WO2013015442A1 - Pathogen-resistant plant body, fruit and leaf stem and induction method thereof, and plant cultivation system - Google Patents

Pathogen-resistant plant body, fruit and leaf stem and induction method thereof, and plant cultivation system Download PDF

Info

Publication number
WO2013015442A1
WO2013015442A1 PCT/JP2012/069289 JP2012069289W WO2013015442A1 WO 2013015442 A1 WO2013015442 A1 WO 2013015442A1 JP 2012069289 W JP2012069289 W JP 2012069289W WO 2013015442 A1 WO2013015442 A1 WO 2013015442A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plant
pathogen
irradiated
purple light
Prior art date
Application number
PCT/JP2012/069289
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 真一
康臣 荊木
和正 吉村
Original Assignee
国立大学法人山口大学
地方独立行政法人山口県産業技術センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山口大学, 地方独立行政法人山口県産業技術センター filed Critical 国立大学法人山口大学
Priority to JP2013525789A priority Critical patent/JP6097977B2/en
Publication of WO2013015442A1 publication Critical patent/WO2013015442A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • A01H3/02Processes for modifying phenotypes, e.g. symbiosis with bacteria by controlling duration, wavelength, intensity, or periodicity of illumination

Definitions

  • the present invention relates to a pathogen-resistant plant whose pathogen resistance is enhanced by irradiating purple light, its fruit and its leaf stem, a method for inducing such a pathogen-resistant plant, and a plant cultivation system.
  • Patent Document 1 discloses an invention relating to a plant disease control illumination device including a light source that emits light including ultraviolet rays under the name “plant disease control illumination device”.
  • the plant disease controlling lighting device disclosed in Patent Document 1 includes a light source 2 that emits light including ultraviolet rays when described using the reference numerals described in the document as they are.
  • the plant P can be irradiated by superimposing UV-B having a wavelength component of 280 to 340 nm and UV-C having a wavelength component of approximately 255 nm or less of the wavelength components of approximately 100 to 280 nm cut off. Is.
  • Patent Document 2 discloses an invention relating to a control method for protecting a plant from a disease by increasing disease resistance and a device and a system using the method, under the name “disease control method and disease control device”. ing.
  • the method for controlling plant diseases disclosed in Patent Document 2 will be described using the reference numerals described in the document as they are, and a light emitting diode D1-Dn that emits green light and a drive for lighting the light emitting diode D1-Dn.
  • the drive circuit 1 is controlled by the control device 2 to emit green light from the light-emitting diodes D1-Dn to irradiate the plant. It is characterized by increasing resistance.
  • the amount of agricultural chemicals used can be drastically reduced because the plant is irradiated with light to increase the disease resistance of the plant. Environmental pollution can be prevented without adversely affecting the human body.
  • Non-Patent Document 1 is a paper titled “Suppression by Red Light Irradiation of Corynespora Leaf Spot of Cucumber Caused by Corynespora cassiiicola”. By cultivating cucumbers by irradiating red light in a greenhouse, the occurrence of lesions on leaves It has also been reported that the transmission of disease can be suitably prevented.
  • Non-Patent Document 2 is a tile paper titled “Disease resistance and control effect of scab of sunflower by ultraviolet light (UV-B) irradiation in eggplant”, 5 after irradiation with UV-B (wavelength 290-320 nm) in eggplant leaves. From the 7th day onward, it has been reported that the activity of resistance-related enzymes increases, disease resistance is induced, and pathogen invasion is blocked. Further, Non-patent Document 2 recognizes that there is a report in other non-patent documents that a pathogenic resistance gene is not expressed by irradiation with UV-A (wavelength 400-315 nm).
  • pathogenic resistance (disease resistance) of a plant can be induced by irradiating the plant with light in a specific wavelength region.
  • light in a specific wavelength region is particularly ultraviolet (ultraviolet)
  • ultraviolet ultraviolet
  • “ultraviolet light” is a general term for radiation in which the wavelength of a monochromatic light component is shorter than the wavelength of visible light and is longer than approximately 1 nm (exhibited by JIS Z 8120 optical terminology), and of these, those having a wavelength of 200-380 nm Is called “Near UV”.
  • the “near ultraviolet rays” may be divided into UVA (wavelength 315 to 400 nm), UVB (wavelength 280 to 315 nm), and UVC (wavelength less than 280 nm).
  • UVA wavelength 315 to 400 nm
  • UVB wavelength 280 to 315 nm
  • UVC wavelength less than 280 nm
  • a light beam having a peak at a wavelength of 390 to 420 nm irradiated for imparting pathogenic resistance to a plant body Is referred to as “purple light” and “ultraviolet rays” that are considered to be harmful or harmful to the human body are referred to as radiation having a wavelength of 1 to 390 nm.
  • radiation having a wavelength of 1 to 390 nm it is conceivable to irradiate light of a specific wavelength region at night when a person does not work, but if light is continuously irradiated to the plant body, it will cause stress on the plant body, resulting in inhibition of photosynthesis. There is a possibility that the growth of the plant body may be adversely affected, and introduction into the field was not realistic.
  • Patent Document 2 Although it is considered that the disease resistance of a plant can be induced by irradiating the plant with green light to suppress the occurrence of the plant disease, the green light itself Has no bacteriostatic / bactericidal action, and thus the ability of phytopathogenic fungi to cause disease in plants could not be stagnated or reduced by irradiation with green light. For this reason, if the ability of plant pathogens to cause disease in the plant body has overcome the disease resistance of the plant body, it is not possible to cope with the disease only by irradiating with green light. In particular, there was a problem of having to rely on drugs. Therefore, the effect obtained by irradiating with green light was limited.
  • Non-Patent Document 1 Although there is a possibility that the occurrence and propagation of plant diseases can be suppressed by irradiation with red light, in particular, red light and blue light are healthy growth in the form of plants. (For example, plant cultivation and growth sensing using RGB three-color high-intensity LEDs, Kenji Okamoto et al., Applied Physics, Vol. 68, No. 12, p156-160) (1999) etc.). Therefore, when a plant is irradiated with red light for the purpose of inducing pathogenic resistance, it can be expected to have a disease-suppressing effect by inducing pathogenic resistance, but as a side effect, it is not preferable for morphogenesis during plant growth. There is a risk of impact, and it cannot be said that the technique is necessarily highly reliable in the field of crop cultivation.
  • the present invention has been made in response to such conventional circumstances, and its purpose is that there is no possibility of adversely affecting the growth and morphogenesis of the plant body, or the photosynthetic action, and natural infection of phytopathogenic bacteria may occur. It is an object of the present invention to provide a pathogen-resistant plant that is unlikely to cause disease even when no drug is used or the amount of the drug is reduced in the environment. Moreover, it is providing the fruit or leaf stem as a harvested thing which has no residual agricultural chemicals or few residual agricultural chemicals. Furthermore, it is providing the method of inducing
  • the pathogen-resistant plant according to the first aspect of the present invention is a pathogen induced by violet light irradiation treatment for irradiating leaves with purple light having a peak between wavelengths of 390-420 nm. It is a resistant plant, and the pathogen defense response-related gene is expressed more than the same type of plant that is not treated with purple light.
  • the pathogen defense response-related gene is induced by a salicylic acid synthesis pathway-related gene or salicylic acid. It is characterized by being a gene group.
  • the pathogen-resistant plant that is the invention described in claim 2 is the pathogen-resistant plant according to claim 1, wherein the genes that are induced by salicylic acid are genes that induce acidic PR proteins.
  • the violet light having a peak between wavelengths 390-420 nm irradiated in the violet light irradiation treatment works directly on the plant pathogens adhering to the plant body, and is static. Has the effect of sterilizing bacteria.
  • this purple light is difficult for plants to use for photosynthesis, single irradiation with purple light is stressful for plants, but there is a risk of adversely affecting the morphology and growth process of plants. It has a very low property. Further, this purple light has a very low possibility of adversely affecting the human body.
  • the violet light irradiation treatment is performed, so that the pathogen defense response-related gene is expressed more than the same type of plant body that has not been subjected to the violet light irradiation treatment, more specifically, the salicylic acid synthesis pathway.
  • a related gene or a gene group induced by salicylic acid is expressed. More specifically, a gene related to a salicylic acid synthesis pathway or a gene group that induces an acidic PR protein is expressed, and resistance to phytopathogenic fungi is expressed in plants. It has the effect of being elevated throughout the body.
  • the pathogen-resistant plant according to claim 1 while the pathogen resistance of the plant is enhanced by the purple light irradiation treatment, it adheres to or infects the plant and causes a disease to the plant. Since it acts directly on the phytopathogenic fungi to be bacteriostatic and sterilized, the risk of causing diseases in the plant body is greatly reduced when these actions occur simultaneously.
  • the fruit according to the invention described in claim 3 is harvested from the pathogen-resistant plant according to claim 1 or claim 2.
  • the leaf stem which is the invention according to claim 4 is harvested from the pathogen-resistant plant according to claim 1 or claim 2.
  • the invention described in claim 3 or claim 4 is a fruit or leaf stem harvested from the pathogen-resistant plant according to claim 1 or claim 2, and the action thereof is claimed in claim 1 or claim. It is the same as the pathogen-resistant plant described in 2.
  • the method for inducing a pathogen-resistant plant according to claim 5 irradiates at least 10% of the total leaf area of the plant with violet light having a peak between wavelengths 390-420 nm.
  • a violet light irradiation process is performed.
  • the invention of the above configuration is obtained by capturing the invention according to claims 1 and 2 as a method invention, and the action of purple light and purple light irradiation treatment in the invention according to claim 5 is This is the same as the effect of the purple light and purple light irradiation treatment in the described invention.
  • the stress to the plant body by purple light irradiation is reduced by making purple light irradiation intermittent in purple light irradiation processing.
  • the invention according to claim 6 is a method for inducing a pathogen-resistant plant according to claim 5, which is related to a salicylic acid synthesis pathway, which is a gene related to a pathogen defense response in a plant by performing purple light irradiation treatment. It is characterized by expressing a gene or a gene group induced by salicylic acid.
  • the invention having the above-described configuration is obtained by capturing the inventions according to claims 1 and 2 as the invention of the method, and clarifies the purpose of performing the violet light irradiation treatment. Therefore, the operation of the invention described in claim 6 is the same as that of the invention described in claim 5.
  • the pathogen-resistant plant that is the invention according to claim 7 is characterized by being induced by the method according to claim 5 or claim 6.
  • the action of the pathogen-resistant plant having the above structure is the same as the action of the pathogen-resistant plant according to claims 1 and 2.
  • the plant cultivation system according to claim 8 is a plant growth space capable of directly or indirectly irradiating a plant leaf with outdoor natural light or artificially adjusted natural light.
  • a medium or culture solution that contains roots and supplies nutrients and water necessary for the growth of the plant and a peak at a wavelength of 390-420 nm in a region of at least 10% of the total leaf area of the plant It has a violet light source that irradiates violet light intermittently, and a control unit that controls turning on and off of the violet light source.
  • the plant growth space has an effect of supplying outdoor natural light necessary for photosynthesis or artificially adjusted natural light to the leaves of the plant.
  • the medium or the culture solution has the effect of containing the roots of the plant body and supplying nutrients and water necessary for the growth of the plant body.
  • the violet light source has an effect of intermittently irradiating purple light having a peak between wavelengths 390 to 420 nm to a region of at least 10% of the entire leaf area of the object.
  • the control unit has an action of controlling turning on and off of the violet light source.
  • the pathogen defense response-related gene is expressed more specifically than the same kind of plant body not irradiated with purple light, and more specifically, Specifically, a salicylic acid synthesis pathway-related gene or a gene group induced by salicylic acid is expressed, and more specifically, a salicylic acid synthesis pathway-related gene or a gene group that induces acidic PR protein is expressed, Resistance to plant pathogens is increased throughout the body of the plant.
  • the purple light directly acts on phytopathogenic bacteria attached to or infecting the plant body, and has an effect of bacteriostatically / sterilizing the phytopathogenic bacteria.
  • purple light is light that is difficult for plants to use for photosynthesis, it causes stress for plants, but has a very low risk of adversely affecting morphogenesis and growth of plants. Furthermore, it has the effect
  • the plant pathogenic microbe which adheres or infects a plant body and is going to cause a disease to a plant body is obtained. It has the effect of bacteriostatically and sterilizing, and the simultaneous action of these has the effect of growing the plant healthy while greatly reducing the risk of causing disease in the plant.
  • violet light is extremely unlikely to adversely affect the human body, the use of a violet light source has the effect of providing a safe working environment for the worker.
  • the plant cultivation system which is the invention according to claim 9 is the plant cultivation system according to claim 8, wherein the violet light source can be changed in its mounting position or the number of mounting, or the mounting position and mounting. Both of the numbers can be changed.
  • the invention according to the ninth aspect has the same action as the invention according to the eighth aspect.
  • the position and size of the leaf can be changed with the growth of the plant body by changing the mounting position or the number of the violet light source, or by changing both of them. Even when the light intensity changes, it has an effect of reliably irradiating the target leaf with purple light.
  • the purple light irradiation treatment not only makes the plant body less susceptible to disease, but also reduces or reduces the force of plant pathogens attached to or infected with the plant body to cause disease.
  • the risk of causing a disease in the pathogen-resistant plant can be reduced. it can. Therefore, according to the pathogen-resistant plant according to claims 1 and 2, it is possible to reduce the amount of a drug used for suppressing the occurrence of disease during cultivation, and thus a highly safe plant is provided. can do.
  • the fruits and leaf stems according to claims 3 and 4 are all harvested from the pathogen-resistant plant according to claim 1 or claim 2, and the invention according to claim 1 or claim 2 Has the same effect. Moreover, according to the fruit and leaf stem of Claims 3 and 4, it is possible to efficiently produce and provide foods and raw materials for processing that have no residual chemicals or little residual agricultural chemicals.
  • the invention described in claims 5 and 6 is obtained by capturing the invention described in claims 1 and 2 as a method invention, and the plant obtained by the method for inducing a pathogen-resistant plant described in claims 5 and 6 is
  • the pathogenic resistance plant according to claims 5 and 6 has the same effect as that of the pathogenic resistance plant according to claims 1 and 2. The same.
  • a gene related to a salicylic acid synthesis pathway or a gene induced by salicylic acid which is a gene related to a pathogen defense response in a plant by irradiation with purple light.
  • the invention described in claim 7 is a pathogen-resistant plant obtained by the method described in claims 5 and 6, and the pathogen-resistant plant is the pathogen-resistant plant described in claims 1 and 2. The same. Therefore, the effect of the invention described in claim 7 is the same as the effect of the invention described in claims 1 and 2.
  • pathogenicity resistance can be enhanced in the whole body of the plant body by irradiating the plant body with violet light, so that it is possible to suppress the occurrence of disease caused by the plant pathogen.
  • the plant pathogenic bacteria can be bacteriostatically and sterilized at the site that is directly irradiated with purple light, it is efficient to irradiate purple light on the site that is likely to cause disease in the plant body (for example, lower leaves). The occurrence of disease can be suppressed. Therefore, according to the plant cultivation system according to claim 8, the plant body can be made less susceptible to illness by irradiating with purple light, and the plant pathogen can be bacteriostatically / sterilized. It is possible to reduce the amount of chemicals used for disease control during cultivation. As a result, it is possible to produce and provide crops with little residual agricultural chemicals and raw materials for processing.
  • the invention according to the ninth aspect has the same effect as the invention according to the eighth aspect.
  • the attachment position or the number of attachments of the violet light source can be changed, or both of them can be changed, the size and position of the leaves have changed with the growth of the plant body. Even in such a case, a necessary number of violet light sources can be installed at necessary positions.
  • a purple light source is newly added or a purple light source that irradiates a site where no disease has occurred is used to irradiate the site where the disease has occurred Therefore, purple light can be irradiated to the site where the disease has occurred.
  • phytopathogenic bacteria at the site where the disease has occurred can be bacteriostatically sterilized, so that the spread of the disease and the spread of the infection can be effectively prevented.
  • the leaves can be preserved by irradiating the leaves where the disease has occurred with purple light, the damage to the plants when the disease occurs can be minimized.
  • the possibility that it can be dealt with by irradiating purple light without using a drug increases. Cultivation of plant bodies can be continued while reducing the amount used, and it becomes easy to produce foods with little residual agricultural chemicals and raw materials for processing even after diseases occur in the plant bodies. That is, a safe harvest with little residual agricultural chemicals can be obtained from a plant body in which a disease has occurred.
  • (A)-(c) is a conceptual diagram showing a mechanism for inducing a pathogen-resistant plant according to Example 1 of the present invention.
  • (A)-(c) is a conceptual diagram showing the progression of disease when no treatment for inducing pathogenic resistance is performed on the plant body P.
  • FIG. (A)-(c) is a conceptual diagram which shows the mechanism by which the pathogenic resistance of the plant body P is induced when irradiated with green light.
  • (A)-(c) is a conceptual diagram of a plant cultivation system according to Example 2 of the present invention.
  • (A)-(c) is a conceptual diagram showing a plant cultivation system according to a modification of Example 2 of the present invention.
  • cinerea cultured while irradiating purple light of wavelength 405 nm for 24, 72 and 168 hours, respectively, and an image showing the appearance of spores cultured in the dark for 24, 72 and 168 hours It is the image which contrasts and shows. It is a graph which shows the expression change of the division control gene in B.cinerea irradiated with 405 nm purple light.
  • A is an image showing the appearance of the tomatoes irradiated with 405 nm wavelength violet light
  • (b) is an image showing the appearance of the tomatoes in the control section.
  • (c) is an enlarged image showing a state of bacterial (gray mold) staining when tomato leaf tissue is stained with lactphenol cotton blue when irradiated with purple light having a wavelength of 405 nm
  • (d) is a control. It is an enlarged image which shows the mode of a microbe (gray mold fungus) dyeing
  • FIG. It is a top view which shows arrangement
  • FIG. It is a top view which shows arrangement
  • glo is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), and 640 nm It is an image which shows the reproduction state after 144 hours at the time of culturing while irradiating light having a peak wavelength and white light, respectively.
  • the rice blast fungus F. pro
  • it has light with a peak wavelength at 375 nm, light with a peak wavelength at 405 nm, light with a peak wavelength at 470 nm (purple light), and peak at 640 nm.
  • pro is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), It is an image which shows the reproduction state after 144 hours at the time of culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
  • Example 1 will be described in detail with respect to the pathogen-resistant plant according to the embodiment of the present invention, the fruit thereof, the leaf stem thereof, and the method for inducing the pathogen-resistant plant, and the plant cultivation system will be described in detail with reference to Example 2. To do.
  • FIG. 1 (a) to 1 (c) are conceptual diagrams showing a mechanism for inducing a pathogen-resistant plant according to Example 1 of the present invention.
  • a violet light source 3 or the like is used on the leaf 2 of the plant P, and the wavelength 390- A violet light irradiation process of irradiating purple light 11 having a peak between 420 nm may be performed.
  • the pathogen defense response-related gene is expressed and the pathogen resistance is increased in the whole body of the plant body P as compared with the same plant body P that is not subjected to the purple light irradiation treatment as described above. It becomes the pathogen-resistant plant body 1.
  • the pathogen defense response related gene expressed in the plant body P by the purple light irradiation treatment is specifically a salicylic acid synthesis pathway related gene or a gene group induced by salicylic acid, and more specifically, It is a gene group that induces salicylic acid synthesis pathway-related genes or acidic PR proteins.
  • the phytopathogenic fungus 4 is more cultivated when the plant P (pathogen-resistant plant 1) subjected to the purple light irradiation treatment is cultivated than when the plant P not subjected to the purple light irradiation treatment is cultivated. Since the amount of a drug (agricultural chemical) used for controlling disease caused by the above can be reduced, or it can be made pesticide-free, it is possible to provide a plant P that is highly safe for the human body. In addition, when the plant body P itself is edible, or when fruits and leaves and stems harvested from the plant body P are edible, it is possible to provide safe foods with little or no residual pesticides. it can.
  • the red light is usually indispensable for the photosynthesis of the plant body P, although there is little possibility that the red light has an unfavorable effect on the human body.
  • it has been reported that it is particularly relevant to normal morphogenesis and growth of the plant body P, and it cannot be said that it is a highly reliable technique when cultivating commercial crops.
  • the green light is usually light that is not used for photosynthesis in the plant body P, and Since there is little risk of adverse effects, it is considered that such a problem as in the case of using ultraviolet light (ultraviolet light) or red light does not occur.
  • ultraviolet light ultraviolet light
  • red light since green light has no bacteriostatic / bactericidal action against the phytopathogenic fungus 4, the ability of the phytopathogenic fungus 4 to cause disease to the plant P has overcome the pathogenic resistance of the plant P. In that case, it was no longer possible to deal with it only by irradiating green light, and eventually it was necessary to rely on drugs to control the disease.
  • the inventors have obtained the knowledge that purple light 11 having a peak between wavelengths 390-420 nm has bacteriostatic / bactericidal action against pathogenic bacteria that adversely affect the human body.
  • the phytopathogenic fungus 4 was directly irradiated with purple light 11.
  • the purple light 11 has a bacteriostatic / bactericidal action against the phytopathogenic fungus 4.
  • the inventors irradiate the plant body P with the purple light 11 on the assumption that the generation of the disease caused by the plant pathogen 4 can be suppressed by irradiating the purple light instead of using the drug.
  • the inventors have found that irradiation with purple light 11 increases the pathogenic resistance of the plant body P and can suppress the occurrence of disease.
  • the pathogen-resistant plant 1 according to Example 1 as a first effect, as shown in FIG. 1B, at least a part of the plant has a purple light having a peak between wavelengths 390-420 nm.
  • the pathogenic resistance can be enhanced in the whole body of the plant body P, and thus the plant body P after being irradiated with the purple light 11 can be made difficult to get sick.
  • FIGS. 1B and 1C the fact that the whole plant P is hatched indicates that the pathogenic resistance of the plant P is induced. The same applies to other embodiments.
  • the second effect is that the plant P has a purple color, particularly at a site directly irradiated with purple light 11 having a peak between wavelengths 390-420 nm. Since the bacteriostatic and bactericidal action of the phytopathogenic fungi 4 by the light 11 is exerted, the ability of the phytopathogenic fungi 4 attached or infected to the plant P before irradiating the purple light 11 to cause the disease to the disease Can be stagnated or reduced. More specifically, as shown in FIG.
  • the phytopathogenic fungus 4 are bacteriostatically sterilized by the violet light 11 at the site irradiated directly with the violet light 11, and the phytopathogenic fungi 4 are transferred to the plant body P. Since the force to cause the disease is stagnated or weakened, the occurrence of the disease in the leaves 2 of the plant body P can be suppressed or prevented as shown in FIG.
  • the pathogen-resistant plant 1 according to Example 1 not only the pathogenic resistance of the plant P is increased, but also by stagnating and reducing the ability of the phytopathogenic fungus 4 to cause disease. It is possible to suppress the occurrence of disease in the plant body P.
  • the latter effect is due to the use of purple light 11 having a peak between wavelengths 390-420 nm in the pathogen-resistant plant 1 according to Example 1. This is a unique effect of the invention.
  • the plant body P also has resistance induced by direct damage caused by the phytopathogenic fungi 4 or the like, but in the present specification, it is induced by direct damage by the phytopathogenic fungi 4 or the like.
  • the pathogenic resistance is distinguished from the pathogenic resistance induced by irradiating light having a specific wavelength region, and the former resistance is ignored.
  • FIGS. 2A to 2C are conceptual diagrams showing the progression of disease when no treatment for inducing pathogenic resistance is performed on the plant body P.
  • FIG. 2 (a) the same code
  • the plant P for example, leaves 2 are attached or infected with the phytopathogenic fungi 4 are left as they are, the phytopathogenic fungi 4 are attached or removed as shown in FIG. 2 (a).
  • a large number of lesions 5 appear on the infected leaves 2 to cause a disease, and further, the infection of the phytopathogenic fungi 4 spreads to the surrounding leaves 2 and other plant bodies P (not shown). If the state is left as it is, the leaves 2 in which a large number of lesions 5 have appeared become dead leaves 7, and the infection of the phytopathogenic fungi 4 has further expanded while a large number of the lesions 5 have occurred in the other leaves 2 thereon. In the worst case, the plant body P will die.
  • FIGS. 3A to 3C are conceptual diagrams showing a mechanism by which pathogenic resistance of the plant body P is induced when irradiated with green light.
  • symbol is attached
  • FIG. 3A for example, when green light 12 is irradiated to a plant body P in which a phytopathogenic fungus 4 is attached or infected to a leaf 2 using, for example, a green light source 6, irradiation with green light 12 is performed.
  • the green light 12 has a bacteriostatic / bactericidal action like the purple light 11 used in inducing the pathogen-resistant plant body 1 according to Example 1. Since it does not have, the force which the plant pathogenic microbe 4 tries to cause a disease to the plant body P is maintained as it is. In this case, even if the resistance of the plant body P is increased, if the plant pathogenic fungus 4 has a sufficient force to cause disease to the plant body P, FIG. As shown in FIG. 5, the lesion 5 is generated on the leaf 2 of the plant body P, or the spread of infection to other leaves 2 occurs.
  • the pathogen-resistant plant 1 according to Example 1 As shown in FIG. 1, the bacteriostatic / sterilization of the phytopathogenic fungus 4 is performed in the plant P directly irradiated with the purple light 11. Since the action is exerted, the force of the phytopathogenic fungus 4 to cause the plant body P to be ill is stagnant or weakened. Therefore, in the pathogen-resistant plant 1 according to Example 1, the possibility that the phytopathogenic fungus 4 still has sufficient power to cause disease on the plant P after the irradiation with the purple light 11 is greatly increased. To be low.
  • the occurrence and progression of the disease caused by the phytopathogenic fungus 4 can be further slowed compared to the case where the green light 12 is irradiated. .
  • the pathogen-resistant plant body 1 according to Example 1 is a seedling of the plant body P cultivated in a field or a house, the whole body of the plant body P is subjected to violet light irradiation treatment.
  • This method is particularly effective when the target irradiated with the violet light 11 is relatively small.
  • a specific plant P for example, when it is clear that a disease caused by the phytopathogenic fungus 4 is likely to occur in a specific part (for example, a lower leaf), the disease is caused when the purple light irradiation treatment is performed.
  • the generation of diseases caused by the phytopathogenic fungi 4 can be efficiently suppressed by selecting a specific part that is likely to occur and irradiating the purple light 11 with priority.
  • This method is particularly effective when the target irradiated with the violet light 11 is large.
  • the purple light irradiation site is a leaf, but if it is a plant chlorophyll-containing site (for example, a stem or a petiole), a pathogen defense response-related gene is expressed by purple light irradiation. There is a possibility that it can be made.
  • the irradiation site of the purple light is on the leaf of the plant body.
  • the process for inducing the pathogenic resistant plant 1 according to Example 1 as described above is the method for inducing the pathogenic resistant plant according to Example 1. More specifically, in the method for inducing a pathogen-resistant plant according to Example 1, purple light 11 having a peak between wavelengths 390-420 nm is applied to a region of at least 10% of the total leaf area of plant P. The violet light irradiation treatment is performed intermittently. According to the pathogen-resistant plant body induction method according to Example 1, the pathogen-resistant plant body 1 according to Example 1 as described above can be induced.
  • a purple light having a peak between wavelengths 390-420 nm used in the pathogen-resistant plant body 1 according to Example 1 and the pathogen-resistant plant body induction method for inducing the pathogen-resistant plant body 1 No. 11 has a very low possibility of adversely affecting the human body, so even if the purple light source 3 is installed in a place where a person works such as in a farm or house, the worker can safely work in the farm or house. be able to.
  • the purple light 11 having a peak between wavelengths 390-420 nm is a light that has the potential to reduce the photosynthetic quantum yield of the plant body. Any continuous irradiation of the purple light 11 on the body P may cause stress to the plant body P and inhibit photosynthesis.
  • the plant body P is continuously irradiated with the purple light 11 for a long time, it may negatively affect the photosynthesis of the plant body P (decrease in the quantum yield), and the purple light 11 is intermittently irradiated. It is considered that the negative influence on the photosynthesis can be alleviated by alternately performing the time zone in which the purple light 11 is irradiated and the time zone in which the purple light 11 is not irradiated. In the present invention, it is considered that disease (pathogenicity) resistance is induced by applying a certain amount of light stress to the plant body P (irradiation with purple light 11).
  • the purple light 11 is intermittently irradiated.
  • switching between irradiation and non-irradiation of the purple light 11 in units of seconds, minutes, or hours is referred to as intermittent irradiation or intermittent irradiation.
  • the pathogenic resistance of the plant body P can be increased by simply irradiating the purple light 11 to a region of at least 10% of the total leaf area of the plant body P.
  • the disease caused by the phytopathogenic fungus 4 is particularly likely to occur.
  • the lower leaves severe leaves arranged on the root side of the plant body P
  • the purple light 11 By irradiating the lower leaves (several leaves arranged on the root side of the plant body P) with the purple light 11, the occurrence of the disease in the plant body P is caused. Can be efficiently suppressed.
  • FIGS. 4A to 4C are conceptual diagrams of the plant cultivation system according to Example 2 of the present invention.
  • the same parts as those described in FIGS. 1 to 3 are denoted by the same reference numerals, and description of the configuration is omitted.
  • the plant cultivation system 10A according to the second embodiment can directly or indirectly irradiate the leaves 2 of the plant body with outdoor natural light or artificially adjusted natural light.
  • One or a plurality of plant bodies P are arranged in the plant growth space 8 and contains the roots of the plant bodies P, and includes a medium 9 for supplying nutrients and water necessary for the growth of the plant bodies P.
  • At least part of the leaves of the plant body P, more specifically, at least 10% of the total leaf area of the plant body P is intermittently irradiated with purple light 11 having a peak between wavelengths 390-420 nm.
  • a purple light source 3 is provided, and the purple light source 3 is controlled to be turned on and off by a control unit (not shown).
  • natural light (visible light) L necessary for plant growth is provided in the space where the plant P is arranged. Can be supplied.
  • the natural light L may be outdoor natural light or a combination of a plurality of colors of light (a plurality of types of light having different wavelengths) having the same effect as the artificially adjusted natural light L.
  • the culture medium 9 while accommodating the root of the plant body P, the nutrient and water required for the growth of the plant body P can be supplied. Furthermore, by providing the purple light source 3 and a control unit (not shown), the leaves of the plant body P can be intermittently irradiated with the purple light 11 having a peak between wavelengths 390-420 nm. In addition, when the plant body P is a thing which can be hydroponically cultivated, it can replace with the culture medium 9 and can also use a culture solution.
  • the plant body P can be grown normally. Furthermore, in the plant cultivation system 10A according to Example 2, in addition to the natural light L or the artificial light having an action equivalent to the natural light L, the purple light 11 is superimposed on the leaves 2 of the plant P by the purple light source 3. Can be irradiated. In this case, since the plant body P cultivated in the plant body cultivation system 10A according to Example 2 becomes the pathogen-resistant plant body 1 described in the previous Example 1, it is preferable that the disease caused by the phytopathogenic fungi 4 occurs. Can be suppressed.
  • the bacteriostatic / bactericidal action of the phytopathogenic fungi 4 as described in the first embodiment is performed at the portion of the plant P that is directly irradiated with the purple light 11. Therefore, as shown in FIGS. 4B and 4C, it is possible to prevent or delay the occurrence of a disease such as the appearance of a lesion 5 at a site directly irradiated with the violet light 11. That is, according to the plant cultivation system 10A according to the second embodiment, the plant P becomes the pathogen-resistant plant 1 so that it is less likely to become ill, and the aggressiveness of the phytopathogenic fungus 4 against the plant P is also improved. Therefore, even if the plant pathogen 4 adheres to or infects the plant body P, it becomes easy to maintain a state in which no visible disease is caused. That is, it is possible to prevent or greatly delay the occurrence of disease in the plant body P.
  • seedlings and plant bodies P are cultivated by conventional methods.
  • seedlings and plant bodies P are cultivated by conventional methods.
  • medicine at the time of cultivating plant body P can be reduced significantly, plant body P with few residual agricultural chemicals and high safety
  • leaf stems and fruits harvested from the plant body P cultivated in the plant body cultivation system 10A according to Example 2 can also be made highly safe with little residual agricultural chemicals.
  • the site when a site (for example, a lower leaf) that is particularly likely to cause a disease is known for a specific plant P, the site is selected and purple light 11 is selected. Can be efficiently suppressed.
  • the bacteriostatic / bactericidal action is exhibited by the purple light 11, so that the progression of the disease is greatly delayed or stagnant. It is possible to prevent the plant pathogen 4 from infecting other parts of the plant body P (pathogen-resistant plant body 1) and other adjacent plant bodies P. Can be suppressed.
  • the intensity of the purple light 11 when the plant body P is irradiated with the purple light 11 It is desirable to make the intensity higher than the intensity of the purple light 11 included in the natural light L or the artificially adjusted natural light L.
  • the light intensity of the purple light 11 in the natural light L during the day is particularly stronger than that in the morning and evening, so more specifically in the morning and evening hours, for example, from 7 am to 10 am
  • the purple light 11 that is stronger than the purple light 11 contained in the natural light L is emitted by superimposing the purple light 11 on the natural light L in the morning until 3:00 pm to 6:00 pm
  • the plant body P can be irradiated. Further, it is preferable to irradiate the purple light 11 with the natural light L only during the morning and evening hours because the purple light 11 is intermittently irradiated.
  • the disease (pathogenicity) resistance of the plant body P can be suitably achieved by repeating irradiation and non-irradiation of the purple light 11 every hour with respect to the leaves of the plant body P in a time zone where there is sunlight. Can be increased.
  • FIGS. 5A to 5C are conceptual diagrams showing a plant cultivation system according to a modification of the second embodiment of the present invention.
  • the same parts as those described in FIGS. 1 to 4 are denoted by the same reference numerals, and description of the configuration is omitted.
  • FIG. 5 (a) when the purple light source 3 is arranged at the same position as in FIG.
  • the plant P is cultivated while being irradiated with the purple light 11
  • the attachment or infection of the phytopathogenic fungus 4 has occurred on the leaves 2 that have not been irradiated with the purple light 11, and later, as shown in FIG. 5 (b), the lesions on the leaves 2 that have not been irradiated with the purple light 11.
  • the violet light source 3 irradiating the violet light 11 to the leaves 2 where the lesion 5 has not occurred is removed.
  • the violet light 11 can be irradiated to the leaf 2 where the lesion 5 has occurred.
  • the purple light 11 can be irradiated to the leaf 2 in which the lesion 5 was produced by newly adding the purple light source 3.
  • the site where the disease has occurred (mainly leaves) is removed to prevent the spread of the disease, or the spread of the plant pathogen 4 and the disease by spraying a chemical
  • the site where the disease has occurred mainly leaves
  • the possibility of preserving the leaves responsible for the hypertrophic growth of the crop increases, there is a problem that the safety of the crop decreases due to the residual agricultural chemicals.
  • the ability of the phytopathogenic fungus 4 to harm the plant P only by irradiating the purple light 11 without using a drug is stagnated or reduced. Therefore, even when a disease occurs, the possibility of preserving the leaves responsible for the hypertrophic growth of the harvest increases. In addition, the risk of the drug remaining in the harvest can be reduced. Therefore, when the plant cultivation system 10B according to the modified example of the second embodiment is employed, even when a disease occurs in the field or the house, the quality of the harvest can be minimized. Therefore, when cultivating a crop in a field or house, a more practical technique can be provided for reducing the amount of medicine used.
  • Tests 1 to 13 performed for the purpose of verifying the operation and effect of the present invention and the results thereof will be described.
  • the verification results of the bacteriostatic / bactericidal action against purple light phytopathogenic bacteria having a peak between wavelengths 390-420 nm used in the present invention will be described.
  • Bacteriostatic / bactericidal action of phytopathogenic bacteria by purple light irradiation For the purpose of confirming bacteriostatic / bactericidal action of phytopathogenic bacteria by purple light, Test 1 as shown below was performed.
  • (1-i) Test method The bacterial flora of tomato gray mold B.
  • cinerea on the surface medium is scraped with a platinum loop and placed on an SNA plate medium (the composition is shown in Table 1 below), at 25 ° C in the dark. For 4-5 days. Thereafter, the outer periphery of the bacterial colony was extracted together with the medium with a cork borer having an inner diameter of 4 mm, and the bacterial cell plug was placed in the center of a new SNA plate medium and used as a bacterial cell plate for the irradiation test.
  • SNA plate medium the composition is shown in Table 1 below
  • FIG. 6 is a graph showing changes in colony diameter with time when irradiated with light of each wavelength with a constant photon flux density (95 ⁇ molm ⁇ 2 s ⁇ 1 constant). As shown in FIG. 6, when light of each wavelength was irradiated with the photon flux density constant (95 ⁇ molm ⁇ 2 s ⁇ 1 constant), the most remarkable growth suppression was observed in the 375 nm light irradiation section with high energy as expected.
  • FIG. 7 is a table showing the ratio (recovery rate) of the recovered colonies (the number of colonies in which the bacteria were not killed) to the total number of colonies after irradiation with violet light (wavelength 405 nm) for a predetermined time. As shown in FIG. 7, when violet light with a wavelength of 405 nm was irradiated, the death of all colonies was confirmed after 144 hours of irradiation.
  • the bacteriostatic / bactericidal action does not mean a state in which all phytopathogenic bacteria irradiated with purple light are bacteriostatic or sterilized, but one of the phytopathogenic bacteria irradiated with purple light. As part of the plant becomes inactive and another part is killed, and these phenomena occur at the same time, the growth ability of the whole phytopathogenic fungi irradiated with purple light is stagnant, decreasing, or dead Is meant to be.
  • each wavelength light was irradiated for 24, 48, 72, and 96 hours, respectively, and then the medium was moved in the dark. Furthermore, after culturing for 24 hours, spores were observed again.
  • FIG. 8 is an image showing the state of spores when B.cinerea spores are irradiated with light of each wavelength (405 nm, 415 nm, 450 nm, irradiance 60 Wm ⁇ 2 ) for 72 hours.
  • FIG. 5 is a diagram showing contrasted images showing the state of spores when irradiated with light of each wavelength for 72 hours and then cultured in the dark for 24 hours. In addition, the image of what was cultured for the same time in the dark as a comparison object was shown in the lowermost stage.
  • FIG. 9 shows the time-dependent change in the germination rate of B.
  • FIG. 9 also shows the germination rate of spores after irradiating each wavelength of light for 72 hours and then culturing in the dark for 24 hours.
  • the violet light used in the present invention is less effective in spore germination and sterilization as the wavelength of irradiation light is shorter (closer to the lower limit of wavelength of 390 nm). It is considered high.
  • the upper limit of the wavelength of purple light used in the present invention there was no significant difference between the germination rate of spores when irradiated with purple light having a wavelength of 450 nm and the germination rate of spores in the dark. It is estimated that the upper limit of the emission wavelength at which spore germination suppression and bactericidal effects of phytopathogenic bacteria can be expected is between 415 nm and 450 nm.
  • the violet light (purple light with a wavelength of 405 nm, violet light with a wavelength of 405 nm, and violet light with a wavelength of 405 nm) used in Tests 1 to 13 shown in this specification is light having a peak wavelength at a wavelength of 405 nm. The same standard was used. Further, a graph showing the wavelength characteristics of the violet light (wavelength 405 nm violet light, wavelength 405 nm violet light, 405 nm violet light) light source used in Tests 1 to 13 is shown in FIG. As shown in FIG.
  • the violet light used in Tests 1 to 13 is not a single wavelength light, but has a particularly high emission within a wavelength range of 390 to 420 nm while having a peak at a wavelength of 405 nm. It is. Therefore, if the radiation has a peak wavelength within the wavelength range of 390-420 nm, the bacteriostatic / bactericidal effect of the phytopathogenic fungi 4 and the pathogenic defense response in the plant P are advantageous effects described in the present specification. It is highly possible that the effect of improving the resistance to pathogen (disease) due to the expression of the related gene is exhibited at the same time.
  • Test 3 For the purpose of confirming bacteriostatic and bactericidal action against seven typical plant pathogens, Test 3 as shown below was conducted.
  • Each fungus on the slant medium was scraped with a platinum loop and cultured on a potato dextrose agar (PDA) plate medium for 3 days. Thereafter, the cells were extracted together with the medium with a cork borer having a diameter of 5 mm, the cell plug was placed in the center of a new PDA plate medium, and this was used as a cell plate for the irradiation test.
  • PDA potato dextrose agar
  • FIG. 35 shows a case in which a black mold (A. nig) was cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, peak wavelength at 470 nm. It is an image showing the breeding state after 144 hours in the case of culturing while irradiating with light (purple light), light having a peak wavelength at 640 nm, and white light.
  • FIG. 36 shows a case where gray mold fungus (B. cin) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light).
  • FIG. 35 shows a case in which a black mold (A. nig) was cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, peak wavelength at 470 nm.
  • FIG. 6 is an image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
  • FIG. 37 shows the case where anthracnose fungus (C. glo) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light).
  • FIG. 6 is an image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
  • FIG. 38 shows a case where a blast fungus (F.
  • FIG. 39 shows a case where another blast fungus (F.
  • FIG. 40 shows a case where another blast fungus (F. pro) was cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light).
  • FIG. 41 shows a case where another blast fungus (F.ver) was cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light) ), An image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
  • FIG. 41 shows a case where another blast fungus (F.ver) was cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light) ), An image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
  • FIG. 41 shows a case where another blast fungus (F.ver) was cultured in the dark, light having a peak
  • FIG. 42 shows a case where another blast fungus (M.gri) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light) ), An image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
  • FIG. 43 shows a case where black rot sclerotia (S.
  • FIG. 10 shows a comparison between an image of the mycelial tip of a phytopathogenic fungus cultured in the dark and an image of the mycelial tip of the phytopathogenic fungus cultured while irradiating purple light with a wavelength of 405 nm. It is a figure. As shown in FIG. 10, abnormal enlargement was observed at the tip of the mycelium on the outer edge of the fungal colony after irradiation with 405 nm purple light (irradiance 60 Wm ⁇ 2 ) for 24 hours.
  • FIG. 11 shows an image showing the state of spores (B.
  • cinerea cultured while irradiating purple light with a wavelength of 405 nm for 24, 72, and 168 hours, respectively, and the appearance of spores cultured for 24, 72, and 168 hours in the dark. It is an image shown in contrast with the shown image.
  • 405 nm purple light irradiance 60 Wm ⁇ 2
  • B.cinerea spores on SNA plate medium (see Table 1 above).
  • a similar enlargement of the spores was observed with the lapse of irradiation time.
  • the phytopathogenic fungus when the phytopathogenic fungus is irradiated with purple light, it is presumed that the morphological change of the phytopathogenic fungus is promoted, and the normal growth of the phytopathogenic fungus is hindered by this change and the bacteriostatic / bactericidal action is exhibited. Therefore, it was shown that the purple light used in the present invention acts directly on phytopathogenic bacteria to cause morphological changes.
  • FIG. 12 is a graph showing changes in the expression of mitotic control genes in B. cinerea irradiated with purple light having a wavelength of 405 nm.
  • B.cinerea irradiated with 405 nm purple light see legends in FIG. 12, 1h, 3h, and 6h
  • the expression of cdc48 gene that promotes cell repair was increased. From these results, it was suggested that violet light irradiation at a wavelength of 405 nm caused inhibition of chromosome segregation and cell repair in B. cinerea, resulting in a bacteriostatic state.
  • the purple light having a peak in the wavelength range of 390 to 420 nm used in the present invention acts directly on the phytopathogenic fungus and exhibits bacteriostatic / bactericidal action. confirmed.
  • PPFD was grown under conditions of about 100 ⁇ mol ⁇ 1 m ⁇ 2 s ⁇ 1 .
  • the tomato in the fifth leaf stage is transferred into a desiccator equipped with an LED light source installed in an artificial meteorograph, temperature 25 ° C, humidity 50%, PPFD 100 ⁇ mol -1 m -2 s -1 , light period / dark period (12h / 12h) It was grown under conditions for 3 days.
  • purple light and white light (each 60 Wm ⁇ 2 ) having a wavelength of 405 nm were irradiated for 7 days under the conditions of irradiation / non-irradiation (15 min / 45 min) in accordance with the start of the light period (12 h) (total 12 cycles / day).
  • the control group was irradiated only with white light.
  • Tomato treated with tomato gray mold fungus spore suspension (2 ⁇ 10 7 cells / ml) suspended in potato dextrose medium at 1/2 concentration was spray-inoculated (2.5 ml / individual) on the tomatoes after irradiation treatment, the same as before the inoculation Grows under conditions.
  • FIG. 13A is an image showing the appearance of the tomato when irradiated with 405 nm wavelength violet light
  • FIG. 13B is an image showing the appearance of the tomato in the control section.
  • (c) is an enlarged image showing a state of bacterial (gray mold) staining when tomato leaf tissue is stained with lactphenol cotton blue when irradiated with purple light having a wavelength of 405 nm
  • (d) is a control. It is an enlarged image which shows the mode of a microbe (gray mold fungus) dyeing
  • FIG. 14 is an image showing the results of an incision leaf paper disc inoculation test using tomato leaves irradiated with 405 nm wavelength purple light and tomato leaves in the control group. Note that the cut leaves accommodated in the upper two petri dishes in the image in FIG. 14 are irradiated with only white light, and the cut leaves accommodated in the lower two petri dishes are irradiated with 405 nm purple light and white light. It is a thing. Although it is difficult to see FIG.
  • the cut leaves contained in the upper two petri dishes are faded to yellow-green when viewed in color, and a brown water-immersive disease around the portion where the paper disk is placed While the spots were formed, the cut leaves in the two petri dishes in the lower stage were bright green as a whole, and no signs of lesions were found around the paper disk, and the appearance was sound. Therefore, as is apparent from the image shown in FIG. 14, also in the excised leaf paper disk inoculation test, the gray mold disease inhibitory effect was observed in the 405 nm purple light irradiation section.
  • Test method Lactaceae medicinal plant Mebouki (scientific name: Ocimum basilicum, English name: basil) and leguminous vegetable kidney bean (scientific name: Phaseolus vulgaris, English name: kidney bean) was transferred to a desiccator equipped with an LED light source installed on a plant growth shelf in an air-conditioned laboratory. Temperature 25 ° C, humidity 50%, PPFD 100 ⁇ mol -1 m -2 s -1 , light period / dark period ( 16h / 8h) under the conditions for 3 days.
  • FIG. 44 shows that after inoculating the gray mold of the test plant that had been pre-irradiated with purple light or white light with a wavelength of 405 nm, followed by irradiation with purple light or white light with a wavelength of 405 nm. It is an image which shows the mode of the plant body after 3 days in each of the section which did and did not irradiate.
  • FIG. 45 shows a case in which the kidney bean of the test plant that had been pre-irradiated with purple light or white light having a wavelength of 405 nm was inoculated with gray mold and then irradiated with purple light or white light having a wavelength of 405 nm.
  • FIG. 46 shows a group in which purple fungi or white light having a wavelength of 405 nm was continuously inoculated after the inoculation of gray mold fungi on the test plants that had been pre-irradiated with purple light or white light having a wavelength of 405 nm. It is a graph which shows the result of having measured the diameter of the diseased part of the plant body three days after in each of the ward which did not do. Furthermore, FIG.
  • the diseased part of the leaves of the test plant was only exposed to purple light or white light with a wavelength of 405 nm. It spread to 1/3 of the area.
  • the group in which the white light was pre-irradiated had a larger spread of the disease than the group in which the purple light having a wavelength of 405 nm was pre-irradiated.
  • the spread of the lesion was smaller than the group that was just pre-irradiated, and in the group that was pre-irradiated and post-irradiated with purple light having a wavelength of 405 nm, The size of the lesion was about 1 ⁇ 4 compared to the group irradiated with white light before and after irradiation.
  • the diseased part was about 1 / 3 area.
  • the spread of the lesion is smaller than the section just pre-irradiated with each light, and pre-irradiated with purple light with a wavelength of 405 nm.
  • the size of the lesion was about 1/5 compared with the group irradiated with white light before and after irradiation.
  • a violet light source hereinafter referred to as a 405 nm LED auxiliary light apparatus
  • the 405 nm LED light supplement device used in this test has a conical unit ( ⁇ 25 mm ⁇ H30 mm, hereinafter referred to as LED unit) in which 9 or 12 LED lamps are arranged on the line.
  • the one having a wavelength peak of 405 nm 45 °: SL405AAUE, 15 °: SL405ADUE, Sun Opto was used.
  • the sealing of the LED unit part (light emitting part) and the power source part was strengthened to improve the waterproofness. Furthermore, the LED unit can be attached and detached so that it can irradiate the optimal location of the tomato community, and the length between the LED units can be freely adjusted by making the cord between the LED units detachable. It was configured as follows. And, by reducing the weight of the LED unit and making the size of the mounting clip variable, the LED unit can be directly attached to the stem and branch of the tomato. Of purple light.
  • Tomatoes (solanum lycopersicum, varieties: Momotaro and Reika) are used as test plants, and cultivation is carried out in the greenhouse (North-South Building) inside the Yamaguchi University Faculty of Agriculture. This was done twice in summer autumn and winter spring in order to prevent anyone other than those who have a confidential duty from entering the greenhouse.
  • 36 individuals (Reika: 18 individuals, Momotaro: 18 individuals) were cultivated, sowing was performed on May 24, 2010, and fixed planting was performed on July 21, 2010.
  • a ventilation fan was set to operate when the temperature in the house reached 30 ° C or higher, and ventilation was performed.
  • ventilation was performed in winter and spring cultivation, when the temperature in the house is 10 ° C. or lower, heating by a boiler is set to operate.
  • the temperature and humidity, PPFD, and UV intensity in the house during the irradiation period are measured with temperature / humidity sensors (CHINO, MR6661), PPFD sensors (Apogee, QSO-S), and UV sensors (Apogee, SE-UVS)), respectively. Measured and recorded.
  • FIG. 15 is a plan view showing the arrangement of the test materials in the greenhouse in Experiment 1.
  • FIG. FIG. 16 is a plan view showing the arrangement of the test materials in the greenhouse in Experiment 2.
  • FIG. 17 is a plan view showing the arrangement of the test materials in the greenhouse in Experiment 3 (12 / 7-1 / 16).
  • FIG. 18 is a plan view showing the arrangement of the test materials in the greenhouse in Experiment 3 (1/17 and later). 15 to 18, squares represent irradiated individuals, white circles represent target individuals, and black circles represent individuals omitted from each measurement.
  • Irradiation of purple light by a 405 nm LED supplementary device was performed from three directions, ie, diagonally upward (Downward), group dropping part (Upward), and side surfaces of a tomato individual. Irradiation from diagonally above is done by attaching an LED unit (light emitting part) to the column suspended from the upper part between the tomato cultivation baskets, and irradiation from the lower part passes the horizontal column in the tomato community, or attaches the LED unit to it, The LED unit was directly attached to the tomato stem. In addition, irradiation from the side was performed by placing a lighting tripod (Velbon, LS-1) attached with an LED unit on the side of the tomato individual.
  • a lighting tripod Velbon, LS-1
  • the LED unit was installed such that the intensity of irradiation was about 30 Wm ⁇ 2 at the leaf closest to the LED unit.
  • Table 3-8 shows the irradiation position of each irradiated individual and the number of LED units used in Experiment 1-3. Under the current irradiation conditions, the power consumption per LED unit is about 0.7 W, and when 12 LED units are installed in one tomato individual, the power consumption per individual tomato is about 8-9 W Met.
  • FIGS. 19 is a graph comparing the changes in plant height over time in a population irradiated with purple light having a wavelength of 405 nm in Experiment 2 and a control population.
  • FIG. 19 is a graph comparing the changes in plant height over time in a population irradiated with purple light having a wavelength of 405 nm in Experiment 2 and a control population.
  • FIG. 20 is a graph showing changes over time in the number of compound leaves in a group irradiated with purple light having a wavelength of 405 nm in Experiment 2 and a control group.
  • FIG. 21 is a graph showing temporal changes in SPAD values in a group irradiated with purple light having a wavelength of 405 nm in Experiment 2 and a control group.
  • or FIG. 21 represents a standard error.
  • asterisk (*) As a result of t-testing at the significance level of 5% regarding the average value of the test section on each measurement day, a significant difference is shown. In some cases, it was decided to put an asterisk (*), but no significant difference was observed between the individual irradiated with purple light with a wavelength of 405 nm and the control individual in any of plant height, number of compound leaves, and SPAD.
  • FIG. 22 is a graph showing the change over time in the disease index based on the number of diseased leaves in Experiment 1 (Summer Autumn cultivation).
  • FIG. 23 is a graph showing changes over time in the number of diseased leaves based on the number of diseased leaves in Experiment 1 (cultivated in summer and autumn).
  • bar (error bar) in the graphs shown in FIGS. 22 and 23 described above represents standard error, and as a result of performing t-test at a significance level of 5% on each measurement day, there was a significant difference in the test interval. Is marked with an asterisk (*). As shown in FIG.
  • FIG. 24 is a graph in the case where the temporal change of the disease index in Experiment 2 (Summer Autumn cultivation) is calculated for the whole individual
  • FIG. 25 is a graph of the leaf position irradiated with the temporal change in the Disease Index in Experiment 2 (Summer autumn cultivation) It is a graph at the time of calculating with a compound leaf.
  • bar (error bar) in the graphs shown in FIGS. 24 and 25 described above represents standard error, and as a result of performing t-test at a significance level of 5% on each measurement day, there was a significant difference in the test interval. Is marked with an asterisk (*). As shown in FIG.
  • the number of compound leaves irradiated with 405 nm purple light by the LED unit is 3-4 (the number of LED units: 8) with respect to the number of 37 leaves.
  • the ratio of 405 nm purple light irradiated compound leaves in the compound leaves was 10% or less.
  • the number of compound leaves is 37 to 44 (depending on the growth after the LED unit is added), and the number of compound leaves irradiated with 405 nm purple light by the LED unit is 6 to 8 (number of LED units: 17- 18), and the proportion of 405 nm purple light-irradiated compound leaves in all compound leaves was 10% or more. Accordingly, it is considered desirable to irradiate at least 10% of the total leaf area with violet light in order to suitably exert the disease occurrence suppressing effect by violet light irradiation.
  • FIG. 26 is a graph showing a change in disease index in Experiment 3 (winter spring cultivation)
  • FIG. 27 is a graph showing a change in the number of diseased leaves in experiment 3 (winter spring cultivation).
  • bar (error bar) in the graphs shown in FIGS. 26 and 27 described above represents standard error, and as a result of performing t-test at a significance level of 5% on each measurement day, there was a significant difference in the test interval. Is marked with an asterisk (*).
  • an average suppression effect of 10.8% was observed throughout the irradiation period for the overall disease index.
  • the number of disease index 2 was significantly different from about 1/20 as a whole, and the disease was suppressed to about 1/4 at maximum.
  • Test material and test method Murasaki (Lithospermum erythrorhiozon), a medicinal plant belonging to the family Lamiaceae, was used as a test plant, and the test cultivation was performed in a plastic house in Yamaguchi Prefecture.
  • Murasaki Liithospermum erythrorhiozon
  • the test cultivation was performed in a plastic house in Yamaguchi Prefecture.
  • using the same 405 nm LED light supplement device as used in Test 7 above use 1 unit when the plant is small, and 2 units after it grows, and irradiate for 3.5 hours in the morning and evening. (Total 7 hours) Or, irradiation was performed every hour for a total of 7 hours.
  • the degree of disease that occurred naturally without spraying the pesticide was compared with the group that did not perform 405 nm LED supplementary light (control group).
  • the disease evaluation criteria (onset index) in each individual is 1: gill, browning and mold formation are seen in the flowers, 2: gag, browning is seen not only in the flowers but also in the leaves (1 , 2), 3: Brown, not only flowers, but also leaves are seen (several, local), 4: browning is seen throughout the plant body, it is dead, Judgment was made visually.
  • the test in the greenhouse was performed so that the inside was not visible from the outside, and no one other than the related person having confidentiality obligations could enter the greenhouse.
  • FIG. 48 is a graph showing the transition of the disease index when the murasaki as a test plant is irradiated with 405 nm purple light and when it is not irradiated. Note that in the legend in FIG. 48, “LED” indicates a 405 nm LED supplementary light area, and “Control” indicates a control area. Although not particularly shown in FIG. 48, from the beginning of July 2011 (50-60 days after the start of irradiation), symptoms of gray mold disease began to be observed in both the 405 nm LED supplementary zone and the control zone.
  • purple light irradiation has a suppressive effect on diseases caused by powdery mildew fungi, which is a pathogen defense response-related gene. It was confirmed by expression (test material: tomato). More specifically, the inventors investigated the expression of pathogen defense response-related genes in tomatoes inoculated with powdery mildew on 405 nm purple light pre-irradiated leaves. In tomatoes that had been pre-irradiated with 405 nm purple light, a tendency to reduce the number of powdery mildew spots was observed. In particular, the number of lesions decreased in leaves pre-irradiated with 405 nm purple light.
  • the natural infection to the powdery mildew non-inoculated tomato irradiated with 405 nm purple light was remarkably suppressed as compared to the natural infection to the powdery non-inoculated tomato without 405 nm purple light.
  • the expression level of pathogen defense response-related genes was quantified based on the presence or absence of 405 nm purple light irradiation and powdery mildew inoculation.
  • purple light irradiation to plants is not only against diseases caused by biotrophic pathogens (such as powdery mildew and downy mildew), but also due to diseases caused by dead-nutrient pathogenic bacteria (such as gray mold and anthracnose).
  • biotrophic pathogens such as powdery mildew and downy mildew
  • dead-nutrient pathogenic bacteria such as gray mold and anthracnose
  • edibles of rose family plants for example, strawberries
  • cucurbitaceae plants for example, melons
  • primaceae plants for example, cyclamen etc.
  • the same effect can be expected for various plants cultivated for ornamental purposes.
  • production suppression effect by irradiation of wavelength 405nm purple light the following are mentioned, for example.
  • Eggplant family eggplant, tomato, pepper, capsicum, potato, tobacco, petunia, hyos, hashiridokoro, mandrake, etc.
  • defense response-related genes are a general term for a group of genes that play an essential role in the "response mechanism that recognizes and eliminates attacks by external enemies (pathogens and pests)" in plants.
  • Receptors that recognize the attack of external enemies for example, CERK1 protein that acts as an immune receptor for rice
  • factors that act in pathways that convey pathogen recognition
  • cell kinases, C kinase C kinase
  • enzymes phenylalanine ammonia lyase and chalcone synthase that work in a low molecular defense substance synthesis pathway represented by phytoalexin, and genes encoding PR proteins
  • the inventors recognized the attack of the pathogen in the plant body by irradiating the pathogen-resistant plant body in the present invention with purple light having a peak between wavelengths of 390-420 nm. It was clarified that “pathogenic defense response-related genes”, which are genes that have an essential role in the response mechanism to be eliminated, are expressed. Moreover, it was confirmed that the “pathogenic defense response-related genes” expressed in the pathogen-resistant plant according to the present invention is a salicylic acid synthesis pathway-related gene or a gene group induced by salicylic acid. Furthermore, it was also clarified that the “gene group induced by salicylic acid” expressed in the pathogen-resistant plant in the present invention is more specifically “gene group inducing acidic PR protein”. The verification results regarding these points will be described in detail below.
  • the temperature is 25 ° C, the humidity is 50%, PPFD is 100 ⁇ mol -1 m -2 s -1 12h) It was grown for several days under conditions. Then, 405 nm purple light and white light (each 60 Wm ⁇ 2 ) were irradiated under the conditions of irradiation / non-irradiation (15 min / 45 min) in accordance with the start of the light period (12 h) (total 12 cycles / day). The control group was irradiated only with white light. After 1 day and 3 days, fully expanded upper leaves were collected as samples, frozen using liquid nitrogen, and stored at -80 ° C.
  • FIGS. 28 to 30 are graphs comparing the expression levels of pathogen defense response-related genes in the control group and the 405 nm purple light irradiation group when tomato is used as the test material.
  • the Ctrl section is the control (one irradiated with only white light)
  • the processing section 1 is the one treated with 405 nm purple light for one day
  • the processing section 2 is the 405 nm purple color. Each of them means that processed for 3 days.
  • ERF5 ethylene responsive element binding factor 5
  • Test 9 as shown below was conducted for the purpose of examining the expression of pathogen defense response-related genes when Arabidopsis, a cruciferous plant, was treated with purple light.
  • FIG. 31 is a graph comparing the expression levels of pathogen defense response-related genes in the control group and the 405 nm purple light irradiation group when using Arabidopsis as a test material.
  • “white” means data in the control section where only white light was irradiated
  • “405 nm” means data in the 405 nm purple light irradiation section.
  • genes PR1, PR2, PR4, PRB1 indicating that systemic induction resistance was generated was confirmed in Arabidopsis thaliana irradiated with 405 nm purple light.
  • a pathogen defense response-related gene was expressed by irradiating purple light in both a solanaceous plant and a cruciferous plant. Therefore, it was confirmed that the phenomenon that a pathogen defense response-related gene is expressed by irradiating purple light is not a characteristic phenomenon in plants belonging to a specific family.
  • the pathogen defense response-related genes are not unique genes that only plants belonging to a specific family have, but are genes that plants have universally. It is considered that there is a very high possibility that a pathogen defense response-related gene can be expressed by irradiating purple light in the plant body to which it belongs.
  • test 10 was performed in order to confirm that the gene group involved in the establishment of the whole body acquired resistance was expressed by irradiating the plant body with purple light.
  • Test method Tomato (variety: Momotaro) was sown on 6 ⁇ 6 cm rock wool and grown in a glass greenhouse to the 8th leaf stage of the main leaf. Using a cylinder made of aluminum (diameter 1.9 cm), a tomato leaf disc was produced by cutting out the leaf vein (main vein portion) of the fully developed leaf. This leaf disk was floated on a 1 mg / ml 3,3′-diaminobenzidine (DAB) (pH 4) solution and allowed to stand for 3 hours.
  • DAB 3,3′-diaminobenzidine
  • the leaf disk was floated on deionized water and placed in a desiccator equipped with an LED light source (405 nm purple light and white light) (each 60 Wm ⁇ 2 ), and each was irradiated for 1 hour. After the irradiation treatment, the leaf disk was placed in hot ethanol (70 ° C.) and decolored for 30 minutes, and this was used as an observation sample. The observation sample was photographed using an optical microscope digital camera (Olympus, DP25) attached to the optical microscope (Olympus, BHS-323N).
  • Test 11 which is a verification result of the effect of purple light on the photosynthesis of a plant body and the result will be described.
  • purple light having a wavelength of 405 nm in which a particularly high bacteriostatic and bactericidal action was observed in the previous test 1 was used.
  • test 11 in order to investigate how much 405 nm violet light can be used for photosynthesis, PSII real quantum yield ⁇ F / Fm ′ upon single irradiation with 405 nm violet light was investigated by chlorophyll fluorescence measurement.
  • the effects of single irradiation of 405 nm purple light on the PSII actual quantum yield and maximum quantum yield, the effects of far-red light addition irradiation, and the effects of intermittent irradiation were investigated using tomato as a model plant.
  • the possibility of the irradiation method which suppresses stress was investigated toward the realization of disease control by 405 nm purple light irradiation.
  • single irradiation means irradiating light of only 405 nm LED.
  • the PPFD on the cultivation shelf was about 200 ⁇ molm ⁇ 2 s ⁇ 1 on the upper leaf surface, and was set to 12 hours light period and 12 hours dark period.
  • the room temperature and humidity are controlled by air conditioner, and the tomato grows under the conditions of light season temperature 21.0 ° C, humidity 30.0%, dark season temperature 19.0 ° C and humidity 30.3%. Went.
  • water is irrigated to the bottom with tap water almost every day, and fertilizer is diluted with a liquid fertilizer (Hyponex Japan, Hyponex 6-10-5) diluted about 500 times per week instead of tap water. Gave to.
  • each light source was increased stepwise at intervals of 5 minutes or 15 minutes, and ⁇ F / Fm ′ was measured each time.
  • the light intensity at the time of measuring chlorophyll fluorescence was measured using a micro photon sensor of a leaf clip holder.
  • the measurement leaf the second leaf from the tip of the second compound leaf was selected.
  • light source A 405 nm LED
  • light source B halogen lamp
  • light source C white fluorescent lamp (TOSHIBA, FL20SSEDC / 18LL) was used. 6 tomato seedlings for measurement were transferred to a dark room and darkened for 30 minutes, and then 2 individuals were irradiated with their respective light sources (light sources AC).
  • FIG. 32A is a graph showing the wavelength characteristics of the light source A
  • FIG. 32B is a graph showing the wavelength characteristics of the light source B
  • FIG. 32C is a graph showing the wavelength characteristics of the light source C. Note that the wavelength characteristics of the violet light source used in the other tests 1 to 10 shown in this specification are the same as the wavelength characteristics of the light source A shown in FIG.
  • FIG. 33 is a graph showing the relationship between PPFD and ⁇ F / Fm ′ when the light intensity is gradually increased for the same leaf.
  • PPFD is a value based on the LI-COR photon sensor (LI-190).
  • LI-190 LI-COR photon sensor
  • FIG. 34 is a graph showing the relationship between PPFD and ⁇ F / Fm ′ when the light intensity is gradually increased for the same leaf.
  • Table 14 below shows the regression line formula (intercept unified to 0.76) for the relationship between PPFD and ⁇ F / Fm ′.
  • ⁇ F / Fm ′ under 405 nm purple light decreased by 15% from the halogen lamp and decreased by 13% from the white fluorescent lamp.
  • Fv / Fm is lower in the 405 nm LED section (light source A) than in the halogen lamp section (light source B). Plant leaves undergo photoinhibition when they receive excessive light in excess of the light required for photosynthesis, and the quantum yield of photosynthesis decreases. That is, the decrease in Fv / Fm was suggested to cause photoinhibition by 405 nm purple single light irradiation rather than halogen lamp light. That is, it was shown that the irradiated object was subjected to oxidative stress more than the halogen lamp light by 405 nm purple light irradiation.
  • the plant body is irradiated with purple light in a form that is added to the light necessary for the growth of the plant body (for example, natural light or artificially adjusted natural light), It is desirable to intermittently irradiate the plant body with purple light, and more desirably, it is desirable to perform these simultaneously (irradiation with purple light in a form added to natural light or artificially adjusted natural light, and (Purple light irradiation is preferably intermittent irradiation (intermittent irradiation)).
  • violet light when violet light is irradiated in the form of adding to natural light or artificially adjusted natural light, natural light or artificially adjusted to suitably induce the expression of pathogen defense response-related genes by purple light irradiation
  • the high intensity of the violet light to be added may be adjusted so that the light intensity is stronger than the violet light included in the natural light.
  • the present invention has no possibility of adversely affecting the growth and morphogenesis of the plant body or the photosynthetic action, and does not use a drug in an environment in which natural infection with phytopathogenic bacteria may occur, or , Pathogen-resistant plants that are unlikely to cause disease even if the amount of drug used is reduced, and their fruits and their stems, methods for inducing such pathogen-resistant plants, and plants It is a plant cultivation system that induces the pathogenic resistance of the plant, while bacteriostatically sterilizing the infected phytopathogenic fungi to make the plant difficult to cause disease, and does not adversely affect the human body of the worker It can be used in fields related to agriculture and horticulture.
  • P plant body L ... natural light (visible light) 1 ... pathogen resistant plant body 2 ... leaf 3 ... purple light source 4 ... plant pathogen 5 ... disease spot 6 ... green light source 7 ... dead leaf 8 ... plant growth space 9 ... Medium 10A, 10B ... Plant cultivation system 11 ... Purple light 12 ... Green light

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

[Problem] To provide a pathogen-resistant plant body that is disease resistant, even with little to no use of chemical agents, without the risk of detrimentally affecting the growth, morphogenesis, or photosynthetic activity thereof, in an environment where natural infection of phytopathogenic bacteria can occur. [Solution] A pathogen-resistant plant body (1) induced by being irradiated with violet light, the leaves of the plant body are irradiated with violet light (11) having a peak wavelength in the range of 390-420nm, and said pathogen-resistant plant body is characterized in that: more genes associated with a pathogen-protective response are expressed in comparison to a plant body of the same species not subjected to the violet light irradiation; and the genes associated with a pathogen-protective response are genes associated with pathways of salicylic acid synthesis or gene groups induced by salicylic acid.

Description

病原抵抗性植物体およびその果実およびその葉茎およびその誘導方法および植物体栽培システムPathogen-resistant plant, its fruit, its leaf stem, its induction method and plant cultivation system
 本発明は、紫色光を照射することにより病原抵抗性を高めた病原抵抗性植物体およびその果実およびその葉茎およびこのような病原抵抗性植物体の誘導方法および植物体栽培システムに関する。 [Technical Field] The present invention relates to a pathogen-resistant plant whose pathogen resistance is enhanced by irradiating purple light, its fruit and its leaf stem, a method for inducing such a pathogen-resistant plant, and a plant cultivation system.
 一般に、作物(花卉も含む)の生産時に、植物体に病気が発生すると生育不良や枯死が起こり、生産性が著しく低下したり生産物が不良品化するという問題があった。このため、植物病原菌による病害を防除する目的で、薬剤(農薬)の散布が恒常的に行われている。
 しかしながら、作物における残留農薬は、人体に好ましくない影響を及ぼすことが懸念されており、薬剤を使用することなく作物に生じる病害を防除できる技術の確立が望まれていた。
 また、近年の研究により、植物体に特定の波長領域の光を照射することで、植物体の病原抵抗性が高められることが報告されており、農薬を使用することなく安全に植物病原菌を防除できる可能性が見出されつつある。
 本願発明に関連する先行技術文献としては、下記に示すようなものが知られている。
Generally, when crops (including flower buds) are produced, there is a problem that if a plant body is ill, growth failure or death occurs, resulting in a significant decrease in productivity or a defective product. For this reason, in order to control diseases caused by plant pathogens, chemicals (agricultural chemicals) are constantly sprayed.
However, residual agricultural chemicals in crops are concerned about undesirable effects on the human body, and establishment of a technique capable of controlling diseases that occur in crops without using chemicals has been desired.
In recent years, it has been reported that irradiating plants with light in a specific wavelength range increases the pathogenic resistance of plants, and it is possible to control plant pathogens safely without using pesticides. The possibility of being able to be found is being discovered.
The following are known as prior art documents related to the present invention.
 特許文献1には、「植物病害防除用照明装置」という名称で、紫外線を含む光を放出する光源を備えた植物病害防除用照明装置に関する発明が開示されている。
 特許文献1に開示される植物病害防除用照明装置は、文献中に記載される符号をそのまま用いて説明すると、紫外線を含む光を放出する光源2を備えるものであり、この光源2は、略280-340nmの波長成分を有するUV-Bと、略100-280nmの波長成分のうちの略255nm以下の波長成分がカットされたUV-Cとを重畳して植物Pに照射できるよう構成されるものである。
 上述のような特許文献1に開示される発明によれば、植物体にUV-C及びUV-Bを照射することにより、灰色カビ病、うどんこ病、ベト病、炭そ病等の病害等の糸状菌の胞子形成や菌糸の成長を確実に抑制し、且つ、植物の病害抵抗性を確実に誘導することができる。
Patent Document 1 discloses an invention relating to a plant disease control illumination device including a light source that emits light including ultraviolet rays under the name “plant disease control illumination device”.
The plant disease controlling lighting device disclosed in Patent Document 1 includes a light source 2 that emits light including ultraviolet rays when described using the reference numerals described in the document as they are. The plant P can be irradiated by superimposing UV-B having a wavelength component of 280 to 340 nm and UV-C having a wavelength component of approximately 255 nm or less of the wavelength components of approximately 100 to 280 nm cut off. Is.
According to the invention disclosed in Patent Document 1 as described above, by irradiating a plant with UV-C and UV-B, diseases such as gray mold disease, powdery mildew, downy mildew, anthracnose etc. It is possible to reliably suppress spore formation and hyphal growth of the filamentous fungi, and to reliably induce plant disease resistance.
 特許文献2には「病害の防除方法と病害防除用の装置」という名称で、病害抵抗性を高めて植物を病害から守る防除方法、及び、その方法を利用した装置やシステムに関する発明が開示されている。
 特許文献2に開示される植物病害の防除方法は、文献中に記載される符号をそのまま用いて説明すると、緑色光を発光する発光ダイオードD1-Dnと、この発光ダイオードD1-Dnを点灯させる駆動回路1を制御する制御装置2とを備え、この駆動回路1を制御装置2により制御して発光ダイオードD1-Dnから緑色光を発光させて植物に照射し、この緑色光の照射により植物の病害抵抗性を高めることを特徴とするものである。
 上述のような特許文献2に開示される発明によれば、光線を植物に照射して植物の病害抵抗性を高めるものであるから、農薬の使用量を飛躍的に減少させることができ、しかも人体に悪い影響を及ぼすこともなく、環境汚染の防止も図ることができる。
Patent Document 2 discloses an invention relating to a control method for protecting a plant from a disease by increasing disease resistance and a device and a system using the method, under the name “disease control method and disease control device”. ing.
The method for controlling plant diseases disclosed in Patent Document 2 will be described using the reference numerals described in the document as they are, and a light emitting diode D1-Dn that emits green light and a drive for lighting the light emitting diode D1-Dn. And a control device 2 for controlling the circuit 1. The drive circuit 1 is controlled by the control device 2 to emit green light from the light-emitting diodes D1-Dn to irradiate the plant. It is characterized by increasing resistance.
According to the invention disclosed in Patent Document 2 as described above, the amount of agricultural chemicals used can be drastically reduced because the plant is irradiated with light to increase the disease resistance of the plant. Environmental pollution can be prevented without adversely affecting the human body.
 非特許文献1は「Suppression by Red Light Irradiation of Corynespora Leaf Spot of Cucumber Caused by Corynespora cassiicola」というタイトルの論文で、温室内で赤色光を照射してキュウリを栽培することで、葉における病斑の発生や、病気の伝播を好適に防止できることが報告されている。 Non-Patent Document 1 is a paper titled “Suppression by Red Light Irradiation of Corynespora Leaf Spot of Cucumber Caused by Corynespora cassiiicola”. By cultivating cucumbers by irradiating red light in a greenhouse, the occurrence of lesions on leaves It has also been reported that the transmission of disease can be suitably prevented.
 非特許文献2は「なすにおける紫外光(UV-B)照射による病害抵抗性とすすかび病の防除効果」というタイルの論文で、ナス葉においてUV-B(波長290-320nm)の照射後5-7日目以降に、抵抗性関連酵素の活性が上昇し、病害抵抗性が誘導され、病原菌の侵入が阻止されるとの報告がなされている。また、非特許文献2には他の非特許文献中において、UV-A(波長400-315nm)の照射では、病原抵抗性遺伝子は発現しないとの報告があるとの記載が認められる。 Non-Patent Document 2 is a tile paper titled “Disease resistance and control effect of scab of sunflower by ultraviolet light (UV-B) irradiation in eggplant”, 5 after irradiation with UV-B (wavelength 290-320 nm) in eggplant leaves. From the 7th day onward, it has been reported that the activity of resistance-related enzymes increases, disease resistance is induced, and pathogen invasion is blocked. Further, Non-patent Document 2 recognizes that there is a report in other non-patent documents that a pathogenic resistance gene is not expressed by irradiation with UV-A (wavelength 400-315 nm).
特開2009-22175号公報JP 2009-22175 A 国際公開第2007/105599号公報International Publication No. 2007/105599
 上述の特許文献1や、非特許文献2に開示される技術内容によれば、植物体に特定の波長領域の光を照射することにより植物体の病原抵抗性(病害抵抗性)を誘導できる可能性が示唆されているものの、特定の波長領域の光が特に紫外線(紫外光)である場合には、作業者に好ましくない影響を及ぼす恐れがあり、現場への導入は現実的には難しいという課題があった。
 一般に、「紫外線」は単色光成分の波長が可視光線の波長より短く,およそ1nmよりも長い放射の総称であり(出展:JIS Z 8120 光学用語)、このうち、200-380nmの波長を有するものは「近紫外線」と呼ばれている。また、人体の健康や環境への影響の観点から上記「近紫外線」を、UVA(波長315-400nm)、UVB(波長280-315nm)、UVC(波長280nm未満)に分けて示す場合がある。また、通常、「紫外線」の波長が短いほど人体に及ぼす悪影響は大きくなる。本願における請求の範囲及び明細書では、上述のような「紫外線」についての一般的な定義とは別に、植物体に病原抵抗性を付与するために照射される波長390-420nmにピークを有する光線を「紫色光」とよび、人体に有害又は悪影響を及ぼすと考えられる「紫外線」について述べる場合は、波長が1-390nmの放射を指し示すこととする。
 なお、人が作業をしない夜間等に特定の波長領域の光を照射することも考えられるが、植物体に間断なく光を照射し続けると、植物体にストレスとなり、結果として光合成が阻害されて植物体の生育に好ましくない影響が出る恐れもあり、現場への導入は現実的ではなかった。
According to the technical contents disclosed in Patent Document 1 and Non-Patent Document 2 described above, pathogenic resistance (disease resistance) of a plant can be induced by irradiating the plant with light in a specific wavelength region. However, when light in a specific wavelength region is particularly ultraviolet (ultraviolet), there is a possibility that it may have an unfavorable effect on workers, and it is actually difficult to introduce it to the site. There was a problem.
In general, "ultraviolet light" is a general term for radiation in which the wavelength of a monochromatic light component is shorter than the wavelength of visible light and is longer than approximately 1 nm (exhibited by JIS Z 8120 optical terminology), and of these, those having a wavelength of 200-380 nm Is called "Near UV". In addition, from the viewpoint of the influence on human health and the environment, the “near ultraviolet rays” may be divided into UVA (wavelength 315 to 400 nm), UVB (wavelength 280 to 315 nm), and UVC (wavelength less than 280 nm). In general, the shorter the wavelength of “ultraviolet rays”, the greater the adverse effect on the human body. In the claims and the specification of the present application, apart from the general definition of “ultraviolet rays” as described above, a light beam having a peak at a wavelength of 390 to 420 nm irradiated for imparting pathogenic resistance to a plant body. Is referred to as “purple light” and “ultraviolet rays” that are considered to be harmful or harmful to the human body are referred to as radiation having a wavelength of 1 to 390 nm.
In addition, it is conceivable to irradiate light of a specific wavelength region at night when a person does not work, but if light is continuously irradiated to the plant body, it will cause stress on the plant body, resulting in inhibition of photosynthesis. There is a possibility that the growth of the plant body may be adversely affected, and introduction into the field was not realistic.
 特許文献2に開示される発明によれば、植物に緑色光を照射することにより植物の病害抵抗性を誘導して、植物の病害の発生を抑制することができると考えられるものの、緑色光自体は静菌・殺菌作用を有さないため、緑色光の照射により植物病原菌が植物体に病害を生じさせようとする力を停滞又は低下させることはできなかった。
 このため、植物病原菌が植物体に病害を生じさせようとする力が、植物体の病害抵抗性に勝ってしまった場合には、緑色光の照射だけでは病害に対処することができず、最終的には、薬剤に頼らざるを得ないという課題があった。
 よって、緑色光を照射することにより得られる効果は、限定的なものであった。
According to the invention disclosed in Patent Document 2, although it is considered that the disease resistance of a plant can be induced by irradiating the plant with green light to suppress the occurrence of the plant disease, the green light itself Has no bacteriostatic / bactericidal action, and thus the ability of phytopathogenic fungi to cause disease in plants could not be stagnated or reduced by irradiation with green light.
For this reason, if the ability of plant pathogens to cause disease in the plant body has overcome the disease resistance of the plant body, it is not possible to cope with the disease only by irradiating with green light. In particular, there was a problem of having to rely on drugs.
Therefore, the effect obtained by irradiating with green light was limited.
 非特許文献1に開示される報告によれば、赤色光の照射により植物の病害の発生や伝播を抑制できる可能性があるものの、特に、赤色光及び青色光は、植物の形態における健全な生育に不可欠な色の光であることが報告されている(例えば、RGB3色高光度LEDを用いた植物栽培と生育センシング,岡本研正他,応用物理,Vol.68,No.12,p156-160 (1999)等を参照)。したがって、病原抵抗性の誘導を目的として赤色光を植物に照射した場合には、病原抵抗性の誘導による病害の抑制効果が期待できる一方で、その副作用として、植物の生育時に形態形成に好ましくない影響を及ぼすおそれもあり、作物栽培の現場において必ずしも確実性の高い技術であるとは言えなかった。 According to the report disclosed in Non-Patent Document 1, although there is a possibility that the occurrence and propagation of plant diseases can be suppressed by irradiation with red light, in particular, red light and blue light are healthy growth in the form of plants. (For example, plant cultivation and growth sensing using RGB three-color high-intensity LEDs, Kenji Okamoto et al., Applied Physics, Vol. 68, No. 12, p156-160) (1999) etc.). Therefore, when a plant is irradiated with red light for the purpose of inducing pathogenic resistance, it can be expected to have a disease-suppressing effect by inducing pathogenic resistance, but as a side effect, it is not preferable for morphogenesis during plant growth. There is a risk of impact, and it cannot be said that the technique is necessarily highly reliable in the field of crop cultivation.
 本発明はかかる従来の事情に対処してなされたものでありその目的は、植物体の生育や形態形成、あるいは、光合成作用に悪影響を及ぼすおそれがなく、かつ、植物病原菌の自然感染が起こり得る環境下において、薬剤を使用しないでも,あるいは,薬剤の使用量を少なくしても病害が発生し難い病原抵抗性植物体を提供することにある。
 また、残留農薬の無い,または,残留農薬が少ない,収穫物としての果実,又は,葉茎を提供することにある。
 さらに、上記のような病原抵抗植物体を誘導する方法を提供することにある。
 そして、植物体の病原抵抗性を誘導しつつ、植物病原菌による病害を生じ難くしながら生育させることができ、かつ、作業者の人体に悪影響を及ぼすことのない植物体栽培システムを提供することにある。
The present invention has been made in response to such conventional circumstances, and its purpose is that there is no possibility of adversely affecting the growth and morphogenesis of the plant body, or the photosynthetic action, and natural infection of phytopathogenic bacteria may occur. It is an object of the present invention to provide a pathogen-resistant plant that is unlikely to cause disease even when no drug is used or the amount of the drug is reduced in the environment.
Moreover, it is providing the fruit or leaf stem as a harvested thing which has no residual agricultural chemicals or few residual agricultural chemicals.
Furthermore, it is providing the method of inducing | guiding | deriving pathogenic resistance plants as mentioned above.
And it is to provide a plant cultivation system that can grow while making it difficult to cause diseases caused by phytopathogenic bacteria while inducing pathogenic resistance of the plant, and does not adversely affect the human body of the worker. is there.
 上記目的を達成するため請求項1記載の発明である病原抵抗性植物体は、波長390-420nmの間にピークを有する紫色光を葉に照射する紫色光照射処理を行うことによって誘導される病原抵抗性植物体であって、病原防御応答関連遺伝子が紫色光照射処理を行わない同種の植物体よりも発現されており、病原防御応答関連遺伝子は、サリチル酸合成経路関連遺伝子,又は,サリチル酸によって誘導される遺伝子群であることを特徴とするものである。
 また、請求項2記載の発明である病原抵抗性植物体は、請求項1記載の病原抵抗性植物体であって、サリチル酸によって誘導される遺伝子群は、酸性PRタンパク質を誘導する遺伝子群であることを特徴とするものである。
 上記構成の請求項1,2記載の発明において、紫色光照射処理において照射される波長390-420nmの間にピークを有する紫色光は、植物体に付着している植物病原菌に直接働いて、静菌・殺菌するという作用を有する。
 加えて、この紫色光は、植物体にとっては光合成に利用し難い光であるため、紫色光の単独照射は植物体にとってはストレスとなるものの、植物体の形態や生育過程に悪影響を与える恐れは極めて低いという性質を有している。また、この紫色光は、人体に対しても悪影響を及ぼすおそれが極めて少ない。
 また、植物体では、紫色光照射処理が行われることにより、紫色光照射処理が行われなかった同種の植物体よりも病原防御応答関連遺伝子が発現されて、より具体的には、サリチル酸合成経路関連遺伝子,又は,サリチル酸によって誘導される遺伝子群が発現されて、さらに詳細には、サリチル酸合成経路関連遺伝子,又は,酸性PRタンパク質を誘導する遺伝子群が発現されて、植物病原菌に対する抵抗性が植物体の全身において高められるという作用を有する。
 したがって、請求項1記載の病原抵抗性植物体によれば、紫色光照射処理により植物体の病原抵抗性が高められる一方で、植物体に付着又は感染して,植物体に病害を生じさせようとしている植物病原菌に直接作用して静菌・殺菌するので、これらの作用が同時に起こることで植物体に病害が生じるリスクが大幅に低減される。
In order to achieve the above object, the pathogen-resistant plant according to the first aspect of the present invention is a pathogen induced by violet light irradiation treatment for irradiating leaves with purple light having a peak between wavelengths of 390-420 nm. It is a resistant plant, and the pathogen defense response-related gene is expressed more than the same type of plant that is not treated with purple light. The pathogen defense response-related gene is induced by a salicylic acid synthesis pathway-related gene or salicylic acid. It is characterized by being a gene group.
In addition, the pathogen-resistant plant that is the invention described in claim 2 is the pathogen-resistant plant according to claim 1, wherein the genes that are induced by salicylic acid are genes that induce acidic PR proteins. It is characterized by this.
In the first and second aspects of the invention described above, the violet light having a peak between wavelengths 390-420 nm irradiated in the violet light irradiation treatment works directly on the plant pathogens adhering to the plant body, and is static. Has the effect of sterilizing bacteria.
In addition, since this purple light is difficult for plants to use for photosynthesis, single irradiation with purple light is stressful for plants, but there is a risk of adversely affecting the morphology and growth process of plants. It has a very low property. Further, this purple light has a very low possibility of adversely affecting the human body.
Further, in the plant body, the violet light irradiation treatment is performed, so that the pathogen defense response-related gene is expressed more than the same type of plant body that has not been subjected to the violet light irradiation treatment, more specifically, the salicylic acid synthesis pathway. A related gene or a gene group induced by salicylic acid is expressed. More specifically, a gene related to a salicylic acid synthesis pathway or a gene group that induces an acidic PR protein is expressed, and resistance to phytopathogenic fungi is expressed in plants. It has the effect of being elevated throughout the body.
Therefore, according to the pathogen-resistant plant according to claim 1, while the pathogen resistance of the plant is enhanced by the purple light irradiation treatment, it adheres to or infects the plant and causes a disease to the plant. Since it acts directly on the phytopathogenic fungi to be bacteriostatic and sterilized, the risk of causing diseases in the plant body is greatly reduced when these actions occur simultaneously.
 請求項3記載の発明である果実は、請求項1又は請求項2に記載の病原抵抗性植物体から収穫されたことを特徴とするものである。
 請求項4記載の発明である葉茎は、請求項1又は請求項2に記載の病原抵抗性植物体から収穫されたことを特徴とするものである。
 請求項3又は請求項4記載の発明は、いずれも請求項1又は請求項2に記載の病原抵抗性植物体から収穫された果実又は葉茎であり、その作用は、請求項1又は請求項2に記載の病原抵抗性植物体と同じである。
The fruit according to the invention described in claim 3 is harvested from the pathogen-resistant plant according to claim 1 or claim 2.
The leaf stem which is the invention according to claim 4 is harvested from the pathogen-resistant plant according to claim 1 or claim 2.
The invention described in claim 3 or claim 4 is a fruit or leaf stem harvested from the pathogen-resistant plant according to claim 1 or claim 2, and the action thereof is claimed in claim 1 or claim. It is the same as the pathogen-resistant plant described in 2.
 請求項5記載の発明である病原抵抗性植物体の誘導方法は、植物体の全葉面積の少なくとも10%の領域に、波長390-420nmの間にピークを有する紫色光を断続的に照射する紫色光照射処理を行うことを特徴とするものである。
 上記構成の発明は、請求項1,2に記載の発明を方法の発明として捉えたものであり、請求項5記載の発明における紫色光及び紫色光照射処理の作用は、請求項1,2に記載の発明における紫色光及び紫色光照射処理の作用と同じである。
 また、紫色光照射処理において紫色光の照射を断続的にすることで、紫色光の照射による植物体へのストレスが軽減される。
The method for inducing a pathogen-resistant plant according to claim 5 irradiates at least 10% of the total leaf area of the plant with violet light having a peak between wavelengths 390-420 nm. A violet light irradiation process is performed.
The invention of the above configuration is obtained by capturing the invention according to claims 1 and 2 as a method invention, and the action of purple light and purple light irradiation treatment in the invention according to claim 5 is This is the same as the effect of the purple light and purple light irradiation treatment in the described invention.
Moreover, the stress to the plant body by purple light irradiation is reduced by making purple light irradiation intermittent in purple light irradiation processing.
 請求項6記載の発明は、請求項5に記載の病原抵抗性植物体の誘導方法であって、紫色光照射処理を行うことにより、植物体における病原防御応答関連遺伝子である,サリチル酸合成経路関連遺伝子,又は,サリチル酸によって誘導される遺伝子群を発現させることを特徴とするものである。
 上記構成の発明は、請求項1,2に記載の発明を方法の発明として捉えたものであり、紫色光照射処理を行う目的をより明確にしたものである。よって、請求項6記載の発明の作用は、請求項5記載の発明の作用と同じである。
The invention according to claim 6 is a method for inducing a pathogen-resistant plant according to claim 5, which is related to a salicylic acid synthesis pathway, which is a gene related to a pathogen defense response in a plant by performing purple light irradiation treatment. It is characterized by expressing a gene or a gene group induced by salicylic acid.
The invention having the above-described configuration is obtained by capturing the inventions according to claims 1 and 2 as the invention of the method, and clarifies the purpose of performing the violet light irradiation treatment. Therefore, the operation of the invention described in claim 6 is the same as that of the invention described in claim 5.
 請求項7記載の発明である病原抵抗性植物体は、請求項5又は請求項6に記載の方法により誘導されたことを特徴とするものである。
 上記構成の病原抵抗性植物体の作用は、請求項1,2に記載の病原抵抗性植物体の作用と同じである。
The pathogen-resistant plant that is the invention according to claim 7 is characterized by being induced by the method according to claim 5 or claim 6.
The action of the pathogen-resistant plant having the above structure is the same as the action of the pathogen-resistant plant according to claims 1 and 2.
 請求項8記載の発明である植物体栽培システムは、植物体の葉に屋外の自然光,又は,人工的に調整された自然光を直接又は間接的に照射可能な植物体生育空間と、植物体の根を収容するとともに,この植物体の生育に必要な養分及び水を供給する培地又は培養液と、植物体の全葉面積の少なくとも10%の領域に,波長390-420nmの間にピークを有する紫色光を断続的に照射する紫色光光源と、この紫色光光源の点灯と消灯とを制御する制御部とを有することを特徴とするものである。
 上記構成の発明において、植物体生育空間は、植物体の葉に光合成に必要な屋外の自然光,又は,人工的に調整された自然光を供給するという作用を有する。また、培地又は培養液は、植物体の根を収容するとともに,この植物体の生育に必要な養分及び水を供給するという作用を有する。さらに、紫色光光源は、物体の全葉面積の少なくとも10%の領域に,波長390-420nmの間にピークを有する紫色光を断続的に照射するという作用を有する。加えて、制御部は紫色光光源の点灯と消灯とを制御するという作用を有する。
 また、上述のような請求項8記載の発明において、紫色光が断続的に照射された植物体では、紫色光が照射されない同種の植物体よりも病原防御応答関連遺伝子が発現されて、より具体的には、サリチル酸合成経路関連遺伝子,又は,サリチル酸によって誘導される遺伝子群が発現されて、さらに詳細には、サリチル酸合成経路関連遺伝子,又は,酸性PRタンパク質を誘導する遺伝子群が発現されて、植物病原菌に対する抵抗性が植物体の全身において高まる。
 他方、紫色光は、植物体に付着又は感染している植物病原菌に直接作用して、植物病原菌を静菌・殺菌するという作用を有する。また、紫色光は、植物体にとっては光合成に利用し難い光であるため、植物体にとってはストレスとなるものの、植物体の形態形成や生育に悪影響を与える恐れは極めて低い。
 さらに、植物体に紫色光を断続的に照射することで、植物体が受けるストレスを低減して光合成が阻害されるのを抑制するという作用を有する。
 このような、請求項8記載の発明によれば、植物体の病原抵抗性を高めつつ、その一方で、植物体に付着又は感染して,植物体に病害を生じさせようとしている植物病原菌を静菌・殺菌するという作用を有し、これらが同時に作用することで、植物体に病害が生じるリスクを大幅に低減しながら植物体を健全に生育させるという作用を有する。
 さらに、紫色光は、人体に対して悪影響を与える恐れも極めて少ないので、紫色光光源を用いることで、作業者にとって安全な作業環境を提供するという作用を有する。
The plant cultivation system according to claim 8 is a plant growth space capable of directly or indirectly irradiating a plant leaf with outdoor natural light or artificially adjusted natural light. A medium or culture solution that contains roots and supplies nutrients and water necessary for the growth of the plant and a peak at a wavelength of 390-420 nm in a region of at least 10% of the total leaf area of the plant It has a violet light source that irradiates violet light intermittently, and a control unit that controls turning on and off of the violet light source.
In the invention of the above configuration, the plant growth space has an effect of supplying outdoor natural light necessary for photosynthesis or artificially adjusted natural light to the leaves of the plant. In addition, the medium or the culture solution has the effect of containing the roots of the plant body and supplying nutrients and water necessary for the growth of the plant body. Further, the violet light source has an effect of intermittently irradiating purple light having a peak between wavelengths 390 to 420 nm to a region of at least 10% of the entire leaf area of the object. In addition, the control unit has an action of controlling turning on and off of the violet light source.
Further, in the invention according to claim 8 as described above, in the plant body irradiated with purple light intermittently, the pathogen defense response-related gene is expressed more specifically than the same kind of plant body not irradiated with purple light, and more specifically, Specifically, a salicylic acid synthesis pathway-related gene or a gene group induced by salicylic acid is expressed, and more specifically, a salicylic acid synthesis pathway-related gene or a gene group that induces acidic PR protein is expressed, Resistance to plant pathogens is increased throughout the body of the plant.
On the other hand, the purple light directly acts on phytopathogenic bacteria attached to or infecting the plant body, and has an effect of bacteriostatically / sterilizing the phytopathogenic bacteria. In addition, since purple light is light that is difficult for plants to use for photosynthesis, it causes stress for plants, but has a very low risk of adversely affecting morphogenesis and growth of plants.
Furthermore, it has the effect | action of reducing the stress which a plant body receives and suppressing photosynthesis being inhibited by irradiating a plant body with purple light intermittently.
According to such invention of Claim 8, while increasing the pathogenicity resistance of a plant body, on the other hand, the plant pathogenic microbe which adheres or infects a plant body and is going to cause a disease to a plant body is obtained. It has the effect of bacteriostatically and sterilizing, and the simultaneous action of these has the effect of growing the plant healthy while greatly reducing the risk of causing disease in the plant.
Furthermore, since violet light is extremely unlikely to adversely affect the human body, the use of a violet light source has the effect of providing a safe working environment for the worker.
 請求項9記載の発明である植物体栽培システムは、請求項8記載の植物体栽培システムであって、紫色光光源は、その取付け位置又は取付け個数が変更可能である,あるいは, 取付け位置及び取付け個数の両方が変更可能であることを特徴とするものである。
 請求項9記載の発明は、請求項8記載の発明と同じ作用を有する。加えて、請求項9記載の発明では、紫色光光源の取付け位置又は取付け個数を変更可能に、あるいは、この両者を変更可能にすることにより、植物体の生長に伴って、葉の位置や大きさが変化した場合でも、目的とする葉に紫色光を確実に照射するという作用を有する。
 また、紫色光光源の取付け位置又は取付け個数を変更可能に、あるいは、この両者を変更可能にすることにより、植物体において特に病害が生じやすい箇所(例えば、下葉など)や、病害が発生した箇所への重点的な紫色光の照射を可能にするという作用を有する。
 そして、特に前者の場合には、紫色光の静菌・殺菌作用を利用して植物体に病害が発生するのを予防するという作用を有する。また、後者の場合には、紫色光の静菌・殺菌作用を利用して、病害が発生した植物体において、病変部分が拡大したり、伝染するのを抑制するという作用を有する。
The plant cultivation system which is the invention according to claim 9 is the plant cultivation system according to claim 8, wherein the violet light source can be changed in its mounting position or the number of mounting, or the mounting position and mounting. Both of the numbers can be changed.
The invention according to the ninth aspect has the same action as the invention according to the eighth aspect. In addition, in the invention described in claim 9, the position and size of the leaf can be changed with the growth of the plant body by changing the mounting position or the number of the violet light source, or by changing both of them. Even when the light intensity changes, it has an effect of reliably irradiating the target leaf with purple light.
In addition, by making it possible to change the attachment position or the number of attachments of the violet light source, or to change both of them, a place where a disease is particularly likely to occur in the plant (for example, a lower leaf) or a disease has occurred. It has the effect of enabling the irradiation of violet light to the point.
And in the case of the former especially, it has the effect | action which prevents that a disease produces on a plant body using the bacteriostatic and bactericidal action of purple light. Moreover, in the latter case, it has the effect | action which suppresses that a lesion part expands and is transmitted in the plant body which disease produced using the bacteriostatic and bactericidal action of purple light.
 本発明の請求項1,2に記載の発明によれば、植物体に紫色光照射処理を行うことにより、植物体の生育や形態形成、あるいは、光合成作用に好ましくない影響を生じさせることなく、植物体の病原抵抗性を高めることができる。これにより、植物体に病害を生じにくくすることができる。
 その一方で、紫色光照射処理の際に植物体に照射される紫色光により、植物体に付着又は感染する植物病原菌が静菌・殺菌されるので、この点からも植物体に病害を生じにくくすることができる。
 すなわち、紫色光照射処理により、植物体自体を病気にかかりにくくするだけでなく、植物体に付着又は感染しいている植物病原菌が病害を引き起こそうとする力も停滞又は低下させることができる。
 この結果、単一の種類の請求項1,2に記載の病原抵抗性植物体を高密度で圃場やハウス内に植え付けた際に、病原抵抗性植物体に病害が生じるリスクを低減することができる。
 よって、請求項1,2に記載の病原抵抗性植物体によれば、栽培時に病害の発生を抑制するために使用する薬剤の量を削減することができるので、安全性の高い植物体を提供することができる。
According to the invention described in claims 1 and 2 of the present invention, by performing purple light irradiation treatment on the plant body, without causing an unfavorable influence on the growth and morphogenesis of the plant body, or the photosynthetic action, The pathogenic resistance of plants can be increased. Thereby, it can make it hard to produce a disease in a plant body.
On the other hand, since the phytopathogenic bacteria that adhere to or infect the plant body are bacteriostatically and sterilized by the purple light irradiated to the plant body during the purple light irradiation treatment, it is also difficult to cause diseases to the plant body from this point can do.
That is, the purple light irradiation treatment not only makes the plant body less susceptible to disease, but also reduces or reduces the force of plant pathogens attached to or infected with the plant body to cause disease.
As a result, when a single type of the pathogen-resistant plant according to claims 1 and 2 is planted at a high density in a field or house, the risk of causing a disease in the pathogen-resistant plant can be reduced. it can.
Therefore, according to the pathogen-resistant plant according to claims 1 and 2, it is possible to reduce the amount of a drug used for suppressing the occurrence of disease during cultivation, and thus a highly safe plant is provided. can do.
 請求項3,4記載の果実,葉茎はいずれも、請求項1又は請求項2に記載の病原抵抗性植物体から収穫される収穫物であり、請求項1又は請求項2に記載の発明と同じ効果を有する。
 また、請求項3,4記載の果実,葉茎によれば、残留薬剤のない,又は,残留農薬の少ない、食品や加工用原料を効率よく生産して提供することができる。
The fruits and leaf stems according to claims 3 and 4 are all harvested from the pathogen-resistant plant according to claim 1 or claim 2, and the invention according to claim 1 or claim 2 Has the same effect.
Moreover, according to the fruit and leaf stem of Claims 3 and 4, it is possible to efficiently produce and provide foods and raw materials for processing that have no residual chemicals or little residual agricultural chemicals.
 請求項5,6記載の発明は請求項1,2に記載の発明を方法の発明として捉えたものであり、請求項5,6記載の病原抵抗性植物体の誘導方法により得られる植物体は、請求項1,2に記載の病原抵抗性植物体と同じであるため、請求項5,6記載の病原抵抗性植物体の効果は、請求項1,2に記載の病原抵抗性植物体と同じである。
 請求項5,6記載の病原抵抗性植物体の誘導方法によれば、紫色光の照射により、植物体における病原防御応答関連遺伝子である,サリチル酸合成経路関連遺伝子,又は,サリチル酸によって誘導される遺伝子群が発現されて、植物体の病原抵抗性の向上に好適に作用するだけでなく、紫色光自体が静菌・殺菌作用を有するので、圃場やハウス等において薬剤の使用量を少なくしながら作物の栽培を行うことができる。
 この結果、残留農薬の少ない安全な食品や加工用原料を提供することができる。
The invention described in claims 5 and 6 is obtained by capturing the invention described in claims 1 and 2 as a method invention, and the plant obtained by the method for inducing a pathogen-resistant plant described in claims 5 and 6 is The pathogenic resistance plant according to claims 5 and 6 has the same effect as that of the pathogenic resistance plant according to claims 1 and 2. The same.
According to the method for inducing a pathogen-resistant plant according to claims 5 and 6, a gene related to a salicylic acid synthesis pathway or a gene induced by salicylic acid, which is a gene related to a pathogen defense response in a plant by irradiation with purple light. As the group is expressed, it not only works well to improve the pathogenic resistance of plants, but also the purple light itself has bacteriostatic and bactericidal action, so crops while reducing the amount of drugs used in fields and houses Can be cultivated.
As a result, it is possible to provide safe foods and raw materials for processing with little residual agricultural chemicals.
 請求項7記載の発明は、請求項5,6記載の方法により得られた病原抵抗性植物体であり、この病原抵抗性植物体は、請求項1,2に記載の病原抵抗性植物体と同じである。
 よって、請求項7記載の発明の効果は、請求項1,2に記載の発明の効果と同じである。
The invention described in claim 7 is a pathogen-resistant plant obtained by the method described in claims 5 and 6, and the pathogen-resistant plant is the pathogen-resistant plant described in claims 1 and 2. The same.
Therefore, the effect of the invention described in claim 7 is the same as the effect of the invention described in claims 1 and 2.
 請求項8記載の発明によれば、植物体に紫色光を照射することにより、植物体の全身において病原抵抗性を高めることができるので、植物病原菌による病害の発生を抑制することができる。また、紫色光が直接照射される部位では、植物病原菌を静菌・殺菌することができるので、植物体において病害が出やすい部位(例えば、下葉など)に紫色光を照射することで効率良く病害の発生を抑制することができる。
 したがって、請求項8記載の植物体栽培システムによれば、紫色光を照射するだけで、植物体を病気にかかりにくくするとともに、植物病原菌の静菌・殺菌もすることができるので、植物体の栽培時に病害の防除のために使用する薬剤の量を減らすことができる。
 この結果、残留農薬の少ない作物や、加工用原料を生産して提供することができる。
According to the eighth aspect of the present invention, pathogenicity resistance can be enhanced in the whole body of the plant body by irradiating the plant body with violet light, so that it is possible to suppress the occurrence of disease caused by the plant pathogen. In addition, since the plant pathogenic bacteria can be bacteriostatically and sterilized at the site that is directly irradiated with purple light, it is efficient to irradiate purple light on the site that is likely to cause disease in the plant body (for example, lower leaves). The occurrence of disease can be suppressed.
Therefore, according to the plant cultivation system according to claim 8, the plant body can be made less susceptible to illness by irradiating with purple light, and the plant pathogen can be bacteriostatically / sterilized. It is possible to reduce the amount of chemicals used for disease control during cultivation.
As a result, it is possible to produce and provide crops with little residual agricultural chemicals and raw materials for processing.
 請求項9記載の発明は、請求項8記載の発明と同じ効果を有する。
 また、請求項9記載の発明においては、紫色光光源の取付け位置又は取付け個数が変更可能、あるいは、この両者が変更可能であるため、植物体の生長に伴って葉の大きさや位置が変わった場合でも、必要な箇所に必要な数の紫色光光源を設置することができる。
 また、万一、植物体において病害が発生した場合、紫色光光源を新たに追加したり、病害が発生していない部位を照射している紫色光光源を, 病害が発生した部位を照射するために移動させることができるので、病害が発生した部位に紫色光を照射することができる。
 この結果、病害が発生した部位における植物病原菌を静菌・殺菌することができるので、病害の拡大や感染の拡大を効率的に防止することができる。
 また、病害が発生した部位の葉に紫色光を照射することでその葉を温存することができるので、植物体に病害が生じた際の植物体へのダメージを最小限度にすることができる。
 また、植物体に病害が発生した場合でも、薬剤を用いることなく紫色光の照射により対処できる可能性が高まるので、植物体に病害が発生した後も、薬剤を用いることなく,又は,薬剤の使用量を少なくしながら植物体の栽培を継続することができ、植物体に病害が発生した後もなお残留農薬の少ない食品や、加工用原料の生産が容易になる。
 すなわち、病害が発生した植物体からも残留農薬の少ない安全な収穫物を得ることができる。
The invention according to the ninth aspect has the same effect as the invention according to the eighth aspect.
In addition, in the invention according to claim 9, since the attachment position or the number of attachments of the violet light source can be changed, or both of them can be changed, the size and position of the leaves have changed with the growth of the plant body. Even in such a case, a necessary number of violet light sources can be installed at necessary positions.
In addition, in the unlikely event that a disease occurs in a plant, a purple light source is newly added or a purple light source that irradiates a site where no disease has occurred is used to irradiate the site where the disease has occurred Therefore, purple light can be irradiated to the site where the disease has occurred.
As a result, phytopathogenic bacteria at the site where the disease has occurred can be bacteriostatically sterilized, so that the spread of the disease and the spread of the infection can be effectively prevented.
In addition, since the leaves can be preserved by irradiating the leaves where the disease has occurred with purple light, the damage to the plants when the disease occurs can be minimized.
In addition, even when a disease occurs in a plant body, the possibility that it can be dealt with by irradiating purple light without using a drug increases. Cultivation of plant bodies can be continued while reducing the amount used, and it becomes easy to produce foods with little residual agricultural chemicals and raw materials for processing even after diseases occur in the plant bodies.
That is, a safe harvest with little residual agricultural chemicals can be obtained from a plant body in which a disease has occurred.
(a)-(c)はいずれも本発明の実施例1に係る病原抵抗性植物体が誘導される仕組みを示す概念図である。(A)-(c) is a conceptual diagram showing a mechanism for inducing a pathogen-resistant plant according to Example 1 of the present invention. (a)-(c)は植物体Pに病原抵抗性を誘導する処理を何ら行わない場合の病害の進行の様子を示す概念図である。(A)-(c) is a conceptual diagram showing the progression of disease when no treatment for inducing pathogenic resistance is performed on the plant body P. FIG. (a)-(c)は緑色光の照射した際に植物体Pの病原抵抗性が誘導される仕組みを示す概念図である。(A)-(c) is a conceptual diagram which shows the mechanism by which the pathogenic resistance of the plant body P is induced when irradiated with green light. (a)-(c)はいずれも本発明の実施例2に係る植物体栽培システムの概念図である。(A)-(c) is a conceptual diagram of a plant cultivation system according to Example 2 of the present invention. (a)-(c)はいずれも本発明の実施例2の変形例に係る植物体栽培システムを示す概念図である。(A)-(c) is a conceptual diagram showing a plant cultivation system according to a modification of Example 2 of the present invention. 光量子束密度を一定(95μmolm-2s-1一定)にして各波長光を照射した場合の経時変化に伴うコロニー直径の変化を示すグラフである。It is a graph which shows the change of the colony diameter accompanying a time-dependent change at the time of irradiating each wavelength light, making a photon flux density constant (95 micromolm- 2 s- 1 constant). 紫色光(波長405nm)を所定の時間照射した後の全コロニー数に対する回復したコロニー(菌の死滅が生じなかったコロニー)の数の割合(回復率)を示す表である。It is a table | surface which shows the ratio (recovery rate) of the number of the recovered colonies (colony which did not kill | disinfect a microbe) with respect to the total number of colonies after irradiating purple light (wavelength of 405 nm) for a predetermined time. B.cinereaの胞子に対して各波長光(405nm,415nm,450nm,いずれも放射照度60Wm-2)を72時間照射した際の胞子の様子を示す画像と,各波長光を72時間照射した後に暗黒下において24時間培養した際の胞子の様子を示す画像を対比させて示した図である。B.cinerea spores images of spore when irradiated with light of each wavelength (405 nm, 415 nm, 450 nm, irradiance 60 Wm -2 ) for 72 hours, and after irradiating each wavelength light for 72 hours It is the figure which contrasted and showed the image which shows the mode of the spore at the time of culturing for 24 hours in the dark. B.cinereaの胞子に対して各波長光(405nm、415nm、450nm、いずれも放射照度60Wm-2)を照射した場合の胞子の発芽率の経時変化と,暗黒下に72時間置いたものの胞子の発芽率の経時変化を示すグラフである。Changes in the germination rate of spores of B. cinerea spores when irradiated with light of each wavelength (405 nm, 415 nm, 450 nm, irradiance 60 Wm -2 ), and the spores of the spores after 72 hours in the dark It is a graph which shows a time-dependent change of a germination rate. 暗黒下において培養した植物病原菌の菌糸先端部の画像と、波長405nmの紫色光を照射しながら培養した同植物病原菌の菌糸先端部の画像を対比させて示した図である。It is the figure which contrasted and showed the image of the mycelia front-end | tip part of the phytopathogenic fungi cultured in the darkness, and the image of the mycelial-tip part of the phytopathogenic fungi cultured while irradiating purple light with a wavelength of 405 nm. 波長405nmの紫色光をそれぞれ24,72,168時間照射しながら培養した胞子(B.cinerea)の様子を示す画像と、暗黒下において24,72,168時間培養した同胞子の様子を示す画像とを対比させて示す画像である。An image showing the appearance of spores (B. cinerea) cultured while irradiating purple light of wavelength 405 nm for 24, 72 and 168 hours, respectively, and an image showing the appearance of spores cultured in the dark for 24, 72 and 168 hours It is the image which contrasts and shows. 405nm紫色光を照射したB.cinereaにおける分裂制御遺伝子の発現変化を示すグラフである。It is a graph which shows the expression change of the division control gene in B.cinerea irradiated with 405 nm purple light. (a)は波長405nm紫色光を照射したトマトの外観の様子を示す画像であり、(b)はコントロール区のトマトの外観の様子を示す画像である。また、(c)は波長405nm紫色光を照射した場合のトマトの葉組織をラクトフェノールコットンブルーにより染色した場合の菌(灰色かび病菌)染色の様子を示す拡大画像であり、(d)はコントロール区のトマトの葉組織をラクトフェノールコットンブルーにより染色した場合の菌(灰色かび病菌)染色の様子を示す拡大画像である。(A) is an image showing the appearance of the tomatoes irradiated with 405 nm wavelength violet light, and (b) is an image showing the appearance of the tomatoes in the control section. Moreover, (c) is an enlarged image showing a state of bacterial (gray mold) staining when tomato leaf tissue is stained with lactphenol cotton blue when irradiated with purple light having a wavelength of 405 nm, and (d) is a control. It is an enlarged image which shows the mode of a microbe (gray mold fungus) dyeing | staining at the time of dyeing the leaf tissue of a tomato of a ward with lactophenol cotton blue. 波長405nm紫色光を照射したトマトの葉と、コントロール区のトマトの葉を用いた切除葉ペーパーディスク接種試験結果を示す画像である。It is an image which shows the cut leaf paper disk inoculation test result using the tomato leaf irradiated with wavelength 405nm purple light, and the tomato leaf of a control group. 実験1におけるビニールハウス内の供試材料の配置を示す平面図である。It is a top view which shows arrangement | positioning of the test material in the greenhouse in Experiment 1. FIG. 実験2におけるビニールハウス内の供試材料の配置を示す平面図である。It is a top view which shows arrangement | positioning of the test material in the greenhouse in Experiment 2. FIG. 実験3(12/7-1/16)におけるビニールハウス内の供試材料の配置を示す平面図である。It is a top view which shows arrangement | positioning of the test material in a greenhouse in Experiment 3 (12 / 7-1 / 16). 実験3(1/17以降)におけるビニールハウス内の供試材料の配置を示す平面図である。It is a top view which shows arrangement | positioning of the test material in a greenhouse in Experiment 3 (1/17 or later). 実験2において波長405nmの紫色光を照射した個体群と、コントロール用の個体群における草丈の経時変化を比較したグラフである。It is the graph which compared the time-dependent change of the plant height in the population which irradiated purple light with a wavelength of 405 nm in Experiment 2, and the population for control. 実験2において波長405nmの紫色光を照射した個体群と、コントロール用の個体群における複葉数の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the number of compound leaves in the population irradiated with purple light of wavelength 405nm in Experiment 2, and the control population. 実験2において波長405nmの紫色光を照射した個体群と、コントロール用の個体群におけるSPAD値の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the SPAD value in the population which irradiated purple light of wavelength 405nm in Experiment 2, and the population for control. 実験1(夏秋栽培)における罹病葉数に基づく発病指数の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the disease index based on the number of diseased leaves in Experiment 1 (summer autumn cultivation). 実験1(夏秋栽培)における罹病葉数に基づく罹病葉数の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the number of diseased leaves based on the number of diseased leaves in Experiment 1 (summer autumn cultivation). 実験2(夏秋栽培)における発病指数の経時変化を個体全体で計算した場合のグラフである。It is a graph at the time of calculating the time change of the disease index in Experiment 2 (summer autumn cultivation) in the whole individual. 実験2(夏秋栽培)における発病指数の経時変化を照射されている葉位の複葉で計算した場合のグラフである。It is a graph at the time of calculating the time-dependent change of the disease index in Experiment 2 (summer autumn cultivation) with the compound leaf of the irradiated leaf position. 実験3(冬春栽培)における発病指数の変化を示すグラフである。It is a graph which shows the change of the disease incidence index in Experiment 3 (winter spring cultivation). 実験3(冬春栽培)における罹病葉数の変化を示すグラフである。It is a graph which shows the change of the number of diseased leaves in Experiment 3 (winter spring cultivation). 供試材料としてトマトを用いた場合のコントロール区と405nm紫色光照射区における病原防御応答関連遺伝子の発現量を比較したグラフである。It is the graph which compared the expression level of the pathogen defense response related gene in the control group at the time of using tomato as a test material, and a 405 nm purple light irradiation group. 供試材料としてトマトを用いた場合のコントロール区と405nm紫色光照射区における病原防御応答関連遺伝子の発現量を比較したグラフである。It is the graph which compared the expression level of the pathogen defense response related gene in the control group at the time of using tomato as a test material, and a 405 nm purple light irradiation group. 供試材料としてトマトを用いた場合のコントロール区と405nm紫色光照射区における病原防御応答関連遺伝子の発現量を比較したグラフである。It is the graph which compared the expression level of the pathogen defense response related gene in the control group at the time of using tomato as a test material, and a 405 nm purple light irradiation group. 供試材料としてシロイヌナズナを用いた場合のコントロール区と405nm紫色光照射区における病原防御応答関連遺伝子の発現量を比較したグラフである。It is the graph which compared the expression level of the pathogen defense response related gene in the control group at the time of using Arabidopsis thaliana as a test material, and a 405 nm purple light irradiation group. 試験11において使用した光源A-Cの波長特性を示すグラフである。10 is a graph showing wavelength characteristics of light sources AC used in Test 11. FIG. 同一葉に対し徐々に光強度を上げていった際のPPFDとΔF/Fm’の関係を示すグラフである。It is a graph which shows the relationship between PPFD and (DELTA) F / Fm 'when light intensity is gradually raised with respect to the same leaf. 同一葉に対し徐々に光強度を上げていった際のPPFDとΔF/Fm’の関係を示すグラフである。It is a graph which shows the relationship between PPFD and (DELTA) F / Fm 'when light intensity is gradually raised with respect to the same leaf. 黒かび病菌(A.nig)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。When the mold of A. nig is cultivated in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), and light at 640 nm It is an image which shows the reproduction state after 144 hours at the time of culturing while irradiating light having a peak wavelength and white light, respectively. 灰色かび病菌(B.cin)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。When gray mold fungus (B. cin) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), and 640 nm It is an image which shows the reproduction state after 144 hours at the time of culturing while irradiating light having a peak wavelength and white light, respectively. 炭そ病菌(C.glo)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。When anthracnose fungus (C. glo) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), and 640 nm It is an image which shows the reproduction state after 144 hours at the time of culturing while irradiating light having a peak wavelength and white light, respectively. いもち病菌(F.pro)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。When the rice blast fungus (F. pro) is cultured in the dark, it has light with a peak wavelength at 375 nm, light with a peak wavelength at 405 nm, light with a peak wavelength at 470 nm (purple light), and peak at 640 nm. It is an image which shows the reproduction state after 144 hours at the time of culture | cultivation, irradiating each with the light which has a wavelength, and white light. 別のいもち病菌(F.pro)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。When cultivating another blast fungus (F. pro) in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), 640 nm It is an image which shows the breeding state after 144 hours at the time of culture | cultivating, irradiating light which has a peak wavelength, and white light, respectively. は別のいもち病菌(F.pro)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。Is a case where another blast fungus (F. pro) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), It is an image which shows the reproduction state after 144 hours at the time of culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively. 別のいもち病菌(F.ver)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。When cultivating another blast fungus (F.ver) in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), 640 nm It is an image which shows the breeding state after 144 hours at the time of culture | cultivating, irradiating light which has a peak wavelength, and white light, respectively. 別のいもち病菌(M.gri)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。When cultivating another blast fungus (M.gri) in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), 640 nm It is an image which shows the breeding state after 144 hours at the time of culture | cultivating, irradiating light which has a peak wavelength, and white light, respectively. 黒腐菌核病菌(S.cep)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。When black rot fungus (S. cep) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), It is an image which shows the reproduction state after 144 hours at the time of culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively. 波長405nmの紫色光又は白色光の前照射を行った供試植物のメボウキに、灰色かび病菌を接種した後、波長405nmの紫色光又は白色光を引き続き照射した区と、照射しなかった区のそれぞれにおける3日後の植物体の様子を示す画像である。After inoculating gray mold fungi on the test plants that had been pre-irradiated with purple light or white light at a wavelength of 405 nm, after the inoculation with gray mold fungus, there were two groups: It is an image which shows the mode of the plant body after 3 days in each. 波長405nmの紫色光又は白色光の前照射を行った供試植物のインゲンマメに、灰色かび病菌を接種した後、波長405nmの紫色光又は白色光を引き続き照射した区と、照射しなかった区のそれぞれにおける3日後の植物体の様子を示す画像である。After inoculating the gray bean of the test plant that had been pre-irradiated with purple light or white light with a wavelength of 405 nm, after the inoculation with the gray mold fungus, there were two groups: It is an image which shows the mode of the plant body after 3 days in each. 波長405nmの紫色光又は白色光の前照射を行った供試植物のメボウキに、灰色かび病菌を接種した後、波長405nmの紫色光又は白色光を引き続き照射した区と、照射しなかった区のそれぞれにおける3日後の植物体の病班の直径を計測した結果を示すグラフである。After inoculating the gray mold of the test plant that had been pre-irradiated with purple light or white light with a wavelength of 405 nm, after the inoculation with the gray mold fungus, the group that was continuously irradiated with purple light or white light with a wavelength of 405 nm It is a graph which shows the result of having measured the diameter of the diseased part of the plant body after 3 days in each. 波長405nmの紫色光又は白色光の前照射を行った供試植物のインゲンマメに、灰色かび病菌を接種した後、波長405nmの紫色光又は白色光を引き続き照射した区と、照射しなかった区のそれぞれにおける3日後の植物体の病班の直径を計測した結果を示すグラフである。After inoculating the gray bean of the test plant that had been pre-irradiated with purple light or white light with a wavelength of 405 nm, after the inoculation with the gray mold fungus, there were two groups: It is a graph which shows the result of having measured the diameter of the diseased part of the plant body after 3 days in each. 供試植物であるムラサキに405nmの紫色光を照射した場合と照射しない場合の発病指数の推移を示すグラフである。It is a graph which shows transition of the disease index of the case where the purple light of 405 nm is irradiated to Murasaki which is a test plant, and when not irradiated.
 本発明の実施の形態に係る病原抵抗性植物体およびその果実およびその葉茎および病原抵抗性植物体の誘導方法について実施例1を、植物体栽培システムについて実施例2を参照しながら詳細に説明する。 Example 1 will be described in detail with respect to the pathogen-resistant plant according to the embodiment of the present invention, the fruit thereof, the leaf stem thereof, and the method for inducing the pathogen-resistant plant, and the plant cultivation system will be described in detail with reference to Example 2. To do.
 本発明の実施例1に係る病原抵抗性植物体およびその果実およびその葉茎およびその誘導方法について、従来技術と比較しながら詳細に説明する。
 まず、実施例1に係る病原抵抗性植物体およびその誘導方法について図1を参照しながら説明する。
 図1(a)-(c)はいずれも本発明の実施例1に係る病原抵抗性植物体が誘導される仕組みを示す概念図である。
 実施例1に係る病原抵抗性植物体1を得るには、まず、図1(a)に示すように、植物体Pの葉2に、例えば、紫色光光源3等を用いて、波長390-420nmの間にピークを有する紫色光11を照射する紫色光照射処理を行えばよい。
 この場合、植物体P内において、上述のような紫色光照射処理を行わない同種の植物体Pに比べて、病原防御応答関連遺伝子が発現されて、植物体Pの全身において病原抵抗性が高まり病原抵抗性植物体1となる。
 なお、紫色光照射処理により植物体P内で発現される病原防御応答関連遺伝子は、具体的には、サリチル酸合成経路関連遺伝子,又は,サリチル酸によって誘導される遺伝子群であり、より詳細には、サリチル酸合成経路関連遺伝子,又は,酸性PRタンパク質を誘導する遺伝子群である。
The pathogen-resistant plant according to Example 1 of the present invention, its fruit, its leaf stem and its induction method will be described in detail in comparison with the prior art.
First, a pathogen-resistant plant according to Example 1 and a method for inducing it will be described with reference to FIG.
1 (a) to 1 (c) are conceptual diagrams showing a mechanism for inducing a pathogen-resistant plant according to Example 1 of the present invention.
In order to obtain the pathogen-resistant plant 1 according to Example 1, first, as shown in FIG. 1 (a), for example, a violet light source 3 or the like is used on the leaf 2 of the plant P, and the wavelength 390- A violet light irradiation process of irradiating purple light 11 having a peak between 420 nm may be performed.
In this case, in the plant body P, the pathogen defense response-related gene is expressed and the pathogen resistance is increased in the whole body of the plant body P as compared with the same plant body P that is not subjected to the purple light irradiation treatment as described above. It becomes the pathogen-resistant plant body 1.
In addition, the pathogen defense response related gene expressed in the plant body P by the purple light irradiation treatment is specifically a salicylic acid synthesis pathway related gene or a gene group induced by salicylic acid, and more specifically, It is a gene group that induces salicylic acid synthesis pathway-related genes or acidic PR proteins.
 そして、実施例1に係る病原抵抗性植物体1によれば、植物体Pの全身において病原抵抗性が高められるので、植物体Pにおいて植物病原菌4による病害の発生を少なくすることができる。
 この場合、紫色光照射処理を行わない植物体Pを栽培する場合に比べて、紫色光照射処理を行った植物体P(病原抵抗性植物体1)を栽培する場合の方が、植物病原菌4による病害の防除に必要な薬剤(農薬)の使用量を少なくすることができる,又は,無農薬とすることができるので、人体に対して安全性の高い植物体Pを提供することができる。
 また、植物体P自体を食用とする、あるいは、植物体Pから収穫された果実や葉茎を食用にする場合は、残留農薬のない,又は,残留農薬の少ない安全な食品を提供することができる。
And according to the pathogenicity-resistant plant body 1 which concerns on Example 1, since pathogenicity resistance is raised in the whole body of the plant body P, generation | occurrence | production of the disease by the plant pathogenic microbe 4 in the plant body P can be decreased.
In this case, the phytopathogenic fungus 4 is more cultivated when the plant P (pathogen-resistant plant 1) subjected to the purple light irradiation treatment is cultivated than when the plant P not subjected to the purple light irradiation treatment is cultivated. Since the amount of a drug (agricultural chemical) used for controlling disease caused by the above can be reduced, or it can be made pesticide-free, it is possible to provide a plant P that is highly safe for the human body.
In addition, when the plant body P itself is edible, or when fruits and leaves and stems harvested from the plant body P are edible, it is possible to provide safe foods with little or no residual pesticides. it can.
 先にも述べたとおり、従来から特定の波長領域にピークを有する光を植物体Pに照射することで植物体Pの病原抵抗性が高められることは知られていた(上述の特許文献1,2及び非特許文献1,2を参照)。
 しかしながら、植物体Pに照射する光が紫外線(紫外光)の場合、人体に好ましくない影響を与える恐れがあり、圃場やハウス内等のように恒常的に人が出入りする場所での照射は望ましくなく、実用的な技術とは言えなかった。
 これに対して、植物体Pに赤色光を照射する技術の場合は、赤色光が人体に好ましくない影響を及ぼす恐れは少ないものの、通常、赤色光は植物体Pの光合成に欠かせない光であり、また、植物体Pの正常な形態形成や生育に特に関連性が高いとの報告もなされており、商品作物を栽培する場合に確実性の高い技術であるとは言えなかった。
 これに対して、植物体Pに緑色光を照射する技術の場合は、赤色光を照射する場合とは異なり、通常、緑色光は植物体Pにおいて光合成に利用されない光であり、また、人体に悪影響を及ぼす恐れも少ないので、上述のような紫外線(紫外光)や赤色光を用いる場合のような不具合は生じないと考えられる。
 しかしながら、緑色光は植物病原菌4に対する静菌・殺菌作用を有していないので、植物病原菌4が植物体Pに病害を引き起こそうとする力が、植物体Pの病原抵抗性に勝ってしまった場合には、緑色光の照射のみではもはや対処することができず、結局は病害の防除を薬剤に頼らざるを得なかった。
As described above, it has been known that the pathogenicity resistance of the plant body P can be enhanced by irradiating the plant body P with light having a peak in a specific wavelength region (see Patent Document 1 described above). 2 and non-patent documents 1 and 2).
However, when the light irradiated to the plant body P is ultraviolet light (ultraviolet light), there is a possibility that it may adversely affect the human body, and it is desirable to irradiate in places where people constantly enter and exit, such as in farms and houses. It was not a practical technology.
On the other hand, in the case of the technique of irradiating the plant body P with red light, the red light is usually indispensable for the photosynthesis of the plant body P, although there is little possibility that the red light has an unfavorable effect on the human body. In addition, it has been reported that it is particularly relevant to normal morphogenesis and growth of the plant body P, and it cannot be said that it is a highly reliable technique when cultivating commercial crops.
On the other hand, in the case of the technique of irradiating the plant body P with green light, unlike the case of irradiating red light, the green light is usually light that is not used for photosynthesis in the plant body P, and Since there is little risk of adverse effects, it is considered that such a problem as in the case of using ultraviolet light (ultraviolet light) or red light does not occur.
However, since green light has no bacteriostatic / bactericidal action against the phytopathogenic fungus 4, the ability of the phytopathogenic fungus 4 to cause disease to the plant P has overcome the pathogenic resistance of the plant P. In that case, it was no longer possible to deal with it only by irradiating green light, and eventually it was necessary to rely on drugs to control the disease.
 発明者らは、波長390-420nmの間にピークを有する紫色光11が、人体に悪影響を及ぼす病原菌に対して静菌・殺菌作用を有するという知見を得て、この紫色光11により植物病原菌を静菌・殺菌することができないかと考え、まず、植物病原菌4に紫色光11を直接照射することを試みた。この結果、紫色光11が植物病原菌4に対しても静菌・殺菌作用を有することを見出した。
 そして、次の段階として発明者らは、薬剤を使用する代わりに紫色光を照射することで、植物病原菌4による病害の発生を抑制できないかと考えて、植物体Pに紫色光11を照射したところ、紫色光11の照射により植物体Pの病原抵抗性が高められて病害の発生を抑制できることを見出した。
The inventors have obtained the knowledge that purple light 11 having a peak between wavelengths 390-420 nm has bacteriostatic / bactericidal action against pathogenic bacteria that adversely affect the human body. Thinking that bacteriostasis and sterilization could not be performed, first, the phytopathogenic fungus 4 was directly irradiated with purple light 11. As a result, it was found that the purple light 11 has a bacteriostatic / bactericidal action against the phytopathogenic fungus 4.
And as a next step, the inventors irradiate the plant body P with the purple light 11 on the assumption that the generation of the disease caused by the plant pathogen 4 can be suppressed by irradiating the purple light instead of using the drug. The inventors have found that irradiation with purple light 11 increases the pathogenic resistance of the plant body P and can suppress the occurrence of disease.
 したがって、実施例1に係る病原抵抗性植物体1では、第1の効果として、図1(b)に示すように、植物体の少なくとも一部に波長390-420nmの間にピークを有する紫色光11を照射することにより、植物体Pの全身において病原抵抗性を高めることができ、これにより、紫色光11を照射した後の植物体Pを病気にかかり難くすることができる。なお、図1(b),(c)において、植物体Pの全体にハッチングが施されているのは、植物体Pの病原抵抗性が誘導されたことを示している。以下、他の実施例においても同様である。
 さらに、実施例1に係る病原抵抗性植物体1では、第2の効果として、植物体Pにおいて、特に、波長390-420nmの間にピークを有する紫色光11が直接照射された部位では、紫色光11による植物病原菌4の静菌・殺菌作用が発揮されるので、紫色光11を照射する前に植物体Pに付着又は感染した植物病原菌4が植物体Pに病害を引き起こそうとする力を停滞又は低下させることができる。
 より具体的には、図1(a)に示すように、紫色光11が照射される前に植物体Pの,例えば葉に、既に植物病原菌4が感染又は付着していたとしても、紫色光照射処理を行うことにより、図1(b)に示すように、紫色光11が直接照射された部位では紫色光11によって植物病原菌4が静菌・殺菌されて、植物病原菌4が植物体Pに病害を引き起こそうとする力が停滞又は弱められるので、図1(c)に示すように、植物体Pの葉2における病害の発生を抑制又は防止することができる。
 つまり、実施例1に係る病原抵抗性植物体1の場合は、植物体Pの病原抵抗性を高めるだけでなく、植物病原菌4が病害を引き起こそうとする力を停滞,低下させることによっても植物体Pに病害が生じるのを抑制することができるのである。
 なお、上記2つの効果のうち、後者の効果は、実施例1に係る病原抵抗性植物体1において、波長390-420nmの間にピークを有する紫色光11を使用することによるものであり、本願発明の独自の効果である。
Therefore, in the pathogen-resistant plant 1 according to Example 1, as a first effect, as shown in FIG. 1B, at least a part of the plant has a purple light having a peak between wavelengths 390-420 nm. By irradiating 11, the pathogenic resistance can be enhanced in the whole body of the plant body P, and thus the plant body P after being irradiated with the purple light 11 can be made difficult to get sick. In FIGS. 1B and 1C, the fact that the whole plant P is hatched indicates that the pathogenic resistance of the plant P is induced. The same applies to other embodiments.
Furthermore, in the pathogen-resistant plant 1 according to Example 1, the second effect is that the plant P has a purple color, particularly at a site directly irradiated with purple light 11 having a peak between wavelengths 390-420 nm. Since the bacteriostatic and bactericidal action of the phytopathogenic fungi 4 by the light 11 is exerted, the ability of the phytopathogenic fungi 4 attached or infected to the plant P before irradiating the purple light 11 to cause the disease to the disease Can be stagnated or reduced.
More specifically, as shown in FIG. 1 (a), even if the phytopathogenic fungus 4 is already infected or attached to the leaves of the plant body P, for example, before the purple light 11 is irradiated, the purple light By performing the irradiation treatment, as shown in FIG. 1 (b), the phytopathogenic fungi 4 are bacteriostatically sterilized by the violet light 11 at the site irradiated directly with the violet light 11, and the phytopathogenic fungi 4 are transferred to the plant body P. Since the force to cause the disease is stagnated or weakened, the occurrence of the disease in the leaves 2 of the plant body P can be suppressed or prevented as shown in FIG.
That is, in the case of the pathogen-resistant plant 1 according to Example 1, not only the pathogenic resistance of the plant P is increased, but also by stagnating and reducing the ability of the phytopathogenic fungus 4 to cause disease. It is possible to suppress the occurrence of disease in the plant body P.
Of the above two effects, the latter effect is due to the use of purple light 11 having a peak between wavelengths 390-420 nm in the pathogen-resistant plant 1 according to Example 1. This is a unique effect of the invention.
 本願発明の独自の効果について、病原抵抗性を高める処理を何ら行わない場合、及び、緑色光を照射して病原抵抗性を高めた場合を比較対象としてさらに詳細に説明する。
 一般に、植物体Pは、植物病原菌4等による直接的な害を受けることにより誘導される抵抗性も備えているが、本願明細書においては、植物病原菌4等による直接的な加害によって誘導される病原抵抗性と、特定の波長領域を有する光を照射する等により誘導される病原抵抗性とを区別し、前者の抵抗性については無視することにする。
About the original effect of this invention, the case where no process which raises pathogenic resistance is performed, and the case where pathogenic resistance is improved by irradiating green light will be described in more detail.
Generally, the plant body P also has resistance induced by direct damage caused by the phytopathogenic fungi 4 or the like, but in the present specification, it is induced by direct damage by the phytopathogenic fungi 4 or the like. The pathogenic resistance is distinguished from the pathogenic resistance induced by irradiating light having a specific wavelength region, and the former resistance is ignored.
 まず、植物体Pに病原抵抗性を高めるための処理を何ら行わない場合における病害の進行について図2を参照しながら説明する。
 図2(a)-(c)は植物体Pに病原抵抗性を誘導する処理を何ら行わない場合の病害の進行の様子を示す概念図である。なお、図1に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
 図2(a)に示すように、植物体Pの,例えば,葉2に植物病原菌4が付着又は感染した状態をそのまま放置すると、図2(a)に示すように、植物病原菌4が付着又は感染した葉2において多数の病斑5が現れて病害が生じた状態になり、さらに、その周囲の葉2や、図示しない他の植物体Pにも植物病原菌4の感染が拡大する。そして、その状態を放置すると、多数の病斑5が現れた葉2は枯死葉7となり、その上の他の葉2において多数の病斑5が生じながらさらに植物病原菌4の感染が拡大していき、最悪の場合、植物体Pは枯死してしまう。
First, the progression of the disease in the case where no treatment for increasing pathogenic resistance is performed on the plant body P will be described with reference to FIG.
FIGS. 2A to 2C are conceptual diagrams showing the progression of disease when no treatment for inducing pathogenic resistance is performed on the plant body P. FIG. In addition, the same code | symbol is attached | subjected about the part same as what was described in FIG. 1, and the description about the structure is abbreviate | omitted.
As shown in FIG. 2 (a), if the plant P, for example, leaves 2 are attached or infected with the phytopathogenic fungi 4 are left as they are, the phytopathogenic fungi 4 are attached or removed as shown in FIG. 2 (a). A large number of lesions 5 appear on the infected leaves 2 to cause a disease, and further, the infection of the phytopathogenic fungi 4 spreads to the surrounding leaves 2 and other plant bodies P (not shown). If the state is left as it is, the leaves 2 in which a large number of lesions 5 have appeared become dead leaves 7, and the infection of the phytopathogenic fungi 4 has further expanded while a large number of the lesions 5 have occurred in the other leaves 2 thereon. In the worst case, the plant body P will die.
 次に、先の特許文献1に開示されるような緑色光を照射する場合について図3を参照しながら詳細に説明する。
 図3(a)-(c)は緑色光の照射した際に植物体Pの病原抵抗性が誘導される仕組みを示す概念図である。なお、図1又は図2に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
 図3(a)に示すように、例えば、葉2に植物病原菌4が付着又は感染した植物体Pに、例えば、緑色光光源6を用いて緑色光12を照射した場合、緑色光12の照射により植物体Pの全身において病原抵抗性が高められる一方で、緑色光12は実施例1に係る病原抵抗性植物体1を誘導する際に用いられる紫色光11のように静菌・殺菌作用を有さないので、植物病原菌4が植物体Pに病害を引き起こそうとする力はそのまま維持されることになる。
 この場合、植物体Pの抵抗性が高められたとしても、植物病原菌4が植物体Pに病害を生じさせるのに十分な力を有する状態になってしまった場合には、図3(c)に示すように、植物体Pの葉2に病斑5が生じたり、他の葉2への感染の拡大が起こってしまう。
Next, the case of irradiating green light as disclosed in the above Patent Document 1 will be described in detail with reference to FIG.
FIGS. 3A to 3C are conceptual diagrams showing a mechanism by which pathogenic resistance of the plant body P is induced when irradiated with green light. In addition, the same code | symbol is attached | subjected about the same part as what was described in FIG. 1 or FIG. 2, and the description about the structure is abbreviate | omitted.
As shown in FIG. 3A, for example, when green light 12 is irradiated to a plant body P in which a phytopathogenic fungus 4 is attached or infected to a leaf 2 using, for example, a green light source 6, irradiation with green light 12 is performed. While the pathogen resistance is enhanced in the whole body of the plant body P, the green light 12 has a bacteriostatic / bactericidal action like the purple light 11 used in inducing the pathogen-resistant plant body 1 according to Example 1. Since it does not have, the force which the plant pathogenic microbe 4 tries to cause a disease to the plant body P is maintained as it is.
In this case, even if the resistance of the plant body P is increased, if the plant pathogenic fungus 4 has a sufficient force to cause disease to the plant body P, FIG. As shown in FIG. 5, the lesion 5 is generated on the leaf 2 of the plant body P, or the spread of infection to other leaves 2 occurs.
 これに対して、実施例1に係る病原抵抗性植物体1では、先の図1に示すように、植物体Pにおいて紫色光11が直接照射された部位では、植物病原菌4の静菌・殺菌作用が発揮されるので、植物病原菌4が植物体Pに病害を生じさせようとする力は停滞又は弱められた状態となる。
 このため、実施例1に係る病原抵抗性植物体1では、紫色光11が照射された後に、なおも植物病原菌4が植物体Pに病害を生じさせるのに十分な力を有する可能性は大幅に低くなる。
 したがって、本発明の実施例1に係る病原抵抗性植物体1の場合は、緑色光12を照射した場合に比べて、植物病原菌4による病害の発生および進行を一層緩慢にすることができるのである。
On the other hand, in the pathogen-resistant plant 1 according to Example 1, as shown in FIG. 1, the bacteriostatic / sterilization of the phytopathogenic fungus 4 is performed in the plant P directly irradiated with the purple light 11. Since the action is exerted, the force of the phytopathogenic fungus 4 to cause the plant body P to be ill is stagnant or weakened.
Therefore, in the pathogen-resistant plant 1 according to Example 1, the possibility that the phytopathogenic fungus 4 still has sufficient power to cause disease on the plant P after the irradiation with the purple light 11 is greatly increased. To be low.
Therefore, in the case of the pathogen-resistant plant 1 according to Example 1 of the present invention, the occurrence and progression of the disease caused by the phytopathogenic fungus 4 can be further slowed compared to the case where the green light 12 is irradiated. .
 このため、実施例1に係る病原抵抗性植物体1が、圃場やハウス等において栽培する植物体Pの苗である場合には、植物体Pの全身に対して紫色光照射処理を行うことで、苗を圃場やハウス等に移植した際の病害の発生を効率よく抑制することができる。紫色光11を照射する対象が比較的小さい場合にはこの方法が特に有効である。
 あるいは、特定の植物体Pにおいて、例えば、特定の部位(例えば、下葉等)において植物病原菌4による病害が生じ易いことが明らかになっている場合は、紫色光照射処理を行う際に、病害が生じ易い特定の部位を選んで重点的に紫色光11を照射することで、植物病原菌4による病害の発生を効率良く抑制することができる。紫色光11を照射する対象が大きい場合にはこの方法が特に有効である。
 なお、本実施例においては、紫色光の照射部位を葉としているが、植物体の葉緑素を有する部位(例えば、茎や葉柄など)であれば、紫色光の照射により病原防御応答関連遺伝子を発現させることができる可能性がある。他方、紫色光を植物体に効率よく照射するとともに、紫色光による植物病原菌の静菌・殺菌作用を期待する場合には、紫色光の照射部位を植物体の葉にとすることが好ましい。
For this reason, when the pathogen-resistant plant body 1 according to Example 1 is a seedling of the plant body P cultivated in a field or a house, the whole body of the plant body P is subjected to violet light irradiation treatment. In addition, it is possible to efficiently suppress the occurrence of disease when seedlings are transplanted into a field or a house. This method is particularly effective when the target irradiated with the violet light 11 is relatively small.
Alternatively, in a specific plant P, for example, when it is clear that a disease caused by the phytopathogenic fungus 4 is likely to occur in a specific part (for example, a lower leaf), the disease is caused when the purple light irradiation treatment is performed. The generation of diseases caused by the phytopathogenic fungi 4 can be efficiently suppressed by selecting a specific part that is likely to occur and irradiating the purple light 11 with priority. This method is particularly effective when the target irradiated with the violet light 11 is large.
In this example, the purple light irradiation site is a leaf, but if it is a plant chlorophyll-containing site (for example, a stem or a petiole), a pathogen defense response-related gene is expressed by purple light irradiation. There is a possibility that it can be made. On the other hand, when the plant body is efficiently irradiated with purple light and the bacteriostatic / bactericidal action of the plant pathogen is expected by the purple light, it is preferable that the irradiation site of the purple light is on the leaf of the plant body.
 また、上述のような実施例1に係る病原抵抗性植物体1を誘導するためのプロセスが実施例1に係る病原抵抗性植物体の誘導方法である。
 より具体的には、実施例1に係る病原抵抗性植物体の誘導方法は、植物体Pの全葉面積の少なくとも10%の領域に、波長390-420nmの間にピークを有する紫色光11を断続的に照射する紫色光照射処理を行うというものである。
 実施例1に係る病原抵抗性植物体の誘導方法によれば、上述のような実施例1に係る病原抵抗性植物体1を誘導することができる。
 この結果、圃場やハウス等において病原抵抗性植物体1である植物体Pを栽培して、観賞用として市場に供給する場合や、病原抵抗性植物体1を食用にする場合、あるいは、病原抵抗性植物体1から果実や葉茎等の収穫物を得て食用又は加工用材料とする場合に、残留農薬の少ないものを提供することができる。
 また、実施例1に係る病原抵抗性植物体の誘導方法は、従来圃場やハウス等で栽培する苗等を生産するための工程に容易に組み入れることができるので、農業や施設園芸に関する分野においてより実用的な病害防除技術を提供することができる。
Moreover, the process for inducing the pathogenic resistant plant 1 according to Example 1 as described above is the method for inducing the pathogenic resistant plant according to Example 1.
More specifically, in the method for inducing a pathogen-resistant plant according to Example 1, purple light 11 having a peak between wavelengths 390-420 nm is applied to a region of at least 10% of the total leaf area of plant P. The violet light irradiation treatment is performed intermittently.
According to the pathogen-resistant plant body induction method according to Example 1, the pathogen-resistant plant body 1 according to Example 1 as described above can be induced.
As a result, when the plant body P which is the pathogen-resistant plant body 1 is cultivated and supplied to the market for ornamental use in the field or house, etc., or when the pathogen-resistant plant body 1 is edible, In the case where a harvested product such as a fruit or a leaf stem is obtained from the sexual plant 1 and used as an edible or processing material, it is possible to provide a product with little residual agricultural chemical.
Moreover, since the induction | guidance | derivation method of the pathogen-resistant plant which concerns on Example 1 can be easily integrated in the process for producing the seedlings etc. which are cultivated conventionally in a field, a house, etc., it is more in the field | area regarding agriculture or facilities gardening. Practical disease control technology can be provided.
 また、実施例1に係る病原抵抗性植物体1や、この病原抵抗性植物体1を誘導するための病原抵抗性植物体の誘導方法において用いられる波長390-420nmの間にピークを有する紫色光11は、人体に対して悪影響を及ぼすおそれが極めて小さいので、圃場やハウス内など人が作業を行う場所に紫色光光源3を設置した場合でも圃場やハウス内において作業者は安全に作業を行うことができる。
 また、波長390-420nmの間にピークを有する紫色光11は、植物体の光合成量子収率を低下させる可能性をもつ光であるため、植物体Pへの紫色光11の単独照射や、植物体Pへの紫色光11の連続照射は、いずれも植物体Pにとってストレスとなり光合成を阻害する恐れがある。
 より詳細に説明すると、植物体Pに紫色光11を長時間にわたり連続照射すると、植物体Pの光合成に負の影響(量子収率の低下)を与える可能性があり、紫色光11を間欠照射すること(紫色光11を照射する時間帯と、紫色光11を照射しない時間帯を交互に設けること)で、光合成における負の影響を緩和できると考えられる。本発明では、植物体Pに対してある程度の光ストレスがかかる(紫色光11が照射される)ことで病害(病原)抵抗性が誘導されると考えられる。従って、植物体Pに対するストレスが大きすぎると(紫色光11が長時間にわたり連続照射されると)、植物体Pにおいて負の影響が顕著になり、逆に、植物体Pに対するストレスが不十分だと(植物体Pへの紫色光11の照射時間が短いと)植物体Pにおいて十分に病害(病原)抵抗性が誘導されない可能性がある。
 このため、植物体Pに対して紫色光照射処理を行う場合には、自然光又は人工的に調整された自然光に重畳して紫色光11を植物体Pに照射したり、紫色光11を間欠照射すること(紫色光11を断続的に照射すること)が望ましい。より好ましくは、植物体Pに紫色光11を、光合成に必要な光に付加して照射し、かつ、その際に紫色光11を間欠照射とすることが望ましい。なお、本願明細書においては、秒単位、分単位、あるいは、時間単位で紫色光11の照射と非照射の切替えを行うことを断続照射又は間欠照射と呼ぶ。
 また、紫色光11によるストレスを受け易い植物体Pであれば、植物体Pに照射される紫色光11がパルス光であっても病害(病原)抵抗性を誘導できる可能性がある。
Further, a purple light having a peak between wavelengths 390-420 nm used in the pathogen-resistant plant body 1 according to Example 1 and the pathogen-resistant plant body induction method for inducing the pathogen-resistant plant body 1 No. 11 has a very low possibility of adversely affecting the human body, so even if the purple light source 3 is installed in a place where a person works such as in a farm or house, the worker can safely work in the farm or house. be able to.
Further, the purple light 11 having a peak between wavelengths 390-420 nm is a light that has the potential to reduce the photosynthetic quantum yield of the plant body. Any continuous irradiation of the purple light 11 on the body P may cause stress to the plant body P and inhibit photosynthesis.
More specifically, if the plant body P is continuously irradiated with the purple light 11 for a long time, it may negatively affect the photosynthesis of the plant body P (decrease in the quantum yield), and the purple light 11 is intermittently irradiated. It is considered that the negative influence on the photosynthesis can be alleviated by alternately performing the time zone in which the purple light 11 is irradiated and the time zone in which the purple light 11 is not irradiated. In the present invention, it is considered that disease (pathogenicity) resistance is induced by applying a certain amount of light stress to the plant body P (irradiation with purple light 11). Therefore, when the stress on the plant body P is too large (when the purple light 11 is continuously irradiated for a long time), the negative effect on the plant body P becomes significant, and conversely, the stress on the plant body P is insufficient. (When the irradiation time of the purple light 11 on the plant body P is short), there is a possibility that disease (pathogen) resistance is not sufficiently induced in the plant body P.
For this reason, when performing purple light irradiation processing with respect to the plant body P, the purple light 11 is irradiated to the plant body P superimposed on natural light or artificially adjusted natural light, or the purple light 11 is intermittently irradiated. It is desirable to irradiate purple light 11 intermittently. More preferably, it is desirable to irradiate the plant body P with the purple light 11 in addition to the light necessary for photosynthesis, and at that time, the purple light 11 is intermittently irradiated. In the present specification, switching between irradiation and non-irradiation of the purple light 11 in units of seconds, minutes, or hours is referred to as intermittent irradiation or intermittent irradiation.
Moreover, if it is the plant body P which is easy to receive the stress by the purple light 11, even if the purple light 11 irradiated to the plant body P is pulsed light, disease (pathogenic) resistance may be induced.
 このように、植物体Pへの静菌・殺菌作用を重視する場合には、植物体Pの全体に紫色光11を照射することが望ましく、植物体Pに対するストレス低減と病原抵抗性の向上を重視する場合には、植物体Pの全葉面積の10-30%の領域に紫色光11を照射するだけで十分な効果が期待できる。
 また、被照射対象である植物体Pが大型で、全体に紫色光11を照射することが困難な場合,あるいは,費用対効果の点から大型の紫色光光源3の導入が困難な場合には、植物体Pの全葉面積の少なくとも10%の領域に紫色光11を照射するだけでも、植物体Pの病原抵抗性を高めることができる。そして、この場合、植物病原菌4による病害が特に生じ易い、下葉(植物体Pの根元側に配される数枚の葉)に紫色光11を照射することで、植物体Pにおける病害の発生を効率良く抑制することができる。
As described above, when emphasizing the bacteriostatic and bactericidal action on the plant body P, it is desirable to irradiate the entire plant body P with the purple light 11 to reduce the stress on the plant body P and improve the pathogenic resistance. In the case where importance is attached, a sufficient effect can be expected only by irradiating the purple light 11 to a region of 10-30% of the total leaf area of the plant body P.
When the plant P to be irradiated is large and it is difficult to irradiate the violet light 11 as a whole, or when it is difficult to introduce the large violet light source 3 from the viewpoint of cost effectiveness. The pathogenic resistance of the plant body P can be increased by simply irradiating the purple light 11 to a region of at least 10% of the total leaf area of the plant body P. In this case, the disease caused by the phytopathogenic fungus 4 is particularly likely to occur. By irradiating the lower leaves (several leaves arranged on the root side of the plant body P) with the purple light 11, the occurrence of the disease in the plant body P is caused. Can be efficiently suppressed.
 本発明の実施例2に係る植物体栽培システムについて図4及び図5を参照しながら詳細に説明する。
 図4(a)-(c)はいずれも本発明の実施例2に係る植物体栽培システムの概念図である。なお、図1乃至図3に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
 図4(a)に示すように、実施例2に係る植物体栽培システム10Aは、植物体Pの葉2に屋外の自然光,又は,人工的に調整された自然光を直接又は間接的に照射可能な植物体生育空間8に植物体Pが単数又は複数配置され、この植物体Pの根を収容するとともに,この植物体Pの生育に必要な養分及び水を供給する培地9を備え、さらに、植物体Pの葉の少なくとも一部に,より具体的には,植物体Pの全葉面積の少なくとも10%の領域に,波長390-420nmの間にピークを有する紫色光11を断続的に照射する紫色光光源3を備え、この紫色光光源3は図示しない制御部によりその点灯と消灯とが制御されるものである。
 上述のような実施例2に係る植物体栽培システム10Aにおいては、植物体生育空間8を備えることで、植物体Pを配置している空間に植物の生育に必要な自然光(可視光線)Lを供給することができる。なお、この自然光Lは屋外の自然光でもよいし、人工的に調整された自然光Lと同等の作用を有する複数の色の光(異なる波長を有する複数種類の光)の組み合わせでも良い。
 また、培地9を備えることで、植物体Pの根を収容するとともに、植物体Pの成育に必要な養分や水を供給することができる。さらに、紫色光光源3及び図示しない制御部を備えることにより、植物体Pの葉に波長390-420nmの間にピークを有する紫色光11を断続的に照射することができる。なお、植物体Pが水耕栽培可能なものである場合には、培地9に代えて培養液を用いることもできる。
A plant cultivation system according to Example 2 of the present invention will be described in detail with reference to FIGS. 4 and 5.
FIGS. 4A to 4C are conceptual diagrams of the plant cultivation system according to Example 2 of the present invention. The same parts as those described in FIGS. 1 to 3 are denoted by the same reference numerals, and description of the configuration is omitted.
As shown in FIG. 4 (a), the plant cultivation system 10A according to the second embodiment can directly or indirectly irradiate the leaves 2 of the plant body with outdoor natural light or artificially adjusted natural light. One or a plurality of plant bodies P are arranged in the plant growth space 8 and contains the roots of the plant bodies P, and includes a medium 9 for supplying nutrients and water necessary for the growth of the plant bodies P. At least part of the leaves of the plant body P, more specifically, at least 10% of the total leaf area of the plant body P is intermittently irradiated with purple light 11 having a peak between wavelengths 390-420 nm. A purple light source 3 is provided, and the purple light source 3 is controlled to be turned on and off by a control unit (not shown).
In the plant cultivation system 10A according to Example 2 as described above, by providing the plant growth space 8, natural light (visible light) L necessary for plant growth is provided in the space where the plant P is arranged. Can be supplied. The natural light L may be outdoor natural light or a combination of a plurality of colors of light (a plurality of types of light having different wavelengths) having the same effect as the artificially adjusted natural light L.
Moreover, by providing the culture medium 9, while accommodating the root of the plant body P, the nutrient and water required for the growth of the plant body P can be supplied. Furthermore, by providing the purple light source 3 and a control unit (not shown), the leaves of the plant body P can be intermittently irradiated with the purple light 11 having a peak between wavelengths 390-420 nm. In addition, when the plant body P is a thing which can be hydroponically cultivated, it can replace with the culture medium 9 and can also use a culture solution.
 そして、上述のような実施例2に係る植物体栽培システム10Aによれば、植物体生育空間8において自然光L又は自然光Lと同等な作用を有する人工光を供給することができるので、植物体Pを正常に成育させることができる。
 さらに、実施例2に係る植物体栽培システム10Aでは、自然光L又は自然光Lと同等な作用を有する人工光に加えて、植物体Pの葉2に紫色光光源3により紫色光11を重畳して照射することができる。この場合、実施例2に係る植物体栽培システム10Aにおいて栽培される植物体Pは、先の実施例1において述べた病原抵抗性植物体1となるので、植物病原菌4による病害が生じるのを好適に抑制することができる。
 加えて、実施例2に係る植物体栽培システム10Aにおいては、植物体Pにおいて紫色光11が直接照射される部位で、先の実施例1において説明したように植物病原菌4の静菌・殺菌作用が発揮されるので、図4(b),(c)に示すように、紫色光11が直接照射される部位に病斑5が現れるなどの病害が生じるのを防止又は遅延させることができる。
 すなわち、実施例2に係る植物体栽培システム10Aによれば、植物体Pが病原抵抗性植物体1となることで病気になりにくくなるだけでなく、植物病原菌4の植物体Pに対する攻撃性も弱められるので、これらの作用が協同して働くことにより、植物体Pに植物病原菌4が付着又は感染したとしても、目に見える形での病害が生じない状態を維持することが容易になる。
 つまり、植物体Pに病害が生じるのを防止又は大幅に遅延させることができる。
And according to the plant cultivation system 10A which concerns on Example 2 as mentioned above, since artificial light which has an effect | action equivalent to natural light L or the natural light L can be supplied in the plant growth space 8, the plant body P Can be grown normally.
Furthermore, in the plant cultivation system 10A according to Example 2, in addition to the natural light L or the artificial light having an action equivalent to the natural light L, the purple light 11 is superimposed on the leaves 2 of the plant P by the purple light source 3. Can be irradiated. In this case, since the plant body P cultivated in the plant body cultivation system 10A according to Example 2 becomes the pathogen-resistant plant body 1 described in the previous Example 1, it is preferable that the disease caused by the phytopathogenic fungi 4 occurs. Can be suppressed.
In addition, in the plant cultivation system 10A according to the second embodiment, the bacteriostatic / bactericidal action of the phytopathogenic fungi 4 as described in the first embodiment is performed at the portion of the plant P that is directly irradiated with the purple light 11. Therefore, as shown in FIGS. 4B and 4C, it is possible to prevent or delay the occurrence of a disease such as the appearance of a lesion 5 at a site directly irradiated with the violet light 11.
That is, according to the plant cultivation system 10A according to the second embodiment, the plant P becomes the pathogen-resistant plant 1 so that it is less likely to become ill, and the aggressiveness of the phytopathogenic fungus 4 against the plant P is also improved. Therefore, even if the plant pathogen 4 adheres to or infects the plant body P, it becomes easy to maintain a state in which no visible disease is caused.
That is, it is possible to prevent or greatly delay the occurrence of disease in the plant body P.
 従って、実施例2に係る植物体栽培システム10Aによれば、従来どおりの手法で栽培された苗や植物体P(植物病原菌4の自然感染が起こっていると考えられる苗や植物体P)を、病原抵抗性植物体1に誘導して植物病原菌4による病害の発生を抑制しながら栽培することが可能になる。この場合、植物体P(病原抵抗性植物体1)を栽培する際の薬剤の使用量を大幅に削減することができるので、残留農薬が少ない安全性の高い植物体Pを提供することができる。
 また、実施例2に係る植物体栽培システム10Aにおいて栽培された植物体Pから収穫される葉茎や果実についても同様に残留農薬が少ない安全性の高いものにすることができる。
Therefore, according to the plant cultivation system 10A according to Example 2, seedlings and plant bodies P (seedlings and plant bodies P that are considered to have been naturally infected by the phytopathogenic fungi 4) are cultivated by conventional methods. Thus, it is possible to cultivate while suppressing the occurrence of diseases caused by the plant pathogenic bacteria 4 by inducing the pathogenic plant 1. In this case, since the usage-amount of the chemical | drug | medicine at the time of cultivating plant body P (pathogenic resistance plant body 1) can be reduced significantly, plant body P with few residual agricultural chemicals and high safety | security can be provided. .
In addition, leaf stems and fruits harvested from the plant body P cultivated in the plant body cultivation system 10A according to Example 2 can also be made highly safe with little residual agricultural chemicals.
 なお、実施例2に係る植物体栽培システム10Aでは、特定の植物体Pについて特に病害が生じやすい部位(例えば、下葉など)が知られている場合には、その部位を選んで紫色光11を照射することで、効率的に病害の発生を抑制することができる。また、万が一、紫色光11が照射される部位に病害である病斑が現れたとしても、紫色光11による静菌・殺菌作用が発揮されるので、病害の進行を大幅に遅延させたり、停滞させたり、あるいは、停止させることができ、また、そのことにより、植物体P(病原抵抗性植物体1)の他の部位や隣接する他の植物体Pへの植物病原菌4の感染を好適に抑制することができる。
 また、実施例2に係る植物体栽培システム10Aにおいて植物体Pを病原抵抗性植物体1に効率的に誘導するためには、植物体Pに紫色光11を照射する際の紫色光11の強さを、自然光L又は人工的に調整された自然光Lに含まれる紫色光11の強さよりも強くしておくことが望ましい。
 なお、屋外の場合、日中の自然光Lにおける紫色光11の光強度は、朝夕のそれに比べて特に強いので、朝夕の時間帯に、より具体的には、例えば、午前7時から午前10時までの午前中と、午後3時から午後6時までの夕方の時間帯に自然光Lに重畳して紫色光11を照射してやることで、自然光Lに含まれる紫色光11よりも強い紫色光11を植物体Pに照射することができる。
 また、朝夕の時間帯にのみ紫色光11を自然光Lに重畳して照射することは、紫色光11を間欠照射することにもなるので好ましい。
 なお、朝夕の時間帯のいずれかにのみ紫色光11を照射しただけで十分な病原抵抗性の向上効果が発揮される場合には、必ずしも朝夕に紫色光11を照射する必要はない。
 あるいは、日照がある時間帯に植物体Pの葉に対して、例えば、1時間毎に紫色光11の照射と非照射を繰り返すことによっても、植物体Pの病害(病原)抵抗性を好適に高めることができる。
In addition, in the plant cultivation system 10A according to the second embodiment, when a site (for example, a lower leaf) that is particularly likely to cause a disease is known for a specific plant P, the site is selected and purple light 11 is selected. Can be efficiently suppressed. In addition, even if a lesion that is a disease appears in the part irradiated with the purple light 11, the bacteriostatic / bactericidal action is exhibited by the purple light 11, so that the progression of the disease is greatly delayed or stagnant. It is possible to prevent the plant pathogen 4 from infecting other parts of the plant body P (pathogen-resistant plant body 1) and other adjacent plant bodies P. Can be suppressed.
Further, in order to efficiently induce the plant body P to the pathogen-resistant plant body 1 in the plant body cultivation system 10A according to Example 2, the intensity of the purple light 11 when the plant body P is irradiated with the purple light 11 It is desirable to make the intensity higher than the intensity of the purple light 11 included in the natural light L or the artificially adjusted natural light L.
In the case of the outdoors, the light intensity of the purple light 11 in the natural light L during the day is particularly stronger than that in the morning and evening, so more specifically in the morning and evening hours, for example, from 7 am to 10 am The purple light 11 that is stronger than the purple light 11 contained in the natural light L is emitted by superimposing the purple light 11 on the natural light L in the morning until 3:00 pm to 6:00 pm The plant body P can be irradiated.
Further, it is preferable to irradiate the purple light 11 with the natural light L only during the morning and evening hours because the purple light 11 is intermittently irradiated.
In the case where a sufficient effect of improving pathogenicity resistance is exhibited only by irradiating the purple light 11 only in one of the morning and evening time zones, it is not always necessary to irradiate the purple light 11 in the morning and evening.
Alternatively, the disease (pathogenicity) resistance of the plant body P can be suitably achieved by repeating irradiation and non-irradiation of the purple light 11 every hour with respect to the leaves of the plant body P in a time zone where there is sunlight. Can be increased.
 ここで、図5を参照しながら本発明の実施例2の変形例に係る植物体栽培システムについて説明する。
 実施例2の変形例に係る植物体栽培システムは、図4に示す植物体栽培システム10Aと同じ構成を有するものであり、特に、紫色光光源3の取付け位置又は取付け個数を変更可能に、あるいは、この両者を変更可能に構成したものである。
 図5(a)-(c)はいずれも本発明の実施例2の変形例に係る植物体栽培システムを示す概念図である。なお、図1乃至図4に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
 たとえば、図5(a)に示すように、先の図4(b)と同じ位置に紫色光光源3を配置して植物体Pに対して紫色光11の照射を行いながら栽培していた場合に、紫色光11が照射されていない葉2に植物病原菌4の付着又は感染が起こっており、後に、図5(b)に示すように、紫色光11が照射されていない葉2において病斑5が生じた際に、実施例2の変形例に係る植物体栽培システム10Bによれば、病斑5が生じていない葉2に紫色光11を照射している紫色光光源3を取外して、病斑5が生じた葉2に紫色光11を照射することができる。あるいは、新たに紫色光光源3を追加して病斑5が生じた葉2に紫色光11を照射することができる。
Here, a plant cultivation system according to a modification of the second embodiment of the present invention will be described with reference to FIG.
The plant cultivation system according to the modified example of Example 2 has the same configuration as the plant cultivation system 10A shown in FIG. 4, and in particular, the attachment position or the number of attachments of the purple light source 3 can be changed, or Both are configured to be changeable.
FIGS. 5A to 5C are conceptual diagrams showing a plant cultivation system according to a modification of the second embodiment of the present invention. The same parts as those described in FIGS. 1 to 4 are denoted by the same reference numerals, and description of the configuration is omitted.
For example, as shown in FIG. 5 (a), when the purple light source 3 is arranged at the same position as in FIG. 4 (b) and the plant P is cultivated while being irradiated with the purple light 11 In addition, the attachment or infection of the phytopathogenic fungus 4 has occurred on the leaves 2 that have not been irradiated with the purple light 11, and later, as shown in FIG. 5 (b), the lesions on the leaves 2 that have not been irradiated with the purple light 11. When 5 occurs, according to the plant cultivation system 10B according to the modified example of Example 2, the violet light source 3 irradiating the violet light 11 to the leaves 2 where the lesion 5 has not occurred is removed. The violet light 11 can be irradiated to the leaf 2 where the lesion 5 has occurred. Or the purple light 11 can be irradiated to the leaf 2 in which the lesion 5 was produced by newly adding the purple light source 3.
 この場合、紫色光光源3から照射される紫色光11の静菌・殺菌作用により、図5(c)に示すように、病斑5が出現した葉2における病害の進行を遅らせたり、停滞又は停止させることができる。すなわち、実施例2の変形例に係る植物体栽培システム10Bにおいては、紫色光11を殺菌剤等の薬剤と同等の作用を有するものとして利用することができるので、植物体Pに病害が生じた場合にも、薬剤を使用することなく病害の進行や拡大を抑制できる可能性がある。
 したがって、植物体Pに病害が発生した場合でも、その植物体Pから残留農薬が無い、又は、残留農薬が少ない安全な果実や葉茎等を収穫できる可能性が極めて高くなる。
 従って、実施例2の変形例に係る植物体栽培システム10Bによれば、植物体Pに病害が生じた場合でも,薬剤を用いることなしにその生産性の低下を防止できる可能性が高くなる。この結果、病害が生じた植物体Pから収穫される果実又は葉茎の食品としての安全性が低下するのを最低限度にとどめることができる。
In this case, due to the bacteriostatic / bactericidal action of the purple light 11 emitted from the purple light source 3, as shown in FIG. 5 (c), the progression of the disease in the leaf 2 where the lesion 5 appears is delayed, Can be stopped. That is, in the plant cultivation system 10B according to the modified example of Example 2, since the purple light 11 can be used as having an action equivalent to a drug such as a bactericidal agent, a disease has occurred in the plant P. In some cases, there is a possibility that the progression and spread of the disease can be suppressed without using a drug.
Therefore, even when a disease occurs in the plant body P, there is an extremely high possibility that a safe fruit, leaf stem, or the like can be harvested from the plant body P without any residual agricultural chemical or with little residual agricultural chemical.
Therefore, according to the plant cultivation system 10B according to the modification of the second embodiment, even when a disease occurs in the plant P, there is a high possibility that a decrease in productivity can be prevented without using a drug. As a result, it is possible to minimize a decrease in the safety of fruits or leaf stems harvested from the plant P in which the disease has occurred as a food.
 通常、植物体Pにおいて病害が発生した場合には、病害の拡大を防止するため病害が発生した部位(主に葉)を除去したり、あるいは、薬剤を散布して植物病原菌4の拡散及び病害の深刻化を防止する必要があるが、前者の場合、収穫物の肥大成長を担う葉の除去は、収穫物の品質やサイズの低下を招く恐れがあるため望ましくない。他方、後者の場合は、収穫物の肥大成長を担う葉を温存できる可能性が高まるものの、残留農薬により収穫物の安全性が低下するという課題がある。
 これに対して、実施例2の変形例に係る植物体栽培システム10Bによれば、薬剤を用いることなく紫色光11を照射するだけで植物病原菌4が植物体Pを加害する能力を停滞又は低下させることができるので、病害が発生した場合でも収穫物の肥大成長を担う葉を温存できる可能性が高くなる。しかも、収穫物に薬剤が残存するリスクも低くすることができる。
 したがって、実施例2の変形例に係る植物体栽培システム10Bを採用した場合は、圃場やハウス内において病害が発生した場合でも、収穫物の品質の低下を最小限度にすることができる。
 よって、圃場やハウス内において作物を栽培する際に、薬剤の使用量を削減するにあたり、より実用的な技術を提供することができる。
Usually, when a disease occurs in the plant body P, the site where the disease has occurred (mainly leaves) is removed to prevent the spread of the disease, or the spread of the plant pathogen 4 and the disease by spraying a chemical However, in the former case, it is not desirable to remove the leaves that are responsible for the growth of the crop, because it may lead to a reduction in the quality and size of the crop. On the other hand, in the latter case, although the possibility of preserving the leaves responsible for the hypertrophic growth of the crop increases, there is a problem that the safety of the crop decreases due to the residual agricultural chemicals.
On the other hand, according to the plant cultivation system 10B according to the modification of Example 2, the ability of the phytopathogenic fungus 4 to harm the plant P only by irradiating the purple light 11 without using a drug is stagnated or reduced. Therefore, even when a disease occurs, the possibility of preserving the leaves responsible for the hypertrophic growth of the harvest increases. In addition, the risk of the drug remaining in the harvest can be reduced.
Therefore, when the plant cultivation system 10B according to the modified example of the second embodiment is employed, even when a disease occurs in the field or the house, the quality of the harvest can be minimized.
Therefore, when cultivating a crop in a field or house, a more practical technique can be provided for reducing the amount of medicine used.
 以下に、本発明の作用・効果を検証する目的で行った試験1乃至13及びその結果について説明する。
 まず、本願発明において使用される波長390-420nmの間にピークを有する紫色光の植物病原菌に対する静菌・殺菌作用についての検証結果について説明する。
[1]紫色光照射による植物病原菌の静菌・殺菌作用について
 紫色光による植物病原菌の静菌・殺菌作用を確認する目的で、以下に示すような試験1を行った。
(1-i)試験方法
 面培地上のトマト灰色かび病菌B.cinereaの菌叢を白金耳で掻き取り、SNA平板培地(組成は以下の表1に示す)に置床し、25℃、暗黒下で4-5日間培養した。その後、内径4mmのコルクボーラーで菌コロニー外縁部を培地ごと抜き取り、その菌体プラグを新しいSNA平板培地の中央に置き、これを菌体プレートとして照射試験に用いた。
Hereinafter, Tests 1 to 13 performed for the purpose of verifying the operation and effect of the present invention and the results thereof will be described.
First, the verification results of the bacteriostatic / bactericidal action against purple light phytopathogenic bacteria having a peak between wavelengths 390-420 nm used in the present invention will be described.
[1] Bacteriostatic / bactericidal action of phytopathogenic bacteria by purple light irradiation For the purpose of confirming bacteriostatic / bactericidal action of phytopathogenic bacteria by purple light, Test 1 as shown below was performed.
(1-i) Test method The bacterial flora of tomato gray mold B. cinerea on the surface medium is scraped with a platinum loop and placed on an SNA plate medium (the composition is shown in Table 1 below), at 25 ° C in the dark. For 4-5 days. Thereafter, the outer periphery of the bacterial colony was extracted together with the medium with a cork borer having an inner diameter of 4 mm, and the bacterial cell plug was placed in the center of a new SNA plate medium and used as a bacterial cell plate for the irradiation test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 SNA平板培地菌体プレートをLED光源を搭載した人工気象器に入れ、405nm、415nm、450nm、および白色光を放射照度60Wm-2一定で照射しながら25℃で培養し、24時間ごとの生育速度を観察した。また、暗黒下で培養したものをコントロールとして用いた。照射後、菌体プレートを25℃、暗黒下に移して培養し、生育を観察した。 Put SNA plate medium cell plate in artificial meteor equipped with LED light source, and culture at 25 ° C while irradiating 405nm, 415nm, 450nm and white light with constant irradiance 60Wm- 2 , growth rate every 24 hours Was observed. Moreover, what was cultured in the dark was used as control. After irradiation, the bacterial cell plate was transferred to 25 ° C. in the dark and cultured, and growth was observed.
(1-ii)試験結果
 図6は光量子束密度を一定(95μmolm-2s-1一定)にして各波長光を照射した場合の経時変化に伴うコロニー直径の変化を示すグラフである。
 図6に示すように、光量子束密度を一定(95μmolm-2s-1一定)にして各波長光を照射した場合は、予想通りエネルギーの大きい375nm光照射区で最も顕著な生育抑制が見られたが(データ未記載)、放射照度を一定(60Wm-2)にした場合は、405nm紫色光照射区で最も顕著な生育抑制がみられ、照射光の波長が長くなるほど静菌・殺菌作用が低下する傾向が認められた。
 図7は紫色光(波長405nm)を所定の時間照射した後の全コロニー数に対する回復したコロニー(菌の死滅が生じなかったコロニー数)の割合(回復率)を示す表である。
 図7に示すように、(波長405nm)の紫色光を照射した場合は、144時間の照射で全てのコロニーの死滅が確認された。
(1-ii) Test Results FIG. 6 is a graph showing changes in colony diameter with time when irradiated with light of each wavelength with a constant photon flux density (95 μmolm −2 s −1 constant).
As shown in FIG. 6, when light of each wavelength was irradiated with the photon flux density constant (95 μmolm −2 s −1 constant), the most remarkable growth suppression was observed in the 375 nm light irradiation section with high energy as expected. However (data not shown), when the irradiance is constant (60 Wm -2 ), the most remarkable growth inhibition is observed in the 405 nm purple light irradiation area, and the longer the wavelength of the irradiation light, the more bacteriostatic and bactericidal action is. A tendency to decrease was observed.
FIG. 7 is a table showing the ratio (recovery rate) of the recovered colonies (the number of colonies in which the bacteria were not killed) to the total number of colonies after irradiation with violet light (wavelength 405 nm) for a predetermined time.
As shown in FIG. 7, when violet light with a wavelength of 405 nm was irradiated, the death of all colonies was confirmed after 144 hours of irradiation.
 上記試験1により、波長390-420nmの間にピークを有する紫色光が静菌・殺菌作用を有していることが確認できた。
 なお、本願発明において静菌・殺菌作用という場合、紫色光が照射された植物病原菌の全てが静菌又は殺菌されている状態を意味するのではなく、紫色光が照射された植物病原菌のうち一部が活動停止状態となり、また別の一部が死滅し、これらの現象が同時に起こることにより、紫色光が照射された植物病原菌全体の増殖能力が停滞した状態、低下傾向、あるいは、死滅した状態になることを意味している。
From the above test 1, it was confirmed that purple light having a peak in the wavelength range of 390 to 420 nm has a bacteriostatic / bactericidal action.
In the present invention, the bacteriostatic / bactericidal action does not mean a state in which all phytopathogenic bacteria irradiated with purple light are bacteriostatic or sterilized, but one of the phytopathogenic bacteria irradiated with purple light. As part of the plant becomes inactive and another part is killed, and these phenomena occur at the same time, the growth ability of the whole phytopathogenic fungi irradiated with purple light is stagnant, decreasing, or dead Is meant to be.
[2]紫色光照射による植物病原菌の胞子発芽抑制効果について
 紫色光による植物病原菌の胞子発芽抑制効果を確認する目的で以下に示すような試験2を行った。
(2-i)試験方法
 トマト灰色かび病菌B.cinereaの胞子に対して各波長光(405nm、415nm、450nm、いずれも放射照度60Wm-2)を照射したものと、暗黒下においたものについて胞子の発芽状況を観察した。
 また、各波長光(405nm、415nm、450nm)を照射した後の胞子の生死を確認するために、各波長光をそれぞれ24,48,72,96時間照射した後に培地を暗黒下に移動して、さらに、24時間培養した後再度胞子を観察した。
[2] Spore germination inhibitory effect of phytopathogenic fungi by purple light irradiation Test 2 as shown below was performed for the purpose of confirming the spore germination inhibitory effect of phytopathogenic fungi by purple light.
(2-i) Test method Tomato gray mold B. cinerea spores irradiated with light of each wavelength (405 nm, 415 nm, 450 nm, irradiance of 60 Wm -2 ) and in the dark, spores The germination situation of was observed.
In addition, in order to confirm the spore life after irradiation with each wavelength light (405 nm, 415 nm, 450 nm), each wavelength light was irradiated for 24, 48, 72, and 96 hours, respectively, and then the medium was moved in the dark. Furthermore, after culturing for 24 hours, spores were observed again.
(2-ii)試験結果
 図8はB.cinereaの胞子に対して各波長光(405nm,415nm,450nm,いずれも放射照度60Wm-2)を72時間照射した際の胞子の様子を示す画像と,各波長光を72時間照射した後に暗黒下において24時間培養した際の胞子の様子を示す画像を対比させて示した図である。なお、比較対象として暗黒下において同じ時間だけ培養したものの画像を最下段に示した。
 図9はB.cinereaの胞子に対して各波長光(405nm、415nm、450nm、いずれも放射照度60Wm-2)を照射した場合の胞子の発芽率の経時変化と,暗黒下に72時間置いたものの胞子の発芽率の経時変化を示すグラフである。また、図9では、各波長光を72時間照射した後に暗黒下において24時間培養した後の胞子の発芽率についても併せて示した。
 B.cinereaの胞子に対して各波長光(放射照度60Wm-2)を照射すると、405nm紫色光照射区では特に高い胞子発芽の抑制効果が認められた(図8を参照)。胞子の生死(増殖能)を確認するために、405nm紫色光を照射後、培地を暗黒下に移動してさらに24時間培養した胞子を観察したところ、405nm紫色光を72時間照射した場合は、暗黒下へ移動後発芽が見られなかった(図9を参照)。
 これらの結果から、紫色光照射はB.cinereaの胞子に対して発芽を抑制するだけでなく、殺菌することが判明した。
 また、図8,9から明らかなように、本発明において使用する紫色光は、照射光の波長が短いほど(波長の下限値の390nmに近いほど)胞子の発芽抑制効果、及び、殺菌効果は高いと考えられる。
 また、本発明において使用される紫色光の波長の上限値に関して、波長450nmの紫色光を照射した場合の胞子の発芽率と、暗黒下の胞子の発芽率に大きな差が認められなかったことから、植物病原菌の胞子の発芽抑制・殺菌効果が期待できる発光波長の上限値の境界は、415nmと波長450nmの間であると推測される。
(2-ii) Test results FIG. 8 is an image showing the state of spores when B.cinerea spores are irradiated with light of each wavelength (405 nm, 415 nm, 450 nm, irradiance 60 Wm −2 ) for 72 hours. FIG. 5 is a diagram showing contrasted images showing the state of spores when irradiated with light of each wavelength for 72 hours and then cultured in the dark for 24 hours. In addition, the image of what was cultured for the same time in the dark as a comparison object was shown in the lowermost stage.
FIG. 9 shows the time-dependent change in the germination rate of B. cinerea spores when irradiated with light of each wavelength (405 nm, 415 nm, 450 nm, irradiance of 60 Wm −2 ), and the spore was placed in the dark for 72 hours. It is a graph which shows the time-dependent change of the germination rate of a thing. FIG. 9 also shows the germination rate of spores after irradiating each wavelength of light for 72 hours and then culturing in the dark for 24 hours.
When B.cinerea spores were irradiated with light of each wavelength (irradiance 60 Wm −2 ), a particularly high suppression effect of spore germination was observed in the 405 nm purple light irradiation section (see FIG. 8). In order to confirm the viability of the spore (proliferative ability), after irradiating 405 nm purple light, moving the medium under dark and observing spores cultured for another 24 hours, when 405 nm purple light was irradiated for 72 hours, No germination was seen after moving to darkness (see FIG. 9).
From these results, it was found that violet light irradiation not only suppresses germination but also sterilizes B. cinerea spores.
8 and 9, the violet light used in the present invention is less effective in spore germination and sterilization as the wavelength of irradiation light is shorter (closer to the lower limit of wavelength of 390 nm). It is considered high.
In addition, regarding the upper limit of the wavelength of purple light used in the present invention, there was no significant difference between the germination rate of spores when irradiated with purple light having a wavelength of 450 nm and the germination rate of spores in the dark. It is estimated that the upper limit of the emission wavelength at which spore germination suppression and bactericidal effects of phytopathogenic bacteria can be expected is between 415 nm and 450 nm.
 上述の試験1,2により、波長390-420nmの間にピークを有する紫色光が、植物病原菌に対する静菌・殺菌作用を有することが確認された。また、波長405nmの紫色光を照射した際の植物病原菌に対する静菌・殺菌作用が特に高かったので、以下に示す他の試験においては、本願発明に係る紫色光の一例として、波長405nmの紫色光を使用した。
 なお、本願明細書中に示す試験1乃至13において使用した紫色光(波長405nmの紫色光、波長405nm紫色光、405nm紫色光)は、波長405nmにピーク波長を有する光であり、全ての試験において同じ規格のものを使用した。また、試験1乃至13において使用した紫色光(波長405nmの紫色光、波長405nm紫色光、405nm紫色光)光源の波長特性を示すグラフを後段の図32(a)に示した。
 後段の図32(a)に示すように、試験1乃至13において使用した紫色光は、単波長光ではなく、波長405nmにピークを有しながら波長390-420nm範囲内に特に高い放射を有するものである。従って、波長390-420nm範囲内にピーク波長を有する放射であれば、本願明細書に記載される有利な効果である,植物病原菌4の静菌・殺菌効果、及び、植物体Pにおいて病原防御応答関連遺伝子が発現されることによる病原(病害)抵抗性の向上効果、が同時に発揮される可能性は極めて高いと考えられる。
According to the above-mentioned tests 1 and 2, it was confirmed that purple light having a peak in the wavelength range of 390 to 420 nm has a bacteriostatic / bactericidal action against phytopathogenic fungi. In addition, since the bacteriostatic and bactericidal action against phytopathogenic fungi when irradiated with violet light with a wavelength of 405 nm was particularly high, in other tests shown below, purple light with a wavelength of 405 nm was used as an example of violet light according to the present invention. It was used.
Note that the violet light (purple light with a wavelength of 405 nm, violet light with a wavelength of 405 nm, and violet light with a wavelength of 405 nm) used in Tests 1 to 13 shown in this specification is light having a peak wavelength at a wavelength of 405 nm. The same standard was used. Further, a graph showing the wavelength characteristics of the violet light (wavelength 405 nm violet light, wavelength 405 nm violet light, 405 nm violet light) light source used in Tests 1 to 13 is shown in FIG.
As shown in FIG. 32 (a), the violet light used in Tests 1 to 13 is not a single wavelength light, but has a particularly high emission within a wavelength range of 390 to 420 nm while having a peak at a wavelength of 405 nm. It is. Therefore, if the radiation has a peak wavelength within the wavelength range of 390-420 nm, the bacteriostatic / bactericidal effect of the phytopathogenic fungi 4 and the pathogenic defense response in the plant P are advantageous effects described in the present specification. It is highly possible that the effect of improving the resistance to pathogen (disease) due to the expression of the related gene is exhibited at the same time.
 代表的な7種類の植物病原菌に対する静菌・殺菌作用を確認する目的で、以下に示すような試験3を行った。
(3-i)試験方法
 供試菌として国立大学法人山口大学にて保存している植物病原菌7種、Aspergillus niger(黒かび病菌)、Botrytis cinerea(灰色かび病菌)、Colletotrichum gloeosporioides(炭そ病菌)、Fusarium proliferatum、Fusarium verticillioides、Magnaporthe grisea(いもち病菌)、およびSclerotium cepivorum(黒腐菌核病菌)(全9菌株)を用いた。斜面培地上の各菌を白金耳で掻き取り、ポテトデキストロース寒天(PDA)平板培地で3日間培養した。その後、直径5mmのコルクボーラーで菌体を培地ごと抜き取り、その菌体プラグを新しいPDA平板培地の中央に置き、これを菌体プレートとして照射試験に用いた。
 上記で準備した菌体プレートに、LED光源を搭載した小型人工気象器を用いてそれぞれ375nm(分光積分値:10.9Wm-2)、405nm(分光積分値:64.7Wm-2)、470nm(分光積分値:89.0Wm-2)、640nm(分光積分値:67.9Wm-2)の単一波長光、および白色光(分光積分値:22.7Wm-2)を当てながら25℃で144時間培養した。その後、全ての菌体プレートを25℃、暗黒下で培養し、144時間の間、24時間ごとの形態、色、および生育速度を観察した。
For the purpose of confirming bacteriostatic and bactericidal action against seven typical plant pathogens, Test 3 as shown below was conducted.
(3-i) Test method Seven species of plant pathogenic fungi preserved at Yamaguchi University as test bacteria, Aspergillus niger (black mold fungus), Botrytis cinerea (grey mold fungus), Colletotrichum gloeosporioides (anthrax fungus) Fusarium proliferatum, Fusarium verticillioides, Magnaporthe grisea (blast fungus), and Sclerotium cepivorum (black rot sclerotia) (9 strains in total) were used. Each fungus on the slant medium was scraped with a platinum loop and cultured on a potato dextrose agar (PDA) plate medium for 3 days. Thereafter, the cells were extracted together with the medium with a cork borer having a diameter of 5 mm, the cell plug was placed in the center of a new PDA plate medium, and this was used as a cell plate for the irradiation test.
Using the small artificial meteor equipped with the LED light source, 375 nm (spectral integration value: 10.9 Wm -2 ), 405 nm (spectral integration value: 64.7 Wm -2 ), 470 nm ( spectral integration value: 89.0Wm -2), 640nm (spectral integration value: single wavelength light 67.9Wm -2), and white light (spectral integration value: 22.7Wm -2) at 25 ° C. while applying a 144 Incubate for hours. Thereafter, all the bacterial cell plates were cultured at 25 ° C. in the dark, and the morphology, color, and growth rate were observed every 24 hours for 144 hours.
(3-ii)試験結果
 図35は黒かび病菌(A.nig)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。
 図36は灰色かび病菌(B.cin)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。
 図37は炭そ病菌(C.glo)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。
 図38はいもち病菌(F.pro)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。
 図39は別のいもち病菌(F.pro)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。
 図40は別のいもち病菌(F.pro)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。
 図41は別のいもち病菌(F.ver)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。
 図42は別のいもち病菌(M.gri)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。
 図43は黒腐菌核病菌(S.cep)を暗黒下において培養した場合と、同菌に375nmにピーク波長を有する光、405nmにピーク波長を有する光、470nmにピーク波長を有する光(紫色光)、640nmにピーク波長を有する光、白色光をそれぞれ照射しながら培養した場合の144時間経過後の繁殖状態を示す画像である。
 図35-43に示すように、紫色光(405nmにピーク波長を有する光)は供試した全ての菌株の成育を強く阻害した。従って、上記試験3により、紫色光の照射は、植物病原菌全般に対して静菌・殺菌効果を有することが確認された。
 また、波長470nmにピーク波長を有する光(青色光)を照射した場合に、顕著な植物病原菌の生育抑制効果は認められなかった。従って、それよりもさらに波長が長い緑色光を照射した際に、植物病原菌の生育抑制効果が発揮される可能性は極めて低いと推測される。
 さらに、640nmにピーク波長を有する光(赤色光)を照射した場合も、顕著な植物病原菌の生育抑制効果は認められなかった。
(3-ii) Test results FIG. 35 shows a case in which a black mold (A. nig) was cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, peak wavelength at 470 nm. It is an image showing the breeding state after 144 hours in the case of culturing while irradiating with light (purple light), light having a peak wavelength at 640 nm, and white light.
FIG. 36 shows a case where gray mold fungus (B. cin) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light). FIG. 6 is an image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
FIG. 37 shows the case where anthracnose fungus (C. glo) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light). FIG. 6 is an image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
FIG. 38 shows a case where a blast fungus (F. pro) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light), It is an image which shows the reproduction state after 144 hours at the time of culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
FIG. 39 shows a case where another blast fungus (F. pro) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light) ), An image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
FIG. 40 shows a case where another blast fungus (F. pro) was cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light). ), An image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
FIG. 41 shows a case where another blast fungus (F.ver) was cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light) ), An image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
FIG. 42 shows a case where another blast fungus (M.gri) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple light) ), An image showing a breeding state after 144 hours when culturing while irradiating light having a peak wavelength at 640 nm and white light, respectively.
FIG. 43 shows a case where black rot sclerotia (S. cep) is cultured in the dark, light having a peak wavelength at 375 nm, light having a peak wavelength at 405 nm, light having a peak wavelength at 470 nm (purple color) Light), a light having a peak wavelength at 640 nm, and an image showing a breeding state after 144 hours when cultivated while being irradiated with white light.
As shown in FIGS. 35-43, purple light (light having a peak wavelength at 405 nm) strongly inhibited the growth of all the strains tested. Therefore, it was confirmed by the test 3 that violet light irradiation has bacteriostatic and bactericidal effects on all plant pathogenic bacteria.
Moreover, when the light (blue light) which has a peak wavelength at 470 nm was irradiated, the remarkable growth inhibitory effect of the phytopathogenic fungus was not recognized. Therefore, it is presumed that the possibility of exerting the growth inhibitory effect of phytopathogenic fungi is very low when irradiated with green light having a longer wavelength than that.
Further, even when light having a peak wavelength at 640 nm (red light) was irradiated, no significant phytopathogenic growth inhibitory effect was observed.
[3]紫色光の照射による植物病原菌の形態変化について
 以下に示すような試験4により紫色光の照射による植物病原菌の形態変化を詳細に調べた。
(4-i)試験方法
 波長405nmの紫色光を照射した植物病原菌(B.cinerea)の菌糸の形態を詳しく観察した(下記、図10を参照)。また、波長405nmの紫色光を24,72,168時間照射した際の胞子の様子についても観察した(下記、図11を参照)。
[3] Morphological change of phytopathogenic fungus by irradiation with purple light The morphological change of phytopathogenic fungus by irradiation of purple light was examined in detail by Test 4 as shown below.
(4-i) Test Method The morphology of the mycelium of a phytopathogenic fungus (B. cinerea) irradiated with purple light having a wavelength of 405 nm was observed in detail (see FIG. 10 below). In addition, the appearance of spores when irradiated with violet light having a wavelength of 405 nm for 24, 72, and 168 hours was also observed (see FIG. 11 below).
(4-ii)試験結果
 図10は暗黒下において培養した植物病原菌の菌糸先端部の画像と、波長405nmの紫色光を照射しながら培養した同植物病原菌の菌糸先端部の画像を対比させて示した図である。
 図10に示すように、405nm紫色光(放射照度60Wm-2)を24時間照射した後の菌コロニー外縁の菌糸先端部には異常な肥大化が見られた。
 図11は波長405nmの紫色光をそれぞれ24,72,168時間照射しながら培養した胞子(B.cinerea)の様子を示す画像と、暗黒下において24,72,168時間培養した同胞子の様子を示す画像とを対比させて示す画像である。
 図11に示すように、SNA平板培地(上表1を参照)上のB.cinereaの胞子に405nm紫色光(放射照度60Wm-2)を各時間(24,72,168時間)照射後に観察すると、照射時間の経過に伴って胞子に同様の肥大化が見られた。
 したがって、植物病原菌に紫色光を照射した場合、植物病原菌の形態変化が促され、この変化により植物病原菌の正常な生育が妨げられて静菌・殺菌作用が発揮されると推測される。
 よって、本発明において使用する紫色光は、植物病原菌に対して直接作用して形態変化を生じさせることが示された。
(4-ii) Test results FIG. 10 shows a comparison between an image of the mycelial tip of a phytopathogenic fungus cultured in the dark and an image of the mycelial tip of the phytopathogenic fungus cultured while irradiating purple light with a wavelength of 405 nm. It is a figure.
As shown in FIG. 10, abnormal enlargement was observed at the tip of the mycelium on the outer edge of the fungal colony after irradiation with 405 nm purple light (irradiance 60 Wm −2 ) for 24 hours.
FIG. 11 shows an image showing the state of spores (B. cinerea) cultured while irradiating purple light with a wavelength of 405 nm for 24, 72, and 168 hours, respectively, and the appearance of spores cultured for 24, 72, and 168 hours in the dark. It is an image shown in contrast with the shown image.
As shown in FIG. 11, 405 nm purple light (irradiance 60 Wm −2 ) was observed after irradiating each spore (24, 72, 168 hours) on B.cinerea spores on SNA plate medium (see Table 1 above). A similar enlargement of the spores was observed with the lapse of irradiation time.
Therefore, when the phytopathogenic fungus is irradiated with purple light, it is presumed that the morphological change of the phytopathogenic fungus is promoted, and the normal growth of the phytopathogenic fungus is hindered by this change and the bacteriostatic / bactericidal action is exhibited.
Therefore, it was shown that the purple light used in the present invention acts directly on phytopathogenic bacteria to cause morphological changes.
[4]植物病原菌の静菌に関連した遺伝子の発現変化について
 紫色光が照射された植物病原菌(B.cinerea)における菌糸先端部又は胞子の肥大化の原因を明らかにする目的で以下に示す試験5を行った。
 紫色光が照射された植物病原菌における菌糸先端部又は胞子が肥大化した部分では、細胞において分裂の制御に異常が生じている可能性が高く、この点について検証した。
(5-i)試験方法
 波長405nm紫色光(放射照度60Wm-2)を照射したB.cinereaについてリアルタイムRT-PCR解析を行った。
[4] Changes in expression of genes related to bacteriostatic bacteriostatic fungi The following tests for the purpose of clarifying the causes of hypertrophy of mycelial tips or spores in phytopathogenic fungi (B. cinerea) irradiated with purple light 5 was done.
In the phytopathogenic fungi irradiated with purple light, the hyphae tip or the part in which the spores are enlarged is likely to be abnormal in cell division control, and this was verified.
(5-i) Test method Real-time RT-PCR analysis was performed on B. cinerea irradiated with 405 nm purple light (irradiance 60 Wm -2 ).
(5-ii)試験結果
 図12は波長405nm紫色光を照射したB.cinereaにおける分裂制御遺伝子の発現変化を示すグラフである。
 図12に示すように、波長405nm紫色光を照射したB.cinerea(図12中の凡例、1h,3h,6hを参照)においては、染色体分離を促進するcdc20遺伝子の発現が減少する一方で、細胞修復を促進するcdc48遺伝子の発現は増大していた。
 この結果から、波長405nmの紫色光照射によってB.cinereaに染色体分離阻害と細胞修復が引き起こされ、結果として静菌状態が生じている可能性が示唆された。
(5-ii) Test Results FIG. 12 is a graph showing changes in the expression of mitotic control genes in B. cinerea irradiated with purple light having a wavelength of 405 nm.
As shown in FIG. 12, in B.cinerea irradiated with 405 nm purple light (see legends in FIG. 12, 1h, 3h, and 6h), while the expression of the cdc20 gene that promotes chromosome segregation decreases, The expression of cdc48 gene that promotes cell repair was increased.
From these results, it was suggested that violet light irradiation at a wavelength of 405 nm caused inhibition of chromosome segregation and cell repair in B. cinerea, resulting in a bacteriostatic state.
 よって、上記試験1乃至5の結果から、本願発明に用いられる波長390-420nmの間にピークを有する紫色光が、植物病原菌に対して直接作用して静菌・殺菌作用が発揮されることが確認された。 Therefore, from the results of Tests 1 to 5, the purple light having a peak in the wavelength range of 390 to 420 nm used in the present invention acts directly on the phytopathogenic fungus and exhibits bacteriostatic / bactericidal action. confirmed.
 次に、植物体に紫色光を照射した場合の病害発生抑制効果に関する検証結果について説明する。
[5]紫色光照射による植物体の発病抑制効果について
 上述の試験1乃至5において特に高い静菌・殺菌効果が認められた波長405nmの紫色光を照射することによる植物体の病害発生抑制効果を検証する目的で以下に示すような試験6,7,12,13を行った。なお、ここでは試験6,12,7,13の順で試験方法及びその結果を説明する。
(6-i)試験方法
 トマト(品種:マイクロトム)種子を人工培土(バーミキュライト:パーライト=1:1)に播種し、人工気象器内で、25℃、明期/暗期(16h/8h)、PPFD100μmol-1m-2s-1程度の条件下で生育した。本葉5葉期のトマトを、人工気象器内に設置したLED光源搭載デシケータ内に移し、気温25℃、湿度50%、PPFD100μmol-1m-2s-1、明期/暗期(12h/12h)条件下で3日間生育させた。その後、波長405nmの紫色光及び白色光(それぞれ60Wm-2)を明期(12h)開始に合わせて照射/非照射(15min/45min)の条件で7日間照射した(計12サイクル/day)。コントロール区は白色光のみを照射した。照射処理後のトマトに1/2濃度のポテトデキストロース培地に懸濁したトマト灰色かび病菌胞子液(2×107個/ml)を噴霧接種(2.5ml/個体)し、接種前と同一の条件下で生育した。トマト灰色かび病菌の増殖を顕微鏡観察するためにラクトフェノールコトンブルー染色を行った。
 別法として、切除葉を用いた接種試験(ペーパーディスク接種試験)トマトの葉を切り取ってシャーレ内の湿ったろ紙上に置き、葉の中央に灰色かび病菌胞子液(1×107個/ml)を50μl含んだペーパーディスクをおき、紫色光及び白色光(それぞれ60Wm-2)を明期(12h)開始に合わせて照射/非照射(15min/45min)の条件で7日間照射した(計12サイクル/day)。コントロール区は白色光のみ照射した。その後、紫色光照射を行わず、2日間白色光下で培養して病徴を観察した。
Next, the verification result regarding the disease generation | occurrence | production suppression effect at the time of irradiating a plant body with purple light is demonstrated.
[5] Plant plant disease-inhibiting effect by purple light irradiation The plant disease occurrence suppressing effect by irradiating purple light having a wavelength of 405 nm, which was found to have a particularly high bacteriostatic and bactericidal effect in Tests 1 to 5 above. For the purpose of verification, tests 6, 7, 12, and 13 as shown below were performed. Here, the test method and the results will be described in the order of tests 6, 12, 7, and 13.
(6-i) Test method Tomato (variety: microtom) seeds were sown on artificial soil (vermiculite: perlite = 1: 1), and 25 ° C, light / dark period (16h / 8h) in an artificial meteorograph. , PPFD was grown under conditions of about 100 μmol −1 m −2 s −1 . The tomato in the fifth leaf stage is transferred into a desiccator equipped with an LED light source installed in an artificial meteorograph, temperature 25 ° C, humidity 50%, PPFD 100 µmol -1 m -2 s -1 , light period / dark period (12h / 12h) It was grown under conditions for 3 days. Thereafter, purple light and white light (each 60 Wm −2 ) having a wavelength of 405 nm were irradiated for 7 days under the conditions of irradiation / non-irradiation (15 min / 45 min) in accordance with the start of the light period (12 h) (total 12 cycles / day). The control group was irradiated only with white light. Tomato treated with tomato gray mold fungus spore suspension (2 × 10 7 cells / ml) suspended in potato dextrose medium at 1/2 concentration was spray-inoculated (2.5 ml / individual) on the tomatoes after irradiation treatment, the same as before the inoculation Grows under conditions. In order to microscopically observe the growth of tomato gray mold, lactophenolcotone blue staining was performed.
Alternatively, inoculation test using excised leaves (paper disc inoculation test) Tomato leaves are cut out and placed on a moist filter paper in a petri dish, and gray mold fungus spore solution (1 × 10 7 cells / ml) in the center of the leaves ) Was placed, and violet light and white light (each 60 Wm -2 ) were irradiated for 7 days under the conditions of irradiation / non-irradiation (15 min / 45 min) according to the start of the light period (12 h) (total 12 Cycle / day). The control group was irradiated only with white light. Thereafter, the symptom was observed by culturing under white light for 2 days without violet light irradiation.
(6-ii)試験結果
 図13(a)は波長405nm紫色光を照射した場合のトマトの外観の様子を示す画像であり、(b)はコントロール区のトマトの外観の様子を示す画像である。また、(c)は波長405nm紫色光を照射した場合のトマトの葉組織をラクトフェノールコットンブルーにより染色した場合の菌(灰色かび病菌)染色の様子を示す拡大画像であり、(d)はコントロール区のトマトの葉組織をラクトフェノールコットンブルーにより染色した場合の菌(灰色かび病菌)染色の様子を示す拡大画像である。
 図13から明らかなように、コントロール区では、灰色かび病の病徴(水浸状病斑)が葉全体に現れ(図13(b)を参照)、葉の組織中では灰色かび病菌の菌糸が増殖していた(図13(d)を参照)。その一方で、波長405nm紫色光照射区では、小さい褐色斑点が生じたのみであった(図13(a)を参照)。さらに、波長405nm紫色光照射区の葉を拡大してみたところ、灰色かび病の胞子は塊となって葉表面に付着したままで発芽していなかったため(図13(c)を参照)、葉の小斑点はトマトの抵抗応答(過敏感反応)によって生じたものと思われた。
 図14は波長405nm紫色光を照射したトマトの葉と、コントロール区のトマトの葉を用いた切除葉ペーパーディスク接種試験結果を示す画像である。なお、図14の画像における上段2つのシャーレに収容される切除葉は白色光のみが照射されたものであり、下段2つのシャーレに収容される切除葉は波長405nm紫色光及び白色光が照射されたものである。
 図14はモノクロ画像で見づらいが、カラーで見ると上段の2つのシャーレに収容される切除葉は全体が黄緑色に退色し、ペーパーディスクが載置された部分の周辺に褐色の水浸状病斑が生じているのに対し、下段の2つのシャーレにされる切除葉は全体が鮮やかな緑色で、ペーパーディスクの周囲にも病斑らしきものは認められず外観上は健全そのものであった。
 したがって、図14に示す画像からも明らかなように、切除葉ペーパーディスク接種試験においても、波長405nm紫色光照射区において灰色かび病の発病抑制効果が認められた。
(6-ii) Test Results FIG. 13A is an image showing the appearance of the tomato when irradiated with 405 nm wavelength violet light, and FIG. 13B is an image showing the appearance of the tomato in the control section. . Moreover, (c) is an enlarged image showing a state of bacterial (gray mold) staining when tomato leaf tissue is stained with lactphenol cotton blue when irradiated with purple light having a wavelength of 405 nm, and (d) is a control. It is an enlarged image which shows the mode of a microbe (gray mold fungus) dyeing | staining at the time of dyeing the leaf tissue of a tomato of a ward with lactophenol cotton blue.
As is clear from FIG. 13, in the control group, the symptom of gray mold disease (water-immersed lesion) appears on the entire leaf (see FIG. 13B), and the mycelium of the gray mold fungus is present in the leaf tissue. Was proliferating (see FIG. 13 (d)). On the other hand, only a small brown spot was produced in the 405 nm purple light irradiation section (see FIG. 13A). Furthermore, when the leaves of the wavelength 405 nm purple light irradiation section were expanded, the spores of gray mold disease were not clumped as they adhered to the leaf surface (see FIG. 13 (c)). These small spots were probably caused by the tomato resistance response (hypersensitive reaction).
FIG. 14 is an image showing the results of an incision leaf paper disc inoculation test using tomato leaves irradiated with 405 nm wavelength purple light and tomato leaves in the control group. Note that the cut leaves accommodated in the upper two petri dishes in the image in FIG. 14 are irradiated with only white light, and the cut leaves accommodated in the lower two petri dishes are irradiated with 405 nm purple light and white light. It is a thing.
Although it is difficult to see FIG. 14 in a monochrome image, the cut leaves contained in the upper two petri dishes are faded to yellow-green when viewed in color, and a brown water-immersive disease around the portion where the paper disk is placed While the spots were formed, the cut leaves in the two petri dishes in the lower stage were bright green as a whole, and no signs of lesions were found around the paper disk, and the appearance was sound.
Therefore, as is apparent from the image shown in FIG. 14, also in the excised leaf paper disk inoculation test, the gray mold disease inhibitory effect was observed in the 405 nm purple light irradiation section.
 次に、試験12について試験方法及びその結果について詳細に説明する。
(12-i)試験方法
 本葉6葉期のシソ科薬用植物メボウキ(学名:Ocimum basilicum、英名:basil)および本葉3葉期のマメ科野菜インゲンマメ(学名:Phaseolus vulgaris、英名:kidney bean)の市販苗を、空調制御された実験室内の植物生育棚に設置したLED光源搭載デシケータ内に移し、気温25℃、湿度50%、PPFD100μmol-1m-2s-1、明期/暗期(16h/8h)条件下で3日間馴化生育させた。その後、波長405nmの紫色光又は白色光(それぞれ50Wm-2)を明期(16h)開始に合わせて照射/非照射(15min/45min)の条件で7日間照射(前照射)した(16サイクル/day)。前照射処理後の植物の葉に、1/2濃度のポテトデキストロース培地に懸濁した灰色かび病菌(Botrytis cinerea)胞子液(2×10個/ml)を5μl滴下接種した。菌接種後は、紫色光の照射を行わない区(前照射のみ)と、引き続き照射を行う区(前照射+後照射)に分けて、それぞれの効果を比較した。接種3日後に病徴を観察するとともに、病斑直径を計測した。
Next, the test method and the result of Test 12 will be described in detail.
(12-i) Test method Lactaceae medicinal plant Mebouki (scientific name: Ocimum basilicum, English name: basil) and leguminous vegetable kidney bean (scientific name: Phaseolus vulgaris, English name: kidney bean) Was transferred to a desiccator equipped with an LED light source installed on a plant growth shelf in an air-conditioned laboratory. Temperature 25 ° C, humidity 50%, PPFD 100 µmol -1 m -2 s -1 , light period / dark period ( 16h / 8h) under the conditions for 3 days. Thereafter, purple light or white light (each 50 Wm −2 ) having a wavelength of 405 nm was irradiated (pre-irradiation) for 7 days under the conditions of irradiation / non-irradiation (15 min / 45 min) in accordance with the start of the light period (16 h) (16 cycles / day). Plant leaves after the pre-irradiation treatment were inoculated with 5 μl of a spore solution (2 × 10 6 cells / ml) of a gray mold fungus (Botrytis cinerea) suspended in a potato dextrose medium at a concentration of 1/2. After inoculation with bacteria, the effect was compared by dividing into a group where purple light was not irradiated (only pre-irradiation) and a group where irradiation was continued (pre-irradiation + post-irradiation). The disease symptoms were observed 3 days after the inoculation, and the lesion diameter was measured.
(12-ii)試験結果
 図44は波長405nmの紫色光又は白色光の前照射を行った供試植物のメボウキに、灰色かび病菌を接種した後、波長405nmの紫色光又は白色光を引き続き照射した区と、照射しなかった区のそれぞれにおける3日後の植物体の様子を示す画像である。
 図45は波長405nmの紫色光又は白色光の前照射を行った供試植物のインゲンマメに、灰色かび病菌を接種した後、波長405nmの紫色光又は白色光を引き続き照射した区と、照射しなかった区のそれぞれにおける3日後の植物体の様子を示す画像である。
 なお、図44,45では、比較対象として灰色かび病菌を接種していない無接種区の植物体の画像も合わせて示した。
 また、図46は波長405nmの紫色光又は白色光の前照射を行った供試植物のメボウキに、灰色かび病菌を接種した後、波長405nmの紫色光又は白色光を引き続き照射した区と、照射しなかった区のそれぞれにおける3日後の植物体の病班の直径を計測した結果を示すグラフである。
 さらに、図47は波長405nmの紫色光又は白色光の前照射を行った供試植物のインゲンマメに、灰色かび病菌を接種した後、波長405nmの紫色光又は白色光を引き続き照射した区と、照射しなかった区のそれぞれにおける3日後の植物体の病班の直径を計測した結果を示すグラフである。
 なお、図46,47のそれぞれのグラフの凡例における「405nm」の記載は波長405nmの紫色光を照射した場合を、「white」は白色光を照射した場合をそれぞれ示している。
 図44に示す画像では病班の位置が判別しづらいが、供試植物のメボウキに対して、波長405nmの紫色光又は白色光を前照射しただけの区ではいずれも、病班が葉の約1/3の領域にまで広がっていた。また、白色光を前照射しただけの区の方が、波長405nmの紫色光を前照射しただけの区よりも病班の広がり方が大きかった。
 さらに、波長405nmの紫色光又は白色光を前照射及び後照射した区では、前照射しただけの区よりも病班の広がりが小さく、波長405nmの紫色光を前照射及び後照射した区では、白色光を前照射及び後照射した区に比べて、病班の大きさは1/4程度であった。このような結果は、図46に示すグラフからも明らかである。
 図45に示す画像においても病班の位置が判別しづらいが、供試植物のインゲンマメの、波長405nmの紫色光又は白色光を前照射しただけの区ではいずれも、病班が葉の約1/3の領域にまで広がっていた。
 また、波長405nmの紫色光又は白色光を前照射及び後照射した区では共通して、それぞれの光を前照射しただけの区よりも病班の広がりは小さく、波長405nmの紫色光を前照射及び後照射した区では、白色光を前照射及び後照射した区に比べて、病班の大きさは1/5程度であった。このような結果は、図47に示すグラフからも明らかである。
 よって、上述の通りメボウキ、インゲンマメのいずれにおいても波長405nmの紫色光を前照射及び後照射した区(前照射+後照射)では、植物体に病原菌を接種した後に病斑の拡大が起こらなかったことから、顕著な病害抑制効果を有することが確認された。
 なお、図46のグラフからも明らかなように、供試植物のメボウキでは、波長405nmの紫色光の前照射のみを行っただけでも有意な病害抑制効果が発揮された。
(12-ii) Test results FIG. 44 shows that after inoculating the gray mold of the test plant that had been pre-irradiated with purple light or white light with a wavelength of 405 nm, followed by irradiation with purple light or white light with a wavelength of 405 nm. It is an image which shows the mode of the plant body after 3 days in each of the section which did and did not irradiate.
FIG. 45 shows a case in which the kidney bean of the test plant that had been pre-irradiated with purple light or white light having a wavelength of 405 nm was inoculated with gray mold and then irradiated with purple light or white light having a wavelength of 405 nm. It is an image which shows the mode of the plant body after 3 days in each of the ta ward.
In addition, in FIG.44,45, the image of the plant body of the non-inoculation area which has not inoculated the gray mold fungus as a comparison object was also shown collectively.
In addition, FIG. 46 shows a group in which purple fungi or white light having a wavelength of 405 nm was continuously inoculated after the inoculation of gray mold fungi on the test plants that had been pre-irradiated with purple light or white light having a wavelength of 405 nm. It is a graph which shows the result of having measured the diameter of the diseased part of the plant body three days after in each of the ward which did not do.
Furthermore, FIG. 47 shows a group of kidney beans of a test plant that had been pre-irradiated with purple light or white light having a wavelength of 405 nm, inoculated with gray mold fungus, and subsequently irradiated with purple light or white light having a wavelength of 405 nm. It is a graph which shows the result of having measured the diameter of the diseased part of the plant body three days after in each of the ward which did not do.
46 and 47, “405 nm” in the legend of each graph indicates a case where purple light having a wavelength of 405 nm is irradiated, and “white” indicates a case where white light is irradiated.
In the image shown in FIG. 44, it is difficult to determine the position of the diseased part, but the diseased part of the leaves of the test plant was only exposed to purple light or white light with a wavelength of 405 nm. It spread to 1/3 of the area. In addition, the group in which the white light was pre-irradiated had a larger spread of the disease than the group in which the purple light having a wavelength of 405 nm was pre-irradiated.
Furthermore, in the group that was pre-irradiated and post-irradiated with violet light or white light having a wavelength of 405 nm, the spread of the lesion was smaller than the group that was just pre-irradiated, and in the group that was pre-irradiated and post-irradiated with purple light having a wavelength of 405 nm, The size of the lesion was about ¼ compared to the group irradiated with white light before and after irradiation. Such a result is clear also from the graph shown in FIG.
In the image shown in FIG. 45, it is difficult to determine the position of the diseased part, but in the group of the kidney bean of the test plant that was only pre-irradiated with 405 nm purple light or white light, the diseased part was about 1 / 3 area.
In addition, in the section pre-irradiated and post-irradiated with violet light or white light having a wavelength of 405 nm, the spread of the lesion is smaller than the section just pre-irradiated with each light, and pre-irradiated with purple light with a wavelength of 405 nm. In the group irradiated with post-irradiation, the size of the lesion was about 1/5 compared with the group irradiated with white light before and after irradiation. Such a result is clear also from the graph shown in FIG.
Therefore, as described above, in both the Japanese boxfish and the kidney bean, in the section where the purple light having a wavelength of 405 nm was pre-irradiated and post-irradiated (pre-irradiation + post-irradiation), the lesions did not expand after inoculating the pathogen with the plant body. From this, it was confirmed that it has a remarkable disease suppression effect.
As is clear from the graph of FIG. 46, the Mebouki of the test plant exhibited a significant disease suppression effect only by performing pre-irradiation with purple light having a wavelength of 405 nm.
 続いて、試験7について試験方法及びその結果について詳細に説明する。
(7-i)試験装置
 まず、本試験に使用する紫色光光源(以下、405nmLED補光装置とよぶ)について説明する。
 本試験に使用する405nmLED補光装置は、LEDランプ9個または12個を配列した円錐形のユニット(φ25mm×H30mm、以下LEDユニットとよぶ)をライン上に配置したものであり、LEDランプには波長ピークが405nmのもの(45°:SL405AAUE、15°:SL405ADUE、サンオプト)を使用した。また、この405nmLED補光装置では、LEDユニット部分(発光部)および電源部分のシールを強化し、防水性を高めた。さらに、トマト群落の最適な場所に照射できるように、LEDユニットの着脱を可能にし、またLEDユニット間のコードも着脱可能なユニット化することで、LEDユニット間の長さを自在に調節ができるよう構成した。そして、LEDユニットを軽量化し、また取り付け用のクリップのサイズを可変とすることで、トマトの茎や枝にLEDユニットを直接取り付けることができるようになり、トマト個体における茎葉の集合体の内側からの紫色光の照射を可能にした。
Subsequently, the test method and the result of Test 7 will be described in detail.
(7-i) Test apparatus First, a violet light source (hereinafter referred to as a 405 nm LED auxiliary light apparatus) used in this test will be described.
The 405 nm LED light supplement device used in this test has a conical unit (φ25 mm × H30 mm, hereinafter referred to as LED unit) in which 9 or 12 LED lamps are arranged on the line. The one having a wavelength peak of 405 nm (45 °: SL405AAUE, 15 °: SL405ADUE, Sun Opto) was used. Moreover, in this 405 nm LED light supplement device, the sealing of the LED unit part (light emitting part) and the power source part was strengthened to improve the waterproofness. Furthermore, the LED unit can be attached and detached so that it can irradiate the optimal location of the tomato community, and the length between the LED units can be freely adjusted by making the cord between the LED units detachable. It was configured as follows. And, by reducing the weight of the LED unit and making the size of the mounting clip variable, the LED unit can be directly attached to the stem and branch of the tomato. Of purple light.
(7-ii)試験方法
 次に、本試験の試験方法について詳細に説明する。
 供試植物にはトマト(solanum lycopersicum、品種:桃太郎(Momotaro)および麗夏(Reika))を使用し、栽培は、山口大学農学部附属農場内のビニールハウス内(南北棟)で外部からビニールハウス内の様子を見えないようにするとともに,ビニールハウスへは守秘義務を有する関係者以外の者が立ち入りできないようにして、夏秋と冬春の2度行った。夏秋栽培は、36個体(麗夏:18個体、桃太郎:18個体)栽培し、播種を2010年5月24日に、定植を2010年7月21日に行った。冬春栽培では、48個体(麗夏:24個体、桃太郎:24個体)栽培し、播種を2010年9月24日に、定植を2010年11月19日に行った。種はロックウールキューブに直接播き、定植はロックウールキューブをロックウールスラグ上に設置することで行った。灌水は一定間隔かけ流し方式で、肥料は、夏秋栽培では大塚1号(大塚化学、大塚ハウス1号)を60g/day/全個体、大塚2号(大塚化学、大塚ハウス2号)を40g/day/全個体、与え、冬春栽培では大塚1号のみを15-30g/day/全個体、与えた。ハウス内の気温が30℃以上になると換気扇が稼働するように設定し、換気を行った。また、冬春栽培では、ハウス内の気温が10℃以下になるとボイラーによる暖房が稼働するに設定した。照射期間中のハウス内の気温湿度、PPFD、および紫外線強度を、それぞれ、温湿度センサ(CHINO、MR6661)、PPFDセンサ(Apogee、QSO-S)、UVセンサ(Apogee、SE-UVS))、で測定し記録した。
(7-ii) Test Method Next, the test method of this test will be described in detail.
Tomatoes (solanum lycopersicum, varieties: Momotaro and Reika) are used as test plants, and cultivation is carried out in the greenhouse (North-South Building) inside the Yamaguchi University Faculty of Agriculture. This was done twice in summer autumn and winter spring in order to prevent anyone other than those who have a confidential duty from entering the greenhouse. For summer / autumn cultivation, 36 individuals (Reika: 18 individuals, Momotaro: 18 individuals) were cultivated, sowing was performed on May 24, 2010, and fixed planting was performed on July 21, 2010. In winter spring cultivation, 48 individuals (Reika: 24 individuals, Momotaro: 24 individuals) were cultivated, sowing was conducted on September 24, 2010, and fixed planting was conducted on November 19, 2010. Seeds were sown directly on rock wool cubes, and planting was done by placing rock wool cubes on rock wool slag. Irrigation is performed at regular intervals, and fertilizer is 60g / day / all in Otsuka No. 1 (Otsuka Chemical, Otsuka House No. 1) and 40g / Otsuka No. 2 (Otsuka Chemical, Otsuka House No. 2) in summer and autumn cultivation. Day / all individuals, fed, only 15-30g / day / all individuals of Otsuka No. 1 were given during winter spring cultivation. A ventilation fan was set to operate when the temperature in the house reached 30 ° C or higher, and ventilation was performed. In winter and spring cultivation, when the temperature in the house is 10 ° C. or lower, heating by a boiler is set to operate. The temperature and humidity, PPFD, and UV intensity in the house during the irradiation period are measured with temperature / humidity sensors (CHINO, MR6661), PPFD sensors (Apogee, QSO-S), and UV sensors (Apogee, SE-UVS)), respectively. Measured and recorded.
(7-iii)照射方法
 続いて、本試験の照射条件について詳細に説明する。
 自然光下のビニールハウス内において、405nmLED補光装置を用いて、トマト群落に対し照射実験を3回行った。照射期間(The period of irradiation)、照射区の個体数(Number of Plants irradiated)、対照区の個体数(Number of control plants)、照射時間(Time of 405nmLED irradiation)は下記表2に示す。また、実験1-3の照射個体の配置を、図15乃至図18に示す。
 図15は実験1におけるビニールハウス内の供試材料の配置を示す平面図である。図16は実験2におけるビニールハウス内の供試材料の配置を示す平面図である。図17は実験3(12/7-1/16)におけるビニールハウス内の供試材料の配置を示す平面図である。そして、図18は実験3(1/17以降)におけるビニールハウス内の供試材料の配置を示す平面図である。なお、図15乃至図18中における平面図(試験区図)において四角は照射個体、白丸は対象個体、黒丸は各測定から省いた個体を表す。
(7-iii) Irradiation method Next, the irradiation conditions of this test will be described in detail.
In a greenhouse under natural light, irradiation experiments were performed three times on tomato communities using a 405 nm LED light supplement device. The irradiation period (The period of irradiation), the number of individuals in the irradiation group (Number of Plants irradiated), the number of individuals in the control group (Number of control plants), and the irradiation time (Time of 405 nm LED irradiation) are shown in Table 2 below. The arrangement of irradiated individuals in Experiment 1-3 is shown in FIGS.
FIG. 15 is a plan view showing the arrangement of the test materials in the greenhouse in Experiment 1. FIG. FIG. 16 is a plan view showing the arrangement of the test materials in the greenhouse in Experiment 2. FIG. FIG. 17 is a plan view showing the arrangement of the test materials in the greenhouse in Experiment 3 (12 / 7-1 / 16). FIG. 18 is a plan view showing the arrangement of the test materials in the greenhouse in Experiment 3 (1/17 and later). 15 to 18, squares represent irradiated individuals, white circles represent target individuals, and black circles represent individuals omitted from each measurement.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 405nmLED補光装置による紫色光の照射は、トマト個体の斜め上(Downward)、群落下部(Upward)、側面の3方向から行った。斜め上からの照射はトマト栽培畝間に上部より吊り下げた支柱にLEDユニット(発光部)を取り付けて行い、下部からの照射はトマト群落内に水平方向の支柱を渡しそれにLEDユニットを取り付けるか、トマトの茎に直にLEDユニットを取り付け、行った。また、側面からの照射は、LEDユニットを取り付けた照明用三脚(Velbon,LS-1)をトマト個体側面に立てて行った。各照射方法において、LEDユニットは、照射の強度がLEDユニットから最も近い葉で30Wm-2程度になるように設置した。実験1-3のそれぞれにおける各照射個体の照射位置と使用LEDユニット数を、表3-8に示す。今回の照射条件では、LEDユニット1つ当たりの消費電力は、約0.7Wで、12個のLEDユニットを1つのトマト個体に設置した場合、トマト1個体あたりの消費電力は、8-9W程度であった。 Irradiation of purple light by a 405 nm LED supplementary device was performed from three directions, ie, diagonally upward (Downward), group dropping part (Upward), and side surfaces of a tomato individual. Irradiation from diagonally above is done by attaching an LED unit (light emitting part) to the column suspended from the upper part between the tomato cultivation baskets, and irradiation from the lower part passes the horizontal column in the tomato community, or attaches the LED unit to it, The LED unit was directly attached to the tomato stem. In addition, irradiation from the side was performed by placing a lighting tripod (Velbon, LS-1) attached with an LED unit on the side of the tomato individual. In each irradiation method, the LED unit was installed such that the intensity of irradiation was about 30 Wm −2 at the leaf closest to the LED unit. Table 3-8 shows the irradiation position of each irradiated individual and the number of LED units used in Experiment 1-3. Under the current irradiation conditions, the power consumption per LED unit is about 0.7 W, and when 12 LED units are installed in one tomato individual, the power consumption per individual tomato is about 8-9 W Met.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(7-iv)病害評価方法
 本試験における病害評価方法について説明する。
(a)病害の同定
 今回、ハウス内で農薬を散布しない状態で自然発生した病気は、分生子を解析した結果、すすかび病(Pseudocercospora fuligena)であった。
(b)病害の評価
 自然発生したすすかび病に対し、病害の程度を、罹病葉数に基づく発病指数により評価した。病害評価は、各複葉の総葉数に対する罹病葉数が0%=0、50%以下=1、>50%=2、として罹病葉指数を決めて、目視で測定した。各複葉における罹病葉指数を1個体毎に平均化し、その個体の罹病葉数に基づく発病指数とした。なお、実験2では、照射開始以前に出ていた罹病葉を全て切り落とした状態で測定を開始し、1枚の葉につき病斑が3点確認された時点でその葉を切り落としていった。
(7-iv) Disease evaluation method The disease evaluation method in this study will be described.
(A) Identification of disease This time, the disease that naturally occurred without spraying pesticide in the house was Pseudocercospora fuligena as a result of analyzing conidia.
(B) Evaluation of disease The degree of disease was evaluated by the disease index based on the number of diseased leaves against naturally occurring fungi. The disease evaluation was carried out by visually determining the diseased leaf index, assuming that the number of diseased leaves was 0% = 0, 50% or less = 1,> 50% = 2 with respect to the total number of leaves of each compound leaf. The diseased leaf index in each compound leaf was averaged for each individual and used as the disease index based on the number of diseased leaves of the individual. In Experiment 2, the measurement was started in a state where all the diseased leaves that had appeared before the start of irradiation were cut off, and the leaves were cut off when three lesions were confirmed per leaf.
(7-v)病害評価方法
 本試験における生育評価方法について説明する。
 405nm紫色光照射によるトマトの生育への影響を調べるため、5-7日間隔で、草丈、複葉数、葉緑素量(SPAD値)を測定した。草丈は、先端にクリップをつけたたこ糸をトマト個体の茎頂の高さにある誘引紐に取り付け、トマトの茎にそって根元までの長さを測定した。SPAD値についてはSPAD計(KONIKA MINOLTA、SPAD-502)を用い、トマトの上から2つ目の花房から2つ下と3つ下の複葉の先端から2枚目の葉を5回ずつ計10回計測し、10回の平均値をその個体のSPAD値とした。
(7-v) Disease Evaluation Method The growth evaluation method in this test will be described.
In order to examine the effect of 405 nm purple light irradiation on tomato growth, plant height, the number of compound leaves, and the amount of chlorophyll (SPAD value) were measured at intervals of 5-7 days. The plant height was measured by measuring the length of the tomato root along the tomato stem by attaching a tako thread with a clip at the tip to an attracting string at the height of the top of the tomato individual. For SPAD values, a SPAD meter (KONIKA MINOLTA, SPAD-502) was used, and the second leaf from the top of the second inflorescence from the top of the tomato and the second leaf from the tip of the third leaf down to a total of 10 times each. The average value of 10 times was used as the SPAD value of the individual.
(7-vi)試験結果
 まず、波長405nmの紫色光を照射することによる植物体の生育への影響について述べる。
 実験1-3のいずれにおいても、波長405nm紫色光の照射による生育への影響は認められなかった。その一例として、実験2における草丈、複葉数、SPADの経時変化を図19乃至図21に示す。
 図19は実験2において波長405nmの紫色光を照射した個体群と、コントロール用の個体群における草丈の経時変化を比較したグラフである。図20は実験2において波長405nmの紫色光を照射した個体群と、コントロール用の個体群における複葉数の経時変化を示すグラフである。図21は実験2において波長405nmの紫色光を照射した個体群と、コントロール用の個体群におけるSPAD値の経時変化を示すグラフである。なお、図19乃至図21に示される各グラフ中におけるBar(誤差棒)は標準誤差を表し、各測定日において試験区間の平均値に関して有意水準5%でt検定を行った結果、有意差がある場合はアスタリスク(*)をつけることにしたが、草丈、複葉数、SPADのいずれにおいても波長405nmの紫色光を照射した個体と、コントロール用個体の間において有意差は認められなかった。
(7-vi) Test results First, the effect on the growth of a plant by irradiating purple light with a wavelength of 405 nm will be described.
In any of Experiments 1-3, no influence on growth was observed due to irradiation with violet light having a wavelength of 405 nm. As an example, changes over time in plant height, the number of compound leaves, and SPAD in Experiment 2 are shown in FIGS.
FIG. 19 is a graph comparing the changes in plant height over time in a population irradiated with purple light having a wavelength of 405 nm in Experiment 2 and a control population. FIG. 20 is a graph showing changes over time in the number of compound leaves in a group irradiated with purple light having a wavelength of 405 nm in Experiment 2 and a control group. FIG. 21 is a graph showing temporal changes in SPAD values in a group irradiated with purple light having a wavelength of 405 nm in Experiment 2 and a control group. In addition, Bar (error bar | burr) in each graph shown by FIG. 19 thru | or FIG. 21 represents a standard error, As a result of t-testing at the significance level of 5% regarding the average value of the test section on each measurement day, a significant difference is shown. In some cases, it was decided to put an asterisk (*), but no significant difference was observed between the individual irradiated with purple light with a wavelength of 405 nm and the control individual in any of plant height, number of compound leaves, and SPAD.
 次いで、発病指数による評価結果について述べる。
 図22は実験1(夏秋栽培)における罹病葉数に基づく発病指数の経時変化を示すグラフである。また、図23は実験1(夏秋栽培)における罹病葉数に基づく罹病葉数の経時変化を示すグラフである。なお、上述の図22,23として示すグラフ中におけるbar(誤差棒)は標準誤差を表し、各測定日に有意水準5%でt検定を行った結果、試験区間に有意差があったものにはアスタリスク(*)をつけている。
 図22に示すように、実験1においては、照射期間の平均として、両品種全体で約10.8%の病害抑制効果が認められ、8/27-9/2の間には有意差も認められた。なお、ここでは特にデータを示さないが、病害抑制効果の品種間差(供試苗:麗夏、桃太郎)は認められなかった。
 また、図23に示すように、罹病複葉(指数2)数でも平均で約20%の病害抑制効果が認められ、405nm紫色光照射によってすすかび病の発生が抑制されることが明らかになった。さらに、1枚の葉に病斑が発生しても、複葉内の他の葉に病班が広がりにくい傾向が認められた。
Next, the evaluation results based on the disease index will be described.
FIG. 22 is a graph showing the change over time in the disease index based on the number of diseased leaves in Experiment 1 (Summer Autumn cultivation). FIG. 23 is a graph showing changes over time in the number of diseased leaves based on the number of diseased leaves in Experiment 1 (cultivated in summer and autumn). In addition, bar (error bar) in the graphs shown in FIGS. 22 and 23 described above represents standard error, and as a result of performing t-test at a significance level of 5% on each measurement day, there was a significant difference in the test interval. Is marked with an asterisk (*).
As shown in FIG. 22, in Experiment 1, as a result of the average irradiation period, about 10.8% of the disease suppression effect was observed for both varieties, and there was also a significant difference between 8 / 27-9 / 2. It was. Although no particular data is shown here, no varietal difference in the disease control effect (sample seedlings: Reika, Momotaro) was not observed.
In addition, as shown in FIG. 23, an average of about 20% of disease control effect was observed even in the number of diseased compound leaves (index 2), and it became clear that the occurrence of subtilis disease was suppressed by 405 nm purple light irradiation. . Furthermore, even when lesions occurred on one leaf, a tendency for the lesions to hardly spread to other leaves in the compound leaf was observed.
 図24は実験2(夏秋栽培)における発病指数の経時変化を個体全体で計算した場合のグラフであり、図25は実験2(夏秋栽培)における発病指数の経時変化を照射されている葉位の複葉で計算した場合のグラフである。なお、上述の図24,25として示すグラフ中におけるbar(誤差棒)は標準誤差を表し、各測定日に有意水準5%でt検定を行った結果、試験区間に有意差があったものにはアスタリスク(*)をつけている。
 図24に示すように、実験2においても、有意差はみられなかったものの、照射期間を通じて405nmLED区の発病指数が対照区を下回り、平均12.3%の抑制効果が認められた。また、複葉中の半数以上の葉に病気が広がるまでの期間は、対照区と比較して405nmLED区では9日間(対照区では10/7、照射区では10/16)長かった。さらに、図25に示されるように、405nm紫色光が照射されていた葉位(27-33番目の複葉)について比較すると、最初のうちは差が認められなかったものの、10/20にLEDユニットを追加した直後から、平均で25%の抑制効果が認められた。
 より詳細には、LEDユニットを追加する直前の状態では、複葉数37枚に対して、LEDユニットにより405nm紫色光を照射した複葉数は3-4枚(LEDユニット数:8)であり、全複葉における405nm紫色光照射複葉の割合は、10%以下であった。そして、LEDユニット追加後は、複葉数37-44枚(LEDユニット追加後の生長による)に対して、LEDユニットにより405nm紫色光を照射した複葉数が6-8枚(LEDユニット数:17-18)であり、全複葉における405nm紫色光照射複葉の割合が10%以上であった。
 従って、紫色光の照射による、病害発生抑制効果を好適に発揮させるためには、少なくとも全葉面積の10%の領域に紫色光を照射することが望ましいと考えられる。
FIG. 24 is a graph in the case where the temporal change of the disease index in Experiment 2 (Summer Autumn cultivation) is calculated for the whole individual, and FIG. 25 is a graph of the leaf position irradiated with the temporal change in the Disease Index in Experiment 2 (Summer autumn cultivation) It is a graph at the time of calculating with a compound leaf. Note that bar (error bar) in the graphs shown in FIGS. 24 and 25 described above represents standard error, and as a result of performing t-test at a significance level of 5% on each measurement day, there was a significant difference in the test interval. Is marked with an asterisk (*).
As shown in FIG. 24, in Experiment 2, although no significant difference was observed, the disease index of the 405 nm LED group was lower than that of the control group throughout the irradiation period, and an average suppression effect of 12.3% was recognized. In addition, the period until the disease spreads to more than half of the leaves in the compound leaves was 9 days longer in the 405 nm LED group than in the control group (10/7 in the control group, 10/16 in the irradiated group). Furthermore, as shown in FIG. 25, when comparing the leaf position (27th to 33rd compound leaves) irradiated with 405 nm violet light, although no difference was observed at first, the LED unit was detected on 10/20. Immediately after adding, an average of 25% suppression effect was observed.
More specifically, in the state immediately before the addition of the LED unit, the number of compound leaves irradiated with 405 nm purple light by the LED unit is 3-4 (the number of LED units: 8) with respect to the number of 37 leaves. The ratio of 405 nm purple light irradiated compound leaves in the compound leaves was 10% or less. After the LED unit is added, the number of compound leaves is 37 to 44 (depending on the growth after the LED unit is added), and the number of compound leaves irradiated with 405 nm purple light by the LED unit is 6 to 8 (number of LED units: 17- 18), and the proportion of 405 nm purple light-irradiated compound leaves in all compound leaves was 10% or more.
Accordingly, it is considered desirable to irradiate at least 10% of the total leaf area with violet light in order to suitably exert the disease occurrence suppressing effect by violet light irradiation.
 図26は実験3(冬春栽培)における発病指数の変化を示すグラフであり、図27は実験3(冬春栽培)における罹病葉数の変化を示すグラフである。なお、上述の図26,27として示すグラフ中におけるbar(誤差棒)は標準誤差を表し、各測定日に有意水準5%でt検定を行った結果、試験区間に有意差があったものにはアスタリスク(*)をつけている。
 図26に示されるように、実験3においては、全体の発病指数について、照射期間を通じて平均10.8%の抑制効果が認められた。また、図27に示されるように、発病指数2の数について全体では1/20ごろから有意差が認められ、最大で1/4程度まで病害が抑制された。
FIG. 26 is a graph showing a change in disease index in Experiment 3 (winter spring cultivation), and FIG. 27 is a graph showing a change in the number of diseased leaves in experiment 3 (winter spring cultivation). In addition, bar (error bar) in the graphs shown in FIGS. 26 and 27 described above represents standard error, and as a result of performing t-test at a significance level of 5% on each measurement day, there was a significant difference in the test interval. Is marked with an asterisk (*).
As shown in FIG. 26, in Experiment 3, an average suppression effect of 10.8% was observed throughout the irradiation period for the overall disease index. Further, as shown in FIG. 27, the number of disease index 2 was significantly different from about 1/20 as a whole, and the disease was suppressed to about 1/4 at maximum.
 続いて、試験13について試験方法及びその結果について詳細に説明する。
(13-i)試験材料及び試験方法
 供試植物にはシソ目ムラサキ科の薬用植物であるムラサキ(Lithospermum erythrorhiozon)を使用し、その試験栽培は、山口県にあるビニールハウス内で行った。また、上述の試験7において用いたものと同様の405nmLED補光装置を用いて、1個体あたり、植物が小さいうちは1ユニット、大きくなった後は2ユニットを使用し、朝夕3.5時間照射(計7時間)もしくは1時間ごと計7時間照射を行った。農薬は散布せずに自然発生した病害の程度を、405nmLED補光を行わない区(対照区)と比較した。病害の程度は、各個体における発病評価基準(発病指数)を、1:がく、花に褐変やカビの形成が見られる、2:がく、花だけでなく、葉にも褐変が見られる(1,2枚)、3:がく、花だけでなく、葉にも褐変が見られる(数枚、局部的)、4:植物体全体に褐変が見られ、枯死している、というように定め、目視で判断した。
 なお、ビニールハウスでの試験は、外部から内部の様子を見えないようにするとともに、このビニールハウスへは守秘義務を有する関係者以外の者が立ち入りできないようにして行った。
Subsequently, the test method and the result of Test 13 will be described in detail.
(13-i) Test material and test method Murasaki (Lithospermum erythrorhiozon), a medicinal plant belonging to the family Lamiaceae, was used as a test plant, and the test cultivation was performed in a plastic house in Yamaguchi Prefecture. In addition, using the same 405 nm LED light supplement device as used in Test 7 above, use 1 unit when the plant is small, and 2 units after it grows, and irradiate for 3.5 hours in the morning and evening. (Total 7 hours) Or, irradiation was performed every hour for a total of 7 hours. The degree of disease that occurred naturally without spraying the pesticide was compared with the group that did not perform 405 nm LED supplementary light (control group). As for the degree of disease, the disease evaluation criteria (onset index) in each individual is 1: gill, browning and mold formation are seen in the flowers, 2: gag, browning is seen not only in the flowers but also in the leaves (1 , 2), 3: Brown, not only flowers, but also leaves are seen (several, local), 4: browning is seen throughout the plant body, it is dead, Judgment was made visually.
In addition, the test in the greenhouse was performed so that the inside was not visible from the outside, and no one other than the related person having confidentiality obligations could enter the greenhouse.
(13-ii)試験結果
 図48は供試植物であるムラサキに405nm紫色光を照射した場合と照射しない場合の発病指数の推移を示すグラフである。なお、図48中の凡例において「LED」と記載される方は405nmLED補光区を、「Control」記載される方は対照区をそれぞれ示している。
 図48には特に示されていないが、平成23年7月上旬(照射開始から50-60日後)より、405nmLED補光区、対照区ともに、灰色かび病の症状が認められ始めた。さらに、図48に示す、同年8月12日(照射開始から90日後)から、同年9月1日(照射開始から110日後)までの期間では、405nmLED補光区で発病の程度が抑えられていた。
 同年8月12日の時点で、下記数1により計算される、405nmLED補光区の対照区に対する発病抑制率は24%、同年9月1日の時点での同発病抑制率は13%であった。
 よって、この試験13により波長405nmの紫色光の照射が、シソ目ムラサキ科の植物に対して有意な発病抑制効果を有することが確認された。
(13-ii) Test Results FIG. 48 is a graph showing the transition of the disease index when the murasaki as a test plant is irradiated with 405 nm purple light and when it is not irradiated. Note that in the legend in FIG. 48, “LED” indicates a 405 nm LED supplementary light area, and “Control” indicates a control area.
Although not particularly shown in FIG. 48, from the beginning of July 2011 (50-60 days after the start of irradiation), symptoms of gray mold disease began to be observed in both the 405 nm LED supplementary zone and the control zone. Furthermore, in the period from August 12, the same year (90 days after the start of irradiation) to September 1, the same year (110 days after the start of irradiation) shown in FIG. 48, the degree of disease is suppressed in the 405 nm LED supplementary zone. It was.
As of August 12 of the same year, the disease suppression rate of the 405 nm LED supplementary light zone compared to the control zone calculated by the following formula 1 was 24%, and the disease suppression rate as of September 1 of the same year was 13%. It was.
Therefore, it was confirmed by this test 13 that irradiation with violet light having a wavelength of 405 nm has a significant disease-suppressing effect on plants of the family Lamiaceae.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、試験6,7,12,13の結果についてのまとめを述べる。
 上記試験6の結果から、植物体の葉に紫色光を照射することにより植物病原菌による病害の発生を好適に抑制できることが確認された。
 また、試験7の結果から、植物体を栽培する際に紫色光を照射することにより、病害の発生を抑制できること、及び、病害発生後に植物体に紫色光を照射した場合に、病害の拡大を抑制できることが確認された。さらに、上記試験7の結果から、植物体への紫色光の間欠照射が、植物体の生育に影響を及ぼさないことも確認された。
 なお、ここでは詳細な試験結果等については示さないが、発明者らは、紫色光の照射が、うどんこ病菌による病害に対しても抑制効果を有し、それが、病原防御応答関連遺伝子の発現によることを確認した(供試材料:トマト)。
 より具体的には、発明者らは、405nm紫色光事前照射葉にうどんこ病菌を接種したトマトにおける病原防御応答関連遺伝子の発現について調査した。405nm紫色光事前照射を行ったトマトでは、うどんこ病斑数の減少傾向が認められた。特に、405nm紫色光を事前照射した葉において病斑数が減少した。また、405nm紫色光を照射したうどんこ病菌無接種トマトへの自然感染は、405nm紫色光非照射・うどんこ病菌無接種トマトへの自然感染に比べて著しく抑制された。さらに、これらのトマトの葉を用いて、405nm紫色光照射およびうどんこ病菌接種の有無に基づいて、病原防御応答関連遺伝子の発現量を定量した結果、PR1a1、phospholipase D、PR1a1、acidic chitinase、acidic glucanase、PAL2、PAL4、ICS(isochorismate synthase)、およびomega 3FAD(omega-3 fatty acid desaturase)の遺伝子発現が5倍以上増加していた。
 従って、植物体への紫色光照射は、植物体の生きた細胞に病害を生じさせる植物病原菌に対しても、植物体の死んだ細胞に病害を生じさせる植物病原菌に対しても病害抑制効果を発揮することが確認された。
 すなわち、植物体への紫色光照射は、生体栄養性病原菌(うどんこ病菌やべと病菌など)による病害だけでなく、死物栄養性病原菌(灰色かび病菌や炭そ病菌など)による病害に対しても抑制効果がある可能性が極めて高い。
Here, a summary of the results of tests 6, 7, 12, and 13 will be described.
From the results of Test 6 above, it was confirmed that the occurrence of diseases caused by phytopathogenic bacteria can be suitably suppressed by irradiating the leaves of the plant with purple light.
In addition, from the results of Test 7, it is possible to suppress the occurrence of disease by irradiating purple light when cultivating the plant, and when the plant is irradiated with purple light after the occurrence of the disease, It was confirmed that it can be suppressed. Furthermore, from the result of the test 7, it was also confirmed that intermittent irradiation of purple light on the plant does not affect the growth of the plant.
Although detailed test results and the like are not shown here, the inventors have shown that purple light irradiation has a suppressive effect on diseases caused by powdery mildew fungi, which is a pathogen defense response-related gene. It was confirmed by expression (test material: tomato).
More specifically, the inventors investigated the expression of pathogen defense response-related genes in tomatoes inoculated with powdery mildew on 405 nm purple light pre-irradiated leaves. In tomatoes that had been pre-irradiated with 405 nm purple light, a tendency to reduce the number of powdery mildew spots was observed. In particular, the number of lesions decreased in leaves pre-irradiated with 405 nm purple light. Moreover, the natural infection to the powdery mildew non-inoculated tomato irradiated with 405 nm purple light was remarkably suppressed as compared to the natural infection to the powdery non-inoculated tomato without 405 nm purple light. Furthermore, using these tomato leaves, the expression level of pathogen defense response-related genes was quantified based on the presence or absence of 405 nm purple light irradiation and powdery mildew inoculation. As a result, PR1a1, phospholipase D, PR1a1, acidic chitinase, acidic The gene expression of glucanase, PAL2, PAL4, ICS (isochorismate synthase), and omega 3FAD (omega-3 fatty acid desaturase) was increased more than 5 times.
Therefore, the purple light irradiation to the plant body has a disease-suppressing effect on both the plant pathogen causing the disease to the living cells of the plant body and the plant pathogen causing the disease to the dead cells of the plant body. It has been confirmed that it works.
In other words, purple light irradiation to plants is not only against diseases caused by biotrophic pathogens (such as powdery mildew and downy mildew), but also due to diseases caused by dead-nutrient pathogenic bacteria (such as gray mold and anthracnose). However, there is a very high possibility that there is a suppression effect.
 さらに、試験6,7,12,13の結果を総括すると、波長405nm紫色光を照射することで、ナス科植物、シソ科植物、マメ科植物、及び、ムラサキ科植物に対して病害抑制効果が発揮されることが確認された。また、以下に詳細に示す試験9の結果も併せると、上記植物に加えて、アブラナ科植物に対しても病害抑制効果が発揮されると考えられる。
 従って、これらの試験結果から、波長405nmの紫色光の照射による病害抑制効果は、植物の科に関係なく多くの植物種で発揮されることが示唆された。
 さらに、本願明細書に記載される試験において取り扱われていない、例えば、バラ科植物(例えば、イチゴ等)、ウリ科植物(例えば、メロン等)、サクラソウ科植物(例えば、シクラメン等)などの食用や観賞用に栽培される様々な植物に対しても同様の効果が期待できる。
 なお、波長405nm紫色光の照射による病害発生抑制効果が期待できる植物としては、例えば、以下に示すようなものが挙げられる。
 ナス科:ナス、トマト、ピーマン、トウガラシ、ジャガイモ、タバコ、ペチュニア、ヒヨス、ハシリドコロ、マンドレイクなど。
 シソ科:シソ、バジル、ミント、ローズマリー、セージ、マジョラム、オレガノ、タイム、レモンバームなど。
 マメ科:ダイズ、エンドウ、カンゾウ、カワラケツメイ、エビスグサ、ハブソウ、タガヤサン、ナンバンサイカチ、オウギなど。
 ムラサキ科:ムラサキ、ワスレナグサ、ヘリオトロープ、コンフリーなど。
 アブラナ科:コマツナ、ミズナ、ワサビ、クレソン、チンゲンサイ、ブロッコリー、力リフラワー、キャベツ、ハクサイ、ケール、カラシナ、アブラナ、マカなど。
Furthermore, when the results of tests 6, 7, 12, and 13 are summarized, irradiation with violet light having a wavelength of 405 nm has a disease-suppressing effect on solanaceous plants, perilla plants, legumes, and purple plants. It was confirmed that it was demonstrated. Moreover, when the result of the test 9 shown in detail below is also combined, it is thought that the disease suppression effect is exhibited also to the cruciferous plant in addition to the said plant.
Therefore, from these test results, it was suggested that the disease suppression effect by irradiation with violet light having a wavelength of 405 nm is exhibited in many plant species regardless of the family of plants.
Further, for example, edibles of rose family plants (for example, strawberries), cucurbitaceae plants (for example, melons), primaceae plants (for example, cyclamen etc.) that are not handled in the tests described in the present specification. The same effect can be expected for various plants cultivated for ornamental purposes.
In addition, as a plant which can expect the disease generation | occurrence | production suppression effect by irradiation of wavelength 405nm purple light, the following are mentioned, for example.
Eggplant family: eggplant, tomato, pepper, capsicum, potato, tobacco, petunia, hyos, hashiridokoro, mandrake, etc.
Labiatae: perilla, basil, mint, rosemary, sage, marjoram, oregano, thyme, lemon balm.
Legumes: soybeans, peas, licorice, kawara tsumei, shrimp, habusaw, tagayasan, nambansaikachi, ogi, etc.
Murasaki Family: Murasaki, Forget-me-not, Heliotrope, Comfrey, etc.
Brassicaceae: Komatsuna, Mizuna, Wasabi, Watercress, Chingensai, Broccoli, Power reflower, Cabbage, Chinese cabbage, Kale, Mustard, Brassica, Maca, etc.
 続いて、植物体に紫色光を照射した際に植物体内において発現される遺伝子についての検証結果について説明する。
 一般に、防御応答関連遺伝子とは、植物がもつ「外敵(病原体、害虫)の攻撃を認識してこれを排除する応答機構」において、必須の役割を果たす遺伝子群の総称であり、具体的には、外敵(病原体、害虫)の攻撃を認識する受容体(たとえばイネの免疫受容体として働くCERK1タンパク質)、病原体を認識したことを細胞内に伝える経路(信号伝達経路)で働く因子(MAPキナーゼやCキナーゼ)、ファイトアレキシンに代表される低分子防御物質合成経路で働く酵素(フェニルアラニンアンモニアリアーゼやカルコン合成酵素)、およびPRタンパク質群などをコードする遺伝子が知られている。
 そして、本願発明における病原抵抗性植物体においては、紫色光照射処理を行うことで、植物病原菌に対する抵抗性が高められることが確認された。
 この点について発明者らは、本願発明における病原抵抗性植物体では、波長390-420nmの間にピークを有する紫色光が照射されることにより、植物体において,病原体の攻撃を認識してこれを排除する応答機構において必須の役割を示す遺伝子群である「病原防御応答関連遺伝子」が発現されることを明らかにした。
 また、本願発明における病原抵抗性植物体において発現される「病原防御応答関連遺伝子」は、サリチル酸合成経路関連遺伝子,又は,サリチル酸によって誘導される遺伝子群であることが確認された。さらに、本願発明における病原抵抗性植物体において発現される「サリチル酸によって誘導される遺伝子群」は、より具体的には、「酸性PRタンパク質を誘導する遺伝子群」であることも明らかになった。
 これらの点についての検証結果を以下に詳細に説明する。
Subsequently, the verification result of the gene expressed in the plant body when the plant body is irradiated with purple light will be described.
In general, defense response-related genes are a general term for a group of genes that play an essential role in the "response mechanism that recognizes and eliminates attacks by external enemies (pathogens and pests)" in plants. , Receptors that recognize the attack of external enemies (pathogens, pests) (for example, CERK1 protein that acts as an immune receptor for rice), factors that act in pathways (signal transduction pathways) that convey pathogen recognition (cell kinases, C kinase), enzymes (phenylalanine ammonia lyase and chalcone synthase) that work in a low molecular defense substance synthesis pathway represented by phytoalexin, and genes encoding PR proteins are known.
And in the pathogenic resistance plant body in this invention, it was confirmed that the resistance with respect to a phytopathogenic fungus is improved by performing purple light irradiation treatment.
In this regard, the inventors recognized the attack of the pathogen in the plant body by irradiating the pathogen-resistant plant body in the present invention with purple light having a peak between wavelengths of 390-420 nm. It was clarified that “pathogenic defense response-related genes”, which are genes that have an essential role in the response mechanism to be eliminated, are expressed.
Moreover, it was confirmed that the “pathogenic defense response-related genes” expressed in the pathogen-resistant plant according to the present invention is a salicylic acid synthesis pathway-related gene or a gene group induced by salicylic acid. Furthermore, it was also clarified that the “gene group induced by salicylic acid” expressed in the pathogen-resistant plant in the present invention is more specifically “gene group inducing acidic PR protein”.
The verification results regarding these points will be described in detail below.
[6]紫色光照射処理により植物体において発現される遺伝子について
 ナス科植物であるトマトに紫色光照射処理を行った際の病原防御応答関連遺伝子の発現の様子を調べる目的で以下に示すような試験8を行った。
(8-i)試験方法
 トマト(品種:マイクロトム)種子を人工培土(バーミキュライト:パーライト=1:1)に播種し、人工気象器内で、25℃、明期/暗期(16h/8h)、PPFD 100μmol-1m-2s-1程度の条件下で生育した。本葉5葉期のトマトを、人工気象器内に設置したLED光源搭載デシケータ内に移し、気温25℃、湿度50%、PPFD100μmol-1m-2s-1、明期/暗期(12h/12h)条件下で数日間生育させた。その後、405nm紫色光及び白色光(それぞれ60Wm-2)を明期(12h)開始に合わせて照射/非照射(15min/45min)の条件で照射した(計12サイクル/day)。コントロール区は白色光のみ照射した。1日および3日後、十分に展開した上位葉をサンプルとして回収し、液体窒素を用いて凍結後、-80℃で保存した。凍結保存葉を液体窒素で冷却した乳鉢中で磨砕し、1mlのセパゾール(ナカライテスク)を加え、さらに磨砕した。磨砕液を1.5ml容チューブに移した後、クロロホルム200μlを加え、転倒混和した。室温で3分間静置した後、12,000×gで10分間遠心した。フェノール相と水相のうち水相500μlを別の1.5ml容チューブに移し、水相と等量のイソプロパノールを加え混和した。室温で10分間静置し、12,000×gで10分間遠心した後、上清を除去した。ペレットに80%エタノール1mlを加え攪拌した後、12,000×gで5分間遠心した。上清を除去し、ペレットを30分間風乾した後、RNase free water 50μlを加えた。ReverTra Ace(登録商標)qPCR RT Kit(東洋紡)を用いて、以下の表9において示す組成の反応液中で1本鎖cDNAの合成を行った。
[6] Genes expressed in plants by purple light irradiation treatment For the purpose of investigating the expression of pathogen defense response related genes when purple light irradiation treatment is performed on a tomato, a solanaceous plant, as shown below Test 8 was conducted.
(8-i) Test method Seeds of tomato (variety: microtom) seeded on artificial soil (vermiculite: perlite = 1: 1), and 25 ° C, light period / dark period (16h / 8h) in an artificial meteorograph , PPFD was grown under conditions of about 100 μmol −1 m −2 s −1 . The tomato in the fifth leaf stage is moved into a desiccator equipped with an LED light source installed in an artificial meteorograph. The temperature is 25 ° C, the humidity is 50%, PPFD is 100μmol -1 m -2 s -1 12h) It was grown for several days under conditions. Then, 405 nm purple light and white light (each 60 Wm −2 ) were irradiated under the conditions of irradiation / non-irradiation (15 min / 45 min) in accordance with the start of the light period (12 h) (total 12 cycles / day). The control group was irradiated only with white light. After 1 day and 3 days, fully expanded upper leaves were collected as samples, frozen using liquid nitrogen, and stored at -80 ° C. Cryopreserved leaves were ground in a mortar cooled with liquid nitrogen, 1 ml Sepazole (Nacalai Tesque) was added and ground further. After transferring the grinding liquid to a 1.5 ml tube, 200 μl of chloroform was added and mixed by inversion. After leaving still at room temperature for 3 minutes, it centrifuged at 12,000 xg for 10 minutes. Of the phenol phase and the aqueous phase, 500 μl of the aqueous phase was transferred to another 1.5 ml tube, and an equal amount of isopropanol was added to the aqueous phase and mixed. After standing at room temperature for 10 minutes and centrifuging at 12,000 × g for 10 minutes, the supernatant was removed. After adding 1 ml of 80% ethanol to the pellet and stirring, it was centrifuged at 12,000 × g for 5 minutes. After removing the supernatant and air-drying the pellet for 30 minutes, 50 μl of RNase free water was added. Using a ReverTra Ace (registered trademark) qPCR RT Kit (Toyobo), single-stranded cDNA was synthesized in a reaction solution having the composition shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記の溶液を37℃で15分間インキュベートした後、98℃で5分間インキュベートした。反応液は-20℃で保存した。
 合成したcDNAを鋳型として、THUNDERBIRD(登録商標)SYBR(登録商標)qPCR Mix(東洋紡)を用いてリアルタイムPCRを行った。使用したプライマー配列は、以下の表10および表11に示すとおりである。
The above solution was incubated at 37 ° C. for 15 minutes and then incubated at 98 ° C. for 5 minutes. The reaction solution was stored at −20 ° C.
Real-time PCR was performed using THUNDERBIRD (registered trademark) SYBR (registered trademark) qPCR Mix (Toyobo) using the synthesized cDNA as a template. The primer sequences used are as shown in Table 10 and Table 11 below.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(8-ii)試験結果
 図28乃至図30はいずれも供試材料としてトマトを用いた場合のコントロール区と405nm紫色光照射区における病原防御応答関連遺伝子の発現量を比較したグラフである。なお、図28乃至図30に示される、Ctrl区は,コントロール(白色光のみを照射したもの)を、処理区1は,405nm紫色光を1日処理したものを、処理区2は,405nm紫色光3日処理したもの、をそれぞれ意味している。
 図28乃至図30に示されるように、405nm紫色光照射区では、ERF5(ethylene responsive element binding factor 5)(図28を参照)、PR1a1、PR-1a(P4)、acidic chitinase、acidic glucanase、basic chitinase、basic glucanase(図29を参照)、およびPAL4(phenylalanine ammonia lyase 4)(図30を参照)の各遺伝子の発現が、白色光照射区に比べて5倍以上増加していた。
 したがって、紫色光照射処理を行うことにより、ナス科植物のトマトにおいては、サリチル酸合成経路関連遺伝子(図30を参照),および,サリチル酸によって誘導される防御応答関連遺伝子(図28,29を参照)が発現されることが確認された。
(8-ii) Test Results FIGS. 28 to 30 are graphs comparing the expression levels of pathogen defense response-related genes in the control group and the 405 nm purple light irradiation group when tomato is used as the test material. In FIG. 28 to FIG. 30, the Ctrl section is the control (one irradiated with only white light), the processing section 1 is the one treated with 405 nm purple light for one day, and the processing section 2 is the 405 nm purple color. Each of them means that processed for 3 days.
As shown in FIG. 28 to FIG. 30, in the 405 nm purple light irradiation region, ERF5 (ethylene responsive element binding factor 5) (see FIG. 28), PR1a1, PR-1a (P4), acidic chitinase, acidic glucanase, basic The expression of each gene of chitinase, basic glucanase (see FIG. 29), and PAL4 (phenylalanine ammonia lyase 4) (see FIG. 30) was increased by 5 times or more compared to the white light irradiation section.
Therefore, by performing purple light irradiation treatment, a salicylic acid synthesis pathway-related gene (see FIG. 30) and a defense response-related gene induced by salicylic acid (see FIGS. 28 and 29) in the solanaceous tomato Was confirmed to be expressed.
 アブラナ科植物であるシロイヌナズナに紫色光照射処理を行った場合の病原防御応答関連遺伝子の発現の様子を調べる目的で以下に示すような試験9を行った。
(9-i)試験方法
 アブラナ科のシロイヌナズナ(エコタイプ:コロンビア)種子を人工培土(バーミキュライト:パーライト=1:1)に播種し、人工気象器内で、25℃、明期/暗期(16h/8h)、PPFD100μmol-1m-2s-1程度の条件下で生育した。本葉5葉期のシロイヌナズナを、人工気象器内に設置したLED光源搭載デシケータ内に移し、気温25℃、湿度50%、PPFD100μmol-1m-2s-1、明期/暗期(12h/12h)条件下で数日間生育させた。その後、405nm紫色光及び白色光(それぞれ50Wm-2)を明期(12h)開始に合わせて照射/非照射(15min/45min)の条件で9日間照射した(計12サイクル/day)。その後、葉をサンプルとして回収し、液体窒素を用いて凍結後、-80℃で保存した。その後、上記試験8の場合と同様にして全RNA抽出を抽出しリアルタイムPCRを行った。リアルタイムPCRに用いたプライマーを表12に示す。
Test 9 as shown below was conducted for the purpose of examining the expression of pathogen defense response-related genes when Arabidopsis, a cruciferous plant, was treated with purple light.
(9-i) Test method Seeds of Brassicaceae Arabidopsis (Ecotype: Colombia) seeded on artificial soil (vermiculite: perlite = 1: 1), 25 ° C, light / dark period (16h) in an artificial meteorograph / 8h) and grown under conditions of PPFD of about 100 μmol −1 m −2 s −1 . Move the Arabidopsis thaliana in the 5-leaf stage into a desiccator equipped with an LED light source installed in an artificial meteorograph, air temperature 25 ° C., humidity 50%, PPFD 100 μmol −1 m −2 s −1 , light / dark period (12h / 12h) It was grown for several days under conditions. Thereafter, 405 nm purple light and white light (each 50 Wm −2 ) were irradiated for 9 days under the condition of irradiation / non-irradiation (15 min / 45 min) in accordance with the start of the light period (12 h) (total 12 cycles / day). Thereafter, the leaves were collected as samples, frozen using liquid nitrogen, and stored at −80 ° C. Thereafter, extraction of total RNA was performed in the same manner as in Test 8 above, and real-time PCR was performed. Table 12 shows the primers used for real-time PCR.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(9-ii)試験結果
 図31は供試材料としてシロイヌナズナを用いた場合のコントロール区と405nm紫色光照射区における病原防御応答関連遺伝子の発現量を比較したグラフである。なお、図31に示すグラフ中において、「白色」は,白色光の照射のみを行ったコントロール区のデータを、「405nm」は,405nmの紫色光照射区のデータをそれぞれ意味している。
 図31に示されるように、シロイヌナズナにおいても、405nm紫色光を照射したシロイヌナズナにおいて、全身誘導抵抗性が生じていることを示す遺伝子(PR1、PR2、PR4、PRB1)の発現が確認された。この結果は、アブラナ科植物においても、405nm紫色光照射が植物体の抵抗性を誘導することを示している。
 すなわち、405nm紫色光を照射したシロイヌナズナにおいても、サリチル酸によって誘導される防御応答関連遺伝子が発現されることが確認された。
(9-ii) Test Results FIG. 31 is a graph comparing the expression levels of pathogen defense response-related genes in the control group and the 405 nm purple light irradiation group when using Arabidopsis as a test material. In the graph shown in FIG. 31, “white” means data in the control section where only white light was irradiated, and “405 nm” means data in the 405 nm purple light irradiation section.
As shown in FIG. 31, in Arabidopsis thaliana, expression of genes (PR1, PR2, PR4, PRB1) indicating that systemic induction resistance was generated was confirmed in Arabidopsis thaliana irradiated with 405 nm purple light. This result shows that 405 nm purple light irradiation induces the resistance of the plant body even in cruciferous plants.
That is, it was confirmed that a defense response-related gene induced by salicylic acid is expressed in Arabidopsis thaliana irradiated with 405 nm purple light.
 上記試験8,9により、ナス科の植物においても、アブラナ科の植物においても、紫色光を照射することで病原防御応答関連遺伝子が発現されることが確認された。したがって、紫色光を照射することにより病原防御応答関連遺伝子が発現されるという現象は、特定の科に属する植物体における特有の現象でないことが確認された。
 一般に、病原防御応答関連遺伝子は、特定の科に属する植物体だけが有する特異な遺伝子ではなく、植物体が普遍的に有する遺伝子であるため、この度の検証試験において取り上げられなかった他の科に属する植物体においても、紫色光を照射することで病原防御応答関連遺伝子を発現させることができる可能性は極めて高いと考えられる。
According to the tests 8 and 9, it was confirmed that a pathogen defense response-related gene was expressed by irradiating purple light in both a solanaceous plant and a cruciferous plant. Therefore, it was confirmed that the phenomenon that a pathogen defense response-related gene is expressed by irradiating purple light is not a characteristic phenomenon in plants belonging to a specific family.
In general, the pathogen defense response-related genes are not unique genes that only plants belonging to a specific family have, but are genes that plants have universally. It is considered that there is a very high possibility that a pathogen defense response-related gene can be expressed by irradiating purple light in the plant body to which it belongs.
 さらに、植物体に紫色光を照射することにより、全身獲得抵抗性の成立に関与する遺伝子群が発現されていることを確認する目的で以下に示すような試験10を行った。
(10-i)試験方法
 トマト(品種:桃太郎)を、6×6cmのロックウールに播種し、ガラス温室内で本葉8葉期まで生育した。アルミニウム製円筒(直径1.9cm)を用いて、十分に展開した葉の葉脈(主脈部)を含むようにくり抜き、トマトリーフディスクを作製した。このリーフディスクを1mg/ml 3, 3’-diaminobenzidine (DAB)(pH4)溶液に浮かべ3時間静置した。その後、リーフディスクを脱イオン水に浮かべLED光源搭載デシケータ(405nm紫色光および白色光)(それぞれ60Wm-2)に入れ、それぞれ1時間照射処理を行った。照射処理後、リーフディスクを熱エタノール(70℃)に入れ30分間脱色を行い、これを観察サンプルとした。光学顕微鏡(オリンパス、BHS-323N)に付属した光学顕微鏡デジタルカメラ(オリンパス、DP25)を用いて観察サンプルの撮影を行った。
Furthermore, the test 10 as shown below was performed in order to confirm that the gene group involved in the establishment of the whole body acquired resistance was expressed by irradiating the plant body with purple light.
(10-i) Test method Tomato (variety: Momotaro) was sown on 6 × 6 cm rock wool and grown in a glass greenhouse to the 8th leaf stage of the main leaf. Using a cylinder made of aluminum (diameter 1.9 cm), a tomato leaf disc was produced by cutting out the leaf vein (main vein portion) of the fully developed leaf. This leaf disk was floated on a 1 mg / ml 3,3′-diaminobenzidine (DAB) (pH 4) solution and allowed to stand for 3 hours. Thereafter, the leaf disk was floated on deionized water and placed in a desiccator equipped with an LED light source (405 nm purple light and white light) (each 60 Wm −2 ), and each was irradiated for 1 hour. After the irradiation treatment, the leaf disk was placed in hot ethanol (70 ° C.) and decolored for 30 minutes, and this was used as an observation sample. The observation sample was photographed using an optical microscope digital camera (Olympus, DP25) attached to the optical microscope (Olympus, BHS-323N).
(10-ii)試験結果
 H2O2検出出試薬(DAB)を吸収させたトマト葉に405nm紫色光を照射すると葉組織の褐変が見られた。他方、白色光照射区、非照射区においては褐変が見られなかった。
 この結果から、405nm紫色光を照射したトマトの葉において、全身獲得抵抗性(全身性誘導抵抗性)の出発物質であるH2O2が生産されていることが明らかになった。
(10-ii) Test result When the 405 nm purple light was irradiated to the tomato leaf that had absorbed the H 2 O 2 detection reagent (DAB), browning of the leaf tissue was observed. On the other hand, no browning was observed in the white light irradiation zone and the non-irradiation zone.
From this result, it was clarified that H 2 O 2, which is a starting material for whole body acquired resistance (systemic induction resistance), was produced in tomato leaves irradiated with 405 nm purple light.
 上述以外の、紫色光の照射が植物体の遺伝子発現に与える影響についての検証結果について説明する。
 一般に、植物体において獲得される全身獲得抵抗性には、サリチル酸で誘導される抵抗性と、ジャスモン酸で誘導される抵抗性の2種類があり、これらは互いに拮抗する関係にあることが知られている。
 そして、供試材料としてトマトを用いた試験(データ等は記載せず)では、紫色光を照射した植物体において、ジャスモン酸によって誘導される抵抗性に関与する酵素(例えば、リポキシゲナーゼA)が低下もしくは発現しなくなった。また、また、MYB転写因子やNADPHオキシダーゼの遺伝子発現が大きく低下した。
 したがって、これらの事実から、紫色光が照射された植物体において誘導される抵抗性は、ジャスモン酸により誘導される抵抗性ではなく、サリチル酸により誘導される抵抗性であるといえる。
The verification result about the influence which irradiation of purple light other than the above has on the gene expression of a plant body is demonstrated.
In general, there are two types of systemic acquired resistance acquired in plants: salicylic acid-induced resistance and jasmonic acid-induced resistance, and these are known to be antagonistic to each other. ing.
In a test using tomato as a test material (data not shown), an enzyme involved in resistance induced by jasmonic acid (eg, lipoxygenase A) is reduced in plants irradiated with purple light. Or it stopped expressing. In addition, gene expression of MYB transcription factor and NADPH oxidase was greatly reduced.
Therefore, from these facts, it can be said that the resistance induced in the plant irradiated with purple light is not the resistance induced by jasmonic acid but the resistance induced by salicylic acid.
[7]紫色光が植物体の光合成に与える影響について
 上述の[1]乃至[6]においては、紫色光の植物病原菌に対する静菌・殺菌効果、植物体への紫色光照射により植物体において病原抵抗性の向上効果、植物体に紫色光を照射した際の病原防御応答関連遺伝子の発現について検証結果を説明してきたが、本願発明である病原抵抗性植物体を、作物栽培時における病害防除手段の1つとして活用するためには、紫色光を照射した場合に植物体に与える影響、より具体的には、植物体の光合成に紫色光が与える影響についても知っておく必要がある。
 ここでは、紫色光が植物体の光合成に与える影響についての検証結果である試験11及びその結果について説明する。なお、ここでも紫色光の一例として、先の試験1において特に高い静菌・殺菌作用が認められた波長405nmの紫色光を使用した。
[7] Influence of purple light on plant photosynthesis In the above [1] to [6], pathogenicity and bactericidal effect on purple light phytopathogenic fungi, and pathogenicity in the plant by purple light irradiation to the plant. Although the verification results have been described for the improvement effect of resistance and the expression of the pathogen defense response-related gene when the plant body is irradiated with purple light, the pathogen-resistant plant body of the present invention is a disease control means during crop cultivation. In order to utilize it as one of the above, it is necessary to know the influence on the plant body when violet light is irradiated, more specifically, the influence of the purple light on the photosynthesis of the plant body.
Here, Test 11 which is a verification result of the effect of purple light on the photosynthesis of a plant body and the result will be described. Here, as an example of purple light, purple light having a wavelength of 405 nm in which a particularly high bacteriostatic and bactericidal action was observed in the previous test 1 was used.
 試験11では、405nm紫色光が光合成にどの程度利用されうるのかを調べるために、405nm紫色光の単一照射時のPSII実量子収率ΔF/Fm’を、クロロフィル蛍光測定により調査した。
 試験11では、トマトをモデル植物に、405nm紫色光の単一照射がPSII実量子収率および最大量子収率に与える影響、遠赤色光付加照射の影響、間欠照射の影響を調査した。そして、405nm紫色光照射による病害防除の実現に向けて、ストレスを抑える(光合成系に悪影響を与えない)照射法の可能性を検討した。ここで、単一照射とは405nmLEDのみの光を照射することを意味する。
In Test 11, in order to investigate how much 405 nm violet light can be used for photosynthesis, PSII real quantum yield ΔF / Fm ′ upon single irradiation with 405 nm violet light was investigated by chlorophyll fluorescence measurement.
In Test 11, the effects of single irradiation of 405 nm purple light on the PSII actual quantum yield and maximum quantum yield, the effects of far-red light addition irradiation, and the effects of intermittent irradiation were investigated using tomato as a model plant. And the possibility of the irradiation method which suppresses stress (it does not have a bad influence on a photosynthetic system) was investigated toward the realization of disease control by 405 nm purple light irradiation. Here, single irradiation means irradiating light of only 405 nm LED.
(11-i)材料および方法
(1)実験1
 材料には2010年9月28日にロックウールに播種し、発芽後30-50日程度で室内に移し、白色蛍光灯がそれぞれ5つ並行して取り付けられたステンレス製植物栽培棚で育てられた播種後33日、36日のトマト(Solanum lycopersicum L.‘桃太郎’)を4個体用いた。測定時の草丈は17.5cm-20.5cm、複葉数は5、SPAD値は35.9-39.7であった。なお、SPAD値の測定には葉緑素計(MINOLTA、SPAD-502)を用い、クロロフィル蛍光測定葉を3回測定し平均した値を示している。栽培棚におけるPPFDは、上位葉面で約200μmolm-2s-1であり、明期12時間、暗期12時間に設定した。室内の気温および湿度はエアコンで管理され、栽培棚の明期の気温21.0℃、湿度30.0%、暗期の気温19.0℃、湿度30.3%の条件下でトマトの育成を行った。栽培棚で育成中は、ほぼ毎日水道水の水で底面に潅水を行い、施肥は約1週間毎に500倍希釈した液体肥料(ハイポネックスジャパン、ハイポネックス液6-10-5)を水道水の代わりに与えた。
(2)実験2
 材料には2010年11月22日にロックウールに播種し、発芽後ステンレス製植物栽培棚で育てられた播種後48日のトマト(桃太郎)を6個体用いた。測定時の草丈は17.5cm-20.0cm、複葉数は7-8、SPAD値は30.5-43.0であった。
(11-i) Material and method (1) Experiment 1
The material was sown on rock wool on September 28, 2010, transferred to the room about 30-50 days after germination, and grown on a stainless steel plant cultivation shelf with five white fluorescent lamps attached in parallel. Four tomatoes (Solanum lycopersicum L. 'Momotaro') 33 days and 36 days after sowing were used. The plant height at the time of measurement was 17.5 cm to 20.5 cm, the number of compound leaves was 5, and the SPAD value was 35.9 to 39.7. The SPAD value is measured using a chlorophyll meter (MINOLTA, SPAD-502), and the chlorophyll fluorescence measurement leaves are measured three times and averaged. The PPFD on the cultivation shelf was about 200 μmolm −2 s −1 on the upper leaf surface, and was set to 12 hours light period and 12 hours dark period. The room temperature and humidity are controlled by air conditioner, and the tomato grows under the conditions of light season temperature 21.0 ° C, humidity 30.0%, dark season temperature 19.0 ° C and humidity 30.3%. Went. While growing on the cultivation shelf, water is irrigated to the bottom with tap water almost every day, and fertilizer is diluted with a liquid fertilizer (Hyponex Japan, Hyponex 6-10-5) diluted about 500 times per week instead of tap water. Gave to.
(2) Experiment 2
Six tomatoes (Momotaro) 48 days after sowing that were sown on rock wool on November 22, 2010 and grown on a stainless steel plant cultivation shelf after germination were used. The plant height at the time of measurement was 17.5 cm-20.0 cm, the number of compound leaves was 7-8, and the SPAD value was 30.5-43.0.
(11-ii)照射方法およびクロロフィル蛍光測定
(1)実験1
 光源には光源A:405nmLED(サンオプト、SL405AAUE)、光源B:ハロゲンランプ(HOYA-SCHOTT、JCR15V150WM)を用いた。クロロフィル蛍光の測定には携帯用クロロフィル蛍光測定装置(Walz,MINI-PAM、以下MINI-PAM)を用い、測定ファイバーに取り付けたリーフクリップホルダー(Walz,Leaf Clip Folder)で測定葉を挟んだ状態で固定し、光源毎に測定を行った。はじめに測定葉をアルミ箔で覆い30分暗処理をした。その後各光源の光強度を5分間隔あるいは15分間隔で段階的に強くしていき、そのつどΔF/Fm’を測定した。クロロフィル蛍光測定時の光強度の測定はリーフクリップホルダーのマイクロ光量子センサーを用いた。測定葉は、第2複葉の先端から2枚目の葉を選んだ。
(2)実験2
 光源には光源A:405nmLED、光源B:ハロゲンランプ、光源C:白色蛍光灯(TOSHIBA、FL20SSEDC/18LL)を用いた。測定用のトマト苗6個体を暗室に移し30分暗処理をした後、2個体ずつそれぞれの光源(光源A-C)で光照射をし、30分照射後ΔF/Fm’を、各個体の十分に展開した葉を8-9枚において測定した。なおその際、第1複葉および頂端の複葉は測定対象から除いた。光強度の測定はリーフクリップホルダーのマイクロ光量子センサーを用いた。測定時の平均気温は21.3℃、平均湿度は30.3%であった。試験11において使用した各光源(光源A-C)の波長特性を図32に示す。
 図32(a)は光源Aの波長特性を示すグラフであり、(b)は光源Bの波長特性を示すグラフであり、(c)は光源Cの波長特性を示すグラフである。
 なお、本願明細書に示す他の試験1乃至10において使用される紫色光源の波長特性は、図32(a)に示される光源Aの波長特性と同じである。
(11-ii) Irradiation method and chlorophyll fluorescence measurement (1) Experiment 1
As the light source, a light source A: 405 nm LED (Sun Opto, SL405AAUE) and a light source B: halogen lamp (HOYA-SCHOTT, JCR15V150WM) were used. Chlorophyll fluorescence is measured using a portable chlorophyll fluorescence measurement device (Walz, MINI-PAM, hereinafter referred to as MINI-PAM), with the measurement leaf sandwiched between leaf clip holders (Walz, Leaf Clip Folder) attached to the measurement fiber. Measurement was performed for each light source. First, the measurement leaf was covered with aluminum foil and darkened for 30 minutes. Thereafter, the light intensity of each light source was increased stepwise at intervals of 5 minutes or 15 minutes, and ΔF / Fm ′ was measured each time. The light intensity at the time of measuring chlorophyll fluorescence was measured using a micro photon sensor of a leaf clip holder. As the measurement leaf, the second leaf from the tip of the second compound leaf was selected.
(2) Experiment 2
As the light source, light source A: 405 nm LED, light source B: halogen lamp, light source C: white fluorescent lamp (TOSHIBA, FL20SSEDC / 18LL) was used. 6 tomato seedlings for measurement were transferred to a dark room and darkened for 30 minutes, and then 2 individuals were irradiated with their respective light sources (light sources AC). After 30 minutes of irradiation, ΔF / Fm ′ was determined for each individual. Fully expanded leaves were measured on 8-9 sheets. At that time, the first compound leaf and the apex compound leaf were excluded from the measurement target. The light intensity was measured using a micro photon sensor with a leaf clip holder. The average temperature at the time of measurement was 21.3 ° C., and the average humidity was 30.3%. The wavelength characteristics of each light source (light sources AC) used in Test 11 are shown in FIG.
32A is a graph showing the wavelength characteristics of the light source A, FIG. 32B is a graph showing the wavelength characteristics of the light source B, and FIG. 32C is a graph showing the wavelength characteristics of the light source C.
Note that the wavelength characteristics of the violet light source used in the other tests 1 to 10 shown in this specification are the same as the wavelength characteristics of the light source A shown in FIG.
(11-iii)試験結果
1)実験1
 図33は同一葉に対し徐々に光強度を上げていった際のPPFDとΔF/Fm’の関係を示すグラフである。なお、ここでは、PPFDはLI-CORの光量子センサ(LI-190)を基準にした値を示す。
 図33に示されるように、光強度が高くなるほど全試験区においてΔF/Fm’は低下し、光強度が低いとき(約50μmolm-2s-1)は試験区毎にΔF/Fm’に差は見られず、光強度が高くなると(約200μmolm-2s-1)、試験区間に差が認められるようになり、405nmLEDを15分間隔で照射した葉のΔF/Fm’が最も低く示された。表13にPPFDとΔF/Fm’の関係の回帰直線の式(切片は0.8に統一)を示す。
 回帰直線の傾きの絶対値はハロゲンランプ光よりも405nmLED光の方で大きく、405nmLED15分間照射の傾きが-0.0011と最も絶対値が大きかった。つまり、同じPPFDで比較したとき、405nm紫色光を単一で照射すると、ハロゲンランプの光を単一で照射したときより、ΔF/Fm’の低下が見られ、光強度が高くなるほど差が広がることが示された。
(11-iii) Test result 1) Experiment 1
FIG. 33 is a graph showing the relationship between PPFD and ΔF / Fm ′ when the light intensity is gradually increased for the same leaf. Here, PPFD is a value based on the LI-COR photon sensor (LI-190).
As shown in FIG. 33, ΔF / Fm ′ decreases in all test sections as the light intensity increases, and when the light intensity is low (about 50 μmolm −2 s −1 ), the difference in ΔF / Fm ′ is different for each test section. When the light intensity is high (about 200 μmolm −2 s −1 ), a difference is observed in the test interval, and ΔF / Fm ′ of the leaves irradiated with 405 nm LED at 15-minute intervals is the lowest. It was. Table 13 shows regression line equations (intercepts unified to 0.8) of the relationship between PPFD and ΔF / Fm ′.
The absolute value of the slope of the regression line was larger for the 405 nm LED light than for the halogen lamp light, and the slope of irradiation for 405 nm LED for 15 minutes was -0.0001, which was the largest absolute value. In other words, when compared with the same PPFD, a single irradiation with 405 nm purple light shows a decrease in ΔF / Fm ′ compared with a single irradiation with halogen lamp light, and the difference increases as the light intensity increases. It was shown that.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
2)実験2
 図34は同一葉に対し徐々に光強度を上げていった際のPPFDとΔF/Fm’の関係を示すグラフである。また、以下の表14にPPFDとΔF/Fm’の関係の回帰直線の式(切片は0.76に統一)を示す。
 図34に示されるように、各光源の光を約150μmolm-2s-1で照射したとき、405nm紫色光下のΔF/Fm’はハロゲンランプより15%減少、白色蛍光灯より13%減少した。同じPPFDでは、405nm紫色光照射がハロゲンランプ、白色蛍光灯よりもΔF/Fm’が低くなり、PPFDが高いほど他の光源との差がより広がった。つまり、トマト苗の十分に展開した様々な葉位の葉においても、405nm紫色光の単一照射時には、ハロンゲンランプや蛍光灯の白色光時と比較して、量子収率が低下することが示された。
2) Experiment 2
FIG. 34 is a graph showing the relationship between PPFD and ΔF / Fm ′ when the light intensity is gradually increased for the same leaf. Table 14 below shows the regression line formula (intercept unified to 0.76) for the relationship between PPFD and ΔF / Fm ′.
As shown in FIG. 34, when the light from each light source was irradiated at about 150 μmolm −2 s −1 , ΔF / Fm ′ under 405 nm purple light decreased by 15% from the halogen lamp and decreased by 13% from the white fluorescent lamp. . With the same PPFD, 405 nm violet light irradiation had lower ΔF / Fm ′ than halogen lamps and white fluorescent lamps, and the higher the PPFD, the greater the difference with other light sources. In other words, even in the leaves of various leaf positions fully developed by tomato seedlings, the quantum yield may be reduced when 405 nm purple light is irradiated as compared with white light of a halongen lamp or a fluorescent lamp. Indicated.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 以上より、405nm紫色光を単一で照射すると、ハロゲンランプ光や白色蛍光灯光と比較してPSIの実量子収率が低下し、PSIIに吸収された光量子のうち光合成の電子伝達に利用できない光量子の割合が増加することが示唆された。 From the above, when a single 405 nm purple light is irradiated, the actual quantum yield of PSI is lower than that of halogen lamp light or white fluorescent lamp light. Of the photons absorbed by PSII, photons that cannot be used for photosynthesis electron transfer It was suggested that the percentage of increase.
 また、発明者らは、405nm紫色光を単一照射した際のPSII量子収率の低下が、光ストレスとして働いているかどうかについて調べるため、PSII最大量子収率Fv/Fmおよび酸化ストレス指標であるマロンジアルデヒド(以下、MDAとする)を測定する試験を行った。この試験では、実験を2回行い(実験1,2)、実験1では、図32に示すような光源A-Cからの光をそれぞれ12時間照射した後に1時間暗期を設け、さらにその後に、光源A-Cからの光をそれぞれ12時間照射(計24時間)した。また、実験2では光源A-Cからの光をそれぞれ24時間連続照射した。
 ここでは、上記試験結果に関するデータ等については特に示さないが、上記試験結果によると、Fv/Fmは405nmLED区(光源A)の方がハロゲンランプ区(光源B)より低く示された。植物の葉は光合成に必要な光を超える過剰な光を受けると光阻害を起こし、光合成の量子収率が低下する。つまり、Fv/Fmの低下が見られたということは、ハロゲンランプ光よりも、405nm紫色単一光照射によって光阻害を引き起こすことが示唆された。すなわち、被照射体は、405nm紫色光照射によってハロゲンランプ光よりも酸化ストレスを受けていたことが示された。
In addition, the inventors have examined PSII quantum yield Fv / Fm and oxidative stress index in order to investigate whether the decrease in PSII quantum yield upon single irradiation with 405 nm purple light works as light stress. A test for measuring malondialdehyde (hereinafter referred to as MDA) was conducted. In this test, the experiment was performed twice (experiments 1 and 2). In experiment 1, the light from the light sources AC as shown in FIG. The light from the light sources AC was irradiated for 12 hours (24 hours in total). In Experiment 2, light from light sources A to C was continuously irradiated for 24 hours.
Here, the data regarding the test results are not particularly shown, but according to the test results, Fv / Fm is lower in the 405 nm LED section (light source A) than in the halogen lamp section (light source B). Plant leaves undergo photoinhibition when they receive excessive light in excess of the light required for photosynthesis, and the quantum yield of photosynthesis decreases. That is, the decrease in Fv / Fm was suggested to cause photoinhibition by 405 nm purple single light irradiation rather than halogen lamp light. That is, it was shown that the irradiated object was subjected to oxidative stress more than the halogen lamp light by 405 nm purple light irradiation.
 一般に、光照射により植物体に生じるストレスは、「光強度が強い」、「長く照射されている」という要因が強く影響していることが知られている。
 したがって、本願発明において植物体に紫色光を照射する際には、植物体の生育に必要な光(例えば、自然光又は人工的に調整された自然光)に付加するかたちで紫色光を照射したり、植物体に対して紫色光を間欠照射することが望ましく、さらに望ましくは、これらを同時に行うことが望ましい(自然光又は人工的に調整された自然光に付加する形で紫色光の照射を行い,かつ,紫色光の照射は間欠照射(断続的に照射)することが望ましい)。
 なお、自然光又は人工的に調整された自然光に付加するかたちで紫色光を照射する場合には、紫色光照射による病原防御応答関連遺伝子の発現を好適に誘導するために、自然光又は人工的に調整された自然光に含まれる紫色光よりも光強度が強くなるよう、付加する紫色光の高強度を調整するとよい。
In general, it is known that stress generated in a plant body by light irradiation is strongly influenced by factors such as “high light intensity” and “long irradiation”.
Therefore, when irradiating the plant body with purple light in the present invention, the plant body is irradiated with purple light in a form that is added to the light necessary for the growth of the plant body (for example, natural light or artificially adjusted natural light), It is desirable to intermittently irradiate the plant body with purple light, and more desirably, it is desirable to perform these simultaneously (irradiation with purple light in a form added to natural light or artificially adjusted natural light, and (Purple light irradiation is preferably intermittent irradiation (intermittent irradiation)).
In addition, when violet light is irradiated in the form of adding to natural light or artificially adjusted natural light, natural light or artificially adjusted to suitably induce the expression of pathogen defense response-related genes by purple light irradiation The high intensity of the violet light to be added may be adjusted so that the light intensity is stronger than the violet light included in the natural light.
 以上説明したように本発明は、植物体の生育や形態形成、あるいは、光合成作用に悪影響を及ぼすおそれがなく、かつ、植物病原菌の自然感染が起こり得る環境下において、薬剤を使用しないでも,あるいは,薬剤の使用量を少なくしても病害が発生し難い病原抵抗性植物体、及び、その果実、及び、その葉茎、また、このような病原抵抗植物体の誘導方法、さらには、植物体の病原抵抗性を誘導しつつ、感染した植物病原菌を静菌・殺菌して植物体に病害を生じ難くしながら生育させるとともに、作業者の人体に悪影響を及ぼすことのない植物体栽培システムであり、農業および園芸に関する分野において利用可能である。 As described above, the present invention has no possibility of adversely affecting the growth and morphogenesis of the plant body or the photosynthetic action, and does not use a drug in an environment in which natural infection with phytopathogenic bacteria may occur, or , Pathogen-resistant plants that are unlikely to cause disease even if the amount of drug used is reduced, and their fruits and their stems, methods for inducing such pathogen-resistant plants, and plants It is a plant cultivation system that induces the pathogenic resistance of the plant, while bacteriostatically sterilizing the infected phytopathogenic fungi to make the plant difficult to cause disease, and does not adversely affect the human body of the worker It can be used in fields related to agriculture and horticulture.
 P…植物体 L…自然光(可視光線) 1…病原抵抗性植物体 2…葉 3…紫色光光源 4…植物病原菌 5…病斑 6…緑色光光源 7…枯死葉 8…植物体生育空間 9…培地 10A,10B…植物体栽培システム 11…紫色光 12…緑色光 P ... plant body L ... natural light (visible light) 1 ... pathogen resistant plant body 2 ... leaf 3 ... purple light source 4 ... plant pathogen 5 ... disease spot 6 ... green light source 7 ... dead leaf 8 ... plant growth space 9 ... Medium 10A, 10B ... Plant cultivation system 11 ... Purple light 12 ... Green light

Claims (9)

  1.  波長390-420nmの間にピークを有する紫色光を葉に照射する紫色光照射処理を行うことによって誘導される病原抵抗性植物体であって、
     病原防御応答関連遺伝子が前記紫色光照射処理を行わない同種の植物体よりも発現されており、
     前記病原防御応答関連遺伝子は、サリチル酸合成経路関連遺伝子,又は,サリチル酸によって誘導される遺伝子群であることを特徴とする病原抵抗性植物体。
    A pathogen-resistant plant induced by violet light irradiation treatment in which a leaf is irradiated with violet light having a peak between wavelengths of 390-420 nm,
    A pathogen defense response-related gene is expressed from a plant of the same species not subjected to the purple light irradiation treatment,
    The pathogenic defense response-related gene is a salicylic acid synthesis pathway-related gene or a gene group induced by salicylic acid.
  2.  前記サリチル酸によって誘導される遺伝子群は、酸性PRタンパク質を誘導する遺伝子群であることを特徴とする請求項1記載の病原抵抗性植物体。 The pathogen-resistant plant according to claim 1, wherein the gene group induced by salicylic acid is a gene group that induces acidic PR protein.
  3.  請求項1又は請求項2に記載の病原抵抗性植物体から収穫されたことを特徴とする果実。 A fruit harvested from the pathogen-resistant plant according to claim 1 or 2.
  4.  請求項1又は請求項2に記載の病原抵抗性植物体から収穫されたことを特徴とする葉茎。 A leaf stem harvested from the pathogen-resistant plant according to claim 1 or 2.
  5.  植物体の全葉面積の少なくとも10%の領域に、波長390-420nmの間にピークを有する紫色光を断続的に照射する紫色光照射処理を行うことを特徴とする病原抵抗性植物体の誘導方法。 Induction of a pathogen-resistant plant characterized by performing purple light irradiation treatment in which at least 10% of the total leaf area of the plant is irradiated with purple light having a peak between wavelengths 390-420 nm. Method.
  6.  前記紫色光照射処理を行うことにより、前記植物体における病原防御応答関連遺伝子である,サリチル酸合成経路関連遺伝子,又は,サリチル酸によって誘導される遺伝子群を発現させることを特徴とする請求項5に記載の病原抵抗性植物体の誘導方法。 6. The salicylic acid synthesis pathway-related gene or a gene group induced by salicylic acid, which is a pathogen defense response-related gene in the plant body, is expressed by performing the purple light irradiation treatment. Method for Inducing Pathogenic Resistance Plants
  7.  請求項5又は請求項6に記載の方法により誘導されたことを特徴とする病原抵抗性植物体。 A pathogen-resistant plant characterized by being induced by the method according to claim 5 or 6.
  8.  植物体の葉に屋外の自然光,又は,人工的に調整された自然光を直接又は間接的に照射可能な植物体生育空間と、
     前記植物体の根を収容するとともに,この植物体の生育に必要な養分及び水を供給する培地又は培養液と、
     前記植物体の全葉面積の少なくとも10%の領域に,波長390-420nmの間にピークを有する紫色光を断続的に照射する紫色光光源と、
     この紫色光光源の点灯と消灯とを制御する制御部とを有することを特徴とする植物体栽培システム。
    A plant growth space capable of directly or indirectly irradiating the plant leaves with outdoor natural light or artificially adjusted natural light; and
    A medium or a culture solution for containing the roots of the plant body and supplying nutrients and water necessary for the growth of the plant body;
    A violet light source for intermittently irradiating purple light having a peak between wavelengths 390-420 nm to a region of at least 10% of the total leaf area of the plant body;
    A plant cultivation system comprising: a control unit that controls turning on and off of the purple light source.
  9.  前記紫色光光源は、その取付け位置又は取付け個数が変更可能である,あるいは,取付け位置及び取付け個数の両方が変更可能であることを特徴とする請求項8記載の植物体栽培システム。 The plant cultivating system according to claim 8, wherein the violet light source can be changed in its mounting position or mounting number, or both the mounting position and the mounting number can be changed.
PCT/JP2012/069289 2011-07-28 2012-07-30 Pathogen-resistant plant body, fruit and leaf stem and induction method thereof, and plant cultivation system WO2013015442A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013525789A JP6097977B2 (en) 2011-07-28 2012-07-30 Method for inducing pathogen-resistant plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011166103 2011-07-28
JP2011-166103 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013015442A1 true WO2013015442A1 (en) 2013-01-31

Family

ID=47601270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069289 WO2013015442A1 (en) 2011-07-28 2012-07-30 Pathogen-resistant plant body, fruit and leaf stem and induction method thereof, and plant cultivation system

Country Status (2)

Country Link
JP (1) JP6097977B2 (en)
WO (1) WO2013015442A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017176053A (en) * 2016-03-30 2017-10-05 地方独立行政法人山口県産業技術センター Cultivation method of plants in the boraginaceae family
JP2018113934A (en) * 2017-01-20 2018-07-26 株式会社キーストーンテクノロジー Method for producing leafy vegetables and apparatus for producing leafy vegetables
CN110809398A (en) * 2017-04-28 2020-02-18 日亚化学工业株式会社 Method for increasing phenolic compounds in plants
NL2025521A (en) * 2019-05-27 2020-12-02 Shandong Acad Of Agricultural Sciences Method for promoting seedling strengthening by physical stimulation of cucumber cotyledon
US10898600B2 (en) 2016-08-10 2021-01-26 Panasonic Intellectual Property Management Co., Ltd. Disinfecting method and disinfecting apparatus
US11517007B2 (en) 2016-08-18 2022-12-06 Panasonic Intellectual Property Management Co., Ltd. Pest control apparatus
WO2023007105A1 (en) * 2021-07-30 2023-02-02 Team Green Light Method for antifungal treatment of turf
JP7357173B1 (en) 2023-03-02 2023-10-05 タキイ種苗株式会社 sooty mold resistant tomato plants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105599A1 (en) * 2006-03-08 2007-09-20 Shikoku Research Institute Incorporated Disease control method and disease control device
JP2009261289A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Lighting device for plant disease prevention
JP2010220558A (en) * 2009-03-24 2010-10-07 Yamaguchi Univ Method for enhancing nutrient component in plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105599A1 (en) * 2006-03-08 2007-09-20 Shikoku Research Institute Incorporated Disease control method and disease control device
JP2009261289A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Lighting device for plant disease prevention
JP2010220558A (en) * 2009-03-24 2010-10-07 Yamaguchi Univ Method for enhancing nutrient component in plant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAZUMASA YOSHIMURA ET AL.: "LED Hikari Shosha ni yoru Nosakubutsu Byogai Bojo System Oyobi Seiiku Seigyo System no Kaihatsu", YAMAGUCHI CLUSTER CENTER NEWS, vol. 4, 5 October 2010 (2010-10-05), pages 2 *
MUTSUKO NAKAMURA ET AL.: "Light-regulated Expression of Tobacco PRla Gene", JAPANESE JOURNAL OF PHYTOPATHOLOGY, vol. 67, no. 2, August 2001 (2001-08-01), pages 127 - 128 *
YOSHIO NISHIDA ET AL.: "Shokubutsu Saibai-yo Laser Kogen ni Kansuru Kenkyu", ILE ANNUAL REPORT OF COLLABORATION RESEARCH/INSTITUTE OF LASER ENGINEERING OSAKA UNIVERSITY, vol. 2001, March 2002 (2002-03-01), pages 153 - 154 *
YUTAKA ISHIDA ET AL.: "Ryokushokuko de Shokubutsu no Byogai Teikosei o Hikidasu", BRAIN TECHNO NEWS, vol. 134, 15 July 2009 (2009-07-15), pages 16 - 20 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017176053A (en) * 2016-03-30 2017-10-05 地方独立行政法人山口県産業技術センター Cultivation method of plants in the boraginaceae family
US10898600B2 (en) 2016-08-10 2021-01-26 Panasonic Intellectual Property Management Co., Ltd. Disinfecting method and disinfecting apparatus
US11517007B2 (en) 2016-08-18 2022-12-06 Panasonic Intellectual Property Management Co., Ltd. Pest control apparatus
JP2018113934A (en) * 2017-01-20 2018-07-26 株式会社キーストーンテクノロジー Method for producing leafy vegetables and apparatus for producing leafy vegetables
CN110809398A (en) * 2017-04-28 2020-02-18 日亚化学工业株式会社 Method for increasing phenolic compounds in plants
CN110809398B (en) * 2017-04-28 2023-01-03 日亚化学工业株式会社 Method for increasing phenolic compounds in plants
NL2025521A (en) * 2019-05-27 2020-12-02 Shandong Acad Of Agricultural Sciences Method for promoting seedling strengthening by physical stimulation of cucumber cotyledon
WO2023007105A1 (en) * 2021-07-30 2023-02-02 Team Green Light Method for antifungal treatment of turf
FR3125675A1 (en) * 2021-07-30 2023-02-03 Team Green Light Lawn antifungal treatment method
JP7357173B1 (en) 2023-03-02 2023-10-05 タキイ種苗株式会社 sooty mold resistant tomato plants

Also Published As

Publication number Publication date
JPWO2013015442A1 (en) 2015-02-23
JP6097977B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6097977B2 (en) Method for inducing pathogen-resistant plants
ES2779303T3 (en) Fungal endophytes to improve crop yield and protection against pests
EP1992216B1 (en) Method for inducing an expression of a disease-resistant gene of a plant
Song et al. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system
ES2636649T3 (en) Compositions and methods to increase biomass and tolerance to pathogens in plants
ES2613306T3 (en) Control of plant diseases using a combination of a species of Trichoderma virens and a species of Trichoderma harzianum competent in the rhizosphere
JP6526011B2 (en) Isolate of Clonostachys rosea used as a biopesticide
JP2009512457A (en) Method for treating live plants or live plant parts or mushrooms by UV-C light
Forges et al. Impact of UV-C radiation on the sensitivity of three strawberry plant cultivars (Fragaria x ananassa) against Botrytis cinerea
BR112016001583B1 (en) METHODS TO PROMOTE STRESS TOLERANCE AND/OR INTENSE PLANT GROWTH OR SEED GERMINATION, TO INCREASE SEED GERMINATION AND TO REDUCE THE ESTABLISHMENT OF FUNGI OTHER THAN TRICHODERMA HARZIANUM IN A PLANT
Macarisin et al. Role of curli and plant cultivation conditions on Escherichia coli O157: H7 internalization into spinach grown on hydroponics and in soil
US20160021830A1 (en) Manipulation of light spectral quality to reduce parasitism by cuscuta and other plant parasites
Liu et al. Effects of temperature and moisture on the infection and development of apple fruit rot caused by Phytophthora cactorum
Kudo et al. Effects of green light irradiation on induction of disease resistance in plants
Shen et al. Study on the occurrence law and green control of grape gray mold from the perspective of ecological balance
Erickson et al. Internalization of Escherichia coli O157: H7 following spraying of cut shoots when leafy greens are regrown for a second crop
Yang et al. 5-Aminolevulinic acid against strawberry fusarium wilt: Bidirectional regulation of biocontrol agents and pathogens
Smith et al. Intensity of Supplemental Greenhouse Lighting Affects Strawberry Plant Growth, Anthracnose Infection Response, and Colletotrichum Pathogen Development in Culture
Pethybridge et al. Nighttime Applications of Germicidal Ultraviolet Light (UV-C) to Suppress Cercospora Leaf Spot in Table Beet
McCann Reciprocity of Irradiance and Duration of the Exposure to Ultraviolet Radiation on Erysiphe Necator
JP2011051925A (en) Method for controlling plant disease caused by nematode
Wu Using Burkholderia sp. as a biocontrol agent in kiwifruit plants against Neofusicoccum parvum
Srinivas et al. Isolation, Purification and Identification of Xanthomonas oryzae pv. oryzae
Karipbayeva et al. SELECTION OF OPTIMAL STERILIZING AGENTS FOR INTRODUCTION IN VITRO OF MEYER CURRANTS
Degani et al. Trichoderma Biological Control to Protect Sensitive Maize Hybrids Against Late Wilt Disease in the Field. J. Fungi 2021, 7, 315

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818116

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013525789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12818116

Country of ref document: EP

Kind code of ref document: A1