ポリマー状分子を、比較的狭く限定された空間である前記貫通孔内に配置することによって、前記空間に含まれるノイズ源となる分子を極力少なくして、観察対象である前記ポリマー状分子及びシグナル発生源となる分子の相対量を増加させることができる。これにより、S/N比の高いシグナルを得ることができる。本発明の分析法における上述したような効果は、従来の全反射顕微鏡等を用いて得られる「光学的切片効果」と同等以上に優れたものであり、以下では「空間的切片効果」と呼ぶ。 According to the analysis method of the present invention, in the step A1, at least a part of the polymer molecule introduced into the through hole can be stably maintained in a state of being stretched in the through hole. In the subsequent step A2, by fixing at least a part of the polymer molecule to the inner wall of the through hole, the polymer molecule can be prevented from flowing out of the through hole. Thereafter, in the step A3, the combined body is introduced into the through hole. In the next step A4, the signal is optically observed. At this time, since the inside of the through-hole contains only a limited amount of solution, there is only a limited amount of molecules serving as noise sources contained in the solution. Examples of molecules that cause noise include molecules that emit autofluorescence. Thus, by arranging the polymer-like molecules in the through-holes that are relatively narrow and limited spaces, the number of molecules that become noise sources contained in the spaces is reduced as much as possible, and the observation target is The relative amount of the polymeric molecule and the signal source molecule can be increased. Thereby, a signal with a high S / N ratio can be obtained. The effects described above in the analysis method of the present invention are equivalent to or better than the “optical section effect” obtained using a conventional total reflection microscope or the like, and hereinafter referred to as the “spatial section effect”. .
 本発明の第2態様の分析方法においては、前記ポリマー状分子における複数箇所の各々に、前記結合体を結合させ、その結合の結果生じる複数の前記シグナルを前記複数箇所の位置情報と関連付けて検出することが好ましい。 In the analysis method of the second aspect of the present invention, the conjugate is bound to each of a plurality of locations in the polymer molecule, and a plurality of signals resulting from the binding are detected in association with positional information of the plurality of locations. It is preferable to do.
 本発明の第2態様の分析方法においては、前記ポリマー状分子がDNA又はRNAであり、前記結合体が標識デオキシヌクレオチドであり、前記シグナルがポリメラーゼによるDNA又はRNAの複製反応によって生じ、前記光学的な観察によって、前記DNA又はRNAの塩基配列を分析することが好ましい。
 前記貫通孔は、一本鎖若しくは二本鎖のDNA又はRNAで形成されるポリマー状分子を安定に配置することができる。このため、従来の核酸配列分析に用いられていた600~1000塩基対よりも長いDNA鎖又はRNA鎖を前記貫通孔内に安定に配置して、固定できる。このため、当該DNA鎖又はRNA鎖の塩基配列を安定に分析して、より精度の高い塩基配列情報を得ることができる。
In the analysis method of the second aspect of the present invention, the polymer molecule is DNA or RNA, the conjugate is a labeled deoxynucleotide, the signal is generated by a DNA or RNA replication reaction by a polymerase, and the optical It is preferable to analyze the base sequence of the DNA or RNA by careful observation.
The through-hole can stably arrange a polymer molecule formed of single-stranded or double-stranded DNA or RNA. For this reason, DNA strands or RNA strands longer than 600 to 1000 base pairs used in conventional nucleic acid sequence analysis can be stably arranged and fixed in the through-holes. For this reason, it is possible to stably analyze the base sequence of the DNA chain or RNA chain and obtain more accurate base sequence information.
本発明の第2態様の分析方法は、前記貫通孔内に第二の溶液を流通させることが好ましい。
 前記工程A2においては、前記ポリマー状分子を前記貫通孔の内壁に固定している。従って、前記第二の溶液を前記貫通孔内に流通させた場合でも、前記ポリマー状分子が当該貫通孔の外へ流出する虞はない。前記第二の溶液中に、前記結合体もしくは前記光学的観察に用いる分子等を含ませて、前記第二の溶液の流通を制御することによって、前記シグナルを光学的に観察することがより容易となる。例えば、前記シグナルが、前記ポリマー状分子から一定間隔で放出される分子によって発生する場合、前記放出された分子を前記第二の溶液の流れに乗せて運ばせることによって、シグナルを発生する分子同士の空間的な距離を離すことができる。この結果、複数のシグナルを区別して、それぞれを検出することがより容易となる。また、前記第二の溶液を前記貫通孔の一の方向に流通させることによって、前記ポリマー状分子が前記流通方向に引き伸ばされて、前記貫通孔の長手方向と当該ポリマー状分子の伸びる方向とを合わせることができる。この結果、前記ポリマー状分子を光学的に観察することがより容易となる。
In the analysis method of the second aspect of the present invention, the second solution is preferably passed through the through hole.
In the step A2, the polymer molecule is fixed to the inner wall of the through hole. Therefore, even when the second solution is allowed to flow through the through-hole, there is no possibility that the polymer molecule flows out of the through-hole. It is easier to optically observe the signal by controlling the flow of the second solution by including the conjugate or the molecule used for the optical observation in the second solution. It becomes. For example, when the signal is generated by molecules released from the polymer-like molecule at regular intervals, the released molecules are carried on the flow of the second solution, thereby generating signals between the molecules The spatial distance can be increased. As a result, it becomes easier to distinguish a plurality of signals and detect each of them. In addition, by causing the second solution to flow in one direction of the through-hole, the polymer molecule is stretched in the flow direction, and the longitudinal direction of the through-hole and the direction in which the polymer molecule extends are determined. Can be matched. As a result, it becomes easier to optically observe the polymer molecule.
 本発明の基体によれば、前記基体の内部に配された前記貫通孔内に、分析対象であるDNA鎖等のポリマー状分子を安定に配置することが可能である。本発明の分析方法によれば、前記基体を用いることによって、前記ポリマー状分子の構成単位の配列を分析することができる。 According to the substrate of the present invention, it is possible to stably arrange polymer molecules such as DNA strands to be analyzed in the through-holes arranged inside the substrate. According to the analysis method of the present invention, the arrangement of the structural units of the polymer-like molecule can be analyzed by using the substrate.
本発明にかかる基体の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the base | substrate concerning this invention. 図1のA-A線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図2の断面図において、貫通孔1の内部にポリマー状分子Tを配した様子を示す模式図である。FIG. 3 is a schematic diagram showing a state in which polymer molecules T are arranged inside a through hole 1 in the cross-sectional view of FIG. 2. 図1の貫通孔1の長手方向に直交する断面の模式図である。It is a schematic diagram of the cross section orthogonal to the longitudinal direction of the through-hole 1 of FIG. 本発明にかかる基体の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the base | substrate concerning this invention. 図5のA-A線に沿う断面図である。FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. 本発明にかかる基体の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the base | substrate concerning this invention. 図7のA-A線に沿う断面図である。FIG. 8 is a cross-sectional view taken along line AA in FIG. 7. 本発明にかかる基体の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the base | substrate concerning this invention. 本発明にかかる基体の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the base | substrate concerning this invention. 本発明にかかる基体の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the base | substrate concerning this invention. 本発明にかかる基体の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the base | substrate concerning this invention. 本発明にかかる基体の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the base | substrate concerning this invention. 本発明にかかる基体の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the base | substrate concerning this invention. 本発明にかかる基体の製造方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the base | substrate concerning this invention. 本発明にかかる基体の製造方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the base | substrate concerning this invention. 本発明にかかる基体の製造方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the base | substrate concerning this invention. 本発明にかかる基体の製造方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the base | substrate concerning this invention. レーザー照射方法Sを示す模式的な斜視図である。2 is a schematic perspective view showing a laser irradiation method S. FIG. レーザー照射エネルギーと形成される改質部(酸素欠乏部)との関係を模式的に示す図である。It is a figure which shows typically the relationship between the laser irradiation energy and the modification part (oxygen deficient part) formed. レーザー照射エネルギーと形成される改質部(酸素欠乏部)との関係を模式的に示す図である。It is a figure which shows typically the relationship between the laser irradiation energy and the modification part (oxygen deficient part) formed.
 以下、好適な実施の形態に基づき、図面を参照して本発明を説明する。
<基体>
[基体10A(10)]
 図1は、本発明にかかる基体の第一実施形態である基体10Aの斜視図である。図2は、図1のA-A線に沿う断面を示す模式図である。図3は、図2の貫通孔1の内部に前記ポリマー状分子を配した様子の一例を示す模式図である。
The present invention will be described below based on preferred embodiments with reference to the drawings.
<Substrate>
[Substrate 10A (10)]
FIG. 1 is a perspective view of a base body 10A that is a first embodiment of a base body according to the present invention. FIG. 2 is a schematic diagram showing a cross section taken along line AA of FIG. FIG. 3 is a schematic diagram showing an example of a state in which the polymer-like molecules are arranged inside the through hole 1 of FIG.
 基体10Aは、基材4と、基材4の内部に設けられ、ポリマー状分子を含む溶液を流入させる空間2,3と、基材4の内部に形成され、空間2,3に対して開口している貫通孔1と、が少なくとも配された基体であって、基材4のうち、少なくとも貫通孔4を構成する部位は、単一の部材で形成され、貫通孔1は、その内部に前記ポリマー状分子の少なくとも一部を引き伸ばして配置することが可能な形状である。 The base 10 </ b> A is provided inside the base 4, the spaces 2 and 3 into which the solution containing polymer molecules flows, and the base 10 </ b> A formed inside the base 4 and open to the spaces 2 and 3. The through-hole 1 is a substrate on which at least the substrate 4 is arranged, and at least a portion of the substrate 4 constituting the through-hole 4 is formed of a single member, and the through-hole 1 is formed in the inside thereof. It is a shape in which at least a part of the polymer molecule can be stretched and arranged.
 基材4の上面(主面)4aにおいて、空間2,3はそれぞれ第一流路2及び第二流路3を構成している。各流路には前記溶液を流入若しくは流通させることができる。空間2,3は、前記溶液を流入若しくは流通させられれば特に限定されず、例えば流路もしくはウェルを構成する。前記流路及びウェルの形状及び容積は、流入若しくは流通させる前記溶液の量、粘度又は種々の化学的特性に応じて適宜設計すればよい。 In the upper surface (main surface) 4 a of the base material 4, the spaces 2 and 3 constitute a first flow path 2 and a second flow path 3, respectively. The solution can flow or flow through each channel. The spaces 2 and 3 are not particularly limited as long as the solution can be introduced or circulated. For example, the spaces 2 and 3 constitute flow paths or wells. The shape and volume of the flow channel and well may be appropriately designed according to the amount, viscosity, or various chemical characteristics of the solution to be introduced or circulated.
 ここで、「空間に溶液を流入させる」とは、前記空間の外部から前記空間へ前記溶液を入れる(導入する)ことを意味する。流入された前記溶液は、前記空間に留まって滞留(又は完全に静止)してもよいし、前記空間の外へ流出してもよい。後者の場合、連続的に前記溶液を前記空間に流入させることによって、前記溶液の流れが前記空間において生じる。このことは、本発明にかかる基体の全てに適用される。 Here, “flowing the solution into the space” means that the solution is introduced (introduced) into the space from the outside of the space. The solution that has flowed in may stay in the space and stay (or be completely stationary), or may flow out of the space. In the latter case, the solution flow is generated in the space by continuously flowing the solution into the space. This applies to all the substrates according to the invention.
 貫通孔1は基材4の内部に形成され、貫通孔1の一方の開口部は第一流路2の側面2aに開口し、貫通孔1の他方の開口部は第二流路3の側面3aに開口する。つまり、貫通孔1は第一流路2と第二流路3とを連通する。空間2,3である第一流路2及び第二流路3は基材4の主面である上面4aに設けられ、基材4の外部に面する。よって、貫通孔1は第一流路2及び第二流路3を介して基材4の外部へ連通する。 The through hole 1 is formed inside the substrate 4, one opening of the through hole 1 opens to the side surface 2 a of the first flow path 2, and the other opening of the through hole 1 is the side surface 3 a of the second flow path 3. Open to. That is, the through hole 1 communicates the first flow path 2 and the second flow path 3. The first flow path 2 and the second flow path 3 that are the spaces 2 and 3 are provided on the upper surface 4 a that is the main surface of the base material 4, and face the outside of the base material 4. Therefore, the through hole 1 communicates with the outside of the base material 4 through the first flow path 2 and the second flow path 3.
 第一流路2及び第二流路3に前記液体を流入若しくは流通させる方法としては、当該第一流路2及び第二流路3に、シリンジもしくはポンプ等の公知の流体制御デバイス(不図示)を接続すればよい。第一流路2及び第二流路3を覆う蓋となる部材を配置することによって、前記ポンプ等を用いて前記溶液に圧力をかけながら送液することが可能である。なお、図1では図を理解しやすくするために前記蓋となる部材は描かれていない。
 このように、ポンプ等の送液手段を用いて第一流路2及び第二流路3における前記溶液の流れを制御することによって、前記溶液を制御された方向及び制御された流速で、貫通孔1内に流入若しくは流通させることができる。例えば、第一流路2を陽圧にし、第二流路3を陰圧とすることによって、第一流路2に開口する開口部から前記溶液を貫通孔1内に流入させ、第二流路3に開口する開口部から前記溶液を流出させることが可能である。
As a method for allowing the liquid to flow into or flow through the first flow path 2 and the second flow path 3, a known fluid control device (not shown) such as a syringe or a pump is provided in the first flow path 2 and the second flow path 3. Just connect. By disposing a member serving as a lid that covers the first flow path 2 and the second flow path 3, it is possible to send the liquid while applying pressure to the solution using the pump or the like. In addition, in FIG. 1, the member used as the said lid | cover is not drawn in order to make a figure easy to understand.
In this way, by controlling the flow of the solution in the first flow path 2 and the second flow path 3 by using a liquid delivery means such as a pump, the through-hole is controlled in a controlled direction and a controlled flow rate. 1 can flow in or flow through. For example, by setting the first flow path 2 to a positive pressure and the second flow path 3 to a negative pressure, the solution is caused to flow into the through-hole 1 from the opening that opens to the first flow path 2, and the second flow path 3 It is possible to make the solution flow out from an opening that opens to the bottom.
 貫通孔1を構成する部位は単一の部材で形成される。ここで、単一の部材とは、二つ以上の部材を接着等によって貼り合せた部材とは異なることを意味する。すなわち、貫通孔1は単一の部材を穿孔して形成したものであり、溝を掘った部材に蓋を被せて形成した孔ではない。本発明の貫通孔1内には、二つ以上の部材を貼り合せた箇所又は継ぎ目が無いため、貫通孔1の強度特性に優れる。ここで、強度特性とは、耐熱性、耐冷性、耐圧性、耐薬品性及び耐変形性をいう。このように強度特性が優れるため、本発明の基体10は、加熱処理、冷却処理、加圧・陰圧処理、薬品処理、及び機械的変形を生じさせる処理に耐え得る。
 さらに、貫通孔1を構成する部位は単一の部材で形成され、貫通孔1内には貼り合せた箇所又は継ぎ目が無いため、貫通孔1内へ照射した分析用の光及び貫通孔1内で発生させた光シグナルが、前記貼り合せた箇所又は継ぎ目によって屈折されることがない。このため、貫通孔1内を光学的に観察して分析することが容易である。
The site | part which comprises the through-hole 1 is formed with a single member. Here, a single member means that it is different from a member obtained by bonding two or more members by adhesion or the like. That is, the through-hole 1 is formed by perforating a single member, and is not a hole formed by covering a grooved member with a lid. In the through hole 1 of the present invention, since there is no place or joint where two or more members are bonded together, the strength characteristics of the through hole 1 are excellent. Here, the strength characteristics refer to heat resistance, cold resistance, pressure resistance, chemical resistance, and deformation resistance. Since the strength characteristics are thus excellent, the substrate 10 of the present invention can withstand heat treatment, cooling treatment, pressurization / negative pressure treatment, chemical treatment, and treatment that causes mechanical deformation.
Furthermore, since the site | part which comprises the through-hole 1 is formed with a single member, and there is no location or joint in the through-hole 1, the light for analysis irradiated into the through-hole 1 and the inside of the through-hole 1 The optical signal generated in step 1 is not refracted by the bonded portion or seam. For this reason, it is easy to optically observe and analyze the inside of the through hole 1.
 図1に示す基体10Aにおいては、前記単一の部材は、貫通孔1を構成するだけでなく、基材4全体を構成している。
 前記単一の部材の材料としては、例えばシリコン、ガラス、石英、及びサファイアなどが挙げられる。これらの材料は、貫通孔1の加工性に優れるので好ましい。なかでも、結晶方位による加工異方性の影響を受けにくい非結晶質である方が好ましい。
 更には、貫通孔1内を顕微鏡等の光学的手段によって観察する場合には、ガラス、石英、又はサファイアを用いると、可視光線(波長0.36μm~0.83μm)を透過するため、より好ましい。基体10Aの基材4を構成する単一の部材は透明なガラス基板である。
In the base body 10 </ b> A shown in FIG. 1, the single member constitutes not only the through hole 1 but also the entire base material 4.
Examples of the material of the single member include silicon, glass, quartz, and sapphire. Since these materials are excellent in the workability of the through-hole 1, they are preferable. Among these, it is preferable that the material is amorphous so that it is not easily affected by processing anisotropy due to crystal orientation.
Furthermore, when observing the inside of the through-hole 1 by optical means such as a microscope, it is more preferable to use glass, quartz, or sapphire because it transmits visible light (wavelength: 0.36 μm to 0.83 μm). . A single member constituting the base 4 of the base 10A is a transparent glass substrate.
 また、前記単一の部材の材料は、波長0.1μm~10μmである光のうち少なくとも一部の光を透過することが好ましい。
 具体的には、加工用レーザーとして使用される一般的な光(波長0.1μm~10μm)の、少なくとも一部を透過することが好ましい。このようなレーザー光を透過することによって、後述するように、レーザー照射して前記部材に改質部を形成することができる。
 また、前記単一の部材の材料は、可視光領域(波長約0.36μm~約0.83μm)の光を透過することが、より好ましい。可視光領域の光を透過することによって、貫通孔1内に配置された前記ポリマー状分子を、前記単一部材を通して光学顕微鏡もしくは高解像度CCDカメラ等の光学的手法を用いて観察することができる。
 なお、本発明における「透過(透明)」とは、前記部材に光を入射して、前記部材から透過光が得られる状態の全てをいう。
The material of the single member preferably transmits at least part of light having a wavelength of 0.1 μm to 10 μm.
Specifically, it is preferable to transmit at least part of general light (wavelength of 0.1 μm to 10 μm) used as a processing laser. By transmitting such laser light, the modified portion can be formed on the member by laser irradiation as described later.
More preferably, the material of the single member transmits light in the visible light region (wavelength of about 0.36 μm to about 0.83 μm). By transmitting light in the visible light region, the polymer molecule disposed in the through hole 1 can be observed through the single member using an optical technique such as an optical microscope or a high-resolution CCD camera. .
In the present invention, “transmission (transparent)” refers to all states in which light enters the member and transmitted light is obtained from the member.
 貫通孔1の形状は、その内部に前記ポリマー状分子の少なくとも一部を引き伸ばして配置することが可能な形状である。通常、引き伸ばされた状態のポリマー状分子は柔軟な紐の様な直鎖状の高分子であるとみなされる(図3参照)。つまり、貫通孔1の形状は直鎖状の高分子をその内部に配置することが可能な形状であればよい。このため、貫通孔1は少なくとも一部が柱状であることが好ましい。 The shape of the through-hole 1 is a shape in which at least a part of the polymer molecule can be stretched and arranged. Usually, the stretched polymer molecule is regarded as a linear polymer such as a flexible string (see FIG. 3). That is, the shape of the through hole 1 may be any shape as long as a linear polymer can be disposed therein. For this reason, it is preferable that at least a part of the through hole 1 is columnar.
 前記柱状とは、長手方向を有する立体形状を意味し、例えば角柱、多角柱、円柱、及び楕円柱等が挙げられる。これらの柱状において、その長手方向は底面に対する高さ方向を意味する。前記多角柱としては、例えば三角柱、四角柱、五角柱、及び六角柱等が挙げられる。これらの立体形状は、幾何学的に厳密に定義されるもの以外に、貫通孔1の形成プロセスにおいて生じた変形又はキズを含んでいてもよい。前記変形としては、当該立体形状の部分的若しくは全体的な歪み、伸長、又は縮小が挙げられる。
 前記立体形状において、貫通孔1の形状としては、楕円柱、円柱及び四角柱が好ましい。これらの好ましい立体形状を有する貫通孔1は形成がより容易である。また、これらの好ましい立体形状を有する貫通孔1は、その内壁の形状が比較的単純であるため、貫通孔1内を流通する前記溶液中に乱流が起こりづらい。このため、貫通孔1内における前記柱状をなす部分で、前記ポリマー状分子をより安定に保つことができる。
 貫通孔1の少なくとも一部の形状が前記柱状であることによって、前記ポリマー状分子が伸びる方向を、前記柱状の前記長手方向に沿わせて配置することができる。この結果、貫通孔1内におけるポリマー状分子の配置を制御することがより容易となる。
The columnar shape means a three-dimensional shape having a longitudinal direction, and examples thereof include a prism, a polygonal column, a cylinder, and an elliptical column. In these columnar shapes, the longitudinal direction means the height direction with respect to the bottom surface. Examples of the polygonal column include a triangular column, a quadrangular column, a pentagonal column, and a hexagonal column. These three-dimensional shapes may include deformations or scratches generated in the formation process of the through-hole 1 other than those strictly defined geometrically. Examples of the deformation include partial or total distortion, extension, or reduction of the three-dimensional shape.
In the three-dimensional shape, the shape of the through hole 1 is preferably an elliptic cylinder, a cylinder, and a quadrangular cylinder. The through holes 1 having these preferable three-dimensional shapes are easier to form. Moreover, since the shape of the inner wall of the through hole 1 having these preferable three-dimensional shapes is relatively simple, it is difficult for turbulent flow to occur in the solution flowing through the through hole 1. For this reason, the polymer molecule can be kept more stable at the columnar portion in the through hole 1.
When the shape of at least a part of the through-hole 1 is the columnar shape, the direction in which the polymer molecules extend can be arranged along the longitudinal direction of the columnar shape. As a result, it becomes easier to control the arrangement of the polymer molecules in the through-hole 1.
 貫通孔1における前記柱状部分の長さは特に制限されず、前記ポリマー状分子の引き伸ばされた長さに応じて適宜設定すればよい。その際、前記ポリマー状分子を前記柱状部分の内部において安定に配置する観点から、前記ポリマー状分子の引き伸ばされた長さよりも長くすることが好ましい。例えば、前記ポリマー状分子の長さに対して、前記柱状部分の長さが、100~1000%であることが好ましく、200~800%であることがより好ましい。具体的には、前記柱状部分の長さが、0.01μm~10mmであることが好ましく、0.1μm~10mmであることがより好ましい。
 前記柱状部分は、貫通孔1の一箇所に備えられていてもよいし、二箇所以上に設けられていてもよい。二箇所以上に設けられる場合、一の柱状部分と他の柱状部分とは、同じ立体形状であっても異なる立体形状であってもよい。
The length of the columnar part in the through-hole 1 is not particularly limited, and may be set as appropriate according to the length of the polymer molecule stretched. In that case, it is preferable to make it longer than the stretched length of the polymer molecule from the viewpoint of stably arranging the polymer molecule in the columnar portion. For example, the length of the columnar portion is preferably 100 to 1000%, more preferably 200 to 800% with respect to the length of the polymer molecule. Specifically, the length of the columnar part is preferably 0.01 μm to 10 mm, and more preferably 0.1 μm to 10 mm.
The columnar part may be provided at one place of the through hole 1 or may be provided at two or more places. When provided in two or more places, the one columnar portion and the other columnar portion may have the same three-dimensional shape or different three-dimensional shapes.
 貫通孔1の長手方向(延設方向)の長さは特に制限されず、前記ポリマー状分子の引き伸ばされた長さに応じて適宜設定すればよい。その際、前記ポリマー状分子を貫通孔1内で安定に配置する観点から、前記ポリマー状分子の引き伸ばされた長さよりも長くすることが好ましい。例えば、前記ポリマー状分子の長さに対して、前記長手方向の長さが、100~1000%であることが好ましく、200~800%であることがより好ましい。具体的には、貫通孔1の前記長手方向の長さが、0.01μm~10mmであることが好ましく、0.1μm~10mmであることがより好ましい。 The length in the longitudinal direction (extending direction) of the through-hole 1 is not particularly limited, and may be set as appropriate according to the length of the polymer molecule stretched. At that time, from the viewpoint of stably arranging the polymer molecule in the through-hole 1, it is preferable that the polymer molecule be longer than the stretched length of the polymer molecule. For example, the length in the longitudinal direction is preferably 100 to 1000%, more preferably 200 to 800% with respect to the length of the polymer molecule. Specifically, the length of the through hole 1 in the longitudinal direction is preferably 0.01 μm to 10 mm, and more preferably 0.1 μm to 10 mm.
 前記貫通孔の長手方向の長さが前記範囲であることによって、貫通孔1内に前記ポリマー状分子を導入することがより容易となる。
 前記範囲の下限値(0.01μm)以上であると、前記ポリマー状分子を前記溶液と共に吸引して貫通孔1内に配置することがより容易となる。前記長手方向の長さが前記下限値未満、例えば1nmという極端に短い長さであると、前記ポリマー状分子を貫通孔1内に吸引した直後に前記ポリマー状分子が前記貫通孔1から流出して、貫通孔1内に前記ポリマー状分子を留めて配置することが困難となる虞がある。
 前記範囲の上限値(10mm)以下であると、前記溶液を貫通孔内に吸引又は流通する際の圧力が過度に高まることを防止でき、前記ポリマー状分子を前記溶液とともに貫通孔1内に吸引することがより容易となる。つまり、前記ポリマー状分子を光ピンセット等を用いて直接に運搬することなく、前記溶液の流れとともに貫通孔1内に配置することがより容易となる。
When the length of the through hole in the longitudinal direction is within the above range, it becomes easier to introduce the polymer molecule into the through hole 1.
When it is not less than the lower limit (0.01 μm) of the range, it becomes easier to suck the polymer molecules together with the solution and arrange them in the through-holes 1. When the length in the longitudinal direction is less than the lower limit, for example, an extremely short length of 1 nm, the polymer molecule flows out of the through hole 1 immediately after the polymer molecule is sucked into the through hole 1. Thus, it may be difficult to place the polymer molecule in the through-hole 1 while being fastened.
When the upper limit value (10 mm) is not more than the above range, it is possible to prevent an excessive increase in pressure when the solution is sucked or circulated into the through hole, and the polymer molecule is sucked into the through hole 1 together with the solution. It will be easier to do. That is, it becomes easier to arrange the polymer molecules in the through-hole 1 together with the flow of the solution without directly transporting the polymer molecules using optical tweezers or the like.
 貫通孔1の長手方向(延設方向)に直交する断面の形状は特に制限されず、例えば前記柱状を反映したものとすればよく、例えば円、略円、楕円、略楕円、矩形、又は三角形とすることができる。具体的には、前記断面の形状が円、略円、楕円、略楕円、矩形、若しくは三角形の場合には、その直径、短径若しくは長径、又は一辺の長さを0.02μm~5μmとすることができる。後述する方法で貫通孔1を形成することによって、前記直径、短径、若しくは一辺の長さをさらに縮小することが可能である。例えば、前記直径、短径、若しくは一辺の長さを0.02~0.8μmとすることができ、さらには1nm~1000nmとすることも可能である。 The shape of the cross section orthogonal to the longitudinal direction (extending direction) of the through-hole 1 is not particularly limited, and may be, for example, a shape reflecting the columnar shape, for example, a circle, a substantially circle, an ellipse, a substantially ellipse, a rectangle, or a triangle It can be. Specifically, when the cross-sectional shape is a circle, a substantially circle, an ellipse, a substantially ellipse, a rectangle, or a triangle, the diameter, the short diameter, the long diameter, or the length of one side is 0.02 μm to 5 μm. be able to. By forming the through hole 1 by a method described later, the diameter, the short diameter, or the length of one side can be further reduced. For example, the diameter, the short diameter, or the length of one side can be set to 0.02 to 0.8 μm, and further can be set to 1 nm to 1000 nm.
 貫通孔1の長手方向に直交する断面の短径(短軸)若しくは前記断面の周を構成する最も短い辺の長さが、1nm~1000nmの間であることが好ましい。この長さであると、前記ポリマー状分子を、より安定に且つエントロピー的により有利な(熱運動若しくは拡散運動がより低い)状態で貫通孔1内に保つことができる。 It is preferable that the short axis (short axis) of the cross section perpendicular to the longitudinal direction of the through hole 1 or the length of the shortest side constituting the circumference of the cross section is between 1 nm and 1000 nm. With this length, the polymer-like molecule can be kept in the through-hole 1 in a more stable and entropically more advantageous state (lower thermal motion or diffusion motion).
 貫通孔1が第一流路2及び第二流路3に開口する開口部の形状は、どの様な形状であってもよく、例えば、円又は略円、楕円又は略楕円、矩形、又は三角形とすることができる。具体的には、例えば貫通孔1の長手方向に直交する前記断面の形状と同じものとすればよい。この場合、貫通孔1内において、前記溶液の乱流が生じる可能性を一層低減し、前記ポリマー状分子を一層安定に保つことができる。 The shape of the opening where the through hole 1 opens to the first flow path 2 and the second flow path 3 may be any shape, for example, a circle or a substantially circle, an ellipse or a substantially ellipse, a rectangle, or a triangle. can do. Specifically, for example, the shape of the cross section perpendicular to the longitudinal direction of the through hole 1 may be the same. In this case, the possibility of the turbulent flow of the solution in the through hole 1 can be further reduced, and the polymer molecule can be kept more stable.
 図2及び図3において、貫通孔1は、第一流路2の側面2a及び第二流路3の側面3aに対して略垂直となるように形成されている。しかし、必ずしも略垂直である必要はなく、基体10Aの設計に合わせて自由に配置することができる。
 また、貫通孔1の開口部の口径を貫通孔1の口径よりもわずかに広げることで、漏斗状に加工することも可能である。このように加工することによって、前記ポリマー状分子を貫通孔1内に導入する際に、開口部のエッジに前記ポリマー状分子が無用に引っかかることを確実に防止できる。
2 and 3, the through hole 1 is formed to be substantially perpendicular to the side surface 2 a of the first flow path 2 and the side surface 3 a of the second flow path 3. However, it does not necessarily have to be substantially vertical, and can be freely arranged according to the design of the base 10A.
Moreover, it is also possible to process in the shape of a funnel by slightly widening the diameter of the opening of the through hole 1 slightly than the diameter of the through hole 1. By processing in this way, when the polymer molecule is introduced into the through-hole 1, it is possible to reliably prevent the polymer molecule from being unnecessarily caught on the edge of the opening.
 本発明にかかる基体10Aにおいて、基材4が主面4aを有する基板であり、貫通孔1の長手方向に直交する断面形状が略楕円形であり、前記楕円形の長軸の向きが、主面4aに対して傾斜している。この結果、前記長軸の向きが主面4aに対して垂直である場合と比べて、前記貫通孔1を主面4aに投影した面積がより大きくなり、主面4aから前記貫通孔1の内部を観察しうる面積が拡がる。この点について、図4を参照して説明する。 In the base body 10A according to the present invention, the base material 4 is a substrate having a main surface 4a, the cross-sectional shape orthogonal to the longitudinal direction of the through hole 1 is substantially elliptical, and the orientation of the major axis of the elliptical shape is mainly It is inclined with respect to the surface 4a. As a result, compared with the case where the direction of the major axis is perpendicular to the main surface 4a, the area of the through hole 1 projected onto the main surface 4a is larger, and the inside of the through hole 1 from the main surface 4a is larger. The area that can be observed increases. This point will be described with reference to FIG.
 図4は、基体10Aにおける貫通孔1の、長手方向に直交する断面を示す模式図である。前記断面の形状は略楕円形であり、前記楕円形の長軸の向き(長径の向き)が、基材4の主面4aに対して傾斜している。図4に示した例では、長軸の向きが主面4aに対してなす角は約30度である。また、前記楕円形の短軸の向き(短径の向き)は、主面4aと非平行であり、短軸の向きが主面4aに対してなす角は約60度である。
 このように、前記長軸と主面4aとの相対的な位置関係を調整して、貫通孔1を基材4に備えることによって、主面4a側(矢印Zの方向)から、前記貫通孔1の内部を光学的に観察することがより容易となる。すなわち、貫通孔1内に配置した前記ポリマー状分子を観察することがより容易となる。
FIG. 4 is a schematic diagram showing a cross section of the through hole 1 in the base body 10A perpendicular to the longitudinal direction. The cross-sectional shape is substantially elliptical, and the major axis direction (major axis direction) of the elliptical shape is inclined with respect to the main surface 4 a of the substrate 4. In the example shown in FIG. 4, the angle formed by the major axis direction with respect to the main surface 4a is about 30 degrees. The minor axis direction (minor axis direction) of the ellipse is not parallel to the major surface 4a, and the angle formed by the minor axis direction with respect to the major surface 4a is about 60 degrees.
Thus, by adjusting the relative positional relationship between the major axis and the main surface 4a and providing the through hole 1 in the base material 4, the through hole is formed from the main surface 4a side (the direction of the arrow Z). It becomes easier to optically observe the inside of 1. That is, it becomes easier to observe the polymer-like molecule arranged in the through hole 1.
 本発明にかかる基体10Aにおいて、貫通孔1内に、前記ポリマー状分子の少なくとも一部を固定する固定部が備えられていることが好ましい。
 前記固定部を備えることによって前記ポリマー状分子の一部が貫通孔1内の内壁面に、より近づいた状態又は接した状態で保つことがより容易となる。このように貫通孔1の内壁面に接する様に近づけて前記ポリマー状分子を保つことによって、前記ポリマー状分子の熱運動及び拡散による運動エネルギーを一層低減させて、前記ポリマー状分子をより一層安定に保つと共に、前記ポリマー状分子を、貫通孔1の長手方向に引き伸ばした状態で配置することがより一層容易となる。
In the base body 10A according to the present invention, it is preferable that a fixing portion for fixing at least a part of the polymer molecule is provided in the through hole 1.
By providing the fixing part, it becomes easier for a part of the polymer molecules to be kept closer to or in contact with the inner wall surface in the through-hole 1. Thus, by keeping the polymer molecule close to the inner wall surface of the through-hole 1, the kinetic energy due to thermal motion and diffusion of the polymer molecule is further reduced, and the polymer molecule is further stabilized. It is even easier to arrange the polymer-like molecules in a state where they are stretched in the longitudinal direction of the through-hole 1.
 前記固定部は、前記ポリマー状分子の少なくとも一部に対して親和性、吸着性、若しくは結合性を有するものであれば特に制限されない。貫通孔1内において、前記固定部を備える位置は特に制限されず、前記ポリマー状分子を固定する位置に応じて適宜設定できる。
例えば貫通孔1の開口部に近い位置、貫通孔1の端部、又は貫通孔1の中央部の何れであってもよい。前記固定部の大きさ及び前記固定部を配置する領域の面積は特に制限されず、貫通孔1の口径、使用する固定部の種類並びに前記ポリマー状分子の種類及び長さに応じて適宜設定できる。具体的には、前記固定部の大きさは、例えば0.5nm~100nm程度とすることができる。また、前記固定部を配置する領域の面積は、貫通孔1の内壁のうち、例えば1~100%に備えられる。前記固定部と前記ポリマー状分子との結合は、可逆的であっても不可逆的であってもよい。
The fixing part is not particularly limited as long as it has affinity, adsorptivity, or binding property to at least a part of the polymer molecule. In the through-hole 1, the position in particular which provides the said fixing | fixed part is not restrict | limited, It can set suitably according to the position which fixes the said polymer molecule.
For example, the position near the opening of the through hole 1, the end of the through hole 1, or the center of the through hole 1 may be used. The size of the fixing portion and the area of the region where the fixing portion is arranged are not particularly limited, and can be appropriately set according to the diameter of the through hole 1, the type of fixing portion to be used, and the type and length of the polymer molecule. . Specifically, the size of the fixed portion can be set to, for example, about 0.5 nm to 100 nm. In addition, the area of the region where the fixing portion is arranged is provided in, for example, 1 to 100% of the inner wall of the through hole 1. The bond between the fixing part and the polymer molecule may be reversible or irreversible.
 前記固定部としては、例えば金属で形成される杭(金属ポスト)又は特定の結合性を有する分子が好ましい。 As the fixing portion, for example, a pile (metal post) formed of metal or a molecule having specific binding properties is preferable.
 前記金属ポストとしては、例えば、ニッケル、コバルト、マグネシウム、及び金等が挙げられる。
 前記金に対して、チオール基(-SH)が化学的に結合しうることは周知である。従って、例えば、前記ポリマー状分子の一端を予めチオール基を有する官能基で修飾しておき、前記ポリマー状分子を、金で形成される金属ポストを備えた貫通孔1内に配し、貫通孔1内において、金で形成される金属ポストと前記官能基とを吸着させることによって、前記固定部と前記ポリマー状分子の一端とを結合させて固定することができる。
 また、前記ニッケル及びコバルトに対して、アミノ酸の一種であるヒスチジンを6個連続してペプチド結合させたペプチド鎖(いわゆるヒスタグ(His-tag))が高い親和性を有することは周知である。従って、例えば、前記ポリマー状分子の一端を、予め前記ヒスタグで修飾しておき、前記ポリマー状分子を、ニッケル若しくはコバルトで形成される金属ポストを備えた貫通孔1内に配置し、貫通孔1内において、ニッケル若しくはコバルトで形成される金属ポストと前記ヒスタグとを吸着させることによって、前記固定部と前記ポリマー状分子の一端とを結合させて固定することができる。
 また、前記マグネシウムに対して、エチレンジアミン四酢酸(EDTA)等のキレート化合物が化学的に吸着することは周知である。従って、例えば、前記ポリマー状分子の一端を予め前記EDTA若しくはEDTA誘導体で修飾しておき、前記ポリマー状分子を、マグネシウムで形成される金属ポストを備えた貫通孔1内に配置し、貫通孔1内において、マグネシウムで形成される金属ポストと前記EDTA若しくはEDTA誘導体とを吸着させることによって、前記固定部と前記ポリマー状分子の一端とを結合させて固定することができる。
Examples of the metal post include nickel, cobalt, magnesium, and gold.
It is well known that a thiol group (—SH) can be chemically bonded to the gold. Therefore, for example, one end of the polymer molecule is previously modified with a functional group having a thiol group, and the polymer molecule is disposed in the through hole 1 provided with a metal post formed of gold. In 1, the metal post formed of gold and the functional group are adsorbed to bond and fix the fixing part and one end of the polymer molecule.
Further, it is well known that a peptide chain (so-called His-tag) in which six histidines, which are one type of amino acid, are peptide-bonded to nickel and cobalt has a high affinity. Therefore, for example, one end of the polymer molecule is previously modified with the His tag, and the polymer molecule is disposed in the through hole 1 provided with a metal post formed of nickel or cobalt. Inside, by adsorbing a metal post formed of nickel or cobalt and the histag, the fixing part and one end of the polymer molecule can be bonded and fixed.
It is well known that chelate compounds such as ethylenediaminetetraacetic acid (EDTA) are chemically adsorbed to the magnesium. Therefore, for example, one end of the polymer molecule is previously modified with the EDTA or EDTA derivative, and the polymer molecule is disposed in the through hole 1 having a metal post formed of magnesium. Inside, by adsorbing the metal post formed of magnesium and the EDTA or EDTA derivative, the fixing part and one end of the polymer molecule can be bonded and fixed.
 前記特定の結合性を有する分子としては、例えば、生体分子の中でよく知られた特異的な結合をする分子、又は有機化学若しくは無機化学の分野で用いられるリンカー分子(連結剤)が好適である。具体的には、アビジン、ビオチン、種々の抗原に対する抗体、及びシランカップリング剤等が例示できる。
 アビジンとビオチンが高い特異性で互いに結合することは周知である。従って、一方を前記固定部として用い、他方を前記ポリマー状分子に予め結合させておくことによって、前記固定部と前記ポリマー状分子の一端とを結合させて固定することができる。同様の方法で、前記抗原と前記抗体とを用いることができる。
 前記シランカップリング剤は、無機物と有機物とを連結するリンカー分子としてよく知られている。例えば、ガラスを構成する二酸化ケイ素(シリカ)に対して、シランカップリング剤で予め修飾した前記ポリマー状分子を結合させる方法は周知である。ポリマー中にシランカップリング剤を化学的に導入する方法(シリル化の方法)としては、ポリマーの末端若しくは側鎖にシランカップリング剤を反応させる方法、ポリマーを構成するモノマーとともにシランカップリング剤を共重合させる方法等が周知である。従って、例えば、前記ポリマー状分子の末端を公知のシランカップリング分子で予め修飾しておき、当該ポリマー状分子を、前記シランカップリング分子が結合できる材料で形成される固定部を備えた貫通孔1内に配置し、前記ポリマー状分子の末端を貫通孔1内の前記固定部に結合して固定することができる。
 シランカップリング剤をリンカー分子として、貫通孔1の内壁と前記ポリマー状分子とを固定する場合、貫通孔1の内壁を構成するガラスに対して、前記ポリマー状分子に予め導入したシランカップリング分子を直接結合させてもよい。この固定においては、前記シランカップリング分子が前記固定部に相当する。
As the molecule having the specific binding property, for example, a molecule having a specific binding well known among biomolecules, or a linker molecule (linking agent) used in the field of organic chemistry or inorganic chemistry is preferable. is there. Specific examples include avidin, biotin, antibodies against various antigens, and silane coupling agents.
It is well known that avidin and biotin bind to each other with high specificity. Therefore, by using one as the fixing part and bonding the other to the polymer molecule in advance, the fixing part and one end of the polymer molecule can be bonded and fixed. The antigen and the antibody can be used in the same manner.
The silane coupling agent is well known as a linker molecule that connects an inorganic substance and an organic substance. For example, a method of binding the polymer molecule previously modified with a silane coupling agent to silicon dioxide (silica) constituting glass is well known. As a method of chemically introducing a silane coupling agent into a polymer (silylation method), a method of reacting a silane coupling agent with a terminal or a side chain of a polymer, a silane coupling agent together with a monomer constituting the polymer The method of copolymerization is well known. Therefore, for example, the end of the polymer-like molecule is modified in advance with a known silane coupling molecule, and the polymer-like molecule is provided with a through-hole provided with a fixing portion formed of a material to which the silane coupling molecule can be bonded. The terminal of the polymer molecule can be bonded to the fixing part in the through-hole 1 and fixed.
When fixing the inner wall of the through-hole 1 and the polymer-like molecule using a silane coupling agent as a linker molecule, the silane coupling molecule previously introduced into the polymer-like molecule with respect to the glass constituting the inner wall of the through-hole 1 May be directly coupled. In this fixation, the silane coupling molecule corresponds to the fixing part.
 本発明にかかる基体10Aの貫通孔1内に配置する前記ポリマー状分子としては、生体由来の高分子、有機化学的に合成された高分子(樹脂)等、種々の公知のポリマー状分子が挙げられる。これらの中でも生体由来の高分子が好ましく、一本鎖若しくは二本鎖のDNA分子からなるポリマー、一本鎖若しくは二本鎖のRNA分子で形成されるポリマー、又はポリペプチド鎖で形成されるポリマーがより好ましい。これらのポリマー状分子は、水系溶媒に溶解可能であるため取り扱いが容易であり、前記ポリマー状分子を引き伸ばした略直線的な状態として、貫通孔1内に配置することがより容易である。このため、前記ポリマー状分子を構成する構成単位(モノマー)の配列を分析することがより容易となる。 Examples of the polymer molecule disposed in the through-hole 1 of the base body 10A according to the present invention include various known polymer molecules such as a bio-derived polymer and an organic chemically synthesized polymer (resin). It is done. Among these, a polymer derived from a living body is preferable, a polymer composed of a single-stranded or double-stranded DNA molecule, a polymer formed from a single-stranded or double-stranded RNA molecule, or a polymer formed from a polypeptide chain. Is more preferable. Since these polymer-like molecules can be dissolved in an aqueous solvent, they are easy to handle, and it is easier to arrange the polymer-like molecules in the through-hole 1 in a substantially linear state where the polymer-like molecules are stretched. For this reason, it becomes easier to analyze the arrangement | sequence of the structural unit (monomer) which comprises the said polymer-like molecule | numerator.
 本発明の基体に備えられた貫通孔の本数、経路及び形状は、前記基体の使用目的又は前記貫通孔の内部に配置する前記ポリマー形状の種類及び長さに応じて適宜設計できる。 The number, path, and shape of the through holes provided in the base body of the present invention can be appropriately designed according to the purpose of use of the base body or the type and length of the polymer shape disposed inside the through hole.
[基体10B(10)]
 図5及び図6に示す本発明にかかる基体10Bにおいて、3本の貫通孔1が備えられ、各貫通孔1に2本の縦孔6が設けられている。縦孔6の一端は貫通孔1に開口し、他端は基材4の主面4aに開口している。縦孔6を設けることによって、貫通孔1内の前記溶液を当該縦孔6を介して流通させることができる。また、前記縦孔6を介して、別のガスもしくは液体を貫通孔1内へ流入、あるいは回収させることができる。従って、貫通孔1内に配置した前記ポリマー状分子に対して、分析等に必要な薬剤もしくはガスを、前記縦孔6を介して供給することができる。この結果、前記ポリマー状分子の分析をより容易に行うことができる。また、各縦孔6の圧力を個別に制御することによって、高分子を貫通孔に効果的に流入させることも可能となる。
[Substrate 10B (10)]
In the base body 10B according to the present invention shown in FIGS. 5 and 6, three through holes 1 are provided, and two vertical holes 6 are provided in each through hole 1. One end of the vertical hole 6 opens to the through hole 1, and the other end opens to the main surface 4 a of the substrate 4. By providing the vertical hole 6, the solution in the through hole 1 can be circulated through the vertical hole 6. Further, another gas or liquid can be flowed into the through hole 1 or recovered through the vertical hole 6. Therefore, a drug or gas necessary for analysis or the like can be supplied to the polymer molecules arranged in the through hole 1 through the vertical hole 6. As a result, the polymer molecule can be analyzed more easily. In addition, by individually controlling the pressure in each vertical hole 6, it is possible to effectively cause the polymer to flow into the through hole.
 縦孔6の前記他端は、基材4の主面4a以外の面、例えば、基材4の側面に開口していてもよい。設計上要求される位置に開口させることができる。いずれの面に開口した場合においても、主面4aに開口した場合と同様の効果が奏される。なお、前記ポリマー分子を導入する貫通孔1を「第一の貫通孔1」と呼ぶならば、縦孔6は、貫通孔1と基材4の外部とを連通する「第二の貫通孔6」と呼ぶことができる。 The other end of the vertical hole 6 may be opened on a surface other than the main surface 4 a of the substrate 4, for example, a side surface of the substrate 4. The opening can be made at a position required by design. In the case of opening to any surface, the same effect as the case of opening to the main surface 4a is achieved. If the through-hole 1 for introducing the polymer molecule is referred to as “first through-hole 1”, the vertical hole 6 refers to the “second through-hole 6 that communicates the through-hole 1 with the outside of the substrate 4. Can be called.
[基体10C(10)]
 図7及び図8に示す本発明にかかる基体10Cにおいて、3本の貫通孔1が備えられ、各貫通孔1に2本の縦孔6が設けられた構成は、前述の基体10Bと同様である。さらに、基材4の主面4aを覆う蓋となる部材(蓋材)5が備えられている。主面4aに対向する部材5の下面には、基材4に設けられた複数の縦孔6を連結する溝が2本掘られていて、それぞれ第三流路7及び第四流路を構成している。この構成によって、第三流路7と貫通孔1及び第四流路と貫通孔1を、各縦孔6を介して、連通させることができる。
 従って、第三流路7を陽圧にして、第四流路8を陰圧にすると、所定の液体又はガスを、第三流路7から一方の縦孔6を介して貫通孔1へ流入させ、さらに貫通孔1から他方の縦穴6を介して第四流路8へ流入させることができる。各流路の圧力を調整することによって、流路内の液体又はガスが流通する方向が制御される。
 従って、第三流路7、第四流路8及び各縦孔6を制御することによって、貫通孔1内に配した前記ポリマー状分子に対して分析等に必要な薬剤及びガスを供給あるいは回収することができる。この結果、前記ポリマー状分子の分析をより容易に行うことができる。
 また、第三流路7、第四流路8及び各縦孔6を制御することによって、高分子を貫通孔に効果的に流入させることも可能となる。
[Substrate 10C (10)]
In the base body 10C according to the present invention shown in FIGS. 7 and 8, the configuration in which the three through holes 1 are provided and the two vertical holes 6 are provided in each through hole 1 is the same as the base body 10B described above. is there. Further, a member (lid material) 5 serving as a lid that covers the main surface 4 a of the base material 4 is provided. On the lower surface of the member 5 facing the main surface 4a, two grooves for connecting a plurality of vertical holes 6 provided in the base material 4 are dug to constitute a third flow path 7 and a fourth flow path, respectively. is doing. With this configuration, the third flow path 7 and the through hole 1 and the fourth flow path and the through hole 1 can be communicated with each other through the vertical holes 6.
Accordingly, when the third flow path 7 is set to a positive pressure and the fourth flow path 8 is set to a negative pressure, a predetermined liquid or gas flows into the through hole 1 from the third flow path 7 through one vertical hole 6. Furthermore, it can be made to flow from the through hole 1 to the fourth flow path 8 through the other vertical hole 6. By adjusting the pressure in each channel, the direction in which the liquid or gas in the channel flows is controlled.
Therefore, by controlling the third flow path 7, the fourth flow path 8 and the respective vertical holes 6, supply or recovery of chemicals and gases necessary for the analysis etc. with respect to the polymer molecules arranged in the through holes 1 can do. As a result, the polymer molecule can be analyzed more easily.
Further, by controlling the third flow path 7, the fourth flow path 8, and each vertical hole 6, the polymer can be effectively allowed to flow into the through hole.
[基体10D(10)]
 図9に示す本発明にかかる基体10Dにおいて、貫通孔1が基材4の内部で屈曲して、主面4aから見てS字状となるように備えられている。図から明らかなように、貫通孔1の長さが基体10Aの貫通孔よりも長い。つまり、基体10の全体のサイズを大きくしなくとも、貫通孔1を長くすることができる。この結果、より長い前記ポリマー状分子を当該貫通孔1の内部に配置することができる。
[Substrate 10D (10)]
In the base body 10D according to the present invention shown in FIG. 9, the through-hole 1 is provided so as to be bent inside the base material 4 and to have an S shape when viewed from the main surface 4a. As is apparent from the figure, the length of the through hole 1 is longer than the through hole of the base body 10A. That is, the through hole 1 can be lengthened without increasing the overall size of the substrate 10. As a result, the longer polymer molecule can be arranged inside the through hole 1.
[基体10E(10)]
 図10に示す本発明にかかる基体10Eにおいて、貫通孔1が基材4の内部で屈曲して、主面4aから見てS字状となるように備えられた構成は、前述の基体10Dと同様である。さらに、基体10Eの貫通孔1には複数の縦孔6が設けられている。縦孔6を有することによる利点は、前述の基体10Bと同様である。
[Substrate 10E (10)]
In the base body 10E according to the present invention shown in FIG. 10, the configuration in which the through-hole 1 is bent inside the base material 4 so as to be S-shaped when viewed from the main surface 4a is the same as the base body 10D described above. It is the same. Further, a plurality of vertical holes 6 are provided in the through hole 1 of the base body 10E. The advantage by having the vertical hole 6 is the same as that of the above-mentioned base | substrate 10B.
[基体10F(10)]
 図11に示す本発明にかかる基体10Fにおいて、貫通孔1が基材4の内部で屈曲して、主面4aから見てS字状となるように備えられた構成は、前述の基体10Dと同様である。さらに、基体10Fの貫通孔1には複数の踊り場9が設けられている。貫通孔1の一端から他端までの途中に踊り場9を設けることによって、貫通孔1内を流通する前記溶液の流速を緩めることができる。この結果、貫通孔1内に配置された前記ポリマー状分子をより安定して保つことができる。なお、複数の踊り場9は前記柱状部分には該当しない。基体10Fにおいて、2個の踊り場9に接続された3本の円柱状の貫通孔1が、前記柱状部分に該当する。
[Substrate 10F (10)]
In the base body 10F according to the present invention shown in FIG. 11, the configuration in which the through hole 1 is bent inside the base material 4 so as to have an S shape when viewed from the main surface 4a is the same as that of the base body 10D described above. It is the same. Further, a plurality of landings 9 are provided in the through hole 1 of the base body 10F. By providing the landing 9 in the middle from one end of the through hole 1 to the other end, the flow rate of the solution flowing through the through hole 1 can be relaxed. As a result, the polymer-like molecule disposed in the through hole 1 can be kept more stable. The plurality of landings 9 do not correspond to the columnar part. In the base body 10F, the three cylindrical through holes 1 connected to the two landings 9 correspond to the columnar portion.
[基体10G(10)]
 図12に示す本発明にかかる基体10Gにおいて、貫通孔1が基材4の内部で屈曲して、主面4aから見てS字状となるように備えられ、前記貫通孔1には複数の踊り場9が設けられた構成は、前述の基体10Fと同様である。さらに、基体10Gの貫通孔1には複数の縦孔6が設けられている。縦孔6を有することによる利点は、前述の基体10Bと同様である。
[Substrate 10G (10)]
In the base body 10G according to the present invention shown in FIG. 12, the through hole 1 is provided to be bent inside the base material 4 so as to be S-shaped when viewed from the main surface 4a. The structure in which the landing 9 is provided is the same as that of the base body 10F described above. Further, a plurality of vertical holes 6 are provided in the through hole 1 of the base body 10G. The advantage by having the vertical hole 6 is the same as that of the above-mentioned base | substrate 10B.
[基体10H(10)]
 図13に示す本発明にかかる基体10Hにおいて、基材4の内部において、貫通孔1の下部に複数の温度制御デバイス11が備えられている。温度制御デバイス11としては、例えばヒーター、ペルチェ素子等が挙げられる。ヒーターを備えることによって貫通孔1内の温度を昇温させることができる。また、ペルチェ素子を備えることによって、貫通孔1内の温度を降下させることができる。このように温度制御デバイス11によって貫通孔1内の温度を制御できるので、前記ポリマー状分子の分析を行うことがより容易となる。
[Substrate 10H (10)]
In the base body 10H according to the present invention shown in FIG. 13, a plurality of temperature control devices 11 are provided in the lower part of the through hole 1 inside the base material 4. Examples of the temperature control device 11 include a heater and a Peltier element. By providing the heater, the temperature in the through hole 1 can be raised. Moreover, the temperature in the through-hole 1 can be lowered | hung by providing a Peltier element. Thus, since the temperature in the through-hole 1 can be controlled by the temperature control device 11, it becomes easier to analyze the polymer molecule.
<貫通孔内へポリマー状分子を配置する方法>
 本発明の基体に備えられた貫通孔の内部に、前記ポリマー状分子を配置する方法は特に制限されない。例えば、基体10B(図5)を用いる場合を説明する。
 まず、前記ポリマー状分子を溶解若しくは分散可能な溶媒に含ませた溶液を調製する。
 次に、ポンプ等の送液手段によって前記溶液を第一流路2に流入させ、つづいて第二流路3を陰圧にすることによって、前記溶液を貫通孔1内へ引き込むことができる。貫通孔1内へ引き込まれた前記溶液中には、前記ポリマー状分子が含まれているので、貫通孔1内の前記溶液の流れを止めると、前記ポリマー状分子を貫通孔1内に保つことができる。この際、前記ポリマー状分子と前記固定部とを接触させることにより、前記ポリマー状分子を前記固定部に結合して固定することができる。貫通孔1内に前記ポリマー状分子を配置した後、前記ポリマー状分子を固定しなくてもよいが、貫通孔1内に前記溶液又は別に調製した溶液を流通させる場合には、前記ポリマー状分子を貫通孔1内に確実に留めるために、前記ポリマー状分子の固定を行うことが好ましい。
<Method of arranging polymer-like molecules in the through-hole>
The method for disposing the polymer-like molecule inside the through-hole provided in the substrate of the present invention is not particularly limited. For example, a case where the base body 10B (FIG. 5) is used will be described.
First, a solution in which the polymer molecule is contained in a solvent capable of dissolving or dispersing is prepared.
Next, the solution can be drawn into the through-hole 1 by causing the solution to flow into the first flow path 2 by a liquid feeding means such as a pump, and then setting the second flow path 3 to a negative pressure. Since the polymer molecule is contained in the solution drawn into the through hole 1, the polymer molecule is kept in the through hole 1 when the flow of the solution in the through hole 1 is stopped. Can do. At this time, by bringing the polymer molecule into contact with the fixing part, the polymer molecule can be bonded and fixed to the fixing part. The polymer-like molecule may not be fixed after the polymer-like molecule is arranged in the through-hole 1. However, when the solution or a separately prepared solution is circulated in the through-hole 1, the polymer-like molecule may be used. Is preferably fixed in the through-hole 1 to fix the polymer molecule.
 貫通孔1内に配置された前記ポリマー状分子は、貫通孔1内に保たれることによりエントロピー的に有利な状態、すなわち、引き伸ばされた略直線の紐の様な状態となりうる。この際、貫通孔1内の溶液の組成を適宜調整することによって、前記ポリマー状分子を引き伸ばした状態とすることがより容易となる。例えば、前記ポリマー状分子に対する良溶媒若しくは貧溶媒、又は前記ポリマー状分子の高次構造を変性させて一次構造とすることができるような酸性溶媒若しくはアルカリ性溶媒等の使用が挙げられる。 The polymer-like molecules arranged in the through-hole 1 can be entropically advantageous by being kept in the through-hole 1, that is, a stretched substantially straight string-like state. At this time, by appropriately adjusting the composition of the solution in the through-hole 1, it becomes easier to make the polymer molecule stretched. For example, use of a good solvent or a poor solvent for the polymer-like molecule, or an acidic solvent or an alkaline solvent that can modify the higher-order structure of the polymer-like molecule to form a primary structure.
 また、前記ポリマー状分子が、微生物若しくは細胞等から抽出する場合、その抽出処理を本発明の基体を用いて行うことができる。図14に示したように、細胞Uを含む溶液を第一流路2に流入させ、前述のように前記溶液を貫通孔1内へ引き込むことにより、貫通孔1の第一流路2に面した開口部に前記細胞を吸着できる。この際、さらに吸引力を強めると、細胞膜の一部が破れて、前記細胞中若しくは前記細胞膜表面に存在する核酸、タンパク質及び糖鎖等のポリマー状分子Tを貫通孔1内に配置することができる。 Further, when the polymer molecule is extracted from a microorganism or a cell, the extraction treatment can be performed using the substrate of the present invention. As shown in FIG. 14, an opening facing the first flow path 2 of the through hole 1 is obtained by flowing the solution containing the cells U into the first flow path 2 and drawing the solution into the through hole 1 as described above. The cell can be adsorbed to the part. At this time, when the suction force is further increased, a part of the cell membrane is broken, and the polymer molecules T such as nucleic acids, proteins and sugar chains existing in the cells or on the surface of the cell membrane can be arranged in the through-hole 1. it can.
 以上で説明した基体10A~基体10Hは、貫通孔1が1本又は3本備えられた構成である。本発明にかかる基体において、貫通孔の本数、形状、経路、及び貫通孔同士の離間距離は上記の例に限定されず、前記基体の使用目的に応じて適宜設計できる。 The base 10A to base 10H described above have a configuration in which one or three through holes 1 are provided. In the substrate according to the present invention, the number of through holes, the shape, the path, and the distance between the through holes are not limited to the above example, and can be appropriately designed according to the purpose of use of the substrate.
<ポリマー状分子の分析方法>
 本発明の分析方法は、本発明にかかる基体を使用して、前記ポリマー状分子の構成単位の配列を分析する方法であり、少なくとも以下の工程A1~A4を含む。
 ここで、前記構成単位とは、前記ポリマー状分子を構成するモノマーに相当する分子をいう。例えば、前記ポリマー状分子がDNAである場合、前記構成単位はデオキシリボヌクレオチドであり、前記構成単位の配列は、デオキシリボヌクレオチドが有する塩基の配列、すなわち、アデニン(A)グアニン(G)、シトシン(C)、及びチミン(T)の配列である。また、例えば、前記ポリマー状分子がRNAである場合、前記構成単位はリボヌクレオチドであり、前記構成単位の配列は、リボヌクレオチドが有する塩基の配列順序、すなわち、アデニン(A)、グアニン(G)、シトシン(C)、及びウラシル(U)の配列である。また、例えば、前記ポリマー状分子がタンパク質である場合、前記構成単位はアミノ酸であり、前記構成単位の配列は、公知の20種以上のアミノ酸の配列順序である。
<Method for analyzing polymer-like molecules>
The analysis method of the present invention is a method of analyzing the arrangement of structural units of the polymer-like molecule using the substrate according to the present invention, and includes at least the following steps A1 to A4.
Here, the structural unit refers to a molecule corresponding to a monomer constituting the polymer molecule. For example, when the polymer molecule is DNA, the structural unit is deoxyribonucleotide, and the sequence of the structural unit is a base sequence of deoxyribonucleotide, that is, adenine (A) guanine (G), cytosine (C ) And thymine (T). For example, when the polymer molecule is RNA, the structural unit is a ribonucleotide, and the sequence of the structural unit is the sequence order of the bases of the ribonucleotide, that is, adenine (A), guanine (G). , Cytosine (C), and uracil (U). For example, when the polymer molecule is a protein, the structural unit is an amino acid, and the sequence of the structural unit is a sequence order of 20 or more known amino acids.
 本発明の各工程について、前述の基体10Bを用いた場合を一例として、以下に説明する。
[工程A1]
 本発明の分析方法の工程A1は、前記空間に前記ポリマー状分子を含む第一の溶液を流入させ、前記ポリマー状分子を前記貫通孔の内部へ導入する工程である。
 基体10Bにおいて、第一の溶液を前記空間である第一流路2に流入させ、第二流路3を陰圧にすることによって、貫通孔1内に第一の溶液を引き込む。この方法の詳細は前述の通りである。また、より直接的に導入する方法としては、光ピンセットを用いて前記ポリマー状分子を貫通孔1内へ運搬する方法が例示できる。
Each step of the present invention will be described below by taking as an example the case where the aforementioned base body 10B is used.
[Step A1]
Step A1 of the analysis method of the present invention is a step of introducing a first solution containing the polymer molecule into the space and introducing the polymer molecule into the through hole.
In the base body 10 </ b> B, the first solution is drawn into the through hole 1 by flowing the first solution into the first flow path 2, which is the space, and setting the second flow path 3 to a negative pressure. Details of this method are as described above. Moreover, as a method of introducing more directly, a method of transporting the polymer molecule into the through-hole 1 using optical tweezers can be exemplified.
[工程A2]
 本発明の分析方法の工程A2は、前記ポリマー状分子の少なくとも一部を、前記貫通孔の内壁に固定する工程である。
 基体10Bにおける貫通孔1内に配置された前記ポリマー状分子の少なくとも一部を、貫通孔1の内壁に固定する方法としては、例えば、前記ポリマー状分子が本来有する物理化学的性質を利用して、貫通孔1の内壁に吸着若しくは結合させる方法が挙げられる。前記物理化学的性質によって生じうる前記結合としては、水素結合、疎水結合(疎水性相互作用)、ファンデルワールス力による吸着(分子間力による吸着)等が挙げられる。
 前記ポリマー状分子の少なくとも一部を、貫通孔1の内壁に固定する方法としては、前記固定部を介して固定する方法が好ましい。前記固定部を介した固定であると、前記固定をより確実に行うことができる。また、前記固定部の種類を適宜選択することによって、前記固定の結合力を調整できる。さらに、貫通孔1内に、前記固定部を設け、前記固定部を設ける位置を調整する。
[Step A2]
Step A2 of the analysis method of the present invention is a step of fixing at least a part of the polymer molecule to the inner wall of the through hole.
As a method of fixing at least a part of the polymer molecule arranged in the through hole 1 in the base body 10B to the inner wall of the through hole 1, for example, using the physicochemical properties inherent in the polymer molecule And a method of adsorbing or bonding to the inner wall of the through hole 1. Examples of the bond that can be generated by the physicochemical property include hydrogen bond, hydrophobic bond (hydrophobic interaction), adsorption by van der Waals force (adsorption by intermolecular force), and the like.
As a method of fixing at least a part of the polymer molecule to the inner wall of the through-hole 1, a method of fixing via the fixing part is preferable. If the fixing is performed via the fixing portion, the fixing can be performed more reliably. Moreover, the fixed binding force can be adjusted by appropriately selecting the type of the fixing portion. Further, the fixing portion is provided in the through hole 1, and the position where the fixing portion is provided is adjusted.
[工程A3]
 本発明の分析方法の工程A3は、前記ポリマー状分子に結合する結合体を前記貫通孔内に導入する工程である。
 基体10Bに固定した前記ポリマー状分子に結合する結合体を貫通孔1内に導入する方法としては、例えば、前記結合体を溶媒に溶解若しくは分散させ、前記結合体の溶液を調製し、この溶液を貫通孔1内に流入させる。その結果、前記結合体を貫通孔1内に導入することができる。貫通孔1内において、前記結合体は前記ポリマー状分子に結合する。
[Step A3]
Step A3 of the analysis method of the present invention is a step of introducing a conjugate that binds to the polymer molecule into the through-hole.
As a method for introducing a conjugate that binds to the polymer molecule fixed to the substrate 10B into the through-hole 1, for example, the conjugate is dissolved or dispersed in a solvent to prepare a solution of the conjugate, and this solution Is allowed to flow into the through hole 1. As a result, the combined body can be introduced into the through hole 1. In the through-hole 1, the conjugate binds to the polymer molecule.
 前記ポリマー状分子がDNA又はRNAである場合、前記結合体が標識デオキシヌクレオチドであり、前記シグナルが、DNAポリメラーゼ又はRNAポリメラーゼによるDNA又はRNAの複製反応によって生じることが好ましい。この構成を用いることで、前記光学的な観察によって、前記DNA又はRNAの塩基配列を分析することができる。 When the polymer molecule is DNA or RNA, the conjugate is preferably a labeled deoxynucleotide, and the signal is preferably generated by a DNA or RNA replication reaction by DNA polymerase or RNA polymerase. By using this configuration, the base sequence of the DNA or RNA can be analyzed by the optical observation.
 以下では、分析対象がDNAの場合について説明するが、分析対象がRNAの場合は、リバーストランスクリプターゼによりcDNA化したのち、分析対象がDNAである場合と同様の方法で分析できる。また、分析対象がRNAの場合、標識デオキシリボヌクレオチドとリバーストランスクリプターゼを用いて、RNAを鋳型とした逆転写反応を直接可視化し、DNAの場合と同様にシーケンスすることも可能である。さらに、分析対象がRNAの場合、DNAポリメラーゼ及び標識デオキシリボヌクレオチドに代えて、RNA依存RNAポリメラーゼ(RNAレプリカーゼ)及び標識リボヌクレオチドを使用して、分析対象がDNAの場合と同様に分析できる。 Hereinafter, the case where the analysis target is DNA will be described. However, when the analysis target is RNA, the analysis can be performed in the same manner as in the case where the analysis target is DNA after being converted to cDNA by reverse transcriptase. In addition, when the analysis target is RNA, it is also possible to directly visualize the reverse transcription reaction using RNA as a template using labeled deoxyribonucleotide and reverse transcriptase, and to sequence in the same manner as in the case of DNA. Further, when the analysis target is RNA, it can be analyzed in the same manner as when the analysis target is DNA by using RNA-dependent RNA polymerase (RNA replicase) and labeled ribonucleotide instead of DNA polymerase and labeled deoxyribonucleotide.
[工程A4]
 本発明の分析方法の工程A4は、前記結合した結果生じるシグナルを前記基体の外部から光学的に観察する工程である。
 貫通孔1内において、既知の配列を持つプライマーもしくはランダムプライマーをDNA鎖の所定の位置に結合させ、前記ポリメラーゼをDNA鎖に結合させる。この際、1本のDNA鎖には複数のポリメラーゼが結合してもかまわない。基質である標識dATP(デオキシアデノシン三リン酸)、標識dGTP(デオキシグアノシン三リン酸)、標識dCTP(デオキシシチジン三リン酸)、標識dTTP(デオキシチミジン三リン酸)のうち、DNA鎖の塩基配列に相補的な標識デオキシヌクレオチド(以下、dNTPと呼ぶ)を順次結合して、DNAの所定の位置から、DNAの複製反応を行う。各dNTPがDNA鎖に結合する際、各dNTPが加水分解されてピロリン酸が放出される。このピロリン酸を、予め蛍光標識しておくことによって、DNAの複製反応における加水分解ごとに、蛍光シグナルを検出することができる。
[Step A4]
Step A4 of the analysis method of the present invention is a step of optically observing a signal generated as a result of the binding from the outside of the substrate.
In the through-hole 1, a primer having a known sequence or a random primer is bound to a predetermined position of the DNA strand, and the polymerase is bound to the DNA strand. At this time, a plurality of polymerases may be bound to one DNA strand. Among the substrates, labeled dATP (deoxyadenosine triphosphate), labeled dGTP (deoxyguanosine triphosphate), labeled dCTP (deoxycytidine triphosphate), and labeled dTTP (deoxythymidine triphosphate), the nucleotide sequence of the DNA chain A complementary labeled deoxynucleotide (hereinafter referred to as dNTP) is sequentially bound to DNA, and a DNA replication reaction is carried out from a predetermined position of the DNA. When each dNTP binds to the DNA strand, each dNTP is hydrolyzed to release pyrophosphate. By fluorescently labeling this pyrophosphate in advance, a fluorescent signal can be detected for each hydrolysis in the DNA replication reaction.
 前記シグナルは、ポリメラーゼが結合した場所から得られるため、1本のDNA上の複数箇所に前記プライマー、ポリメラーゼ、及びdNTPを結合させた場合、各箇所から発生する複数のシグナルを、その位置情報と関連付けて、単位時間中に検出することができる。4種類のdNTPのそれぞれに対応する異なる蛍光標識を使用することによって、4種類の蛍光シグナルを観測できる。従って、前記DNAの複製反応が進むとともに、前記DNA鎖の塩基配列に対応した蛍光シグナルが順次観察される。蛍光シグナルの種類、発生順序及び位置を測定及び分析することによって、前記DNA鎖の塩基配列を得ることができる。 Since the signal is obtained from the location where the polymerase is bound, when the primer, polymerase, and dNTP are bound to a plurality of locations on a single DNA, a plurality of signals generated from the respective locations are converted into position information and In association, detection can be performed during unit time. By using different fluorescent labels corresponding to each of the four types of dNTPs, four types of fluorescent signals can be observed. Therefore, as the DNA replication reaction proceeds, fluorescence signals corresponding to the base sequence of the DNA strand are observed sequentially. The base sequence of the DNA strand can be obtained by measuring and analyzing the type, generation order, and position of the fluorescent signal.
 DNA上に複数のポリメラーゼが結合し観察領域の複数箇所でシグナルが検出される場合は、各シグナルの1次元的な蛍光シグナルの種類と順序に、2次元平面上のシグナルの位置情報を加えて、各シグナル情報を2次元的につなぎ合わせることで、配列決定速度を飛躍的に加速することができる。
 前記DNAの複製反応に伴う蛍光シグナルの発生方法について、特許文献1に開示されたFRETシステム等を、本発明の趣旨を逸脱しない限り適用することができる。また、シグナルの位置決定は、既知のFIONA(Fluorescence Imaging One-Nanometer Accuracy)等の位置決定法を用いて、サブナノメートルの精度で決定できる。これにより、1塩基の位置の違いを検出可能となる。上記反応を複数の貫通口内で同時に行うことで、得られるデーターを冗長化し、配列決定精度向上させることも可能である。
 FIONA法を用いて、前記各シグナル情報を2次元的につなぎ合わせる方法としては、例えば、下記参考文献に記載されたモータータンパク質におけるFIONA法を、本発明においては、順次現れる前記蛍光シグナルの色と位置を特定することに適用し、その位置情報を2次元座標に記録する。それによって、前記2次元座標に各シグナルを並べて、解析対象であるDNA配列を前記2次元座標に構築する方法が挙げられる。
(参考文献;”Fluorescence Imaging with One Nanometer Accuracy: Application to Molecular Motors” Ahmet Yildiz and Paul R. Selvin, Acc. Chem. Res. 2005, 38, 574-582)
If multiple polymerases bind to DNA and signals are detected at multiple locations in the observation area, add the position information of the signal on the two-dimensional plane to the type and order of the one-dimensional fluorescent signal of each signal. By linking each signal information two-dimensionally, the sequencing speed can be dramatically accelerated.
The FRET system disclosed in Patent Document 1 can be applied to the method for generating a fluorescent signal associated with the DNA replication reaction without departing from the gist of the present invention. Further, the position of the signal can be determined with sub-nanometer accuracy by using a known position determination method such as FIONA (Fluorescence Imaging One-Nanometer Accuracy). Thereby, the difference in the position of one base can be detected. By simultaneously performing the above reaction in a plurality of through-holes, it is possible to make the obtained data redundant and improve the sequencing accuracy.
As a method of connecting each signal information in a two-dimensional manner using the FIONA method, for example, the FIONA method in a motor protein described in the following reference is used, and in the present invention, the color of the fluorescent signal that appears sequentially This is applied to specify the position, and the position information is recorded in two-dimensional coordinates. Accordingly, there is a method of arranging each signal on the two-dimensional coordinate and constructing a DNA sequence to be analyzed on the two-dimensional coordinate.
(Reference; “Fluorescence Imaging with OneNometer Accuracy: Application to Molecular Motors” Ahmet Yildiz and Paul R. Servin, Acc. Chem. Res. 2005, 38. 58.
 前記結合体である標識デオキシヌクレオチドが、前記ポリメラーゼによるDNAの複製反応において、前記ポリマー状分子であるDNA鎖に結合した結果生じる蛍光シグナルを、基体10Bの外部から光学的に観察する方法は特に制限されず、例えば、光学顕微鏡と併用した高解像度CCDカメラ等を用いることができる。 The method of optically observing the fluorescence signal generated as a result of binding of the labeled deoxynucleotide as the conjugate to the DNA strand as the polymer molecule in the DNA replication reaction by the polymerase from the outside of the substrate 10B is particularly limited. For example, a high-resolution CCD camera used in combination with an optical microscope can be used.
 前記ポリマー状分子が、タンパク質である場合、既知の変性剤存在下において、直鎖状のポリペプチドに変性させ、貫通口1内に導入する。その後、生理的条件の緩衝液などを導入し、変性剤の除去を行う。次に、3~4アミノ酸を認識する抗体、DNA/RNAアプタマー、もしくは有機化合物等を導入する。これらの物質をアミノ酸決定分子と呼ぶ。これらは、先頭の1アミノ酸のみを厳格に識別し(認識し)、残る2~3残基はどの種類のアミノ酸であっても結合してかまわない。このようなアミノ酸決定分子を全てのアミノ酸に対応する種類だけ用意し、順次貫通口1内に導入する。これらの分子は蛍光標識されており、蛍光顕微鏡もしくは蛍光検出器を使用することよって、引き伸ばされたポリペプチド上に結合したアミノ酸決定分子に由来するシグナルを検出することができる。得られるシグナルは、ポリペプチド内に、同じアミノ酸が複数個含まれる。従って、ポリペプチドを構成するアミノ酸に対応する所定位置に同時に複数検出される。このシグナルを既知のFIONA等の位置決定法を用いて、サブナノメートルの精度で蛍光シグナルの位置を決定する。その後、熱もしくは変性剤を導入し、結合しているアミノ酸決定分子を除去する。これをアミノ酸決定分子の種類だけ繰り返し、得られたシグナル位置とアミノ酸決定分子の種類とをつなぎ合わせることでポリペプチドの全配列を決定する。上記反応を複数の貫通口内で同時に行うことで、得られるデーターを冗長化し、配列決定精度向上させることも可能である。
 同様な方法は、DNAにおけるエピジェネティクスな目印である、DNAメチル化及びヒストン修飾においても適用することができる。すなわち、DNAの配列決定後、メチル化DNAを認識する蛍光抗体を導入し、メチル化されたDNAに結合させる。その後、上記と同様な2次元的な高精度の位置決定により、蛍光抗体の位置情報を取得する。次に、先に取得したDNAの塩基配列の位置情報と照らし合わせ、どの塩基がメチル化されているか決定する。ヒストンのアセチル化に関しても同様の方法で検出可能である。DNAの流路内の固定については、先に示した方法を用いることが可能である。
When the polymer molecule is a protein, it is denatured into a linear polypeptide and introduced into the through-hole 1 in the presence of a known denaturant. Thereafter, a buffer solution or the like under physiological conditions is introduced to remove the denaturing agent. Next, an antibody, DNA / RNA aptamer, or organic compound that recognizes 3 to 4 amino acids is introduced. These substances are called amino acid determining molecules. These strictly identify (recognize) only the first amino acid, and the remaining 2 to 3 residues may be bound to any kind of amino acid. Only such types of amino acid determining molecules corresponding to all amino acids are prepared and sequentially introduced into the through hole 1. These molecules are fluorescently labeled, and a signal derived from an amino acid determinant molecule bound on the stretched polypeptide can be detected by using a fluorescence microscope or a fluorescence detector. The obtained signal includes a plurality of the same amino acids in the polypeptide. Therefore, a plurality of detections are simultaneously made at predetermined positions corresponding to the amino acids constituting the polypeptide. The position of the fluorescence signal is determined with sub-nanometer accuracy using a known position determination method such as FIONA. Thereafter, heat or a denaturant is introduced to remove the amino acid determinant molecules bound thereto. This is repeated for the type of amino acid determining molecule, and the entire sequence of the polypeptide is determined by connecting the obtained signal position and the type of amino acid determining molecule. By simultaneously performing the above reaction in a plurality of through-holes, it is possible to make the obtained data redundant and improve the sequencing accuracy.
Similar methods can be applied to DNA methylation and histone modifications, which are epigenetic landmarks in DNA. That is, after DNA sequencing, a fluorescent antibody that recognizes methylated DNA is introduced and bound to the methylated DNA. Thereafter, the position information of the fluorescent antibody is acquired by the same two-dimensional position determination as described above. Next, it is compared with the position information of the base sequence of DNA acquired previously, and which base is methylated is determined. Histone acetylation can also be detected by the same method. The method described above can be used for fixing the DNA in the channel.
 前記「3~4アミノ酸を認識する抗体」を作製する方法として、例えば次の方法が例示できる。解析するポリペプチドを構成するアミノ酸の種類が20種類である場合、前記抗体によって認識される4残基で形成されるアミノ酸配列の種類(自由度)は、最初の一つは一意に決められるので、20の3乗(8000種類)となる。最初の一つのアミノ酸だけ1種に決定し、それに続く配列をランダムに化学合成することによって、8000種類のペプチドを準備できる。このとき、化学合成におけるライブラリサイズの限界はおよそ10の8乗(10)と言われているので、ランダムな6アミノ酸で構成されるペプチドまでは全てを網羅することが理論的に可能である。次に、合成したペプチドのC末端を、PEG(ポリエチレングリコール)などの適当なリンカーを介して、ラテックスビーズ上に固定する。このビーズを用いて、常法により、マウスもしくはウサギなどの動物に免疫を行い、ポリクロナール抗体を得る。なお、得られる抗体の種類は、免疫する動物が有するB細胞の数に依存する。通常、B細胞は約10の9乗(10)~10の10乗(1010)程度存在するため、十分な冗長性をもって、8000種類の全てを認識する抗体を生産可能となる。
 この方法よって、先に決定した「1種」のアミノ酸を先頭に有する、4残基で形成されるアミノ酸配列に結合可能な抗体が得られる。同様の方法で、残りの19種類のアミノ酸についても、各々8000種類の抗原を用いることによって、ポリクロナール抗体が得られる。作製するポリクロナール抗体は、20種類のアミノ酸に対応して、合計20ロットでよい。解析対象のポリペプチドに対して各ロットを独立に又は同時に使用し、各アミノ酸の種類に対応する抗体がポリペプチドに結合する位置を測定し、ポリペプチドの特定の位置におけるアミノ酸の種類を決定する。得られた位置情報とアミノ酸の種類とを統合することにより、前記ポリペプチドのアミノ酸配列を決定できる。
Examples of the method for producing the “antibody recognizing 3 to 4 amino acids” include the following methods. When there are 20 types of amino acids constituting the polypeptide to be analyzed, the first one is uniquely determined as the type (degree of freedom) of the amino acid sequence formed by the 4 residues recognized by the antibody. , 20 to the third power (8000 types). 8000 kinds of peptides can be prepared by determining only the first one amino acid as one kind and then chemically synthesizing the subsequent sequences randomly. At this time, the limit of the library size in chemical synthesis is said to be about 10 to the 8th power (10 8 ), so it is theoretically possible to cover all of peptides composed of 6 random amino acids. . Next, the C-terminus of the synthesized peptide is immobilized on latex beads via an appropriate linker such as PEG (polyethylene glycol). Using these beads, an animal such as a mouse or a rabbit is immunized by a conventional method to obtain a polyclonal antibody. Note that the type of antibody obtained depends on the number of B cells possessed by the animal to be immunized. Normally, B cells are present in the order of about 10 9 (10 9 ) to 10 10 (10 10 ), so that antibodies capable of recognizing all 8000 types can be produced with sufficient redundancy.
By this method, an antibody capable of binding to an amino acid sequence formed by 4 residues having the first determined “one kind” amino acid at the beginning can be obtained. In the same manner, a polyclonal antibody can be obtained by using 8000 types of antigens for each of the remaining 19 types of amino acids. A total of 20 lots of polyclonal antibodies may be prepared corresponding to 20 kinds of amino acids. Use each lot independently or simultaneously for the polypeptide to be analyzed, measure the position where the antibody corresponding to each amino acid type binds to the polypeptide, and determine the amino acid type at a specific position in the polypeptide . By integrating the obtained positional information and the type of amino acid, the amino acid sequence of the polypeptide can be determined.
<基体の製造方法>
 次に、本発明にかかる基体の製造方法を、前述の第一実施形態の基体10Aを例にとって説明する。図15A~Dで示すように、ピコ秒オーダー以下(10ps以下)のパスル時間幅を有するレーザーLを、単一の部材4において、貫通孔1となる領域に照射することによって、前記領域に改質部51を形成する工程M1(図15A)と、単一の部材4に、前記空間をなす第一流路2及び第二流路3を形成する工程M2(図15B)と、単一の部材4から改質部51をエッチングによって除去する工程M3(図15C)と、を少なくとも有する。
<Method for producing substrate>
Next, a method for manufacturing a substrate according to the present invention will be described using the substrate 10A of the first embodiment as an example. As shown in FIGS. 15A to 15D, the laser L having a pulse time width of picosecond order or less (10 ps or less) is irradiated on the region to be the through hole 1 in the single member 4 to thereby change the region. Step M1 (FIG. 15A) for forming the mass portion 51, Step M2 (FIG. 15B) for forming the first flow path 2 and the second flow path 3 forming the space in the single member 4, and a single member 4 and at least a step M3 (FIG. 15C) of removing the modified portion 51 by etching.
[工程M1]
 レーザーL(レーザー光L)は、パルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザー光を用いることが好ましい。例えば、チタンサファイアレーザー、前記パルス幅を有するファイバーレーザーなどを用いることができる。ただし、部材4を透過する波長を使用することが必要である。より具体的には、部材4に対する透過率が60%以上のレーザー光であることが好ましい。
[Step M1]
As the laser L (laser light L), it is preferable to use a laser light having a pulse width of a pulse time width of picosecond order or less. For example, a titanium sapphire laser, a fiber laser having the pulse width, or the like can be used. However, it is necessary to use a wavelength that transmits the member 4. More specifically, a laser beam having a transmittance of 60% or more with respect to the member 4 is preferable.
 前記レーザーL(レーザー光L)は、加工用レーザーとして使用される一般的な波長領域(0.1~10um)の光を適用することができる。その中でも、被加工部材である部材4を透過する必要がある。部材4を透過する波長のレーザー光を適用することによって、部材59に改質部51を形成することができる。 As the laser L (laser light L), light in a general wavelength region (0.1 to 10 μm) used as a processing laser can be applied. Among these, it is necessary to penetrate the member 4 which is a workpiece. By applying laser light having a wavelength that passes through the member 4, the modified portion 51 can be formed in the member 59.
 部材4の材料としては、例えば、シリコン、ガラス、石英、及びサファイアなどが挙げられる。これらの材料は、貫通孔1を形成する際の加工性に優れるので好ましい。なかでも、前記材料は、結晶方位による加工異方性の影響を受けにくい非結晶質である方が好ましい。
 更には、顕微鏡等の光学的手段によって観察するには、ガラス、石英、もしくはサファイアを用いると、可視光線(波長0.36μm~0.83μm)が透過するため、より好ましい。
Examples of the material of the member 4 include silicon, glass, quartz, and sapphire. These materials are preferable because they are excellent in workability when forming the through hole 1. In particular, the material is preferably amorphous so as not to be affected by processing anisotropy due to crystal orientation.
Furthermore, when observing with optical means such as a microscope, it is more preferable to use glass, quartz, or sapphire because visible light (wavelength: 0.36 μm to 0.83 μm) is transmitted.
 また、部材4の材料は、波長0.1μm~10μmを有する光のうち少なくとも一部の波長を有する光を透過することが好ましい。
 具体的には、加工用レーザー光として使用される一般的な波長領域(0.1μm~10μm)の、少なくとも一部領域の光を透過することが好ましい。前記部材4の材料が、このようなレーザー光を透過することによって、後述するように、前記部材にレーザー照射して改質部を形成することができる。
 また、前記部材4の材料が、可視光領域(波長約0.36μm~約0.83μm)の光に対して透明であることが、より好ましい。前記部材4の材料が、可視光領域の光を透過することによって、貫通孔1内に導入した前記ポリマー状分子を光学的に観察することができる。
 なお、本発明における「透過(透明)」とは、前記部材に光を入射して、前記部材から透過光が得られる状態の全てをいう。
 図15A~Dでは、単一の部材4は透明なガラス基板である(以下、ガラス基板4と呼ぶ)。
 以下では、部材4がガラス基板である場合について説明するが、部材4がその他の部材、例えば、シリコン、石英、又はサファイアの場合であっても、同様の工程を行うことができる。
 後述する工程M2における加工性は、シリコン、石英、及びガラスがより好適である。
Further, it is preferable that the material of the member 4 transmits light having at least some wavelengths among light having wavelengths of 0.1 μm to 10 μm.
Specifically, it is preferable to transmit at least a part of light in a general wavelength region (0.1 μm to 10 μm) used as a processing laser beam. When the material of the member 4 transmits such laser light, the modified portion can be formed by irradiating the member with laser as described later.
More preferably, the material of the member 4 is transparent to light in the visible light region (wavelength of about 0.36 μm to about 0.83 μm). When the material of the member 4 transmits light in the visible light region, the polymer molecule introduced into the through hole 1 can be optically observed.
In the present invention, “transmission (transparent)” refers to all states in which light enters the member and transmitted light is obtained from the member.
In FIGS. 15A to 15D, the single member 4 is a transparent glass substrate (hereinafter referred to as a glass substrate 4).
Below, although the case where the member 4 is a glass substrate is demonstrated, even if the member 4 is the case of another member, for example, a silicon | silicone, quartz, or sapphire, the same process can be performed.
Silicon, quartz, and glass are more suitable for the workability in the process M2 to be described later.
 ガラス基板4は、例えば石英で形成されるガラス基板、珪酸塩を主成分とするガラス基板、ホウ珪酸ガラスで形成されるガラス基板等を用いることができる。合成石英で形成されるガラス基板が、加工性が良いため好適である。また、ガラス基板4の厚さは特に制限されない。 As the glass substrate 4, for example, a glass substrate formed of quartz, a glass substrate mainly composed of silicate, a glass substrate formed of borosilicate glass, or the like can be used. A glass substrate formed of synthetic quartz is preferable because of good workability. Further, the thickness of the glass substrate 4 is not particularly limited.
 レーザー光Lの照射方法としては、図15Aに示す方法が挙げられる。すなわち、ガラス基板4の内部に集光して焦点を結ぶようにレーザー光Lを照射して、前記焦点を矢印方向に走査することによって、ガラスが改質された改質部51を形成する。
 貫通孔1となる領域に、前記焦点をガラス基板4内部で走査することによって、所望の形状の改質部51を形成することができる。
 ここで、本明細書及び特許請求の範囲に置いて、「改質部」とは、エッチング耐性が低くなり、エッチングによって選択的に又は優先的に除去される部分」を意味する。
As the irradiation method of the laser beam L, the method shown in FIG. That is, the modified part 51 in which the glass is modified is formed by irradiating the laser beam L so as to be focused and focused on the inside of the glass substrate 4 and scanning the focal point in the direction of the arrow.
By scanning the focal point inside the glass substrate 4 in the region to be the through hole 1, the modified portion 51 having a desired shape can be formed.
Here, in the present specification and claims, the “modified portion” means a portion having low etching resistance and selectively or preferentially removed by etching.
 レーザー光Lを照射する際、照射強度をガラス基板4の加工上限閾値(加工適正値)に近い値又は加工上限閾値未満にすると共に、レーザー光Lの偏波方向(電場方向)を走査方向に対して垂直となるようにすることが好ましい。このレーザー照射方法を、以下ではレーザー照射方法Sと呼ぶ。 When irradiating the laser beam L, the irradiation intensity is set to a value close to the processing upper limit threshold (processing appropriate value) of the glass substrate 4 or less than the processing upper limit threshold, and the polarization direction (electric field direction) of the laser light L is set to the scanning direction. It is preferable to be perpendicular to the surface. Hereinafter, this laser irradiation method is referred to as a laser irradiation method S.
 レーザー照射方法Sを、図16で説明する。レーザー光Lの伝播方向は矢印Zであり、前記レーザー光Lの偏波方向(電場方向)は矢印Yである。レーザー照射方法Sでは、レーザー光Lの照射領域を、前記レーザー光の伝播方向Zと、前記レーザー光の偏波方向に対して垂直な方向と、で形成される平面50内とする。これと共に、レーザー照射強度をガラス基板4の加工上限閾値に近い値又は加工上限閾値未満とする。 The laser irradiation method S will be described with reference to FIG. The propagation direction of the laser light L is an arrow Z, and the polarization direction (electric field direction) of the laser light L is an arrow Y. In the laser irradiation method S, the irradiation region of the laser light L is set within a plane 50 formed by the propagation direction Z of the laser light and a direction perpendicular to the polarization direction of the laser light. At the same time, the laser irradiation intensity is set to a value close to the processing upper limit threshold of the glass substrate 4 or less than the processing upper limit threshold.
 このレーザー照射方法Sによって、ガラス基板4内にナノオーダーの口径を有する改質部51を形成することができる。例えば、短径が20nm程度、長径が0.2μm~5μm程度の略楕円形状の断面を有する改質部51が得られる。この略楕円形状は、レーザーの伝播方向に沿った方向が長軸で、レーザーの電場方向に沿った方向が短軸となる。レーザー照射条件によっては、前記断面は矩形に近い形状となることもある。 By this laser irradiation method S, the modified portion 51 having a nano-order aperture can be formed in the glass substrate 4. For example, the modified portion 51 having a substantially elliptical cross section with a minor axis of about 20 nm and a major axis of about 0.2 μm to 5 μm is obtained. In this substantially elliptical shape, the direction along the laser propagation direction is the major axis, and the direction along the laser electric field direction is the minor axis. Depending on the laser irradiation conditions, the cross section may have a shape close to a rectangle.
 レーザー照射強度を、ガラス基板4の加工上限閾値以上とした場合、得られる改質部51は周期構造を伴って形成されることがある。すなわち、ピコ秒オーダー以下のパルスレーザーを加工上限閾値以上で集光照射させることで、集光部で電子プラズマ波と入射光の干渉が起こり、レーザーの偏波に対して垂直であり、偏波方向に沿って周期性をもつ周期構造が自己形成的に形成されることがある。 When the laser irradiation intensity is set to be equal to or higher than the processing upper limit threshold of the glass substrate 4, the obtained modified portion 51 may be formed with a periodic structure. In other words, by condensing and irradiating a pulse laser of picosecond order or less above the processing upper threshold, interference between the electron plasma wave and incident light occurs at the condensing part, and it is perpendicular to the laser polarization. A periodic structure having periodicity along the direction may be formed in a self-forming manner.
 形成された周期構造はエッチング耐性の低い層となる。例えば、石英の場合、酸素が欠乏した層と酸素が増えた層が周期的に配列され(図17B)、酸素欠乏部のエッチング耐性が弱くなっており、エッチングを行うと周期的な凹部及び凸部が形成されうる。このような周期的な凹部及び凸部は、後述する貫通孔1の形成においては不要である。 The formed periodic structure is a layer with low etching resistance. For example, in the case of quartz, the oxygen-deficient layer and the oxygen-enriched layer are periodically arranged (FIG. 17B), and the etching resistance of the oxygen-deficient portion is weakened. A portion can be formed. Such periodic recesses and protrusions are not necessary in the formation of the through holes 1 described later.
 一方、前述のレーザー照射方法Sのように、レーザー照射強度をガラス基板4の加工上限閾値未満、且つガラス基板4を改質してエッチング耐性を低下させうるレーザー照射強度の下限値以上とすれば、前記周期構造は形成されず、レーザー照射によって一つの酸素欠乏部(エッチング耐性の低い層)が形成される(図17A)。また、前記一つの酸素欠乏部のエッチングを行うと、一つの貫通孔1を形成することができる。 On the other hand, as in the laser irradiation method S described above, if the laser irradiation intensity is less than the processing upper limit threshold value of the glass substrate 4 and the laser irradiation intensity can be reduced by reducing the etching resistance by modifying the glass substrate 4. The periodic structure is not formed, and one oxygen-deficient portion (a layer having low etching resistance) is formed by laser irradiation (FIG. 17A). Further, when the one oxygen-deficient portion is etched, one through hole 1 can be formed.
 前述のレーザー照射方法Sによれば、貫通孔1の長手方向に直交する断面の形状を楕円又は略楕円とすることができる。また、その短径をエッチングによってナノオーダーサイズで制御することが可能となる。楕円又は略楕円形状では、短径を、例えば微生物サイズよりも小さくすることで、微生物を捕捉することが出来る。このとき長径をナノオーダーサイズよりも大きくすることもできるため、貫通孔1に流入する流体の圧力損失を小さく出来る。また、前記ポリマー状分子を導入する前準備又は細胞及び微生物を捕捉するための事前準備として、貫通孔1内に、あらかじめ溶液を充填させておくことが好ましい。この場合、貫通孔が微細であるほど毛細管力が大きくなるため、貫通孔1から、溶液が貫通孔1の外に出てこなくなる弊害が発生する場合がある。しかしながら、貫通孔1の断面を楕円又は略楕円とすることで、前記ポリマー状分子を導入したり、前記微生物を捕捉したりするのに十分な短径であった場合でも、長径を十分大きくすることで毛細管力を抑制させ、溶液が貫通孔1の外に出てこなくなる弊害を抑制することができる。 According to the laser irradiation method S described above, the shape of the cross section perpendicular to the longitudinal direction of the through-hole 1 can be an ellipse or a substantially ellipse. In addition, the minor axis can be controlled to a nano-order size by etching. In the case of an ellipse or a substantially elliptical shape, microorganisms can be captured by making the minor axis smaller than, for example, the microorganism size. At this time, since the major axis can be made larger than the nano-order size, the pressure loss of the fluid flowing into the through hole 1 can be reduced. Moreover, it is preferable to fill the through-hole 1 with a solution in advance as a preparation for introducing the polymer molecule or a preparation for capturing cells and microorganisms. In this case, since the capillary force increases as the through hole becomes finer, there may be a problem that the solution does not come out of the through hole 1 from the through hole 1. However, by making the cross-section of the through-hole 1 elliptical or substantially elliptical, the major axis is made sufficiently large even if the polymer molecule is introduced or the minor axis is sufficient to capture the microorganism. Thus, the capillary force can be suppressed, and the adverse effect that the solution does not come out of the through hole 1 can be suppressed.
 エッチング耐性が低い層(石英又はガラスにおいては酸素欠乏部)がレーザー照射によって一層だけ形成されるときにおいても(本明細書では改質部51と呼ぶ。)、前記酸素欠乏部は極めてエッチングの選択性が高い層となる。このことは、本発明者らの鋭意検討によって見出された。 Even when a layer with low etching resistance (oxygen-deficient portion in quartz or glass) is formed by a single layer by laser irradiation (referred to as the modified portion 51 in this specification), the oxygen-deficient portion is extremely selective for etching. It becomes a layer with high properties. This has been found by the inventors' diligent study.
 したがって、前記加工上限閾値(加工適正値)は、前記周期構造が形成されうるレーザーパルスパワーの下限値(前記周期構造が形成されないレーザーパルスパワーの範囲における上限値)と定義される。
 また、前記「ガラス基板4を改質してエッチング耐性を低下させうるレーザー照射強度の下限値(閾値)」とは、エッチング処理により、ガラス基板4に貫通孔1をあけることができる限界値である。この下限値よりも低いと、レーザー照射によってエッチング耐性の低い層が形成出来ないため、貫通孔1があかない。
Therefore, the processing upper limit threshold (processing appropriate value) is defined as the lower limit value of the laser pulse power at which the periodic structure can be formed (upper limit value in the range of laser pulse power at which the periodic structure is not formed).
The “lower limit (threshold value) of laser irradiation intensity that can reduce the etching resistance by modifying the glass substrate 4” is a limit value at which the through-hole 1 can be formed in the glass substrate 4 by the etching process. is there. If it is lower than this lower limit value, a layer having low etching resistance cannot be formed by laser irradiation, and therefore there is no through hole 1.
[レーザー照射強度について]
 本明細書及び特許請求の範囲において、「加工上限閾値」とは、基材内に照射したレーザー光の焦点(集光域)において、基材とレーザー光との相互作用によって生じる電子プラズマ波と入射するレーザー光との干渉が起こり、該干渉によって基材に縞状の改質部が自己形成的に形成されうるレーザー照射強度の下限値を意味する。
 また、本明細書及び特許請求の範囲において、「加工下限閾値(閾値)」とは、基材内に照射したレーザー光の焦点(集光域)において、基材を改質した改質部を形成し、後段のエッチング処理によって選択的又は優先的にエッチングされうる程度に、該改質部のエッチング耐性を低下させうるレーザー照射強度の下限値である。この下限値よりも低いレーザー照射強度でレーザー照射した領域は、後段のエッチング処理において選択的又は優先的にエッチングされ難い。このため、エッチング後に微細孔となる改質部を形成するためには、加工下限閾値以上のレーザー照射強度に設定することが好ましい。
[About laser irradiation intensity]
In the present specification and claims, the “processing upper limit threshold” means an electron plasma wave generated by the interaction between the base material and the laser light at the focal point (condensing region) of the laser light irradiated into the base material. It means the lower limit value of the laser irradiation intensity at which interference with the incident laser beam occurs, and due to the interference, a striped modified portion can be formed in a self-forming manner.
In the present specification and claims, the “processing lower limit threshold (threshold value)” means a modified portion obtained by modifying the base material at the focal point (condensing area) of the laser light irradiated into the base material. The lower limit value of the laser irradiation intensity that can reduce the etching resistance of the modified portion to such an extent that it can be formed and selectively or preferentially etched by the subsequent etching process. A region irradiated with laser with a laser irradiation intensity lower than the lower limit value is difficult to be selectively or preferentially etched in the subsequent etching process. For this reason, in order to form a modified portion that becomes a fine hole after etching, it is preferable to set the laser irradiation intensity to be equal to or higher than the processing lower limit threshold.
 加工上限閾値(加工適正値)及び加工下限閾値(閾値)は、レーザー光の波長、レーザー照射対象である基材の材料(材質)及びレーザー照射条件によって概ね決定される。しかし、レーザー光の偏波方向と走査方向との相対的な向きが異なると、加工上限閾値及び加工下限閾値も多少異なる場合がある。例えば、偏波方向に対して走査方向が垂直の場合と、偏波方向に対して走査方向が平行の場合とでは、加工上限閾値及び加工下限閾値が異なる場合がある。したがって、使用するレーザー光の波長及び使用する基材において、レーザー光の偏波方向と走査方向との相対関係を変化させた場合の、それぞれの加工上限閾値及び加工下限閾値を、予め調べておくことが好ましい。 The processing upper limit threshold (process appropriate value) and the processing lower limit threshold (threshold) are generally determined by the wavelength of the laser light, the material (material) of the substrate that is the target of laser irradiation, and the laser irradiation conditions. However, when the relative directions of the polarization direction of the laser beam and the scanning direction are different, the processing upper limit threshold and the processing lower limit threshold may be slightly different. For example, the processing upper limit threshold and the processing lower limit threshold may differ between when the scanning direction is perpendicular to the polarization direction and when the scanning direction is parallel to the polarization direction. Therefore, the processing upper limit threshold and the processing lower limit threshold when the relative relationship between the polarization direction of the laser light and the scanning direction is changed in the wavelength of the laser light to be used and the base material to be used are examined in advance. It is preferable.
 前記偏波としては直線偏波に関して詳細に説明したが、多少の楕円偏波成分を持つレーザーパルスであっても同様な構造(改質部)が形成されることが容易に想像できる。 Although the above-described polarization has been described in detail with respect to linear polarization, it can be easily imagined that a similar structure (modified part) is formed even with a laser pulse having some elliptical polarization component.
 レーザー光Lの焦点を走査する方法は特に限定されないが、一度の連続走査によって形成できる改質部51はレーザー光Lの伝播方向Zと、レーザー光Lの偏波方向Yに対して垂直な方向とで構成される平面50内に限定される。この平面50内であれば形成される改質部の形状を調整することができる。 The method of scanning the focal point of the laser beam L is not particularly limited, but the modified portion 51 that can be formed by one continuous scanning is a direction perpendicular to the propagation direction Z of the laser beam L and the polarization direction Y of the laser beam L. It is limited within the plane 50 comprised by these. If it exists in this plane 50, the shape of the modification part formed can be adjusted.
 図17A及びBでは、レーザー光Lの伝播方向は、ガラス基板4の上面に対して垂直である場合を示したが、必ずしも垂直である必要はない。前記上面に対して所望の入射角で、レーザーLを照射してもよい。
 レーザー光Lの伝搬方向と改質部51の長手方向に直交する断面形状が前記略楕円である場合、その楕円の長軸方向とレーザー光Lの伝搬方向とは概ね一致する。したがって、図4に示すように、長軸の向きを主面4aに対して傾斜させた改質部51を形成するためには、レーザー光Lの伝搬方向、すなわち照射角度を、前記上面(主面4a)に対して所望の角度だけ傾斜させて照射すればよい。
In FIGS. 17A and 17B, the propagation direction of the laser light L is shown as being perpendicular to the upper surface of the glass substrate 4, but is not necessarily perpendicular. The laser L may be irradiated at a desired incident angle with respect to the upper surface.
When the cross-sectional shape orthogonal to the propagation direction of the laser light L and the longitudinal direction of the modified portion 51 is the substantially ellipse, the major axis direction of the ellipse and the propagation direction of the laser light L substantially coincide. Therefore, as shown in FIG. 4, in order to form the modified portion 51 in which the direction of the major axis is inclined with respect to the main surface 4a, the propagation direction of the laser beam L, that is, the irradiation angle is set to the upper surface (main Irradiation may be performed with a desired angle with respect to the surface 4a).
 一般に、改質された部分のレーザーの透過率は、改質されていない部分のレーザーの透過率とは異なる。そのため、改質された部分を透過させたレーザー光の焦点位置を制御することは通常困難である。したがって、レーザー照射する側の面から見て、奥に位置する領域から改質部を形成していくことが望ましい。 Generally, the laser transmittance of the modified part is different from the laser transmittance of the unmodified part. For this reason, it is usually difficult to control the focal position of the laser light transmitted through the modified portion. Therefore, it is desirable to form the modified portion from a region located in the back as viewed from the surface on the laser irradiation side.
 また、レーザーの偏波方向(矢印Y方向)を適宜変更することによって、ガラス基板4内に、3次元方向に形成される改質部の形状を調整することも可能である。 It is also possible to adjust the shape of the modified portion formed in the glass substrate 4 in the three-dimensional direction by appropriately changing the laser polarization direction (arrow Y direction).
 また、図17Aで示すように、レーザー光Lをレンズによって集光して、前述の様に照射することによって改質部51を形成してもよい。
 前記レンズとしては、例えば屈折式の対物レンズや屈折式のレンズを使用することができるが、他にも例えばフレネル、反射式、油浸、水浸式で照射することも可能である。また、例えばシリンドリカルレンズを用いれば、一度にガラス基板4の広範囲にレーザー照射することが可能である。また、例えばコニカルレンズを用いればガラス基板4の垂直方向に広範囲に一度にレーザー光Lを照射することができる。ただしシリンドリカルレンズを用いた場合には、レーザー光Lの偏波はレンズが曲率を持つ方向に対して水平である必要がある。
Further, as shown in FIG. 17A, the modified portion 51 may be formed by condensing the laser light L with a lens and irradiating it as described above.
As the lens, for example, a refractive objective lens or a refractive lens can be used, but it is also possible to irradiate with, for example, Fresnel, reflection type, oil immersion, water immersion type. Further, for example, if a cylindrical lens is used, it is possible to irradiate a wide area of the glass substrate 4 with a laser at a time. For example, if a conical lens is used, the laser beam L can be irradiated at once in a wide range in the vertical direction of the glass substrate 4. However, when a cylindrical lens is used, the polarization of the laser light L needs to be horizontal with respect to the direction in which the lens has a curvature.
 レーザー照射条件Sの具体例としては、以下の各種条件が挙げられる。例えばチタンサファイアレーザー(レーザー媒質としてサファイアにチタンをドープした結晶を使用したレーザー)を用いる。照射するレーザー光は、例えば波長800nm、繰返周波数200kHzを使用し、レーザー走査速度1mm/秒としてレーザー光Lを集光照射する。これらの波長、繰返周波数、走査速度の値は一例であり、本発明はこれに限定されず必要に応じて変えることが可能である。 Specific examples of the laser irradiation condition S include the following various conditions. For example, a titanium sapphire laser (a laser using a crystal in which sapphire is doped with titanium as a laser medium) is used. As the laser light to be irradiated, for example, a wavelength of 800 nm and a repetition frequency of 200 kHz are used, and the laser light L is condensed and irradiated at a laser scanning speed of 1 mm / second. These values of wavelength, repetition frequency, and scanning speed are examples, and the present invention is not limited to this, and can be changed as necessary.
 集光に用いるレンズとしては、例えばN.A.<0.7未満の対物レンズを用いることが好ましい。より微小な貫通孔1を形成させるためには、ガラス基板に照射する際のパルス強度は、加工上限閾値に近い値、たとえば80nJ/pulse程度以下のパワーであることが好ましい。それ以上のパワーであると周期構造が形成され、エッチングによってそれらが繋がるため、ナノオーダーの口径を有する貫通孔1を形成することが困難となる。ミクロンオーダーの口径になる、あるいは前記周期構造が形成されてしまうことがある。
 また、N.A.≧0.7であっても加工が可能であるが、スポットサイズがより小さくなり、レーザーフルエンスが大きくなるため、より小さなパルス強度でのレーザー照射が求められる。
As a lens used for condensing, for example, N.I. A. It is preferable to use an objective lens of <0.7. In order to form a finer through-hole 1, the pulse intensity when irradiating the glass substrate is preferably a value close to the processing upper limit threshold, for example, a power of about 80 nJ / pulse or less. If the power is higher than that, a periodic structure is formed and they are connected by etching, so that it is difficult to form the through-hole 1 having a nano-order diameter. In some cases, the diameter becomes a micron order, or the periodic structure is formed.
N. Processing is possible even if A. ≧ 0.7, but the spot size becomes smaller and the laser fluence increases, so that laser irradiation with a smaller pulse intensity is required.
[工程M2]
 次に、単一のガラス基板4に、前記空間を形成する第一流路2及び第三流路3を形成する。
 まず、ガラス基板4の上面に、例えばフォトリソグラフィなどによってレジスト52をパターニングして配置する(図15B)。
 次に、ドライエッチング、ウェットエッチング、又はサンドブラスト等の方法によって、ガラス基板4の上面におけるレジスト52が配されていない領域を、所定の深さに達するまでエッチングして除去する(図15C)。
 最後に不要となったレジスト52を剥離すると、第一流路2及び第二流路3が形成されたガラス基板4が得られる。
[Step M2]
Next, the first flow path 2 and the third flow path 3 that form the space are formed on a single glass substrate 4.
First, a resist 52 is patterned and arranged on the upper surface of the glass substrate 4 by, for example, photolithography (FIG. 15B).
Next, the region where the resist 52 is not provided on the upper surface of the glass substrate 4 is etched and removed until reaching a predetermined depth by a method such as dry etching, wet etching, or sand blasting (FIG. 15C).
Finally, when the resist 52 that has become unnecessary is removed, the glass substrate 4 on which the first flow path 2 and the second flow path 3 are formed is obtained.
 工程M2において、形成する第一流路2の側面2a及び第二流路3の側面3aに、工程M1で形成した改質部51の断面を露呈させることが好ましい。こうすることで、後段の工程M3におけるエッチング処理によって、貫通孔1を形成させることがより容易となる。 In step M2, it is preferable to expose the cross section of the modified portion 51 formed in step M1 on the side surface 2a of the first flow path 2 and the side surface 3a of the second flow path 3 to be formed. By doing so, it becomes easier to form the through hole 1 by the etching process in the subsequent step M3.
[工程M3]
 つぎに、単一のガラス基板4から、工程M1で形成した改質部51をエッチングによって除去する(図15D)。
 エッチング方法としては、ウェットエッチングが好ましい。第一流路2の側面2a及び第二流路3の側面3aに露出された断面を有する改質部51は、エッチング耐性が低くなっているため、選択的又は優先的にエッチングすることができる。
[Step M3]
Next, the modified portion 51 formed in step M1 is removed from the single glass substrate 4 by etching (FIG. 15D).
As an etching method, wet etching is preferable. The modified portion 51 having a cross section exposed to the side surface 2a of the first flow path 2 and the side surface 3a of the second flow path 3 has low etching resistance, and can be selectively or preferentially etched.
 このエッチングは、ガラス基板4の改質されていない部分に比べて、改質部51が非常に速くエッチングされる現象を利用しており、結果として改質部51の形状に応じた貫通孔1を形成することができる。
 前記エッチング液は特に限定されず、例えばフッ酸(HF)を主成分とする溶液、フッ酸に硝酸等を適量添加したフッ硝酸系の混酸等を用いることができる。また、部材4の材料に応じて、他の薬液を用いることもできる。
This etching utilizes the phenomenon that the modified portion 51 is etched much faster than the unmodified portion of the glass substrate 4. As a result, the through hole 1 corresponding to the shape of the modified portion 51 is used. Can be formed.
The etching solution is not particularly limited, and for example, a solution containing hydrofluoric acid (HF) as a main component, or a hydrofluoric acid-based mixed acid obtained by adding an appropriate amount of nitric acid or the like to hydrofluoric acid can be used. Also, other chemicals can be used depending on the material of the member 4.
 前記エッチングの結果、ナノオーダーの口径を有する貫通孔1を、ガラス基板4内の所定位置に、第一流路2と第二流路3とを連通するように、形成することができる。 As a result of the etching, the through-hole 1 having a nano-order diameter can be formed at a predetermined position in the glass substrate 4 so as to communicate the first flow path 2 and the second flow path 3.
 貫通孔1のサイズとしては、例えば、短径が20nm~200nm程度、長径が0.2μm~5μm程度の略楕円形状の断面を有する貫通孔とすることができる。また、エッチング処理の具合によっては、前記断面は矩形に近い形状となることもある。 The size of the through-hole 1 can be, for example, a through-hole having a substantially elliptical cross section with a minor axis of about 20 nm to 200 nm and a major axis of about 0.2 μm to 5 μm. In addition, depending on the degree of etching, the cross section may be a shape close to a rectangle.
 前記ウェットエッチングの処理時間を調整することによって、改質部51と貫通孔1とのサイズ差を小さくしたり大きくしたりすることが可能である。
 前記処理時間を短くすることによって、前記短径を数nm~数十nmにすることも理論的には可能である。これとは逆に、前記処理時間を長くすることによって、前記短径を1μm~2μm程度に、前記長径を5μm~10μm程度とすることもできる。
By adjusting the processing time of the wet etching, the size difference between the modified portion 51 and the through hole 1 can be reduced or increased.
It is theoretically possible to make the minor axis several nanometers to several tens of nanometers by shortening the treatment time. On the contrary, by increasing the processing time, the minor axis can be set to about 1 μm to 2 μm and the major axis can be set to about 5 μm to 10 μm.
 つぎに、必要に応じて、形成された第一流路2及び第二流路3の上面を覆うように、蓋となる部材をガラス基板4の上面に貼り合わせてもよい。
 前記蓋となる部材とガラス基板4の上面とを貼り合わせる方法は、前記蓋となる部材の材料に応じて、公知の方法で行えばよい。
Next, a member serving as a lid may be bonded to the upper surface of the glass substrate 4 so as to cover the upper surfaces of the formed first flow path 2 and second flow path 3 as necessary.
The method for bonding the member to be the lid and the upper surface of the glass substrate 4 may be performed by a known method according to the material of the member to be the lid.
 前記蓋となる部材の材料としては特に制限されず、PDMS、PMMA等の樹脂基板、もしくはガラス基板を使用することができる。また、前記蓋となる部材の材料は、光学的観察手段の光(例えば可視光線)を透過することが好ましい。 The material of the member to be the lid is not particularly limited, and a resin substrate such as PDMS or PMMA, or a glass substrate can be used. Moreover, it is preferable that the material of the member used as the lid transmits light (for example, visible light) of the optical observation means.
 工程M2及び工程M3におけるエッチングとしては、ウェットエッチングもしくはドライエッチングが適用できる。ウェットエッチングは、例えば1%以下のフッ酸を用いるのが最も好ましいが、その他の酸もしくは塩基性を持つ容体でもよい。 As the etching in the process M2 and the process M3, wet etching or dry etching can be applied. For wet etching, it is most preferable to use, for example, 1% or less hydrofluoric acid, but other acid or basic containers may be used.
 前記ドライエッチングのうち、等方性エッチング法としては、例えば、バレル型プラズマエッチング、平行平板型プラズマエッチング、及びダウンフロー型ケミカルドライエッチング、などの各種ドライエッチング方式が挙げられる。 Among the dry etching methods, isotropic etching methods include various dry etching methods such as barrel type plasma etching, parallel plate type plasma etching, and downflow type chemical dry etching.
 異方性ドライエッチング法としては、例えば反応性イオンエッチング(以下RIE)を用いるものとして例えば平行平板型RIE、マグネトロン型RIE、ICP型RIE、NLD型RIEなどを使用することができ、RIE以外にも例えば、中性粒子ビームを用いたエッチングを使用することが可能である。異方性ドライエッチング法を用いる場合には、プロセス圧力を上げる等の手法によって、イオンの平均自由行程を短くし、等方性エッチングに近い加工も可能となる。 As an anisotropic dry etching method, for example, a parallel plate type RIE, a magnetron type RIE, an ICP type RIE, an NLD type RIE, etc. can be used as reactive ion etching (hereinafter referred to as RIE). For example, it is possible to use etching using a neutral particle beam. When the anisotropic dry etching method is used, a process close to isotropic etching can be performed by shortening the mean free path of ions by a method such as increasing the process pressure.
 使用するガスは例えばフロロカーボン系、SF系ガス、CHF3、フッ素ガス、塩素ガス、など材料を化学的にエッチングすることができるガスが主で、それらに適宜その他の酸素、アルゴン、ヘリウムなどのガスを混合し使用することが可能であり、その他のドライエッチング方式による加工も可能である。 The gas used is mainly a gas capable of chemically etching materials such as fluorocarbon, SF, CHF3, fluorine gas, and chlorine gas, and other gases such as oxygen, argon, and helium are appropriately used. They can be mixed and used, and can be processed by other dry etching methods.
 工程M2において、より好適なエッチングは異方性エッチングであり、工程M3において、より好適なエッチングは等方性エッチングである。 In step M2, a more preferable etching is anisotropic etching, and in step M3, a more preferable etching is isotropic etching.
1…貫通孔、2…第一流路(空間)、2a…第一流路の側面、3…第二流路(空間)、3a…第二流路の側面、4…基材、4a…基材の上面(基板の主面)、5…蓋となる部材、6…縦孔、7…第三流路、8…第四流路、9…踊り場、10A~10H(10)…基体、11…温度制御デバイス、51…改質部、52…レジスト、L…レーザー光 DESCRIPTION OF SYMBOLS 1 ... Through-hole, 2 ... 1st flow path (space), 2a ... Side surface of 1st flow path, 3 ... Second flow path (space), 3a ... Side surface of 2nd flow path, 4 ... Base material, 4a ... Base material 5 ... a member to be a lid, 6 ... a vertical hole, 7 ... a third channel, 8 ... a fourth channel, 9 ... a landing, 10A to 10H (10) ... a base, 11 ... Temperature control device, 51 ... reforming section, 52 ... resist, L ... laser beam

Claims (13)

  1.  基体であって、
     ポリマー状分子を含む溶液を流入させる空間が内部に設けられている基材と、
     前記基材の内部に形成され、前記空間に対して開口しており、内部に前記ポリマー状分子を引き伸ばして配置することが可能な形状を有する貫通孔と、
     を備え、
     前記基材のうち、少なくとも前記貫通孔を構成する部位は、単一の部材で形成される
     ことを特徴とする基体。
    A substrate,
    A base material provided with a space into which a solution containing polymer-like molecules flows, and
    A through-hole having a shape that is formed inside the base material, is open to the space, and is capable of extending and arranging the polymer-like molecule therein;
    With
    The base | substrate characterized by the site | part which comprises the said through-hole at least among the said base materials being formed with a single member.
  2.  請求項1に記載の基体であって、
     前記貫通孔は、少なくとも一部が柱状であることを特徴とする基体。
    The substrate according to claim 1,
    The through hole is at least partially columnar.
  3.  請求項1又は2に記載の基体であって、
     前記貫通孔の長手方向の長さが0.1μm~10mmであることを特徴とする基体。
    The substrate according to claim 1 or 2,
    A substrate having a length in the longitudinal direction of the through hole of 0.1 μm to 10 mm.
  4.  請求項1~3のいずれか一項に記載の基体であって、
     前記貫通孔の長手方向に直交する断面の短径が、1nm~1000nmであることを特徴とする基体。
    A substrate according to any one of claims 1 to 3,
    A substrate having a minor axis of a cross section perpendicular to the longitudinal direction of the through hole of 1 nm to 1000 nm.
  5.  請求項1~4のいずれか一項に記載の基体であって、
     前記基材が主面を有する基板であり、前記貫通孔の長手方向に直交する断面の形状が略楕円形であり、前記楕円形の長軸の向きが、前記主面に対して傾斜していることを特徴とする基体。
    A substrate according to any one of claims 1 to 4,
    The base material is a substrate having a main surface, the cross-sectional shape orthogonal to the longitudinal direction of the through hole is substantially elliptical, and the major axis of the elliptical shape is inclined with respect to the main surface. A substrate characterized by comprising:
  6.  請求項1~5のいずれか一項に記載の基体であって、
     前記貫通孔と前記基材の外部とを連通する縦孔をさらに有することを特徴とする基体。
    A substrate according to any one of claims 1 to 5,
    The substrate further comprising a vertical hole communicating the through hole and the outside of the substrate.
  7.  請求項1~6のいずれか一項に記載の基体であって、
     前記貫通孔の内部に、前記ポリマー状分子の少なくとも一部を固定する固定部が備えられていることを特徴とする基体。
    A substrate according to any one of claims 1 to 6,
    A substrate having a fixing part for fixing at least a part of the polymer molecule inside the through-hole.
  8.  請求項7に記載の基体であって、
     前記固定部が、金属で形成されることを特徴とする基体。
    The substrate according to claim 7,
    The base body, wherein the fixing portion is made of metal.
  9.  請求項1~8のいずれか一項に記載の基体であって、
     前記ポリマー状分子が、DNA、RNA、又はポリペプチドであることを特徴とする基体。
    A substrate according to any one of claims 1 to 8,
    A substrate characterized in that the polymer molecule is DNA, RNA, or polypeptide.
  10.  分析方法であって、
     ポリマー状分子を含む溶液を流入させる空間が内部に設けられている基材と、前記基材の内部に形成され、前記空間に対して開口しており、内部に前記ポリマー状分子を引き伸ばして配置することが可能な形状を有する貫通孔と、が少なくとも配され、前記基材のうち、少なくとも前記貫通孔を構成する部位は、単一の部材で形成される、請求項1~8のいずれか一項に記載の基体を使用し、
     前記空間に前記ポリマー状分子を含む第一の溶液を流入させ、前記ポリマー状分子を前記貫通孔の内部へ導入し、
     前記ポリマー状分子の少なくとも一部を、前記貫通孔の内壁に固定し、
     前記ポリマー状分子に結合する結合体を前記貫通孔の内部へ導入し、
     前記結合した結果生じるシグナルを前記基体の外部から光学的に観察することを特徴とする分析方法。
    An analysis method,
    A base material provided with a space into which a solution containing polymer-like molecules flows is formed, and is formed inside the base material and is open to the space, and the polymer-like molecules are stretched and arranged inside the base material. A through hole having a shape that can be formed, and at least a portion of the base material forming the through hole is formed of a single member. Using the substrate according to one item,
    Flowing a first solution containing the polymer-like molecule into the space, introducing the polymer-like molecule into the through-hole,
    Fixing at least a part of the polymeric molecule to the inner wall of the through-hole,
    Introducing a conjugate that binds to the polymeric molecule into the through-hole,
    An analysis method, wherein a signal generated as a result of the binding is optically observed from the outside of the substrate.
  11.  請求項10に記載の分析方法であって、
     前記ポリマー状分子における複数箇所の各々に、前記結合体を結合させ、その結合の結果生じる複数の前記シグナルを前記複数箇所の位置情報と関連付けて検出することを特徴とする分析方法。
    The analysis method according to claim 10, comprising:
    An analysis method, wherein the conjugate is bound to each of a plurality of locations in the polymer-like molecule, and a plurality of signals generated as a result of the binding are detected in association with positional information of the plurality of locations.
  12.  請求項10又は11に記載の分析方法であって、
     前記ポリマー状分子がDNA又はRNAであり、前記結合体が標識デオキシヌクレオチドであり、前記シグナルがポリメラーゼによるDNA又はRNAの複製反応によって生じ、前記光学的な観察によって、前記DNA又はRNAの塩基配列を分析することを特徴とする分析方法。
    The analysis method according to claim 10 or 11,
    The polymer molecule is DNA or RNA, the conjugate is a labeled deoxynucleotide, the signal is generated by a replication reaction of DNA or RNA by a polymerase, and the base sequence of the DNA or RNA is determined by the optical observation. An analysis method characterized by analyzing.
  13.  請求項10~12のいずれか一項に記載の分析方法であって、
     前記貫通孔内に第二の溶液を流通させることを特徴とする分析方法。
    The analysis method according to any one of claims 10 to 12,
    An analysis method, wherein the second solution is circulated in the through hole.
PCT/JP2012/072051 2011-08-30 2012-08-30 Substrate and analysis method WO2013031912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531404A JP6134645B2 (en) 2011-08-30 2012-08-30 Substrate for accommodating polymer molecule and analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011187510 2011-08-30
JP2011-187510 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031912A1 true WO2013031912A1 (en) 2013-03-07

Family

ID=47756390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072051 WO2013031912A1 (en) 2011-08-30 2012-08-30 Substrate and analysis method

Country Status (2)

Country Link
JP (1) JP6134645B2 (en)
WO (1) WO2013031912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220958A (en) * 2012-04-13 2013-10-28 Namiki Precision Jewel Co Ltd Microvoid forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159439A (en) * 2005-12-12 2007-06-28 Quantum 14:Kk Microreactor having high-density reaction space array formed by porous silicon
JP2007304055A (en) * 2006-05-15 2007-11-22 Dna Chip Research Inc Micro array comprising polynucleotide fixed on porus silicon substrate
JP2008288577A (en) * 2007-04-18 2008-11-27 Fujikura Ltd Substrate treatment method, through-wire substrate and its manufacturing method, and electronic component
WO2012008577A1 (en) * 2010-07-16 2012-01-19 株式会社フジクラ Substrate and process for producing substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271538U (en) * 1975-11-22 1977-05-28
JP3654481B2 (en) * 1997-06-05 2005-06-02 独立行政法人理化学研究所 Microreactor for biochemical reaction
JP5491378B2 (en) * 2007-03-28 2014-05-14 バイオナノ ジェノミックス、インク. Macromolecular analysis method using nanochannel array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159439A (en) * 2005-12-12 2007-06-28 Quantum 14:Kk Microreactor having high-density reaction space array formed by porous silicon
JP2007304055A (en) * 2006-05-15 2007-11-22 Dna Chip Research Inc Micro array comprising polynucleotide fixed on porus silicon substrate
JP2008288577A (en) * 2007-04-18 2008-11-27 Fujikura Ltd Substrate treatment method, through-wire substrate and its manufacturing method, and electronic component
WO2012008577A1 (en) * 2010-07-16 2012-01-19 株式会社フジクラ Substrate and process for producing substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220958A (en) * 2012-04-13 2013-10-28 Namiki Precision Jewel Co Ltd Microvoid forming method

Also Published As

Publication number Publication date
JPWO2013031912A1 (en) 2015-03-23
JP6134645B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6023252B2 (en) Microfluidic device
JP6018092B2 (en) Rotation-dependent transcription sequencing system and method of use
US20100233696A1 (en) Methods, flow cells and systems for single cell analysis
US20220349000A1 (en) Nanopore-based polymer analysis with mutually-quenching fluorescent labels
KR20220084297A (en) Cellularly Processable Nucleic Acid Sequencing Methods
AU2015335616A1 (en) Efficient optical analysis of polymers using arrays of nanostructures
TWI671549B (en) Confocal tdi line scan imaging system and method of performing scanning
US11686681B2 (en) Systems and methods for multicolor imaging
US20210318294A1 (en) Multivalent binding composition for nucleic acid analysis
CN116194592A (en) Flow cell system and apparatus
US9671558B2 (en) Chemically induced optical signals and DNA sequencing
JP2009284769A (en) Micro substrate
JP6134645B2 (en) Substrate for accommodating polymer molecule and analysis method
JP2005300460A (en) Interaction detecting section and substrate for bioassay equipped with the same, and medium dropping method and method for preventing water in medium from evaporating
Henkin A nanofluidic device for visualizing dynamic biopolymer interactions in vitro
JP2008256378A (en) Specimen detection method and biochip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827066

Country of ref document: EP

Kind code of ref document: A1