WO2013018878A1 - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
WO2013018878A1
WO2013018878A1 PCT/JP2012/069787 JP2012069787W WO2013018878A1 WO 2013018878 A1 WO2013018878 A1 WO 2013018878A1 JP 2012069787 W JP2012069787 W JP 2012069787W WO 2013018878 A1 WO2013018878 A1 WO 2013018878A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
inspection apparatus
amplification
rare earth
Prior art date
Application number
PCT/JP2012/069787
Other languages
English (en)
French (fr)
Inventor
瑞希 奥
啓 志村
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US14/236,888 priority Critical patent/US8976347B2/en
Publication of WO2013018878A1 publication Critical patent/WO2013018878A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Definitions

  • the present invention relates to an inspection apparatus and an inspection method for detecting so-called defects such as scratches and foreign matters on a substrate.
  • the present invention relates to a surface foreign matter inspection apparatus and a surface inspection method for detecting minute defects on a so-called bare wafer.
  • Patent Document 1 that collects and irradiates illumination light on a sample surface and detects light scattered by surface roughness and defects.
  • Patent document 2 As another test
  • patent document 3 As another technique.
  • the light scattered by defects on the wafer is very weak, and there are PMT (Photomultiplier Tube) and MPPC (Multi-Pixel Photon Counter) as detection methods for measuring the faint light at high speed and with high sensitivity.
  • PMT Photomultiplier Tube
  • MPPC Multi-Pixel Photon Counter
  • the above detection method has a function of photoelectrically converting weak light and multiplying electrons. However, since the quantum efficiency of photoelectric conversion is as low as 50% or less, signal light is lost, and the S / N ratio (signal to noise) ).
  • Optical amplification is an amplification method in which signal light and light from an excitation light source are introduced into a fiber doped with a rare earth to induce stimulated emission and amplify the signal light.
  • the present invention is characterized by utilizing this optical amplification.
  • the present invention is characterized in that this amplification factor is changed according to various conditions.
  • inspection with a high S / N ratio can be performed.
  • FIG. 1 is a schematic diagram of an inspection apparatus according to Embodiment 1.
  • FIG. It is a detection optical system arrangement
  • 10 is a schematic diagram of an inspection apparatus according to Embodiment 4.
  • FIG. 10 is an example of an enlarged view of a detection optical system according to Example 4.
  • FIG. 10 is another example of an enlarged view of a detection optical system according to Example 5.
  • FIG. 10 is an example of an overall view of a fiber according to Example 6.
  • FIG. 10 is a schematic diagram of an inspection apparatus according to a seventh embodiment.
  • FIG. 10 is a schematic diagram of an inspection apparatus according to an eighth embodiment.
  • FIG. 10 is a schematic diagram for explaining synchronization adjustment in an eighth embodiment. It is the schematic of the inspection apparatus of Example 9. It is a figure explaining the synchronous adjustment in Example 9.
  • FIG. 1 is a schematic diagram of an inspection apparatus according to the first embodiment.
  • an illumination light source 1 a stage 101, an excitation light source 2, an interference filter 7, a rare earth-doped optical fiber 4, a detector 3 for detecting amplified light, and signal processing Part 105 is provided.
  • the stage drive unit 102 includes a rotation drive unit 111 that rotates the stage 101 around the rotation axis, a vertical drive unit 112 that moves in the vertical direction, and a slide drive unit 113 that moves in the radial direction of the sample.
  • an overall control unit 106 that performs various controls described later and a mechanical control unit 107 are provided, and an information display unit 108, an input operation unit 109, a storage unit 110 that stores various information, and the like. .
  • the stage 101 supports the sample 100 such as a wafer, and the illumination light is relatively swirled on the sample 100 by moving the stage 101 horizontally by the slide drive unit 113 while rotating the stage 101 by the rotation drive unit 111. To scan. Therefore, the light scattered by the unevenness of the sample surface is continuously generated, and the scattered light due to the defect is generated in a pulse manner. In a surface inspection apparatus that detects defects on a wafer, shot noise of light that is continuously generated becomes a noise component.
  • the rotation and translation stage is used for explanation, but a biaxial translation stage may be used.
  • the optical amplification in this embodiment will be described.
  • the sample 100 is irradiated with light from the illumination light source 1. Defects existing on or near the sample surface and light scattered, diffracted or reflected on the sample surface are collected by the detection optical system 116 and introduced into the rare earth-doped optical fiber 4.
  • the excitation light source 2 generates light having a shorter wavelength than the illumination light source 1.
  • the electronic state of the added rare earth ions is excited from the ground state to the excited state, thereby forming an inversion distribution state.
  • the signal light is incident at this time, the rare earth ions in the excited state cause stimulated emission, and the signal light is amplified.
  • the amplified light then enters the detector 3 that performs photoelectric conversion by the coupling optical system 6.
  • a general photodetector detects and amplifies electrons after photoelectric conversion, but with this method, the low quantum efficiency at the photoelectric conversion surface and the weak current before it is electrically amplified by a preamplifier, etc. There is a problem that it is easily affected by.
  • the optical amplification of this embodiment has an advantage that there is no such problem because the light is directly amplified before the photoelectric conversion.
  • the illumination light source 1 is a continuous wave laser
  • a lamp or a diode laser in which the excitation light source 2 also emits light continuously is suitable at low cost.
  • a band pass filter such as the interference filter 7 is preferably used in order to extract a wavelength suitable for rare earth excitation.
  • the use of a diode laser has the advantage of being stable and having a long life.
  • the light from the illumination light 201 forms an elongated elliptical illumination spot 202 on the sample 100.
  • the NA of the detection optical system 116 is that the diameter of the illumination spot 202 is R (in this embodiment, the length of the major axis is R), the aperture of the rare earth-doped optical fiber is NA ′, and the core of the rare earth-doped optical fiber When the diameter is R ′, it is desirable that the following relationship is substantially satisfied.
  • a plurality of detection optical systems may be arranged like the detection optical system 117 shown in FIG. That is, in this embodiment, the number of sensors is not limited as shown in FIG. 2A, and two or more detection optical systems are used such that at least one of the azimuth angle ⁇ and the elevation angle ⁇ from the illumination spot 202 is different. May be arranged. Since the azimuth angle and elevation angle at which the scattered light from the defect is scattered vary depending on the type and properties of the defect, various defects can be detected with high sensitivity. Further, the shape of the illumination light spot 202 may be an ellipse or a circle as shown in the figure.
  • the light thus amplified is imaged on the detector 3 via the lens 6 in FIG.
  • the detection result of the detector 3 is sent to the signal processing unit 105 and compared with a threshold value.
  • a detection result exceeding the threshold is determined as a defect.
  • the defect determined by the signal processing unit 105 is transmitted to the overall control unit 106 in association with the coordinates on the sample in the sample 100 and further stored in the storage unit 110. Further, the information regarding the defect stored in the storage unit 110 is read out as appropriate and displayed on the information display unit 108 in a format that is easy for the operator to view.
  • the inspection apparatus can perform inspection with a higher S / N ratio than before.
  • Example 2 will be described with reference to FIGS.
  • the present embodiment is a method of further increasing the S / N ratio when detecting defects.
  • the azimuth angle and elevation angle at which scattered light from a defect is scattered vary depending on the type and properties of the defect.
  • the size of scattered light from the unevenness of the sample surface may vary depending on the detection direction with respect to the incident direction of light from the illumination light source. That is, the S / N ratio at the time of detecting a defect changes in relation to the defect to be detected, the illumination direction, the detection direction, and the like.
  • a plurality of detection optical systems 116 and 117, rare earth-doped optical fibers 4 and 206 corresponding to them, and detectors corresponding to them are provided, and these detections are performed. Add the results. More specifically, the addition method is weighted addition that makes the total S / N ratio larger (for example, the maximum). Furthermore, in this embodiment, for this weighted addition, the excitation light source 2 of FIG. 1 is provided for each of the double detection optical systems 116 and 117, and the detection optical systems 116 and 117 are changed by changing the light intensity of the excitation light source 2. Weighting is performed optically by changing the amplification factor for each. By doing so, it is possible to further increase the S / N ratio when detecting defects.
  • FIG. 3A is a diagram showing the relationship between the S / N ratio and the inspection position of the sample 100.
  • the S / N ratio may vary depending on the surface condition of the substrate.
  • the number of rotations for rotating the sample is constant, the light irradiation time differs between the central portion and the outer peripheral portion of the sample 100, and therefore the S / N ratio depends on the inspection position (particularly, the radius r from the sample center). . Therefore, it is desirable to change the amplification factor depending on the inspection position.
  • the amplification factor of optical amplification is changed depending on the inspection position (for example, radius r from the sample center).
  • the light intensity of the excitation light source 2 is changed, and the amplification factor of the optical amplification is changed as shown in FIG. Change depending on. By doing so, it is possible to eliminate the sensitivity unevenness depending on the inspection position while increasing the S / N as compared with the conventional case.
  • Example 4 will be described.
  • This embodiment is mainly characterized by using an inclined rare earth-doped optical fiber bundle whose end face is inclined.
  • FIG. 4 is a schematic diagram of this embodiment.
  • the illumination light source 1 illuminates a wide area on the sample 100 and inspects using a detector having a plurality of pixels.
  • the fiber bundle is a bundle of a plurality of fibers.
  • the light from the excitation light source 502 is reflected by the dichroic mirror 501 in the middle of the detection optical system 116 (for example, between two lenses) and introduced into the tilted rare earth doped optical fiber bundle 505.
  • the light amplified in the tilted rare earth doped optical fiber bundle 505 is detected by a multi-pixel detector 507.
  • a micro lens 506 may be used so that light can be efficiently introduced. Further, one fiber may be arranged corresponding to each pixel of the multi-pixel detector 507, or light of a plurality of fibers may be introduced into one pixel of the multi-pixel detector 507.
  • FIG. 5A is a diagram showing the object plane 508 and the image plane 509 when the scattered light is detected obliquely with respect to the sample 100.
  • the image plane 509 is tilted by the same amount as the tilt (detection elevation angle) ⁇ of the object plane 508. That is, blur occurs at both ends of the image plane.
  • an inclined rare earth-doped optical fiber bundle 505 cut and polished with an inclination ⁇ is arranged in accordance with the inclination ⁇ of the image plane 509. As a result, each light on the imaging plane can be correctly collected without the inclination of the object plane 508.
  • a rare earth doped optical fiber bundle 510 in which fibers are arranged stepwise according to the inclination ⁇ as shown in FIG. 5C may be used. good. That is, the shape of the fiber bundle end face for eliminating the influence of the inclination of the object plane 508 does not have to be strictly inclined, and it is only necessary to form an inclined face substantially.
  • Example 5 is an example in which the same effect as that of Example 4 is obtained by using a rare earth-doped optical fiber bundle whose section is cut perpendicularly.
  • FIG. 6 is a schematic view when a rare earth-doped optical fiber bundle 602 cut vertically is installed.
  • FIG. 6A shows an oblique detection with respect to the object plane 508 at the detection elevation angle ⁇ as in the fourth embodiment.
  • the micromirror 603 is disposed on the imaging plane formed by the detection optical system 116 so as to be inclined with respect to the tilt axis 6000 of the detection optical system 116.
  • the micromirror 603 is formed by alternately laminating a reflection film and glass, and light on the image plane is reflected by the reflection film of the micromirror 603, respectively.
  • microlens 6031 on the emission side of the micromirror 603, and light is efficiently coupled to the rare earth-doped optical fiber bundle 602 by the microlens 6031. Note that the end face of this microlens can be sufficiently formed by photolithography.
  • a micro prism 604 is arranged on an image plane formed by the detection optical system 116. This also has a microlens 6031 on the exit surface. The light on the image plane is reflected by the microprism 604 and coupled to the rare earth-doped optical fiber bundle 602 by the microlens 6031.
  • the size d per pixel on the sample 100 is as follows: NA of the detection optical system, NA ′ of the opening of the rare earth doped optical fiber, R ′ of the core diameter of the rare earth doped optical fiber, and n of the number of pixels.
  • Example 6 will be described.
  • the amplification factor is controlled in more detail than in the fourth embodiment.
  • Example 4 there is a possibility that an optical path difference ⁇ L occurs due to the inclination of the inclined rare earth-doped optical fiber bundle 505, and there is a possibility that the amplification factor slightly differs. However, ⁇ L is sufficiently small compared with the fiber length, and the difference in the amplification factor is ignored. it can. However, it is desirable that there is no difference in amplification factor.
  • this embodiment uses an adjusted rare earth-doped optical fiber bundle 704 in which the total length of each fiber is adjusted so as to cancel the influence of the optical path difference ⁇ L as shown in FIG. This will be described more specifically.
  • the light on the image plane 509 is incident on the adjusted rare earth-added optical fiber bundle 704 fixed by the fixture 702.
  • the length of the fiber 7031 is adjusted so as to eliminate the influence of the optical path difference ⁇ L. Therefore, the light passing through the fiber 7031 is not affected by the optical path difference ⁇ L.
  • the other fibers 7032-7035 have such lengths that are not affected by the optical path difference ⁇ L, and can be expressed as having different lengths.
  • the end faces of the fibers 7031 to 7035 are aligned by the fixing portion 701 so that there is no optical path difference.
  • the emitted light that has exited is detected by the multi-pixel detector 507 via the microlens 506.
  • a detector having a plurality of pixels a multi-channel PMT with a small dark current, a CCD with a large number of pixels, an EMCCD (Electron Multiplying CCD), or an EB-CCD (Electron Bombardment CCD) are suitable.
  • EMCCD Electro Multiplying CCD
  • EB-CCD Electro Bombardment CCD
  • Example 7 When the illumination light source 1 and the excitation light source 2 described above are pulsed lasers, the rare earth of light (reflected light, diffracted light, scattered light, etc.) resulting from irradiation of the illumination light source 1 and the light from the excitation light source 2 is used. If time synchronization in the doped optical fiber is not achieved, spontaneously emitted light from the light from the excitation light source 2 is generated, resulting in noise, and a desired S / N may not be obtained.
  • the present embodiment solves this problem.
  • the present embodiment is characterized in that it has a synchronization unit that synchronizes temporally the scattered light resulting from the irradiation of the illumination light source 1 and the light of the excitation light source 2 in the rare earth-doped optical fiber.
  • FIG. 8 is a diagram for explaining the present embodiment.
  • the sample 100 is illuminated with pulsed light from the illumination light source 1 (in this embodiment, a pulsed laser light source).
  • Light (reflected light, diffracted light, scattered light, etc.) resulting from irradiation of the illumination light source 1 is collected by a detection optical system 116 including a lens and the like.
  • the collected light is incident on the rare earth-doped optical fiber 4.
  • the pulsed light from the excitation light source 2 (pulse oscillation laser light source in this embodiment) is reflected by the mirror 802 and then enters the synchronization unit 808.
  • the synchronization unit 808 includes, for example, two mirrors 803 and 804 and a drive mechanism 810 such as a stage that changes their position (which may be referred to as an optical path length).
  • the mirrors 803 and 804 can be moved as indicated by an arrow 806, and the optical distance of the pulsed light from the excitation light source 2 can be changed.
  • the pulsed light that has passed through the path whose optical distance has been changed is reflected by the mirror 805 and enters the rare earth-doped optical fiber 4.
  • the oscillation frequency may be different, but it is preferable that the light is emitted at the same oscillation period because the S / N ratio is good. Further, without using an optical path length adjusting stage, either one of the oscillations may be electrically delayed to simultaneously guide light in the fiber.
  • Example 8 will be described.
  • the illumination light source 1 is a pulsed laser light source
  • the excitation light source 2 is a continuous light source
  • FIG. 9 is a diagram for explaining this embodiment.
  • the illumination light source 1 is a pulsed laser light source
  • the excitation light source 2 is a continuous light source
  • a light intensity modulator 901 that optically modulates the intensity of the light from the excitation light source.
  • FIG. 10 is a diagram for explaining timing adjustment when the light intensity of the excitation light source 2 is adjusted using a light intensity modulator.
  • the illumination light source 1 emits pulsed light having a Gaussian profile with a time interval ⁇ Ta and a peak intensity Ia.
  • the excitation light source 2 is a continuous light source, as shown in FIG. 10B, continuous wave light having a constant intensity Ib is emitted at any time.
  • the light intensity modulator 901 converts the waveform shown in FIG. 10B to the waveform shown in FIG. More specifically, the light intensity modulator 901 converts the waveform of the excitation light source 2 into continuous pulsed light.
  • a chopper may be used as the modulator.
  • the illumination light source 1 is a pulsed laser light source
  • the excitation light source 2 is a continuous light source
  • at least one of the generation time and time of continuous oscillation light from the excitation light source 2 is It has a processing unit which is electrically synchronized with at least one of the generation time and time of the pulse signal of the illumination light source 1, and an MPPC which is an example of a detector capable of high-speed response.
  • Other configurations are the same as those of the first embodiment.
  • This embodiment is particularly effective when using a detector (for example, MPPC) that can respond relatively quickly compared to other detectors.
  • a generation timing signal indicating the generation time T 1 is sent from the illumination light source 1 to the synchronization unit 103 (arrows 1101 and 1102).
  • the synchronization unit 103 can also detect a detection timing signal indicating the time when the MPPC 301 detects the pulsed light P 1 (arrow 1106).
  • T 1 detected by the synchronization unit 103 is sent to the signal processing unit 105 together with a delay signal and a duration signal that can be arbitrarily changed (arrow 1103).
  • the signal processing unit 105 performs calculation using T 1 , the delay signal, and the continuous signal, and the time at which the excitation light from the excitation light source 2 can be synchronized with the scattered light from the sample 100 in the rare earth-doped optical fiber 4. , And get time. Then, the time and time calculated by the signal processing unit 105 are transmitted to the excitation light source 2 via the overall control unit 106 (arrows 1104 and 1105).
  • the excitation light source 2 oscillates continuous wave light at the time and time calculated by the signal processing unit 105.
  • FIG. 12 is a diagram illustrating the generation timing of the pulsed light from the illumination light source 1 and the light from the excitation light source 2 in the present embodiment.
  • the generation time of the continuous wave light from the excitation light source is set to the full width at half maximum of the pulsed light from the illumination light source 1.
  • the pulsed light P 1 from the illumination light source 2 is expressed as a Gaussian profile of peak intensity Ia and generation time T 1 .
  • the scattered light S 1 generated from the sample 100 by the illumination of P 1 is guided with a delay from T 1 by [Delta] T 1 to the rare earth doped optical fiber 4.
  • S 1 is further guided by ⁇ T 2 until the light from the excitation light source 2 is guided to the rare earth-doped optical fiber 4. Therefore, the present embodiment, FIG.
  • the waveforms of P 1 , S 1 , and C 1 can be sufficiently obtained by optical simulation or prior measurement using a photoelectric conversion element such as a photodiode.
  • the generation time and time of C 1 can be arbitrarily changed, and the full width at half maximum can be the full width at half maximum of the scattered light S 1 .
  • Example 1-9 the sample is described using the semiconductor wafer, but the inspection object of the inspection method and the inspection apparatus is not limited to the semiconductor wafer.
  • the inspection object can also be applied to the inspection of substrates such as hard disks, liquid crystal panels, and photovoltaic power generation panels.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 ウェハ上の欠陥によって散乱される光は非常に弱く、その微弱光を高速かつ高感度に測定する検出方法としてはPMTやMPPCがある。上記検出方法では、微弱光を光電変換して、電子を増倍する機能があるが、光電変換の量子効率が50%以下と低いため、信号光を損失し、S/N比を低下させるという課題がある。 そこで、本発明では、光電変換をする前に直接光を増幅する光増幅に着目した。光増幅とは、信号光と励起用光源の光とを希土類を添加したファイバに導入し、誘導放出を起こして信号光を増幅する増幅方法である。本発明は、この光増幅を利用することを特徴とする。また、本発明は、この増幅率を様々な条件により変えることを特徴とする。

Description

検査装置
 本発明は、基板上の傷や異物等の所謂欠陥を検出する検査装置、及び検査方法に関する。例えば、いわゆるベアウェハ上の微小な欠陥を検出する表面異物検査装置,表面検査方法に関する。
 半導体基板や薄膜基板などの製造ラインにおいて、製品の歩留まりを維持・向上するために、半導体基板や薄膜基板などの表面に存在する欠陥の検査が行われている。このような表面検査装置においては、試料表面に照明光を集光して照射し、表面ラフネスや欠陥によって散乱する光を検出する特許文献1の技術がある。その他の検査装置としては、特許文献2がある。その他の技術としては特許文献3がある。
特開2005-3447号公報 特開2010-99095号公報 特開平11-251663号公報
 ウェハ上の欠陥によって散乱される光は非常に弱く、その微弱光を高速かつ高感度に測定する検出方法としてはPMT(Photomultiplier Tube)やMPPC(Multi-Pixel Photon Counter)がある。上記検出方法では、微弱光を光電変換して、電子を増倍する機能があるが、光電変換の量子効率が50%以下と低いため、信号光を損失し、S/N比(signal to noise)を低下させるという課題がある。
 そこで、本発明では、光電変換をする前に直接光を増幅する光増幅に着目した。光増幅とは、信号光と励起用光源の光とを希土類を添加したファイバに導入し、誘導放出を起こして信号光を増幅する増幅方法である。本発明は、この光増幅を利用することを特徴とする。
 また、本発明は、この増幅率を様々な条件により変えることを特徴とする。
 本発明によれば、S/N比の高い検査を行うことができる。
実施例1に係る検査装置の概略図である。 検出光学系配置図である。 実施例3に係るS/N比と検査位置に関する図である。 実施例4に係る検査装置の概略図である。 実施例4に係る検出光学系拡大図の一例である。 実施例5に係る検出光学系拡大図のその他の例である。 実施例6に係るファイバ全体図の一例である。 実施例7に係る検査装置の概略図である。 実施例8に係る検査装置の概略図である。 実施例8での同期調整を説明する概略図である。 実施例9の検査装置の概略図である。 実施例9での同期調整を説明する図である。
 以下、図面を用いて発明の実施例を説明する。
 図1は実施例1の検査装置の概略図である。図1に示すように、照明用光源1,ステージ101,散乱光を光増幅するための励起用光源2,干渉フィルタ7,希土類添加光ファイバ4,増幅した光を検出する検出器3,信号処理部105を備えている。ステージ駆動部102は、回転軸を中心にステージ101を回転させる回転駆動部111,垂直方向に移動する垂直駆動部112,試料の径方向に移動させるスライド駆動部113を備えている。また、制御部として、後述する様々な制御を行う全体制御部106,メカ制御部107を備え、さらに情報表示部108,入力操作部109,様々な情報を記憶する記憶部110等を備えている。
 ステージ101は、ウェハ等の試料100を支持しており、ステージ101を回転駆動部111により回転させつつスライド駆動部113によって水平に移動させることで、相対的に照明光が試料100上を渦巻状に走査する。したがって、試料表面の凹凸によって散乱される光は連続的に発生し、欠陥による散乱光はパルス的に発生することになる。ウェハ上の欠陥を検出する表面検査装置においては、連続的に発生する光のショットノイズがノイズ成分となる。また、本実施例では回転及び並進ステージを用いて説明しているが、2軸の並進ステージでもよい。
 本実施例における光増幅について説明する。照明用光源1からの光は試料100に照射される。試料表面上または表面近傍内部に存在する欠陥、及び試料表面で、散乱,回折、又は反射された光は検出光学系116により捕集され、希土類添加光ファイバ4に導入する。
 励起用光源2は、照明用光源1より短波長の光を発生させるものである。そして、励起用光源2の光がファイバカプラ5を介して希土類添加光ファイバ4に入射すると、添加されている希土類イオンの電子状態が基底状態から励起状態に励起し、反転分布状態を形成する。このとき信号光が入射すると、励起状態にある希土類イオンは誘導放出を起こし、信号光が増幅することになる。そして増幅光はカップリング用光学系6により光電変換を行う検出器3に入射する。一般的な光検出器は光電変換後に電子を増幅して検出するが、この方法では、光電変換面での量子効率の低さや、プリアンプなどで電気的に増幅する前の微弱電流は電場や磁場の影響を受けやすいという課題がある。一方、本実施例の光増幅では、光電変換を行う前に直接光を増幅するのでこのような問題はないという利点がある。
 また、照明用光源1が連続発振のレーザの場合、励起用光源2も連続的に発光しているランプやダイオードレーザが安価で適している。励起用光源2としてランプを用いるときは、希土類の励起に適した波長を取り出すために干渉フィルタ7のようなバンドパスフィルタを用いると良い。また、ダイオードレーザを用いるのは安定かつ長寿命であるという長所がある。
 次に照明光学系,検出光学系,希土類添加光ファイバ間の光学的な関係について図2を用いて説明する。
 本実施例では、照明光201からの光は試料100上に細長い楕円形状の照明スポット202を形成する。そして、レンズ等の光学素子を含む検出光学系116は、図2(a)に示すように照明スポット202の長手方向に対して方位角φ=90°、図2(b)に示すように試料100に対して仰角χで配置される。ここで、検出光学系116のNAは、照明スポット202の直径をR(本実施例では長軸の長さがRとなる)、希土類添加光ファイバの開口をNA′、希土類添加光ファイバのコア径をR′とすると、以下の関係を実質的に満たすようにするのが望ましい。
Figure JPOXMLDOC01-appb-M000001
 ここで、本実施例では、図2(a)に示した検出光学系117のように、検出光学系を複数配置しても良い。すなわち、本実施例では、図2(a)のようにセンサの数に限定はなく、それぞれ照明スポット202からの方位角φ及び、仰角χの少なくとも一方が異なるように2つ以上の検出光学系を配置してもよい。欠陥からの散乱光が散乱する方位角,仰角は欠陥の種類や性状によって異なるため、このようにすれば様々な欠陥を高感度に検出することができる。また、照明光スポット202の形状は図のように楕円でも、円形でもよい。
 こうして増幅された光は図1のレンズ6を経由して検出器3に結像される。検出器3の検出結果は信号処理部105に送られ、閾値と比較される。閾値を超えた検出結果は欠陥と判断される。信号処理部105での判断された欠陥は試料100での試料上の座標と関連づけて全体制御部106へ送信され、さらに記憶部110に格納される。また、記憶部110に格納された欠陥に関する情報は、適宜読み出され、情報表示部108に作業者が閲覧しやすい形式で表示される。
 このように本実施例の検査装置では、従来よりもS/N比の高い検査を行うことができる。
 次に実施例2について図1,図2,図3を用いて説明する。実施例2では実施例1と異なる部分を中心に説明する。本実施例は、欠陥を検出する際のS/N比をさらに高くする方法である。
 前述したように、欠陥からの散乱光が散乱する方位角,仰角は欠陥の種類や性状によって異なる。また、照明用光源からの光の入射方向に対する検出方向によって、試料表面凹凸からの散乱光の大きさが異なる場合もある。すなわち、欠陥を検出する際のS/N比は、検出対象である欠陥,照明方向,検出方向等と関連して変化する。
 そこで本実施例では、図2(a)に示すように複数の検出光学系116,117、それらに対応した希土類添加光ファイバ4、及び206、それらに対応した検出器を有し、これらの検出結果を加算する。より具体的には、その加算方法は合計のS/N比がより大きくなるような(例えば最大となるような)重み付け加算である。さらに本実施例では、この重み付け加算にあたり、図1の励起用光源2を複検出光学系116,117ごとに備え、この励起用光源2の光の強度を変えることで、検出光学系116,117ごとの増幅率を変化させ重み付けを光学的に行う。このようにすることで、さらに欠陥を検出する際のS/N比をさらに高くすることが可能となる。
 次に実施例3について図3を用いて説明する。
 図3(a)は、S/N比と試料100の検査位置の関係を示した図である。S/N比は基板の表面状態により、異なることがある。また、試料を回転させる回転数が一定の場合、試料100の中心部と外周部では光が照射する時間が異なるため、S/N比は検査位置(特に試料中心からの半径r)に依存する。よって、増幅率は検査位置によって変化させるのが望ましい。本実施例は、光増幅の増幅率を検査位置(例えば、試料中心からの半径r)によって変えるものである。
 より具体的に、本実施例を説明する。図1のステージ101の回転数が一定の場合、試料100の中心部と外周部では光が照射される時間が異なるため、S/N比は検査位置に依存する。ここで、表面ラフネスによる散乱光をNとするとそのショットノイズは
Figure JPOXMLDOC01-appb-I000002
になるため、検査装置のS/N比は、
Figure JPOXMLDOC01-appb-M000003
と表せる。さらに、ある単位面積における照射時間は半径rに比例するため、S/N比は、
Figure JPOXMLDOC01-appb-M000004
と表せ、図3(a)のように変化する。
 そこで、本実施例では、S/N比の均一化のために、励起用光源2の光の強度を変えて、図3(b)のように、光増幅の増幅率を
Figure JPOXMLDOC01-appb-I000005
に依存して変化させる。このようにすることで、従来よりもS/Nを高くした上で、検査位置に依存した感度ムラを無くすことが可能になる。
 次に実施例4を説明する。本実施例はその端面が傾斜した傾斜希土類添加光ファイババンドルを使用することを主な特徴とする。
 図4は、本実施例の概略図である。本実施例では、検査時間を短縮させるために、照明用光源1により、試料100上の広い領域を照明し、複数画素の検出器を使って検査する。
 そして、試料から発生した光(反射光,回折光,散乱光等を含む)を検出光学系116により捕集し、その端面が斜めに切断及び研磨された傾斜希土類添加光ファイババンドル505の表面で結像させ、結像された光をファイババンドルに導入する。ここで、ファイババンドルとは複数のファイバを束ねたものである。
 励起用光源502の光は、検出光学系116の途中(例えば2枚のレンズの間)でダイクロイックミラー501により反射され、傾斜希土類添加光ファイババンドル505に導入する。そして、傾斜希土類添加光ファイババンドル505内で増幅された光は複数画素検出器507で検出する。
 このとき、効率よく光を導入できるようにマイクロレンズ506を使ってもよい。また、複数画素検出器507のそれぞれの画素に対応してファイバを1本ずつ配置しても良いし、複数のファイバの光を複数画素検出器507の1画素に導入しても良い。
 次に傾斜希土類添加光ファイババンドル505を用いる利点を説明する。
 図5(a)は、試料100に対して散乱光を斜方で検出する場合の物体面508と像面509を示した図である。斜方検出すると、物体面508の傾き(検出仰角)χと同じだけ像面509は傾く。すなわち、像面の両端でボケが生じることとなる。一方、本実施例では、図5(b)に示すように、像面509の傾きχに合わせて例えば傾きχの傾斜を付けて切断及び研磨した傾斜希土類添加光ファイババンドル505を配置する。これにより、物体面508の傾きを無くした形で結像面のそれぞれの光を正しく収集することができる。さらに、また、傾斜希土類添加光ファイババンドル505の代わりに、図5(c)に示すような、ファイバ一本ずつを傾きχに合わせて階段状に並べた希土類添加光ファイババンドル510を用いても良い。すなわち、物体面508の傾きの影響を無くすためのファイババンドル端面の形状は厳密に傾斜していなくてもよく、実質的に傾斜面を形成していればよい。
 次に実施例5について説明する。実施例5は、断面が垂直に切断された希土類添加光ファイババンドルを使用して、実施例4と同じ効果を得る実施例である。
 図6は、垂直に切断した希土類添加光ファイババンドル602を設置した場合の概略図である。図6(a)は、実施例4と同様に物体面508に対して検出仰角χで斜方検出を行うものである。図6(a)では、検出光学系116によって形成される結像面に検出光学系116の傾斜軸6000に対して傾斜してマイクロミラー603を配置する。マイクロミラー603は反射膜とガラスを交互に積層させたもので、その像面の光は、それぞれマイクロミラー603の反射膜により反射する。マイクロミラー603の出射側にはマイクロレンズ6031があり、光はマイクロレンズ6031によって希土類添加光ファイババンドル602へ効率よくカップリングする。なお、このマイクロレンズは端面をフォトリソグラフィーによって十分作成できる。
 図6(b)は検出光学系116によってできる結像面にマイクロプリズム604を配置する。こちらも出射面にマイクロレンズ6031を有している。像面の光は、それぞれマイクロプリズム604により反射し、マイクロレンズ6031によって希土類添加光ファイババンドル602へカップリングする。
 また、試料100上における1画素当たりの大きさdは、検出光学系のNA、希土類添加光ファイバの開口をNA′、希土類添加光ファイバのコア径をR′、画素数をnとすると
Figure JPOXMLDOC01-appb-M000006
で表せる。
 次に実施例6について説明する。実施例6は、実施例4において、さらに詳細に増幅率を制御するものである。
 実施例4について、傾斜希土類添加光ファイババンドル505の傾きによって光路差ΔLが生じ増幅率に若干の違いが出る可能性があるが、ファイバ長と比べるとΔLは十分小さく、増幅率の違いが無視できる。しかし、増幅率の違いは無い方が望ましい。
 そこで、本実施例は、図7に示すようにそれぞれのファイバの全長を光路差ΔLの影響を相殺するように調整した調整希土類添加光ファイババンドル704を用いる。より具体的に説明する。像面509の光はそれぞれ、固定具702によって固定された調整希土類添加光ファイババンドル704に入射する。ここで、ファイバ7031の長さは光路差ΔLの影響を無くす長さに調整されている。よって、ファイバ7031を通過した光には、光路差ΔLの影響は無い。他のファイバ7032-7035についても同様である。言い換えるなら、ファイバ7031-7035は、光路差ΔLの影響が無いような長さになっており、それぞれ長さが異なっていると表現できる。そして、ファイバ7031-7035の端面は固定部701によって光路差が無いように揃えられている。そして、出射した出射光はマイクロレンズ506を介して、複数画素検出器507で検出される。
 ここで、複数画素をもつ検出器としては、暗電流の小さい多チャンネルPMT,画素数の多いCCDやEMCCD(Electron Multiplying CCD),EB-CCD(Electron Bombardment CCD)が適している。
 ここで、検出器の1画素当たりの大きさがCCDカメラなどに比べると大きい多チャンネルPMTを用いる場合は、拡大率が数十倍以上の拡大光学系が必要となり、大きなスペースを必要とする場合もある。さらに、拡大光学系を必要とする場合は、検出光学系が試料100に接近するため、仰角χによっては、検出レンズの開口を充分とることができない場合もある。本実施例によれば、1画素あたりの大きさが大きい検出器を用いる場合でも、ファイババンドル終端で各ファイバの光を自由な間隔でそれぞれ対応するチャンネルに導入することも可能であり、拡大光学系のような特別な光学系を必要としない利点もある。
 次に実施例7について説明する。前述した照明用光源1と励起用光源2とがパルス発振レーザの場合、照明用光源1の照射に起因する光(反射光,回折光,散乱光等)と励起用光源2の光との希土類添加光ファイバ内での時間的な同期を取らないと、励起用光源2の光による自然放射光が発生し、ノイズとなり、所望のS/Nを得られない場合もある。本実施例は、これを解決するものである。本実施例は、照明用光源1の照射に起因する散乱光と励起用光源2の光との希土類添加光ファイバ内での時間的な同期を取る同期部を有することを特徴とする。
 図8は、本実施例を説明する図である。試料100へは照明用光源1(本実施例ではパルス発振レーザ光源)からのパルス光が照明される。照明用光源1の照射に起因する光(反射光,回折光,散乱光等)は、レンズ等を含む検出光学系116によって捕集される。捕集された光は、希土類添加光ファイバ4に入射する。一方、励起用光源2(本実施例ではパルス発振レーザ光源)からのパルス光は、ミラー802にて反射した後、同期部808に入射する。同期部808は例えば2枚のミラー803,804及び、それらの位置(光路長と言ってもよい)を変更するステージ等の駆動機構810を有するものである。同期部808では、ミラー803,804を矢印806のように移動させることが可能であり、励起用光源2からのパルス光の光学的な距離を変えることが可能である。そして、光学的な距離が変更された経路を通過したパルス光はミラー805により反射し、希土類添加光ファイバ4へ入射する。このように励起用光源2からのパルス光の光学的な距離を変えることで、励起用光源2からのパルス光が希土類添加光ファイバ4に入射する時刻を変えることが可能となる。すなわち、照明用光源1の照射に起因する光(反射光,回折光,散乱光等)と励起用光源2の光との希土類添加光ファイバに入射する際の同期を得ることが可能となる。
 なお、検査の際には、事前に照明用光源1の照射に起因する光(反射光,回折光,散乱光等)と励起用光源2の光との希土類添加光ファイバに入射する際の時間差を得ておくことで同期を得ることは十分可能である。
 また、本実施例では、発振周波数は異なってもよいが、同じ発振周期で発光させた方がS/N比は良く好ましい。また、光路長調整用のステージを使わずに、電気的にどちらか一方の発振を遅延させてファイバ内で同時に光が導波するようにしても良い。
 次に実施例8について説明する。本実施例は、照明用光源1がパルス発振レーザ光源であり、励起用光源2が連続発光光源であり、さらに励起光光源の光を強度変調する光強度変調器901を有することを特徴とする。
 図9は本実施例を説明する図である。本実施例は、照明用光源1がパルス発振レーザ光源であり、励起用光源2が連続発光光源であり、さらに励起光光源の光を光学的に強度変調する光強度変調器901を有すること以外は、実施例7と同様の構成を有する。
 図10は光強度変調器を用いて、励起用光源2の光強度を調整した時のタイミング調整を説明する図である。照明用光源1は図10(a)のように時間間隔ΔTa,ピーク強度Iaのガウスプロファイルを有するパルス光を出射している。一方、励起用光源2は連続発光光源であるので、図10(b)に示すように、いずれの時刻においても一定の強度Ibである連続発振光を出射している。本実施例では、光強度変調器901は、図10(b)に示す波形を、図10(c)に示す波形へ変換する。より具体的には、光強度変調器901は、励起用光源2の波形を連続するパルス光へ変換する。そして、強度Ibを強度Ic(希土類イオンの誘導放出が効率よく行われる強度であることが望ましい)へ変える。また、希土類添加光ファイバ内でのピーク強度の発生時刻を一致させる。さらに、その時間間隔をΔTc(=ΔTa)とする。このようにすることで、照明用光源1がパルス発振レーザ光源であり、励起用光源2が連続発光光源である場合でも、希土類添加光ファイバ内での時間的な同期を得ることが可能となる。なお、変調器としてチョッパーを用いても良い。
 次に実施例9について説明する。本実施例は、照明用光源1がパルス発振レーザ光源であり、励起用光源2が連続発光光源であり、さらに、励起用光源2の連続発振光の発生時刻、及び時間の少なくとも1つを、照明用光源1のパルス信号の発生時刻、及び時間の少なくとも1つと電気的に同期させる処理部と、高速応答可能な検出器の一例であるMPPCと、を有することを特徴とする。他の構成は、実施例1と同様である。本実施例は他の検出器に比べて比較的高速応答可能な検出器(例えばMPPC)を使用する場合には、特に有効である。
 図11を用いて本実施例の概要を説明する。他の実施例と同様の説明は省略する。照明用光源1からパルス光P1が照明された際、その発生時刻T1を示す発生タイミング信号が照明用光源1から同期部103へ送られる(矢印1101,1102)。ここで、同期部103では、MPPC301がパルス光P1を検出した時刻を示す検出タイミング信号も検出することができる(矢印1106)。同期部103で検出されたT1は任意に変更可能な遅延信号,持続信号と共に信号処理部105へ送られる(矢印1103)。信号処理部105では、T1,遅延信号,持続信号を使って演算を行い、励起用光源2からの励起光が希土類添加光ファイバ4内で試料100からの散乱光と同期をとれるような時刻、及び時間を得る。そして、信号処理部105での演算された時刻、及び時間は全体制御部106を経由して、励起用光源2に送信される(矢印1104,1105)。そして、励起用光源2は、信号処理部105で演算された時刻、及び時間で連続発振光を発振する。
 さらに詳細に本実施例を図12を用いて説明する。図12は、本実施例での照明用光源1からのパルス光、及び励起用光源2からの光の発生タイミングを説明する図である。本実施例では、励起用光源からの連続発振光の発生時間を、照明用光源1からのパルス光の半値全幅とする。
 照明用光源2からのパルス光P1は図12(a)に示すように、ピーク強度Ia,発生時刻T1のガウスプロファイルとして表現される。図12(b)に示すように、P1の照明により試料100から発生した散乱光S1は、T1からΔT1だけ遅延して希土類添加光ファイバ4へ導波する。ここで、図12(c)に示すように、励起用光源2からの光が、希土類添加光ファイバ4へ導波するまでの間に、S1はさらにΔT2だけ導波する。そこで、本実施例は、図12(d)に示すように時刻T1+ΔT1から、P1の半値半幅ΔTIa/2/2だけ早い時刻に励起用光源2から連続発振光C1を発生させる。つまり連続発振光C1の発生時刻は、T1+ΔT1-ΔTIa/2/2となる。このようにすることで、図12(e)に示すように、C1は希土類ファイバ内でS1と同期を得ることができる。より具体的には、C1のプロファイルの中心はS1のピーク強度の導波時刻と一致しており、C1の発生時間は、照明用光源1からのパルス光の半値全幅ΔTIa/2となる。なお、これらの演算は、同期部103,信号処理部105において行われるものであり、ΔT1,ΔT2等は前述した遅延時間となり、半値全幅ΔTIa/2は持続時間となる。
 なお、前述して、P1,S1,C1の波形は光学的なシミュレーションやフォトダイオード等の光電変換素子を用いた事前の実測等により十分得ることができる。
 また、C1の発生時刻,時間は任意に変更可能であり、また半値全幅は、散乱光S1の半値全幅とすることも可能である。
 上述した実施例1-9は、試料は半導体ウェハを用いて説明したが、この検査方法及び検査装置の検査対象は、半導体ウェハには限定されない。検査対象は、ハードディスク,液晶パネル,太陽光発電パネルなどの基板の検査にも適用できる。
1 照明用光源
2,502 励起用光源
3 検出器
4,206 希土類添加光ファイバ
5 ファイバカプラ
6 カップリング用光学系
7 干渉フィルタ
100 試料
101 ステージ
102 ステージ駆動部
103 同期部
105 信号処理部
106 全体制御部
107 メカ制御部
108 情報表示部
109 入力操作部
110 記憶部
111 回転駆動部
112 垂直駆動部
113 スライド駆動部
116 検出光学系
201 照明光
202 照明スポット
301 MPPC
501 ダイクロイックミラー
505 傾斜希土類添加光ファイババンドル
506 マイクロレンズ
507 複数画素検出器
508 物体面
509 像面
510 階段状希土類添加光ファイババンドル
602 希土類添加光ファイババンドル
603 マイクロミラー
604 マイクロプリズム
701 固定部
704 調整希土類添加光ファイババンドル
7031 ファイバ

Claims (8)

  1.  基板の欠陥を検出する検査装置において、
     前記基板に照明光を照明する照明光学系と、
     前記基板からの光を検出する第1の検出光学系と、
     前記第1の検出光学系により検出された光を光増幅するための第1の光増幅光学系と、
     前記光増幅のための第1の励起光を発生させる第1の励起用光学系と、
     前記光増幅光学系により増幅された光を光電変換するための第1の光電変換系と、
     前記第1の光電変換系からの信号を使って前記欠陥を検出する処理部と、を有し、
     さらに、
     前記励起光の波長は、前記照明光の波長より短いことを特徴とする検査装置。
  2.  請求項1に記載の検査装置において、
     さらに、
     前記基板からの光を検出する第2の検出光学系と、
     前記第2の検出光学系により検出された光を光増幅するための第2の光増幅光学系と、
     前記第2の光増幅光学系による光増幅のための第2の励起光を発生させる第2の励起用光学系と、
     前記第2の光増幅光学系により増幅された光を光電変換するための第2の光電変換系と、
     第1の励起光の強度、および第2の励起光の強度の少なくとも1つを変える制御部と、を有し、
     さらに、前記処理部は、前記第1の光電変換系からの信号、及び前記第2の光電変換系からの信号を用いて重み付け加算を行うことを特徴とする検査装置。
  3.  請求項1に記載の検査装置において、
     さらに、
     前記基板の位置に応じて前記第1の励起光の強度を変える制御部を有することを特徴とする検査装置。
  4.  請求項1に記載の検査装置において、
     前記第1の検出光学系は、斜方検出光学系であり、
     前記第1の光増幅光学系は、複数の希土類添加光ファイバを束ねた希土類添加光ファイババンドルであり、
     前記希土類添加光ファイババンドルでの、前記第1の検出光学系により検出された光を検出する面は傾斜していることを特徴とする検査装置。
  5.  請求項1に記載の検査装置において、
     前記第1の検出光学系は、斜方検出光学系であり、
     前記第1の検出光学系と前記第1の光増幅光学系との間にマイクロミラー及びマイクロレンズを有することを特徴とする検査装置。
  6.  請求項1に記載の検査装置において、
     前記第1の検出光学系は、斜方検出光学系であり、
     前記第1の検出光学系と前記第1の光増幅光学系との間にマイクロプリズム及びマイクロレンズを有することを特徴とする検査装置。
  7.  請求項1に記載の検査装置において、
     前記第1の検出光学系は、斜方検出光学系であり、
     前記第1の光増幅光学系は、複数の希土類添加光ファイバを束ねた希土類添加光ファイババンドルであり、
     前記複数の希土類添加光ファイバの長さはそれぞれ異なることを特徴とする検査装置。
  8.  請求項1に記載の検査装置において、
     さらに、
     前記基板からの光と前記第1の励起光との前記第1の光増幅光学系内での時間的な同期を得る同期部を有することを特徴とする検査装置。
PCT/JP2012/069787 2011-08-03 2012-08-03 検査装置 WO2013018878A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/236,888 US8976347B2 (en) 2011-08-03 2012-08-03 Inspection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-169731 2011-08-03
JP2011169731A JP2013032996A (ja) 2011-08-03 2011-08-03 検査装置

Publications (1)

Publication Number Publication Date
WO2013018878A1 true WO2013018878A1 (ja) 2013-02-07

Family

ID=47629392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069787 WO2013018878A1 (ja) 2011-08-03 2012-08-03 検査装置

Country Status (3)

Country Link
US (1) US8976347B2 (ja)
JP (1) JP2013032996A (ja)
WO (1) WO2013018878A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068917B1 (en) * 2006-03-14 2015-06-30 Kla-Tencor Technologies Corp. Systems and methods for inspection of a specimen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261106A (ja) * 1992-03-18 1993-10-12 Hitachi Ltd 光増幅器を用いた生体光計測装置
JP2001085482A (ja) * 1999-09-14 2001-03-30 Toshiba Corp 半導体検査装置及び半導体検査方法
JP2001108638A (ja) * 1999-10-07 2001-04-20 Lasertec Corp 欠陥検査装置
JP2008096430A (ja) * 2006-09-13 2008-04-24 Hitachi High-Technologies Corp 欠陥検査方法およびその装置
JP2009068903A (ja) * 2007-09-11 2009-04-02 Hitachi High-Technologies Corp 表面検査方法及び表面検査装置
JP2009115753A (ja) * 2007-11-09 2009-05-28 Hitachi High-Technologies Corp 検出回路および半導体ウェハの異物検査装置
JP2010099095A (ja) * 2008-05-02 2010-05-06 Olympus Corp 光学的検査装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761234A (en) * 1996-07-09 1998-06-02 Sdl, Inc. High power, reliable optical fiber pumping system with high redundancy for use in lightwave communication systems
JPH11251663A (ja) 1998-02-26 1999-09-17 Fujikura Ltd 希土類添加光増幅ファイバ、および複数波長励起光増幅器と光通信システム
JP4536337B2 (ja) 2003-06-10 2010-09-01 株式会社トプコン 表面検査方法および表面検査装置
KR100542747B1 (ko) * 2003-08-01 2006-01-11 삼성전자주식회사 결함 검사 방법 및 결함 검사 장치
US20080068593A1 (en) 2006-09-13 2008-03-20 Hiroyuki Nakano Method and apparatus for detecting defects
EP2191770B1 (en) 2008-05-02 2016-04-13 Olympus Corporation Optical inspection device, electromagnetic wave detection method, electromagnetic wave detection device, organism observation method, microscope, endoscope, and optical tomographic image generation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261106A (ja) * 1992-03-18 1993-10-12 Hitachi Ltd 光増幅器を用いた生体光計測装置
JP2001085482A (ja) * 1999-09-14 2001-03-30 Toshiba Corp 半導体検査装置及び半導体検査方法
JP2001108638A (ja) * 1999-10-07 2001-04-20 Lasertec Corp 欠陥検査装置
JP2008096430A (ja) * 2006-09-13 2008-04-24 Hitachi High-Technologies Corp 欠陥検査方法およびその装置
JP2009068903A (ja) * 2007-09-11 2009-04-02 Hitachi High-Technologies Corp 表面検査方法及び表面検査装置
JP2009115753A (ja) * 2007-11-09 2009-05-28 Hitachi High-Technologies Corp 検出回路および半導体ウェハの異物検査装置
JP2010099095A (ja) * 2008-05-02 2010-05-06 Olympus Corp 光学的検査装置

Also Published As

Publication number Publication date
US8976347B2 (en) 2015-03-10
JP2013032996A (ja) 2013-02-14
US20140160470A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
JP6876754B2 (ja) ウェハ検査システム
JP6440622B2 (ja) サンプル検査システム検出器
KR101113602B1 (ko) 웨이퍼 결함 검출 시스템
JP6324963B2 (ja) 固体照射光源及び検査システム
JP2015530600A (ja) 蛍光を用いた表面特徴の分類
KR20120109644A (ko) 검사 장치 및 검사 방법
CN107490566B (zh) 基于二元光学元件的艾里光束光片照明显微成像装置
JP2017102266A (ja) 走査型顕微鏡
WO2013018878A1 (ja) 検査装置
JP2008268041A (ja) 欠陥検査装置
US7528940B2 (en) System and method for inspecting an object using an acousto-optic device
JP2007292590A (ja) 共焦点光学系およびそれを用いた高さ測定装置
KR101391837B1 (ko) 웨이퍼의 워프(Warp) 인스펙션 장치
TW201447282A (zh) 檢查方法及檢查裝置
JP2013032996A5 (ja)
JP2005077309A (ja) 時間分解二次元微弱光検出方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14236888

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12820285

Country of ref document: EP

Kind code of ref document: A1