WO2013029196A1 - 回馈控制的穿戴式上肢电刺激装置 - Google Patents

回馈控制的穿戴式上肢电刺激装置 Download PDF

Info

Publication number
WO2013029196A1
WO2013029196A1 PCT/CN2011/001429 CN2011001429W WO2013029196A1 WO 2013029196 A1 WO2013029196 A1 WO 2013029196A1 CN 2011001429 W CN2011001429 W CN 2011001429W WO 2013029196 A1 WO2013029196 A1 WO 2013029196A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electrical stimulation
myoelectric
unit
myoelectric signal
Prior art date
Application number
PCT/CN2011/001429
Other languages
English (en)
French (fr)
Inventor
薛雅馨
叶纯妤
骆信昌
Original Assignee
国立云林科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立云林科技大学 filed Critical 国立云林科技大学
Priority to US14/240,793 priority Critical patent/US9707393B2/en
Priority to PCT/CN2011/001429 priority patent/WO2013029196A1/zh
Publication of WO2013029196A1 publication Critical patent/WO2013029196A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0452Specially adapted for transcutaneous muscle stimulation [TMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/09Rehabilitation or training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters

Definitions

  • the present invention relates to an electrical stimulation device, and more particularly to a wearable electrical stimulation device for a human upper limb and having a feedback control function.
  • Stroke or due to certain diseases, trauma, etc. often lead to local loss of the body's ability to control the monthly branch.
  • the patient In order to avoid the patient's limb atrophy and enable the patient to regain control of his or her partial or partial disability, the patient needs to be Apply the necessary physical therapy and rehabilitation work after trauma.
  • stroke patients Taking stroke patients as an example, stroke often leads to patients with different degrees of hemiplegia, which makes the patient's motor unit dysfunctional, loses control of the local neuromuscular system, and causes muscle weakness.
  • appropriate rehabilitation is usually given according to different degrees of hemiplegia.
  • the patient is required to use a limb on the hemiplegic side to grasp a training tank and alternately change the position of the training tank, thereby training the limbs on the hemiplegic side.
  • stretching or training can be used to stimulate the neuromuscular system of the paralyzed limbs, assisting the patient's hemiplegia to extend, retract, palm open and grip. .
  • the current electrical stimulation is performed by the patient or a third person (such as a rehabilitation teacher) through a controller to apply electrical stimulation to the neuromuscular muscles of the limb side limbs, thereby achieving certain specified actions, which can make the hemiplegia
  • the limbs perform physical activity and rehabilitation, but this does not allow the patient to control their limbs autonomously, so that the electrical stimulation methods can only achieve a certain degree of training, and the patients cannot independently control the various movements of the limbs.
  • the object of the present invention is to overcome the existing electrical stimulation assisted rehabilitation method, and is limited to assisting the physical activity such as physical activity, and can not provide the patient with autonomous limb control training, and can not integrate the patient's electrical stimulation and control limbs.
  • Electromyography EMG
  • the wearable upper limb electrical stimulation device the technical problem to be solved is to integrate the electrical stimulation signal and analyze the autonomous signal and the electrical stimulation induced signal which cause the muscle contraction activity, and appropriately provide the appropriate limb to the human limb according to the analysis result.
  • the electrical stimulation aids the signal to achieve a complete rejuvenation effect, which is very suitable for practical use.
  • a wearable upper limb electrical stimulation device comprising a plurality of electrical stimulation electrodes, a plurality of electromyographic signal sensing elements, an electrical stimulation output unit, an electromyographic signal extraction unit, and a muscle
  • An electrical signal computing unit and a control module comprising:
  • Each of the electrical stimulation electrodes is attached or contacted to a human limb, and each electrical stimulation electrode applies an electrical stimulation signal to a neuromuscular system of the human limb;
  • Each of the electromyographic signal sensing elements is attached or contacted to the human limb, and is attached to each of the electrical stimulation electrodes at a corresponding position of the neuromuscular system of the human limb, sensing and receiving a muscle of the human limb
  • An electrical signal wherein the myoelectric signal comprises an autonomous electromyographic signal, an electrical stimulation-induced electromyogram signal, and an interference signal;
  • the electrical stimulation output unit is connected to each electrical stimulation electrode and provides the electrical stimulation signal;
  • the myoelectric signal acquisition unit is connected to each electromyographic signal sensing component and receives the myoelectric signal, and the myoelectric signal acquisition unit The myoelectric signal is filtered and amplified;
  • the EMG signal computing unit is coupled to the EMG signal acquisition unit and receives the filtered and amplified EMG signal;
  • the control module is electrically connected to the electrical stimulation output unit and the electromyographic signal computing unit, and the control module receives the myoelectric signal by the electromyographic signal computing unit and controls the electrical stimulation according to the position and strength of the myoelectric signal.
  • the output unit provides power to more than one of the electrical stimulation electrodes to output the electrical stimulation signal.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the myoelectric signal acquisition unit comprises a series of electrical stimulation signal blocking circuits, an instrumentation amplifier, an amplifier circuit, a high-pass and low-pass filter, and a level a boosting circuit or a clamping circuit
  • the electrical stimulation signal blocking circuit initially filtering out interference of the electrical stimulation signal to the myoelectric signal
  • the instrument amplifier performing preamplification on the myoelectric signal
  • the amplifier circuit increases the myoelectric signal Magnification
  • the high-pass and low-pass filter filters out the signal frequency band of the set range of the myoelectric signal of the myoelectric signal
  • the level boosting circuit or the clamping circuit raises the level of the myoelectric signal
  • the feedback-controlled wearable upper limb electrical stimulation device comprises an analog to digital conversion unit connected between the level lifting circuit or the clamping circuit and the electromyographic signal computing unit, and the analog to digital conversion unit receives the level lifting circuit or the clamp
  • the electromyographic signal output by the bit circuit is digitized; and the electromyographic signal computing unit receives the digitized myoelectric signal, which comprises an interference processing unit connected in series, a filtering unit and a subtracting circuit, the interference Processing unit removes the muscle telecommunications
  • the autonomous electromyogram signal is taken out from the myoelectric signal by the comb filter unit, and the subtraction circuit takes the myoelectric signal and subtracts the autonomous electromyogram output from the comb filter unit.
  • the induced electrical stimulation EMG signal is generated.
  • the above-mentioned feedback-controlled wearable upper limb electrical stimulation device wherein the interference processing unit is to remove a front segment signal of each myoelectric signal, and the front segment signal time is between 1 OOus and 5 ms 0
  • the feedback-controlled wearable upper limb electrical stimulation device comprises a fixing kit, the fixation kit has an appearance corresponding to the human limb, and the fixation is combined with each electrical stimulation An electrode, each of the electromyographic signal sensing elements, the electrical stimulation output unit, the electromyographic signal computing unit, and the control module, wherein each of the electrical stimulation electrodes and the electromyographic signal sensing elements are disposed on an inner surface of the fixing kit.
  • the fixing kit comprises an upper arm fixing component, a forearm fixing component, and a palm fixing component, respectively corresponding to an upper arm, a forearm and a palm shape of the human body , and can be separately disposed outside the upper arm, the forearm and the palm.
  • the above-mentioned feedback-controlled wearable upper limb electrical stimulation device wherein the control module controls the electrical stimulation electrode corresponding to the position of the neuromuscular system that generates the myoelectric signal according to the content and state and position of the received myoelectric signal.
  • the electrical stimulation signal is generated.
  • control module is a micro processing circuit module or a programmable chip.
  • the above-mentioned feedback-controlled wearable upper limb electrical stimulation device wherein the control module adjusts the output electrical stimulation signal by the electromyographic signal, and the control module determines the output electrical stimulation signal according to a comparison method or a look-up table method. Strong or weak, the comparison method or the look-up table method is that the control module compares the read EMG signal with a stored EMG signal value reference or compares the reference, and outputs an appropriate electrical stimulus according to the comparison result, wherein
  • the EMG signal value is the value of the EMG signal of a healthy normal limb or the average value of a human EMG signal.
  • the above-mentioned feedback-controlled wearable upper limb electrical stimulation device wherein the feedback-controlled wearable upper limb electrical stimulation device comprises a plurality of bending sensors fixedly coupled to the fixation kit and respectively associated with the upper arm, the forearm and the palm Corresponding to a plurality of joint positions, which sense the bending condition of each joint, and output the sensing result to the control module;
  • the control module cooperates with the electromyogram signal according to the sensing result of each bending sensor, and controls the specific electrical stimulation electrode to generate the electrical stimulation signal.
  • the wearable upper limb electrical stimulation device of the feedback control of the present invention has at least the following advantages and beneficial effects:
  • the present invention can determine the strength of the human body limb according to the strength of the myoelectric signal of the human limb, and first determine the required action of the human limb to perform the specified action.
  • the strength of the electrical stimulation signal is given to the patient with appropriate assistance. Therefore, it can not only effectively activate the patient's partially disabled limbs, but also effectively train the patient's ability to control the affected limbs.
  • the present invention relates to a feedback-controlled wearable upper limb electric stimulation device comprising a plurality of electrical stimulation electrodes, a plurality of myoelectric signal sensing elements, an electrical stimulation output unit, and an electromyographic signal.
  • the arithmetic unit and a control module can, according to the strength of the myoelectric signal of the human limb, first determine the strength of the electrical stimulation signal required for the human limb to perform the specified action, and give the patient appropriate assistance, so that it can not only be effective
  • the activation of the patient's partially disabled limbs can effectively train the patient's ability to control the affected limbs.
  • the invention has significant progress in technology and has obvious positive effects, and is a novel, progressive and practical new design.
  • Figure 1 is a block diagram showing the circuitry of a preferred embodiment of the present invention.
  • FIG. 2 is a schematic view of a fixing kit of the present invention.
  • Figure 3 is a schematic illustration of the use of a preferred embodiment of the present invention.
  • Fig. 4 is a view showing the attachment position of the electro-stimulation electrode and the electromyographic signal sensing element of the preferred embodiment of the present invention.
  • Fig. 5 is a view showing the attachment position of the electro-stimulation electrode and the electromyographic signal sensing element of the preferred embodiment of the present invention.
  • Figure 6A is a block diagram showing the circuitry of a myoelectric signal acquisition circuit in accordance with a preferred embodiment of the present invention.
  • Figure 6B is a block diagram showing the circuit of an electromyogram signal computing unit in accordance with a preferred embodiment of the present invention.
  • Electrostimulation electrode 20 EMG signal sensing element
  • Level boost circuit or clamp circuit 37 Analog to digital conversion unit
  • Figure 1 is a block diagram of a circuit of a preferred embodiment of the present invention.
  • 2 is a schematic view of a fixing kit of the present invention.
  • a preferred embodiment of the feedback-controlled wearable upper limb electrical stimulation device of the present invention comprises a plurality of electrical stimulation electrodes 10, a plurality of myoelectric signal sensing elements 20, an electrical stimulation output unit 30, and an electromyographic signal acquisition The unit 35, an analog to digital conversion unit 37, an EMG signal computing unit 40, a control module 50 and a fixing kit 60.
  • FIG. 3 is a schematic view of the use of the preferred embodiment of the present invention.
  • Fig. 4 is a view showing the attachment position of the electro-stimulation electrode and the electromyographic signal sensing element of the preferred embodiment of the present invention.
  • Fig. 5 is a view showing the attachment position of the electro-stimulation electrode and the myoelectric signal sensing element of the preferred embodiment of the present invention.
  • Each of the electrical stimulation electrodes 10 can be attached and contacted to a human limb 70.
  • the human limb 70 is an arm, and each electrical stimulation electrode 10 is attached to the arm and controlled to be appropriate.
  • Timing exerts an electrical stimulation signal on the neuromuscular system of the arm; for example, the electrical stimulation electrode 10 can be attached to the extensor, flexor, triceps, and extensor muscles of the arm, and the appropriate timing is output appropriately.
  • the electrical stimulation signal of the intensity stimulates the muscle groups of the neuromuscular system to cause the muscles to produce corresponding actions.
  • the so-called appropriate timing refers to the time when the electric stimulation signal is applied to the different groups of meat, and the arm is sequentially extended to extend, open the palm, hold the palm, etc., to achieve the function of taking the article;
  • the appropriate intensity refers to the voltage and current that controls the electrical stimulation signal, and the assistance needed to apply the relevant muscle to the difference in the characteristics of the neuromuscular system or muscle group at different locations.
  • the method of obtaining the appropriate intensity can be as follows: by pre-testing or statistically obtaining the muscle groups of a partial arm to generate the intensity of the electrical stimulation signal required for the same or similar action as a normal arm, it can be known that the muscle group corresponding to the different muscle groups is The magnitude of the electrical stimulation signal required to be output by each electrical stimulation electrode 10 when performing different actions, so that when the biasing arm is to be controlled to perform a specified action, the electrical stimulation serial numbers required for each electrical stimulation electrode 10 to output the specified action may be sequentially controlled. To the relevant muscle groups, to achieve the purpose of assisting movement.
  • Each of the myoelectric signal sensing elements 20 is attached or contacted to the human limb 70, and is attached to each of the electrical stimulation electrodes 10 at a corresponding position of each muscle group of the neuromuscular system of the human limb 70.
  • the first electrical signal (El ect romyography, EMG) of the human limb 70 is sensed and received, wherein the myoelectric signal may include an autonomous electromyographic signal, an electrical stimulation-induced myoelectric signal, and an interference signal.
  • the EMG signal is a potential signal generated when the muscle activity of the human limb 70 is positive, and the EMG signal is directly proportional to the muscle activation state of the human limb 70. Therefore, the human body limb can be understood by analyzing the EMG signal. 70 states of the neuromuscular system.
  • the human limb 70 as in the present embodiment simultaneously receives the electrical stimulation.
  • the muscle of the human limb 70 that is subjected to the electrical stimulation signal also generates an autonomous contraction, which is the source of the autonomous electromyographic signal; in addition, because the electrical stimulation signal is administered
  • the electromyographic signal directly induced is the aforementioned electromyographically induced EMG signal; the interfering signal refers to the interference of the electrical stimulation signal to the sensed EMG signal.
  • the electrical stimulation output unit 30 is electrically connected to each of the electrical stimulation electrodes 10, which provides a power source for the electrical stimulation signals input by the electrical stimulation electrodes 10 to the human limbs 70.
  • Figure 6A is a block diagram showing the circuit of a myoelectric signal acquisition circuit in accordance with a preferred embodiment of the present invention.
  • Figure 6B is a block diagram showing the circuitry of an electromyographic signal computing unit in accordance with a preferred embodiment of the present invention.
  • the EMG signal acquisition unit 35 is connected to each EMG signal sensing component 20 to receive the EMG signal, which includes a series of electrical stimulation signal blocking circuit 351, an instrumentation amplifier 353, an amplifier circuit 355, a high pass and a low pass. Pass filter 357 and a level boost circuit or clamp circuit 359.
  • the main interference of the original myoelectric signal is the electrical stimulation signal.
  • the original electromyographic signal is first removed by the electrical stimulation signal blocking circuit 351, and the electrical stimulation signal blocking circuit 351 can include an OPC amplifier.
  • the circuit is used to initially filter out the interference of the electrical stimulation signal on the myoelectric signal. Since the original EMG signal is very weak, the original signal needs to be amplified to perform subsequent signal processing.
  • the EMG signal is first amplified by the instrumentation amplifier 353, and then amplified by the amplifier circuit 355;
  • the EMG signal is input to the high pass and low pass filter 357 for filtering.
  • the high pass and low pass filter 357 of the embodiment is a filter that filters out frequencies outside any set range of 1 ⁇ ⁇ 1000 ⁇ . , to filter out other noise frequencies within the set range.
  • the EMG signal is input to the level boost circuit or clamp circuit 359 for boosting the filtered EMG signal.
  • the analog to digital conversion unit 37 is electrically connected to the EMG signal acquisition unit 35. After receiving the EMG signal output by the level boost circuit or the clamp circuit 359, the simulated muscle signal is digitized.
  • the electromyographic signal computing unit 40 is coupled to the myoelectric signal acquisition unit 35 to receive the myoelectric signal and output it after signal processing (eg, filtering, clamping, etc.).
  • signal processing eg, filtering, clamping, etc.
  • the myoelectric signal computing unit 40 further includes an interference processing unit 41 connected in series, a criticality filtering unit 43 and a subtraction circuit 45, wherein the interference processing unit 41 can filter out local segments of each myoelectric signal, which can be removed or given a certain value or average or calculated by algorithm to process each The front part of the EMG signal, etc.
  • the interference processing unit 41 is a section including an electrical stimulation signal in the time domain by removing the myoelectric signal, for example, the first 100 us to 5 ms of each myoelectric signal.
  • the combo filtering unit 43 separates the autonomous electromyogram signal (EMG-V) from the myoelectric signal to the subtraction circuit 45, and finally the subtraction circuit 45 subtracts the myoelectric signal from the interference processing unit 41.
  • the electrical stimulation-induced myoelectric signal is obtained by the autonomous electromyogram signal generated by the comb filter unit 43.
  • the control module 50 is electrically connected to the electrical stimulation output unit 30 and the myoelectric signal computing unit 40.
  • the control module 50 controls the electrical stimulation output unit 30 to control the electrical stimulation output unit 30 according to the position and strength of the myoelectric signal.
  • One or some of the particular electrical stimulation electrodes 10 provide electrical stimulation signals to stimulate the human limbs 70 such that the human limbs 70 can perform the specified actions.
  • the so-called appropriate time means that the control module 50 controls the electrical stimulation electrodes 10 attached to the different muscle groups to apply the muscle electrical stimulation signals required for the corresponding actions by the content and state of the received myoelectric signals.
  • the above-mentioned arm-biased stroke patient is taken as an example.
  • the patient receives the instruction of the rehabilitation teacher to take a reciprocating grasp and place a practice cup at two different fixed points to train the control ability of the hemiplegia upper arm;
  • the control module 50 is installed by The myoelectric signal sensed by the myoelectric signal sensing element 20 of the upper arm and its correspondingly resolved autonomous electromyographic signal determine that the patient's upper arm is unable to autonomously provide the ability to lift the upper arm (eg, the autonomous electromyographic signal is lower than that required for the upper lifting arm) The threshold value), therefore, the control module 50 controls the electrical stimulation output unit 30 to apply an electrical stimulation signal to each of the electrical stimulation patches 10 attached to the upper arm; after applying the electrical stimulation signal to the upper arm, the electromyographic signal sensing of the upper arm
  • the component 20 instantly senses the myoelectric signal and outputs it to the control module 50 in the manner described above, so that the control module 50 can instantly adjust the electrical stimulation signal output to the upper arm
  • the patient may push the electrical stimulation signals required for the actions prescribed by the rehabilitation courses such as the forearm, open palm, ..., etc., and may be provided in the foregoing manner.
  • the control module 50 can be a microprocessor circuit module or a programmable chip.
  • the control module 50 adjusts the output electrical stimulation signal by the electromyographic signal, and the control module 50 can determine the strength of the output electrical stimulation signal according to a comparison method or a look-up table method.
  • the so-called comparison method or table lookup method is The control module 50 compares the read EMG signal with a stored EMG signal value reference or compares the reference, and outputs an appropriate electrical stimulus according to the comparison result, wherein the EMG signal value reference can be measured and recorded.
  • the EMG signal value of the normal side of the patient for example, a hemiplegia patient
  • the average EMG signal of the general human body is used as a benchmark to provide a baseline for comparison.
  • the comparison method or the look-up table method described above has more than one adjustable parameter setting, which can be set by a medical professional or a user.
  • An embodiment of the adjustable parameter setting can be based on the user's own maximum voluntary contraction value, each time the EMG signal is compared with the maximum voluntary contraction value, and an appropriate electrical stimulation signal is output from the difference value.
  • the dose or the increased dose of the output can be divided into multiple levels (levels), and the corresponding electrical stimulation signal output dose or the output is determined according to which level the EMG signal of each user mainly falls to. Increased dose.
  • the fixing kit 60 is used for each electrical stimulation electrode 10, each myoelectric signal sensing component 20, The electrical stimulation output unit 30, the myoelectric signal computing unit 40, and the control module 50 are fixedly coupled to the human limb 70.
  • the shape and configuration of the fixing kit 60 are not limited, and are different according to different human limbs 70 positions. .
  • the fixing kit 60 is applicable to an arm, and includes an upper arm fixing component 62, a forearm fixing component 64 and a palm fixing component 66 respectively corresponding to the upper arm, the forearm and the palm shape of the human body and Separatingly fixed to the upper arm, the forearm, and the palm, each of the electro-stimulation electrodes 10 and the electromyographic signal sensing elements 20 are disposed on the inner surface of the fixing kit 60, and when the patient wears the fixing kit 60, each of the electrical stimulation electrodes 10 and each The myoelectric signal sensing element 20 can be applied to the superficial skin of the neuromuscular system.
  • the control module 50 can be fixedly mounted on the fixing kit 60 in addition to the respective electromyographic signal sensing elements 20 according to the foregoing description.
  • the plurality of bending sensors are in a position corresponding to the joints of the wrist, each finger, the elbow, and the arm, the bending state of the sensing portion or each joint, and the sensing result is output to the control module 50. Based on the result of sensing the bending sensors, the control module 50 can accurately determine the state of the upper arm of the patient by matching the data of each electromyographic signal sensing unit 20 with the sensing result of each bending sensor.
  • the control module 50 can accurately control the electrical stimulation signals required by each of the electrical stimulation electrodes 10 to output a patient.
  • the bending sensor is generally in the shape of a rod or a rod, which generates different resistance changes according to the degree of bending.
  • the bending sensor of the embodiment is manufactured by Spectra Symbol Co., Ltd., and generates different resistance values for bending in a single direction.
  • the bending sensor is in a non-bending state.
  • the lower resistance is about 10 ⁇ , and as the bending curvature increases, the resistance increases by about 30 to 40 ⁇ .
  • Table 1 below shows the relationship between the bending degree and the impedance of the bender used in the present embodiment.
  • the present embodiment can determine the strength of the electrical stimulation signal required for the human limb 70 to perform a specified action according to the strength of the myoelectric signal of the human limb 70, and give appropriate assistance to the patient, thereby not only being effective.
  • the activation of the patient's partially disabled limbs can effectively train the patient's ability to control the affected limbs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physiology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种回馈控制的穿戴式上肢电刺激装置包括多个电刺激电极(10)、多个肌电信号感测元件(20)、一电刺激输出单元(30)、一肌电信号撷取单元(35)、一肌电信号运算单元(40)以及一控制模块(50)。各电刺激电极(10)贴合或接触固定于人体躯干并且对人体躯干的神经肌肉系统施予电刺激信号。各肌电信号感测元件(20)贴合或接触固定于人体躯干,与各电刺激电极(10)贴合设置于人体躯干的神经肌肉系统的对应位置。电刺激输出单元(30)与各电刺激电极(10)连接并提供电刺激信号。肌电信号撷取单元(35)与各肌电信号感测元件(20)连接并且接收肌电信号。肌电信号运算单元(40)与肌电信号撷取单元(35)连接。控制模块(50)与电刺激输出单元(30)及肌电信号运算单元(40)电性连接。该装置可以依据人体躯干的肌电信号强弱,先判断人体躯干执行指定动作所需的电刺激信号的强弱,给予患者适当的辅助,因此,不仅可以有效活化患者局部失能的肢干,更可有效训练患者对于患部肢干的控制能力。

Description

回馈控制的穿戴式上肢电刺激装置 技术领域
本发明涉及一种电刺激装置, 特别是涉及一种用于人体上肢且具有回 馈控制功能的穿戴式电刺激装置。 背景技术
中风或因某些疾病、 创伤等,常导致人体对其月支体控制能力局部丧失, 为了避免患者肢体的萎缩以及使患者能够重新找回对其瘫痪或局部失能的 控制能力, 需对患者在创伤后施予必须的物理治疗与复健工作。
以中风患者为例, 中风常导致患者有不同程度的偏瘫, 使患者部分运 动单元失调、 对局部神经肌肉系统失去控制, 造成肌肉无力。 目前对于中 风患者的复健工作, 通常依据不同程度偏瘫而施予适当的复健, 例如要求 患者使用偏瘫侧的肢体握取一训练罐并交替变更该训练罐的位置, 藉以训 练偏瘫侧的肢体。 对于严重偏瘫的患者, 可使用牵张训练或者或通过一电 刺激方式对偏瘫侧肢体的神经肌肉系统施予刺激, 辅助患者的偏瘫侧肢体 进行伸出、 收回、 手掌张开及收握等动作。
然而,目前的电刺激均是通过患者或一第三人(例如复健师)通过一控 制器对偏瘫侧肢体有关的神经肌肉施予电刺激, 藉以达成某些指定动作,其 虽然能够让偏瘫侧肢体进行肢体活动与复健, 但是这对患者而言并无法自 主控制其肢体, 使该些电刺激方法仅能达到某种程度的训练, 无法训练患 者能自主控制偏瘫侧肢体的种种动作。
由此可见, 上述现有的电刺激辅助复健方式在使用上, 显然仍存在有 不便与缺陷, 而亟待加以进一步改进。 为了解决上述存在的问题, 相关厂 商莫不费尽心思来谋求解决之道, 但长久以来一直未见适用的设计被发展 完成, 而一般产品又没有适切的结构能够解决上述问题, 此显然是相关业 者急欲解决的问题。 因此如何能创设一种新型结构的回馈控制的穿戴式上 肢电剌激装置,实属当前重要研发课题之一, 亦成为当前业界极需改进的目 标。 发明内容
本发明的目的在于,克服现有的电刺激辅助复健方式,仅局限于辅助提 供肢体活动等近似于物理治疗的功效,无法对患者提供自主肢体控制的训 练,无法整合患者电刺激及控制肢体的肌电信号(Electromyography, EMG) , 使目前现有的复健方式成效不佳的缺陷, 而提供一种新型结构的回馈控制 的穿戴式上肢电刺激装置, 所要解决的技术问题是使其整合电剌激信号与 分析造成肌肉收缩活动的自主信号与电刺激诱发信号, 并依据分析的结果 适当的对人体患侧肢体提供适当的电刺激辅助信号, 达到完整的复健效果, 非常适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种回馈控制的穿戴式上肢电刺激装置,其包含多个电刺激 电极、 多个肌电信号感测元件、 一电刺激输出单元、 一肌电信号撷取单元、 一肌电信号运算单元及一控制模块, 其中:
各电刺激电极贴合或接触固定于一人体肢干, 各电刺激电极对该人体 肢干的一神经肌肉系统施予一电刺激信号;
各肌电信号感测元件贴合或接触固定于该人体肢干, 其与各电刺激电 极贴合设置于该人体肢干的神经肌肉系统的对应位置, 感应与接收该人体 肢干的一肌电信号, 该肌电信号内包含一自主肌电信号、 一电刺激诱发肌 电信号及一干扰信号;
该电刺激输出单元与各电刺激电极连接并提供该电刺激信号; 该肌电信号撷取单元与各肌电信号感测元件连接并接收该肌电信号, 该肌电信号撷取单元将该肌电信号予以滤波并放大;
该肌电信号运算单元与该肌电信号撷取单元连接, 且接收滤波与放大 后的该肌电信号; 及
该控制模块与该电刺激输出单元及该肌电信号运算单元电性连接,该 控制模块由该肌电信号运算单元接收该肌电信号并依据该肌电信号的位置 与强弱控制该电刺激输出单元对一个以上的该电刺激电极提供输出该电刺 激信号所需的电力。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的回馈控制的穿戴式上肢电刺激装置, 其中该肌电信号撷取单元 包含串接的一电刺激信号阻挡电路、 一仪表放大器、 一放大器电路、 一高 通与低通滤波器及一准位提升电路或箝位电路, 该电刺激信号阻挡电路初 步滤除该电刺激信号对肌电信号的干扰, 该仪器放大器对该肌电信号进行 前級放大, 该放大器电路对该肌电信号进行增加放大倍率, 该高通与低通 滤波器对该肌电信号滤除该肌电信号的一设定范围的外的信号频段, 该准 位提升电路或箝位电路将该肌电信号提升位准;
该回馈控制的穿戴式上肢电刺激装置包含一模拟数字转换单元连接于 该准位提升电路或箝位电路与该肌电信号运算单元的间, 该模拟数字转换 单元接收该准位提升电路或箝位电路所输出的肌电信号并予以数字化; 及 该肌电信号运算单元接收数字化后的肌电信号, 其包含串接的一干扰 处理单元、 一 ^巟状滤波单元及一减法电路, 该干扰处理单元移除该肌电信 号包含该电刺激信号的脉冲后 , 以该梳状滤波单元由该肌电信号中取出该 自主肌电信号 , 该减法电路取该肌电信号减去该梳状滤波单元输出的该自 主肌电信号后, 产生该诱发电刺激肌电信号。
前述的回馈控制的穿戴式上肢电刺激装置, 其中所述的干扰处理单元 是去除每个肌电信号的前段信号, 该前段信号时间介于 l OOus ~ 5ms 0
前述的回馈控制的穿戴式上肢电刺激装置, 其进一步地, 该回馈控制 的穿戴式上肢电刺激装置包含一固定套件, 该固定套件的外型与该人体肢 干对应, 其固定结合各电刺激电极、 各肌电信号感测元件、 该电刺激输出 单元、 该肌电信号运算单元及该控制模块, 其中, 各电刺激电极及各肌电 信号感测元件设置于该固定套件的内部表面。
前述的回馈控制的穿戴式上肢电刺激装置, 其中所述的固定套件包含 一上臂固定组件、 一前臂固定组件、 一手掌固定组件, 其分别与人体的一 上臂、 一前臂及一手掌外型对应, 并可分别分离套设于该上臂、 前臂及手 掌外。
前述的回馈控制的穿戴式上肢电刺激装置, 其中所述的控制模块依据 所接收的肌电信号的内容与状态及位置, 控制位置与产生该肌电信号的神 经肌肉系统位置对应的电刺激电极产生该电刺激信号。
前述的回馈控制的穿戴式上肢电刺激装置, 其中所述的控制模块是一 微处理电路模块或一可编程芯片。
前述的回馈控制的穿戴式上肢电刺激装置,其中所述的控制模块由该 肌电信号调整输出的该电刺激信号,该控制模块是依据一比较方法或一查 表方法决定输出电刺激信号的强弱,该比较方法或查表方法为该控制模块 将读取的该肌电信号与内储的一肌电信号数值基准相互比较或查询对照, 并依据比较结果输出适当的电刺激, 其中该肌电信号数值基准为一健康正 常肢体的肌电信号数值或一人体肌电信号平均值。
前述的回馈控制的穿戴式上肢电刺激装置,其中该回馈控制的穿戴式 上肢电刺激装置包含多个弯曲感测器,其固定结合于该固定套件并分别与 该上臂、 该前臂及该手掌的多个关节位置对应,其感测各关节的弯曲状况, 并将感测结果输出至该控制模块; 及
该控制模块依据各弯曲感测器的感应结果配合该肌电信号, 控制特定 的该电刺激电极产生该电刺激信号。
本发明与现有技术相比具有明显的优点和有益效果。 借由上述技术方 案, 本发明回馈控制的穿戴式上肢电刺激装置至少具有下列优点及有益效 果: 本发明可以依据人体肢干的肌电信号强弱, 先判断人体肢干执行指定 动作所需的电刺激信号的强弱, 给予患者适当的辅助, 因此, 不仅可以有 效活化患者局部失能的肢干, 更可有效训练患者对于患部肢干的控制能力。 综上所述, 本发明是有关于一种回馈控制的穿戴式上肢电剌激装置,其 包含多个电刺激电极、 多个肌电信号感测元件、 一电刺激输出单元、 一肌电 信号运算单元及一控制模块,本发明可以依据人体肢干的肌电信号强弱,先 判断人体肢干执行指定动作所需的电刺激信号的强弱, 给予患者适当的辅 助,因此, 不仅可以有效活化患者局部失能的肢干, 更可有效训练患者对于 患部肢干的控制能力。 本发明在技术上有显著的进步, 并具有明显的积极 效果,诚为一新颖、 进步、 实用的新设计。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1是本发明的较佳实施例的电路方框示意图。
图 2是本发明的一固定套件的示意图。
图 3是本发明的较佳实施例的使用示意图。
图 4是本发明的较佳实施例的电刺激电极及肌电信号感测元件的贴附 位置的示意图。
图 5是本发明的较佳实施例的电刺激电极及肌电信号感测元件的贴附 位置的示意图。
图 6A是本发明的较佳实施例的肌电信号撷取电路的电路方框示意图。 图 6B是本发明的较佳实施例的肌电信号运算单元的电路方框示意图。
10: 电刺激电极 20: 肌电信号感测元件
30: 电刺激输出单元 35: 肌电信号撷取单元
351: 电刺激信号阻挡电路 353: 仪表放大器
355: 放大器电路 357: 高通与 4氏通滤波器
359: 准位提升电路或箝位电路 37: 模拟数字转换单元
40: 肌电信号运算单元 41 : 干扰处理单元
43: 梳状滤波单元 45: 减法电路
50: 控制模块 60: 固定套件
70: 人体肢干 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的回馈控制的穿戴式上 肢电刺激装置其具体实施方式、 结构、 特征及其功效, 详细说明如后。 有关本发明的前述及其他技术内容、 特点及功效, 在以下配合参考图 式的较佳实施例的详细说明中将可清楚呈现。 通过具体实施方式的说明,应 ;的了解, 然而所附图式仅是 ^供参考与说明之用, 并 ^用来对本发明 加以限制。
请参阅图 1及图 2所示, 图 1是本发明的较佳实施例的电路方框示意 图。 图 2是本发明的一固定套件的示意图。 本发明的回馈控制的穿戴式上 肢电刺激装置的较佳实施例, 其包含多个电刺激电极 10、 多个肌电信号感 测元件 20、 一电刺激输出单元 30、 一肌电信号撷取单元 35、 一模拟数字转 换单元 37、 一肌电信号运算单元 40、 一控制模块 50及一固定套件 60。
请配合参阅图 3、 图 4及图 5所示, 图 3是本发明的较佳实施例的使用 示意图。 图 4是本发明的较佳实施例的电刺激电极及肌电信号感测元件的 贴附位置的示意图。 图 5是本发明的较佳实施例的电刺激电极及肌电信号 感测元件的贴附位置的示意图。 各电刺激电极 10可贴合、 接触固定于一人 体肢干 70上, 以本实施例为例, 该人体肢干 70为一手臂,各电刺激电极 10 贴设于手臂并接受控制在适当的时机对手臂的神经肌肉系统施予一电刺激 信号;例如,该电刺激电极 10可贴设于手臂的伸肌、 屈肌、 肱三头肌、 伸指 肌群等位置,在适当时机输出适当强度的该电刺激信号而刺激该神经肌肉 系统的各肌肉群,使该些肌肉产生相应的动作。 前述所谓的适当时机,指通 过控制不同的月几肉群施予电刺激信号的时间,使手臂依序产生往前伸出、 张 开手掌、 握掌等动作, 达到拿取物品的功能; 所谓的适当强度是指控制该 电刺激信号的电压电流, 对不同位置的神经肌肉系统或肌肉群的特性差异 施予相关的肌肉所需要的辅助。 取得适当强度的方法可如下所述: 通过事 先测试或统计取得一偏瘫手臂的各肌肉群产生与一正常手臂相同或近似动 作所需的电刺激信号的强度, 即可知悉对应于不同肌肉群在执行不同动作 之时各电刺激电极 10所需输出的电刺激信号大小, 如此, 当欲控制偏瘫手 臂进行一指定动作时, 可以循序控制各电刺激电极 10输出该指定动作所需 的电刺激序号至有关的肌肉群, 达到辅助动作的目的。
各肌电信号感测元件 20贴合或接触固定于该人体肢干 70上,其与各电 刺激电极 10贴合设置于该人体肢干 70的神经肌肉系统的各肌肉群的对应位 置,其感应与接收该人体肢干 70的一月几电信号( El ect romyography, EMG ),其 中,该肌电信号内可包含一自主肌电信号、 一电刺激诱发肌电信号及一干扰 信号。 该肌电信号是该人体肢干 70的肌肉活动时会产生的电位信号, 该肌 电信号与人体肢干 70的肌肉活化状态有正比关系, 因此, 通过分析肌电信 号可明了该人体肢干 70的神经肌肉系统的状态。 由于该肌电信号能提供肌 肉活化状态的信息, 因此, 如本实施例的该人体肢干 70同时接受该电刺激 电极 10所输入的电刺激信号时, 该人体肢干 70受电刺激信号的肌肉同时 也产生一自主收缩, 此自主收缩则为该自主肌电信号的来源; 另外, 因为 施予该电刺激信号而直接诱发产生的肌电信号则是前述的该电刺激诱发肌 电信号; 该干扰信号则是指该电刺激信号对于所感测的肌电信号的干扰。
该电刺激输出单元 30与各电刺激电极 10电性连接, 其提供各电刺激 电极 10输入至人体肢干 70的电刺激信号的电力源。
请参阅图 6A、 图 6B所示, 图 6A是本发明的较佳实施例的肌电信号撷 取电路的电路方框示意图。 图 6B是本发明的较佳实施例的肌电信号运算单 元的电路方框示意图。 该肌电信号撷取单元 35连接于各肌电信号感应元件 20接收该肌电信号, 其包含串接的一电刺激信号阻挡电路 351、 一仪表放 大器 353、 一放大器电路 355、 一高通与低通滤波器 357及一准位提升电路 或箝位电路 359。原始的肌电信号的主要干扰为该电刺激信号, 本实施例先 将原始的肌电信号通过该电刺激信号阻挡电路 351 去除该电刺激信号, 该 电刺激信号阻挡电路 351可以包含一 0P放大器电路, 用以初步滤除电刺激 信号对肌电信号的干扰。 由于原始的该肌电信号信号非常微弱, 需放大原 始信号才能进行后续信号处理, 该肌电信号先通过该仪表放大器 353进行 前级放大, 之后再通过该放大器电路 355进行增加放大倍率; 完成放大的 肌电信号, 再输入至该高通与低通滤波器 357 进行滤波, 本实施例的该高 通与低通滤波器 357是使用可滤除 1Ηζ ~ 1000Ηζ内任何设定范围以外的频 率的滤波器, 藉以滤除设定范围内的其他噪声频率。 最后, 该肌电信号输 入该准位提升电路或箝位电路 359, 其是用于将滤波后的肌电信号提升位 准。
该模拟数字转换单元 37与该肌电信号撷取单元 35电性连接, 其接收 该准位提升电路或箝位电路 359 所输出的肌电信号后, 将模拟的该肌电信 号予以数字化。
该肌电信号运算单元 40连接于该肌电信号撷取单元 35以接收该肌电 信号并经过信号处理(例如滤波、 箝位等)后予以输出。 为了能够适当分 离该肌电信号的自主肌电信号及该电刺激诱发肌电信号及干扰信号, 请参 阅图 6B所示, 该肌电信号运算单元 40进一步包含串接的一干扰处理单元 41、一才危状滤波单元 43以及一减法电路 45, 其中,该干扰处理单元 41可以 滤除每个肌电信号的局部区段, 其可以去除或给予一定值或平均或以演算 法计算去处理每个肌电信号的前段信号等。 由于肌电信号的干扰信号主要 生成原因是施予该人体肢干 70 的电刺激信号对该肌电信号造成的干扰,且 该电刺激信号相对于所感测的肌电信号属于非常大的脉冲信号, 因此,该干 扰处理单元 41 是通过去除该肌电信号的时域中包含电刺激信号的区段,例 如每个肌电信号的前 100us ~ 5ms。 该肌电信号通过干扰处理单元 41后,在 经过该梳状滤波单元 43 由该肌电信号中分离出该自主肌电信号(EMG-V)输 出至该减法电路 45 , 最后该减法电路 45取经过该干扰处理单元 41的肌电 信号减去通过梳状滤波单元 43产生的自主肌电信号而得到该电刺激诱发肌 电信号 。
该控制模块 50与该电刺激输出单元 30及该肌电信号运算单元 40电性 连接, 该控制模块 50依据该肌电信号的位置及强弱而控制该电刺激输出单 元 30在适当时刻对某一或某些特定的电刺激电极 10提供电刺激信号的电 力而刺激人体肢干 70,使人体肢干 70可以执行指定动作。 所谓的适当时刻 指该控制模块 50藉由所接收的肌电信号的内容与状态, 来控制贴于不同肌 肉群的电刺激电极 10施予所需进行对应动作的肌肉电刺激信号。
以上臂偏瘫的中风患者为例说明,患者接受复健师的指示进行往复拿 取并摆放一练习杯于两个不同的定点,藉以训练其偏瘫上臂的控制能力;该 控制模块 50由安装于上臂的该肌电信号感测元件 20所感测的肌电信号及 其相应解析的自主肌电信号判断患者的上臂无法自主提供前举上臂的能力 (例如自主肌电信号低于前举上臂所需的临界值),因此,该控制模块 50控 制电刺激输出单元 30对贴附于上臂的各电刺激贴片 10施予电刺激信号;施 加上臂该电刺激信号后,上臂的肌电信号感测元件 20 即时感应肌电信号并 依据前述方式输出至该控制模块 50,使该控制模块 50得以即时调整输出至 上臂的电刺激信号,使患者能够顺利地移动上肢。 相应地,患者推出前臂、 张 开手掌、 …等复健课程规定的动作所需的电刺激信号,可以依据前述方式予 以辅助提供。 在实际制作方面,该控制模块 50可以是一微处理电路模块或 一可编程芯片。 该控制模块 50 由该肌电信号调整输出的该电刺激信号,该 控制模块 50 可以依据一比较方法或一查表方法决定输出电刺激信号的强 弱,所谓的比较方法或查表方法即是该控制模块 50将读取的肌电信号与内 储的一肌电信号数值基准相互比较或查询对照, 并依据比较结果输出适当 的电刺激, 其中该肌电信号数值基准可以通过量测与记录患者正常侧 (一 偏瘫患者为例)的肌电信号数值或一般人体的肌电信号平均值做为基准,藉 以提供比较基准。
进一步地, 前述的该比较方法或查表方法内具有一个以上的可调整参 数设定, 可由医事专业人员或使用者设定。 该可调整参数设定的一种实施 方式可由使用者本身的最大自主收缩值为基础, 每次肌电信号与最大自主 收缩值比较其差异值, 并由其差异值输出一适当的电刺激信号的剂量或者 该次输出增加的剂量。 另一种实施方式则可将肌电信号分为多个阶层 (等 級), 根据每个使用者本身的肌电信号主要落于哪一阶层来决定对应适当的 电刺激信号输出剂量或者该次输出增加的剂量。
该固定套件 60用于将各电刺激电极 10、 各肌电信号感测元件 20、 该 电刺激输出单元 30、 该肌电信号运算单元 40、 该控制模块 50 固定结合于 人体肢干 70, 该固定套件 60 的外型、 构造不限定, 依据不同的人体肢干 70位置而有所不同。 以本实施例为例, 该固定套件 60适用于手臂, 其包含 一上臂固定组件 62、 前臂固定组件 64及一手掌固定组件 66 , 是分别具有 与人体的上臂、 前臂及手掌外型对应并可分离固定于上臂、 前臂及手掌,各 电刺激电极 10、 各肌电信号感测元件 20是设置于该固定套件 60的内侧表 面, 让患者穿戴该固定套件 60时, 各电刺激电极 10及各肌电信号感测元 件 20即可贴合于神经肌肉系统的表层皮肤。
进一步地,为了更进一步精确判断偏瘫患者的偏瘫的上臂的动作状况,让 该控制模块 50除了可以依据前述说明解析各肌电信号感测元件 20之外,也 可以在该固定套件 60上固定安装多个弯曲感测器于手腕、 各手指、 手肘、 手 臂的关节对应位置, 感应部分或每个关节的弯曲状态, 并将感应结果输出 至该控制模块 50。基于此, 通过感应各弯曲感测器所感应的结果,该控制模 块 50可搭配各肌电信号感测单元 20的数据与各弯曲感测器的感应结果,精 确判断患者的上臂的状态,使该控制模块 50能精确地控制各电剌激电极 10 输出患者所需的电刺激信号。 其中, 该弯曲感测器通常呈杆状或棒状,其依 据弯曲程度而产生不同的阻值变化。 举例而言, 本实施例的弯曲感测器为 spec tra symbol公司制造、 且针对单一方向的弯曲而产生不同阻值,以本实 施例为例, 所采用的该弯曲感测器在不弯曲状态下的阻值约为 10ΚΩ,随着 弯曲曲率增加, 其电阻值大约增加 30 ~ 40Ω。 下表一为本实施例所使用 的弯 测器的弯曲度与阻抗的关系。
Figure imgf000010_0001
由前述可知,本实施例可以依据人体肢干 70的肌电信号强弱,先判断人 体肢干 70执行指定动作所需的电刺激信号的强弱,给予患者适当的辅助,因 此,不仅可以有效活化患者局部失能的肢干, 更可有效训练患者对于患部肢 干的控制能力。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所 作的任何简单修改、 等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims

1、 一种回馈控制的穿戴式上肢电刺激装置, 其特征在于其包含多个电 刺激电极、 多个肌电信号感测元件、 一电刺激输出单元、 一肌电信号撷取 单元、 一肌电信号运算单元及一控制模块, 其中:
各电刺激电极贴合或接触固定于一人体肢干, 各电刺激电极对该人体 肢干的一神经肌肉系统施予一电刺激信号;
各肌电信号感测元件贴合或接触固定于该人体肢干, 其与各电刺激电 极贴合设置于该人体肢干的神经肌肉系统的对应位置, 感应与接收该人体 肢干的一肌电信号, 该肌电信号内包含一自主肌电信号、 一电刺激诱发肌 电信号及一干扰信号;
该电刺激输出单元与各电刺激电极连接并提供该电刺激信号; 该肌电信号撷取单元与各肌电信号感测元件连接并接收该肌电信号,该 肌电信号撷取单元将该肌电信号予以滤波并放大;
该肌电信号运算单元与该肌电信号撷取单元连接, 且接收滤波与放大 后的该肌电信号; 及
该控制模块与该电刺激输出单元及该肌电信号运算单元电性连接, 该 控制模块由该肌电信号运算单元接收该肌电信号并依据该肌电信号的位置 与强弱控制该电刺激输出单元对一个以上的该电刺激电极提供输出该电剌 激信号所需的电力。
2、 根据权利要求 1所述的回馈控制的穿戴式上肢电刺激装置, 其特征 在于, 其中:
该肌电信号撷取单元包含串接的一电刺激信号阻挡电路、 一仪表放大 器、 一放大器电路、 一高通与低通滤波器及一准位提升电路或箝位电路,该 电刺激信号阻挡电路初步滤除该电刺激信号对肌电信号的干扰, 该仪器放 大器对该肌电信号进行前级放大, 该放大器电路对该肌电信号进行增加放 大倍率, 该高通与低通滤波器对该肌电信号滤除该肌电信号的一设定范围 之外的信号频段, 该准位提升电路或箝位电路将该肌电信号提升位准; 该回馈控制的穿戴式上肢电刺激装置包含一模拟数字转换单元连接于 该准位提升电路或箝位电路与该肌电信号运算单元之间, 该模拟数字转换 单元接收该准位提升电路或箝位电路所输出的肌电信号并予以数字化; 及 该肌电信号运算单元接收数字化后的肌电信号, 其包含串接的一干扰 处理单元、 一才充状滤波单元及一减法电路, 该干扰处理单元移除该肌电信 号包含该电刺激信号的脉冲后, 以该梳状滤波单元由该肌电信号中取出该 自主肌电信号, 该减法电路取该肌电信号减去该梳状滤波单元输出的该自 主肌电信号后, 产生该诱发电刺激肌电信号。
3、 根据权利要求 2所述的回馈控制的穿戴式上肢电刺激装置, 其特征 在于其中所述的干扰处理单元是去除每个肌电信号的前段信号。
4、 根据权利要求 3所述的回馈控制的穿戴式上肢电刺激装置, 其特征 在于其中所述的前段信号时间介于 l OOus ~ 5ms。
5、 根据权利要求 1至 4中任一权利要求所述的回馈控制的穿戴式上肢 电刺激装置, 其特征在于其进一步包含一固定套件, 该固定套件的外型与 该人体肢干对应, 其固定结合各电刺激电极、 各肌电信号感测元件、 该电 刺激输出单元、 该肌电信号运算单元及该控制模块, 其中, 各电刺激电极 及各肌电信号感测元件设置于该固定套件的内部表面。
6、 根据权利要求 5所述的回馈控制的穿戴式上肢电刺激装置, 其特征 在于其中所述的固定套件包含一上臂固定组件、 一前臂固定组件、 一手掌 固定组件, 其分别与人体的一上臂、 一前臂及一手掌外型对应, 并可分别 分离套设于该上臂、 前臂及手掌外。
7、 根据权利要求 6所述的回馈控制的穿戴式上肢电刺激装置, 其特征 在于其中所述的控制模块依据所接收的肌电信号的内容与状态及位置, 控 制位置与产生该肌电信号的神经肌肉系统位置对应的电刺激电极产生该电 刺激信号。
8、 根据权利要求 7所述的回馈控制的穿戴式上肢电刺激装置, 其特征 在于其中所述的控制模块是一微处理电路模块或一可编程芯片。
9、 根据权利要求 7所述的回馈控制的穿戴式上肢电刺激装置, 其特征 在于其中所述的控制模块由该肌电信号调整输出的该电刺激信号, 其中,该 控制模块是依据一比较方法或一查表方法决定输出电刺激信号的强弱,该 比较方法或查表方法为该控制模块将读取的该肌电信号与内储的一肌电信 号数值基准相互比较或查询对照, 并依据比较结果输出适当的电刺激,其中 该肌电信号数值基准为一健康正常肢体的肌电信号数值或一人体肌电信号 平均值。
10、 根据权利要求 7 所述的回馈控制的穿戴式上肢电刺激装置, 其特 征在于, 其中:
该回馈控制的穿戴式上肢电剌激装置包含多个弯曲感测器, 其固定结 合于该固定套件并分别与该上臂、 该前臂及该手掌的多个关节位置对应,其 感测各关节的弯曲状况, 并将感测结果输出至该控制模块; 及
该控制模块依据各弯曲感测器的感应结果配合该肌电信号, 控制特定 的该电刺激电极产生该电刺激信号。
PCT/CN2011/001429 2011-08-26 2011-08-26 回馈控制的穿戴式上肢电刺激装置 WO2013029196A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/240,793 US9707393B2 (en) 2011-08-26 2011-08-26 Feedback-control wearable upper-limb electrical stimulation device
PCT/CN2011/001429 WO2013029196A1 (zh) 2011-08-26 2011-08-26 回馈控制的穿戴式上肢电刺激装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001429 WO2013029196A1 (zh) 2011-08-26 2011-08-26 回馈控制的穿戴式上肢电刺激装置

Publications (1)

Publication Number Publication Date
WO2013029196A1 true WO2013029196A1 (zh) 2013-03-07

Family

ID=47755163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001429 WO2013029196A1 (zh) 2011-08-26 2011-08-26 回馈控制的穿戴式上肢电刺激装置

Country Status (2)

Country Link
US (1) US9707393B2 (zh)
WO (1) WO2013029196A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105852856A (zh) * 2016-03-30 2016-08-17 苏州明动新材料科技有限公司 一种用于表面肌电信号采集的紧身衣
CN108744279A (zh) * 2018-06-29 2018-11-06 桂林宜康电子科技有限公司 生物反馈中频刺激肌肉训练装置
CN109308085A (zh) * 2018-12-13 2019-02-05 贝乐(广州)智能信息科技有限公司 一种可穿戴设备控制电路及可穿戴设备
CN110548222A (zh) * 2019-08-19 2019-12-10 广东博特健康科技有限公司 一种人体电刺激系统
JPWO2021014553A1 (zh) * 2019-07-23 2021-01-28
WO2021014554A1 (ja) * 2019-07-23 2021-01-28 日本電信電話株式会社 電気刺激装置
CN113332011A (zh) * 2021-07-06 2021-09-03 上海交通大学 一种用于肌电假肢的电刺激干扰去除系统与方法
CN114098739A (zh) * 2021-11-08 2022-03-01 浙江大学 一种用于肌电信号测量的微针阵列测量系统

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US10042422B2 (en) 2013-11-12 2018-08-07 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors
WO2015081113A1 (en) 2013-11-27 2015-06-04 Cezar Morun Systems, articles, and methods for electromyography sensors
US9880632B2 (en) 2014-06-19 2018-01-30 Thalmic Labs Inc. Systems, devices, and methods for gesture identification
AU2016241572B2 (en) 2015-03-31 2021-06-17 Fisher & Paykel Healthcare Limited A user interface and system for supplying gases to an airway
US10242587B2 (en) * 2015-06-17 2019-03-26 Augmented Technologies Llc Limb immobilizing brace and system
US10603482B2 (en) 2015-09-23 2020-03-31 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
IL286747B2 (en) 2016-01-21 2024-05-01 Cala Health Inc A wearable device for the treatment of symptoms related to the urinary system
US11179066B2 (en) 2018-08-13 2021-11-23 Facebook Technologies, Llc Real-time spike detection and identification
US11337652B2 (en) 2016-07-25 2022-05-24 Facebook Technologies, Llc System and method for measuring the movements of articulated rigid bodies
US10772519B2 (en) 2018-05-25 2020-09-15 Facebook Technologies, Llc Methods and apparatus for providing sub-muscular control
US11331045B1 (en) 2018-01-25 2022-05-17 Facebook Technologies, Llc Systems and methods for mitigating neuromuscular signal artifacts
US10687759B2 (en) 2018-05-29 2020-06-23 Facebook Technologies, Llc Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
US20190121306A1 (en) 2017-10-19 2019-04-25 Ctrl-Labs Corporation Systems and methods for identifying biological structures associated with neuromuscular source signals
US10990174B2 (en) 2016-07-25 2021-04-27 Facebook Technologies, Llc Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
EP3487457B1 (en) 2016-07-25 2023-09-06 Facebook Technologies, LLC. Adaptive system for deriving control signals from measurements of neuromuscular activity
US10409371B2 (en) 2016-07-25 2019-09-10 Ctrl-Labs Corporation Methods and apparatus for inferring user intent based on neuromuscular signals
KR20220165802A (ko) 2016-08-11 2022-12-15 피셔 앤 페이켈 핼스케어 리미티드 압궤 가능 도관, 환자 인터페이스 및 헤드기어 연결부
CN106618963A (zh) * 2017-01-13 2017-05-10 南京航空航天大学 一种并指术后可穿戴康复机器人手套装置及康复训练方法
CN111699018A (zh) * 2017-12-04 2020-09-22 Cy医药整形外科股份有限公司 患者治疗系统和方法
US11369304B2 (en) * 2018-01-04 2022-06-28 Electronics And Telecommunications Research Institute System and method for volitional electromyography signal detection
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11069148B2 (en) 2018-01-25 2021-07-20 Facebook Technologies, Llc Visualization of reconstructed handstate information
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US11150730B1 (en) 2019-04-30 2021-10-19 Facebook Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
CN108310632B (zh) * 2018-01-30 2020-01-21 深圳市行远科技发展有限公司 一种肌肉电刺激方法、装置及可穿戴设备
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
CN112585600A (zh) 2018-06-14 2021-03-30 脸谱科技有限责任公司 使用神经肌肉标记进行用户识别和认证
WO2020018892A1 (en) * 2018-07-19 2020-01-23 Ctrl-Labs Corporation Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
US10842407B2 (en) 2018-08-31 2020-11-24 Facebook Technologies, Llc Camera-guided interpretation of neuromuscular signals
CN112789577B (zh) 2018-09-20 2024-04-05 元平台技术有限公司 增强现实系统中的神经肌肉文本输入、书写和绘图
WO2020069181A1 (en) 2018-09-26 2020-04-02 Ctrl-Labs Corporation Neuromuscular control of physical objects in an environment
CN112822992A (zh) 2018-10-05 2021-05-18 脸谱科技有限责任公司 在增强现实环境中使用神经肌肉信号来提供与物理对象的增强交互
CN109173052B (zh) * 2018-10-10 2021-06-29 北京理工大学 基于运动意图的神经刺激康复系统、神经刺激方法
CN113423341A (zh) 2018-11-27 2021-09-21 脸谱科技有限责任公司 用于可穿戴电极传感器系统的自动校准的方法和装置
CN109464144B (zh) * 2018-12-25 2024-04-16 东莞晋杨电子有限公司 一种手持肌电采集装置
CN109464145A (zh) * 2018-12-25 2019-03-15 东莞晋杨电子有限公司 一种肌电采集装置
CN109498008A (zh) * 2018-12-26 2019-03-22 江苏百宁盈创医疗科技有限公司 一种无线神经监护系统与设备
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
CN109939347A (zh) * 2019-04-01 2019-06-28 华东交通大学 一种融合功能电刺激的感知增强装置设计及其实现方法
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification
CN110975142A (zh) * 2019-12-10 2020-04-10 深圳尚瑞得科技有限公司 可穿戴手臂电刺激治疗仪
CN111045640B (zh) * 2019-12-13 2023-04-11 中国科学院深圳先进技术研究院 一种汽车驾驶员数据采集系统和穿戴式辅助驾驶设备
US20240041384A1 (en) * 2020-03-10 2024-02-08 Electronics And Telecommunications Research Institute Muscle control device and operation method thereof
EP4162346A1 (en) * 2020-06-06 2023-04-12 Battelle Memorial Institute Non-verbal communications radio and non-verbal communication system using a plurality of non-verbal communication radios
CN112353405A (zh) * 2020-10-27 2021-02-12 中国人民解放军西部战区总医院 一种用于四肢的肌电检测装置及其使用方法
CN115137974A (zh) * 2021-03-31 2022-10-04 宏碁股份有限公司 决定低周波电流强度的方法及电子装置
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
CN113243925B (zh) * 2021-05-28 2022-05-27 浙江帝诺医疗科技有限公司 一种人体体表的肌电采集设备
CN113456449A (zh) * 2021-08-18 2021-10-01 南京仙能医疗科技有限公司 一种温热低周波智慧推拿装置及其方法
CN117426912B (zh) * 2023-12-22 2024-03-15 浙江强脑科技有限公司 一种仿生手

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088121A (zh) * 1992-12-14 1994-06-22 上海交通大学 肌电反馈式中风瘫痪治疗仪
CN101243967A (zh) * 2007-02-16 2008-08-20 上海塔瑞莎健康科技有限公司 一种植入式电刺激信息反馈装置
CN101244314A (zh) * 2007-02-16 2008-08-20 上海塔瑞莎健康科技有限公司 用于设置治疗模式的电刺激平台系统、方法及存储媒介
WO2010003106A2 (en) * 2008-07-02 2010-01-07 Niveus Medical Inc. Systems and methods for automated muscle stimulation
WO2010064206A1 (en) * 2008-12-05 2010-06-10 Koninklijke Philips Electronics N.V. Electrical stimulation device for locating an electrical stimulation point and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404805B2 (en) * 2004-01-27 2008-07-29 The Regents Of The University Of Michigan Orthotic device and methods of use
US9238137B2 (en) * 2004-02-05 2016-01-19 Motorika Limited Neuromuscular stimulation
US8888724B2 (en) * 2008-01-25 2014-11-18 M.A.R.B. Rehab International, Llc Reciprocating brace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088121A (zh) * 1992-12-14 1994-06-22 上海交通大学 肌电反馈式中风瘫痪治疗仪
CN101243967A (zh) * 2007-02-16 2008-08-20 上海塔瑞莎健康科技有限公司 一种植入式电刺激信息反馈装置
CN101244314A (zh) * 2007-02-16 2008-08-20 上海塔瑞莎健康科技有限公司 用于设置治疗模式的电刺激平台系统、方法及存储媒介
WO2010003106A2 (en) * 2008-07-02 2010-01-07 Niveus Medical Inc. Systems and methods for automated muscle stimulation
WO2010064206A1 (en) * 2008-12-05 2010-06-10 Koninklijke Philips Electronics N.V. Electrical stimulation device for locating an electrical stimulation point and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105852856A (zh) * 2016-03-30 2016-08-17 苏州明动新材料科技有限公司 一种用于表面肌电信号采集的紧身衣
CN108744279A (zh) * 2018-06-29 2018-11-06 桂林宜康电子科技有限公司 生物反馈中频刺激肌肉训练装置
CN109308085A (zh) * 2018-12-13 2019-02-05 贝乐(广州)智能信息科技有限公司 一种可穿戴设备控制电路及可穿戴设备
CN109308085B (zh) * 2018-12-13 2023-06-09 贝乐(广州)智能信息科技有限公司 一种可穿戴设备控制电路及可穿戴设备
JPWO2021014553A1 (zh) * 2019-07-23 2021-01-28
WO2021014554A1 (ja) * 2019-07-23 2021-01-28 日本電信電話株式会社 電気刺激装置
WO2021014553A1 (ja) * 2019-07-23 2021-01-28 日本電信電話株式会社 電気刺激装置および方法
JPWO2021014554A1 (zh) * 2019-07-23 2021-01-28
CN110548222A (zh) * 2019-08-19 2019-12-10 广东博特健康科技有限公司 一种人体电刺激系统
CN113332011A (zh) * 2021-07-06 2021-09-03 上海交通大学 一种用于肌电假肢的电刺激干扰去除系统与方法
CN113332011B (zh) * 2021-07-06 2023-12-22 上海交通大学 一种用于肌电假肢的电刺激干扰去除系统与方法
CN114098739A (zh) * 2021-11-08 2022-03-01 浙江大学 一种用于肌电信号测量的微针阵列测量系统

Also Published As

Publication number Publication date
US9707393B2 (en) 2017-07-18
US20160144172A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2013029196A1 (zh) 回馈控制的穿戴式上肢电刺激装置
Rong et al. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke
Zhou et al. sEMG bias-driven functional electrical stimulation system for upper-limb stroke rehabilitation
Niazi et al. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials
US20100174342A1 (en) Tremor reduction systems suitable for self-application and use in disabled patients
US9636501B2 (en) Neural prosthesis system and method of control
Pons et al. Converging clinical and engineering research on neurorehabilitation
JP6340528B2 (ja) Bmi運動補助装置
RU2627818C1 (ru) Способ бионического управления техническими устройствами
Li et al. A method for suppressing electrical stimulation artifacts from electromyography
CN102949783B (zh) 回馈控制的穿戴式上肢电刺激装置
Zhou et al. A multi-channel EMG-driven FES solution for stroke rehabilitation
Wang et al. Building multi-modal sensory feedback pathways for SRL with the aim of sensory enhancement via BCI
O'Keeffe et al. The development of a potential optimized stimulation intensity envelope for drop foot applications
Bi et al. Wearable EMG bridge—A multiple-gesture reconstruction system using electrical stimulation controlled by the volitional surface electromyogram of a healthy forearm
RU2673151C1 (ru) Способ бионического управления техническими устройствами
Ai et al. Advanced rehabilitative technology: neural interfaces and devices
TWI457152B (zh) 回饋控制之穿戴式上肢電刺激裝置
Usman et al. A functional electrical stimulation system of high-density electrodes with auto-calibration for optimal selectivity
Schill et al. Automatic adaptation of a self-adhesive multi-electrode array for active wrist joint stabilization in tetraplegic SCI individuals
Wahyunggoro et al. String actuated upper limb exoskeleton based on surface electromyography control
Widjaja et al. Sensing of pathological tremor using surface electromyography and accelerometer for real-time attenuation
TWM425675U (en) Upper limb electrical stimulation device
Hernandez Arieta et al. Sensorymotor coupling in rehabilitation robotics
Zhou et al. Electromyographic Bridge—A multi-movement volitional control method for functional electrical stimulation: Prototype system design and experimental validation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14240793

Country of ref document: US