WO2013020276A1 - Brillouin optical time domain analyzer of chaotic laser-related integrated optical fiber raman amplifier - Google Patents

Brillouin optical time domain analyzer of chaotic laser-related integrated optical fiber raman amplifier Download PDF

Info

Publication number
WO2013020276A1
WO2013020276A1 PCT/CN2011/078179 CN2011078179W WO2013020276A1 WO 2013020276 A1 WO2013020276 A1 WO 2013020276A1 CN 2011078179 W CN2011078179 W CN 2011078179W WO 2013020276 A1 WO2013020276 A1 WO 2013020276A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
laser
time domain
brillouin
circulator
Prior art date
Application number
PCT/CN2011/078179
Other languages
French (fr)
Chinese (zh)
Inventor
张在宣
王剑锋
金永兴
余向东
龚华平
李裔
金尚忠
Original Assignee
中国计量学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国计量学院 filed Critical 中国计量学院
Priority to PCT/CN2011/078179 priority Critical patent/WO2013020276A1/en
Publication of WO2013020276A1 publication Critical patent/WO2013020276A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/319Reflectometers using stimulated back-scatter, e.g. Raman or fibre amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the invention belongs to the technical field of distributed optical fiber sensors, and in particular relates to a Brillouin optical time domain analyzer for a chaotic laser related integrated fiber Raman amplifier.
  • the fiber Brillouin optical time domain analyzer in order to improve the spatial resolution of the sensor, a narrow pulse light source is used, but due to the nonlinear effect of the fiber, the incident power of the fiber is limited, so that long distance and high are realized.
  • the spatial resolution of the fiber Brillouin optical time domain analyzer is very difficult.
  • the traditional method of compressing the pulse width of the laser, the method of double pulse pair, is difficult to achieve long-distance spatial resolution of less than 1 meter, and the book
  • the spatial resolution is related to the measured length, and the system's signal-to-noise ratio is also low.
  • the laser light time domain reflectometer has achieved remarkable results, achieving a centimeter-level spatial resolution that is not limited by distance, in order to apply the chaotic laser correlation principle to the distribution.
  • Fiber optic sensors create the conditions.
  • T. Horiguchi et al. invented the Brillouin optical time domain analyzer, adding a coherent pump laser at the other end of the fiber to realize Brillouin amplification, using coherence.
  • Amplified stimulated Brillouin scattering enhances the signal and improves the signal-to-noise ratio of the system.
  • the object of the present invention is to provide a Brillouin optical time domain analyzer for a chaotic laser-related integrated fiber Raman amplifier according to the deficiencies of the prior art.
  • the invention has the characteristics of ultra-long-range, high spatial resolution and high measurement accuracy.
  • the chaotic laser-related fiber Brillouin optical time domain analyzer of the present invention utilizes the chaotic laser correlation principle, the fiber stimulated Raman amplification effect, and the coherently amplified Brillouin scattered light.
  • Fiber Brillouin light time made by strain, temperature effect and optical time domain reflection principle Domain analyzer including semiconductor LD laser, first polarization controller, first fiber circulator, first fiber splitter, dimmable attenuator, second polarization controller, one-way device, erb-doped fiber amplifier EDFA, Second fiber splitter, optical modulator, second fiber circulator, optical heterodyne receiver module, digital signal processor, third fiber circulator, narrowband reflection filter, pump-signal coupler, fiber pull Man pump laser, sensing fiber, fourth fiber circulator, fiber grating reflection filter and computer.
  • the semiconductor LD laser is connected to an input port of the first fiber circulator via a first polarization controller, and the other output end of the first fiber circulator is connected to the input end of the first fiber splitter, the first fiber splitter An output end is connected to the input end of the tunable optical attenuator, and the output end of the tunable optical attenuator is connected to an input end of the optical circulator through a second polarization controller, and then fed back to the semiconductor LD laser via the first polarization controller;
  • the other output end of the first fiber optic splitter is connected to the EDFA with a doped fiber amplifier via a one-way device, the output of the EDFA of the doped fiber amplifier is connected to the input of the second fiber splitter, and one of the second fiber splitters
  • the output end is connected to the optical modulator, one output end of the optical modulator is connected to the input end of the second optical fiber circulator, and the other output end of the second optical fiber splitter is connected to the input end of the third optical fiber circul
  • the optical heterodyne receiving module, the digital signal processor and the computer will heterodise the chaotic laser signal of the sensing fiber and the local reference light, and perform autocorrelation processing and fast Fourier transform demodulation to obtain a high field of the 100 km sensing fiber.
  • the strain and temperature information with a spatial resolution of the order of centimeters is transmitted to the remote monitoring network via a wireless network or the Internet; the other output of the optical modulator 19 is connected to the computer 30.
  • the chaotic laser is a semiconductor LD laser, a first polarization controller, a first fiber circulator, a first fiber splitter,
  • the tunable optical attenuator consists of a second polarization controller.
  • the semiconductor LD laser is a DFB laser with an operating wavelength of 1550. Onrn, the output power is 10dBm.
  • the branch ratio of the first fiber splitter is 20:80.
  • the light modulator is a Mach-Zehnder modulator (MZM).
  • MZM Mach-Zehnder modulator
  • a computer controlled light modulator reduces the frequency of the laser by l lGHz.
  • the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer is a photodetector with a frequency response of 2 Ghz or more, low noise broadband front
  • the amplifier is integrated with a chip and a main amplifier.
  • the chaotic laser-related integrated fiber Raman amplifier has a Brillouin optical time domain analyzer, and the sensing fiber is a 100 km single mode communication G652 fiber or a 100 km LEAF fiber.
  • the fiber Raman laser is a fiber Raman laser with a power ranging from 100 mW to 1200 mw and a wavelength of 1450 nm continuous operation.
  • Back-to-pumped fiber Raman amplifier with sensing fiber (Fig. 1) Since the fiber Raman amplifier has bidirectional amplification characteristics and different unidirectional amplification characteristics of the fiber Brillouin amplifier, back pump or forward pump can be used. Way of working.
  • the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer has a center wavelength of 1450 nm, a spectral bandwidth of 0.3 nm, and an isolation greater than 35 dB. Suppressed fiber Raman laser 1450nm backscattered light.
  • the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer has a center wavelength of 1550.08 nm and a spectral bandwidth of 0.1 nm. Other light is filtered out, allowing the Stokes Brillouin scattering signal light of the sensing fiber to be received by the fourth fiber circulator and the local optical heterodyne.
  • the digital signal processor uses a high-speed 5G sampling rate with autocorrelation processing and fast Fourier transform software 500MHz bandwidth digital signal processor.
  • the semiconductor laser continuously generates a random undulating chaotic laser when it receives optical feedback.
  • the correlation curve has a ⁇ function shape.
  • the bandwidth of the nonlinear chaotic oscillation of the semiconductor laser can be greater than 15 GHz, achieving high resolution and high precision independent of the measurement length. Measurement.
  • the cross-correlation peak is related to the intensity of the probe light.
  • the signal and the reference light are collected, accumulated and correlated by a digital signal processor and a computer to obtain information on strain and temperature on the sensing fiber.
  • the signal-to-noise ratio of the system determines the measurement length.
  • the detecting laser of the incident fiber interacts with the nonlinear wave of the acoustic wave in the optical fiber, and the optical wave generates acoustic waves by electrostriction, causing periodic modulation of the refractive index of the optical fiber (refractive index grating), generating Brillouin scattering with frequency downshift Light, the frequency shift ⁇ ⁇ of the back Brillouin scattering produced in the fiber is:
  • n is the refractive index at the wavelength ⁇ of the incident light
  • V is the speed of sound in the fiber
  • the Brillouin scattered light frequency shift in the fiber V 8 has strain and temperature effects:
  • the phonon frequency of the fiber molecule is 13.2 ⁇ .
  • the beneficial effects of the invention are as follows:
  • the Brillouin optical time domain analyzer of the chaotic laser-related integrated fiber Raman amplifier proposed by the invention adopts the chaotic laser correlation principle, and the chaotic laser has a wide bandwidth, and passes the signal light and the local light.
  • Correlated processing achieves high spatial resolution, effectively improves sensor reliability and spatial resolution, increases the number of pump photons entering the sensing fiber, improves the signal-to-noise ratio of the sensor system, and increases the measurement length of the sensor;
  • Continuously operating high power fiber Raman lasers The pump source of the new Brillouin optical time domain analyzer replaces the coherently pumped narrowband laser, overcoming the difficulty of requiring the rigorous locking of the probe laser and pump laser frequencies in the fiber Brillouin optical time domain analyzer.
  • the high-power fiber Raman laser produces a strong laser that achieves stimulated Raman scattered light amplification in a single-mode fiber instead of narrow-band Brillouin amplification, increasing the gain of stimulated Brillouin scattered light that is back-coherently amplified.
  • the signal-to-noise ratio of the system is increased, the measurement length is increased, and the accuracy of simultaneous measurement of strain and temperature is improved.
  • Figure 1 is a schematic block diagram showing the structure of the present invention.
  • a Brillouin optical time domain analyzer of a chaotic laser-related integrated fiber Raman amplifier of the present invention includes a semiconductor LD laser 10, a first polarization controller 11, a first fiber circulator 12, and a first fiber splitter. 13.
  • the semiconductor LD laser 10 is connected to an input port of the first fiber circulator 12 via the first polarization controller 11, and the output end of the first fiber circulator 12 is connected to the input end of the first fiber splitter 13, the first fiber is divided into An output of the illuminator 13 is connected to the input of the tunable optical attenuator 14, and the output of the tunable optical attenuator 14 is connected to the other input of the first optical circulator 12 via a second polarization controller 15, and
  • the first polarization controller 11 feeds back the semiconductor LD laser 10; the other output end of the first fiber splitter 13 is connected to the erbium-doped fiber amplifier EDFA17 via the one-way device 16, and the output of the EDFA17 is coupled with the second and second.
  • An input end of the optical fiber splitter 18 is connected, an output end of the second optical fiber splitter 18 is connected to the optical modulator 19, and an output end of the optical modulator 19 is connected to an input end of the second optical fiber circulator 20;
  • the other output of the splitter 18 is connected to the third fiber circulator 23, and one output of the third fiber circulator 23 is connected to the narrow band reflection filter 24, and the other end of the narrow band reflection filter 24 is pump-signal Coupler 25
  • the input is connected, the output of the pump-signal coupler 25 is connected to the sensing fiber 27; the other input of the pump-signal coupler 25 is connected to the fiber Raman pump laser 26, and the third fiber circulator 23 is The other output is connected to one end of the fourth fiber circulator 28, the fourth fiber circulator 28 is connected to the fiber grating reflection filter 29, and the output end of the fourth fiber circulator 28 is connected to the other end of the second fiber circulator 20.
  • the output of the second fiber circulator 20 is connected to the optical heterodyne receiver module 21, the optical heterodyne receiver module 21 is connected to the computer 30 via a digital signal processor 22, and the other output of the optical modulator 19 is connected to the computer 30.
  • the chaotic laser is amplified by the fiber amplifier EDFA 17 and split into two turns.
  • One chaotic laser passes through the optical modulator 19, which reduces the frequency of the laser by 11 GHz as the local reference light, and the other chaotic laser passes through the pump-signal coupler.
  • ⁇ v B passes through the fiber grating reflection filter, filtering out v. , v 0 + v B , obtain V 0-V B signal light, and the local reference light is passed through the optical heterodyne receiving module, the digital signal processor 22 and the computer 30 demodulate and perform autocorrelation processing and fast Fourier transform,
  • the optical time domain reflection principle is located to obtain high spatial resolution strain and temperature information on each segment of the sensing fiber.
  • the invention is made by using chaotic laser correlation principle, fiber stimulated Raman scattering light amplification effect and coherent amplified Brillouin scattering light strain, temperature effect and optical time domain reflection principle; the invention adopts chaotic laser correlation principle in time domain
  • the random fluctuation of the optical pulse sequence improves the spatial resolution of the sensor system by the correlation processing of the back-detected light of the sensing fiber and the local reference light; and the continuous operation of the high-power fiber Raman laser as the Brillouin light
  • the domain analyzer's pumping source overcomes the difficulty of fiber-optic Brillouin optical time domain analyzers requiring tight locking of the probe laser and pump laser frequencies, replacing the narrowband fiber Brillouin amplifier with a wideband fiber Raman amplifier, adding back
  • the gain of the stimulated Brillouin scattered light, which is amplified increases the signal-to-noise ratio of the sensor system, and accordingly increases the measurement length and measurement accuracy of the sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A Brillouin optical time domain analyzer of a chaotic laser-related integrated optical fiber Raman amplifier, manufactured by using a chaotic laser-related principle, an optical fiber-stimulated Raman scattered light amplification effect, a strain of coherently amplified Brillouin scattered light, a temperature effect, and an optical time domain reflection principle. In the Brillouin optical time domain analyzer of the chaotic laser-related integrated optical fiber Raman amplifier, spatial resolution of a sensing system is improved by correlation processing a backward probing light of a sensing optical fiber and a local reference light. The difficulty of the optical fiber Brillouin optical time domain analyzer requiring a rigorous locking on a probe laser and a pump laser frequency is solved by employing a continuous-operation high power optical fiber Raman laser as a pump light source for the Brillouin optical time domain analyzer. By using a broadband optical fiber Raman amplifier to replace a narrowband optical fiber Brillouin amplifier, the gain of stimulated Brillouin scattered light backward correlation amplified is increased, the signal-to-noise ratio of the sensing system is improved, and correspondingly the measurement length and the measurement precision of the sensing system are improved.

Description

混沌激光相关集成光纤拉曼放大器的布里渊光时域分析器 技术领域  Brillouin optical time domain analyzer for chaotic laser-related integrated fiber Raman amplifier
本发明属于分布式光纤传感器技术领域, 尤其涉及一种混沌激光相关集成 光纤拉曼放大器的布里渊光时域分析器。  The invention belongs to the technical field of distributed optical fiber sensors, and in particular relates to a Brillouin optical time domain analyzer for a chaotic laser related integrated fiber Raman amplifier.
背景技术 Background technique
在光纤布里渊光时域分析器领说域, 为了提高传感器的空间分辨率, 采用窄 脉冲光源, 但由于光纤的非线性效应, 限制了光纤的入射功率, 因此, 要实现 长距离, 高空间分辨率的光纤布里渊光时域分析器很困难, 传统的压缩激光器 脉宽的方法, 双脉冲对的方法, 难以实现长距离空间分辨率小于 1米的效果, 而 书  In the fiber Brillouin optical time domain analyzer, in order to improve the spatial resolution of the sensor, a narrow pulse light source is used, but due to the nonlinear effect of the fiber, the incident power of the fiber is limited, so that long distance and high are realized. The spatial resolution of the fiber Brillouin optical time domain analyzer is very difficult. The traditional method of compressing the pulse width of the laser, the method of double pulse pair, is difficult to achieve long-distance spatial resolution of less than 1 meter, and the book
且空间分辨率与测量长度有关, 系统的信噪比也低。 近年来, 国内外将混沌激 光相关原理应用于激光雷达, 激光光时域反射仪取得了显著的效果, 实现了不 受距离限制的厘米级的空间分辨率, 为将混沌激光相关原理应用于分布式光纤 传感器创造了条件。 另一方面, 为了改善系统的信噪比, 1989年, T.Horiguchi 等发明了布里渊光时域分析器, 在光纤的另一端加一个相干泵浦激光器, 实现 布里渊放大, 采用相干放大的受激布里渊散射, 增强了信号, 改善了系统的信 噪比。 但是, 在光纤布里渊光时域分析器里要求严格地锁定窄带探测激光器和 窄带泵浦激光器的频率, 在技术上很困难, 张在宣等提出了 《光纤布里渊光时 域分析器》(中国发明专利, 专利号: ZL200810063711.8, 2010年 6月 9日授权) 用宽带的分布式光纤拉曼放大器取代窄带的光纤布里渊放大器解决了锁定窄带 探测激光器和窄带泵浦激光器的困难; 融合混沌激光相关技术与光纤拉曼放大 技术可有效地提高传感器系统的空间分辨率, 测量距离和测量精度, 满足近年 来石油管道、 传输电力电缆的安全健康监测, 对超远程全分布式光纤应变和温 度传感网的需求。 And the spatial resolution is related to the measured length, and the system's signal-to-noise ratio is also low. In recent years, the principle of chaotic laser correlation has been applied to laser radar at home and abroad. The laser light time domain reflectometer has achieved remarkable results, achieving a centimeter-level spatial resolution that is not limited by distance, in order to apply the chaotic laser correlation principle to the distribution. Fiber optic sensors create the conditions. On the other hand, in order to improve the signal-to-noise ratio of the system, in 1989, T. Horiguchi et al. invented the Brillouin optical time domain analyzer, adding a coherent pump laser at the other end of the fiber to realize Brillouin amplification, using coherence. Amplified stimulated Brillouin scattering enhances the signal and improves the signal-to-noise ratio of the system. However, it is technically difficult to strictly lock the frequencies of narrow-band detection lasers and narrow-band pump lasers in fiber-optic Brillouin optical time domain analyzers. Zhang Zai-Xuan et al. proposed the "Fiber Brillouin Optical Time Domain Analyzer" ( Chinese invention patent, patent number: ZL200810063711.8, authorized on June 9, 2010) The use of broadband distributed fiber-optic Raman amplifiers to replace narrow-band fiber Brillouin amplifiers solves the difficulties of locking narrow-band detection lasers and narrow-band pump lasers; The fusion chaotic laser related technology and fiber Raman amplification technology can effectively improve the spatial resolution, measurement distance and measurement accuracy of the sensor system, and meet the safety and health monitoring of petroleum pipelines and transmission power cables in recent years. And the needs of temperature sensing networks.
发明内容 Summary of the invention
本发明的目的是针对现有技术的不足, 提供一种混沌激光相关集成光纤拉 曼放大器的布里渊光时域分析器, 本发明具有超远程、 高空间分辨率、 高测量 精度等特点。  The object of the present invention is to provide a Brillouin optical time domain analyzer for a chaotic laser-related integrated fiber Raman amplifier according to the deficiencies of the prior art. The invention has the characteristics of ultra-long-range, high spatial resolution and high measurement accuracy.
为达到上述目的, 本发明采用如下技术方案: 本发明混沌激光相关光纤布 里渊光时域分析器是利用混沌激光相关原理、 光纤受激拉曼放大效应、 相干放 大的布里渊散射光的应变、 温度效应和光时域反射原理制成的光纤布里渊光时 域分析器, 包括半导体 LD激光器, 第一偏振控制器, 第一光纤环行器, 第一光 纤分路器, 可调光衰减器, 第二偏振控制器, 单向器, 掺饵光纤放大器 EDFA, 第二光纤分路器, 光调制器, 第二光纤环行器, 光外差接收器模块, 数字信号 处理器, 第三光纤环行器, 窄带反射滤光片, 泵浦-信号耦合器, 光纤拉曼泵浦 激光器, 传感光纤, 第四光纤环行器, 光纤光栅反射滤波器和计算机。 半导体 LD激光器经第一偏振控制器与第一光纤环行器的一个输入端口相接, 第一光纤 环行器的另一个输出端与第一光纤分路器输入端相连, 第一光纤分路器的一个 输出端与可调光衰减器的输入端相连, 可调光衰减器的输出端通过第二偏振控 制器与光纤环行器一个输入端相连, 再经第一偏振控制器反馈给半导体 LD激光 器; 第一光纤分路器的另一个输出端经单向器与掺饵光纤放大器 EDFA相连, 掺饵光纤放大器 EDFA 的输出端与第二光纤分路器输入端相连, 第二光纤分路 器的一个输出端与光调制器相连, 光调制器的一个输出端与第二光纤环行器的 输入端相连, 第二光纤分路器的另一个输出端与第三光纤环行器的输入端相连, 第三光纤环行器的一个输出端与光纤窄带反射滤光片相连, 光纤窄带反射滤光 片的另一端通过泵浦信号耦合器与传感光纤相连, 泵浦信号耦合器的另一端与 光纤拉曼泵浦激光器相连, 第三光纤环行器的另一个输出端与第四光纤环行器 的一端相连, 第四光纤环行器与光纤光栅反射滤波器相连, 第四光纤环行器的 输出端与第二光纤环行器的另一端相连, 第二光纤环行器输出端与光外差接收 器模块相连, 光外差接收器模块与数字信号处理器和计算机相连, 通过光外差 接收模块、 数字信号处理器和计算机将传感光纤的混沌激光信号与本地参考光 外差, 并进行自相关处理和快速傅里叶变换解调, 获得 100km传感光纤所在现 场的高空间分辨率达厘米量级的应变、 温度信息并通过无线网或互联网传送给 远程监控网; 光调制器 19的另一个输出端与计算机 30相连。 In order to achieve the above object, the present invention adopts the following technical solutions: The chaotic laser-related fiber Brillouin optical time domain analyzer of the present invention utilizes the chaotic laser correlation principle, the fiber stimulated Raman amplification effect, and the coherently amplified Brillouin scattered light. Fiber Brillouin light time made by strain, temperature effect and optical time domain reflection principle Domain analyzer, including semiconductor LD laser, first polarization controller, first fiber circulator, first fiber splitter, dimmable attenuator, second polarization controller, one-way device, erb-doped fiber amplifier EDFA, Second fiber splitter, optical modulator, second fiber circulator, optical heterodyne receiver module, digital signal processor, third fiber circulator, narrowband reflection filter, pump-signal coupler, fiber pull Man pump laser, sensing fiber, fourth fiber circulator, fiber grating reflection filter and computer. The semiconductor LD laser is connected to an input port of the first fiber circulator via a first polarization controller, and the other output end of the first fiber circulator is connected to the input end of the first fiber splitter, the first fiber splitter An output end is connected to the input end of the tunable optical attenuator, and the output end of the tunable optical attenuator is connected to an input end of the optical circulator through a second polarization controller, and then fed back to the semiconductor LD laser via the first polarization controller; The other output end of the first fiber optic splitter is connected to the EDFA with a doped fiber amplifier via a one-way device, the output of the EDFA of the doped fiber amplifier is connected to the input of the second fiber splitter, and one of the second fiber splitters The output end is connected to the optical modulator, one output end of the optical modulator is connected to the input end of the second optical fiber circulator, and the other output end of the second optical fiber splitter is connected to the input end of the third optical fiber circulator, the third An output end of the fiber circulator is connected to the narrow-band reflection filter of the optical fiber, and the other end of the narrow-band reflection filter of the optical fiber is connected to the sensing fiber through a pump signal coupler, the pump The other end of the PD coupler is connected to the fiber Raman pump laser, the other output of the third fiber circulator is connected to one end of the fourth fiber circulator, and the fourth fiber circulator is connected to the fiber grating reflection filter, The output end of the four fiber circulator is connected to the other end of the second fiber circulator, the output end of the second fiber circulator is connected to the optical heterodyne receiver module, and the optical heterodyne receiver module is connected to the digital signal processor and the computer. The optical heterodyne receiving module, the digital signal processor and the computer will heterodise the chaotic laser signal of the sensing fiber and the local reference light, and perform autocorrelation processing and fast Fourier transform demodulation to obtain a high field of the 100 km sensing fiber. The strain and temperature information with a spatial resolution of the order of centimeters is transmitted to the remote monitoring network via a wireless network or the Internet; the other output of the optical modulator 19 is connected to the computer 30.
进一步地, 所述的混沌激光相关集成光纤拉曼放大器的布里渊光时域分析 器, 混沌激光器由半导体 LD激光器, 第一偏振控制器, 第一光纤环行器, 第一 光纤分路器, 可调光衰减器第二偏振控制器组成, 半导体 LD激光器是 DFB激 光器, 工作波长为 1550. Onrn, 输出功率为 10dBm。 第一光纤分路器的分支比为 20:80。  Further, the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer, the chaotic laser is a semiconductor LD laser, a first polarization controller, a first fiber circulator, a first fiber splitter, The tunable optical attenuator consists of a second polarization controller. The semiconductor LD laser is a DFB laser with an operating wavelength of 1550. Onrn, the output power is 10dBm. The branch ratio of the first fiber splitter is 20:80.
进一步地, 所述的混沌激光相关集成光纤拉曼放大器的布里渊光时域分析 器, 光调制器是鈮酸锂马赫-泽德尔调制器(Mach-Zehnder modulator (MZM) )。 经计算机控制的光调制器, 将激光器的频率降低 l lGHz。  Further, the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer, the light modulator is a Mach-Zehnder modulator (MZM). A computer controlled light modulator reduces the frequency of the laser by l lGHz.
进一步地, 所述的混沌激光相关集成光纤拉曼放大器的布里渊光时域分析 器, 光外差接收器模块是由频率响应为 2Ghz以上的光电探测器, 低噪音宽带前 置放大器集成芯片和主放大器组成。 Further, the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer, the optical heterodyne receiver module is a photodetector with a frequency response of 2 Ghz or more, low noise broadband front The amplifier is integrated with a chip and a main amplifier.
进一步地, 所述的混沌激光相关集成光纤拉曼放大器的布里渊光时域分析 器, 传感光纤为 100km单模通讯 G652光纤或 100km LEAF光纤。  Further, the chaotic laser-related integrated fiber Raman amplifier has a Brillouin optical time domain analyzer, and the sensing fiber is a 100 km single mode communication G652 fiber or a 100 km LEAF fiber.
进一步地, 所述的混沌激光相关集成光纤拉曼放大器的布里渊光时域分析 器, 光纤拉曼激光器是功率在 100mw-1200mw范围可调的, 波长为 1450nm连 续运行的光纤拉曼激光器, 与传感光纤构成背向泵浦光纤拉曼放大器 (如图 1 ) 由于光纤拉曼放大器具有双向放大特性与光纤布里渊放大器单向放大特性不 同, 可采用背向泵浦或前向泵浦工作方式。  Further, the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer, the fiber Raman laser is a fiber Raman laser with a power ranging from 100 mW to 1200 mw and a wavelength of 1450 nm continuous operation. Back-to-pumped fiber Raman amplifier with sensing fiber (Fig. 1) Since the fiber Raman amplifier has bidirectional amplification characteristics and different unidirectional amplification characteristics of the fiber Brillouin amplifier, back pump or forward pump can be used. Way of working.
进一步地, 所述的混沌激光相关集成光纤拉曼放大器的布里渊光时域分析 器,窄带反射滤光片的中心波長为 1450nm,光谱带宽为 0.3nm,隔离大于 35dB。 抑制光纤拉曼激光器 1450nm背向散射光。  Further, the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer has a center wavelength of 1450 nm, a spectral bandwidth of 0.3 nm, and an isolation greater than 35 dB. Suppressed fiber Raman laser 1450nm backscattered light.
进一步地, 所述的混沌激光相关集成光纤拉曼放大器的布里渊光时域分析 器, 光纤光栅反射滤光器的中心波长为 1550.08nm, 光谱带宽为 0.1nm。 滤除其 它光, 允许传感光纤的斯托克斯布里渊散射信号光通过第四光纤环行器与本地 光外差接收。  Further, the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer has a center wavelength of 1550.08 nm and a spectral bandwidth of 0.1 nm. Other light is filtered out, allowing the Stokes Brillouin scattering signal light of the sensing fiber to be received by the fourth fiber circulator and the local optical heterodyne.
进一步地, 所述的混沌激光相关集成光纤拉曼放大器的布里渊光时域分析 器, 所说的数字信号处理器釆用有自相关处理和快速傅里叶变换软件的高速 5G 采样率和 500MHz频宽的数字信号处理器。  Further, the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer, the digital signal processor uses a high-speed 5G sampling rate with autocorrelation processing and fast Fourier transform software 500MHz bandwidth digital signal processor.
混沌激光相关原理:  Chaotic laser correlation principle:
半导体激光器在受到光反馈时持续地产生随机起伏的混沌激光, 其相关曲 线具有 δ函数形状, 半导体激光器的非线性混沌振荡的带寬可大于 15GHz , 实现 与测量长度无关的高分辨率、 高精度的测量。  The semiconductor laser continuously generates a random undulating chaotic laser when it receives optical feedback. The correlation curve has a δ function shape. The bandwidth of the nonlinear chaotic oscillation of the semiconductor laser can be greater than 15 GHz, achieving high resolution and high precision independent of the measurement length. Measurement.
设参考光为 f ( t ), 探测光为 g ( t ) =Kf ( t- τ );  Let the reference light be f ( t ) and the probe light be g ( t ) = Kf ( t- τ );
互相关函数: Cross-correlation function:
Figure imgf000005_0001
Figure imgf000005_0001
当 τ=τ。时, , 互相关峰值与探测光的强度相关。 通过 数字信号处理器和计算机对探测光与参考光进行采集、 累加和相关处理, 获得 传感光纤上应变和温度的信息。 系统的信噪比决定了测量长度。  When τ = τ. When, the cross-correlation peak is related to the intensity of the probe light. The signal and the reference light are collected, accumulated and correlated by a digital signal processor and a computer to obtain information on strain and temperature on the sensing fiber. The signal-to-noise ratio of the system determines the measurement length.
布里渊时域分析器的工作原理:  How the Brillouin Time Domain Analyzer works:
在光纤中, 入射光纤的探测激光与光纤中声波的非线性相互作用, 光波通 过电致伸缩产生声波, 引起光纤折射率的周期性调制 (折射率光栅), 产生频率 下移的布里渊散射光, 在光纤中产生的背向布里渊散射的频移 ν Β为:In the optical fiber, the detecting laser of the incident fiber interacts with the nonlinear wave of the acoustic wave in the optical fiber, and the optical wave generates acoustic waves by electrostriction, causing periodic modulation of the refractive index of the optical fiber (refractive index grating), generating Brillouin scattering with frequency downshift Light, the frequency shift ν of the back Brillouin scattering produced in the fiber is:
Figure imgf000005_0002
λ (2 ) 其中 n为入射光波长 λ处的折射率, V为光纤中声速, 对石英光纤, 在 λ =1550nm附近, β约为 llGHz。
Figure imgf000005_0002
λ (2 ) Where n is the refractive index at the wavelength λ of the incident light, V is the speed of sound in the fiber, and for the quartz fiber, β is approximately llGHz around λ = 1550 nm.
在光纤中的布里渊散射光频移 V 8具有应变和温度效应:  The Brillouin scattered light frequency shift in the fiber V 8 has strain and temperature effects:
dv dv ( ) νΒΒ +— ε(με) +—Τ(°€) 、 Dv dv ( ) ν ΒΒ +— ε(με) +—Τ(°€) ,
Β Β。 ds dT Β Β . Ds dT
布里渊散射光的频移:  Frequency shift of Brillouin scattered light:
SvB=CvsSs + CvTST (4) 其中频移的应变系数 c ν ε和温度系数 C ν τ为: Sv B = C vs Ss + C vT ST (4) where the strain coefficient c ν ε of the frequency shift and the temperature coefficient C ν τ are:
Cvs = 0.0482士 0.004MHz / = 1.10士 0.02 ¾ I K; C vs = 0.0482 ± 0.004MHz / = 1.10 ± 0.02 3⁄4 IK;
光纤受激拉曼放大原理  Optical fiber stimulated Raman amplification principle
当入射激光 V。与光纤分子产生非线性相互作用散射, 放出一个声子称为斯 托克斯拉曼散射光子, 吸收一个声子称为反斯托克斯拉曼散射光子△ V, 光纤 分子的声子频率为 13.2ΤΗζ。  When incident laser light V. A nonlinear interaction scattering with the fiber molecule, releasing a phonon called a Stokes Raman scattered photon, absorbing a phonon called the anti-Stokes Raman scattering photon ΔV, the phonon frequency of the fiber molecule is 13.2ΤΗζ.
ν = V。士 Δ V (5) 放大器的开关增益为:  ν = V. The switching gain of the Δ V (5) amplifier is:
GA = exp( gRP0Leff I Aeff ) (6) 其中 Aff是放大器的泵浦光输入功率, 是拉曼增益系数 Λ#是光纤的 有效截面, Leff 为光纤的有效作用长度 (考虑了光纤对泵浦的吸收损耗), 其表 达式如下: G A = exp( g R P 0 L eff IA eff ) (6) where A ff is the pumping light input power of the amplifier, is the Raman gain coefficient Λ # is the effective cross section of the fiber, and L eff is the effective length of the fiber (Considering the absorption loss of the fiber to the pump), the expression is as follows:
Leff =—[\-cxp( -apL)] (7) 对于光纤拉曼放大器, 泵浦功率只有超过某一阈值时, 才有可能会对信号 产生受激拉曼放大,在光纤里的斯托克斯波 v = V。-△ V在光纤介质内快速增加, 大部分泵浦光的功率都可以转换成斯托克斯光, 并有拉曼放大作用, 增益可以 抑制光纤的传输损耗并在传感光纤中产生相干放大的布里渊散射, 用宽带的分 布式光纤拉曼放大器取代窄带的光纤布里渊放大器解决了锁定窄带探测激光器 和窄带泵浦激光器的频率问题。 L eff =—[\-cxp( -a p L)] (7) For fiber Raman amplifiers, when the pump power exceeds a certain threshold, it is possible to generate stimulated Raman amplification of the signal in the fiber. Stokes wave v = V. -ΔV increases rapidly in the fiber medium. Most of the pump light power can be converted into Stokes light and has Raman amplification. The gain can suppress the transmission loss of the fiber and produce coherent amplification in the sensing fiber. The Brillouin scattering, replacing the narrowband fiber Brillouin amplifier with a wideband distributed fiber Raman amplifier solves the frequency problem of locking narrowband probe lasers and narrowband pump lasers.
本发明的有益效果为: 本发明提出的混沌激光相关集成光纤拉曼放大器的 布里渊光时域分析器, 采用混沌激光相关原理, 混沌激光具有宽阔频宽, 通过 对信号光与本地光的相关处理获得高空间分辨率, 有效地提高了传感器的可靠 性和空间分辨率, 增加了进入传感光纤的泵浦光子数, 提高了传感器系统的信 噪比, 增加了传感器的测量长度; 采用连续运行的高功率光纤拉曼激光器作为 新型布里渊光时域分析器的泵浦光源, 取代了相干泵浦窄带激光器, 克服了光 纤布里渊光时域分析器中要求严格地锁定探测激光器和泵浦激光器频率的困 难, 连续运行的高功率光纤拉曼激光器产生的强激光在单模光纤中实现了受激 拉曼散射光放大取代了窄带布里渊放大, 增加了背向相干放大的受激布里渊散 射光的增益, 提高了系统的信噪比, 增加了测量长度, 改善了应变和温度同时 测量的精度。 The beneficial effects of the invention are as follows: The Brillouin optical time domain analyzer of the chaotic laser-related integrated fiber Raman amplifier proposed by the invention adopts the chaotic laser correlation principle, and the chaotic laser has a wide bandwidth, and passes the signal light and the local light. Correlated processing achieves high spatial resolution, effectively improves sensor reliability and spatial resolution, increases the number of pump photons entering the sensing fiber, improves the signal-to-noise ratio of the sensor system, and increases the measurement length of the sensor; Continuously operating high power fiber Raman lasers The pump source of the new Brillouin optical time domain analyzer replaces the coherently pumped narrowband laser, overcoming the difficulty of requiring the rigorous locking of the probe laser and pump laser frequencies in the fiber Brillouin optical time domain analyzer. The high-power fiber Raman laser produces a strong laser that achieves stimulated Raman scattered light amplification in a single-mode fiber instead of narrow-band Brillouin amplification, increasing the gain of stimulated Brillouin scattered light that is back-coherently amplified. The signal-to-noise ratio of the system is increased, the measurement length is increased, and the accuracy of simultaneous measurement of strain and temperature is improved.
附图说明 DRAWINGS
图 1为本发明的结构示意框图。  Figure 1 is a schematic block diagram showing the structure of the present invention.
具体实施方式 detailed description
参照图 1, 本发明混沌激光相关集成光纤拉曼放大器的布里渊光时域分析 器, 包括半导体 LD激光器 10、 第一偏振控制器 11、 第一光纤环行器 12、 第一 光纤分路器 13、 可调光衰减器 14、 第二偏振控制器 15、 单向器 16、 掺饵光纤 放大器 EDFA 17、 第二光纤分路器 18、 光调制器 19、 第二光纤环行器 20、 光外 差接收器模块 21、 数字信号处理器 22、 第三光纤环行器 23、 窄带反射滤光片 24、 泵浦 -信号耦合器 25、 光纤拉曼泵浦激光器 26、 传感光纤 27、 第四光纤环 行器 28、 光纤光栅反射滤光器 29和计算机 30。 半导体 LD激光器 10经第一偏 振控制器 11与第一光纤环行器 12的一个输入端口相接, 第一光纤环行器 12的 输出端与第一光纤分路器 13输入端相连, 第一光纤分路器 13的一个输出端与 可调光衰减器 14的输入端相连, 可调光衰减器 14的输出端通过第二偏振控制 器 15与第一光纤环行器 12的另一个输入端相连, 再经第一偏振控制器 11反馈 给半导体 LD激光器 10;第一光纤分路器 13的另一个输出端经单向器 16与掺饵 光纤放大器 EDFA17相连, 掺饵光纤放大器 EDFA17的输出端与第二光纤分路 器 18输入端相连, 第二光纤分路器 18的一个输出端与光调制器 19相连, 光调 制器 19的输出端和第二光纤环行器 20的一个输入端相连; 第二光纤分路器 18 另一个输出端与第三光纤环行器 23相连, 第三光纤环行器 23的一个输出端与 窄带反射滤光片 24相连, 窄带反射滤光片 24 的另一端与泵浦 -信号耦合器 25 的输入端相连, 泵浦 -信号耦合器 25的输出端与传感光纤 27相连; 泵浦 -信号 耦合器 25的另一个输入端与光纤拉曼泵浦激光器 26相连, 第三光纤环行器 23 的另一个输出端与第四光纤环行器 28的一端相连, 第四光纤环行器 28与光纤 光栅反射滤波器 29相连,第四光纤环行器 28 的输出端与第二光纤环行器 20另 一端相连, 第二光纤环行器 20输出端与光外差接收器模块 21相连, 光外差接 收器模块 21通过数字信号处理器 22和计算机 30相连, 光调制器 19的另一个 输出端与计算机 30相连。 工作时, 混沌激光器经光纤放大器 EDFA 17放大后分成两朿, 其中一朿混 沌激光经光调制器 19, 将激光器的频率下降 11GHz作为本地参考光, 另一朿混 沌激光经泵浦 -信号耦合器 25后进入传感光纤 27, 背向的带有应变和温度信息 的布里渊光, 在光纤拉曼泵浦激光器泵浦的光纤放大器中得到相干放大, 被放 大的受激布里渊散射光 v。± v B经光纤光栅反射滤波器, 滤除 v。, v 0+ v B , 获 得 V 0- V B信号光, 与本地参考光通过光外差接收模块, 数字信号处理器 22和计 算机 30解调并作自相关处理和快速傅里叶变换, 由光时域反射原理定位, 获得 传感光纤上各段上高空间分辨率的应变和温度信息。 Referring to FIG. 1, a Brillouin optical time domain analyzer of a chaotic laser-related integrated fiber Raman amplifier of the present invention includes a semiconductor LD laser 10, a first polarization controller 11, a first fiber circulator 12, and a first fiber splitter. 13. The tunable optical attenuator 14, the second polarization controller 15, the one-way device 16, the erbium-doped fiber amplifier EDFA 17, the second fiber splitter 18, the light modulator 19, the second fiber circulator 20, and the light Differential receiver module 21, digital signal processor 22, third fiber circulator 23, narrowband reflection filter 24, pump-signal coupler 25, fiber Raman pump laser 26, sensing fiber 27, fourth fiber The circulator 28, the fiber grating reflective filter 29, and the computer 30. The semiconductor LD laser 10 is connected to an input port of the first fiber circulator 12 via the first polarization controller 11, and the output end of the first fiber circulator 12 is connected to the input end of the first fiber splitter 13, the first fiber is divided into An output of the illuminator 13 is connected to the input of the tunable optical attenuator 14, and the output of the tunable optical attenuator 14 is connected to the other input of the first optical circulator 12 via a second polarization controller 15, and The first polarization controller 11 feeds back the semiconductor LD laser 10; the other output end of the first fiber splitter 13 is connected to the erbium-doped fiber amplifier EDFA17 via the one-way device 16, and the output of the EDFA17 is coupled with the second and second. An input end of the optical fiber splitter 18 is connected, an output end of the second optical fiber splitter 18 is connected to the optical modulator 19, and an output end of the optical modulator 19 is connected to an input end of the second optical fiber circulator 20; The other output of the splitter 18 is connected to the third fiber circulator 23, and one output of the third fiber circulator 23 is connected to the narrow band reflection filter 24, and the other end of the narrow band reflection filter 24 is pump-signal Coupler 25 The input is connected, the output of the pump-signal coupler 25 is connected to the sensing fiber 27; the other input of the pump-signal coupler 25 is connected to the fiber Raman pump laser 26, and the third fiber circulator 23 is The other output is connected to one end of the fourth fiber circulator 28, the fourth fiber circulator 28 is connected to the fiber grating reflection filter 29, and the output end of the fourth fiber circulator 28 is connected to the other end of the second fiber circulator 20. The output of the second fiber circulator 20 is connected to the optical heterodyne receiver module 21, the optical heterodyne receiver module 21 is connected to the computer 30 via a digital signal processor 22, and the other output of the optical modulator 19 is connected to the computer 30. In operation, the chaotic laser is amplified by the fiber amplifier EDFA 17 and split into two turns. One chaotic laser passes through the optical modulator 19, which reduces the frequency of the laser by 11 GHz as the local reference light, and the other chaotic laser passes through the pump-signal coupler. After 25, it enters the sensing fiber 27, and the Brillouin light with strain and temperature information facing away, is coherently amplified in the fiber amplifier pumped by the fiber Raman pump laser, and the amplified stimulated Brillouin scattered light v. ± v B passes through the fiber grating reflection filter, filtering out v. , v 0 + v B , obtain V 0-V B signal light, and the local reference light is passed through the optical heterodyne receiving module, the digital signal processor 22 and the computer 30 demodulate and perform autocorrelation processing and fast Fourier transform, The optical time domain reflection principle is located to obtain high spatial resolution strain and temperature information on each segment of the sensing fiber.
本发明利用混沌激光相关原理、 光纤受激拉曼散射光放大效应和相干放大 的布里渊散射光的应变、 温度效应和光时域反射原理制成的; 本发明采用混沌 激光相关原理在时域上随机起伏的光脉冲序列, 通过传感光纤的背向探测光与 本地参考光的相关处理, 提高了传感器系统的空间分辨率; 采用连续运行的高 功率光纤拉曼激光器作为布里渊光时域分析器的泵浦光源, 克服了光纤布里渊 光时域分析器要求严格地锁定探测激光器和泵浦激光器频率的困难, 利用宽带 光纤拉曼放大器取代窄带光纤布里渊放大器, 增加了背向相于放大的受激布里 渊散射光的增益, 提高了传感器系统的信噪比, 相应地提高了传感器的测量长 度与测量精度。  The invention is made by using chaotic laser correlation principle, fiber stimulated Raman scattering light amplification effect and coherent amplified Brillouin scattering light strain, temperature effect and optical time domain reflection principle; the invention adopts chaotic laser correlation principle in time domain The random fluctuation of the optical pulse sequence improves the spatial resolution of the sensor system by the correlation processing of the back-detected light of the sensing fiber and the local reference light; and the continuous operation of the high-power fiber Raman laser as the Brillouin light The domain analyzer's pumping source overcomes the difficulty of fiber-optic Brillouin optical time domain analyzers requiring tight locking of the probe laser and pump laser frequencies, replacing the narrowband fiber Brillouin amplifier with a wideband fiber Raman amplifier, adding back The gain of the stimulated Brillouin scattered light, which is amplified, increases the signal-to-noise ratio of the sensor system, and accordingly increases the measurement length and measurement accuracy of the sensor.

Claims

权 利 要 求 书 Claim
1、 一种混沌激光相关集成光纤拉曼放大器的布里渊光时域分析器, 其特征 是,它包括半导体 LD激光器(10)、第一偏振控制器(11)、第一光纤环行器(12)、 第一光纤分路器(13)、可调光衰减器(14)、第二偏振控制器(15)、单向器(16)、 掺饵光纤放大器 EDFA (17)、 第二光纤分路器 (18)、 光调制器 (19)、 第二光 纤环行器 (20)、 光外差接收器模块 (21)、 数字信号处理器 (22)、 第三光纤环 行器(23)、 窄带反射滤光片 (24)、 泵浦 -信号耦合器(25)、 光纤拉曼泵浦激光 器 (26)、 传感光纤 (27)、 第四光纤环行器 (28)、 光纤光栅反射滤光器 (29) 和计算机 (30); 其中, 所述半导体 LD激光器 (10) 经第一偏振控制器 (11) 与第一光纤环行器 (12) 的一个输入端口相接, 第一光纤环行器 (12) 的输出 端与第一光纤分路器 (13) 输入端相连, 第一光纤分路器 (13) 的一个输出端 与可调光衰减器 (14) 的输入端相连, 可调光衰减器 (14) 的输出端通过第二 偏振控制器 (15) 与第一光纤环行器 (12) 的另一个输入端相连, 再经第一偏 振控制器 (11) 反馈给半导体 LD激光器 (10); 第一光纤分路器 (13) 的另一 个输出端经单向器(16)与掺饵光纤放大器 EDFA (17)相连, 掺饵光纤放大器 EDFAC17)的输出端与第二光纤分路器(18)输入端相连,第二光纤分路器(18) 一个输出端与光调制器(19) 相连, 光调制器(19) 的输出端和第二光纤环行 器 (20) 的一个输入端相连; 第二光纤分路器 (18) 另一个输出端与第三光纤 环行器(23)相连, 第三光纤环行器(23)的一个输出端与窄带反射滤光片(24) 相连, 窄带反射滤光片 (24) 的另一端与泵浦 -信号耦合器(25) 的输入端相连, 泵浦 -信号耦合器(25)的输出端与传感光纤(27)相连; 泵浦 -信号耦合器(25) 的另一个输入端与光纤拉曼泵浦激光器 (26) 相连, 第三光纤环行器 (23) 的 另一个输出端与第四光纤环行器(28) 的一端相连, 第四光纤环行器(28) 与 光纤光栅反射滤波器 (29) 相连, 第四光纤环行器 (28) 的输出端与第二光纤 环行器 (20) 另一端相连, 第二光纤环行器 (20) 输出端与光外差接收器模块A Brillouin optical time domain analyzer for a chaotic laser-related integrated fiber Raman amplifier, characterized in that it comprises a semiconductor LD laser (10), a first polarization controller (11), and a first fiber circulator ( 12), first fiber splitter (13), dimmable attenuator (14), second polarization controller (15), one-way device (16), erbium-doped fiber amplifier EDFA (17), second fiber a splitter (18), a light modulator (19), a second fiber circulator (20), an optical heterodyne receiver module (21), a digital signal processor (22), a third fiber circulator (23), Narrowband reflection filter (24), pump-signal coupler (25), fiber Raman pump laser (26), sensing fiber (27), fourth fiber circulator (28), fiber grating reflection filter And a computer (30); wherein the semiconductor LD laser (10) is connected to an input port of the first fiber circulator (12) via the first polarization controller (11), the first fiber circulator The output of (12) is connected to the input of the first fiber splitter (13), the first fiber branch One output of the (13) is connected to the input of the dimmable attenuator (14), and the output of the dimmable attenuator (14) is passed through the second polarization controller (15) and the first optical circulator (12) The other input is connected to the semiconductor LD laser (10) via the first polarization controller (11); the other output of the first fiber splitter (13) is coupled via the one-way device (16) The bait fiber amplifier EDFA (17) is connected, the output of the erbium-doped fiber amplifier EDFAC17) is connected to the input of the second fiber splitter (18), and the second fiber splitter (18) has an output and a light modulator (19). Connected, the output of the optical modulator (19) is connected to one input of the second fiber circulator (20); the second fiber splitter (18) is connected to the third fiber circulator (23) An output of the third fiber circulator (23) is connected to the narrowband reflection filter (24), and the other end of the narrowband reflection filter (24) is connected to the input of the pump-signal coupler (25). The output of the pump-signal coupler (25) is connected to the sensing fiber (27) The other input of the pump-signal coupler (25) is connected to the fiber Raman pump laser (26), the other output of the third fiber circulator (23) and the fourth fiber circulator (28) One end is connected, the fourth fiber circulator (28) is connected to the fiber grating reflection filter (29), the output end of the fourth fiber circulator (28) is connected to the other end of the second fiber circulator (20), and the second fiber ring is connected. (20) output and optical heterodyne receiver module
(21) 相连, 光外差接收器模块 (21) 与数字信号处理器 (22) 和计算机 (30) 相连; 光调制器 (19) 与计算机 (30) 相连。 (21) Connected, the optical heterodyne receiver module (21) is connected to the digital signal processor (22) and the computer (30); the optical modulator (19) is connected to the computer (30).
2、 根据权利要求 1所述的混沌激光相关集成光纤拉曼放大器的布里渊光时 域分析器, 其特征是, 所述半导体 LD激光器 (10)、 第一偏振控制器 (11)、 第 一光纤环行器 (12)、 第一光纤分路器 (13)、 可调光衰减器 (14) 和第二偏振 控制器 (15) 组成混沌激光器; 所述半导体 LD激光器 (10) 是 DFB激光器, 其工作波长为 1550. Onm, 输出功率为 lOdBm; 第一光纤分路器 (13 ) 的分支比 为 20:80ο 2. A Brillouin optical time domain analyzer for a chaotic laser-related integrated fiber Raman amplifier according to claim 1, wherein said semiconductor LD laser (10), first polarization controller (11), A fiber circulator (12), a first fiber splitter (13), a tunable optical attenuator (14) and a second polarization controller (15) constitute a chaotic laser; the semiconductor LD laser (10) is a DFB laser , Its working wavelength is 1550. Onm, the output power is lOdBm; the branch ratio of the first fiber splitter (13) is 20:80.
3. 根据权利要求 1所述的混沌激光相关集成光纤拉曼放大器的布里渊光时 域分析器, 其特征是, 所述光调制器 (19) 是鈮酸锂马赫-泽德尔调制器。  3. A Brillouin optical time domain analyzer for a chaotic laser related integrated fiber Raman amplifier according to claim 1, wherein said light modulator (19) is a lithium niobate Mach-Zehnder modulator.
4. 根据权利要求 1所述的混沌激光相关集成光纤拉曼放大器的布里渊光时 域分析器, 其特征是, 所述光外差接收器模块(21 ) 是由频率响应为 2Ghz以上 的光电探测器, 前放和主放大器组成。  4. The Brillouin optical time domain analyzer of a chaotic laser-related integrated fiber Raman amplifier according to claim 1, wherein the optical heterodyne receiver module (21) has a frequency response of 2 Ghz or more. Photodetector, preamplifier and main amplifier.
5. 根据权利要求 1所述的混沌激光相关集成光纤拉曼放大器的布里渊光时 域分析器,其特征是,所述传感光纤(27 )为 100km单模通讯 G652光纤或 100km LEAF光纤。  5. The Brillouin optical time domain analyzer of a chaotic laser-related integrated fiber Raman amplifier according to claim 1, wherein the sensing fiber (27) is a 100 km single mode communication G652 fiber or a 100 km LEAF fiber. .
6. 根据权利要求 1所述的混沌激光相关集成光纤拉曼放大器的布里渊光时 域分析器, 其特征是, 所述光纤拉曼激光器 (26) 是功率在 100mw-1200mw范 围内可调的, 波长为 1450nm连续运行的光纤拉曼激光器。  6. The Brillouin optical time domain analyzer of a chaotic laser-related integrated fiber Raman amplifier according to claim 1, wherein the fiber Raman laser (26) is adjustable in a power range of 100 mW to 1200 mw. A fiber-optic Raman laser operating continuously at a wavelength of 1450 nm.
7. 根据权利要求 1所述的混沌激光相关集成光纤拉曼放大器的布里渊光时 域分析器, 其特征是, 所述窄带反射滤光片 (24) 的中心波长为 1450nm, 光谱 带宽为 0.3nm, 隔离度大于 35dB。  7. The Brillouin optical time domain analyzer of a chaotic laser-related integrated fiber Raman amplifier according to claim 1, wherein the narrowband reflection filter (24) has a center wavelength of 1450 nm and a spectral bandwidth of 0.3nm, isolation greater than 35dB.
8. 根据权利要求 1所述的混沌激光相关集成光纤拉曼放大器的布里渊光时 域分析器,其特征是,所述光纤光栅反射滤光器(29)的中心波长为 1550.08nm, 光谱带宽为 0.1nm。  8. The Brillouin optical time domain analyzer of a chaotic laser-related integrated fiber Raman amplifier according to claim 1, wherein the fiber grating reflection filter (29) has a center wavelength of 1550.08 nm, and a spectrum The bandwidth is 0.1 nm.
9. 根据权利要求 1所述的混沌激光相关集成光纤拉曼放大器的布里渊光时 域分析器, 其特征是, 所述数字信号处理器 (22 ) 釆用有自相关处理和快速傅 里叶变换软件的高速 5G采样率和 500MHz频宽的数字信号处理器。  9. The Brillouin optical time domain analyzer of a chaotic laser-related integrated fiber Raman amplifier according to claim 1, wherein said digital signal processor (22) uses autocorrelation processing and fast Fourier The leaf transform software has a high speed 5G sampling rate and a 500MHz bandwidth digital signal processor.
PCT/CN2011/078179 2011-08-10 2011-08-10 Brillouin optical time domain analyzer of chaotic laser-related integrated optical fiber raman amplifier WO2013020276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078179 WO2013020276A1 (en) 2011-08-10 2011-08-10 Brillouin optical time domain analyzer of chaotic laser-related integrated optical fiber raman amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078179 WO2013020276A1 (en) 2011-08-10 2011-08-10 Brillouin optical time domain analyzer of chaotic laser-related integrated optical fiber raman amplifier

Publications (1)

Publication Number Publication Date
WO2013020276A1 true WO2013020276A1 (en) 2013-02-14

Family

ID=47667859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078179 WO2013020276A1 (en) 2011-08-10 2011-08-10 Brillouin optical time domain analyzer of chaotic laser-related integrated optical fiber raman amplifier

Country Status (1)

Country Link
WO (1) WO2013020276A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158587A (en) * 2014-07-07 2014-11-19 太原理工大学 Optical time domain reflect method based on period on-off key chaos signals
CN104655185A (en) * 2015-01-04 2015-05-27 西南交通大学 Time-domain analysis sensing system for coherent Brillouin light on basis of intensity modulation detecting light
CN107727122A (en) * 2017-08-14 2018-02-23 闽南师范大学 The joint Raman of both-end detection and the distribution type optical fiber sensing equipment of Brillouin scattering
CN108180853A (en) * 2017-12-22 2018-06-19 太原理工大学 A kind of Brillouin light Time Domain Reflectometry strain-Sensing device based on chaotic modulation
CN108827175A (en) * 2018-05-02 2018-11-16 太原理工大学 Distribution type fiber-optic dynamic strain sensing device and method based on wideband chaotic laser light
CN110600973A (en) * 2019-08-16 2019-12-20 太原理工大学 Device and method for generating broadband chaotic laser based on nonlinear optical fiber active light feedback
CN111637910A (en) * 2020-05-26 2020-09-08 太原理工大学 Time domain differential high-speed chaotic Brillouin optical coherent domain monitoring device and method
CN112880865A (en) * 2021-03-25 2021-06-01 太原理工大学 Ultra-long-distance high-spatial-resolution Raman optical fiber dual-parameter sensing system and method
CN113483914A (en) * 2021-05-25 2021-10-08 太原理工大学 Chaos BOCDA temperature strain measuring device based on few-mode optical fiber

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209577B2 (en) * 1992-06-12 2001-09-17 安藤電気株式会社 BOTDA's automatic inspection circuit
US20050213869A1 (en) * 2004-03-26 2005-09-29 Anthony Brown System and method for resolution enhancement of a distributed sensor
CN1831560A (en) * 2006-04-21 2006-09-13 太原理工大学 Chaos laser range-measurement method and device based on semiconductor laser
CN101162158A (en) * 2007-11-15 2008-04-16 中国计量学院 Ultra-remote distributed fiber raman and brillouin photons sensor
CN101226100A (en) * 2008-01-31 2008-07-23 太原理工大学 Chaos light time domain reflectometer and measuring method thereof
CN201104243Y (en) * 2007-11-15 2008-08-20 中国计量学院 Ultra-long range distributed optical fiber Raman and Brillouin photon sensor
CN101762290A (en) * 2010-02-03 2010-06-30 电子科技大学 Distributed Raman amplification-based Brillouin optical time domain analysis system
WO2011022829A1 (en) * 2009-08-27 2011-03-03 University Of New Brunswick System and method for brillouin analysis
CN201885732U (en) * 2010-11-26 2011-06-29 中国计量学院 Distributed optical fiber Brillouin sensor integrating optical fiber Brillouin frequency shifter
CN102109362A (en) * 2010-11-26 2011-06-29 中国计量学院 Distributed optical fiber Brillouin sensor fused with optical fiber Brillouin frequency shifter
CN102322810A (en) * 2011-08-10 2012-01-18 中国计量学院 The Brillouin light time domain analyzer of the relevant integrated fiber Raman amplifier of chaotic laser light

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209577B2 (en) * 1992-06-12 2001-09-17 安藤電気株式会社 BOTDA's automatic inspection circuit
US20050213869A1 (en) * 2004-03-26 2005-09-29 Anthony Brown System and method for resolution enhancement of a distributed sensor
CN1831560A (en) * 2006-04-21 2006-09-13 太原理工大学 Chaos laser range-measurement method and device based on semiconductor laser
CN101162158A (en) * 2007-11-15 2008-04-16 中国计量学院 Ultra-remote distributed fiber raman and brillouin photons sensor
CN201104243Y (en) * 2007-11-15 2008-08-20 中国计量学院 Ultra-long range distributed optical fiber Raman and Brillouin photon sensor
CN101226100A (en) * 2008-01-31 2008-07-23 太原理工大学 Chaos light time domain reflectometer and measuring method thereof
WO2011022829A1 (en) * 2009-08-27 2011-03-03 University Of New Brunswick System and method for brillouin analysis
CN101762290A (en) * 2010-02-03 2010-06-30 电子科技大学 Distributed Raman amplification-based Brillouin optical time domain analysis system
CN201885732U (en) * 2010-11-26 2011-06-29 中国计量学院 Distributed optical fiber Brillouin sensor integrating optical fiber Brillouin frequency shifter
CN102109362A (en) * 2010-11-26 2011-06-29 中国计量学院 Distributed optical fiber Brillouin sensor fused with optical fiber Brillouin frequency shifter
CN102322810A (en) * 2011-08-10 2012-01-18 中国计量学院 The Brillouin light time domain analyzer of the relevant integrated fiber Raman amplifier of chaotic laser light

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
WANG, ANBANG ET AL.: "Chaotic laser correlation method for optical time-domain reflectometry.", SCIENTIA SINICA(INFORMATIONIS)., vol. 40, no. 3, 2010, pages 512 - 518 *
WANG, YUNCAI ET AL.: "Correlation range finding with chaotic laser signal.", JOURNAL OF SHENZHEN UNIVERSITY SCIENCE AND ENGINEERING., vol. 27, no. 4, October 2010 (2010-10-01), pages 379 - 385 *
Y.T.CHO ET AL.: "50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification.", OPTICS LETTERS., vol. 28, no. 18, 15 September 2003 (2003-09-15), pages 1651 - 1653, XP002451610, DOI: doi:10.1364/OL.28.001651 *
ZHANG, CHAO ET AL.: "Brillouin optical time domain analyzer based on bi-directional Raman amplification.", ACTAPHYSICA SINICA., vol. 59, no. 8, August 2010 (2010-08-01), pages 5523 - 5527 *
ZHANG, ZAIXUAN ET AL.: "Distributed optical fiber Raman photon sensor research review.", CHINESE JOURNAL OF LASERS., vol. 37, no. 11, November 2010 (2010-11-01), pages 2749 - 2761 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158587B (en) * 2014-07-07 2017-02-15 太原理工大学 Optical time domain reflect method based on period on-off key chaos signals
CN104158587A (en) * 2014-07-07 2014-11-19 太原理工大学 Optical time domain reflect method based on period on-off key chaos signals
CN104655185A (en) * 2015-01-04 2015-05-27 西南交通大学 Time-domain analysis sensing system for coherent Brillouin light on basis of intensity modulation detecting light
CN107727122B (en) * 2017-08-14 2023-05-02 闽南师范大学 Double-end detection combined Raman and Brillouin scattering distributed optical fiber sensing device
CN107727122A (en) * 2017-08-14 2018-02-23 闽南师范大学 The joint Raman of both-end detection and the distribution type optical fiber sensing equipment of Brillouin scattering
CN108180853A (en) * 2017-12-22 2018-06-19 太原理工大学 A kind of Brillouin light Time Domain Reflectometry strain-Sensing device based on chaotic modulation
CN108180853B (en) * 2017-12-22 2020-04-03 太原理工大学 Brillouin optical time domain reflection strain detection device based on chaotic modulation
CN108827175A (en) * 2018-05-02 2018-11-16 太原理工大学 Distribution type fiber-optic dynamic strain sensing device and method based on wideband chaotic laser light
CN110600973A (en) * 2019-08-16 2019-12-20 太原理工大学 Device and method for generating broadband chaotic laser based on nonlinear optical fiber active light feedback
CN110600973B (en) * 2019-08-16 2021-01-08 太原理工大学 Device and method for generating broadband chaotic laser based on nonlinear optical fiber active light feedback
CN111637910B (en) * 2020-05-26 2021-10-22 太原理工大学 Time domain differential high-speed chaotic Brillouin optical coherent domain monitoring device and method
CN111637910A (en) * 2020-05-26 2020-09-08 太原理工大学 Time domain differential high-speed chaotic Brillouin optical coherent domain monitoring device and method
CN112880865A (en) * 2021-03-25 2021-06-01 太原理工大学 Ultra-long-distance high-spatial-resolution Raman optical fiber dual-parameter sensing system and method
CN112880865B (en) * 2021-03-25 2022-05-13 太原理工大学 Ultra-long-distance high-spatial-resolution Raman optical fiber dual-parameter sensing system and method
CN113483914A (en) * 2021-05-25 2021-10-08 太原理工大学 Chaos BOCDA temperature strain measuring device based on few-mode optical fiber

Similar Documents

Publication Publication Date Title
WO2013020276A1 (en) Brillouin optical time domain analyzer of chaotic laser-related integrated optical fiber raman amplifier
WO2013016888A1 (en) Chaotic laser light related brillouin optical time-domain analyzer
CN102322810B (en) Chaotic laser related Brillouin optical time domain analyzer integrated with optical fiber Raman amplifier
CN103152097B (en) A kind of adopt Random Laser to amplify polarization and phase sensitive optical time domain reflectometer
CN102109362B (en) Distributed optical fiber Brillouin sensor fused with optical fiber Brillouin frequency shifter
WO2011127705A1 (en) Distributed optical fiber senor based on roman and brillouin scattering
CN108180853B (en) Brillouin optical time domain reflection strain detection device based on chaotic modulation
CN101324424B (en) Novel optical fiber Brillouin light time domain analyzer
CN110220470B (en) Single-ended chaotic Brillouin dynamic strain measurement device and method based on Rayleigh scattering
WO2009097736A1 (en) Chaotic optical time domain reflectometer and measuring method thereof
CN101634571B (en) Optical pulse raster distributed fiber sensing device
CN104180833A (en) Optical time domain reflectometer simultaneously sensing temperature and stress
CN102322808B (en) Very long range pulse coding distribution type Fiber Raman and Brillouin photon sensor
CN110243493B (en) Brillouin optical time domain reflectometer device and method based on super-continuum spectrum
CN202195827U (en) Super remote pulse code distributed fiber Brillouin sensor with integration of fiber Brillouin frequency shifter
CN104697558A (en) Distributed optical fiber multi-parameter sensing measurement system
WO2022042759A1 (en) Distributed pulsed optical amplifier based on fiber-optical parametric amplification and amplification and performance characterization methods
CN108801305B (en) Method and device of Brillouin optical time domain reflectometer based on step pulse self-amplification
CN104390723A (en) Multi-wavelength Brillouin fiber laser based optical fiber temperature sensor
CN202188857U (en) Brillouin optical time domain analyzer of chaotic laser integrated optical fiber Raman amplifier
CN202195825U (en) Extra-long distance pulse-coding distributed optical fiber Raman and Brillouin photon sensor
CN202182702U (en) Brillouin optical time domain analyzer using chaotic laser method
CN102359830B (en) Multiple Raman scattering effect fused ultra remote fiber temperature measurement sensor
CN103727969B (en) Based on delay pulse Raman amplifiction distributed sensing system
CN201885732U (en) Distributed optical fiber Brillouin sensor integrating optical fiber Brillouin frequency shifter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870572

Country of ref document: EP

Kind code of ref document: A1