WO2013015208A1 - Device with built-in battery, and charging station and device with built-in battery - Google Patents

Device with built-in battery, and charging station and device with built-in battery Download PDF

Info

Publication number
WO2013015208A1
WO2013015208A1 PCT/JP2012/068422 JP2012068422W WO2013015208A1 WO 2013015208 A1 WO2013015208 A1 WO 2013015208A1 JP 2012068422 W JP2012068422 W JP 2012068422W WO 2013015208 A1 WO2013015208 A1 WO 2013015208A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
built
output
power
charging
Prior art date
Application number
PCT/JP2012/068422
Other languages
French (fr)
Japanese (ja)
Inventor
洋由 山本
真一 板垣
玉井 幹隆
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013015208A1 publication Critical patent/WO2013015208A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery built-in device such as a battery pack or a mobile phone, and a charging stand and a battery built-in device for charging electric power to the battery built-in device by electromagnetic induction and charging the built-in battery of the battery built-in device.
  • a charging stand has been developed that carries power from the transmitting coil to the receiving coil by the action of electromagnetic induction to charge the built-in battery without contact.
  • Patent Document 1 describes a structure in which a power transmission coil that is excited by an AC power source is built in a charging stand, and a power receiving coil that is electromagnetically coupled to the power transmission coil is built in a battery pack. Further, the battery pack includes a circuit that rectifies the alternating current induced in the power receiving coil and supplies the battery to the battery for charging. According to this structure, the battery pack can be charged in a non-contact state by placing the battery pack on the charging stand.
  • a method of electromagnetically coupling a power transmitting coil and a power receiving coil to transmit battery charging power includes a circuit for transmitting information from a battery built-in device to a charging stand.
  • a battery built-in device When the built-in battery is fully charged, the fact that the battery built-in device is fully charged is transmitted to the charging stand, and when the battery built-in device is removed from the charging stand, power transmission from the charging stand is stopped or the battery is built-in. This is because a special ID or the like needs to be transmitted from the device to the charging stand and charged normally.
  • the battery built-in device that transmits information to the charging stand includes a modulation circuit that transmits information to the charging stand by changing the load of the power receiving coil.
  • FIG. 1 shows a battery built-in device 250 including a modulation circuit 266.
  • Modulation circuit 266 shown in this figure changes the load of power receiving coil 251 and transmits information to charging stand 210.
  • the charging stand 210 detects the load fluctuation of the power transmission coil 211 and detects information from the battery built-in device 250.
  • the modulation circuit 266 changes the load on the output side of the power receiving coil 251.
  • the charging stand 210 can detect information on the battery built-in device 250 by detecting voltage change or frequency change of the power transmission coil 211.
  • this type of battery-equipped device and charging stand always suffer from a problem that it is difficult to transmit information normally. That is, when the power supplied from the AC power supply to the power transmission coil is small and the output side of the power reception coil is connected to the internal battery via the rectifier circuit, the internal battery with a small internal resistance is connected to the output side of the power reception coil Therefore, the load of the power receiving coil cannot be changed sufficiently with the modulation circuit, and changes in voltage, frequency, etc. of the power transmitting coil cannot be detected accurately. In other words, even if the power induced in the receiving coil is small and a built-in battery with low internal resistance is connected to the receiving coil and modulation is performed to change the load of the receiving coil, the current of the receiving coil cannot be changed greatly. .
  • the power transmission coil that is electromagnetically coupled to the power receiving coil has a small change in voltage and frequency, and the fluctuation in the load of the power receiving coil cannot be reliably detected from the power transmission coil side. Since the charging stand detects the load fluctuation of the power receiving coil and detects information from the built-in battery, when the load fluctuation of the power receiving coil is small and the output of the power transmitting coil is small, the voltage and frequency detected by the power transmitting coil The fluctuations of the load such as this will be reduced, and the information on the battery built-in device cannot be detected accurately.
  • the power induced in the power receiving coil becomes large, so that the information can be transmitted from the battery built-in device to the charging stand by changing the load of the power receiving coil.
  • a large amount of power is not always supplied to the power transmission coil of the charging stand.
  • the power supplied to the power transmission coil is small when the battery built-in device is first set on the charging stand, information from the battery built-in device will not be transmitted to the charging stand, and the charging stand will normally be built in the battery. The device cannot be charged.
  • the charging stand when the charging stand is connected to the internal battery with the output side of the power receiving coil connected to the internal battery while the power supplied to the power transmission coil is small, the charging current of the internal battery gradually decreases and hardly flows. . This is because the voltage of the built-in battery rises due to charging, and charging current cannot be supplied from the power receiving coil to the built-in battery.
  • the charging current stops flowing to the internal battery, it is erroneously determined that the internal battery device has fully charged the internal battery, and charging of the internal battery is stopped. For this reason, although the built-in battery is not fully charged, the charging is completed and it cannot be fully charged.
  • An important object of the present invention is to provide a battery built-in device, a charging stand, and a battery built-in device that can normally fully charge the built-in battery while accurately transmitting information from the battery built-in device to the charging stand.
  • the battery built-in device and the charging stand include the battery built-in devices 50, 70, 80, 90, 100, 110 including the power receiving coil 51 that supplies charging power to the built-in battery 52, and the battery built-in devices 50, 70, 80. , 90, 100, 110 and charging base 10 including power transmission coil 11 electromagnetically coupled to power reception coil 51.
  • the battery built-in devices 50, 70, 80, 90, 100, 110 receive power at the charging switch 54 that charges the built-in battery 52 by supplying the output of the power receiving coil 51 to the built-in battery 52 and the charging start timing of the built-in battery 52.
  • Level detectors 58 and 118 for detecting an output of the coil 51, detecting a minute output state in which the output of the power receiving coil 51 is smaller than a set value, and outputting an output increase signal in the minute output state, and the level detector Control the modulation circuits 61, 71, 81, 91, 101 that change the load of the power receiving coil 51 and transmit the output increase signal to the charging stand 10, and the charging switch 54 with the output increase signals output from 58, 118. Control circuits 65 and 115 are provided.
  • the charging stand 10 detects, via the power transmission coil 11, a change in the load of the AC power source 12 that supplies AC power to the power transmission coil 11 and the power receiving coil 51 that is changed by the modulation circuits 61, 71, 81, 91, 101.
  • a detection circuit 17 that detects an output increase signal transmitted from the battery built-in devices 50, 70, 80, 90, 100, and 110, and controls the output of the AC power supply 12 with the detected output increase signal.
  • the battery built-in devices 50, 70, 80, 90, 100, 110 are in a state where the level detectors 58, 118 detect a minute output state at the charging start timing of the built-in battery 52, and the battery built-in devices 50, 70, 80, An output increase signal is transmitted from 90, 100, 110 to the charging stand 10, and the output of the AC power supply 12 of the charging stand 10 is increased to start charging the built-in battery 52.
  • the battery built-in device and the charging stand described above are characterized in that the internal battery can be normally fully charged while accurately transmitting information from the battery built-in device to the charging stand.
  • the battery built-in device When the output of the power receiving coil of the battery built-in device set on the charging stand is small, the battery built-in device outputs an output increase signal to the charging stand, and the charging stand detects the output increase signal. This is because the circuit increases the output of the AC power supply and starts charging the internal battery.
  • the control circuit 115 includes the level detector 118, and the level detector 118 detects the output of the power receiving coil 51 from the power supplied to the control circuit 115 to detect a minute output state. can do.
  • the detection circuit 17 of the charging stand 10 detects the output increase signal transmitted from the battery built-in devices 50, 70, 80, 90, 100, 110, and The output can be increased by a preset power.
  • the above-mentioned battery built-in device and charging stand are in a state where the output of the receiving coil is gradually increased in a predetermined step when the output of the receiving coil is small, and the internal battery is charged when the output of the receiving coil increases to the set value. It becomes. Since the battery built-in device and the charging stand gradually increase the output of the power receiving coil, the built-in battery can be charged with an optimum current.
  • the detection circuit 17 of the charging stand 10 detects the output increase signal transmitted from the battery built-in devices 50, 70, 80, 90, 100, 110, and The output of the AC power supply 12 can be increased by changing the output to a preset power.
  • the charging stand supplies the power transmission coil with power that can charge the built-in battery. Therefore, even when the output of the power receiving coil is small, the built-in battery can be quickly switched to a normal charging state and charged.
  • the built-in battery 52 can be either a lithium ion battery or a lithium polymer battery.
  • the battery built-in apparatus and the charging stand according to the present invention include a series circuit in which the modulation circuits 61, 71, 81, 91, and 101 have switching elements 64, 74, and 84 connected in series to the modulation capacitor 63.
  • a series circuit can be connected in parallel with the power receiving coil 51.
  • the battery built-in device can be a battery pack.
  • the battery built-in device of the present invention includes a power receiving coil 51 that is electromagnetically coupled to the power transmission coil 11 built in the charging stand 10 and carries power from the power transmission coil 11.
  • the built-in battery 52 is charged by supplying charging power.
  • the battery built-in device supplies the output of the power receiving coil 51 to the built-in battery 52 to charge the built-in battery 52, and detects the output of the power receiving coil 51 at the charging start timing of the built-in battery 52.
  • the battery built-in device transmits an output increase signal to the charging base 10 when the level detectors 58 and 118 detect the minute output state at the charging start timing of the internal battery 52, and the output of the AC power supply 12 of the charging base 10 is output.
  • the charging of the built-in battery 52 is started in a state in which increases.
  • the above battery built-in devices have the feature that the built-in battery can be normally fully charged while accurately transmitting information to the charging stand. This is because, in a minute output state where the output of the power receiving coil is small, an output increase signal is output to the charging stand, and charging of the built-in battery is started in a state where the charging stand increases the output of the AC power supply.
  • the control circuit 115 includes the level detector 118, and the level detector 118 detects the output of the power receiving coil 51 from the power supplied to the control circuit 115 to detect a minute output state. be able to.
  • the battery built-in device of the present invention can be a battery pack.
  • the embodiment shown below exemplifies a battery built-in device, a charging stand, and a battery built-in device for embodying the technical idea of the present invention
  • the present invention includes a battery built-in device, a charging stand, and a battery built-in.
  • the equipment is not specified as follows. Further, this specification does not limit the members shown in the claims to the members of the embodiments.
  • the charging stand 10 places the battery built-in device 50 on the charging stand 10 and charges the built-in battery 52 of the battery built-in device 50 by electromagnetic induction.
  • the battery built-in device 50 includes a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11.
  • a built-in battery 52 that is charged with electric power induced in the power receiving coil 51 is incorporated.
  • the battery built-in device 50 may be an electronic device such as a mobile phone or an IC player, or may be a pack battery.
  • the battery built-in device 50 in FIG. 3 detects the output of the power receiving coil 51 at the charging switch 54 for charging the built-in battery 52 by supplying the output of the power receiving coil 51 to the built-in battery 52 and the charging start timing of the built-in battery 52.
  • a level detector 58 that detects a minute output state in which the output of the power receiving coil 51 is smaller than a set value and outputs an output increase signal in the minute output state, and an output increase signal output from the level detector 58
  • a modulation circuit 61 that changes the load of the power receiving coil 51 to transmit an output increase signal to the charging base 10 and a control circuit 65 that controls the charging switch 54 are provided.
  • the battery built-in device 50 transmits an output increase signal from the battery built-in device 50 to the charging stand 10 in a state where the level detector 58 detects a minute output state at the charging start timing of the built-in battery 52, and the AC of the charging stand 10 is exchanged. The output of the power supply 12 is increased and charging of the internal battery 52 is started.
  • the charge switch 54 is a semiconductor switching element such as an FET or a transistor, and is connected between the output side of the rectifier circuit 53 and the built-in battery 52.
  • the charging switch 54 is turned on to charge the built-in battery 52 with the output of the rectifier circuit 53, and stops charging the built-in battery 52 with off-charging.
  • the level detector 58 detects the output voltage of the power receiving coil 51 and compares it with the lowest voltage stored in advance.
  • the level detector 58 detects the peak voltage of the power receiving coil 51 and compares it with the minimum voltage.
  • the level detector 58 compares the detected output voltage of the power receiving coil 51 with the stored minimum voltage. If the detected voltage is lower than the minimum voltage, the built-in battery 52 cannot be charged with the output of the power receiving coil 51. It is determined that the output is a “micro output state” and an output increase signal is output.
  • the lowest voltage stored in the level detector 58 is set to the lowest output voltage at which the internal battery 52 can be normally charged with the output of the power receiving coil 51.
  • the level detector 58 sets the state in which the output voltage of the power receiving coil 51 is higher than the minimum voltage as a chargeable state and does not output an output increase signal.
  • the level detector 58 detects the voltage on the output side of the series capacitor 55, or detects the output voltage of the rectifier circuit 53.
  • the output voltage of the power receiving coil 51 can also be detected. This is because as the voltage of the power receiving coil 51 increases, the voltage on the output side of the series capacitor 55 increases in proportion to this, and the output voltage of the rectifier circuit 53 also increases in proportion.
  • the level detector 58 outputs an output increase signal to the control circuit 65 and the modulation circuit 61, controls the charging switch 54 via the control circuit 65, and transmits the output increase signal to the charging stand 10 via the modulation circuit 61. .
  • the control circuit 65 turns off the charging switch 54 to stop the charging of the built-in battery 52, and outputs an output increase signal from the modulation circuit 61 to the charging stand 10.
  • the output of the power transmission coil 11 of the charging stand 10 is increased.
  • the control circuit outputs the output increase signal to the charging stand from the modulation circuit while charging the built-in battery without turning off the charging switch.
  • the output of the power transmission coil of the charging stand can be increased.
  • the control circuit 65 turns on the charging switch 54 to charge the built-in battery 52 with the output of the power transmission coil 11, and the modulation circuit 61 transmits battery information to the charging stand 10.
  • the modulation circuit 61 transmits the output increase signal input from the level detector 58 and the battery information of the built-in battery 52 to the charging stand 10.
  • 3 includes a capacitor load circuit 62 in which a switching element 64 is connected in series to a modulation capacitor 63 connected in parallel to the power receiving coil 51, and battery information for detecting battery information of the built-in battery 52.
  • a detection circuit 59 and a control circuit 68 for switching the switching element 64 of the capacitor load circuit 62 on and off by battery information of the battery information detection circuit 59 and an output increase signal input from the level detector 58 are provided.
  • the battery built-in device 50 includes a battery information detection circuit 59 that detects battery information of the built-in battery 52. With the battery information detection circuit 59, a battery such as a voltage of a charged battery, a charging current, a battery temperature, and the like. Information is detected and input to the control circuit 68.
  • the control circuit 68 repeats at a predetermined cycle, that is, a transmission timing for transmitting the output increase signal and the battery information and a non-transmission timing at which the output increase signal and the battery information are not transmitted at a predetermined cycle. And transmit battery information.
  • This period is set to, for example, 0.1 sec to 5 sec, preferably 0.1 sec to 1 sec. Since the remaining battery charge, voltage, current, temperature, etc. change, the battery information is repeatedly transmitted in the above-mentioned cycle, but the battery serial number and the battery charge current are allowed to be specified.
  • the battery information such as the charging current and the allowable temperature for controlling the charging of the battery and the output increase signal are transmitted only at the beginning of charging, and need not be transmitted repeatedly thereafter.
  • the battery information of the fully charged battery is transmitted at the timing when the charged battery is fully charged.
  • the control circuit 68 transmits the output increase signal and the battery information by switching the switching element 64 on and off with a digital signal indicating the output increase signal and the battery information.
  • the control circuit 68 controls on / off of the switching element 64 at a speed of 1000 bps, and transmits an output increase signal and battery information.
  • the control circuit 68 can also transmit an output increase signal and battery information at 500 bps to 5000 bps.
  • the transmission of the output increase signal and the battery information is stopped and the built-in battery 52 is charged in a normal state at the non-transmission timing.
  • the switching element 64 is switched on and off.
  • the modulation circuit 71 of the battery built-in device 70 shown in FIG. 4 includes a capacitor load circuit 72 in which a switching element 74 is connected in series to a modulation capacitor 63 connected in parallel with the power receiving coil 51.
  • the switching element 74 in FIG. 4 includes a pair of pair switching elements 74X connected in series with each other.
  • the pair switching element 74X in the figure is a semiconductor switching element such as an FET.
  • the pair FETs 74a and 74b are connected in series with the sources connected to each other.
  • the source of the FET which is the connection point of the pair switching element 74X, is connected to the earth line 78 via a high-resistance resistor 79, for example, a 100 k ⁇ resistor, to have a ground potential.
  • Each pair switching element 74X is connected with a modulation capacitor 63 in series.
  • the pair FETs 74a and 74b, which are the pair switching elements 74X, are connected to both ends of the power receiving coil 51 via the modulation capacitor 63 connected to the drain.
  • a capacitor load circuit 72 formed by connecting a modulation capacitor 63, a pair FET 74a, a pair FET 74b, and a modulation capacitor 63 in series is connected in parallel with the power receiving coil 51.
  • the series capacitor 55 is connected to the rectifier circuit 53 side of the modulation capacitor 63 as shown by a solid line in the figure, or may be connected between the modulation capacitor 63 and the power receiving coil 51 as shown by a chain line. it can.
  • the series capacitor 55 connected between the modulation capacitor 63 and the power receiving coil 51 is connected in series with the modulation capacitor 63 in a state where the pair switching element 74X is switched on.
  • the pair FETs 74a and 74b of the pair switching element 74X are switched on and off together by the control circuit 68.
  • the control circuit 68 controls the gate voltages of both FETs that are the pair switching element 74X in the same manner, and switches the pair of pair switching elements 74X on and off simultaneously.
  • the modulation capacitor 63 is connected in parallel with the power receiving coil 51 in a state where the control circuit 68 switches on the FET of the pair switching element 74X. Further, the control circuit 68 turns off the pair switching element 74X, and the modulation capacitor 63 is disconnected from the power receiving coil 51 and is not connected.
  • the switching element 74 of FIG. 4 can simplify the circuit configuration of the control circuit 68 because one of the pair switching elements 74X is set to the ground potential.
  • the control circuit 68 is connected to the pair switching element 74X. It is possible to simplify the circuit configuration for controlling on / off.
  • the 5 includes a capacitor load circuit 82 including a capacitor 83 connected to the power receiving coil 51 and a short circuit 88 that shorts the rectifier circuit 53 side of the capacitor 83.
  • the short circuit 88 is a series circuit of a resistance element 89 such as a PTC and a switching element 84.
  • the modulation circuit 81 controls the switching element 84 to be turned on and off and connects the capacitor 83 in parallel with the power receiving coil 51 via the short circuit 88, that is, the capacitor 83 is used in combination with the modulation capacitor 63.
  • the switching element 84 is a photo MOS FET and is turned on / off via light.
  • the charging stand 10 includes a detection circuit 17 that detects signals transmitted from the modulation circuits 61, 71, and 81.
  • the detection circuit 17 detects a charging current change or / and voltage change of the built-in battery 52 from a voltage level change or / and current level change of the power transmission coil 11, and outputs an output increase signal from the charging current change or / and voltage change. And battery information.
  • the charging current or / and voltage of the built-in battery 52 changes, the voltage level and / or current level of the power transmission coil 11 changes because the power transmission coil 11 is electromagnetically coupled to the power reception coil 51. Since the voltage level or / and current level of the power transmission coil 11 change in synchronization with the on / off of the switching elements 64, 74, 84, the switching elements 64, 74, 84 can be detected.
  • the detection circuit 17 detects the on / off of the switching elements 64, 74, 84.
  • the detection circuit 17 detects the output increase signal and the digital signal indicating the battery information, and to detect the output increase signal and the voltage, current, temperature, etc. of the charged battery from the detected digital signal.
  • the detection circuit 17 can also detect an output increase signal and battery information from any one of change values such as a change in the current level of the power transmission coil 11, a phase change with respect to the voltage of the current, or a change in transmission efficiency. This is because these characteristics of the power transmission coil 11 change due to changes in the charging current of the internal battery 52.
  • a modulation method in which a modulation capacitor 63 is connected in parallel to the power receiving coil 51 and the switching elements 64 and 74 are turned on and off to change the impedance of the parallel circuit of the power receiving coil 51 and the modulation capacitor 63 is a modulation method.
  • the resonance frequency of the capacitor 63 and the power receiving coil 51 changes.
  • the state in which the current of the power transmission coil 11 changes varies depending on the resonance frequency between the power reception coil 51 and the modulation capacitor 63.
  • FIG. 6 is a graph showing the frequency of the alternating current supplied to the power transmission coil 11 on the X axis and the current change of the power transmission coil 11 on the Y axis.
  • a curve A indicated by a solid line indicates a state where the resonance frequency of the power receiving coil 51 is 100 kHz
  • a curve B indicated by a chain line indicates a state where the resonance frequency of the power receiving coil 51 is 276 kHz.
  • the resonance frequency of the power receiving coil 51 varies depending on the capacitance of a capacitor connected in parallel. Since the capacity of the modulation capacitor 63 is smaller than that of the series resonance capacitor 55, the resonance frequency becomes higher when the modulation capacitor 63 is connected. This is because the resonance frequency is inversely proportional to the square root of the capacitance of the capacitor connected in parallel with the power receiving coil 51.
  • the modulation circuits 91 and 101 of the battery built-in devices 90 and 100 shown in FIG. 7 and FIG. 8 are connected in parallel with a plurality of sets of capacitor load circuits 62 and 72 each having a modulation capacitor 63 having a different capacitance. is doing.
  • the control circuit 68 of the modulation circuits 91 and 101 is a capacitor load circuit 62 that can change the current of the power transmission coil 11 by switching the switching elements 64 and 74 on and off, that is, by changing the resonance frequency of the power reception coil 51. , 72 are controlled to turn on and off, and an output increase signal and battery information are transmitted to the charging base 10.
  • the switching element 74 shown in FIG. 8 includes a pair of pair switching elements 74X connected in series.
  • the battery built-in devices 90 and 100 in FIGS. 7 and 8 include a plurality of sets of capacitor load circuits 62 and 72. Therefore, depending on the frequency of the power transmission coil 11, the modulation capacitor 63 is connected and not connected.
  • the switching elements 64 and 74 of the capacitor load circuits 62 and 72 that can change the current of the power transmission coil 11 by connecting and disconnecting the modulation capacitor 63 are turned on and off so that the current of the power transmission coil 11 cannot be changed. Then, an output increase signal and battery information are transmitted. Therefore, the battery built-in devices 90 and 100 include the modulation capacitors 63 of the plurality of capacitor load circuits 62 and 72, the resonance frequency of the power receiving coil 51 as the current (or voltage, phase of the current with respect to the voltage, or transmission). By specifying a frequency that can change (efficiency), an output increase signal and battery information can be accurately transmitted to the charging stand 10.
  • the battery built-in devices 50, 70, 80, 90, and 100 shown in FIGS. 3 to 5, 7, and 8 store battery information in the charging stand 10 in a state where the built-in battery 52 is charged by the output of the rectifier circuit 53.
  • Sub-modulation circuits 66, 76 and 86 are also provided for transmission.
  • the sub-modulation circuit 66 shown in FIGS. 3 and 7 detects battery information of the voltage drop changing element 67 connected between the rectifier circuit 53 that rectifies the output of the power receiving coil 51 and the built-in battery 52, and the battery information of the built-in battery 52. And a control circuit 68 that changes the voltage drop of the voltage drop changing element 67 by a signal from the battery information detection circuit 59.
  • the diode 67 ⁇ / b> A is connected in a direction in which a charging current flows to the internal battery 52, and charges the internal battery 52 with the output of the rectifier circuit 53.
  • the diode 67A generates a predetermined voltage drop with a current flowing in the forward direction.
  • the voltage drop in the forward direction of the diode 67A does not increase in proportion to the current as in the resistor, but is almost constant over a certain current range. Therefore, the output voltage of the rectifier circuit 53 is an added value of the voltage drop of the diode 67A and the voltage of the built-in battery 52.
  • the output voltage of the rectifier circuit 53 is increased by the voltage drop of the diode 67, and the charging current flowing in the power receiving coil 51 is reduced. Change the flowing current.
  • the switching element 67B is an element having a low on-resistance in the on state, for example, a semiconductor switching element such as an FET or a transistor.
  • the switching element 67B having a small on-resistance short-circuits both ends of the diode 67A in the on state so that the voltage drop across the diode is almost 0V. Therefore, in the ON state of the switching element 67B, the output voltage of the rectifier circuit 53 is supplied to the built-in battery 52 without voltage drop by the diode 67A, and in the OFF state of the switching element 67B, the output voltage of the rectifier circuit 53 is the diode 67A. The voltage is dropped and supplied to the internal battery 52.
  • the charging current of the built-in battery 52 charged with a voltage drop at the diode 67A is smaller than the charging current charged without a voltage drop at the diode 67A. That is, the charging current of the built-in battery 52 can be changed by controlling the switching element 67B to be on / off.
  • the battery built-in device 50 can modulate the switching element 67B to be turned on / off with the output increase signal or the battery information, and transmit the output increase signal or the battery information to the charging stand 10.
  • the switching element 67B is controlled on and off by the control circuit 68.
  • the control circuit 68 switches the switching element 67B on and off with the output increase signal and the battery information, and transmits the output increase signal and the battery information to the charging stand 10.
  • the control circuit 68 transmits an output increase signal and battery information as a digital signal.
  • the battery information controls the full charge, remaining capacity, voltage, charging current, battery temperature, battery serial number, allowable charging current that identifies the battery charging current, and battery charging. Allowable temperature to be used.
  • the battery information and the output increase signal are transmitted as a digital signal by controlling the switching element 67B.
  • the control circuit 68 switches the switching element 67B on and off with a digital signal indicating an output increase signal or battery information, changes the voltage drop of the voltage drop change element 67, that is, modulates the output increase signal. And transmit battery information.
  • the control circuit 68 controls on / off of the switching element 67B at a speed of 1000 bps and transmits an output increase signal and battery information.
  • the control circuit 68 can also transmit an output increase signal and battery information at 500 bps to 5000 bps. After the output increase signal and the battery information are transmitted at 1000 bps at the transmission timing, the transmission of the output increase signal and the battery information is stopped and the built-in battery 52 is charged in a normal state at the non-transmission timing.
  • the switching element 67B is switched on and off.
  • the control circuit 68 holds the switching element 67B in the ON state at the non-transmission timing, and short-circuits both ends of the diode 67A. In this state, the output of the rectifier circuit 53 is directly supplied to the built-in battery 52 for charging. This method can efficiently charge the internal battery 52 at the non-transmission timing. However, the switching element can be kept off at the non-transmission timing.
  • the charging stand 10 detects the load fluctuation of the power receiving coil 51 from the voltage level change or / and the current level change of the power transmission coil 11 by the detection circuit 17, and detects an output increase signal and battery information.
  • the sub-modulation circuit 66 shown in FIGS. 3 and 7 changes the load of the power receiving coil 51 by changing the charging current or / and voltage of the internal battery 52.
  • the power transmission coil 11 is electromagnetically coupled to the power receiving coil 51, so that the voltage level and / or current level of the power transmission coil 11 is changed.
  • the on / off state of the switching element 67B can be detected from the change in the voltage level or / and current level of the power transmission coil 11. Since the control circuit 68 switches the switching element 67B on and off with a digital signal indicating an output increase signal and battery information, the detection circuit 17 indicates the output increase signal and battery information when the switching circuit 67B is detected on and off. A digital signal can be detected, and an output increase signal, full charge, remaining capacity, voltage, current, temperature, and the like of a charged battery can be detected from the detected digital signal.
  • the detection circuit 17 detects an output increase signal and battery information from any one of change values such as a change in the current level of the power transmission coil 11, a change in the voltage level, a phase change with respect to the voltage of the current, or a change in transmission efficiency. You can also This is because these characteristics of the power transmission coil 11 change due to changes in the charging current of the internal battery 52.
  • the sub modulation circuit 66 of the battery built-in devices 50 and 90 has a voltage drop changing element 67 as a parallel circuit of a diode 67A and a switching element 67B.
  • the voltage drop changing element 77 is an FET 77B having a parasitic diode 77A.
  • the FET 77B having the parasitic diode 77A is a circuit substantially equivalent to the voltage drop changing element 67 of FIGS. 3 and 7 in which the switching element 67B is connected in parallel with the diode 67A.
  • the battery built-in devices 70 and 100 control the FET 77B, which is the switching element of the voltage drop changing element 77, to be turned on and off, and in the same way as the battery built-in devices 50 and 90 in FIGS. Battery information can be transmitted to the charging stand 10.
  • the forward direction of the parasitic diode 77A is a direction in which a current for charging the built-in battery 52 flows.
  • the voltage drop changing element 77 controls the FET 77B to be turned on / off by the control circuit 68, and changes the charging current of the built-in battery 52. With the FET 77B turned off, the built-in battery 52 is charged via the parasitic diode 77A. Therefore, a voltage drop occurs at both ends of the parasitic diode 77A, the output voltage of the rectifier circuit 53 is increased by the voltage drop of the parasitic diode 77A, and the charging current flowing through the power receiving coil 51 is lowered.
  • the FET 77B When the FET 77B is on, the voltage drop of the parasitic diode 77A is almost 0V, the output voltage of the rectifier circuit 53 is almost the same voltage as the built-in battery 52, and the charging current flowing through the power receiving coil 51 is increased.
  • the sub modulation circuit 86 of the battery built-in device 80 shown in FIG. 5 implements the voltage drop changing element 87 by a semiconductor switching element such as an FET or a transistor without a parasitic diode.
  • the voltage drop changing element 87 in the figure is an FET 87B, and this FET 87B is used in combination with the charge switch 54.
  • the voltage drop changing element 87 changes the on-resistance and transmits an output increase signal and battery information to the charging base 10.
  • the voltage drop changing element 87 controls the charging current or / and voltage of the built-in battery 52 by changing the on-resistance to approximately 0 ⁇ and a low resistance state that is not 0 ⁇ .
  • the on-resistance of the voltage drop changing element 87 is controlled by a signal input from the control circuit 68 to the gate and base.
  • the voltage drop changing element 87 of the FET 87B changes the on-resistance with a signal input from the control circuit 68 to the gate.
  • the voltage drop changing element of the transistor changes the on-resistance with a current input from the control circuit to the base.
  • the voltage drop changing element 87 also controls the on-resistance of the semiconductor switching element to be small at the non-transmission timing, and efficiently charges the internal battery 52 with the output of the rectifier circuit 53.
  • the voltage drop changing element is not shown, it can also be realized by a parallel circuit of a resistor and a switching element.
  • This voltage drop changing element is a switching element that short-circuits both ends of the resistor to reduce the voltage drop to almost 0V, and the switching element is turned off to increase the voltage drop of the resistor, thereby changing the charging current of the built-in battery, An output increase signal and battery information are transmitted to the charging stand.
  • the sub charging circuits 66, 76, 86 described above can transmit battery information to the charging base 10 when the control circuit 65 switches on the charging switch 54 and charges the built-in battery 52. However, these sub-modulation circuits also transmit an output increase signal to the charging stand at the charging start timing when the battery built-in device is set on the charging stand and battery information such as ID information is transmitted from the battery built-in device to the charging stand. You can also
  • These battery built-in devices 50, 70, 80, 90, and 100 provide the charging base 10 with an output increase signal and battery information in both the sub-modulation circuits 66, 76, and 86 and the modulation circuits 61, 71, 81, 91, and 101. By transmitting, an output increase signal and battery information are transmitted to the charging stand 10 more reliably.
  • the battery built-in devices 50, 70, 80, 90, 100 are sub-modulation circuits 66, 76, 86 and modulation circuits 61, 71, 81, 91, 101. 10 is transmitted.
  • the battery built-in devices 50, 70, 80, 90, 100 that transmit the output increase signal and the battery information in a time division manner with the sub modulation circuits 66, 76, 86 and the modulation circuits 61, 71, 81, 91, 101 are sub modulation
  • a switching signal for switching to the modulation circuits 61, 71, 81, 91, 101 is output, and the modulation circuits 61, 71, 81, 91, 101 are output.
  • the switching signal for switching to the sub-modulation circuits 66, 76, 86 is output at the end of transmitting the output increase signal and the battery information.
  • the charging stand 10 detects the switching signal and detects an output increase signal and battery information from the signals of the sub modulation circuits 66, 76, 86 and the modulation circuits 61, 71, 81, 91, 101. Also, the battery built-in devices 50, 70, 80, 90, 100 that transmit the output increase signal and the battery information in both the sub modulation circuits 66, 76, 86 and the modulation circuits 61, 71, 81, 91, 101 in time division are The sub modulation circuits 66, 76, 86 and the modulation circuits 61, 71, 81, 91, 101, for example, output increase signals and battery information as different signals such as different transmission speeds between 500 bps and 5000 bps. Thus, the charging base 10 can distinguish between the signals of the sub-modulation circuits 66, 76, 86 and the signals of the modulation circuits 61, 71, 81, 91, 101.
  • the battery built-in device can transmit the output increase signal and the battery information to the charging stand only by the modulation circuit, or can transmit the output increase signal and the battery information to the charging stand only by the sub modulation circuit.
  • the modulation circuit transmits an output increase signal and battery information to the charging stand.
  • the modulation circuit fails, the sub-modulation circuit transmits an output increase signal and battery information to the charging stand.
  • the control circuit 68 includes the switching elements 64, 74, 84 of the modulation circuits 61, 71, 81 and the voltage drop change elements of the sub modulation circuits 66, 76, 86. 67, 77 and 87 are controlled.
  • the control circuit 68 switches the switching elements 64, 74, and 84 on and off with an output increase signal and battery information, and transmits the output increase signal and battery information to the charging stand 10.
  • the control circuit 68 controls the switching elements 64, 74, and 84 to transmit the output increase signal and the battery information as digital signals.
  • the control circuit 68 repeats at a predetermined cycle, that is, a transmission timing for transmitting the output increase signal and the battery information and a non-transmission timing at which the output increase signal and the battery information are not transmitted at a predetermined cycle. And transmit battery information.
  • the control circuit 68 also controls the sub modulation circuits 66, 76, 86, the voltage drop changing elements 67, 77, 87 of the sub modulation circuits 66, 76, 86 and the switching element 64 of the modulation circuits 61, 71, 81, 74 and 84 are controlled in a time-sharing manner.
  • the modulation circuits 61, 71, 81 switch the switching elements 64, 74, 84 on and off with a digital signal indicating an output increase signal or battery information, and modulate and output the parallel capacitance of the power receiving coil 51. Transmit increase signal and battery information.
  • the control circuit 68 performs on / off control of the switching elements 64, 74, and 84 at a speed of 1000 bps, and transmits an output increase signal and battery information.
  • the control circuit 68 can also transmit an output increase signal and battery information at 500 bps to 5000 bps.
  • the transmission of the output increase signal and battery information is stopped and the battery is charged in a normal state at the non-transmission timing.
  • the switching elements 64, 74, and 84 are switched on and off.
  • a modulation capacitor 63 is connected to the power receiving coil 51 in order to transmit an output increase signal and battery information. Since the modulation capacitor 63 is connected in parallel to the power reception coil 51, the efficiency of power transfer from the power transmission coil 11 to the power reception coil 51 is slightly reduced from the designed optimum state. However, the transmission timing is shorter than the non-transmission timing, and the timing at which the modulation capacitor 63 is connected to the power receiving coil 51 is very short even at this transmission timing. Even if the power transfer efficiency is reduced in a state where the power is connected, the reduction in power transfer efficiency can be almost negligible in the total time.
  • the battery built-in devices 50, 70, 80, 90, 100 shown in FIGS. 3 to 5, 7, and 8 are connected to the power receiving coil 51 and convert alternating current induced in the power receiving coil 51 into direct current.
  • a rectifier circuit 53 that supplies charging power to the built-in battery 52 is provided.
  • the rectifier circuit 53 converts the alternating current input from the power receiving coil 51 into direct current, and charges the internal battery 52.
  • the rectifier circuit 53 in FIGS. 3, 5, and 7 is a synchronous rectifier circuit 53A.
  • the synchronous rectifier circuit 53A includes four FETs 53a connected to the bridge, and a switching circuit 53b that controls on / off of each FET 53a.
  • the switching circuit 53b switches the FET 53a in synchronization with the alternating current output from the power receiving coil 51, converts the input alternating current to direct current, and outputs the direct current. Since the voltage drop of the FET 53a is smaller than that of the diode, the synchronous rectifier circuit 53A has a feature that it can rectify more efficiently than a diode bridge and reduce power loss due to the voltage drop. However, it goes without saying that a diode bridge 53B can be used for the rectifier circuit 53 in place of the synchronous rectifier circuit as shown in FIGS.
  • a charging switch 54 that is connected between the output side of the rectifier circuit 53 and the built-in battery 52 and controls charging of the built-in battery 52 is controlled to be turned on and off by a control circuit 65.
  • the control circuit 65 controls the charging switch 54 to be turned on / off by a signal from the level detector 58 and a signal from the battery information detection circuit 59.
  • the control circuit 65 controls the charging switch 54 to be turned on in a state where the level detector 58 does not output an output increase signal, that is, in a state where the output of the power receiving coil 51 is larger than the set value and is not in a minute output state. 52 is charged. Further, the control circuit 65 detects whether or not the built-in battery 52 is in a chargeable state by a signal from the battery information detection circuit 59.
  • the control circuit 65 turns on the charge switch 54 and incorporates it.
  • the battery 52 is charged. That is, the control circuit 65 turns on the charging switch 54 with no output increase signal input from the level detector 58 and a signal indicating that the built-in battery 52 can be charged from the battery information detection circuit 59.
  • the built-in battery 52 is charged as follows. When the built-in battery 52 is fully charged or the battery temperature becomes high, the control circuit 65 switches the charging switch 54 to OFF and stops charging the built-in battery 52.
  • the battery built-in devices 50, 70, 80, 90, 100 described above are stored in advance by connecting the level detector 58 to the output side of the power receiving coil 51 and directly detecting the output voltage of the power receiving coil 51. It is detected whether or not the output voltage is very small compared to the lowest voltage.
  • the level detector can also detect the output voltage of the power receiving coil 51 by detecting the output voltage of the rectifier circuit 53 as shown in FIG. 9 without detecting the output voltage of the power receiving coil.
  • the battery built-in device in FIG. 9 has a function of a level detector 118 provided to a control circuit 115 having a microcomputer built therein, and the level detector 118 detects the output of the power receiving coil 51.
  • This control circuit 115 has an input line 119 connected to the output side of the rectifier circuit 53 as an operating power source, and the level detector 118 detects the output of the receiving coil 51 from the operating power supplied to the control circuit 115. Yes.
  • the voltage or / and the current after rectification supplied to the control circuit 115 in a state where the charging switch 54 is turned off at the charging start timing. It can be detected and compared with the set value, and it can be determined whether or not it is a minute output state.
  • the level detector 118 detects, for example, a current flowing through the current detection resistor by connecting a Zener diode, through which a current flows when the applied voltage exceeds a threshold, to a control circuit, which is a microcomputer, for protection.
  • a Zener diode through which a current flows when the applied voltage exceeds a threshold
  • the control circuit which is a microcomputer, for protection.
  • the rectified voltage or / and current supplied to the control circuit 115 can be detected even when the charging switch 54 is turned off. Even without such a Zener diode, the current consumption of the control circuit can be detected by a current detection resistor.
  • the level detector 118 detects, for example, the rectified voltage and current supplied to the control circuit 115, obtains supply power from these products, compares the supply power with a predetermined value, and is below a predetermined value.
  • the modulation circuit 61 is operated by the control circuit 115 so as to output an output increase signal in a minute output state.
  • the level detector detects the rectified voltage supplied to the control circuit, compares this voltage with the lowest voltage stored in advance, and the detected voltage is lower than the lowest voltage that is the set value. It is also possible to output an output increase signal by determining that the output state is minute. Further, the level detector detects the current after rectification supplied to the control circuit, and compares this current with the minimum current stored in advance, and the detected current is lower than the minimum current that is the set value. It is also possible to output an output increase signal by determining that the output state is minute.
  • control circuit 115 turns on the charging switch 54 as a chargeable state without outputting an output increase signal when the supply power or the output voltage or current from the rectifier circuit 53 to the control circuit 115 is larger than the set value. Switching is started and charging of the internal battery 52 is started.
  • a detection circuit 17 for controlling the output of the AC power supply 12 by an output increase signal is provided.
  • the detection circuit 17 detects a change in the load of the power receiving coil 51 that is changed by the modulation circuit 61 of the battery built-in device 50 via the power transmission coil 11 to detect an output increase signal.
  • the charging stand 10 in FIG. 2 charges the internal battery 52 by placing the battery internal device 50 on the top plate 21 of the casing 20.
  • the charging stand 10 includes a mechanism for bringing the power transmission coil 11 close to the power reception coil 51 of the battery built-in device 50 (not shown).
  • the charging stand 10 includes a mechanism (not shown) that detects the position of the power receiving coil 51 and causes the power transmitting coil 11 to approach the power receiving coil 51.
  • the charging stand 10 detects the positions of the power receiving coil 51 placed on the top plate 21 in the X-axis direction and the Y-axis direction, and moves the power transmitting coil 11 to the detected position.
  • the charging stand 10 can bring the power transmission coil 11 close to the power receiving coil 51, it can efficiently carry power from the power transmitting coil 11 to the power receiving coil 51.
  • the battery built-in device and the charging stand according to the present invention make the power receiving coil approach the power transmitting coil by setting the battery built-in device at a specific position on the charging stand without moving the power transmitting coil to the position of the power receiving coil.
  • the electromagnetic coupling can be achieved.
  • the battery built-in device can be set on the charging stand so that the power transmission coil and the power reception coil can be electromagnetically coupled. Therefore, this invention does not specify a charging stand as what moves a power transmission coil to the position of a receiving coil, and makes it approach.
  • the power transmission coil 11 is wound in a spiral shape on a surface parallel to the upper surface plate 21 and radiates an alternating magnetic flux above the upper surface plate 21.
  • the power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21.
  • the power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21.
  • the AC power supply 12 supplies, for example, high frequency power of 20 kHz to several MHz to the power transmission coil 11. As shown in FIG. 3, the AC power supply 12 is controlled by the detection circuit 17 to control AC power output to the power transmission coil 11. When an output increase signal is input from the detection circuit 17, the AC power supply 12 increases the AC power output to the power transmission coil 11. When an output increase signal is input from the detection circuit 17, the AC power supply 12 increases the output at a preset rate or increases the output to a preset power. For example, the AC power supply 12 that can change the AC power to 0.1 W, 0.5 W, 1 W, 3 W, and 5 W can be changed from 0.1 W to 0.5 W and 0.5 W each time an output increase signal is input.
  • the output is increased from 1 W to 1 W, from 3 W to 5 W, or when an output increase signal is input, the output is increased to 3 W or 5 W set in advance.
  • the AC power supply 12 can also increase the output by a preset ratio, for example, 10% to 50% each time an output increase signal is input.
  • the charging stand 10 supplies AC power from the AC power source 12 to the power transmission coil 11 in a state where the battery built-in device 50 is set.
  • the charging stand 10 detects that the battery built-in device 50 has been set by a user pressing a set switch (not shown), and supplies AC power from the AC power supply 12 to the power transmission coil 11 or the battery built-in device.
  • the fact that 50 is set is detected electrically or with a limit switch or the like, and power is supplied from the AC power supply 12 to the power transmission coil 11.
  • the charging stand 10 that electrically detects that the battery built-in device 50 is set outputs a pulse signal for detection from the power transmission coil 11 and detects an echo signal of the detection pulse signal from the power reception coil 51, or It can be detected that the battery built-in device 50 is set by a change in inductance or impedance of the power transmission coil 11.
  • the battery built-in device 50 and the charging stand 10 described above charge the built-in battery 52 as follows.
  • the charging stand 10 detects whether or not the battery built-in device 50 is set.
  • the AC power supply 12 outputs AC power to the power transmission coil 11.
  • Battery information such as battery ID, voltage, and temperature is transmitted from the battery built-in device 50 to the charging stand 10 at the charging start timing.
  • the battery built-in device 50 detects the output voltage of the AC signal induced in the power receiving coil 51 with the level detector 58.
  • the control circuit 65 turns on the charging switch 54. Switching is started and charging of the internal battery 52 is started, and when the internal battery 52 is fully charged, the charging switch 54 is switched off to end the charging.
  • the level detector 58 determines that the output state is minute, outputs an output increase signal to the control circuit 65 and the sub modulation circuit 66, and the control circuit 65 is charged. The switch 54 is kept off, and the built-in battery 52 is not charged.
  • the sub modulation circuit 66 changes the load of the power receiving coil 51 with the output increase signal input from the level detector 58 and transmits the output increase signal to the charging stand 10.
  • the charging stand 10 detects an output increase signal with a detection circuit 17 that detects a change in voltage or frequency of the power transmission coil 11, and the AC power supply 12 supplies the power transmission coil 11 with the output increase signal. Increase AC power.
  • (7) When the output of the power transmission coil 11 is increased, this is detected by the level detector 58 of the battery built-in device 50.
  • the level detector 58 detects the output voltage of the power receiving coil 51 and this detected voltage is larger than the set value, the charging start timing is terminated, the charging switch 54 is turned on, and the charging of the built-in battery 52 is started. To do.
  • the battery built-in device 50 and the charging stand 10 as described above charge the built-in battery 52 in the following steps as shown in FIG.
  • the battery built-in device 50 detects the pulse signal output from the charging stand 10 and detects that it is set on the charging stand 10.
  • Step of n 2] When the battery built-in device 50 is set on the charging stand 10, the battery information is transmitted to the charging stand 10 by the sub modulation circuit 66.
  • the level detector 58 detects the output voltage of the power receiving coil 51 and compares the detected voltage with a set value.
  • Steps of n 7, 8] Charging is performed until the internal battery 52 is fully charged. When the built-in battery 52 is fully charged, the charging switch 54 is turned off to end charging.
  • the charging stand 10 outputs AC power to the battery built-in device 50 in the following steps.
  • Step n 3] The detection circuit 17 determines whether or not an output increase signal is transmitted from the battery built-in device 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

[Problem] To normally and fully charge a built-in battery, while accurately transmitting information from a device with the built-in battery to a charging station. [Solution] A device with a built-in battery (50) comprises: a charging switch (54) that supplies the output from a power-receiving coil (51) to the built-in battery (52); a level detector (58) that detects a trace output state whereby the output of the power-receiving coil (51) is smaller than a set value at the charging-start timing, and outputs an output increase signal; a modulation circuit (61) that changes the load for the power-receiving coil (51) and transmits the output increase signal to a charging station (10); and a control circuit (65) that controls the charging switch (54). The charging station (10) comprises an AC power supply (12) and a detection circuit (17) that detects the output increase signal transmitted from the device with the built-in battery (50), and controls the output of the AC power supply (12). When the level detector (58) has a detected trace output state at the charging-start timing, the device with the built-in battery (50) transmits the output increase signal from the device with the built-in battery (50) to the charging station (10), the output of the AC power supply (12) for the charging station (10) is increased, and charging of the built-in battery (52) is started.

Description

電池内蔵機器と充電台及び電池内蔵機器Battery built-in device, charging stand and battery built-in device
 本発明は、パック電池や携帯電話などの電池内蔵機器と、この電池内蔵機器に電磁誘導作用で電力を搬送して、電池内蔵機器の内蔵電池を充電する充電台及び電池内蔵機器に関する。 The present invention relates to a battery built-in device such as a battery pack or a mobile phone, and a charging stand and a battery built-in device for charging electric power to the battery built-in device by electromagnetic induction and charging the built-in battery of the battery built-in device.
 電磁誘導の作用で送電コイルから受電コイルに電力搬送して、内蔵電池を無接点充電する充電台は開発されている。(特許文献1参照) A charging stand has been developed that carries power from the transmitting coil to the receiving coil by the action of electromagnetic induction to charge the built-in battery without contact. (See Patent Document 1)
 特許文献1は、充電台に、交流電源で励磁される送電コイルを内蔵し、パック電池には送電コイルに電磁結合される受電コイルを内蔵する構造を記載する。さらに、パック電池は、受電コイルに誘導される交流を整流し、これを電池に供給して充電する回路も内蔵する。この構造によると、充電台の上にパック電池を載せて、非接触状態でパック電池の電池を充電できる。 Patent Document 1 describes a structure in which a power transmission coil that is excited by an AC power source is built in a charging stand, and a power receiving coil that is electromagnetically coupled to the power transmission coil is built in a battery pack. Further, the battery pack includes a circuit that rectifies the alternating current induced in the power receiving coil and supplies the battery to the battery for charging. According to this structure, the battery pack can be charged in a non-contact state by placing the battery pack on the charging stand.
特開平9-63655号公報Japanese Patent Laid-Open No. 9-63655
 特許文献1に示すように、送電コイルと受電コイルとを電磁結合して、電池の充電電力を伝送する方式は、電池内蔵機器から充電台に情報を伝送する回路を備えている。内蔵電池が満充電される状態で、電池内蔵機器が満充電されたことを充電台に伝送し、また、電池内蔵機器が充電台から外されると充電台の送電を停止し、あるいは電池内蔵機器から充電台に特別のID等を伝送して、正常に充電する必要があるからである。充電台に情報を伝送する電池内蔵機器は、受電コイルの負荷を変化させて情報を充電台に伝送する変調回路を備えている。 As shown in Patent Document 1, a method of electromagnetically coupling a power transmitting coil and a power receiving coil to transmit battery charging power includes a circuit for transmitting information from a battery built-in device to a charging stand. When the built-in battery is fully charged, the fact that the battery built-in device is fully charged is transmitted to the charging stand, and when the battery built-in device is removed from the charging stand, power transmission from the charging stand is stopped or the battery is built-in. This is because a special ID or the like needs to be transmitted from the device to the charging stand and charged normally. The battery built-in device that transmits information to the charging stand includes a modulation circuit that transmits information to the charging stand by changing the load of the power receiving coil.
 図1は、変調回路266を備える電池内蔵機器250を示している。この図に示す変調回路266は、受電コイル251の負荷を変化させて、充電台210に情報を伝送する。充電台210は送電コイル211の負荷変動を検出して、電池内蔵機器250からの情報を検出する。この変調回路266は、受電コイル251の出力側の負荷を変化させる。受電コイル251の負荷が変化すると、交流電源212から交流電力を供給している送電コイル211は、電圧や周波数が変化する。したがって、充電台210は、送電コイル211の電圧変化や周波数変化を検出して、電池内蔵機器250の情報を検出できる。 FIG. 1 shows a battery built-in device 250 including a modulation circuit 266. Modulation circuit 266 shown in this figure changes the load of power receiving coil 251 and transmits information to charging stand 210. The charging stand 210 detects the load fluctuation of the power transmission coil 211 and detects information from the battery built-in device 250. The modulation circuit 266 changes the load on the output side of the power receiving coil 251. When the load of the power reception coil 251 changes, the voltage and frequency of the power transmission coil 211 that supplies AC power from the AC power supply 212 change. Therefore, the charging stand 210 can detect information on the battery built-in device 250 by detecting voltage change or frequency change of the power transmission coil 211.
 ところが、この方式の電池内蔵機器と充電台は、つねに正常に情報を伝送するのが難しい弊害が発生する。それは、交流電源から送電コイルに供給する電力が小さい状態で、受電コイルの出力側を整流回路を介して内蔵電池に接続すると、内部抵抗の小さい内蔵電池が受電コイルの出力側に接続される状態となるので、変調回路でもって受電コイルの負荷を充分に変化できず、送電コイルの電圧や周波数などの変化を正確に検出できなくなるからである。すなわち、受電コイルに誘導される電力が小さい状態で、受電コイルに内部抵抗の小さい内蔵電池を接続して、受電コイルの負荷を変化させるように変調しても、受電コイルの電流を大きく変化できない。このため、受電コイルと電磁結合している送電コイルは、その電圧や周波数の変化が小さく、送電コイル側から受電コイルの負荷の変動を確実に検出できなくなる。充電台は、受電コイルの負荷変動を検出して、内蔵電池からの情報を検出するので、受電コイルの負荷変動が小さく、しかも送電コイルの出力が小さい状態では、送電コイルが検出する電圧や周波数などの負荷の変動も小さくなって、電池内蔵機器の情報を正確には検出できなくなる。 However, this type of battery-equipped device and charging stand always suffer from a problem that it is difficult to transmit information normally. That is, when the power supplied from the AC power supply to the power transmission coil is small and the output side of the power reception coil is connected to the internal battery via the rectifier circuit, the internal battery with a small internal resistance is connected to the output side of the power reception coil Therefore, the load of the power receiving coil cannot be changed sufficiently with the modulation circuit, and changes in voltage, frequency, etc. of the power transmitting coil cannot be detected accurately. In other words, even if the power induced in the receiving coil is small and a built-in battery with low internal resistance is connected to the receiving coil and modulation is performed to change the load of the receiving coil, the current of the receiving coil cannot be changed greatly. . For this reason, the power transmission coil that is electromagnetically coupled to the power receiving coil has a small change in voltage and frequency, and the fluctuation in the load of the power receiving coil cannot be reliably detected from the power transmission coil side. Since the charging stand detects the load fluctuation of the power receiving coil and detects information from the built-in battery, when the load fluctuation of the power receiving coil is small and the output of the power transmitting coil is small, the voltage and frequency detected by the power transmitting coil The fluctuations of the load such as this will be reduced, and the information on the battery built-in device cannot be detected accurately.
 充電台から大きな電力が電池内蔵機器に送電される状態では、受電コイルに誘導される電力が大きくなるので、受電コイルの負荷を変化させて、電池内蔵機器から充電台に情報を伝送できる。ただ、磁気誘導作用で充電台から電池内蔵機器に電力搬送して、内蔵電池を充電するシステムは、充電台の送電コイルに常に大きな電力が供給されるわけではない。とくに、電池内蔵機器が充電台にセットされた最初に、充電台が送電コイルに供給する電力が小さいと、電池内蔵機器からの情報が充電台に伝送されなくなって、充電台は正常に電池内蔵機器を充電できない。 In a state where a large amount of power is transmitted from the charging stand to the battery built-in device, the power induced in the power receiving coil becomes large, so that the information can be transmitted from the battery built-in device to the charging stand by changing the load of the power receiving coil. However, in a system in which electric power is transferred from a charging stand to a battery built-in device by magnetic induction and the built-in battery is charged, a large amount of power is not always supplied to the power transmission coil of the charging stand. In particular, if the power supplied to the power transmission coil is small when the battery built-in device is first set on the charging stand, information from the battery built-in device will not be transmitted to the charging stand, and the charging stand will normally be built in the battery. The device cannot be charged.
 さらに、充電台が、送電コイルへの供給電力の小さい状態で、受電コイルの出力側を内蔵電池に接続して内蔵電池の充電を開始すると、内蔵電池の充電電流が次第に減少してほとんど流れなくなる。充電によって内蔵電池の電圧が上昇して、受電コイルから内蔵電池に充電電流を供給できなくなるからである。内蔵電池に充電電流が流れなくなると、電池内蔵機器が内蔵電池を満充電したと誤判定して、内蔵電池の充電が停止される。このため、内蔵電池が満充電されないにもかかわらず、充電が終了して満充電できなくなる。 Furthermore, when the charging stand is connected to the internal battery with the output side of the power receiving coil connected to the internal battery while the power supplied to the power transmission coil is small, the charging current of the internal battery gradually decreases and hardly flows. . This is because the voltage of the built-in battery rises due to charging, and charging current cannot be supplied from the power receiving coil to the built-in battery. When the charging current stops flowing to the internal battery, it is erroneously determined that the internal battery device has fully charged the internal battery, and charging of the internal battery is stopped. For this reason, although the built-in battery is not fully charged, the charging is completed and it cannot be fully charged.
 本発明は、従来の以上のような欠点を解決することを目的に開発されたものである。本発明の重要な目的は、電池内蔵機器から充電台に正確に情報を伝送しながら、内蔵電池を正常に満充電できる電池内蔵機器と充電台、及び電池内蔵機器を提供することにある。 The present invention was developed for the purpose of solving the above-mentioned drawbacks. An important object of the present invention is to provide a battery built-in device, a charging stand, and a battery built-in device that can normally fully charge the built-in battery while accurately transmitting information from the battery built-in device to the charging stand.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 本発明の電池内蔵機器と充電台は、内蔵電池52に充電電力を供給する受電コイル51を備える電池内蔵機器50、70、80、90、100、110と、この電池内蔵機器50、70、80、90、100、110の受電コイル51に電磁結合される送電コイル11を備える充電台10とからなる。電池内蔵機器50、70、80、90、100、110は、受電コイル51の出力を内蔵電池52に供給して内蔵電池52を充電する充電スイッチ54と、内蔵電池52の充電開始タイミングにおいて、受電コイル51の出力を検出して、受電コイル51の出力が設定値よりも小さい微少出力状態を検出して、微少出力状態において出力増加信号を出力するレベル検出器58、118と、このレベル検出器58、118から出力される出力増加信号でもって、受電コイル51の負荷を変化させて出力増加信号を充電台10に伝送する変調回路61、71、81、91、101と、充電スイッチ54を制御する制御回路65、115とを備えている。充電台10は、送電コイル11に交流電力を供給する交流電源12と、変調回路61、71、81、91、101で変化される受電コイル51の負荷の変化を送電コイル11を介して検出して、電池内蔵機器50、70、80、90、100、110から伝送される出力増加信号を検出して、検出する出力増加信号で交流電源12の出力を制御する検出回路17を備えている。電池内蔵機器50、70、80、90、100、110は、内蔵電池52の充電開始タイミングで、レベル検出器58、118が微少出力状態を検出する状態において、電池内蔵機器50、70、80、90、100、110から充電台10に出力増加信号を伝送し、充電台10の交流電源12の出力が増加されて内蔵電池52の充電を開始している。 The battery built-in device and the charging stand according to the present invention include the battery built-in devices 50, 70, 80, 90, 100, 110 including the power receiving coil 51 that supplies charging power to the built-in battery 52, and the battery built-in devices 50, 70, 80. , 90, 100, 110 and charging base 10 including power transmission coil 11 electromagnetically coupled to power reception coil 51. The battery built-in devices 50, 70, 80, 90, 100, 110 receive power at the charging switch 54 that charges the built-in battery 52 by supplying the output of the power receiving coil 51 to the built-in battery 52 and the charging start timing of the built-in battery 52. Level detectors 58 and 118 for detecting an output of the coil 51, detecting a minute output state in which the output of the power receiving coil 51 is smaller than a set value, and outputting an output increase signal in the minute output state, and the level detector Control the modulation circuits 61, 71, 81, 91, 101 that change the load of the power receiving coil 51 and transmit the output increase signal to the charging stand 10, and the charging switch 54 with the output increase signals output from 58, 118. Control circuits 65 and 115 are provided. The charging stand 10 detects, via the power transmission coil 11, a change in the load of the AC power source 12 that supplies AC power to the power transmission coil 11 and the power receiving coil 51 that is changed by the modulation circuits 61, 71, 81, 91, 101. In addition, a detection circuit 17 is provided that detects an output increase signal transmitted from the battery built-in devices 50, 70, 80, 90, 100, and 110, and controls the output of the AC power supply 12 with the detected output increase signal. The battery built-in devices 50, 70, 80, 90, 100, 110 are in a state where the level detectors 58, 118 detect a minute output state at the charging start timing of the built-in battery 52, and the battery built-in devices 50, 70, 80, An output increase signal is transmitted from 90, 100, 110 to the charging stand 10, and the output of the AC power supply 12 of the charging stand 10 is increased to start charging the built-in battery 52.
 以上の電池内蔵機器と充電台は、電池内蔵機器から充電台に正確に情報を伝送しながら、内蔵電池を正常に満充電できる特徴がある。それは、充電台にセットされた電池内蔵機器の受電コイルの出力が小さい微少出力状態においては、電池内蔵機器が充電台に出力増加信号を出力し、充電台が出力増加信号を検出して、検出回路が交流電源の出力を増加して、内蔵電池の充電を開始するからである。 The battery built-in device and the charging stand described above are characterized in that the internal battery can be normally fully charged while accurately transmitting information from the battery built-in device to the charging stand. When the output of the power receiving coil of the battery built-in device set on the charging stand is small, the battery built-in device outputs an output increase signal to the charging stand, and the charging stand detects the output increase signal. This is because the circuit increases the output of the AC power supply and starts charging the internal battery.
 本発明の電池内蔵機器と充電台は、制御回路115がレベル検出器118を備え、レベル検出器118が制御回路115に供給される電力から受電コイル51の出力を検出して微少出力状態を検出することができる。 In the battery built-in device and the charging stand according to the present invention, the control circuit 115 includes the level detector 118, and the level detector 118 detects the output of the power receiving coil 51 from the power supplied to the control circuit 115 to detect a minute output state. can do.
 本発明の電池内蔵機器と充電台は、充電台10の検出回路17が、電池内蔵機器50、70、80、90、100、110から伝送される出力増加信号を検出して、交流電源12の出力をあらかじめ設定している電力だけ増加させることができる。
 以上の電池内蔵機器と充電台は、受電コイルの出力が小さい状態では、受電コイルの出力を所定のステップで次第に増加させて、受電コイルの出力が設定値まで高くなると内蔵電池が充電される状態となる。この電池内蔵機器と充電台は、受電コイルの出力を次第に増加させるので、内蔵電池を最適な電流で充電できる。
In the battery built-in device and the charging stand of the present invention, the detection circuit 17 of the charging stand 10 detects the output increase signal transmitted from the battery built-in devices 50, 70, 80, 90, 100, 110, and The output can be increased by a preset power.
The above-mentioned battery built-in device and charging stand are in a state where the output of the receiving coil is gradually increased in a predetermined step when the output of the receiving coil is small, and the internal battery is charged when the output of the receiving coil increases to the set value. It becomes. Since the battery built-in device and the charging stand gradually increase the output of the power receiving coil, the built-in battery can be charged with an optimum current.
 本発明の電池内蔵機器と充電台は、充電台10の検出回路17が、電池内蔵機器50、70、80、90、100、110から伝送される出力増加信号を検出して、交流電源12の出力をあらかじめ設定している設定電力に変更して、交流電源12の出力を増加させることができる。
 以上の電池内蔵機器と充電台は、受電コイルの出力が小さい状態で、電池内蔵機器から充電台に出力増加信号が出力されると、充電台が、内蔵電池を充電できる電力を送電コイルに供給するので、受電コイルの出力が小さい状態にあっても、速やかに内蔵電池を正常な充電状態に切り換えて充電できる。
In the battery built-in device and the charging stand of the present invention, the detection circuit 17 of the charging stand 10 detects the output increase signal transmitted from the battery built-in devices 50, 70, 80, 90, 100, 110, and The output of the AC power supply 12 can be increased by changing the output to a preset power.
When the output increase signal is output from the battery built-in device to the charging stand in the state where the output of the power receiving coil is small, the charging stand supplies the power transmission coil with power that can charge the built-in battery. Therefore, even when the output of the power receiving coil is small, the built-in battery can be quickly switched to a normal charging state and charged.
 本発明の電池内蔵機器と充電台は、内蔵電池52をリチウムイオン電池又はリチウムポリマー電池の何れかとすることができる。 In the battery built-in device and the charging stand according to the present invention, the built-in battery 52 can be either a lithium ion battery or a lithium polymer battery.
 本発明の電池内蔵機器と充電台は、変調回路61、71、81、91、101が、変調用コンデンサー63にスイッチング素子64、74、84を直列に接続している直列回路を備えて、この直列回路を受電コイル51と並列に接続することができる。 The battery built-in apparatus and the charging stand according to the present invention include a series circuit in which the modulation circuits 61, 71, 81, 91, and 101 have switching elements 64, 74, and 84 connected in series to the modulation capacitor 63. A series circuit can be connected in parallel with the power receiving coil 51.
 本発明の電池内蔵機器と充電台は、電池内蔵機器をパック電池とすることができる。 In the battery built-in device and the charging stand of the present invention, the battery built-in device can be a battery pack.
 本発明の電池内蔵機器は、充電台10に内蔵される送電コイル11に電磁結合されて、この送電コイル11から電力搬送される受電コイル51を備えており、この受電コイル51から内蔵電池52に充電電力を供給して内蔵電池52を充電する。電池内蔵機器は、受電コイル51の出力を内蔵電池52に供給して内蔵電池52を充電する充電スイッチ54と、内蔵電池52の充電開始タイミングにおいて、受電コイル51の出力を検出して、受電コイル51の出力が設定値よりも小さい微少出力状態を検出して、微少出力状態において出力増加信号を出力するレベル検出器58、118と、このレベル検出器58、118から出力される出力増加信号でもって、受電コイル51の負荷を変化させて出力増加信号を充電台10に伝送する変調回路61、71、81、91、101と、充電スイッチ54を制御する制御回路65、115とを備えている。電池内蔵機器は、内蔵電池52の充電開始タイミングで、レベル検出器58、118が微少出力状態を検出する状態において、充電台10に出力増加信号を伝送し、充電台10の交流電源12の出力が増加する状態で内蔵電池52の充電を開始している。 The battery built-in device of the present invention includes a power receiving coil 51 that is electromagnetically coupled to the power transmission coil 11 built in the charging stand 10 and carries power from the power transmission coil 11. The built-in battery 52 is charged by supplying charging power. The battery built-in device supplies the output of the power receiving coil 51 to the built-in battery 52 to charge the built-in battery 52, and detects the output of the power receiving coil 51 at the charging start timing of the built-in battery 52. The level detectors 58 and 118 for detecting a minute output state in which the output 51 is smaller than the set value and outputting an output increase signal in the minute output state, and the output increase signal output from the level detectors 58 and 118 Therefore, modulation circuits 61, 71, 81, 91, 101 that change the load of the power receiving coil 51 and transmit an output increase signal to the charging base 10, and control circuits 65, 115 that control the charging switch 54 are provided. . The battery built-in device transmits an output increase signal to the charging base 10 when the level detectors 58 and 118 detect the minute output state at the charging start timing of the internal battery 52, and the output of the AC power supply 12 of the charging base 10 is output. The charging of the built-in battery 52 is started in a state in which increases.
 以上の電池内蔵機器は、充電台に正確に情報を伝送しながら、内蔵電池を正常に満充電できる特徴がある。それは、受電コイルの出力が小さい微少出力状態において、充電台に出力増加信号を出力し、充電台が交流電源の出力を増加する状態で、内蔵電池の充電を開始するからである。 The above battery built-in devices have the feature that the built-in battery can be normally fully charged while accurately transmitting information to the charging stand. This is because, in a minute output state where the output of the power receiving coil is small, an output increase signal is output to the charging stand, and charging of the built-in battery is started in a state where the charging stand increases the output of the AC power supply.
 本発明の電池内蔵機器は、制御回路115がレベル検出器118を備えて、レベル検出器118が、制御回路115に供給される電力から受電コイル51の出力を検出して微少出力状態を検出することができる。 In the battery built-in device of the present invention, the control circuit 115 includes the level detector 118, and the level detector 118 detects the output of the power receiving coil 51 from the power supplied to the control circuit 115 to detect a minute output state. be able to.
 本発明の電池内蔵機器は、パック電池とすることができる。 The battery built-in device of the present invention can be a battery pack.
従来の電池内蔵機器と充電台の概略ブロック図である。It is a schematic block diagram of the conventional battery built-in apparatus and a charging stand. 本発明の一実施例にかかる電池内蔵機器と充電台の斜視図である。It is a perspective view of the battery built-in apparatus and charging stand concerning one Example of this invention. 本発明の一実施例にかかる電池内蔵機器と充電台のブロック図である。It is a block diagram of the battery built-in apparatus and charging stand concerning one Example of this invention. 本発明の他の実施例にかかる電池内蔵機器のブロック図である。It is a block diagram of the battery built-in apparatus concerning the other Example of this invention. 本発明の他の実施例にかかる電池内蔵機器のブロック図である。It is a block diagram of the battery built-in apparatus concerning the other Example of this invention. 送電コイルに供給する交流の周波数と送電コイルの電流変化の関係を示すグラフである。It is a graph which shows the relationship between the frequency of the alternating current supplied to a power transmission coil, and the electric current change of a power transmission coil. 本発明の他の実施例にかかる電池内蔵機器のブロック図である。It is a block diagram of the battery built-in apparatus concerning the other Example of this invention. 本発明の他の実施例にかかる電池内蔵機器のブロック図である。It is a block diagram of the battery built-in apparatus concerning the other Example of this invention. 本発明の他の実施例にかかる電池内蔵機器のブロック図である。It is a block diagram of the battery built-in apparatus concerning the other Example of this invention. 電池内蔵機器が内蔵電池を充電するフローチャートである。It is a flowchart in which a battery built-in apparatus charges a built-in battery. 充電台が電池内蔵機器の内蔵電池を充電するフローチャートである。It is a flowchart in which a charging stand charges the internal battery of a battery built-in apparatus.
 以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池内蔵機器と充電台及び電池内蔵機器を例示するものであって、本発明は電池内蔵機器と充電台及び電池内蔵機器を以下のものに特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment shown below exemplifies a battery built-in device, a charging stand, and a battery built-in device for embodying the technical idea of the present invention, and the present invention includes a battery built-in device, a charging stand, and a battery built-in. The equipment is not specified as follows. Further, this specification does not limit the members shown in the claims to the members of the embodiments.
 図2と図3は、電池内蔵機器50と充電台10の斜視図及びブロック図を示している。充電台10は、図2に示すように、充電台10の上に電池内蔵機器50を載せて、電池内蔵機器50の内蔵電池52を電磁誘導作用で充電する。電池内蔵機器50は、送電コイル11に電磁結合される受電コイル51を内蔵している。この受電コイル51に誘導される電力で充電される内蔵電池52を内蔵している。ここで、電池内蔵機器50は、携帯電話やICプレーヤなどの電子機器とすることも、パック電池とすることもできる。 2 and 3 show a perspective view and a block diagram of the battery built-in device 50 and the charging stand 10. As shown in FIG. 2, the charging stand 10 places the battery built-in device 50 on the charging stand 10 and charges the built-in battery 52 of the battery built-in device 50 by electromagnetic induction. The battery built-in device 50 includes a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11. A built-in battery 52 that is charged with electric power induced in the power receiving coil 51 is incorporated. Here, the battery built-in device 50 may be an electronic device such as a mobile phone or an IC player, or may be a pack battery.
 図3の電池内蔵機器50は、受電コイル51の出力を内蔵電池52に供給して内蔵電池52を充電する充電スイッチ54と、内蔵電池52の充電開始タイミングにおいて、受電コイル51の出力を検出して、受電コイル51の出力が設定値よりも小さい微少出力状態を検出して、微少出力状態において出力増加信号を出力するレベル検出器58と、このレベル検出器58から出力される出力増加信号でもって、受電コイル51の負荷を変化させて出力増加信号を充電台10に伝送する変調回路61と、充電スイッチ54を制御する制御回路65とを備えている。電池内蔵機器50は、内蔵電池52の充電開始タイミングで、レベル検出器58が微少出力状態を検出する状態において、電池内蔵機器50から充電台10に出力増加信号を伝送し、充電台10の交流電源12の出力を増加させて内蔵電池52の充電を開始する。 The battery built-in device 50 in FIG. 3 detects the output of the power receiving coil 51 at the charging switch 54 for charging the built-in battery 52 by supplying the output of the power receiving coil 51 to the built-in battery 52 and the charging start timing of the built-in battery 52. Thus, a level detector 58 that detects a minute output state in which the output of the power receiving coil 51 is smaller than a set value and outputs an output increase signal in the minute output state, and an output increase signal output from the level detector 58 Accordingly, a modulation circuit 61 that changes the load of the power receiving coil 51 to transmit an output increase signal to the charging base 10 and a control circuit 65 that controls the charging switch 54 are provided. The battery built-in device 50 transmits an output increase signal from the battery built-in device 50 to the charging stand 10 in a state where the level detector 58 detects a minute output state at the charging start timing of the built-in battery 52, and the AC of the charging stand 10 is exchanged. The output of the power supply 12 is increased and charging of the internal battery 52 is started.
 充電スイッチ54はFETやトランジスタ等の半導体スイッチング素子で、整流回路53の出力側と内蔵電池52との間に接続される。充電スイッチ54は、オン状態となって整流回路53の出力で内蔵電池52を充電し、オフ充電で内蔵電池52の充電を停止する。 The charge switch 54 is a semiconductor switching element such as an FET or a transistor, and is connected between the output side of the rectifier circuit 53 and the built-in battery 52. The charging switch 54 is turned on to charge the built-in battery 52 with the output of the rectifier circuit 53, and stops charging the built-in battery 52 with off-charging.
 レベル検出器58は、受電コイル51の出力電圧を検出して、あらかじめ記憶している最低電圧に比較する。レベル検出器58は、受電コイル51のピーク電圧を検出して、最低電圧に比較する。レベル検出器58は、検出される受電コイル51の出力電圧を、記憶している最低電圧に比較し、検出電圧が最低電圧よりも低いと、受電コイル51の出力で内蔵電池52を充電できない「微少出力状態」と判定して、出力増加信号を出力する。レベル検出器58が記憶している最低電圧は、受電コイル51の出力で内蔵電池52を正常に充電できる最低の出力電圧に設定している。レベル検出器58は、受電コイル51の出力電圧が最低電圧よりも高い状態を充電可能状態として出力増加信号を出力しない。 The level detector 58 detects the output voltage of the power receiving coil 51 and compares it with the lowest voltage stored in advance. The level detector 58 detects the peak voltage of the power receiving coil 51 and compares it with the minimum voltage. The level detector 58 compares the detected output voltage of the power receiving coil 51 with the stored minimum voltage. If the detected voltage is lower than the minimum voltage, the built-in battery 52 cannot be charged with the output of the power receiving coil 51. It is determined that the output is a “micro output state” and an output increase signal is output. The lowest voltage stored in the level detector 58 is set to the lowest output voltage at which the internal battery 52 can be normally charged with the output of the power receiving coil 51. The level detector 58 sets the state in which the output voltage of the power receiving coil 51 is higher than the minimum voltage as a chargeable state and does not output an output increase signal.
 図3の電池内蔵機器50は、受電コイル51に直列コンデンサー55を接続しているので、レベル検出器58は、直列コンデンサー55の出力側の電圧を検出し、あるいは整流回路53の出力電圧を検出して、受電コイル51の出力電圧を検出することもできる。受電コイル51の電圧が高くなると、直列コンデンサー55の出力側の電圧がこれに比例して上昇し、また整流回路53の出力電圧も比例して高くなるからである。 3 has a series capacitor 55 connected to the power receiving coil 51, the level detector 58 detects the voltage on the output side of the series capacitor 55, or detects the output voltage of the rectifier circuit 53. Thus, the output voltage of the power receiving coil 51 can also be detected. This is because as the voltage of the power receiving coil 51 increases, the voltage on the output side of the series capacitor 55 increases in proportion to this, and the output voltage of the rectifier circuit 53 also increases in proportion.
 レベル検出器58は、制御回路65と変調回路61に出力増加信号を出力し、制御回路65を介して充電スイッチ54をコントロールし、変調回路61を介して出力増加信号を充電台10に伝送する。レベル検出器58が出力増加信号を検出する状態で、制御回路65は充電スイッチ54をオフとして、内蔵電池52の充電を停止し、充電台10には変調回路61から出力増加信号を出力して、充電台10の送電コイル11の出力を大きくする。ただ、制御回路は、レベル検出器が出力増加信号を検出する状態においても、充電スイッチをオフとすることなく、内蔵電池を充電する状態としながら、変調回路から充電台に出力増加信号を出力して、充電台の送電コイルの出力を大きくすることもできる。レベル検出器58が出力増加信号を出力しない状態では、制御回路65は充電スイッチ54をオンとして、送電コイル11の出力で内蔵電池52を充電し、変調回路61は電池情報を充電台10に伝送する状態とする。 The level detector 58 outputs an output increase signal to the control circuit 65 and the modulation circuit 61, controls the charging switch 54 via the control circuit 65, and transmits the output increase signal to the charging stand 10 via the modulation circuit 61. . In a state in which the level detector 58 detects the output increase signal, the control circuit 65 turns off the charging switch 54 to stop the charging of the built-in battery 52, and outputs an output increase signal from the modulation circuit 61 to the charging stand 10. The output of the power transmission coil 11 of the charging stand 10 is increased. However, even when the level detector detects the output increase signal, the control circuit outputs the output increase signal to the charging stand from the modulation circuit while charging the built-in battery without turning off the charging switch. Thus, the output of the power transmission coil of the charging stand can be increased. In a state where the level detector 58 does not output an output increase signal, the control circuit 65 turns on the charging switch 54 to charge the built-in battery 52 with the output of the power transmission coil 11, and the modulation circuit 61 transmits battery information to the charging stand 10. State
 変調回路61は、レベル検出器58から入力される出力増加信号と、内蔵電池52の電池情報を充電台10に伝送する。図3の変調回路61は、受電コイル51と並列に接続している変調用コンデンサー63にスイッチング素子64を直列に接続しているコンデンサー負荷回路62と、内蔵電池52の電池情報を検出する電池情報検出回路59と、この電池情報検出回路59の電池情報やレベル検出器58から入力される出力増加信号でコンデンサー負荷回路62のスイッチング素子64をオンオフに切り換えるコントロール回路68とを備えている。 The modulation circuit 61 transmits the output increase signal input from the level detector 58 and the battery information of the built-in battery 52 to the charging stand 10. 3 includes a capacitor load circuit 62 in which a switching element 64 is connected in series to a modulation capacitor 63 connected in parallel to the power receiving coil 51, and battery information for detecting battery information of the built-in battery 52. A detection circuit 59 and a control circuit 68 for switching the switching element 64 of the capacitor load circuit 62 on and off by battery information of the battery information detection circuit 59 and an output increase signal input from the level detector 58 are provided.
 電池内蔵機器50は、内蔵電池52の電池情報を検出する電池情報検出回路59を備えており、この電池情報検出回路59でもって、充電している電池の電圧、充電電流、電池温度等の電池情報を検出してコントロール回路68に入力する。 The battery built-in device 50 includes a battery information detection circuit 59 that detects battery information of the built-in battery 52. With the battery information detection circuit 59, a battery such as a voltage of a charged battery, a charging current, a battery temperature, and the like. Information is detected and input to the control circuit 68.
 コントロール回路68は、所定の周期で繰り返し、すなわち、出力増加信号や電池情報を伝送する伝送タイミングと、出力増加信号や電池情報を伝送しない非伝送タイミングとを所定の周期で繰り返して、出力増加信号や電池情報を伝送する。この周期は、たとえば0.1sec~5sec、好ましくは0.1sec~1秒に設定される。充電している電池は、残容量、電圧、電流、温度などが変化するので、これ等の電池情報は、前述の周期で繰り返し伝送するが、電池のシリアル番号、電池の充電電流を特定する許容充電電流、電池の充電をコントロールする許容温度等の電池情報や出力増加信号は、充電を開始する最初にのみ伝送して、その後に繰り返し伝送する必要はない。また、充電している電池の満充電の電池情報は、充電している電池が満充電となったタイミングにおいて伝送される。コントロール回路68は、伝送タイミングにおいては、出力増加信号や電池情報を示すデジタル信号でスイッチング素子64をオンオフに切り換えて出力増加信号や電池情報を伝送する。たとえば、コントロール回路68は、1000bpsのスピードでスイッチング素子64をオンオフ制御して、出力増加信号や電池情報を伝送する。ただし、コントロール回路68は、500bps~5000bpsで出力増加信号や電池情報を伝送することもできる。伝送タイミングにおいて1000bpsで出力増加信号や電池情報を伝送した後、非伝送タイミングにおいては、出力増加信号や電池情報の伝送を停止して内蔵電池52を正常な状態で充電する。伝送タイミングにおいて、スイッチング素子64がオンオフに切り換えられる。 The control circuit 68 repeats at a predetermined cycle, that is, a transmission timing for transmitting the output increase signal and the battery information and a non-transmission timing at which the output increase signal and the battery information are not transmitted at a predetermined cycle. And transmit battery information. This period is set to, for example, 0.1 sec to 5 sec, preferably 0.1 sec to 1 sec. Since the remaining battery charge, voltage, current, temperature, etc. change, the battery information is repeatedly transmitted in the above-mentioned cycle, but the battery serial number and the battery charge current are allowed to be specified. The battery information such as the charging current and the allowable temperature for controlling the charging of the battery and the output increase signal are transmitted only at the beginning of charging, and need not be transmitted repeatedly thereafter. Further, the battery information of the fully charged battery is transmitted at the timing when the charged battery is fully charged. At the transmission timing, the control circuit 68 transmits the output increase signal and the battery information by switching the switching element 64 on and off with a digital signal indicating the output increase signal and the battery information. For example, the control circuit 68 controls on / off of the switching element 64 at a speed of 1000 bps, and transmits an output increase signal and battery information. However, the control circuit 68 can also transmit an output increase signal and battery information at 500 bps to 5000 bps. After the output increase signal and the battery information are transmitted at 1000 bps at the transmission timing, the transmission of the output increase signal and the battery information is stopped and the built-in battery 52 is charged in a normal state at the non-transmission timing. At the transmission timing, the switching element 64 is switched on and off.
 さらに、図4に示す電池内蔵機器70の変調回路71は、受電コイル51と並列に接続している変調用コンデンサー63にスイッチング素子74を直列に接続しているコンデンサー負荷回路72を備えている。図4のスイッチング素子74は、互いに直列に接続してなる一対のペアースイッチング素子74Xを備える。図のペアースイッチング素子74XはFET等の半導体スイッチング素子である。ペアーFET74a、74bはソースを接続して、互いに直列に接続している。さらに、ペアースイッチング素子74Xの接続点であるFETのソースは、高抵抗な抵抗器79、例えば100kΩの抵抗器を介してアースライン78に接続してアース電位としている。各々のペアースイッチング素子74Xには直列に変調用コンデンサー63を接続している。各々のペアースイッチング素子74XであるペアーFET74a、74bは、ドレインに接続している変調用コンデンサー63を介して受電コイル51の両端に接続している。この図のスイッチング素子74は、変調用コンデンサー63、ペアーFET74a、ペアーFET74b、変調用コンデンサー63を直列に接続してなるコンデンサー負荷回路72を受電コイル51と並列に接続している。 Furthermore, the modulation circuit 71 of the battery built-in device 70 shown in FIG. 4 includes a capacitor load circuit 72 in which a switching element 74 is connected in series to a modulation capacitor 63 connected in parallel with the power receiving coil 51. The switching element 74 in FIG. 4 includes a pair of pair switching elements 74X connected in series with each other. The pair switching element 74X in the figure is a semiconductor switching element such as an FET. The pair FETs 74a and 74b are connected in series with the sources connected to each other. Further, the source of the FET, which is the connection point of the pair switching element 74X, is connected to the earth line 78 via a high-resistance resistor 79, for example, a 100 kΩ resistor, to have a ground potential. Each pair switching element 74X is connected with a modulation capacitor 63 in series. The pair FETs 74a and 74b, which are the pair switching elements 74X, are connected to both ends of the power receiving coil 51 via the modulation capacitor 63 connected to the drain. In the switching element 74 of this figure, a capacitor load circuit 72 formed by connecting a modulation capacitor 63, a pair FET 74a, a pair FET 74b, and a modulation capacitor 63 in series is connected in parallel with the power receiving coil 51.
 直列コンデンサー55は、図の実線で示すように、変調用コンデンサー63よりも整流回路53側に接続され、あるいは鎖線で示すように、変調用コンデンサー63と受電コイル51との間に接続することもできる。変調用コンデンサー63と受電コイル51との間に接続している直列コンデンサー55は、ペアースイッチング素子74Xをオンに切り換える状態で、変調用コンデンサー63と直列に接続される。 The series capacitor 55 is connected to the rectifier circuit 53 side of the modulation capacitor 63 as shown by a solid line in the figure, or may be connected between the modulation capacitor 63 and the power receiving coil 51 as shown by a chain line. it can. The series capacitor 55 connected between the modulation capacitor 63 and the power receiving coil 51 is connected in series with the modulation capacitor 63 in a state where the pair switching element 74X is switched on.
 ペアースイッチング素子74XのペアーFET74a、74bは、コントロール回路68で一緒にオンオフに切り換えられる。コントロール回路68は、ペアースイッチング素子74Xである両方のFETのゲート電圧を同じように制御して、一対のペアースイッチング素子74Xを同時にオンオフに切り換える。コントロール回路68が、ペアースイッチング素子74XのFETをオンに切り換える状態で変調用コンデンサー63は受電コイル51と並列に接続される。また、コントロール回路68が、ペアースイッチング素子74Xをオフ状態として、変調用コンデンサー63は受電コイル51から切り離されて非接続状態となる。 The pair FETs 74a and 74b of the pair switching element 74X are switched on and off together by the control circuit 68. The control circuit 68 controls the gate voltages of both FETs that are the pair switching element 74X in the same manner, and switches the pair of pair switching elements 74X on and off simultaneously. The modulation capacitor 63 is connected in parallel with the power receiving coil 51 in a state where the control circuit 68 switches on the FET of the pair switching element 74X. Further, the control circuit 68 turns off the pair switching element 74X, and the modulation capacitor 63 is disconnected from the power receiving coil 51 and is not connected.
 図4のスイッチング素子74は、ペアースイッチング素子74Xの一方をアース電位とするので、コントロール回路68の回路構成を簡単にできる。とくに、整流回路53をダイオードブリッジ53Bとして、受電コイル51の両方をアース電位としない状態、すなわち受電コイル51がダイオードを介してアースライン78に接続される状態で、コントロール回路68がペアースイッチング素子74Xをオンオフに制御する回路構成を簡単にできる。 The switching element 74 of FIG. 4 can simplify the circuit configuration of the control circuit 68 because one of the pair switching elements 74X is set to the ground potential. In particular, when the rectifier circuit 53 is the diode bridge 53B and both the receiving coils 51 are not at the ground potential, that is, the receiving coil 51 is connected to the earth line 78 via the diode, the control circuit 68 is connected to the pair switching element 74X. It is possible to simplify the circuit configuration for controlling on / off.
 さらに、図5の電池内蔵機器80の変調回路81は、受電コイル51に接続してなるコンデンサー83と、コンデンサー83の整流回路53側をショートするショート回路88とで構成されるコンデンサー負荷回路82を備えている。ショート回路88は、PTC等の抵抗素子89とスイッチング素子84との直列回路である。この変調回路81は、スイッチング素子84をオンオフに制御して、ショート回路88を介してコンデンサー83を受電コイル51と並列に接続して、すなわちコンデンサー83を変調用コンデンサー63に併用する。スイッチング素子84はフォトモスFETで、光を介してオンオフに切り換えられる。 5 includes a capacitor load circuit 82 including a capacitor 83 connected to the power receiving coil 51 and a short circuit 88 that shorts the rectifier circuit 53 side of the capacitor 83. I have. The short circuit 88 is a series circuit of a resistance element 89 such as a PTC and a switching element 84. The modulation circuit 81 controls the switching element 84 to be turned on and off and connects the capacitor 83 in parallel with the power receiving coil 51 via the short circuit 88, that is, the capacitor 83 is used in combination with the modulation capacitor 63. The switching element 84 is a photo MOS FET and is turned on / off via light.
 充電台10は、変調回路61、71、81から伝送される信号を検出する検出回路17を備えている。この検出回路17でもって、送電コイル11の電圧レベル変化又は/及び電流レベル変化から、内蔵電池52の充電電流変化又は/及び電圧変化を検出し、充電電流変化又は/及び電圧変化から出力増加信号や電池情報を検出する。内蔵電池52の充電電流又は/及び電圧が変化すると、送電コイル11が受電コイル51に電磁結合していることから、送電コイル11の電圧レベル又は/及び電流レベルが変化する。送電コイル11の電圧レベル又は/及び電流レベルは、スイッチング素子64、74、84のオンオフに同期して変化するので、送電コイル11の電圧レベル変化又は/及び電流レベル変化からスイッチング素子64、74、84のオンオフを検出できる。 The charging stand 10 includes a detection circuit 17 that detects signals transmitted from the modulation circuits 61, 71, and 81. The detection circuit 17 detects a charging current change or / and voltage change of the built-in battery 52 from a voltage level change or / and current level change of the power transmission coil 11, and outputs an output increase signal from the charging current change or / and voltage change. And battery information. When the charging current or / and voltage of the built-in battery 52 changes, the voltage level and / or current level of the power transmission coil 11 changes because the power transmission coil 11 is electromagnetically coupled to the power reception coil 51. Since the voltage level or / and current level of the power transmission coil 11 change in synchronization with the on / off of the switching elements 64, 74, 84, the switching elements 64, 74, 84 can be detected.
 変調回路61、71、81は、出力増加信号や電池情報を示すデジタル信号でスイッチング素子64、74、84をオンオフに切り換えているので、検出回路17がスイッチング素子64、74、84のオンオフを検出することで、出力増加信号や電池情報を示すデジタル信号を検出し、検出されるデジタル信号から、出力増加信号や充電している電池の電圧、電流、温度などを検出することができる。 Since the modulation circuits 61, 71, 81 switch the switching elements 64, 74, 84 on and off with an output increase signal and a digital signal indicating battery information, the detection circuit 17 detects the on / off of the switching elements 64, 74, 84. Thus, it is possible to detect the output increase signal and the digital signal indicating the battery information, and to detect the output increase signal and the voltage, current, temperature, etc. of the charged battery from the detected digital signal.
 ただし、検出回路17は、送電コイル11の電流レベルの変化、電流の電圧に対する位相変化、あるいは伝送効率の変化等の変化値のいずれかから、出力増加信号や電池情報を検出することもできる。内蔵電池52の充電電流変化によって、送電コイル11のこれらの特性が変化するからである。 However, the detection circuit 17 can also detect an output increase signal and battery information from any one of change values such as a change in the current level of the power transmission coil 11, a phase change with respect to the voltage of the current, or a change in transmission efficiency. This is because these characteristics of the power transmission coil 11 change due to changes in the charging current of the internal battery 52.
 ところで、受電コイル51に変調用コンデンサー63を並列に接続して、スイッチング素子64、74をオンオフして、受電コイル51と変調用コンデンサー63との並列回路のインピーダンスを変化させる変調方式は、変調用コンデンサー63と受電コイル51との共振周波数が変化する。この変調方式は、前述したように、受電コイル51と変調用コンデンサー63との共振周波数によって、送電コイル11の電流が変化する状態が変動する。図6は、X軸を送電コイル11に供給する交流の周波数、Y軸を送電コイル11の電流変化を示すグラフである。ただし、この図において、実線で示す曲線Aは、受電コイル51の共振周波数を100kHzとし、鎖線で示す曲線Bは、受電コイル51の共振周波数を276kHzとする状態を示している。受電コイル51の共振周波数は、これと並列に接続するコンデンサーの静電容量で変化する。直列共振コンデンサー55に比べ、変調用コンデンサー63の容量が少ないことから、変調用コンデンサー63を接続した場合に共振周波数は高くなる。共振周波数が受電コイル51と並列に接続されるコンデンサーの静電容量の平方根に反比例するからである。 By the way, a modulation method in which a modulation capacitor 63 is connected in parallel to the power receiving coil 51 and the switching elements 64 and 74 are turned on and off to change the impedance of the parallel circuit of the power receiving coil 51 and the modulation capacitor 63 is a modulation method. The resonance frequency of the capacitor 63 and the power receiving coil 51 changes. In this modulation method, as described above, the state in which the current of the power transmission coil 11 changes varies depending on the resonance frequency between the power reception coil 51 and the modulation capacitor 63. FIG. 6 is a graph showing the frequency of the alternating current supplied to the power transmission coil 11 on the X axis and the current change of the power transmission coil 11 on the Y axis. However, in this figure, a curve A indicated by a solid line indicates a state where the resonance frequency of the power receiving coil 51 is 100 kHz, and a curve B indicated by a chain line indicates a state where the resonance frequency of the power receiving coil 51 is 276 kHz. The resonance frequency of the power receiving coil 51 varies depending on the capacitance of a capacitor connected in parallel. Since the capacity of the modulation capacitor 63 is smaller than that of the series resonance capacitor 55, the resonance frequency becomes higher when the modulation capacitor 63 is connected. This is because the resonance frequency is inversely proportional to the square root of the capacitance of the capacitor connected in parallel with the power receiving coil 51.
 この図から、受電コイルに変調用コンデンサーを接続して、スイッチング素子をオンオフして、共振周波数を100kHzから276kHzに変化させても、曲線Aと曲線Bとが交差する位置における送電コイルの周波数、たとえば、約150kHzとする状態においては、曲線Aと曲線Bとが重なるので、送電コイルの電流は変化しない。変調用コンデンサーを接続しても送電コイルの電流が変化しないと、充電台は出力増加信号や電池情報を検出できなくなる。一方、上述の本実施例においては、上述のように、電圧降下変化素子を利用することにより、このような不具合を解消することができる。 From this figure, even if the modulation capacitor is connected to the power receiving coil, the switching element is turned on and off, and the resonance frequency is changed from 100 kHz to 276 kHz, the frequency of the power transmission coil at the position where the curve A and the curve B intersect, For example, in the state of about 150 kHz, since the curve A and the curve B overlap, the current of the power transmission coil does not change. If the current of the power transmission coil does not change even when the modulation capacitor is connected, the charging stand cannot detect the output increase signal or the battery information. On the other hand, in the above-described embodiment, such a problem can be eliminated by using the voltage drop changing element as described above.
 図7と図8に示す電池内蔵機器90、100の変調回路91、101は、受電コイル51に、静電容量が異なる変調用コンデンサー63を有する複数組のコンデンサー負荷回路62、72を並列に接続している。この変調回路91、101のコントロール回路68は、スイッチング素子64、74をオンオフに切り換えることで、すなわち、受電コイル51の共振周波数を変更することで、送電コイル11の電流を変化できるコンデンサー負荷回路62、72のスイッチング素子64、74をオンオフに制御して、出力増加信号や電池情報を充電台10に伝送する。ここで、図8のスイッチング素子74は、前述の図4に示すスイッチング素子74と同様に、互いに直列に接続してなる一対のペアースイッチング素子74Xで構成している。 The modulation circuits 91 and 101 of the battery built-in devices 90 and 100 shown in FIG. 7 and FIG. 8 are connected in parallel with a plurality of sets of capacitor load circuits 62 and 72 each having a modulation capacitor 63 having a different capacitance. is doing. The control circuit 68 of the modulation circuits 91 and 101 is a capacitor load circuit 62 that can change the current of the power transmission coil 11 by switching the switching elements 64 and 74 on and off, that is, by changing the resonance frequency of the power reception coil 51. , 72 are controlled to turn on and off, and an output increase signal and battery information are transmitted to the charging base 10. Here, like the switching element 74 shown in FIG. 4 described above, the switching element 74 shown in FIG. 8 includes a pair of pair switching elements 74X connected in series.
 図7と図8の電池内蔵機器90、100は、複数組のコンデンサー負荷回路62、72を備えるので、送電コイル11の周波数によっては、変調用コンデンサー63を接続する状態と、接続しない状態とで、送電コイル11の電流を変化できない状態とならないように、変調用コンデンサー63の接続と非接続とで送電コイル11の電流を変化できるコンデンサー負荷回路62、72のスイッチング素子64、74をオンオフに切り換えて、出力増加信号や電池情報を伝送する。したがって、この電池内蔵機器90、100は、複数のコンデンサー負荷回路62、72の変調用コンデンサー63を、受電コイル51の共振周波数を送電コイル11の電流(あるいは電圧、電流の電圧に対する位相、あるいは伝送効率)を変更できる周波数に特定することで、出力増加信号や電池情報を充電台10に正確に伝送できる。 The battery built-in devices 90 and 100 in FIGS. 7 and 8 include a plurality of sets of capacitor load circuits 62 and 72. Therefore, depending on the frequency of the power transmission coil 11, the modulation capacitor 63 is connected and not connected. The switching elements 64 and 74 of the capacitor load circuits 62 and 72 that can change the current of the power transmission coil 11 by connecting and disconnecting the modulation capacitor 63 are turned on and off so that the current of the power transmission coil 11 cannot be changed. Then, an output increase signal and battery information are transmitted. Therefore, the battery built-in devices 90 and 100 include the modulation capacitors 63 of the plurality of capacitor load circuits 62 and 72, the resonance frequency of the power receiving coil 51 as the current (or voltage, phase of the current with respect to the voltage, or transmission). By specifying a frequency that can change (efficiency), an output increase signal and battery information can be accurately transmitted to the charging stand 10.
 さらに、図3ないし図5、図7及び図8の電池内蔵機器50、70、80、90、100は、整流回路53の出力で内蔵電池52を充電する状態において、電池情報を充電台10に伝送するために、さらにサブ変調回路66、76、86も備えている。 Further, the battery built-in devices 50, 70, 80, 90, and 100 shown in FIGS. 3 to 5, 7, and 8 store battery information in the charging stand 10 in a state where the built-in battery 52 is charged by the output of the rectifier circuit 53. Sub-modulation circuits 66, 76 and 86 are also provided for transmission.
 図3と図7のサブ変調回路66は、受電コイル51の出力を整流する整流回路53と内蔵電池52との間に接続している電圧降下変化素子67と、内蔵電池52の電池情報を検出する電池情報検出回路59と、この電池情報検出回路59の信号で電圧降下変化素子67の電圧降下を変化させるコントロール回路68とを備えている。 The sub-modulation circuit 66 shown in FIGS. 3 and 7 detects battery information of the voltage drop changing element 67 connected between the rectifier circuit 53 that rectifies the output of the power receiving coil 51 and the built-in battery 52, and the battery information of the built-in battery 52. And a control circuit 68 that changes the voltage drop of the voltage drop changing element 67 by a signal from the battery information detection circuit 59.
 図3と図7の電圧降下変化素子67は、ダイオード67Aとスイッチング素子67Bの並列回路である。ダイオード67Aは、内蔵電池52に充電電流を流す方向に接続されて、整流回路53の出力で内蔵電池52を充電する。ダイオード67Aは、順方向に電流を流す状態で所定の電圧降下を発生する。ダイオード67Aの順方向の電圧降下は、抵抗器のように電流に比例して大きくならず、一定の電流範囲でほぼ一定となる。したがって、整流回路53の出力電圧は、ダイオード67Aの電圧降下と内蔵電池52の電圧との加算値となる。通常の充電電流の変動範囲では内蔵電池52の電圧はさほど変化しないことから、整流回路53の出力電圧はダイオード67の電圧降下分だけ持ち上がり、受電コイル51に流れる充電電流が下がり、送電コイル11に流れる電流を変化させる。 3 and 7 is a parallel circuit of a diode 67A and a switching element 67B. The diode 67 </ b> A is connected in a direction in which a charging current flows to the internal battery 52, and charges the internal battery 52 with the output of the rectifier circuit 53. The diode 67A generates a predetermined voltage drop with a current flowing in the forward direction. The voltage drop in the forward direction of the diode 67A does not increase in proportion to the current as in the resistor, but is almost constant over a certain current range. Therefore, the output voltage of the rectifier circuit 53 is an added value of the voltage drop of the diode 67A and the voltage of the built-in battery 52. Since the voltage of the built-in battery 52 does not change so much in the normal charging current fluctuation range, the output voltage of the rectifier circuit 53 is increased by the voltage drop of the diode 67, and the charging current flowing in the power receiving coil 51 is reduced. Change the flowing current.
 スイッチング素子67Bは、オン状態におけるオン抵抗の小さい素子、たとえばFETやトランジスタなどの半導体スイッチング素子である。オン抵抗の小さいスイッチング素子67Bは、オン状態でダイオード67Aの両端を短絡して、ダイオード両端の電圧降下をほぼ0Vとする。したがって、スイッチング素子67Bのオン状態において、整流回路53の出力電圧はダイオード67Aで電圧降下することなく内蔵電池52に供給され、スイッチング素子67Bのオフ状態では、整流回路53の出力電圧は、ダイオード67Aで電圧降下されて内蔵電池52に供給される。ダイオード67Aで電圧降下して充電される内蔵電池52の充電電流は、ダイオード67Aで電圧降下することなく充電される充電電流よりも小さくなる。すなわち、スイッチング素子67Bをオンオフに制御することで、内蔵電池52の充電電流を変化できる。 The switching element 67B is an element having a low on-resistance in the on state, for example, a semiconductor switching element such as an FET or a transistor. The switching element 67B having a small on-resistance short-circuits both ends of the diode 67A in the on state so that the voltage drop across the diode is almost 0V. Therefore, in the ON state of the switching element 67B, the output voltage of the rectifier circuit 53 is supplied to the built-in battery 52 without voltage drop by the diode 67A, and in the OFF state of the switching element 67B, the output voltage of the rectifier circuit 53 is the diode 67A. The voltage is dropped and supplied to the internal battery 52. The charging current of the built-in battery 52 charged with a voltage drop at the diode 67A is smaller than the charging current charged without a voltage drop at the diode 67A. That is, the charging current of the built-in battery 52 can be changed by controlling the switching element 67B to be on / off.
 内蔵電池52の充電電流は受電コイル51から供給されるので、内蔵電池52の充電電流が変化すると、受電コイル51の負荷が変化する。受電コイル51の負荷が変化すると、送電コイル11の電流、電圧、位相などが変化するので、充電台10は、送電コイル11のこれらの変化を検出して、スイッチング素子67Bのオンオフを検出できる。したがって、電池内蔵機器50が、出力増加信号や電池情報でスイッチング素子67Bをオンオフに切り換えるように変調して、出力増加信号や電池情報を充電台10に伝送できる。 Since the charging current of the internal battery 52 is supplied from the power receiving coil 51, when the charging current of the internal battery 52 changes, the load of the power receiving coil 51 changes. When the load of the power receiving coil 51 changes, the current, voltage, phase, and the like of the power transmission coil 11 change, so that the charging stand 10 can detect these changes in the power transmission coil 11 and detect the on / off state of the switching element 67B. Therefore, the battery built-in device 50 can modulate the switching element 67B to be turned on / off with the output increase signal or the battery information, and transmit the output increase signal or the battery information to the charging stand 10.
 スイッチング素子67Bは、コントロール回路68でオンオフに制御される。コントロール回路68は、出力増加信号や電池情報でスイッチング素子67Bをオンオフに切り換えて、出力増加信号や電池情報を充電台10に伝送する。コントロール回路68は、出力増加信号や電池情報をデジタル信号として伝送する。電池情報は、充電される内蔵電池52の満充電、残容量、電圧、充電している電流、電池の温度、電池のシリアル番号、電池の充電電流を特定する許容充電電流、電池の充電をコントロールする許容温度等である。これ等の電池情報や出力増加信号をデジタル信号として、スイッチング素子67Bを制御して伝送する。 The switching element 67B is controlled on and off by the control circuit 68. The control circuit 68 switches the switching element 67B on and off with the output increase signal and the battery information, and transmits the output increase signal and the battery information to the charging stand 10. The control circuit 68 transmits an output increase signal and battery information as a digital signal. The battery information controls the full charge, remaining capacity, voltage, charging current, battery temperature, battery serial number, allowable charging current that identifies the battery charging current, and battery charging. Allowable temperature to be used. The battery information and the output increase signal are transmitted as a digital signal by controlling the switching element 67B.
 コントロール回路68は、伝送タイミングにおいては、出力増加信号や電池情報を示すデジタル信号でスイッチング素子67Bをオンオフに切り換えて、電圧降下変化素子67の電圧降下を変化して、すなわち変調して出力増加信号や電池情報を伝送する。たとえば、コントロール回路68は、1000bpsのスピードでスイッチング素子67Bをオンオフ制御して、出力増加信号や電池情報を伝送する。ただし、コントロール回路68は、500bps~5000bpsで出力増加信号や電池情報を伝送することもできる。伝送タイミングにおいて1000bpsで出力増加信号や電池情報を伝送した後、非伝送タイミングにおいては、出力増加信号や電池情報の伝送を停止して内蔵電池52を正常な状態で充電する。伝送タイミングにおいて、スイッチング素子67Bがオンオフに切り換えられる。 At the transmission timing, the control circuit 68 switches the switching element 67B on and off with a digital signal indicating an output increase signal or battery information, changes the voltage drop of the voltage drop change element 67, that is, modulates the output increase signal. And transmit battery information. For example, the control circuit 68 controls on / off of the switching element 67B at a speed of 1000 bps and transmits an output increase signal and battery information. However, the control circuit 68 can also transmit an output increase signal and battery information at 500 bps to 5000 bps. After the output increase signal and the battery information are transmitted at 1000 bps at the transmission timing, the transmission of the output increase signal and the battery information is stopped and the built-in battery 52 is charged in a normal state at the non-transmission timing. At the transmission timing, the switching element 67B is switched on and off.
 コントロール回路68は、非伝送タイミングにおいて、スイッチング素子67Bをオン状態に保持して、ダイオード67Aの両端を短絡する。この状態で、整流回路53の出力は直接に内蔵電池52に供給されて充電する。この方式は、非伝送タイミングにおいて内蔵電池52を効率よく充電できる。ただし、非伝送タイミングにおいて、スイッチング素子をオフに保持することもできる。 The control circuit 68 holds the switching element 67B in the ON state at the non-transmission timing, and short-circuits both ends of the diode 67A. In this state, the output of the rectifier circuit 53 is directly supplied to the built-in battery 52 for charging. This method can efficiently charge the internal battery 52 at the non-transmission timing. However, the switching element can be kept off at the non-transmission timing.
 充電台10は、検出回路17でもって、送電コイル11の電圧レベル変化又は/及び電流レベル変化から、受電コイル51の負荷変動を検出して、出力増加信号や電池情報を検出する。図3と図7のサブ変調回路66は、内蔵電池52の充電電流又は/及び電圧を変化させて受電コイル51の負荷を変化させる。受電コイル51の充電電流又は/及び電圧が変化すると、送電コイル11が受電コイル51に電磁結合していることから、送電コイル11の電圧レベル又は/及び電流レベルが変化する。送電コイル11の電圧レベル又は/及び電流レベルは、スイッチング素子67Bのオンオフに同期して変化するので、送電コイル11の電圧レベル又は/及び電流レベルの変化からスイッチング素子67Bのオンオフを検出できる。コントロール回路68は、出力増加信号や電池情報を示すデジタル信号でスイッチング素子67Bをオンオフに切り換えているので、検出回路17がスイッチング素子67Bのオンオフを検出することで、出力増加信号や電池情報を示すデジタル信号を検出し、検出されるデジタル信号から、出力増加信号や、充電している電池の満充電、残容量、電圧、電流、温度などを検出することができる。 The charging stand 10 detects the load fluctuation of the power receiving coil 51 from the voltage level change or / and the current level change of the power transmission coil 11 by the detection circuit 17, and detects an output increase signal and battery information. The sub-modulation circuit 66 shown in FIGS. 3 and 7 changes the load of the power receiving coil 51 by changing the charging current or / and voltage of the internal battery 52. When the charging current or / and voltage of the power receiving coil 51 is changed, the power transmission coil 11 is electromagnetically coupled to the power receiving coil 51, so that the voltage level and / or current level of the power transmission coil 11 is changed. Since the voltage level and / or current level of the power transmission coil 11 changes in synchronization with the on / off state of the switching element 67B, the on / off state of the switching element 67B can be detected from the change in the voltage level or / and current level of the power transmission coil 11. Since the control circuit 68 switches the switching element 67B on and off with a digital signal indicating an output increase signal and battery information, the detection circuit 17 indicates the output increase signal and battery information when the switching circuit 67B is detected on and off. A digital signal can be detected, and an output increase signal, full charge, remaining capacity, voltage, current, temperature, and the like of a charged battery can be detected from the detected digital signal.
 ただし、検出回路17は、送電コイル11の電流レベルの変化、電圧レベルの変化、電流の電圧に対する位相変化、あるいは伝送効率の変化等の変化値のいずれかから、出力増加信号や電池情報を検出することもできる。内蔵電池52の充電電流変化によって、送電コイル11のこれらの特性が変化するからである。 However, the detection circuit 17 detects an output increase signal and battery information from any one of change values such as a change in the current level of the power transmission coil 11, a change in the voltage level, a phase change with respect to the voltage of the current, or a change in transmission efficiency. You can also This is because these characteristics of the power transmission coil 11 change due to changes in the charging current of the internal battery 52.
 図3と図7の電池内蔵機器50、90のサブ変調回路66は、電圧降下変化素子67をダイオード67Aとスイッチング素子67Bとの並列回路とする。図4と図8に示す電池内蔵機器70、100のサブ変調回路76は、電圧降下変化素子77を寄生ダイオード77Aを有するFET77Bとする。寄生ダイオード77Aを有するFET77Bは、ダイオード67Aと並列にスイッチング素子67Bを接続している図3と図7の電圧降下変化素子67と実質的には等価な回路となる。したがって、この電池内蔵機器70、100は、電圧降下変化素子77のスイッチング素子であるFET77Bをオンオフに制御して、図3と図7の電池内蔵機器50、90と同じように、出力増加信号や電池情報を充電台10に伝送できる。 3 and 7, the sub modulation circuit 66 of the battery built-in devices 50 and 90 has a voltage drop changing element 67 as a parallel circuit of a diode 67A and a switching element 67B. In the sub-modulation circuit 76 of the battery built-in devices 70 and 100 shown in FIGS. 4 and 8, the voltage drop changing element 77 is an FET 77B having a parasitic diode 77A. The FET 77B having the parasitic diode 77A is a circuit substantially equivalent to the voltage drop changing element 67 of FIGS. 3 and 7 in which the switching element 67B is connected in parallel with the diode 67A. Therefore, the battery built-in devices 70 and 100 control the FET 77B, which is the switching element of the voltage drop changing element 77, to be turned on and off, and in the same way as the battery built-in devices 50 and 90 in FIGS. Battery information can be transmitted to the charging stand 10.
 この電圧降下変化素子77は、寄生ダイオード77Aの順方向を、内蔵電池52を充電する電流を流す方向とする。この電圧降下変化素子77は、FET77Bをコントロール回路68でオンオフに制御して、内蔵電池52の充電電流を変化させる。FET77Bがオフの状態で、内蔵電池52は寄生ダイオード77Aを介して充電される。このため、寄生ダイオード77Aの両端に電圧降下が発生して、整流回路53の出力電圧は寄生ダイオード77Aの電圧降下分だけ持ち上がり、受電コイル51に流れる充電電流が下がる。FET77Bがオンの状態では、寄生ダイオード77Aの電圧降下はほぼ0Vとなり、整流回路53の出力電圧はほぼ内蔵電池52と同じ電圧となり受電コイル51に流れる充電電流は増える。 In this voltage drop changing element 77, the forward direction of the parasitic diode 77A is a direction in which a current for charging the built-in battery 52 flows. The voltage drop changing element 77 controls the FET 77B to be turned on / off by the control circuit 68, and changes the charging current of the built-in battery 52. With the FET 77B turned off, the built-in battery 52 is charged via the parasitic diode 77A. Therefore, a voltage drop occurs at both ends of the parasitic diode 77A, the output voltage of the rectifier circuit 53 is increased by the voltage drop of the parasitic diode 77A, and the charging current flowing through the power receiving coil 51 is lowered. When the FET 77B is on, the voltage drop of the parasitic diode 77A is almost 0V, the output voltage of the rectifier circuit 53 is almost the same voltage as the built-in battery 52, and the charging current flowing through the power receiving coil 51 is increased.
 さらに、図5に示す電池内蔵機器80のサブ変調回路86は、電圧降下変化素子87を、寄生ダイオードのないFETやトランジスタ等の半導体スイッチング素子で実現している。図の電圧降下変化素子87は、FET87Bとしており、このFET87Bを充電スイッチ54に併用している。この電圧降下変化素子87は、オン抵抗を変化させて、出力増加信号や電池情報を充電台10に伝送する。この電圧降下変化素子87は、オン抵抗を、ほぼ0Ωと、0Ωではない低抵抗な状態とに変化させて、内蔵電池52の充電電流又は/及び電圧をコントロールする。電圧降下変化素子87のオン抵抗は、コントロール回路68からゲートやベースに入力される信号で制御される。FET87Bの電圧降下変化素子87は、コントロール回路68からゲートに入力される
信号でオン抵抗を変化させる。トランジスタの電圧降下変化素子は、コントロール回路からベースに入力される電流でオン抵抗を変化させる。この電圧降下変化素子87も、非伝送タイミングにおいては、半導体スイッチング素子のオン抵抗を小さく制御して、整流回路53の出力で内蔵電池52を効率よく充電する。
Furthermore, the sub modulation circuit 86 of the battery built-in device 80 shown in FIG. 5 implements the voltage drop changing element 87 by a semiconductor switching element such as an FET or a transistor without a parasitic diode. The voltage drop changing element 87 in the figure is an FET 87B, and this FET 87B is used in combination with the charge switch 54. The voltage drop changing element 87 changes the on-resistance and transmits an output increase signal and battery information to the charging base 10. The voltage drop changing element 87 controls the charging current or / and voltage of the built-in battery 52 by changing the on-resistance to approximately 0Ω and a low resistance state that is not 0Ω. The on-resistance of the voltage drop changing element 87 is controlled by a signal input from the control circuit 68 to the gate and base. The voltage drop changing element 87 of the FET 87B changes the on-resistance with a signal input from the control circuit 68 to the gate. The voltage drop changing element of the transistor changes the on-resistance with a current input from the control circuit to the base. The voltage drop changing element 87 also controls the on-resistance of the semiconductor switching element to be small at the non-transmission timing, and efficiently charges the internal battery 52 with the output of the rectifier circuit 53.
 さらにまた、電圧降下変化素子は、図示しないが、抵抗器とスイッチング素子との並列回路とで実現することもできる。この電圧降下変化素子は、スイッチング素子で抵抗器の両端を短絡して電圧降下をほぼ0Vに、スイッチング素子をオフとして抵抗器の電圧降下を大きくして、内蔵電池の充電電流を変化させて、出力増加信号や電池情報を充電台に伝送する。 Furthermore, although the voltage drop changing element is not shown, it can also be realized by a parallel circuit of a resistor and a switching element. This voltage drop changing element is a switching element that short-circuits both ends of the resistor to reduce the voltage drop to almost 0V, and the switching element is turned off to increase the voltage drop of the resistor, thereby changing the charging current of the built-in battery, An output increase signal and battery information are transmitted to the charging stand.
 以上のサブ充電回路66、76、86は、制御回路65が充電スイッチ54をオンに切り換えて、内蔵電池52を充電する状態において、電池情報を充電台10に伝送することができる。ただ、これらのサブ変調回路も、電池内蔵機器が充電台にセットされて、電池内蔵機器から充電台にID情報等の電池情報が伝送される充電開始タイミングにおいて、出力増加信号を充電台に伝送することもできる。 The sub charging circuits 66, 76, 86 described above can transmit battery information to the charging base 10 when the control circuit 65 switches on the charging switch 54 and charges the built-in battery 52. However, these sub-modulation circuits also transmit an output increase signal to the charging stand at the charging start timing when the battery built-in device is set on the charging stand and battery information such as ID information is transmitted from the battery built-in device to the charging stand. You can also
 これらの電池内蔵機器50、70、80、90、100は、サブ変調回路66、76、86と変調回路61、71、81、91、101の両方で出力増加信号や電池情報を充電台10に伝送することで、より確実に出力増加信号や電池情報を充電台10に伝送する。この電池内蔵機器50、70、80、90、100は、サブ変調回路66、76、86と変調回路61、71、81、91、101とで、時分割に出力増加信号や電池情報を充電台10に伝送する。サブ変調回路66、76、86と変調回路61、71、81、91、101とで時分割に出力増加信号や電池情報を伝送する電池内蔵機器50、70、80、90、100は、サブ変調回路66、76、86で出力増加信号や電池情報を伝送した最後に、変調回路61、71、81、91、101に切り換える切換信号を出力し、また変調回路61、71、81、91、101で出力増加信号や電池情報を伝送した最後に、サブ変調回路66、76、86に切り換える切換信号を出力する。充電台10は、切換信号を検出して、サブ変調回路66、76、86と変調回路61、71、81、91、101の信号から出力増加信号や電池情報を検出する。また、時分割にサブ変調回路66、76、86と変調回路61、71、81、91、101の両方で出力増加信号や電池情報を伝送する電池内蔵機器50、70、80、90、100は、サブ変調回路66、76、86と変調回路61、71、81、91、101とで、たとえば、伝送速度を500bps~5000bpsの間で異なる速度とする等の異なる信号として出力増加信号や電池情報を伝送して、充電台10がサブ変調回路66、76、86の信号と変調回路61、71、81、91、101の信号とを識別することができる。 These battery built-in devices 50, 70, 80, 90, and 100 provide the charging base 10 with an output increase signal and battery information in both the sub-modulation circuits 66, 76, and 86 and the modulation circuits 61, 71, 81, 91, and 101. By transmitting, an output increase signal and battery information are transmitted to the charging stand 10 more reliably. The battery built-in devices 50, 70, 80, 90, 100 are sub-modulation circuits 66, 76, 86 and modulation circuits 61, 71, 81, 91, 101. 10 is transmitted. The battery built-in devices 50, 70, 80, 90, 100 that transmit the output increase signal and the battery information in a time division manner with the sub modulation circuits 66, 76, 86 and the modulation circuits 61, 71, 81, 91, 101 are sub modulation At the end of transmitting the output increase signal or battery information in the circuits 66, 76, 86, a switching signal for switching to the modulation circuits 61, 71, 81, 91, 101 is output, and the modulation circuits 61, 71, 81, 91, 101 are output. Finally, the switching signal for switching to the sub-modulation circuits 66, 76, 86 is output at the end of transmitting the output increase signal and the battery information. The charging stand 10 detects the switching signal and detects an output increase signal and battery information from the signals of the sub modulation circuits 66, 76, 86 and the modulation circuits 61, 71, 81, 91, 101. Also, the battery built-in devices 50, 70, 80, 90, 100 that transmit the output increase signal and the battery information in both the sub modulation circuits 66, 76, 86 and the modulation circuits 61, 71, 81, 91, 101 in time division are The sub modulation circuits 66, 76, 86 and the modulation circuits 61, 71, 81, 91, 101, for example, output increase signals and battery information as different signals such as different transmission speeds between 500 bps and 5000 bps. Thus, the charging base 10 can distinguish between the signals of the sub-modulation circuits 66, 76, 86 and the signals of the modulation circuits 61, 71, 81, 91, 101.
 ただし、電池内蔵機器は、変調回路のみで出力増加信号や電池情報を充電台に伝送し、あるいはサブ変調回路のみで出力増加信号や電池情報を充電台に伝送することもできる。また、サブ変調回路が故障する状態では、変調回路で出力増加信号や電池情報を充電台に伝送し、変調回路が故障する状態では、サブ変調回路で出力増加信号や電池情報を充電台に伝送することもできる。 However, the battery built-in device can transmit the output increase signal and the battery information to the charging stand only by the modulation circuit, or can transmit the output increase signal and the battery information to the charging stand only by the sub modulation circuit. When the sub-modulation circuit fails, the modulation circuit transmits an output increase signal and battery information to the charging stand. When the modulation circuit fails, the sub-modulation circuit transmits an output increase signal and battery information to the charging stand. You can also
 以上の電池内蔵機器50、70、80、90、100では、コントロール回路68が、変調回路61、71、81のスイッチング素子64、74、84とサブ変調回路66、76、86の電圧降下変化素子67、77、87を制御する。このコントロール回路68は、出力増加信号や電池情報でスイッチング素子64、74、84をオンオフに切り換えて、出力増加信号や電池情報を充電台10に伝送する。コントロール回路68は、出力増加信号や電池情報をデジタル信号として、スイッチング素子64、74、84を制御して伝送する。 In the battery built-in devices 50, 70, 80, 90, 100 described above, the control circuit 68 includes the switching elements 64, 74, 84 of the modulation circuits 61, 71, 81 and the voltage drop change elements of the sub modulation circuits 66, 76, 86. 67, 77 and 87 are controlled. The control circuit 68 switches the switching elements 64, 74, and 84 on and off with an output increase signal and battery information, and transmits the output increase signal and battery information to the charging stand 10. The control circuit 68 controls the switching elements 64, 74, and 84 to transmit the output increase signal and the battery information as digital signals.
 コントロール回路68は、所定の周期で繰り返し、すなわち、出力増加信号や電池情報を伝送する伝送タイミングと、出力増加信号や電池情報を伝送しない非伝送タイミングとを所定の周期で繰り返して、出力増加信号や電池情報を伝送する。ただし、コントロール回路68はサブ変調回路66、76、86も制御するので、サブ変調回路66、76、86の電圧降下変化素子67、77、87と変調回路61、71、81のスイッチング素子64、74、84とは時分割に制御する。変調回路61、71、81は、伝送タイミングにおいては、出力増加信号や電池情報を示すデジタル信号でスイッチング素子64、74、84をオンオフに切り換えて、受電コイル51の並列容量性を変調して出力増加信号や電池情報を伝送する。たとえば、コントロール回路68は、1000bpsのスピードでスイッチング素子64、74、84をオンオフ制御して、出力増加信号や電池情報を伝送する。ただし、コントロール回路68は、500bps~5000bpsで出力増加信号や電池情報を伝送することもできる。伝送タイミングにおいて1000bpsで出力増加信号や電池情報を伝送した後、非伝送タイミングにおいては、出力増加信号や電池情報の伝送を停止して電池を正常な状態で充電する。伝送タイミングにおいて、スイッチング素子64、74、84がオンオフに切り換えられる。出力増加信号や電池情報を伝送するために、受電コイル51に変調用コンデンサー63が接続される。変調用コンデンサー63は、受電コイル51に対して並列に接続されることから、送電コイル11から受電コイル51に電力搬送する効率を設計された最適状態よりも若干だが低下させる。ただ、伝送タイミングが非伝送タイミングに対して短い時間であり、また、この伝送タイミングにおいても変調用コンデンサー63が受電コイル51に接続されるタイミングは非常に短いので、受電コイル51に変調用コンデンサー63を接続する状態で電力搬送の効率が低下しても、トータル時間では、電力搬送の効率低下はほとんど無視できる程度にできる。 The control circuit 68 repeats at a predetermined cycle, that is, a transmission timing for transmitting the output increase signal and the battery information and a non-transmission timing at which the output increase signal and the battery information are not transmitted at a predetermined cycle. And transmit battery information. However, since the control circuit 68 also controls the sub modulation circuits 66, 76, 86, the voltage drop changing elements 67, 77, 87 of the sub modulation circuits 66, 76, 86 and the switching element 64 of the modulation circuits 61, 71, 81, 74 and 84 are controlled in a time-sharing manner. At the transmission timing, the modulation circuits 61, 71, 81 switch the switching elements 64, 74, 84 on and off with a digital signal indicating an output increase signal or battery information, and modulate and output the parallel capacitance of the power receiving coil 51. Transmit increase signal and battery information. For example, the control circuit 68 performs on / off control of the switching elements 64, 74, and 84 at a speed of 1000 bps, and transmits an output increase signal and battery information. However, the control circuit 68 can also transmit an output increase signal and battery information at 500 bps to 5000 bps. After the output increase signal and battery information are transmitted at 1000 bps at the transmission timing, the transmission of the output increase signal and battery information is stopped and the battery is charged in a normal state at the non-transmission timing. At the transmission timing, the switching elements 64, 74, and 84 are switched on and off. A modulation capacitor 63 is connected to the power receiving coil 51 in order to transmit an output increase signal and battery information. Since the modulation capacitor 63 is connected in parallel to the power reception coil 51, the efficiency of power transfer from the power transmission coil 11 to the power reception coil 51 is slightly reduced from the designed optimum state. However, the transmission timing is shorter than the non-transmission timing, and the timing at which the modulation capacitor 63 is connected to the power receiving coil 51 is very short even at this transmission timing. Even if the power transfer efficiency is reduced in a state where the power is connected, the reduction in power transfer efficiency can be almost negligible in the total time.
 さらに、図3ないし図5、図7、及び図8に示す電池内蔵機器50、70、80、90、100は、受電コイル51に接続されて、受電コイル51に誘導される交流を直流に変換して、内蔵電池52に充電電力を供給する整流回路53を備えている。整流回路53は、受電コイル51から入力される交流を直流に変換して、内蔵電池52を充電する。図3、図5、及び図7の整流回路53は、同期整流回路53Aである。同期整流回路53Aは、ブリッジに接続している4個のFET53aと、各々のFET53aのオンオフを制御するスイッチング回路53bとを備えている。スイッチング回路53bは、受電コイル51から出力される交流に同期してFET53aをスイッチングして、入力される交流を直流に変換して出力する。同期整流回路53Aは、FET53aの電圧降下がダイオードよりも小さいので、ダイオードブリッジよりも効率よく、電圧降下による電力損失を少なくして整流できる特徴がある。ただし、整流回路53には、図4と図8に示すように、同期整流回路に代わってダイオードブリッジ53Bも使用できるのは言うまでもない。 Further, the battery built-in devices 50, 70, 80, 90, 100 shown in FIGS. 3 to 5, 7, and 8 are connected to the power receiving coil 51 and convert alternating current induced in the power receiving coil 51 into direct current. A rectifier circuit 53 that supplies charging power to the built-in battery 52 is provided. The rectifier circuit 53 converts the alternating current input from the power receiving coil 51 into direct current, and charges the internal battery 52. The rectifier circuit 53 in FIGS. 3, 5, and 7 is a synchronous rectifier circuit 53A. The synchronous rectifier circuit 53A includes four FETs 53a connected to the bridge, and a switching circuit 53b that controls on / off of each FET 53a. The switching circuit 53b switches the FET 53a in synchronization with the alternating current output from the power receiving coil 51, converts the input alternating current to direct current, and outputs the direct current. Since the voltage drop of the FET 53a is smaller than that of the diode, the synchronous rectifier circuit 53A has a feature that it can rectify more efficiently than a diode bridge and reduce power loss due to the voltage drop. However, it goes without saying that a diode bridge 53B can be used for the rectifier circuit 53 in place of the synchronous rectifier circuit as shown in FIGS.
 整流回路53の出力側と内蔵電池52との間に接続されて、内蔵電池52の充電をコントロールする充電スイッチ54は、制御回路65でオンオフに制御される。この制御回路65は、レベル検出器58からの信号と、電池情報検出回路59からの信号で充電スイッチ54をオンオフに制御する。制御回路65は、レベル検出器58が出力増加信号を出力しない状態、すなわち、受電コイル51の出力が設定値よりも大きく、微少出力状態でない状態で、充電スイッチ54をオンに制御して内蔵電池52を充電する。さらに制御回路65は、内蔵電池52が充電できる状態にあるかどうかを、電池情報検出回路59からの信号で検出して、内蔵電池52が充電できる状態にあると、充電スイッチ54をオンとして内蔵電池52を充電する。すなわち、制御回路65は、レベル検出器58から出力増加信号が入力されず、かつ、電池情報検出回路59から内蔵電池52を充電できる状態にある信号が入力される状態で、充電スイッチ54をオンとして内蔵電池52を充電する。内蔵電池52が満充電され、あるいは電池温度が高くなると、制御回路65は充電スイッチ54をオフに切り換えて、内蔵電池52の充電を停止する。 A charging switch 54 that is connected between the output side of the rectifier circuit 53 and the built-in battery 52 and controls charging of the built-in battery 52 is controlled to be turned on and off by a control circuit 65. The control circuit 65 controls the charging switch 54 to be turned on / off by a signal from the level detector 58 and a signal from the battery information detection circuit 59. The control circuit 65 controls the charging switch 54 to be turned on in a state where the level detector 58 does not output an output increase signal, that is, in a state where the output of the power receiving coil 51 is larger than the set value and is not in a minute output state. 52 is charged. Further, the control circuit 65 detects whether or not the built-in battery 52 is in a chargeable state by a signal from the battery information detection circuit 59. If the built-in battery 52 is in a chargeable state, the control circuit 65 turns on the charge switch 54 and incorporates it. The battery 52 is charged. That is, the control circuit 65 turns on the charging switch 54 with no output increase signal input from the level detector 58 and a signal indicating that the built-in battery 52 can be charged from the battery information detection circuit 59. The built-in battery 52 is charged as follows. When the built-in battery 52 is fully charged or the battery temperature becomes high, the control circuit 65 switches the charging switch 54 to OFF and stops charging the built-in battery 52.
 以上の電池内蔵機器50、70、80、90、100は、受電コイル51の出力側にレベル検出器58を接続して、受電コイル51の出力電圧を直接に検出して、あらかじめ記憶している最低電圧に比較して微少出力状態かどうかを検出している。ただ、レベル検出器は、受電コイルの出力電圧を検出することなく、図9に示すように、整流回路53の出力電圧を検出して受電コイル51の出力電圧を検出することもできる。図9の電池内蔵機器は110、マイコンを内蔵する制御回路115にレベル検出器118の機能を持たせて、このレベル検出器118で、受電コイル51の出力を検出している。この制御回路115は、動作電源として整流回路53の出力側に入力ライン119を接続しており、レベル検出器118が、制御回路115に供給される動作電力から受電コイル51の出力を検出している。この回路構成によると、充電開始タイミングにおいて、充電スイッチ54をオフとする状態で、制御回路115に供給される整流後の電圧又は/及び電流(制御回路115で消費、利用される電流等)を検出して、これらを設定値に比較して微少出力状態であるかどうかを判定できる。このレベル検出器118は、図示しないが、例えば、マイコンである制御回路に、印加電圧が閾値が越えると電流が流れるツェナーダイオードを保護用に接続して、電流検出抵抗に流れる電流を検出することで、充電スイッチ54をオフとする状態においても、制御回路115に供給される整流後の電圧又は/及び電流を検出できる。また、このようなツェナーダイオードがなくても、制御回路の消費電流を、電流検出抵抗にて検出することもできる。このレベル検出器118は、例えば、制御回路115に供給される整流後の電圧及び電流を検出し、これらの積から供給電力を求め、この供給電力を所定値と比較して、所定値以下であれば微少出力状態として出力増加信号を出力するように制御回路115により変調回路61を動作させる。ただ、レベル検出器は、制御回路に供給される整流後の電圧を検出し、この電圧をあらかじめ記憶している最低電圧に比較して、検出電圧が設定値である最低電圧よりも低い状態で、微少出力状態と判定して出力増加信号を出力することもできる。さらに、レベル検出器は、制御回路に供給される整流後の電流を検出し、この電流をあらかじめ記憶している最低電流に比較して、検出電流が設定値である最低電流よりも低い状態で、微少出力状態と判定して出力増加信号を出力することもできる。さらに、制御回路115は、整流回路53から制御回路115への供給電力または出力電圧や電流が設定値より大きい状態では、出力増加信号を出力することなく、充電可能状態として充電スイッチ54をオンに切り変えて内蔵電池52の充電を開始する。 The battery built-in devices 50, 70, 80, 90, 100 described above are stored in advance by connecting the level detector 58 to the output side of the power receiving coil 51 and directly detecting the output voltage of the power receiving coil 51. It is detected whether or not the output voltage is very small compared to the lowest voltage. However, the level detector can also detect the output voltage of the power receiving coil 51 by detecting the output voltage of the rectifier circuit 53 as shown in FIG. 9 without detecting the output voltage of the power receiving coil. The battery built-in device in FIG. 9 has a function of a level detector 118 provided to a control circuit 115 having a microcomputer built therein, and the level detector 118 detects the output of the power receiving coil 51. This control circuit 115 has an input line 119 connected to the output side of the rectifier circuit 53 as an operating power source, and the level detector 118 detects the output of the receiving coil 51 from the operating power supplied to the control circuit 115. Yes. According to this circuit configuration, the voltage or / and the current after rectification (current consumed or used in the control circuit 115) supplied to the control circuit 115 in a state where the charging switch 54 is turned off at the charging start timing. It can be detected and compared with the set value, and it can be determined whether or not it is a minute output state. Although not shown, the level detector 118 detects, for example, a current flowing through the current detection resistor by connecting a Zener diode, through which a current flows when the applied voltage exceeds a threshold, to a control circuit, which is a microcomputer, for protection. Thus, the rectified voltage or / and current supplied to the control circuit 115 can be detected even when the charging switch 54 is turned off. Even without such a Zener diode, the current consumption of the control circuit can be detected by a current detection resistor. The level detector 118 detects, for example, the rectified voltage and current supplied to the control circuit 115, obtains supply power from these products, compares the supply power with a predetermined value, and is below a predetermined value. If so, the modulation circuit 61 is operated by the control circuit 115 so as to output an output increase signal in a minute output state. However, the level detector detects the rectified voltage supplied to the control circuit, compares this voltage with the lowest voltage stored in advance, and the detected voltage is lower than the lowest voltage that is the set value. It is also possible to output an output increase signal by determining that the output state is minute. Further, the level detector detects the current after rectification supplied to the control circuit, and compares this current with the minimum current stored in advance, and the detected current is lower than the minimum current that is the set value. It is also possible to output an output increase signal by determining that the output state is minute. Further, the control circuit 115 turns on the charging switch 54 as a chargeable state without outputting an output increase signal when the supply power or the output voltage or current from the rectifier circuit 53 to the control circuit 115 is larger than the set value. Switching is started and charging of the internal battery 52 is started.
 図2と図3に示す充電台10は、送電コイル11と、この送電コイル11に交流電力を供給する交流電源12と、電池内蔵機器50から伝送される出力増加信号を検出して、検出する出力増加信号で交流電源12の出力を制御する検出回路17を備えている。検出回路17は、電池内蔵機器50の変調回路61で変化される受電コイル51の負荷の変化を送電コイル11を介して検出して、出力増加信号を検出する。 2 and 3 detects and detects a power transmission coil 11, an AC power supply 12 that supplies AC power to the power transmission coil 11, and an output increase signal transmitted from the battery built-in device 50. A detection circuit 17 for controlling the output of the AC power supply 12 by an output increase signal is provided. The detection circuit 17 detects a change in the load of the power receiving coil 51 that is changed by the modulation circuit 61 of the battery built-in device 50 via the power transmission coil 11 to detect an output increase signal.
 図2の充電台10は、電池内蔵機器50をケーシング20の上面プレート21に載せて内蔵電池52を充電する。内蔵電池52を効率よく充電するために、充電台10は、図示しないが、送電コイル11を電池内蔵機器50の受電コイル51に接近させる機構を内蔵している。この充電台10は、受電コイル51の位置を検出して、送電コイル11を受電コイル51に接近させる機構(図示せず)を備えている。この充電台10は、上面プレート21に載せられた受電コイル51のX軸方向とY軸方向の位置を検出して、送電コイル11を検出された位置に移動させる。この充電台10は、送電コイル11を受電コイル51に接近できるので、送電コイル11から受電コイル51に効率よく電力搬送できる。ただ、本発明の電池内蔵機器と充電台は、送電コイルを受電コイルの位置に移動させることなく、電池内蔵機器を充電台の特定の位置にセットすることで、受電コイルを送電コイルに接近させて、電磁結合できる状態にできる。送電コイルを大きくして、大きな送電コイルの内側に受電コイルを配置するように、電池内蔵機器を充電台にセットして、送電コイルと受電コイルとを電磁結合できる状態にもできる。したがって、本発明は、充電台を、送電コイルを受電コイルの位置に移動して接近させるものには特定しない。 The charging stand 10 in FIG. 2 charges the internal battery 52 by placing the battery internal device 50 on the top plate 21 of the casing 20. In order to efficiently charge the internal battery 52, the charging stand 10 includes a mechanism for bringing the power transmission coil 11 close to the power reception coil 51 of the battery built-in device 50 (not shown). The charging stand 10 includes a mechanism (not shown) that detects the position of the power receiving coil 51 and causes the power transmitting coil 11 to approach the power receiving coil 51. The charging stand 10 detects the positions of the power receiving coil 51 placed on the top plate 21 in the X-axis direction and the Y-axis direction, and moves the power transmitting coil 11 to the detected position. Since the charging stand 10 can bring the power transmission coil 11 close to the power receiving coil 51, it can efficiently carry power from the power transmitting coil 11 to the power receiving coil 51. However, the battery built-in device and the charging stand according to the present invention make the power receiving coil approach the power transmitting coil by setting the battery built-in device at a specific position on the charging stand without moving the power transmitting coil to the position of the power receiving coil. Thus, the electromagnetic coupling can be achieved. By enlarging the power transmission coil and placing the power reception coil inside the large power transmission coil, the battery built-in device can be set on the charging stand so that the power transmission coil and the power reception coil can be electromagnetically coupled. Therefore, this invention does not specify a charging stand as what moves a power transmission coil to the position of a receiving coil, and makes it approach.
 送電コイル11は、上面プレート21と平行な面で渦巻き状に巻かれて、上面プレート21の上方に交流磁束を放射する。この送電コイル11は、上面プレート21に直交する交流磁束を上面プレート21の上方に放射する。送電コイル11は、交流電源12から交流電力が供給されて、上面プレート21の上方に交流磁束を放射する。 The power transmission coil 11 is wound in a spiral shape on a surface parallel to the upper surface plate 21 and radiates an alternating magnetic flux above the upper surface plate 21. The power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21. The power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21.
 交流電源12は、たとえば、20kHz~数MHzの高周波電力を送電コイル11に供給する。交流電源12は、図3に示すように、検出回路17に制御されて、送電コイル11に出力する交流電力をコントロールする。交流電源12は、検出回路17から出力増加信号が入力されると、送電コイル11に出力する交流電力を増加させる。交流電源12は、検出回路17から出力増加信号が入力されると、あらかじめ設定している割合で出力を大きくし、あるいはあらかじめ設定している電力に出力を増加させる。たとえば、交流電力を、0.1W、0.5W、1W、3W、5Wと変更できる交流電源12は、出力増加信号が入力される毎に、0.1Wから0.5Wに、0.5Wから1Wに、1Wから3Wに、3Wから5Wと出力を増加させ、あるいは、出力増加信号が入力されると、出力をあらかじめ設定している3W又は5Wに増加させる。また、交流電源12は、出力増加信号が入力される毎に、あらかじめ設定している割合、たとえば、10%~50%だけ出力を増加することもできる。 The AC power supply 12 supplies, for example, high frequency power of 20 kHz to several MHz to the power transmission coil 11. As shown in FIG. 3, the AC power supply 12 is controlled by the detection circuit 17 to control AC power output to the power transmission coil 11. When an output increase signal is input from the detection circuit 17, the AC power supply 12 increases the AC power output to the power transmission coil 11. When an output increase signal is input from the detection circuit 17, the AC power supply 12 increases the output at a preset rate or increases the output to a preset power. For example, the AC power supply 12 that can change the AC power to 0.1 W, 0.5 W, 1 W, 3 W, and 5 W can be changed from 0.1 W to 0.5 W and 0.5 W each time an output increase signal is input. The output is increased from 1 W to 1 W, from 3 W to 5 W, or when an output increase signal is input, the output is increased to 3 W or 5 W set in advance. The AC power supply 12 can also increase the output by a preset ratio, for example, 10% to 50% each time an output increase signal is input.
 充電台10は、電池内蔵機器50がセットされた状態で、交流電源12から送電コイル11に交流電力を供給する。充電台10は、ユーザーがセットスイッチ(図示せず)を押して、電池内蔵機器50がセットされたことを検出して、交流電源12から送電コイル11に交流電力を供給し、あるいは、電池内蔵機器50がセットされたことを電気的に、あるいはリミットスイッチなどで物理的に検出して、交流電源12から送電コイル11に電力を供給する。電池内蔵機器50がセットされたことを電気的に検出する充電台10は、送電コイル11から検出用のパルス信号を出力し、この検出パルス信号の受電コイル51からのエコー信号を検出し、あるいは送電コイル11のインダクタンスやインピーダンスの変化で電池内蔵機器50がセットされたことを検出できる。 The charging stand 10 supplies AC power from the AC power source 12 to the power transmission coil 11 in a state where the battery built-in device 50 is set. The charging stand 10 detects that the battery built-in device 50 has been set by a user pressing a set switch (not shown), and supplies AC power from the AC power supply 12 to the power transmission coil 11 or the battery built-in device. The fact that 50 is set is detected electrically or with a limit switch or the like, and power is supplied from the AC power supply 12 to the power transmission coil 11. The charging stand 10 that electrically detects that the battery built-in device 50 is set outputs a pulse signal for detection from the power transmission coil 11 and detects an echo signal of the detection pulse signal from the power reception coil 51, or It can be detected that the battery built-in device 50 is set by a change in inductance or impedance of the power transmission coil 11.
 以上の電池内蔵機器50と充電台10は、以下のようにして内蔵電池52を充電する。
(1)充電台10が電池内蔵機器50がセットされたかどうかを検出する。
(2)充電台10が電池内蔵機器50がセットされたことを検出すると、交流電源12が送電コイル11に交流電力を出力する。
(3)充電開始タイミングにおいて、電池内蔵機器50から充電台10に、電池のID、電圧、温度などの電池情報を伝送する。
(4)電池内蔵機器50が、レベル検出器58でもって、受電コイル51に誘導される交流信号の出力電圧を検出する。
 受電コイル51の出力電圧が設定値よりも大きいことをレベル検出器58で検出し、かつ電池情報から内蔵電池52を充電できる状態にあることを確認すると、制御回路65は充電スイッチ54をオンに切り換えて内蔵電池52の充電を開始し、内蔵電池52が満充電されると充電スイッチ54をオフに切り換えて充電を終了する。
 受電コイル51に誘導される電圧が設定値よりも小さいと、レベル検出器58は微少出力状態と判定して、出力増加信号を制御回路65とサブ変調回路66に出力し、制御回路65が充電スイッチ54をオフに保持して、内蔵電池52の充電を開始しない状態に保持する。
(5)サブ変調回路66は、レベル検出器58から入力される出力増加信号で受電コイル51の負荷を変化させて、出力増加信号を充電台10に伝送する。
(6)充電台10は、送電コイル11の電圧や周波数の変化を検出する検出回路17でもって、出力増加信号を検出し、この出力増加信号でもって、交流電源12が送電コイル11に供給する交流電力を増加させる。
(7)送電コイル11の出力が大きくなると、このことが、電池内蔵機器50のレベル検出器58に検出される。レベル検出器58が受電コイル51の出力電圧を検出して、この検出電圧が設定値よりも大きいと、充電開始タイミングを終了し、充電スイッチ54をオンに切り換えて、内蔵電池52の充電を開始する。
(8)電池内蔵機器50から出力増加信号を充電台10に伝送しても、さらに受電コイル51の出力電圧が設定値よりも低いと、充電開始タイミングを終了することなく、受電コイル51の出力電圧が設定値を越えるまで、電池内蔵機器50は出力増加信号を出力し、受電コイル51の出力電圧が設定値を越えると、充電開始タイミングを終了し、内蔵電池52の充電を開始する。
(9)内蔵電池52が満充電されると、このことが電池内蔵機器50から充電台10に伝送されて、充電台10は交流電源12から送電コイル11への交流電力の出力を遮断して、内蔵電池52の充電を終了する。
The battery built-in device 50 and the charging stand 10 described above charge the built-in battery 52 as follows.
(1) The charging stand 10 detects whether or not the battery built-in device 50 is set.
(2) When the charging stand 10 detects that the battery built-in device 50 is set, the AC power supply 12 outputs AC power to the power transmission coil 11.
(3) Battery information such as battery ID, voltage, and temperature is transmitted from the battery built-in device 50 to the charging stand 10 at the charging start timing.
(4) The battery built-in device 50 detects the output voltage of the AC signal induced in the power receiving coil 51 with the level detector 58.
When the level detector 58 detects that the output voltage of the power receiving coil 51 is larger than the set value and confirms that the internal battery 52 can be charged from the battery information, the control circuit 65 turns on the charging switch 54. Switching is started and charging of the internal battery 52 is started, and when the internal battery 52 is fully charged, the charging switch 54 is switched off to end the charging.
When the voltage induced in the power receiving coil 51 is smaller than the set value, the level detector 58 determines that the output state is minute, outputs an output increase signal to the control circuit 65 and the sub modulation circuit 66, and the control circuit 65 is charged. The switch 54 is kept off, and the built-in battery 52 is not charged.
(5) The sub modulation circuit 66 changes the load of the power receiving coil 51 with the output increase signal input from the level detector 58 and transmits the output increase signal to the charging stand 10.
(6) The charging stand 10 detects an output increase signal with a detection circuit 17 that detects a change in voltage or frequency of the power transmission coil 11, and the AC power supply 12 supplies the power transmission coil 11 with the output increase signal. Increase AC power.
(7) When the output of the power transmission coil 11 is increased, this is detected by the level detector 58 of the battery built-in device 50. When the level detector 58 detects the output voltage of the power receiving coil 51 and this detected voltage is larger than the set value, the charging start timing is terminated, the charging switch 54 is turned on, and the charging of the built-in battery 52 is started. To do.
(8) Even if an output increase signal is transmitted from the battery built-in device 50 to the charging stand 10, if the output voltage of the power receiving coil 51 is lower than the set value, the output of the power receiving coil 51 is not terminated without completing the charging start timing Until the voltage exceeds the set value, the battery built-in device 50 outputs an output increase signal. When the output voltage of the power receiving coil 51 exceeds the set value, the charging start timing is terminated and the built-in battery 52 starts charging.
(9) When the built-in battery 52 is fully charged, this is transmitted from the battery built-in device 50 to the charging stand 10, and the charging stand 10 cuts off the output of AC power from the AC power supply 12 to the power transmission coil 11. Then, the charging of the internal battery 52 is terminated.
 以上の電池内蔵機器50と充電台10は、図10に示すように、以下のステップで内蔵電池52を充電する。
[電池内蔵機器50]
[n=1のステップ]
 電池内蔵機器50が充電台10にセットされたかどうかを検出する。電池内蔵機器50は、充電台10から出力されるパルス信号を検出して、充電台10にセットされたことを検出する。
[n=2のステップ]
 電池内蔵機器50が充電台10にセットされると、サブ変調回路66でもって電池情報を充電台10に伝送する。
[n=3、4のステップ]
 レベル検出器58で受電コイル51の出力電圧を検出し、検出電圧を設定値に比較する。
[n=5のステップ]
 レベル検出器58が検出する検出電圧が設定値以下であると、サブ変調回路66が出力増加信号を出力する。
 受電コイル51の出力電圧が設定値を越えるまで、n=3~5のステップをループする。
[n=6のステップ]
 受電コイル51の出力電圧が設定値よりも大きいと、このステップにおいて制御回路65が充電スイッチ54をオンに切り換えて内蔵電池52の充電を開始する。
[n=7、8のステップ]
 内蔵電池52が満充電されるまで充電する。内蔵電池52が満充電されると充電スイッチ54をオフに切り換えて充電を終了する。
The battery built-in device 50 and the charging stand 10 as described above charge the built-in battery 52 in the following steps as shown in FIG.
[Battery built-in device 50]
[Step of n = 1]
It is detected whether or not the battery built-in device 50 is set on the charging stand 10. The battery built-in device 50 detects the pulse signal output from the charging stand 10 and detects that it is set on the charging stand 10.
[Step of n = 2]
When the battery built-in device 50 is set on the charging stand 10, the battery information is transmitted to the charging stand 10 by the sub modulation circuit 66.
[Steps n = 3, 4]
The level detector 58 detects the output voltage of the power receiving coil 51 and compares the detected voltage with a set value.
[Step n = 5]
When the detection voltage detected by the level detector 58 is equal to or lower than the set value, the sub modulation circuit 66 outputs an output increase signal.
The steps of n = 3 to 5 are looped until the output voltage of the power receiving coil 51 exceeds the set value.
[Step n = 6]
When the output voltage of the power receiving coil 51 is larger than the set value, the control circuit 65 switches on the charging switch 54 in this step and starts charging the built-in battery 52.
[Steps of n = 7, 8]
Charging is performed until the internal battery 52 is fully charged. When the built-in battery 52 is fully charged, the charging switch 54 is turned off to end charging.
[充電台10]
 充電台10は、図11に示すように、以下のステップで電池内蔵機器50に交流電力を出力する。
[n=1、2のステップ]
 電池内蔵機器50がセットされたかどうかを検出して、電池内蔵機器50がセットされると、交流電源12が送電コイル11に交流電力を出力する。
[n=3のステップ]
 検出回路17が、電池内蔵機器50から出力増加信号が伝送されるかどうかを判定する。
[n=4のステップ]
 出力増加信号を検出すると、交流電源12に出力増加信号を出力して、交流電源12が送電コイル11に出力する交流電力を増加し、出力増加信号が検出されないと、交流電源12の出力を変化させない。
[n=5、6のステップ]
 検出回路17が内蔵電池52の満充電を検出すると、交流電源12が送電コイル11への交流電力の出力を停止して充電を終了する。
[Charging stand 10]
As shown in FIG. 11, the charging stand 10 outputs AC power to the battery built-in device 50 in the following steps.
[Steps of n = 1, 2]
When the battery built-in device 50 is detected and the battery built-in device 50 is set, the AC power source 12 outputs AC power to the power transmission coil 11.
[Step n = 3]
The detection circuit 17 determines whether or not an output increase signal is transmitted from the battery built-in device 50.
[Step n = 4]
When an output increase signal is detected, an output increase signal is output to the AC power source 12, the AC power source 12 increases the AC power output to the power transmission coil 11, and if no output increase signal is detected, the output of the AC power source 12 is changed. I will not let you.
[Steps n = 5, 6]
When the detection circuit 17 detects that the built-in battery 52 is fully charged, the AC power supply 12 stops the output of AC power to the power transmission coil 11 and ends the charging.
 10…充電台
 11…送電コイル
 12…交流電源
 17…検出回路
 20…ケーシング
 21…上面プレート
 50…電池内蔵機器
 51…受電コイル
 52…内蔵電池
 53…整流回路        53A…同期整流回路
                53a…FET
                53b…スイッチング回路
                53B…ダイオードブリッジ
 54…充電スイッチ
 55…直列コンデンサー
 58…レベル検出器
 59…電池情報検出回路
 61…変調回路
 62…コンデンサー負荷回路
 63…変調用コンデンサー
 64…スイッチング素子
 65…制御回路
 66…サブ変調回路
 67…電圧降下変化素子    67A…ダイオード
                67B…スイッチング素子
 68…コントロール回路
 70…電池内蔵機器
 71…変調回路
 72…コンデンサー負荷回路
 74…スイッチング素子    74X…ペアースイッチング素子
                74a…ペアーFET
                74b…ペアーFET
 76…サブ変調回路
 77…電圧降下変化素子    77A…寄生ダイオード
                77B…FET
 78…アースライン
 79…抵抗器
 80…電池内蔵機器
 81…変調回路
 82…コンデンサー負荷回路
 83…コンデンサー
 84…スイッチング素子
 86…サブ変調回路
 87…電圧降下変化素子    87B…FET
 88…ショート回路
 89…抵抗素子
 90…電池内蔵機器
 91…変調回路
100…電池内蔵機器
101…変調回路
110…電池内蔵機器
115…制御回路
118…レベル検出器
119…入力ライン
210…充電台
211…送電コイル
212…交流電源
250…電池内蔵機器
251…受電コイル
266…サブ変調回路
DESCRIPTION OF SYMBOLS 10 ... Charging stand 11 ... Power transmission coil 12 ... AC power supply 17 ... Detection circuit 20 ... Casing 21 ... Top plate 50 ... Battery built-in apparatus 51 ... Power receiving coil 52 ... Built-in battery 53 ... Rectification circuit 53A ... Synchronous rectification circuit 53a ... FET
53b ... Switching circuit 53B ... Diode bridge 54 ... Charge switch 55 ... Series capacitor 58 ... Level detector 59 ... Battery information detection circuit 61 ... Modulation circuit 62 ... Capacitor load circuit 63 ... Modulation capacitor 64 ... Switching element 65 ... Control circuit 66 ... Sub modulation circuit 67 ... Voltage drop changing element 67A ... Diode 67B ... Switching element 68 ... Control circuit 70 ... Battery built-in equipment 71 ... Modulation circuit 72 ... Condenser load circuit 74 ... Switching element 74X ... Pair switching element 74a ... Pair FET
74b ... Pair FET
76 ... Submodulation circuit 77 ... Voltage drop changing element 77A ... parasitic diode 77B ... FET
78 ... Earth line 79 ... Resistor 80 ... Built-in battery device 81 ... Modulation circuit 82 ... Capacitor load circuit 83 ... Capacitor 84 ... Switching element 86 ... Sub modulation circuit 87 ... Voltage drop change element 87B ... FET
DESCRIPTION OF SYMBOLS 88 ... Short circuit 89 ... Resistance element 90 ... Battery built-in apparatus 91 ... Modulation circuit 100 ... Battery built-in apparatus 101 ... Modulation circuit 110 ... Battery built-in apparatus 115 ... Control circuit 118 ... Level detector 119 ... Input line 210 ... Charging stand 211 ... Power transmission coil 212 ... AC power supply 250 ... Battery built-in device 251, Power receiving coil 266 ... Sub modulation circuit

Claims (10)

  1.  内蔵電池に充電電力を供給する受電コイルを備える電池内蔵機器と、
     この電池内蔵機器の受電コイルに電磁結合される送電コイルを備える充電台とからなり、
     前記電池内蔵機器は、受電コイルの出力を内蔵電池に供給して内蔵電池を充電する充電スイッチと、前記内蔵電池の充電開始タイミングにおいて、前記受電コイルの出力を検出して、受電コイルの出力が設定値よりも小さい微少出力状態を検出して、微少出力状態において出力増加信号を出力するレベル検出器と、このレベル検出器から出力される出力増加信号でもって、受電コイルの負荷を変化させて出力増加信号を充電台に伝送する変調回路と、前記充電スイッチを制御する制御回路とを備えており、
     前記充電台は、送電コイルに交流電力を供給する交流電源と、前記変調回路で変化される受電コイルの負荷の変化を送電コイルを介して検出して、電池内蔵機器から伝送される出力増加信号を検出して、検出する出力増加信号で交流電源の出力を制御する検出回路を備えており、
     前記電池内蔵機器は、前記内蔵電池の充電開始タイミングで、レベル検出器が微少出力状態を検出する状態において、電池内蔵機器から充電台に出力増加信号が伝送され、充電台の交流電源の出力が増加されて内蔵電池の充電が開始されるようにしてなる電池内蔵機器と充電台。
    A battery built-in device including a power receiving coil for supplying charging power to the built-in battery;
    It consists of a charging stand with a power transmission coil that is electromagnetically coupled to the power reception coil of this battery built-in device,
    The battery built-in device detects the output of the power receiving coil at a charging start timing of charging the built-in battery by supplying the power of the power receiving coil to the built-in battery, and the output of the power receiving coil is A level detector that detects a minute output state smaller than the set value and outputs an output increase signal in the minute output state, and an output increase signal output from this level detector, changes the load of the receiving coil. A modulation circuit that transmits an output increase signal to the charging stand, and a control circuit that controls the charging switch;
    The charging stand is an AC power supply for supplying AC power to the power transmission coil, and an output increase signal transmitted from the battery built-in device by detecting a change in the load of the power receiving coil changed by the modulation circuit via the power transmission coil. And a detection circuit that controls the output of the AC power supply with an output increase signal to be detected,
    In the battery built-in device, an output increase signal is transmitted from the battery built-in device to the charging stand in a state where the level detector detects a minute output state at the charging start timing of the built-in battery, and the output of the AC power supply of the charging stand is A battery built-in device and a charging stand that are configured to start charging the built-in battery.
  2.  前記制御回路がレベル検出器を備えており、前記レベル検出器が、前記制御回路に供給される電力から前記受電コイルの出力を検出して微少出力状態を検出する請求項1に記載される電池内蔵機器と充電台。 The battery according to claim 1, wherein the control circuit includes a level detector, and the level detector detects an output of the power receiving coil from electric power supplied to the control circuit to detect a minute output state. Built-in equipment and charging stand.
  3.  前記充電台の検出回路が、前記電池内蔵機器から伝送される出力増加信号を検出して、交流電源の出力をあらかじめ設定している電力だけ増加させる請求項1又は2に記載される電池内蔵機器と充電台。 The battery built-in device according to claim 1 or 2, wherein the detection circuit of the charging stand detects an output increase signal transmitted from the battery built-in device and increases the output of the AC power source by a preset power. And charging stand.
  4.  前記充電台の検出回路が、前記電池内蔵機器から伝送される出力増加信号を検出して、交流電源の出力をあらかじめ設定している設定電力に変更して、交流電源の出力を増加させる請求項1ないし3のいずれかに記載される電池内蔵機器と充電台。 The detection circuit of the charging stand detects an output increase signal transmitted from the battery built-in device, changes the output of the AC power supply to a preset set power, and increases the output of the AC power supply. The battery built-in apparatus and charging stand described in any one of 1 thru | or 3.
  5.  前記内蔵電池がリチウムイオン電池又はリチウムポリマー電池の何れかである請求項1ないし4のいずれかに記載される電池内蔵機器と充電台。 The battery built-in device and the charging stand according to any one of claims 1 to 4, wherein the built-in battery is either a lithium ion battery or a lithium polymer battery.
  6.  前記変調回路が、変調コンデンサーにスイッチング素子を直列に接続している直列回路を備えており、この直列回路が前記受電コイルと並列に接続している請求項1ないし5のいずれかに記載される電池内蔵機器と充電台。 The said modulation circuit is provided with the series circuit which connected the switching element to the modulation capacitor in series, and this series circuit is connected in parallel with the said receiving coil, It is described in any one of Claim 1 thru | or 5 Battery built-in equipment and charging stand.
  7.  前記電池内蔵機器がパック電池である請求項1ないし6のいずれかに記載される電池内蔵機器と充電台。 The battery built-in device and the charging stand according to any one of claims 1 to 6, wherein the battery built-in device is a battery pack.
  8.  充電台に内蔵される送電コイルに電磁結合されて、前記送電コイルから電力搬送される受電コイルを備え、前記受電コイルから内蔵電池に充電電力を供給して内蔵電池を充電するようにしてなる電池内蔵機器であって、
     前記受電コイルの出力を内蔵電池に供給して内蔵電池を充電する充電スイッチと、前記内蔵電池の充電開始タイミングにおいて、前記受電コイルの出力を検出して、受電コイルの出力が設定値よりも小さい微少出力状態を検出して、微少出力状態において出力増加信号を出力するレベル検出器と、このレベル検出器から出力される出力増加信号でもって、受電コイルの負荷を変化させて出力増加信号を充電台に伝送する変調回路と、前記充電スイッチを制御する制御回路とを備えており、
     前記内蔵電池の充電開始タイミングで、レベル検出器が微少出力状態を検出する状態において、充電台に出力増加信号を伝送し、充電台の交流電源の出力が増加する状態で内蔵電池の充電を開始するようにしてなる電池内蔵機器。
    A battery comprising a power receiving coil that is electromagnetically coupled to a power transmission coil built in a charging stand and that carries power from the power transmission coil, and that charges the built-in battery by supplying charging power from the power receiving coil to the internal battery. A built-in device,
    A charging switch that supplies the output of the power receiving coil to the internal battery to charge the internal battery, and at the charging start timing of the internal battery, the output of the power receiving coil is detected, and the output of the power receiving coil is smaller than a set value A level detector that detects a minute output state and outputs an output increase signal in the minute output state, and an output increase signal output from this level detector changes the load of the power receiving coil to charge the output increase signal A modulation circuit for transmitting to a table, and a control circuit for controlling the charging switch,
    When the level detector detects a minute output state at the charging start timing of the built-in battery, an output increase signal is transmitted to the charging stand, and charging of the built-in battery starts when the output of the AC power supply of the charging stand increases. A battery built-in device.
  9.  前記制御回路がレベル検出器を備えており、前記レベル検出器が、前記制御回路に供給される電力から前記受電コイルの出力を検出して微少出力状態を検出する請求項8に記載される電池内蔵機器。 The battery according to claim 8, wherein the control circuit includes a level detector, and the level detector detects an output of the power receiving coil from power supplied to the control circuit to detect a minute output state. Built-in equipment.
  10.  前記電池内蔵機器がパック電池である請求項8又は9に記載される電池内蔵機器。 The battery built-in device according to claim 8 or 9, wherein the battery built-in device is a battery pack.
PCT/JP2012/068422 2011-07-27 2012-07-20 Device with built-in battery, and charging station and device with built-in battery WO2013015208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-164801 2011-07-27
JP2011164801A JP2014195334A (en) 2011-07-27 2011-07-27 Battery built-in apparatus and charging stand, and battery built-in apparatus

Publications (1)

Publication Number Publication Date
WO2013015208A1 true WO2013015208A1 (en) 2013-01-31

Family

ID=47601055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068422 WO2013015208A1 (en) 2011-07-27 2012-07-20 Device with built-in battery, and charging station and device with built-in battery

Country Status (2)

Country Link
JP (1) JP2014195334A (en)
WO (1) WO2013015208A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016052187A (en) * 2014-08-29 2016-04-11 パナソニックIpマネジメント株式会社 Power reception device, power reception method and power transmission system
US10130699B2 (en) 2013-12-03 2018-11-20 Intervet Inc. Vaccine against Lawsonia intracellularis and porcine circovirus 2

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001020B2 (en) 2018-08-29 2022-01-19 オムロン株式会社 Contactless power supply system, contactless power supply method and contactless power supply program
JP2020036434A (en) * 2018-08-29 2020-03-05 オムロン株式会社 Non-contact power supply device and non-contact power supply system including the same, non-contact power supply method, and non-contact power supply program
JP7001021B2 (en) 2018-08-29 2022-01-19 オムロン株式会社 Contactless power supply system, contactless power supply method and contactless power supply program
JP7243080B2 (en) * 2018-08-29 2023-03-22 オムロン株式会社 Contactless power supply device, contactless power supply system provided with the same, contactless power supply method, and contactless power supply program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016985A (en) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd Method of data transmission in electric power transmission, and charging stand and battery built-in device using the method
JP2010226836A (en) * 2009-03-23 2010-10-07 Canon Inc Non-contact power supply system, power supply apparatus, and power receiving apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016985A (en) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd Method of data transmission in electric power transmission, and charging stand and battery built-in device using the method
JP2010226836A (en) * 2009-03-23 2010-10-07 Canon Inc Non-contact power supply system, power supply apparatus, and power receiving apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10130699B2 (en) 2013-12-03 2018-11-20 Intervet Inc. Vaccine against Lawsonia intracellularis and porcine circovirus 2
JP2016052187A (en) * 2014-08-29 2016-04-11 パナソニックIpマネジメント株式会社 Power reception device, power reception method and power transmission system

Also Published As

Publication number Publication date
JP2014195334A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
US10411517B2 (en) Wireless power transfer method, apparatus and system for low and medium power
KR102008808B1 (en) Wireless power receiver and controlling method thereof
EP3108565B1 (en) Device detection through dynamic impedance change measurement
US8519666B2 (en) Charging system including a device housing a battery and charging pad
US8987941B2 (en) Power transmission system
JP4725604B2 (en) Power transmission control device, power transmission device, power reception control device, power reception device, and electronic device
WO2013015208A1 (en) Device with built-in battery, and charging station and device with built-in battery
US10833538B2 (en) Electronic unit and power feeding system
EP2629395A2 (en) Wireless power transmitter, wireless power receiver, and power transmission method of wireless power transmitting system
WO2013031589A1 (en) Battery charger, and charging station
US20160094074A1 (en) Method and Apparatus for Inductive Power Transfer
US20120193993A1 (en) Energy efficient inductive power transmission system and method
CN104067477A (en) Wireless power control system
KR20170041891A (en) System and method for power transfer
KR101250266B1 (en) Wireless charger to charge battery of mobile comunication device having different capacity and method thereof
CN109193886B (en) Electronic device, electronic method and power supply system
JP2010288431A (en) Device housing battery and charging pad
JP6279452B2 (en) Non-contact power transmission device
EP2769478A1 (en) Systems and methods for limiting voltage in wireless power receivers
KR20140113147A (en) Apparatus and method for detecting foreign object in wireless power transmitting system
JP2009131039A (en) Power transmission control device, power transmission device, electronic apparatus and non-contact power transmission system
KR102574667B1 (en) Contactless power reception device and reception method
WO2013047260A1 (en) Apparatus having built-in battery with charging stand, and apparatus having built-in battery
CN110875638A (en) Apparatus and method for wireless transmission of power
JP2012110085A (en) Built-in battery apparatus, and built-in battery apparatus and charger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP