WO2013011943A1 - Curable resin composition, coating, and article bearing film obtained by curing said coating - Google Patents

Curable resin composition, coating, and article bearing film obtained by curing said coating Download PDF

Info

Publication number
WO2013011943A1
WO2013011943A1 PCT/JP2012/067931 JP2012067931W WO2013011943A1 WO 2013011943 A1 WO2013011943 A1 WO 2013011943A1 JP 2012067931 W JP2012067931 W JP 2012067931W WO 2013011943 A1 WO2013011943 A1 WO 2013011943A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composite resin
vinyl polymer
segment
polymer segment
Prior art date
Application number
PCT/JP2012/067931
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 植村
直人 矢木
高田 泰廣
伸一 工藤
博 松沢
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2013011943A1 publication Critical patent/WO2013011943A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6295Polymers of silicium containing compounds having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F275/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers containing phosphorus, selenium, tellurium or a metal as defined in group C08F30/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences

Definitions

  • the present invention relates to a curable composition that can be cured at room temperature, has excellent transparency, and has excellent weather resistance after curing, a paint containing the curable resin composition, and an article having a cured coating film of the paint.
  • polyester resins such as polyethylene terephthalate (PET), acrylic resins, ABS resins, polycarbonate resins and plastics such as fiber reinforced plastic (FRP) have been used for exterior construction in terms of lightness, impact resistance, workability and recyclability. Widely used in parts and automotive exterior parts. However, it has been pointed out that these synthetic resins suffer from yellowing and cracking due to long-term outdoor use.
  • PET polyethylene terephthalate
  • acrylic resins acrylic resins
  • ABS resins polycarbonate resins
  • plastics such as fiber reinforced plastic (FRP)
  • curable resin compositions for use in polysiloxane-based paints the inventors previously described polymers having functional groups other than hydrolyzable silyl groups and hydrolyzable silyl groups, silanol groups and / or hydrolyzable silyls.
  • a curable resin composition containing a resin obtained by condensation reaction of a polysiloxane having a group and a curing agent has been invented and disclosed (for example, see Patent Document 1).
  • the cured coating film obtained from the curable resin composition is excellent in weather resistance and scratch resistance.
  • the curable resin composition is a resin that is cured by heat, and particularly when it is cured by heat, heating at a high temperature of 140 ° C.
  • Patent Document 1 see Example 1
  • Patent Document 1 Japanese Patent Document 1
  • the construction is difficult when the construction is performed outdoors such as a wall surface of a building, and a high weather resistance resin that can be cured at room temperature is demanded.
  • Patent Document 2 a resin obtained by further modifying a fatty acid-modified acrylic resin with a silicon resin as a resin that has good storage stability and can be cured at room temperature, and an epoxy group is introduced into the resin.
  • a resin in which an epoxy group is opened and reacted during resin synthesis is disclosed. Although the resin can be cured at room temperature, since the produced resin is brown, there is a great problem in using it as an exterior paint.
  • the problem to be solved by the present invention is a two-component curable resin composition that has excellent storage stability in a one-component state, can be cured at room temperature, and has excellent transparency, and contains the curable resin composition. It is to provide an article having a paint and a cured coating of the paint.
  • a curable resin which is a resin composition, wherein the mass ratio of the polysiloxane segment in the composite resin, the epoxy equivalent of the composite resin, the amount of hydroxyl groups in the vinyl polymer segment, and the mass ratio of the polyisocyanate are within a specific range
  • the composition is excellent in long-term storage stability in a one-liquid state before adding a curing agent, and in a two-liquid state in which a curing agent is added, a cured coating having excellent curability and weather resistance after curing at room temperature and transparency.
  • the present invention provides a polysiloxane segment (a1) having a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, and an epoxy group.
  • Resin composition containing a composite resin (A) in which a vinyl polymer segment (a2) having an alcoholic hydroxyl group is bonded by a bond represented by the general formula (3), and a polyisocyanate (B)
  • the mass ratio of the polysiloxane segment (a1) in the solid content of the composite resin (A) is 20 to 70% by mass, and the epoxy equivalent of the solid content of the composite resin (A) is 900 to 17,000 g / eq, the hydroxyl value of the vinyl polymer segment (a2) is 55 to 200 mgKOH / g, and the mass ratio of the polyisocyanate (B) Providing a curable resin composition which is a 5 to 50% by weight of the total solids.
  • R 1 , R 2 and R 3 each independently represent —R 4 —CH ⁇ CH 2 , —R 4 —C (CH 3 ) ⁇ CH 2 , — A group having one polymerizable double bond selected from the group consisting of R 4 —O—CO—C (CH 3 ) ⁇ CH 2 and —R 4 —O—CO—CH ⁇ CH 2 (provided that R 4 Represents a single bond or an alkylene group having 1 to 6 carbon atoms.), An alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, or 7 carbon atoms. Represents an aralkyl group of ⁇ 12.
  • the present invention is to provide an article characterized by having a paint containing the curable resin composition and a coating film formed using the paint.
  • the curable resin composition of the present invention is excellent in curability even at room temperature curing, it is difficult to cure by active energy rays or heat, it is particularly useful as a cured coating for outdoor enforcement or large buildings, cured products Is particularly useful as a coating for exterior building because it has long-term weather resistance outdoors.
  • the curable resin composition of this invention is a 2 liquid type, the storage stability in the state of 1 liquid before mixing is also favorable, and it is excellent in the usefulness as a coating material.
  • the curable resin composition and paint of the present invention are colorless, it can be suitably used as a top coat, undercoat, clear paint or enamel paint.
  • the curable resin composition of the present invention has a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, and an epoxy group.
  • a composite resin (A) in which a polysiloxane segment (a1) and a vinyl polymer segment (a2) having an alcoholic hydroxyl group are bonded by a bond represented by the general formula (3); and a polyisocyanate (B) A curable resin composition containing, wherein the mass ratio of the polysiloxane segment (a1) in the solid content of the composite resin (A) is 20 to 70% by mass, and the solid content of the composite resin (A)
  • the epoxy equivalent is 900 to 17000 g / eq, the hydroxyl value of the vinyl polymer segment (a2) is 55 to 200 mg KOH / g, and the polyisocyanate Weight ratio of bets (B) are those from 5 to 50% by weight of the total solids.
  • the composite resin (A) used in the present invention comprises a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, an epoxy group, A polysiloxane segment (a1) having the following (hereinafter simply referred to as polysiloxane segment (a1)), a vinyl polymer segment (a2) having an alcoholic hydroxyl group (hereinafter simply referred to as vinyl polymer segment (a2)), and Is a composite resin bonded by a bond represented by the general formula (3).
  • the bond represented by the general formula (3) is generated. Accordingly, in the general formula (3), carbon atoms constitute a part of the vinyl polymer segment (a2), and silicon atoms bonded only to oxygen atoms constitute a part of the polysiloxane segment (a1).
  • the form of the composite resin (A) is, for example, a composite resin having a graft structure in which the polysiloxane segment (a1) is chemically bonded as a side chain of the polymer segment (a2), or the polymer segment (a2). And a composite resin having a block structure in which the polysiloxane segment (a1) is chemically bonded.
  • the polysiloxane segment (a1) in the present invention comprises a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, and an epoxy group. It has a segment.
  • R 1 , R 2 and R 3 in the general formulas (1) and (2) are each independently —R 4 —CH ⁇ CH 2 , —R 4 —C (CH 3 ) ⁇ A group having one polymerizable double bond selected from the group consisting of CH 2 , —R 4 —O—CO—C (CH 3 ) ⁇ CH 2 , and R 4 —O—CO—CH ⁇ CH 2 (provided that R 4 represents a single bond or an alkylene group having 1 to 6 carbon atoms.), An alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, or 7 to 7 carbon atoms. 12 aralkyl groups are represented.
  • alkylene group having 1 to 6 carbon atoms in R 4 examples include methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, sec-butylene group, tert-butylene group, and pentylene.
  • R 4 is preferably a single bond or an alkylene group having 2 to 4 carbon atoms because of easy availability of raw materials.
  • alkyl group having 1 to 6 carbon atoms examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, and isopentyl.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-vinylphenyl group, and a 3-isopropylphenyl group.
  • Examples of the aralkyl group having 7 to 12 carbon atoms include a benzyl group, a diphenylmethyl group, and a naphthylmethyl group.
  • R 1 , R 2 and R 3 when at least one of R 1 , R 2 and R 3 is a group having the polymerizable double bond, it can be cured by an active energy ray or the like, an active energy ray, and a silanol group and / or
  • the two curing mechanisms of improving the crosslinking density of the coating film by the condensation reaction of hydrolyzable silyl groups can form a cured coating film with better wear resistance, acid resistance, alkali resistance and solvent resistance, It is difficult to use a curable resin composition, and it can be suitably used for a base material that easily undergoes thermal deformation, such as paints for exterior buildings and plastics.
  • Two or more groups having a polymerizable double bond are present in the polysiloxane segment (a1), preferably 3 to 200, more preferably 3 to 50, A coating film with more excellent wear resistance can be obtained.
  • the content of polymerizable double bonds in the polysiloxane segment (a1) is 3 to 35% by mass, desired wear resistance can be obtained.
  • the polymerizable double bond here is a general term for groups capable of performing a growth reaction by free radicals among vinyl group, vinylidene group or vinylene group.
  • the content rate of a polymerizable double bond shows the mass% in the polysiloxane segment of the said vinyl group, vinylidene group, or vinylene group.
  • —R 4 —C (CH 3 ) The (meth) acryloyl group represented by CH 2 or —R 4 —O—CO—C (CH 3 ) ⁇ CH 2 is rich in reactivity at the time of ultraviolet curing, and the vinyl polymer segment (described later) Good compatibility with a2).
  • the structural unit represented by the general formula (1) and / or the general formula (2) is a three-dimensional network-like polysiloxane structural unit in which two or three of the silicon bonds are involved in crosslinking. Since a three-dimensional network structure is formed but a dense network structure is not formed, gelation or the like is not caused and storage stability is also improved.
  • the polysiloxane segment (a1) constituting the composite resin (A) in the present invention has an epoxy group, and the epoxy equivalent of the solid content of the composite resin (A) is 900 to 17000 g / eq.
  • the range of 2500 to 6000 g / eq is particularly preferable because of excellent long-term storage stability and room temperature curability when a curable resin composition is obtained.
  • the epoxy equivalent of solid content is larger than 17000 g / eq, the composite resin (A) is easily gelled and cannot be stored for a long time.
  • it is a case where it is less than 900 g / eq when it mixes with a polyisocyanate (B) and it is set as a curable resin composition, it becomes impossible to cure at normal temperature.
  • Epoxy group-containing silane compounds include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxyethoxysilane, ⁇ -glycidoxypropyltriacetoxysilane, ⁇ -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxyethoxysilane, ⁇ - (3, 4-epoxycyclohexyl) ethyltriacetoxysilane, ⁇ -g
  • the silanol group is a silicon-containing group having a hydroxyl group directly bonded to a silicon atom.
  • the silanol group is a silanol group formed by combining an oxygen atom having a bond with a hydrogen atom in the structural unit represented by the general formula (1) and / or the general formula (2). Preferably there is.
  • the hydrolyzable silyl group is a silicon-containing group having a hydrolyzable group directly bonded to a silicon atom, and specifically includes, for example, a group represented by the general formula (4). .
  • R 5 is a monovalent organic group such as an alkyl group, an aryl group or an aralkyl group
  • R 6 is a halogen atom, an alkoxy group, an acyloxy group, a phenoxy group, an aryloxy group, a mercapto group
  • a hydrolyzable group selected from the group consisting of an amino group, an amide group, an aminooxy group, an iminooxy group, and an alkenyloxy group
  • b is an integer of 0 to 2.
  • Examples of the alkyl group in R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, and a tert group.
  • -Pentyl group 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl Group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group 1-ethyl-2-methylpropyl group, 1-ethyl-1-methylpropyl group and the like.
  • Examples of the group include a phenyl group, a naphthyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-vinylphenyl group, and a 3-isopropylphenyl group.
  • Examples of the aralkyl group include a benzyl group, a diphenylmethyl group, and a naphthylmethyl group.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, and a sec-butoxy group.
  • acyloxy group examples include formyloxy group, acetoxy group, propanoyloxy group, butanoyloxy group, pivaloyloxy group, pentanoyloxy group, phenylacetoxy group, acetoacetoxy group, benzoyloxy group, naphthoyloxy group, etc. Is mentioned.
  • aryloxy group examples include a phenyloxy group and a naphthyloxy group.
  • alkenyloxy group examples include vinyloxy group, allyloxy group, 1-propenyloxy group, isopropenyloxy group, 2-butenyloxy group, 3-butenyloxy group, 2-petenyloxy group, 3-methyl-3-butenyloxy group, 2 -Hexenyloxy group and the like.
  • the hydrolyzable silyl group represented by the general formula (4) becomes a silanol group.
  • a methoxy group and an ethoxy group are preferable because of excellent hydrolyzability.
  • the hydrolyzable silyl group specifically includes an oxygen atom having a bond in the structural unit represented by the general formula (1) and / or the general formula (2) bonded to the hydrolyzable group. Or it is preferable that it is the hydrolyzable silyl group substituted.
  • the silanol group or the hydrolyzable silyl group undergoes a hydrolytic condensation reaction between the hydroxyl group in the silanol group or the hydrolyzable group in the hydrolyzable silyl group, the polysiloxane structure of the resulting coating film The crosslink density increases, and a coating film excellent in solvent resistance can be formed. Further, the polysiloxane segment (a1) containing the silanol group or the hydrolyzable silyl group is bonded to the vinyl polymer segment (a2) described later via the bond represented by the general formula (3). Use when.
  • examples of the structure in which at least one of R 1 , R 2, and R 3 is a group having the polymerizable double bond as the polysiloxane segment (a1) include the following structures.
  • the mass ratio of the polysiloxane segment (a1) in the solid content of the composite resin (A) is 20 to 70% by mass, whereby the curable resin composition has a normal temperature. It becomes possible to achieve both curability and weather resistance.
  • the vinyl polymer segment (a2) in the present invention is a vinyl polymer segment such as an acrylic polymer, a fluoroolefin polymer, a vinyl ester polymer, an aromatic vinyl polymer, and a polyolefin polymer. . These are preferably selected appropriately depending on the application.
  • the acrylic polymerizable segment is obtained by polymerizing or copolymerizing a general-purpose (meth) acrylic monomer.
  • the (meth) acrylic monomer is not particularly limited, and vinyl monomers can also be copolymerized.
  • Fluoroolefins alkyl vinyl ethers such as ethyl vinyl ether and n-butyl vinyl ether; cycloalkyl vinyl ethers such as cyclopentyl vinyl ether and cyclohexyl vinyl ether; N, N-dimethyl (meth) Acrylamide, N- (meth) acryloyl morpholine, N- (meth) acryloyl pyrrolidine, tertiary amide group-containing monomers such as N- vinylpyrrolidone and the like.
  • the polymerization method the solvent, or the polymerization initiator for copolymerizing the monomers
  • the vinyl polymer segment (a2) can be obtained by a known method.
  • 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-) can be obtained by various polymerization methods such as bulk radical polymerization, solution radical polymerization, and non-aqueous dispersion radical polymerization.
  • the vinyl polymer segment (a2) can be obtained by using a polymerization initiator such as tert-butyl peroxide, cumene hydroperoxide, diisopropyl peroxycarbonate or the like.
  • the number average molecular weight of the vinyl polymer segment (a2) is preferably in the range of 500 to 200,000 in terms of number average molecular weight (hereinafter abbreviated as “Mn”). It is possible to prevent thickening and gelation during the production of A) and is excellent in durability. In particular, Mn is more preferably in the range of 700 to 100,000, and more preferably in the range of 1,000 to 50,000, because a good film can be formed when a layer is formed on the substrate.
  • the vinyl polymer segment (a2) is a vinyl polymer segment (A1) in order to form a composite resin (A) bonded to the polysiloxane segment (a1) by a bond represented by the general formula (3). It has a silanol group and / or a hydrolyzable silyl group directly bonded to the carbon atom in a2). Since these silanol groups and / or hydrolyzable silyl groups become bonds represented by the general formula (3) in the production of the composite resin (A) described later, the composite resin ( Almost no vinyl polymer segment (a2) in A).
  • the vinyl polymer segment (a2) having a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon atom includes the general-purpose monomer, the silanol group directly bonded to the carbon bond, and / or It is obtained by copolymerizing a vinyl monomer containing a hydrolyzable silyl group.
  • vinyl monomers containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon atom include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinyltri (2-methoxyethoxy) silane.
  • the vinyl polymer segment (a2) contains an alcoholic hydroxyl group. It is important that the hydroxyl group value of the vinyl polymer segment (a2) is 55 to 200 mgKOH / g because it reacts with the polyisocyanate (B) and cures at room temperature, preferably in the range of 90 to 200 mgKOH / g. .
  • the hydroxyl value is less than 55 mgKOH / g, it is difficult to react with the polyisocyanate (B), so it does not cure at room temperature, and when the hydroxyl value is more than 200 mgKOH / g, gelation occurs when the composite resin (A) is synthesized. Is not preferable.
  • the vinyl polymer segment (a2) having an alcoholic hydroxyl group can be obtained by copolymerizing a (meth) acryl monomer having an alcohol hydroxyl group.
  • the (meth) acrylic monomer having an alcohol hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) ) Acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl mono Butyl fumarate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, “Placcel FM” or “Placcel FA” (both caprolactone addition monomers manufactured by Daicel Chemical Industries, Ltd.) Various alpha,
  • the composite resin (A) used in the present invention is produced by the methods shown in the following (Method 1) to (Method 3).
  • Method 1 The general-purpose (meth) acrylic monomer and the like, and a vinyl monomer containing a silanol group and / or a hydrolyzable silyl group directly bonded to the carbon bond are copolymerized and directly bonded to the carbon bond.
  • a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group is obtained.
  • This and a silane compound are mixed and hydrolytic condensation reaction is carried out.
  • an epoxy group-containing silane compound having both a silanol group and / or a hydrolyzable silyl group is simultaneously used in order to introduce an epoxy group into the resulting polysiloxane.
  • a silane compound having the group to be introduced is used in combination.
  • a silane compound having both a group and a silanol group and / or a hydrolyzable silyl group may be appropriately used in combination.
  • a silane compound having both a group having a polymerizable double bond and a silanol group and / or a hydrolyzable silyl group may be used in combination.
  • a composite resin (A) in which (a2) is combined with the bond represented by the general formula (3) is obtained.
  • Method 2 In the same manner as in Method 1, a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond is obtained.
  • a silane compound in order to introduce an epoxy group, an epoxy group-containing silane compound having both a silanol group and / or a hydrolyzable silyl group is used. If there is another group to be introduced, the group to be introduced is selected.
  • the polysiloxane segment (a1) having an epoxy group is obtained by hydrolytic condensation reaction.
  • silanol group and / or hydrolyzable silyl group of the vinyl polymer segment (a2) and the silanol group and / or hydrolyzable silyl group of the polysiloxane segment (a1) having an epoxy group are hydrolyzed.
  • a decomposition condensation reaction is performed.
  • Method 3 In the same manner as in Method 1, a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond is obtained.
  • the polysiloxane segment (a1) which may or may not have an epoxy group is obtained in the same manner as in Method 2.
  • a silane compound having a group to be introduced is mixed and subjected to a hydrolysis condensation reaction.
  • silane compound having both a group having a polymerizable double bond and a silanol group and / or a hydrolyzable silyl group used when introducing a group having a polymerizable double bond
  • Other general-purpose silane compounds used in the (Method 1) to (Method 3) include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, n- Various nolganotrialkoxysilanes such as propyltrimethoxysilane, iso-butyltrimethoxysilane, cyclohexyltrimethoxysilane; dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-butoxysilane, diethyldimethoxysilane, methylcyclohexyldimethoxysilane Or various diorganodialkoxysilanes such as methyltrichlorosilane, ethyltrichlorosilane, vinyltrichlorosilane, dimethyldichlorosilane, diethyldich
  • a tetrafunctional alkoxysilane compound such as tetramethoxysilane, tetraethoxysilane or tetra n-propoxysilane or a partial hydrolysis condensate of the tetrafunctional alkoxysilane compound may be used in combination as long as the effects of the present invention are not impaired. it can.
  • the tetrafunctional alkoxysilane compound or a partially hydrolyzed condensate thereof is used in combination, the silicon atoms of the tetrafunctional alkoxysilane compound are 20 with respect to the total silicon atoms constituting the polysiloxane segment (a1). It is preferable to use together so that it may become the range which does not exceed mol%.
  • a metal alkoxide compound other than a silicon atom such as boron, titanium, zirconium, or aluminum can be used in combination with the silane compound as long as the effects of the present invention are not impaired.
  • a metal alkoxide compound in combination within a range not exceeding 25 mol% with respect to all silicon atoms constituting the polysiloxane segment (a1).
  • hydrolysis condensation reaction in the (Method 1) to (Method 3), a part of the hydrolyzable group is hydrolyzed under the influence of water or the like to form a hydroxyl group, and then the hydroxyl groups or the hydroxyl group and the hydrolysis group are hydrolyzed.
  • This refers to a proceeding condensation reaction that proceeds with a functional group.
  • the hydrolysis-condensation reaction can be performed by a known method, but a method in which the reaction is advanced by supplying water and a catalyst in the production process is simple and preferable.
  • the catalyst used examples include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as p-toluenesulfonic acid, monoisopropyl phosphate and acetic acid; inorganic bases such as sodium hydroxide and potassium hydroxide; tetraisopropyl titanate , Titanic acid esters such as tetrabutyl titanate; 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1 Compounds containing various basic nitrogen atoms such as 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine, dimethylbenzylamine, monoethanolamine, imidazole, 1-methylimidazole; Tetramethylammonium salt, tetrabutylammonium salt, dilauryldimethylammoni Various quaternary
  • the addition amount of the catalyst is not particularly limited, but generally it is preferably used in the range of 0.0001 to 10% by mass with respect to the total amount of each compound having the silanol group or hydrolyzable silyl group. , More preferably in the range of 0.0005 to 3% by mass, and particularly preferably in the range of 0.001 to 1% by mass.
  • the amount of water to be supplied is preferably 0.05 mol or more with respect to 1 mol of the silanol group or hydrolyzable silyl group of each compound having the silanol group or hydrolyzable silyl group, The above is more preferable, and particularly preferably 0.5 mol or more.
  • These catalyst and water may be supplied collectively or sequentially, or may be supplied by previously mixing the catalyst and water.
  • the reaction temperature for carrying out the hydrolysis condensation reaction in the above (Method 1) to (Method 3) is suitably in the range of 0 ° C. to 150 ° C., and preferably in the range of 20 ° C. to 100 ° C.
  • the reaction can be carried out under any conditions of normal pressure, increased pressure, or reduced pressure. Moreover, you may remove the alcohol and water which are the by-products which can be produced
  • the charging ratio of each compound in the above (Method 1) to (Method 3) is appropriately selected depending on the desired structure of the composite resin (A) used in the present invention. Among them, since the durability of the obtained coating film is excellent, it is important to obtain the composite resin (A) so that the content of the polysiloxane segment (a1) is 20 to 70% by mass, and 30 to 70% by mass. Is preferred.
  • the silanol group and the above-described silanol group may be added to only one or both ends of the polymer chain.
  • a silane compound is mixed with the vinyl polymer segment, and a hydrolyzable silyl group-containing vinyl polymer segment is used as an intermediate. The method of carrying out decomposition condensation reaction is mentioned.
  • the main chain of the vinyl polymer segment is The vinyl polymer segment having a structure in which silanol groups and / or hydrolyzable silyl groups are randomly distributed is used as an intermediate.
  • the vinyl polymer segment is Examples thereof include a method of subjecting the silanol group and / or hydrolyzable silyl group and the silane compound to a hydrolytic condensation reaction.
  • the curable resin composition in the present invention contains the composite resin (A) and the polyisocyanate (B). At this time, it is important that the hydroxyl value of the vinyl polymer segment (a2) constituting the composite resin (A) is 55 to 200 mgKOH / g. Further, it is important that the mass ratio of the polyisocyanate (B) is 5 to 50% by mass in the total solid content of the curable resin composition of the present invention.
  • a coating film having particularly excellent long-term weather resistance (specifically, crack resistance) outdoors can be obtained.
  • the polyisocyanate (B) to be used is not particularly limited and known ones can be used, but aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane-4,4′-diisocyanate, meta-xylylene diisocyanate, Polyisocyanates mainly composed of aralkyl diisocyanates such as ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-meta-xylylene diisocyanate have the problem that the cured coating film yellows when exposed to long-term outdoor exposure. It is preferable to minimize the amount used.
  • the polyisocyanate (B) used in the present invention is preferably an aliphatic polyisocyanate containing an aliphatic diisocyanate as a main raw material.
  • the aliphatic diisocyanate include tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate (hereinafter abbreviated as “HDI”), 2,2,4- (or 2,4,4).
  • HDI is particularly suitable from the viewpoint of crack resistance and cost.
  • Examples of the aliphatic polyisocyanate obtained from the aliphatic diisocyanate include allophanate type polyisocyanate, biuret type polyisocyanate, adduct type polyisocyanate, and isocyanurate type polyisocyanate, and any of them can be suitably used.
  • blocked polyisocyanate compounds blocked with various blocking agents can be used.
  • the blocking agent include alcohols such as methanol, ethanol and lactic acid esters; phenolic hydroxyl group-containing compounds such as phenol and salicylic acid esters; amides such as ⁇ -caprolactam and 2-pyrrolidone; oximes such as acetone oxime and methyl ethyl ketoxime Active methylene compounds such as methyl acetoacetate, ethyl acetoacetate and acetylacetone can be used.
  • the isocyanate group in the polyisocyanate is preferably 5 to 50% by mass from the viewpoint of crack resistance of a cured coating film obtained when used as a paint.
  • the isocyanate group in the polyisocyanate exceeds 50%, the molecular weight of the polyisocyanate becomes small, and crack resistance due to stress relaxation may not be exhibited.
  • the reaction between the polyisocyanate and a hydroxyl group in the system (this is a hydroxyl group in the active energy ray-curable monomer having a hydroxyl group of the vinyl polymer segment (a2) or an alcoholic hydroxyl group described later), in particular, There is no need for heating, etc., and the reaction proceeds gradually by leaving it at room temperature.
  • the reaction between the alcoholic hydroxyl group and the isocyanate may be promoted by heating at 80 ° C. for several minutes to several hours (20 minutes to 4 hours). In that case, you may use a well-known urethanation catalyst as needed.
  • the urethanization catalyst is appropriately selected according to the desired reaction temperature.
  • the mass ratio of the polysiloxane segment (a1) in the solid content of the composite resin (A) is 20 to 70% by mass, and the solid content of the composite resin (A) is The epoxy equivalent is 900 to 17000 g / eq, the hydroxyl value of the vinyl polymer segment (a2) is 55 to 200 mgKOH / g, and the mass ratio of the polyisocyanate (B) is 5 to 50 in the total solid content.
  • the storage stability of only the composite resin (A) before curing in the state of one liquid, and the two liquids of the composite resin (A) and the polyisocyanate (B) as a curing agent are mixed. It is possible to provide a resin that is compatible with later room temperature curability and is transparent and excellent in weather resistance.
  • the long-term storage stability of the composite resin (A) in the state of one liquid before curing is considered to be a result of the epoxy group suppressing the condensation reaction between silanol groups.
  • the presence of epoxy groups in the polysiloxane captures silanol residues located nearby by protonated epoxy groups under acidic conditions and prevents their condensation. .
  • the epoxy equivalent of the solid content of the composite resin (A) is less than 900 g / eq, the effect of suppressing the condensation reaction between silanol groups by the epoxy group-containing silane compound becomes too large, so long-term storage before curing. Although stability is maintained, the progress of crosslinking after film formation becomes insufficient, and the cured film does not have sufficiently high weather resistance.
  • the epoxy equivalent of the solid content is larger than 17000 g / eq, the effect of suppressing the condensation reaction between silanol groups by the epoxy group-containing silane compound is too small, and thus long-term storage stability before curing is not maintained. .
  • the hydroxyl value of the vinyl polymer segment (a2) is smaller than 55 mgKOH / g, the crosslinking density when the cured film is formed becomes insufficient, and the cured film has sufficiently high curability and high cured film. Does not have weather resistance.
  • the hydroxyl value of the vinyl polymer segment (a2) is larger than 200 mgKOH / g, gelation occurs during the polymerization of the vinyl polymer segment (a2), and a composite resin cannot be obtained.
  • the epoxy equivalent of the solid content is in the range of 900 to 17000 g / eq
  • the effect of suppressing the condensation reaction between silanol groups by the epoxy group-containing silane compound and the progress of the crosslinking reaction when a cured film is formed. Since the balance is optimized, long-term storage stability before curing, a certain level of curability and high weather resistance of the cured film can be obtained.
  • the hydroxyl group value of the vinyl polymer segment (a2) is in the range of 55 to 200 mgKOH / g, the crosslinked density when the cured film is formed is sufficient, and the cured film has sufficiently high curability and curing. The film has high weather resistance.
  • the curable resin composition of the present invention can be cured at room temperature by mixing the composite resin (A) and the polyisocyanate (B), it is preferably about 5 to 10 days at room temperature, more preferably 7 A cured film having high practicality can be obtained by allowing it to stand for about 10 days to dry.
  • a highly practical cured film can be obtained by performing baking within a temperature range of about 80 to 250 ° C. for about 30 seconds to 2 hours. Is possible. In this case, depending on the baking conditions, it is also possible to obtain a cured film having higher hardness, higher gel fraction, and higher weather resistance than the room temperature cured film.
  • the curable resin composition of the present invention may use a dispersion medium for the purpose of adjusting the solid content and viscosity of the dispersion.
  • a dispersion medium for the purpose of adjusting the solid content and viscosity of the dispersion.
  • Any liquid medium that does not impair the effects of the present invention may be used, and examples thereof include the above organic solvents and liquid organic polymers.
  • the curable composition of the present invention can be cured at room temperature, but various catalysts may be added to perform thermal curing. It is preferable to select each catalyst in consideration of the reaction temperature, reaction time, etc. of the urethanization reaction between an alcoholic hydroxyl group and an isocyanate. Moreover, it is also possible to use a thermosetting resin together.
  • the thermosetting resin include vinyl resins, unsaturated polyester resins, polyurethane resins, epoxy resins, epoxy ester resins, acrylic resins, phenol resins, petroleum resins, ketone resins, silicon resins, and modified resins thereof.
  • inorganic pigments organic pigments, extender pigments, clay minerals, waxes, surfactants, stabilizers, flow regulators, dyes, leveling agents, rheology control agents, UV absorbers, antioxidants, or as necessary
  • Various additives such as a plasticizer can also be used.
  • the curable resin composition of the present invention can be used as it is as a curable coating. Moreover, you may add additives, such as an above described organic pigment and an inorganic pigment.
  • the film thickness of the coating film formed using the curable resin composition or paint of the present invention is not particularly limited, but from the viewpoint that a cured coating film having long-term weather resistance outdoors can be formed, It is preferably 0.1 to 300 ⁇ m.
  • the thickness of the cured coating film is less than 0.1 ⁇ m, discoloration of the plastic material and generation of cracks cannot be prevented, and when the film thickness exceeds 300 ⁇ m, the volatilization of the solvent does not proceed completely, and Care should be taken because residual solvent will remain in the film, which may cause poor curing.
  • the base material various materials can be used.
  • a metal base material an inorganic base material, a plastic base material, paper, a woody base material and the like can be used.
  • inorganic base material examples include glass, concrete, gypsum board, asphalt, and the like, and can be suitably used as a paint for building / civil engineering materials.
  • plastic substrate examples include polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer; polyesters such as polyethylene isophthalate, polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; nylon 1, nylon 11, and nylon 6, Polyamides such as nylon 66, nylon MX-D; styrene polymers such as polystyrene, styrene-butadiene block copolymer, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer (ABS resin); Acrylic polymers such as polymethyl methacrylate and methyl methacrylate / ethyl acrylate copolymer; polycarbonate and the like can be used.
  • the plastic substrate may have a single layer or a laminated structure of two or more layers. Moreover, these plastic base materials may be unstretched, uniaxially stretched, or
  • the plastic substrate may be subjected to a known surface treatment on the surface of the substrate in order to further improve the adhesion with the paint of the present invention.
  • a surface treatment include corona discharge treatment, plasma, and the like. Examples thereof include a process, a flame plasma process, an electron beam irradiation process, and an ultraviolet irradiation process, and a process combining one or more of these may be performed.
  • the composite resin (A), the polyisocyanate (B), and various additives are mixed to prepare a paint containing a curable composition, and after applying the paint on the substrate surface, The cured product having excellent weather resistance can be obtained by allowing to stand and drying for about 7 to 10 days.
  • the curable composition and the coating material be used by appropriately diluting the solvent by adding a solvent in addition to the additive.
  • the solvent is not particularly limited, but it is preferable to avoid the use of aromatic hydrocarbons such as toluene and xylene in consideration of the working environment during construction.
  • the film thickness after coating is not particularly limited, but is preferably 0.1 to 300 ⁇ m from the viewpoint that a cured coating film having long-term weather resistance outdoors can be formed.
  • the film thickness of the cured coating film is less than 0.1 ⁇ m, discoloration and cracking of the plastic material cannot be prevented, and when the film thickness exceeds 300 ⁇ m, the volatilization of the solvent does not proceed completely, Care should be taken because residual solvent will remain in the coating film, which may cause poor curing.
  • the above-described base material may be a known antistatic agent, antifogging agent, antiblocking agent, ultraviolet absorber, antioxidant, light stabilizer, crystal, and the like, as long as the effects of the present invention are not impaired.
  • Known additives such as nucleating agents and lubricants may be contained.
  • the shape of the base material is not particularly limited, and may be, for example, a sheet shape, a plate shape, a spherical shape, a film shape, or a large structure, or an assembly or molded product having a complicated shape. Further, the surface of the base material may be previously coated with an undercoat paint or the like, and even if the coated portion is deteriorated, the paint of the present invention can be applied.
  • the undercoat paint known water-soluble or water-dispersed paints, organic solvent-type or organic solvent-dispersed paints, powder paints, and the like can be used. Specifically, acrylic resin-based paint, polyester resin-based paint, alkyd resin-based paint, epoxy resin-based paint, fatty acid-modified epoxy resin-based paint, silicon resin-based paint, polyurethane resin-based paint, fluoroolefin-based paint, or amine-modified epoxy resin Various types such as resin paints can be used.
  • the undercoat paint may be a clear paint containing no pigment, or an enamel paint containing the pigment or a metallic paint containing aluminum flakes.
  • Examples of the method for applying the paint of the present invention to the substrate include a brush coating method, a roller coating method, a spray coating method, a dip coating method, a flow coater coating method, a roll coater coating method or an electrodeposition coating method. It is possible to apply a known and commonly used coating method.
  • An article having a cured coating film having excellent long-term weather resistance outdoors by applying the paint of the present invention to the surface of the substrate by the coating method and then allowing it to stand at room temperature for about 7 to 10 days to dry. Can be obtained.
  • Examples of articles that can be coated with the paint of the present invention include housings for home appliances such as televisions, refrigerators, washing machines, and air conditioners; housings for electronic devices such as personal computers, smartphones, mobile phones, digital cameras, and game machines.
  • Body Housing for OA equipment such as printers, facsimiles, etc .;
  • Various plastic parts such as various parts used for interior materials of various vehicles such as automobiles and railway vehicles; Woodwork materials such as furniture, artificial and synthetic leather; FRP bathtubs It is done.
  • Interior and exterior materials for buildings such as exterior walls, roofs, glass, and decorative panels; civil engineering members such as soundproof walls and drainage grooves; galvanized steel sheets used for household appliances, industrial machinery, automotive parts, and aluminum-zinc Metal members such as plated steel plates such as alloy steel plates, aluminum plates, aluminum alloy plates, electromagnetic steel plates, copper plates, and stainless steel plates are also included.
  • the “active ingredient” is a value obtained by dividing the theoretical yield (parts by mass) when all the methoxy groups of the silane monomer used undergo hydrolysis condensation reaction by the actual yield (parts by mass) after hydrolysis condensation reaction, That is, it is calculated by the formula (theoretical yield when all the methoxy groups of the silane monomer undergo hydrolysis hydrolysis reaction (mass part) / actual yield after hydrolysis condensation reaction (mass part)).
  • the number average molecular weight was calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Shodex GPC SYSTEM-21 manufactured by Showa Denko KK
  • Shodex Asahipak GF-7M HQ manufactured by Showa Denko KK
  • 20 mM LiBr dimethylformamide solution is used as the GPC solvent It was.
  • Table 1 shows the compositions and properties of the polysiloxanes (a-1-1) to (a-1-7) obtained above.
  • GPDMMS ⁇ -glycidoxypropylmethyldimethoxysilane
  • EpCHETMS ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane
  • Synthesis Example 8 Synthesis of vinyl polymer (a-2-1)
  • PTMS phenyltrimethoxysilane
  • DDMS dimethyldimethoxysilane
  • n-acetate -348.8 parts of butyl was added as an initial solvent, and the temperature was raised to 95 ° C while stirring under aeration of nitrogen gas.
  • MMA methyl methacrylate
  • BMA n-butyl methacrylate
  • MMA n-butyl acrylate
  • MAA methacrylic acid
  • MPTMS 3-methacryloyloxypropyltrimethoxysilane
  • HEMA 2-hydroxyethyl methacrylate
  • TPOEH tert-butylperoxy-2-ethylhexanoate
  • the hydroxyl value of the vinyl polymer segment of the reaction product was estimated to be 100 mgKOH / g from the content of HEMA with respect to the total amount of monomers used.
  • the hydroxyl value of the vinyl polymer segment of the reaction product that resulted in gelation was estimated to be 220 mgKOH / g from the content of HEMA with respect to the total amount of monomers used.
  • Table 2 shows the composition and property values of the vinyl polymers (a-2-1) to (a-2-5) obtained above.
  • PGMAC propylene glycol monomethyl ether acetate
  • the epoxy equivalent (the molecular weight (g / eq) of the sample per epoxy group) of the obtained composite resin (A-1) was measured according to the following procedure in accordance with JIS K7236. First, a 5.0 g sample was weighed in a 100 cc beaker, and 10 ml of chloroform was added and dissolved by stirring. Thereafter, 20 ml of acetic acid and 10 ml of tetraammonium bromide acetic acid solution were added at room temperature, and about 2-3 drops of crystal violet was used as an indicator with an automatic titrator AUT-701 (manufactured by Toa DKK Corporation).
  • the equivalence point is automatically determined, and the epoxy equivalent (from the titration difference between the sample and blank test and the potential change) The calculated value of g / eq) was obtained.
  • the tetraammonium bromide acetic acid solution was prepared by dissolving 100 g of tetraammonium bromide in 400 ml of acetic acid. This revealed that the epoxy equivalent of the solid content of the composite resin (A-1) was 8800 g / eq.
  • the hydroxyl value of the vinyl polymer segment (a-2-1) in the obtained composite resin (A-1) was measured by the following procedure. First, 2.5 g of the composite resin (A-1) was weighed into a 200 ml Meyer flask, and an acetylating agent obtained by mixing acetic anhydride and pyridine at a volume ratio of 1:19 was added with a whole pipette. Next, it was placed in a heating bath with a condenser tube adjusted to 115 ° C., and reacted for 1 hour while shaking water through the condenser tube.
  • the flask was removed from the heating bath, and about 5 cc of ion exchange water was added from the top of the condenser tube with a graduated cylinder and shaken. After allowing to cool to room temperature, several drops of phenolphthalein indicator were added, and a 0.5N potassium hydroxide-ethanol solution was titrated. The point where the pale red color lasted for 30 seconds was taken as the end point, and the dripping amount at that time was read. At the same time, a blank test was also performed. The hydroxyl value of the vinyl polymer segment in the composite resin (A-1) was calculated from the following two formulas.
  • the hydroxyl value of the vinyl polymer segment in the composite resin (A-1) was calculated to be 100 mgKOH / g, and the vinyl polymer segment estimated from the HEMA content relative to the total amount of the monomers used was calculated. It was confirmed that the hydroxyl value coincided with the calculated value from the actual measurement value.
  • Table 3 shows the composition and property values of the composite resins (A-1) to (A-5) obtained above.
  • a comparative composite resin (R-1) composed of a polysiloxane segment having a nonvolatile content of 55.0% and a vinyl polymer segment.
  • Synthesis Example 24 Synthesis of composite resin (R-7)
  • Synthesis Example 1 In the same reaction vessel as in Synthesis Example 1, 497.4 parts of the vinyl polymer (a-2-1) obtained in Synthesis Example 8 and polysiloxane (a-1-5) obtained in Synthesis Example 5 106. 7 parts and “4HBAGE” (4-hydroxybutyl acrylate glycidyl ether manufactured by Nippon Kasei Co., Ltd.), an epoxy compound having no hydrolyzable silyl group, for comparison with an epoxy group-containing silane compound After adding 5 parts and stirring for 5 minutes, 36.9 parts of deionized water was added and stirred at 80 ° C.
  • 4HBAGE 4-hydroxybutyl acrylate glycidyl ether manufactured by Nippon Kasei Co., Ltd.
  • Table 4 shows the composition and property values of the composite resins (R-1) to (R-7) obtained above.
  • turbidity of the obtained resin was determined in accordance with JIS K0101, using a precision photoelectric turbidimeter T-2600S (manufactured by Tokyo Denshoku), integrating sphere scattering photometry (change in forward scattered light due to formation of aggregates). , Measured using an integrating sphere, and measured under optical conditions according to a method for comparing the ratio with transmitted light intensity). The smaller the turbidity, the higher the transparency. The turbidity was determined to be a highly transparent resin having a turbidity of 0.5 or less and no turbidity.
  • ⁇ Storage stability> The storage stability of the obtained resin was evaluated based on the viscosity ratio with the viscosity (so-called viscosity with time) of what was stored at 40 ° C. for 30 days as the numerator and the initial viscosity as the denominator. The viscosity was measured at 30 ° C. using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd.). The sample was stored by placing the obtained resin in a glass tube and allowing it to stand at 40 ° C. for 1 month. The closer this viscosity ratio is to 1, the better the storage stability, and the more excellent the storage stability with a viscosity ratio of 0.9 to 1.1. It was judged that there was.
  • the composite resins (A-1) to (A-5) obtained in Synthesis Examples 13 to 17 and the composite resins (R-1) to (R-2) obtained in Synthesis Examples 18 to 19 were obtained.
  • the composite resins (R-3) to (R-4) obtained in Synthesis Examples 20 to 21 are examples in which the epoxy equivalent of the composite resin is larger than 17000 g / eq, but it was found that the storage stability was inferior. did.
  • the composite resins (R-5) to (R-7) obtained in Synthesis Examples 22 to 24 are examples in which polysiloxane does not have an epoxy group, but it has been found that the storage stability is poor.
  • Example 1 25.0 parts by mass of composite resin (A-1) obtained in Synthesis Example 1, Barnock DN-980 (manufactured by Polyisocyanate DIC Corporation, the diluent solvent is ethyl acetate, and the non-volatile content is 75.3% by mass Further, by mixing 4.5 parts by mass of NCO% of varnish (16.0% by mass) and 18.9 parts by mass of ethyl acetate, a curable resin composition having a nonvolatile content of 55.0% by mass is obtained. The curable resin composition was designated as a clear paint (1).
  • Example 2-5 and Comparative Examples 1-2 Based on the formulation shown in Table 5 below, clear paints (2) to (5) and comparative clear paints (R1) to (R2) were prepared in the same manner as in Example 1.
  • the clear paints (1) to (5) and the comparative clear paints (R1) to (R2) obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were evaluated as follows. That is, the “color tone” of the clear coating, the cured coating film X or Y for evaluation, the “gel fraction” serving as an index of room temperature curability of the cured coating film, and the “gloss retention ratio” serving as an index of weather resistance. evaluated.
  • the obtained clear paint has a Gardner color number (measured by the color test method for chemical products specified in JIS K 0071-2) and is visually color-matched with a standard sample specified in JIS K 0071-2. Was determined. The smaller the Gardner color number, the lighter the coloration, and it was determined that the Gardner color number was 1 or less and the resin was colorless.
  • ⁇ Gel fraction> The cured coating film X for evaluation was peeled off from the PP base material, and the coating film residual amount (mg) after immersion in acetone for 24 hours was divided by the mass (mg) of the cured coating film before immersion in acetone. The value multiplied by 100 was displayed as the gel fraction (%). The closer the gel fraction was to 100%, the better the room temperature curability, and it was determined that the cured coating film had sufficient room temperature curability when the gel fraction was 80% or more.
  • the clear paints (1) to (5) evaluated in Examples 1 to 5 were all colorless, had good gel fraction and gloss retention after curing, and were excellent in room temperature curability and weather resistance. A coating film was obtained.
  • the clear paint (R1) evaluated in Comparative Example 1 is an example in which the epoxy equivalent of the composite resin is too small, but it has been found that room temperature curability and weather resistance are poor.
  • the clear paint (R2) evaluated in Comparative Example 2 is an example in which the hydroxyl value of the vinyl polymer segment is too small, but it has been found that the room temperature curability and weather resistance are poor.
  • Example 6 25.0 parts by mass of the composite resin (A-1) obtained in Synthesis Example 1, 4.5 parts by mass of Bernock DN-980, CR-97 (rutile titanium oxide manufactured by Ishihara Sangyo Co., Ltd.), 9.2 parts by mass, Enamel paint (1) was obtained by mixing 28.3 parts by mass of ethyl acetate.
  • Example 7 Based on the formulation shown in Table 6, enamel paint (2) and comparative enamel paints (R1) to (R2) were prepared in the same manner as in Example 6.
  • the enamel paints (1) to (2) and the comparative enamel paints (R1) to (R2) obtained in Examples 6 to 7 and Comparative Examples 3 to 4 were evaluated as follows. That is, the cured coating film X or Y for evaluation was used to evaluate the “gel fraction” that is an index of room temperature curability of the cured coating film and the “gloss retention ratio” that is an index of weather resistance.
  • ⁇ Gel fraction> The cured coating film X for evaluation was peeled off from the PP base material, and the coating film residual amount (mg) after immersion in acetone for 24 hours was divided by the mass (mg) of the cured coating film before immersion in acetone. The value multiplied by 100 was displayed as the gel fraction (%). The closer the gel fraction was to 100%, the better the room temperature curability, and it was determined that the cured coating film had sufficient room temperature curability when the gel fraction was 80% or more. However, the pigment solid content is not a curing component and is excluded from the calculation.
  • each of the enamel paints (1) to (2) evaluated in Examples 6 to 7 had a good gel fraction and gloss retention, and a coating film excellent in weather resistance was obtained.
  • the enamel paint (R1) evaluated in Comparative Example 3 is an example in which the epoxy equivalent of the composite resin (A) is too small, but it has been found that the room temperature curability and weather resistance are poor.
  • the enamel paint (R2) evaluated in Comparative Example 4 is an example in which the hydroxyl value of the vinyl polymer segment (a-2) is too small, but it has been found that the room temperature curability and weather resistance are poor.
  • the two-component transparent room-temperature curable resin composition in the present invention has both storage stability in a one-component state and good curability at room temperature, and can provide a cured product having excellent weather resistance.
  • the paint containing the curable resin composition can be used for metal substrates, inorganic substrates, plastic substrates, paper, wood-based substrates, etc., exterior building members, automobile exterior members, civil engineering applications, electronic members It can be used in various industrial fields such as leisure goods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a two-liquid curable resin composition containing the following: a composite resin (A) comprising a polysiloxane segment and a vinyl-polymer segment bound together via specific bonds, said polysiloxane segment having an epoxy group; and a polyisocyanate hardener (B). The percentage of the mass of the composite resin (A) that the polysiloxane segment constitutes, the epoxy equivalent weight of the composite resin (A), the hydroxyl equivalent weight of the vinyl-polymer segment, and the mass ratio of the polyisocyanate hardener (B) all fall within specific ranges. This curable resin composition exhibits excellent long-term storage stability in a one-liquid state wherein the hardener has not yet been added and can be used as a coating in a two-liquid state wherein the hardener has been added. Said coating cures well at room temperature, forming a cured film that exhibits excellent weather resistance and transparency.

Description

硬化性樹脂組成物、塗料、及び該塗料の硬化塗膜を有する物品Curable resin composition, paint, and article having cured coating film of the paint
 常温硬化可能で透明性に優れ、硬化後の耐候性に優れる硬化性組成物、該硬化性樹脂組成物を含有する塗料、及び該塗料の硬化塗膜を有する物品に関する。 The present invention relates to a curable composition that can be cured at room temperature, has excellent transparency, and has excellent weather resistance after curing, a paint containing the curable resin composition, and an article having a cured coating film of the paint.
 近年、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、アクリル樹脂、ABS樹脂、ポリカーボネート樹脂や繊維強化プラスチック(FRP)などのプラスチックが、軽量性、耐衝撃性、加工性及びリサイクル性の点から、外装建築部材や自動車外装部材などに幅広く使用されている。しかし、これら合成樹脂は、屋外での長期の使用により黄ばみやクラックの発生が見られるという欠点が指摘されている。 In recent years, polyester resins such as polyethylene terephthalate (PET), acrylic resins, ABS resins, polycarbonate resins and plastics such as fiber reinforced plastic (FRP) have been used for exterior construction in terms of lightness, impact resistance, workability and recyclability. Widely used in parts and automotive exterior parts. However, it has been pointed out that these synthetic resins suffer from yellowing and cracking due to long-term outdoor use.
 これに対し、塗料等で表面を保護することでプラスチックに耐候性を付与する方法がある。これに使用される塗料としては、これまでにポリシロキサン系塗料やフルオロオレフィン系塗料等が報告されているが、焼却時に有毒なハロゲンガスが発生しないポリシロキサン系塗料が、建築外装をはじめとする各種分野で好適に使用されている。 In contrast, there is a method of imparting weather resistance to plastic by protecting the surface with a paint or the like. Polysiloxane-based paints and fluoroolefin-based paints have been reported so far as paints used for this, but polysiloxane-based paints that do not generate toxic halogen gas when incinerated are used for building exteriors, etc. It is suitably used in various fields.
 ポリシロキサン系塗料に用いる硬化性樹脂組成物として、発明者らは先に、加水分解性シリル基と加水分解性シリル基以外の官能基を有する重合体と、シラノール基および/または加水分解性シリル基を有するポリシロキサンとを縮合反応させて得られる樹脂と、硬化剤を含有する硬化性樹脂組成物を発明し開示している(例えば特許文献1参照)。該硬化性樹脂組成物から得られる硬化塗膜は耐候性や耐擦傷性に優れる。
 しかしながら、該硬化性樹脂組成物は熱で硬化する樹脂であり、特に熱で硬化させる場合、硬化塗膜に高い耐候性を付与するには140℃という高温での加熱を必要とする(特許文献1実施例1参照)。従って、建築物の壁面等、屋外にて施工するような場合には施工が難しいという問題があり、常温硬化可能な高耐候性樹脂が求められている。
As curable resin compositions for use in polysiloxane-based paints, the inventors previously described polymers having functional groups other than hydrolyzable silyl groups and hydrolyzable silyl groups, silanol groups and / or hydrolyzable silyls. A curable resin composition containing a resin obtained by condensation reaction of a polysiloxane having a group and a curing agent has been invented and disclosed (for example, see Patent Document 1). The cured coating film obtained from the curable resin composition is excellent in weather resistance and scratch resistance.
However, the curable resin composition is a resin that is cured by heat, and particularly when it is cured by heat, heating at a high temperature of 140 ° C. is required to impart high weather resistance to the cured coating film (Patent Document). 1 see Example 1). Therefore, there is a problem that the construction is difficult when the construction is performed outdoors such as a wall surface of a building, and a high weather resistance resin that can be cured at room temperature is demanded.
 一方、常温硬化性樹脂においては、良好な硬化性と保存安定性の両立が課題であることが知られている。特許文献2において、保存安定性が良好で常温硬化可能な樹脂として、脂肪酸変性されたアクリル樹脂を更にシリコン樹脂で変性してなる樹脂であって、樹脂内にはエポキシ基が導入されているが、エポキシ基は樹脂合成時に開環して反応している樹脂が開示されている。当該樹脂は常温で硬化可能なものの、製造された樹脂は褐色であることから外装用塗料として使用するには問題が大きかった。 On the other hand, it is known that in the room temperature curable resin, compatibility between good curability and storage stability is a problem. In Patent Document 2, a resin obtained by further modifying a fatty acid-modified acrylic resin with a silicon resin as a resin that has good storage stability and can be cured at room temperature, and an epoxy group is introduced into the resin. In addition, a resin in which an epoxy group is opened and reacted during resin synthesis is disclosed. Although the resin can be cured at room temperature, since the produced resin is brown, there is a great problem in using it as an exterior paint.
国際公開第96/035755号パンフレットInternational Publication No. 96/035755 Pamphlet 特開2001-122968号公報JP 2001-122968 A
 本発明が解決しようとする課題は、1液の状態での保存安定性に優れ、常温硬化可能で透明性に優れた2液式の硬化性樹脂組成物、該硬化性樹脂組成物を含有する塗料、及び該塗料の硬化塗膜を有する物品を提供することである。 The problem to be solved by the present invention is a two-component curable resin composition that has excellent storage stability in a one-component state, can be cured at room temperature, and has excellent transparency, and contains the curable resin composition. It is to provide an article having a paint and a cured coating of the paint.
 本発明者らは鋭意研究の結果、エポキシ基を有するポリシロキサンセグメントとビニル系重合体セグメントとが特定の結合により結合した複合樹脂と、硬化剤としてポリイソシアネートとを含有する2液式の硬化性樹脂組成物であって、複合樹脂中のポリシロキサンセグメントの質量割合、複合樹脂のエポキシ当量、ビニル系重合体セグメント中の水酸基量、およびポリイソシアネートの質量割合が特定の範囲内である硬化性樹脂組成物が、硬化剤を加える前の1液の状態では長期保存安定性に優れ、硬化剤を加えた2液の状態では、常温硬化後の硬化性と耐候性、及び透明性に優れる硬化塗膜を形成できることを見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found that a two-component curability containing a composite resin in which a polysiloxane segment having an epoxy group and a vinyl polymer segment are bonded by a specific bond, and a polyisocyanate as a curing agent. A curable resin, which is a resin composition, wherein the mass ratio of the polysiloxane segment in the composite resin, the epoxy equivalent of the composite resin, the amount of hydroxyl groups in the vinyl polymer segment, and the mass ratio of the polyisocyanate are within a specific range The composition is excellent in long-term storage stability in a one-liquid state before adding a curing agent, and in a two-liquid state in which a curing agent is added, a cured coating having excellent curability and weather resistance after curing at room temperature and transparency. The inventors found that a film can be formed and completed the present invention.
 すなわち、本発明は、一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基と、エポキシ基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)が、一般式(3)で表される結合により結合した複合樹脂(A)と、ポリイソシアネート(B)とを含有する硬化性樹脂組成物であって、前記複合樹脂(A)の固形分中の前記ポリシロキサンセグメント(a1)の質量割合が20~70質量%であり、前記複合樹脂(A)の固形分のエポキシ当量が900~17000g/eqであり、前記ビニル系重合体セグメント(a2)の水酸基価が55~200mgKOH/gであり、前記ポリイソシアネート(B)の質量割合が全固形分中の5~50質量%であることを特徴とする硬化性樹脂組成物を提供する。 That is, the present invention provides a polysiloxane segment (a1) having a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, and an epoxy group. Resin composition containing a composite resin (A) in which a vinyl polymer segment (a2) having an alcoholic hydroxyl group is bonded by a bond represented by the general formula (3), and a polyisocyanate (B) The mass ratio of the polysiloxane segment (a1) in the solid content of the composite resin (A) is 20 to 70% by mass, and the epoxy equivalent of the solid content of the composite resin (A) is 900 to 17,000 g / eq, the hydroxyl value of the vinyl polymer segment (a2) is 55 to 200 mgKOH / g, and the mass ratio of the polyisocyanate (B) Providing a curable resin composition which is a 5 to 50% by weight of the total solids.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但し、Rは単結合または炭素原子数1~6のアルキレン基を表す。)、炭素原子数が1~6のアルキル基、炭素原子数が3~8のシクロアルキル基、アリール基、または炭素原子数が7~12のアラルキル基を表す。) (In the general formulas (1) and (2), R 1 , R 2 and R 3 each independently represent —R 4 —CH═CH 2 , —R 4 —C (CH 3 ) ═CH 2 , — A group having one polymerizable double bond selected from the group consisting of R 4 —O—CO—C (CH 3 ) ═CH 2 and —R 4 —O—CO—CH═CH 2 (provided that R 4 Represents a single bond or an alkylene group having 1 to 6 carbon atoms.), An alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, or 7 carbon atoms. Represents an aralkyl group of ˜12.)
Figure JPOXMLDOC01-appb-C000006
(一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (3), carbon atoms constitute a part of the vinyl polymer segment (a2), and silicon atoms bonded only to oxygen atoms constitute a part of the polysiloxane segment (a1). To do)
 また、本発明は、前記硬化性樹脂組成物を含有することを特徴とする塗料、及び前記塗料を用いて形成された塗膜を有することを特徴とする物品を提供することである。 Further, the present invention is to provide an article characterized by having a paint containing the curable resin composition and a coating film formed using the paint.
 本発明の硬化性樹脂組成物は、常温硬化でも硬化性に優れるため、活性エネルギー線や熱による硬化方法が難しい、屋外での施行や大型の建造物に対する硬化塗料として特に有用であり、硬化物は屋外における長期耐候性を有することから建築外装用塗料として特に有用である。また、本発明の硬化性樹脂組成物は2液式であるが、混合前の1液の状態での保存安定性も良好であり、塗料としての有用性に優れている。また、本発明の硬化性樹脂組成物及び塗料は無色であることから、上塗り塗料としても下塗り塗料としても、クリヤー塗料としてもエナメル塗料としても好適に使用可能である。 Since the curable resin composition of the present invention is excellent in curability even at room temperature curing, it is difficult to cure by active energy rays or heat, it is particularly useful as a cured coating for outdoor enforcement or large buildings, cured products Is particularly useful as a coating for exterior building because it has long-term weather resistance outdoors. Moreover, although the curable resin composition of this invention is a 2 liquid type, the storage stability in the state of 1 liquid before mixing is also favorable, and it is excellent in the usefulness as a coating material. Further, since the curable resin composition and paint of the present invention are colorless, it can be suitably used as a top coat, undercoat, clear paint or enamel paint.
 本発明の硬化性樹脂組成物は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基と、エポキシ基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)が、前記一般式(3)で表される結合により結合した複合樹脂(A)と、ポリイソシアネート(B)とを含有する硬化性樹脂組成物であって、前記複合樹脂(A)の固形分中の前記ポリシロキサンセグメント(a1)の質量割合が20~70質量%であり、前記複合樹脂(A)の固形分のエポキシ当量が900~17000g/eqであり、前記ビニル系重合体セグメント(a2)の水酸基価が55~200mgKOH/gであり、前記ポリイソシアネート(B)の質量割合が全固形分中の5~50質量%であるものである。 The curable resin composition of the present invention has a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, and an epoxy group. A composite resin (A) in which a polysiloxane segment (a1) and a vinyl polymer segment (a2) having an alcoholic hydroxyl group are bonded by a bond represented by the general formula (3); and a polyisocyanate (B) A curable resin composition containing, wherein the mass ratio of the polysiloxane segment (a1) in the solid content of the composite resin (A) is 20 to 70% by mass, and the solid content of the composite resin (A) The epoxy equivalent is 900 to 17000 g / eq, the hydroxyl value of the vinyl polymer segment (a2) is 55 to 200 mg KOH / g, and the polyisocyanate Weight ratio of bets (B) are those from 5 to 50% by weight of the total solids.
(複合樹脂(A))
 本発明で使用する複合樹脂(A)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基と、エポキシ基とを有するポリシロキサンセグメント(a1)(以下単にポリシロキサンセグメント(a1)と称す)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)(以下単にビニル系重合体セグメント(a2)と称す)とが、前記一般式(3)で表される結合により結合した複合樹脂である。
(Composite resin (A))
The composite resin (A) used in the present invention comprises a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, an epoxy group, A polysiloxane segment (a1) having the following (hereinafter simply referred to as polysiloxane segment (a1)), a vinyl polymer segment (a2) having an alcoholic hydroxyl group (hereinafter simply referred to as vinyl polymer segment (a2)), and Is a composite resin bonded by a bond represented by the general formula (3).
 後述のポリシロキサンセグメント(a1)が有するシラノール基および/または加水分解性シリル基と、後述のビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが脱水縮合反応して、前記一般式(3)で表される結合が生じる。従って前記一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする。
 複合樹脂(A)の形態は、例えば、前記ポリシロキサンセグメント(a1)が前記重合体セグメント(a2)の側鎖として化学的に結合したグラフト構造を有する複合樹脂や、前記重合体セグメント(a2)と前記ポリシロキサンセグメント(a1)とが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。
The silanol group and / or hydrolyzable silyl group possessed by the polysiloxane segment (a1) described later and the silanol group and / or hydrolyzable silyl group possessed by the vinyl polymer segment (a2) described below undergo a dehydration condensation reaction. Thus, the bond represented by the general formula (3) is generated. Accordingly, in the general formula (3), carbon atoms constitute a part of the vinyl polymer segment (a2), and silicon atoms bonded only to oxygen atoms constitute a part of the polysiloxane segment (a1). And
The form of the composite resin (A) is, for example, a composite resin having a graft structure in which the polysiloxane segment (a1) is chemically bonded as a side chain of the polymer segment (a2), or the polymer segment (a2). And a composite resin having a block structure in which the polysiloxane segment (a1) is chemically bonded.
(複合樹脂(A) ポリシロキサンセグメント(a1))
 本発明におけるポリシロキサンセグメント(a1)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基と、エポキシ基とを有すセグメントである。
(Composite resin (A) Polysiloxane segment (a1))
The polysiloxane segment (a1) in the present invention comprises a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, and an epoxy group. It has a segment.
(一般式(1)および/または一般式(2)で表される構造単位)
 具体的には、前記一般式(1)および(2)におけるR、RおよびRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、およびR-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合または炭素原子数1~6のアルキレン基を表す。)、炭素原子数が1~6のアルキル基、炭素原子が3~8のシクロアルキル基、アリール基または炭素原子が7~12のアラルキル基を表す。
(Structural unit represented by general formula (1) and / or general formula (2))
Specifically, R 1 , R 2 and R 3 in the general formulas (1) and (2) are each independently —R 4 —CH═CH 2 , —R 4 —C (CH 3 ) ═ A group having one polymerizable double bond selected from the group consisting of CH 2 , —R 4 —O—CO—C (CH 3 ) ═CH 2 , and R 4 —O—CO—CH═CH 2 (provided that R 4 represents a single bond or an alkylene group having 1 to 6 carbon atoms.), An alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, or 7 to 7 carbon atoms. 12 aralkyl groups are represented.
 前記Rにおける前記炭素原子数が1~6のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、ペンチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基、1-メチルブチレン基、2-メチルブチレン基、1,2-ジメチルプロピレン基、1-エチルプロピレン基、ヘキシレン基、イソヘシレン基、1-メチルペンチレン基、2-メチルペンチレン基、3-メチルペンチレン基、1,1-ジメチルブチレン基、1,2-ジメチルブチレン基、2,2-ジメチルブチレン基、1-エチルブチレン基、1,1,2-トリメチルプロピレン基、1,2,2-トリメチルプロピレン基、1-エチル-2-メチルプロピレン基、1-エチル-1-メチルプロピレン基等が挙げられる。中でもRは、原料の入手の容易さから単結合または炭素原子数が2~4のアルキレン基が好ましい。 Examples of the alkylene group having 1 to 6 carbon atoms in R 4 include methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, sec-butylene group, tert-butylene group, and pentylene. Group, isopentylene group, neopentylene group, tert-pentylene group, 1-methylbutylene group, 2-methylbutylene group, 1,2-dimethylpropylene group, 1-ethylpropylene group, hexylene group, isohesylene group, 1-methylpentylene Group, 2-methylpentylene group, 3-methylpentylene group, 1,1-dimethylbutylene group, 1,2-dimethylbutylene group, 2,2-dimethylbutylene group, 1-ethylbutylene group, 1,1, 2-trimethylpropylene group, 1,2,2-trimethylpropylene group, 1-ethyl-2-me Examples include propylene group and 1-ethyl-1-methylpropylene group. Among these, R 4 is preferably a single bond or an alkylene group having 2 to 4 carbon atoms because of easy availability of raw materials.
 また、前記炭素原子数が1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。
 また、前記炭素原子数が3~8のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
また、前記アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。
また、前記炭素原子数が7~12のアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
Examples of the alkyl group having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, and isopentyl. Group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl Group, 3-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2 , 2-trimethylpropyl group, 1-ethyl-2-methylpropyl group, 1-ethyl-1-methylpropyl group and the like.
Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
Examples of the aryl group include a phenyl group, a naphthyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-vinylphenyl group, and a 3-isopropylphenyl group.
Examples of the aralkyl group having 7 to 12 carbon atoms include a benzyl group, a diphenylmethyl group, and a naphthylmethyl group.
 また、前記R、RおよびRの少なくとも1つが前記重合性二重結合を有する基であると、活性エネルギー線等により硬化させることができ、活性エネルギー線、並びに、シラノール基および/または加水分解性シリル基の縮合反応による塗膜の架橋密度の向上という2つの硬化機構により、より優れた耐磨耗性、耐酸性、耐アルカリ性および耐溶剤性を有する硬化塗膜を形成でき、熱硬化性樹脂組成物を用いることが困難であって建築外装用塗料やプラスチックをはじめとする熱変形しやすい基材に対しても好適に使用でき好ましい。
 前記重合性二重結合を有する基は、ポリシロキサンセグメント(a1)中に2つ以上存在することが好ましく、3~200個存在することがより好ましく、3~50個存在することが更に好ましく、より耐磨耗性に優れた塗膜を得ることができる。具体的には、前記ポリシロキサンセグメント(a1)中の重合性二重結合の含有率が3~35質量%であれば、所望の耐磨耗性を得ることができる。尚、ここでいう重合性二重結合とは、ビニル基、ビニリデン基もしくはビニレン基のうち、フリーラジカルによる生長反応を行うことができる基の総称である。また、重合性二重結合の含有率とは、当該ビニル基、ビニリデン基もしくはビニレン基のポリシロキサンセグメント中における質量%を示すものである。
 重合性二重結合を有する基としては、当該ビニル基、ビニリデン基、ビニレン基を含有してなる公知の全ての官能基を使用することができるが、中でも-R-C(CH)=CHや-R-O-CO-C(CH)=CHで表される(メタ)アクリロイル基は、紫外線硬化の際の反応性に富むことや、後述のビニル系重合体セグメント(a2)との相溶性が良好となる。
Further, when at least one of R 1 , R 2 and R 3 is a group having the polymerizable double bond, it can be cured by an active energy ray or the like, an active energy ray, and a silanol group and / or The two curing mechanisms of improving the crosslinking density of the coating film by the condensation reaction of hydrolyzable silyl groups can form a cured coating film with better wear resistance, acid resistance, alkali resistance and solvent resistance, It is difficult to use a curable resin composition, and it can be suitably used for a base material that easily undergoes thermal deformation, such as paints for exterior buildings and plastics.
Two or more groups having a polymerizable double bond are present in the polysiloxane segment (a1), preferably 3 to 200, more preferably 3 to 50, A coating film with more excellent wear resistance can be obtained. Specifically, when the content of polymerizable double bonds in the polysiloxane segment (a1) is 3 to 35% by mass, desired wear resistance can be obtained. The polymerizable double bond here is a general term for groups capable of performing a growth reaction by free radicals among vinyl group, vinylidene group or vinylene group. Moreover, the content rate of a polymerizable double bond shows the mass% in the polysiloxane segment of the said vinyl group, vinylidene group, or vinylene group.
As the group having a polymerizable double bond, all known functional groups containing the vinyl group, vinylidene group, and vinylene group can be used. Among them, —R 4 —C (CH 3 ) = The (meth) acryloyl group represented by CH 2 or —R 4 —O—CO—C (CH 3 ) ═CH 2 is rich in reactivity at the time of ultraviolet curing, and the vinyl polymer segment (described later) Good compatibility with a2).
 前記一般式(1)および/または前記一般式(2)で表される構造単位は、ケイ素の結合手のうち2または3つが架橋に関与した三次元網目状のポリシロキサン構造単位である。三次元網目構造を形成しながらも密な網目構造を形成しないので、ゲル化等を生じることもなく保存安定性も良好となる。 The structural unit represented by the general formula (1) and / or the general formula (2) is a three-dimensional network-like polysiloxane structural unit in which two or three of the silicon bonds are involved in crosslinking. Since a three-dimensional network structure is formed but a dense network structure is not formed, gelation or the like is not caused and storage stability is also improved.
(複合樹脂(A) エポキシ基)
 本発明における複合樹脂(A)を構成する前記ポリシロキサンセグメント(a1)はエポキシ基を有し、複合樹脂(A)の固形分のエポキシ当量は900~17000g/eqである。2500~6000g/eqであると、長期保存安定性および硬化性樹脂組成物としたときの常温硬化性に優れるため、特に好ましい。固形分のエポキシ当量が17000g/eqより大きい場合、複合樹脂(A)はゲル化しやすくなり、長期に保存できない。また、900g/eqより小さい場合であると、ポリイソシアネート(B)と混合して硬化性樹脂組成物とした際に、常温硬化できなくなる。
(Composite resin (A) Epoxy group)
The polysiloxane segment (a1) constituting the composite resin (A) in the present invention has an epoxy group, and the epoxy equivalent of the solid content of the composite resin (A) is 900 to 17000 g / eq. The range of 2500 to 6000 g / eq is particularly preferable because of excellent long-term storage stability and room temperature curability when a curable resin composition is obtained. When the epoxy equivalent of solid content is larger than 17000 g / eq, the composite resin (A) is easily gelled and cannot be stored for a long time. Moreover, when it is a case where it is less than 900 g / eq, when it mixes with a polyisocyanate (B) and it is set as a curable resin composition, it becomes impossible to cure at normal temperature.
 ポリシロキサンセグメント(a1)にエポキシ基を導入するには、後述する複合樹脂(A)の製造時に、エポキシ基含有シラン化合物を使用すればよい。エポキシ基含有シラン化合物としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシエトキシシラン、γ-グリシドキシプロピルトリアセトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシエトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリアセトキシシラン、γ-グリシドキシプロピルジメトキシメチルシラン、γ-グリシドキシプロピルジエトキシメチルシラン、γ-グリシドキシプロピルジメトキシエトキシメチルシラン、γ-グリシドキシプロピルジアセトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジエトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシエトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジアセトキシメチルシラン、γ-グリシドキシプロピルジメトキシエチルシラン、γ-グリシドキシプロピルジエトキシエチルシラン、γ-グリシドキシプロピルジメトキシエトキシエチルシラン、γ-グリシドキシプロピルジアセトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジエトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシエトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルジアセトキシエチルシラン、γ-グリシドキシプロピルジメトキシイソプロピルシラン、γ-グリシドキシプロピルジエトキシイソプロピルシラン、γ-グリシドキシプロピルジメトキシエトキシイソプロピルシラン、γ-グリシドキシプロピルジアセトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルジエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルジエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルジメトキシエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルジアセトキシイソプロピルシラン、γ-グリシドキシプロピルメトキシジメチルシラン、γ-グリシドキシプロピルエトキシジメチルシラン、γ-グリシドキシプロピルメトキシエトキシジメチルシラン、γ-グリシドキシプロピルアセトキシジメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシジメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシジメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシジメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルアセトキシジメチルシラン、γ-グリシドキシプロピルメトキシジエチルシラン、γ-グリシドキシプロピルエトキシジエチルシラン、γ-グリシドキシプロピルメトキシエトキシジエチルシラン、γ-グリシドキシプロピルアセトキシジエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシジエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシジエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシジエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルアセトキシジエチルシラン、γ-グリシドキシプロピルメトキシジイソプロピルシラン、γ-グリシドキシプロピルエトキシジイソプロピルシラン、γ-グリシドキシプロピルメトキシエトキシジイソプロピルシラン、γ-グリシドキシプロピルアセトキシジイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシジイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシジイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシジイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルアセトキシジイソプロピルシラン、γ-グリシドキシプロピルメトキシエトキシメチルシラン、γ-グリシドキシプロピルアセトキシメトキシメチルシラン、γ-グリシドキシプロピルアセトキシエトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシアセトキシメチルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシアセトキシメチルシラン、γ-グリシドキシプロピルメトキシエトキシエチルシラン、γ-グリシドキシプロピルアセトキシメトキシエチルシラン、γ-グリシドキシプロピルアセトキシエトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシアセトキシエチルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシアセトキシエチルシラン、γ-グリシドキシプロピルメトキシエトキシイソプロピルシラン、γ-グリシドキシプロピルアセトキシメトキシイソプロピルシラン、γ-グリシドキシプロピルアセトキシエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシエトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルメトキシアセトキシイソプロピルシラン、β-(3、4-エポキシシクロヘキシル)エチルエトキシアセトキシイソプロピルシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリメトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジメトキシエトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルエチルジプロポキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン等が挙げられる。 In order to introduce an epoxy group into the polysiloxane segment (a1), an epoxy group-containing silane compound may be used during the production of the composite resin (A) described later. Epoxy group-containing silane compounds include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxyethoxysilane, γ-glycidoxypropyltriacetoxysilane, β -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxyethoxysilane, β- (3, 4-epoxycyclohexyl) ethyltriacetoxysilane, γ-glycidoxypropyldimethoxymethylsilane, γ-glycidoxypropyldiethoxymethylsilane, γ-glycidoxypropyldimethoxyethoxymethylsilane, γ-glycidoxypropyldiacetoxy Methylsilane, β- (3,4-epoxycyclohexyl) ethyldimethoxymethylsilane, β- (3,4-epoxycyclohexyl) ethyldiethoxymethylsilane, β- (3,4-epoxycyclohexyl) ethyldimethoxyethoxymethylsilane, β -(3,4-epoxycyclohexyl) ethyldiacetoxymethylsilane, γ-glycidoxypropyldimethoxyethylsilane, γ-glycidoxypropyldiethoxyethylsilane, γ-glycidoxypropyldimethoxyethoxyethylsilane, γ-glycyl Sidoxypropyldiacetoxyethylsilane, β- (3,4-epoxycyclohexyl) ethyldimethoxyethylsilane, β- (3,4-epoxycyclohexyl) ethyldiethoxyethylsilane, β- (3,4-epoxycyclohexyl) Tildimethoxyethoxyethylsilane, β- (3,4-epoxycyclohexyl) ethyldiacetoxyethylsilane, γ-glycidoxypropyldimethoxyisopropylsilane, γ-glycidoxypropyldiethoxyisopropylsilane, γ-glycidoxypropyldimethoxy Ethoxyisopropylsilane, γ-glycidoxypropyldiacetoxyisopropylsilane, β- (3,4-epoxycyclohexyl) ethyldiethoxyisopropylsilane, β- (3,4-epoxycyclohexyl) ethyldiethoxyisopropylsilane, β- ( 3,4-epoxycyclohexyl) ethyldimethoxyethoxyisopropylsilane, β- (3,4-epoxycyclohexyl) ethyldiacetoxyisopropylsilane, γ-glycidoxypropylmethoxydi Methylsilane, γ-glycidoxypropylethoxydimethylsilane, γ-glycidoxypropylmethoxyethoxydimethylsilane, γ-glycidoxypropylacetoxydimethylsilane, β- (3,4-epoxycyclohexyl) ethylmethoxydimethylsilane, β- (3,4-epoxycyclohexyl) ethylethoxydimethylsilane, β- (3,4-epoxycyclohexyl) ethylmethoxyethoxydimethylsilane, β- (3,4-epoxycyclohexyl) ethylacetoxydimethylsilane, γ-glycidoxypropyl Methoxydiethylsilane, γ-glycidoxypropylethoxydiethylsilane, γ-glycidoxypropylmethoxyethoxydiethylsilane, γ-glycidoxypropylacetoxydiethylsilane, β- (3,4-epoxy Cyclohexyl) ethylmethoxydiethylsilane, β- (3,4-epoxycyclohexyl) ethylethoxydiethylsilane, β- (3,4-epoxycyclohexyl) ethylmethoxyethoxydiethylsilane, β- (3,4-epoxycyclohexyl) ethylacetoxy Diethylsilane, γ-glycidoxypropylmethoxydiisopropylsilane, γ-glycidoxypropylethoxydiisopropylsilane, γ-glycidoxypropylmethoxyethoxydiisopropylsilane, γ-glycidoxypropylacetoxydiisopropylsilane, β- (3,4) -Epoxycyclohexyl) ethylmethoxydiisopropylsilane, β- (3,4-epoxycyclohexyl) ethylethoxydiisopropylsilane, β- (3,4-epoxycyclohexyl) Tylmethoxyethoxydiisopropylsilane, β- (3,4-epoxycyclohexyl) ethylacetoxydiisopropylsilane, γ-glycidoxypropylmethoxyethoxymethylsilane, γ-glycidoxypropylacetoxymethoxymethylsilane, γ-glycidoxypropylacetoxy Ethoxymethylsilane, β- (3,4-epoxycyclohexyl) ethylmethoxyethoxymethylsilane, β- (3,4-epoxycyclohexyl) ethylmethoxyacetoxymethylsilane, β- (3,4-epoxycyclohexyl) ethylethoxyacetoxymethyl Silane, γ-glycidoxypropylmethoxyethoxyethylsilane, γ-glycidoxypropylacetoxymethoxyethylsilane, γ-glycidoxypropylacetoxyethoxyethylsila , Β- (3,4-epoxycyclohexyl) ethylmethoxyethoxyethylsilane, β- (3,4-epoxycyclohexyl) ethylmethoxyacetoxyethylsilane, β- (3,4-epoxycyclohexyl) ethylethoxyacetoxyethylsilane, γ -Glycidoxypropylmethoxyethoxyisopropylsilane, γ-glycidoxypropylacetoxymethoxyisopropylsilane, γ-glycidoxypropylacetoxyethoxyisopropylsilane, β- (3,4-epoxycyclohexyl) ethylmethoxyethoxyisopropylsilane, β- (3,4-epoxycyclohexyl) ethylmethoxyacetoxyisopropylsilane, β- (3,4-epoxycyclohexyl) ethylethoxyacetoxyisopropylsilane, glycidoxymethyl Rutrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltrimethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxy Silane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltriphenoxy Silane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxy Silane, γ-Glyci Xylbutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltripropoxysilane, β- ( 3,4-epoxycyclohexyl) ethyltryptoxysilane, β- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4-epoxy Cyclohexyl) propyltriethoxysilane, δ- (3,4-epoxycyclohexyl) butyltrimethoxysilane, δ- (3,4-epoxycyclohexyl) butyltriethoxysilane, glycidoxymethylmethyldimethoxysilane, glycidoxymethylmethyl Rudiethoxysilane, α-glycidoxyethylmethyldimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, α-glycid Xylpropylmethyldimethoxysilane, α-glycidoxypropylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ- Glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldimethoxyethoxysilane, γ-glycidoxypropylmethyl Diphenoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylethyldiethoxysilane, γ-glycidoxypropylethyldipropoxysilane, γ-glycidoxypropylvinyldimethoxysilane, γ-glycid Examples thereof include xylpropylvinyldiethoxysilane.
(複合樹脂(A) シラノール基および/または加水分解性シリル基)
 本発明においてシラノール基とは、ケイ素原子に直接結合した水酸基を有するケイ素含有基である。該シラノール基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が水素原子と結合して生じたシラノール基であることが好ましい。
(Composite resin (A) Silanol group and / or hydrolyzable silyl group)
In the present invention, the silanol group is a silicon-containing group having a hydroxyl group directly bonded to a silicon atom. Specifically, the silanol group is a silanol group formed by combining an oxygen atom having a bond with a hydrogen atom in the structural unit represented by the general formula (1) and / or the general formula (2). Preferably there is.
 また本発明において加水分解性シリル基とは、ケイ素原子に直接結合した加水分解性基を有するケイ素含有基であり、具体的には、例えば、一般式(4)で表される基が挙げられる。 In the present invention, the hydrolyzable silyl group is a silicon-containing group having a hydrolyzable group directly bonded to a silicon atom, and specifically includes, for example, a group represented by the general formula (4). .
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(一般式(4)中、Rはアルキル基、アリール基またはアラルキル基等の1価の有機基を、Rはハロゲン原子、アルコキシ基、アシロキシ基、フェノキシ基、アリールオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基およびアルケニルオキシ基からなる群から選ばれる加水分解性基である。またbは0~2の整数である。) (In the general formula (4), R 5 is a monovalent organic group such as an alkyl group, an aryl group or an aralkyl group, and R 6 is a halogen atom, an alkoxy group, an acyloxy group, a phenoxy group, an aryloxy group, a mercapto group, A hydrolyzable group selected from the group consisting of an amino group, an amide group, an aminooxy group, an iminooxy group, and an alkenyloxy group, and b is an integer of 0 to 2.)
 前記Rにおいて、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。
 また基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。
 またアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
Examples of the alkyl group in R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, and a tert group. -Pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl Group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group 1-ethyl-2-methylpropyl group, 1-ethyl-1-methylpropyl group and the like.
Examples of the group include a phenyl group, a naphthyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 4-vinylphenyl group, and a 3-isopropylphenyl group.
Examples of the aralkyl group include a benzyl group, a diphenylmethyl group, and a naphthylmethyl group.
 前記Rにおいて、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、sec-ブトキシ基等が挙げられる。
 またアシロキシ基としては、例えば、ホルミルオキシ基、アセトキシ基、プロパノイルオキシ基、ブタノイルオキシ基、ピバロイルオキシ基、ペンタノイルオキシ基、フェニルアセトキシ基、アセトアセトキシ基、ベンゾイルオキシ基、ナフトイルオキシ基等が挙げられる。
 またアリールオキシ基としては、例えば、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
 アルケニルオキシ基としては、例えば、ビニルオキシ基、アリルオキシ基、1-プロペニルオキシ基、イソプロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、2-ペテニルオキシ基、3-メチル-3-ブテニルオキシ基、2-ヘキセニルオキシ基等が挙げられる。
In R 6 , examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, and a sec-butoxy group.
Examples of the acyloxy group include formyloxy group, acetoxy group, propanoyloxy group, butanoyloxy group, pivaloyloxy group, pentanoyloxy group, phenylacetoxy group, acetoacetoxy group, benzoyloxy group, naphthoyloxy group, etc. Is mentioned.
Examples of the aryloxy group include a phenyloxy group and a naphthyloxy group.
Examples of the alkenyloxy group include vinyloxy group, allyloxy group, 1-propenyloxy group, isopropenyloxy group, 2-butenyloxy group, 3-butenyloxy group, 2-petenyloxy group, 3-methyl-3-butenyloxy group, 2 -Hexenyloxy group and the like.
 前記Rで表される加水分解性基が加水分解されることにより、前記一般式(4)で表される加水分解性シリル基はシラノール基となる。加水分解性に優れることから、中でも、メトキシ基およびエトキシ基が好ましい。
 また前記加水分解性シリル基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が前記加水分解性基と結合もしくは置換されている加水分解性シリル基であることが好ましい。
By hydrolyzing the hydrolyzable group represented by R 6 , the hydrolyzable silyl group represented by the general formula (4) becomes a silanol group. Among these, a methoxy group and an ethoxy group are preferable because of excellent hydrolyzability.
The hydrolyzable silyl group specifically includes an oxygen atom having a bond in the structural unit represented by the general formula (1) and / or the general formula (2) bonded to the hydrolyzable group. Or it is preferable that it is the hydrolyzable silyl group substituted.
 前記シラノール基や前記加水分解性シリル基は、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる塗膜のポリシロキサン構造の架橋密度が高まり、耐溶剤性などに優れた塗膜を形成することができる。
 また、前記シラノール基や前記加水分解性シリル基を含むポリシロキサンセグメント(a1)と後述のビニル系重合体セグメント(a2)とを、前記一般式(3)で表される結合を介して結合させる際に使用する。
Since the silanol group or the hydrolyzable silyl group undergoes a hydrolytic condensation reaction between the hydroxyl group in the silanol group or the hydrolyzable group in the hydrolyzable silyl group, the polysiloxane structure of the resulting coating film The crosslink density increases, and a coating film excellent in solvent resistance can be formed.
Further, the polysiloxane segment (a1) containing the silanol group or the hydrolyzable silyl group is bonded to the vinyl polymer segment (a2) described later via the bond represented by the general formula (3). Use when.
 また、ポリシロキサンセグメント(a1)として、R、RおよびRの少なくとも1つが前記重合性二重結合を有する基である構造は、例えば以下の構造が挙げられる。 In addition, examples of the structure in which at least one of R 1 , R 2, and R 3 is a group having the polymerizable double bond as the polysiloxane segment (a1) include the following structures.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 本発明において、前記複合樹脂(A)の固形分中の前記ポリシロキサンセグメント(a1)の質量割合は、20~70質量%であることが重要であり、これにより、硬化性樹脂組成物の常温硬化性と耐候性を両立させることが可能となる。 In the present invention, it is important that the mass ratio of the polysiloxane segment (a1) in the solid content of the composite resin (A) is 20 to 70% by mass, whereby the curable resin composition has a normal temperature. It becomes possible to achieve both curability and weather resistance.
(複合樹脂(A) ビニル系重合体セグメント(a2))
 本発明におけるビニル系重合体セグメント(a2)は、アクリル系重合体、フルオロオレフィン系重合体、ビニルエステル系重合体、芳香族系ビニル系重合体、ポリオレフィン系重合体等のビニル重合体セグメントである。これらは用途により適宜選択することが好ましい。
(Composite resin (A) vinyl polymer segment (a2))
The vinyl polymer segment (a2) in the present invention is a vinyl polymer segment such as an acrylic polymer, a fluoroolefin polymer, a vinyl ester polymer, an aromatic vinyl polymer, and a polyolefin polymer. . These are preferably selected appropriately depending on the application.
 アクリル系重合性セグメントは、汎用の(メタ)アクリルモノマーを重合または共重合させて得られる。(メタ)アクリルモノマーとしては特に限定はなく、またビニルモノマーも共重合可能である。例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素原子数が1~22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2-メトキシエチル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート等のω-アルコキシアルキル(メタ)アクリレート類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ-n-ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα-オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n-ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N-ジメチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン、N-ビニルピロリドン等の3級アミド基含有モノマー類等が挙げられる。 The acrylic polymerizable segment is obtained by polymerizing or copolymerizing a general-purpose (meth) acrylic monomer. The (meth) acrylic monomer is not particularly limited, and vinyl monomers can also be copolymerized. For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) Alkyl (meth) acrylates having an alkyl group having 1 to 22 carbon atoms such as acrylate and lauryl (meth) acrylate; aralkyl (meth) acrylates such as benzyl (meth) acrylate and 2-phenylethyl (meth) acrylate Cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; ω-alkoxyalkyl such as 2-methoxyethyl (meth) acrylate and 4-methoxybutyl (meth) acrylate ( ) Acrylates; vinyl acetate, carboxylic acid vinyl esters such as vinyl propionate, vinyl pivalate and vinyl benzoate; alkyl esters of crotonic acid such as methyl crotonate and ethyl crotonate; dimethyl malate, di-n -Dialkyl esters of unsaturated dibasic acids such as butyl malate, dimethyl fumarate and dimethyl itaconate; α-olefins such as ethylene and propylene; vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, etc. Fluoroolefins; alkyl vinyl ethers such as ethyl vinyl ether and n-butyl vinyl ether; cycloalkyl vinyl ethers such as cyclopentyl vinyl ether and cyclohexyl vinyl ether; N, N-dimethyl (meth) Acrylamide, N- (meth) acryloyl morpholine, N- (meth) acryloyl pyrrolidine, tertiary amide group-containing monomers such as N- vinylpyrrolidone and the like.
 前記モノマーを共重合させる際の重合方法、溶剤、あるいは重合開始剤にも特に限定はなく、公知の方法によりビニル系重合体セグメント(a2)を得ることができる。例えば、塊状ラジカル重合法、溶液ラジカル重合法、非水分散ラジカル重合法等の種々の重合法により、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルパーオキシカーボネート等の重合開始剤を使用してビニル系重合体セグメント(a2)を得ることができる。 There is no particular limitation on the polymerization method, the solvent, or the polymerization initiator for copolymerizing the monomers, and the vinyl polymer segment (a2) can be obtained by a known method. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-) can be obtained by various polymerization methods such as bulk radical polymerization, solution radical polymerization, and non-aqueous dispersion radical polymerization. Dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile), tert-butylperoxypivalate, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, di- The vinyl polymer segment (a2) can be obtained by using a polymerization initiator such as tert-butyl peroxide, cumene hydroperoxide, diisopropyl peroxycarbonate or the like.
 前記ビニル系重合体セグメント(a2)の数平均分子量としては、数平均分子量(以下、「Mn」と略記する)に換算して500~200,000の範囲であることが好ましく、前記複合樹脂(A)を製造する際の増粘やゲル化を防止でき、且つ耐久性に優れる。Mnは中でも700~100,000の範囲がより好ましく、1,000~50,000の範囲が、基材上に層を形成させる際に良好な膜を形成できる等の理由からなお好ましい。 The number average molecular weight of the vinyl polymer segment (a2) is preferably in the range of 500 to 200,000 in terms of number average molecular weight (hereinafter abbreviated as “Mn”). It is possible to prevent thickening and gelation during the production of A) and is excellent in durability. In particular, Mn is more preferably in the range of 700 to 100,000, and more preferably in the range of 1,000 to 50,000, because a good film can be formed when a layer is formed on the substrate.
 また前記ビニル系重合体セグメント(a2)は、前記ポリシロキサンセグメント(a1)と前記一般式(3)で表される結合により結合した複合樹脂(A)とするために、ビニル系重合体セグメント(a2)中の炭素原子に直接結合したシラノール基および/または加水分解性シリル基を有する。これらのシラノール基および/または加水分解性シリル基は、後述の複合樹脂(A)の製造において前記一般式(3)で表される結合となってしまうために、最終生成物である複合樹脂(A)中のビニル系重合体セグメント(a2)には殆ど存在しない。しかしながらビニル系重合体セグメント(a2)にシラノール基および/または加水分解性シリル基が残存していても何ら問題はなく、前記重合性二重結合を有する基の硬化反応による塗膜形成の際に、該硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる塗膜のポリシロキサン構造の架橋密度が高まり、耐溶剤性などに優れた塗膜を形成することができる。 In addition, the vinyl polymer segment (a2) is a vinyl polymer segment (A1) in order to form a composite resin (A) bonded to the polysiloxane segment (a1) by a bond represented by the general formula (3). It has a silanol group and / or a hydrolyzable silyl group directly bonded to the carbon atom in a2). Since these silanol groups and / or hydrolyzable silyl groups become bonds represented by the general formula (3) in the production of the composite resin (A) described later, the composite resin ( Almost no vinyl polymer segment (a2) in A). However, there is no problem even if silanol groups and / or hydrolyzable silyl groups remain in the vinyl polymer segment (a2), and when the coating film is formed by the curing reaction of the group having a polymerizable double bond. In parallel with the curing reaction, a hydrolysis condensation reaction proceeds between the hydroxyl group in the silanol group or the hydrolyzable group in the hydrolyzable silyl group, so that the crosslink density of the polysiloxane structure of the resulting coating film And a coating film excellent in solvent resistance can be formed.
 炭素原子に直接結合したシラノール基および/または加水分解性シリル基を有するビニル系重合体セグメント(a2)は、具体的には、前記汎用モノマー、および、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて得る。
 炭素原子に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2-メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2-トリメトキシシリルエチルビニルエーテル、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
Specifically, the vinyl polymer segment (a2) having a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon atom includes the general-purpose monomer, the silanol group directly bonded to the carbon bond, and / or It is obtained by copolymerizing a vinyl monomer containing a hydrolyzable silyl group.
Examples of vinyl monomers containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon atom include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinyltri (2-methoxyethoxy) silane. , Vinyltriacetoxysilane, vinyltrichlorosilane, 2-trimethoxysilylethyl vinyl ether, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropyl Examples include methyldimethoxysilane and 3- (meth) acryloyloxypropyltrichlorosilane. Among these, vinyltrimethoxysilane and 3- (meth) acryloyloxypropyltrimethoxysilane are preferable because the hydrolysis reaction can easily proceed and by-products after the reaction can be easily removed.
(ビニル系重合体セグメント(a2)の水酸基価)
 また、複合樹脂(A)とポリイソシアネート(B)とを含有する硬化性樹脂組成物を硬化させる為、前記ビニル系重合体セグメント(a2)はアルコール性水酸基を含有する。前記ビニル系重合体セグメント(a2)の水酸基価が55~200mgKOH/gであることがポリイソシアネート(B)と反応して常温硬化するため重要であり、好ましくは90~200mgKOH/gの範囲である。水酸基価が55mgKOH/gより少ない場合、ポリイソシアネート(B)と反応しにくくなるため常温硬化せず、水酸基価が200mgKOH/gより多い場合は、複合樹脂(A)の合成時にゲル化してしまうため、好ましくない。
(Hydroxyl value of vinyl polymer segment (a2))
Moreover, in order to cure the curable resin composition containing the composite resin (A) and the polyisocyanate (B), the vinyl polymer segment (a2) contains an alcoholic hydroxyl group. It is important that the hydroxyl group value of the vinyl polymer segment (a2) is 55 to 200 mgKOH / g because it reacts with the polyisocyanate (B) and cures at room temperature, preferably in the range of 90 to 200 mgKOH / g. . When the hydroxyl value is less than 55 mgKOH / g, it is difficult to react with the polyisocyanate (B), so it does not cure at room temperature, and when the hydroxyl value is more than 200 mgKOH / g, gelation occurs when the composite resin (A) is synthesized. Is not preferable.
 アルコール性水酸基を有するビニル系重合体セグメント(a2)は、アルコール水酸基を有する(メタ)アクリルモノマーを共重合させて得ることができる。アルコール水酸基を有する(メタ)アクリルモノマーとしては、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチルモノブチルフマレート、ポリエチレングルコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、「プラクセルFM」もしくは「プラクセルFA」(ともにダイセル化学(株)製のカプロラクトン付加モノマー)等の各種α、β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類、またはこれらとε-カプロラクトンとの付加物、等が挙げられる。
中でも2-ヒドロキシエチル(メタ)アクリレートが、反応が容易であり好ましい。
The vinyl polymer segment (a2) having an alcoholic hydroxyl group can be obtained by copolymerizing a (meth) acryl monomer having an alcohol hydroxyl group. Specific examples of the (meth) acrylic monomer having an alcohol hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) ) Acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl mono Butyl fumarate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, “Placcel FM” or “Placcel FA” (both caprolactone addition monomers manufactured by Daicel Chemical Industries, Ltd.) Various alpha, beta-hydroxyalkyl esters of ethylenically unsaturated carboxylic acid or an adduct thereof with ε- caprolactone, and the like.
Of these, 2-hydroxyethyl (meth) acrylate is preferable because of its easy reaction.
(複合樹脂(A)の製造方法)
 本発明で用いる複合樹脂(A)は、具体的には下記(方法1)~(方法3)に示す方法で製造する。
(Production method of composite resin (A))
Specifically, the composite resin (A) used in the present invention is produced by the methods shown in the following (Method 1) to (Method 3).
 (方法1)前記汎用の(メタ)アクリルモノマー等、および、前記炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。これとシラン化合物とを混合し、加水分解縮合反応させる。このとき、生成するポリシロキサン中にエポキシ基を導入するために、シラノール基および/または加水分解性シリル基とを併有するエポキシ基含有シラン化合物も同時に使用する。また、他に導入したい基がある場合は、導入したい基を有するシラン化合物を併用する。例えば基を導入する場合は、基とシラノール基および/または加水分解性シリル基とを併有するシラン化合物を適宜併用すればよい。また重合性二重結合を有する基を導入する場合は、重合性二重結合を有する基とシラノール基および/または加水分解性シリル基とを併有するシラン化合物を併用すればよい。
 該方法においては、シラン化合物のシラノール基あるいは加水分解性シリル基と、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが加水分解縮合反応し、前記エポキシ基を有するポリシロキサンセグメント(a1)が形成されると共に、前記エポキシ基を有するポリシロキサンセグメント(a1)と、ビニル系重合体セグメント(a2)とが前記一般式(3)で表される結合により複合化された複合樹脂(A)が得られる。
(Method 1) The general-purpose (meth) acrylic monomer and the like, and a vinyl monomer containing a silanol group and / or a hydrolyzable silyl group directly bonded to the carbon bond are copolymerized and directly bonded to the carbon bond. A vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group is obtained. This and a silane compound are mixed and hydrolytic condensation reaction is carried out. At this time, an epoxy group-containing silane compound having both a silanol group and / or a hydrolyzable silyl group is simultaneously used in order to introduce an epoxy group into the resulting polysiloxane. In addition, when there are other groups to be introduced, a silane compound having the group to be introduced is used in combination. For example, when a group is introduced, a silane compound having both a group and a silanol group and / or a hydrolyzable silyl group may be appropriately used in combination. When a group having a polymerizable double bond is introduced, a silane compound having both a group having a polymerizable double bond and a silanol group and / or a hydrolyzable silyl group may be used in combination.
In the method, the silanol group or hydrolyzable silyl group of the silane compound and the silanol group contained in the vinyl polymer segment (a2) containing the silanol group and / or hydrolyzable silyl group directly bonded to the carbon bond and And / or a hydrolytic condensation reaction with a hydrolyzable silyl group to form a polysiloxane segment (a1) having the epoxy group, a polysiloxane segment (a1) having the epoxy group, and a vinyl polymer segment. A composite resin (A) in which (a2) is combined with the bond represented by the general formula (3) is obtained.
 (方法2)方法1と同様にして、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。
一方、シラン化合物(エポキシ基を導入するために、シラノール基および/または加水分解性シリル基とを併有するエポキシ基含有シラン化合物を使用する。他に導入したい基がある場合は、導入したい基を有するシラン化合物を併用する。)を加水分解縮合反応させ、エポキシ基を有するポリシロキサンセグメント(a1)を得る。そして、ビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基と、エポキシ基を有するポリシロキサンセグメント(a1)とが有するシラノール基および/または加水分解性シリル基とを加水分解縮合反応をさせる。
(Method 2) In the same manner as in Method 1, a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond is obtained.
On the other hand, a silane compound (in order to introduce an epoxy group, an epoxy group-containing silane compound having both a silanol group and / or a hydrolyzable silyl group is used. If there is another group to be introduced, the group to be introduced is selected. The polysiloxane segment (a1) having an epoxy group is obtained by hydrolytic condensation reaction. Then, the silanol group and / or hydrolyzable silyl group of the vinyl polymer segment (a2) and the silanol group and / or hydrolyzable silyl group of the polysiloxane segment (a1) having an epoxy group are hydrolyzed. A decomposition condensation reaction is performed.
 (方法3)方法1と同様に、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。一方、方法2と同様にして、エポキシ基を有していても有してなくてもよいポリシロキサンセグメント(a1)を得る。更に、前記ポリシロキサンセグメント(a1)中にエポキシ基を導入するために、シラノール基および/または加水分解性シリル基とを併有するエポキシ基含有シラン化合物、および、他に導入したい基がある場合は、必要に応じて、導入したい基を有するシラン化合物等とを混合し、加水分解縮合反応させる。 (Method 3) In the same manner as in Method 1, a vinyl polymer segment (a2) containing a silanol group and / or a hydrolyzable silyl group directly bonded to a carbon bond is obtained. On the other hand, the polysiloxane segment (a1) which may or may not have an epoxy group is obtained in the same manner as in Method 2. Furthermore, in order to introduce an epoxy group into the polysiloxane segment (a1), when there is an epoxy group-containing silane compound having both a silanol group and / or a hydrolyzable silyl group and a group to be introduced, If necessary, a silane compound having a group to be introduced is mixed and subjected to a hydrolysis condensation reaction.
 また、重合性二重結合を有する基を導入する際に使用する重合性二重結合を有する基とシラノール基および/または加水分解性シリル基とを併有するシラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2-メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2-トリメトキシシリルエチルビニルエーテル、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリクロロシラン等を併用する。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。 In addition, as a silane compound having both a group having a polymerizable double bond and a silanol group and / or a hydrolyzable silyl group used when introducing a group having a polymerizable double bond, for example, vinyltrimethoxy Silane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinyltri (2-methoxyethoxy) silane, vinyltriacetoxysilane, vinyltrichlorosilane, 2-trimethoxysilylethyl vinyl ether, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, 3- (meth) acryloyloxypropyltrichlorosilane, etc. are used in combination. Among these, vinyltrimethoxysilane and 3- (meth) acryloyloxypropyltrimethoxysilane are preferable because the hydrolysis reaction can easily proceed and by-products after the reaction can be easily removed.
 また、その他、前記(方法1)~(方法3)で使用する汎用のシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、iso-ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン等の各種ノールガノトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-ブトキシシラン、ジエチルジメトキシシラン、メチルシクロヘキシルジメトキシシランもしくは等の、各種のジオルガノジアルコキシシラン類;メチルトリクロロシラン、エチルトリクロロシラン、ビニルトリクロロシラン、ジメチルジクロロシラン、ジエチルジクロロシランもしくは等のクロロシラン類が挙げられる。中でも、加水分解反応が容易に進行し、また反応後の副生成物を容易に除去することが可能なオルガノトリアルコキシシランやジオルガノジアルコキシシランが好ましい。 Other general-purpose silane compounds used in the (Method 1) to (Method 3) include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, n- Various nolganotrialkoxysilanes such as propyltrimethoxysilane, iso-butyltrimethoxysilane, cyclohexyltrimethoxysilane; dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-butoxysilane, diethyldimethoxysilane, methylcyclohexyldimethoxysilane Or various diorganodialkoxysilanes such as methyltrichlorosilane, ethyltrichlorosilane, vinyltrichlorosilane, dimethyldichlorosilane, diethyldichlorosilane or the like Roroshiran acids and the like. Of these, organotrialkoxysilanes and diorganodialkoxysilanes that can easily undergo a hydrolysis reaction and easily remove by-products after the reaction are preferable.
 また、テトラメトキシシラン、テトラエトキシシランもしくはテトラn-プロポキシシランなどの4官能アルコキシシラン化合物や該4官能アルコキシシラン化合物の部分加水分解縮合物を、本発明の効果を損なわない範囲で併用することもできる。前記4官能アルコキシシラン化合物またはその部分加水分解縮合物を併用する場合には、前記ポリシロキサンセグメント(a1)を構成する全ケイ素原子に対して、該4官能アルコキシシラン化合物の有するケイ素原子が、20モル%を超えない範囲となるように併用することが好ましい。 Further, a tetrafunctional alkoxysilane compound such as tetramethoxysilane, tetraethoxysilane or tetra n-propoxysilane or a partial hydrolysis condensate of the tetrafunctional alkoxysilane compound may be used in combination as long as the effects of the present invention are not impaired. it can. When the tetrafunctional alkoxysilane compound or a partially hydrolyzed condensate thereof is used in combination, the silicon atoms of the tetrafunctional alkoxysilane compound are 20 with respect to the total silicon atoms constituting the polysiloxane segment (a1). It is preferable to use together so that it may become the range which does not exceed mol%.
 また、前記シラン化合物には、ホウ素、チタン、ジルコニウムあるいはアルミニウムなどのケイ素原子以外の金属アルコキシド化合物を、本発明の効果を損なわない範囲で併用することもできる。例えば、ポリシロキサンセグメント(a1)を構成する全ケイ素原子に対して、上述の金属アルコキシド化合物の有する金属原子が、25モル%を超えない範囲で、併用することが好ましい。 In addition, a metal alkoxide compound other than a silicon atom such as boron, titanium, zirconium, or aluminum can be used in combination with the silane compound as long as the effects of the present invention are not impaired. For example, it is preferable to use the metal alkoxide compound in combination within a range not exceeding 25 mol% with respect to all silicon atoms constituting the polysiloxane segment (a1).
 前記(方法1)~(方法3)における加水分解縮合反応は、前記加水分解性基の一部が水などの影響で加水分解され水酸基を形成し、次いで該水酸基同士、あるいは該水酸基と加水分解性基との間で進行する進行する縮合反応をいう。該加水分解縮合反応は、公知の方法で反応を進行させることができるが、前記製造工程で水と触媒とを供給することで反応を進行させる方法が簡便で好ましい。 In the hydrolysis condensation reaction in the (Method 1) to (Method 3), a part of the hydrolyzable group is hydrolyzed under the influence of water or the like to form a hydroxyl group, and then the hydroxyl groups or the hydroxyl group and the hydrolysis group are hydrolyzed. This refers to a proceeding condensation reaction that proceeds with a functional group. The hydrolysis-condensation reaction can be performed by a known method, but a method in which the reaction is advanced by supplying water and a catalyst in the production process is simple and preferable.
 使用する触媒としては、例えば、塩酸、硫酸、燐酸等の無機酸類;p-トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウムまたは水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、1-メチルイミダゾール等の各種の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の各種の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレートもしくはハイドロオキサイドなどを有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫またはステアリン酸錫など錫カルボン酸塩等が挙げられる。触媒は単独で使用しても良いし、2種以上併用しても良い。 Examples of the catalyst used include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as p-toluenesulfonic acid, monoisopropyl phosphate and acetic acid; inorganic bases such as sodium hydroxide and potassium hydroxide; tetraisopropyl titanate , Titanic acid esters such as tetrabutyl titanate; 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1 Compounds containing various basic nitrogen atoms such as 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine, dimethylbenzylamine, monoethanolamine, imidazole, 1-methylimidazole; Tetramethylammonium salt, tetrabutylammonium salt, dilauryldimethylammoni Various quaternary ammonium salts such as chlorinated salts, which have chloride, bromide, carboxylate or hydroxide as counter anions; dibutyltin diacetate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin Examples thereof include tin carboxylates such as diacetylacetonate, tin octylate and tin stearate. A catalyst may be used independently and may be used together 2 or more types.
 前記触媒の添加量に特に限定はないが、一般的には前記シラノール基または加水分解性シリル基を有する各々の化合物全量に対して、0.0001~10質量%の範囲で使用することが好ましく、0.0005~3質量%の範囲で使用することがより好ましく、0.001~1質量%の範囲で使用することが特に好ましい。 The addition amount of the catalyst is not particularly limited, but generally it is preferably used in the range of 0.0001 to 10% by mass with respect to the total amount of each compound having the silanol group or hydrolyzable silyl group. , More preferably in the range of 0.0005 to 3% by mass, and particularly preferably in the range of 0.001 to 1% by mass.
 また、供給する水の量は、前記シラノール基または加水分解性シリル基を有する各々の化合物が有するシラノール基または加水分解性シリル基1モルに対して0.05モル以上が好ましく、0.1モル以上がより好ましく、特に好ましくは、0.5モル以上である。
これらの触媒及び水は、一括供給でも逐次供給であってもよく、触媒と水とを予め混合したものを供給しても良い。
The amount of water to be supplied is preferably 0.05 mol or more with respect to 1 mol of the silanol group or hydrolyzable silyl group of each compound having the silanol group or hydrolyzable silyl group, The above is more preferable, and particularly preferably 0.5 mol or more.
These catalyst and water may be supplied collectively or sequentially, or may be supplied by previously mixing the catalyst and water.
 前記(方法1)~(方法3)における加水分解縮合反応を行う際の反応温度は、0℃~150℃の範囲が適切であり、好ましくは、20℃~100℃の範囲内である。また、反応の圧力としては、常圧、加圧下または減圧下の、いずれの条件においても行うことができる。また、前記加水分解縮合反応において生成しうる副生成物であるアルコールや水は、必要に応じ蒸留などの方法により除去してもよい。 The reaction temperature for carrying out the hydrolysis condensation reaction in the above (Method 1) to (Method 3) is suitably in the range of 0 ° C. to 150 ° C., and preferably in the range of 20 ° C. to 100 ° C. The reaction can be carried out under any conditions of normal pressure, increased pressure, or reduced pressure. Moreover, you may remove the alcohol and water which are the by-products which can be produced | generated in the said hydrolysis-condensation reaction by methods, such as distillation, as needed.
 前記(方法1)~(方法3)における各々の化合物の仕込み比率は、所望とする本発明で使用する複合樹脂(A)の構造により適宜選択される。中でも、得られる塗膜の耐久性が優れることから、ポリシロキサンセグメント(a1)の含有率が20~70質量%となるよう複合樹脂(A)を得るのが重要であり、30~70質量%が好ましい。 The charging ratio of each compound in the above (Method 1) to (Method 3) is appropriately selected depending on the desired structure of the composite resin (A) used in the present invention. Among them, since the durability of the obtained coating film is excellent, it is important to obtain the composite resin (A) so that the content of the polysiloxane segment (a1) is 20 to 70% by mass, and 30 to 70% by mass. Is preferred.
 前記(方法1)~(方法3)において、ポリシロキサンセグメントとビニル系重合体セグメントをブロック状に複合化する具体的な方法としては、ポリマー鎖の片末端あるいは両末端のみに前記したシラノール基および/または加水分解性シリル基を有するような構造のビニル系重合体セグメントを中間体として使用し、例えば、(方法1)であれば、当該ビニル系重合体セグメントに、シラン化合物を混合し、加水分解縮合反応させる方法が挙げられる。 In the above (Method 1) to (Method 3), as a specific method for combining the polysiloxane segment and the vinyl polymer segment in a block shape, the silanol group and the above-described silanol group may be added to only one or both ends of the polymer chain. For example, in the case of (Method 1), a silane compound is mixed with the vinyl polymer segment, and a hydrolyzable silyl group-containing vinyl polymer segment is used as an intermediate. The method of carrying out decomposition condensation reaction is mentioned.
 一方、前記(方法1)~(方法3)において、ビニル系重合体セグメントに対してポリシロキサンセグメントをグラフト状に複合化させる具体的な方法としては、ビニル系重合体セグメントの主鎖に対し、前記したシラノール基および/または加水分解性シリル基をランダムに分布させた構造を有するビニル系重合体セグメントを中間体として使用し、例えば、(方法2)であれば、当該ビニル系重合体セグメントが有するシラノール基および/または加水分解性シリル基とシラン化合物とを加水分解縮合反応をさせる方法を挙げることができる。 On the other hand, in the above (Method 1) to (Method 3), as a specific method of complexing the polysiloxane segment with the vinyl polymer segment in a graft form, the main chain of the vinyl polymer segment is The vinyl polymer segment having a structure in which silanol groups and / or hydrolyzable silyl groups are randomly distributed is used as an intermediate. For example, in the case of (Method 2), the vinyl polymer segment is Examples thereof include a method of subjecting the silanol group and / or hydrolyzable silyl group and the silane compound to a hydrolytic condensation reaction.
(ポリイソシアネート(B))
 本発明における硬化性樹脂組成物は、前記複合樹脂(A)とポリイソシアネート(B)を含有する。このとき、前記複合樹脂(A)を構成する前記ビニル系重合体セグメント(a2)の水酸基価は55~200mgKOH/gであることが重要である。また、ポリイソシアネート(B)の質量割合は、本発明の硬化性樹脂組成物の全固形分中の5~50質量%であることが重要である。ポリイソシアネートを該範囲含有させることで、特に屋外における長期耐候性(具体的には耐クラック性)が特に優れる塗膜が得られる。これは、ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)の水酸基や後述のアルコール性水酸基を有する活性エネルギー線硬化性モノマー中の水酸基である)とが反応して、ソフトセグメントであるウレタン結合が形成され、重合性二重結合由来の硬化による応力の集中を緩和させる働きをするのではと推定している。
(Polyisocyanate (B))
The curable resin composition in the present invention contains the composite resin (A) and the polyisocyanate (B). At this time, it is important that the hydroxyl value of the vinyl polymer segment (a2) constituting the composite resin (A) is 55 to 200 mgKOH / g. Further, it is important that the mass ratio of the polyisocyanate (B) is 5 to 50% by mass in the total solid content of the curable resin composition of the present invention. By containing the polyisocyanate in this range, a coating film having particularly excellent long-term weather resistance (specifically, crack resistance) outdoors can be obtained. This is because a polyisocyanate and a hydroxyl group in the system (this is a hydroxyl group in an active energy ray-curable monomer having a hydroxyl group of the vinyl polymer segment (a2) or an alcoholic hydroxyl group described later). It is presumed that a urethane bond, which is a soft segment, is formed and functions to relieve stress concentration due to curing derived from a polymerizable double bond.
 使用するポリイソシアネート(B)としては特に限定はなく公知のものを使用することができるが、トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート等の芳香族ジイソシアネート類や、メタ-キシリレンジイソシアネート、α,α,α’,α’-テトラメチル-メタ-キシリレンジイソシアネート等のアラルキルジイソシアネート類を主原料とするポリイソシアネートは、長期屋外曝露での硬化塗膜が黄変するという問題点が生じるため使用量を最小限にすることが好ましい。 The polyisocyanate (B) to be used is not particularly limited and known ones can be used, but aromatic diisocyanates such as tolylene diisocyanate and diphenylmethane-4,4′-diisocyanate, meta-xylylene diisocyanate, Polyisocyanates mainly composed of aralkyl diisocyanates such as α, α, α ', α'-tetramethyl-meta-xylylene diisocyanate have the problem that the cured coating film yellows when exposed to long-term outdoor exposure. It is preferable to minimize the amount used.
 屋外での長期使用という観点から、本発明で用いるポリイソシアネート(B)としては、脂肪族ジイソシアネートを主原料とする脂肪族ポリイソシアネートが好適である。脂肪族ジイソシアネートとしては、例えば、テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート(以下「HDI」と略す)、2,2,4-(または、2,4,4-トリメチル-1,6-ヘキサメチレンジイソイシアネート、リジンイソシアネート、イソホロンジイソシアネート、水添キシレンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,4-ジイソシアネートシクロヘキサン、1,3-ビス(ジイソシアネートメチル)シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート等が挙げられる。中でも、耐クラック性とコストの観点からHDIが特に好適である。 From the viewpoint of long-term outdoor use, the polyisocyanate (B) used in the present invention is preferably an aliphatic polyisocyanate containing an aliphatic diisocyanate as a main raw material. Examples of the aliphatic diisocyanate include tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate (hereinafter abbreviated as “HDI”), 2,2,4- (or 2,4,4). Trimethyl-1,6-hexamethylene diisocyanate, lysine isocyanate, isophorone diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,4-diisocyanate cyclohexane, 1,3-bis (diisocyanate methyl) cyclohexane, 4,4 '-Dicyclohexylmethane diisocyanate, etc. Among them, HDI is particularly suitable from the viewpoint of crack resistance and cost.
 脂肪族ジイソシアネートから得られる脂肪族ポリイソシアネートとしては、アロファネート型ポリイソシアネート、ビウレット型ポリイソシアネート、アダクト型ポリイソシアネート及びイソシアヌレート型ポリイソシアネートが挙げられるが、いずれも好適に使用することができる。 Examples of the aliphatic polyisocyanate obtained from the aliphatic diisocyanate include allophanate type polyisocyanate, biuret type polyisocyanate, adduct type polyisocyanate, and isocyanurate type polyisocyanate, and any of them can be suitably used.
 なお、前記したポリイソシアネートとしては、種々のブロック剤でブロック化された、いわゆるブロックポリイソシアネート化合物を使用することもできる。ブロック剤としては、例えばメタノール、エタノール、乳酸エステル等のアルコール類;フェノール、サリチル酸エステル等のフェノール性水酸基含有化合物類;ε-カプロラクタム、2-ピロリドン等のアマイド類;アセトンオキシム、メチルエチルケトオキシム等のオキシム類;アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等の活性メチレン化合物類等を使用することができる。 In addition, as the above-described polyisocyanate, so-called blocked polyisocyanate compounds blocked with various blocking agents can be used. Examples of the blocking agent include alcohols such as methanol, ethanol and lactic acid esters; phenolic hydroxyl group-containing compounds such as phenol and salicylic acid esters; amides such as ε-caprolactam and 2-pyrrolidone; oximes such as acetone oxime and methyl ethyl ketoxime Active methylene compounds such as methyl acetoacetate, ethyl acetoacetate and acetylacetone can be used.
 上記の各種ポリイソシアネートは、単独で用いても、複数を組み合せて用いてもかまわない。 The above-mentioned various polyisocyanates may be used alone or in combination.
 前記ポリイソシアネート中のイソシアネート基は、5~50質量%であることが、塗料として使用した場合の得られる硬化塗膜の耐クラック性の点から好ましい。前記ポリイソシアネート中のイソシアネート基が50%を超えて多い場合、ポリイソシアネートの分子量が小さくなり、応力緩和による耐クラック性が発現しなくなるおそれがある。ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)の水酸基や後述のアルコール性水酸基を有する前記活性エネルギ-線硬化性モノマー中の水酸基である)との反応は、特に加熱等は必要なく、室温に放置することで徐徐に反応していく。また必要に応じて、80℃で数分間~数時間(20分~4時間)加熱して、アルコール性水酸基とイソシアネートの反応を促進してもよい。その場合は、必要に応じて公知のウレタン化触媒を使用してもよい。ウレタン化触媒は、所望する反応温度に応じて適宜選択する。 The isocyanate group in the polyisocyanate is preferably 5 to 50% by mass from the viewpoint of crack resistance of a cured coating film obtained when used as a paint. When the isocyanate group in the polyisocyanate exceeds 50%, the molecular weight of the polyisocyanate becomes small, and crack resistance due to stress relaxation may not be exhibited. The reaction between the polyisocyanate and a hydroxyl group in the system (this is a hydroxyl group in the active energy ray-curable monomer having a hydroxyl group of the vinyl polymer segment (a2) or an alcoholic hydroxyl group described later), in particular, There is no need for heating, etc., and the reaction proceeds gradually by leaving it at room temperature. If necessary, the reaction between the alcoholic hydroxyl group and the isocyanate may be promoted by heating at 80 ° C. for several minutes to several hours (20 minutes to 4 hours). In that case, you may use a well-known urethanation catalyst as needed. The urethanization catalyst is appropriately selected according to the desired reaction temperature.
(長期保存安定性と硬化性及び高耐候性)
 本発明における硬化性樹脂組成物は、前記複合樹脂(A)の固形分中の前記ポリシロキサンセグメント(a1)の質量割合が20~70質量%であり、前記複合樹脂(A)の固形分のエポキシ当量が900~17000g/eqであり、前記ビニル系重合体セグメント(a2)の水酸基価が55~200mgKOH/gであり、前記ポリイソシアネート(B)の質量割合が全固形分中の5~50質量%であるときに、硬化前の複合樹脂(A)のみの1液の状態での保存安定性と、前記複合樹脂(A)と硬化剤である前記ポリイソシアネート(B)の2液を混合後の常温硬化性を両立し、透明で耐候性に優れた樹脂を提供することができる。
(Long-term storage stability and curability and high weather resistance)
In the curable resin composition of the present invention, the mass ratio of the polysiloxane segment (a1) in the solid content of the composite resin (A) is 20 to 70% by mass, and the solid content of the composite resin (A) is The epoxy equivalent is 900 to 17000 g / eq, the hydroxyl value of the vinyl polymer segment (a2) is 55 to 200 mgKOH / g, and the mass ratio of the polyisocyanate (B) is 5 to 50 in the total solid content. When it is% by mass, the storage stability of only the composite resin (A) before curing in the state of one liquid, and the two liquids of the composite resin (A) and the polyisocyanate (B) as a curing agent are mixed. It is possible to provide a resin that is compatible with later room temperature curability and is transparent and excellent in weather resistance.
 硬化前の1液の状態での前記複合樹脂(A)の長期保存安定性は、エポキシ基がシラノール基間の縮合反応を抑制させている結果と考えられる。そのメカニズムとしては、ポリシロキサン中にエポキシ基があることにより、酸性条件下でプロトン化したエポキシ基が近くに位置しているシラノール残基を捕捉し、それらの縮合を妨げているものと考えられる。 The long-term storage stability of the composite resin (A) in the state of one liquid before curing is considered to be a result of the epoxy group suppressing the condensation reaction between silanol groups. As the mechanism, it is thought that the presence of epoxy groups in the polysiloxane captures silanol residues located nearby by protonated epoxy groups under acidic conditions and prevents their condensation. .
 また、前記複合樹脂(A)の固形分のエポキシ当量が900g/eqより小さい場合には、エポキシ基含有シラン化合物によるシラノール基間の縮合反応の抑制効果が大きくなりすぎるため、硬化前の長期保存安定性は保持されるが、製膜した後の架橋進行が不十分となり、その硬化膜は十分に高い耐候性を有さない。一方、固形分のエポキシ当量が17000g/eqより大きい場合には、逆にエポキシ基含有シラン化合物によるシラノール基間の縮合反応の抑制効果が小さくなりすぎるため、硬化前の長期保存安定性が保持されない。 In addition, when the epoxy equivalent of the solid content of the composite resin (A) is less than 900 g / eq, the effect of suppressing the condensation reaction between silanol groups by the epoxy group-containing silane compound becomes too large, so long-term storage before curing. Although stability is maintained, the progress of crosslinking after film formation becomes insufficient, and the cured film does not have sufficiently high weather resistance. On the other hand, when the epoxy equivalent of the solid content is larger than 17000 g / eq, the effect of suppressing the condensation reaction between silanol groups by the epoxy group-containing silane compound is too small, and thus long-term storage stability before curing is not maintained. .
 また、ビニル系重合体セグメント(a2)の水酸基価が55mgKOH/gより小さい場合には、硬化膜にしたときの架橋密度が不十分となり、その硬化膜は十分に高い硬化性及び硬化膜の高い耐候性を有さない。一方、ビニル系重合体セグメント(a2)の水酸基価が200mgKOH/gより大きい場合には、ビニル系重合体セグメント(a2)の重合中にゲル化が起こり、複合樹脂を得ることが出来ない。 Moreover, when the hydroxyl value of the vinyl polymer segment (a2) is smaller than 55 mgKOH / g, the crosslinking density when the cured film is formed becomes insufficient, and the cured film has sufficiently high curability and high cured film. Does not have weather resistance. On the other hand, when the hydroxyl value of the vinyl polymer segment (a2) is larger than 200 mgKOH / g, gelation occurs during the polymerization of the vinyl polymer segment (a2), and a composite resin cannot be obtained.
 以上より、固形分のエポキシ当量が900~17000g/eqの範囲内にある場合には、エポキシ基含有シラン化合物によるシラノール基間の縮合反応の抑制効果と、硬化膜にしたときの架橋反応進行のバランスが最適化されるため、硬化前の長期保存安定性と、一定レベルの硬化性及び硬化膜の高い耐候性が得られる。同様に、ビニル系重合体セグメント(a2)の水酸基価が55~200mgKOH/gの範囲内にある場合、硬化膜にしたときの架橋密度が十分となり、その硬化膜は十分に高い硬化性及び硬化膜の高い耐候性を有することとなる。 From the above, when the epoxy equivalent of the solid content is in the range of 900 to 17000 g / eq, the effect of suppressing the condensation reaction between silanol groups by the epoxy group-containing silane compound and the progress of the crosslinking reaction when a cured film is formed. Since the balance is optimized, long-term storage stability before curing, a certain level of curability and high weather resistance of the cured film can be obtained. Similarly, when the hydroxyl group value of the vinyl polymer segment (a2) is in the range of 55 to 200 mgKOH / g, the crosslinked density when the cured film is formed is sufficient, and the cured film has sufficiently high curability and curing. The film has high weather resistance.
(硬化方法)
 本発明の硬化性樹脂組成物は、前記複合樹脂(A)とポリイソシアネート(B)を混合することにより、常温硬化が可能となるため、室温で5~10日間程度の間、より好ましくは7~10日間程度の間で静置して乾燥せしめるということによって、実用性の高い硬化膜を得ることが出来る。
(Curing method)
Since the curable resin composition of the present invention can be cured at room temperature by mixing the composite resin (A) and the polyisocyanate (B), it is preferably about 5 to 10 days at room temperature, more preferably 7 A cured film having high practicality can be obtained by allowing it to stand for about 10 days to dry.
 あるいは、より速い硬化が望まれる場合には、80~250℃程度の温度範囲内で、30秒から2時間程度の間、焼付けを行うということによっても、実用性の高い硬化膜を得ることが可能である。この場合、焼付け条件によっては、常温硬化膜よりも高い硬度、高いゲル分率、および、高い耐候性を有する硬化膜を得ることも可能である。 Alternatively, when faster curing is desired, a highly practical cured film can be obtained by performing baking within a temperature range of about 80 to 250 ° C. for about 30 seconds to 2 hours. Is possible. In this case, depending on the baking conditions, it is also possible to obtain a cured film having higher hardness, higher gel fraction, and higher weather resistance than the room temperature cured film.
(その他の配合物)
 本発明の硬化性樹脂組成物は、分散液の固形分量や粘度を調整する目的として、分散媒を使用してもよい。本発明の効果を損ねることのない液状媒体であればよく、上記の有機溶剤や液状有機ポリマーが挙げられる。
(Other compounds)
The curable resin composition of the present invention may use a dispersion medium for the purpose of adjusting the solid content and viscosity of the dispersion. Any liquid medium that does not impair the effects of the present invention may be used, and examples thereof include the above organic solvents and liquid organic polymers.
 また、本発明の硬化性組成物は常温硬化が可能であるが、各種触媒を添加して熱硬化を行ってもかまわない。アルコール性水酸基とイソシアネートとのウレタン化反応との反応温度、反応時間等を考慮して、各々の触媒を選択することが好ましい。
 また、熱硬化性樹脂を併用することも可能である。熱硬化性樹脂としては、ビニル系樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、エポキシエステル樹脂、アクリル樹脂、フェノール樹脂、石油樹脂、ケトン樹脂、シリコン樹脂あるいはこれらの変性樹脂等が挙げられる。
The curable composition of the present invention can be cured at room temperature, but various catalysts may be added to perform thermal curing. It is preferable to select each catalyst in consideration of the reaction temperature, reaction time, etc. of the urethanization reaction between an alcoholic hydroxyl group and an isocyanate.
Moreover, it is also possible to use a thermosetting resin together. Examples of the thermosetting resin include vinyl resins, unsaturated polyester resins, polyurethane resins, epoxy resins, epoxy ester resins, acrylic resins, phenol resins, petroleum resins, ketone resins, silicon resins, and modified resins thereof.
 その他、必要に応じて、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、または可塑剤等の種々の添加剤等を使用することもできる。 In addition, inorganic pigments, organic pigments, extender pigments, clay minerals, waxes, surfactants, stabilizers, flow regulators, dyes, leveling agents, rheology control agents, UV absorbers, antioxidants, or as necessary Various additives such as a plasticizer can also be used.
(塗料及び基材)
 本発明の硬化性樹脂組成物は、このままで硬化性塗料として用いることができる。また、前記した有機顔料、無機顔料等の添加剤を加えてもよい。
(Paint and base material)
The curable resin composition of the present invention can be used as it is as a curable coating. Moreover, you may add additives, such as an above described organic pigment and an inorganic pigment.
 本発明の硬化性樹脂組成物や塗料を用いて形成される塗膜の膜厚は、特に制限はないが、屋外での長期耐候性を有する硬化塗膜を形成することができるという観点から、0.1~300μmであることが好ましい。硬化塗膜の膜厚が0.1μm未満の場合、プラスチック素材の変色やクラックの発生を防ぐことができなくなるし膜厚が300μmを超えて厚くなると、溶剤の揮発が完全に進行せず、塗膜中に残存溶剤が残ることになるため、硬化不良を起こす場合があるので、注意が必要である。 The film thickness of the coating film formed using the curable resin composition or paint of the present invention is not particularly limited, but from the viewpoint that a cured coating film having long-term weather resistance outdoors can be formed, It is preferably 0.1 to 300 μm. When the thickness of the cured coating film is less than 0.1 μm, discoloration of the plastic material and generation of cracks cannot be prevented, and when the film thickness exceeds 300 μm, the volatilization of the solvent does not proceed completely, and Care should be taken because residual solvent will remain in the film, which may cause poor curing.
 前記基材としては、種々のものが使用できるが、例えば金属基材、無機質基材、プラスチック基材、紙、木質系基材等を使用することができる。 As the base material, various materials can be used. For example, a metal base material, an inorganic base material, a plastic base material, paper, a woody base material and the like can be used.
 無機質基材としては、例えばガラス、コンクリート、石膏ボード、アスファルトなどが挙げられ、建築・土木材料用塗料として好適に使用可能である。 Examples of the inorganic base material include glass, concrete, gypsum board, asphalt, and the like, and can be suitably used as a paint for building / civil engineering materials.
 前記プラスチック基材としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン類;ポリエチレンイソフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル類;ナイロン1、ナイロン11、ナイロン6、ナイロン66、ナイロンMX-Dなどのポリアミド類;ポリスチレン、スチレン-ブタジエンブロック共重合体、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン-アクリロニトリル共重合体(ABS樹脂)等のスチレン系重合体;ポリメチルメタクリレート、メチルメタクリレート・エチルアクリレート共重合体等のアクリル系重合体;ポリカーボネート等を使用することができる。前記プラスチック基材は、単層または2層以上の積層構造を有するものであってもよい。また、これらのプラスチック基材は、未延伸、一軸延伸、二軸延伸されていてもよい。 Examples of the plastic substrate include polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer; polyesters such as polyethylene isophthalate, polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; nylon 1, nylon 11, and nylon 6, Polyamides such as nylon 66, nylon MX-D; styrene polymers such as polystyrene, styrene-butadiene block copolymer, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer (ABS resin); Acrylic polymers such as polymethyl methacrylate and methyl methacrylate / ethyl acrylate copolymer; polycarbonate and the like can be used. The plastic substrate may have a single layer or a laminated structure of two or more layers. Moreover, these plastic base materials may be unstretched, uniaxially stretched, or biaxially stretched.
 前記プラスチック基材は、本発明の塗料との密着性を更に向上させるために、基材表面に公知の表面処理が施されていてもよく、かかる表面処理としては、例えば、コロナ放電処理、プラズマ処理、フレームプラズマ処理、電子線照射処理、紫外線照射処理等が挙げられ、これらの1種または2種以上を組み合わせた処理を行ってもよい。 The plastic substrate may be subjected to a known surface treatment on the surface of the substrate in order to further improve the adhesion with the paint of the present invention. Examples of such a surface treatment include corona discharge treatment, plasma, and the like. Examples thereof include a process, a flame plasma process, an electron beam irradiation process, and an ultraviolet irradiation process, and a process combining one or more of these may be performed.
(基材への塗装と硬化)
 例えば、基材表面に前記塗料で形成された層を積層する場合は、特に限定はないが、通常塗装法が用いられる。具体的には、前記複合樹脂(A)とポリイソシアネート(B)、及び各種添加剤を混合して硬化性組成物を含有する塗料を作成し、基材表面に前記塗料を塗布した後、常温で7~10日間程度の間で静置して乾燥せしめることによって、耐候性に優れる硬化物を得ることができる。
(Coating and curing on base material)
For example, when a layer formed of the paint is laminated on the substrate surface, there is no particular limitation, but a normal coating method is used. Specifically, the composite resin (A), the polyisocyanate (B), and various additives are mixed to prepare a paint containing a curable composition, and after applying the paint on the substrate surface, The cured product having excellent weather resistance can be obtained by allowing to stand and drying for about 7 to 10 days.
 この場合、レオロジーをコントロールするために、前記硬化性組成物及び塗料は、前記添加剤の他、溶剤を添加し適宜希釈して使用することが好ましい。溶剤は特に限定はないが、施工時の作業環境を配慮し、トルエンやキシレン等の芳香族系炭化水素類の使用を避けることが好ましい。 In this case, in order to control the rheology, it is preferable that the curable composition and the coating material be used by appropriately diluting the solvent by adding a solvent in addition to the additive. The solvent is not particularly limited, but it is preferable to avoid the use of aromatic hydrocarbons such as toluene and xylene in consideration of the working environment during construction.
 また塗装後の膜厚にも特に制限はないが、屋外での長期耐候性を有する硬化塗膜を形成することができるという観点から、0.1~300μmであることが好ましい。硬化塗膜の膜厚が0.1μm未満の場合、プラスチック素材の変色やクラックの発生を防ぐことができなくなるし、膜厚が300μmを超えて厚くなると、溶剤の揮発が完全に進行せず、塗膜中に残存溶剤が残ることになるため、硬化不良を起こす場合があるので、注意が必要である。 The film thickness after coating is not particularly limited, but is preferably 0.1 to 300 μm from the viewpoint that a cured coating film having long-term weather resistance outdoors can be formed. When the film thickness of the cured coating film is less than 0.1 μm, discoloration and cracking of the plastic material cannot be prevented, and when the film thickness exceeds 300 μm, the volatilization of the solvent does not proceed completely, Care should be taken because residual solvent will remain in the coating film, which may cause poor curing.
 また、前記基材には、本発明の効果を阻害しない範囲で、必要に応じて、公知の帯電防止剤、防曇剤、アンチブロッキング剤、紫外線吸収剤、酸化防止剤、光安定剤、結晶核剤、滑剤等の公知の添加剤が含まれていても良い。 In addition, the above-described base material may be a known antistatic agent, antifogging agent, antiblocking agent, ultraviolet absorber, antioxidant, light stabilizer, crystal, and the like, as long as the effects of the present invention are not impaired. Known additives such as nucleating agents and lubricants may be contained.
 前記基材の形状は、特に制限がなく、例えば、シート状、板状、球状、フィルム状ないしは大型の構築物または複雑なる形状の組立物あるいは成形物であってもよい。また前記基材の表面は、予め下塗り塗料等により被覆されていてもよく、また、その被覆部分が劣化していても、本発明の塗料を塗布することは可能である。 The shape of the base material is not particularly limited, and may be, for example, a sheet shape, a plate shape, a spherical shape, a film shape, or a large structure, or an assembly or molded product having a complicated shape. Further, the surface of the base material may be previously coated with an undercoat paint or the like, and even if the coated portion is deteriorated, the paint of the present invention can be applied.
 前記下塗り塗料としては、公知の水溶解型または水分散型塗料や有機溶剤型または有機溶剤分散型塗料、粉体塗料等を使用することができる。具体的には、アクリル樹脂系塗料、ポリエステル樹脂系塗料、アルキド樹脂系塗料、エポキシ樹脂系塗料、脂肪酸変性エポキシ樹脂系塗料、シリコン樹脂系塗料、ポリウレタン樹脂系塗料、フルオロオレフィン系塗料またはアミン変性エポキ樹脂塗料などのような各種のタイプのものを使用することができる。また、前記下塗り塗料は、顔料を含まないクリヤー塗料であってもよいし、前記顔料を含むエナメル系塗料あるいはアルミニウムフレーク等を含有するメタリック塗料であってもよい。 As the undercoat paint, known water-soluble or water-dispersed paints, organic solvent-type or organic solvent-dispersed paints, powder paints, and the like can be used. Specifically, acrylic resin-based paint, polyester resin-based paint, alkyd resin-based paint, epoxy resin-based paint, fatty acid-modified epoxy resin-based paint, silicon resin-based paint, polyurethane resin-based paint, fluoroolefin-based paint, or amine-modified epoxy resin Various types such as resin paints can be used. The undercoat paint may be a clear paint containing no pigment, or an enamel paint containing the pigment or a metallic paint containing aluminum flakes.
 前記基材に本発明の塗料を塗布する方法としては、例えば刷毛塗り法、ローラー塗装法、スプレー塗装法、浸漬塗装法、フロー・コーター塗装法、ロール・コーター塗装法もしくは電着塗装法などの公知慣用の塗装方法を適用することが可能である。 Examples of the method for applying the paint of the present invention to the substrate include a brush coating method, a roller coating method, a spray coating method, a dip coating method, a flow coater coating method, a roll coater coating method or an electrodeposition coating method. It is possible to apply a known and commonly used coating method.
 前記塗装方法により前記基材表面に本発明の塗料を塗布した後、常温で7~10日間程度の間で静置して乾燥せしめることによって、屋外における長期耐候性に優れる硬化塗膜を有する物品を得ることができる。 An article having a cured coating film having excellent long-term weather resistance outdoors by applying the paint of the present invention to the surface of the substrate by the coating method and then allowing it to stand at room temperature for about 7 to 10 days to dry. Can be obtained.
(物品)
 本発明の塗料を塗装することのできる物品としては、例えば、テレビ、冷蔵庫、洗濯機、エアコン等の家電製品の筐体;パソコン、スマートフォン、携帯電話、デジタルカメラ、ゲーム機等の電子機器の筐体;プリンター、ファクシミリ等のOA機器の筐体;自動車、鉄道車輌等の各種車輌の内装材に用いられる各種部品などの各種プラスチック部材;家具等の木工材料、人工・合成皮革;FRP浴槽が挙げられる。また、外壁、屋根、ガラス、化粧板等の建築物の内外装材;防音壁、排水溝等の土木部材;家電製品、産業機械、自動車の部品等に使用される亜鉛めっき鋼板、アルミニウム-亜鉛合金鋼板等のめっき鋼板、アルミ板、アルミ合金板、電磁鋼板、銅板、ステンレス鋼板等の金属部材も挙げられる。
(Goods)
Examples of articles that can be coated with the paint of the present invention include housings for home appliances such as televisions, refrigerators, washing machines, and air conditioners; housings for electronic devices such as personal computers, smartphones, mobile phones, digital cameras, and game machines. Body: Housing for OA equipment such as printers, facsimiles, etc .; Various plastic parts such as various parts used for interior materials of various vehicles such as automobiles and railway vehicles; Woodwork materials such as furniture, artificial and synthetic leather; FRP bathtubs It is done. Interior and exterior materials for buildings such as exterior walls, roofs, glass, and decorative panels; civil engineering members such as soundproof walls and drainage grooves; galvanized steel sheets used for household appliances, industrial machinery, automotive parts, and aluminum-zinc Metal members such as plated steel plates such as alloy steel plates, aluminum plates, aluminum alloy plates, electromagnetic steel plates, copper plates, and stainless steel plates are also included.
 次に、本発明を、実施例及び比較例により具体的に説明をする。 Next, the present invention will be specifically described with reference to examples and comparative examples.
(合成例1:ポリシロキサン(a-1-1)の合成)
 攪拌機、温度計、滴下ロ-ト、冷却管及び窒素ガス導入口を備えた反応容器に、メチルトリメトキシシラン(以下、「MTMS」と略記する。) 1417.0質量部、γ-グリシドキシプロピルトリメトキシシラン(以下、「GPTMS」と略記する) 83.0部を仕込んで、窒素ガスの通気下、攪拌しながら、60℃まで昇温した。次いで、「Phoslex A-4」(堺化学(株)製のノルマルブチルアシッドホスフェート) 0.20部と脱イオン水 211.1部からなる混合物を5分間で滴下した。滴下終了後、反応容器中を80℃まで昇温し、4時間攪拌することにより加水分解縮合反応を行い、反応生成物を得た。得られた反応生成物中に含まれるメタノールおよび水を、1~30キロパスカル(kPa)の減圧下、60℃の条件で除去することにより、数平均分子量が1000で、有効成分が75.2%であるポリシロキサン(a-1-1) 1000部を得た。
(Synthesis Example 1: Synthesis of polysiloxane (a-1-1))
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel, condenser and nitrogen gas inlet, methyltrimethoxysilane (hereinafter abbreviated as “MTMS”) 1417.0 parts by mass, γ-glycidoxy 83.0 parts of propyltrimethoxysilane (hereinafter abbreviated as “GPTMS”) were charged, and the temperature was raised to 60 ° C. while stirring under aeration of nitrogen gas. Next, a mixture of 0.20 part of “Phoslex A-4” (normal butyl acid phosphate manufactured by Sakai Chemical Co., Ltd.) and 211.1 parts of deionized water was added dropwise over 5 minutes. After completion of the dropwise addition, the reaction vessel was heated to 80 ° C. and stirred for 4 hours to carry out a hydrolysis condensation reaction, thereby obtaining a reaction product. By removing methanol and water contained in the obtained reaction product under a reduced pressure of 1 to 30 kilopascals (kPa) at 60 ° C., the number average molecular weight is 1000 and the active ingredient is 75.2. % Polysiloxane (a-1-1) 1000 parts was obtained.
尚、「有効成分」とは、使用したシランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(質量部)を、加水分解縮合反応後の実収量(質量部)で除した値、即ち、(シランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(質量部)/加水分解縮合反応後の実収量(質量部))の式により算出したものである。 The “active ingredient” is a value obtained by dividing the theoretical yield (parts by mass) when all the methoxy groups of the silane monomer used undergo hydrolysis condensation reaction by the actual yield (parts by mass) after hydrolysis condensation reaction, That is, it is calculated by the formula (theoretical yield when all the methoxy groups of the silane monomer undergo hydrolysis hydrolysis reaction (mass part) / actual yield after hydrolysis condensation reaction (mass part)).
 また、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、装置として、Shodex GPC SYSTEM-21(昭和電工(株)製)を、GPCカラムとして、Shodex Asahipak GF-7M HQ(昭和電工(株)製)を、GPC溶媒として20mM LiBrジメチルホルムアミド溶液を用いた。 The number average molecular weight was calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC). However, Shodex GPC SYSTEM-21 (manufactured by Showa Denko KK) is used as the apparatus, Shodex Asahipak GF-7M HQ (manufactured by Showa Denko KK) is used as the GPC column, and 20 mM LiBr dimethylformamide solution is used as the GPC solvent It was.
(合成例2~7:ポリシロキサン(a-1-2)~(a-1-7)の合成)
 下記表1に示す組成に変更した以外は合成例1と同様に操作することにより、ポリシロキサン(a-1-2)~(a-1-7)をそれぞれ1000部得た
(Synthesis Examples 2 to 7: Synthesis of polysiloxanes (a-1-2) to (a-1-7))
1000 parts of polysiloxanes (a-1-2) to (a-1-7) were obtained in the same manner as in Synthesis Example 1 except that the composition was changed to the composition shown in Table 1 below.
 上記で得られたポリシロキサン(a-1-1)~(a-1-7)の組成及び性状値を表1に示す。 Table 1 shows the compositions and properties of the polysiloxanes (a-1-1) to (a-1-7) obtained above.
Figure JPOXMLDOC01-appb-T000017
GPMDMS:γ-グリシドキシプロピルメチルジメトキシシラン
EpCHETMS:β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン
Figure JPOXMLDOC01-appb-T000017
GPDMMS: γ-glycidoxypropylmethyldimethoxysilane EpCHETMS: β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane
(合成例8:ビニル系重合体(a-2-1)の合成)
合成例1と同様の反応容器に、フェニルトリメトキシシラン(以下、「PTMS」と略記する。) 23.2部、ジメチルジメトキシシラン(以下、「DMDMS」と略記する) 28.0部、酢酸n-ブチル 348.8部を初期溶剤として投入し、窒素ガスの通気下、攪拌しながら、95℃まで昇温した。次いで、モノマーとして、メチルメタクリレート(以下、「MMA」と略記する。) 125.2部、n-ブチルメタクリレート(以下、「BMA」と略記する。) 74.4部、n-ブチルアクリレート(以下、「BA」と略記する。) 91.6部、メタクリル酸(以下、「MAA」と略記する。) 4.0部、3-メタクリロイルオキシプロピルトリメトキシシラン(以下、「MPTMS」と略記する。) 12.0部、2-ヒドロキシエチルメタクリレート(以下、「HEMA」と略記する。) 92.8部、酢酸n-ブチル 40.0部、tert-ブチルパーオキシ-2-エチルヘキサノエート(以下、「TBPOEH」と略記する。) 30.0部を混合し、上記反応容器に対し、95℃のまま、窒素ガスの通気下、攪拌しながら、4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「Phoslex A-4」0.064部と脱イオン水 14.6部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTMSの加水分解縮合反応を進行させ、ビニル系重合体(a-2-1) 884部を得た。ビニル系重合体(a-2-1)を、H-NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。
(Synthesis Example 8: Synthesis of vinyl polymer (a-2-1))
In the same reaction vessel as in Synthesis Example 1, 23.2 parts of phenyltrimethoxysilane (hereinafter abbreviated as “PTMS”), 28.0 parts of dimethyldimethoxysilane (hereinafter abbreviated as “DMDMS”), n-acetate -348.8 parts of butyl was added as an initial solvent, and the temperature was raised to 95 ° C while stirring under aeration of nitrogen gas. Next, as a monomer, methyl methacrylate (hereinafter abbreviated as “MMA”) 125.2 parts, n-butyl methacrylate (hereinafter abbreviated as “BMA”) 74.4 parts, n-butyl acrylate (hereinafter abbreviated as “MMA”) 91.6 parts, methacrylic acid (hereinafter abbreviated as “MAA”) 4.0 parts, 3-methacryloyloxypropyltrimethoxysilane (hereinafter abbreviated as “MPTMS”) 12.0 parts, 2-hydroxyethyl methacrylate (hereinafter abbreviated as “HEMA”) 92.8 parts, n-butyl acetate 40.0 parts, tert-butylperoxy-2-ethylhexanoate (hereinafter referred to as “HEMA”) Abbreviated as “TBPOEH”.) 30.0 parts were mixed and kept at 95 ° C. with stirring under aeration of nitrogen gas for 4 hours. In was dropped. After further stirring for 2 hours at the same temperature, a mixture of 0.064 part of “Phoslex A-4” and 14.6 parts of deionized water was added dropwise to the reaction vessel over 5 minutes, and the mixture was stirred at the same temperature for 4 hours. By stirring for a period of time, hydrolysis condensation reaction of PTMS, DMDMS and MPTMS was advanced to obtain 884 parts of a vinyl polymer (a-2-1). When the vinyl polymer (a-2-1) was analyzed by 1 H-NMR, almost 100% of the trimethoxysilyl group of the silane monomer in the reaction vessel was hydrolyzed.
 前記反応生成物のビニル系重合体セグメントの水酸基価は、使用したモノマー全量に対するHEMAの含有量から、100mgKOH/gであったと推算された。 The hydroxyl value of the vinyl polymer segment of the reaction product was estimated to be 100 mgKOH / g from the content of HEMA with respect to the total amount of monomers used.
(合成例9~11:ビニル系重合体(a-2-2)~(a-2-4)の合成)
 下記表2に示す組成に変更した以外は合成例8と同様に操作することにより、ビニル系重合体(a-2-2)~(a-2-4)を得た。
(Synthesis Examples 9 to 11: Synthesis of vinyl polymers (a-2-2) to (a-2-4))
Vinyl polymers (a-2-2) to (a-2-4) were obtained in the same manner as in Synthesis Example 8 except that the composition was changed to the composition shown in Table 2 below.
(合成例12:ビニル系重合体(a-2-5)の合成)
 合成例1と同様の反応容器に、PTMS 22.8部、DMDMS 27.6部、酢酸n-ブチル 345.6部を仕込んで、窒素ガスの通気下、攪拌しながら、95℃まで昇温した。次いで、MMA 67.2部、BMA 76.8部、2-エチルヘキシルメタクリレート(2-EHMA) 31.6部、BA 4.0部、MAA 4.0部、MPTMS 12.0部、HEMA 204.4部、酢酸n-ブチル 40.0部、TBPOEH 30.0部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。同温度で1時間攪拌した時点で反応溶液の粘度が急激に上昇し、数分間でゲル化した。
(Synthesis Example 12: Synthesis of vinyl polymer (a-2-5))
A reaction vessel similar to Synthesis Example 1 was charged with 22.8 parts of PTMS, 27.6 parts of DMDMS, and 345.6 parts of n-butyl acetate, and the temperature was raised to 95 ° C. while stirring under nitrogen gas. . MMA 67.2 parts, BMA 76.8 parts, 2-ethylhexyl methacrylate (2-EHMA) 31.6 parts, BA 4.0 parts, MAA 4.0 parts, MPTMS 12.0 parts, HEMA 204.4 A mixture containing 40.0 parts of n-butyl acetate and 30.0 parts of TBPOEH was dropped into the reaction vessel over 4 hours at the same temperature while stirring under a stream of nitrogen gas. When the mixture was stirred at the same temperature for 1 hour, the viscosity of the reaction solution increased rapidly and gelled within a few minutes.
 ゲル化に至った前記反応生成物のビニル系重合体セグメントの水酸基価は、使用したモノマー全量に対するHEMAの含有量から、220mgKOH/gであったと推算された。  The hydroxyl value of the vinyl polymer segment of the reaction product that resulted in gelation was estimated to be 220 mgKOH / g from the content of HEMA with respect to the total amount of monomers used. *
 上記で得られたビニル系重合体(a-2-1)~(a-2-5)の組成及び性状値を表2に示す。 Table 2 shows the composition and property values of the vinyl polymers (a-2-1) to (a-2-5) obtained above.
Figure JPOXMLDOC01-appb-T000018
2-EHMA:2-エチルヘキシルメタクリレート
Figure JPOXMLDOC01-appb-T000018
2-EHMA: 2-ethylhexyl methacrylate
(合成例13:複合樹脂(A-1)の合成)
 合成例1と同様の反応容器に、合成例8で得られたビニル系重合体(a-2-1) 512.4部、および、合成例1で得られたポリシロキサン(a-1-1) 107.0部を仕込んで、5分間攪拌したのち、脱イオン水 34.9部を加え、80℃で4時間攪拌を行い、ビニル系重合体(a-2-1)とポリシロキサン(a-1-1)の加水分解縮合反応を行った。得られた反応生成物を、1~30kPaの減圧下で、60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMAC」と略記する。) 40.5部、酢酸n-ブチル 143.3部を添加し、不揮発分が55.1%であるポリシロキサンセグメントとビニル重合体セグメントを有する複合樹脂(A-1) 600部を得た。
(Synthesis Example 13: Synthesis of Composite Resin (A-1))
In the same reaction vessel as in Synthesis Example 1, 512.4 parts of the vinyl polymer (a-2-1) obtained in Synthesis Example 8 and the polysiloxane (a-1-1) obtained in Synthesis Example 1 were used. 107.0 parts was charged and stirred for 5 minutes, 34.9 parts of deionized water was added, and the mixture was stirred at 80 ° C. for 4 hours. The vinyl polymer (a-2-1) and the polysiloxane (a The hydrolysis-condensation reaction of 1-1-1) was performed. The obtained reaction product was distilled under a reduced pressure of 1 to 30 kPa at 60 ° C. for 2 hours to remove the produced methanol and water, and then propylene glycol monomethyl ether acetate (hereinafter “PGMAC”). 40.5 parts, n-butyl acetate 143.3 parts is added, and composite resin (A-1) 600 parts having a polysiloxane segment and a vinyl polymer segment having a nonvolatile content of 55.1% Got.
 得られた複合樹脂(A-1)のエポキシ当量(エポキシ基1個あたりの試料の分子量(g/eq))を、JIS K7236に準拠して、次のような手順で測定した。まず、100ccビ-カ-に5.0gの試料を計りとり、クロロホルム10mlを加えて攪拌溶解させた。その後、室温下にて、酢酸20mlと臭化テトラアンモニウム酢酸溶液10mlを加え、自動滴定装置 AUT-701(東亜ディーケーケー株式会社製)にて2~3滴程度のクリスタルバイオレットを指示薬として用い、0.1mol/L過塩素酸/酢酸溶液(N/10)を滴定することにより、自動的に当量点を求め、試料がある場合と空試験の場合とでの滴定量差と電位変化からエポキシ当量(g/eq)の算出値を得た。ここで、臭化テトラアンモニウム酢酸溶液は、臭化テトラアンモニウム100gを酢酸400mlに溶解させたものを用いた。これより、複合樹脂(A-1)の固形分のエポキシ当量が8800g/eqであることが判明した。 The epoxy equivalent (the molecular weight (g / eq) of the sample per epoxy group) of the obtained composite resin (A-1) was measured according to the following procedure in accordance with JIS K7236. First, a 5.0 g sample was weighed in a 100 cc beaker, and 10 ml of chloroform was added and dissolved by stirring. Thereafter, 20 ml of acetic acid and 10 ml of tetraammonium bromide acetic acid solution were added at room temperature, and about 2-3 drops of crystal violet was used as an indicator with an automatic titrator AUT-701 (manufactured by Toa DKK Corporation). By titrating a 1 mol / L perchloric acid / acetic acid solution (N / 10), the equivalence point is automatically determined, and the epoxy equivalent (from the titration difference between the sample and blank test and the potential change) The calculated value of g / eq) was obtained. Here, the tetraammonium bromide acetic acid solution was prepared by dissolving 100 g of tetraammonium bromide in 400 ml of acetic acid. This revealed that the epoxy equivalent of the solid content of the composite resin (A-1) was 8800 g / eq.
 得られた複合樹脂(A-1)におけるビニル系重合体セグメント(a-2-1)の水酸基価は、次のような手順で測定した。まず、200mlマイヤーフラスコに2.5gの複合樹脂(A-1)を計りとり、無水酢酸とピリジンを1:19の体積比で混合したものであるアセチル化剤をホールピペットで加えた。次に、冷却管を付けて115℃に調節した加熱浴中に入れ、冷却管に水を通して振とうしながら1時間反応させた。反応終了後、フラスコを加熱浴から取り出し、イオン交換水約5ccを冷却管頂上からメスシリンダーで加えて振とうした。室温まで放冷後、フェノールフタレイン指示薬を数滴加え、0.5N水酸化カリウム-エタノール溶液を滴定した。淡い紅色が30秒続いた点を終点とし、その時の滴下量を読んだ。同時に、空試験も併せて行った。複合樹脂(A-1)中のビニル重合体セグメントの水酸基価は、下の2式より算出した。 The hydroxyl value of the vinyl polymer segment (a-2-1) in the obtained composite resin (A-1) was measured by the following procedure. First, 2.5 g of the composite resin (A-1) was weighed into a 200 ml Meyer flask, and an acetylating agent obtained by mixing acetic anhydride and pyridine at a volume ratio of 1:19 was added with a whole pipette. Next, it was placed in a heating bath with a condenser tube adjusted to 115 ° C., and reacted for 1 hour while shaking water through the condenser tube. After completion of the reaction, the flask was removed from the heating bath, and about 5 cc of ion exchange water was added from the top of the condenser tube with a graduated cylinder and shaken. After allowing to cool to room temperature, several drops of phenolphthalein indicator were added, and a 0.5N potassium hydroxide-ethanol solution was titrated. The point where the pale red color lasted for 30 seconds was taken as the end point, and the dripping amount at that time was read. At the same time, a blank test was also performed. The hydroxyl value of the vinyl polymer segment in the composite resin (A-1) was calculated from the following two formulas.
Figure JPOXMLDOC01-appb-M000019
 B:空試験での滴下量(ml)
 T:本試験での滴下量(ml)
 F:0.5N水酸化カリウム-エタノール溶液の力価
 S:複合樹脂(A-1)の採取量(g)
 AN:複合樹脂(A-1)の酸価
Figure JPOXMLDOC01-appb-M000019
B: Drop amount in blank test (ml)
T: Drop amount in this test (ml)
F: Potency of 0.5N potassium hydroxide-ethanol solution S: Amount of composite resin (A-1) collected (g)
AN: Acid value of composite resin (A-1)
Figure JPOXMLDOC01-appb-M000020
 C:複合樹脂(A-1)の水酸基価
 N:複合樹脂(A-1)の固形分率(質量%)
 P:複合樹脂(A-1)の固形分中のポリシロキサンセグメント(a-1-1)の   質量割合(質量%)
Figure JPOXMLDOC01-appb-M000020
C: Hydroxyl value of composite resin (A-1) N: Solid content ratio (mass%) of composite resin (A-1)
P: Mass ratio (mass%) of the polysiloxane segment (a-1-1) in the solid content of the composite resin (A-1)
 これより、複合樹脂(A-1)中のビニル重合体セグメントの水酸基価は、100mgKOH/gであったと算出され、前記の使用したモノマー全量に対するHEMAの含有量から推算したビニル系重合体セグメントの水酸基価が実測値からの算出値と一致することが確認された。 From this, the hydroxyl value of the vinyl polymer segment in the composite resin (A-1) was calculated to be 100 mgKOH / g, and the vinyl polymer segment estimated from the HEMA content relative to the total amount of the monomers used was calculated. It was confirmed that the hydroxyl value coincided with the calculated value from the actual measurement value.
(合成例14~17:複合樹脂(A-2)~(A-5)の合成)
 下記表3に示す組成に変更した以外は合成例13と同様に操作することにより、複合樹脂(A-2)~(A-5)をそれぞれ600部得た。
(Synthesis Examples 14 to 17: Synthesis of composite resins (A-2) to (A-5))
600 parts of composite resins (A-2) to (A-5) were obtained in the same manner as in Synthesis Example 13 except that the composition was changed to the composition shown in Table 3 below.
 上記で得られた複合樹脂(A-1)~(A-5)の組成及び性状値を表3に示す。 Table 3 shows the composition and property values of the composite resins (A-1) to (A-5) obtained above.
(合成例18:複合樹脂(R-1)の合成)
 合成例1と同様の反応容器に、合成例8で得られたビニル重合体(a-2-1) 512.4部、および、合成例6で得られたポリシロキサン(a-1-6) 106.7部を仕込んで、5分間攪拌したのち、脱イオン水 16.7部を加え、80℃で4時間攪拌を行い、ビニル重合体(a-2-1)とポリシロキサン(a-1-6)の加水分解縮合反応を行った。得られた反応生成物を、1~30kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、PGMAC 36.0部、酢酸n-ブチル 140.2部を添加し、不揮発分が55.0%であるポリシロキサンセグメントとビニル重合体セグメントからなる比較用複合樹脂(R-1) 600部を得た。
(Synthesis Example 18: Synthesis of Composite Resin (R-1))
In the same reaction vessel as in Synthesis Example 1, 512.4 parts of the vinyl polymer (a-2-1) obtained in Synthesis Example 8 and polysiloxane (a-1-6) obtained in Synthesis Example 6 After charging 106.7 parts and stirring for 5 minutes, 16.7 parts of deionized water was added and the mixture was stirred at 80 ° C. for 4 hours. The vinyl polymer (a-2-1) and the polysiloxane (a-1 The hydrolysis condensation reaction of -6) was performed. The obtained reaction product was distilled under reduced pressure of 1 to 30 kPa at 40 to 60 ° C. for 2 hours to remove the produced methanol and water, and then 36.0 parts of PGMAC, n-acetate 140.2 parts of butyl was added to obtain 600 parts of a comparative composite resin (R-1) composed of a polysiloxane segment having a nonvolatile content of 55.0% and a vinyl polymer segment.
(合成例19~22:複合樹脂(R-2)~(R-5)の合成)
 下記表4に示す組成に変更した以外は合成例18と同様に操作することにより、複合樹脂(R-2)~(R-5)をそれぞれ600部得た。
(Synthesis Examples 19 to 22: Synthesis of composite resins (R-2) to (R-5))
600 parts of composite resins (R-2) to (R-5) were obtained in the same manner as in Synthesis Example 18 except that the composition was changed to the composition shown in Table 4 below.
(合成例23:複合樹脂(R-6)の合成)
 合成例1と同様の反応容器に、合成例8で得られたビニル重合体(a-2-1) 502.7部、合成例5で得られたポリシロキサン(a-1-5) 106.7部、および、エポキシ基含有シラン化合物との比較用として、加水分解性シリル基を有さないエポキシ化合物である「BGE-R」(阪本薬品工業(株)製のブチルグリシジルエーテル)を4.9部投入し、5分間攪拌したのち、脱イオン水 36.9部を加え、80℃で4時間攪拌を行い、ビニル重合体(a-2-1)とポリシロキサン(a-1-5)の加水分解縮合反応を行った。ここで、BGE-Rの添加量は、最終的に得られる複合樹脂とエポキシ化合物との混合物の固形分のエポキシ当量が8800g/eqとなるように計算して決定したものである。このとき、得られた反応生成物を、1~30kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、PGMAC 36.0部、酢酸n-ブチル 143.2部を添加し、不揮発分が55.2%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(R-6) 600部を得た。
(Synthesis Example 23: Synthesis of Composite Resin (R-6))
In a reaction vessel similar to Synthesis Example 1, 502.7 parts of the vinyl polymer (a-2-1) obtained in Synthesis Example 8 and polysiloxane (a-1-5) obtained in Synthesis Example 5 106. 7 parts and “BGE-R” (butyl glycidyl ether manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.), which is an epoxy compound having no hydrolyzable silyl group, for comparison with an epoxy group-containing silane compound. Add 9 parts and stir for 5 minutes, then add 36.9 parts of deionized water and stir for 4 hours at 80 ° C. to give vinyl polymer (a-2-1) and polysiloxane (a-1-5) The hydrolysis condensation reaction of was performed. Here, the addition amount of BGE-R is determined by calculation so that the epoxy equivalent of the solid content of the finally obtained composite resin and epoxy compound mixture is 8800 g / eq. At this time, the obtained reaction product was distilled under reduced pressure of 1 to 30 kPa at 40 to 60 ° C. for 2 hours to remove the generated methanol and water, and then 36.0 parts of PGMAC, 143.2 parts of n-butyl acetate was added to obtain 600 parts of a composite resin (R-6) composed of a polysiloxane segment having a nonvolatile content of 55.2% and a vinyl polymer segment.
(合成例24:複合樹脂(R-7)の合成)
 合成例1と同様の反応容器に、合成例8で得られたビニル重合体(a-2-1) 497.4部、合成例5で得られたポリシロキサン(a-1-5) 106.7部、および、エポキシ基含有シラン化合物との比較用として、加水分解性シリル基を有さないエポキシ化合物である「4HBAGE」(日本化成(株)製の4-ヒドロキシブチルアクリレートグリシジルエーテル)を7.5部投入し、5分間攪拌したのち、脱イオン水 36.9部を加え、80℃で4時間攪拌を行い、ビニル重合体(a-2-1)とポリシロキサン(a-1-5)の加水分解縮合反応を行った。ここで、4HBAGEの添加量は、最終的に得られる複合樹脂(R)とエポキシ化合物の混合物のエポキシ当量が8800g/eqとなるように計算して決定したものである。このとき、得られた反応生成物を、1~30kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、PGMAC 36.0部、酢酸n-ブチル 143.6部を添加し、不揮発分が55.3%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(R-7) 600部を得た。
(Synthesis Example 24: Synthesis of composite resin (R-7))
In the same reaction vessel as in Synthesis Example 1, 497.4 parts of the vinyl polymer (a-2-1) obtained in Synthesis Example 8 and polysiloxane (a-1-5) obtained in Synthesis Example 5 106. 7 parts and “4HBAGE” (4-hydroxybutyl acrylate glycidyl ether manufactured by Nippon Kasei Co., Ltd.), an epoxy compound having no hydrolyzable silyl group, for comparison with an epoxy group-containing silane compound After adding 5 parts and stirring for 5 minutes, 36.9 parts of deionized water was added and stirred at 80 ° C. for 4 hours to give a vinyl polymer (a-2-1) and polysiloxane (a-1-5). ) Hydrolysis condensation reaction. Here, the amount of 4HBAGE added is determined by calculation so that the epoxy equivalent of the finally obtained composite resin (R) and epoxy compound mixture is 8800 g / eq. At this time, the obtained reaction product was distilled under reduced pressure of 1 to 30 kPa at 40 to 60 ° C. for 2 hours to remove the generated methanol and water, and then 36.0 parts of PGMAC, 143.6 parts of n-butyl acetate was added to obtain 600 parts of a composite resin (R-7) composed of a polysiloxane segment having a nonvolatile content of 55.3% and a vinyl polymer segment.
 上記で得られた複合樹脂(R-1)~(R-7)の組成及び性状値を表4に示す。 Table 4 shows the composition and property values of the composite resins (R-1) to (R-7) obtained above.
(評価)
 上記で得られた複合樹脂(A-1)~(A-5)および複合樹脂(R-1)~(R-7)の評価は次の通り行った。即ち、樹脂の「色調」、「濁度」及び「保存安定性」を評価した。
(Evaluation)
The composite resins (A-1) to (A-5) and composite resins (R-1) to (R-7) obtained above were evaluated as follows. That is, the “color tone”, “turbidity” and “storage stability” of the resin were evaluated.
<色調>
 得られた樹脂のガードナー色数(JIS K 0071-2に規定されている化学製品の色試験方法によって測定される値)を、JIS K0071-2によって規定された標準試料と目視で比色することにより決定した。ガードナー色数が小さい値であるほど、着色が薄いことを意味しており、ガードナー色数が1以下で無色の樹脂であるものと判定した。
<Color tone>
The color of the obtained Gardner color (value measured by the color test method for chemical products specified in JIS K 0071-2) is visually compared with the standard sample specified in JIS K 0071-2. Determined by. The smaller the Gardner color number, the lighter the coloration, and it was determined that the Gardner color number was 1 or less and the resin was colorless.
<濁度>
 得られた樹脂の濁度を、JIS K0101に準拠し、精密光電濁度計 T-2600Sを(東京電色製)用いて、積分球散乱光度法(凝集塊の形成による前方散乱光の変化を、積分球を用いて測定し、透過光強度との比を比較する方法)に従った光学条件により測定した。濁度が小さい値であるほど、透明度が高いことを意味しており、濁度が0.5以下で濁りのない、非常に透明性の高い樹脂であるものと判定した。
<Turbidity>
The turbidity of the obtained resin was determined in accordance with JIS K0101, using a precision photoelectric turbidimeter T-2600S (manufactured by Tokyo Denshoku), integrating sphere scattering photometry (change in forward scattered light due to formation of aggregates). , Measured using an integrating sphere, and measured under optical conditions according to a method for comparing the ratio with transmitted light intensity). The smaller the turbidity, the higher the transparency. The turbidity was determined to be a highly transparent resin having a turbidity of 0.5 or less and no turbidity.
<保存安定性>
 得られた樹脂の保存安定性を、40℃において、30日間保存したものの粘度(いわゆる経時粘度)を分子とし、初期粘度を分母とする粘度比で評価した。粘度測定は、E型粘度計(東京計器(株)製)を用いて30℃にて行った。また、サンプルの保存は、得られた樹脂をガラス製チュ-ブに入れて、40℃の環境下で1ヶ月間静置せしめることによって行った。この粘度比が1に近い値であるほど、保存安定性が優れているということを意味しており、粘度比が0.9以上1.1以下で保存安定性が非常に優れている樹脂であるものと判定した。
<Storage stability>
The storage stability of the obtained resin was evaluated based on the viscosity ratio with the viscosity (so-called viscosity with time) of what was stored at 40 ° C. for 30 days as the numerator and the initial viscosity as the denominator. The viscosity was measured at 30 ° C. using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd.). The sample was stored by placing the obtained resin in a glass tube and allowing it to stand at 40 ° C. for 1 month. The closer this viscosity ratio is to 1, the better the storage stability, and the more excellent the storage stability with a viscosity ratio of 0.9 to 1.1. It was judged that there was.
 各々の評価結果を表3および表4に示す。 Each evaluation result is shown in Table 3 and Table 4.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 この結果、合成例13~17で得られた複合樹脂(A-1)~(A-5)、および、合成例18~19で得られた複合樹脂(R-1)~(R-2)は、いずれも色調、濁度および保存安定性が良好であることが判明した。
 一方、合成例20~21で得られた複合樹脂(R-3)~(R-4)は、複合樹脂のエポキシ当量が17000g/eqより大きい例であるが、保存安定性が劣ることが判明した。
 また、合成例22~24で得られた複合樹脂(R-5)~(R-7)は、ポリシロキサンがエポキシ基を有さない例であるが、保存安定性が劣ることが判明した。
As a result, the composite resins (A-1) to (A-5) obtained in Synthesis Examples 13 to 17 and the composite resins (R-1) to (R-2) obtained in Synthesis Examples 18 to 19 were obtained. Were found to have good color tone, turbidity and storage stability.
On the other hand, the composite resins (R-3) to (R-4) obtained in Synthesis Examples 20 to 21 are examples in which the epoxy equivalent of the composite resin is larger than 17000 g / eq, but it was found that the storage stability was inferior. did.
In addition, the composite resins (R-5) to (R-7) obtained in Synthesis Examples 22 to 24 are examples in which polysiloxane does not have an epoxy group, but it has been found that the storage stability is poor.
(実施例1)
 合成例1で得られた複合樹脂(A-1) 25.0質量部、バ-ノック DN-980(ポリイソシアネート DIC株式会社製、希釈溶剤は酢酸エチルであり、不揮発分は75.3質量%、また、ワニスのNCO%は16.0質量%)4.5質量部、酢酸エチル 18.9質量部を混合することによって、不揮発分が55.0質量%である硬化性樹脂組成物を得て、該硬化性樹脂組成物をクリヤー塗料(1)とした。
Example 1
25.0 parts by mass of composite resin (A-1) obtained in Synthesis Example 1, Barnock DN-980 (manufactured by Polyisocyanate DIC Corporation, the diluent solvent is ethyl acetate, and the non-volatile content is 75.3% by mass Further, by mixing 4.5 parts by mass of NCO% of varnish (16.0% by mass) and 18.9 parts by mass of ethyl acetate, a curable resin composition having a nonvolatile content of 55.0% by mass is obtained. The curable resin composition was designated as a clear paint (1).
(実施例2~5及び比較例1~2)
 下記表5に示した配合に基づき、実施例1と同様の方法で、それぞれクリヤー塗料(2)~(5)および比較用クリヤー塗料(R1)~(R2)を調製した。
(Examples 2-5 and Comparative Examples 1-2)
Based on the formulation shown in Table 5 below, clear paints (2) to (5) and comparative clear paints (R1) to (R2) were prepared in the same manner as in Example 1.
(評価)
 前記実施例1~5,および比較例1~2で得られたクリヤー塗料(1)~(5)および比較用クリヤー塗料(R1)~(R2)の評価は次の通り行った。即ち、クリヤー塗料の「色調」、評価用硬化塗膜XまたはYを使用し、硬化塗膜の常温硬化性の指標となる「ゲル分率」及び耐候性の指標となる「光沢保持率」を評価した。
(Evaluation)
The clear paints (1) to (5) and the comparative clear paints (R1) to (R2) obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were evaluated as follows. That is, the “color tone” of the clear coating, the cured coating film X or Y for evaluation, the “gel fraction” serving as an index of room temperature curability of the cured coating film, and the “gloss retention ratio” serving as an index of weather resistance. evaluated.
<色調>
 得られたクリヤー塗料のガードナー色数(JIS K 0071-2に規定されている化学製品の色試験方法によって測定される値)を、JIS K0071-2によって規定された標準試料と目視で比色することにより決定した。ガードナー色数が小さい値であるほど、着色が薄いことを意味しており、ガードナー色数が1以下で無色の樹脂であるものと判定した。
<Color tone>
The obtained clear paint has a Gardner color number (measured by the color test method for chemical products specified in JIS K 0071-2) and is visually color-matched with a standard sample specified in JIS K 0071-2. Was determined. The smaller the Gardner color number, the lighter the coloration, and it was determined that the Gardner color number was 1 or less and the resin was colorless.
(評価用硬化塗膜X)
 前記実施例1~5、及び比較例1~2で得られた各々のクリヤー塗料を、150mm×70mm×2mmのポリプロピレン(PP)基材上にナンバー16のバーコーターを用いて塗布し、室温下で1週間放置して、乾燥膜厚が20μmである硬化塗膜を調製した。
(Evaluated cured coating X)
Each of the clear paints obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was applied onto a 150 mm × 70 mm × 2 mm polypropylene (PP) substrate using a number 16 bar coater, and at room temperature. For 1 week to prepare a cured coating film having a dry film thickness of 20 μm.
(評価用硬化塗膜Y)
 150mm×70mm×2mmのクロメ-ト処理アルミニウム鋼板に、顔料重量濃度(PWC)が60%の白色のアクリルウレタン塗料をナンバー22のバーコーターを用いて乾燥膜厚30~40マイクロメーター(μm)になるよう塗布し、80℃で30分間熱硬化させた基材上に、前記実施例1~5、及び比較例1~2で得られた各々のクリヤー塗料を、ナンバー16のバーコーターを用いて塗布し、室温下で1週間放置して、乾燥膜厚が20μmである硬化塗膜を調製した。
(Evaluated cured coating Y)
150 mm x 70 mm x 2 mm chrome-treated aluminum steel sheet, white acrylic urethane paint with a pigment weight concentration (PWC) of 60%, using a number 22 bar coater to a dry film thickness of 30-40 micrometers (μm) Each of the clear coatings obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was applied to a base material that had been coated and thermally cured at 80 ° C. for 30 minutes using a number 16 bar coater. It was applied and allowed to stand at room temperature for 1 week to prepare a cured coating film having a dry film thickness of 20 μm.
<ゲル分率>
 評価用硬化塗膜XをPP基材から剥離し、アセトン中に24時間浸漬後の硬化塗膜の塗膜残存量(mg)を、アセトン浸漬前の硬化塗膜の質量(mg)で除して100倍した値をゲル分率(%)として表示した。ゲル分率が100%に近いほど、常温硬化性が良好であり、ゲル分率が80%以上で十分な常温硬化性を有する硬化塗膜であるものと判定した。
<Gel fraction>
The cured coating film X for evaluation was peeled off from the PP base material, and the coating film residual amount (mg) after immersion in acetone for 24 hours was divided by the mass (mg) of the cured coating film before immersion in acetone. The value multiplied by 100 was displayed as the gel fraction (%). The closer the gel fraction was to 100%, the better the room temperature curability, and it was determined that the cured coating film had sufficient room temperature curability when the gel fraction was 80% or more.
<光沢保持率>
 評価用硬化塗膜Yに対し、サンシャインウェザオメーター(SWOM)による促進耐候性試験を実施した。試験条件は、自動車または自動車用部品向け塗料を標準的に想定した塗料規格(JIS-D0205)に準拠し、ブラックパネル温度を63±3℃、水の噴射時間を60分間の照射時間中の最後の12分間とし、試料面放射照度を300~700nmの波長領域において、255±10W/mとなるように設定した。SWOMを用いて3000時間試験した後の硬化塗膜の60度鏡面反射率(%)を、未試験の硬化塗膜の60度鏡面反射率(%)で除して100倍した値を光沢保持率(%)として表示した。光沢保持率が100%に近いほど、耐候性が良好であり、光沢保持率が80%以上で十分な耐候性を有する硬化塗膜であるものと判定した。
<Gloss retention>
An accelerated weather resistance test using a sunshine weatherometer (SWOM) was performed on the cured coating film Y for evaluation. The test conditions conform to the paint standard (JIS-D0205) that is assumed for paints for automobiles or automobile parts as standard, the black panel temperature is 63 ± 3 ° C, and the water injection time is the last of 60 minutes of irradiation time. The sample surface irradiance was set to 255 ± 10 W / m 2 in the wavelength region of 300 to 700 nm. Gloss retention of the value obtained by dividing the 60-degree specular reflectance (%) of the cured coating after 3000 hours test using SWOM by the 60-degree specular reflectance (%) of the untested cured coating and multiplying by 100 Expressed as a percentage (%). It was determined that the closer the gloss retention rate was to 100%, the better the weather resistance, and the cured coating film having sufficient gloss resistance when the gloss retention rate was 80% or more.
 各々の評価結果を表5に示す。 Each evaluation result is shown in Table 5.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 この結果、実施例1~5で評価したクリヤー塗料(1)~(5)は、いずれも無色、且つ硬化後のゲル分率および光沢保持率も良好で、常温硬化性と耐候性に優れた塗膜が得られた。
 比較例1で評価したクリヤー塗料(R1)は、複合樹脂のエポキシ当量が小さすぎる例であるが、常温硬化性および耐候性が劣ることが判明した。
 比較例2で評価したクリヤー塗料(R2)はビニル系重合体セグメントの水酸基価が小さすぎる例であるが、常温硬化性および耐候性が劣ることが判明した。
As a result, the clear paints (1) to (5) evaluated in Examples 1 to 5 were all colorless, had good gel fraction and gloss retention after curing, and were excellent in room temperature curability and weather resistance. A coating film was obtained.
The clear paint (R1) evaluated in Comparative Example 1 is an example in which the epoxy equivalent of the composite resin is too small, but it has been found that room temperature curability and weather resistance are poor.
The clear paint (R2) evaluated in Comparative Example 2 is an example in which the hydroxyl value of the vinyl polymer segment is too small, but it has been found that the room temperature curability and weather resistance are poor.
(実施例6)
 合成例1で得られた複合樹脂(A-1) 25.0質量部、バーノック DN-980 4.5質量部、CR-97(ルチル型酸化チタン 石原産業株式会社製) 9.2質量部、酢酸エチル28.3質量部を混合することによって、エナメル塗料(1)を得た。
(Example 6)
25.0 parts by mass of the composite resin (A-1) obtained in Synthesis Example 1, 4.5 parts by mass of Bernock DN-980, CR-97 (rutile titanium oxide manufactured by Ishihara Sangyo Co., Ltd.), 9.2 parts by mass, Enamel paint (1) was obtained by mixing 28.3 parts by mass of ethyl acetate.
(実施例7および比較例3~4)
 表6に示した配合に基づき、実施例6と同様の方法で、それぞれエナメル塗料(2)および比較用エナメル塗料(R1)~(R2)を調製した。
(Example 7 and Comparative Examples 3 to 4)
Based on the formulation shown in Table 6, enamel paint (2) and comparative enamel paints (R1) to (R2) were prepared in the same manner as in Example 6.
(評価)
 前記実施例6~7,および比較例3~4で得られたエナメル塗料(1)~(2)および比較用エナメル塗料(R1)~(R2)の評価は次の通り行った。即ち評価用硬化塗膜XまたはYを使用し、硬化塗膜の常温硬化性の指標となる「ゲル分率」及び耐候性の指標となる「光沢保持率」を評価した。
(Evaluation)
The enamel paints (1) to (2) and the comparative enamel paints (R1) to (R2) obtained in Examples 6 to 7 and Comparative Examples 3 to 4 were evaluated as follows. That is, the cured coating film X or Y for evaluation was used to evaluate the “gel fraction” that is an index of room temperature curability of the cured coating film and the “gloss retention ratio” that is an index of weather resistance.
(評価用硬化塗膜X)
 前記実施例6~7,及び比較例3~4で得られた各々のエナメル塗料を、150mm×70mm×2mmのポリプロピレン(PP)基材上に、ナンバー16のバーコーターを用いて塗布し、室温下で1週間放置して、乾燥膜厚が20μmである硬化塗膜を調製した。
(Evaluated cured coating X)
Each enamel paint obtained in Examples 6 to 7 and Comparative Examples 3 to 4 was applied onto a polypropylene (PP) substrate of 150 mm × 70 mm × 2 mm using a number 16 bar coater, and room temperature was applied. A cured coating film having a dry film thickness of 20 μm was prepared by allowing it to stand for 1 week.
(評価用硬化塗膜Y)
 150mm×70mm×2mmのクロメート処理アルミニウム鋼板に、顔料重量濃度(PWC)が60%の白色のアクリルウレタン塗料をナンバー22のバーコーターを用いて乾燥膜厚30~40マイクロメーター(μm)になるよう塗布し、80℃で30分間熱硬化させた基材上に、前記実施例6~7,および比較例3~4で得られた各々のエナメル塗料を、ナンバー16のバーコーターを用いて塗布し、室温下で1週間放置して、乾燥膜厚が20μmである硬化塗膜を調製した。
(Evaluated cured coating Y)
A 150 mm x 70 mm x 2 mm chromate-treated aluminum steel sheet is coated with white acrylic urethane paint with a pigment weight concentration (PWC) of 60% so that the dry film thickness is 30-40 micrometers (μm) using a number 22 bar coater. Each of the enamel paints obtained in Examples 6 to 7 and Comparative Examples 3 to 4 was applied to a substrate that had been applied and thermally cured at 80 ° C. for 30 minutes using a number 16 bar coater. The cured coating film having a dry film thickness of 20 μm was prepared by allowing it to stand at room temperature for 1 week.
<ゲル分率>
 評価用硬化塗膜XをPP基材から剥離し、アセトン中に24時間浸漬後の硬化塗膜の塗膜残存量(mg)を、アセトン浸漬前の硬化塗膜の質量(mg)で除して100倍した値をゲル分率(%)として表示した。ゲル分率が100%に近いほど、常温硬化性が良好であり、ゲル分率が80%以上で十分な常温硬化性を有する硬化塗膜であるものと判定した。ただし、顔料固形分は硬化成分ではないので計算から除外する。
<Gel fraction>
The cured coating film X for evaluation was peeled off from the PP base material, and the coating film residual amount (mg) after immersion in acetone for 24 hours was divided by the mass (mg) of the cured coating film before immersion in acetone. The value multiplied by 100 was displayed as the gel fraction (%). The closer the gel fraction was to 100%, the better the room temperature curability, and it was determined that the cured coating film had sufficient room temperature curability when the gel fraction was 80% or more. However, the pigment solid content is not a curing component and is excluded from the calculation.
<光沢保持率>
 評価用硬化塗膜Yに対し、サンシャインウェザオメーター(SWOM)による促進耐候性試験を実施した。試験条件は、自動車または自動車用部品向け塗料を標準的に想定した塗料規格(JIS-D0205)に準拠し、ブラックパネル温度を63±3℃、水の噴射時間を60分間の照射時間中の最後の12分間とし、試料面放射照度を300~700nmの波長領域において、255±10W/mとなるように設定した。SWOMを用いて3000時間試験した後の硬化塗膜の60度鏡面反射率(%)を、未試験の硬化塗膜の60度鏡面反射率(%)で除して100倍した値を光沢保持率(%)として表示した。光沢保持率が100%に近いほど、耐候性が良好であり、光沢保持率が80%以上で十分な耐候性を有する硬化塗膜であるものと判定した。
<Gloss retention>
An accelerated weather resistance test using a sunshine weatherometer (SWOM) was performed on the cured coating film Y for evaluation. The test conditions conform to the paint standard (JIS-D0205) that is assumed for paints for automobiles or automobile parts as standard, the black panel temperature is 63 ± 3 ° C, and the water injection time is the last of 60 minutes of irradiation time. The sample surface irradiance was set to 255 ± 10 W / m 2 in the wavelength region of 300 to 700 nm. Gloss retention of the value obtained by dividing the 60-degree specular reflectance (%) of the cured coating after 3000 hours test using SWOM by the 60-degree specular reflectance (%) of the untested cured coating and multiplying by 100 Expressed as a percentage (%). It was determined that the closer the gloss retention rate was to 100%, the better the weather resistance, and the cured coating film having sufficient gloss resistance when the gloss retention rate was 80% or more.
 各々の評価結果を表6に示す。 Each evaluation result is shown in Table 6.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 この結果、実施例6~7で評価したエナメル塗料(1)~(2)は、いずれもゲル分率および光沢保持率も良好で、耐候性に優れた塗膜が得られた。
 比較例3で評価したエナメル塗料(R1)は複合樹脂(A)のエポキシ当量が小さすぎる例であるが、常温硬化性および耐候性が劣ることが判明した。
 比較例4で評価したエナメル塗料(R2)はビニル系重合体セグメント(a-2)の水酸基価が小さすぎる例であるが、常温硬化性および耐候性が劣ることが判明した。
As a result, each of the enamel paints (1) to (2) evaluated in Examples 6 to 7 had a good gel fraction and gloss retention, and a coating film excellent in weather resistance was obtained.
The enamel paint (R1) evaluated in Comparative Example 3 is an example in which the epoxy equivalent of the composite resin (A) is too small, but it has been found that the room temperature curability and weather resistance are poor.
The enamel paint (R2) evaluated in Comparative Example 4 is an example in which the hydroxyl value of the vinyl polymer segment (a-2) is too small, but it has been found that the room temperature curability and weather resistance are poor.
 本発明における2液式の透明な常温硬化性樹脂組成物は、1液の状態での保存安定性と常温での良好な硬化性を兼ね備えており、なおかつ耐候性に優れた硬化物を提供できる。また、該硬化性樹脂組成物を含有する塗料は、金属基材、無機質基材、プラスチック基材、紙、木質系基材等に使用でき、外装建築部材や自動車外装部材、土木用途、電子部材、レジャー用品等各種産業分野に使用可能である。 The two-component transparent room-temperature curable resin composition in the present invention has both storage stability in a one-component state and good curability at room temperature, and can provide a cured product having excellent weather resistance. . In addition, the paint containing the curable resin composition can be used for metal substrates, inorganic substrates, plastic substrates, paper, wood-based substrates, etc., exterior building members, automobile exterior members, civil engineering applications, electronic members It can be used in various industrial fields such as leisure goods.

Claims (3)

  1.  一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基と、エポキシ基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)が、一般式(3)で表される結合により結合した複合樹脂(A)と、ポリイソシアネート(B)とを含有する硬化性樹脂組成物であって、前記複合樹脂(A)の固形分中の前記ポリシロキサンセグメント(a1)の質量割合が20~70質量%であり、前記複合樹脂(A)の固形分のエポキシ当量が900~17000g/eqであり、前記ビニル系重合体セグメント(a2)の水酸基価が55~200mgKOH/gであり、前記ポリイソシアネート(B)の質量割合が全固形分中の5~50質量%であることを特徴とする硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但し、Rは単結合または炭素原子数1~6のアルキレン基を表す。)、炭素原子数が1~6のアルキル基、炭素原子数が3~8のシクロアルキル基、アリール基、または炭素原子数が7~12のアラルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
    A polysiloxane segment (a1) having a structural unit represented by the general formula (1) and / or the general formula (2), a silanol group and / or a hydrolyzable silyl group, and an epoxy group, and an alcoholic hydroxyl group. The vinyl polymer segment (a2) having a curable resin composition containing a composite resin (A) bonded by a bond represented by the general formula (3) and a polyisocyanate (B), The mass ratio of the polysiloxane segment (a1) in the solid content of the composite resin (A) is 20 to 70% by mass, and the epoxy equivalent of the solid content of the composite resin (A) is 900 to 17000 g / eq, The hydroxyl group value of the vinyl polymer segment (a2) is 55 to 200 mgKOH / g, and the mass ratio of the polyisocyanate (B) is 5 to 50 in the total solid content. Curable resin composition, which is a quantity%.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the general formulas (1) and (2), R 1 , R 2 and R 3 each independently represent —R 4 —CH═CH 2 , —R 4 —C (CH 3 ) ═CH 2 , — A group having one polymerizable double bond selected from the group consisting of R 4 —O—CO—C (CH 3 ) ═CH 2 and —R 4 —O—CO—CH═CH 2 (provided that R 4 Represents a single bond or an alkylene group having 1 to 6 carbon atoms.), An alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, or 7 carbon atoms. Represents an aralkyl group of ˜12.)
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (3), carbon atoms constitute a part of the vinyl polymer segment (a2), and silicon atoms bonded only to oxygen atoms constitute a part of the polysiloxane segment (a1). To do)
  2.  請求項1に記載の硬化性樹脂組成物を含有することを特徴とする塗料。 A paint comprising the curable resin composition according to claim 1.
  3.  請求項2に記載の塗料を用いて形成された硬化塗膜を有することを特徴とする物品
    An article having a cured coating film formed using the paint according to claim 2.
PCT/JP2012/067931 2011-07-19 2012-07-13 Curable resin composition, coating, and article bearing film obtained by curing said coating WO2013011943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011157746 2011-07-19
JP2011-157746 2011-07-19

Publications (1)

Publication Number Publication Date
WO2013011943A1 true WO2013011943A1 (en) 2013-01-24

Family

ID=47558121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067931 WO2013011943A1 (en) 2011-07-19 2012-07-13 Curable resin composition, coating, and article bearing film obtained by curing said coating

Country Status (1)

Country Link
WO (1) WO2013011943A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125574A1 (en) * 2012-02-21 2013-08-29 Dic株式会社 Glass base and glass laminate
JP2014051549A (en) * 2012-09-05 2014-03-20 Dic Corp Surface treatment agent for metal and metal treated with the surface treatment agent
JP2020128486A (en) * 2019-02-08 2020-08-27 Dicグラフィックス株式会社 Coating composition and decorative sheet using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238260A (en) * 1994-03-01 1995-09-12 Showa Denko Kk Antistaining coating composition
JPH07292313A (en) * 1994-04-27 1995-11-07 Showa Denko Kk Automotive coating agent composition
JPH0924577A (en) * 1995-07-10 1997-01-28 Nkk Corp Precoating metal plate with excellent stain resistance, flaw resistance and durability
JPH0925455A (en) * 1995-05-09 1997-01-28 Dainippon Ink & Chem Inc Formation of coating film
JP2000129073A (en) * 1998-10-26 2000-05-09 Toyo Ink Mfg Co Ltd Ordinary-temperature-curable resin composition and substrate coated therewith
JP2000281971A (en) * 1999-03-29 2000-10-10 Shin Etsu Chem Co Ltd Emulsion paint composition containing silicone resin and article with cured coating film formed therefrom
JP2006328354A (en) * 2005-03-08 2006-12-07 Dainippon Ink & Chem Inc Ultraviolet-curable resin composition, ultraviolet-curable coating, and coated article
WO2010067742A1 (en) * 2008-12-11 2010-06-17 Dic株式会社 Curable resin composition and paint, and plastic molded product produced by laminating the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238260A (en) * 1994-03-01 1995-09-12 Showa Denko Kk Antistaining coating composition
JPH07292313A (en) * 1994-04-27 1995-11-07 Showa Denko Kk Automotive coating agent composition
JPH0925455A (en) * 1995-05-09 1997-01-28 Dainippon Ink & Chem Inc Formation of coating film
JPH0924577A (en) * 1995-07-10 1997-01-28 Nkk Corp Precoating metal plate with excellent stain resistance, flaw resistance and durability
JP2000129073A (en) * 1998-10-26 2000-05-09 Toyo Ink Mfg Co Ltd Ordinary-temperature-curable resin composition and substrate coated therewith
JP2000281971A (en) * 1999-03-29 2000-10-10 Shin Etsu Chem Co Ltd Emulsion paint composition containing silicone resin and article with cured coating film formed therefrom
JP2006328354A (en) * 2005-03-08 2006-12-07 Dainippon Ink & Chem Inc Ultraviolet-curable resin composition, ultraviolet-curable coating, and coated article
WO2010067742A1 (en) * 2008-12-11 2010-06-17 Dic株式会社 Curable resin composition and paint, and plastic molded product produced by laminating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125574A1 (en) * 2012-02-21 2013-08-29 Dic株式会社 Glass base and glass laminate
JP2014051549A (en) * 2012-09-05 2014-03-20 Dic Corp Surface treatment agent for metal and metal treated with the surface treatment agent
JP2020128486A (en) * 2019-02-08 2020-08-27 Dicグラフィックス株式会社 Coating composition and decorative sheet using the same

Similar Documents

Publication Publication Date Title
KR100227860B1 (en) Curable resin composition
JP4600608B2 (en) Curable resin composition and paint, and plastic molded product obtained by laminating the same
WO2006095686A1 (en) Ultraviolet-curable resin composition, ultraviolet-curable coating material, and coated article
JP5688523B1 (en) Two-component paint composition
US20150126677A1 (en) Cured product from a paint comprising an inorganic fine particle dispersant
JP5916627B2 (en) Anti-stain coating composition with excellent durability
JP7401977B2 (en) Polyorganosiloxane and its manufacturing method, and coating composition
JP2014231599A (en) Polyisocyanate composition and coating composition prepared using the same
WO2013011943A1 (en) Curable resin composition, coating, and article bearing film obtained by curing said coating
JPH1036514A (en) Aqueous resin, its production and aqueous curable resin composition comprising the same
JP2011105886A (en) Polyisocyanate composition and two-liquid type polyurethane composition
JPH09278982A (en) Curable resin composition and coating film formation using the same
JP5924536B2 (en) Metal surface treatment agent and metal material treated with the surface treatment agent
JP4217923B2 (en) Forming method of coating film
JPH10101985A (en) Coating composition
JP7287795B2 (en) Block polyisocyanate composition, water-based coating composition and coating film
JP4099142B2 (en) Two-component curable aqueous coating composition and method for producing aqueous emulsion
CN113692430A (en) Primer composition
JPH1036515A (en) Aqueous resin, its production and aqueous curable resin composition comprising the same
JP3814743B2 (en) Aqueous resin composition and aqueous curable resin composition containing the same
JP2021046523A (en) Aqueous resin composition, coating agent, and article
JP2005325169A (en) Aqueous coating composition
JP2020128486A (en) Coating composition and decorative sheet using the same
JP2023055176A (en) Antibacterial and antiviral agent, coating agent and substrate
JP4096364B2 (en) Manufacturing method of composite resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP