WO2013024902A1 - Back sheet for solar cell, method for manufacturing same, and solar cell module - Google Patents

Back sheet for solar cell, method for manufacturing same, and solar cell module Download PDF

Info

Publication number
WO2013024902A1
WO2013024902A1 PCT/JP2012/070928 JP2012070928W WO2013024902A1 WO 2013024902 A1 WO2013024902 A1 WO 2013024902A1 JP 2012070928 W JP2012070928 W JP 2012070928W WO 2013024902 A1 WO2013024902 A1 WO 2013024902A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
layer
solar cell
pigment
polymer
Prior art date
Application number
PCT/JP2012/070928
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 維成
畠山 晶
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013024902A1 publication Critical patent/WO2013024902A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell backsheet, a manufacturing method thereof, and a solar cell module.
  • Solar cells are a power generation system that emits no carbon dioxide during power generation and has a low environmental load, and has been rapidly spreading in recent years.
  • the solar cell module is usually a front side glass on the side on which sunlight is incident and a solar cell back surface protection sheet (solar cell backsheet, on the side opposite to the side on which sunlight is incident (back side), (Hereinafter also referred to simply as “back sheet”), the solar cell is sandwiched between the front glass and the solar cell, and between the solar cell and the back sheet.
  • EVA ethylene-vinyl acetate
  • the back sheet has a function of preventing moisture from entering from the back surface of the solar cell module, and conventionally glass or fluororesin has been used, but in recent years, polyester has been used from the viewpoint of cost. It has become to. And a back sheet is not a mere polymer sheet, but may have various functions as shown below.
  • a backsheet having a reflective performance by adding a white pigment such as titanium oxide may be required. This is to increase power generation efficiency by irregularly reflecting light that has passed through the cell out of sunlight incident from the front side of the module and returning it to the cell.
  • a white resin film such as a method of applying a coating liquid or a white paint containing a white pigment on a stretched polyester film, a white polyester film containing a white pigment or forming a void by foaming or stretching The method of laminating is mentioned.
  • a titanium polyester kneaded type white polyester film is widely used (see, for example, JP-A-2008-130642). .
  • Japanese Patent Laid-Open No. 2008-130642 proposes to use a white resin film of a titanium oxide wrought type, but when maintaining the reflection performance by increasing the thickness of the base material, a large amount of titanium oxide is required. , Leading to higher material costs.
  • the present invention has been made in view of the above, and provides a solar cell backsheet having a low manufacturing cost, high reflection performance and durability, and high adhesive strength with a sealing material, and a method for manufacturing the backsheet.
  • the purpose is to provide.
  • Another object of the present invention is to provide a solar cell module that can stably maintain power generation performance over a long period of time.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group, and R 1 and R 2 may be the same or different.
  • n represents an integer of 1 or more.
  • the plurality of R 1 and R 2 may be the same as or different from each other.
  • ⁇ 2> ⁇ 1> The solar cell backsheet according to ⁇ 1>, comprising a binder and having an undercoat layer having a thickness of 2 ⁇ m or less between the polymer substrate and the pigment layer.
  • ⁇ 3> The solar cell backsheet according to ⁇ 1> or ⁇ 2>, wherein at least one layer provided on the polymer base material contains a fluorosurfactant.
  • ⁇ 4> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 3>, wherein a ratio of the pigment to the total of the binder and the pigment in the pigment layer is 40 to 95% by mass.
  • ⁇ 5> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 4>, wherein the thickness of the topcoat layer is 0.1 ⁇ m or more and 30 ⁇ m or less.
  • ⁇ 6> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 5>, wherein a ratio of the pigment to the total of the binder and the pigment in the pigment layer is 50 to 95% by mass.
  • ⁇ 7> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 6>, wherein the ratio of the pigment to the total of the binder and the pigment in the pigment layer is 70 to 95% by mass.
  • ⁇ 8> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 7>, wherein the thickness of the topcoat layer is from 0.3 ⁇ m to 20 ⁇ m.
  • ⁇ 9> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 8>, wherein the thickness of the overcoat layer is 0.5 ⁇ m or more and 10 ⁇ m or less.
  • a binder is included, and an undercoat layer having a thickness of 2 ⁇ m or less is formed.
  • the solar cell backsheet according to any one of ⁇ 1> to ⁇ 11> comprising at least one resin selected from the group consisting of: ⁇ 13> Any one of ⁇ 1> to ⁇ 12> containing a binder and having an undercoat layer having a thickness of 2 ⁇ m or less between the polymer substrate and the pigment layer, wherein the undercoat layer and the overcoat layer contain an inorganic oxide filler
  • the base polymer base material contains inorganic particles or organic particles, the average particle size of the particles is 0.1 to 10 ⁇ m, and the content of the particles is 0 to 50% by mass with respect to the total mass of the polymer base material ⁇ 1> to the polymer sheet for solar cell according to any one of ⁇ 15>.
  • ⁇ 17> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 16>, wherein the polymer base material has a thermal shrinkage rate of about 0 to 0.5% at 150 ° C. for about 30 minutes.
  • the polymer substrate comprises a polyester resin having a carboxyl group content of 35 equivalents / ton or less.
  • the reflectance with respect to light having a wavelength of 550 nm on the side where the pigment layer is provided is 70% or more.
  • ⁇ 20> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 19>, wherein all of the layers provided on the first surface of the polymer base material are layers formed by coating.
  • a solar cell module comprising: a transparent substrate on which sunlight is incident; a solar cell element; and the solar cell backsheet according to any one of ⁇ 1> to ⁇
  • the present invention it is possible to provide a solar cell backsheet having a low manufacturing cost, high reflection performance and durability, and high adhesive strength with a sealing material, and a method for manufacturing the same. Moreover, according to this invention, the solar cell module which can maintain electric power generation performance stably over a long term can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the solar cell backsheet of the present invention (appropriately referred to as “backsheet”) is provided on the first surface of the polymer substrate, the polymer substrate, the pigment layer containing the binder and the pigment, and the pigment layer.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group, and R 1 and R 2 may be the same or different.
  • n represents an integer of 1 or more.
  • the plurality of R 1 and R 2 may be the same as or different from each other.
  • the solar cell module provided with the backsheet of the present invention has excellent power generation performance due to the high light reflectivity of the backsheet of the present invention, and over time in a humid heat environment. It is possible to stably maintain the power generation performance over a long period without causing peeling or the like.
  • the structure of the solar cell backsheet of this invention is demonstrated concretely.
  • FIG. 1 shows an example (first embodiment) of a layer configuration of a solar cell backsheet according to the present invention.
  • a pigment layer 12 and an overcoat layer 14 are provided on the first surface of the polymer substrate 10, and on the second surface of the polymer substrate 10.
  • a composite polymer layer 16 containing a composite polymer is provided.
  • FIG. 2 shows another example (second embodiment) of the layer configuration of the solar cell backsheet according to the present invention.
  • the solar cell backsheet 2 of the second embodiment is provided with an undercoat layer 11 having a thickness of 2 ⁇ m or less, a pigment layer 12, and an overcoat layer 14 on the first surface of the polymer substrate 10.
  • a composite polymer layer 16 containing a composite polymer is provided on the second surface of the material 10. 1 and 2 do not limit the present invention at all, and may have other layers.
  • polyester examples include polyester, polyolefin such as polypropylene and polyethylene, or fluorine-based polymer such as polyvinyl fluoride.
  • polyester is preferable from the viewpoint of cost and mechanical strength.
  • the polyester used as the polymer substrate (support) in the present invention is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
  • Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate and the like. Of these, polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferable from the viewpoint of balance between mechanical properties and cost.
  • the polyester may be a homopolymer or a copolymer. Further, polyester may be blended with other kinds of resins such as polyimide in a small amount.
  • an Sb-based, Ge-based or Ti-based compound as a catalyst from the viewpoint of keeping the carboxyl group content below a predetermined range, and among these, a Ti-based compound is particularly preferable.
  • a Ti-based compound an embodiment in which polymerization is performed by using the Ti-based compound as a catalyst in a range of 1 ppm to 30 ppm, more preferably 3 ppm to 15 ppm is preferable.
  • the proportion of the Ti-based compound is within the above range, the terminal carboxyl group can be adjusted to the following range, and the hydrolysis resistance of the polymer substrate can be kept low.
  • the carboxyl group content in the polyester is preferably 50 equivalents / ton or less, more preferably 35 equivalents / ton or less.
  • the lower limit of the carboxyl group content is desirably 2 equivalents / ton or more from the viewpoint of maintaining adhesiveness with a layer (for example, a pigment layer) formed on the polymer substrate.
  • “Equivalent / ton” represents a molar equivalent per ton.
  • the carboxyl group content in the polyester can be adjusted by the polymerization catalyst species and the film forming conditions (film forming temperature and time).
  • the polymer substrate is surface-treated by at least one method of corona treatment, atmospheric pressure plasma treatment, glow discharge treatment, and flame treatment (for example, flame treatment using a flame introduced with a silane compound). Even if the surface treatment is performed only on one surface of the substrate, the surface treatment may be performed on both surfaces of the substrate. For example, when forming the other functional layer mentioned later on a polymer base material by application
  • a preferred embodiment of the corona treatment is a corona treatment in a treatment strength range of 150 to 500 J / m 2 at an output of 0.1 to 3.0 kw / electrode 1 m (representing an output per 1 m of electrode) with respect to the polymer substrate. It is the aspect which gives.
  • the output is more preferably 0.5 to 2.5 kw / electrode 1 m, and particularly preferably 0.7 to 1.7 kw / electrode 1 m.
  • More preferably treated intensity range is 160 ⁇ 450J / m 2, and particularly preferably 170 ⁇ 360J / m 2.
  • Glow discharge treatment is a method called low-pressure plasma treatment or vacuum plasma treatment, and is a method of generating a plasma by discharge in a gas (plasma gas) in a low-pressure atmosphere to treat the substrate surface.
  • the low-pressure plasma used in the process of the present invention is a non-equilibrium plasma generated under conditions where the plasma gas pressure is low.
  • the treatment of the present invention is performed by placing a film to be treated (polymer substrate) in this low-pressure plasma atmosphere.
  • the power source used for discharging may be direct current or alternating current.
  • alternating current a range of about 30 Hz to 20 MHz is preferable.
  • alternating current a commercial frequency of 50 or 60 Hz may be used, or a high frequency of about 10 to 50 kHz may be used.
  • a method using a high frequency of 13.56 MHz is also preferable.
  • an inorganic gas such as oxygen gas, nitrogen gas, water vapor gas, argon gas, helium gas can be used, and in particular, oxygen gas or oxygen gas and argon gas
  • the mixed gas is preferable. Specifically, it is desirable to use a mixed gas of oxygen gas and argon gas.
  • a method in which a gas such as water entering the processing container due to a leak or water vapor coming out of the object to be processed is used as the plasma gas without introducing a gas into the processing container.
  • the plasma gas pressure needs to be low enough to achieve non-equilibrium plasma conditions.
  • the specific plasma gas pressure is preferably in the range of 0.005 to 10 Torr (0.666 to 1333 Pa), more preferably about 0.008 to 3 Torr (1.067 to 400 Pa). If the pressure of the plasma gas is 0.666 Pa or more, the effect of improving adhesiveness is sufficient, and if it is 1333 Pa or less, the increase in current is suppressed and the discharge is stabilized.
  • the plasma output cannot be generally specified depending on the shape and size of the processing container and the shape of the electrode, but is preferably about 100 to 2500 W, more preferably about 500 to 1500 W.
  • the treatment time of the glow discharge treatment of the present invention is preferably 0.05 to 100 seconds, more preferably about 0.5 to 30 seconds. If the treatment time is 0.05 seconds or more, the effect of improving adhesiveness is sufficient, and if it is 100 seconds or less, problems such as deformation and coloring of the film to be treated can be prevented.
  • Discharge treatment intensity of the glow discharge treatment of the present invention will depend on the plasma power and treatment time, preferably in the range of 0.01 ⁇ 10kV ⁇ A ⁇ min / m 2, 0.1 ⁇ 7kV ⁇ A ⁇ min / m 2 Gayori preferable. Discharge treatment intensity that is sufficient adhesion improving effect of the 0.01 kV ⁇ A ⁇ min / m 2 or more is obtained, and such deformation and coloration of the processed film by a 10 kV ⁇ A ⁇ min / m 2 or less You can avoid problems.
  • the film to be treated in advance it is also preferable to heat the film to be treated in advance.
  • the heating temperature is preferably in the range of 40 ° C. to the softening temperature of the film to be treated + 20 ° C., more preferably in the range of 70 ° C. to the softening temperature of the film to be processed.
  • the handleability of a favorable film is securable during a process by making heating temperature below into the softening temperature of a to-be-processed film.
  • Specific methods for raising the temperature of the film to be treated in vacuum include heating with an infrared heater, heating by contacting with a hot roll, and the like.
  • the polymer base material of the present invention may contain an end-capping agent.
  • the polymer base material may contain 0.1 to 10% by mass of the end-capping agent with respect to the total mass of the polyester resin and the polyester resin.
  • the amount of the end-capping agent added relative to the total mass of the polyester resin constituting the polymer substrate is more preferably 0.2 to 5% by mass, still more preferably 0.3 to 2% by mass.
  • an end-capping agent that reacts with the terminal carboxylic acid is added to improve the hydrolysis resistance (weather resistance). It is effective. If the end-capping agent is less than the above range, the effect of improving the weather resistance is hardly exhibited.
  • end capping agent examples include epoxy compounds, carbodiimide compounds, oxazoline compounds, carbonate compounds, etc., but carbodiimide having high affinity with PET and high end capping ability is preferable.
  • terminal blocker is high molecular weight. This can reduce volatilization during melt film formation.
  • the molecular weight is preferably 200 to 100,000, more preferably 2000 to 80,000, still more preferably 10,000 to 50,000. If the molecular weight of the end-capping agent (especially carbodiimide end-capping agent) is within the above range, it is easy to uniformly disperse in the polyester, and it is easy to fully express the weather resistance improving effect. It is difficult and it becomes easy to express an effect of improving weather resistance.
  • the molecular weight of terminal blocker means a weight average molecular weight.
  • the carbodiimide compound having a carbodiimide group includes a monofunctional carbodiimide and a polyfunctional carbodiimide.
  • the monofunctional carbodiimide include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, and diphenylcarbodiimide. , Di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide, and the like. Particularly preferred are dicyclohexylcarbodiimide and diisopropylcarbodiimide.
  • carbodiimide having a polymerization degree of 3 to 15 is preferably used.
  • the carbodiimide compound is preferably a carbodiimide compound having high heat resistance because an isocyanate gas is generated by thermal decomposition.
  • the molecular weight degree of polymerization
  • the terminal of the carbodiimide compound has a structure with high heat resistance. Further, once thermal decomposition occurs, further thermal decomposition is likely to occur. Therefore, it is necessary to devise measures such as setting the extrusion temperature of the polyester as low as possible.
  • the terminal blocker carbodiimide preferably has a cyclic structure (for example, those described in JP-A-2011-153209). These exhibit the same effect as the above high molecular weight carbodiimide even at low molecular weight. This is because the terminal carboxylic acid of the polyester and the cyclic carbodiimide undergo a ring-opening reaction, one reacts with this polyester, and the other with the ring-opening reacts with another polyester to increase the molecular weight, thus suppressing the generation of isocyanate gas. It is to do.
  • the terminal blocking agent is a carbodiimide compound having a carbodiimide group and a cyclic structure in which the first nitrogen and the second nitrogen are bonded by a bonding group. It is preferable.
  • the end capping agent has a cyclic structure in which at least one carbodiimide group adjacent to the aromatic ring is present, and the first nitrogen and the second nitrogen of the carbodiimide group adjacent to the aromatic ring are bonded by a bonding group. More preferred is carbodiimide (also referred to as aromatic cyclic carbodiimide).
  • the aromatic cyclic carbodiimide may have a plurality of cyclic structures.
  • the aromatic cyclic carbodiimide is preferably an aromatic carbodiimide having no ring structure in which the first nitrogen and the second nitrogen of two or more carbodiimide groups are bonded by a linking group in the molecule, that is, a monocyclic ring. Can be used.
  • the cyclic structure has one carbodiimide group (—N ⁇ C ⁇ N—), and the first nitrogen and the second nitrogen are bonded by a bonding group.
  • One cyclic structure has only one carbodiimide group.
  • the compound may have a plurality of carbodiimide groups as long as it has a carbodiimide group.
  • the number of atoms in the cyclic structure is preferably 8 to 50, more preferably 10 to 30, further preferably 10 to 20, and particularly preferably 10 to 15.
  • the number of atoms in the cyclic structure means the number of atoms directly constituting the cyclic structure, and is, for example, 8 for an 8-membered ring and 50 for a 50-membered ring. This is because if the number of atoms in the cyclic structure is smaller than 8, the stability of the cyclic carbodiimide compound is lowered, and it may be difficult to store and use. From the viewpoint of reactivity, the upper limit of the number of ring members is not particularly limited, but cyclic carbodiimide compounds having more than 50 atoms are difficult to synthesize, and the cost may increase significantly. From this viewpoint, the number of atoms in the cyclic structure is preferably selected in the range of 10 to 30, more preferably 10 to 20, and particularly preferably 10 to 15.
  • carbodiimide end-capping agent having a cyclic structure examples include the following compounds. However, the present invention is not limited to the following specific examples.
  • Epoxy end sealant Preferred examples of the epoxy compound include glycidyl ester compounds and glycidyl ether compounds.
  • glycidyl ester compounds include benzoic acid glycidyl ester, t-Bu-benzoic acid glycidyl ester, P-toluic acid glycidyl ester, cyclohexanecarboxylic acid glycidyl ester, pelargonic acid glycidyl ester, stearic acid glycidyl ester, lauric acid glycidyl ester , Glycidyl palmitate, glycidyl behenate, glycidyl versatate, glycidyl oleate, glycidyl linoleate, glycidyl linolein, glycidyl behenol, glycidyl stearol, diglycidyl terephthalate, isophthalic acid Diglycidyl ester, diglycidyl phthalate, diglycidyl naphthalene dicar
  • the glycidyl ether compound examples include phenyl glycidyl ether, O-phenyl glycidyl ether, 1,4-bis ( ⁇ , ⁇ -epoxypropoxy) butane, 1,6-bis ( ⁇ , ⁇ - Epoxypropoxy) hexane, 1,4-bis ( ⁇ , ⁇ -epoxypropoxy) benzene, 1- ( ⁇ , ⁇ -epoxypropoxy) -2-ethoxyethane, 1- ( ⁇ , ⁇ -epoxypropoxy) -2-benzyl Oxyethane, 2,2-bis- [ politician- ( ⁇ , ⁇ -epoxypropoxy) phenyl] propane and 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxyphenyl) Examples include bisglycidyl polyether obtained by the reaction of bisphenol such as methane and epichlorohydrin, and these use one kind or two or more kinds. It is possible.
  • the oxazoline compound is preferably a bisoxazoline compound, specifically, 2,2′-bis (2-oxazoline), 2,2′-bis (4-methyl-2-oxazoline), 2,2 ′.
  • 2,2′-bis (2-oxazoline) is most preferably used from the viewpoint of reactivity with polyester.
  • the bisoxazoline compound mentioned above may be used individually by 1 type, or may use 2 or more types together.
  • inorganic particles or organic particles can be mixed in the polyester film (polymer substrate).
  • the reflectance (whiteness) of light can be improved and the power generation efficiency of a solar cell can be raised.
  • the average particle size of the particles contained in the polyester film is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and still more preferably 0.15 to 1 ⁇ m, and the content is based on the total mass of the film. 0 to 50% by mass, preferably 1 to 10% by mass, and more preferably 2 to 5% by mass. If the average particle size of the particles is 0.1 to 10 ⁇ m, the whiteness of the film can be made 50 or more without increasing the addition amount. Further, if the addition amount of the particles is 1% by mass or more, it becomes easy to set the whiteness to 50 or more, and if it is 50% by mass or less, an increase in the film weight is suppressed and handling in processing and the like is easy. Become.
  • the average particle diameter and content mentioned here refer to the average value of each layer when the film used as the substrate has a multilayer structure. That is, (particle diameter of each layer, content) ⁇ (thickness of each layer / thickness of all layers) is calculated for each layer, and the sum is obtained.
  • grains contained in the polymer base material of this invention is calculated
  • the particles may be either inorganic particles or organic particles, or a combination of both. Thereby, the reflectance of light can be improved and the power generation efficiency of a solar cell can be raised.
  • Suitable inorganic particles include, for example, wet and dry silica, colloidal silica, calcium carbonate, aluminum silicate, calcium phosphate, alumina, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide (zinc white), antimony oxide, oxidation Cerium, zirconium oxide, tin oxide, lanthanum oxide, magnesium oxide, barium carbonate, zinc carbonate, basic lead carbonate (lead white), barium sulfate, calcium sulfate, lead sulfate, zinc sulfide, mica, titanium mica, talc, clay, Kaolin, lithium fluoride, calcium fluoride, and the like can be used, and titanium dioxide and barium sulfate are particularly preferable.
  • the titanium oxide may be either anatase type or rutile type.
  • the polymer base material can exhibit excellent durability even under light irradiation by containing titanium dioxide.
  • the elongation at break is preferably 35% or more, more preferably 40% or more.
  • the polymer base material of the present invention is more suitable as a back surface protective film of a solar cell used outdoors because photodecomposition and deterioration are suppressed even by light irradiation.
  • Titanium dioxide includes rutile type and anatase type, but it is preferable to add titanium dioxide particles mainly composed of rutile type to the polymer substrate of the present invention.
  • the anatase type has a very high spectral reflectance of ultraviolet rays, whereas the rutile type has a characteristic that the absorption rate of ultraviolet rays is large (spectral reflectance is small).
  • the present inventor pays attention to such a difference in spectral characteristics in the crystal form of titanium dioxide, and can improve the light resistance in the polyester film for protecting the back surface of the solar cell by utilizing the rutile-type ultraviolet absorption performance. Thereby, it is excellent in the film durability under light irradiation, even if it does not add another ultraviolet absorber substantially. For this reason, problems such as contamination due to bleeding out of the ultraviolet absorber and a decrease in adhesion are unlikely to occur.
  • the titanium dioxide particles according to the present invention are mainly composed of rutile type, but the term “main body” as used herein means that the amount of rutile type titanium dioxide in all titanium dioxide particles is 50% by mass. It means that it is over. Moreover, it is preferable that the amount of anatase type titanium dioxide in all the titanium dioxide particles is 10 mass% or less. More preferably, it is 5 mass% or less, Most preferably, it is 0 mass%. If the content of anatase type titanium dioxide exceeds the above upper limit, the amount of rutile type titanium dioxide in the total titanium dioxide particles may be reduced, resulting in insufficient ultraviolet absorption performance. Since the photocatalytic action is strong, the light resistance also tends to be lowered by this action. Rutile titanium dioxide and anatase titanium dioxide can be distinguished by X-ray structure diffraction and spectral absorption characteristics.
  • the rutile titanium dioxide particles of the present invention may be subjected to an inorganic treatment such as alumina or silica on the particle surface, or an organic treatment such as silicon or alcohol.
  • Rutile titanium dioxide may be subjected to particle size adjustment and coarse particle removal using a purification process before blending with the polyester composition.
  • a purification process for example, a jet mill or a ball mill can be applied as a pulverizing means, and as a classification means, for example, dry or wet centrifugation can be applied.
  • organic particles can also be used.
  • Those that can withstand the heat in the polyester film are preferable, for example, those made of a cross-linked resin are used, and specifically, polystyrene cross-linked with divinylbenzene is used.
  • the size and addition amount of the particles are the same as in the case of inorganic particles.
  • Various known methods can be used for adding particles to the film as a method using a known method. The following method can be mentioned as the typical method.
  • A A method of adding particles before the end of the ester exchange reaction or esterification reaction during the synthesis of polyethylene terephthalate, or adding the particles before the start of the polycondensation reaction.
  • B A method in which particles are added to polyethylene terephthalate and melt kneaded.
  • C Producing master pellets (or master batch (MB)) with a large amount of particles added in the methods (A) and (B), kneading these and polyethylene terephthalate containing no particles, A method of containing a predetermined amount of particles.
  • D The method of using the master pellet of said (C) as it is.
  • a master batch method (MB method: (C) above) in which a polyester resin and particles are mixed in advance by an extruder is preferable. Further, it is possible to adopt a method in which a polyester resin and particles that have not been dried in advance are put into an extruder and MB is produced while moisture and air are deaerated. Furthermore, it is preferable to prepare an MB using a polyester resin that has been slightly dried in advance to suppress an increase in the acid value of the polyester. In this case, a method of extruding while degassing, a method of extruding without deaeration with a sufficiently dried polyester resin, and the like can be mentioned.
  • the drying conditions are preferably 100 to 200 ° C., more preferably 120 to 180 ° C., for 1 hour or longer, more preferably 3 hours or longer, and even more preferably 6 hours or longer. Thereby, it is sufficiently dried so that the moisture content of the polyester resin is preferably 50 ppm or less, more preferably 30 ppm or less.
  • the premixing method is not particularly limited, and may be a batch method or a single-screw or biaxial or more kneading extruder.
  • the polymer base material of the present invention may contain many fine cavities (voids) inside. Thereby, higher whiteness can be suitably obtained.
  • the apparent specific gravity is 0.7 or more and 1.3 or less, preferably 0.9 or more and 1.3 or less, more preferably 1.05 or more and 1.2 or less. If it is less than 0.7, the film is not elastic and processing at the time of producing the solar cell module becomes difficult. If it exceeds 1.3, the weight of the film is large, which may be an obstacle when considering the reduction of the weight of the solar cell.
  • the fine cavities can be formed from particles and / or a thermoplastic resin incompatible with the polyester described below.
  • the void derived from the thermoplastic resin incompatible with the particles or polyester means that there are voids around the particles or the thermoplastic resin, and can be confirmed by, for example, a cross-sectional photograph of the film using an electron microscope. .
  • the resin added to the polyester film for forming the voids is preferably a resin incompatible with the polyester, which can scatter light and increase the light reflectance.
  • Preferred incompatible resins include polyolefin resins such as polyethylene, polypropylene, polybutene, polymethylpentene, polystyrene resins, polyacrylate resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, polysulfone resins, cellulose resins, And fluorine-based resins are preferably used. These incompatible resins may be homopolymers or copolymers, and two or more incompatible resins may be used in combination.
  • polyolefin resins and polystyrene resins such as polypropylene and polymethylpentene having a low surface tension are preferable, and polymethylpentene is most preferable.
  • Polymethylpentene has a relatively large difference in surface tension from polyester and a high melting point, so it has a low affinity with polyester in the polyester film-forming step, and is easy to form voids, which is particularly preferable as an incompatible resin.
  • the incompatible resin is contained, the amount thereof is 0 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass with respect to the entire polyester film.
  • the content is less than the above range, the film has poor reflectivity. Conversely, when the content is more than the above range, the apparent density of the entire film is too low, and film breakage occurs during stretching. It is easy and productivity may be reduced.
  • the average particle size of the particles is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and still more preferably 0.15 to 1 ⁇ m. Within this range, a high reflectance (whiteness) is obtained, and a decrease in mechanical strength is suppressed.
  • the content of the particles is 0 to 50% by mass, preferably 1 to 10% by mass, and more preferably 2 to 5% by mass with respect to the total mass of the film. Within this range, the reflectance (whiteness) is high, and the reduction in mechanical strength due to voids is suppressed.
  • Preferable particles include those having a low affinity with polyester, specifically, barium sulfate and the like.
  • These white polyesters may have a single layer or a laminated structure composed of two or more layers.
  • a laminated structure it is preferable to combine a high whiteness (layer with many voids and particles) and a low whiteness (layer with few voids and particles).
  • Light reflection efficiency can be increased with a layer having high voids or particles, but a decrease in mechanical strength (embrittlement) is likely to occur due to voids or particles, and it is preferable to combine with a layer with low whiteness to compensate for this.
  • a layer with high whiteness is preferably used for the outer layer, and may be used on one side or on both sides.
  • grains is used for an outer layer, since it has UV absorption ability, it also has the effect of improving light resistance.
  • the high whiteness layer preferably has a particle amount of 5% by mass to 50% by mass, more preferably 6% by mass to 20% by mass.
  • the apparent specific gravity of the high whiteness layer is preferably 0.7 or more and 1.2 or less, more preferably 0.8 or more and 1.1 or less.
  • the low whiteness layer preferably has a particle amount of 0% by mass to less than 5% by mass, more preferably 1% by mass to 4% by mass.
  • the apparent specific gravity of the low whiteness layer is preferably 0.9 or more and 1.4 or less and higher density than the high white layer, more preferably 1.0 or more and 1.3 or less and high whiteness. It is denser than the layer.
  • the low white layer may be free of particles or cavities.
  • Preferred layer configurations include high white layer / low white layer, high white layer / low white layer / high white layer, high white layer / low white layer / high white layer / low white layer, high white layer / low white layer / high Examples include white layer / low white layer / high white layer.
  • the thickness ratio of each layer is not particularly limited, but the thickness of each layer is preferably 1% or more and 99% or less, more preferably 2% or more and 95% or less of the total layer thickness. Above or below this range, it is difficult to obtain the effects of increasing the reflection efficiency and imparting light resistance (UV).
  • the thickness of all layers of the polyester film is not particularly limited as long as it can be formed as a film, but is usually 20 to 500 ⁇ m, preferably 25 to 300 ⁇ m.
  • a so-called coextrusion method using two or three or more melt extruders is preferably used as the method for laminating the polyester film in the present invention.
  • a fluorescent whitening agent such as thiofediyl in order to increase the whiteness.
  • a preferable addition amount is 0.01% by mass or more and 1% by mass or less, more preferably 0.05% by mass or more and 0.5% by mass or less, and further preferably 0.1% by mass or more and 0.3% by mass or less. . If it is less than this range, it is difficult to obtain the effect of improving the light reflectivity, and if it exceeds this range, yellowing occurs due to thermal decomposition during extrusion and the reflectivity decreases.
  • a fluorescent whitening agent for example, OB-1 manufactured by Eastman Kodak Company can be used.
  • the white polyester film that can be used as the polymer substrate of the present invention has an illuminance of 100 mW / cm 2 , a temperature of 60 ° C., a relative humidity of 50% RH, an irradiation time of 48 hours, and a yellowish change amount ( ⁇ b Value) is preferably less than 5.
  • the ⁇ b value is more preferably less than 4, and still more preferably less than 3. This is useful in that the color change can be reduced even if it is irradiated with sunlight for a long time. Such an effect is particularly prominent when irradiated from the back sheet side of the solar cell module.
  • the heat shrinkage ratio of the polymer substrate at 150 ° C. for about 30 minutes is preferably 0 to 0.5%, more preferably the heat shrinkage is 0.05% to 0.5%, and more preferably 0 0.1 to 0.45%, more preferably 0.15% to 0.4%.
  • the amount of heat shrinkage here refers to the average value of MD (film transport direction) and TD (direction orthogonal to the film transport direction) of measured values before and after storage at 150 ° C. for 30 minutes.
  • the thermal shrinkage is not more than the upper limit value of the above preferred range, peeling between layers of the solar cell backsheet of the present invention is less likely to occur due to the shrinkage.
  • the amount of heat shrinkage is 0.05% or more, it is preferable from the viewpoint that wrinkles due to dimensional change (sag) due to thermal expansion during heat treatment are less likely to occur.
  • the thickness of the polymer substrate is preferably 100 to 350 ⁇ m, more preferably 120 to 300 ⁇ m, and particularly preferably 200 to 300 ⁇ m. From the viewpoint of the withstand voltage performance of the solar cell module, the thickness of the polymer substrate is preferably 100 ⁇ m or more. On the other hand, when the thickness is 350 ⁇ m or less, especially in the case of a polyester base material, the hydrolysis resistance is good, the effect of improving wet heat durability is exhibited, and it can withstand long-term use. Moreover, it is preferable from a viewpoint of sheet productivity that it is 350 micrometers or less.
  • the thickness of the polymer substrate is 120 ⁇ m or more and 300 ⁇ m or less and the carboxyl group content in the polyester constituting the polymer substrate is 35 equivalents / ton or less, the effect of improving wet heat durability is further improved. Is played.
  • an undercoat layer having a thickness of 2 ⁇ m or less may be provided between the polymer substrate (support) and the pigment layer.
  • the adhesiveness after wet heat aging, film strength, and surface state of the pigment layer are simultaneously improved despite the high proportion of pigment in the pigment layer. be able to.
  • the thickness of the undercoat layer is 2 ⁇ m or less, when the content ratio of the pigment in the pigment layer is increased, coating repelling defects and pigment unevenness are less likely to occur.
  • the thickness of the undercoat layer is preferably 0.05 ⁇ m to 2 ⁇ m, more preferably 0.1 ⁇ m to 1. 5 ⁇ m. When the thickness is 0.05 ⁇ m or more, it is easy to ensure necessary adhesiveness.
  • the undercoat layer is configured to contain a binder.
  • the undercoat layer preferably contains at least one resin selected from the group consisting of polyolefin resin, polyurethane resin, polyvinyl alcohol resin, polyacrylic resin, and polyester resin. Polyester, polyurethane, acrylic resin It is more preferable to use polyolefin. These binders may be used alone or in combination of two or more.
  • polyolefin resin for example, a modified polyolefin copolymer is preferable.
  • Commercially available products may be used as the polyolefin resin.
  • Arrow Base SE-1013N, SD-1010, TC-4010, TD-4010 both manufactured by Unitika Ltd.
  • Hitech S3148, S3121, S8512. Bottom manufactured by Toho Chemical Co., Ltd.
  • Chemipearl S-120, S-75N, V100, EV210H both manufactured by Mitsui Chemicals, Inc.
  • acrylic resin for example, a polymer containing polymethyl methacrylate, polyethyl acrylate, or the like is preferable.
  • acrylic resin a commercially available product may be used.
  • AS-563A manufactured by Daicel Einchem Co., Ltd.
  • AS-563A can be preferably used.
  • polyester resin for example, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN) and the like are preferable.
  • PET polyethylene terephthalate
  • PEN polyethylene-2,6-naphthalate
  • the polyester resin a commercially available product may be used.
  • Vylonal MD-1245 manufactured by Toyobo Co., Ltd.
  • the polyurethane resin for example, a carbonate-based urethane resin is preferable, and for example, Superflex 460 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) can be preferably used.
  • a polyolefin resin from the viewpoint of ensuring adhesion between the polymer support and the pigment layer.
  • These polymers may be used alone or in combination of two or more. When two or more of these polymers are used in combination, a combination of an acrylic resin and a polyolefin resin is preferable.
  • the undercoat layer may contain various additives, and preferably contains a crosslinking agent, an inorganic oxide filler, and a surfactant. It is more preferable to contain a crosslinking agent because the durability of the undercoat layer can be improved.
  • the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Among these, it is preferable to use a carbodiimide-based crosslinking agent or an oxazoline-based crosslinking agent from the viewpoint of ensuring adhesiveness after wet heat aging, from the viewpoint of improving the adhesiveness after wet heat aging. That is, in the present invention, the undercoat layer preferably includes a crosslinked structure derived from at least one of a carbodiimide compound-based crosslinking agent and an oxazoline compound-based crosslinking agent.
  • oxazoline-based crosslinking agent examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- (2 -Oxazoline), 2,2'-ethylene-bis- (2-oxazoline), 2,2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline), 2,2'-hexamethylene-bis- (2-oxazoline), 2,2'-octamethylene-bis- (2-oxazoline), 2,2'-ethylene-bis- (4,4'-dimethyl) 2-oxazoline), 2,2'-p-pheny
  • (co) polymers of these compounds can also be preferably used.
  • Epocros K2010E, Epocros K2020E, Epocros K2030E, Epocros WS500, Epocros WS700 (all manufactured by Nippon Shokubai Chemical Co., Ltd.) and the like can be used.
  • carbodiimide crosslinking agents include Carbodilite V-02-L2 (Nisshinbo Chemical Co., Ltd.), Carbodilite SV-02 (Nisshinbo Chemical Co., Ltd.), Carbodilite E-01 (Nisshinbo Chemical Co., Ltd.) ) And the like.
  • the undercoat layer preferably contains 5 to 50% by mass of a crosslinking agent, more preferably 10 to 40% by mass, more preferably 20 to 40% by mass with respect to the binder.
  • % Crosslinking agent is particularly preferred.
  • the addition amount of the crosslinking agent is 5% by mass or more, a sufficient crosslinking effect is obtained while maintaining the strength and adhesiveness of the undercoat layer, and when it is 50% by mass or less, the pot life of the coating liquid is lengthened. If it is 40% by mass or less, the coated surface can be improved.
  • the undercoat layer preferably contains an inorganic oxide filler.
  • the inorganic oxide filler include silica, calcium carbonate, magnesium oxide, magnesium carbonate, and tin oxide. Among them, tin oxide and fine particles of silica are preferable, and silica is more preferable in that the decrease in adhesiveness when exposed to a wet heat atmosphere is small.
  • the particle size of the inorganic oxide filler is preferably about 10 to 700 nm, more preferably about 20 to 300 nm in terms of volume average particle size. When the particle size is within this range, better easy adhesion can be obtained.
  • the particle size is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
  • the shape of the inorganic oxide filler is not particularly limited, and any shape such as a spherical shape, an irregular shape, or a needle shape can be used.
  • the content of the inorganic oxide filler is preferably in the range of 5 to 400% by mass with respect to the binder in the undercoat layer. If the content of the inorganic fine particles is 5% by mass or more, good adhesiveness can be maintained when exposed to a humid heat atmosphere, and if it is 400% by mass or less, the surface shape of the pigment layer laminated on the undercoat layer can be maintained. It becomes difficult to get worse.
  • the content of the inorganic oxide filler is more preferably in the range of 50 to 300% by mass.
  • the undercoat layer preferably contains an anionic or nonionic surfactant.
  • the range of the surfactant that can be used for the undercoat layer is the same as the range of the surfactant that can be used for the pigment layer described later. Of these, nonionic surfactants are preferred.
  • the addition amount is preferably 0.1 to 10 mg / m 2 , more preferably 0.5 to 3 mg / m 2 .
  • the addition amount of the surfactant is 0.1 mg / m 2 or more, generation of a repelling is suppressed and good layer formation is obtained, and when it is 10 mg / m 2 or less, the polymer substrate and the pigment layer Adhesion can be performed satisfactorily.
  • the pigment layer in the present invention includes a binder and a pigment.
  • the pigment layer may further include other components such as various additives as necessary.
  • the main function of the pigment layer in the present invention is to reflect the light that passes through the solar cells and reaches the back sheet without being used for power generation out of the incident light, and returns the solar cells to the solar cells. It is to increase power generation efficiency.
  • the pigment layer contains at least one pigment.
  • the pigment include inorganic pigments such as titanium oxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, talc, ultramarine blue, bitumen, and carbon black, and organic pigments such as phthalocyanine blue and phthalocyanine green. It can be appropriately selected and contained. Of these, titanium oxide and barium sulfate are preferable in that high whiteness and reflectance can be obtained.
  • the pigment layer in the present invention preferably contains a pigment in the range of 2.5 to 8.5 g / m 2 .
  • a pigment in the range of 2.5 to 8.5 g / m 2 .
  • the content of the pigment in the pigment layer is 2.5 g / m 2 or more, the light reflectance tends to be improved particularly effectively.
  • the content of the pigment in the pigment layer is 8.5 g / m 2 or less, the surface shape of the pigment layer tends to be particularly good, and the film strength tends to be improved.
  • a more preferable content of the pigment is in the range of 4.5 to 8.0 g / m 2 .
  • the average particle diameter of the pigment is preferably 0.03 to 0.8 ⁇ m in volume average particle diameter, more preferably about 0.15 to 0.5 ⁇ m. When the average particle size is within the above range, the light reflection efficiency is high.
  • the average particle diameter is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
  • the ratio of the pigment (P / P + B ratio) to the total of the binder and the pigment in the pigment layer is preferably 40 to 95% by mass.
  • the ratio of the pigment (P / P + B ratio) is 40% by mass or more, high light reflectance can be obtained.
  • the ratio of the pigment (P / P + B ratio) is 95% by mass or less, it is possible to reduce the cost by suppressing the amount of the pigment used and to obtain high adhesion with the adjacent layer. From these viewpoints, the ratio of the pigment (P / P + B ratio) is more preferably 50 to 95% by mass, and further preferably 70 to 95% by mass.
  • the pigment layer contains at least one binder.
  • Suitable binders for the pigment layer include polyester resin, polyurethane resin, acrylic resin, polyolefin resin, and the like. From the viewpoint of durability, polyolefin resin, acrylic resin, and siloxane-modified acrylic resin are preferable. These polymers may be used alone or in combination of two or more. When two or more of these polymers are used in combination, a combination of an acrylic resin and a polyolefin resin is preferable.
  • Examples of preferred binders include Chemipearl S-120 and S-75N (both manufactured by Mitsui Chemicals) as examples of polyolefins, Arrow Base SE-1013N (manufactured by Unitika), and Julimer ET- as examples of acrylic resins.
  • SEK-301 both manufactured by Nippon Pure Chemicals Co., Ltd.
  • AS-563A manufactured by Daicel Finechem Co., Ltd.
  • siloxane-modified acrylic resins Ceranate WSA1060, WSA1070 (both manufactured by DIC Corporation), H7620, H7630, H7650 (both manufactured by Asahi Kasei Chemicals Corporation) and the like can be mentioned.
  • Pigment layer additive In addition to the binder and the pigment, additives such as a crosslinking agent, a surfactant, and a filler may be further added to the pigment layer in the present invention as necessary.
  • crosslinking agent examples include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Of these, carbodiimide-based and oxazoline-based crosslinking agents are preferable, and specifically, those usable for the above-described undercoat layer can be suitably used.
  • the addition amount is preferably 5 to 50% by mass, more preferably 10 to 40% by mass with respect to the binder in the pigment layer.
  • the addition amount of the crosslinking agent is 5% by mass or more, a sufficient crosslinking effect is obtained while maintaining the strength and adhesiveness of the pigment layer, and when it is 50% by mass or less, the pot life of the coating solution can be kept long. .
  • the surfactant examples include known surfactants such as anionic and nonionic surfactants.
  • the addition amount is preferably 0.1 to 15 mg / m 2 , more preferably 0.5 to 5 mg / m 2 .
  • the addition amount of the surfactant if it is 0.1 mg / m 2 or more, good layer formation by suppressing the occurrence of cissing can be obtained, if it is 15 mg / m 2 or less, it is possible to perform the bonding well .
  • an inorganic oxide filler such as silica may be added to the pigment layer in the present invention.
  • the addition amount is preferably 20% by mass or less, more preferably 15% by mass or less, based on the binder in the pigment layer.
  • the added amount of the inorganic oxide filler is 20% by mass or less, a necessary reflectance can be obtained while suppressing a decrease in the ratio of the pigment.
  • the light reflectance at 550 nm on the surface on which the pigment layer is provided is preferably 70% or more, and 75% More preferably.
  • the light reflectance is a ratio of the amount of light incident from the pigment layer side surface of the back sheet of the present invention reflected by the reflective layer and emitted from the topcoat layer to the incident light amount.
  • the light reflectance is 70% or more, the light that passes through the cell and enters the cell can be effectively returned to the cell, and the effect of improving the power generation efficiency is great.
  • the pigment content in the range of 2.5 to 8.5 g / m 2 , the light reflectance can be easily adjusted to 70% or more.
  • the thickness of the reflective layer is preferably 1 to 20 ⁇ m, more preferably 1 to 15 ⁇ m, still more preferably 1 to 10 ⁇ m, and particularly preferably about 1 to 7 ⁇ m.
  • this thickness is 1 ⁇ m or more, necessary decorative properties and reflectance can be obtained, and when it is 20 ⁇ m or less, the surface shape can be kept good.
  • an overcoat layer is provided on the pigment layer.
  • the topcoat layer is a layer that contains a binder and is provided to improve adhesion to a sealing material such as EVA (ethylene-vinyl acetate) resin. That is, by adhering the pigment layer through the overcoat layer rather than directly adhering to the encapsulant, the adhesiveness with the encapsulant can be maintained high even in a humid heat environment.
  • EVA ethylene-vinyl acetate
  • the topcoat layer includes a binder and includes one type selected from the group consisting of a polyolefin resin, a polyurethane resin, a polyvinyl alcohol resin, an acrylic resin, and a polyester resin. Of these, polyolefin resins and acrylic resins are preferable. These binders may be used alone or in combination of two or more. When two or more of these binders are used in combination, a combination of an acrylic resin and a polyolefin resin is preferable.
  • additives such as a cross-linking agent, a surfactant, and a filler may be added to the topcoat layer in the present invention as necessary.
  • crosslinking agent examples include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents.
  • carbodiimide-based and oxazoline-based crosslinking agents are preferable, and specifically, those usable for the above-described undercoat layer can be suitably used.
  • the addition amount is preferably 5 to 50% by mass, and more preferably 10 to 40% by mass with respect to the binder in the overcoat layer.
  • the addition amount of the crosslinking agent is 5% by mass or more, a sufficient crosslinking effect is obtained while maintaining the strength and adhesiveness of the overcoat layer, and when it is 50% by mass or less, the pot life of the coating liquid can be kept long. .
  • the topcoat layer preferably contains an inorganic oxide filler.
  • an inorganic oxide filler specifically, those usable for the above-mentioned undercoat layer can be suitably used.
  • the content of the inorganic oxide filler is preferably in the range of 5 to 400% by mass with respect to the binder in the overcoat layer. If the content of the inorganic fine particles is 5% by mass or more, good adhesiveness can be maintained when exposed to a moist heat atmosphere, and if it is 400% by mass or less, the surface state is hardly deteriorated and the adhesiveness to the sealing material. Can be kept high. In particular, the content of the inorganic oxide filler is more preferably in the range of 50 to 300% by mass.
  • the thickness of the overcoat layer is preferably 0.1 ⁇ m or more and 30 ⁇ m or less. If the thickness of the overcoat layer is 0.1 ⁇ m or more, it is possible to suppress a decrease in adhesion after being exposed to a humid heat atmosphere, and if it is 30 ⁇ m or less, the surface condition is hardly deteriorated and the adhesion to the sealant is kept high. Can do. From these viewpoints, the thickness of the overcoat layer is more preferably from 0.3 ⁇ m to 20 ⁇ m, and further preferably from 0.5 ⁇ m to 10 ⁇ m.
  • the backsheet of the present invention is a composite polymer having light resistance and moisture and heat resistance on a second surface (referred to as “back surface” as appropriate) opposite to the surface on which the pigment layer and the topcoat layer of the polymer substrate are provided. A layer is provided.
  • the composite polymer layer is disposed in contact with the back surface of the polymer substrate or through another layer.
  • the composite polymer layer is configured using at least a specific composite polymer containing a non-siloxane structural unit and a (poly) siloxane structural unit represented by the general formula (1) in the molecule.
  • the composite polymer layer in the present invention is preferably formed directly on the back surface of the polymer base material because the adhesiveness with the polymer base material is improved by the constitution containing the composite polymer.
  • the composite polymer layer is preferably formed as the outermost layer that is exposed to the external environment because it has moisture and heat storage resistance.
  • This composite polymer layer can be constituted by further using other components depending on the case, and the constituent components differ depending on the intended application.
  • the composite polymer layer can constitute a colored layer that bears the function of reflecting sunlight and imparting appearance design, a back layer disposed on the side opposite to the side on which sunlight is incident, and the like.
  • the composite polymer layer when configured as a reflective layer that reflects sunlight toward the incident side, the composite polymer layer can be configured by further using a colorant such as a white pigment.
  • a colorant such as a white pigment.
  • a laminated structure of white layer (composite polymer layer) / composite polymer layer / polymer substrate may be used.
  • the white layer can be configured as a reflective layer. It is possible to further improve the adhesion and adhesion within the back sheet of the reflective layer. In order to provide a necessary function as a back sheet, it is more preferable to provide two or more composite polymer layers.
  • the composite polymer layer according to the present invention includes a (poly) siloxane structural unit having a mass ratio of 15 to 85% by mass and a non-siloxane structural unit having a mass ratio of 85 to 15% by mass represented by the general formula (1) in the molecule. And at least one kind of composite polymer.
  • this composite polymer By containing this composite polymer, the adhesion between the polymer substrate as a support and other layers, that is, the peel resistance and shape stability that are easily deteriorated when given heat and moisture, is greatly improved compared to the conventional products. Can be improved.
  • the composite polymer in the present invention is a block copolymer obtained by copolymerizing (poly) siloxane and at least one polymer.
  • the (poly) siloxane and the copolymerized polymer may be one kind alone, or two or more kinds.
  • R 1 and R 2 may be the same or different and each represents a hydrogen atom, a halogen atom, or a monovalent organic group.
  • — (Si (R 1 ) (R 2 ) —O) n —” is a (poly) siloxane segment derived from various (poly) siloxanes having a linear, branched or cyclic structure.
  • Examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, and an iodine atom.
  • the “monovalent organic group” represented by R 1 and R 2 is a group capable of covalent bonding with a Si atom, and may be unsubstituted or have a substituent.
  • the monovalent organic group includes, for example, an alkyl group (eg, methyl group, ethyl group, etc.), an aryl group (eg: phenyl group, etc.), an aralkyl group (eg: benzyl group, phenylethyl etc.), and an alkoxy group (eg: A methoxy group, an ethoxy group, a propoxy group, etc.), an aryloxy group (eg, phenoxy group, etc.), a mercapto group, an amino group (eg, amino group, diethylamino group, etc.), an amide group and the like.
  • an alkyl group eg, methyl group, ethyl group, etc.
  • an aryl group eg: phenyl
  • R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an unsubstituted or substituted, in terms of adhesion to adjacent materials such as a polymer substrate and durability in a wet and heat environment.
  • Alkyl groups having 1 to 4 carbon atoms particularly methyl group, ethyl group
  • unsubstituted or substituted phenyl group unsubstituted or substituted alkoxy group
  • mercapto group unsubstituted amino group
  • amide group More preferably an unsubstituted or substituted alkoxy group (preferably an alkoxy group having 1 to 4 carbon atoms) from the viewpoint of durability in a moist heat environment.
  • N is preferably from 1 to 5000, and more preferably from 1 to 1000.
  • the ratio of “— (Si (R 1 ) (R 2 ) —O) n —” (the (poly) siloxane structural unit represented by the general formula (1)) in the composite polymer is the total mass of the composite polymer.
  • the content is preferably from 15 to 85% by mass, more preferably from 20 to 80% by mass in terms of adhesion to the polymer substrate and durability in a moist heat environment.
  • the ratio of the polysiloxane moiety is less than 15% by mass, the adhesion to the polymer substrate and the adhesion durability when exposed to a wet heat environment are inferior, and when it exceeds 85% by mass, the liquid becomes unstable.
  • non-siloxane structural unit copolymerized with the siloxane structural unit is not particularly limited except that it does not have a siloxane structure, and is derived from any polymer.
  • Any of the polymer segments may be used.
  • the polymer (precursor polymer) that is a precursor of the polymer segment include various polymers such as a vinyl polymer, a polyester polymer, and a polyurethane polymer. From the viewpoint of easy preparation and excellent hydrolysis resistance, vinyl polymers and polyurethane polymers are preferred, and vinyl polymers are particularly preferred.
  • Typical examples of the vinyl polymer include various polymers such as an acrylic polymer, a carboxylic acid vinyl ester polymer, an aromatic vinyl polymer, and a fluoroolefin polymer.
  • an acrylic polymer that is, an acrylic structural unit as a non-siloxane structural unit
  • the polymer which comprises a non-siloxane type structural unit may be single 1 type, and 2 or more types of combined use may be sufficient as it.
  • the precursor polymer forming the non-siloxane structural unit is preferably one containing at least one of an acid group and a neutralized acid group and / or a hydrolyzable silyl group.
  • vinyl polymers include, for example, (1) vinyl monomers containing acid groups and vinyl monomers containing hydrolyzable silyl groups and / or silanol groups.
  • Such a precursor polymer can be produced and obtained using, for example, the method described in paragraph Nos. 0021 to 0078 of JP-A-2009-52011.
  • the composite polymer may be used alone as a binder, or may be used in combination with other polymers.
  • the ratio of the composite polymer in the present invention is preferably 30% by mass or more, more preferably 60% by mass or more of the total binder.
  • the ratio of the composite polymer is 30% by mass or more, the adhesiveness with the polymer base material and the durability under a moist heat environment are more excellent.
  • the molecular weight of the composite polymer is preferably 5,000 to 100,000, and more preferably 10,000 to 50,000.
  • Methods such as a condensation method can be used.
  • the silane compound used in the method (ii) include various silane compounds, and an alkoxysilane compound is particularly preferable.
  • the temperature is about 20 to 150 ° C. for about 30 minutes to 30 hours (preferably Can be prepared by reacting at 50 to 130 ° C. for 1 to 20 hours.
  • various silanol condensation catalysts such as an acidic compound, a basic compound, and a metal containing compound, can be added.
  • water and a silanol condensation catalyst are added to a mixture of a precursor polymer and an alkoxysilane compound, and the temperature is about 20 to 150 ° C. for 30 minutes to 30 hours. It can be prepared by hydrolytic condensation to a degree (preferably at 50 to 130 ° C. for 1 to 20 hours).
  • the composite polymer layer preferably has a structural portion derived from a cross-linking agent that cross-links between the composite polymers. That is, the composite polymer layer can be formed using a cross-linking agent that can cross-link between the composite polymers.
  • crosslinking with a crosslinking agent adhesion after wet heat aging, specifically adhesion to a polymer substrate when exposed to a wet heat environment, and adhesion between layers can be further improved.
  • crosslinking agent examples include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents.
  • crosslinking agents such as carbodiimide compounds and oxazoline compounds are preferable.
  • oxazoline-based crosslinking agent examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline.
  • (co) polymers of these compounds are also preferably used.
  • a compound having an oxazoline group Epocros K2010E, K2020E, K2030E, WS-500, WS-700 (all manufactured by Nippon Shokubai Chemical Co., Ltd.) and the like can be used.
  • carbodiimide-based crosslinking agent examples include dicyclohexylmethane carbodiimide, tetramethylxylylene carbodiimide, and dicyclohexylmethane carbodiimide.
  • a carbodiimide compound described in JP-A-2009-235278 is also preferable.
  • carbodiimide-based crosslinking agents such as Carbodilite SV-02, Carbodilite V-02, Carbodilite V-02-L2, Carbodilite V-04, Carbodilite E-01, Carbodilite E-02 (all Nisshinbo Chemical Co., Ltd.) (Commercially available) can also be used.
  • the mass ratio of the structural part derived from the crosslinking agent to the composite polymer is preferably 1 to 30% by mass, more preferably 5 to 20% by mass.
  • the content of the crosslinking agent is 1% by mass or more, the strength of the composite polymer layer and the adhesiveness after wet heat aging are excellent, and when it is 30% by mass or less, the pot life of the coating solution can be kept long.
  • the composite polymer layer contains the above composite polymer, adhesion to the polymer substrate and the like is improved, and further, deterioration resistance (adhesion durability) in a humid heat environment is excellent.
  • the thickness of one layer of the composite polymer layer is usually preferably from 0.3 ⁇ m to 22 ⁇ m, more preferably from 0.5 ⁇ m to 15 ⁇ m, still more preferably from 0.8 ⁇ m to 12 ⁇ m, particularly preferably from 1.0 ⁇ m to 8 ⁇ m. A range of 2 to 6 ⁇ m is most preferable.
  • the composite polymer layer has a thickness of 0.3 ⁇ m or more, more preferably 0.8 ⁇ m or more, it is difficult for moisture to penetrate from the surface of the composite polymer layer when exposed to a humid heat environment. Adhesiveness is remarkably improved by making it difficult for moisture to reach the interface with the material.
  • the thickness of the composite polymer layer is 22 ⁇ m or less, and further 12 ⁇ m or less, the composite polymer layer itself is difficult to become brittle, and the composite polymer layer is less likely to be destroyed when exposed to a humid heat environment. Is improved.
  • the composite polymer layer in the present invention has a cross-linked structure in which the composite polymer and the polymer molecules of the composite polymer are cross-linked with a cross-linking agent, and the ratio of the structural portion derived from the cross-linking agent to the composite polymer is 1 to 30% by mass.
  • the thickness of the composite polymer layer is 0.8 ⁇ m to 12 ⁇ m, the effect of improving the adhesion after wet heat aging is particularly excellent.
  • the back sheet of the present invention may have other functional layers.
  • Examples of other functional layers include an easily adhesive layer and a back layer.
  • the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorosurfactants.
  • the nonionic surfactant used in the present invention is not particularly limited, and conventionally known nonionic surfactants can be used.
  • nonionic surfactants can be used.
  • polyoxyethylene alkyl ethers polyoxyethylene alkyl phenyl ethers, polyoxyethylene polystyryl phenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol Fatty acid partial esters, propylene glycol mono fatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, Polyoxyethylenated castor oil, polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N N- bis-2-hydroxyalky
  • the anionic surfactant used in the present invention is not particularly limited, and conventionally known anionic surfactants can be used.
  • anionic surfactants can be used.
  • the cationic surfactant used in the present invention is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
  • the surfactant contained in the layer on the polymer substrate of the present invention is preferably at least one selected from an anionic surfactant, an amphoteric surfactant and a fluorosurfactant.
  • an anionic surfactant preferably at least one selected from an anionic surfactant, an amphoteric surfactant and a fluorosurfactant.
  • both the topcoat layer and the pigment layer contain a fluorosurfactant.
  • amphoteric surfactant used in the present invention is not particularly limited, and conventionally known amphoteric surfactants can be used. Examples thereof include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric esters, and imidazolines.
  • polyoxyethylene can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc. These surfactants can also be used.
  • More preferable surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule.
  • fluorosurfactants include anionic types such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric types such as perfluoroalkyl betaines; Cation type such as trimethylammonium salt; perfluoroalkylamine oxide, perfluoroalkylethylene oxide adduct, oligomer containing perfluoroalkyl group and hydrophilic group, oligomer containing perfluoroalkyl group and lipophilic group, perfluoroalkyl Nonionic types such as an oligomer containing a group, a hydrophilic group and a lipophilic group, and a urethane containing a perfluoroalkyl group and a lipophilic group.
  • fluorine-based surfact
  • the surfactant is used in the layer on the polymer substrate of the present invention, preferably in the range of 0.001 to 10% by mass, more preferably 0.01 to 5% by mass with respect to the nonvolatile component. .
  • surfactant can be used individually or in combination of 2 or more types.
  • the aforementioned resin can be used as a polymer substrate.
  • Such polymer substrates may be obtained synthetically or commercially.
  • polyester it is preferable to obtain by synthesis.
  • a method for producing a polyester film as a polymer substrate, and more preferable polyethylene terephthalate (hereinafter, also referred to as PET) will be described.
  • the esterification process which provides an esterification reaction and a polycondensation reaction and produces
  • (a) an esterification reaction and (b) a polycondensation reaction in which an esterification reaction product produced by the esterification reaction is subjected to a polycondensation reaction can be provided.
  • the amount of the aliphatic diol (preferably ethylene glycol) used is 1.015 to 1.0.1 per mol of the aromatic dicarboxylic acid (preferably terephthalic acid) and, if necessary, its ester derivative. A range of 50 moles is preferred.
  • the amount used is more preferably in the range of 1.02 to 1.30 mol, and still more preferably in the range of 1.025 to 1.10 mol.
  • the esterification reaction proceeds favorably, and if it is in the range of 1.50 mol or less, for example, by-production of diethylene glycol due to dimerization of ethylene glycol is suppressed, and the melting point
  • many properties such as glass transition temperature, crystallinity, heat resistance, hydrolysis resistance, and weather resistance can be kept good.
  • PET preferably contains 90% by mole or more of terephthalic acid and ethylene glycol, more preferably 95% by mole or more, and still more preferably 98% by mole or more.
  • PET may have different properties depending on the catalyst described later, and one or two selected from a germanium (Ge) -based catalyst, an antimony (Sb) -based catalyst, an aluminum (Al) -based catalyst, and a titanium (Ti) -based catalyst. PET that is polymerized using more than one species is preferred, and a Ti-based catalyst is more preferred.
  • a conventionally known reaction catalyst can be used for the esterification reaction and / or transesterification reaction.
  • the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium compounds, and phosphorus compounds.
  • an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed.
  • a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
  • the backsheet production method of the present invention preferably includes a step of preparing a polyester resin to be used for melt film formation by an esterification reaction using a Ti-based catalyst.
  • a film containing a polyester resin esterified using a Ti-based catalyst is preferable because weather resistance is unlikely to decrease. Although not bound by any theory, it is presumed that the reason is as follows. The decrease in weather resistance of the weather resistant polyester film depends to some extent on the hydrolysis of the polyester.
  • the esterification reaction catalyst also promotes the hydrolysis reaction, which is the reverse reaction of esterification, while the Ti catalyst has a low effect of the hydrolysis reaction, which is the reverse reaction. Therefore, even if the esterification reaction catalyst remains to some extent in the film after film formation, the polyester resin esterified using the Ti-based catalyst is more than the polyester resin esterified using another catalyst.
  • the weather resistance can be made relatively high.
  • Ti-based catalyst examples include oxides, hydroxides, alkoxides, carboxylates, carbonates, oxalates, organic chelate titanium complexes, and halides.
  • the Ti-based catalyst may be used in combination of two or more titanium compounds as long as the effects of the present invention are not impaired.
  • Ti-based catalysts include tetra-n-propyl titanate, tetra-i-propyl titanate, tetra-n-butyl titanate, tetra-n-butyl titanate tetramer, tetra-t-butyl titanate, tetracyclohexyl titanate, tetraphenyl Titanium alkoxide such as titanate and tetrabenzyl titanate, titanium oxide obtained by hydrolysis of titanium alkoxide, titanium-silicon or zirconium composite oxide obtained by hydrolysis of a mixture of titanium alkoxide and silicon alkoxide or zirconium alkoxide, titanium acetate , Titanium oxalate, potassium potassium oxalate, sodium oxalate, potassium titanate, sodium titanate, titanium titanate-aluminum hydroxide mixture, titanium chloride, titanium chloride-aluminum chloride Miniumu mixture, titanium acetylacetonate, an organic
  • At least one organic chelate titanium complex having an organic acid as a ligand can be suitably used.
  • the organic acid include citric acid, lactic acid, trimellitic acid, malic acid and the like.
  • an organic chelate complex having citric acid or citrate as a ligand is preferable.
  • the titanium catalyst also has a catalytic effect of the esterification reaction. By adding it at the esterification stage, the oligomer acid value at the end of the esterification reaction is lowered, and the subsequent polycondensation reaction is performed more efficiently.
  • citric acid chelate titanium complex are more resistant to hydrolysis than titanium alkoxides, etc., and do not hydrolyze in the esterification reaction process, while maintaining the original activity and catalyzing the esterification and polycondensation reactions It is estimated to function effectively as In general, it is known that as the amount of terminal carboxyl groups increases, the hydrolysis resistance deteriorates. By reducing the amount of terminal carboxyl groups by the addition method of the present invention, improvement in hydrolysis resistance is expected.
  • the Examples of the citric acid chelate titanium complex are readily available as commercial products such as VERTEC AC-420 manufactured by Johnson Matthey.
  • Japanese Patent Publication No. 8-30119 Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 3897756, Japanese Patent No. 396226 Japanese Patent No. 3997866, Japanese Patent No. 3996687, Japanese Patent No. 40000867, Japanese Patent No. 4053837, Japanese Patent No. 4127119, Japanese Patent No. 4134710, Japanese Patent No. 4159154, Japanese Patent No. 4269538, Japanese Patent No.
  • the methods described in JP 2005-340616 A, JP 2005-239940 A, JP 2004-319444 A, JP 2007-204538 A, Japanese Patent No. 3436268, Japanese Patent No. 3780137, and the like can be applied.
  • an aromatic dicarboxylic acid and an aliphatic diol are polymerized in the presence of a catalyst containing a titanium compound, and at least one of the titanium compounds is an organic chelate titanium complex having an organic acid as a ligand. It is preferable that an esterification reaction process including at least a process of adding an organic chelate titanium complex, a magnesium compound, and a pentavalent phosphate ester having no aromatic ring as a substituent in this order is provided.
  • This polyester resin can be used for applications requiring high transparency (for example, optical film, industrial squirrel, etc.), and it is not necessary to use an expensive germanium-based catalyst, so that the cost can be greatly reduced.
  • the occurrence of failures and quality defects in the film forming process can be reduced, and the cost can be reduced by improving the yield.
  • the aromatic dicarboxylic acid and the aliphatic diol are mixed with a catalyst containing an organic chelate titanium complex that is a titanium compound prior to the addition of the magnesium compound and the phosphorus compound, the organic chelate titanium complex or the like is subjected to an esterification reaction. Therefore, the esterification reaction can be carried out satisfactorily.
  • the dicarboxylic acid component, the diol component, and the titanium compound may be mixed at the same time.
  • the mixing is not particularly limited, and can be performed by a conventionally known method.
  • esterification reaction it is preferable to provide a process in which an organic chelate titanium complex which is a titanium compound and a magnesium compound and a pentavalent phosphorus compound as additives are added in this order. At this time, the esterification reaction proceeds in the presence of the organic chelate titanium complex, and thereafter, the addition of the magnesium compound is started before the addition of the phosphorus compound.
  • the pentavalent phosphorus compound at least one pentavalent phosphate having no aromatic ring as a substituent is used.
  • the pentavalent phosphate ester include trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, tris phosphate (triethylene glycol), methyl acid phosphate, ethyl acid phosphate, Examples thereof include isopropyl acid phosphate, butyl acid phosphate, monobutyl phosphate, dibutyl phosphate, dioctyl phosphate, and triethylene glycol acid phosphate.
  • the pentavalent phosphate ester when a chelate titanium complex coordinated with citric acid or a salt thereof is used as a catalyst as the titanium compound, the pentavalent phosphate ester has better polymerization activity and color tone than the trivalent phosphate ester, Furthermore, in the case of adding a pentavalent phosphate having 2 or less carbon atoms, the balance of polymerization activity, color tone, and heat resistance can be particularly improved.
  • ⁇ Inclusion of magnesium compound improves electrostatic applicability. In this case, although it is easy to color, in this invention, coloring is suppressed and the outstanding color tone and heat resistance are obtained.
  • magnesium compound examples include magnesium salts such as magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, and magnesium carbonate.
  • magnesium acetate is most preferable from the viewpoint of solubility in ethylene glycol.
  • a chelate titanium complex having 1 ppm to 30 ppm of citric acid or citrate as a ligand is added to the aromatic dicarboxylic acid and the aliphatic diol,
  • a magnesium salt of 60 ppm to 90 ppm (more preferably 70 ppm to 80 ppm) weak acid is added, and after addition, 60 ppm to 80 ppm (more preferably 65 ppm to 75 ppm) having no aromatic ring as a substituent 5
  • the esterification reaction may be carried out using a multistage apparatus in which at least two reactors are connected in series under conditions where ethylene glycol is refluxed while removing water or alcohol produced by the reaction from the system. it can.
  • Dicarboxylic acid and diol can be introduced by preparing a slurry containing them and continuously supplying it to the esterification reaction step.
  • esterification reaction described above may be performed in one stage or may be performed in multiple stages.
  • an esterification reaction product generated by the esterification reaction is subjected to a polycondensation reaction to generate a polycondensation product.
  • the polycondensation reaction may be performed in one stage or may be performed in multiple stages.
  • the esterification reaction product such as an oligomer generated by the esterification reaction is subsequently subjected to a polycondensation reaction.
  • This polycondensation reaction can be suitably performed by supplying it to a multistage polycondensation reaction tank.
  • the polycondensation reaction conditions in a three-stage reaction tank are as follows: the first reaction tank has a reaction temperature of 255 to 280 ° C., more preferably 265 to 275 ° C., and a pressure of 13.3 ⁇ 10 ⁇ 3.
  • the measurement of each element of Ti, Mg, and P was obtained by quantifying each element in PET using high resolution high frequency inductively coupled plasma-mass spectrometry (HR-ICP-MS; AttoM manufactured by SII Nanotechnology). It can carry out by calculating content [ppm] from the obtained result.
  • HR-ICP-MS high resolution high frequency inductively coupled plasma-mass spectrometry
  • the polyester constituting the substrate may be solid-phase polymerized after polymerization.
  • Solid phase polymerization is a technique in which the degree of polymerization is increased by heating the polymerized polyester in a vacuum or nitrogen gas at a temperature of about 170 ° C. to 240 ° C. for about 5 to 100 hours.
  • Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392 are disclosed.
  • the method described in Japanese Patent No. 4167159 can be applied.
  • the solid-phase polymerization can be suitably performed using the polyester polymerized by the esterification reaction described above or a commercially available polyester in the form of small pieces such as pellets.
  • the solid phase polymerization temperature is preferably 190 to 230 ° C, more preferably 200 ° C to 220 ° C, and still more preferably 205 ° C to 215 ° C.
  • the solid phase polymerization temperature is preferably 10 to 80 hours, more preferably 15 to 50 hours, and still more preferably 20 to 30 hours.
  • Such heat treatment is preferably performed in a low oxygen atmosphere, for example, in a nitrogen atmosphere or in a vacuum.
  • 1 ppm to 1% of a polyhydric alcohol (ethylene glycol or the like) may be mixed.
  • Solid-phase polymerization may be carried out in a batch mode (a method in which a resin is placed in a container and stirred while applying heat for a predetermined time), or a continuous mode (a resin is placed in a heated cylinder and this is stirred). It may be carried out by a system in which the gas is passed through the cylinder while being kept flowing for a predetermined time while being heated, and sequentially fed out.
  • a PET film by melt-kneading the polyester after the solid phase polymerization step and extruding it from a die (extrusion die).
  • the PET resin can be melted using an extruder.
  • the melting temperature is preferably 250 ° C to 320 ° C, more preferably 260 ° C to 310 ° C, and further preferably 270 ° C to 300 ° C.
  • the extruder may be uniaxial or multi-axial. More preferably, the inside of the extruder is replaced with nitrogen from the viewpoint that generation of terminal COOH due to thermal decomposition can be further suppressed.
  • the molten resin (melt) of the molten PET resin is preferably extruded from an extrusion die through a gear pump, a filter or the like. At this time, it may be extruded as a single layer or may be extruded as a multilayer.
  • the melt-extruded melt is preferably cooled on a support, solidified and formed into a film.
  • a support body There is no restriction
  • the temperature of the cooling roll itself is preferably 10 ° C. to 80 ° C., more preferably 15 ° C. to 70 ° C., and further preferably 20 ° C. to 60 ° C. Further, from the viewpoint of improving the adhesion between the molten resin (melt) and the cooling roll and increasing the cooling efficiency, it is preferable to apply static electricity before the melt contacts the cooling roll.
  • the thickness of the molten resin (melt) discharged in a band after solidification (before stretching) is in the range of 2600 ⁇ m to 6000 ⁇ m, and a polyester film having a thickness of 260 ⁇ m to 400 ⁇ m can be obtained through subsequent stretching.
  • the thickness of the melt after solidification is preferably in the range of 3100 ⁇ m to 6000 ⁇ m, more preferably in the range of 3300 ⁇ m to 5000 ⁇ m, and still more preferably in the range of 3500 ⁇ m to 4500 ⁇ m.
  • the thickness before stretching after solidification is 2600 ⁇ m or more suppresses uneven adhesion to the chill roll (cooling roll for solidification) generated due to weak melt, and is preferable from the viewpoint of reducing unevenness of the film.
  • stretching the produced extruded film may be included after the said film forming process.
  • the substrate is preferably biaxially stretched from the viewpoint of mechanical strength.
  • the polymer substrate is preferably surface-treated by at least one method of corona treatment, atmospheric pressure plasma treatment, glow discharge treatment, flame treatment, and flame treatment using a silane compound-introduced flame.
  • the undercoat layer is preferably formed by applying an undercoat layer forming coating solution to a polymer substrate.
  • an undercoat layer forming coating solution there is no particular limitation on the method for applying the undercoat layer and the solvent of the coating solution used.
  • a known coating method is appropriately adopted. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, a bar coater, an air doctor coater, a spray or a coating method using a brush can be used.
  • the solvent used for the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone.
  • a solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
  • the coating may be performed on the polymer substrate after biaxial stretching, or may be performed by stretching in a direction different from the initial stretching after coating on the polymer substrate after uniaxial stretching. Furthermore, you may extend
  • a resin for forming a base film is extruded, for example, while being used together with an electrostatic adhesion method or the like, cast on a cooling drum to obtain a resin sheet, and then stretched in the longitudinal direction.
  • a method such as stretching in the transverse direction after applying an aqueous coating solution for forming an undercoat layer on one side of the film after longitudinal stretching can be used.
  • the conditions for drying and heat treatment during coating depend on the thickness of the coat and the conditions of the apparatus, but it is preferable that the coating is sent immediately after coating to the stretching step in the perpendicular direction and dried in the preheating zone or stretching zone of the stretching step. In such a case, drying is usually performed at about 50 to 250 ° C.
  • the solid concentration in the aqueous coating solution for forming the undercoat layer is preferably 30% by mass or less, and particularly preferably 10% by mass or less.
  • the lower limit of the solid content concentration is preferably 1% by mass, more preferably 3% by mass, and particularly preferably 5% by mass.
  • An undercoat layer having a good surface shape can be formed within the above range.
  • the coating amount of the undercoat layer coating liquid is preferably varied according to the thickness of the subbing layer to obtain, it is preferably 2 g / m 2 or less, more preferably 0.05g / m 2 ⁇ 2g / m 2 More preferably, it is 0.1 g / m 2 to 1.5 g / m 2 .
  • the coating amount is preferably 0.005 to 0.5 g / m 2 , more preferably 0.005 to 0.3 g / m 2 , and A range of 005 to 0.2 g / m 2 is particularly preferred.
  • a drying process for drying under desired conditions may be provided.
  • the pigment layer can be formed by a method in which a polymer sheet containing a pigment is bonded to a substrate, a method in which the pigment layer is co-extruded during substrate formation, a method by coating, or the like.
  • the pigment layer can be formed by bonding, co-extrusion, coating or the like directly on the surface of the polymer substrate or through an undercoat layer having a thickness of 2 ⁇ m or less.
  • the formed pigment layer may be in a state where it is in direct contact with the surface of the polymer substrate or may be in a state where it is laminated via an undercoat layer.
  • the method by coating is preferable because it is simple and can be formed in a thin film with uniformity.
  • the coating liquid may be an aqueous system using water as an application solvent, or a solvent system using an organic solvent such as toluene or methyl ethyl ketone. Especially, it is preferable to use water as a solvent from a viewpoint of environmental impact.
  • a coating solvent may be used individually by 1 type, and may mix and use 2 or more types. It is preferable to apply the pigment layer forming coating solution on the undercoat layer.
  • the coating amount of the coating liquid for forming the pigment layer is preferably changed according to the desired thickness of the pigment layer, but the surface state of the pigment layer is disturbed due to the thickness of the undercoat layer. Therefore, it is not necessary to change the coating amount for the purpose of changing the reflectance and other physical properties of the pigment layer, and it is preferable to adjust the amount of the pigment contained in the pigment layer.
  • the coating amount of the pigment layer forming coating solution is preferably 5 to 15 g / m 2 from the viewpoint of maintaining reflectance and adhesion, more preferably 6 to 12 g / m 2 , and even more preferably 7 g / m 2. ⁇ 10 g / m 2 .
  • the topcoat layer is preferably formed by applying a topcoat layer forming coating solution on the pigment layer.
  • a topcoat layer forming coating solution on the pigment layer.
  • the solvent used for the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone.
  • a solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
  • the coating amount of the coating solution for forming the topcoat layer is preferably changed according to the desired thickness of the topcoat layer, preferably 30 g / m 2 or less, more preferably 0.5 g / m 2 to 20 g / m 2 . More preferably 1 g / m 2 to 10 g / m 2 .
  • the coating amount is preferably 0.005 to 15 g / m 2 , more preferably 0.005 to 10 g / m 2 , and 0.005 to 5 g / m 2. Particularly preferred is m 2 .
  • a drying process for drying under desired conditions may be provided.
  • the composite polymer layer can be formed by a method in which a polymer sheet is bonded to a polymer substrate, a method in which the composite polymer layer is coextruded when forming the polymer substrate, a method by coating, or the like.
  • coating is preferable at the point which is easy and can form in a thin film with uniformity.
  • a coating method for example, a known coating method such as a gravure coater or a bar coater can be used.
  • the coating solution may be an aqueous system using water as an application solvent, or a solvent system using an organic solvent such as toluene or methyl ethyl ketone. Among these, from the viewpoint of environmental burden, it is preferable to use water as a solvent.
  • a coating solvent may be used individually by 1 type, and may mix and use 2 or more types.
  • the coating solution for the composite polymer layer is preferably an aqueous coating solution in which 50% by mass or more, preferably 60% by mass or more, of the solvent contained therein is water.
  • the aqueous coating solution is preferable in terms of environmental load, and is advantageous in that the environmental load is particularly reduced when the ratio of water is 50% by mass or more.
  • the proportion of water in the coating solution for the composite polymer layer is preferably larger from the viewpoint of environmental load, and more preferably 90% by mass or more of water in the total solvent.
  • a drying process for drying under desired conditions may be provided.
  • the solar cell module of the present invention includes a transparent substrate on which sunlight is incident, a solar cell element, and the solar cell backsheet of the present invention.
  • a solar cell element that converts light energy of sunlight into electric energy is disposed between the transparent substrate on which sunlight is incident and the above-described solar cell backsheet of the present invention.
  • the substrate and the back sheet are preferably sealed with an ethylene-vinyl acetate sealing material.
  • the sealing material is not limited to EVA (ethylene-vinyl acetate) resin, and PVB (polyvinyl butyral) resin, polyolefin resin, ethylene ionomer resin, and the like can also be used.
  • EVA ethylene-vinyl acetate
  • PVB polyvinyl butyral
  • the transparent substrate only needs to have a light-transmitting property through which sunlight can be transmitted, and can be appropriately selected from base materials that transmit light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better.
  • a transparent resin such as an acrylic resin, or the like can be suitably used.
  • Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as -VI group compound semiconductor systems can be applied.
  • Example 1 ⁇ Production of polymer substrate> -Polymerization of PET- According to [0033] lines 1 to 11 of JP2011-165698A, a polymer of polyethylene terephthalate was obtained. Specifically, 100 parts by mass of dimethyl terephthalate, 61 parts by mass of ethylene glycol, and 0.06 parts by mass of magnesium acetate tetrahydrate were charged in a transesterification reaction vessel, heated to 150 ° C., melted and stirred. The reaction was advanced while the temperature in the reaction vessel was slowly raised to 235 ° C., and the produced methanol was distilled out of the reaction vessel. When the distillation of methanol was completed, 0.02 parts by mass of trimethyl phosphoric acid was added. After adding trimethyl phosphoric acid, 0.03 parts by mass of antimony trioxide was added, and the reaction product was transferred to a polymerization apparatus.
  • the temperature in the polymerization apparatus was raised from 235 ° C. to 290 ° C. over 90 minutes, and at the same time, the pressure in the apparatus was reduced from atmospheric pressure to 100 Pa over 90 minutes.
  • the stirring torque of the contents of the polymerization apparatus reached a predetermined value
  • the interior of the apparatus was returned to atmospheric pressure with nitrogen gas to complete the polymerization.
  • the valve at the bottom of the polymerization apparatus was opened and the inside of the polymerization apparatus was pressurized with nitrogen gas, and the polymerized polyethylene terephthalate was discharged into water in the form of a strand.
  • the strand was chipped with a cutter.
  • the intrinsic viscosity (IV) was obtained by dissolving the polyester in orthochlorophenol and obtaining the intrinsic viscosity from the following formula from the solution viscosity measured at 25 ° C.
  • ⁇ sp / C [ ⁇ ] + K [ ⁇ ] 2 ⁇ C
  • ⁇ sp (solution viscosity / solvent viscosity) ⁇ 1
  • C is the weight of dissolved polymer per 100 ml of solvent (1 g / 100 ml in this measurement)
  • K is the Huggins constant (0.343)
  • the solution viscosity and the solvent viscosity were measured using an Ostwald viscometer.
  • each sample was heat-treated in an air thermostat at 150 ° C. for 30 minutes under no tension. Thereafter, each sample was conditioned at 25 ° C. and a relative humidity of 60% for 3 hours or longer, and the distance between the holes was measured with a pin gauge (L2). 100 ⁇ (L1-L2) / L1 was defined as the thermal shrinkage (%) of each sample. As a result of obtaining the average values of all the MD and TD samples, they are shown as “heat shrinkage” in Table 1.
  • ⁇ Pigment layer> -Preparation of titanium dioxide dispersion- Components in the following composition were mixed, and the mixture was subjected to a dispersion treatment for 1 hour by a dynomill type disperser.
  • composition of coating solution -Titanium dioxide dispersion ... 298.5 parts by mass-Polyolefin binder ...
  • the ratio (mass ratio) of the pigment to the total of the binder (polyolefin-based binder) and the pigment (titanium dioxide) in the composition of the coating liquid for forming the pigment layer was calculated to be 54.2%.
  • the results are shown in Table 1 below.
  • Electrode and dielectric roll gap clearance 1.6mm Processing frequency: 9.6 kHz Processing speed: 20 m / min Processing intensity: 0.375 kV ⁇ A ⁇ min / m 2
  • the pigment layer forming coating solution was applied to the corona-treated surface of the PET base material (S-1) so that the amount of titanium dioxide was 5.6 g / m 2, and dried at 170 ° C. for 2 minutes. A layer was formed.
  • composition of coating solution for forming top coat layer ⁇ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass) Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) Oxazoline compound (crosslinking agent) 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass) Colloidal silica (inorganic pigment) 72.0 parts by mass (Snowtex C, manufactured by Nissan Chemical Co., Ltd., solid content: 20% by mass) -Surfactant: 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content
  • the ratio (mass ratio) of the pigment to the total of the binder (polyolefin-based binder) and the pigment (colloidal silica) in the composition of the coating solution for forming the overcoat layer was calculated to be 25.0%.
  • the ratio (mass ratio) of the crosslinking agent addition amount (total of carbodiimide compound and oxazoline compound) to the binder addition amount (polyolefin-based binder) in the composition of the coating solution for forming the topcoat layer was calculated as a percentage, 22.2 %Met. The results are shown in Table 1 below.
  • first composite polymer layer The surface opposite to the surface on which the pigment layer of the support S-1 was formed (sometimes referred to as “back surface”) was subjected to corona treatment under the conditions described above. Next, the first composite polymer layer forming coating solution was applied to the corona-treated back surface of the support S-1 so that the binder coating amount was 5.1 g / m 2 and dried at 175 ° C. for 2 minutes. A first composite polymer layer having a dry thickness of about 5 ⁇ m was formed.
  • composition of coating solution ⁇ Acrylic / silicone binder (binder) 77.8 parts by mass (Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass) Carbodiimide compound (crosslinking agent) 15.6 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 20% by mass) -Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass) Polyethylene wax dispersion: 51.9 parts by mass (Chemical Pearl W950, manufactured by Mitsui Chemicals, solid content: 5% by mass) Colloidal silica: 1.0 part by mass (Snowtex UP, manufactured by Nissan Chemical Co., Ltd., solid content
  • Adhesiveness- [A] Adhesiveness before wet heat aging
  • the sample sheet produced as described above was cut into a width of 20 mm ⁇ 150 mm to prepare two sample pieces. These two sample pieces are arranged so that the pigment layer side is inside, and an EVA sheet (EVA sheet: SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.) cut into a width of 20 mm ⁇ 100 mm is sandwiched between them. It was made to adhere to EVA by hot pressing using a laminator (vacuum laminator manufactured by Nisshinbo Co., Ltd.). The bonding conditions at this time were as follows. Using a vacuum laminator, evacuation was performed at 128 ° C.
  • an adhesion evaluation sample was obtained in which the 20 mm portion from one end of the two sample pieces adhered to each other was not bonded to EVA, and the EVA sheet was bonded to the remaining 100 mm portion.
  • the EVA non-adhered portion of the obtained adhesion evaluation sample was sandwiched between upper and lower clips with Tensilon (RTENT-1210A manufactured by ORIENTEC), a tensile test was performed at a peeling angle of 180 °, and a tensile speed of 300 mm / min, and the adhesive strength was measured. .
  • the PET film prepared above was subjected to environmental conditions of 120 ° C. and 100% RH for 50 hours, 60 hours, 70 hours, 80 hours, 90 hours, 100 hours, 110 hours, 120 hours, 130 hours, 150 hours, 170 hours.
  • the thermo treatment was performed by leaving it for 190 hours and 210 hours.
  • the breaking elongation in each MD direction is measured, and based on the obtained measurement value, the breaking elongation after the thermo treatment is divided by the breaking elongation before the thermo treatment,
  • the elongation at break at the thermo treatment time was determined from the following formula. Plotting with the thermo-axis on the horizontal axis and the breaking elongation retention on the vertical axis, the time for heat treatment until the breaking elongation retention reaches 50% (hr; breaking elongation retention half-life) Asked.
  • Breaking elongation retention [%] (Elongation at break after thermo treatment) / (Elongation at break before thermo treatment) ⁇ 100
  • Example 2 A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 1 except that ⁇ Composition of coating solution for forming topcoat layer> in Example 1 was as follows. ⁇ Composition of coating liquid for topcoat layer formation> ⁇ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass) Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) Oxazoline compound (crosslinking agent) 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass) Titanium dioxide dispersion described in Example 1 31.6 parts by mass Surfactant 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass ) ⁇ Distilled water: 59
  • Example 3 A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 1 except that ⁇ Composition of coating solution for forming topcoat layer> in Example 1 was as follows. ⁇ Composition of coating liquid for topcoat layer formation> ⁇ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass) Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) Oxazoline compound (crosslinking agent) 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass) -Titanium dioxide dispersion described in Example 1 ... 77.5 parts by mass-Surfactant ... 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass
  • Example 4 ⁇ Undercoat layer> -Preparation of undercoat layer- Components in the following composition were mixed to prepare a coating solution for forming an undercoat layer.
  • ⁇ Composition of coating liquid for undercoat layer formation> ⁇ Polyester binder: 24.0 parts by mass (Byronal MD1245, manufactured by Toyobo Co., Ltd., solid content 30% by mass)
  • -Surfactant 15.0 parts by mass (Naroacty CL95, manufactured by San
  • the ratio (mass ratio) of the crosslinking agent addition amount (total of carbodilite compound and oxazoline compound) to the binder addition amount (total of polyester-based binder and polyolefin-based binder) in the composition of the coating solution for forming the undercoat layer was calculated as a percentage. However, it was 22.2%. The results are shown in Table 1 below.
  • the undercoat layer-forming coating solution was applied to the corona-treated surface of the PET substrate (S-1) so that the solid content coating amount was 0.12 g / m 2 and dried at 170 ° C. for 1 minute.
  • An undercoat layer having a dry thickness of about 0.1 ⁇ m was formed.
  • ⁇ Pigment layer> -Preparation of titanium dioxide dispersion- Components in the following composition were mixed, and the mixture was subjected to a dispersion treatment for 1 hour by a dynomill type disperser.
  • composition of coating solution -Titanium dioxide dispersion ... 298.5 parts by mass-Polyolefin binder ...
  • the ratio (mass ratio) of the pigment to the total of the binder (polyolefin-based binder) and the pigment (titanium dioxide) in the composition of the coating liquid for forming the pigment layer was calculated to be 54.2%.
  • the results are shown in Table 1 below.
  • ⁇ Overcoat layer> -Preparation of topcoat layer- Components in the following composition were mixed to prepare a coating solution for forming an overcoat layer.
  • ⁇ Composition of coating liquid for topcoat layer formation> ⁇ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass) Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) Oxazoline compound (crosslinking agent) 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass) Colloidal silica (inorganic pigment) 72.0 parts by mass (Snowtex C, manufactured by Nissan Chemical Co., Ltd., solid content: 20% by mass) -Surfactant: 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical
  • the ratio (mass ratio) of the pigment to the total of the binder (polyolefin binder) and the pigment (colloidal silica) in the composition of the coating solution for forming the topcoat layer was calculated to be 25.0%.
  • the ratio (mass ratio) of the amount of the crosslinking agent added (total of the carbodilite compound and the oxazoline compound) to the binder addition amount (polyolefin-based binder) in the composition of the coating solution for forming the topcoat layer was calculated as a percentage, 22. 2%.
  • Table 1 The results are shown in Table 1 below.
  • overcoat layer- The obtained coating solution was applied so that the solid content coating amount was 0.6 g / m 2 and dried at 170 ° C. for 2 minutes to form an overcoat layer having a dry thickness of about 0.5 ⁇ m.
  • composition of coating solution ⁇ Acrylic / silicone binder (binder) (Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass) ... 396.5 parts by mass-Carbodiimide compound (crosslinking agent) ...
  • first composite polymer layer The surface opposite to the surface on which the pigment layer of the support S-1 was formed (hereinafter sometimes referred to as the back surface) was subjected to corona treatment under the conditions described above. Next, the first composite polymer layer forming coating solution was applied to the corona-treated back surface of the support S-1 so that the binder coating amount was 5.1 g / m 2 and dried at 175 ° C. for 2 minutes. A first composite polymer layer having a dry thickness of about 5 ⁇ m was formed.
  • composition of coating solution ⁇ Acrylic / silicone binder (binder, P-1) (Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass) ... 77.8 parts by mass-Carbodiimide compound (crosslinking agent) ...
  • Example 5 A solar cell backsheet (sample sheet) was produced in the same manner as in Example 4 except that ⁇ Composition of coating solution for forming topcoat layer> in Example 4 was as follows. ⁇ Composition of coating liquid for topcoat layer formation> ⁇ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass) Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) Titanium dioxide dispersion described in Example 1 31.6 parts by mass Surfactant 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass ) ⁇ Distilled water: 636.1 parts by mass
  • Example 6 A solar cell back sheet (sample sheet) was produced in the same manner as in Example 5 except that ⁇ Composition of coating solution for forming undercoat layer> in Example 5 was as follows. ⁇ Composition of coating liquid for undercoat layer formation> ⁇ Acrylic binder: 25.7 parts by mass (AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 28% by mass) ⁇ Olefin binder: 35.6 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass) Carbodiimide compound (crosslinking agent) 24.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) -Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass) ⁇ Distilled water: 899.2 parts by mass
  • Example 7 A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 6 except that ⁇ Composition of coating solution for forming undercoat layer> and ⁇ Composition of coating solution for forming pigment layer> in Example 6 were as follows. ) was produced.
  • Olefin binder 71.3 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass) Carbodiimide compound (crosslinking agent) 24.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) -Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass) ⁇ Distilled water: 889.2 parts by mass
  • Example 8 A solar cell back sheet (sample sheet) was produced in the same manner as in Example 7 except that ⁇ Composition of pigment layer forming coating solution> in Example 7 was as follows. ⁇ Composition of pigment layer forming coating solution> Titanium dioxide dispersion: 298.5 parts by mass Polyolefin binder: 284.3 parts by mass [Arrow Base SE1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass] ⁇ Polyurethane binder: 191.5 parts by mass [Takelac WS-6021, manufactured by Mitsui Chemicals Polyurethanes, solid content: 30% by mass] Polyoxyalkylene alkyl ether 23.4 parts by mass [Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass] Carbodiimide compound (crosslinking agent) 146.0 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) ⁇ Distilled water: 56.3 parts by mass
  • Example 9 A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 8 except that ⁇ Composition of pigment layer forming coating solution> in Example 8 was as follows. ⁇ Composition of pigment layer forming coating solution> Titanium dioxide dispersion: 447.8 parts by mass Polyolefin binder: 89.1 parts by mass [Arrow Base SE1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass] -Polyurethane binder: 60.0 parts by mass [Takelac WS-6021, manufactured by Mitsui Chemicals Polyurethanes, solid content: 30% by mass] Polyoxyalkylene alkyl ether 35.1 parts by mass [Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass] Carbodiimide compound (crosslinking agent) 45.7 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) ⁇ Distilled water ...
  • Example 10 A solar cell backsheet (sample sheet) was produced in the same manner as in Example 8, except that ⁇ Composition of coating solution for forming topcoat layer> in Example 8 was as follows. ⁇ Composition of coating liquid for topcoat layer formation> ⁇ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass) Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass) -Surfactant: 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass) ⁇ Distilled water: 667.7 parts by mass
  • first composite polymer layer The surface opposite to the surface on which the pigment layer of the support S-1 was formed (sometimes referred to as “back surface”) was subjected to corona treatment under the conditions described above. Next, the first composite polymer layer forming coating solution was applied to the corona-treated back surface of the support S-1 so that the binder coating amount was 5.1 g / m 2 and dried at 175 ° C. for 2 minutes. A first composite polymer layer having a dry thickness of about 5 ⁇ m was formed.
  • composition of coating solution ⁇ Acrylic / silicone binder (binder) 77.8 parts by mass (Ceranate WSA-1060, manufactured by DIC Corporation, solid content: 35% by mass) Carbodiimide compound (crosslinking agent) 15.6 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 20% by mass) -Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass) Polyethylene wax dispersion: 51.9 parts by mass (Chemical Pearl W950, manufactured by Mitsui Chemicals, solid content: 5% by mass) Colloidal silica: 1.0 part by mass (Snowtex UP, manufactured by Nissan Chemical Co., Ltd., solid
  • Example 12 A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 7 except that the ⁇ composition of the titanium dioxide dispersion> used in ⁇ Pigment layer forming coating solution> in Example 7 was as follows. Produced.
  • Example sheet A solar cell back sheet (sample sheet) was produced in the same manner as in Example 1 except that the ⁇ overcoat layer> in Example 1 was not provided.
  • Example sheet A solar cell back sheet (sample sheet) was produced in the same manner as in Example 6 except that the ⁇ overcoat layer> in Example 6 was not formed by coating.
  • Example sheet A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 6 except that the ⁇ composite polymer layer> on the opposite side of the pigment layer of Example 6 was not formed by coating.
  • Example 13 A back sheet for solar cell (sample) was formed in the same manner as in Example 5 except that the ⁇ first composite polymer layer> of Example 5 was formed as follows and ⁇ second composite polymer layer> was not formed. Sheet).
  • first composite polymer layer The surface opposite to the surface on which the pigment layer of the support S-1 was formed (hereinafter sometimes referred to as the back surface) was subjected to corona treatment under the conditions described above. Next, the first composite polymer layer forming coating solution was coated on the corona-treated back surface of the support S-1 so that the binder coating amount was 10.2 / m 2 and dried at 175 ° C. for 2 minutes, A first composite polymer layer having a dry thickness of about 10 ⁇ m was formed.
  • Example 4 A titanium oxide kneaded base material (white film) that exhibits a reflectance substantially equivalent to that of Example 1 was produced as follows. In addition, in Comparative Example 4 using a titanium oxide kneaded type base material, the coating layer was not formed, and thus the adhesion and film strength of the coating layer were not measured.
  • rutile type titanium dioxide having an average particle size of 0.3 ⁇ m (electron microscopic method), supplied to a vent type twin screw extruder, kneaded and extruded at 275 ° C. while degassing.
  • (Titanium oxide) -containing master batch (MB-I) pellets were prepared. This pellet had an intrinsic viscosity of 0.78 and an acid value of 7.9 (eq / ton).
  • Example 14 A back sheet for a solar cell (sample sheet) was prepared in the same manner as in Example 1 except that the ⁇ Composition of the coating liquid for forming a pigment layer> and ⁇ Composition of the coating liquid for forming an overcoat layer> in Example 1 were as follows. ) was produced.
  • Titanium dioxide dispersion 298.5 parts by mass
  • Polyolefin binder 341.2 parts by mass
  • Acrylic binder 164.1 parts by mass (AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 28% by mass)
  • Fluorosurfactant 8.5 parts by mass [Methanol solution of fluorosurfactant 6 described in JP 2010-83927 A, solid content: 1% by mass]
  • Oxazoline compound 94.9 parts by mass [Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25%; crosslinking agent] ⁇ Distilled water ... 93.1 parts by mass
  • Olefin binder 171.0 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
  • Acrylic binder 30.8 parts by mass (AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 28% by mass)
  • Oxazoline compound 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
  • Surfactant 10.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
  • Fluorosurfactant 5.0 parts by mass [Methanol solution of fluorosurfactant 6 described in JP2010-83927A, solid content: 1% by mass]
  • Distilled water 738.2 parts by mass
  • Example 15 In ⁇ Formation of pigment layer> and ⁇ Formation of first composite polymer layer>, instead of corona-treating the surface of the PET substrate (S-1), a PET substrate subjected to glow treatment under the following conditions was used. Produced the solar cell backsheet (sample sheet) in the same manner as in Example 14.
  • Example 16 A solar cell backsheet (sample sheet) was produced in the same manner as in Example 14 except that the titanium oxide kneaded base material (white film) used in Comparative Example 4 was used.
  • Example 17 A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 14 except that the polymer base material (S-2) to which the end-capping agent was prepared as described below was used.
  • bulb of the polymerization apparatus lower part was opened, the inside of the polymerization apparatus was pressurized with nitrogen gas, and the polyethylene terephthalate which superposed
  • the strand was chipped with a cutter.
  • the carboxyl terminal amount AV was measured by the method of Malice (reference: MJ Malice, F. Huizinga. Anal. Chim. Acta, 22 363 (1960)).
  • the intrinsic viscosity (IV) was obtained by dissolving the polyester in orthochlorophenol and obtaining the intrinsic viscosity from the following formula from the solution viscosity measured at 25 ° C.
  • ⁇ sp / C [ ⁇ ] + K [ ⁇ ] 2 ⁇ C
  • ⁇ sp (solution viscosity / solvent viscosity) ⁇ 1
  • C is the weight of dissolved polymer per 100 ml of solvent (1 g / 100 ml in this measurement)
  • K is the Huggins constant (0.343)
  • the solution viscosity and the solvent viscosity were measured using an Ostwald viscometer.
  • Example 18 A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 4 except that the polymer substrate with an undercoat layer (S-3) prepared as described below was used. ⁇ Preparation of polymer substrate (S-3)> -Preparation of coating solution for undercoat layer formation- Each component in the following composition was mixed to prepare a coating solution for forming an undercoat layer.
  • Polyester binder 8.12 parts by mass (Byronal MD1245, manufactured by Toyobo Co., Ltd., solid content 30% by mass)
  • Polyolefin binder 12.06 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., concentration: 20% by mass)
  • -Carbodiimide compound (crosslinking agent) 8.20 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
  • Oxazoline-based crosslinking agent 1.00 parts by mass (Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., concentration: 25% by mass)
  • -Surfactant 5.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, Ltd., solid content: 1% by mass)
  • Distilled water 65.62 parts by mass
  • the coating solution for forming the undercoat layer is applied to the corona-treated surface of the polymer support by an in-line coating method after MD stretching and before TD stretching so that the coating amount is 5.1 ml / m 2.
  • An undercoat layer of 0.1 ⁇ m was formed.
  • the TD stretching temperature is 105 ° C., stretched 4.5 times in the TD direction, and heat treatment is performed at 200 ° C. for 15 seconds.
  • the MD relaxation rate is 5% at 190 ° C., and the MD relaxation rate is 11%. -Thermal relaxation was performed in the TD direction.
  • Example 19 A solar cell backsheet (sample sheet) was produced in the same manner as in Example 14 except that the polymer substrate (S-4) with an undercoat layer produced as described below was used. ⁇ Preparation of polymer substrate (S-4)> -Preparation of coating solution for undercoat layer formation- Each component in the following composition was mixed to prepare a coating solution for forming an undercoat layer.
  • ⁇ Composition of coating solution> ⁇ Polyolefin binder: 24.12 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., concentration: 20% by mass) ⁇ Oxazoline-based crosslinking agent: 3.90 parts by mass (Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., concentration: 25% by mass) ⁇ Fluorine-based surfactant: 0.19 parts by mass (sodium bis (3, 3, 4, 4, 5, 5, 6, 6-nonafluoro) 2-sulfonite oxysuccinate, Sankyo Chemical (Made by Co., Ltd., concentration 1% by mass) ⁇ Distilled water: 71.80 parts by mass
  • the coating solution for forming the undercoat layer is applied to the corona-treated surface of the polymer support by an in-line coating method after MD stretching and before TD stretching so that the coating amount is 5.1 ml / m 2.
  • An undercoat layer of 0.1 ⁇ m was formed.
  • the TD stretching temperature is 105 ° C., stretched 4.5 times in the TD direction, and heat treatment is performed for 15 seconds at a film surface of 200 ° C.
  • the MD relaxation rate is 5% at 190 ° C., and the TD relaxation rate is 11%. Thermal relaxation was performed in the MD / TD direction.
  • the solar cell backsheets of the examples all have good adhesiveness, reflectance and light resistance after wet heat aging.
  • Comparative Examples 1 and 2 did not have an overcoat layer on the pigment layer, and the adhesion after wet heat aging significantly decreased.
  • Comparative Example 3 did not have a composite polymer layer on the back surface and had low light resistance.
  • a pigment kneaded type sheet prepared so as to have a thickness equivalent to that of Example 1 and a reflectance exceeding 80% was produced, and the light resistance was low.
  • Example 20 A tempered glass having a thickness of 3 mm, an EVA sheet (SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.), a crystalline solar cell, an EVA sheet (SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.), and the sample of Example 1 Sheets (back sheets for solar cells of the present invention) were superposed in this order and hot-pressed using a vacuum laminator (Nisshinbo Co., Ltd., vacuum laminating machine) to adhere to EVA. At this time, the sample sheet was disposed so that the overcoat layer was in contact with the EVA sheet. Moreover, the adhesion conditions of EVA are as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to provide a back sheet for a solar cell having a high reflection performance, durability, and a high adhesion strength with respect to a sealing material. This back sheet (1) for a solar cell has: a polymer substrate (10); a pigment layer (12) provided on a first surface of the polymer substrate (10), the pigment layer including a binder and a pigment; a topcoat layer (14) provided on the pigment layer; and a composite polymer layer (16) provided on a second surface of the polymer substrate (10), the composite polymer layer containing a composite polymer that is represented by the following general formula (1) and that includes, in the molecule, siloxane structural units in a mass ratio of 15-85 mass% and non-siloxane structural units in a mass ratio of 85-15 mass%.

Description

太陽電池用バックシート及びその製造方法並びに太陽電池モジュールSOLAR CELL BACK SHEET, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
 本発明は、太陽電池用バックシート及びその製造方法並びに太陽電池モジュールに関する。 The present invention relates to a solar cell backsheet, a manufacturing method thereof, and a solar cell module.
 太陽電池は、発電時に二酸化炭素の排出がなく環境負荷が小さい発電方式であり、近年急速に普及が進んでいる。 Solar cells are a power generation system that emits no carbon dioxide during power generation and has a low environmental load, and has been rapidly spreading in recent years.
 太陽電池モジュールは、通常、太陽光が入射する側のオモテ面ガラスと、太陽光が入射する側とは反対側(裏面側)に配置される、太陽電池裏面保護シート(太陽電池用バックシート、以下、単に「バックシート」とも言う)との間に、太陽電池セルが挟まれた構造を有しており、オモテ面ガラスと太陽電池セルとの間、及び太陽電池セルとバックシートとの間は、それぞれEVA(エチレン-ビニルアセテート)樹脂などで封止されている。 The solar cell module is usually a front side glass on the side on which sunlight is incident and a solar cell back surface protection sheet (solar cell backsheet, on the side opposite to the side on which sunlight is incident (back side), (Hereinafter also referred to simply as “back sheet”), the solar cell is sandwiched between the front glass and the solar cell, and between the solar cell and the back sheet. Are sealed with EVA (ethylene-vinyl acetate) resin or the like.
 バックシートは、太陽電池モジュールの裏面からの水分の浸入を防止する働きを有するもので、従来はガラスやフッ素樹脂等が用いられていたが、近年では、コストの観点からポリエステルが用いられるようになってきている。そして、バックシートは、単なるポリマーシートではなく、以下に示すような種々の機能が付与される場合がある。 The back sheet has a function of preventing moisture from entering from the back surface of the solar cell module, and conventionally glass or fluororesin has been used, but in recent years, polyester has been used from the viewpoint of cost. It has become to. And a back sheet is not a mere polymer sheet, but may have various functions as shown below.
 太陽電池用バックシートに付与される機能として、例えば、バックシートに酸化チタン等の白色顔料を添加し、反射性能を持たせたものが要求される場合がある。これは、モジュールのオモテ面から入射した太陽光のうち、セルを素通りした光を乱反射して、セルに戻すことで発電効率を上げるためである。かかる白色フィルムとしては、白色顔料を含む塗布液や白色塗料を延伸ポリエステルフィルム上に塗布する方法、白色顔料を含ませたり発泡や延伸によりボイドを形成させたりした白色ポリエステル系フィルムなどの白色樹脂フィルムを積層する方法が挙げられる。これらの中でも、材料コストが安価でかつ高い反射率が得られ易いことから、酸化チタン錬り込みタイプの白色のポリエステル系フィルムが広く用いられている(例えば、特開2008-130642号公報参照)。 As a function imparted to the solar cell backsheet, for example, a backsheet having a reflective performance by adding a white pigment such as titanium oxide may be required. This is to increase power generation efficiency by irregularly reflecting light that has passed through the cell out of sunlight incident from the front side of the module and returning it to the cell. As such a white film, a white resin film such as a method of applying a coating liquid or a white paint containing a white pigment on a stretched polyester film, a white polyester film containing a white pigment or forming a void by foaming or stretching The method of laminating is mentioned. Among these, since the material cost is low and it is easy to obtain a high reflectance, a titanium polyester kneaded type white polyester film is widely used (see, for example, JP-A-2008-130642). .
 特開2008-130642号公報では酸化チタン錬り込みタイプの白色樹脂フィルムを使用することが提案されているが、基材の厚みを増やして反射性能を維持する場合、多くの酸化チタンが必要となり、材料コストの上昇につながる。 Japanese Patent Laid-Open No. 2008-130642 proposes to use a white resin film of a titanium oxide wrought type, but when maintaining the reflection performance by increasing the thickness of the base material, a large amount of titanium oxide is required. , Leading to higher material costs.
 本発明は、上記に鑑みなされたものであり、製造コストが低く抑えられ、高い反射性能及び耐久性を有し、かつ封止材との接着強度が高い太陽電池用バックシート及びその製造方法を提供することを目的とする。また、本発明は、長期に亘って発電性能を安定して保つことができる太陽電池モジュールを提供することを目的とする。 The present invention has been made in view of the above, and provides a solar cell backsheet having a low manufacturing cost, high reflection performance and durability, and high adhesive strength with a sealing material, and a method for manufacturing the backsheet. The purpose is to provide. Another object of the present invention is to provide a solar cell module that can stably maintain power generation performance over a long period of time.
 上記目的を達成する具体的な手段は以下の通りである。
<1> ポリマー基材と、
 ポリマー基材の第1の面上に設けられ、バインダー及び顔料を含む顔料層と、
 顔料層上に設けられ、バインダーを含む上塗り層と、
 ポリマー基材の第2の面上に設けられ、分子中に下記一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを含む複合ポリマーを含有する複合ポリマー層と、
 を有する太陽電池用バックシート。
Figure JPOXMLDOC01-appb-C000002

 
〔一般式(1)中、R及びRは、各々独立に、水素原子、ハロゲン原子、又は1価の有機基を表し、RとRとは同一でも異なってもよい。nは、1以上の整数を表す。複数のR及びRは各々、互いに同一でも異なってもよい。〕
<2>
 ポリマー基材と顔料層との間に、バインダーを含み、厚みが2μm以下の下塗り層を有する<1>に記載の太陽電池用バックシート。
<3>
 ポリマー基材上に設けられた少なくとも1つの層がフッ素系界面活性剤を含有する<1>又は<2>に記載の太陽電池用バックシート。
<4>
 顔料層におけるバインダーと顔料の合計に対する顔料の割合が40~95質量%である<1>~<3>のいずれかに記載の太陽電池用バックシート。
<5>
 上塗り層の厚みが0.1μm以上30μm以下である<1>~<4>のいずれかに記載の太陽電池用バックシート。
<6>
 顔料層におけるバインダーと顔料の合計に対する顔料の割合が50~95質量%である<1>~<5>のいずれか記載の太陽電池用バックシート。
<7>
 顔料層におけるバインダーと顔料の合計に対する顔料の割合が70~95質量%である<1>~<6>のいずれかに記載の太陽電池用バックシート。
<8>
 上塗り層の厚みが、0.3μm以上20μm以下である<1>~<7>のいずれかに記載の太陽電池用バックシート。
<9>
 上塗り層の厚みが、0.5μm以上10μm以下である<1>~<8>のいずれかに記載の太陽電池用バックシート。
<10>
 ポリマー基材の第1の面上に設けられた少なくとも1つの層が、該層に含まれるバインダーに対して5~50質量%の架橋剤由来の構造を含有する<1>~<9>のいずれかに記載の太陽電池用バックシート。
<11>
 架橋剤の少なくとも一つが、カルボジイミド基又はオキサゾリン基を有する架橋剤である<10>に記載の太陽電池用バックシート。
<12>
 ポリマー基材と顔料層との間に、バインダーを含み、厚みが2μm以下の下塗り層を有し、下塗り層及び上塗り層が、ポリオレフィン樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、ポリアクリル樹脂及びポリエステル樹脂からなる群より選択される少なくとも1種の樹脂を含む<1>~<11>のいずれかに記載の太陽電池用バックシート。
<13>
 ポリマー基材と顔料層との間に、バインダーを含み、厚みが2μm以下の下塗り層を有し、下塗り層及び上塗り層が、無機酸化物フィラーを含有する<1>~<12>のいずれかに記載の太陽電池用バックシート。
<14>
 ポリマー基材の少なくとも片面が、コロナ処理、大気圧プラズマ処理、グロー放電処理、及び火炎処理の少なくとも1種の方法で表面処理されている<1>~<13>のいずれかに記載の太陽電池用バックシート。
<15>
 ポリマー基材が、ポリエステル樹脂とポリエステル樹脂の全質量に対して0.1~10質量%の末端封止剤を含んで構成されている<1>~<14>のいずれかに記載の太陽電池用ポリマーシート。
<16>
 基材ポリマー基材が、無機粒子又は有機粒子を含み、粒子の平均粒径は0.1~10μmであり、且つ粒子の含有量はポリマー基材全質量に対して0~50質量%である<1>~<15>のいずれかに記載の太陽電池用ポリマーシート。
<17>
 ポリマー基材は、150℃、30分経時前後の熱収縮率が0~0.5%である<1>~<16>のいずれかに記載の太陽電池用バックシート。
<18>
 ポリマー基材が、カルボキシル基の含量が35当量/トン以下であるポリエステル樹脂を含んで構成されている<1>~<17>のいずれかに記載の太陽電池用バックシート。
<19>
 顔料層が設けられている側の波長550nmの光に対する反射率が70%以上である<1>~<18>のいずれかに記載の太陽電池用バックシート。
<20>
 ポリマー基材の第1の面上に設けられた層が、いずれも塗布により形成された層である<1>~<19>のいずれかに記載の太陽電池用バックシート。
<21>
 ポリマー基材用の原料樹脂をシート状に溶融押出する溶融押出工程と、
 溶融押出されたシート状の樹脂を冷却し、樹脂シートを製膜する製膜工程と、
 樹脂シートを第1の方向に延伸する第1の延伸工程と、
 第1の方向に延伸された樹脂シートの少なくとも片面に下塗り層を塗布形成する下塗り層形成工程と、
 下塗り層が塗布形成された樹脂シートを、第1の方向と直交する第2の方向に延伸する第2の延伸工程と、
 を有し、<2>~<20>のいずれかに記載の太陽電池用バックシートを製造する太陽電池用バックシートの製造方法。
<22>
 太陽光が入射する透明性の基板と、太陽電池素子と、<1>~<20>のいずれかに記載の太陽電池用バックシートとを含むことを特徴とする太陽電池モジュール。
Specific means for achieving the above object are as follows.
<1> a polymer substrate;
A pigment layer provided on the first surface of the polymer substrate and comprising a binder and a pigment;
An overcoat layer provided on the pigment layer and containing a binder;
A non-siloxane provided on the second surface of the polymer substrate and having a mass ratio of 15 to 85 mass% and a mass ratio of 85 to 15 mass% represented by the following general formula (1) in the molecule A composite polymer layer containing a composite polymer comprising a system structural unit;
A solar cell backsheet.
Figure JPOXMLDOC01-appb-C000002


[In General Formula (1), R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group, and R 1 and R 2 may be the same or different. n represents an integer of 1 or more. The plurality of R 1 and R 2 may be the same as or different from each other. ]
<2>
<1> The solar cell backsheet according to <1>, comprising a binder and having an undercoat layer having a thickness of 2 μm or less between the polymer substrate and the pigment layer.
<3>
The solar cell backsheet according to <1> or <2>, wherein at least one layer provided on the polymer base material contains a fluorosurfactant.
<4>
The solar cell backsheet according to any one of <1> to <3>, wherein a ratio of the pigment to the total of the binder and the pigment in the pigment layer is 40 to 95% by mass.
<5>
The solar cell backsheet according to any one of <1> to <4>, wherein the thickness of the topcoat layer is 0.1 μm or more and 30 μm or less.
<6>
The solar cell backsheet according to any one of <1> to <5>, wherein a ratio of the pigment to the total of the binder and the pigment in the pigment layer is 50 to 95% by mass.
<7>
The solar cell backsheet according to any one of <1> to <6>, wherein the ratio of the pigment to the total of the binder and the pigment in the pigment layer is 70 to 95% by mass.
<8>
The solar cell backsheet according to any one of <1> to <7>, wherein the thickness of the topcoat layer is from 0.3 μm to 20 μm.
<9>
The solar cell backsheet according to any one of <1> to <8>, wherein the thickness of the overcoat layer is 0.5 μm or more and 10 μm or less.
<10>
<1> to <9>, wherein at least one layer provided on the first surface of the polymer substrate contains 5 to 50% by mass of a crosslinking agent-derived structure with respect to the binder contained in the layer The solar cell backsheet according to any one of the above.
<11>
The solar cell backsheet according to <10>, wherein at least one of the crosslinking agents is a crosslinking agent having a carbodiimide group or an oxazoline group.
<12>
Between the polymer substrate and the pigment layer, a binder is included, and an undercoat layer having a thickness of 2 μm or less is formed. The solar cell backsheet according to any one of <1> to <11>, comprising at least one resin selected from the group consisting of:
<13>
Any one of <1> to <12> containing a binder and having an undercoat layer having a thickness of 2 μm or less between the polymer substrate and the pigment layer, wherein the undercoat layer and the overcoat layer contain an inorganic oxide filler The back sheet for solar cells as described in 2.
<14>
The solar cell according to any one of <1> to <13>, wherein at least one surface of the polymer substrate is surface-treated by at least one method of corona treatment, atmospheric pressure plasma treatment, glow discharge treatment, and flame treatment. Back sheet.
<15>
The solar cell according to any one of <1> to <14>, wherein the polymer base material includes 0.1 to 10% by mass of an end-capping agent based on the total mass of the polyester resin and the polyester resin. Polymer sheet.
<16>
The base polymer base material contains inorganic particles or organic particles, the average particle size of the particles is 0.1 to 10 μm, and the content of the particles is 0 to 50% by mass with respect to the total mass of the polymer base material <1> to the polymer sheet for solar cell according to any one of <15>.
<17>
The solar cell backsheet according to any one of <1> to <16>, wherein the polymer base material has a thermal shrinkage rate of about 0 to 0.5% at 150 ° C. for about 30 minutes.
<18>
The solar cell backsheet according to any one of <1> to <17>, wherein the polymer substrate comprises a polyester resin having a carboxyl group content of 35 equivalents / ton or less.
<19>
The solar cell backsheet according to any one of <1> to <18>, wherein the reflectance with respect to light having a wavelength of 550 nm on the side where the pigment layer is provided is 70% or more.
<20>
The solar cell backsheet according to any one of <1> to <19>, wherein all of the layers provided on the first surface of the polymer base material are layers formed by coating.
<21>
A melt extrusion step of melt-extruding a raw material resin for a polymer substrate into a sheet,
Cooling the melt-extruded sheet-shaped resin, and forming a resin sheet,
A first stretching step of stretching the resin sheet in a first direction;
An undercoat layer forming step of applying and forming an undercoat layer on at least one surface of the resin sheet stretched in the first direction;
A second stretching step of stretching the resin sheet coated with the undercoat layer in a second direction orthogonal to the first direction;
A method for producing a solar cell backsheet, wherein the solar cell backsheet according to any one of <2> to <20> is produced.
<22>
A solar cell module comprising: a transparent substrate on which sunlight is incident; a solar cell element; and the solar cell backsheet according to any one of <1> to <20>.
 本発明によれば、製造コストが低く抑えられ、高い反射性能及び耐久性を有し、かつ封止材との接着強度が高い太陽電池用バックシート及びその製造方法を提供することができる。また、本発明によれば、長期に亘って発電性能を安定して保つことができる太陽電池モジュールを提供することができる。 According to the present invention, it is possible to provide a solar cell backsheet having a low manufacturing cost, high reflection performance and durability, and high adhesive strength with a sealing material, and a method for manufacturing the same. Moreover, according to this invention, the solar cell module which can maintain electric power generation performance stably over a long term can be provided.
本発明に係る太陽電池用バックシートの層構成の一例(第1実施形態)を示す概略断面図である。It is a schematic sectional drawing which shows an example (1st Embodiment) of the layer structure of the solar cell backsheet which concerns on this invention. 本発明に係る太陽電池用バックシートの層構成の他の例(第2実施形態)を示す概略断面図である。It is a schematic sectional drawing which shows the other example (2nd Embodiment) of the laminated constitution of the solar cell backsheet which concerns on this invention.
 以下、本発明の太陽電池用バックシート及び太陽電池モジュールについて詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, the solar cell backsheet and solar cell module of the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[太陽電池用バックシート]
 本発明の太陽電池用バックシート(適宜「バックシート」と記す。)は、ポリマー基材と、ポリマー基材の第1の面上に設けられ、バインダー及び顔料を含む顔料層と、顔料層上に設けられ、バインダーを含む上塗り層と、ポリマー基材の第2の面上に設けられ、分子中に下記一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを含む複合ポリマーを含有する複合ポリマー層と、を有する。
[Back sheet for solar cells]
The solar cell backsheet of the present invention (appropriately referred to as “backsheet”) is provided on the first surface of the polymer substrate, the polymer substrate, the pigment layer containing the binder and the pigment, and the pigment layer. An overcoating layer containing a binder, a siloxane structural unit provided on the second surface of the polymer substrate and having a mass ratio of 15 to 85% by mass represented by the following general formula (1) in the molecule; And a composite polymer layer containing a composite polymer containing a non-siloxane structural unit having a mass ratio of 85 to 15% by mass.
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 一般式(1)中、R及びRは、各々独立に、水素原子、ハロゲン原子、又は1価の有機基を表し、RとRとは同一でも異なってもよい。nは、1以上の整数を表す。複数のR及びRは各々、互いに同一でも異なってもよい。
 このような構成により、製造コストが低く抑えられ、高い反射性能及び耐久性(耐光性及び耐湿熱性)を有し、かつ封止材との接着強度が高い太陽電池用バックシートとなる。
 また、本発明のバックシートの上記特性により、本発明のバックシートを備えた太陽電池モジュールは、本発明のバックシートの高い光反射性により発電性能に優れており、湿熱環境下での経時で剥離等を起こすことなく、長期に亘って発電性能を安定して保つことが可能である。
 以下、本発明の太陽電池用バックシートの構成について具体的に説明する。
In General Formula (1), R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group, and R 1 and R 2 may be the same or different. n represents an integer of 1 or more. The plurality of R 1 and R 2 may be the same as or different from each other.
With such a configuration, the production cost is kept low, the solar cell back sheet has high reflection performance and durability (light resistance and heat and moisture resistance), and has high adhesive strength with the sealing material.
In addition, due to the above characteristics of the backsheet of the present invention, the solar cell module provided with the backsheet of the present invention has excellent power generation performance due to the high light reflectivity of the backsheet of the present invention, and over time in a humid heat environment. It is possible to stably maintain the power generation performance over a long period without causing peeling or the like.
Hereinafter, the structure of the solar cell backsheet of this invention is demonstrated concretely.
<構成>
 図1は、本発明に係る太陽電池用バックシートの層構成の一例(第1実施形態)を示している。第1実施形態の太陽電池用バックシート1は、ポリマー基材10の第1の面上に、顔料層12と、上塗り層14とが設けられ、ポリマー基材10の第2の面上には、複合ポリマーを含有する複合ポリマー層16が設けられている。
 図2は、本発明に係る太陽電池用バックシートの層構成の他の例(第2実施形態)を示している。第2実施形態の太陽電池用バックシート2は、ポリマー基材10の第1の面上に、厚みが2μm以下の下塗り層11と、顔料層12と、上塗り層14とが設けられ、ポリマー基材10の第2の面上には、複合ポリマーを含有する複合ポリマー層16が設けられている。
 なお、図1及び図2は本発明を何ら限定するものでもなく、他の層を有していてもよい。
<Configuration>
FIG. 1 shows an example (first embodiment) of a layer configuration of a solar cell backsheet according to the present invention. In the solar cell backsheet 1 of the first embodiment, a pigment layer 12 and an overcoat layer 14 are provided on the first surface of the polymer substrate 10, and on the second surface of the polymer substrate 10. A composite polymer layer 16 containing a composite polymer is provided.
FIG. 2 shows another example (second embodiment) of the layer configuration of the solar cell backsheet according to the present invention. The solar cell backsheet 2 of the second embodiment is provided with an undercoat layer 11 having a thickness of 2 μm or less, a pigment layer 12, and an overcoat layer 14 on the first surface of the polymer substrate 10. A composite polymer layer 16 containing a composite polymer is provided on the second surface of the material 10.
1 and 2 do not limit the present invention at all, and may have other layers.
<ポリマー基材>
 ポリマー基材としては、ポリエステル、ポリプロピレンやポリエチレンなどのポリオレフィン、又はポリフッ化ビニルなどのフッ素系ポリマー等が挙げられる。これらの中では、コストや機械強度などの点から、ポリエステルが好ましい。
<Polymer substrate>
Examples of the polymer substrate include polyester, polyolefin such as polypropylene and polyethylene, or fluorine-based polymer such as polyvinyl fluoride. Among these, polyester is preferable from the viewpoint of cost and mechanical strength.
 本発明におけるポリマー基材(支持体)として用いられるポリエステルとしては、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体とから合成される線状飽和ポリエステルである。かかるポリエステルの具体例としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-ナフタレートなどを挙げることができる。このうち、力学的物性やコストのバランスの点で、ポリエチレンテレフタレート又はポリエチレン-2,6-ナフタレートが特に好ましい。 The polyester used as the polymer substrate (support) in the present invention is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof. Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate and the like. Of these, polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferable from the viewpoint of balance between mechanical properties and cost.
 ポリエステルは、単独重合体であってもよいし、共重合体であってもよい。さらに、ポリエステルに他の種類の樹脂、例えばポリイミド等を少量ブレンドしたものであってもよい。 The polyester may be a homopolymer or a copolymer. Further, polyester may be blended with other kinds of resins such as polyimide in a small amount.
 本発明におけるポリエステルを重合する際には、カルボキシル基含量を所定の範囲以下に抑える観点から、Sb系、Ge系、Ti系の化合物を触媒として用いることが好ましく、中でも特にTi系化合物が好ましい。Ti系化合物を用いる場合、Ti系化合物を1ppm以上30ppm以下、より好ましくは3ppm以上15ppm以下の範囲で触媒として用いることにより重合する態様が好ましい。Ti系化合物の割合が前記範囲内であると、末端カルボキシル基を下記範囲に調整することが可能であり、ポリマー基材の耐加水分解性を低く保つことができる。 When polymerizing the polyester in the present invention, it is preferable to use an Sb-based, Ge-based or Ti-based compound as a catalyst from the viewpoint of keeping the carboxyl group content below a predetermined range, and among these, a Ti-based compound is particularly preferable. In the case of using a Ti-based compound, an embodiment in which polymerization is performed by using the Ti-based compound as a catalyst in a range of 1 ppm to 30 ppm, more preferably 3 ppm to 15 ppm is preferable. When the proportion of the Ti-based compound is within the above range, the terminal carboxyl group can be adjusted to the following range, and the hydrolysis resistance of the polymer substrate can be kept low.
 本発明では、ポリエステル中のカルボキシル基含量は50当量/トン以下が好ましく、より好ましくは35当量/トン以下である。カルボキシル基含量が35当量/トン以下であると、耐加水分解性を保持し、湿熱経時したときの接着性の低下を顕著に抑制することができる。カルボキシル基含量の下限は、ポリマー基材に形成される層(例えば顔料層)との間の接着性を保持する点で、2当量/トン以上であることが望ましい。なお、「当量/トン」は、1トン当たりのモル当量を表す。
 ポリエステル中のカルボキシル基含量は、重合触媒種、製膜条件(製膜温度や時間)により調整することが可能である。
In the present invention, the carboxyl group content in the polyester is preferably 50 equivalents / ton or less, more preferably 35 equivalents / ton or less. When the carboxyl group content is 35 equivalents / ton or less, hydrolysis resistance is maintained, and a decrease in adhesiveness when subjected to wet heat aging can be remarkably suppressed. The lower limit of the carboxyl group content is desirably 2 equivalents / ton or more from the viewpoint of maintaining adhesiveness with a layer (for example, a pigment layer) formed on the polymer substrate. “Equivalent / ton” represents a molar equivalent per ton.
The carboxyl group content in the polyester can be adjusted by the polymerization catalyst species and the film forming conditions (film forming temperature and time).
 ポリマー基材が、コロナ処理、大気圧プラズマ処理、グロー放電処理、及び火炎処理(例えばシラン化合物を導入した火炎を用いる火炎処理)の少なくとも1種の方法で表面処理されたことが好ましい。基材の片面のみに表面処理が施されていても、基材の両面に表面処理が施されていてもよい。例えばポリマー基材に後述する他の機能層を塗布により形成する場合は両面に表面処理が施されていることが好ましい。その中でも、本発明ではコロナ処理又はグロー放電処理を用いることが好ましい。
 コロナ処理の好ましい態様は、ポリマー基材に対して、0.1~3.0kw/電極1m(電極1m当たりの出力を表す)の出力で、150~500J/m2の処理強度範囲でコロナ処理を施す態様である。
 コロナ処理は、出力が0.5~2.5kw/電極1mであることがより好ましく、0.7~1.7kw/電極1mであることが特に好ましい。処理強度範囲は160~450J/m2であることがより好ましく、170~360J/m2であることが特に好ましい。
It is preferable that the polymer substrate is surface-treated by at least one method of corona treatment, atmospheric pressure plasma treatment, glow discharge treatment, and flame treatment (for example, flame treatment using a flame introduced with a silane compound). Even if the surface treatment is performed only on one surface of the substrate, the surface treatment may be performed on both surfaces of the substrate. For example, when forming the other functional layer mentioned later on a polymer base material by application | coating, it is preferable that the surface treatment is given to both surfaces. Among these, in the present invention, it is preferable to use corona treatment or glow discharge treatment.
A preferred embodiment of the corona treatment is a corona treatment in a treatment strength range of 150 to 500 J / m 2 at an output of 0.1 to 3.0 kw / electrode 1 m (representing an output per 1 m of electrode) with respect to the polymer substrate. It is the aspect which gives.
In the corona treatment, the output is more preferably 0.5 to 2.5 kw / electrode 1 m, and particularly preferably 0.7 to 1.7 kw / electrode 1 m. More preferably treated intensity range is 160 ~ 450J / m 2, and particularly preferably 170 ~ 360J / m 2.
 グロー放電処理は、低圧プラズマ処理又は真空プラズマ処理とも呼ばれる方法で、低圧雰囲気の気体(プラズマガス)中での放電によりプラズマを発生させ、基材表面を処理する方法である。本発明の処理で用いる低圧プラズマはプラズマガスの圧力が低い条件で生成する非平衡プラズマである。本発明の処理は、この低圧プラズマ雰囲気内に被処理フィルム(ポリマー基材)を置くことにより行われる。 Glow discharge treatment is a method called low-pressure plasma treatment or vacuum plasma treatment, and is a method of generating a plasma by discharge in a gas (plasma gas) in a low-pressure atmosphere to treat the substrate surface. The low-pressure plasma used in the process of the present invention is a non-equilibrium plasma generated under conditions where the plasma gas pressure is low. The treatment of the present invention is performed by placing a film to be treated (polymer substrate) in this low-pressure plasma atmosphere.
 本発明のグロー放電処理において、プラズマを発生させる方法としては、直流グロー放電、高周波放電、マイクロ波放電等の方法を利用することができる。放電に用いる電源は直流でも交流でもよい。交流を用いる場合は30Hz~20MHz程度の範囲が好ましい。
 交流を用いる場合には50又は60Hzの商用の周波数を用いてもよいし、10~50kHz程度の高周波を用いてもよい。また、13.56MHzの高周波を用いる方法も好ましい。
In the glow discharge treatment of the present invention, as a method for generating plasma, methods such as direct current glow discharge, high frequency discharge, and microwave discharge can be used. The power source used for discharging may be direct current or alternating current. When alternating current is used, a range of about 30 Hz to 20 MHz is preferable.
When alternating current is used, a commercial frequency of 50 or 60 Hz may be used, or a high frequency of about 10 to 50 kHz may be used. A method using a high frequency of 13.56 MHz is also preferable.
 本発明のグロー放電処理で用いるプラズマガスとして、酸素ガス、窒素ガス、水蒸気ガス、アルゴンガス、ヘリウムガス等の無機ガスを使用することができ、特に、酸素ガス、または、酸素ガスとアルゴンガスとの混合ガスが好ましい。具体的には、酸素ガスとアルゴンガスとの混合ガスを使用することが望ましい。酸素ガスとアルゴンガスを用いる場合、両者の比率としては、分圧比で酸素ガス:アルゴンガス=100:0~30:70位、より好ましくは、90:10~70:30位が好ましい。また、特に気体を処理容器に導入せず、リークにより処理容器に入る大気や被処理物から出る水蒸気などの気体をプラズマガスとして用いる方法も好ましい。 As the plasma gas used in the glow discharge treatment of the present invention, an inorganic gas such as oxygen gas, nitrogen gas, water vapor gas, argon gas, helium gas can be used, and in particular, oxygen gas or oxygen gas and argon gas The mixed gas is preferable. Specifically, it is desirable to use a mixed gas of oxygen gas and argon gas. When oxygen gas and argon gas are used, the ratio between the two is preferably oxygen gas: argon gas = 100: 0 to 30:70, more preferably 90:10 to 70:30, as a partial pressure ratio. In addition, a method in which a gas such as water entering the processing container due to a leak or water vapor coming out of the object to be processed is used as the plasma gas without introducing a gas into the processing container.
 プラズマガスの圧力としては、非平衡プラズマ条件が達成される低圧が必要である。具体的なプラズマガスの圧力としては、0.005~10Torr(0.666~1333Pa)、より好ましくは0.008~3Torr(1.067~400Pa)程度の範囲が好ましい。プラズマガスの圧力が0.666Pa以上であれば接着性改良効果が充分となり、1333Pa以下であると電流の増大が抑制され、放電が安定する。 The plasma gas pressure needs to be low enough to achieve non-equilibrium plasma conditions. The specific plasma gas pressure is preferably in the range of 0.005 to 10 Torr (0.666 to 1333 Pa), more preferably about 0.008 to 3 Torr (1.067 to 400 Pa). If the pressure of the plasma gas is 0.666 Pa or more, the effect of improving adhesiveness is sufficient, and if it is 1333 Pa or less, the increase in current is suppressed and the discharge is stabilized.
 プラズマ出力としては、処理容器の形状や大きさ、電極の形状などにより一概には言えないが、100~2500W程度、より好ましくは、500~1500W程度が好ましい。
 本発明のグロー放電処理の処理時間は0.05~100秒、より好ましくは0.5~30秒程度が好ましい。処理時間が0.05秒以上であれば接着性改良効果が充分となり、100秒以下であれば被処理フィルムの変形や着色等の問題を防ぐことができる。
The plasma output cannot be generally specified depending on the shape and size of the processing container and the shape of the electrode, but is preferably about 100 to 2500 W, more preferably about 500 to 1500 W.
The treatment time of the glow discharge treatment of the present invention is preferably 0.05 to 100 seconds, more preferably about 0.5 to 30 seconds. If the treatment time is 0.05 seconds or more, the effect of improving adhesiveness is sufficient, and if it is 100 seconds or less, problems such as deformation and coloring of the film to be treated can be prevented.
 本発明のグロー放電処理の放電処理強度はプラズマ出力と処理時間によるが、0.01~10kV・A・分/mの範囲が好ましく、0.1~7kV・A・分/mがより好ましい。
 放電処理強度を0.01kV・A・分/m以上とすることで充分な接着性改良効果が得られ、10kV・A・分/m以下とすることで被処理フィルムの変形や着色といった問題を避けることができる。
Discharge treatment intensity of the glow discharge treatment of the present invention will depend on the plasma power and treatment time, preferably in the range of 0.01 ~ 10kV · A · min / m 2, 0.1 ~ 7kV · A · min / m 2 Gayori preferable.
Discharge treatment intensity that is sufficient adhesion improving effect of the 0.01 kV · A · min / m 2 or more is obtained, and such deformation and coloration of the processed film by a 10 kV · A · min / m 2 or less You can avoid problems.
 本発明のグロー放電処理では、あらかじめ被処理フィルムを加熱しておくことも好ましい。この方法により、加熱を行わなかった場合に比べ、短時間で良好な接着性が得られる。加熱の温度は40℃~被処理フィルムの軟化温度+20℃の範囲が好ましく、70℃~被処理フィルムの軟化温度の範囲がより好ましい。加熱温度を40℃以上とすることで充分な接着性の改良効果が得られる。また、加熱温度を被処理フィルムの軟化温度以下とすることで処理中に良好なフィルムの取り扱い性が確保できる。
 真空中で被処理フィルムの温度を上げる具体的方法としては、赤外線ヒーターによる加熱、熱ロールに接触させることによる加熱などが挙げられる。
In the glow discharge treatment of the present invention, it is also preferable to heat the film to be treated in advance. By this method, better adhesiveness can be obtained in a shorter time than when heating is not performed. The heating temperature is preferably in the range of 40 ° C. to the softening temperature of the film to be treated + 20 ° C., more preferably in the range of 70 ° C. to the softening temperature of the film to be processed. By setting the heating temperature to 40 ° C. or higher, a sufficient adhesive improvement effect can be obtained. Moreover, the handleability of a favorable film is securable during a process by making heating temperature below into the softening temperature of a to-be-processed film.
Specific methods for raising the temperature of the film to be treated in vacuum include heating with an infrared heater, heating by contacting with a hot roll, and the like.
 本発明のポリマー基材は、末端封止剤を含んでもよく、具体的には、ポリエステル樹脂とポリエステル樹脂の全質量に対して0.1~10質量%の末端封止剤を含むことができる。ポリマー基材を構成するポリエステル樹脂の全質量に対する末端封止剤の上記添加量はより好ましくは0.2~5質量%、さらに好ましくは0.3~2質量%である。 The polymer base material of the present invention may contain an end-capping agent. Specifically, the polymer base material may contain 0.1 to 10% by mass of the end-capping agent with respect to the total mass of the polyester resin and the polyester resin. . The amount of the end-capping agent added relative to the total mass of the polyester resin constituting the polymer substrate is more preferably 0.2 to 5% by mass, still more preferably 0.3 to 2% by mass.
 ポリエステルの加水分解は、末端カルボン酸等から生じるHの触媒効果により加速されるため、耐加水分解性(耐候性)を向上させるには、末端カルボン酸と反応する末端封止剤を添加することが有効である。
 末端封止剤が上記範囲未満では耐候性向上効果が発現しにくく、上記範囲を超えるとポリエステルに対し可塑剤として作用し、力学強度、耐熱性が低下し易い。
Since the hydrolysis of the polyester is accelerated by the catalytic effect of H + generated from the terminal carboxylic acid or the like, an end-capping agent that reacts with the terminal carboxylic acid is added to improve the hydrolysis resistance (weather resistance). It is effective.
If the end-capping agent is less than the above range, the effect of improving the weather resistance is hardly exhibited.
 末端封止剤としては、エポキシ化合物、カルボジイミド化合物、オキサゾリン化合物、カーボネート化合物等が挙げられるが、PETと親和性が高く末端封止能の高いカルボジイミドが好ましい。 Examples of the end capping agent include epoxy compounds, carbodiimide compounds, oxazoline compounds, carbonate compounds, etc., but carbodiimide having high affinity with PET and high end capping ability is preferable.
 末端封止剤(特にカルボジイミド末端封止剤)は高分子量であることが好ましい。これにより溶融製膜中の揮散を低減できる。分子量は200~10万が好ましく、より好ましくは2000~8万、さらに好ましくは1万~5万である。末端封止剤(特にカルボジイミド末端封止剤)の分子量が上記範囲内であればポリエステル中に均一分散し易く耐候性改良効果を充分に発現し易くなり、また、押出し、製膜中に揮散し難く、耐候性向上効果を発現し易くなる。
 なお、末端封止剤の分子量は、重量平均分子量を意味する。
It is preferable that terminal blocker (especially carbodiimide terminal blocker) is high molecular weight. This can reduce volatilization during melt film formation. The molecular weight is preferably 200 to 100,000, more preferably 2000 to 80,000, still more preferably 10,000 to 50,000. If the molecular weight of the end-capping agent (especially carbodiimide end-capping agent) is within the above range, it is easy to uniformly disperse in the polyester, and it is easy to fully express the weather resistance improving effect. It is difficult and it becomes easy to express an effect of improving weather resistance.
In addition, the molecular weight of terminal blocker means a weight average molecular weight.
カルボジイミド系末端封止剤:
 カルボジイミド基を有するカルボジイミド化合物は、一官能性カルボジイミドと多官能性カルボジイミドがあり、一官能性カルボジイミドとしては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミドおよびジ-β-ナフチルカルボジイミドなどが挙げられる。特に好ましくは、ジシクロヘキシルカルボジイミドやジイソプロピルカルボジイミドである。
Carbodiimide end-capping agent:
The carbodiimide compound having a carbodiimide group includes a monofunctional carbodiimide and a polyfunctional carbodiimide. Examples of the monofunctional carbodiimide include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, and diphenylcarbodiimide. , Di-t-butylcarbodiimide, di-β-naphthylcarbodiimide, and the like. Particularly preferred are dicyclohexylcarbodiimide and diisopropylcarbodiimide.
 また、多官能性カルボジイミドとしては、重合度3~15のカルボジイミドが好ましく用いられる。具体的には、1,5-ナフタレンカルボジイミド、4,4’-ジフェニルメタンカルボジイミド、4,4’-ジフェニルジメチルメタンカルボジイミド、1,3-フェニレンカルボジイミド、1,4-フェニレンジイソシアネート、2,4-トリレンカルボジイミド、2,6-トリレンカルボジイミド、2,4-トリレンカルボジイミドと2,6-トリレンカルボジイミドの混合物、ヘキサメチレンカルボジイミド、シクロヘキサン-1,4-カルボジイミド、キシリレンカルボジイミド、イソホロンカルボジイミド、イソホロンカルボジイミド、ジシクロヘキシルメタン-4,4’-カルボジイミド、メチルシクロヘキサンカルボジイミド、テトラメチルキシリレンカルボジイミド、2,6-ジイソプロピルフェニルカルボジイミドおよび1,3,5-トリイソプロピルベンゼン-2,4-カルボジイミドなどを例示することができる。 As the polyfunctional carbodiimide, carbodiimide having a polymerization degree of 3 to 15 is preferably used. Specifically, 1,5-naphthalene carbodiimide, 4,4′-diphenylmethane carbodiimide, 4,4′-diphenyldimethylmethane carbodiimide, 1,3-phenylene carbodiimide, 1,4-phenylene diisocyanate, 2,4-tolylene Carbodiimide, 2,6-tolylene carbodiimide, mixture of 2,4-tolylene carbodiimide and 2,6-tolylene carbodiimide, hexamethylene carbodiimide, cyclohexane-1,4-carbodiimide, xylylene carbodiimide, isophorone carbodiimide, isophorone carbodiimide, Dicyclohexylmethane-4,4′-carbodiimide, methylcyclohexanecarbodiimide, tetramethylxylylene carbodiimide, 2,6-diisopropylphenylcarbodiimide and , And the like can be exemplified 3,5-triisopropyl-2,4-carbodiimide.
 カルボジイミド化合物は、熱分解によりイソシアネート系ガスが発生するため、耐熱性の高いカルボジイミド化合物が好ましい。耐熱性を高めるためには、分子量(重合度)が高いほど好ましく、より好ましくはカルボジイミド化合物の末端を耐熱性の高い構造にすることが好ましい。また、一度熱分解を起こすとさらなる熱分解を起こし易くなるため、ポリエステルの押出温度をなるべく低温下にするなどの工夫が必要である。 The carbodiimide compound is preferably a carbodiimide compound having high heat resistance because an isocyanate gas is generated by thermal decomposition. In order to improve heat resistance, it is preferable that the molecular weight (degree of polymerization) is high, and it is more preferable that the terminal of the carbodiimide compound has a structure with high heat resistance. Further, once thermal decomposition occurs, further thermal decomposition is likely to occur. Therefore, it is necessary to devise measures such as setting the extrusion temperature of the polyester as low as possible.
 末端封止剤のカルボジイミドは、環状構造を持つもの(例えば、特開2011-153209号公報に記載のもの)も好ましい。これらは低分子量でも上記高分子量カルボジイミド同等の効果を発現する。これはポリエステルの末端カルボン酸と環状のカルボジイミドが開環反応し、一方がこのポリエステルと反応、開環した他方が他のポリエステルと反応し高分子量化するため、イソシアネート系ガスが発生することを抑制するためである。 The terminal blocker carbodiimide preferably has a cyclic structure (for example, those described in JP-A-2011-153209). These exhibit the same effect as the above high molecular weight carbodiimide even at low molecular weight. This is because the terminal carboxylic acid of the polyester and the cyclic carbodiimide undergo a ring-opening reaction, one reacts with this polyester, and the other with the ring-opening reacts with another polyester to increase the molecular weight, thus suppressing the generation of isocyanate gas. It is to do.
 これらの環状構造を持つものの中でも、本発明では、末端封止剤が、カルボジイミド基を有し、その第一窒素と第二窒素とが結合基により結合されている環状構造を含むカルボジイミド化合物であることが好ましい。
 さらに、末端封止剤は、芳香環に隣接したカルボジイミド基を少なくとも1個有し、芳香環に隣接したカルボジイミド基の第一窒素と第二窒素とが結合基により結合されている環状構造を含むカルボジイミド(芳香族環状カルボジイミドとも言う)であることがより好ましい。
 芳香族環状カルボジイミドは、環状構造を複数有していてもよい。
 芳香族環状カルボジイミドは分子内に2つ以上のカルボジイミド基の第一窒素と第二窒素とが連結基により結合した環構造を有さない芳香族カルボジイミドであること、すなわち単環であるものも好ましく用いることができる。
Among those having a cyclic structure, in the present invention, the terminal blocking agent is a carbodiimide compound having a carbodiimide group and a cyclic structure in which the first nitrogen and the second nitrogen are bonded by a bonding group. It is preferable.
Further, the end capping agent has a cyclic structure in which at least one carbodiimide group adjacent to the aromatic ring is present, and the first nitrogen and the second nitrogen of the carbodiimide group adjacent to the aromatic ring are bonded by a bonding group. More preferred is carbodiimide (also referred to as aromatic cyclic carbodiimide).
The aromatic cyclic carbodiimide may have a plurality of cyclic structures.
The aromatic cyclic carbodiimide is preferably an aromatic carbodiimide having no ring structure in which the first nitrogen and the second nitrogen of two or more carbodiimide groups are bonded by a linking group in the molecule, that is, a monocyclic ring. Can be used.
 環状構造は、カルボジイミド基(-N=C=N-)を1個有しその第一窒素と第二窒素とが結合基により結合されている。一つの環状構造中には、1個のカルボジイミド基のみを有するが、例えば、スピロ環など、分子中に複数の環状構造を有する場合にはスピロ原子に結合するそれぞれの環状構造中に1個のカルボジイミド基を有していれば、化合物として複数のカルボジイミド基を有していてよいことはいうまでもない。環状構造中の原子数は、好ましくは8~50、より好ましくは10~30、さらに好ましくは10~20、特に、10~15が好ましい。 The cyclic structure has one carbodiimide group (—N═C═N—), and the first nitrogen and the second nitrogen are bonded by a bonding group. One cyclic structure has only one carbodiimide group. For example, when there are a plurality of cyclic structures in the molecule, such as a spiro ring, one cyclic structure bonded to a spiro atom is included in each cyclic structure. Needless to say, the compound may have a plurality of carbodiimide groups as long as it has a carbodiimide group. The number of atoms in the cyclic structure is preferably 8 to 50, more preferably 10 to 30, further preferably 10 to 20, and particularly preferably 10 to 15.
 ここで、環状構造中の原子数とは、環状構造を直接構成する原子の数を意味し、例えば、8員環であれば8、50員環であれば50である。環状構造中の原子数が8より小さいと、環状カルボジイミド化合物の安定性が低下して、保管、使用が困難となる場合があるためである。また反応性の観点からは環員数の上限値に関しては特別の制限はないが、50を超える原子数の環状カルボジイミド化合物は合成上困難となり、コストが大きく上昇する場合が発生する。かかる観点より環状構造中の原子数は好ましくは、10~30、より好ましくは10~20、特に好ましくは10~15の範囲が選択される。 Here, the number of atoms in the cyclic structure means the number of atoms directly constituting the cyclic structure, and is, for example, 8 for an 8-membered ring and 50 for a 50-membered ring. This is because if the number of atoms in the cyclic structure is smaller than 8, the stability of the cyclic carbodiimide compound is lowered, and it may be difficult to store and use. From the viewpoint of reactivity, the upper limit of the number of ring members is not particularly limited, but cyclic carbodiimide compounds having more than 50 atoms are difficult to synthesize, and the cost may increase significantly. From this viewpoint, the number of atoms in the cyclic structure is preferably selected in the range of 10 to 30, more preferably 10 to 20, and particularly preferably 10 to 15.
 環状構造を持つカルボジイミド系末端封止剤の具体例としては、以下の化合物が挙げられる。但し、本発明は以下の具体例により限定されるものではない。 Specific examples of the carbodiimide end-capping agent having a cyclic structure include the following compounds. However, the present invention is not limited to the following specific examples.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
エポキシ系末端封止剤:
 また、エポキシ化合物の好ましい例としては、グリシジルエステル化合物やグリシジルエーテル化合物などが挙げられる。
Epoxy end sealant:
Preferred examples of the epoxy compound include glycidyl ester compounds and glycidyl ether compounds.
 グリシジルエステル化合物の具体例としては、安息香酸グリシジルエステル、t-Bu-安息香酸グリシジルエステル、P-トルイル酸グリシジルエステル、シクロヘキサンカルボン酸グリシジルエステル、ペラルゴン酸グリシジルエステル、ステアリン酸グリシジルエステル、ラウリン酸グリシジルエステル、パルミチン酸グリシジルエステル、ベヘン酸グリシジルエステル、バーサティク酸グリシジルエステル、オレイン酸グリシジルエステル、リノール酸グリシジルエステル、リノレイン酸グリシジルエステル、ベヘノール酸グリシジルエステル、ステアロール酸グリシジルエステル、テレフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、フタル酸ジグリシジルエステル、ナフタレンジカルボン酸ジグリシジルエステル、メチルテレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、コハク酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、ドデカンジオン酸ジグリシジルエステル、オクタデカンジカルボン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステルおよびピロメリット酸テトラグリシジルエステルなどを挙げられ、これらは1種または2種以上を用いることができる。 Specific examples of glycidyl ester compounds include benzoic acid glycidyl ester, t-Bu-benzoic acid glycidyl ester, P-toluic acid glycidyl ester, cyclohexanecarboxylic acid glycidyl ester, pelargonic acid glycidyl ester, stearic acid glycidyl ester, lauric acid glycidyl ester , Glycidyl palmitate, glycidyl behenate, glycidyl versatate, glycidyl oleate, glycidyl linoleate, glycidyl linolein, glycidyl behenol, glycidyl stearol, diglycidyl terephthalate, isophthalic acid Diglycidyl ester, diglycidyl phthalate, diglycidyl naphthalene dicarboxylate Stell, methyl terephthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, adipic acid diglycidyl ester, succinic acid diglycidyl ester, sebacic acid diglycidyl ester, dodecane Examples thereof include diglycidyl diacid, octadecanedicarboxylic acid diglycidyl ester, trimellitic acid triglycidyl ester, and pyromellitic acid tetraglycidyl ester. These may be used alone or in combination of two or more.
 また、グリシジルエーテル化合物の具体例としては、フェニルグリシジルエ-テル、O-フェニルグリシジルエ-テル、1,4-ビス(β,γ-エポキシプロポキシ)ブタン、1,6-ビス(β,γ-エポキシプロポキシ)ヘキサン、1,4-ビス(β,γ-エポキシプロポキシ)ベンゼン、1-(β,γ-エポキシプロポキシ)-2-エトキシエタン、1-(β,γ-エポキシプロポキシ)-2-ベンジルオキシエタン、2,2-ビス-[р-(β,γ-エポキシプロポキシ)フェニル]プロパンおよび2,2-ビス-(4-ヒドロキシフェニル)プロパンや2,2-ビス-(4-ヒドロキシフェニル)メタンなどのビスフェノールとエピクロルヒドリンの反応で得られるビスグリシジルポリエーテルなどが挙げられ、これらは1種または2種以上を用いることができる。 Specific examples of the glycidyl ether compound include phenyl glycidyl ether, O-phenyl glycidyl ether, 1,4-bis (β, γ-epoxypropoxy) butane, 1,6-bis (β, γ- Epoxypropoxy) hexane, 1,4-bis (β, γ-epoxypropoxy) benzene, 1- (β, γ-epoxypropoxy) -2-ethoxyethane, 1- (β, γ-epoxypropoxy) -2-benzyl Oxyethane, 2,2-bis- [р- (β, γ-epoxypropoxy) phenyl] propane and 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxyphenyl) Examples include bisglycidyl polyether obtained by the reaction of bisphenol such as methane and epichlorohydrin, and these use one kind or two or more kinds. It is possible.
オキサゾリン系末端封止剤:
 また、オキサゾリン化合物としては、ビスオキサゾリン化合物が好ましく、具体的には、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(4,4-ジメチル-2-オキサゾリン)、2,2’-ビス(4-エチル-2-オキサゾリン)、2,2’-ビス(4,4’-ジエチル-2-オキサゾリン)、2,2’-ビス(4-プロピル-2-オキサゾリン)、2,2’-ビス(4-ブチル-2-オキサゾリン)、2,2’-ビス(4-ヘキシル-2-オキサゾリン)、2,2’-ビス(4-フェニル-2-オキサゾリン)、2,2’-ビス(4-シクロヘキシル-2-オキサゾリン)、2,2’-ビス(4-ベンジル-2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-o-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4,4-ジメチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4,4-ジメチル-2-オキサゾリン)、2,2’-エチレンビス(2-オキサゾリン)、2,2’-テトラメチレンビス(2-オキサゾリン)、2,2’-ヘキサメチレンビス(2-オキサゾリン)、2,2’-オクタメチレンビス(2-オキサゾリン)、2,2’-デカメチレンビス(2-オキサゾリン)、2,2’-エチレンビス(4-メチル-2-オキサゾリン)、2,2’-テトラメチレンビス(4,4-ジメチル-2-オキサゾリン)、2,2’-9,9’-ジフェノキシエタンビス(2-オキサゾリン)、2,2’-シクロヘキシレンビス(2-オキサゾリン)および2,2’-ジフェニレンビス(2-オキサゾリン)等を例示することができる。これらの中では、ポリエステルとの反応性の観点から、2,2’-ビス(2-オキサゾリン)が最も好ましく用いられる。さらに、上記で挙げたビスオキサゾリン化合物は本発明の目的を達成する限り、一種を単独で用いても、二種以上を併用してもどちらでもよい。
Oxazoline-based end-capping agent:
The oxazoline compound is preferably a bisoxazoline compound, specifically, 2,2′-bis (2-oxazoline), 2,2′-bis (4-methyl-2-oxazoline), 2,2 ′. -Bis (4,4-dimethyl-2-oxazoline), 2,2'-bis (4-ethyl-2-oxazoline), 2,2'-bis (4,4'-diethyl-2-oxazoline), 2 , 2'-bis (4-propyl-2-oxazoline), 2,2'-bis (4-butyl-2-oxazoline), 2,2'-bis (4-hexyl-2-oxazoline), 2,2 '-Bis (4-phenyl-2-oxazoline), 2,2'-bis (4-cyclohexyl-2-oxazoline), 2,2'-bis (4-benzyl-2-oxazoline), 2,2'- p-phenylenebis (2-oxazoline), 2,2 ' m-phenylenebis (2-oxazoline), 2,2'-o-phenylenebis (2-oxazoline), 2,2'-p-phenylenebis (4-methyl-2-oxazoline), 2,2'-p -Phenylenebis (4,4-dimethyl-2-oxazoline), 2,2'-m-phenylenebis (4-methyl-2-oxazoline), 2,2'-m-phenylenebis (4,4-dimethyl-) 2-oxazoline), 2,2′-ethylenebis (2-oxazoline), 2,2′-tetramethylenebis (2-oxazoline), 2,2′-hexamethylenebis (2-oxazoline), 2,2 ′ -Octamethylenebis (2-oxazoline), 2,2'-decamethylenebis (2-oxazoline), 2,2'-ethylenebis (4-methyl-2-oxazoline), 2,2'-tetramethylenebis ( 4, 4-dimethyl-2-oxazoline), 2,2'-9,9'-diphenoxyethanebis (2-oxazoline), 2,2'-cyclohexylenebis (2-oxazoline) and 2,2'-diphenylene Examples thereof include bis (2-oxazoline). Of these, 2,2′-bis (2-oxazoline) is most preferably used from the viewpoint of reactivity with polyester. Furthermore, as long as the objective of this invention is achieved, the bisoxazoline compound mentioned above may be used individually by 1 type, or may use 2 or more types together.
 このような末端封止剤はポリエステルフィルム中に練り込むことが必要である。即ちポリエステル分子と直接反応させないと上記効果が得られない。PET上の塗布層に添加しても、ポリエステルと末端封止剤は反応しないためである。 It is necessary to knead such a terminal blocker into the polyester film. That is, the above-described effect cannot be obtained unless the polyester molecule is directly reacted. This is because the polyester and the end-capping agent do not react even when added to the coating layer on PET.
 本発明では、ポリエステルフィルム(ポリマー基材)中に無機粒子または有機粒子を混合することができる。これにより光の反射率(白色度)を向上させ太陽電池の発電効率を上げることができる。 In the present invention, inorganic particles or organic particles can be mixed in the polyester film (polymer substrate). Thereby, the reflectance (whiteness) of light can be improved and the power generation efficiency of a solar cell can be raised.
 ポリエステルフィルムに含まれる上記粒子の平均粒径は0.1~10μmが好ましく、より好ましくは0.1~5μm、さらに好ましくは0.15~1μmの粒子であり、含有量はフィルム全質量に対して、0~50質量%、好ましくは1~10質量%、さらに好ましくは2~5質量%含まれる。
 粒子の平均粒径が0.1~10μmであれば、添加量を上げなくてもフィルムの白色度を50以上とすることができる。
 また、粒子の添加量が1質量%以上であれば、白色度を50以上とすることが容易となり、50質量%以下であればフィルム重量の増大を抑制し、加工などでの取り扱いが容易となる。なお、ここで云う平均粒径、含有量は、基材となるフィルムが多層構造の場合、各層の平均値を指す。即ち、(各層の粒子径、含有量)×(各層の厚み/全層の厚み)を層ごとに算出し、総和としたものである。
The average particle size of the particles contained in the polyester film is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm, and still more preferably 0.15 to 1 μm, and the content is based on the total mass of the film. 0 to 50% by mass, preferably 1 to 10% by mass, and more preferably 2 to 5% by mass.
If the average particle size of the particles is 0.1 to 10 μm, the whiteness of the film can be made 50 or more without increasing the addition amount.
Further, if the addition amount of the particles is 1% by mass or more, it becomes easy to set the whiteness to 50 or more, and if it is 50% by mass or less, an increase in the film weight is suppressed and handling in processing and the like is easy. Become. In addition, the average particle diameter and content mentioned here refer to the average value of each layer when the film used as the substrate has a multilayer structure. That is, (particle diameter of each layer, content) × (thickness of each layer / thickness of all layers) is calculated for each layer, and the sum is obtained.
 なお、本発明のポリマー基材に含まれる粒子の平均粒径は電顕法により求める。具体的には、以下の方法による。
 粒子を走査型電子顕微鏡で観察し、粒子の大きさに応じて適宜倍率を変え、写真撮影したものを拡大コピーする。次いで、ランダムに選んだ少なくとも200個以上の粒子について、各粒子の外周をトレースする。画像解析装置にてこれらのトレース像から粒子の円相当径を測定し、それらの平均値を平均粒径とする。
In addition, the average particle diameter of the particle | grains contained in the polymer base material of this invention is calculated | required by the electron microscope method. Specifically, the following method is used.
The particles are observed with a scanning electron microscope, the magnification is appropriately changed according to the size of the particles, and the photographed image is enlarged and copied. Next, the outer circumference of each particle is traced for at least 200 particles randomly selected. The equivalent circle diameters of the particles are measured from these trace images with an image analysis apparatus, and the average value thereof is taken as the average particle diameter.
 粒子は無機粒子または有機粒子いずれでもよく、両者併用しても良い。これにより光の反射率を向上させ太陽電池の発電効率を上げることができる。好適に使用される無機粒子としては、例えば、湿式および乾式シリカ、コロイダルシリカ、炭酸カルシウム、珪酸アルミ、リン酸カルシウム、アルミナ、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛(亜鉛華)、酸化アンチモン、酸化セリウム、酸化ジルコニウム、酸化錫、酸化ランタン、酸化マグネシウム、炭酸バリウム、炭酸亜鉛、塩基性炭酸鉛(鉛白)、硫酸バリウム、硫酸カルシウム、硫酸鉛、硫化亜鉛、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウムおよびフッ化カルシウム等を使用することができるが、特に二酸化チタン、硫酸バリウムが好ましい。なお、酸化チタンはアナターゼ型、ルチル型の何れでもよい。また、粒子表面にアルミナやシリカ等の無機処理を施してもよいし、シリコン系あるいはアルコール系等の有機処理を施してもよい。 The particles may be either inorganic particles or organic particles, or a combination of both. Thereby, the reflectance of light can be improved and the power generation efficiency of a solar cell can be raised. Suitable inorganic particles include, for example, wet and dry silica, colloidal silica, calcium carbonate, aluminum silicate, calcium phosphate, alumina, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide (zinc white), antimony oxide, oxidation Cerium, zirconium oxide, tin oxide, lanthanum oxide, magnesium oxide, barium carbonate, zinc carbonate, basic lead carbonate (lead white), barium sulfate, calcium sulfate, lead sulfate, zinc sulfide, mica, titanium mica, talc, clay, Kaolin, lithium fluoride, calcium fluoride, and the like can be used, and titanium dioxide and barium sulfate are particularly preferable. The titanium oxide may be either anatase type or rutile type. The particle surface may be subjected to inorganic treatment such as alumina or silica, or may be subjected to organic treatment such as silicon or alcohol.
 これらの粒子のなかでも二酸化チタンが好ましく、ポリマー基材は二酸化チタンを含むことにより光照射下でも優れた耐久性を奏することができる。具体的には、63℃、50%Rh、照射強度100mW/cmで100時間UV照射した場合、破断伸び保持率が好ましくは35%以上、より好ましくは40%以上である。このように光照射によっても本発明のポリマー基材は光分解や劣化が抑制されるため、屋外で用いられる太陽電池の裏面保護膜としてより好適である。 Among these particles, titanium dioxide is preferable, and the polymer base material can exhibit excellent durability even under light irradiation by containing titanium dioxide. Specifically, when UV irradiation is performed at 63 ° C., 50% Rh, irradiation intensity of 100 mW / cm 2 for 100 hours, the elongation at break is preferably 35% or more, more preferably 40% or more. As described above, the polymer base material of the present invention is more suitable as a back surface protective film of a solar cell used outdoors because photodecomposition and deterioration are suppressed even by light irradiation.
 二酸化チタンにはルチル型とアナターゼ型が存在するが、本発明のポリマー基材にはルチル型を主体とする二酸化チタン粒子を添加することが好ましい。アナターゼ型は紫外線の分光反射率が非常に大きいのに対し、ルチル型は紫外線の吸収率が大きい(分光反射率が小さい)という特性を有している。本発明者は、二酸化チタンの結晶形態におけるこうした分光特性の違いに着目し、ルチル型の紫外線吸収性能を利用することで、太陽電池裏面保護用ポリエステルフィルムにおいて、耐光性を向上させることができる。これにより他の紫外線吸収剤を実質的に添加しなくても光照射下でのフィルム耐久性に優れる。そのため、紫外線吸収剤のブリードアウトによる汚染や密着性の低下のような問題が生じにくい。 Titanium dioxide includes rutile type and anatase type, but it is preferable to add titanium dioxide particles mainly composed of rutile type to the polymer substrate of the present invention. The anatase type has a very high spectral reflectance of ultraviolet rays, whereas the rutile type has a characteristic that the absorption rate of ultraviolet rays is large (spectral reflectance is small). The present inventor pays attention to such a difference in spectral characteristics in the crystal form of titanium dioxide, and can improve the light resistance in the polyester film for protecting the back surface of the solar cell by utilizing the rutile-type ultraviolet absorption performance. Thereby, it is excellent in the film durability under light irradiation, even if it does not add another ultraviolet absorber substantially. For this reason, problems such as contamination due to bleeding out of the ultraviolet absorber and a decrease in adhesion are unlikely to occur.
 なお、上記の通り、本発明に係る二酸化チタン粒子はルチル型を主体とするものであるが、ここでいう「主体」とは、全二酸化チタン粒子中のルチル型二酸化チタン量が50質量%を超えていることを意味する。
 また、全二酸化チタン粒子中のアナターゼ型二酸化チタン量が10質量%以下であることが好ましい。より好ましくは5質量%以下、特に好ましくは0質量%である。アナターゼ型二酸化チタンの含有量が上記上限値を超えると、全二酸化チタン粒子中に占めるルチル型二酸化チタン量が少なくなるために紫外線吸収性能が不十分となる場合がある他、アナターゼ型二酸化チタンは光触媒作用が強いため、この作用によっても耐光性が低下する傾向にある。ルチル型二酸化チタンとアナターゼ型二酸化チタンとは、X線構造回折や分光吸収特性により区別することができる。
In addition, as described above, the titanium dioxide particles according to the present invention are mainly composed of rutile type, but the term “main body” as used herein means that the amount of rutile type titanium dioxide in all titanium dioxide particles is 50% by mass. It means that it is over.
Moreover, it is preferable that the amount of anatase type titanium dioxide in all the titanium dioxide particles is 10 mass% or less. More preferably, it is 5 mass% or less, Most preferably, it is 0 mass%. If the content of anatase type titanium dioxide exceeds the above upper limit, the amount of rutile type titanium dioxide in the total titanium dioxide particles may be reduced, resulting in insufficient ultraviolet absorption performance. Since the photocatalytic action is strong, the light resistance also tends to be lowered by this action. Rutile titanium dioxide and anatase titanium dioxide can be distinguished by X-ray structure diffraction and spectral absorption characteristics.
 本発明のルチル型二酸化チタン粒子は、粒子表面にアルミナやシリカ等の無機処理を施してもよいし、シリコン系あるいはアルコール系等の有機処理を施してもよい。ルチル型二酸化チタンは、ポリエステル組成物に配合する前に、精製プロセスを用いて、粒径調整、粗大粒子除去を行ってもよい。精製プロセスの工業的手段としては、粉砕手段で例えばジェットミル、ボールミルを適用することができ、分級手段としては、例えば乾式もしくは湿式の遠心分離を適用することができる。 The rutile titanium dioxide particles of the present invention may be subjected to an inorganic treatment such as alumina or silica on the particle surface, or an organic treatment such as silicon or alcohol. Rutile titanium dioxide may be subjected to particle size adjustment and coarse particle removal using a purification process before blending with the polyester composition. As industrial means of the purification process, for example, a jet mill or a ball mill can be applied as a pulverizing means, and as a classification means, for example, dry or wet centrifugation can be applied.
 本発明では有機粒子も使用できる。ポリエステル製膜中の熱に耐えるものが好ましく、例えば架橋型樹脂からなるものが用いられ、具体的にはジビニルベンゼンで架橋したポリスチレン等が用いられる。粒子のサイズや添加量は無機粒子の場合と同様である。
 フィルム中への粒子の添加は公知の方法を用いる方法として、従来から公知の各種の方法を用いることができる。その代表的な方法として、下記の方法を挙げることができる。
In the present invention, organic particles can also be used. Those that can withstand the heat in the polyester film are preferable, for example, those made of a cross-linked resin are used, and specifically, polystyrene cross-linked with divinylbenzene is used. The size and addition amount of the particles are the same as in the case of inorganic particles.
Various known methods can be used for adding particles to the film as a method using a known method. The following method can be mentioned as the typical method.
(A)ポリエチレンテレフタレート合成時のエステル交換反応もしくはエステル化反応終了前に粒子を添加、もしくは重縮合反応開始前に粒子を添加する方法。
(B)ポリエチレンテレフタレートに粒子を添加し、溶融混練する方法。
(C)上記(A)、(B)の方法において粒子を多量に添加したマスターペレット(またはマスターバッチ(MB)とも云う)を製造し、これらと粒子を含有しないポリエチレンテレフタレートとを混練して、所定量の粒子を含有させる方法。
(D)上記(C)のマスターペレットをそのまま使用する方法。
(A) A method of adding particles before the end of the ester exchange reaction or esterification reaction during the synthesis of polyethylene terephthalate, or adding the particles before the start of the polycondensation reaction.
(B) A method in which particles are added to polyethylene terephthalate and melt kneaded.
(C) Producing master pellets (or master batch (MB)) with a large amount of particles added in the methods (A) and (B), kneading these and polyethylene terephthalate containing no particles, A method of containing a predetermined amount of particles.
(D) The method of using the master pellet of said (C) as it is.
 この中で事前にポリエステル樹脂と粒子を押出機で混合しておくマスターバッチ法(MB法:上記(C))が好ましい。また、事前に乾燥させていないポリエステル樹脂と粒子を押出機に投入し、水分や空気などを脱気しながらMBを作製する方法を採用することもできる。さらに、好ましくは、事前に少しでも乾燥したポリエステル樹脂を用いてMBを作製する方が、ポリエステルの酸価上昇を抑えられる。この場合、脱気しながら押出する方法や、十分乾燥したポリエステル樹脂により脱気をせずに押出する方法などがあげられる。 Among these, a master batch method (MB method: (C) above) in which a polyester resin and particles are mixed in advance by an extruder is preferable. Further, it is possible to adopt a method in which a polyester resin and particles that have not been dried in advance are put into an extruder and MB is produced while moisture and air are deaerated. Furthermore, it is preferable to prepare an MB using a polyester resin that has been slightly dried in advance to suppress an increase in the acid value of the polyester. In this case, a method of extruding while degassing, a method of extruding without deaeration with a sufficiently dried polyester resin, and the like can be mentioned.
 例えば、MBを作製する場合は投入するポリエステル樹脂はあらかじめ乾燥により水分率を低減させることが好ましい。乾燥条件としては、好ましくは100~200℃、より好ましくは120~180℃において、1時間以上、より好ましくは3時間以上、さらに好ましくは6時間以上乾燥する。これにより、ポリエステル樹脂の水分量を好ましくは50ppm以下、より好ましくは30ppm以下になるように十分乾燥する。予備混合の方法は特に限定せず、バッチによる方法でもよいし、単軸もしくは二軸以上の混練押出機によっても良い。脱気しながらMBを作製する場合は、250℃~300℃、好ましくは270℃~280℃の温度でポリエステル樹脂を融解し、予備混練機に一つ、好ましくは2以上の脱気口を設け、0.05MPa以上、より好ましくは0.1MPa以上の連続吸引脱気を行い、混合機内の減圧を維持すること等の方法を採用することが好ましい。 For example, when preparing MB, it is preferable to reduce the moisture content of the polyester resin to be charged in advance by drying. The drying conditions are preferably 100 to 200 ° C., more preferably 120 to 180 ° C., for 1 hour or longer, more preferably 3 hours or longer, and even more preferably 6 hours or longer. Thereby, it is sufficiently dried so that the moisture content of the polyester resin is preferably 50 ppm or less, more preferably 30 ppm or less. The premixing method is not particularly limited, and may be a batch method or a single-screw or biaxial or more kneading extruder. When making MB while degassing, melt the polyester resin at a temperature of 250 ° C to 300 ° C, preferably 270 ° C to 280 ° C, and provide one, preferably two or more degassing ports in the pre-kneader. It is preferable to adopt a method such as performing continuous suction deaeration of 0.05 MPa or more, more preferably 0.1 MPa or more, and maintaining the reduced pressure in the mixer.
 本発明のポリマー基材は、内部に微細な空洞(ボイド)を多数含有してもよい。これにより、より高い白色度を好適に得ることができる。その場合の見かけ比重は0.7以上1.3以下、好ましくは0.9以上1.3以下、より好ましくは1.05以上1.2以下である。0.7未満では、フィルムに腰がなく太陽電池モジュール作製時の加工が困難になる。1.3を越えるとフィルム重量が大きいため太陽電池の軽量化を検討する場合の障害となる可能性がある。 The polymer base material of the present invention may contain many fine cavities (voids) inside. Thereby, higher whiteness can be suitably obtained. In that case, the apparent specific gravity is 0.7 or more and 1.3 or less, preferably 0.9 or more and 1.3 or less, more preferably 1.05 or more and 1.2 or less. If it is less than 0.7, the film is not elastic and processing at the time of producing the solar cell module becomes difficult. If it exceeds 1.3, the weight of the film is large, which may be an obstacle when considering the reduction of the weight of the solar cell.
 上記の微細な空洞は、粒子及び/又は後述のポリエステルに非相溶の熱可塑性樹脂に由来して形成することができる。なお、粒子もしくはポリエステルに非相溶の熱可塑性樹脂に由来する空洞とは粒子もしくは熱可塑性樹脂のまわりに空洞が存在することを言い、例えばフィルムの電子顕微鏡による断面写真などで確認することができる。 The fine cavities can be formed from particles and / or a thermoplastic resin incompatible with the polyester described below. In addition, the void derived from the thermoplastic resin incompatible with the particles or polyester means that there are voids around the particles or the thermoplastic resin, and can be confirmed by, for example, a cross-sectional photograph of the film using an electron microscope. .
 空洞形成のためにポリエステルフィルム中に添加する樹脂とは、ポリエステルと非相溶な樹脂が好ましく、これにより光を散乱させ光反射率を上げることができる。好ましい非相溶な樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテンのようなポリオレフィン樹脂、ポリスチレン樹脂、ポリアクリレート樹脂、ポリカーボネート樹脂、ポリアクリロニトリル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン系樹脂、セルロース系樹脂、およびフッ素系樹脂などが好ましく用いられる。これらの非相溶樹脂は、単独重合体であっても共重合体であってもよく、さらには2種以上の非相溶樹脂を併用してもよい。これらの中でも、表面張力の小さなポリプロピレンやポリメチルペンテンのようなポリオレフィン樹脂やポリスチレン系樹脂が好ましく、さらにはポリメチルペンテンが最も好ましい。ポリメチルペンテンは相対的にポリエステルとの表面張力差が大きく、かつ融点が高いため、ポリエステル製膜工程においてポリエステルとの親和性が低くボイド(空洞)を形成し易く、非相溶樹脂として特に好ましいものである。
 非相溶樹脂を含有する場合は、その量は、ポリエステルフィルム全体に対して0~30質量%であり、より好ましくは1~20質量%、さらに好ましくは2~15質量%の範囲である。含有量が上記範囲より少ない場合には、反射率が劣ったフィルムとなり、逆に含有量が上記範囲より多い場合には、フィルム全体の見かけ密度が下がりすぎるために、延伸時にフィルム破れ等が生じやすく、生産性が低下する場合がある。
The resin added to the polyester film for forming the voids is preferably a resin incompatible with the polyester, which can scatter light and increase the light reflectance. Preferred incompatible resins include polyolefin resins such as polyethylene, polypropylene, polybutene, polymethylpentene, polystyrene resins, polyacrylate resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, polysulfone resins, cellulose resins, And fluorine-based resins are preferably used. These incompatible resins may be homopolymers or copolymers, and two or more incompatible resins may be used in combination. Among these, polyolefin resins and polystyrene resins such as polypropylene and polymethylpentene having a low surface tension are preferable, and polymethylpentene is most preferable. Polymethylpentene has a relatively large difference in surface tension from polyester and a high melting point, so it has a low affinity with polyester in the polyester film-forming step, and is easy to form voids, which is particularly preferable as an incompatible resin. Is.
When the incompatible resin is contained, the amount thereof is 0 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass with respect to the entire polyester film. When the content is less than the above range, the film has poor reflectivity. Conversely, when the content is more than the above range, the apparent density of the entire film is too low, and film breakage occurs during stretching. It is easy and productivity may be reduced.
 粒子を添加する場合、粒子の平均粒径は0.1~10μmが好ましく、より好ましくは0.1~5μm、さらに好ましくは0.15~1μmの粒子である。この範囲内であれば高い反射率(白色度)が得られ、かつ、力学強度の低下が抑制される。粒子の含有量はフィルム全質量に対して、0~50質量%、好ましくは1~10質量%、さらに好ましくは2~5質量%含まれる。この範囲内であれば反射率(白色度)が高く、ボイドによる力学強度の低下が抑制される。好ましい粒子としてポリエステルと親和性の低いものが挙げられ、具体的には硫酸バリウム等が挙げられる。 When the particles are added, the average particle size of the particles is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm, and still more preferably 0.15 to 1 μm. Within this range, a high reflectance (whiteness) is obtained, and a decrease in mechanical strength is suppressed. The content of the particles is 0 to 50% by mass, preferably 1 to 10% by mass, and more preferably 2 to 5% by mass with respect to the total mass of the film. Within this range, the reflectance (whiteness) is high, and the reduction in mechanical strength due to voids is suppressed. Preferable particles include those having a low affinity with polyester, specifically, barium sulfate and the like.
 これらの白色ポリエステル、すなわち粒子含有、空洞形成ポリエステルフィルムは、単層または2層以上の多層からなる積層構成であっても構わない。積層構成としては、白色度の高い(ボイドや粒子の多い層)と白色度の低い層(ボイドや粒子の少ない層)を組み合わせることが好ましい。ボイドや粒子の高い層で光の反射効率を高くできるが、ボイド、粒子による力学強度の低下(脆化)が発生し易く、これを補うために白色度の低い層と組み合わせることが好ましい。このため白色度の高い層は外層に用いることが好ましく、片面に使用してもよく、両面に使用しても良い。また、二酸化チタンを粒子に用いた高白色層を外層に用いると、UV吸収能を有することから耐光性を向上する効果も有する。 These white polyesters, that is, a particle-containing and void-forming polyester film, may have a single layer or a laminated structure composed of two or more layers. As a laminated structure, it is preferable to combine a high whiteness (layer with many voids and particles) and a low whiteness (layer with few voids and particles). Light reflection efficiency can be increased with a layer having high voids or particles, but a decrease in mechanical strength (embrittlement) is likely to occur due to voids or particles, and it is preferable to combine with a layer with low whiteness to compensate for this. For this reason, a layer with high whiteness is preferably used for the outer layer, and may be used on one side or on both sides. Moreover, when the high white layer which used the titanium dioxide for the particle | grains is used for an outer layer, since it has UV absorption ability, it also has the effect of improving light resistance.
 白色度の高い層とは、粒子添加の場合、粒子量が5質量%以上50質量%以下のものが好ましく、より好ましくは6質量%以上20質量%以下がより好ましい。空洞形成の場合、白色度の高い層の見かけ比重は0.7以上1.2以下が好ましく、より好ましくは0.8以上1.1以下である。一方、白色度の低い層とは、粒子添加の場合、粒子量が0質量%以上5質量%未満のものが好ましく、より好ましくは1質量%以上4質量%以下がより好ましい。空洞形成の場合、白色度の低い層の見かけ比重は0.9以上1.4以下でかつ高白色層より高密度のものが好ましく、より好ましくは1.0以上1.3以下でかつ高白色層より高密度のものである。低白色層は粒子や空洞を含まないものでも構わない。 In the case of adding particles, the high whiteness layer preferably has a particle amount of 5% by mass to 50% by mass, more preferably 6% by mass to 20% by mass. In the case of forming a cavity, the apparent specific gravity of the high whiteness layer is preferably 0.7 or more and 1.2 or less, more preferably 0.8 or more and 1.1 or less. On the other hand, in the case of adding particles, the low whiteness layer preferably has a particle amount of 0% by mass to less than 5% by mass, more preferably 1% by mass to 4% by mass. In the case of cavity formation, the apparent specific gravity of the low whiteness layer is preferably 0.9 or more and 1.4 or less and higher density than the high white layer, more preferably 1.0 or more and 1.3 or less and high whiteness. It is denser than the layer. The low white layer may be free of particles or cavities.
 好ましい層構成として、高白色層/低白色層、高白色層/低白色層/高白色層、高白色層/低白色層/高白色層/低白色層、高白色層/低白色層/高白色層/低白色層/高白色層などが挙げられる。
 各層の厚み比は特に限定されるものではないが、各層の厚みは全層厚みの1%以上99%以下が好ましく、より好ましくは2%以上95%以下である。この範囲を超えるあるいは未満では上記反射効率アップ、耐光(UV)性付与の効果が得難い。ポリエステルフィルムの全層の厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、通常20~500μm、好ましくは25~300μmの範囲である。
 本発明におけるポリエステルフィルムの積層方法は、溶融押出機を2台または3台以上用いた、いわゆる共押出法が好ましく用いられる。
Preferred layer configurations include high white layer / low white layer, high white layer / low white layer / high white layer, high white layer / low white layer / high white layer / low white layer, high white layer / low white layer / high Examples include white layer / low white layer / high white layer.
The thickness ratio of each layer is not particularly limited, but the thickness of each layer is preferably 1% or more and 99% or less, more preferably 2% or more and 95% or less of the total layer thickness. Above or below this range, it is difficult to obtain the effects of increasing the reflection efficiency and imparting light resistance (UV). The thickness of all layers of the polyester film is not particularly limited as long as it can be formed as a film, but is usually 20 to 500 μm, preferably 25 to 300 μm.
As the method for laminating the polyester film in the present invention, a so-called coextrusion method using two or three or more melt extruders is preferably used.
 なお、本発明に於いて白色度を増すためにチオフェジイル等の蛍光増白剤を用いることも好ましい。好ましい添加量は0.01質量%以上1質量%以下であり、より好ましくは0.05質量%以上0.5質量%以下、さらに好ましくは0.1質量%以上0.3質量%以下である。この範囲未満では光線反射率向上の効果が得難く、この範囲を超えると押出しでの熱分解により黄変し反射率が低下する。このような蛍光増白剤としては、例えばイーストマンコダック社製OB-1等を用いることができる。 In the present invention, it is also preferable to use a fluorescent whitening agent such as thiofediyl in order to increase the whiteness. A preferable addition amount is 0.01% by mass or more and 1% by mass or less, more preferably 0.05% by mass or more and 0.5% by mass or less, and further preferably 0.1% by mass or more and 0.3% by mass or less. . If it is less than this range, it is difficult to obtain the effect of improving the light reflectivity, and if it exceeds this range, yellowing occurs due to thermal decomposition during extrusion and the reflectivity decreases. As such a fluorescent whitening agent, for example, OB-1 manufactured by Eastman Kodak Company can be used.
 本発明のポリマー基材として用い得る白色ポリエステルフィルムは、照度:100mW/cm、温度:60℃、相対湿度:50%RH、照射時間:48時間で紫外線照射した後の黄色み変化量(Δb値)が5未満であることが好ましい。Δb値はより好ましくは4未満であり、さらに好ましくは3未満である。これにより太陽光の照射を長時間受けたとしても色変化を少なくできる点で有用である。このような効果は、特に太陽電池モジュールのバックシート側から照射を受けた場合に顕著に現れる。 The white polyester film that can be used as the polymer substrate of the present invention has an illuminance of 100 mW / cm 2 , a temperature of 60 ° C., a relative humidity of 50% RH, an irradiation time of 48 hours, and a yellowish change amount (Δb Value) is preferably less than 5. The Δb value is more preferably less than 4, and still more preferably less than 3. This is useful in that the color change can be reduced even if it is irradiated with sunlight for a long time. Such an effect is particularly prominent when irradiated from the back sheet side of the solar cell module.
 ポリマー基材の150℃、30分経時前後の熱収縮率が0~0.5%であることが好ましく、より好ましい熱収縮量は0.05%~0.5%であり、さらに好ましくは0.1~0.45%、さらに好ましくは0.15%~0.4%である。ここでいう熱収縮量は、150℃、30分保存前後での測定値のMD(フィルム搬送方向)、TD(フィルム搬送方向に直交する方向)の平均値を指す。
 熱収縮が上記好ましい範囲の上限値以下であると、収縮により本発明の太陽電池用バックシートの層間の剥離が発生し難くなる。一方、上記熱収縮量が0.05%以上であると、熱処理中の熱膨張による寸法変化(たるみ)に起因する皺が発生し難くなる観点からは、好ましい。
The heat shrinkage ratio of the polymer substrate at 150 ° C. for about 30 minutes is preferably 0 to 0.5%, more preferably the heat shrinkage is 0.05% to 0.5%, and more preferably 0 0.1 to 0.45%, more preferably 0.15% to 0.4%. The amount of heat shrinkage here refers to the average value of MD (film transport direction) and TD (direction orthogonal to the film transport direction) of measured values before and after storage at 150 ° C. for 30 minutes.
When the thermal shrinkage is not more than the upper limit value of the above preferred range, peeling between layers of the solar cell backsheet of the present invention is less likely to occur due to the shrinkage. On the other hand, when the amount of heat shrinkage is 0.05% or more, it is preferable from the viewpoint that wrinkles due to dimensional change (sag) due to thermal expansion during heat treatment are less likely to occur.
 ポリマー基材の厚みは、100~350μmであることが好ましく、120~300μmであることがより好ましく、200~300μmであることが特に好ましい。
 太陽電池モジュールの耐電圧性能の観点からポリマー基材の厚みが100μm以上であることが好ましい。一方、厚みが350μm以下であると、特にポリエステル基材の場合に耐加水分解性が良好となり、湿熱耐久性の向上効果が奏され、長期使用にも耐えることができる。また、350μm以下であることが、シート生産性の観点から好ましい。
 本発明においては、ポリマー基材の厚みが120μm以上300μm以下であって、かつポリマー基材を構成するポリエステル中のカルボキシル基含量が35当量/トン以下である場合に、より湿熱耐久性の向上効果が奏される。
The thickness of the polymer substrate is preferably 100 to 350 μm, more preferably 120 to 300 μm, and particularly preferably 200 to 300 μm.
From the viewpoint of the withstand voltage performance of the solar cell module, the thickness of the polymer substrate is preferably 100 μm or more. On the other hand, when the thickness is 350 μm or less, especially in the case of a polyester base material, the hydrolysis resistance is good, the effect of improving wet heat durability is exhibited, and it can withstand long-term use. Moreover, it is preferable from a viewpoint of sheet productivity that it is 350 micrometers or less.
In the present invention, when the thickness of the polymer substrate is 120 μm or more and 300 μm or less and the carboxyl group content in the polyester constituting the polymer substrate is 35 equivalents / ton or less, the effect of improving wet heat durability is further improved. Is played.
<下塗り層>
 本発明の太陽電池用バックシートには、ポリマー基材(支持体)と顔料層との間に2μm以下の厚みの下塗り層を設けてもよい。本発明のバックシートでは、このように薄い下塗り層を設けることで、顔料層の顔料の割合が高いにも関わらず、湿熱経時後の接着性、膜強度及び顔料層の面状を同時に改善することができる。特に下塗り層の厚みが2μm以下であると、顔料層中において顔料の含有割合を高めたときに、塗布ハジキ欠陥や顔料のムラが生じにくくなる。
 ただし、下塗り層の厚みが薄過ぎると、湿熱経時後の接着性が低下することがあるため、下塗り層の厚みは、好ましくは0.05μm~2μmであり、更に好ましくは0.1μm~1.5μmである。厚みが0.05μm以上であることにより、必要な接着性を確保しやすい。
<Undercoat layer>
In the solar cell backsheet of the present invention, an undercoat layer having a thickness of 2 μm or less may be provided between the polymer substrate (support) and the pigment layer. In the backsheet of the present invention, by providing such a thin undercoat layer, the adhesiveness after wet heat aging, film strength, and surface state of the pigment layer are simultaneously improved despite the high proportion of pigment in the pigment layer. be able to. In particular, when the thickness of the undercoat layer is 2 μm or less, when the content ratio of the pigment in the pigment layer is increased, coating repelling defects and pigment unevenness are less likely to occur.
However, if the thickness of the undercoat layer is too thin, the adhesiveness after wet heat aging may deteriorate. Therefore, the thickness of the undercoat layer is preferably 0.05 μm to 2 μm, more preferably 0.1 μm to 1. 5 μm. When the thickness is 0.05 μm or more, it is easy to ensure necessary adhesiveness.
(下塗り層のバインダー)
 下塗り層は、バインダーを含有して構成される。本発明では、バインダーとして、下塗り層がポリオレフィン樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、ポリアクリル樹脂及びポリエステル樹脂からなる群より選択される少なくとも1種の樹脂を含むことが好ましく、ポリエステル、ポリウレタン、アクリル樹脂、ポリオレフィンを用いることがより好ましい。また、これらのバインダーは単独で用いても、2種以上用いてもよい。
(Undercoat layer binder)
The undercoat layer is configured to contain a binder. In the present invention, as the binder, the undercoat layer preferably contains at least one resin selected from the group consisting of polyolefin resin, polyurethane resin, polyvinyl alcohol resin, polyacrylic resin, and polyester resin. Polyester, polyurethane, acrylic resin It is more preferable to use polyolefin. These binders may be used alone or in combination of two or more.
 ポリオレフィン樹脂としては、例えば、変性ポリオレフィン共重合体が好ましい。ポリオレフィン樹脂としては上市されている市販品を用いてもよく、例えば、アローベースSE-1013N、SD-1010、TC-4010、TD-4010(ともにユニチカ(株)製)、ハイテックS3148、S3121、S8512(ともに東邦化学(株)製)、ケミパールS-120、S-75N、V100、EV210H(ともに三井化学(株)製)などを挙げることができる。その中でも、本発明では、低密度ポリエチレン、アクリル酸エステル、無水マレイン酸の三元共重合体である、アローベースSE-1013N、ユニチカ(株)製を用いることが好ましい。 As the polyolefin resin, for example, a modified polyolefin copolymer is preferable. Commercially available products may be used as the polyolefin resin. For example, Arrow Base SE-1013N, SD-1010, TC-4010, TD-4010 (both manufactured by Unitika Ltd.), Hitech S3148, S3121, S8512. (Both manufactured by Toho Chemical Co., Ltd.), Chemipearl S-120, S-75N, V100, EV210H (both manufactured by Mitsui Chemicals, Inc.) and the like. Among them, in the present invention, it is preferable to use Arrow Base SE-1013N, manufactured by Unitika Ltd., which is a terpolymer of low density polyethylene, acrylic acid ester, and maleic anhydride.
 アクリル樹脂としては、例えば、ホリメチルメタクリレート、ポリエチルアクリレート等を含有するポリマー等が好ましい。アクリル樹脂としては上市されている市販品を用いてもよく、例えば、AS-563A(ダイセルフアインケム(株)製)を好ましく用いることができる。 As the acrylic resin, for example, a polymer containing polymethyl methacrylate, polyethyl acrylate, or the like is preferable. As the acrylic resin, a commercially available product may be used. For example, AS-563A (manufactured by Daicel Einchem Co., Ltd.) can be preferably used.
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)等が好ましい。ポリエステル樹脂としては上市されている市販品を用いてもよく、例えば、バイロナールMD-1245(東洋紡(株)製)を好ましく用いることができる。
 ポリウレタン樹脂としては、例えば、カーボネート系ウレタン樹脂が好ましく、例えば、スーパーフレックス460(第一工業製薬(株)製)を好ましく用いることができる。
As the polyester resin, for example, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN) and the like are preferable. As the polyester resin, a commercially available product may be used. For example, Vylonal MD-1245 (manufactured by Toyobo Co., Ltd.) can be preferably used.
As the polyurethane resin, for example, a carbonate-based urethane resin is preferable, and for example, Superflex 460 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) can be preferably used.
 これらの中でも、ポリマー支持体および顔料層との接着性を確保する観点から、ポリオレフィン樹脂を用いることが好ましい。また、これらのポリマーは単独で用いても2種以上併用して用いてもよく、2種以上併用する場合は、アクリル樹脂とポリオレフィン樹脂の組合せが好ましい。 Among these, it is preferable to use a polyolefin resin from the viewpoint of ensuring adhesion between the polymer support and the pigment layer. These polymers may be used alone or in combination of two or more. When two or more of these polymers are used in combination, a combination of an acrylic resin and a polyolefin resin is preferable.
(下塗り層の添加剤)
 下塗り層は、各種添加剤を含んでいてもよく、架橋剤、無機酸化物フィラー、界面活性剤を含むことが好ましい。
 架橋剤を含有すると、下塗り層の耐久性を向上することができるため、より好ましい。架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。湿熱経時後の接着性を確保する観点から、これらの中でも特にカルボジイミド系架橋剤又はオキサゾリン系架橋剤を用いることが、より湿熱経時後の接着性が改善できる観点から好ましい。すなわち、本発明では、下塗り層が、カルボジイミド化合物系架橋剤及びオキサゾリン化合物系架橋剤のうち少なくとも1種由来の架橋構造を含むことが好ましい。
(Undercoat layer additive)
The undercoat layer may contain various additives, and preferably contains a crosslinking agent, an inorganic oxide filler, and a surfactant.
It is more preferable to contain a crosslinking agent because the durability of the undercoat layer can be improved. Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Among these, it is preferable to use a carbodiimide-based crosslinking agent or an oxazoline-based crosslinking agent from the viewpoint of ensuring adhesiveness after wet heat aging, from the viewpoint of improving the adhesiveness after wet heat aging. That is, in the present invention, the undercoat layer preferably includes a crosslinked structure derived from at least one of a carbodiimide compound-based crosslinking agent and an oxazoline compound-based crosslinking agent.
 オキサゾリン系架橋剤の具体例として、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2,2’-ビス-(2-オキサゾリン)、2,2’-メチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(2-オキサゾリン)、2,2’-トリメチレン-ビス-(2-オキサゾリン)、2,2’-テトラメチレン-ビス-(2-オキサゾリン)、2、2’-ヘキサメチレン-ビス-(2-オキサゾリン)、2,2’-オクタメチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、ビス-(2-オキサゾリニルシクロヘキサン)スルフィド、ビス-(2-オキサゾリニルノルボルナン)スルフィド等が挙げられる。さらに、これらの化合物の(共)重合体も好ましく利用することができる。
 また、オキサゾリン系架橋剤として、エポクロスK2010E、エポクロスK2020E、エポクロスK2030E、エポクロスWS500、エポクロスWS700(いずれも日本触媒化学工業(株)製)等も利用できる。
Specific examples of the oxazoline-based crosslinking agent include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- (2 -Oxazoline), 2,2'-ethylene-bis- (2-oxazoline), 2,2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline), 2,2'-hexamethylene-bis- (2-oxazoline), 2,2'-octamethylene-bis- (2-oxazoline), 2,2'-ethylene-bis- (4,4'-dimethyl) 2-oxazoline), 2,2'-p-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene- Examples thereof include bis- (4,4′-dimethyl-2-oxazoline), bis- (2-oxazolinylcyclohexane) sulfide, and bis- (2-oxazolinyl norbornane) sulfide. Furthermore, (co) polymers of these compounds can also be preferably used.
Further, as an oxazoline-based cross-linking agent, Epocros K2010E, Epocros K2020E, Epocros K2030E, Epocros WS500, Epocros WS700 (all manufactured by Nippon Shokubai Chemical Co., Ltd.) and the like can be used.
 また、カルボジイミド系架橋剤の具体例として、カルボジライトV-02-L2(日清紡ケミカル(株)製)、カルボジライトSV-02(日清紡ケミカル(株)製)、カルボジライトE-01(日清紡ケミカル(株)製)などを挙げることができる。 Specific examples of carbodiimide crosslinking agents include Carbodilite V-02-L2 (Nisshinbo Chemical Co., Ltd.), Carbodilite SV-02 (Nisshinbo Chemical Co., Ltd.), Carbodilite E-01 (Nisshinbo Chemical Co., Ltd.) ) And the like.
 本発明のバックシートは、下塗り層が、バインダーに対して5~50質量%の架橋剤を含有することが好ましく、10~40質量%の架橋剤を含有することがより好ましく、20~40質量%の架橋剤を含有することが特に好ましい。特に架橋剤の添加量は、5質量%以上であると、下塗り層の強度及び接着性を保持しながら充分な架橋効果が得られ、50質量%以下であると、塗布液のポットライフを長く保て、40質量%以下であると塗布面状を改良できる。 In the backsheet of the present invention, the undercoat layer preferably contains 5 to 50% by mass of a crosslinking agent, more preferably 10 to 40% by mass, more preferably 20 to 40% by mass with respect to the binder. % Crosslinking agent is particularly preferred. In particular, when the addition amount of the crosslinking agent is 5% by mass or more, a sufficient crosslinking effect is obtained while maintaining the strength and adhesiveness of the undercoat layer, and when it is 50% by mass or less, the pot life of the coating liquid is lengthened. If it is 40% by mass or less, the coated surface can be improved.
 下塗り層が、無機酸化物フィラーを含有することが好ましい。
 無機酸化物フィラーとしては、例えば、シリカ、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、酸化錫等が挙げられる。中でも、湿熱雰囲気に曝されたときの接着性の低下が小さい点で、酸化錫、シリカの微粒子が好ましく、シリカがより好ましい。
The undercoat layer preferably contains an inorganic oxide filler.
Examples of the inorganic oxide filler include silica, calcium carbonate, magnesium oxide, magnesium carbonate, and tin oxide. Among them, tin oxide and fine particles of silica are preferable, and silica is more preferable in that the decrease in adhesiveness when exposed to a wet heat atmosphere is small.
 無機酸化物フィラーの粒径は、体積平均粒径で10~700nm程度が好ましく、より好ましくは20~300nm程度である。粒径がこの範囲内であると、より良好な易接着性を得ることができる。粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。 The particle size of the inorganic oxide filler is preferably about 10 to 700 nm, more preferably about 20 to 300 nm in terms of volume average particle size. When the particle size is within this range, better easy adhesion can be obtained. The particle size is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
 無機酸化物フィラーの形状には、特に制限はなく、球形、不定形、針状形等のいずれのものを用いることができる。 The shape of the inorganic oxide filler is not particularly limited, and any shape such as a spherical shape, an irregular shape, or a needle shape can be used.
 無機酸化物フィラーの含有量は、下塗り層中のバインダーに対して、5~400質量%の範囲とすることが好ましい。無機微粒子の含有量は、5質量%以上であれば湿熱雰囲気に曝されたときに良好な接着性が保持でき、400質量%以下であれば下塗り層の上に積層する顔料層の面状が悪化しにくくなる。
 中でも、無機酸化物フィラーの含有量は、50~300質量%の範囲がより好ましい。
The content of the inorganic oxide filler is preferably in the range of 5 to 400% by mass with respect to the binder in the undercoat layer. If the content of the inorganic fine particles is 5% by mass or more, good adhesiveness can be maintained when exposed to a humid heat atmosphere, and if it is 400% by mass or less, the surface shape of the pigment layer laminated on the undercoat layer can be maintained. It becomes difficult to get worse.
In particular, the content of the inorganic oxide filler is more preferably in the range of 50 to 300% by mass.
 下塗り層は、アニオン系やノニオン系等の界面活性剤を含有することが好ましい。下塗り層に用いることができる界面活性剤の範囲は後述する顔料層に用いることができる界面活性剤の範囲と同様である。中でもノニオン系界面活性剤が好ましい。
 下塗り層に界面活性剤を添加する場合、その添加量は0.1~10mg/mが好ましく、より好ましくは0.5~3mg/mである。界面活性剤の添加量は、0.1mg/m以上であると、ハジキの発生を抑えて良好な層形成が得られ、10mg/m以下であると、ポリマー基材及び顔料層との接着を良好に行なうことができる。
The undercoat layer preferably contains an anionic or nonionic surfactant. The range of the surfactant that can be used for the undercoat layer is the same as the range of the surfactant that can be used for the pigment layer described later. Of these, nonionic surfactants are preferred.
When a surfactant is added to the undercoat layer, the addition amount is preferably 0.1 to 10 mg / m 2 , more preferably 0.5 to 3 mg / m 2 . When the addition amount of the surfactant is 0.1 mg / m 2 or more, generation of a repelling is suppressed and good layer formation is obtained, and when it is 10 mg / m 2 or less, the polymer substrate and the pigment layer Adhesion can be performed satisfactorily.
<顔料層>
 本発明における顔料層は、バインダーと顔料を含んで構成される。顔料層は、必要に応じて、さらに各種添加剤などの他の成分を含んで構成されてもよい。
<Pigment layer>
The pigment layer in the present invention includes a binder and a pigment. The pigment layer may further include other components such as various additives as necessary.
 本発明における顔料層の主な機能は、入射光のうち太陽電池セルを通過して発電に使用されずにバックシートに到達した光を反射させて太陽電池セルに戻すことにより、太陽電池モジュールの発電効率を上げることにある。 The main function of the pigment layer in the present invention is to reflect the light that passes through the solar cells and reaches the back sheet without being used for power generation out of the incident light, and returns the solar cells to the solar cells. It is to increase power generation efficiency.
(顔料)
 顔料層は、少なくとも一種の顔料を含有する。
 顔料としては、例えば、酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク、群青、紺青、カーボンブラック等の無機顔料、フタロシアニンブルー、フタロシアニングリーン等の有機顔料を、適宜選択して含有することができる。中でも高い白色度、反射率を得られる点で、酸化チタン、硫酸バリウムが好ましい。
(Pigment)
The pigment layer contains at least one pigment.
Examples of the pigment include inorganic pigments such as titanium oxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, talc, ultramarine blue, bitumen, and carbon black, and organic pigments such as phthalocyanine blue and phthalocyanine green. It can be appropriately selected and contained. Of these, titanium oxide and barium sulfate are preferable in that high whiteness and reflectance can be obtained.
 本発明における顔料層中には、顔料を2.5~8.5g/m2の範囲で含有することが好ましい。顔料の顔料層中における含量が2.5g/m2以上であると光反射率を特に効果的に改善できる傾向にある。また、顔料の顔料層中における含量が8.5g/m2以下であれば顔料層の面状が特に良好となる傾向にあり、膜強度も改善される傾向にある。
 中でも、顔料のより好ましい含量は、4.5~8.0g/m2の範囲である。
The pigment layer in the present invention preferably contains a pigment in the range of 2.5 to 8.5 g / m 2 . When the content of the pigment in the pigment layer is 2.5 g / m 2 or more, the light reflectance tends to be improved particularly effectively. Further, when the content of the pigment in the pigment layer is 8.5 g / m 2 or less, the surface shape of the pigment layer tends to be particularly good, and the film strength tends to be improved.
Among these, a more preferable content of the pigment is in the range of 4.5 to 8.0 g / m 2 .
 顔料の平均粒径としては、体積平均粒径で0.03~0.8μmが好ましく、より好ましくは0.15~0.5μm程度である。平均粒径が上記範囲内であると、光の反射効率が高い。平均粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。 The average particle diameter of the pigment is preferably 0.03 to 0.8 μm in volume average particle diameter, more preferably about 0.15 to 0.5 μm. When the average particle size is within the above range, the light reflection efficiency is high. The average particle diameter is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
 顔料層におけるバインダーと顔料の合計に対する顔料の割合(P/P+B比率)が40~95質量%であることが好ましい。上記顔料の割合(P/P+B比率)が40質量%以上であれば、高い光反射率が得られる。一方、上記顔料の割合(P/P+B比率)が95質量%以下であれば、顔料の使用量を抑えて低コスト化をはかれるとともに隣接する層と高い密着力を得ることができる。これらの観点から、上記顔料の割合(P/P+B比率)は50~95質量%であることがより好ましく、70~95質量%であることがさらに好ましい。 The ratio of the pigment (P / P + B ratio) to the total of the binder and the pigment in the pigment layer is preferably 40 to 95% by mass. When the ratio of the pigment (P / P + B ratio) is 40% by mass or more, high light reflectance can be obtained. On the other hand, when the ratio of the pigment (P / P + B ratio) is 95% by mass or less, it is possible to reduce the cost by suppressing the amount of the pigment used and to obtain high adhesion with the adjacent layer. From these viewpoints, the ratio of the pigment (P / P + B ratio) is more preferably 50 to 95% by mass, and further preferably 70 to 95% by mass.
(顔料層のバインダー)
 顔料層は、少なくとも1種のバインダーを含有する。
 顔料層に好適なバインダーとしては、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリオレフィン樹脂等が挙げられる。耐久性の観点からは、ポリオレフィン樹脂、アクリル樹脂、シロキサン変性アクリル樹脂が好ましい。また、これらのポリマーは単独で用いても2種以上併用して用いてもよく、2種以上併用する場合は、アクリル樹脂とポリオレフィン樹脂の組合せが好ましい。好ましいバインダーの例としては、ポリオレフィンの例としてケミパールS-120、S-75N(ともに三井化学(株)製)、アローベースSE-1013N(ユニチカ(株)製)、アクリル樹脂の例としてジュリマーET-410、SEK-301(ともに日本純薬(株)製)、AS-563A(ダイセルファインケム(株)製)、シロキサン変性アクリル樹脂の例としてセラネートWSA1060、WSA1070(ともにDIC(株)製)、H7620、H7630、H7650(ともに旭化成ケミカルズ(株)製)などを挙げることができる。
(Binder for pigment layer)
The pigment layer contains at least one binder.
Suitable binders for the pigment layer include polyester resin, polyurethane resin, acrylic resin, polyolefin resin, and the like. From the viewpoint of durability, polyolefin resin, acrylic resin, and siloxane-modified acrylic resin are preferable. These polymers may be used alone or in combination of two or more. When two or more of these polymers are used in combination, a combination of an acrylic resin and a polyolefin resin is preferable. Examples of preferred binders include Chemipearl S-120 and S-75N (both manufactured by Mitsui Chemicals) as examples of polyolefins, Arrow Base SE-1013N (manufactured by Unitika), and Julimer ET- as examples of acrylic resins. 410, SEK-301 (both manufactured by Nippon Pure Chemicals Co., Ltd.), AS-563A (manufactured by Daicel Finechem Co., Ltd.), as examples of siloxane-modified acrylic resins, Ceranate WSA1060, WSA1070 (both manufactured by DIC Corporation), H7620, H7630, H7650 (both manufactured by Asahi Kasei Chemicals Corporation) and the like can be mentioned.
(顔料層の添加剤)
 本発明における顔料層には、バインダー及び顔料以外に、必要に応じて、更に架橋剤、界面活性剤、フィラー等の添加剤を添加してもよい。
(Pigment layer additive)
In addition to the binder and the pigment, additives such as a crosslinking agent, a surfactant, and a filler may be further added to the pigment layer in the present invention as necessary.
 架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。中でも、カルボジイミド系及びオキサゾリン系の架橋剤が好ましく、具体的には前述の下塗り層に使用可能なものを好適に用いることができる。
 架橋剤を添加する場合、その添加量としては、顔料層中のバインダーに対して、5~50質量%が好ましく、より好ましくは10~40質量%である。架橋剤の添加量は、5質量%以上であると、顔料層の強度及び接着性を保持しながら充分な架橋効果が得られ、50質量%以下であると、塗布液のポットライフを長く保てる。
Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Of these, carbodiimide-based and oxazoline-based crosslinking agents are preferable, and specifically, those usable for the above-described undercoat layer can be suitably used.
When a crosslinking agent is added, the addition amount is preferably 5 to 50% by mass, more preferably 10 to 40% by mass with respect to the binder in the pigment layer. When the addition amount of the crosslinking agent is 5% by mass or more, a sufficient crosslinking effect is obtained while maintaining the strength and adhesiveness of the pigment layer, and when it is 50% by mass or less, the pot life of the coating solution can be kept long. .
 界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤が挙げられる。界面活性剤を添加する場合、その添加量は0.1~15mg/m2が好ましく、より好ましくは0.5~5mg/m2である。界面活性剤の添加量は、0.1mg/m2以上であると、ハジキの発生を抑えて良好な層形成が得られ、15mg/m2以下であると、接着を良好に行なうことができる。 Examples of the surfactant include known surfactants such as anionic and nonionic surfactants. When a surfactant is added, the addition amount is preferably 0.1 to 15 mg / m 2 , more preferably 0.5 to 5 mg / m 2 . The addition amount of the surfactant, if it is 0.1 mg / m 2 or more, good layer formation by suppressing the occurrence of cissing can be obtained, if it is 15 mg / m 2 or less, it is possible to perform the bonding well .
 本発明における顔料層には、上記の顔料とは別に、さらに、シリカ等の無機酸化物フィラーを添加してもよい。無機酸化物フィラーを添加する場合、その添加量は、顔料層中のバインダーに対して、20質量%以下が好ましく、より好ましくは15質量%以下である。無機酸化物フィラーの添加量が20質量%以下であると、顔料の比率低下を抑えつつ必要な反射率を得ることができる。 In addition to the above pigment, an inorganic oxide filler such as silica may be added to the pigment layer in the present invention. When adding an inorganic oxide filler, the addition amount is preferably 20% by mass or less, more preferably 15% by mass or less, based on the binder in the pigment layer. When the added amount of the inorganic oxide filler is 20% by mass or less, a necessary reflectance can be obtained while suppressing a decrease in the ratio of the pigment.
(顔料層の物性)
 本発明のバックシートは、顔料層に白色顔料を添加して反射層とする場合、顔料層が設けられている側の表面における550nmの光反射率が70%以上であることが好ましく、75%以上であることがより好ましい。
 なお、光反射率とは、本発明のバックシートの顔料層側の表面から入射した光が反射層で反射して再び上塗り層から出射した光量の入射光量に対する比率である。
 光反射率が70%以上であると、セルを素通りして内部に入射した光を効果的にセルに戻すことができ、発電効率の向上効果が大きい。顔料の含有量を2.5~8.5g/m2の範囲で制御することにより、光反射率を70%以上に調整しやすくなる。
(Physical properties of the pigment layer)
In the backsheet of the present invention, when a white pigment is added to the pigment layer to form a reflective layer, the light reflectance at 550 nm on the surface on which the pigment layer is provided is preferably 70% or more, and 75% More preferably.
The light reflectance is a ratio of the amount of light incident from the pigment layer side surface of the back sheet of the present invention reflected by the reflective layer and emitted from the topcoat layer to the incident light amount.
When the light reflectance is 70% or more, the light that passes through the cell and enters the cell can be effectively returned to the cell, and the effect of improving the power generation efficiency is great. By controlling the pigment content in the range of 2.5 to 8.5 g / m 2 , the light reflectance can be easily adjusted to 70% or more.
 顔料層を反射層として構成する場合、反射層の厚みは、1~20μmが好ましく、より好ましくは1~15μmであり、さらに好ましくは1~10μmであり、特に好ましくは1~7μm程度である。この厚みが1μm以上であると、必要な装飾性や反射率を得ることができ、また20μm以下であると、面状を良好に保つことができる。 When the pigment layer is formed as a reflective layer, the thickness of the reflective layer is preferably 1 to 20 μm, more preferably 1 to 15 μm, still more preferably 1 to 10 μm, and particularly preferably about 1 to 7 μm. When this thickness is 1 μm or more, necessary decorative properties and reflectance can be obtained, and when it is 20 μm or less, the surface shape can be kept good.
<上塗り層>
 本発明のバックシートは、顔料層の上には上塗り層が設けられている。上塗り層は、バインダーを含み、EVA(エチレン-ビニルアセテート)樹脂等の封止材との接着性を向上させるために設けられる層である。すなわち、顔料層を直接封止材と接着させるよりも上塗り層を介して接着させることで、湿熱環境下でも封止材との接着性を高く維持することができる。
<Overcoat layer>
In the back sheet of the present invention, an overcoat layer is provided on the pigment layer. The topcoat layer is a layer that contains a binder and is provided to improve adhesion to a sealing material such as EVA (ethylene-vinyl acetate) resin. That is, by adhering the pigment layer through the overcoat layer rather than directly adhering to the encapsulant, the adhesiveness with the encapsulant can be maintained high even in a humid heat environment.
(上塗り層のバインダー)
 上塗り層は、バインダーを含んで構成され、ポリオレフィン樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、アクリル樹脂及びポリエステル樹脂からなる群より選択される1種を含むことが好ましい。中でも、ポリオレフィン樹脂、アクリル樹脂が好ましい。また、これらのバインダーは単独で用いても2種以上併用して用いてもよく、2種以上併用する場合は、アクリル樹脂とポリオレフィン樹脂の組合せが好ましい。
(Binder for topcoat layer)
It is preferable that the topcoat layer includes a binder and includes one type selected from the group consisting of a polyolefin resin, a polyurethane resin, a polyvinyl alcohol resin, an acrylic resin, and a polyester resin. Of these, polyolefin resins and acrylic resins are preferable. These binders may be used alone or in combination of two or more. When two or more of these binders are used in combination, a combination of an acrylic resin and a polyolefin resin is preferable.
(上塗り層の添加剤)
 本発明における上塗り層には、バインダー以外に、必要に応じて、更に架橋剤、界面活性剤、フィラー等の添加剤を添加してもよい。
(Additive for topcoat layer)
In addition to the binder, additives such as a cross-linking agent, a surfactant, and a filler may be added to the topcoat layer in the present invention as necessary.
 架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。中でも、カルボジイミド系及びオキサゾリン系の架橋剤が好ましく、具体的には前述の下塗り層に使用可能なものを好適に用いることができる。
 架橋剤を添加する場合、その添加量としては、上塗り層中のバインダーに対して、5~50質量%が好ましく、より好ましくは10~40質量%である。架橋剤の添加量は、5質量%以上であると、上塗り層の強度及び接着性を保持しながら充分な架橋効果が得られ、50質量%以下であると、塗布液のポットライフを長く保てる。
Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Of these, carbodiimide-based and oxazoline-based crosslinking agents are preferable, and specifically, those usable for the above-described undercoat layer can be suitably used.
When a crosslinking agent is added, the addition amount is preferably 5 to 50% by mass, and more preferably 10 to 40% by mass with respect to the binder in the overcoat layer. When the addition amount of the crosslinking agent is 5% by mass or more, a sufficient crosslinking effect is obtained while maintaining the strength and adhesiveness of the overcoat layer, and when it is 50% by mass or less, the pot life of the coating liquid can be kept long. .
 上塗り層は、無機酸化物フィラーを含有することが好ましい。
 無機酸化物フィラーとしては、具体的には前述の下塗り層に使用可能なものを好適に用いることができる。
The topcoat layer preferably contains an inorganic oxide filler.
As the inorganic oxide filler, specifically, those usable for the above-mentioned undercoat layer can be suitably used.
 無機酸化物フィラーの含有量は、上塗り層中のバインダーに対して、5~400質量%の範囲とすることが好ましい。無機微粒子の含有量は、5質量%以上であれば湿熱雰囲気に曝されたときに良好な接着性が保持でき、400質量%以下であれば面状が悪化しにくく封止材との接着性を高く保つことができる。
 中でも、無機酸化物フィラーの含有量は、50~300質量%の範囲がより好ましい。
The content of the inorganic oxide filler is preferably in the range of 5 to 400% by mass with respect to the binder in the overcoat layer. If the content of the inorganic fine particles is 5% by mass or more, good adhesiveness can be maintained when exposed to a moist heat atmosphere, and if it is 400% by mass or less, the surface state is hardly deteriorated and the adhesiveness to the sealing material. Can be kept high.
In particular, the content of the inorganic oxide filler is more preferably in the range of 50 to 300% by mass.
 上塗り層の厚みは0.1μm以上30μm以下であることが好ましい。上塗り層の厚みが0.1μm以上であれば湿熱雰囲気に曝された後の密着性低下を抑制でき、30μm以下であれば面状悪化しにくく、且つ封止剤との密着性を高く保つことができる。これらの観点から、上塗り層の厚みは、0.3μm以上20μm以下であることがより好ましく、0.5μm以上10μm以下であることがさらに好ましい。 The thickness of the overcoat layer is preferably 0.1 μm or more and 30 μm or less. If the thickness of the overcoat layer is 0.1 μm or more, it is possible to suppress a decrease in adhesion after being exposed to a humid heat atmosphere, and if it is 30 μm or less, the surface condition is hardly deteriorated and the adhesion to the sealant is kept high. Can do. From these viewpoints, the thickness of the overcoat layer is more preferably from 0.3 μm to 20 μm, and further preferably from 0.5 μm to 10 μm.
<複合ポリマー層>
 本発明のバックシートは、ポリマー基材の顔料層及び上塗り層が設けれた面とは反対側の第2の面(適宜、「裏面」と記す)に、耐光性及び耐湿熱性を有する複合ポリマー層が設けられている。
<Composite polymer layer>
The backsheet of the present invention is a composite polymer having light resistance and moisture and heat resistance on a second surface (referred to as “back surface” as appropriate) opposite to the surface on which the pigment layer and the topcoat layer of the polymer substrate are provided. A layer is provided.
 複合ポリマー層は、ポリマー基材の裏面に接触させてあるいは他の層を介して配置される。複合ポリマー層は、少なくとも、分子内に非シロキサン系構造単位と一般式(1)で表される(ポリ)シロキサン構造単位を含む特定の複合ポリマーを用いて構成されている。本発明における複合ポリマー層は、複合ポリマーを含む構成により、ポリマー基材との接着性が改善されるので、ポリマー基材の裏面に直に形成されることが好ましい。また、複合ポリマー層は耐湿熱保存性を有するため、外部環境に暴露される最外層として形成されていることが好ましい。 The composite polymer layer is disposed in contact with the back surface of the polymer substrate or through another layer. The composite polymer layer is configured using at least a specific composite polymer containing a non-siloxane structural unit and a (poly) siloxane structural unit represented by the general formula (1) in the molecule. The composite polymer layer in the present invention is preferably formed directly on the back surface of the polymer base material because the adhesiveness with the polymer base material is improved by the constitution containing the composite polymer. The composite polymer layer is preferably formed as the outermost layer that is exposed to the external environment because it has moisture and heat storage resistance.
 この複合ポリマー層は、場合に応じて更に他の成分を用いて構成することができ、適用する用途によりその構成成分が異なる。複合ポリマー層は、太陽光の反射機能や外観意匠性の付与などを担う着色層や、太陽光が入射する側と反対側に配されるバック層などを構成することができる。 This composite polymer layer can be constituted by further using other components depending on the case, and the constituent components differ depending on the intended application. The composite polymer layer can constitute a colored layer that bears the function of reflecting sunlight and imparting appearance design, a back layer disposed on the side opposite to the side on which sunlight is incident, and the like.
 複合ポリマー層を例えば、太陽光をその入射側に反射させる反射層として構成する場合、白色顔料等の着色剤を更に用いて構成することができる。
 ポリマー基材上に2層以上の複合ポリマー層を有する場合には、白色層(複合ポリマー層)/複合ポリマー層/ポリマー基材の積層構造に構成されてもよい。白色層は、反射層として構成することができる。反射層のバックシート内での接着性、密着性をより向上させることが可能である。
 バックシートとしての必要な機能を付与するためには、2層以上の複合ポリマー層を設けることがより好ましい。
For example, when the composite polymer layer is configured as a reflective layer that reflects sunlight toward the incident side, the composite polymer layer can be configured by further using a colorant such as a white pigment.
When two or more composite polymer layers are provided on the polymer substrate, a laminated structure of white layer (composite polymer layer) / composite polymer layer / polymer substrate may be used. The white layer can be configured as a reflective layer. It is possible to further improve the adhesion and adhesion within the back sheet of the reflective layer.
In order to provide a necessary function as a back sheet, it is more preferable to provide two or more composite polymer layers.
-複合ポリマー-
 本発明における複合ポリマー層は、分子中に一般式(1)で表される質量割合が15~85質量%の(ポリ)シロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを含む複合ポリマーの少なくとも一種を含有する。この複合ポリマーを含有することにより、支持体であるポリマー基材や他の層との間の接着性、すなわち熱や水分が与えられて劣化しやすい剥離耐性、形状安定性を従来に比べて飛躍的に向上させることができる。
-Composite polymer-
The composite polymer layer according to the present invention includes a (poly) siloxane structural unit having a mass ratio of 15 to 85% by mass and a non-siloxane structural unit having a mass ratio of 85 to 15% by mass represented by the general formula (1) in the molecule. And at least one kind of composite polymer. By containing this composite polymer, the adhesion between the polymer substrate as a support and other layers, that is, the peel resistance and shape stability that are easily deteriorated when given heat and moisture, is greatly improved compared to the conventional products. Can be improved.
 本発明における複合ポリマーは、(ポリ)シロキサンと少なくとも一種のポリマーとが共重合したブロック共重合体である。(ポリ)シロキサン、及び共重合されるポリマーは、一種単独でもよく、二種以上であってもよい。 The composite polymer in the present invention is a block copolymer obtained by copolymerizing (poly) siloxane and at least one polymer. The (poly) siloxane and the copolymerized polymer may be one kind alone, or two or more kinds.
 複合ポリマー中の(ポリ)シロキサンセグメントである「-(Si(R) (R)-O)-」の部分(一般式(1)で表される(ポリ)シロキサン構造単位)において、R及びRは同一でも異なってもよく、水素原子、ハロゲン原子、又は1価の有機基を表す。 In the part of “— (Si (R 1 ) (R 2 ) —O) n —” ((poly) siloxane structural unit represented by the general formula (1)), which is the (poly) siloxane segment in the composite polymer, R 1 and R 2 may be the same or different and each represents a hydrogen atom, a halogen atom, or a monovalent organic group.
 「-(Si(R) (R)-O)-」は、線状、分岐状あるいは環状の構造を有する各種の(ポリ)シロキサンに由来する(ポリ)シロキサンセグメントである。 “— (Si (R 1 ) (R 2 ) —O) n —” is a (poly) siloxane segment derived from various (poly) siloxanes having a linear, branched or cyclic structure.
 R及びRで表されるハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子等を挙げることができる。 Examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, and an iodine atom.
 R及びRで表される「1価の有機基」は、Si原子と共有結合可能な基であり、無置換でも置換基を有してもよい。1価の有機基は、例えば、アルキル基(例:メチル基、エチル基など)、アリール基(例:フェニル基など)、アラルキル基(例:ベンジル基、フェニルエチルなど)、アルコキシ基(例:メトキシ基、エトキシ基、プロポキシ基など)、アリールオキシ基(例;フェノキシ基など)、メルカプト基、アミノ基(例:アミノ基、ジエチルアミノ基など)、アミド基等が挙げられる。 The “monovalent organic group” represented by R 1 and R 2 is a group capable of covalent bonding with a Si atom, and may be unsubstituted or have a substituent. The monovalent organic group includes, for example, an alkyl group (eg, methyl group, ethyl group, etc.), an aryl group (eg: phenyl group, etc.), an aralkyl group (eg: benzyl group, phenylethyl etc.), and an alkoxy group (eg: A methoxy group, an ethoxy group, a propoxy group, etc.), an aryloxy group (eg, phenoxy group, etc.), a mercapto group, an amino group (eg, amino group, diethylamino group, etc.), an amide group and the like.
 中でも、ポリマー基材などの隣接材料との接着性及び湿熱環境下での耐久性の点で、R、Rとしては各々独立に、水素原子、塩素原子、臭素原子、無置換の又は置換された炭素数1~4のアルキル基(特にメチル基、エチル基)、無置換の又は置換されたフェニル基、無置換の又は置換されたアルコキシ基、メルカプト基、無置換のアミノ基、アミド基が好ましく、より好ましくは、湿熱環境下での耐久性の点で、無置換の又は置換されたアルコキシ基(好ましくは炭素数1~4のアルコキシ基)である。 Among them, R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an unsubstituted or substituted, in terms of adhesion to adjacent materials such as a polymer substrate and durability in a wet and heat environment. Alkyl groups having 1 to 4 carbon atoms (particularly methyl group, ethyl group), unsubstituted or substituted phenyl group, unsubstituted or substituted alkoxy group, mercapto group, unsubstituted amino group, amide group And more preferably an unsubstituted or substituted alkoxy group (preferably an alkoxy group having 1 to 4 carbon atoms) from the viewpoint of durability in a moist heat environment.
 nは、1~5000であることが好ましく、1~1000であることがより好ましい。 N is preferably from 1 to 5000, and more preferably from 1 to 1000.
 複合ポリマー中における「-(Si(R) (R)-O)-」の部分(一般式(1)で表される(ポリ)シロキサン構造単位)の比率は、複合ポリマーの全質量に対して15~85質量%であり、その中でもポリマー基材との接着性及び湿熱環境下での耐久性の点で、20~80質量%の範囲が好ましい。
 ポリシロキサン部位の比率は、15質量%未満であるとポリマー基材との接着性及び湿熱環境下に曝された際の接着耐久性が劣り、85質量%を超えると液が不安定になる。 
The ratio of “— (Si (R 1 ) (R 2 ) —O) n —” (the (poly) siloxane structural unit represented by the general formula (1)) in the composite polymer is the total mass of the composite polymer. The content is preferably from 15 to 85% by mass, more preferably from 20 to 80% by mass in terms of adhesion to the polymer substrate and durability in a moist heat environment.
When the ratio of the polysiloxane moiety is less than 15% by mass, the adhesion to the polymer substrate and the adhesion durability when exposed to a wet heat environment are inferior, and when it exceeds 85% by mass, the liquid becomes unstable.
 また、シロキサン構造単位と共重合している非シロキサン系構造単位(ポリマーに由来の構造部分)は、シロキサン構造を有していないこと以外は特に制限されるものではなく、任意のポリマーに由来のポリマーセグメントのいずれであってもよい。ポリマーセグメントの前駆体である重合体(前駆ポリマー)としては、例えば、ビニル系重合体、ポリエステル系重合体、ポリウレタン系重合体等の各種の重合体等が挙げられる。調製が容易なこと及び耐加水分解性に優れる点から、ビニル系重合体及びポリウレタン系重合体が好ましく、ビニル系重合体が特に好ましい。 Further, the non-siloxane structural unit copolymerized with the siloxane structural unit (the structural portion derived from the polymer) is not particularly limited except that it does not have a siloxane structure, and is derived from any polymer. Any of the polymer segments may be used. Examples of the polymer (precursor polymer) that is a precursor of the polymer segment include various polymers such as a vinyl polymer, a polyester polymer, and a polyurethane polymer. From the viewpoint of easy preparation and excellent hydrolysis resistance, vinyl polymers and polyurethane polymers are preferred, and vinyl polymers are particularly preferred.
 ビニル系重合体の代表的な例としては、アクリル系重合体、カルボン酸ビニルエステル系重合体、芳香族ビニル系重合体、フルオロオレフィン系重合体等の各種の重合体が挙げられる。中でも、設計の自由度の観点から、アクリル系重合体(すなわち非シロキサン系構造単位としてアクリル系構造単位)が特に好ましい。
 なお、非シロキサン系構造単位を構成する重合体は、一種単独でもよいし、2種以上の併用であってもよい。
Typical examples of the vinyl polymer include various polymers such as an acrylic polymer, a carboxylic acid vinyl ester polymer, an aromatic vinyl polymer, and a fluoroolefin polymer. Among these, an acrylic polymer (that is, an acrylic structural unit as a non-siloxane structural unit) is particularly preferable from the viewpoint of design flexibility.
In addition, the polymer which comprises a non-siloxane type structural unit may be single 1 type, and 2 or more types of combined use may be sufficient as it.
 また、非シロキサン系構造単位をなす前駆ポリマーは、酸基及び中和された酸基の少なくとも1つ並びに/又は加水分解性シリル基を含有するものが好ましい。このような前駆ポリマーのうち、ビニル系重合体は、例えば、(1)酸基を含むビニル系単量体と加水分解性シリル基及び/又はシラノール基を含むビニル系単量体とを、これらと共重合可能な単量体と共重合させる方法、(2)予め調製した水酸基並びに加水分解性シリル基及び/又はシラノール基を含むビニル系重合体にポリカルボン酸無水物を反応させる方法、(3)予め調製した酸無水基並びに加水分解性シリル基及び/又はシラノール基を含むビニル系重合体を、活性水素を有する化合物(水、アルコール、アミン等)と反応させる方法などの各種方法を利用して調製することができる。 In addition, the precursor polymer forming the non-siloxane structural unit is preferably one containing at least one of an acid group and a neutralized acid group and / or a hydrolyzable silyl group. Among such precursor polymers, vinyl polymers include, for example, (1) vinyl monomers containing acid groups and vinyl monomers containing hydrolyzable silyl groups and / or silanol groups. (2) a method of reacting a polycarboxylic acid anhydride with a vinyl polymer containing a previously prepared hydroxyl group and hydrolyzable silyl group and / or silanol group, 3) Utilizing various methods such as a method in which a vinyl polymer containing an acid anhydride group and a hydrolyzable silyl group and / or silanol group prepared in advance is reacted with a compound having active hydrogen (water, alcohol, amine, etc.). Can be prepared.
 このような前駆ポリマーは、例えば、特開2009-52011号公報の段落番号0021~0078に記載の方法を利用して製造、入手することができる。 Such a precursor polymer can be produced and obtained using, for example, the method described in paragraph Nos. 0021 to 0078 of JP-A-2009-52011.
 本発明における複合ポリマー層は、バインダーとして、複合ポリマーを単独で用いてもよいし、他のポリマーと併用してもよい。他のポリマーを併用する場合、本発明における複合ポリマーの比率は、全バインダーの30質量%以上が好ましく、より好ましくは60質量%以上である。複合ポリマーの比率が30質量%以上であることにより、ポリマー基材との接着性及び湿熱環境下での耐久性により優れる。 In the composite polymer layer in the present invention, the composite polymer may be used alone as a binder, or may be used in combination with other polymers. When other polymers are used in combination, the ratio of the composite polymer in the present invention is preferably 30% by mass or more, more preferably 60% by mass or more of the total binder. When the ratio of the composite polymer is 30% by mass or more, the adhesiveness with the polymer base material and the durability under a moist heat environment are more excellent.
 複合ポリマーの分子量は、5,000~100,000であることが好ましく、10,000~50,000であることがより好ましい。 The molecular weight of the composite polymer is preferably 5,000 to 100,000, and more preferably 10,000 to 50,000.
 複合ポリマーの調製には、(i)前駆ポリマーと、一般式(1)〔-(Si(R) (R)-O)-〕の構造を有するポリシロキサンとを反応させる方法、(ii)前駆ポリマーの存在下に、R及び/又はRが加水分解性基である「-(Si(R) (R)-O)-」の構造を有するシラン化合物を加水分解縮合させる方法、等の方法を利用することができる。
 (ii)の方法で用いられるシラン化合物としては、各種シラン化合物が挙げられるが、アルコキシシラン化合物が特に好ましい。
For the preparation of the composite polymer, (i) a method in which a precursor polymer is reacted with a polysiloxane having a structure of the general formula (1) [— (Si (R 1 ) (R 2 ) —O) n —], ii) Hydrolysis of a silane compound having a structure of “— (Si (R 1 ) (R 2 ) —O) n —” in which R 1 and / or R 2 is a hydrolyzable group in the presence of a precursor polymer Methods such as a condensation method can be used.
Examples of the silane compound used in the method (ii) include various silane compounds, and an alkoxysilane compound is particularly preferable.
 (i)の方法により複合ポリマーを調製する場合、例えば、前駆ポリマーとポリシロキサンの混合物に、必要に応じて水と触媒を加え、20~150℃程度の温度で30分~30時間程度(好ましくは50~130℃で1~20時間)反応させることにより調製することができる。触媒としては、酸性化合物、塩基性化合物、金属含有化合物等の各種のシラノール縮合触媒を添加することができる。
 また、(ii)の方法により複合ポリマーを調製する場合、例えば、前駆ポリマーとアルコキシシラン化合物の混合物に、水とシラノール縮合触媒を添加して、20~150℃程度の温度で30分~30時間程度(好ましくは50~130℃で1~20時間)加水分解縮合を行なうことにより調製することができる。
When preparing the composite polymer by the method (i), for example, water and a catalyst are added to the mixture of the precursor polymer and polysiloxane as necessary, and the temperature is about 20 to 150 ° C. for about 30 minutes to 30 hours (preferably Can be prepared by reacting at 50 to 130 ° C. for 1 to 20 hours. As a catalyst, various silanol condensation catalysts, such as an acidic compound, a basic compound, and a metal containing compound, can be added.
In the case of preparing a composite polymer by the method (ii), for example, water and a silanol condensation catalyst are added to a mixture of a precursor polymer and an alkoxysilane compound, and the temperature is about 20 to 150 ° C. for 30 minutes to 30 hours. It can be prepared by hydrolytic condensation to a degree (preferably at 50 to 130 ° C. for 1 to 20 hours).
-架橋剤-
 本発明においては、複合ポリマー層が、複合ポリマー間を架橋する架橋剤由来の構造部分を有していることが好ましい。つまり、複合ポリマー層は、複合ポリマー間を架橋しうる架橋剤を用いて構成することができる。架橋剤で架橋されることにより、湿熱経時後の接着性、具体的には湿熱環境下に曝された場合のポリマー基材に対する接着、及び層間の接着をより向上させることができる。
-Crosslinking agent-
In the present invention, the composite polymer layer preferably has a structural portion derived from a cross-linking agent that cross-links between the composite polymers. That is, the composite polymer layer can be formed using a cross-linking agent that can cross-link between the composite polymers. By crosslinking with a crosslinking agent, adhesion after wet heat aging, specifically adhesion to a polymer substrate when exposed to a wet heat environment, and adhesion between layers can be further improved.
 架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。架橋剤の中でも、カルボジイミド系化合物やオキサゾリン系化合物などの架橋剤が好ましい。 Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Among the crosslinking agents, crosslinking agents such as carbodiimide compounds and oxazoline compounds are preferable.
 オキサゾリン系架橋剤の具体例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2,2’-ビス-(2-オキサゾリン)、2,2’-メチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(2-オキサゾリン)、2,2’-トリメチレン-ビス-(2-オキサゾリン)、2,2’-テトラメチレン-ビス-(2-オキサゾリン)、2,2’-ヘキサメチレン-ビス-(2-オキサゾリン)、2,2’-オクタメチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、ビス-(2-オキサゾリニルシクロヘキサン)スルフィド、ビス-(2-オキサゾリニルノルボルナン)スルフィド等が挙げられる。さらに、これらの化合物の(共)重合体も好ましく用いられる。
 また、オキサゾリン基を有する化合物として、エポクロスK2010E、同K2020E、同K2030E、同WS-500、同WS-700(いずれも日本触媒化学工業(株)製)等も利用できる。
Specific examples of the oxazoline-based crosslinking agent include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline. 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- ( 2-oxazoline), 2,2'-ethylene-bis- (2-oxazoline), 2,2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline) 2,2'-hexamethylene-bis- (2-oxazoline), 2,2'-octamethylene-bis- (2-oxazoline), 2,2'-ethylene-bis- (4,4'-di Til-2-oxazoline), 2,2'-p-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene- Examples thereof include bis- (4,4′-dimethyl-2-oxazoline), bis- (2-oxazolinylcyclohexane) sulfide, and bis- (2-oxazolinyl norbornane) sulfide. Furthermore, (co) polymers of these compounds are also preferably used.
Further, as a compound having an oxazoline group, Epocros K2010E, K2020E, K2030E, WS-500, WS-700 (all manufactured by Nippon Shokubai Chemical Co., Ltd.) and the like can be used.
 カルボジイミド系架橋剤の具体例としては、ジシクロヘキシルメタンカルボジイミド、テトラメチルキシリレンカルボジイミド、ジシクロヘキシルメタンカルボジイミド等を挙げることができる。また、特開2009-235278号公報に記載のカルボジイミド化合物も好ましい。具体的には、カルボジイミド系架橋剤として、カルボジライトSV-02、カルボジライトV-02、カルボジライトV-02-L2、カルボジライトV-04、カルボジライトE-01、カルボジライトE-02(いずれも日清紡ケミカル(株)製)等の市販品も利用できる。 Specific examples of the carbodiimide-based crosslinking agent include dicyclohexylmethane carbodiimide, tetramethylxylylene carbodiimide, and dicyclohexylmethane carbodiimide. A carbodiimide compound described in JP-A-2009-235278 is also preferable. Specifically, carbodiimide-based crosslinking agents such as Carbodilite SV-02, Carbodilite V-02, Carbodilite V-02-L2, Carbodilite V-04, Carbodilite E-01, Carbodilite E-02 (all Nisshinbo Chemical Co., Ltd.) (Commercially available) can also be used.
 また、複合ポリマー層中における、架橋剤由来の構造部分の複合ポリマーに対する質量割合としては、1~30質量%が好ましく、より好ましくは5~20質量%である。架橋剤の含有割合は、1質量%以上であると、複合ポリマー層の強度、及び湿熱経時後の接着性に優れ、30質量%以下であると、塗布液のポットライフを長く保てる。 In the composite polymer layer, the mass ratio of the structural part derived from the crosslinking agent to the composite polymer is preferably 1 to 30% by mass, more preferably 5 to 20% by mass. When the content of the crosslinking agent is 1% by mass or more, the strength of the composite polymer layer and the adhesiveness after wet heat aging are excellent, and when it is 30% by mass or less, the pot life of the coating solution can be kept long.
 本発明のバックシートにおいては、複合ポリマー層が上記複合ポリマーを含むことで、ポリマー基材等に対する接着が良化し、さらに、湿熱環境下での劣化耐性(接着耐久性)に優れている。このことから、ポリマー基材から最も離れた位置に配された最外層として設けられることも好ましい。具体的には、例えば、太陽電池素子を備えた電池側基板と対向する側(オモテ側)とは反対側(裏側)に配置されるバック層などである。 In the backsheet of the present invention, since the composite polymer layer contains the above composite polymer, adhesion to the polymer substrate and the like is improved, and further, deterioration resistance (adhesion durability) in a humid heat environment is excellent. For this reason, it is also preferable to be provided as the outermost layer disposed at the position farthest from the polymer substrate. Specifically, for example, there is a back layer disposed on the opposite side (back side) to the side (front side) facing the battery side substrate including the solar cell element.
 複合ポリマー層は、1層のみ設けられてもよいし、複数の複合ポリマー層が形成されてもよい。
 複合ポリマー層の1層の厚みとしては、通常は0.3μm~22μmが好ましく、0.5μm~15μmがより好ましく、0.8μm~12μmの範囲が更に好ましく、1.0μm~8μmの範囲が特に好ましく、2~6μmの範囲が最も好ましい。複合ポリマー層の厚みが0.3μm以上、更には0.8μm以上であることで、湿熱環境下に曝されたときに複合ポリマー層表面から内部に水分が浸透し難く、複合ポリマー層とポリマー基材との界面に水分が到達し難くなることで接着性が顕著に改善される。また、複合ポリマー層の厚みが22μm以下、更には12μm以下であると、複合ポリマー層自身が脆弱になり難く、湿熱環境下に暴露したときに複合ポリマー層の破壊が生じにくくなることで接着性が改善される。
Only one composite polymer layer may be provided, or a plurality of composite polymer layers may be formed.
The thickness of one layer of the composite polymer layer is usually preferably from 0.3 μm to 22 μm, more preferably from 0.5 μm to 15 μm, still more preferably from 0.8 μm to 12 μm, particularly preferably from 1.0 μm to 8 μm. A range of 2 to 6 μm is most preferable. When the composite polymer layer has a thickness of 0.3 μm or more, more preferably 0.8 μm or more, it is difficult for moisture to penetrate from the surface of the composite polymer layer when exposed to a humid heat environment. Adhesiveness is remarkably improved by making it difficult for moisture to reach the interface with the material. Moreover, when the thickness of the composite polymer layer is 22 μm or less, and further 12 μm or less, the composite polymer layer itself is difficult to become brittle, and the composite polymer layer is less likely to be destroyed when exposed to a humid heat environment. Is improved.
 本発明における複合ポリマー層は、複合ポリマーと、複合ポリマーのポリマー分子間が架橋剤で架橋された架橋構造を有し、架橋剤由来の構造部分の複合ポリマーに対する比率が1~30質量%であって、複合ポリマー層の厚みが0.8μm~12μmである場合が特に湿熱経時後の接着性に対する向上効果に優れる。 The composite polymer layer in the present invention has a cross-linked structure in which the composite polymer and the polymer molecules of the composite polymer are cross-linked with a cross-linking agent, and the ratio of the structural portion derived from the cross-linking agent to the composite polymer is 1 to 30% by mass. Thus, when the thickness of the composite polymer layer is 0.8 μm to 12 μm, the effect of improving the adhesion after wet heat aging is particularly excellent.
<その他の機能層>
 本発明のバックシートは、その他の機能層を有していてもよい。
 その他の機能層としては、易接着性層、バック層を挙げることができる。
<Other functional layers>
The back sheet of the present invention may have other functional layers.
Examples of other functional layers include an easily adhesive layer and a back layer.
 なお、ポリマー基材の表面(第1の面又は第2の面)に直接又は他の層を介してポリマー基材上に形成されている少なくとも1つの層には、被膜面状を向上させるために界面活性剤を含有することが好ましい。界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、フッ素系界面活性剤等が挙げられる。 In addition, in order to improve the film surface state on at least one layer formed on the polymer substrate directly or via another layer on the surface (first surface or second surface) of the polymer substrate. It is preferable to contain a surfactant. Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorosurfactants.
 本発明に用いられるノニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンポリスチリルフェニルエーテル類、ポリオキシエチレンポリオキシプロピレンアルキルエーテル類、グリセリン脂肪酸部分エステル類、ソルビタン脂肪酸部分エステル類、ペンタエリスリトール脂肪酸部分エステル類、プロピレングリコールモノ脂肪酸エステル類、ショ糖脂肪酸部分エステル類、ポリオキシエチレンソルビタン脂肪酸部分エステル類、ポリオキシエチレンソルビトール脂肪酸部分エステル類、ポリエチレングリコール脂肪酸エステル類、ポリグリセリン脂肪酸部分エステル類、ポリオキシエチレン化ひまし油類、ポリオキシエチレングリセリン脂肪酸部分エステル類、脂肪酸ジエタノールアミド類、N,N-ビス-2-ヒドロキシアルキルアミン類、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体が挙げられる。 The nonionic surfactant used in the present invention is not particularly limited, and conventionally known nonionic surfactants can be used. For example, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene polystyryl phenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol Fatty acid partial esters, propylene glycol mono fatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, Polyoxyethylenated castor oil, polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N N- bis-2-hydroxyalkylamines, polyoxyethylene alkylamines, triethanolamine fatty acid ester, trialkylamine oxide, polyethylene glycol, copolymers of polyethylene glycol and polypropylene glycol.
 本発明に用いられるアニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、脂肪酸塩類、アビエチン酸塩類、ヒドロキシアルカンスルホン酸塩類、アルカンスルホン酸塩類、ジアルキルスルホ琥珀酸エステル塩類、直鎖アルキルベンゼンスルホン酸塩類、分岐鎖アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩類、ポリオキシエチレンアルキルスルホフェニルエーテル塩類、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩類、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩類、アルキル硫酸エステル塩類、ポリオキシエチレンアルキルエーテル硫酸エステル塩類、脂肪酸モノグリセリド硫酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩類、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩類、アルキルリン酸エステル塩類、ポリオキシエチレンアルキルエーテルリン酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩類、スチレン/無水マレイン酸共重合物の部分けん化物類、オレフィン/無水マレイン酸共重合物の部分けん化物類、ナフタレンスルホン酸塩ホルマリン縮合物類が挙げられる。 The anionic surfactant used in the present invention is not particularly limited, and conventionally known anionic surfactants can be used. For example, fatty acid salts, abietic acid salts, hydroxyalkane sulfonates, alkane sulfonates, dialkyl sulfosuccinate esters, linear alkyl benzene sulfonates, branched alkyl benzene sulfonates, alkyl naphthalene sulfonates, alkyl phenoxy poly Oxyethylenepropyl sulfonates, polyoxyethylene alkylsulfophenyl ether salts, N-methyl-N-oleyl taurine sodium salt, N-alkylsulfosuccinic acid monoamide disodium salt, petroleum sulfonates, sulfated beef oil, fatty acid alkyl esters Sulfates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, fatty acid monoglyceride sulfates, polyoxyethylene alcohol Ruphenyl ether sulfates, polyoxyethylene styryl phenyl ether sulfates, alkyl phosphates, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl phenyl ether phosphates, styrene / maleic anhydride Examples thereof include partial saponification products of polymers, partial saponification products of olefin / maleic anhydride copolymers, and naphthalene sulfonate formalin condensates.
 本発明に用いられるカチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、アルキルアミン塩類、第四級アンモニウム塩類、ポリオキシエチレンアルキルアミン塩類、ポリエチレンポリアミン誘導体が挙げられる。 The cationic surfactant used in the present invention is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
 本発明のポリマー基材上の層に含まれる界面活性剤は、アニオン系界面活性剤、両性系界面活性及びフッ素系界面活性剤より選択される少なくとも一つであることが好ましい。
 なお、上塗り層と顔料層の両方にフッ素系界面活性剤を含むことが特に好ましい。
The surfactant contained in the layer on the polymer substrate of the present invention is preferably at least one selected from an anionic surfactant, an amphoteric surfactant and a fluorosurfactant.
In addition, it is particularly preferable that both the topcoat layer and the pigment layer contain a fluorosurfactant.
 本発明に用いられる両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、カルボキシベタイン類、アミノカルボン酸類、スルホベタイン類、アミノ硫酸エステル類、イミタゾリン類が挙げられる。 The amphoteric surfactant used in the present invention is not particularly limited, and conventionally known amphoteric surfactants can be used. Examples thereof include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric esters, and imidazolines.
 なお、上記界面活性剤の中で、「ポリオキシエチレン」とあるものは、ポリオキシメチレン、ポリオキシプロピレン、ポリオキシブチレン等の「ポリオキシアルキレン」に読み替えることもでき、本発明においては、それらの界面活性剤も用いることができる。 Of the above surfactants, the term “polyoxyethylene” can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc. These surfactants can also be used.
 更に好ましい界面活性剤としては、分子内にパーフルオロアルキル基を含有するフッ素系界面活性剤が挙げられる。このようなフッ素系界面活性剤としては、例えば、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルリン酸エステル等のアニオン型;パーフルオロアルキルベタイン等の両性型;パーフルオロアルキルトリメチルアンモニウム塩等のカチオン型;パーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキル基及び親水性基を含有するオリゴマー、パーフルオロアルキル基及び親油性基を含有するオリゴマー、パーフルオロアルキル基、親水性基及び親油性基を含有するオリゴマー、パーフルオロアルキル基及び親油性基を含有するウレタン等のノニオン型が挙げられる。また、特開昭62-170950号、同62-226143号及び同60-168144号の各公報に記載されているフッ素系界面活性剤も好適に挙げられる。 More preferable surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule. Examples of such fluorosurfactants include anionic types such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric types such as perfluoroalkyl betaines; Cation type such as trimethylammonium salt; perfluoroalkylamine oxide, perfluoroalkylethylene oxide adduct, oligomer containing perfluoroalkyl group and hydrophilic group, oligomer containing perfluoroalkyl group and lipophilic group, perfluoroalkyl Nonionic types such as an oligomer containing a group, a hydrophilic group and a lipophilic group, and a urethane containing a perfluoroalkyl group and a lipophilic group. In addition, fluorine-based surfactants described in JP-A Nos. 62-170950, 62-226143, and 60-168144 are also preferred.
 界面活性剤は、本発明のポリマー基材上の層中に、不揮発性成分に対して、好ましくは0.001~10質量%、更に好ましくは0.01~5質量%の範囲で使用される。また、界面活性剤は、単独で又は2種以上を組み合わせて用いることができる。 The surfactant is used in the layer on the polymer substrate of the present invention, preferably in the range of 0.001 to 10% by mass, more preferably 0.01 to 5% by mass with respect to the nonvolatile component. . Moreover, surfactant can be used individually or in combination of 2 or more types.
 好ましい界面活性剤の具体例を以下に示すが、本発明はこれらに限定されない。 Specific examples of preferable surfactants are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[太陽電池用バックシートの製造方法]
 本発明の太陽電池用バックシートは、上記のように、ポリマー基材の第1の面上に、必要に応じて下塗り層を形成した後、顔料層及び上塗り層を順次形成し、第2の面上に、複合ポリマー層を形成することができればいずれの方法により作製されてもよい。本発明においては、例えば、ポリマー基材上に上記各層を形成するための塗布液を順次塗布して各層を形成する工程(塗布工程)を含む方法により好適に作製することができる。
[Method for producing back sheet for solar cell]
In the solar cell backsheet of the present invention, as described above, after forming an undercoat layer on the first surface of the polymer substrate as necessary, a pigment layer and an overcoat layer are sequentially formed, Any method may be used as long as a composite polymer layer can be formed on the surface. In this invention, it can produce suitably by the method including the process (application | coating process) of apply | coating the coating liquid for forming each said layer on a polymer base material one by one, and forming each layer, for example.
<ポリマー基材の製造>
(ポリマー基材用樹脂の調整)
 本発明のバックシートは、ポリマー基材として前述の樹脂を用いることができる。このようなポリマー基材は合成により入手しても、商業的に入手してもよい。ポリマー基材としてポリエステルを用いる場合、合成により入手することが好ましい。以下、ポリマー基材としてポリエステルフィルム、その中でもより好ましいポリエチレンテレフタレート(以下、PETとも言う)を製造する方法について説明する。
<Manufacture of polymer substrate>
(Adjustment of polymer base resin)
In the back sheet of the present invention, the aforementioned resin can be used as a polymer substrate. Such polymer substrates may be obtained synthetically or commercially. When using polyester as a polymer base material, it is preferable to obtain by synthesis. Hereinafter, a method for producing a polyester film as a polymer substrate, and more preferable polyethylene terephthalate (hereinafter, also referred to as PET) will be described.
-エステル化工程-
 本発明においては、エステル化反応及び重縮合反応を設けてポリエステルを生成するエステル化工程を設けることができる。このエステル化工程では、(a)エステル化反応、及び(b)エステル化反応で生成されたエステル化反応生成物を重縮合反応させる重縮合反応を設けることができる。
-Esterification process-
In this invention, the esterification process which provides an esterification reaction and a polycondensation reaction and produces | generates polyester can be provided. In this esterification step, (a) an esterification reaction and (b) a polycondensation reaction in which an esterification reaction product produced by the esterification reaction is subjected to a polycondensation reaction can be provided.
(a)エステル化反応
 脂肪族ジオール(好ましくはエチレングリコール)の使用量は、芳香族ジカルボン酸(好ましくはテレフタル酸)及び必要に応じそのエステル誘導体の1モルに対して、1.015~1.50モルの範囲であるのが好ましい。使用量は、より好ましくは1.02~1.30モルの範囲であり、更に好ましくは1.025~1.10モルの範囲である。使用量は、1.015以上の範囲であると、エステル化反応が良好に進行し、1.50モル以下の範囲であると、例えばエチレングリコールの2量化によるジエチレングリコールの副生が抑えられ、融点やガラス転移温度、結晶性、耐熱性、耐加水分解性、耐候性など多くの特性を良好に保つことができる。
(A) Esterification reaction The amount of the aliphatic diol (preferably ethylene glycol) used is 1.015 to 1.0.1 per mol of the aromatic dicarboxylic acid (preferably terephthalic acid) and, if necessary, its ester derivative. A range of 50 moles is preferred. The amount used is more preferably in the range of 1.02 to 1.30 mol, and still more preferably in the range of 1.025 to 1.10 mol. If the amount used is in the range of 1.015 or more, the esterification reaction proceeds favorably, and if it is in the range of 1.50 mol or less, for example, by-production of diethylene glycol due to dimerization of ethylene glycol is suppressed, and the melting point In addition, many properties such as glass transition temperature, crystallinity, heat resistance, hydrolysis resistance, and weather resistance can be kept good.
 PETは、テレフタル酸とエチレングリコールとを90モル%以上含むものが好ましく、より好ましくは95モル%以上、さらに好ましくは98モル%以上含むものである。
 また、PETは後述する触媒によって性質が異なる場合があり、ゲルマニウム(Ge)系触媒、アンチモン(Sb)系触媒、アルミニウム(Al)系触媒、及びチタン(Ti)系触媒から選ばれる1種又は2種以上を用いて重合されるPETが好ましく、より好ましくはTi系触媒を用いたものである。
PET preferably contains 90% by mole or more of terephthalic acid and ethylene glycol, more preferably 95% by mole or more, and still more preferably 98% by mole or more.
PET may have different properties depending on the catalyst described later, and one or two selected from a germanium (Ge) -based catalyst, an antimony (Sb) -based catalyst, an aluminum (Al) -based catalyst, and a titanium (Ti) -based catalyst. PET that is polymerized using more than one species is preferred, and a Ti-based catalyst is more preferred.
 エステル化反応及び/又はエステル交換反応には、従来から公知の反応触媒を用いることができる。反応触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物、リン化合物などを挙げることができる。通常、ポリエステルの製造方法が完結する以前の任意の段階において、重合触媒としてアンチモン化合物、ゲルマニウム化合物、チタン化合物を添加することが好ましい。このような方法としては、例えば、ゲルマニウム化合物を例に挙げると、ゲルマニウム化合物粉体をそのまま添加することが好ましい。 A conventionally known reaction catalyst can be used for the esterification reaction and / or transesterification reaction. Examples of the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium compounds, and phosphorus compounds. Usually, it is preferable to add an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed. As such a method, for example, when a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
 本発明のバックシートの製造方法は、Ti系触媒を用いたエステル化反応により、溶融製膜に供するポリエステル樹脂を調製する工程を含むことが好ましい。
 Ti系触媒を使用してエステル化されたポリエステル樹脂を含むフィルムは、耐候性が低下し難く、好ましい。いかなる理論に拘泥するものでもないが、以下の理由と推定される。耐候性ポリエステルフィルムの耐候性の低下は、ポリエステルの加水分解にある程度依存する。エステル化反応触媒は、エステル化の逆反応である加水分解反応も促進するが、Ti触媒は逆反応である加水分解反応の作用が低い。そのため、エステル化反応触媒が製膜後のフィルム中にある程度残存しても、Ti系触媒を使用してエステル化されたポリエステル樹脂は、他の触媒を使用してエステル化されたポリエステル樹脂よりも比較的耐候性を高くすることができる。
The backsheet production method of the present invention preferably includes a step of preparing a polyester resin to be used for melt film formation by an esterification reaction using a Ti-based catalyst.
A film containing a polyester resin esterified using a Ti-based catalyst is preferable because weather resistance is unlikely to decrease. Although not bound by any theory, it is presumed that the reason is as follows. The decrease in weather resistance of the weather resistant polyester film depends to some extent on the hydrolysis of the polyester. The esterification reaction catalyst also promotes the hydrolysis reaction, which is the reverse reaction of esterification, while the Ti catalyst has a low effect of the hydrolysis reaction, which is the reverse reaction. Therefore, even if the esterification reaction catalyst remains to some extent in the film after film formation, the polyester resin esterified using the Ti-based catalyst is more than the polyester resin esterified using another catalyst. The weather resistance can be made relatively high.
 Ti系触媒としては、酸化物、水酸化物、アルコキシド、カルボン酸塩、炭酸塩、蓚酸塩、有機キレートチタン錯体、及びハロゲン化物等が挙げられる。Ti系触媒は、本発明の効果を損なわない範囲であれば、二種以上のチタン化合物を併用してもよい。
 Ti系触媒の例としては、テトラ-n-プロピルチタネート、テトラ-i-プロピルチタネート、テトラ-n-ブチルチタネート、テトラ-n-ブチルチタネートテトラマー、テトラ-t-ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネート等のチタンアルコキシド、チタンアルコキシドの加水分解により得られるチタン酸化物、チタンアルコキシドと珪素アルコキシドもしくはジルコニウムアルコキシドとの混合物の加水分解により得られるチタン-珪素もしくはジルコニウム複合酸化物、酢酸チタン、蓚酸チタン、蓚酸チタンカリウム、蓚酸チタンナトリウム、チタン酸カリウム、チタン酸ナトリウム、チタン酸-水酸化アルミニウム混合物、塩化チタン、塩化チタン-塩化アルミニウム混合物、チタンアセチルアセトナート、有機酸を配位子とする有機キレートチタン錯体、等が挙げられる。
Examples of the Ti-based catalyst include oxides, hydroxides, alkoxides, carboxylates, carbonates, oxalates, organic chelate titanium complexes, and halides. The Ti-based catalyst may be used in combination of two or more titanium compounds as long as the effects of the present invention are not impaired.
Examples of Ti-based catalysts include tetra-n-propyl titanate, tetra-i-propyl titanate, tetra-n-butyl titanate, tetra-n-butyl titanate tetramer, tetra-t-butyl titanate, tetracyclohexyl titanate, tetraphenyl Titanium alkoxide such as titanate and tetrabenzyl titanate, titanium oxide obtained by hydrolysis of titanium alkoxide, titanium-silicon or zirconium composite oxide obtained by hydrolysis of a mixture of titanium alkoxide and silicon alkoxide or zirconium alkoxide, titanium acetate , Titanium oxalate, potassium potassium oxalate, sodium oxalate, potassium titanate, sodium titanate, titanium titanate-aluminum hydroxide mixture, titanium chloride, titanium chloride-aluminum chloride Miniumu mixture, titanium acetylacetonate, an organic chelate titanium complex having an organic acid as a ligand, and the like.
 Ti系触媒の中でも、有機酸を配位子とする有機キレートチタン錯体の少なくとも1種が好適に用いることができる。有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、リンゴ酸等を挙げることができる。中でも、クエン酸又はクエン酸塩を配位子とする有機キレート錯体が好ましい。 Among Ti-based catalysts, at least one organic chelate titanium complex having an organic acid as a ligand can be suitably used. Examples of the organic acid include citric acid, lactic acid, trimellitic acid, malic acid and the like. Among them, an organic chelate complex having citric acid or citrate as a ligand is preferable.
 例えばクエン酸を配位子とするキレートチタン錯体を用いた場合、微細粒子等の異物の発生が少なく、他のチタン化合物に比べ、重合活性と色調の良好なポリエステル樹脂が得られる。更に、クエン酸キレートチタン錯体を用いる場合でも、エステル化反応の段階で添加することにより、エステル化反応後に添加する場合に比べ、重合活性と色調が良好で、末端カルボキシル基の少ないポリエステル樹脂が得られる。この点については、チタン触媒はエステル化反応の触媒効果もあり、エステル化段階で添加することでエステル化反応終了時におけるオリゴマー酸価が低くなり、以降の重縮合反応がより効率的に行なわれること、またクエン酸を配位子とする錯体はチタンアルコキシド等に比べて加水分解耐性が高く、エステル化反応過程において加水分解せず、本来の活性を維持したままエステル化及び重縮合反応の触媒として効果的に機能するものと推定される。
 また、一般に、末端カルボキシル基量が多いほど耐加水分解性が悪化することが知られており、本発明の添加方法によって末端カルボキシル基量が少なくなることで、耐加水分解性の向上が期待される。
 クエン酸キレートチタン錯体としては、例えば、ジョンソン・マッセイ社製のVERTEC AC-420など市販品として容易に入手可能である。
For example, when a chelate titanium complex having citric acid as a ligand is used, there is little generation of foreign matters such as fine particles, and a polyester resin having better polymerization activity and color tone than other titanium compounds can be obtained. Furthermore, even when using a citric acid chelate titanium complex, by adding it at the stage of the esterification reaction, a polyester resin having better polymerization activity and color tone and having less terminal carboxyl groups can be obtained than when added after the esterification reaction. It is done. In this regard, the titanium catalyst also has a catalytic effect of the esterification reaction. By adding it at the esterification stage, the oligomer acid value at the end of the esterification reaction is lowered, and the subsequent polycondensation reaction is performed more efficiently. In addition, complexes with citric acid as a ligand are more resistant to hydrolysis than titanium alkoxides, etc., and do not hydrolyze in the esterification reaction process, while maintaining the original activity and catalyzing the esterification and polycondensation reactions It is estimated to function effectively as
In general, it is known that as the amount of terminal carboxyl groups increases, the hydrolysis resistance deteriorates. By reducing the amount of terminal carboxyl groups by the addition method of the present invention, improvement in hydrolysis resistance is expected. The
Examples of the citric acid chelate titanium complex are readily available as commercial products such as VERTEC AC-420 manufactured by Johnson Matthey.
 このようなTi化合物を用いたTi系ポリエステルの合成には、例えば、特公平8-30119号公報、特許第2543624号、特許第3335683号、特許第3717380号、特許第3897756号、特許第3962226号、特許第3979866号、特許第399687号1号、特許第4000867号、特許第4053837号、特許第4127119号、特許第4134710号、特許第4159154号、特許第4269704号、特許第4313538号、特開2005-340616号公報、特開2005-239940号公報、特開2004-319444号公報、特開2007-204538号公報、特許3436268号、特許第3780137号等に記載の方法を適用することができる。 To synthesize a Ti-based polyester using such a Ti compound, for example, Japanese Patent Publication No. 8-30119, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 3897756, Japanese Patent No. 396226 Japanese Patent No. 3997866, Japanese Patent No. 3996687, Japanese Patent No. 40000867, Japanese Patent No. 4053837, Japanese Patent No. 4127119, Japanese Patent No. 4134710, Japanese Patent No. 4159154, Japanese Patent No. 4269538, Japanese Patent No. The methods described in JP 2005-340616 A, JP 2005-239940 A, JP 2004-319444 A, JP 2007-204538 A, Japanese Patent No. 3436268, Japanese Patent No. 3780137, and the like can be applied.
 本発明においては、芳香族ジカルボン酸と脂肪族ジオールとを、チタン化合物を含有する触媒の存在下で重合するとともに、チタン化合物の少なくとも一種が有機酸を配位子とする有機キレートチタン錯体であって、有機キレートチタン錯体とマグネシウム化合物と置換基として芳香環を有しない5価のリン酸エステルとをこの順序で添加する過程を少なくとも含むエステル化反応工程を設けられて構成されるのが好ましい。この場合、このエステル化反応工程に加え、エステル化反応工程で生成されたエステル化反応生成物を重縮合反応させて重縮合物を生成する重縮合工程を設けて構成されているポリエステル樹脂の製造方法によりフィルムを作製する態様がより好ましい。なお、重縮合工程については、後述する。 In the present invention, an aromatic dicarboxylic acid and an aliphatic diol are polymerized in the presence of a catalyst containing a titanium compound, and at least one of the titanium compounds is an organic chelate titanium complex having an organic acid as a ligand. It is preferable that an esterification reaction process including at least a process of adding an organic chelate titanium complex, a magnesium compound, and a pentavalent phosphate ester having no aromatic ring as a substituent in this order is provided. In this case, in addition to this esterification reaction step, production of a polyester resin comprising a polycondensation step in which a polycondensation product is produced by polycondensation reaction of the esterification reaction product produced in the esterification reaction step The aspect which produces a film with a method is more preferable. The polycondensation step will be described later.
 この場合、エステル化反応の過程において、チタン化合物として有機キレートチタン錯体を存在させた中に、マグネシウム化合物を添加し、次いで特定の5価のリン化合物を添加する添加順とすることで、チタン触媒の反応活性を適度に高く保ち、マグネシウムによる静電印加特性を付与しつつ、かつ重縮合における分解反応を効果的に抑制することができるため、結果として着色が少なく、高い静電印加特性を有するとともに高温下に曝された際の黄変色が改善されたポリエステル樹脂が得られる。
 これにより、重合時の着色及びその後の溶融製膜時における着色が少なくなり、従来のアンチモン(Sb)触媒系のポリエステル樹脂に比べて黄色味が軽減され、また、透明性の比較的高いゲルマニウム触媒系のポリエステル樹脂に比べて遜色のない色調、透明性を持ち、しかも耐熱性に優れたポリエステル樹脂を提供できる。また、コバルト化合物や色素などの色調調整材を用いずに高い透明性を有し、黄色味の少ないPET樹脂が得られる。
In this case, in the course of the esterification reaction, the addition of a magnesium compound to the presence of an organic chelate titanium complex as a titanium compound, followed by the addition order of adding a specific pentavalent phosphorus compound, thereby providing a titanium catalyst. As the result, the coloring reaction is less and the electrostatic application property is high. At the same time, a polyester resin with improved yellowing when exposed to high temperatures is obtained.
As a result, coloring during polymerization and subsequent coloring during melt film formation are reduced, and yellowishness is reduced compared to conventional antimony (Sb) catalyst-based polyester resins, and germanium catalysts having a relatively high transparency are also obtained. It is possible to provide a polyester resin having a color tone and transparency comparable to a polyester resin and having excellent heat resistance. Moreover, PET resin which has high transparency and few yellowishness is obtained, without using color tone adjusting materials, such as a cobalt compound and a pigment | dye.
 このポリエステル樹脂は、透明性に関する要求の高い用途(例えば、光学用フィルム、工業用リス等)に利用が可能であり、高価なゲルマニウム系触媒を用いる必要がないため、大幅なコスト低減が図れる。加えて、Sb触媒系で生じやすい触媒起因の異物の混入も回避されるため、製膜過程での故障の発生や品質不良が軽減され、得率向上による低コスト化も図ることができる。 This polyester resin can be used for applications requiring high transparency (for example, optical film, industrial squirrel, etc.), and it is not necessary to use an expensive germanium-based catalyst, so that the cost can be greatly reduced. In addition, since foreign matters caused by the catalyst that are likely to occur in the Sb catalyst system are also avoided, the occurrence of failures and quality defects in the film forming process can be reduced, and the cost can be reduced by improving the yield.
 上記において、芳香族ジカルボン酸及び脂肪族ジオールを、マグネシウム化合物及びリン化合物の添加に先立って、チタン化合物である有機キレートチタン錯体を含有する触媒と混合する場合、有機キレートチタン錯体等はエステル化反応に対しても高い触媒活性を持つので、エステル化反応を良好に行なわせることができる。このとき、ジカルボン酸成分及びジオール成分を混合した中にチタン化合物を加えてもよい。また、ジカルボン酸成分(又はジオール成分)とチタン化合物を混合してからジオール成分(又はジカルボン酸成分)を混合してもよい。また、ジカルボン酸成分とジオール成分とチタン化合物とを同時に混合するようにしてもよい。混合は、その方法に特に制限はなく、従来公知の方法により行なうことが可能である。 In the above, when the aromatic dicarboxylic acid and the aliphatic diol are mixed with a catalyst containing an organic chelate titanium complex that is a titanium compound prior to the addition of the magnesium compound and the phosphorus compound, the organic chelate titanium complex or the like is subjected to an esterification reaction. Therefore, the esterification reaction can be carried out satisfactorily. At this time, you may add a titanium compound in mixing the dicarboxylic acid component and the diol component. Moreover, after mixing a dicarboxylic acid component (or diol component) and a titanium compound, you may mix a diol component (or dicarboxylic acid component). Further, the dicarboxylic acid component, the diol component, and the titanium compound may be mixed at the same time. The mixing is not particularly limited, and can be performed by a conventionally known method.
 エステル化反応させるにあたり、チタン化合物である有機キレートチタン錯体と添加剤としてマグネシウム化合物と5価のリン化合物とをこの順に添加する過程を設けることが好ましい。このとき、有機キレートチタン錯体の存在下、エステル化反応を進め、その後はマグネシウム化合物の添加を、リン化合物の添加前に開始する。 In the esterification reaction, it is preferable to provide a process in which an organic chelate titanium complex which is a titanium compound and a magnesium compound and a pentavalent phosphorus compound as additives are added in this order. At this time, the esterification reaction proceeds in the presence of the organic chelate titanium complex, and thereafter, the addition of the magnesium compound is started before the addition of the phosphorus compound.
 5価のリン化合物として、置換基として芳香環を有しない5価のリン酸エステルの少なくとも一種が用いられる。5価のリン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリ-n-ブチル、リン酸トリオクチル、リン酸トリス(トリエチレングリコール)、リン酸メチルアシッド、リン酸エチルアシッド、リン酸イソプロピルアシッド、リン酸ブチルアシッド、リン酸モノブチル、リン酸ジブチル、リン酸ジオクチル、リン酸トリエチレングリコールアシッド等が挙げられる。 As the pentavalent phosphorus compound, at least one pentavalent phosphate having no aromatic ring as a substituent is used. Examples of the pentavalent phosphate ester include trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, tris phosphate (triethylene glycol), methyl acid phosphate, ethyl acid phosphate, Examples thereof include isopropyl acid phosphate, butyl acid phosphate, monobutyl phosphate, dibutyl phosphate, dioctyl phosphate, and triethylene glycol acid phosphate.
 5価のリン酸エステルの中では、炭素数2以下の低級アルキル基を置換基として有するリン酸エステル〔(OR)3-P=O;R=炭素数1又は2のアルキル基〕が好ましく、具体的には、リン酸トリメチル、リン酸トリエチルが特に好ましい。 Among pentavalent phosphate esters, phosphate esters having a lower alkyl group having 2 or less carbon atoms as a substituent [(OR) 3 —P═O; R = alkyl group having 1 or 2 carbon atoms] are preferable, Specifically, trimethyl phosphate and triethyl phosphate are particularly preferable.
 特に、チタン化合物として、クエン酸又はその塩が配位するキレートチタン錯体を触媒として用いる場合、5価のリン酸エステルの方が3価のリン酸エステルよりも重合活性、色調が良好であり、更に炭素数2以下の5価のリン酸エステルを添加する態様の場合に、重合活性、色調、耐熱性のバランスを特に向上させることができる。 In particular, when a chelate titanium complex coordinated with citric acid or a salt thereof is used as a catalyst as the titanium compound, the pentavalent phosphate ester has better polymerization activity and color tone than the trivalent phosphate ester, Furthermore, in the case of adding a pentavalent phosphate having 2 or less carbon atoms, the balance of polymerization activity, color tone, and heat resistance can be particularly improved.
 マグネシウム化合物を含めることにより、静電印加性が向上する。この場合に着色がおきやすいが、本発明においては、着色を抑え、優れた色調、耐熱性が得られる。 静電 Inclusion of magnesium compound improves electrostatic applicability. In this case, although it is easy to color, in this invention, coloring is suppressed and the outstanding color tone and heat resistance are obtained.
 マグネシウム化合物としては、例えば、酸化マグネシウム、水酸化マグネシウム、マグネシウムアルコキシド、酢酸マグネシウム、炭酸マグネシウム等のマグネシウム塩が挙げられる。中でも、エチレングリコールへの溶解性の観点から、酢酸マグネシウムが最も好ましい。 Examples of the magnesium compound include magnesium salts such as magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, and magnesium carbonate. Among these, magnesium acetate is most preferable from the viewpoint of solubility in ethylene glycol.
 好ましい態様として、エステル化反応が終了する前に、芳香族ジカルボン酸及び脂肪族ジオールに、1ppm~30ppmのクエン酸又はクエン酸塩を配位子とするキレートチタン錯体を添加後、キレートチタン錯体の存在下に、60ppm~90ppm(より好ましくは70ppm~80ppm)の弱酸のマグネシウム塩を添加し、添加後にさらに、60ppm~80ppm(より好ましくは65ppm~75ppm)の、芳香環を置換基として有しない5価のリン酸エステルを添加する態様が挙げられる。 As a preferred embodiment, before the esterification reaction is completed, a chelate titanium complex having 1 ppm to 30 ppm of citric acid or citrate as a ligand is added to the aromatic dicarboxylic acid and the aliphatic diol, In the presence, a magnesium salt of 60 ppm to 90 ppm (more preferably 70 ppm to 80 ppm) weak acid is added, and after addition, 60 ppm to 80 ppm (more preferably 65 ppm to 75 ppm) having no aromatic ring as a substituent 5 An embodiment in which a monovalent phosphate is added.
 エステル化反応は、少なくとも2個の反応器を直列に連結した多段式装置を用いて、エチレングリコールが還流する条件下で、反応によって生成した水又はアルコールを系外に除去しながら実施することができる。 The esterification reaction may be carried out using a multistage apparatus in which at least two reactors are connected in series under conditions where ethylene glycol is refluxed while removing water or alcohol produced by the reaction from the system. it can.
 ジカルボン酸とジオールは、これらが含まれたスラリーを調製し、これをエステル化反応工程に連続的に供給することにより導入することができる。 Dicarboxylic acid and diol can be introduced by preparing a slurry containing them and continuously supplying it to the esterification reaction step.
 また、上記したエステル化反応は、一段階で行なってもよいし、多段階に分けて行なうようにしてもよい。 Further, the esterification reaction described above may be performed in one stage or may be performed in multiple stages.
(b)重縮合
 重縮合は、エステル化反応で生成されたエステル化反応生成物を重縮合反応させて重縮合物を生成する。重縮合反応は、1段階で行なってもよいし、多段階に分けて行なうようにしてもよい。
(B) Polycondensation In the polycondensation, an esterification reaction product generated by the esterification reaction is subjected to a polycondensation reaction to generate a polycondensation product. The polycondensation reaction may be performed in one stage or may be performed in multiple stages.
 エステル化反応で生成したオリゴマー等のエステル化反応生成物は、引き続いて重縮合反応に供される。この重縮合反応は、多段階の重縮合反応槽に供給することにより好適に行なうことが可能である。 The esterification reaction product such as an oligomer generated by the esterification reaction is subsequently subjected to a polycondensation reaction. This polycondensation reaction can be suitably performed by supplying it to a multistage polycondensation reaction tank.
 例えば、3段階の反応槽で行なう場合の重縮合反応条件は、第一反応槽は、反応温度が255~280℃、より好ましくは265~275℃であり、圧力が13.3×10-3~1.3×10-3MPa(100~10torr)、より好ましくは6.67×10-3~2.67×10-3MPa(50~20torr)であって、第二反応槽は、反応温度が265~285℃、より好ましくは270~280℃であり、圧力が2.67×10-3~1.33×10-4MPa(20~1torr)、より好ましくは1.33×10-3~4.0×10-4MPa(10~3torr)であって、最終反応槽内における第三反応槽は、反応温度が270~290℃、より好ましくは275~285℃であり、圧力が1.33×10-3~1.33×10-5MPa(10~0.1torr)、より好ましくは6.67×10-4~6.67×10-5MPa(5~0.5torr)である態様が好ましい。 For example, the polycondensation reaction conditions in a three-stage reaction tank are as follows: the first reaction tank has a reaction temperature of 255 to 280 ° C., more preferably 265 to 275 ° C., and a pressure of 13.3 × 10 −3. ~ 1.3 × 10 -3 MPa (100 ~ 10torr), a more preferably 6.67 × 10 -3 ~ 2.67 × 10 -3 MPa (50 ~ 20torr), the second reaction vessel, the reaction The temperature is 265 to 285 ° C., more preferably 270 to 280 ° C., and the pressure is 2.67 × 10 −3 to 1.33 × 10 −4 MPa (20 to 1 torr), more preferably 1.33 × 10 −. The third reaction tank in the final reaction tank has a reaction temperature of 270 to 290 ° C., more preferably 275 to 285 ° C., and a pressure of 3 to 4.0 × 10 −4 MPa (10 to 3 torr). 1.33 × 10 -3 ~ 1.33 × 10 -5 MPa 10 ~ 0.1 torr), embodiments are preferred and more preferably 6.67 × 10 -4 ~ 6.67 × 10 -5 MPa (5 ~ 0.5torr).
 Ti、Mg、及びPの各元素の測定は、高分解能型高周波誘導結合プラズマ-質量分析(HR-ICP-MS;SIIナノテクノロジー社製AttoM)を用いてPET中の各元素を定量し、得られた結果から含有量[ppm]を算出することにより行なうことができる。 The measurement of each element of Ti, Mg, and P was obtained by quantifying each element in PET using high resolution high frequency inductively coupled plasma-mass spectrometry (HR-ICP-MS; AttoM manufactured by SII Nanotechnology). It can carry out by calculating content [ppm] from the obtained result.
-固相重合工程-
 基材を構成するポリエステルは、重合後に固相重合されていてもよい。これにより、好ましいカルボキシル基含有量を達成することができる。固相重合は、重合後のポリエステルを真空中あるいは窒素ガス中で170℃~240℃程度の温度で5~100時間程度加熱して重合度を増大させる手法である。具体的には、固相重合には、特許第2621563号、特許第3121876号、特許第3136774号、特許第3603585号、特許第3616522号、特許第3617340号、特許第3680523号、特許第3717392号、特許第4167159号等に記載の方法を適用することができる。
 固相重合は、既述のエステル化反応により重合したポリエステル又は市販のポリエステルをペレット状などの小片形状にし、これを用いて好適に行なえる。
-Solid phase polymerization process-
The polyester constituting the substrate may be solid-phase polymerized after polymerization. Thereby, preferable carboxyl group content can be achieved. Solid phase polymerization is a technique in which the degree of polymerization is increased by heating the polymerized polyester in a vacuum or nitrogen gas at a temperature of about 170 ° C. to 240 ° C. for about 5 to 100 hours. Specifically, for solid phase polymerization, Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392 are disclosed. The method described in Japanese Patent No. 4167159 can be applied.
The solid-phase polymerization can be suitably performed using the polyester polymerized by the esterification reaction described above or a commercially available polyester in the form of small pieces such as pellets.
 好ましい固相重合温度は、190~230℃、より好ましくは200℃~220℃、さらに好ましくは205℃~215℃である。
 好ましい固相重合温度は、10時間~80時間、より好ましくは15時間~50時間、さらに好ましくは20時間~30時間である。
 このような熱処理は低酸素雰囲気下で行うのが好ましく、例えば窒素雰囲気下又は真空中で行うことが好ましい。更に、多価アルコール(エチレングリコール等)を1ppm~1%混合してもよい。
The solid phase polymerization temperature is preferably 190 to 230 ° C, more preferably 200 ° C to 220 ° C, and still more preferably 205 ° C to 215 ° C.
The solid phase polymerization temperature is preferably 10 to 80 hours, more preferably 15 to 50 hours, and still more preferably 20 to 30 hours.
Such heat treatment is preferably performed in a low oxygen atmosphere, for example, in a nitrogen atmosphere or in a vacuum. Furthermore, 1 ppm to 1% of a polyhydric alcohol (ethylene glycol or the like) may be mixed.
 固相重合は、バッチ式(容器内に樹脂を入れ、この中で所定の時間熱を与えながら撹拌する方式)で実施してもよく、連続式(加熱した筒の中に樹脂を入れ、これを加熱しながら所定の時間滞流させながら筒中を通過させて、順次送り出す方式)で実施してもよい。 Solid-phase polymerization may be carried out in a batch mode (a method in which a resin is placed in a container and stirred while applying heat for a predetermined time), or a continuous mode (a resin is placed in a heated cylinder and this is stirred). It may be carried out by a system in which the gas is passed through the cylinder while being kept flowing for a predetermined time while being heated, and sequentially fed out.
 本発明の製造方法では、固相重合工程を経た後のポリエステルを溶融混練し、口金(押出ダイ)から押出すことにより、PETフィルムを成形することが好ましい。 In the production method of the present invention, it is preferable to form a PET film by melt-kneading the polyester after the solid phase polymerization step and extruding it from a die (extrusion die).
 本発明の製造方法では、PET樹脂を、押出し機を用いて溶融することができる。溶融温度は、250℃~320℃が好ましく、260℃~310℃がより好ましく、270℃~300℃がさらに好ましい。
 押出し機は、一軸でも多軸でもよい。熱分解による末端COOHの発生をより抑制できる点で、押出し機内を窒素置換して行なうのがより好ましい。
In the production method of the present invention, the PET resin can be melted using an extruder. The melting temperature is preferably 250 ° C to 320 ° C, more preferably 260 ° C to 310 ° C, and further preferably 270 ° C to 300 ° C.
The extruder may be uniaxial or multi-axial. More preferably, the inside of the extruder is replaced with nitrogen from the viewpoint that generation of terminal COOH due to thermal decomposition can be further suppressed.
 溶融されたPET樹脂の溶融樹脂(メルト)は、ギアポンプ、濾過器等を通して、押出ダイから押出すことが好ましい。このとき、単層で押出してもよいし、多層で押出してもよい。 The molten resin (melt) of the molten PET resin is preferably extruded from an extrusion die through a gear pump, a filter or the like. At this time, it may be extruded as a single layer or may be extruded as a multilayer.
 溶融押出しされたメルトは、支持体上で冷却され、固化されてフィルム状に成形されることが好ましい。
 支持体としては、特に制限はなく、通常の溶融製膜に用いられる冷却ロールを用いることができる。
The melt-extruded melt is preferably cooled on a support, solidified and formed into a film.
There is no restriction | limiting in particular as a support body, The cooling roll used for normal melt film forming can be used.
 冷却ロール自体の温度は、10℃~80℃が好ましく、より好ましくは15℃~70℃、さらに好ましくは20℃~60℃である。さらに、溶融樹脂(メルト)と冷却ロールとの間で密着性を高め、冷却効率を上げる観点からは、冷却ロールにメルトが接触する前に静電気を印加しておくことが好ましい。 The temperature of the cooling roll itself is preferably 10 ° C. to 80 ° C., more preferably 15 ° C. to 70 ° C., and further preferably 20 ° C. to 60 ° C. Further, from the viewpoint of improving the adhesion between the molten resin (melt) and the cooling roll and increasing the cooling efficiency, it is preferable to apply static electricity before the melt contacts the cooling roll.
 帯状に吐出された溶融樹脂(メルト)の固化後(延伸前)の厚みは、2600μm~6000μmの範囲であることで、その後の延伸を経て、厚み260μm~400μmのポリエステルフィルムを得ることができる。メルトの固化後の厚みは、3100μm~6000μmの範囲が好ましく、より好ましくは3300μm~5000μmであり、さらに好ましくは3500μm~4500μmの範囲である。固化後延伸前の厚みが6000μm以下であることで、メルト押出し中に皺が発生し難く、ムラの発生が抑えられる。また、固化後延伸前の厚みが2600μm以上であることが、メルトの腰が弱いために発生するチルロール(固化するための冷却ロール)への密着むらを抑制し、フィルムのむら低減の観点から好ましい。 The thickness of the molten resin (melt) discharged in a band after solidification (before stretching) is in the range of 2600 μm to 6000 μm, and a polyester film having a thickness of 260 μm to 400 μm can be obtained through subsequent stretching. The thickness of the melt after solidification is preferably in the range of 3100 μm to 6000 μm, more preferably in the range of 3300 μm to 5000 μm, and still more preferably in the range of 3500 μm to 4500 μm. When the thickness after solidification and before stretching is 6000 μm or less, wrinkles are unlikely to occur during melt extrusion, and unevenness is suppressed. Moreover, it is preferable that the thickness before stretching after solidification is 2600 μm or more suppresses uneven adhesion to the chill roll (cooling roll for solidification) generated due to weak melt, and is preferable from the viewpoint of reducing unevenness of the film.
(延伸工程)
 本発明の製造方法では、上記製膜工程の後に、作製された押出フィルム(未延伸フィルム)を延伸する工程を含んでいてもよい。本発明の製造方法では、基材は、機械強度の点から2軸延伸したものであることが好ましい。
(Stretching process)
In the manufacturing method of this invention, the process of extending | stretching the produced extruded film (unstretched film) may be included after the said film forming process. In the production method of the present invention, the substrate is preferably biaxially stretched from the viewpoint of mechanical strength.
(表面処理)
 本発明の製造方法は、コロナ処理、大気圧プラズマ処理、グロー放電処理、火炎処理及びシラン化合物を導入した火炎を用いる火炎処理の少なくとも1種の方法でポリマー基材を表面処理することが好ましい。
(surface treatment)
In the production method of the present invention, the polymer substrate is preferably surface-treated by at least one method of corona treatment, atmospheric pressure plasma treatment, glow discharge treatment, flame treatment, and flame treatment using a silane compound-introduced flame.
<下塗り層の形成>
 下塗り層は、下塗り層形成用塗布液をポリマー基材に塗布して形成することが好ましい。
 下塗り層を塗布するための方法や用いる塗布液の溶媒には、特に制限はない。
 ポリマー基材に下塗り層を塗布形成する方法としては、公知のコーティング方法が適宜採択される。例えば、リバースロールコーター、グラビアコーター、ロッドコーター、バーコーター、エアドクタコーター、スプレーあるいは刷毛を用いたコーティング方法等の方法がいずれも使用できる。
 塗布液に用いる溶媒は、水でもよいし、トルエンやメチルエチルケトン等の有機溶媒でもよい。溶媒は1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 また、塗布は、2軸延伸した後のポリマー基材に塗布してもよいし、1軸延伸後のポリマー基材に塗布した後に初めの延伸と異なる方向に延伸する方法でもよい。さらに、延伸前の基材に塗布した後に2方向に延伸してもよい。
<Formation of undercoat layer>
The undercoat layer is preferably formed by applying an undercoat layer forming coating solution to a polymer substrate.
There is no particular limitation on the method for applying the undercoat layer and the solvent of the coating solution used.
As a method of applying and forming an undercoat layer on a polymer substrate, a known coating method is appropriately adopted. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, a bar coater, an air doctor coater, a spray or a coating method using a brush can be used.
The solvent used for the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone. A solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
The coating may be performed on the polymer substrate after biaxial stretching, or may be performed by stretching in a direction different from the initial stretching after coating on the polymer substrate after uniaxial stretching. Furthermore, you may extend | stretch in 2 directions, after apply | coating to the base material before extending | stretching.
 ポリマー基材を下塗り層を構成する成分を含む水性塗布液(下塗り層形成用塗布液)に浸漬して行ってもよい。コストの点から、下塗り層形成用塗布液を、フィルム製造工程内でフィルムにコーティングする、いわゆるインラインコート法により塗布するのが好ましい。
 すなわち、ポリマー基材用の原料樹脂をシート状に溶融押出する溶融押出工程と、
 溶融押出されたシート状の樹脂を冷却し、樹脂シートを製膜する製膜工程と、
 前記樹脂シートを第1の方向に延伸する第1の延伸工程と、
 前記第1の方向に延伸された樹脂シートの少なくとも片面に下塗り層を塗布形成する下塗り層形成工程と、
 前記下塗り層が塗布形成された樹脂シートを、前記第1の方向と直交する第2の方向に延伸する第2の延伸工程と、を有する方法が挙げられる。
 より具体的には、例えば、基材フィルムを形成するための樹脂を、例えば押し出し、静電密着法等を併用しつつ冷却ドラム上にキャストして樹脂シートを得た後に縦方向に延伸し、次いで縦延伸後のフィルムの片面に、下塗り層を形成するための水性塗布液を塗布した後に横方向に延伸するなどの方法を使用することができる。コート時の乾燥、熱処理の条件はコート厚み、装置の条件にもよるが、コート後直ちに直角方向の延伸工程に送入し、延伸工程の予熱ゾーンあるいは延伸ゾーンで乾燥させることが好ましい。このような場合、通常50~250℃程度で乾燥を行う。
 なお、基材となるフィルムにコロナ放電処理、その他の表面活性化処理を施してもよい。
You may immerse a polymer base material in the aqueous coating liquid (coating liquid for undercoat layer formation) containing the component which comprises an undercoat layer. From the viewpoint of cost, it is preferable to apply the coating solution for forming the undercoat layer by a so-called in-line coating method in which the film is coated in the film production process.
That is, a melt extrusion step of melt-extruding a raw material resin for a polymer substrate into a sheet,
Cooling the melt-extruded sheet-shaped resin, and forming a resin sheet,
A first stretching step of stretching the resin sheet in a first direction;
An undercoat layer forming step of applying and forming an undercoat layer on at least one surface of the resin sheet stretched in the first direction;
And a second stretching step of stretching the resin sheet on which the undercoat layer has been applied and formed in a second direction orthogonal to the first direction.
More specifically, for example, a resin for forming a base film is extruded, for example, while being used together with an electrostatic adhesion method or the like, cast on a cooling drum to obtain a resin sheet, and then stretched in the longitudinal direction. Next, a method such as stretching in the transverse direction after applying an aqueous coating solution for forming an undercoat layer on one side of the film after longitudinal stretching can be used. The conditions for drying and heat treatment during coating depend on the thickness of the coat and the conditions of the apparatus, but it is preferable that the coating is sent immediately after coating to the stretching step in the perpendicular direction and dried in the preheating zone or stretching zone of the stretching step. In such a case, drying is usually performed at about 50 to 250 ° C.
In addition, you may perform a corona discharge process and other surface activation processes to the film used as a base material.
 下塗り層形成用の水性塗布液中の固形分濃度は、30質量%以下であることが好ましく、特に好ましくは10質量%以下である。固形分濃度の下限は1質量%が好ましく、さらに好ましくは3質量%、特に好ましくは5質量%である。上記範囲により、面状が良好な下塗り層を形成することができる。 The solid concentration in the aqueous coating solution for forming the undercoat layer is preferably 30% by mass or less, and particularly preferably 10% by mass or less. The lower limit of the solid content concentration is preferably 1% by mass, more preferably 3% by mass, and particularly preferably 5% by mass. An undercoat layer having a good surface shape can be formed within the above range.
 下塗り層形成用塗布液の塗布量は、求める下塗り層の厚みに応じて変えることが好ましく、2g/m2以下であることが好ましく、より好ましくは0.05g/m2~2g/m2であり、更に好ましくは0.1g/m2~1.5g/m2である。
 下塗り層が無機酸化物フィラーを含む場合、その塗布量は0.005~0.5g/m2であることが好ましく、0.005~0.3g/m2であることがより好ましく、0.005~0.2g/m2であることが特に好ましい。
 塗布後は、所望の条件で乾燥を行なう乾燥工程が設けられてもよい。
The coating amount of the undercoat layer coating liquid is preferably varied according to the thickness of the subbing layer to obtain, it is preferably 2 g / m 2 or less, more preferably 0.05g / m 2 ~ 2g / m 2 More preferably, it is 0.1 g / m 2 to 1.5 g / m 2 .
When the undercoat layer contains an inorganic oxide filler, the coating amount is preferably 0.005 to 0.5 g / m 2 , more preferably 0.005 to 0.3 g / m 2 , and A range of 005 to 0.2 g / m 2 is particularly preferred.
After the application, a drying process for drying under desired conditions may be provided.
<顔料層の形成>
 顔料層の形成は、顔料を含有するポリマーシートを基材に貼合する方法、基材形成時に顔料層を共押出しする方法、塗布による方法等により行なえる。具体的には、ポリマー基材の表面に直にあるいは厚み2μm以下の下塗り層を介して、貼合、共押出し、塗布等することにより顔料層を形成することができる。形成された顔料層は、ポリマー基材の表面に直に接した状態であっても、あるいは下塗り層を介して積層した状態であってもよい。
 上記のうち、塗布による方法は、簡便であると共に、均一性で薄膜での形成が可能である点で好ましい。
<Formation of pigment layer>
The pigment layer can be formed by a method in which a polymer sheet containing a pigment is bonded to a substrate, a method in which the pigment layer is co-extruded during substrate formation, a method by coating, or the like. Specifically, the pigment layer can be formed by bonding, co-extrusion, coating or the like directly on the surface of the polymer substrate or through an undercoat layer having a thickness of 2 μm or less. The formed pigment layer may be in a state where it is in direct contact with the surface of the polymer substrate or may be in a state where it is laminated via an undercoat layer.
Among the methods described above, the method by coating is preferable because it is simple and can be formed in a thin film with uniformity.
 塗布による場合、塗布方法としては、例えば、グラビアコーター、バーコーターなどの公知の塗布方法を利用することができる。
 塗布液は、塗布溶媒として水を用いた水系でもよいし、トルエンやメチルエチルケトン等の有機溶媒を用いた溶剤系でもよい。中でも、環境負荷の観点から、水を溶媒とすることが好ましい。塗布溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 顔料層形成用塗布液を下塗り層上に塗布することが好ましい。
 顔料層形成用塗布液の塗布量は、求める顔料層の厚みに応じて変えることが好ましいが、下塗り層の厚みに起因して顔料層の面状が乱れる。そのため、顔料層の反射率やその他の物性を変化させる目的では塗布量を変化させる必要はなく、顔料層に含まれる顔料の量を調整する方が好ましい。顔料層形成用塗布液の塗布量は5~15g/m2であることが反射率及び接着性維持の観点から好ましく、より好ましくは6~12g/m2であり、更に好ましくは7g/m2~10g/m2である。
 塗布後は、所望の条件で乾燥を行なう乾燥工程が設けられてもよい。
In the case of coating, as a coating method, for example, a known coating method such as a gravure coater or a bar coater can be used.
The coating liquid may be an aqueous system using water as an application solvent, or a solvent system using an organic solvent such as toluene or methyl ethyl ketone. Especially, it is preferable to use water as a solvent from a viewpoint of environmental impact. A coating solvent may be used individually by 1 type, and may mix and use 2 or more types.
It is preferable to apply the pigment layer forming coating solution on the undercoat layer.
The coating amount of the coating liquid for forming the pigment layer is preferably changed according to the desired thickness of the pigment layer, but the surface state of the pigment layer is disturbed due to the thickness of the undercoat layer. Therefore, it is not necessary to change the coating amount for the purpose of changing the reflectance and other physical properties of the pigment layer, and it is preferable to adjust the amount of the pigment contained in the pigment layer. The coating amount of the pigment layer forming coating solution is preferably 5 to 15 g / m 2 from the viewpoint of maintaining reflectance and adhesion, more preferably 6 to 12 g / m 2 , and even more preferably 7 g / m 2. ~ 10 g / m 2 .
After the application, a drying process for drying under desired conditions may be provided.
<上塗り層の形成>
 上塗り層は、上塗り層形成用塗布液を顔料層上に塗布して形成することが好ましい。
 上塗り層を塗布するための方法や用いる塗布液の溶媒には、特に制限はない。
 塗布方法としては、例えばグラビアコーターやバーコーターを利用することができる。
 塗布液に用いる溶媒は、水でもよいし、トルエンやメチルエチルケトン等の有機溶媒でもよい。溶媒は1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 上塗り層形成用塗布液の塗布量は、求める上塗り層の厚みに応じて変えることが好ましく、30g/m2以下であることが好ましく、より好ましくは0.5g/m2~20g/m2であり、更に好ましくは1g/m2~10g/m2である。
 上塗り層が無機酸化物フィラーを含む場合、その塗布量は0.005~15g/m2であることが好ましく、0.005~10g/m2であることがより好ましく、0.005~5g/m2であることが特に好ましい。
 塗布後は、所望の条件で乾燥を行なう乾燥工程が設けられてもよい。
<Formation of topcoat layer>
The topcoat layer is preferably formed by applying a topcoat layer forming coating solution on the pigment layer.
There are no particular restrictions on the method for applying the topcoat layer and the solvent of the coating solution used.
As a coating method, for example, a gravure coater or a bar coater can be used.
The solvent used for the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone. A solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
The coating amount of the coating solution for forming the topcoat layer is preferably changed according to the desired thickness of the topcoat layer, preferably 30 g / m 2 or less, more preferably 0.5 g / m 2 to 20 g / m 2 . More preferably 1 g / m 2 to 10 g / m 2 .
When the topcoat layer contains an inorganic oxide filler, the coating amount is preferably 0.005 to 15 g / m 2 , more preferably 0.005 to 10 g / m 2 , and 0.005 to 5 g / m 2. Particularly preferred is m 2 .
After the application, a drying process for drying under desired conditions may be provided.
<複合ポリマー層の形成>
 複合ポリマー層の形成は、ポリマーシートをポリマー基材に貼合する方法、ポリマー基材形成時に複合ポリマー層を共押出しする方法、塗布による方法等により行なえる。中でも、塗布による方法は、簡便であると共に、均一性で薄膜での形成が可能である点で好ましい。塗布による場合、塗布方法としては、例えば、グラビアコーター、バーコーターなどの公知の塗布方法を利用することができる。
<Formation of composite polymer layer>
The composite polymer layer can be formed by a method in which a polymer sheet is bonded to a polymer substrate, a method in which the composite polymer layer is coextruded when forming the polymer substrate, a method by coating, or the like. Especially, the method by application | coating is preferable at the point which is easy and can form in a thin film with uniformity. In the case of coating, as a coating method, for example, a known coating method such as a gravure coater or a bar coater can be used.
 塗布液は、塗布溶媒として水を用いた水系でもよいし、トルエンやメチルエチルケトン等の有機溶媒を用いた溶剤系でもよい。中でも、環境負荷の観点から、水を溶媒とすることが好ましい。塗布溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The coating solution may be an aqueous system using water as an application solvent, or a solvent system using an organic solvent such as toluene or methyl ethyl ketone. Among these, from the viewpoint of environmental burden, it is preferable to use water as a solvent. A coating solvent may be used individually by 1 type, and may mix and use 2 or more types.
 複合ポリマー層用塗布液としては、これに含まれる溶媒中の50質量%以上、好ましくは60質量%以上が水である水系塗布液であることが好ましい。水系塗布液は、環境負荷の点で好ましく、また水の割合が50質量%以上であることにより、環境負荷が特に小さくなる点で有利である。複合ポリマー層用塗布液中の水の割合は、環境負荷の観点からは、さらに多い方が望ましく、水が全溶媒の90質量%以上含まれる場合がより好ましい。 The coating solution for the composite polymer layer is preferably an aqueous coating solution in which 50% by mass or more, preferably 60% by mass or more, of the solvent contained therein is water. The aqueous coating solution is preferable in terms of environmental load, and is advantageous in that the environmental load is particularly reduced when the ratio of water is 50% by mass or more. The proportion of water in the coating solution for the composite polymer layer is preferably larger from the viewpoint of environmental load, and more preferably 90% by mass or more of water in the total solvent.
 塗布後は、所望の条件で乾燥を行なう乾燥工程が設けられてもよい。 After the application, a drying process for drying under desired conditions may be provided.
[太陽電池モジュール]
 本発明の太陽電池モジュールは、太陽光が入射する透明性の基板と、太陽電池素子と、本発明の太陽電池用バックシートとを含む。本発明の太陽電池モジュールは、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子を、太陽光が入射する透明性の基板と既述の本発明の太陽電池用バックシートとの間に配置し、基板とバックシートとの間をエチレン-ビニルアセテート系封止材で封止して構成されていることが好ましい。
[Solar cell module]
The solar cell module of the present invention includes a transparent substrate on which sunlight is incident, a solar cell element, and the solar cell backsheet of the present invention. In the solar cell module of the present invention, a solar cell element that converts light energy of sunlight into electric energy is disposed between the transparent substrate on which sunlight is incident and the above-described solar cell backsheet of the present invention. The substrate and the back sheet are preferably sealed with an ethylene-vinyl acetate sealing material.
 なお、封止材はEVA(エチレン-ビニルアセテート)樹脂に限定されず、PVB(ポリビニルブチラール)樹脂、ポリオレフィン樹脂、エチレン系アイオノマー樹脂等を使用することもできる。 The sealing material is not limited to EVA (ethylene-vinyl acetate) resin, and PVB (polyvinyl butyral) resin, polyolefin resin, ethylene ionomer resin, and the like can also be used.
 太陽電池モジュール、太陽電池セル、バックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。 Components other than solar cell modules, solar cells, and backsheets are described in detail in, for example, “Solar Power Generation System Constituent Materials” (supervised by Eiichi Sugimoto, Industrial Research Committee, Inc., issued in 2008).
 透明性の基板は、太陽光が透過し得る光透過性を有していればよく、光を透過する基材から適宜選択することができる。発電効率の観点からは、光の透過率が高いものほど好ましく、このような基板として、例えば、ガラス基板、アクリル樹脂などの透明樹脂などを好適に用いることができる。 The transparent substrate only needs to have a light-transmitting property through which sunlight can be transmitted, and can be appropriately selected from base materials that transmit light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better. For such a substrate, for example, a glass substrate, a transparent resin such as an acrylic resin, or the like can be suitably used.
 太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。 Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as -VI group compound semiconductor systems can be applied.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。
 体積平均粒子径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕を用いて測定した。
The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the examples shown below. Unless otherwise specified, “part” is based on mass.
The volume average particle size was measured using a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
[実施例1]
<ポリマー基材の作製>
-PETの重合-
 特開2011-165698号公報の[0033]1~11行目に従い、ポリエチレンテレフタレートのポリマーを得た。具体的には、エステル交換反応容器にジメチルテレフタレートを100質量部、エチレングリコールを61質量部、酢酸マグネシウム四水塩を0.06質量部仕込み、150℃に加熱して溶融し撹拌した。反応容器内温度をゆっくりと235℃まで昇温しながら反応を進め、生成するメタノールを反応容器外へ留出させた。メタノールの留出が終了したらトリメチルリン酸を0.02質量部添加した。トリメチルリン酸を添加した後、三酸化アンチモンを0.03質量部添加し、反応物を重合装置に移行した。
[Example 1]
<Production of polymer substrate>
-Polymerization of PET-
According to [0033] lines 1 to 11 of JP2011-165698A, a polymer of polyethylene terephthalate was obtained. Specifically, 100 parts by mass of dimethyl terephthalate, 61 parts by mass of ethylene glycol, and 0.06 parts by mass of magnesium acetate tetrahydrate were charged in a transesterification reaction vessel, heated to 150 ° C., melted and stirred. The reaction was advanced while the temperature in the reaction vessel was slowly raised to 235 ° C., and the produced methanol was distilled out of the reaction vessel. When the distillation of methanol was completed, 0.02 parts by mass of trimethyl phosphoric acid was added. After adding trimethyl phosphoric acid, 0.03 parts by mass of antimony trioxide was added, and the reaction product was transferred to a polymerization apparatus.
 ついで重合装置内の温度を235℃から290℃まで90分かけて昇温し、同時に装置内の圧力を大気圧から100Paまで90分かけて減圧した。重合装置内容物の撹拌トルクが所定の値に達したら装置内を窒素ガスで大気圧に戻して重合を終了した。重合装置下部のバルブを開いて重合装置内部を窒素ガスで加圧し、重合の完了したポリエチレンテレフタレートをストランド状にして水中に吐出した。ストランドはカッターによってチップ化した。このようにして固有粘度IV=0.58、酸価(AV)=12のPETを得た。これをPET-Aとした。 Then, the temperature in the polymerization apparatus was raised from 235 ° C. to 290 ° C. over 90 minutes, and at the same time, the pressure in the apparatus was reduced from atmospheric pressure to 100 Pa over 90 minutes. When the stirring torque of the contents of the polymerization apparatus reached a predetermined value, the interior of the apparatus was returned to atmospheric pressure with nitrogen gas to complete the polymerization. The valve at the bottom of the polymerization apparatus was opened and the inside of the polymerization apparatus was pressurized with nitrogen gas, and the polymerized polyethylene terephthalate was discharged into water in the form of a strand. The strand was chipped with a cutter. Thus, PET having an intrinsic viscosity IV = 0.58 and an acid value (AV) = 12, was obtained. This was designated as PET-A.
-ポリエステルの固相重合-
 PET-Aを特開2009-182186号公報の[0032]に従い固相重合を行った。即ち、得られたポリマー(PET-A)を150~160℃で3時間予備乾燥した後、100Torr、窒素ガス雰囲気下、205℃で25時間固相重合を行いIV=8、AV=0.79のPET-Bを得た。なお、カルボキシル末端量AVは、Mauliceの方法によって、カルボキシル末端量を測定した(文献: M.J.Maulice,F.Huizinga.Anal.Chim.Acta,22 363(1960))。
-Solid phase polymerization of polyester-
PET-A was subjected to solid phase polymerization according to [0032] of JP-A-2009-182186. That is, the obtained polymer (PET-A) was pre-dried at 150 to 160 ° C. for 3 hours and then subjected to solid phase polymerization at 205 ° C. for 25 hours in an atmosphere of 100 Torr and nitrogen gas. IV = 8, AV = 0.79 PET-B was obtained. The carboxyl terminal amount AV was measured by the method of Malice (Reference: MJ Malice, F. Huizinga. Anal. Chim. Acta, 22 363 (1960)).
 固有粘度(IV)は、ポリエステルをオルトクロロフェノールに溶解し、25℃で測定した溶液粘度から、下式より固有粘度を得た。
 ηsp/C=[η]+K[η]・C
 ここで、ηsp=(溶液粘度/溶媒粘度)-1であり、Cは、溶媒100mlあたりの溶解ポリマー重量であり(本測定では1g/100mlとする)、Kはハギンス定数(0.343とする)であり、溶液粘度、溶媒粘度はオストワルド粘度計を用いて測定した。
The intrinsic viscosity (IV) was obtained by dissolving the polyester in orthochlorophenol and obtaining the intrinsic viscosity from the following formula from the solution viscosity measured at 25 ° C.
ηsp / C = [η] + K [η] 2 · C
Here, ηsp = (solution viscosity / solvent viscosity) −1, C is the weight of dissolved polymer per 100 ml of solvent (1 g / 100 ml in this measurement), and K is the Huggins constant (0.343) The solution viscosity and the solvent viscosity were measured using an Ostwald viscometer.
-ポリエステルフィルムの製膜-
 PET-Bを用い、これらを180℃で3時間乾燥させた後、280℃で溶融して金属ドラムの上にキャストし、冷却固化し未延伸シートを得た。
 この未延伸シートを100℃で長手方向に3.5倍に延伸した後、25℃に冷却し、この後、130℃にて幅方向に4.2倍延伸した。この後、210℃で熱固定を行い、幅方向に2%緩和を行った後、巻き取った。延伸後の厚みは250μmであった。こうして、厚み250μmの2軸延伸ポリエチレンテレフタレート基材S-1(以下、「2軸延伸PETフィルム」、「PET基材」、又は「支持体」と称する場合がある。)を得た。
-Made of polyester film-
These were dried at 180 ° C. for 3 hours using PET-B, melted at 280 ° C., cast onto a metal drum, cooled and solidified to obtain an unstretched sheet.
The unstretched sheet was stretched 3.5 times in the longitudinal direction at 100 ° C., cooled to 25 ° C., and then stretched 4.2 times in the width direction at 130 ° C. Thereafter, heat setting was performed at 210 ° C., relaxation was performed 2% in the width direction, and winding was performed. The thickness after stretching was 250 μm. Thus, a biaxially stretched polyethylene terephthalate substrate S-1 having a thickness of 250 μm (hereinafter sometimes referred to as “biaxially stretched PET film”, “PET substrate”, or “support”) was obtained.
-2軸延伸PET基材の熱収縮率-
 2軸延伸PETフィルムを5cm×15cmの長方形にサンプリングし、MD(フィルム搬送方向)に平行に15cmの辺を切出したものをMDサンプル、TD(フィルム搬送方向に直交する方向)に平行に15cmの辺を切出したものをTDサンプルとし、各3枚ずつ切出した。これらのサンプルを、製膜幅を5等分した点で切出し、合計でMDサンプル15枚、TDサンプル15枚のサンプルを作製した。
 各サンプルを25℃、相対湿度60%の下で3時間以上調湿し、これに10cm基長の一対の孔を空け、ピンゲージで孔間を測長した(L1とする)。
 各サンプルを150℃30分の空気恒温槽中で、無張力下で熱処理した。その後、各サンプルを25℃、相対湿度60%の下で3時間以上調湿後、ピンゲージで孔間を測長した(L2とする)。
 100×(L1-L2)/L1を各サンプルの熱収縮(%)とした。
 これらのMD、TD全サンプルの平均値を得られた結果として、表1に「熱収縮」として記載した。
-Thermal shrinkage of a biaxially stretched PET substrate-
A biaxially stretched PET film was sampled into a 5 cm × 15 cm rectangle and a 15 cm side cut out in parallel to MD (film transport direction) was an MD sample, 15 cm parallel to TD (direction perpendicular to the film transport direction) The side cut out was used as a TD sample, and three pieces each were cut out. These samples were cut out at a point where the film forming width was divided into five equal parts, and a total of 15 MD samples and 15 TD samples were produced.
Each sample was conditioned at 25 ° C. and a relative humidity of 60% for 3 hours or more, a pair of 10 cm base length holes were made in this sample, and the distance between the holes was measured with a pin gauge (L1).
Each sample was heat-treated in an air thermostat at 150 ° C. for 30 minutes under no tension. Thereafter, each sample was conditioned at 25 ° C. and a relative humidity of 60% for 3 hours or longer, and the distance between the holes was measured with a pin gauge (L2).
100 × (L1-L2) / L1 was defined as the thermal shrinkage (%) of each sample.
As a result of obtaining the average values of all the MD and TD samples, they are shown as “heat shrinkage” in Table 1.
<顔料層>
-二酸化チタン分散物の調製-
 下記組成中の成分を混合し、その混合物をダイノミル型分散機により1時間、分散処理を施した。
(二酸化チタン分散物の組成)
・二酸化チタン(体積平均粒子径=0.42μm)・・・455.8質量部
 〔タイペークCR-95、石原産業(株)製、固形分100質量%〕
・ポリビニルアルコール            ・・・227.9質量部
 〔PVA-105、(株)クラレ製、固形分:10質量%〕
・界面活性剤                 ・・・5.5質量部
〔デモールEP、花王(株)製、固形分:25質量%〕
・蒸留水                   ・・・310.8質量部
<Pigment layer>
-Preparation of titanium dioxide dispersion-
Components in the following composition were mixed, and the mixture was subjected to a dispersion treatment for 1 hour by a dynomill type disperser.
(Composition of titanium dioxide dispersion)
・ Titanium dioxide (volume average particle size = 0.42 μm): 455.8 parts by mass [Taipeke CR-95, manufactured by Ishihara Sangyo Co., Ltd., solid content: 100% by mass]
・ Polyvinyl alcohol: 227.9 parts by mass [PVA-105, manufactured by Kuraray Co., Ltd., solid content: 10% by mass]
-Surfactant: 5.5 parts by mass [Demol EP, manufactured by Kao Corporation, solid content: 25% by mass]
・ Distilled water ... 310.8 parts by mass
-顔料層形成用塗布液の調製-
 下記組成中の成分を混合し、顔料層形成用塗布液を調製した。
(塗布液の組成)
・二酸化チタン分散物             ・・・298.5質量部
・ポリオレフィンバインダー          ・・・568.7質量部
 〔アローベースSE1013N、ユニチカ(株)製、固形分:20.2質量%〕
・ポリオキシアルキレンアルキルエーテル    ・・・23.4質量部
 〔ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%〕
・オキサゾリン化合物             ・・・58.4質量部
 〔エポクロスWS-700、日本触媒(株)製、固形分:25%;架橋剤〕
・蒸留水                   ・・・51.0質量部
-Preparation of coating solution for pigment layer formation-
Components in the following composition were mixed to prepare a coating solution for forming a pigment layer.
(Composition of coating solution)
-Titanium dioxide dispersion ... 298.5 parts by mass-Polyolefin binder ... 568.7 parts by mass [Arrow Base SE1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass]
Polyoxyalkylene alkyl ether 23.4 parts by mass [Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass]
Oxazoline compound: 58.4 parts by mass [Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25%; crosslinking agent]
・ Distilled water: 51.0 parts by mass
 なお、上記顔料層形成用塗布液の組成のバインダー(ポリオレフィン系バインダー)と顔料(二酸化チタン)の合計に対する顔料の割合(質量比)を百分率で計算したところ、54.2%であった。その結果を下記表1に記載した。 The ratio (mass ratio) of the pigment to the total of the binder (polyolefin-based binder) and the pigment (titanium dioxide) in the composition of the coating liquid for forming the pigment layer was calculated to be 54.2%. The results are shown in Table 1 below.
-顔料層の形成-
 PET基材(S-1)の一方の面(第1の面)にコロナ処理装置(ピラー社製ソリッドステートコロナ処理機6KVAモデル)を用いて下記の条件でコロナ処理を行った。
-Formation of pigment layer-
One side (first side) of the PET substrate (S-1) was subjected to corona treatment under the following conditions using a corona treatment apparatus (solid state corona treatment machine 6KVA model manufactured by Pillar).
 電極と誘電体ロ-ルギャップクリアランス:1.6mm
 処理周波数:9.6kHz
 処理速度:20m/分
 処理強度:0.375kV・A・分/m
Electrode and dielectric roll gap clearance: 1.6mm
Processing frequency: 9.6 kHz
Processing speed: 20 m / min Processing intensity: 0.375 kV · A · min / m 2
 次いで、顔料層形成用塗布液をPET基材(S-1)のコロナ処理面に、二酸化チタン量が5.6g/mとなるように塗布し、170℃で2分間乾燥させて、顔料層を形成した。 Next, the pigment layer forming coating solution was applied to the corona-treated surface of the PET base material (S-1) so that the amount of titanium dioxide was 5.6 g / m 2, and dried at 170 ° C. for 2 minutes. A layer was formed.
<上塗り層>
-上塗り層の調製-
 上記組成中の成分を混合し、上塗り層形成用塗布液を調製した。
(上塗り層形成用塗布液の組成)
・オレフィン系バインダー ・・・213.8質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%)
・カルボジイミド化合物(架橋剤)・・・73.5質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・オキサゾリン化合物(架橋剤)・・・45.0質量部
  (エポクロスWS700、(株)日本触媒製、固形分:5質量%)
・コロイダルシリカ(無機顔料)・・・72.0質量部
  (スノーテックスC、日産化学(株)製、固形分:20質量%)
・界面活性剤・・・45.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水・・・550.7質量部
<Overcoat layer>
-Preparation of topcoat layer-
The components in the above composition were mixed to prepare a coating solution for forming an overcoat layer.
(Composition of coating solution for forming top coat layer)
・ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
Oxazoline compound (crosslinking agent) 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
Colloidal silica (inorganic pigment) 72.0 parts by mass (Snowtex C, manufactured by Nissan Chemical Co., Ltd., solid content: 20% by mass)
-Surfactant: 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
・ Distilled water: 550.7 parts by mass
 なお、上塗り層形成用塗布液の組成のバインダー(ポリオレフィン系バインダー)と顔料(コロイダルシリカ)の合計に対する顔料の割合(質量比)を百分率で計算したところ、25.0%であった。また、上塗り層形成用塗布液の組成のバインダー添加量(ポリオレフィン系バインダー)に対する、架橋剤添加量(カルボジイミド化合物とオキサゾリン化合物の合計)の割合(質量比)を百分率で計算したところ、22.2%であった。その結果を下記表1に記載した。 The ratio (mass ratio) of the pigment to the total of the binder (polyolefin-based binder) and the pigment (colloidal silica) in the composition of the coating solution for forming the overcoat layer was calculated to be 25.0%. Moreover, when the ratio (mass ratio) of the crosslinking agent addition amount (total of carbodiimide compound and oxazoline compound) to the binder addition amount (polyolefin-based binder) in the composition of the coating solution for forming the topcoat layer was calculated as a percentage, 22.2 %Met. The results are shown in Table 1 below.
-上塗り層の形成-
 得られた塗布液を、固形分塗布量が0.6g/mになるように顔料層上に塗布し、170℃で2分間乾燥させて、乾燥厚みが約0.5μmの上塗り層を形成した。
-Formation of overcoat layer-
The obtained coating solution is applied onto the pigment layer so that the solid content coating amount is 0.6 g / m 2 and dried at 170 ° C. for 2 minutes to form an overcoat layer having a dry thickness of about 0.5 μm. did.
<第1複合ポリマー層>
-第1複合ポリマー層形成用塗布液の調製-
 下記組成中の各成分を混合し、裏面の第1複合ポリマー層形成用塗布液を調製した。
(塗布液の組成)
・アクリル/シリコーン系バインダー(バインダー)
  (セラネートWSA-1070、DIC(株)製、固形分:40質量%、シロキサン構造単位:アクリル構造単位=30:70)   ・・・396.5質量部
・カルボジイミド化合物(架橋剤)・・・49.0質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:20質量%)
・オキサゾリン化合物(架橋剤)・・・16.8質量部
  (エポクロスWS700、(株)日本触媒製、固形分:5質量%)
・界面活性剤・・・15.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・二酸化チタン分散物・・・493.9質量部
・蒸留水・・・28.8質量部
<First composite polymer layer>
-Preparation of coating solution for forming first composite polymer layer-
Each component in the following composition was mixed to prepare a coating solution for forming the first composite polymer layer on the back surface.
(Composition of coating solution)
・ Acrylic / silicone binder (binder)
(Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass, siloxane structural unit: acrylic structural unit = 30: 70) ... 396.5 parts by mass / carbodiimide compound (crosslinking agent) ... 49 0.0 part by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Inc., solid content: 20% by mass)
Oxazoline compound (crosslinking agent) 16.8 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
-Titanium dioxide dispersion: 493.9 parts by mass-Distilled water: 28.8 parts by mass
-第1複合ポリマー層の形成-
 支持体S-1の顔料層を形成した面の反対面(「裏面」という場合がある。)に前述の条件でコロナ処理を施した。
 次いで、第1複合ポリマー層形成用塗布液を支持体S-1のコロナ処理した裏面に、バインダー塗布量が5.1g/mになるように塗布し、175℃で2分間乾燥させて、乾燥厚みが約5μmの第1複合ポリマー層を形成した。
-Formation of first composite polymer layer-
The surface opposite to the surface on which the pigment layer of the support S-1 was formed (sometimes referred to as “back surface”) was subjected to corona treatment under the conditions described above.
Next, the first composite polymer layer forming coating solution was applied to the corona-treated back surface of the support S-1 so that the binder coating amount was 5.1 g / m 2 and dried at 175 ° C. for 2 minutes. A first composite polymer layer having a dry thickness of about 5 μm was formed.
<第2複合ポリマー層>
-第2複合ポリマー層形成用塗布液の調製-
 下記組成中の各成分を混合し、第2複合ポリマー層形成用塗布液を調製した。
(塗布液の組成)
・アクリル/シリコーン系バインダー(バインダー)・・・77.8質量部
 (セラネートWSA-1070、DIC(株)製、固形分:40質量%)
・カルボジイミド化合物(架橋剤)・・・15.6質量部
 (カルボジライトV-02-L2、日清紡績(株)製、固形分:20質量%)
・界面活性剤・・・15.0質量部
 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・ポリエチレンワックス分散物・・・51.9質量部
 (ケミパールW950、三井化学(株)製、固形分:5質量%)
・コロイダルシリカ・・・1.0質量部
 (スノーテックスUP、日産化学(株)製、固形分:20質量%)
・アミノシラン化合物・・・19.6質量部
 (TSL8340、モメンティブ・パフォーマンス・マテリアル社製、固形分:1質量%)
・蒸留水・・・60.7質量部
<Second composite polymer layer>
-Preparation of coating solution for forming second composite polymer layer-
Each component in the following composition was mixed to prepare a coating solution for forming a second composite polymer layer.
(Composition of coating solution)
・ Acrylic / silicone binder (binder) 77.8 parts by mass (Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass)
Carbodiimide compound (crosslinking agent) 15.6 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 20% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
Polyethylene wax dispersion: 51.9 parts by mass (Chemical Pearl W950, manufactured by Mitsui Chemicals, solid content: 5% by mass)
Colloidal silica: 1.0 part by mass (Snowtex UP, manufactured by Nissan Chemical Co., Ltd., solid content: 20% by mass)
Aminosilane compound: 19.6 parts by mass (TSL8340, manufactured by Momentive Performance Materials, solid content: 1% by mass)
・ Distilled water: 60.7 parts by mass
-第2複合ポリマー層の形成-
 得られた第2複合ポリマー層形成用塗布液を第1複合ポリマー層の上に、バインダー塗布量が1.3g/mになるように塗布し、175℃で2分間乾燥させて、乾燥厚みが約1.2μmの第2複合ポリマー層を形成した。
-Formation of second composite polymer layer-
The obtained coating liquid for forming the second composite polymer layer was applied onto the first composite polymer layer so that the amount of the binder applied was 1.3 g / m 2 , dried at 175 ° C. for 2 minutes, and dried. Formed a second composite polymer layer of about 1.2 μm.
<評価>
-1.接着性-
[A]湿熱経時前の接着性
 上記のようにして作製したサンプルシートを20mm巾×150mmにカットして、サンプル片を2枚準備した。この2枚のサンプル片を、互いに顔料層側が内側になるように配置し、この間に20mm巾×100mm長にカットしたEVAシート(三井化学ファブロ(株)製のEVAシート:SC50B)を挟み、真空ラミネータ(日清紡(株)製の真空ラミネート機)を用いてホットプレスすることにより、EVAと接着させた。このときの接着条件は、以下の通りとした。
 真空ラミネータを用いて、128℃で3分間の真空引き後、2分間加圧して仮接着した。その後、ドライオーブンを用いて150℃で30分間、本接着処理を施した。このようにして、互いに接着した2枚のサンプル片の一端から20mmの部分はEVAと未接着で、残りの100mmの部分にEVAシートが接着された接着評価用試料を得た。
 得られた接着評価用試料のEVA未接着部分を、テンシロン(ORIENTEC製 RTC-1210A)にて上下クリップに挟み、剥離角度180°、引っ張り速度300mm/分で引っ張り試験を行ない、接着力を測定した。
 測定された接着力をもとに以下の評価基準にしたがってランク付けした。このうち、ランク4、5が実用上許容可能な範囲である。
 <評価基準>
5:密着が非常に良好であった(60N/20mm以上)
4:密着は良好であった   (30N/20mm以上60N/20mm未満)
3:密着がやや不良であった (20N/20mm以上30N/20mm未満)
2:密着不良が生じた    (10N/20mm以上20N/20mm未満)
1:密着不良が顕著であった (10N/20mm未満)
<Evaluation>
-1. Adhesiveness-
[A] Adhesiveness before wet heat aging The sample sheet produced as described above was cut into a width of 20 mm × 150 mm to prepare two sample pieces. These two sample pieces are arranged so that the pigment layer side is inside, and an EVA sheet (EVA sheet: SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.) cut into a width of 20 mm × 100 mm is sandwiched between them. It was made to adhere to EVA by hot pressing using a laminator (vacuum laminator manufactured by Nisshinbo Co., Ltd.). The bonding conditions at this time were as follows.
Using a vacuum laminator, evacuation was performed at 128 ° C. for 3 minutes, followed by pressurization for 2 minutes and temporary adhesion. Thereafter, the main adhesion treatment was performed at 150 ° C. for 30 minutes using a dry oven. In this way, an adhesion evaluation sample was obtained in which the 20 mm portion from one end of the two sample pieces adhered to each other was not bonded to EVA, and the EVA sheet was bonded to the remaining 100 mm portion.
The EVA non-adhered portion of the obtained adhesion evaluation sample was sandwiched between upper and lower clips with Tensilon (RTENT-1210A manufactured by ORIENTEC), a tensile test was performed at a peeling angle of 180 °, and a tensile speed of 300 mm / min, and the adhesive strength was measured. .
Based on the measured adhesive strength, ranking was performed according to the following evaluation criteria. Among these, ranks 4 and 5 are practically acceptable ranges.
<Evaluation criteria>
5: Adhesion was very good (60 N / 20 mm or more)
4: Adhesion was good (30N / 20mm or more and less than 60N / 20mm)
3: Adhesion was slightly poor (20N / 20mm or more and less than 30N / 20mm)
2: Adhesion failure occurred (10N / 20mm or more and less than 20N / 20mm)
1: Adhesion failure was remarkable (less than 10N / 20mm)
[B]湿熱経時後の接着性
 得られた接着評価用試料を、120℃、100%RHの環境条件下で48時間保持(湿熱経時)した後、[A]と同様の方法にて接着力を測定した。また、測定された湿熱経時後の接着力をもとに、[A]と同様の方法にて接着力を評価した。
[B] Adhesiveness after wet heat aging The obtained sample for adhesion evaluation was held for 48 hours under the environmental conditions of 120 ° C. and 100% RH (wet heat aging), and then the adhesive strength was obtained in the same manner as in [A]. Was measured. Moreover, based on the measured adhesive strength after wet heat aging, the adhesive strength was evaluated by the same method as [A].
[C]接着性の湿熱経時前後の接着力残存率
 測定された保持後の接着力について、同じ接着評価用試料の[A]湿熱経時前の接着力に対する比率〔%;=(湿熱経時後の接着力/[A]湿熱経時前の接着力)×100〕を算出した。
[C] Adhesive residual rate before and after wet heat aging of the adhesive ratio [A] of the same adhesion evaluation sample with respect to the adhesive strength before wet heat aging [%; = (after wet heat aging Adhesive strength / [A] Adhesive strength before wet heat aging × 100] was calculated.
-2.反射率-
 分光光度計UV-2450((株)島津製作所製)に積分球付属装置ISR-2200を取り付けた装置を用い、サンプルシートの顔料層側における550nmの光に対する反射率を測定した。リファレンスとして硫酸バリウム標準板の反射率を測定し、これを100%としてサンプルシートの反射率を算出した。
-2. Reflectance-
Using a spectrophotometer UV-2450 (manufactured by Shimadzu Corporation) equipped with an integrating sphere attachment device ISR-2200, the reflectance of 550 nm light on the pigment layer side of the sample sheet was measured. The reflectance of the barium sulfate standard plate was measured as a reference, and the reflectance of the sample sheet was calculated using this as 100%.
-3.耐光性-
 超エネルギー照射試験機(スガ試験機(株)製)を用いて700W/m強度の紫外光を48時間、上記で得られたサンプルシートの複合ポリマー層側から照射した。その後、紫外光照射前後の色度(L*a*B*)を測定して色差ΔEを求めた。ΔEの値が大きいほど、紫外光による変色が大きく、バックシートとしての品質は低い。
-3. Light resistance
Using an ultra-energy irradiation tester (manufactured by Suga Test Instruments Co., Ltd.), ultraviolet light having an intensity of 700 W / m 2 was irradiated from the composite polymer layer side of the sample sheet obtained above for 48 hours. Thereafter, the chromaticity (L * a * B *) before and after the ultraviolet light irradiation was measured to obtain the color difference ΔE. The greater the value of ΔE, the greater the discoloration due to ultraviolet light, and the lower the quality as a backsheet.
-4.耐傷性-
 試料を25℃、60%RHの雰囲気で24時間調湿した。この後、試料の複合ポリマー層が設けられている側の表面を、先端が0.1mmφのサファイア針で1cm/秒の速度で引っ掻く操作を行なった。この時、荷重を0から100gまで連続的に変化させた。引っ掻いた後の試料表面を光学顕微鏡で観察し、傷がみられる最低の荷重を耐傷性の尺度とした。この値が大きいほど耐傷性が良好であることを示し、実用上許容されるものは30g以上である。 
-4. Scratch resistance
The sample was conditioned for 24 hours in an atmosphere of 25 ° C. and 60% RH. Thereafter, the surface of the sample on the side where the composite polymer layer was provided was scratched with a sapphire needle having a tip of 0.1 mmφ at a speed of 1 cm / second. At this time, the load was continuously changed from 0 to 100 g. The surface of the sample after scratching was observed with an optical microscope, and the lowest load at which scratches were observed was taken as a measure of scratch resistance. Larger values indicate better scratch resistance, and practically acceptable is 30 g or more.
-5.耐加水分解性-
 上記で作製したPETフィルムを、120℃、100%RHの環境条件下に50時間、60時間、70時間、80時間、90時間、100時間、110時間、120時間、130時間、150時間、170時間、190時間、210時間放置して、サーモ処理を施した。サーモ処理後のPETフィルムについて、各々のMD方向における破断伸度を測定し、得られた測定値をもとに、サーモ処理後の破断伸度をサーモ処理前の破断伸度で除算し、各サーモ処理時間での破断伸度保持率を下記式から求めた。横軸にサーモ時間、縦軸に破断伸度保持率をとってプロットし、これを結んで破断伸度保持率が50%になるまでの熱処理の時間(hr;破断伸度保持率半減期)を求めた。
-5. Hydrolysis resistance
The PET film prepared above was subjected to environmental conditions of 120 ° C. and 100% RH for 50 hours, 60 hours, 70 hours, 80 hours, 90 hours, 100 hours, 110 hours, 120 hours, 130 hours, 150 hours, 170 hours. The thermo treatment was performed by leaving it for 190 hours and 210 hours. For the PET film after the thermo treatment, the breaking elongation in each MD direction is measured, and based on the obtained measurement value, the breaking elongation after the thermo treatment is divided by the breaking elongation before the thermo treatment, The elongation at break at the thermo treatment time was determined from the following formula. Plotting with the thermo-axis on the horizontal axis and the breaking elongation retention on the vertical axis, the time for heat treatment until the breaking elongation retention reaches 50% (hr; breaking elongation retention half-life) Asked.
 破断伸度保持率[%]=
(サーモ処理後の破断伸度)/(サーモ処理前の破断伸度)×100
Breaking elongation retention [%] =
(Elongation at break after thermo treatment) / (Elongation at break before thermo treatment) × 100
 破断伸度保持率半減期の値が大きいほど、ポリマー基材の耐加水分解性が高く耐候性に優れる。 The greater the half-life value of the elongation at break elongation, the higher the hydrolysis resistance of the polymer substrate and the better the weather resistance.
-6.欠陥発生頻度-
 ポリマー基材に塗布層を設ける際に発生する塗布欠陥発生数をカウントし、塗布面積1平方メートルあたりの発生頻度を算出した。
-6. Defect occurrence frequency
The number of coating defects generated when a coating layer was provided on the polymer substrate was counted, and the frequency of occurrence per square meter of coating area was calculated.
[実施例2]
 実施例1の<上塗り層形成用塗布液の組成>を下記のようにした以外は、実施例1と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
<上塗り層形成用塗布液の組成>
・オレフィン系バインダー ・・・213.8質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%) 
・カルボジイミド化合物(架橋剤)・・・73.5質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・オキサゾリン化合物(架橋剤)・・・45.0質量部
  (エポクロスWS700、(株)日本触媒製、固形分:5質量%)
・実施例1に記載の二酸化チタン分散液・・・31.6質量部
・界面活性剤・・・45.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水・・・591.1質量部
[Example 2]
A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 1 except that <Composition of coating solution for forming topcoat layer> in Example 1 was as follows.
<Composition of coating liquid for topcoat layer formation>
・ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
Oxazoline compound (crosslinking agent) 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
Titanium dioxide dispersion described in Example 1 31.6 parts by mass Surfactant 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass )
・ Distilled water: 591.1 parts by mass
[実施例3]
 実施例1の<上塗り層形成用塗布液の組成>を下記のようにした以外は、実施例1と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
<上塗り層形成用塗布液の組成>
・オレフィン系バインダー ・・・213.8質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%) 
・カルボジイミド化合物(架橋剤)・・・73.5質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・オキサゾリン化合物(架橋剤)・・・45.0質量部
  (エポクロスWS700、(株)日本触媒製、固形分:5質量%)
・実施例1に記載の二酸化チタン分散液・・・77.5質量部
・界面活性剤・・・45.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水・・・545.2質量部
[Example 3]
A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 1 except that <Composition of coating solution for forming topcoat layer> in Example 1 was as follows.
<Composition of coating liquid for topcoat layer formation>
・ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
Oxazoline compound (crosslinking agent) 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
-Titanium dioxide dispersion described in Example 1 ... 77.5 parts by mass-Surfactant ... 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass )
・ Distilled water: 545.2 parts by mass
[実施例4]
<下塗り層>
-下塗り層の調製-
 下記組成中の成分を混合し、下塗り層形成用塗布液を調製した。
<下塗り層形成用塗布液の組成>
・ポリエステル系バインダー ・・・24.0質量部 
  (バイロナールMD1245、東洋紡(株)製、固形分30質量%)
・オレフィン系バインダー ・・・35.6質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%) 
・カルボジイミド化合物(架橋剤)・・・24.5質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・オキサゾリン化合物(架橋剤)・・・15.0質量部
  (エポクロスWS700、(株)日本触媒製、固形分:5質量%)
・界面活性剤・・・15.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水・・・885.9質量部
[Example 4]
<Undercoat layer>
-Preparation of undercoat layer-
Components in the following composition were mixed to prepare a coating solution for forming an undercoat layer.
<Composition of coating liquid for undercoat layer formation>
・ Polyester binder: 24.0 parts by mass
(Byronal MD1245, manufactured by Toyobo Co., Ltd., solid content 30% by mass)
・ Olefin binder: 35.6 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
Carbodiimide compound (crosslinking agent) 24.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
Oxazoline compound (crosslinking agent) 15.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
・ Distilled water: 885.9 parts by mass
 上記下塗り層形成用塗布液の組成のバインダー添加量(ポリエステル系バインダーとポリオレフィン系バインダーの合計)に対する、架橋剤添加量(カルボジライト化合物とオキサゾリン化合物の合計)の割合(質量比)を百分率で計算したところ、22.2%であった。その結果を下記表1に記載した。 The ratio (mass ratio) of the crosslinking agent addition amount (total of carbodilite compound and oxazoline compound) to the binder addition amount (total of polyester-based binder and polyolefin-based binder) in the composition of the coating solution for forming the undercoat layer was calculated as a percentage. However, it was 22.2%. The results are shown in Table 1 below.
-下塗り層の形成-
 PET基材(S-1)の第1の面にコロナ処理装置(ピラー社製ソリッドステートコロナ処理機6KVAモデル)を用いて下記の条件でコロナ処理を行った。
 電極と誘電体ロ-ルギャップクリアランス:1.6mm
 処理周波数:9.6kHz
 処理速度:20m/分
 処理強度:0.375kV・A・分/m
-Formation of undercoat layer-
The first surface of the PET substrate (S-1) was subjected to corona treatment under the following conditions using a corona treatment device (solid state corona treatment machine 6KVA model manufactured by Pillar).
Electrode and dielectric roll gap clearance: 1.6mm
Processing frequency: 9.6 kHz
Processing speed: 20 m / min Processing intensity: 0.375 kV · A · min / m 2
 次いで、下塗り層形成用塗布液をPET基材(S-1)のコロナ処理面に、固形分塗布量が0.12g/mになるように塗布し、170℃で1分間乾燥させて、乾燥厚みが約0.1μmの下塗り層を形成した。 Next, the undercoat layer-forming coating solution was applied to the corona-treated surface of the PET substrate (S-1) so that the solid content coating amount was 0.12 g / m 2 and dried at 170 ° C. for 1 minute. An undercoat layer having a dry thickness of about 0.1 μm was formed.
<顔料層>
-二酸化チタン分散物の調製-
 下記組成中の成分を混合し、その混合物をダイノミル型分散機により1時間、分散処理を施した。
(二酸化チタン分散物の組成)
・二酸化チタン(体積平均粒子径=0.42μm)・・・455.8質量部
 〔タイペークCR-95、石原産業(株)製、固形分100質量%〕
・ポリビニルアルコール            ・・・227.9質量部
 〔PVA-105、(株)クラレ製、固形分:10質量%〕
・界面活性剤〔デモールEP、花王(株)製、固形分:25質量%〕・・・5.5質量部
・蒸留水                   ・・・310.8質量部
<Pigment layer>
-Preparation of titanium dioxide dispersion-
Components in the following composition were mixed, and the mixture was subjected to a dispersion treatment for 1 hour by a dynomill type disperser.
(Composition of titanium dioxide dispersion)
・ Titanium dioxide (volume average particle size = 0.42 μm): 455.8 parts by mass [Taipeke CR-95, manufactured by Ishihara Sangyo Co., Ltd., solid content: 100% by mass]
・ Polyvinyl alcohol: 227.9 parts by mass [PVA-105, manufactured by Kuraray Co., Ltd., solid content: 10% by mass]
-Surfactant [Demol EP, manufactured by Kao Corporation, solid content: 25% by mass] ... 5.5 parts by mass Distilled water ... 310.8 parts by mass
-顔料層形成用塗布液の調製-
 下記組成中の成分を混合し、顔料層形成用塗布液を調製した。
(塗布液の組成)
・二酸化チタン分散物             ・・・298.5質量部
・ポリオレフィンバインダー          ・・・568.7質量部
 〔アローベースSE1013N、ユニチカ(株)製、固形分:20.2質量%〕
・ポリオキシアルキレンアルキルエーテル    ・・・23.4質量部
 〔ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%〕
・オキサゾリン化合物             ・・・58.4質量部
 〔エポクロスWS-700、日本触媒(株)製、固形分:25%;架橋剤〕
・蒸留水                   ・・・51.0質量部
-Preparation of coating solution for pigment layer formation-
Components in the following composition were mixed to prepare a coating solution for forming a pigment layer.
(Composition of coating solution)
-Titanium dioxide dispersion ... 298.5 parts by mass-Polyolefin binder ... 568.7 parts by mass [Arrow Base SE1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass]
Polyoxyalkylene alkyl ether 23.4 parts by mass [Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass]
Oxazoline compound: 58.4 parts by mass [Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25%; crosslinking agent]
・ Distilled water: 51.0 parts by mass
 なお、上記顔料層形成用塗布液の組成のバインダー(ポリオレフィン系バインダー)と顔料(二酸化チタン)の合計に対する顔料の割合(質量比)を百分率で計算したところ、54.2%であった。その結果を下記表1に記載した。 The ratio (mass ratio) of the pigment to the total of the binder (polyolefin-based binder) and the pigment (titanium dioxide) in the composition of the coating liquid for forming the pigment layer was calculated to be 54.2%. The results are shown in Table 1 below.
-顔料層の形成-
 得られた塗布液を、支持体S-1の下塗り層の上に塗布し、170℃で2分間乾燥させて、二酸化チタン量が5.6g/mの顔料層を形成した。
-Formation of pigment layer-
The obtained coating solution was applied onto the undercoat layer of the support S-1 and dried at 170 ° C. for 2 minutes to form a pigment layer having a titanium dioxide content of 5.6 g / m 2 .
<上塗り層>
-上塗り層の調製-
 下記組成中の成分を混合し、上塗り層形成用塗布液を調製した。
<上塗り層形成用塗布液の組成>
・オレフィン系バインダー ・・・213.8質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%) 
・カルボジイミド化合物(架橋剤)・・・73.5質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・オキサゾリン化合物(架橋剤)・・・45.0質量部
  (エポクロスWS700、(株)日本触媒製、固形分:5質量%)
・コロイダルシリカ(無機顔料)・・・72.0質量部
  (スノーテックスC、日産化学(株)製、固形分:20質量%)
・界面活性剤・・・45.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水・・・550.7質量部
<Overcoat layer>
-Preparation of topcoat layer-
Components in the following composition were mixed to prepare a coating solution for forming an overcoat layer.
<Composition of coating liquid for topcoat layer formation>
・ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
Oxazoline compound (crosslinking agent) 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
Colloidal silica (inorganic pigment) 72.0 parts by mass (Snowtex C, manufactured by Nissan Chemical Co., Ltd., solid content: 20% by mass)
-Surfactant: 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
・ Distilled water: 550.7 parts by mass
 なお、上記上塗り層形成用塗布液の組成のバインダー(ポリオレフィン系バインダー)と顔料(コロイダルシリカ)の合計に対する顔料の割合(質量比)を百分率で計算したところ、25.0%であった。また、上記上塗り層形成用塗布液の組成のバインダー添加量(ポリオレフィン系バインダー)に対する、架橋剤添加量(カルボジライト化合物とオキサゾリン化合物の合計)の割合(質量比)を百分率で計算したところ、22.2%であった。その結果を下記表1に記載した。 The ratio (mass ratio) of the pigment to the total of the binder (polyolefin binder) and the pigment (colloidal silica) in the composition of the coating solution for forming the topcoat layer was calculated to be 25.0%. Moreover, when the ratio (mass ratio) of the amount of the crosslinking agent added (total of the carbodilite compound and the oxazoline compound) to the binder addition amount (polyolefin-based binder) in the composition of the coating solution for forming the topcoat layer was calculated as a percentage, 22. 2%. The results are shown in Table 1 below.
-上塗り層の形成-
 得られた塗布液を、固形分塗布量が0.6g/mになるように塗布し、170℃で2分間乾燥させて、乾燥厚みが約0.5μmの上塗り層を形成した。
-Formation of overcoat layer-
The obtained coating solution was applied so that the solid content coating amount was 0.6 g / m 2 and dried at 170 ° C. for 2 minutes to form an overcoat layer having a dry thickness of about 0.5 μm.
<第1複合ポリマー層>
-第1複合ポリマー層形成用塗布液の調製-
 下記組成中の各成分を混合し、裏面の第1複合ポリマー層形成用塗布液を調製した。
(塗布液の組成)
・アクリル/シリコーン系バインダー(バインダー)
  (セラネートWSA-1070、DIC(株)製、固形分:40質量%)
                       ・・・396.5質量部
・カルボジイミド化合物(架橋剤)・・・49.0質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:20質量%)
・オキサゾリン化合物(架橋剤)・・・16.8質量部
  (エポクロスWS700、(株)日本触媒製、固形分:5質量%)
・界面活性剤・・・15.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・二酸化チタン分散物・・・493.9質量部
・蒸留水・・・28.8質量部
<First composite polymer layer>
-Preparation of coating solution for forming first composite polymer layer-
Each component in the following composition was mixed to prepare a coating solution for forming the first composite polymer layer on the back surface.
(Composition of coating solution)
・ Acrylic / silicone binder (binder)
(Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass)
... 396.5 parts by mass-Carbodiimide compound (crosslinking agent) ... 49.0 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 20% by mass)
Oxazoline compound (crosslinking agent) 16.8 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
-Titanium dioxide dispersion: 493.9 parts by mass-Distilled water: 28.8 parts by mass
-第1複合ポリマー層の形成-
 支持体S-1の顔料層を形成した面の反対面(以降、裏面という場合がある。)に前述の条件でコロナ処理を施した。
 次いで、第1複合ポリマー層形成用塗布液を支持体S-1のコロナ処理した裏面に、バインダー塗布量が5.1g/mになるように塗布し、175℃で2分間乾燥させて、乾燥厚みが約5μmの第1複合ポリマー層を形成した。
-Formation of first composite polymer layer-
The surface opposite to the surface on which the pigment layer of the support S-1 was formed (hereinafter sometimes referred to as the back surface) was subjected to corona treatment under the conditions described above.
Next, the first composite polymer layer forming coating solution was applied to the corona-treated back surface of the support S-1 so that the binder coating amount was 5.1 g / m 2 and dried at 175 ° C. for 2 minutes. A first composite polymer layer having a dry thickness of about 5 μm was formed.
<第2複合ポリマー層>
-第2複合ポリマー層形成用塗布液の調製-
 下記組成中の各成分を混合し、第2複合ポリマー層形成用塗布液を調製した。
(塗布液の組成)
・アクリル/シリコーン系バインダー(バインダー、P-1)
 (セラネートWSA-1070、DIC(株)製、固形分:40質量%)
                        ・・・77.8質量部
・カルボジイミド化合物(架橋剤)・・・15.6質量部
 (カルボジライトV-02-L2、日清紡績(株)製、固形分:20質量%)
・界面活性剤・・・15.0質量部
 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・ポリエチレンワックス分散物・・・51.9質量部
 (ケミパールW950、三井化学(株)製、固形分:5質量%)
・コロイダルシリカ・・・1.0質量部
 (スノーテックスUP、日産化学(株)製、固形分:20質量%)
・アミノシラン化合物・・・19.6質量部
 (TSL8340、モメンティブ・パフォーマンス・マテリアル社製、固形分:1質量%)
・蒸留水・・・60.7質量部
<Second composite polymer layer>
-Preparation of coating solution for forming second composite polymer layer-
Each component in the following composition was mixed to prepare a coating solution for forming a second composite polymer layer.
(Composition of coating solution)
・ Acrylic / silicone binder (binder, P-1)
(Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass)
... 77.8 parts by mass-Carbodiimide compound (crosslinking agent) ... 15.6 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 20% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
Polyethylene wax dispersion: 51.9 parts by mass (Chemical Pearl W950, manufactured by Mitsui Chemicals, solid content: 5% by mass)
Colloidal silica: 1.0 part by mass (Snowtex UP, manufactured by Nissan Chemical Co., Ltd., solid content: 20% by mass)
Aminosilane compound: 19.6 parts by mass (TSL8340, manufactured by Momentive Performance Materials, solid content: 1% by mass)
・ Distilled water: 60.7 parts by mass
-第2複合ポリマー層の形成-
 得られた第2複合ポリマー層形成用塗布液を第1複合ポリマー層の上に、バインダー塗布量が1.3g/mになるように塗布し、175℃で2分間乾燥させて、乾燥厚み約1.2μmの第2複合ポリマー層を形成した。
-Formation of second composite polymer layer-
The obtained coating liquid for forming the second composite polymer layer was applied on the first composite polymer layer so that the amount of the binder applied was 1.3 g / m 2 , dried at 175 ° C. for 2 minutes, and dried. A second composite polymer layer of about 1.2 μm was formed.
[実施例5]
 実施例4の<上塗り層形成用塗布液の組成>を下記のようにした以外は、実施例4と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
<上塗り層形成用塗布液の組成>
・オレフィン系バインダー ・・・213.8質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%) 
・カルボジイミド化合物(架橋剤)・・・73.5質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・実施例1に記載の二酸化チタン分散液・・・31.6質量部
・界面活性剤・・・45.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水・・・636.1質量部
[Example 5]
A solar cell backsheet (sample sheet) was produced in the same manner as in Example 4 except that <Composition of coating solution for forming topcoat layer> in Example 4 was as follows.
<Composition of coating liquid for topcoat layer formation>
・ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
Titanium dioxide dispersion described in Example 1 31.6 parts by mass Surfactant 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass )
・ Distilled water: 636.1 parts by mass
[実施例6]
 実施例5の<下塗り層形成用塗布液の組成>を下記のようにした以外は、実施例5と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
<下塗り層形成用塗布液の組成>
・アクリル系バインダー ・・・25.7質量部 
  (AS-563A 、ダイセルファインケム(株)製、固形分28質量%)
・オレフィン系バインダー ・・・35.6質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%) 
・カルボジイミド化合物(架橋剤)・・・24.5質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・界面活性剤・・・15.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水・・・899.2質量部
[Example 6]
A solar cell back sheet (sample sheet) was produced in the same manner as in Example 5 except that <Composition of coating solution for forming undercoat layer> in Example 5 was as follows.
<Composition of coating liquid for undercoat layer formation>
・ Acrylic binder: 25.7 parts by mass
(AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 28% by mass)
・ Olefin binder: 35.6 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
Carbodiimide compound (crosslinking agent) 24.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
・ Distilled water: 899.2 parts by mass
[実施例7]
 実施例6の<下塗り層形成用塗布液の組成>、<顔料層形成用塗布液の組成>を下記のようにした以外は、実施例6と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
<下塗り層形成用塗布液の組成>
・オレフィン系バインダー ・・・71.3質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%) 
・カルボジイミド化合物(架橋剤)・・・24.5質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・界面活性剤・・・15.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水・・・889.2質量部
[Example 7]
A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 6 except that <Composition of coating solution for forming undercoat layer> and <Composition of coating solution for forming pigment layer> in Example 6 were as follows. ) Was produced.
<Composition of coating liquid for undercoat layer formation>
・ Olefin binder: 71.3 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
Carbodiimide compound (crosslinking agent) 24.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
・ Distilled water: 889.2 parts by mass
<顔料層形成用塗布液の組成>
・二酸化チタン分散物             ・・・298.5質量部
・ポリオレフィンバインダー          ・・・568.7質量部
 〔アローベースSE1013N、ユニチカ(株)製、固形分:20.2質量%〕
・ポリオキシアルキレンアルキルエーテル    ・・・23.4質量部
 〔ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%〕
・オキサゾリン化合物             ・・・29.2質量部
 〔エポクロスWS-700、日本触媒(株)製、固形分:25%;架橋剤〕
・蒸留水                   ・・・80.2質量部
<Composition of pigment layer forming coating solution>
-Titanium dioxide dispersion ... 298.5 parts by mass-Polyolefin binder ... 568.7 parts by mass [Arrow Base SE1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass]
Polyoxyalkylene alkyl ether 23.4 parts by mass [Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass]
・ Oxazoline compound: 29.2 parts by mass [Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25%; crosslinking agent]
・ Distilled water: 80.2 parts by mass
[実施例8]
 実施例7の<顔料層形成用塗布液の組成>を下記のようにした以外は、実施例7と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
<顔料層形成用塗布液の組成>
・二酸化チタン分散物             ・・・298.5質量部
・ポリオレフィンバインダー          ・・・284.3質量部
 〔アローベースSE1013N、ユニチカ(株)製、固形分:20.2質量%〕
・ポリウレタンバインダー           ・・・191.5質量部
 〔タケラックWS-6021、三井化学ポリウレタン(株)製、固形分:30質量%〕
・ポリオキシアルキレンアルキルエーテル    ・・・23.4質量部
 〔ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%〕
・カルボジイミド化合物(架橋剤)       ・・・146.0質量部
 (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・蒸留水                   ・・・56.3質量部
[Example 8]
A solar cell back sheet (sample sheet) was produced in the same manner as in Example 7 except that <Composition of pigment layer forming coating solution> in Example 7 was as follows.
<Composition of pigment layer forming coating solution>
Titanium dioxide dispersion: 298.5 parts by mass Polyolefin binder: 284.3 parts by mass [Arrow Base SE1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass]
・ Polyurethane binder: 191.5 parts by mass [Takelac WS-6021, manufactured by Mitsui Chemicals Polyurethanes, solid content: 30% by mass]
Polyoxyalkylene alkyl ether 23.4 parts by mass [Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass]
Carbodiimide compound (crosslinking agent) 146.0 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
・ Distilled water: 56.3 parts by mass
[実施例9]
 実施例8の<顔料層形成用塗布液の組成>を下記のようにした以外は、実施例8と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
<顔料層形成用塗布液の組成>
・二酸化チタン分散物             ・・・447.8質量部
・ポリオレフィンバインダー          ・・・89.1質量部
 〔アローベースSE1013N、ユニチカ(株)製、固形分:20.2質量%〕
・ポリウレタンバインダー           ・・・60.0質量部
 〔タケラックWS-6021、三井化学ポリウレタン(株)製、固形分:30質量%〕
・ポリオキシアルキレンアルキルエーテル    ・・・35.1質量部
 〔ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%〕
・カルボジイミド化合物(架橋剤)       ・・・45.7質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・蒸留水                   ・・・322.3質量部
[Example 9]
A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 8 except that <Composition of pigment layer forming coating solution> in Example 8 was as follows.
<Composition of pigment layer forming coating solution>
Titanium dioxide dispersion: 447.8 parts by mass Polyolefin binder: 89.1 parts by mass [Arrow Base SE1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass]
-Polyurethane binder: 60.0 parts by mass [Takelac WS-6021, manufactured by Mitsui Chemicals Polyurethanes, solid content: 30% by mass]
Polyoxyalkylene alkyl ether 35.1 parts by mass [Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass]
Carbodiimide compound (crosslinking agent) 45.7 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
・ Distilled water ... 322.3 parts by mass
[実施例10]
 実施例8の<上塗り層形成用塗布液の組成>を下記のようにした以外は、実施例8と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
<上塗り層形成用塗布液の組成>
・オレフィン系バインダー ・・・213.8質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%) 
・カルボジイミド化合物(架橋剤)・・・73.5質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・界面活性剤・・・45.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水・・・667.7質量部
[Example 10]
A solar cell backsheet (sample sheet) was produced in the same manner as in Example 8, except that <Composition of coating solution for forming topcoat layer> in Example 8 was as follows.
<Composition of coating liquid for topcoat layer formation>
・ Olefin binder: 213.8 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
Carbodiimide compound (crosslinking agent) 73.5 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
-Surfactant: 45.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
・ Distilled water: 667.7 parts by mass
[実施例11]
 実施例7の<第1複合ポリマー層形成用塗布液の調製>と、<第2複合ポリマー層形成用塗布液の調製>を下記のようにした以外は、実施例7と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
-第1複合ポリマー層形成用塗布液の調製-
 下記組成中の各成分を混合し、裏面の第1複合ポリマー層形成用塗布液を調製した。
(塗布液の組成)
・アクリル/シリコーン系バインダー(バインダー)
  (セラネートWSA-1060、DIC(株)製、固形分:35質量%、シロキサン構造単位:アクリル構造単位=75:25)   ・・・396.5質量部
・カルボジイミド化合物(架橋剤)・・・49.0質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:20質量%)
・界面活性剤・・・15.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・二酸化チタン分散物・・・493.9質量部
・蒸留水・・・28.8質量部
[Example 11]
In the same manner as in Example 7 except that <Preparation of coating liquid for forming first composite polymer layer> and <Preparation of coating liquid for forming second composite polymer layer> in Example 7 were as follows, A battery back sheet (sample sheet) was prepared.
-Preparation of coating solution for forming first composite polymer layer-
Each component in the following composition was mixed to prepare a coating solution for forming the first composite polymer layer on the back surface.
(Composition of coating solution)
・ Acrylic / silicone binder (binder)
(Ceranate WSA-1060, manufactured by DIC Corporation, solid content: 35% by mass, siloxane structural unit: acrylic structural unit = 75: 25) ... 396.5 parts by mass, carbodiimide compound (crosslinking agent) ... 49 0.0 part by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Inc., solid content: 20% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
-Titanium dioxide dispersion: 493.9 parts by mass-Distilled water: 28.8 parts by mass
-第1複合ポリマー層の形成-
 支持体S-1の顔料層を形成した面の反対面(「裏面」という場合がある。)に前述の条件でコロナ処理を施した。
 次いで、第1複合ポリマー層形成用塗布液を支持体S-1のコロナ処理した裏面に、バインダー塗布量が5.1g/mになるように塗布し、175℃で2分間乾燥させて、乾燥厚みが約5μmの第1複合ポリマー層を形成した。
-Formation of first composite polymer layer-
The surface opposite to the surface on which the pigment layer of the support S-1 was formed (sometimes referred to as “back surface”) was subjected to corona treatment under the conditions described above.
Next, the first composite polymer layer forming coating solution was applied to the corona-treated back surface of the support S-1 so that the binder coating amount was 5.1 g / m 2 and dried at 175 ° C. for 2 minutes. A first composite polymer layer having a dry thickness of about 5 μm was formed.
<第2複合ポリマー層>
-第2複合ポリマー層形成用塗布液の調製-
 下記組成中の各成分を混合し、第2複合ポリマー層形成用塗布液を調製した。
(塗布液の組成)
・アクリル/シリコーン系バインダー(バインダー)・・・77.8質量部
 (セラネートWSA-1060、DIC(株)製、固形分:35質量%)
・カルボジイミド化合物(架橋剤)・・・15.6質量部
 (カルボジライトV-02-L2、日清紡績(株)製、固形分:20質量%)
・界面活性剤・・・15.0質量部
 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・ポリエチレンワックス分散物・・・51.9質量部
 (ケミパールW950、三井化学(株)製、固形分:5質量%)
・コロイダルシリカ・・・1.0質量部
 (スノーテックスUP、日産化学(株)製、固形分:20質量%)
・アミノシラン化合物・・・19.6質量部
 (TSL8340、モメンティブ・パフォーマンス・マテリアル社製、固形分:1質量%)
・蒸留水・・・60.7質量部
<Second composite polymer layer>
-Preparation of coating solution for forming second composite polymer layer-
Each component in the following composition was mixed to prepare a coating solution for forming a second composite polymer layer.
(Composition of coating solution)
・ Acrylic / silicone binder (binder) 77.8 parts by mass (Ceranate WSA-1060, manufactured by DIC Corporation, solid content: 35% by mass)
Carbodiimide compound (crosslinking agent) 15.6 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 20% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
Polyethylene wax dispersion: 51.9 parts by mass (Chemical Pearl W950, manufactured by Mitsui Chemicals, solid content: 5% by mass)
Colloidal silica: 1.0 part by mass (Snowtex UP, manufactured by Nissan Chemical Co., Ltd., solid content: 20% by mass)
Aminosilane compound: 19.6 parts by mass (TSL8340, manufactured by Momentive Performance Materials, solid content: 1% by mass)
・ Distilled water: 60.7 parts by mass
[実施例12]
 実施例7の<顔料層形成用塗布液>で用いた<二酸化チタン分散物の組成>を以下のようにした以外は、実施例7と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
(二酸化チタン分散物の組成)
・二酸化チタン(体積平均粒子径=0.44μm)・・・455.8質量部
 〔タイペークR-780、石原産業(株)製、固形分100質量%〕
・ポリビニルアルコール            ・・・227.9質量部
 〔PVA-105、(株)クラレ製、固形分:10質量%〕
・界面活性剤                 ・・・5.5質量部
〔デモールEP、花王(株)製、固形分:25質量%〕
・蒸留水                   ・・・310.8質量部
[Example 12]
A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 7 except that the <composition of the titanium dioxide dispersion> used in <Pigment layer forming coating solution> in Example 7 was as follows. Produced.
(Composition of titanium dioxide dispersion)
・ Titanium dioxide (volume average particle size = 0.44 μm): 455.8 parts by mass [Taipek R-780, manufactured by Ishihara Sangyo Co., Ltd., solid content: 100% by mass]
・ Polyvinyl alcohol: 227.9 parts by mass [PVA-105, manufactured by Kuraray Co., Ltd., solid content: 10% by mass]
-Surfactant: 5.5 parts by mass [Demol EP, manufactured by Kao Corporation, solid content: 25% by mass]
・ Distilled water ... 310.8 parts by mass
[比較例1]
 実施例1の<上塗り層>を設けない以外は、実施例1と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
[Comparative Example 1]
A solar cell back sheet (sample sheet) was produced in the same manner as in Example 1 except that the <overcoat layer> in Example 1 was not provided.
[比較例2]
 実施例6の<上塗り層>を塗布形成しない以外は、実施例6と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
[Comparative Example 2]
A solar cell back sheet (sample sheet) was produced in the same manner as in Example 6 except that the <overcoat layer> in Example 6 was not formed by coating.
[比較例3]
 実施例6の顔料層と反対面の<複合ポリマー層>を塗布形成しない以外は、実施例6と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
[Comparative Example 3]
A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 6 except that the <composite polymer layer> on the opposite side of the pigment layer of Example 6 was not formed by coating.
[実施例13]
 実施例5の<第1複合ポリマー層>を下記のようにして形成し、<第2複合ポリマー層>を形成しなかった以外は、実施例5と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
[Example 13]
A back sheet for solar cell (sample) was formed in the same manner as in Example 5 except that the <first composite polymer layer> of Example 5 was formed as follows and <second composite polymer layer> was not formed. Sheet).
-第1複合ポリマー層形成用塗布液の調製-
 下記組成中の各成分を混合し、裏面の第1複合ポリマー層形成用塗布液を調製した。
(塗布液の組成)
・アクリル/シリコーン系バインダー(バインダー)
  (セラネートWSA-1070、DIC(株)製、固形分:40質量%、シロキサン構造単位:アクリル構造単位=30:70)
                       ・・・643.5質量部
・カルボジイミド化合物(架橋剤)・・・49.0質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:20質量%)
・オキサゾリン化合物(架橋剤)・・・16.8質量部
  (エポクロスWS700、(株)日本触媒製、固形分:5質量%)
・界面活性剤・・・15.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・二酸化チタン分散物・・・246.9質量部
・蒸留水・・・28.8質量部
-Preparation of coating solution for forming first composite polymer layer-
Each component in the following composition was mixed to prepare a coating solution for forming the first composite polymer layer on the back surface.
(Composition of coating solution)
・ Acrylic / silicone binder (binder)
(Ceranate WSA-1070, manufactured by DIC Corporation, solid content: 40% by mass, siloxane structural unit: acrylic structural unit = 30: 70)
... 643.5 parts by mass-Carbodiimide compound (crosslinking agent) ... 49.0 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Inc., solid content: 20% by mass)
Oxazoline compound (crosslinking agent) 16.8 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
-Surfactant: 15.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
-Titanium dioxide dispersion: 246.9 parts by mass-Distilled water: 28.8 parts by mass
-第1複合ポリマー層の形成-
 支持体S-1の顔料層を形成した面の反対面(以降、裏面という場合がある。)に前述の条件でコロナ処理を施した。
 次いで、第1複合ポリマー層形成用塗布液を支持体S-1のコロナ処理した裏面に、バインダー塗布量が10.2/mになるように塗布し、175℃で2分間乾燥させて、乾燥厚みが約10μmの第1複合ポリマー層を形成した。
-Formation of first composite polymer layer-
The surface opposite to the surface on which the pigment layer of the support S-1 was formed (hereinafter sometimes referred to as the back surface) was subjected to corona treatment under the conditions described above.
Next, the first composite polymer layer forming coating solution was coated on the corona-treated back surface of the support S-1 so that the binder coating amount was 10.2 / m 2 and dried at 175 ° C. for 2 minutes, A first composite polymer layer having a dry thickness of about 10 μm was formed.
[比較例4]
 実施例1とほぼ同等の反射率を発現させる酸化チタン練り込み基材(白色フィルム)を、下記のように作製した。なお、酸化チタン練り込みタイプの基材を用いた比較例4については、塗布層を形成しないため、塗布層の接着性及び膜強度は測定しなかった。
[Comparative Example 4]
A titanium oxide kneaded base material (white film) that exhibits a reflectance substantially equivalent to that of Example 1 was produced as follows. In addition, in Comparative Example 4 using a titanium oxide kneaded type base material, the coating layer was not formed, and thus the adhesion and film strength of the coating layer were not measured.
-二酸化チタン含有マスターバッチの作製-
 極限粘度0.58、酸価12(eq/ton)のポリエチレンテレフタレート樹脂を205℃で窒素気流中25時間固相重合して得た極限粘度0.79、酸価7.5(eq/ton)のポリエチレンテレフタレート樹脂(PET-I)50質量%を、事前に120℃、8時間ほど10-3torr下で乾燥した。これに平均粒径0.3μm(電顕法)のルチル型二酸化チタン50質量%を混合したものをベント式2軸押し出し機に供給して、混練りして脱気しながら275℃で押出し、微粒子(酸化チタン)含有マスターバッチ(MB-I)ペレットを調製した。このペレットの極限粘度は0.78、酸価は、7.9(eq/ton)であった。
-Production of master batch containing titanium dioxide-
Intrinsic viscosity 0.79 obtained by solid-phase polymerization of polyethylene terephthalate resin having an intrinsic viscosity of 0.58 and an acid value of 12 (eq / ton) at 205 ° C. in a nitrogen stream for 25 hours, an acid value of 7.5 (eq / ton) 50% by mass of polyethylene terephthalate resin (PET-I) was previously dried at 120 ° C. for 8 hours under 10 −3 torr. This was mixed with 50% by mass of rutile type titanium dioxide having an average particle size of 0.3 μm (electron microscopic method), supplied to a vent type twin screw extruder, kneaded and extruded at 275 ° C. while degassing. (Titanium oxide) -containing master batch (MB-I) pellets were prepared. This pellet had an intrinsic viscosity of 0.78 and an acid value of 7.9 (eq / ton).
-フィルムの作製-
 次いで、ポリエチレンテレフタレート樹脂(PET-I)50質量%と、先に作製したMB-Iを50質量%とを混合した原料を、280℃で混合、溶融した。次いでT-ダイを用いて30℃に調節された冷却ドラム上に押し出し、未延伸シートを作製した。
-Production of film-
Next, a raw material in which 50% by mass of polyethylene terephthalate resin (PET-I) and 50% by mass of the previously prepared MB-I were mixed and melted at 280 ° C. Next, the sheet was extruded onto a cooling drum adjusted to 30 ° C. using a T-die to produce an unstretched sheet.
-2軸延伸フィルムの作製-
 得られた未延伸シートを、加熱ロールを用いて70℃に均一加熱し、90℃で3.5倍ロール延伸を行った。得られた1軸延伸フィルムをテンターに導き、140℃に加熱して4.2倍に横延伸し、幅固定して205℃で5秒間の熱処理を施し、更に200℃で幅方向に4%緩和させることにより、厚み250μmの白色フィルムを得た。
-Preparation of stretched film-
The obtained unstretched sheet was uniformly heated to 70 ° C. using a heating roll, and stretched 3.5 times at 90 ° C. The obtained uniaxially stretched film was led to a tenter, heated to 140 ° C. and transversely stretched 4.2 times, fixed in width and subjected to a heat treatment at 205 ° C. for 5 seconds, and further 4% in the width direction at 200 ° C. By relaxing, a white film having a thickness of 250 μm was obtained.
[実施例14]
 実施例1の<顔料層形成用塗布液の組成>と、<上塗り層形成用塗布液の組成>を下記のようにした以外は、実施例1と同様にして太陽電池用バックシート(サンプルシート)を作製した。
[Example 14]
A back sheet for a solar cell (sample sheet) was prepared in the same manner as in Example 1 except that the <Composition of the coating liquid for forming a pigment layer> and <Composition of the coating liquid for forming an overcoat layer> in Example 1 were as follows. ) Was produced.
<顔料層形成用塗布液の組成>
・二酸化チタン分散物             ・・・298.5質量部
・ポリオレフィンバインダー          ・・・341.2質量部
 〔アローベースSE1013N、ユニチカ(株)製、固形分:20.2質量%〕
・アクリル系バインダー ・・・164.1質量部 
  (AS-563A 、ダイセルファインケム(株)製、固形分28質量%)
・フッ素系界面活性剤             ・・・8.5質量部
 〔特開2010-83927号公報に記載のフッ素系界面活性剤6のメタノール溶液、固形分:1質量%〕
・オキサゾリン化合物             ・・・94.9質量部
 〔エポクロスWS-700、日本触媒(株)製、固形分:25%;架橋剤〕
・蒸留水                   ・・・93.1質量部
<Composition of pigment layer forming coating solution>
Titanium dioxide dispersion: 298.5 parts by mass Polyolefin binder: 341.2 parts by mass [Arrow Base SE1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass]
・ Acrylic binder: 164.1 parts by mass
(AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 28% by mass)
Fluorosurfactant: 8.5 parts by mass [Methanol solution of fluorosurfactant 6 described in JP 2010-83927 A, solid content: 1% by mass]
Oxazoline compound: 94.9 parts by mass [Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25%; crosslinking agent]
・ Distilled water ... 93.1 parts by mass
<上塗り層形成用塗布液の組成>
・オレフィン系バインダー ・・・171.0質量部
  (アローベースSE-1013N、ユニチカ(株)製、固形分20.2質量%) 
・アクリル系バインダー            ・・・30.8質量部
  (AS-563A 、ダイセルファインケム(株)製、固形分28質量%)
・オキサゾリン化合物             ・・・45.0質量部
  (エポクロスWS700、(株)日本触媒製、固形分:5質量%)
・界面活性剤                 ・・・10.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・フッ素系界面活性剤              ・・・5.0質量部
 〔特開2010-83927号公報に記載のフッ素系界面活性剤6のメタノール溶液、固形分:1質量%〕
・蒸留水・・・738.2質量部
<Composition of coating liquid for topcoat layer formation>
・ Olefin binder: 171.0 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass)
・ Acrylic binder: 30.8 parts by mass (AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 28% by mass)
・ Oxazoline compound: 45.0 parts by mass (Epocross WS700, manufactured by Nippon Shokubai Co., Ltd., solid content: 5% by mass)
Surfactant: 10.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
Fluorosurfactant: 5.0 parts by mass [Methanol solution of fluorosurfactant 6 described in JP2010-83927A, solid content: 1% by mass]
・ Distilled water: 738.2 parts by mass
[実施例15]
 <顔料層の形成>、<第1複合ポリマー層の形成>において、PET基材(S-1)の表面をコロナ処理する代わりに、下記条件でグロー処理を行ったPET基材を用いた以外は、実施例14と同様にして、太陽電池用バックシート(サンプルシート)を作製した。
[Example 15]
In <Formation of pigment layer> and <Formation of first composite polymer layer>, instead of corona-treating the surface of the PET substrate (S-1), a PET substrate subjected to glow treatment under the following conditions was used. Produced the solar cell backsheet (sample sheet) in the same manner as in Example 14.
-グロー放電処理-
 厚さ250μmの2軸延伸ポリエチレンテレフタレートフィルムの両面を下記条件で低圧プラズマ処理した。この装置は特にプラズマガスを導入していない。従って雰囲気(プラズマガス)は流入した空気とポリエチレンテレフタレートフィルムからの脱ガスである。
 なお、ポリエチレンテレフタレートフィルムは処理の前に加熱ローラーを用いて145℃に加熱した。
-Glow discharge treatment-
Both surfaces of a 250 μm thick biaxially stretched polyethylene terephthalate film were subjected to low pressure plasma treatment under the following conditions. This apparatus does not particularly introduce plasma gas. The atmosphere (plasma gas) is therefore degassed from the inflowing air and the polyethylene terephthalate film.
The polyethylene terephthalate film was heated to 145 ° C. using a heating roller before the treatment.
・処理雰囲気圧力 0.2Torr
・放電周波数 30kHz 
・出力 5000w
・処理強度 4.2kV・A・分/m
・ Processing atmosphere pressure 0.2 Torr
・ Discharge frequency 30kHz
・ Output 5000w
・ Processing strength 4.2 kV ・ A ・ min / m 2
[実施例16]
 比較例4で用いた酸化チタン練り込み基材(白色フィルム)を用いた以外は、実施例14と同様にして太陽電池用バックシート(サンプルシート)を作製した。
[Example 16]
A solar cell backsheet (sample sheet) was produced in the same manner as in Example 14 except that the titanium oxide kneaded base material (white film) used in Comparative Example 4 was used.
[実施例17]
 下記のようにして作製した末端封止剤を添加したポリマー基材(S-2)を用いた以外は、実施例14と同様にして太陽電池用バックシート(サンプルシート)を作製した。
[Example 17]
A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 14 except that the polymer base material (S-2) to which the end-capping agent was prepared as described below was used.
<ポリマー基材(S-2)の作製>
-PETの重合-
 特開2011-165698号公報の[0033]1~11行目に従い、ポリエチレンテレフタレートのポリマーを得た。具体的には、エステル交換反応容器にジメチルテレフタレートを100質量部、エチレングリコールを61質量部、酢酸マグネシウム四水塩を0.06質量部仕込み、150℃に加熱して溶融し撹拌した。反応容器内温度をゆっくりと235℃まで昇温しながら反応を進め、生成するメタノールを反応容器外へ留出させた。メタノールの留出が終了したらトリメチルリン酸を0.02質量部添加した。トリメチルリン酸を添加した後、三酸化アンチモンを0.03質量部添加し、反応物を重合装置に移行した。ついで重合装置内の温度を235℃から290℃まで90分かけて昇温し、同時に装置内の圧力を大気圧から100Paまで90分かけて減圧した。重合装置内容物の撹拌トルクが所定の値に達したら装置内を窒素ガスで大気圧に戻して重合を終了した。重合装置下部のバルブを開いて重合装置内部を窒素ガスで加圧し、重合の完了したポリエチレンテレフタレートをストランド状にして水中に吐出した。ストランドはカッターによってチップ化した。このようにして固有粘度IV=0.58、酸価(AV)=12のPETを得た。これをPET-Aとした。
<Preparation of polymer substrate (S-2)>
-Polymerization of PET-
According to [0033] lines 1 to 11 of JP2011-165698A, a polymer of polyethylene terephthalate was obtained. Specifically, 100 parts by mass of dimethyl terephthalate, 61 parts by mass of ethylene glycol, and 0.06 parts by mass of magnesium acetate tetrahydrate were charged in a transesterification reaction vessel, heated to 150 ° C., melted and stirred. The reaction was advanced while the temperature in the reaction vessel was slowly raised to 235 ° C., and the produced methanol was distilled out of the reaction vessel. When the distillation of methanol was completed, 0.02 parts by mass of trimethyl phosphoric acid was added. After adding trimethyl phosphoric acid, 0.03 parts by mass of antimony trioxide was added, and the reaction product was transferred to a polymerization apparatus. Subsequently, the temperature in the polymerization apparatus was raised from 235 ° C. to 290 ° C. over 90 minutes, and at the same time, the pressure in the apparatus was reduced from atmospheric pressure to 100 Pa over 90 minutes. When the stirring torque of the contents of the polymerization apparatus reached a predetermined value, the inside of the apparatus was returned to atmospheric pressure with nitrogen gas to complete the polymerization. The valve | bulb of the polymerization apparatus lower part was opened, the inside of the polymerization apparatus was pressurized with nitrogen gas, and the polyethylene terephthalate which superposed | polymerized was made into strand shape, and was discharged in water. The strand was chipped with a cutter. Thus, PET having an intrinsic viscosity IV = 0.58 and an acid value (AV) = 12 was obtained. This was designated as PET-A.
-ポリエステルの固相重合-
 PET-Aを特開2009-182186号公報の[0032]に従い固相重合を行った。即ち、得られたポリマー(PET-A)を150~160℃で3時間予備乾燥した後、100トール、窒素ガス雰囲気下、205℃で25時間固相重合を行いIV=8、AV=0.79のPET-Bを得た。なお、カルボキシル末端量AVは、Mauliceの方法によって、カルボキシル末端量を測定した(文献:M.J.Maulice,F.Huizinga.Anal.Chim.Acta,22 363(1960))。
 固有粘度(IV)は、ポリエステルをオルトクロロフェノールに溶解し、25℃で測定した溶液粘度から、下式より固有粘度を得た。
 ηsp/C=[η]+K[η]・C
 ここで、ηsp=(溶液粘度/溶媒粘度)-1であり、Cは、溶媒100mlあたりの溶解ポリマー重量であり(本測定では1g/100mlとする)、Kはハギンス定数(0.343とする)であり、溶液粘度、溶媒粘度はオストワルド粘度計を用いて測定した。
-Solid phase polymerization of polyester-
PET-A was subjected to solid phase polymerization according to [0032] of JP-A-2009-182186. That is, the obtained polymer (PET-A) was pre-dried at 150 to 160 ° C. for 3 hours and then subjected to solid phase polymerization at 205 ° C. for 25 hours in an atmosphere of 100 torr and nitrogen gas, and IV = 8, AV = 0. 79 PET-Bs were obtained. The carboxyl terminal amount AV was measured by the method of Malice (reference: MJ Malice, F. Huizinga. Anal. Chim. Acta, 22 363 (1960)).
The intrinsic viscosity (IV) was obtained by dissolving the polyester in orthochlorophenol and obtaining the intrinsic viscosity from the following formula from the solution viscosity measured at 25 ° C.
ηsp / C = [η] + K [η] 2 · C
Here, ηsp = (solution viscosity / solvent viscosity) −1, C is the weight of dissolved polymer per 100 ml of solvent (1 g / 100 ml in this measurement), and K is the Huggins constant (0.343) The solution viscosity and the solvent viscosity were measured using an Ostwald viscometer.
-ポリエステルと末端封止剤を含むマスターペレットの製造-
 上記PET-Bの90質量部と、下記末端封止剤ハ)10質量部とをブレンドし、2軸混練機に供給して280℃で溶融混練し、これをストランド状に水中吐出し、カッターで裁断しチップ化した。これをPET-C(マスターペレット)とした。
・末端封止剤イ)カルボジイミド:スタビライザー9000(ラシヒ社製)、Mw=20000
・末端封止剤ロ)カルボジイミド:N、N’-ジシクロヘキシルカルボジイミド、Mw=206
・末端封止剤ハ)カルボジイミド:特開2011-153209号公報[0174]および[0175]に記載の環状カルボジイミド化合物(2)、Mw=516
・末端封止剤ニ)エポキシ:特開2010-116560号公報[0115]に記載の鎖延長剤1、Mw=3300
・末端封止剤ホ)オキサゾリン:エポクロスRPS-1005(日本触媒(株)製)、Mw=5000
-Production of master pellets containing polyester and end-capping agent-
90 parts by mass of the above-mentioned PET-B and 10 parts by mass of the following end-capping agent C) are blended, supplied to a twin-screw kneader, melt-kneaded at 280 ° C., discharged into water in a strand form, and cutter And cut into chips. This was designated as PET-C (master pellet).
End-capping agent a) Carbodiimide: Stabilizer 9000 (manufactured by Raschig), Mw = 20000
End-capping agent b) carbodiimide: N, N′-dicyclohexylcarbodiimide, Mw = 206
End-capping agent c) carbodiimide: cyclic carbodiimide compound (2) described in JP 2011-153209 A [0174] and [0175], Mw = 516
End-capping agent d) Epoxy: chain extender 1 described in JP 2010-116560 A [0115], Mw = 3300
End-capping agent e) Oxazoline: Epocross RPS-1005 (manufactured by Nippon Shokubai Co., Ltd.), Mw = 5000
-ポリエステルフィルムの製膜-
 PET-BとPET-Cを用い、これらを180℃で3時間乾燥させた後、PET-B/PET-C=92/8(質量%)の比率で押出し機に投入し、280℃で混練した。この後、ギアポンプ、濾過器を通した後、Tダイから静電印加をかけた25℃の冷却ドラム上に押出し、冷却固化し未延伸シートを得た。この未延伸シートを100℃で長手方向に3.5倍に延伸した後、25℃に冷却、この後、130℃にて幅方向に4.2倍延伸した。この後、210℃で熱固定を行い、幅方向に2%緩和を行った後、巻き取った。延伸後の厚みは250μmであった。
-Made of polyester film-
Using PET-B and PET-C, these were dried at 180 ° C. for 3 hours and then put into an extruder at a ratio of PET-B / PET-C = 92/8 (mass%) and kneaded at 280 ° C. did. Then, after passing through a gear pump and a filter, it was extruded onto a cooling drum of 25 ° C. to which electrostatic application was applied from a T die, and cooled and solidified to obtain an unstretched sheet. The unstretched sheet was stretched 3.5 times in the longitudinal direction at 100 ° C., cooled to 25 ° C., and then stretched 4.2 times in the width direction at 130 ° C. Thereafter, heat setting was performed at 210 ° C., relaxation was performed 2% in the width direction, and winding was performed. The thickness after stretching was 250 μm.
[実施例18]
 下記のようにして作製した下塗り層つきポリマー基材(S-3)を用いた以外は、実施例4と同様にして太陽電池用バックシート(サンプルシート)を作製した。
<ポリマー基材(S-3)の作製>
-下塗り層形成用塗布液の調製-
 下記組成中の各成分を混合し、下塗り層形成用塗布液を調製した。
 <塗布液の組成>
・ポリエステル系バインダー ・・・8.12質量部 
  (バイロナールMD1245、東洋紡(株)製、固形分30質量%)
・ポリオレフィンバインダー          ・・・12.06質量部
 (アローベースSE-1013N、ユニチカ(株)製、濃度20質量%)
・カルボジイミド化合物(架橋剤)・・・8.20質量部
  (カルボジライトV-02-L2、日清紡績(株)製、固形分:10質量%)
・オキサゾリン系架橋剤             ・・・1.00質量部
 (エポクロスWS-700、日本触媒(株)製、濃度25質量%)
・界面活性剤・・・5.0質量部
  (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・蒸留水                   ・・・65.62質量部
[Example 18]
A solar cell backsheet (sample sheet) was prepared in the same manner as in Example 4 except that the polymer substrate with an undercoat layer (S-3) prepared as described below was used.
<Preparation of polymer substrate (S-3)>
-Preparation of coating solution for undercoat layer formation-
Each component in the following composition was mixed to prepare a coating solution for forming an undercoat layer.
<Composition of coating solution>
・ Polyester binder: 8.12 parts by mass
(Byronal MD1245, manufactured by Toyobo Co., Ltd., solid content 30% by mass)
Polyolefin binder: 12.06 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., concentration: 20% by mass)
-Carbodiimide compound (crosslinking agent): 8.20 parts by mass (Carbodilite V-02-L2, manufactured by Nisshinbo Co., Ltd., solid content: 10% by mass)
・ Oxazoline-based crosslinking agent: 1.00 parts by mass (Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., concentration: 25% by mass)
-Surfactant: 5.0 parts by mass (Naroacty CL95, manufactured by Sanyo Chemical Industries, Ltd., solid content: 1% by mass)
・ Distilled water: 65.62 parts by mass
-下塗り層の形成-
 ポリマー支持体の第1の面に、下記の条件でコロナ処理を行なった。
 ・電極と誘電体ロールギャップクリアランス:1.6mm
 ・処理周波数:9.6kHz
 ・処理速度:20m/分
 ・処理強度:0.375kV・A・分/m
-Formation of undercoat layer-
The first surface of the polymer support was subjected to corona treatment under the following conditions.
・ Electrode and dielectric roll gap clearance: 1.6mm
・ Processing frequency: 9.6 kHz
Processing speed: 20 m / min Processing intensity: 0.375 kV / A / min / m 2
 次いで、下塗り層形成用塗布液をポリマー支持体のコロナ処理面に、塗布量が5.1ml/mとなるように、MD延伸後、TD延伸前にインラインコート法にて塗布を行い、厚み0.1μmの下塗り層を形成した。なお、TD延伸温度は、105℃で、TD方向に4.5倍に延伸し、膜面200℃で15秒間の熱処理を行い、190℃でMD緩和率5%、TD緩和率11%でMD・TD方向に熱緩和を行った。 Next, the coating solution for forming the undercoat layer is applied to the corona-treated surface of the polymer support by an in-line coating method after MD stretching and before TD stretching so that the coating amount is 5.1 ml / m 2. An undercoat layer of 0.1 μm was formed. The TD stretching temperature is 105 ° C., stretched 4.5 times in the TD direction, and heat treatment is performed at 200 ° C. for 15 seconds. The MD relaxation rate is 5% at 190 ° C., and the MD relaxation rate is 11%. -Thermal relaxation was performed in the TD direction.
[実施例19]
 下記のようにして作製した下塗り層つきポリマー基材(S-4)を用いた以外は、実施例14と同様にして太陽電池用バックシート(サンプルシート)を作製した。
<ポリマー基材(S-4)の作製>
-下塗り層形成用塗布液の調製-
 下記組成中の各成分を混合し、下塗り層形成用塗布液を調製した。
 <塗布液の組成>
・ポリオレフィンバインダー         ・・・ 24.12質量部
 (アローベースSE-1013N、ユニチカ(株)製、濃度20質量%)
・オキサゾリン系架橋剤            ・・・ 3.90質量部
 (エポクロスWS-700、日本触媒(株)製、濃度25質量%)
・フッ素系界面活性剤             ・・・ 0.19質量部
 (ナトリウム=ビス(3、3、4、4、5、5、6、6-ノナフルオロ)=2-スルホナイトオキシスクシナート、三協化学(株)製、濃度1質量%)
・蒸留水                  ・・・ 71.80質量部
[Example 19]
A solar cell backsheet (sample sheet) was produced in the same manner as in Example 14 except that the polymer substrate (S-4) with an undercoat layer produced as described below was used.
<Preparation of polymer substrate (S-4)>
-Preparation of coating solution for undercoat layer formation-
Each component in the following composition was mixed to prepare a coating solution for forming an undercoat layer.
<Composition of coating solution>
・ Polyolefin binder: 24.12 parts by mass (Arrow Base SE-1013N, manufactured by Unitika Ltd., concentration: 20% by mass)
・ Oxazoline-based crosslinking agent: 3.90 parts by mass (Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., concentration: 25% by mass)
・ Fluorine-based surfactant: 0.19 parts by mass (sodium bis (3, 3, 4, 4, 5, 5, 6, 6-nonafluoro) = 2-sulfonite oxysuccinate, Sankyo Chemical (Made by Co., Ltd., concentration 1% by mass)
・ Distilled water: 71.80 parts by mass
-下塗り層の形成-
 ポリマー支持体の第1の面に、下記の条件でコロナ処理を行なった。
 ・電極と誘電体ロールギャップクリアランス:1.6mm
 ・処理周波数:9.6kHz
 ・処理速度:20m/分
 ・処理強度:0.375kV・A・分/m
-Formation of undercoat layer-
The first surface of the polymer support was subjected to corona treatment under the following conditions.
・ Electrode and dielectric roll gap clearance: 1.6mm
・ Processing frequency: 9.6 kHz
Processing speed: 20 m / min Processing intensity: 0.375 kV / A / min / m 2
 次いで、下塗り層形成用塗布液をポリマー支持体のコロナ処理面に、塗布量が5.1ml/mとなるように、MD延伸後、TD延伸前にインラインコート法にて塗布を行い、厚み0.1μmの下塗り層を形成した。なお、TD延伸温度は、105℃で、TD方向に4.5倍に延伸し、膜面200℃で15秒間の熱処理を行い、190℃でMD緩和率5%、・TD緩和率11%でMD・TD方向に熱緩和を行った。 Next, the coating solution for forming the undercoat layer is applied to the corona-treated surface of the polymer support by an in-line coating method after MD stretching and before TD stretching so that the coating amount is 5.1 ml / m 2. An undercoat layer of 0.1 μm was formed. The TD stretching temperature is 105 ° C., stretched 4.5 times in the TD direction, and heat treatment is performed for 15 seconds at a film surface of 200 ° C. The MD relaxation rate is 5% at 190 ° C., and the TD relaxation rate is 11%. Thermal relaxation was performed in the MD / TD direction.
 得られた各実施例及び比較例のフィルムについて、実施例1と同様に評価を行なった。その結果を、下記表2に示す。 The film of each Example and Comparative Example obtained was evaluated in the same manner as Example 1. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 上記表2より、実施例の太陽電池用バックシートは、湿熱経時後の接着性、反射率、耐光性がいずれも良好である。
 一方、比較例1、2は顔料層上に上塗り層を有さないものであり、湿熱経時後の接着性が大幅に低下した。
 比較例3は、裏面の複合ポリマー層を有さないものであり、耐光性が低かった。
 比較例4は、実施例1と同等の厚みかつ反射率が80%を越えるように作製した顔料錬り込みタイプのシートを作製したものであり、耐光性が低かった。
From the above Table 2, the solar cell backsheets of the examples all have good adhesiveness, reflectance and light resistance after wet heat aging.
On the other hand, Comparative Examples 1 and 2 did not have an overcoat layer on the pigment layer, and the adhesion after wet heat aging significantly decreased.
Comparative Example 3 did not have a composite polymer layer on the back surface and had low light resistance.
In Comparative Example 4, a pigment kneaded type sheet prepared so as to have a thickness equivalent to that of Example 1 and a reflectance exceeding 80% was produced, and the light resistance was low.
(実施例20)
 厚さ3mmの強化ガラスと、EVAシート(三井化学ファブロ(株)製のSC50B)と、結晶系太陽電池セルと、EVAシート(三井化学ファブロ(株)製のSC50B)と、実施例1のサンプルシート(本発明の太陽電池用バックシート)と、をこの順に重ね合わせ、真空ラミネータ(日清紡(株)製、真空ラミネート機)を用いてホットプレスすることにより、EVAと接着させた。このとき、サンプルシートは、その上塗り層がEVAシートと接触するように配置した。また、EVAの接着条件は、以下の通りである。
 真空ラミネータを用いて、128℃で3分間の真空引き後、2分間加圧して仮接着した。その後、ドライオーブンにて150℃で30分間、本接着処理を施した。
 このようにして、結晶系の太陽電池モジュールを作製した。作製した太陽電池モジュールを用いて発電運転をしたところ、太陽電池として良好な発電性能を示した。
(Example 20)
A tempered glass having a thickness of 3 mm, an EVA sheet (SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.), a crystalline solar cell, an EVA sheet (SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.), and the sample of Example 1 Sheets (back sheets for solar cells of the present invention) were superposed in this order and hot-pressed using a vacuum laminator (Nisshinbo Co., Ltd., vacuum laminating machine) to adhere to EVA. At this time, the sample sheet was disposed so that the overcoat layer was in contact with the EVA sheet. Moreover, the adhesion conditions of EVA are as follows.
Using a vacuum laminator, evacuation was performed at 128 ° C. for 3 minutes, followed by pressurization for 2 minutes and temporary adhesion. Thereafter, the main adhesion treatment was performed in a dry oven at 150 ° C. for 30 minutes.
In this way, a crystalline solar cell module was produced. When the generated solar cell module was used for power generation operation, it showed good power generation performance as a solar cell.
 日本特許出願2011-178562の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許、特許出願、および技術規格は、個々の文献、特許、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Patent Application 2011-178562 is incorporated herein by reference.
All documents, patents, patent applications, and technical standards described herein are specifically and individually described as individual documents, patents, patent applications, and technical standards are incorporated by reference. To the same extent, it is incorporated herein by reference.

Claims (22)

  1.  ポリマー基材と、
     前記ポリマー基材の第1の面上に設けられ、バインダー及び顔料を含む顔料層と、
     前記顔料層上に設けられ、バインダーを含む上塗り層と、
     前記ポリマー基材の第2の面上に設けられ、分子中に下記一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを含む複合ポリマーを含有する複合ポリマー層と、
     を有する太陽電池用バックシート。
    Figure JPOXMLDOC01-appb-C000001

     
    〔一般式(1)中、R及びRは、各々独立に、水素原子、ハロゲン原子、又は1価の有機基を表し、RとRとは同一でも異なってもよい。nは、1以上の整数を表す。複数のR及びRは各々、互いに同一でも異なってもよい。〕
    A polymer substrate;
    A pigment layer provided on the first surface of the polymer substrate and comprising a binder and a pigment;
    An overcoat layer provided on the pigment layer and containing a binder;
    Provided on the second surface of the polymer base material, a siloxane structural unit having a mass ratio of 15 to 85 mass% represented by the following general formula (1) in the molecule and a non-mass ratio of 85 to 15 mass% A composite polymer layer containing a composite polymer comprising a siloxane-based structural unit;
    A solar cell backsheet.
    Figure JPOXMLDOC01-appb-C000001


    [In General Formula (1), R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group, and R 1 and R 2 may be the same or different. n represents an integer of 1 or more. The plurality of R 1 and R 2 may be the same as or different from each other. ]
  2.  前記ポリマー基材と前記顔料層との間に、バインダーを含み、厚みが2μm以下の下塗り層を有する請求項1に記載の太陽電池用バックシート。 The solar cell backsheet according to claim 1, further comprising an undercoat layer containing a binder and having a thickness of 2 µm or less between the polymer substrate and the pigment layer.
  3.  前記ポリマー基材上に設けられた少なくとも1つの層がフッ素系界面活性剤を含有する請求項1又は請求項2に記載の太陽電池用バックシート。 The solar cell backsheet according to claim 1 or 2, wherein at least one layer provided on the polymer substrate contains a fluorosurfactant.
  4.  前記顔料層における前記バインダーと前記顔料の合計に対する前記顔料の割合が40~95質量%である請求項1~請求項3のいずれか一項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 3, wherein a ratio of the pigment to a total of the binder and the pigment in the pigment layer is 40 to 95 mass%.
  5.  前記上塗り層の厚みが0.1μm以上30μm以下である請求項1~請求項4のいずれか一項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 4, wherein a thickness of the overcoat layer is 0.1 µm or more and 30 µm or less.
  6.  前記顔料層における前記バインダーと前記顔料の合計に対する前記顔料の割合が50~95質量%である請求項1~請求項5のいずれか一項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 5, wherein a ratio of the pigment to a total of the binder and the pigment in the pigment layer is 50 to 95 mass%.
  7.  前記顔料層における前記バインダーと前記顔料の合計に対する前記顔料の割合が70~95質量%である請求項1~請求項6のいずれか一項に記載の太陽電池用バックシート。 The back sheet for a solar cell according to any one of claims 1 to 6, wherein a ratio of the pigment to a total of the binder and the pigment in the pigment layer is 70 to 95% by mass.
  8.  前記上塗り層の厚みが、0.3μm以上20μm以下である請求項1~請求項7のいずれか一項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 7, wherein a thickness of the overcoat layer is from 0.3 µm to 20 µm.
  9.  前記上塗り層の厚みが、0.5μm以上10μm以下である請求項1~請求項8のいずれか一項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 8, wherein a thickness of the overcoat layer is 0.5 µm or more and 10 µm or less.
  10.  前記ポリマー基材の前記第1の面上に設けられた少なくとも1つの層が、該層に含まれるバインダーに対して5~50質量%の架橋剤由来の構造を含有する請求項1~請求項9のいずれか一項に記載の太陽電池用バックシート。 The at least one layer provided on the first surface of the polymer substrate contains 5 to 50% by mass of a crosslinking agent-derived structure with respect to the binder contained in the layer. The solar cell backsheet according to claim 9.
  11.  前記架橋剤の少なくとも一つが、カルボジイミド基又はオキサゾリン基を有する架橋剤である請求項10に記載の太陽電池用バックシート。 The solar cell backsheet according to claim 10, wherein at least one of the crosslinking agents is a crosslinking agent having a carbodiimide group or an oxazoline group.
  12.  前記ポリマー基材と前記顔料層との間に、バインダーを含み、厚みが2μm以下の下塗り層を有し、前記下塗り層及び前記上塗り層が、ポリオレフィン樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、ポリアクリル樹脂及びポリエステル樹脂からなる群より選択される少なくとも1種の樹脂を含む請求項1~請求項11のいずれか一項に記載の太陽電池用バックシート。 A binder is included between the polymer substrate and the pigment layer, and an undercoat layer having a thickness of 2 μm or less is provided. The undercoat layer and the overcoat layer are made of a polyolefin resin, a polyurethane resin, a polyvinyl alcohol resin, or a polyacrylic resin. The solar cell backsheet according to any one of claims 1 to 11, comprising at least one resin selected from the group consisting of a polyester resin and a polyester resin.
  13.  前記ポリマー基材と前記顔料層との間に、バインダーを含み、厚みが2μm以下の下塗り層を有し、前記下塗り層及び前記上塗り層が、無機酸化物フィラーを含有する請求項1~請求項12のいずれか一項に記載の太陽電池用バックシート。 The undercoat layer includes a binder and has a thickness of 2 μm or less between the polymer substrate and the pigment layer, and the undercoat layer and the overcoat layer contain an inorganic oxide filler. The solar cell backsheet according to any one of 12 above.
  14.  前記ポリマー基材の少なくとも片面が、コロナ処理、グロー放電処理、大気圧プラズマ処理、及び火炎処理の少なくとも1種の方法で表面処理されている請求項1~請求項13のいずれか一項に記載の太陽電池用バックシート。 The surface treatment is performed on at least one surface of the polymer base material by at least one method of corona treatment, glow discharge treatment, atmospheric pressure plasma treatment, and flame treatment. Back sheet for solar cells.
  15.  前記ポリマー基材が、ポリエステル樹脂と該ポリエステル樹脂の全質量に対して0.1~10質量%の末端封止剤を含んで構成されている請求項1~請求項14のいずれか一項に記載の太陽電池用ポリマーシート。 The polymer base material according to any one of claims 1 to 14, wherein the polymer base material includes a polyester resin and 0.1 to 10% by mass of an end-capping agent based on the total mass of the polyester resin. The polymer sheet for solar cells described.
  16.  前記基材ポリマー基材が、無機粒子又は有機粒子を含み、該粒子の平均粒径は0.1~10μmであり、且つ該粒子の含有量はポリマー基材全質量に対して0~50質量%である請求項1~請求項15のいずれか一項に記載の太陽電池用ポリマーシート。 The base polymer base material contains inorganic particles or organic particles, the average particle size of the particles is 0.1 to 10 μm, and the content of the particles is 0 to 50 mass with respect to the total mass of the polymer base material. The solar cell polymer sheet according to any one of claims 1 to 15, wherein the polymer sheet is%.
  17.  前記ポリマー基材は、150℃、30分経時前後の熱収縮率が0~0.5%である請求項1~請求項16のいずれか一項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 16, wherein the polymer base material has a thermal shrinkage rate of 0 to 0.5% at 150 ° C for about 30 minutes.
  18.  前記ポリマー基材が、カルボキシル基の含量が35当量/トン以下であるポリエステル樹脂を含んで構成されている請求項1~請求項17のいずれか一項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 17, wherein the polymer base material comprises a polyester resin having a carboxyl group content of 35 equivalents / ton or less.
  19.  前記顔料層が設けられている側の波長550nmの光に対する反射率が70%以上である請求項1~請求項18のいずれか一項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 18, wherein a reflectance with respect to light having a wavelength of 550 nm on the side on which the pigment layer is provided is 70% or more.
  20.  前記ポリマー基材の前記第1の面上に設けられた層が、いずれも塗布により形成された層である請求項1~請求項19のいずれか一項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 19, wherein all the layers provided on the first surface of the polymer base material are layers formed by coating.
  21.  ポリマー基材用の原料樹脂をシート状に溶融押出する溶融押出工程と、
     溶融押出されたシート状の樹脂を冷却し、樹脂シートを製膜する製膜工程と、
     前記樹脂シートを第1の方向に延伸する第1の延伸工程と、
     前記第1の方向に延伸された樹脂シートの少なくとも片面に下塗り層を塗布形成する下塗り層形成工程と、
     前記下塗り層が塗布形成された樹脂シートを、前記第1の方向と直交する第2の方向に延伸する第2の延伸工程と、
     を有し、請求項2~請求項20のいずれか1項に記載の太陽電池用バックシートを製造する太陽電池用バックシートの製造方法。
    A melt extrusion step of melt-extruding a raw material resin for a polymer substrate into a sheet,
    Cooling the melt-extruded sheet-shaped resin, and forming a resin sheet,
    A first stretching step of stretching the resin sheet in a first direction;
    An undercoat layer forming step of applying and forming an undercoat layer on at least one surface of the resin sheet stretched in the first direction;
    A second stretching step of stretching the resin sheet coated with the undercoat layer in a second direction orthogonal to the first direction;
    A method for producing a solar cell backsheet, which comprises producing the solar cell backsheet according to any one of claims 2 to 20.
  22.  太陽光が入射する透明性の基板と、太陽電池素子と、請求項1~請求項20のいずれか一項に記載の太陽電池用バックシートとを含むことを特徴とする太陽電池モジュール。 A solar cell module comprising: a transparent substrate on which sunlight is incident; a solar cell element; and the solar cell backsheet according to any one of claims 1 to 20.
PCT/JP2012/070928 2011-08-17 2012-08-17 Back sheet for solar cell, method for manufacturing same, and solar cell module WO2013024902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-178562 2011-08-17
JP2011178562 2011-08-17

Publications (1)

Publication Number Publication Date
WO2013024902A1 true WO2013024902A1 (en) 2013-02-21

Family

ID=47715217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070928 WO2013024902A1 (en) 2011-08-17 2012-08-17 Back sheet for solar cell, method for manufacturing same, and solar cell module

Country Status (3)

Country Link
JP (1) JP5722287B2 (en)
TW (1) TW201318853A (en)
WO (1) WO2013024902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115138641A (en) * 2021-08-26 2022-10-04 上海林众电子科技有限公司 Processing method for enhancing cohesiveness of plastic material and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995769B2 (en) * 2013-03-29 2016-09-21 富士フイルム株式会社 Laminated film, back sheet for solar cell module, and solar cell module
WO2014163057A1 (en) * 2013-04-02 2014-10-09 ダイキン工業株式会社 Production method for article having a silane film
EP3025377B1 (en) 2013-07-26 2020-04-01 NewSouth Innovations Pty Limited Thermal processing in silicon
JP6117066B2 (en) * 2013-09-20 2017-04-19 富士フイルム株式会社 Method for producing laminated film
WO2015194526A1 (en) * 2014-06-18 2015-12-23 東洋紡株式会社 Polyester preform and method for manufacturing polyester preform
JP2017130685A (en) * 2017-03-27 2017-07-27 東洋インキScホールディングス株式会社 Back surface protective sheet for solar cell, manufacturing method of the same, and solar cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083988A (en) * 2000-09-08 2002-03-22 Dainippon Printing Co Ltd Rear surface protection sheet for solar cell module and solar cell module using the same
JP2009290201A (en) * 2008-04-28 2009-12-10 Asahi Kasei Chemicals Corp Laminate for solar cell back sheet and back sheet comprising the same
JP2011146659A (en) * 2010-01-18 2011-07-28 Fujifilm Corp Film for solar battery back sheet and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255927A (en) * 2005-03-15 2006-09-28 Teijin Dupont Films Japan Ltd Surface protective film for solar cell and solar cell laminate using it
WO2010079798A1 (en) * 2009-01-07 2010-07-15 東洋紡績株式会社 Polyester film for solar cell back surface protection film
JP2010238736A (en) * 2009-03-30 2010-10-21 Lintec Corp Solar cell module protective sheet and solar cell module
KR101393837B1 (en) * 2009-03-31 2014-05-13 데이진 듀폰 필름 가부시키가이샤 Laminated polyester film for protection of solar cell undersides
JP5594082B2 (en) * 2009-12-02 2014-09-24 東洋紡株式会社 Easy-adhesive white polyester film for solar cell and back sheet using the same
JP5734569B2 (en) * 2010-01-18 2015-06-17 富士フイルム株式会社 SOLAR CELL BACK SHEET, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083988A (en) * 2000-09-08 2002-03-22 Dainippon Printing Co Ltd Rear surface protection sheet for solar cell module and solar cell module using the same
JP2009290201A (en) * 2008-04-28 2009-12-10 Asahi Kasei Chemicals Corp Laminate for solar cell back sheet and back sheet comprising the same
JP2011146659A (en) * 2010-01-18 2011-07-28 Fujifilm Corp Film for solar battery back sheet and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115138641A (en) * 2021-08-26 2022-10-04 上海林众电子科技有限公司 Processing method for enhancing cohesiveness of plastic material and application thereof
CN115138641B (en) * 2021-08-26 2023-10-24 上海林众电子科技有限公司 Treatment method for enhancing cohesiveness of plastic material and application thereof

Also Published As

Publication number Publication date
JP2013058748A (en) 2013-03-28
JP5722287B2 (en) 2015-05-20
TW201318853A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5815276B2 (en) POLYMER SHEET FOR SOLAR CELL BACK SHEET, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
JP5642746B2 (en) Solar cell backsheet and solar cell module
JP5283648B2 (en) Polyester film, method for producing the same, and solar cell module
JP5722287B2 (en) SOLAR CELL BACK SHEET, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
JP6241414B2 (en) Solar cell backside sealing sheet and solar cell module
JP5587230B2 (en) SOLAR CELL BACK SHEET, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
WO2013147231A1 (en) Polyester film, back sheet for solar cell, and solar cell module
WO2013024892A1 (en) Solar cell back sheet, method for manufacturing same, and solar cell module
US20130240035A1 (en) Solar cell protective sheet and method for producing same, back sheet for solar cell, and solar cell module
JP5623952B2 (en) SOLAR CELL POLYMER SHEET AND METHOD FOR PRODUCING THE SAME, SOLAR CELL BACK SHEET, AND SOLAR CELL MODULE
JP2011207986A (en) Polyester film and method for producing the same, back sheet for solar cell, and solar cell module
TWI499064B (en) White polyester film for solar cell, solar cell back encapsulant and solar cell module using same
JP5763021B2 (en) SOLAR CELL POLYMER SHEET, PROCESS FOR PRODUCING THE SAME, AND SOLAR CELL MODULE
WO2013008945A1 (en) Polymer sheet for solar cells and solar cell module
JP6199198B2 (en) Laminated film, back sheet for solar cell module, and solar cell module
JP6032981B2 (en) SOLAR CELL BACK SHEET, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP5599339B2 (en) Solar cell back surface protective sheet, method for producing the same, and solar cell module
JP2013045980A (en) Polymer sheet for solar battery, and solar battery module
JP6708206B2 (en) White polyester film for solar cell, solar cell backside sealing sheet and solar cell module using the same
JP2013049791A (en) Method of producing polyester film, backsheet for solar cell, and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824312

Country of ref document: EP

Kind code of ref document: A1