WO2013031481A1 - Object proximity and contact detection device - Google Patents

Object proximity and contact detection device Download PDF

Info

Publication number
WO2013031481A1
WO2013031481A1 PCT/JP2012/069767 JP2012069767W WO2013031481A1 WO 2013031481 A1 WO2013031481 A1 WO 2013031481A1 JP 2012069767 W JP2012069767 W JP 2012069767W WO 2013031481 A1 WO2013031481 A1 WO 2013031481A1
Authority
WO
WIPO (PCT)
Prior art keywords
proximity
signal
unit
state
contact
Prior art date
Application number
PCT/JP2012/069767
Other languages
French (fr)
Japanese (ja)
Inventor
摩梨花 新山
龍馬 新山
智晃 吉海
弘悟 溝口
Original Assignee
Niiyama Marika
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niiyama Marika filed Critical Niiyama Marika
Publication of WO2013031481A1 publication Critical patent/WO2013031481A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/212Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1012Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals involving biosensors worn by the player, e.g. for measuring heart beat, limb activity

Definitions

  • the present invention relates to a technique for detecting proximity or contact between objects, or both, and particularly to a technique applicable to detection of proximity or contact of organisms, or both.
  • a method for detecting the proximity or contact of an object a method for detecting a current between objects, a method for detecting pressure, a method for recognizing an object of a camera image, a method using electrostatic coupling, and the like are known.
  • the method using current or pressure can detect contact but cannot detect proximity.
  • the approach based on the recognition of the camera image can detect proximity, but cannot detect proximity or contact at the blind spot position of the camera.
  • the method using electrostatic coupling can detect proximity or contact at any part without blind spots even when the object moves such as a human body.
  • Patent Document 1 describes a plant switch that detects a proximity and contact by detecting a change in capacitance that occurs in the vicinity of a human body or a plant when the human body approaches or contacts the plant.
  • Patent Document 2 describes a performance device that detects contact between two human bodies that are in contact with two grounded electrodes, and generates a sound based on the detection result.
  • Patent Document 3 describes a human body communication system that performs communication through a communication path using a human body as a medium or a communication path established by contact between human bodies.
  • the high-frequency power source for charging the plant and the detection means for detecting the change in the capacitance of the plant are electrically connected to the power source line fixed to the environment by a lead wire. Must be grounded. Therefore, in order to detect contact and proximity between autonomously moving organisms that are not electrically grounded, the movement of the organisms is greatly limited.
  • data communication can be performed between communication adapters via a communication path formed by contact of a human body equipped with a communication adapter, but contact or proximity between human bodies is detected. Can not do it.
  • the present invention has been made in order to solve the above-mentioned problems, and greatly restricts the movement of an object between contact and / or proximity between objects (for example, between individuals of different organisms or between body parts of the same individual). It is an object of the present invention to provide a device for detecting without doing so.
  • the proximity or contact detection device of the present invention includes an application unit including an application-side conductor disposed in the vicinity of the first object, a signal application unit that applies an electric signal to the application-side conductor, and a second object A measurement-side conductor arranged near the measurement-side conductor, a signal measurement unit that detects an electric signal generated in the measurement-side conductor and generates a reception signal including at least the intensity of the electric signal, and the reception signal And a state estimation unit that estimates the proximity state between the first object and the second object in a stepwise manner based on a preset estimation equation indicating the relationship between the proximity state and the received signal.
  • the application-side conductor and the measurement-side conductor are disposed in the vicinity of a series of objects having an electrical resistance equal to or lower than the skin of the first object and the second object, and the application-side conductors are connected to the series of objects. It is preferable that the measurement-side conductor is not normally fixed.
  • the proximity or contact detection device of the present invention it is possible to detect contact and proximity between objects without greatly restricting the operation of the objects.
  • FIG. 1 is an overall view showing a configuration of a proximity or contact detection device and arrangement on a human body in the first embodiment.
  • FIG. 2A is a block diagram illustrating a configuration of the application unit.
  • FIG. 2B is a diagram showing the arrangement of the bottom antenna of the application unit.
  • FIG. 3A is a block diagram showing the configuration of the measurement unit.
  • FIG. 3B is a diagram illustrating the arrangement of the bottom antennas of the measurement unit.
  • FIG. 4 is a flowchart showing the operation of the proximity or contact detection device according to the first embodiment.
  • FIG. 5 is a diagram showing the relationship between the distance between human bodies and the strength of the received signal.
  • FIG. 6 is a diagram showing the relationship between the contact area and the intensity of the received signal.
  • FIG. 7A and 7B are diagrams showing the relationship between the contact position at the arm and the strength of the received signal.
  • FIG. 8 is a flowchart showing a method for estimating the proximity state between human bodies.
  • FIG. 9 is a flowchart showing a method for estimating a contact site.
  • FIG. 10 is a diagram illustrating an example of a table used for estimating a contact site.
  • FIG. 11 is a flowchart showing a method for estimating the contact area.
  • FIG. 12 is a flowchart showing a method for estimating the contact position.
  • FIG. 13 is a diagram showing the arrangement of the proximity or contact detection device on a plurality of organisms.
  • FIG. 14 is a block diagram of an application unit and a measurement unit sharing a conductor.
  • FIG. 15 is a diagram showing the arrangement of the proximity or contact detection device on one organism.
  • FIG. 16 is a diagram illustrating a configuration of a proximity or contact detection device according to the third embodiment.
  • FIG. 17 is a flowchart illustrating the operation of the proximity or contact detection device according to the third embodiment.
  • FIG. 18 is a diagram illustrating a method of associating signal strength with each frequency in the transmission / reception control unit.
  • FIG. 19 is a diagram illustrating the relationship between the signal intensity for each frequency and the proximity or contact state between human bodies.
  • FIG. 20 is a diagram illustrating a state in which a human body stands upright on a table.
  • FIG. 21 is a diagram illustrating a state in which the human body on the table is in close proximity and is not in contact.
  • FIG. 22 is a diagram illustrating a configuration of a game machine to which the proximity or contact detection device is applied.
  • FIG. 23 is a diagram illustrating an example of a game machine with stairs.
  • FIG. 24A is a top view showing an example of a game machine provided with a foot-shaped sign.
  • FIG. 24B is a side view showing an example of a game machine provided with a foot-shaped sign.
  • FIG. 25 is a flowchart showing the calibration operation of the game machine.
  • FIG. 26 is a diagram illustrating an example of operation of the game machine.
  • FIG. 27 is a flowchart showing the operation of the game machine after the game is started.
  • an “object” constitutes a circuit with an application-side conductor or a measurement-side conductor arranged in the vicinity, and can propagate an electric field generated according to an electric signal applied to the application-side conductor. It is a substance, and the material includes a semiconductor or a conductor.
  • the object include living organisms such as human bodies and animals, and inanimate objects such as robots, home appliances, and electronic devices (including inanimate parts, arms, doors, and the like).
  • the “object” may include an insulator as long as it can propagate an electric field.
  • an object that propagates an electric field refers to an object in which the intensity of the electric field increases around the object.
  • a human body will be described as an example of an object to be measured.
  • FIG. 1 is an overall view showing the configuration of the proximity or contact detection device 1 of the first embodiment and the arrangement on the human body.
  • the proximity or contact detection device 1 includes an application unit 10, a measurement unit 20, and a state estimation unit 30.
  • the application unit 10 and the measurement unit 20 are not electrically connected to a conductor fixed to the environment with a conducting wire.
  • the application unit 10 and the measurement unit 20 are not normally grounded.
  • measurement is possible without restricting the operation of the human body (object) because the conductor is not physically connected to the conductor fixed to the environment by wire or the like.
  • “grounded” means that a low impedance path is provided for the current flowing through the circuit to return to the power source.
  • a bottom antenna which will be described later, is not physically connected to the ground or floor by wire or the like, but can be electrostatically coupled to the ground or floor, and is grounded in a state of electrostatic coupling. However, the bottom antenna is movable, and the bottom antenna is not grounded in a state where it is separated from the ground or floor and is not electrostatically coupled. Such a state is normally called not grounded. If the application unit 10 and the measurement unit 20 are provided on a platform serving as a scaffold without being attached to an object, for example, as shown in FIGS. 16 and 20 to 24, a conductor fixed to the environment. It may be grounded by being physically connected to the cable by wire or the like. The measurement unit 20 communicates with the state estimation unit 30 by being electrically connected by wire or wirelessly.
  • the application unit 10 is arranged near the human body 11, and the measurement unit 20 is arranged near the human body 21, and in FIG.
  • the application unit 10 and the measurement unit 20 may be arranged so as to be in contact with the human bodies 11 and 21, respectively, and if they are about 20 mm, they are connected by electrostatic coupling. May be.
  • Such an arrangement with an interval of about 0 mm to 20 mm will be described as an arrangement in the vicinity.
  • the state estimation unit 30 and the measurement unit 20 may be arranged adjacent to each other or separated from each other.
  • the state estimation unit 30 may be arranged in the vicinity of the human body 21 similarly to the measurement unit 20, or may be configured to execute its function with another device separated from the human body 21.
  • FIG. 2A is a block diagram illustrating a configuration of the application unit 10.
  • the application unit 10 includes an application-side conductor 110 and a signal application unit 100 that applies an electrical signal to the application-side conductor 110.
  • the signal applying unit 100 includes a transmitter 101, an amplifier 102, a capacitor 103, a storage battery 104, and a case 105 that accommodates these components.
  • the transmitter 101 generates a periodic electrical signal or a signal obtained by synthesizing the periodic electrical signal, and outputs this signal to the amplifier 102.
  • the oscillator 101 outputs a sine wave signal having a constant frequency.
  • the amplifier 102 amplifies the electrical signal input from the transmitter 101 and applies it to the application-side conductor 110 via the capacitor 103.
  • an electric field 12 that fluctuates in accordance with the electrical signal is generated on the surface of the human body 11 and its surroundings as shown in FIG.
  • the electric field 12 propagates and an electric field 22 is generated around the human body 21.
  • the measurement unit 20 measures the fluctuation of the electric field 22.
  • the case 105 is, for example, a metal rectangular parallelepiped box. As described above, since the signal applying unit 100 is configured by a simple circuit, the case 105 can be small, for example, about 75 mm ⁇ 50 mm ⁇ 30 mm.
  • the shape of the case 105 is not limited to a rectangular parallelepiped, and may be other shapes such as a sphere and a band.
  • the material of the case 105 is preferably a conductor that can shield electromagnetic waves that are noise sources of electrical signals, but other materials may be used. For example, the same effect can be obtained by shielding the entire room using the present invention with a conductor.
  • the storage battery 104 supplies power to the transmitter 101 and the amplifier 102. Since the signal voltage applied to the application-side conductor 110 by the signal applying unit 100 does not have to be as large as about 3 V, a small battery such as a button-type battery is sufficient for the storage battery 104.
  • the application-side conductor 110 includes at least a top antenna 111, and more preferably includes a top antenna 111 and a bottom antenna 112 that are a set of conductors. These antennas are made of a conductor, such as copper foil. When a metal foil such as a copper foil is used in this way, the proximity or contact detection device 1 can be reduced in size and thickness.
  • the top antenna 111 is disposed near the human body 11, for example, near the ankle.
  • the top antenna 111 is connected to the amplifier 102 via the capacitor 103.
  • the bottom antenna 112 is connected to the ground (reference voltage) of the circuit of the signal applying unit 100 and functions as a reference electrode.
  • the bottom antenna 112 is disposed on the sole 15 of the foot 14 of the human body 11 and can be grounded by being electrostatically coupled to the floor surface.
  • the top antenna 111 and the bottom antenna 112 are arranged in the vicinity of the human body 11. That is, it may be in direct contact with the human body 11 or there may be clothes or the like between the human body 11.
  • FIG. 3A is a block diagram illustrating a configuration of the measurement unit 20.
  • the measurement unit 20 includes a measurement-side conductor 210 and a signal measurement unit 200 that detects an electrical signal generated in the measurement-side conductor 210.
  • the signal measuring unit 200 includes a tuning circuit 201, an amplifier 102, a storage battery 204, and a case 205 that houses these components.
  • the tuning circuit 201 extracts, for example, a sine wave signal having a constant frequency from the electrical signal generated in the measurement-side conductor 210, generates a reception signal, and outputs the reception signal to the amplifier 202.
  • This received signal includes at least information on the strength of the electric signal generated in the measurement-side conductor 210.
  • the received signal may further include frequency and / or phase information.
  • the amplifier 202 amplifies the reception signal input from the tuning circuit 201 and outputs the amplified signal to the state estimation unit 30.
  • the reception signal may be transmitted wirelessly.
  • the case 205 is a metal cuboid box like the case 105, but the shape and material are not limited to this as in the case 105. Similarly to the case 105, the case 205 can be small. Note that the state estimation unit 30 may be housed inside the case 205.
  • the storage battery 204 supplies power to the tuning circuit 201 and the amplifier 202. Similar to the storage battery 104, a small storage battery 204 such as a button-type battery is sufficient.
  • the measurement-side conductor 210 includes at least a top antenna 211, and more preferably includes a top antenna 211 and a bottom antenna 212 that are a set of conductors. Similar to the top antenna 111 and the bottom antenna 112, the top antenna 211 and the bottom antenna 212 are made of a conductor, for example, copper foil.
  • the top antenna 211 is disposed near the human body 21, for example, near the ankle. The top antenna 211 is connected to the tuning circuit 201.
  • the bottom antenna 212 is connected to the case 205 and functions as a reference electrode.
  • the bottom antenna 212 is disposed on the sole 25 of the foot 24 of the human body 21 and can be grounded by being electrostatically coupled to the floor surface.
  • the top antenna 211 and the bottom antenna 212 are arranged in the vicinity of the human body 21. That is, it may be in direct contact with the human body 21 or there may be clothes or the like between the human body 21.
  • the reference potentials of the application side conductor 110 and the measurement side conductor 210 can be made uniform. This is because the application-side conductor 110 and the measurement-side conductor 210 are connected to the floor surface 13 by electrostatic coupling. Therefore, the signal measuring unit 200 can detect an electric signal without normally grounding the application conductor 110 and the measurement-side conductor 210.
  • the bottom antennas 112 and 212 are arranged at a short distance, or the electrical resistivity is about the human skin or less, such as a concrete floor surface. It is necessary to arrange the bottom antennas 112 and 212 in the vicinity of the same object, or to electrically connect the grounds of the application unit 10 and the measurement unit 20 to each other. As described above, if the potentials of the bottom antennas are aligned or substantially aligned using electrostatic coupling, it is not essential to dispose the bottom antenna near the floor surface 13.
  • the signal application unit 100 applies an electrical signal to the application-side conductor 110 (step S1001).
  • the signal measuring unit 200 generates a reception signal including at least the signal strength of the electric signal from the electric signal, and sends this to the state estimating unit 30 (step S1002).
  • the received signal may include frequency and / or phase in addition to signal strength.
  • the state estimation unit 30 calculates at least the signal strength from the received signal, estimates the proximity state based on the signal strength (step S1003), and ends the process.
  • step S ⁇ b> 1003 the state estimation unit 30 estimates the proximity state from a preset estimation equation indicating the relationship between the proximity state and the reception signal and the input reception signal.
  • a program for causing the computer to execute such an operation is created and executed by the state estimation unit 30.
  • the state estimation unit 30 may further generate proximity state information including the result estimated from the received signal in step S1003.
  • proximity state means whether or not an object is in contact or whether or not an object is in proximity, the area of a contact portion (contact area) when the object is in contact, Part or position, or the shortest distance (proximity distance) between the two objects when the object is not in contact with each other, the relative positional relationship (including posture) between the two objects or the degree of proximity
  • the “proximity degree” means the ratio or area of a portion that is closer than a certain distance (threshold) between both objects. For example, the surface of an object is divided into small grid-like regions at equal intervals.
  • the shortest distance from the center of gravity of each small region to another object can be obtained, and the shortest distance can be obtained by the number of small regions having a threshold value or less).
  • the “proximity state information” is information indicating the positional relationship between the organisms, and is “proximity state” information.
  • the proximity state is estimated step by step, not only whether or not an object is in contact, but if it is not in contact, it is estimated whether or not the object is in proximity, and / or is in contact The case is to estimate the contact area, the height of the proximity, the part in contact with the object, the position, and the like.
  • the state estimation unit 30 may further output the proximity state information to another device, for example, a portable information processing device worn by the human body 21. Accordingly, the information processing device can be operated according to the proximity or contact state.
  • FIG. 5, FIG. 6, FIG. 7 (a), and FIG. 7 (b) are diagrams showing experimental results obtained by actually measuring the relationship between the signal strength of the received signal and the proximity state between the human bodies.
  • the signal sampling frequency is about 10 Hz
  • the value of the signal intensity is 0 when the distance between human bodies is sufficiently large and there is no proximity or contact.
  • FIG. 5 shows the distance between the human body and the intensity of the received signal when the human body 11 wearing the application unit 10 and the human body 21 wearing the measuring unit 20 face each other and the distance between the two bodies is changed. Show the relationship.
  • the distance is the distance between the human body 11 and the body front surface of the human body 21.
  • the intensity of the received signal is an average value of the signal intensity when the distance is maintained for about 3 seconds.
  • the horizontal axis represents distance, the unit is m (meter), the vertical axis represents signal intensity, and the unit is V (volt).
  • wearing means that each structure is arrange
  • FIG. 6 shows that the human body 11 wearing the application unit 10 and the human body 21 wearing the measuring unit 20 face each other at a distance of 0.5 m, and the human body 21 is in the palm of each part (palm, elbow, head, shoulder).
  • the intensity of the received signal when touching the waist is the intensity of the received signal when the palm of one hand is in contact with the palm of the hand, and the right bar is the intensity of the received signal when the palm of both hands is in contact.
  • the signal intensity is an average value of the signal intensity when the contact state is maintained for about 3 seconds.
  • the horizontal axis represents the contact area, the vertical axis represents the signal intensity, and the unit is V (volts).
  • the signal intensity when each part touches with the palm of one hand is about one-half of the signal intensity when touched with the palm of both hands. From this, it is understood that the contact area can be estimated when the contact site is constant.
  • the human body 11 faces the human body 21 at a distance of 0.5 m, and the human body 11 and the human body 21 stand upright.
  • the human body 11 extends its arms straight forward and horizontally with the ground.
  • the human body 21 comes into contact with the arm portion of the human body 11 with the palm, and the palm is continuously moved along the arm portion of the human body 11 while the palm is in contact with the human body 11.
  • the movement was performed at a constant speed for about 10 seconds.
  • the horizontal axis represents time, the unit is s (seconds), the vertical axis represents signal intensity, and the unit is V (volts).
  • FIG. 7A shows the relationship between the time when the contact position is moved from the shoulder of the human body 11 to the palm
  • FIG. 7B shows the relationship between the time when the contact position is moved from the palm to the shoulder and the intensity of the received signal.
  • the contact start and end times are times when the signal intensity greatly changes at the times indicated by “shoulder” or “palm” and arrows on the drawing.
  • the distance between them monotonously as the contact position moves from the shoulder to the palm.
  • the signal intensity decreases monotonously as the contact position moves from the shoulder to the palm, and increases monotonously as the contact position moves from the palm to the shoulder. That is, the signal intensity is substantially proportional to the distance of the path between the application unit 10 and the measurement unit 20.
  • the estimation of the proximity state in the state estimation unit 30 will be specifically described. First, a method for estimating the proximity state between the human body 11 and the human body 21 based on the signal intensity will be described with reference to FIG.
  • the state estimation unit 30 calculates the signal strength from the received signal input from the signal measurement unit 200 (step S101).
  • the state estimation unit 30 determines whether or not the calculated signal strength is greater than a preset first threshold (step S102).
  • a preset first threshold is set to, for example, 0.2 V from FIG.
  • the state estimation unit 30 estimates that the human body 11 and the human body 12 are neither in contact nor in proximity (step S103). finish.
  • the state estimation unit 30 determines whether the signal strength is greater than a preset second threshold (step S102).
  • the second threshold value can be set to 1.7 V, for example, from FIG.
  • step S104 If the signal strength is not greater than the second threshold (the determination result in step S104 is false), the state estimation unit 30 estimates that the human body 11 and the human body 12 are not in contact but are close to each other (step S104). ) End the process.
  • the state estimation unit 30 estimates that the human body 11 and the human body 21 are in contact (step S105), and ends the process. .
  • step S102 When estimating only whether or not the human body 11 and the human body 21 are close to each other, if the determination result in step S102 is true, the signal strength and the second threshold value are not compared in step S104. The processing may be terminated after estimation. Similarly, when estimating only whether or not they are in contact, only the comparison between the signal strength and the second threshold is performed, and the comparison between the signal strength and the first threshold (steps S102 and S103) is omitted. Also good. With reference to FIG. 9, a method for estimating a contact site based on signal intensity will be described. The state estimation unit 30 calculates the signal strength from the received signal input from the signal measurement unit 200 (step S201).
  • the state estimation unit 30 refers to a table stored in advance in a memory (not shown) to estimate a contact site (step S202).
  • This memory may be a memory built in the state estimation unit 30 or a removable external memory.
  • FIG. 10 shows an example of a table created based on the experimental results assuming that the human body 21 is in contact with any one of the palm, elbow, head, shoulder, and waist of the human body 11 with both palms.
  • This table has a lower limit value and an upper limit value of signal intensity for each contact area.
  • the state estimation unit 30 compares the signal intensity calculated in step S201 with the numerical value in the table, and estimates a part corresponding to a signal intensity larger than the lower limit value and lower than the upper limit value as a contact part. For example, when the signal intensity is 0.70V, it is larger than the lower limit value 0.60V and is equal to or lower than the upper limit value 0.80V, so the contact site is estimated to be an elbow.
  • the state estimation unit 30 calculates the signal strength from the received signal input from the signal measurement unit 200 (step S301).
  • State estimation unit 30 determines whether or not the calculated signal strength is greater than a preset third threshold.
  • the expression “signal intensity> third threshold value” is an example of an estimation expression.
  • the third threshold value is set to 0.70 V, for example, from FIG.
  • Step S303 The process ends.
  • the state estimation unit 30 estimates that the human body 21 is in contact with a specific part of the human body 11 with both palms (Ste S304) The process is terminated.
  • the contact area itself is estimated as a function of the signal intensity, for example, in addition to alternatively estimating whether the contact is with one palm or with both palms, as in this example. You can also
  • the state estimation unit 30 calculates the signal strength from the received signal input from the signal measurement unit 200 (step S401).
  • the state estimation unit 30 calculates the distance between the contact site and the reference point, for example, the trunk, using the calculated signal intensity and the estimation formula (step 402), and ends the process.
  • This estimation expression is an expression for explaining the relationship between experimental data obtained in advance and the relationship between the distance between the contact site and the reference point and the signal distance. For example, for the experimental data regarding the relationship between the distance and the signal strength, a regression equation is described in which the distance is an explanatory variable and the signal strength is an objective variable.
  • the state estimation unit 30 may further detect a change in the received signal accompanying a change in the grounding state.
  • the received signals acquired at predetermined time intervals are compared, and the voltage difference between the received signals is 1.8 V, which is larger than the voltage variation due to the change in the contact position or the distance between the human bodies 11 and 21. If this is the case, it is estimated that the foot movement has been performed.
  • the predetermined time interval is set so that a state in which the foot is raised during the movement of the foot and a state in which both feet are on the ground can be acquired. For example, if it is assumed that a person walks about two steps per second, the time may be set to about 0.25 seconds.
  • the state estimation unit 30 estimates the proximity state using each of the above methods alone or in combination.
  • the state estimation unit 30 may estimate the proximity state based on the shift between the phase of the electrical signal included in the received signal and the phase of the original signal applied to the application-side conductor 110 by the signal application unit 100. good. This is because when the electric signal propagates as an electric field between organisms, the phase shift increases as the propagation path becomes longer, and the distance between the organisms is estimated from the phase shift. Regarding the correlation between the phase shift and the distance, the correlation function can be obtained by linear interpolation by experimentally acquiring the phase shift at a plurality of distances.
  • the state estimation unit 30 has a plurality of frequencies corresponding to the plurality of frequencies. The proximity state may be estimated based on the received signal.
  • a table in which a combination of a plurality of signal intensity data and a plurality of phase shift data respectively corresponding to a plurality of frequencies corresponding to several proximity states is associated with a specific proximity state is stored in a memory or the like. deep.
  • the similarity between the signal strength data and phase shift data of this table and the signal strength data and phase shift data for each frequency of the received signal is evaluated by the reciprocal of the Euclidean distance. It is estimated that the proximity state associated with the frequency with the highest similarity is the proximity state at the time of reception.
  • the similarity may be evaluated by another distance scale, or a pattern recognition method may be used.
  • the signal applying unit 100 and the signal measuring unit 200 are configured by a non-grounded circuit, components that restrain movement such as movement or posture change of a biological object to be measured For example, a cable for grounding is not required.
  • contact or the contact detection apparatus 1 is comprised small and lightweight. With such a configuration, the proximity or contact detection device 1 can detect proximity or contact without greatly restricting the movement of the organism even if the organism moves autonomously.
  • the proximity or contact detection device 1 can detect various proximity states between living organisms, an intuitive interface of a device, a life log device including proximity or contact information, measurement of body movement skills with contact, and It can be applied to uses such as analysis.
  • the estimation of the contact part can be applied to the measurement and analysis of the human body movement skill accompanied by the contact. For example, the number and order of punching of each part of the human body in boxing can be measured. The same applies to the estimation of the contact area.
  • the estimation of the contact position can be applied to an operation interface using the human body itself as an input device.
  • the contact state can be output to a portable music player, and a button such as “play” or “stop” can be pressed depending on the position.
  • a button such as “play” or “stop”
  • the volume of the music player is increased.
  • the volume is decreased, so that the arm portion can be operated as if there is a slide type volume controller.
  • the living body is not limited to a human body, and may be an object having a characteristic that an electric field generated by an electrical signal applied to the application-side conductor 110 is distributed on the surface thereof. The same applies to the following embodiments. (Second Embodiment)
  • the number of the target organisms may be one or three or more. If there is one organism, at least the application unit 10 and the measurement unit 20 are arranged in the vicinity of the organism. If there are a plurality of organisms, the application unit 10 is arranged in the vicinity of one or more organisms, and if the measurement unit 20 is arranged in one or more organisms, the application with the organism in which the measurement unit 20 is arranged is applied. The proximity state between the organisms in which the unit 10 is arranged can be estimated.
  • FIG. 13 shows an arrangement example of the proximity or contact detection device 1 when there are three or more organisms.
  • a set of the application unit 10 and the measurement unit 20 is arranged in the vicinity of each of the human bodies 41, 42, 43, 44.
  • the state estimation unit 30 is also arranged in the vicinity of each measurement unit 20, but is not limited thereto.
  • a set of conductors 310 that is, a top antenna 311 and a bottom antenna 312, are applied to the application-side conductor 110. And may also serve as the measurement-side conductor 210.
  • the top antenna 311 is connected to the amplifier 102 and the tuning circuit 201, respectively.
  • the bottom antenna 312 is connected to the case 105 of the signal applying unit 100 and the case 205 of the signal measuring unit 200, respectively.
  • the proximity or contact detection device 1 can be further downsized.
  • the application unit 10 and the measurement unit 20 are arranged in the vicinity of each of the human bodies 41, 42, 43, and 44 that are measurement targets, the contact state between any other human body and any human body is estimated. can do.
  • the signal application unit 100 adds identification information for identifying each human body to the electric signal to apply the application-side conductor 110 or
  • the configuration may be such that it is applied to a set of conductors 310.
  • the signal measuring unit 200 generates a received signal including an identification signal and stores in advance a table in which the identification information and each human body are associated with each other in the memory, the state estimation unit 30 identifies the human body that is in contact with or close to the human body. it can.
  • the state estimation unit 30 attached to the human body 41 detects contact or proximity with another human body, it may estimate which of the human bodies 42, 43, or 44 is in contact with or in close proximity to. it can. If this configuration is applied to a life log device that records human behavior, proximity or contact information with other people can be automatically recorded.
  • FIG. 15 shows an arrangement example of the proximity or contact detection device 1 when there is one organism.
  • the human body 51 wears the application unit 10 near the left wrist and the measurement unit 20 near the chest. This is because, when the living organism is a human body, it is considered that most of the contacts are touching other parts by hand.
  • the application unit 10 is arranged near the wrist, and the measurement unit 20 is arranged so as to align the reference potential with this.
  • the application unit 10 is attached to the vicinity of the nose or toes.
  • the application unit 10 is mounted on a site that often comes into contact with other sites.
  • the reference potentials are aligned as described in the first embodiment. Note that the proximity state estimation formula in the state estimation unit 30 is determined through separate experiments.
  • the proximity or contact detection device 1 can estimate the proximity state between different parts of one organism, and can be applied to an operation interface of the device.
  • both the estimation formula for estimating the proximity state between the parts of the organism and the estimation formula for estimating the proximity state between the organisms are stored in the memory, the organism to which the proximity or contact detection device 1 is attached is stored. It is possible to estimate both the proximity of the two parts and the proximity state of the other proximity or the living body equipped with the contact detection device 1. (Third embodiment)
  • FIG. 16 is a diagram illustrating a configuration of the proximity or contact detection device 2 according to the third embodiment.
  • the proximity or contact detection device 2 includes a plurality of application units 10, a measurement unit 20, and a state estimation unit 40, and the state estimation unit 40 includes a transmission / reception control unit 50.
  • each state estimation unit 40 is shared, and the estimation operation is performed by collectively receiving the received signals from each measurement unit 20. There may be.
  • the operation of the proximity or contact detection device 2 will be described with reference to FIG.
  • the signal applying unit 100 applies an electric signal having an electric signal having a plurality of frequencies, for example, an electric signal synthesized from a plurality of sinusoidal signals having different frequencies (step S1701).
  • the signal measurement unit 200 detects an electrical signal generated in the measurement-side conductor 210, generates a reception signal including at least the signal strength, and outputs this to the state estimation unit 40 (step S1702).
  • the transmission / reception control unit 50 of the state estimation unit 40 calculates the signal strength from the reception signal output from the measurement unit 20, and associates each frequency with the signal strength (step S1703).
  • the signal applying unit 10 applies an electric signal at a transmission frequency that changes with time as shown in FIG.
  • a plurality of measuring units 20 corresponding to a plurality of different frequencies respectively obtain electrical signals that change over time.
  • the measurement unit 20 corresponding to the transmission frequency f3 is a time zone where the transmission frequency is f3, that is, between the times t3n and t3n + 1, when the transmission frequency is f3.
  • a reception signal that changes in time is generated in such a manner that the reception intensity is a3 and the value is 0 in other time zones.
  • the corresponding measurement units 20 generate reception signals that change with time as shown in FIGS.
  • the signal strengths a3, a2, and a1 are associated with the frequencies f3, f2, and f1, respectively.
  • the correspondence is performed by setting the signal intensity corresponding to each frequency as a three-dimensional vector value.
  • the state estimation unit 40 estimates at least one of proximity, contact degree, and posture from the signal intensity associated with each frequency, the three-dimensional vector value in the above example (step S1704), and performs processing. finish.
  • the proximity is an index that is higher as the human body is closer and lower as it is farther away, and in this embodiment, the distance between the human bodies is an area of the human body surface within 20 mm. .
  • the contact degree is an index indicating the contact strength between human bodies, and in this embodiment, the contact degree is the area of the portion of the human body surface that is in contact between human bodies.
  • another index may be used for the proximity.
  • the reciprocal of the closest distance between human bodies may be used.
  • another index may be used for the degree of contact. For example, the number of times of contact per unit time may be used.
  • FIG. 19 is a diagram showing experimental results in which the inventors actually measured the relationship between the signal intensity for each frequency and the proximity or contact state between human bodies.
  • two tables on which the application-side conductive unit 110 and the measurement-side conductive unit 210 are arranged were prepared, and a human body was placed on each of the two tables to perform proximity and contact operations.
  • FIG. 20 shows an example of a state where a person stands upright on the table. When the human body is standing upright, neither proximity nor contact is made, but proximity and / or contact can be achieved by changing the posture or moving the limbs.
  • State 1 is a state in which the human body to be measured is not on either of the two platforms.
  • State 2 is a state in which the human body stands upright only near the center of the table 1.
  • the state 3 is the state of FIG. 20 in which the human body rides on the stand 1 and the stand 2 respectively.
  • the human bodies are on the base 1 and the base 2, respectively, and the human bodies extend their arms forward while tilting the torso toward each other, and the hands are close to each other's chest. Although it is, it is in the state which is not touching. In this state, the degree of proximity is high and the degree of contact is zero.
  • State 5 is a state in which the human body rides on the base 1 and the base 2 respectively, and the human bodies are in contact with each other only by extending their arms without bringing the torso close to each other. Specifically, it is a state where the right hand of each other is put out in the air and is in contact with only the tip of the index finger. This state has low proximity and low contact.
  • State 6 is a state in which the human body is on the platform 1 and the platform 2 and the people are embracing each other with their arms around the upper body. In this state, the degree of proximity is high and the degree of contact is also high.
  • the human body rides on each of the pedestal 1 and the pedestal 2 and the arms are extended forward in the same manner as in the state 4 so that the hands are close to each other's chests, but not in contact with each other. is there.
  • the degree of proximity is low and the degree of contact is zero.
  • the frequency f1 is 20 MHz
  • the frequency f2 is 10 MHz
  • the frequency f3 is 1 MHz.
  • f2 is sensitive to proximity and f3 is sensitive to contact.
  • f3 is sensitive to contact.
  • f2 was about 3 MHz to about 10 MHz and f3 was about 500 kHz to 3 MHz, the same characteristics were obtained.
  • a known pattern using a three-dimensional vector of the signal intensity as a feature amount A recognition method may be used.
  • 3D vectors are acquired as learning data with high proximity, which is a high proximity state, and low proximity, which is a low proximity state, and high proximity is recognized by a probability model such as HiddenHMarcov Model (HMM).
  • HMM HiddenHMarcov Model
  • the likelihood of the recognizer may be a proximity, a recognizer with a high proximity, or a recognizer with a low proximity may be created, and the function of each likelihood may be set as a proximity as shown in Equation 1.
  • Equation 1 When Equation 1 is used, it is possible to obtain the magnitude of the likelihood of relative proximity.
  • the proximity may be defined using the identification likelihood of a pattern recognition method such as a support vector machine (SVM) or a neural network.
  • SVM support vector machine
  • the degree of contact may be defined using the identification likelihood of a pattern recognition method such as a support vector machine (SVM) or a neural network. The same applies to the degree of contact.
  • proximity and contact degree may be defined by linear combination of three signal intensities.
  • the signal intensities of f1, f2, and f3 are defined as p1, p2, and p3, respectively, and the proximity is defined as in Equation 2 using weighting factors w1, w2, and w3.
  • w2 may be set large, and w1, w2, and w3 may be determined heuristically from the signal strength in other states.
  • the proximity or contact detection device 2 can control the degree of proximity between the plurality of objects and / or the degree of contact and / or the global posture without greatly restricting the movement of the objects as the plurality of measurement objects. Each can be detected independently. (Embodiment 4)
  • FIG. 22 is a diagram showing a configuration of the game machine 3 to which the proximity or contact detection device 1 or 2 is applied.
  • the application unit 10 and the measurement unit 20 are the same as those in the first embodiment and the second embodiment.
  • the application unit 10 and the measurement unit 20 may be arranged in the vicinity of the object to be measured.
  • the object when the object is a human body, the human body may be worn, or the human body may stand, sit, or lean on it. It may be arranged in a shape that can be used. If it is not a type to be worn, the application unit 10 and the measurement unit 20 are arranged in the vicinity of the human body as shown in FIG. For example, by providing a step as shown in FIG. 20, a staircase as shown in FIG. 23, a foot shape as shown in FIG. Is for a certain time.
  • the state estimation unit 60 estimates the proximity and contact state of the measurement target from the measurement data, and further outputs proximity contact information including signal strength to the information presentation unit 70.
  • the information presentation unit 70 may be anything as long as it stimulates human vision and / or hearing, such as a liquid crystal display or a speaker.
  • FIG. 24A shows a top view of the game machine 3 with a foot shape
  • FIG. 24B shows a bottom view of the game machine 3 with a foot shape.
  • An example of the calibration operation in the game machine 3 is shown in FIG.
  • the application unit 10 and the measurement unit 20 are arranged on two platforms, respectively.
  • the information presentation unit 70 presents information for guiding the human body to get on the table (step S2501). This is performed by applying visual and / or auditory stimuli.
  • the state estimation unit 60 calculates the signal intensity val1 corresponding to the frequency f1 that is highly sensitive to the presence or absence of a human body (step S2502).
  • the state estimation unit 60 determines whether or not val1 has exceeded a certain threshold th1 (step S2503), and near the time point t1, the signal strength corresponding to f2 having high sensitivity in proximity and f3 having high sensitivity in contact are obtained.
  • the signal intensities corresponding to are calculated and set as the minimum output values minval2 and minval3 at the respective frequencies (step S2504).
  • th1 is set such that t1 is the signal intensity corresponding to f1 at the moment when one foot is put on and the other foot is raised.
  • the reference values of the signal strengths corresponding to f2 and f3 can be set in a state where the human body is not in close proximity or in contact without presenting a complicated instruction from the information presentation unit.
  • the information presentation unit 70 electrically connects operation buttons such as game mode selection, and the state estimation unit 60 has performed a start operation such as pressing both buttons by both human bodies.
  • a start operation such as pressing both buttons by both human bodies.
  • the signal intensity corresponding to f2 and f3 at time t2 is stored in a memory or the like as midval2 and midval3 (step S2506).
  • the signal intensities corresponding to f2 and f3 when the human body is in the reference posture can be stored, and the calibration error can be reduced.
  • FIG. 27 is a flowchart showing the operation of the game machine 3 after the game starts.
  • the state estimation unit 60 calculates signal strengths val1, val2, and val3 corresponding to f1, f2, and f3, respectively, after the game is started (step S2701), and val2c is obtained by correcting val2 and val3 using equations 1 and 2. , Val3c is calculated (step S2702).
  • val2c (val2-minval2) / (midval2-minval2)
  • val3c (val3-minval3) / (midval3-minval3)
  • the state estimation unit 60 estimates the proximity p and the contact degree c from the formulas 3 and 4 using the preset proximity estimation formula fp and the contact degree estimation formula fc (step S2703).
  • fp (val1, val2c, val3c)
  • fc (val1, val2c, val3c)
  • fp and fc are functions as described in the second embodiment, for example. Thereby, the error at the time of estimation by the physique of a human body, the kind of shoes, etc. is reduced.
  • the state estimation unit 60 outputs proximity state information including the proximity p and the contact c (step S2704).
  • the information presenting unit 70 presents information that stimulates visual and / or auditory senses such as outputting an image or outputting a sound based on the input proximity state information (step S2705).
  • the information presentation unit 70 increases the volume of sound as the proximity p included in the proximity state information increases, displays a graphic when the contact degree c exceeds a certain threshold, or a graphic displayed according to the posture The information is presented using the proximity state as an input.
  • the game machine 3 detects proximity and contact between the users without greatly restricting the movement of the target user, and enables game play with physical interaction.
  • the proximity or contact detection device is configured by a computer system including a microprocessor, a memory, a hard disk unit, and the like.
  • the memory or the hard disk unit stores a computer program that achieves the operation of each of the above devices, and the microprocessor operates according to the computer program.
  • the system LSI has the same configuration as the computer system of (1).
  • the computer program or the digital signal is recorded on a computer-readable recording medium.
  • a computer program or digital signal is transmitted via a telecommunication line or the like.
  • the proximity or contact detection device and method according to the present invention have the effect that the contact and proximity of an object (for example, a living organism) can be detected without greatly restricting the motion of the object, and the game It is useful for entertainment equipment such as a game machine, medical equipment that performs input / output of a game machine, for example, improvement of interpersonal ability, measurement device for research and the like.
  • an object for example, a living organism
  • entertainment equipment such as a game machine, medical equipment that performs input / output of a game machine, for example, improvement of interpersonal ability, measurement device for research and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

[Problem] Provided is a device capable of detecting contact with or proximity to a living organism without greatly constraining the behavior of the living organism. [Solution] The proximity or contact detection device of this invention is provided with an application unit for applying an electrical signal to an application-side conductor disposed in proximity to a living organism, a measurement unit for detecting an electrical signal produced by application by the application unit to a measurement-side conductor disposed in proximity to the living organism and generating a reception signal that includes signal intensity, and a state estimation unit for estimating the proximity state between living organisms on the basis of the reception signal and a preset estimation equation. The proximity or contact detection device is disposed in proximity to a series of objects in which the application side conductor and the measurement side conductor have an electrical resistance no greater than that of the skin of the living organism.

Description

物体の近接または接触検出装置Object proximity or contact detection device
 本発明は、物体同士の近接もしくは接触、またはその両方を検出する技術に関し、特に生物体の近接もしくは接触、またはその両方の検出にも応用可能な技術に関する。 The present invention relates to a technique for detecting proximity or contact between objects, or both, and particularly to a technique applicable to detection of proximity or contact of organisms, or both.
 従来、物体の近接または接触を検出する方法として、物体間の電流を検出する方法、圧力検出による方法、カメラ画像の物体認識による方法、静電結合を利用する方法などが知られている。しかし、電流や圧力による方法では接触を検出できるが近接を検出することはできない。また、カメラ画像の認識による方式では近接を検出することができるが、カメラの死角位置における近接、接触は検出できない。これらに対して、静電結合を利用する方法は物体が人体など動く場合でも任意の部位での近接または接触を死角なく検出できる。 Conventionally, as a method for detecting the proximity or contact of an object, a method for detecting a current between objects, a method for detecting pressure, a method for recognizing an object of a camera image, a method using electrostatic coupling, and the like are known. However, the method using current or pressure can detect contact but cannot detect proximity. In addition, the approach based on the recognition of the camera image can detect proximity, but cannot detect proximity or contact at the blind spot position of the camera. On the other hand, the method using electrostatic coupling can detect proximity or contact at any part without blind spots even when the object moves such as a human body.
 例えば、特許文献1には、人体が植物に接近または接触したときに、その人体あるいは植物の近傍に生じた静電容量の変化を検出して、近接および接触を検出する植物スイッチが記載されている。
 特許文献2には、接地された2つの電極にそれぞれ接触した2体の人体間の接触を検出し、その検出結果に基づいて音を生成する演奏装置が記載されている。
 特許文献3には、人体を媒体とした通信路、あるいは人体同士の接触によって成立する通信路によって通信を行う人体通信システムが記載されている。
For example, Patent Document 1 describes a plant switch that detects a proximity and contact by detecting a change in capacitance that occurs in the vicinity of a human body or a plant when the human body approaches or contacts the plant. Yes.
Patent Document 2 describes a performance device that detects contact between two human bodies that are in contact with two grounded electrodes, and generates a sound based on the detection result.
Patent Document 3 describes a human body communication system that performs communication through a communication path using a human body as a medium or a communication path established by contact between human bodies.
特開2007-115655号公報JP 2007-115655 A 特開2008-058742号公報JP 2008-058742 A 特許4284875号公報Japanese Patent No. 4284875
 しかしながら、特許文献1に記載の植物スイッチでは、植物を帯電させる高周波電源と植物の静電容量の変化を検出する検出手段をそれぞれ、環境に固定された電源線へ導線で配線する形で電気的に接地する必要がある。そのため、電気的に接地されていない自律的に動く生物体同士の接触および近接を検出するためには、生物体の動きを大きく制限することになる。 However, in the plant switch described in Patent Document 1, the high-frequency power source for charging the plant and the detection means for detecting the change in the capacitance of the plant are electrically connected to the power source line fixed to the environment by a lead wire. Must be grounded. Therefore, in order to detect contact and proximity between autonomously moving organisms that are not electrically grounded, the movement of the organisms is greatly limited.
 特許文献2に記載の演奏装置では、2体の人体は検出部に固定された電極に接触していなければならない。そのため検出対象の人体の行動は大きく制約されてしまう。 In the performance device described in Patent Document 2, the two human bodies must be in contact with the electrodes fixed to the detection unit. Therefore, the action of the human body to be detected is greatly restricted.
 特許文献3に記載の人体通信システムでは、通信アダプタを装着した人体が接触してできた通信路を介して通信アダプタ間でデータの通信を行うことはできるが、人体間の接触または近接を検出することができない。 In the human body communication system described in Patent Document 3, data communication can be performed between communication adapters via a communication path formed by contact of a human body equipped with a communication adapter, but contact or proximity between human bodies is detected. Can not do it.
 本発明は上記の課題を解決するためになされたもので、物体同士(例えば、生物の異なる個体間または同一の個体の身体部位間)の接触もしくは近接、またはその両方を物体の動作を大きく制限することなく検出する装置を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and greatly restricts the movement of an object between contact and / or proximity between objects (for example, between individuals of different organisms or between body parts of the same individual). It is an object of the present invention to provide a device for detecting without doing so.
 本発明の近接または接触検出装置は、第1の物体の近傍に配置された印加側導体と、前記印加側導体に電気信号を印加する信号印加部と、を含む印加部と、第2の物体の近傍に配置された測定側導体と、前記測定側導体に生じる電気信号を検出し、前記電気信号の強度を少なくとも含む受信信号を生成する信号測定部と、を含む測定部と、前記受信信号と、予め設定された近接状態と受信信号の関係を示す推定式に基づいて、第1の物体と第2の物体間の近接状態を段階的に推定する状態推定部と、を備える。また、前記印加側導体と前記測定側導体は、第1の物体および第2の物体の表皮以下の電気抵抗を有する一連なりの物体近傍に配置され、前記の一連なりの物体に前記印可側導体と前記測定側導体とは常態的に固定しない構造とすることが好ましい。 The proximity or contact detection device of the present invention includes an application unit including an application-side conductor disposed in the vicinity of the first object, a signal application unit that applies an electric signal to the application-side conductor, and a second object A measurement-side conductor arranged near the measurement-side conductor, a signal measurement unit that detects an electric signal generated in the measurement-side conductor and generates a reception signal including at least the intensity of the electric signal, and the reception signal And a state estimation unit that estimates the proximity state between the first object and the second object in a stepwise manner based on a preset estimation equation indicating the relationship between the proximity state and the received signal. The application-side conductor and the measurement-side conductor are disposed in the vicinity of a series of objects having an electrical resistance equal to or lower than the skin of the first object and the second object, and the application-side conductors are connected to the series of objects. It is preferable that the measurement-side conductor is not normally fixed.
 本発明の近接または接触検出装置によれば、物体同士の接触および近接を物体の動作を大きく制約することなく検出できる。 According to the proximity or contact detection device of the present invention, it is possible to detect contact and proximity between objects without greatly restricting the operation of the objects.
図1は第1の実施の形態における近接または接触検出装置の構成と人体への配置を示す全体図である。FIG. 1 is an overall view showing a configuration of a proximity or contact detection device and arrangement on a human body in the first embodiment. 図2(a)は印加部の構成を示すブロック図である。図2(b)は印加部のボトムアンテナの配置を示す図である。FIG. 2A is a block diagram illustrating a configuration of the application unit. FIG. 2B is a diagram showing the arrangement of the bottom antenna of the application unit. 図3(a)は測定部の構成を示すブロック図である。図3(b)は測定部のボトムアンテナの配置を示す図である。FIG. 3A is a block diagram showing the configuration of the measurement unit. FIG. 3B is a diagram illustrating the arrangement of the bottom antennas of the measurement unit. 図4は第1の実施の形態における近接または接触検出装置の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the proximity or contact detection device according to the first embodiment. 図5は人体間の距離と受信信号の強度との関係を示す図である。FIG. 5 is a diagram showing the relationship between the distance between human bodies and the strength of the received signal. 図6は接触部位と受信信号の強度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the contact area and the intensity of the received signal. 図7(a)および図7(b)は腕部での接触位置と受信信号の強度との関係を示す図である。FIGS. 7A and 7B are diagrams showing the relationship between the contact position at the arm and the strength of the received signal. 図8は人体間の近接状態を推定する方法を示すフローチャートである。FIG. 8 is a flowchart showing a method for estimating the proximity state between human bodies. 図9は接触部位を推定する方法を示すフローチャートである。FIG. 9 is a flowchart showing a method for estimating a contact site. 図10は接触部位の推定に用いるテーブルの一例を示す図である。FIG. 10 is a diagram illustrating an example of a table used for estimating a contact site. 図11は接触面積を推定する方法を示すフローチャートである。FIG. 11 is a flowchart showing a method for estimating the contact area. 図12は接触位置を推定する方法を示すフローチャートである。FIG. 12 is a flowchart showing a method for estimating the contact position. 図13は近接または接触検出装置の複数の生物体への配置を示す図である。FIG. 13 is a diagram showing the arrangement of the proximity or contact detection device on a plurality of organisms. 図14は導体を共有する印加部と測定部のブロック図である。FIG. 14 is a block diagram of an application unit and a measurement unit sharing a conductor. 図15は近接または接触検出装置の一個の生物体への配置を示す図である。FIG. 15 is a diagram showing the arrangement of the proximity or contact detection device on one organism. 図16は第3の実施形態における近接または接触検出装置の構成を示す図である。FIG. 16 is a diagram illustrating a configuration of a proximity or contact detection device according to the third embodiment. 図17は、第3の実施形態における近接または接触検出装置の動作を示すフローチャートである。FIG. 17 is a flowchart illustrating the operation of the proximity or contact detection device according to the third embodiment. 図18は、送受信制御部における各周波数へ信号強度を対応づける方法を示す図である。FIG. 18 is a diagram illustrating a method of associating signal strength with each frequency in the transmission / reception control unit. 図19は、周波数ごとの信号強度と人体間の近接または接触状態の関係を示す図である。FIG. 19 is a diagram illustrating the relationship between the signal intensity for each frequency and the proximity or contact state between human bodies. 図20は、台上に人体が直立した状態を示す図である。FIG. 20 is a diagram illustrating a state in which a human body stands upright on a table. 図21は、台上の人体が近接しながら接触をしていない状態を示す図である。FIG. 21 is a diagram illustrating a state in which the human body on the table is in close proximity and is not in contact. 図22は、近接または接触検出装置を応用したゲーム機の構成を示す図である。FIG. 22 is a diagram illustrating a configuration of a game machine to which the proximity or contact detection device is applied. 図23は、階段のついたゲーム機の例を示す図である。FIG. 23 is a diagram illustrating an example of a game machine with stairs. 図24(a)は足型の標示が設けられたゲーム機の例を示す上面図である。図24(b)は足型の標示が設けられたゲーム機の例を示す側面図である。FIG. 24A is a top view showing an example of a game machine provided with a foot-shaped sign. FIG. 24B is a side view showing an example of a game machine provided with a foot-shaped sign. 図25は、ゲーム機のキャリブレーション動作を示すフローチャートである。FIG. 25 is a flowchart showing the calibration operation of the game machine. 図26は、ゲーム機の操作の一例を示す図である。FIG. 26 is a diagram illustrating an example of operation of the game machine. 図27は、ゲーム開始後のゲーム機の動作を示すフローチャートである。FIG. 27 is a flowchart showing the operation of the game machine after the game is started.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、同じ要素には同じ符号を付しており、説明を省略する場合がある。本明細書において、「物体」とは、近傍に配置される印可側導体または測定側導体と回路を構成し、印加側導体に印加された電気信号に応じて発生した電界を伝搬することができる物質であり、材質としては半導体または導体を含む。例えば、物体として、人体や動物等の生物体、ロボット、家電機器または電子機器などの無生物(無生物の一部分、アームやドア等を含む)を挙げることができる。「物体」は、電界を伝搬することができれば、絶縁体を含んでいてもよい。ここで、「電界を伝搬する物体」とは、その周囲において当該電界の強度が大きくなるような物体の事を指す。 以下の実施形態では、測定対象の物体として人体を例にとり説明する。
(第1の実施形態)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element and description may be abbreviate | omitted. In this specification, an “object” constitutes a circuit with an application-side conductor or a measurement-side conductor arranged in the vicinity, and can propagate an electric field generated according to an electric signal applied to the application-side conductor. It is a substance, and the material includes a semiconductor or a conductor. For example, examples of the object include living organisms such as human bodies and animals, and inanimate objects such as robots, home appliances, and electronic devices (including inanimate parts, arms, doors, and the like). The “object” may include an insulator as long as it can propagate an electric field. Here, “an object that propagates an electric field” refers to an object in which the intensity of the electric field increases around the object. In the following embodiments, a human body will be described as an example of an object to be measured.
(First embodiment)
 図1は、第1の実施形態の近接または接触検出装置1の構成と人体への配置を示す全体図である。近接または接触検出装置1は、印加部10と測定部20と状態推定部30とを備える。図1において、印加部10と測定部20は環境に固定された導体へ導線で電気的には接続されない。印加部10、測定部20は常態的には接地されていない。このように、図1の実施形態においては、環境に固定された導体へ有線等によって物理的に接続されていないため、人体(物体)の動作を制限しないで測定することが可能である。ここで、「接地されている」とは、回路を流れる電流が電源に帰るための低インピーダンスの経路が提供されていることである。後述するボトムアンテナは、地面または床面と有線等によって物理的には接続されていないが、地面または床面と静電結合することができ、静電結合している状態では接地されている。ただし、ボトムアンテナが移動可能であり、ボトムアンテナが地面または床面と離れ、静電結合しない状態では接地されていない。このような状態を常態的には接地されていないと呼ぶ。なお、物体に装着せずに、例えば、図16、図20~図24に示すように、印加部10および測定部20を足場となる台に設けた場合であれば、環境に固定された導体へ有線等によって物理的に接続することにより接地させてもよい。測定部20は状態推定部30と有線で電気的に接続して通信するかまたは無線で通信する。 FIG. 1 is an overall view showing the configuration of the proximity or contact detection device 1 of the first embodiment and the arrangement on the human body. The proximity or contact detection device 1 includes an application unit 10, a measurement unit 20, and a state estimation unit 30. In FIG. 1, the application unit 10 and the measurement unit 20 are not electrically connected to a conductor fixed to the environment with a conducting wire. The application unit 10 and the measurement unit 20 are not normally grounded. As described above, in the embodiment of FIG. 1, measurement is possible without restricting the operation of the human body (object) because the conductor is not physically connected to the conductor fixed to the environment by wire or the like. Here, “grounded” means that a low impedance path is provided for the current flowing through the circuit to return to the power source. A bottom antenna, which will be described later, is not physically connected to the ground or floor by wire or the like, but can be electrostatically coupled to the ground or floor, and is grounded in a state of electrostatic coupling. However, the bottom antenna is movable, and the bottom antenna is not grounded in a state where it is separated from the ground or floor and is not electrostatically coupled. Such a state is normally called not grounded. If the application unit 10 and the measurement unit 20 are provided on a platform serving as a scaffold without being attached to an object, for example, as shown in FIGS. 16 and 20 to 24, a conductor fixed to the environment. It may be grounded by being physically connected to the cable by wire or the like. The measurement unit 20 communicates with the state estimation unit 30 by being electrically connected by wire or wirelessly.
 印加部10は人体11、測定部20は人体21の近傍、図1では、それぞれ足付近に配置している。印加部10、測定部20は、それぞれ人体11、21に接するように配置されてもよいし、20mm程度であれば静電結合で結ばれるため、衣服等を間にはさんで離れて配置されてもよい。以下、このように0mmから20mm程度の間隔をもって配置することを近傍への配置、として説明する。 The application unit 10 is arranged near the human body 11, and the measurement unit 20 is arranged near the human body 21, and in FIG. The application unit 10 and the measurement unit 20 may be arranged so as to be in contact with the human bodies 11 and 21, respectively, and if they are about 20 mm, they are connected by electrostatic coupling. May be. Hereinafter, such an arrangement with an interval of about 0 mm to 20 mm will be described as an arrangement in the vicinity.
 また、状態推定部30と測定部20は、隣接して配置されても離れて配置されてもよい。例えば、状態推定部30は測定部20と同様に人体21の近傍へ配置されてもよいし、人体21から離れた別の機器でその機能を実行する構成であってもよい。 Moreover, the state estimation unit 30 and the measurement unit 20 may be arranged adjacent to each other or separated from each other. For example, the state estimation unit 30 may be arranged in the vicinity of the human body 21 similarly to the measurement unit 20, or may be configured to execute its function with another device separated from the human body 21.
 図2(a)は、印加部10の構成を示すブロック図である。印加部10は、印加側導体110と、印加側導体110に電気信号を印加する信号印加部100とを備える。
 信号印加部100は、発信器101と増幅器102とコンデンサ103と蓄電池104およびこれらの部品を収容するケース105を備える。
FIG. 2A is a block diagram illustrating a configuration of the application unit 10. The application unit 10 includes an application-side conductor 110 and a signal application unit 100 that applies an electrical signal to the application-side conductor 110.
The signal applying unit 100 includes a transmitter 101, an amplifier 102, a capacitor 103, a storage battery 104, and a case 105 that accommodates these components.
 発信器101は、周期的な電気信号、または周期的な電気信号を合成した信号を生成し、この信号を増幅器102に出力する。発振器101は、例えば一定周波数の正弦波信号を出力する。
 増幅器102は、発信器101から入力された電気信号を増幅し、コンデンサ103を介して印加側導体110に印加する。
The transmitter 101 generates a periodic electrical signal or a signal obtained by synthesizing the periodic electrical signal, and outputs this signal to the amplifier 102. For example, the oscillator 101 outputs a sine wave signal having a constant frequency.
The amplifier 102 amplifies the electrical signal input from the transmitter 101 and applies it to the application-side conductor 110 via the capacitor 103.
 印加側導体110に電気信号が印加されると、図1に示すように人体11の表面とその周囲には電気信号に応じて変動する電界12が発生する。人体21が人体11に近接または接触すると電界12は伝搬し、人体21の周囲に電界22が発生する。この電界22の変動を測定部20が測定する。 When an electrical signal is applied to the application-side conductor 110, an electric field 12 that fluctuates in accordance with the electrical signal is generated on the surface of the human body 11 and its surroundings as shown in FIG. When the human body 21 approaches or comes into contact with the human body 11, the electric field 12 propagates and an electric field 22 is generated around the human body 21. The measurement unit 20 measures the fluctuation of the electric field 22.
 ケース105は、例えば金属製の直方体状の箱である。上述のように信号印加部100は簡単な回路で構成されているから、ケース105は小型、たとえば75mm×50mm×30mm程度とすることができる。 The case 105 is, for example, a metal rectangular parallelepiped box. As described above, since the signal applying unit 100 is configured by a simple circuit, the case 105 can be small, for example, about 75 mm × 50 mm × 30 mm.
 また、ケース105の形状は、直方体に限定されず、球や帯など他の形状でも良い。またケース105の材質は電気信号のノイズ源となる電磁波を遮蔽できる導体であることが望ましいが、他の材質であっても良い。例えば本発明を使用する部屋全体を導体で遮蔽することなどによって同等の効果を得ることができる。 Further, the shape of the case 105 is not limited to a rectangular parallelepiped, and may be other shapes such as a sphere and a band. The material of the case 105 is preferably a conductor that can shield electromagnetic waves that are noise sources of electrical signals, but other materials may be used. For example, the same effect can be obtained by shielding the entire room using the present invention with a conductor.
 蓄電池104は、発信器101と増幅器102に電力を供給する。信号印加部100が印加側導体110に印加する信号の電圧の振幅値は3V程度とさほど大きくなくても良いから、蓄電池104はボタン型乾電池等の小型のもので十分である。 The storage battery 104 supplies power to the transmitter 101 and the amplifier 102. Since the signal voltage applied to the application-side conductor 110 by the signal applying unit 100 does not have to be as large as about 3 V, a small battery such as a button-type battery is sufficient for the storage battery 104.
 印加側導体110は、少なくともトップアンテナ111を備え、より好ましくは、導体の組であるトップアンテナ111とボトムアンテナ112とを備える。これらアンテナは導体、例えば銅箔で構成される。このように銅箔などの金属箔を用いると、近接または接触検出装置1を小型化、薄型化できる。
 トップアンテナ111は人体11の近傍、例えば、足首付近に配置される。トップアンテナ111はコンデンサ103を介して増幅器102と接続される。
The application-side conductor 110 includes at least a top antenna 111, and more preferably includes a top antenna 111 and a bottom antenna 112 that are a set of conductors. These antennas are made of a conductor, such as copper foil. When a metal foil such as a copper foil is used in this way, the proximity or contact detection device 1 can be reduced in size and thickness.
The top antenna 111 is disposed near the human body 11, for example, near the ankle. The top antenna 111 is connected to the amplifier 102 via the capacitor 103.
 ボトムアンテナ112は、信号印加部100の回路のグラウンド(基準電圧)に接続され、基準電極として機能する。図2(b)においては、ボトムアンテナ112は、人体11の足部14の足裏15に配置され、床面と静電結合することにより接地させることができる。 The bottom antenna 112 is connected to the ground (reference voltage) of the circuit of the signal applying unit 100 and functions as a reference electrode. In FIG. 2B, the bottom antenna 112 is disposed on the sole 15 of the foot 14 of the human body 11 and can be grounded by being electrostatically coupled to the floor surface.
 トップアンテナ111とボトムアンテナ112は、人体11の近傍に配置される。つまり人体11と直接接触しても良いし、人体11との間に衣服等があっても良い。 The top antenna 111 and the bottom antenna 112 are arranged in the vicinity of the human body 11. That is, it may be in direct contact with the human body 11 or there may be clothes or the like between the human body 11.
 図3(a)は、測定部20の構成を示すブロック図である。測定部20は、測定側導体210と、測定側導体210に生じた電気信号を検出する信号測定部200とを備える。
 信号測定部200は、同調回路201と増幅器102と蓄電池204およびこれらの部品を収容するケース205を備える。
FIG. 3A is a block diagram illustrating a configuration of the measurement unit 20. The measurement unit 20 includes a measurement-side conductor 210 and a signal measurement unit 200 that detects an electrical signal generated in the measurement-side conductor 210.
The signal measuring unit 200 includes a tuning circuit 201, an amplifier 102, a storage battery 204, and a case 205 that houses these components.
 同調回路201は、測定側導体210に生じた電気信号から、たとえば一定周波数の正弦波信号を抽出して受信信号を生成し、増幅器202に出力する。この受信信号には、測定側導体210に生じた電気信号の強度の情報が少なくとも含まれる。受信信号には、さらに周波数および/または位相の情報が含まれる場合もある。
 増幅器202は、同調回路201から入力された受信信号を増幅し、状態推定部30に出力する。この受信信号の送信は無線により行っても良い。
The tuning circuit 201 extracts, for example, a sine wave signal having a constant frequency from the electrical signal generated in the measurement-side conductor 210, generates a reception signal, and outputs the reception signal to the amplifier 202. This received signal includes at least information on the strength of the electric signal generated in the measurement-side conductor 210. The received signal may further include frequency and / or phase information.
The amplifier 202 amplifies the reception signal input from the tuning circuit 201 and outputs the amplified signal to the state estimation unit 30. The reception signal may be transmitted wirelessly.
 ケース205はケース105と同様に金属製の直方体状の箱であるが、ケース105と同様に形状、材質はこれに限られない。また、ケース105と同様に、ケース205は小型とすることができる。なお、ケース205の内部に状態推定部30を収納しても良い。
 蓄電池204は、同調回路201と増幅器202に電力を供給する。蓄電池104と同様に蓄電池204はボタン型乾電池等の小型のもので十分である。
The case 205 is a metal cuboid box like the case 105, but the shape and material are not limited to this as in the case 105. Similarly to the case 105, the case 205 can be small. Note that the state estimation unit 30 may be housed inside the case 205.
The storage battery 204 supplies power to the tuning circuit 201 and the amplifier 202. Similar to the storage battery 104, a small storage battery 204 such as a button-type battery is sufficient.
 測定側導体210は、少なくともトップアンテナ211を備え、より好ましくは、導体の組であるトップアンテナ211とボトムアンテナ212とを備える。トップアンテナ211とボトムアンテナ212は、トップアンテナ111とボトムアンテナ112と同様に導体、例えば銅箔で構成される。
 トップアンテナ211は人体21の近傍、例えば、足首付近に配置される。トップアンテナ211は同調回路201と接続される。
The measurement-side conductor 210 includes at least a top antenna 211, and more preferably includes a top antenna 211 and a bottom antenna 212 that are a set of conductors. Similar to the top antenna 111 and the bottom antenna 112, the top antenna 211 and the bottom antenna 212 are made of a conductor, for example, copper foil.
The top antenna 211 is disposed near the human body 21, for example, near the ankle. The top antenna 211 is connected to the tuning circuit 201.
 ボトムアンテナ212は、ケース205に接続し、基準電極として機能する。図3(b)においては、ボトムアンテナ212は、人体21の足部24の足裏25に配置され、床面と静電結合することにより接地させることができる。 The bottom antenna 212 is connected to the case 205 and functions as a reference electrode. In FIG. 3B, the bottom antenna 212 is disposed on the sole 25 of the foot 24 of the human body 21 and can be grounded by being electrostatically coupled to the floor surface.
 トップアンテナ211とボトムアンテナ212は、人体21の近傍に配置する。つまり、人体21に直接接触しても良いし、人体21との間に衣服等があっても良い。 The top antenna 211 and the bottom antenna 212 are arranged in the vicinity of the human body 21. That is, it may be in direct contact with the human body 21 or there may be clothes or the like between the human body 21.
 上記のようにボトムアンテナ112とボトムアンテナ212を床面13の近傍に配置することで、印加側導体110と測定側導体210の基準電位を揃えることができる。印加側導体110と測定側導体210が床面13との静電結合で結ばれるためである。そのため、印加導体110、測定側導体210を常態的に接地することなく信号測定部200は電気信号を検出できる。 By arranging the bottom antenna 112 and the bottom antenna 212 in the vicinity of the floor surface 13 as described above, the reference potentials of the application side conductor 110 and the measurement side conductor 210 can be made uniform. This is because the application-side conductor 110 and the measurement-side conductor 210 are connected to the floor surface 13 by electrostatic coupling. Therefore, the signal measuring unit 200 can detect an electric signal without normally grounding the application conductor 110 and the measurement-side conductor 210.
 なお、印加部10、測定部20の基準電位を揃えるには、ボトムアンテナ112、212同士を近距離に配置するか、またはコンクリートの床面のような、電気抵抗率が人の皮膚以下程度の同一の物体の近傍にボトムアンテナ112、212を配置するか、または、印加部10、測定部20のグラウンド同士を電気的に導通させる必要がある。このようにボトムアンテナ同士の電位を揃えるか、静電結合を利用してほぼ揃えれば、床面13の近傍にボトムアンテナを配置するのは必須ではない。 In addition, in order to align the reference potentials of the application unit 10 and the measurement unit 20, the bottom antennas 112 and 212 are arranged at a short distance, or the electrical resistivity is about the human skin or less, such as a concrete floor surface. It is necessary to arrange the bottom antennas 112 and 212 in the vicinity of the same object, or to electrically connect the grounds of the application unit 10 and the measurement unit 20 to each other. As described above, if the potentials of the bottom antennas are aligned or substantially aligned using electrostatic coupling, it is not essential to dispose the bottom antenna near the floor surface 13.
 以下、図4を用いて近接または接触検出装置1の動作について説明する。まず、信号印加部100が印加側導体110に電気信号を印加する(ステップS1001)。信号測定部200が電気信号から電気信号の信号強度を少なくとも含む受信信号を生成し、これを状態推定部30に送る(ステップS1002)。受信信号は、信号強度に加え、周波数および/または位相を含んでもよい。状態推定部30は、受信信号から信号強度を少なくとも算出し、これに基づいて近接状態を推定し(ステップS1003)、処理を終了する。ステップS1003において状態推定部30は、あらかじめ設定された近接状態と受信信号の関係を示す推定式、および入力された受信信号から近接状態を推定する。このような動作をコンピュータに実行させるプログラムを作成し、これを状態推定部30で実行する。 Hereinafter, the operation of the proximity or contact detection device 1 will be described with reference to FIG. First, the signal application unit 100 applies an electrical signal to the application-side conductor 110 (step S1001). The signal measuring unit 200 generates a reception signal including at least the signal strength of the electric signal from the electric signal, and sends this to the state estimating unit 30 (step S1002). The received signal may include frequency and / or phase in addition to signal strength. The state estimation unit 30 calculates at least the signal strength from the received signal, estimates the proximity state based on the signal strength (step S1003), and ends the process. In step S <b> 1003, the state estimation unit 30 estimates the proximity state from a preset estimation equation indicating the relationship between the proximity state and the reception signal and the input reception signal. A program for causing the computer to execute such an operation is created and executed by the state estimation unit 30.
 状態推定部30は、さらにステップS1003で受信信号から推定した結果を含む近接状態情報を生成してもよい。ここで、「近接状態」とは、物体が接触しているか否か若しくは物体が近接しているか否か、物体が接触している場合における接触部分の面積(接触面積)、物体が接触している部位若しくは位置、または、物体が接触しておらず近接している場合における両物体間の最短距離(近接距離)、両物体間の相対的な位置関係(姿勢を含む)若しくは近接度合い(「近接度合い」とは、両物体間において、ある距離(しきい値)よりも近接している部分の割合若しくは面積を意味し、例えば、物体の表面を等間隔のグリッド状の小領域に分割し、各小領域の重心点から他の物体までへの最短距離を求め、最短距離がしきい値以下となる小領域の数によって求めることができる)等である。また「近接状態情報」とは生物体間の位置関係を示す情報で、「近接状態」の情報である。また、近接状態を段階的に推定するとは、単に物体が接触しているか否かだけではなく、接触していない場合は近接しているか否かを推定したり、または/および、接触している場合は接触面積、近接度合いの高さ、物体が接触している部位、位置等を推定することである。 The state estimation unit 30 may further generate proximity state information including the result estimated from the received signal in step S1003. Here, “proximity state” means whether or not an object is in contact or whether or not an object is in proximity, the area of a contact portion (contact area) when the object is in contact, Part or position, or the shortest distance (proximity distance) between the two objects when the object is not in contact with each other, the relative positional relationship (including posture) between the two objects or the degree of proximity (" The “proximity degree” means the ratio or area of a portion that is closer than a certain distance (threshold) between both objects. For example, the surface of an object is divided into small grid-like regions at equal intervals. The shortest distance from the center of gravity of each small region to another object can be obtained, and the shortest distance can be obtained by the number of small regions having a threshold value or less). The “proximity state information” is information indicating the positional relationship between the organisms, and is “proximity state” information. In addition, when the proximity state is estimated step by step, not only whether or not an object is in contact, but if it is not in contact, it is estimated whether or not the object is in proximity, and / or is in contact The case is to estimate the contact area, the height of the proximity, the part in contact with the object, the position, and the like.
 状態推定部30は、さらに近接状態情報を他の機器、たとえば人体21が身につけている携帯型の情報処理機器、に出力するようにしてもよい。これにより近接または接触の状態に応じて情報処理機器を操作することもできる。 The state estimation unit 30 may further output the proximity state information to another device, for example, a portable information processing device worn by the human body 21. Accordingly, the information processing device can be operated according to the proximity or contact state.
 以下、ステップS1003で用いる推定式の作成例について実測した実験結果を用いて説明する。図5、図6、図7(a)、図7(b)は受信信号の信号強度と人体間の近接状態の関係を実測した実験結果を示す図である。これらの実験では信号のサンプリング周波数は約10Hzとし、信号強度の数値は人体間の距離が十分大きく近接も接触もない場合の値を0としている。 Hereinafter, an example of creating the estimation formula used in step S1003 will be described using experimental results. FIG. 5, FIG. 6, FIG. 7 (a), and FIG. 7 (b) are diagrams showing experimental results obtained by actually measuring the relationship between the signal strength of the received signal and the proximity state between the human bodies. In these experiments, the signal sampling frequency is about 10 Hz, and the value of the signal intensity is 0 when the distance between human bodies is sufficiently large and there is no proximity or contact.
 図5は、印加部10を装着した人体11と測定部20を装着した人体21とが向き合って立ち2体の間の距離を変化させた場合の、人体間の距離と受信信号の強度との関係を示す。ここで、距離は人体11と人体21の胴体前面間の距離である。受信信号の強度は、約3秒間その距離を維持した場合の信号強度の平均値である。横軸が距離を表し単位はm(メートル)、縦軸が信号強度を表し単位はV(ボルト)である。
 なお、装着する、とは各構成が生物体の近傍に配置されることを意味する。
 図5に示すように、距離が短くなるのにしたがって信号強度は指数関数的に大きくなる。
FIG. 5 shows the distance between the human body and the intensity of the received signal when the human body 11 wearing the application unit 10 and the human body 21 wearing the measuring unit 20 face each other and the distance between the two bodies is changed. Show the relationship. Here, the distance is the distance between the human body 11 and the body front surface of the human body 21. The intensity of the received signal is an average value of the signal intensity when the distance is maintained for about 3 seconds. The horizontal axis represents distance, the unit is m (meter), the vertical axis represents signal intensity, and the unit is V (volt).
In addition, mounting | wearing means that each structure is arrange | positioned in the vicinity of the organism.
As shown in FIG. 5, the signal intensity increases exponentially as the distance decreases.
 図6は、印加部10を装着した人体11と測定部20を装着した人体21が0.5mの距離で対面し、人体21がその掌で人体11の各部位(掌、肘、頭、肩、腰)にふれた場合の受信信号の強度を示す。各部位の左側の棒は片手の掌で接触した場合、右側の棒は両手の掌で接触した場合の受信信号の強度である。信号強度は約3秒間接触状態を維持した場合の信号強度の平均値である。横軸が接触部位を表し、縦軸が信号強度を表し単位はV(ボルト)である。 FIG. 6 shows that the human body 11 wearing the application unit 10 and the human body 21 wearing the measuring unit 20 face each other at a distance of 0.5 m, and the human body 21 is in the palm of each part (palm, elbow, head, shoulder). The intensity of the received signal when touching the waist. The left bar of each part is the intensity of the received signal when the palm of one hand is in contact with the palm of the hand, and the right bar is the intensity of the received signal when the palm of both hands is in contact. The signal intensity is an average value of the signal intensity when the contact state is maintained for about 3 seconds. The horizontal axis represents the contact area, the vertical axis represents the signal intensity, and the unit is V (volts).
 片手の掌で接触した場合の信号強度を比較すると、接触した部位により信号強度に明瞭な差が見られる。両手の掌で接触した場合についても同様である。このことから、接触面積が一定である場合、信号強度により接触部位を推定できることが分かる。 比較 When comparing the signal intensity when touching with the palm of one hand, a clear difference in signal intensity is seen depending on the contacted part. The same applies to the case of contact with the palms of both hands. From this, it can be seen that when the contact area is constant, the contact site can be estimated from the signal intensity.
 また、各部位とも片手の掌で接触した場合の信号強度は、両手の掌で接触した場合の信号強度のおよそ2分の1となっている。このことから、接触部位を一定とした場合、接触面積を推定できることが分かる。 Also, the signal intensity when each part touches with the palm of one hand is about one-half of the signal intensity when touched with the palm of both hands. From this, it is understood that the contact area can be estimated when the contact site is constant.
 図7(a)および図7(b)は測定部20を装着した人体21が、その手先で、印加部10を装着した人体11の腕部に接触した際の接触位置と受信信号の強度との関係を示す図である。人体11は人体21から0.5m離れた距離で対面し、人体11と人体21は直立する。人体11は、腕をまっすぐ前方に、地面と水平になるように伸ばしている。人体21はその掌で人体11の腕部に接触し、掌を人体11に接触させたまま人体11の腕部に沿って掌を連続的に移動させる。移動は一定速度で約10秒間行った。横軸が時刻を表し単位はs(秒)、縦軸が信号強度を表し単位はV(ボルト)である。 7 (a) and 7 (b) show the contact position and the intensity of the received signal when the human body 21 wearing the measuring unit 20 touches the arm of the human body 11 wearing the applying unit 10 with its hand. It is a figure which shows the relationship. The human body 11 faces the human body 21 at a distance of 0.5 m, and the human body 11 and the human body 21 stand upright. The human body 11 extends its arms straight forward and horizontally with the ground. The human body 21 comes into contact with the arm portion of the human body 11 with the palm, and the palm is continuously moved along the arm portion of the human body 11 while the palm is in contact with the human body 11. The movement was performed at a constant speed for about 10 seconds. The horizontal axis represents time, the unit is s (seconds), the vertical axis represents signal intensity, and the unit is V (volts).
 図7(a)は、人体11の肩から掌まで接触位置を移動させた場合、図7(b)は逆に掌から肩まで接触位置を移動させた場合の時刻と受信信号の強度の関係をそれぞれ示す。なお、接触開始および終了時刻は図面上に「肩」または「掌」と矢印で示した時刻で信号強度が大きく変化している時刻である。 FIG. 7A shows the relationship between the time when the contact position is moved from the shoulder of the human body 11 to the palm, and FIG. 7B shows the relationship between the time when the contact position is moved from the palm to the shoulder and the intensity of the received signal. Respectively. Note that the contact start and end times are times when the signal intensity greatly changes at the times indicated by “shoulder” or “palm” and arrows on the drawing.
 印加部10および測定部20のトップアンテナ111、211は、それぞれ人体11と人体21の足首付近に配置されているので、これらの間の距離は、接触位置が肩から掌に移動するにつれて単調に増加する。図7(a)、図7(b)から、信号強度は接触位置が肩から掌に移動するにつれて単調に減少し、掌から肩に移動するにつれて単調に増加することがわかる。つまり信号強度は、印加部10と測定部20間の経路の距離にほぼ比例する。 Since the top antennas 111 and 211 of the application unit 10 and the measurement unit 20 are arranged near the ankles of the human body 11 and the human body 21, respectively, the distance between them monotonously as the contact position moves from the shoulder to the palm. To increase. 7A and 7B that the signal intensity decreases monotonously as the contact position moves from the shoulder to the palm, and increases monotonously as the contact position moves from the palm to the shoulder. That is, the signal intensity is substantially proportional to the distance of the path between the application unit 10 and the measurement unit 20.
 以上のように、接触位置が変化するにしたがって、印加部10と測定部20との間の人体の骨格に沿った経路上の距離が変化する場合、得られる信号強度は、基準となる位置、この場合では肩、と接触位置との間の距離にほぼ比例することが分かる。
 以下、状態推定部30における近接状態の推定について具体的に説明する。
 まず図8を用いて、信号強度に基づく人体11と人体21との近接状態の推定方法を説明する。
 状態推定部30は信号測定部200から入力された受信信号から信号強度を算出する(ステップS101)。
As described above, when the distance on the path along the skeleton of the human body between the application unit 10 and the measurement unit 20 changes as the contact position changes, the obtained signal strength is a reference position, In this case, it can be seen that the distance between the shoulder and the contact position is almost proportional to the distance.
Hereinafter, the estimation of the proximity state in the state estimation unit 30 will be specifically described.
First, a method for estimating the proximity state between the human body 11 and the human body 21 based on the signal intensity will be described with reference to FIG.
The state estimation unit 30 calculates the signal strength from the received signal input from the signal measurement unit 200 (step S101).
 状態推定部30は算出した信号強度があらかじめ設定された第1の閾値よりも大きいか否かを判定する(ステップS102)。ここで、人体11と人体21との距離が0.4m以下となった場合を近接と定義すると、図5から第1の閾値はたとえば0.2Vと設定する。 The state estimation unit 30 determines whether or not the calculated signal strength is greater than a preset first threshold (step S102). Here, when the case where the distance between the human body 11 and the human body 21 is 0.4 m or less is defined as proximity, the first threshold value is set to, for example, 0.2 V from FIG.
 信号強度が第1の閾値よりも大きくない(ステップS102の判定結果が偽の)場合、状態推定部30は、人体11と人体12は接触も近接もしていないと推定し(ステップS103)処理を終了する。 If the signal intensity is not greater than the first threshold (the determination result in step S102 is false), the state estimation unit 30 estimates that the human body 11 and the human body 12 are neither in contact nor in proximity (step S103). finish.
 信号強度が第1の閾値よりも大きい(ステップS102の判定結果が真の)場合、状態推定部30は、信号強度があらかじめ設定された第2の閾値よりも大きいか否かを判定する(ステップS104)。ここで、図5から第2の閾値はたとえば1.7Vと設定することができる。 If the signal strength is greater than the first threshold (the determination result in step S102 is true), the state estimation unit 30 determines whether the signal strength is greater than a preset second threshold (step S102). S104). Here, the second threshold value can be set to 1.7 V, for example, from FIG.
 信号強度が第2の閾値よりも大きくない(ステップS104の判定結果が偽の)場合、状態推定部30は、人体11と人体12は接触していないが近接していると推定し(ステップS104)処理を終了する。 If the signal strength is not greater than the second threshold (the determination result in step S104 is false), the state estimation unit 30 estimates that the human body 11 and the human body 12 are not in contact but are close to each other (step S104). ) End the process.
 信号強度が第2の閾値よりも大きい(ステップS104の判定結果が真の)場合、状態推定部30は、人体11と人体21が接触していると推定し(ステップS105)、処理を終了する。 When the signal strength is larger than the second threshold (the determination result in step S104 is true), the state estimation unit 30 estimates that the human body 11 and the human body 21 are in contact (step S105), and ends the process. .
 なお、人体11と人体21とが近接しているか否かだけを推定する場合は、ステップS102の判定結果が真の場合にステップS104で信号強度と第2の閾値を比較することなく、近接と推定して処理を終了してもよい。同様に接触しているか否かだけを推定する場合は、信号強度と第2の閾値との比較のみを実行し、信号強度と第1の閾値との比較(ステップS102、S103)は省略しても良い。
 図9を用いて、信号強度に基づく接触部位の推定方法を説明する。
 状態推定部30は信号測定部200から入力された受信信号から信号強度を算出する(ステップS201)。
When estimating only whether or not the human body 11 and the human body 21 are close to each other, if the determination result in step S102 is true, the signal strength and the second threshold value are not compared in step S104. The processing may be terminated after estimation. Similarly, when estimating only whether or not they are in contact, only the comparison between the signal strength and the second threshold is performed, and the comparison between the signal strength and the first threshold (steps S102 and S103) is omitted. Also good.
With reference to FIG. 9, a method for estimating a contact site based on signal intensity will be described.
The state estimation unit 30 calculates the signal strength from the received signal input from the signal measurement unit 200 (step S201).
 状態推定部30は図示していないメモリにあらかじめ記憶されたテーブルを参照して、接触部位を推定する(ステップS202)。このメモリは、状態推定部30に内蔵されたメモリであってもよいし、着脱可能な外部メモリであってもよい。 The state estimation unit 30 refers to a table stored in advance in a memory (not shown) to estimate a contact site (step S202). This memory may be a memory built in the state estimation unit 30 or a removable external memory.
 図10に、人体21は両方の掌で人体11の掌、肘、頭、肩、腰のいずれかに接触するものとして、実験結果に基づいて作成したテーブルの一例を示す。このテーブルは接触部位ごとに信号強度の下限値と上限値を有する。状態推定部30はステップS201で算出した信号強度とテーブルの数値を比較し、信号強度が下限値より大きく、かつ、上限値以下に対応する部位を接触部位と推定する。たとえば、信号強度が0.70Vである場合は、下限値0.60Vより大きく、かつ、上限値0.80V以下であるから、接触部位は肘であると推定する。
 図11を用いて、信号強度に基づく接触面積の推定方法を説明する。ここでは、人体21は片方または両方の掌で人体11の特定の部位に接触するものとする。
 状態推定部30は信号測定部200から入力された受信信号から信号強度を算出する(ステップS301)。
FIG. 10 shows an example of a table created based on the experimental results assuming that the human body 21 is in contact with any one of the palm, elbow, head, shoulder, and waist of the human body 11 with both palms. This table has a lower limit value and an upper limit value of signal intensity for each contact area. The state estimation unit 30 compares the signal intensity calculated in step S201 with the numerical value in the table, and estimates a part corresponding to a signal intensity larger than the lower limit value and lower than the upper limit value as a contact part. For example, when the signal intensity is 0.70V, it is larger than the lower limit value 0.60V and is equal to or lower than the upper limit value 0.80V, so the contact site is estimated to be an elbow.
A method for estimating the contact area based on the signal intensity will be described with reference to FIG. Here, it is assumed that the human body 21 contacts a specific part of the human body 11 with one or both palms.
The state estimation unit 30 calculates the signal strength from the received signal input from the signal measurement unit 200 (step S301).
 状態推定部30は算出した信号強度があらかじめ設定された第3の閾値よりも大きいか否かを判定する。この「信号強度>第3の閾値」という式は、推定式の一例である。接触部位を頭とした場合、図6から第3の閾値をたとえば0.70Vと設定する。 State estimation unit 30 determines whether or not the calculated signal strength is greater than a preset third threshold. The expression “signal intensity> third threshold value” is an example of an estimation expression. When the contact site is the head, the third threshold value is set to 0.70 V, for example, from FIG.
 信号強度が第3の閾値よりも大きくない(ステップS302の判定結果が偽の)場合、状態推定部30は、人体21は人体11の特定の部位に片方の掌で接触していると推定し(ステップS303)処理を終了する。 If the signal intensity is not greater than the third threshold (the determination result in step S302 is false), the state estimation unit 30 estimates that the human body 21 is in contact with a specific part of the human body 11 with one palm. (Step S303) The process ends.
 信号強度が第3の閾値よりも大きい(ステップS302の判定結果が真の)場合、状態推定部30は、人体21は人体11の特定の部位に両方の掌で接触していると推定し(ステップS304)処理を終了する。 When the signal intensity is greater than the third threshold (the determination result in step S302 is true), the state estimation unit 30 estimates that the human body 21 is in contact with a specific part of the human body 11 with both palms ( Step S304) The process is terminated.
 なお、接触部位をあらかじめ定めている場合には、この例のように片方の掌による接触か両方の掌による接触かを択一的に推定する他、たとえば信号強度の関数として接触面積そのものを推定することもできる。 In addition, when the contact part is determined in advance, the contact area itself is estimated as a function of the signal intensity, for example, in addition to alternatively estimating whether the contact is with one palm or with both palms, as in this example. You can also
 最後に図12を用いて、信号強度から接触位置を推定する方法を説明する。ここでは、人体21は特定の部位、たとえば手先で、人体11の特定の範囲、たとえば肩から掌にかけての腕部、の1カ所に接触するものとする。
 状態推定部30は信号測定部200から入力された受信信号から信号強度を算出する(ステップS401)。
Finally, a method for estimating the contact position from the signal intensity will be described with reference to FIG. Here, it is assumed that the human body 21 is in a specific part, for example, a hand, and contacts a specific range of the human body 11, for example, an arm portion from the shoulder to the palm.
The state estimation unit 30 calculates the signal strength from the received signal input from the signal measurement unit 200 (step S401).
 状態推定部30は算出した信号強度と推定式を用いて接触部位と基準点、たとえば体幹、との間の距離を算出し(ステップ402)、処理を終了する。この推定式は事前に得た、接触部位と基準点の間の距離と信号距離との関係の実験データの間の関係を説明する式である。たとえば、前記の距離と信号強度との関係の実験データについて、前記の距離を説明変数とし、信号強度を目的変数とする回帰式である。 The state estimation unit 30 calculates the distance between the contact site and the reference point, for example, the trunk, using the calculated signal intensity and the estimation formula (step 402), and ends the process. This estimation expression is an expression for explaining the relationship between experimental data obtained in advance and the relationship between the distance between the contact site and the reference point and the signal distance. For example, for the experimental data regarding the relationship between the distance and the signal strength, a regression equation is described in which the distance is an explanatory variable and the signal strength is an objective variable.
 なお測定対象が人体11、21のような足部を有する生物体の場合、歩行や跳躍などの足移動に伴い電気的な接地状況が変化する。このため、状態推定部30は、接地状況の変化に伴う受信信号の変化をさらに検出するようにしても良い。 Note that when the measurement target is a living body having a foot such as the human body 11 or 21, the electrical grounding state changes with the movement of the foot such as walking or jumping. For this reason, the state estimation unit 30 may further detect a change in the received signal accompanying a change in the grounding state.
 たとえば、所定の時間間隔で取得された受信信号を比較し、それぞれの受信信号の電圧の差が、接触位置や人体11と21との間の距離の変化による電圧の変動よりも大きな1.8V以上である場合に足移動を行ったと推定する。なお所定の時間間隔は、足移動時の足を上げた状態と両足が地面についていた状態を取得できるように設定する。例えば人間であれば、1秒間に2歩程度歩くと仮定すれば、0.25秒程度と設定しても良い。 For example, the received signals acquired at predetermined time intervals are compared, and the voltage difference between the received signals is 1.8 V, which is larger than the voltage variation due to the change in the contact position or the distance between the human bodies 11 and 21. If this is the case, it is estimated that the foot movement has been performed. Note that the predetermined time interval is set so that a state in which the foot is raised during the movement of the foot and a state in which both feet are on the ground can be acquired. For example, if it is assumed that a person walks about two steps per second, the time may be set to about 0.25 seconds.
 これにより、接地状況によらずに生物体同士の近接状態を推定しやすくでき、測定対象となる生物体の動きを大きく制約することなく近接状態を検出することができる。
 状態推定部30は、上述の各方法を単独でまたは組み合わせて用いて近接状態を推定する。
Accordingly, it is possible to easily estimate the proximity state between the organisms regardless of the ground contact state, and it is possible to detect the proximity state without greatly restricting the movement of the organism to be measured.
The state estimation unit 30 estimates the proximity state using each of the above methods alone or in combination.
 また、状態推定部30は、受信信号に含まれる電気信号の位相と信号印加部100が印加側導体110に印加した元の信号の位相との間のずれに基づいて近接状態を推定しても良い。これは、電気信号が電界となって生物体間を伝搬する際、その伝搬経路が長いほど位相のずれは大きくなることを利用して、位相のずれから生物体間の距離を推定する。位相のずれと距離の相関については、複数の距離で位相のずれを実験的に取得することで線形補完により相関関数を求めることができる。 In addition, the state estimation unit 30 may estimate the proximity state based on the shift between the phase of the electrical signal included in the received signal and the phase of the original signal applied to the application-side conductor 110 by the signal application unit 100. good. This is because when the electric signal propagates as an electric field between organisms, the phase shift increases as the propagation path becomes longer, and the distance between the organisms is estimated from the phase shift. Regarding the correlation between the phase shift and the distance, the correlation function can be obtained by linear interpolation by experimentally acquiring the phase shift at a plurality of distances.
 また、信号印加部100が複数の周波数で印加側導体110に電気信号を印加し、信号測定部200が周波数ごとに受信信号を生成する場合、状態推定部30は複数の周波数にそれぞれ対応した複数の受信信号に基づいて近接状態を推定しても良い。 In addition, when the signal application unit 100 applies electrical signals to the application-side conductor 110 at a plurality of frequencies and the signal measurement unit 200 generates a reception signal for each frequency, the state estimation unit 30 has a plurality of frequencies corresponding to the plurality of frequencies. The proximity state may be estimated based on the received signal.
 これはたとえば、以下のようにして行う。まず、いくつかの近接状態に対応する複数の周波数にそれぞれ対応した複数の信号強度のデータおよび複数の位相のずれのデータの組み合わせを特定の近接状態と対応づけたテーブルをメモリ等に記憶しておく。このテーブルの信号強度のデータおよび位相のずれのデータと受信信号の周波数ごとの信号強度のデータおよび位相のずれのデータとの間の類似度をユークリッド距離の逆数で評価する。最も類似度が高い周波数に対応づけられた近接状態が、受信時の近接状態であると推定する。他にも類似度を他の距離尺度で評価することや、パターン認識手法を用いてもよい。 This is done, for example, as follows. First, a table in which a combination of a plurality of signal intensity data and a plurality of phase shift data respectively corresponding to a plurality of frequencies corresponding to several proximity states is associated with a specific proximity state is stored in a memory or the like. deep. The similarity between the signal strength data and phase shift data of this table and the signal strength data and phase shift data for each frequency of the received signal is evaluated by the reciprocal of the Euclidean distance. It is estimated that the proximity state associated with the frequency with the highest similarity is the proximity state at the time of reception. In addition, the similarity may be evaluated by another distance scale, or a pattern recognition method may be used.
 以上のように近接または接触検出装置1は、信号印加部100と信号測定部200が非接地回路で構成されるため、測定対象である生物体の移動や姿勢変化等の動きを拘束する構成要素、たとえば接地のためのケーブル等を必要としない。また、小型の蓄電池104、204で駆動できるため、近接または接触検出装置1は、小型、軽量に構成される。
 このような構成により、近接または接触検出装置1は、自律的に動く生物体であっても生物体の動きを大きく制約することなく近接または接触の検出ができる。
As described above, in the proximity or contact detection device 1, since the signal applying unit 100 and the signal measuring unit 200 are configured by a non-grounded circuit, components that restrain movement such as movement or posture change of a biological object to be measured For example, a cable for grounding is not required. Moreover, since it can drive with the small storage batteries 104 and 204, the proximity | contact or the contact detection apparatus 1 is comprised small and lightweight.
With such a configuration, the proximity or contact detection device 1 can detect proximity or contact without greatly restricting the movement of the organism even if the organism moves autonomously.
 なお、近接または接触検出装置1は、生物体間の種々の近接状態を検出できるから、機器の直感的なインターフェース、近接または接触情報を含んだライフログ装置、接触を伴う身体運動スキルの計測と解析などの用途に応用することができる。 Since the proximity or contact detection device 1 can detect various proximity states between living organisms, an intuitive interface of a device, a life log device including proximity or contact information, measurement of body movement skills with contact, and It can be applied to uses such as analysis.
 接触部位の推定は、接触を伴う人間の身体運動スキルの計測と解析に応用することができ、例えばボクシングで人体の各部位にパンチの当たった回数や順序を計測することができる。接触面積の推定も同様である。 The estimation of the contact part can be applied to the measurement and analysis of the human body movement skill accompanied by the contact. For example, the number and order of punching of each part of the human body in boxing can be measured. The same applies to the estimation of the contact area.
 接触位置の推定は、人体そのものを入力装置とした操作インタフェースに応用できる。例えば接触状態を携帯用音楽プレーヤに出力し、位置により「再生」、「停止」等のボタンを押す操作ができる。また、接触位置を掌から肩へ移動させると音楽プレーヤのボリュームが大きくなり、逆に移動させるとボリュームを小さくなることで腕部にスライド式のボリュームコントローラがあるかのように操作できる。 The estimation of the contact position can be applied to an operation interface using the human body itself as an input device. For example, the contact state can be output to a portable music player, and a button such as “play” or “stop” can be pressed depending on the position. Further, when the contact position is moved from the palm to the shoulder, the volume of the music player is increased. Conversely, when the contact position is moved, the volume is decreased, so that the arm portion can be operated as if there is a slide type volume controller.
 なお、生物体は人体には限られず、印加側導体110に印加された電気信号により生じる電界がその表面に分布する特性を持った物体であればよい。以下の実施形態でも同様である。
(第2の実施形態)
The living body is not limited to a human body, and may be an object having a characteristic that an electric field generated by an electrical signal applied to the application-side conductor 110 is distributed on the surface thereof. The same applies to the following embodiments.
(Second Embodiment)
 第1の実施形態では、測定対象が人体11と人体21、2個の生物体である場合について説明したが、対象となる生物体は1個でも3個以上であっても良い。生物体が1個であれば、その生物体の近傍に、少なくとも印加部10と測定部20を配置する。生物体が複数個であれば、1個以上の生物体の近傍に印加部10を、また1個以上の生物体に測定部20を配置すれば、測定部20が配置された生物体と印加部10が配置された生物体間の近接状態を推定することができる。 In the first embodiment, the case where the measurement target is the human body 11 and the human body 21 or 2 organisms has been described, but the number of the target organisms may be one or three or more. If there is one organism, at least the application unit 10 and the measurement unit 20 are arranged in the vicinity of the organism. If there are a plurality of organisms, the application unit 10 is arranged in the vicinity of one or more organisms, and if the measurement unit 20 is arranged in one or more organisms, the application with the organism in which the measurement unit 20 is arranged is applied. The proximity state between the organisms in which the unit 10 is arranged can be estimated.
 図13に生物体が3個以上の複数である場合の近接または接触検出装置1の配置例を示す。人体41、42、43、44それぞれの近傍に印加部10と測定部20の組が配置される。図13では状態推定部30も測定部20のそれぞれの近傍に配置されているが、これに限ったものではない。 FIG. 13 shows an arrangement example of the proximity or contact detection device 1 when there are three or more organisms. A set of the application unit 10 and the measurement unit 20 is arranged in the vicinity of each of the human bodies 41, 42, 43, 44. In FIG. 13, the state estimation unit 30 is also arranged in the vicinity of each measurement unit 20, but is not limited thereto.
 印加部10と測定部20の両方が1個の生物体の近傍に配置される場合、図14に示すように、一組の導体310、すなわちトップアンテナ311とボトムアンテナ312が、印加側導体110と測定側導体210を兼ねるようにしても良い。このときトップアンテナ311は増幅器102と同調回路201にそれぞれ接続さている。ボトムアンテナ312は信号印加部100のケース105と信号測定部200のケース205にそれぞれ接続されている。 When both the application unit 10 and the measurement unit 20 are arranged in the vicinity of one organism, as shown in FIG. 14, a set of conductors 310, that is, a top antenna 311 and a bottom antenna 312, are applied to the application-side conductor 110. And may also serve as the measurement-side conductor 210. At this time, the top antenna 311 is connected to the amplifier 102 and the tuning circuit 201, respectively. The bottom antenna 312 is connected to the case 105 of the signal applying unit 100 and the case 205 of the signal measuring unit 200, respectively.
 一組の導体310が印加側導体110として機能するときは増幅器102から電気信号が印加され、一組の導体310が測定側導体210として機能するときは同調回路201へ電気信号を出力する。
 このように、印加側導体110と測定側導体210を一組の導体310で兼用すれば、近接または接触検出装置1をさらに小型化することができる。
When the set of conductors 310 functions as the application-side conductor 110, an electric signal is applied from the amplifier 102, and when the set of conductors 310 functions as the measurement-side conductor 210, an electric signal is output to the tuning circuit 201.
As described above, when the application-side conductor 110 and the measurement-side conductor 210 are shared by a pair of conductors 310, the proximity or contact detection device 1 can be further downsized.
 また、測定対象である人体41、42、43、44のそれぞれの近傍に印加部10と測定部20が配置されているから、どの人体においても他の任意の人体との間の接触状態を推定することができる。 In addition, since the application unit 10 and the measurement unit 20 are arranged in the vicinity of each of the human bodies 41, 42, 43, and 44 that are measurement targets, the contact state between any other human body and any human body is estimated. can do.
 このように全ての測定対象である人体が印加部10および測定部20を装着している場合、信号印加部100は、各人体を識別する識別情報を電気信号に付加して印加側導体110または、一組の導体310に印加するような構成であってもよい。この場合、信号測定部200が識別信号を含む受信信号を生成し、予め識別情報と各人体を対応づけたテーブルをメモリに記憶させておけば、状態推定部30において接触または近接した人体を識別できる。たとえば、人体41に装着された状態推定部30が他の人体との接触または近接を検出した場合、接触または近接している相手が人体42、43、44のいずれであるかを推定することができる。
 この構成を、人の行動を記録するライフログ装置に応用すれば他人との近接または接触情報を自動的に記録することができる。
Thus, when the human body which is all the measurement objects is wearing the application unit 10 and the measurement unit 20, the signal application unit 100 adds identification information for identifying each human body to the electric signal to apply the application-side conductor 110 or The configuration may be such that it is applied to a set of conductors 310. In this case, if the signal measuring unit 200 generates a received signal including an identification signal and stores in advance a table in which the identification information and each human body are associated with each other in the memory, the state estimation unit 30 identifies the human body that is in contact with or close to the human body. it can. For example, when the state estimation unit 30 attached to the human body 41 detects contact or proximity with another human body, it may estimate which of the human bodies 42, 43, or 44 is in contact with or in close proximity to. it can.
If this configuration is applied to a life log device that records human behavior, proximity or contact information with other people can be automatically recorded.
 図15に生物体が1個である場合の近接または接触検出装置1の配置例を示す。人体51の2つの部位の間の近接または接触を検出するために、例えば人体51は印加部10を左の手首付近に、測定部20を胸付近にそれぞれ装着する。これは、生物体が人体の場合、手で他の部位に触れるという接触がほとんどであると考えられるためである。印加部10は手首付近に、測定部20はこれと基準電位を揃えるように配置する。 FIG. 15 shows an arrangement example of the proximity or contact detection device 1 when there is one organism. In order to detect proximity or contact between two parts of the human body 51, for example, the human body 51 wears the application unit 10 near the left wrist and the measurement unit 20 near the chest. This is because, when the living organism is a human body, it is considered that most of the contacts are touching other parts by hand. The application unit 10 is arranged near the wrist, and the measurement unit 20 is arranged so as to align the reference potential with this.
 なお、生物体が人体ではない場合、例えば犬であれば鼻先または足先で他の部位に触れる接触が多いので、印加部10を鼻先付近または足先に装着する。他の物体、例えば導電体で大部分が構成されている家電機器やロボットの場合も同様に、他の部位に接触する場合の多い部位に印加部10を装着する。基準電位は、第1の実施形態で説明したようにして揃える。
 なお、状態推定部30における近接状態の推定式は別途実験を行い定める。
If the living organism is not a human body, for example, if it is a dog, there are many contacts with other parts of the nose or feet, so the application unit 10 is attached to the vicinity of the nose or toes. Similarly, in the case of home appliances and robots that are mostly composed of other objects, for example, electrical conductors, the application unit 10 is mounted on a site that often comes into contact with other sites. The reference potentials are aligned as described in the first embodiment.
Note that the proximity state estimation formula in the state estimation unit 30 is determined through separate experiments.
 この構成によれば、近接または接触検出装置1は、一個の生物体の異なる部位間の近接状態を推定することができ、機器の操作インタフェースなどに応用することができる。 According to this configuration, the proximity or contact detection device 1 can estimate the proximity state between different parts of one organism, and can be applied to an operation interface of the device.
 また、生物体の部位間の近接状態を推定する推定式と、生物体間の近接状態を推定する推定式のどちらもメモリに記憶させておけば、近接または接触検出装置1を装着した生物体の部位間および他の近接または接触検出装置1を装着した生物体との近接状態の両方を推定することができる。
(第3の実施形態)
Further, if both the estimation formula for estimating the proximity state between the parts of the organism and the estimation formula for estimating the proximity state between the organisms are stored in the memory, the organism to which the proximity or contact detection device 1 is attached is stored. It is possible to estimate both the proximity of the two parts and the proximity state of the other proximity or the living body equipped with the contact detection device 1.
(Third embodiment)
 図16は、第3の実施形態における近接または接触検出装置2の構成を示す図である。近接または接触検出装置2は複数の印加部10、測定部20と、状態推定部40を備え、状態推定部40は送受信制御部50を備える。なお、図16に示すように、対象となる生物体が複数ある場合は、それぞれの状態推定部40を共有化し、各測定部20からの受信信号を一括して受け取って推定動作を行う構成であってもよい。
 以下、図17を用いて、近接または接触検出装置2の動作を説明する。
FIG. 16 is a diagram illustrating a configuration of the proximity or contact detection device 2 according to the third embodiment. The proximity or contact detection device 2 includes a plurality of application units 10, a measurement unit 20, and a state estimation unit 40, and the state estimation unit 40 includes a transmission / reception control unit 50. As shown in FIG. 16, when there are a plurality of target organisms, each state estimation unit 40 is shared, and the estimation operation is performed by collectively receiving the received signals from each measurement unit 20. There may be.
Hereinafter, the operation of the proximity or contact detection device 2 will be described with reference to FIG.
 信号印加部100は電気信号が複数の周波数をもつ電気信号、たとえば相異なる周波数の複数の正弦波信号から合成される電気信号を印加する(ステップS1701)。信号測定部200は測定側導体210に生じた電気信号を検出し、少なくとも信号強度を含む受信信号を生成し、これを状態推定部40に出力する(ステップS1702)。
 状態推定部40の送受信制御部50は、測定部20が出力した受信信号から信号強度を算出し、各周波数と信号強度を対応づける(ステップS1703)。
The signal applying unit 100 applies an electric signal having an electric signal having a plurality of frequencies, for example, an electric signal synthesized from a plurality of sinusoidal signals having different frequencies (step S1701). The signal measurement unit 200 detects an electrical signal generated in the measurement-side conductor 210, generates a reception signal including at least the signal strength, and outputs this to the state estimation unit 40 (step S1702).
The transmission / reception control unit 50 of the state estimation unit 40 calculates the signal strength from the reception signal output from the measurement unit 20, and associates each frequency with the signal strength (step S1703).
 以下、図18を用いて対応づけを具体的に説明する。信号印加部10は図18(a)に記載の時間変化をする送信周波数で、電気信号を印加する。複数の、異なる周波数にそれぞれ対応する複数の測定部20は時間的に変化する電気信号を得る。例えば、図18(b)に示すように、送信周波数f3に対応する測定部20は、送信周波数がf3である時間帯、つまり時刻t3nからt3n+1の間に、送信周波数がf3の場合の受信強度a3となり、それ以外の時間帯では値が0となる形で時間的に変化する受信信号を生成する。送信周波数f2やf1についても同様に、対応するそれぞれの測定部20が図18(c)、図18(d)に示す時間変化をする受信信号を生成する。このように周波数f3、f2、f1に信号強度a3、a2、a1を対応付ける。対応づけは、例えば周波数が3通りの場合、各周波数に対応する信号強度を3次元のベクトル値とするなどして行う。 Hereinafter, the correspondence will be specifically described with reference to FIG. The signal applying unit 10 applies an electric signal at a transmission frequency that changes with time as shown in FIG. A plurality of measuring units 20 corresponding to a plurality of different frequencies respectively obtain electrical signals that change over time. For example, as shown in FIG. 18B, the measurement unit 20 corresponding to the transmission frequency f3 is a time zone where the transmission frequency is f3, that is, between the times t3n and t3n + 1, when the transmission frequency is f3. A reception signal that changes in time is generated in such a manner that the reception intensity is a3 and the value is 0 in other time zones. Similarly, for the transmission frequencies f2 and f1, the corresponding measurement units 20 generate reception signals that change with time as shown in FIGS. 18 (c) and 18 (d). In this way, the signal strengths a3, a2, and a1 are associated with the frequencies f3, f2, and f1, respectively. For example, when there are three frequencies, the correspondence is performed by setting the signal intensity corresponding to each frequency as a three-dimensional vector value.
 状態推定部40は、各周波数に対応づけられた信号強度、上記の例では3次元のベクトル値から、近接度、接触度、姿勢の少なくともいずれか一つを推定し(ステップS1704)、処理を終了する。 The state estimation unit 40 estimates at least one of proximity, contact degree, and posture from the signal intensity associated with each frequency, the three-dimensional vector value in the above example (step S1704), and performs processing. finish.
 ここで、近接度とは人体間が近いほど高く、離れているほど低くなるような指標であり、本実施の形態では人体間の距離が20mm以内であるような人体表面の面積のこととする。また接触度とは人体間の接触強度を示す指標であり、本実施の形態では人体表面のうち人体間で接触している部分の面積のこととする。なお、近接度は他の指標を用いてもよい。例えば人体間の最近接距離の逆数などでもよい。同様に接触度も他の指標を用いてもよい。例えば単位時間あたりに接触する回数などでもよい。 Here, the proximity is an index that is higher as the human body is closer and lower as it is farther away, and in this embodiment, the distance between the human bodies is an area of the human body surface within 20 mm. . The contact degree is an index indicating the contact strength between human bodies, and in this embodiment, the contact degree is the area of the portion of the human body surface that is in contact between human bodies. Note that another index may be used for the proximity. For example, the reciprocal of the closest distance between human bodies may be used. Similarly, another index may be used for the degree of contact. For example, the number of times of contact per unit time may be used.
 以下、状態推定部40における推定方法について具体的に説明する。図19は発明者らが周波数ごとの信号強度と人体間の近接または接触状態の関係を実測した実験結果を示す図である。この実験では、印加側導電部110および測定側導電部210が配置された台を2つ用意し、2つの台にそれぞれ人体が乗り、近接、接触動作を行った。図20に台と台に人が直立した状態の例を示す。人体が直立した状態では近接も接触もしないが姿勢を変化させたり手足を動かせば近接および/または接触できる。 Hereinafter, the estimation method in the state estimation unit 40 will be specifically described. FIG. 19 is a diagram showing experimental results in which the inventors actually measured the relationship between the signal intensity for each frequency and the proximity or contact state between human bodies. In this experiment, two tables on which the application-side conductive unit 110 and the measurement-side conductive unit 210 are arranged were prepared, and a human body was placed on each of the two tables to perform proximity and contact operations. FIG. 20 shows an example of a state where a person stands upright on the table. When the human body is standing upright, neither proximity nor contact is made, but proximity and / or contact can be achieved by changing the posture or moving the limbs.
 状態1は2つの台のいずれにも測定対象となる人体が乗っていない状態である。状態2は台1の中央付近にのみ人体が直立して乗った状態である。状態3は、台1および台2にそれぞれ人体が直立して乗った図20の状態である。 State 1 is a state in which the human body to be measured is not on either of the two platforms. State 2 is a state in which the human body stands upright only near the center of the table 1. The state 3 is the state of FIG. 20 in which the human body rides on the stand 1 and the stand 2 respectively.
 状態4は、図21に示すように、台1および台2にそれぞれ人体が乗った状態で人体同士が胴体を互いの方に傾けながら両腕を前へ伸ばして手先が互いの胸の近傍になるが接触していない状態である。この状態は近接度が高く接触度が0である。 In state 4, as shown in FIG. 21, the human bodies are on the base 1 and the base 2, respectively, and the human bodies extend their arms forward while tilting the torso toward each other, and the hands are close to each other's chest. Although it is, it is in the state which is not touching. In this state, the degree of proximity is high and the degree of contact is zero.
 状態5は台1および台2にそれぞれ人体が乗り、かつ人体同士が胴体を近接させずに腕を伸ばして腕のみで接触している状態である。具体的には、空中に互いの右手をさし出して人差し指の先端のみで接触しあっている状態である。この状態は近接度が低く、接触度も低い。 State 5 is a state in which the human body rides on the base 1 and the base 2 respectively, and the human bodies are in contact with each other only by extending their arms without bringing the torso close to each other. Specifically, it is a state where the right hand of each other is put out in the air and is in contact with only the tip of the index finger. This state has low proximity and low contact.
 状態6は、台1および台2にそれぞれ人体が乗った状態で人同士が互いの上半身に腕をまわして抱き合っている状態である。この状態は近接度が高く、接触度も高い。 State 6 is a state in which the human body is on the platform 1 and the platform 2 and the people are embracing each other with their arms around the upper body. In this state, the degree of proximity is high and the degree of contact is also high.
 状態7は、台1および台2にそれぞれ人体がしゃがんだ姿勢で乗っており、かつ状態4と同様に腕を前へ伸ばして手先が互いの胸の近傍になるが、接触していない状態である。この状態は近接度が低く、接触度は0である。
 なお、図19における周波数f1は20MHz、周波数f2は10MHz、周波数f3は1MHzである。
In state 7, the human body rides on each of the pedestal 1 and the pedestal 2 and the arms are extended forward in the same manner as in the state 4 so that the hands are close to each other's chests, but not in contact with each other. is there. In this state, the degree of proximity is low and the degree of contact is zero.
In FIG. 19, the frequency f1 is 20 MHz, the frequency f2 is 10 MHz, and the frequency f3 is 1 MHz.
 状態1と状態2、状態1と状態3を比較すると、f1に対する信号強度は各導電部が人体の近傍に配置されるか否かに大きく影響を受けることがわかる。一方、状態4、5、6を比較すると、f1に対する信号強度は近接度、接触度にはあまり影響を受けず、状態4、状態7を比較すると、姿勢には影響を受けることがわかる。なお、ここではf1は20MHzとしたが、発明者らの別の実験によると、10MHzから30MHz程度であれば同様に人体の有無と姿勢変化に感度が高いという特徴があった。 Comparing state 1 and state 2, and state 1 and state 3, it can be seen that the signal intensity for f1 is greatly influenced by whether or not each conductive part is arranged in the vicinity of the human body. On the other hand, comparing the states 4, 5 and 6, it can be seen that the signal intensity with respect to f1 is not significantly affected by the proximity and the contact degree, and comparing the states 4 and 7 is influenced by the posture. Note that f1 is 20 MHz here, but according to another experiment by the inventors, there is a characteristic that if it is about 10 MHz to 30 MHz, the presence / absence of the human body and the change in posture are similarly high.
 同様に各状態を比較するとf2は近接度に感度が高く、f3は接触度に感度が高いことがわかる。なお、f2は3MHzから10MHz程度、f3は500kHzから3MHz程度であれば同様の特徴を有していた。 Similarly, when each state is compared, it can be seen that f2 is sensitive to proximity and f3 is sensitive to contact. In addition, if f2 was about 3 MHz to about 10 MHz and f3 was about 500 kHz to 3 MHz, the same characteristics were obtained.
 これらの周波数別の近接度および接触度に対する傾向の違いを用いて、それぞれの周波数の信号強度から近接度および接触度を推定するには、上記信号強度の3次元ベクトルを特徴量として公知のパターン認識手法を用いればよい。例えば学習データとして近接度が高い状態である近接度高および近接度が低い状態である近接度低でそれぞれ3次元ベクトルを取得し、Hidden Marcov Model(HMM)などの確率モデルにより近接度高を認識できる認識器を作成する。その認識器の尤度を近接度としたり、近接度高の認識器、近接度低の認識器を作成し、数1のようにそれぞれの尤度の関数を近接度としたりしてもよい。 In order to estimate the proximity and the contact degree from the signal intensity of each frequency using the difference in the tendency with respect to the proximity and the contact degree for each frequency, a known pattern using a three-dimensional vector of the signal intensity as a feature amount A recognition method may be used. For example, 3D vectors are acquired as learning data with high proximity, which is a high proximity state, and low proximity, which is a low proximity state, and high proximity is recognized by a probability model such as HiddenHMarcov Model (HMM). Create a recognizer that can. The likelihood of the recognizer may be a proximity, a recognizer with a high proximity, or a recognizer with a low proximity may be created, and the function of each likelihood may be set as a proximity as shown in Equation 1.
Figure JPOXMLDOC01-appb-M000001
 数1を用いると相対的な近接度高の尤度の大きさを求めることができる。
Figure JPOXMLDOC01-appb-M000001
When Equation 1 is used, it is possible to obtain the magnitude of the likelihood of relative proximity.
 また例えば、サポートベクタマシン(SVM)やニューラルネットワークなどのパターン認識手法の識別尤度を用いて近接度を定義してもよい。接触度に関しても同様である。 Also, for example, the proximity may be defined using the identification likelihood of a pattern recognition method such as a support vector machine (SVM) or a neural network. The same applies to the degree of contact.
 また、3つの信号強度の線形結合により近接度および接触度を定義してもよい。例えばf1、f2、f3の信号強度をそれぞれp1、p2、p3として、重み係数w1、w2、w3を用いて数2のように近接度を定義する。 Also, proximity and contact degree may be defined by linear combination of three signal intensities. For example, the signal intensities of f1, f2, and f3 are defined as p1, p2, and p3, respectively, and the proximity is defined as in Equation 2 using weighting factors w1, w2, and w3.
Figure JPOXMLDOC01-appb-M000002
 なお、f2は近接度に感度が高いため、w2を大きく設定し、他の状態における信号強度からヒューリスティックにw1、w2、w3を決めてもよい。
Figure JPOXMLDOC01-appb-M000002
Since f2 is sensitive to proximity, w2 may be set large, and w1, w2, and w3 may be determined heuristically from the signal strength in other states.
 以上のように近接または接触検出装置2は、複数の測定対象である物体の動きを大きく制約することなく、複数の物体間の近接の程度および/または接触の程度および/または大域的な姿勢をそれぞれ独立に検出できる。
(実施の形態4)
As described above, the proximity or contact detection device 2 can control the degree of proximity between the plurality of objects and / or the degree of contact and / or the global posture without greatly restricting the movement of the objects as the plurality of measurement objects. Each can be detected independently.
(Embodiment 4)
 図22は、近接または接触検出装置1または2を応用したゲーム機3の構成を示す図である。印加部10、測定部20は第1の実施形態、第2の実施形態と同様である。また印加部10、測定部20は測定対象である物体の近傍に配置されればよく、例えば物体が人体の場合、人体が装着してもよいし、人体がその上に立ったり座ったり寄りかかったりなどできる形状のものに配置されればよい。装着するタイプではない場合、図20に示すように印加部10、測定部20が人体の近傍に配置されるようにする。例えば、図20に示す台のような段差や、図23に示すような階段、図24に示すような足型や、おしりの標示などを設けることで必ず基本状態のデータが取得できる姿勢に人体が一定時間あるようにする。 FIG. 22 is a diagram showing a configuration of the game machine 3 to which the proximity or contact detection device 1 or 2 is applied. The application unit 10 and the measurement unit 20 are the same as those in the first embodiment and the second embodiment. The application unit 10 and the measurement unit 20 may be arranged in the vicinity of the object to be measured. For example, when the object is a human body, the human body may be worn, or the human body may stand, sit, or lean on it. It may be arranged in a shape that can be used. If it is not a type to be worn, the application unit 10 and the measurement unit 20 are arranged in the vicinity of the human body as shown in FIG. For example, by providing a step as shown in FIG. 20, a staircase as shown in FIG. 23, a foot shape as shown in FIG. Is for a certain time.
 状態推定部60は状態推定部40と同様に測定データから測定対象の近接、接触状態を推定するが、さらに、信号強度を含む近接接触情報を情報提示部70に出力する。
 情報提示部70は液晶ディスプレイ、スピーカ等の人間の視覚および/または聴覚に対して刺激を与えるものであればなんでもよい。
Similar to the state estimation unit 40, the state estimation unit 60 estimates the proximity and contact state of the measurement target from the measurement data, and further outputs proximity contact information including signal strength to the information presentation unit 70.
The information presentation unit 70 may be anything as long as it stimulates human vision and / or hearing, such as a liquid crystal display or a speaker.
 図24(a)は、足型のついたゲーム機3の上面図を、図24(b)に足型のついたゲーム機3の下面図を示す。このゲーム機3でのキャリブレーションの動作例を図25に示す。ゲーム機3は2つの台にそれぞれ印加部10、測定部20が配置される。 FIG. 24A shows a top view of the game machine 3 with a foot shape, and FIG. 24B shows a bottom view of the game machine 3 with a foot shape. An example of the calibration operation in the game machine 3 is shown in FIG. In the game machine 3, the application unit 10 and the measurement unit 20 are arranged on two platforms, respectively.
 まず、情報提示部70は人体を台の上に乗るように誘導する情報を提示する(ステップS2501)これは視覚的および/または聴覚的な刺激を与えることで行う。状態推定部60は、人体の有無に感度の高い周波数f1に対応する信号強度val1を算出する(ステップS2502)。状態推定部60は、val1がある閾値th1を超えたかいなかを判定し(ステップS2503)、超えた時点t1付近で、近接度に感度の高いf2に対応する信号強度、接触度に感度の高いf3に対応する信号強度を算出し、それぞれを各周波数での最低出力値minval2、minval3とする(ステップS2504)。ここで、th1は例えば片足を乗せてもう片足を上げた瞬間でのf1に対応する信号強度、t1がその瞬間となるように設定する。これにより煩雑な指示を情報提示部から人体に提示しなくとも、人体間で近接、接触していない状態でf2、f3に対応する信号強度の基準値を設定できる。 First, the information presentation unit 70 presents information for guiding the human body to get on the table (step S2501). This is performed by applying visual and / or auditory stimuli. The state estimation unit 60 calculates the signal intensity val1 corresponding to the frequency f1 that is highly sensitive to the presence or absence of a human body (step S2502). The state estimation unit 60 determines whether or not val1 has exceeded a certain threshold th1 (step S2503), and near the time point t1, the signal strength corresponding to f2 having high sensitivity in proximity and f3 having high sensitivity in contact are obtained. The signal intensities corresponding to are calculated and set as the minimum output values minval2 and minval3 at the respective frequencies (step S2504). Here, for example, th1 is set such that t1 is the signal intensity corresponding to f1 at the moment when one foot is put on and the other foot is raised. As a result, the reference values of the signal strengths corresponding to f2 and f3 can be set in a state where the human body is not in close proximity or in contact without presenting a complicated instruction from the information presentation unit.
 情報提示部70は、図26に例示するようにゲームのモード選択など操作用ボタン同士を電気的に導通させ、状態推定部60は両方の人体がボタンを押しているなどのスタート操作が行われたかどうかを判定し(ステップS2505)、その時刻t2におけるf2、f3に対応する信号強度をmidval2、midval3としてメモリ等に記憶する(ステップS2506)。これにより、人体が基準姿勢にあるときのf2、f3に対応する信号強度を記憶でき、校正の誤差を低くできる。 As shown in FIG. 26, the information presentation unit 70 electrically connects operation buttons such as game mode selection, and the state estimation unit 60 has performed a start operation such as pressing both buttons by both human bodies. Whether the signal intensity corresponding to f2 and f3 at time t2 is stored in a memory or the like as midval2 and midval3 (step S2506). As a result, the signal intensities corresponding to f2 and f3 when the human body is in the reference posture can be stored, and the calibration error can be reduced.
 図27は、ゲーム開始後のゲーム機3の動作を示すフローチャートである。状態推定部60は、ゲームが始まってから、f1、f2、f3にそれぞれ対応する信号強度val1、val2、val3を算出し(ステップS2701)、式1、2を用いてval2、val3を補正したval2c、val3cを算出する(ステップS2702)。
(式1)val2c=(val2-minval2)/(midval2-minval2)
(式2)val3c=(val3-minval3)/(midval3-minval3)
 状態推定部60は、予め設定された近接度の推定式fp、接触度の推定式fcを用いて近接度p、接触度cを式3、4から推定する(ステップS2703)。
(式3)fp(val1,val2c,val3c)
(式4)fc(val1,val2c,val3c)
 なお、fp、fcは例えば第2の実施形態で説明したような関数である。これにより、人体の体格や靴の種類等による推定時の誤差を低減する。
 状態推定部60は、近接度p、接触度cを含む近接状態情報を出力する(ステップS2704)。
FIG. 27 is a flowchart showing the operation of the game machine 3 after the game starts. The state estimation unit 60 calculates signal strengths val1, val2, and val3 corresponding to f1, f2, and f3, respectively, after the game is started (step S2701), and val2c is obtained by correcting val2 and val3 using equations 1 and 2. , Val3c is calculated (step S2702).
(Formula 1) val2c = (val2-minval2) / (midval2-minval2)
(Formula 2) val3c = (val3-minval3) / (midval3-minval3)
The state estimation unit 60 estimates the proximity p and the contact degree c from the formulas 3 and 4 using the preset proximity estimation formula fp and the contact degree estimation formula fc (step S2703).
(Formula 3) fp (val1, val2c, val3c)
(Formula 4) fc (val1, val2c, val3c)
Note that fp and fc are functions as described in the second embodiment, for example. Thereby, the error at the time of estimation by the physique of a human body, the kind of shoes, etc. is reduced.
The state estimation unit 60 outputs proximity state information including the proximity p and the contact c (step S2704).
 情報提示部70は、入力された近接状態情報に基づき、画像を出力したり音を出力したりなど視覚および/または聴覚を刺激する情報を提示する(ステップS2705)。情報提示部70は、近接状態情報に含まれる近接度pが高くなるにつれて音のボリュームを大きくしたり、接触度cがある一定の閾値を超えれば図形を表示したり、姿勢により表示される図形が移動するなど、近接状態を入力として情報を提示する。 The information presenting unit 70 presents information that stimulates visual and / or auditory senses such as outputting an image or outputting a sound based on the input proximity state information (step S2705). The information presentation unit 70 increases the volume of sound as the proximity p included in the proximity state information increases, displays a graphic when the contact degree c exceeds a certain threshold, or a graphic displayed according to the posture The information is presented using the proximity state as an input.
 以上のようにして、ゲーム機3は対象となるユーザの動きを大きく制約することなく、ユーザ間の近接、接触を検出し、身体的なインタラクションを伴うゲームプレイを可能にする。
 なお、印加部10、測定部20を台の下方の床に敷いた導体へ結線し、床面の種類による出力への影響を低減してもよい。
(その他の変形例)
 なお、本発明を各実施形態に基づいて説明してきたが、本発明は、上記の実施形態に限定されず、以下のような場合も本発明に含まれる。
As described above, the game machine 3 detects proximity and contact between the users without greatly restricting the movement of the target user, and enables game play with physical interaction.
In addition, you may connect the application part 10 and the measurement part 20 to the conductor laid on the floor under the stand, and may reduce the influence on the output by the kind of floor surface.
(Other variations)
Although the present invention has been described based on each embodiment, the present invention is not limited to the above embodiment, and the following cases are also included in the present invention.
 (1)近接または接触検出装置の全部、もしくは一部を、マイクロプロセッサ、メモリ、ハードディスクユニットなどから構成されるコンピュータシステムで構成した場合。メモリまたはハードディスクユニットには、上記各装置の動作を達成するコンピュータプログラムが記憶され、マイクロプロセッサが、コンピュータプログラムにしたがって動作する。 (1) When all or part of the proximity or contact detection device is configured by a computer system including a microprocessor, a memory, a hard disk unit, and the like. The memory or the hard disk unit stores a computer program that achieves the operation of each of the above devices, and the microprocessor operates according to the computer program.
 (2)近接または接触検出装置の全部、もしくは一部を、1つのシステムLSI(Large Scale Integration(大規模集積回路))で構成した場合。なお、システムLSIは(1)のコンピュータシステムと同等の構成を有する。 (2) When all or part of the proximity or contact detection device is configured by one system LSI (Large Scale Integration). The system LSI has the same configuration as the computer system of (1).
 (3)近接または接触検出装置の全部、もしくは一部を、脱着可能なICカードまたは単体のモジュールで構成した場合。なお、ICカード、モジュールは(1)のコンピュータシステムと同等の構成を有する。 (3) When the proximity or contact detection device is entirely or partially configured with a removable IC card or a single module. Note that the IC card and the module have the same configuration as the computer system of (1).
 (4)各実施形態の動作をコンピュータの処理で実現する方法。また、これらの方法をコンピュータにより実現するコンピュータプログラム、もしくはこのコンピュータプログラムからなるデジタル信号。 (4) A method of realizing the operation of each embodiment by computer processing. Also, a computer program for realizing these methods by a computer, or a digital signal composed of this computer program.
 また、このコンピュータプログラムまたはこのデジタル信号をコンピュータで読み取り可能な記録媒体に記録したもの。もしくは、コンピュータプログラムまたはデジタル信号を、電気通信回線等を経由して伝送するもの。
 (5)上記実施形態および上記変形例をそれぞれ組み合わせてもよい。
The computer program or the digital signal is recorded on a computer-readable recording medium. Alternatively, a computer program or digital signal is transmitted via a telecommunication line or the like.
(5) You may combine the said embodiment and the said modification, respectively.
 以上のように、本発明に係る近接または接触検出装置、およびその方法は、物体(例えば、生物体)の接触および近接を物体の動作を大きく制限することなく検出できるという効果を有し、ゲーム機などのエンターテイメント機器や、ゲーム機状の入出力を行う医療用機器例えば対人能力の向上や、調査研究用の測定装置等に有用である。 As described above, the proximity or contact detection device and method according to the present invention have the effect that the contact and proximity of an object (for example, a living organism) can be detected without greatly restricting the motion of the object, and the game It is useful for entertainment equipment such as a game machine, medical equipment that performs input / output of a game machine, for example, improvement of interpersonal ability, measurement device for research and the like.
1、2 近接または接触検出装置
10 印加部
11、21、41、42、43、44、51 人体
12、22 電界
13 床
14、24 足部
15、25 足裏
20 測定部
30、40,60 状態推定部
50 送受信制御部
70 情報提示部
100 信号印加部
101 発信器
102、202 増幅器
103 コンデンサ
104、204 蓄電池
105、205 ケース
110 印加側導体
111、211、311 トップアンテナ
112、212、312 ボトムアンテナ
200 信号測定部
201 同調回路
202 増幅器
204 蓄電池
205 ケース
210 測定側導体
310 一組の導体
1, 2 Proximity or contact detection device 10 Application unit 11, 21, 41, 42, 43, 44, 51 Human body 12, 22 Electric field 13 Floor 14, 24 Foot 15, 25 Foot 20 Measurement unit 30, 40, 60 State Estimation unit 50 Transmission / reception control unit 70 Information presentation unit 100 Signal application unit 101 Transmitter 102, 202 Amplifier 103 Capacitor 104, 204 Storage battery 105, 205 Case 110 Application- side conductor 111, 211, 311 Top antenna 112, 212, 312 Bottom antenna 200 Signal measurement unit 201 Tuning circuit 202 Amplifier 204 Storage battery 205 Case 210 Measurement-side conductor 310 A set of conductors

Claims (12)

  1.  第1の物体の近傍に配置された印加側導体と、前記印加側導体に電気信号を印加する信号印加部と、を含む印加部と、
     第2の物体の近傍に配置された測定側導体と、前記測定側導体に生じる電気信号を検出し、前記電気信号の強度を少なくとも含む受信信号を生成する信号測定部と、を含む測定部と、
     前記受信信号と、予め設定された近接状態と受信信号の関係を示す推定式に基づいて、第1の物体と第2の物体間の近接状態を段階的に推定する状態推定部と、を備える
     ことを特徴とする近接または接触検出装置。
    An application unit including an application-side conductor disposed in the vicinity of the first object, and a signal application unit that applies an electrical signal to the application-side conductor;
    A measurement unit including: a measurement-side conductor disposed in the vicinity of the second object; and a signal measurement unit that detects an electric signal generated in the measurement-side conductor and generates a reception signal including at least the intensity of the electric signal; ,
    A state estimation unit that estimates the proximity state between the first object and the second object in a stepwise manner based on the received signal and an estimation equation indicating a relationship between the proximity state and the reception signal set in advance; Proximity or contact detection device characterized by the above.
  2.  第1の物体の近傍に配置された印加側導体と、前記印加側導体に電気信号を印加する信号印加部と、を含む印加部と、
     第2の物体の近傍に配置された測定側導体と、前記測定側導体に生じる電気信号を検出し、前記電気信号の強度を少なくとも含む受信信号を生成する信号測定部と、を含む測定部と、
     前記受信信号と、予め設定された近接状態と受信信号の関係を示す推定式に基づいて、第1の物体と第2の物体間の近接状態を推定する状態推定部と、を備え、
     前記印加部および前記測定部は、何れも常態的には接地されていない
     ことを特徴とする近接または接触検出装置。
    An application unit including an application-side conductor disposed in the vicinity of the first object, and a signal application unit that applies an electrical signal to the application-side conductor;
    A measurement unit including: a measurement-side conductor disposed in the vicinity of the second object; and a signal measurement unit that detects an electric signal generated in the measurement-side conductor and generates a reception signal including at least the intensity of the electric signal; ,
    A state estimation unit that estimates a proximity state between the first object and the second object based on the reception signal and a presumption equation indicating a relationship between the proximity state and the reception signal,
    Neither the application unit nor the measurement unit is normally grounded. The proximity or contact detection device, wherein:
  3.  前記受信信号は、前記測定側導体に生じる電気信号の周波数および位相のうち少なくとも一つをさらに含み、
     前記状態推定部は、前記強度と前記周波数および/または前記位相から、前記推定式を用いて、近接状態を推定する
     ことを特徴とする請求項1または2に記載の近接または接触検出装置。
    The received signal further includes at least one of a frequency and a phase of an electrical signal generated in the measurement-side conductor,
    The proximity or contact detection device according to claim 1, wherein the state estimation unit estimates a proximity state from the intensity, the frequency, and / or the phase using the estimation formula.
  4.  前記信号印加部は複数の相異なる周波数をもつ電気信号を前記印加側導体に印加し、
     前記状態推定部は、前記受信信号から信号強度を算出し、前記複数の周波数それぞれに信号強度を対応づける送受信制御部を含み、
     前記状態推定部は、前記周波数ごとに対応づけられた信号強度から前記第1の物体と前記第2の物体間の近接度合い、接触面積、姿勢の少なくともいずれか一つをさらに推定する
     ことを特徴とする請求項1または2に記載の近接または接触検出装置。
    The signal applying unit applies electrical signals having a plurality of different frequencies to the application-side conductor,
    The state estimation unit includes a transmission / reception control unit that calculates signal strength from the received signal and associates signal strength with each of the plurality of frequencies,
    The state estimation unit further estimates at least one of a degree of proximity, a contact area, and a posture between the first object and the second object from a signal intensity associated with each frequency. The proximity or contact detection device according to claim 1 or 2.
  5.  前記信号印加部は、周波数が時間変化をする電気信号を前記印加側導体に印加する
     ことを特徴とする請求項4に記載の近接または接触検出装置。
    The proximity or contact detection device according to claim 4, wherein the signal application unit applies an electrical signal whose frequency changes with time to the application-side conductor.
  6.  前記印加側導体と前記測定側導体は、第1の物体および第2の物体の表皮以下の電気抵抗を有する一連なりの物体近傍に配置される
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の近接または接触検出装置。
    The said application side conductor and the said measurement side conductor are arrange | positioned in a series of object vicinity which has the electrical resistance below the skin of a 1st object and a 2nd object. The Claims 1-5 characterized by the above-mentioned. The proximity or contact detection device according to any one of the above.
  7.  前記第1の物体および前記第2の物体は足部を有し、前記印加側導体および前記測定側導体はそれぞれ前記足部に配置される基準導体を含むことを特徴とする
     請求項1から請求項6のいずれか一項に記載の近接または接触検出装置。
    The first object and the second object each have a foot, and the application-side conductor and the measurement-side conductor each include a reference conductor disposed on the foot. Item 7. The proximity or contact detection device according to any one of items 6.
  8.  前記状態推定部は、前記足部の移動に伴う電気的な接地状況の変化を受信信号の変化として検出することを特徴とする
     請求項7に記載の近接または接触検出装置。
    The proximity or contact detection device according to claim 7, wherein the state estimation unit detects a change in an electrical grounding state accompanying a movement of the foot as a change in a received signal.
  9.  前記第1の物体と前記第2の物体は同一の物体であって、
     前記状態推定部は前記物体の異なる部位間の近接および接触状態を推定することを特徴とする
     請求項1から請求項8のいずれか一項に記載の近接または接触検出装置。
    The first object and the second object are the same object,
    The proximity or contact detection device according to any one of claims 1 to 8, wherein the state estimation unit estimates proximity and a contact state between different parts of the object.
  10.  前記状態推定部は、推定した前記近接状態の結果を含む近接状態情報を生成し、他の機器に出力することを特徴とする
     請求項1から請求項9のいずれか一項に記載の近接または接触検出装置。
    The proximity estimation unit according to any one of claims 1 to 9, wherein the status estimation unit generates proximity status information including a result of the estimated proximity status, and outputs the proximity status information to another device. Contact detection device.
  11.  前記第1の物体および前記第2の物体は、生物体であることを特徴とする
     請求項1から請求項10のいずれか一項に記載の近接または接触検出装置。
    The proximity or contact detection device according to any one of claims 1 to 10, wherein the first object and the second object are organisms.
  12.  請求項1から請求項11のいずれか一項に記載の近接または接触検出装置と、
     前記近接状態情報を入力として、前記近接状態情報の変化に応じて視覚および/または聴覚を刺激する情報を提示する情報提示部とを備えるゲーム機。
    The proximity or contact detection device according to any one of claims 1 to 11,
    A game machine comprising: an information presentation unit that presents information that stimulates visual and / or auditory senses according to a change in the proximity state information, using the proximity state information as an input.
PCT/JP2012/069767 2011-08-26 2012-08-02 Object proximity and contact detection device WO2013031481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-184198 2011-08-26
JP2011184198 2011-08-26

Publications (1)

Publication Number Publication Date
WO2013031481A1 true WO2013031481A1 (en) 2013-03-07

Family

ID=47755983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069767 WO2013031481A1 (en) 2011-08-26 2012-08-02 Object proximity and contact detection device

Country Status (1)

Country Link
WO (1) WO2013031481A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158176A (en) * 2015-02-25 2016-09-01 株式会社豊田中央研究所 Electromagnetic field variation sensor and mutual recognition system
WO2017202921A1 (en) * 2016-05-25 2017-11-30 Koninklijke Philips N.V. Apparatus and method of communicating the presence of an object to a computer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185174A (en) * 1998-12-24 2000-07-04 Casio Comput Co Ltd Electronic appliance with communication function and storage medium storing communication control program
JP2008027219A (en) * 2006-07-21 2008-02-07 Sony Corp Information processing system, receiving device and method, recording medium, and program
WO2010070072A1 (en) * 2008-12-18 2010-06-24 Clean Contact Aps Hand hygiene system
JP2010219976A (en) * 2009-03-18 2010-09-30 Alps Electric Co Ltd Communication system
JP2011130335A (en) * 2009-12-21 2011-06-30 Nippon Telegr & Teleph Corp <Ntt> Control system and control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185174A (en) * 1998-12-24 2000-07-04 Casio Comput Co Ltd Electronic appliance with communication function and storage medium storing communication control program
JP2008027219A (en) * 2006-07-21 2008-02-07 Sony Corp Information processing system, receiving device and method, recording medium, and program
WO2010070072A1 (en) * 2008-12-18 2010-06-24 Clean Contact Aps Hand hygiene system
JP2010219976A (en) * 2009-03-18 2010-09-30 Alps Electric Co Ltd Communication system
JP2011130335A (en) * 2009-12-21 2011-06-30 Nippon Telegr & Teleph Corp <Ntt> Control system and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158176A (en) * 2015-02-25 2016-09-01 株式会社豊田中央研究所 Electromagnetic field variation sensor and mutual recognition system
WO2017202921A1 (en) * 2016-05-25 2017-11-30 Koninklijke Philips N.V. Apparatus and method of communicating the presence of an object to a computer
CN109152953A (en) * 2016-05-25 2019-01-04 皇家飞利浦有限公司 The presence of object is communicated to the device and method of computer

Similar Documents

Publication Publication Date Title
CN210573659U (en) Computer system, head-mounted device, finger device, and electronic device
US20210169402A1 (en) Wearable Wrist Joint-Action Detectors
Braun et al. Capacitive proximity sensing in smart environments
US8810249B2 (en) E-field sensor arrays for interactive gaming, computer interfaces, machine vision, medical imaging, and geological exploration CIP
US10635179B2 (en) Apparatus, systems, and methods for facilitating user interaction with electronic devices
US9711980B2 (en) Charging device for removable input modules
KR101830847B1 (en) Information terminal device, motion capture system and motion capture method
EP3246768B1 (en) Watch type terminal
US20040251918A1 (en) Patent application for a computer motional command interface
US20090295366A1 (en) E-field sensor arrays for interactive gaming, computer interfaces, machine vision, medical imaging, and geological exploration
US10409374B2 (en) Wearable device and method for providing feedback of wearable device
CN106095071A (en) The system and method guided for sense of touch
JP2016529980A (en) Athletic device for gesture recognition and power management on wrist
US11904234B2 (en) Position tracking ring, band or bracelet and virtual reality system
WO2012094143A1 (en) Method and apparatus for scaling gesture recognition to physical dimensions of a user
US11347312B1 (en) Ultrasonic haptic output devices
US11395628B2 (en) Method of providing service based on biometric information and wearable electronic device
CN107918486A (en) The system and method that electrostatic haptic effect is provided via wearable or handheld device
US20150268729A1 (en) Electric Field Sensor Arrays for Interactive Gaming, Computer Interfaces, Machine Vision, Medical, Imaging, and Geological Exploration CIP
CN112189178A (en) Sensor for electronic finger device
Nguyen et al. HandSense: capacitive coupling-based dynamic, micro finger gesture recognition
CN108140295A (en) Motion detection device and corresponding method
WO2013031481A1 (en) Object proximity and contact detection device
Waghmare et al. Z-Ring: Single-Point Bio-Impedance Sensing for Gesture, Touch, Object and User Recognition
US20170123563A1 (en) Extender object for multi-modal sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP