WO2013005273A1 - Base station and power control method - Google Patents

Base station and power control method Download PDF

Info

Publication number
WO2013005273A1
WO2013005273A1 PCT/JP2011/065155 JP2011065155W WO2013005273A1 WO 2013005273 A1 WO2013005273 A1 WO 2013005273A1 JP 2011065155 W JP2011065155 W JP 2011065155W WO 2013005273 A1 WO2013005273 A1 WO 2013005273A1
Authority
WO
WIPO (PCT)
Prior art keywords
sch
base station
power
wireless terminal
control unit
Prior art date
Application number
PCT/JP2011/065155
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 剛
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013522612A priority Critical patent/JP5729470B2/en
Priority to PCT/JP2011/065155 priority patent/WO2013005273A1/en
Publication of WO2013005273A1 publication Critical patent/WO2013005273A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • This case relates to a base station that performs wireless communication with a wireless terminal and its power control method.
  • a radio terminal such as a mobile phone synchronizes with a base station, so that the base station multiplexes a synchronization signal (SCH: Synchronization CHannel) with voice data or the like to perform radio communication. Sending to the terminal.
  • SCH Synchronization CHannel
  • orthogonal data is allocated to each of a plurality of user channels to transmit user data, and SCH is transmitted using a code that is non-orthogonal to these orthogonal codes. For this reason, even in an ideal propagation path, the user channel does not have zero interference from the SCH, and characteristic degradation occurs.
  • HSDPA High Speed Downlink Packet Access
  • some wireless terminals include an SCH canceller that cancels SCH from the user channel.
  • a RAKE receiver of a wireless terminal uses a plurality of delay devices to synchronize the timing of a plurality of signals received with a delay. Then, the RAKE receiver of the wireless terminal estimates the amplitude of the SCH to be received, and subtracts and combines the SCHs in the respective received signals having the same timing. Thereby, the radio
  • wireless terminal can acquire the user channel which canceled SCH.
  • the processing amount of the wireless terminal increases.
  • Patent Document 3 a method for establishing synchronization of mobile stations in a mobile communication system with higher accuracy in which the influence of noise and interference has been reduced has been proposed (see, for example, Patent Document 3).
  • the user channel has a problem that characteristic deterioration occurs due to the synchronization channel. Further, when the wireless terminal cancels the synchronization channel from the user channel, there is a problem that the processing amount increases.
  • a base station that performs wireless communication with a wireless terminal.
  • the base station includes a control unit that controls the power of a synchronization channel for the wireless terminal to synchronize with the base station based on transmission format information of a user channel that transmits user data to the wireless terminal.
  • a base station that performs wireless communication with a wireless terminal.
  • the base station includes a control unit that controls power of the user channel overlapping with a synchronization channel transmitted to the wireless terminal based on transmission format information of a user channel that transmits user data to the wireless terminal.
  • FIG. 1 is a block diagram of a base station according to the first embodiment.
  • the base station shown in FIG. 1 performs wireless communication with a wireless terminal such as a mobile phone by the W-CDMA communication method, for example.
  • the base station includes error correction code units 11a and 11b, modulation units 12a to 12c, spread modulation units 13a to 13c, addition units 14 and 18, multipliers 15 and 17, SCH power control unit 16, A wireless unit 19 and an antenna 20 are provided.
  • FIG. 1 is a block diagram of a base station according to the first embodiment.
  • the base station shown in FIG. 1 performs wireless communication with a wireless terminal such as a mobile phone by the W-CDMA communication method, for example.
  • the base station includes error correction code units 11a and 11b, modulation units 12a to 12c, spread modulation units 13a to 13c, addition units 14 and 18, multipliers 15 and 17, SCH power control unit 16, A wireless unit 19 and an antenna 20 are provided.
  • FIG. 1 is a block diagram of a base station according
  • FIG. 1 shows an example in which two transmission bit sequences B1 and B2 are code-spread for radio transmission for explanation, three or more transmission bit sequences may be code-spread for radio transmission. That is, there may be three or more sets of error correction code units, modulation units, and spread modulation units.
  • the user channel transmission format information FI for wirelessly transmitting the transmission bit string B1 to the wireless terminal is input to the error correction coding unit 11a, the modulation unit 12a, the spread modulation unit 13a, and the SCH power control unit 16 illustrated in FIG.
  • the transmission format information FI includes the coding rate, modulation scheme, and spreading factor of the user channel that wirelessly transmits the transmission bit string B1.
  • the user channel coding rate, modulation scheme, and spreading rate are managed by the scheduler. Therefore, the transmission format information FI is generated from information held by the scheduler.
  • the transmission bit string B1 that is wirelessly transmitted to the wireless terminal through the user channel is input to the error correction code unit 11a.
  • the transmission format information FI is input to the error correction code unit 11a.
  • the error correction code unit 11a performs error correction code processing on the input transmission bit string B1 at the coding rate included in the transmission format information FI.
  • the modulation unit 12a modulates the signal output from the error correction code unit 11a based on the modulation method included in the transmission format information FI.
  • the modulation method is, for example, QPSK (Quadrature Phase Shift Keying) or 16QAM (Quadrature Amplitude Modulation).
  • the spread modulation unit 13a code spreads the signal output from the modulation unit 12a based on the spreading factor included in the transmission format information FI.
  • the information included in the transmission format information FI changes according to the communication status with the wireless terminal, for example. For example, if the state of the propagation path with the wireless terminal is good, the transmission format information FI is changed so that the transmission rate of the transmission bit string B1 is increased. Specifically, if the state of the propagation path with the wireless terminal is good, the coding rate is changed to a low value, and the modulation scheme is changed to a multi-value. Further, the diffusion rate is changed to be small. As a result, the transmission rate of the transmission bit string B1 is increased.
  • the transmission bit string B2 that is wirelessly transmitted to the wireless terminal through the user channel is input to the error correction code unit 11b.
  • the error correction code unit 11b performs error correction code processing on the input transmission bit string B2.
  • the transmission bit string B1 is a bit string transmitted to a wireless terminal of a certain user
  • the transmission bit string B2 is a bit string wirelessly transmitted to a wireless terminal of another user.
  • the modulation unit 12b modulates the transmission bit string B2 that has been subjected to the error correction code processing by the error correction code unit 11b.
  • the spread modulation unit 13b code spreads the signal output from the modulation unit 12b.
  • the spread code of the spread modulation unit 13b is orthogonal to the spread code of the spread modulation unit 13a so that the transmission bit strings B1 and B2 do not interfere with each other.
  • the transmission format information FI is not input to the error correction code unit 11b, the modulation unit 12b, and the spread modulation unit 13b. Therefore, the transmission rate of the transmission bit string B2 is constant.
  • the pilot pattern P is input to the modulation unit 12c.
  • the modulation unit 12c modulates the input pilot pattern P.
  • the spread modulation unit 13c code spreads the signal output from the modulation unit 12c.
  • the adding unit 14 adds the signals output from the spread modulation units 13a to 13c.
  • the multiplier 15 code spreads the signal output from the adder 14 with the scramble code sc.
  • the SCH power control unit 16 controls the power of the SCH (SCH signal) based on the coding rate, modulation scheme, and spreading factor included in the transmission format information FI. For example, the SCH power control unit 16 calculates the transmission rate of the transmission bit string B1 from the coding rate, modulation scheme, and spreading factor included in the transmission format information FI.
  • the SCH power control unit 16 outputs the first coefficient to the multiplier 17 if the calculated transmission rate is equal to or less than a predetermined threshold, for example, and if the calculated transmission rate is greater than the predetermined threshold, A second coefficient smaller than 1 is output to the multiplier 17. That is, when the transmission rate of the transmission bit string B1 is changed to a high rate, the SCH power control unit 16 outputs a small coefficient to the multiplier 17 so that the SCH power becomes small. That is, the SCH power control unit 16 outputs a coefficient that is inversely proportional to the transmission rate to the multiplier 17.
  • the SCH power control unit 16 can also control the SCH power in stages.
  • the multiplier 17 receives an SCH signal for the wireless terminal to synchronize with the base station shown in FIG. 1 and a coefficient output from the SCH power control unit 16. Multiplier 17 multiplies the input SCH signal by a coefficient and outputs the result to adder 18. That is, the power of the SCH signal is controlled by the coefficient output from the SCH power control unit 16 and output to the adding unit 18.
  • the SCH signal is code-spread with non-orthogonal spreading codes and spreading codes of transmission bit strings B1 and B2.
  • the adder 18 adds the signal output from the multiplier 15 and the signal output from the multiplier 17. That is, the adding unit 18 combines the user channel signal and the SCH signal.
  • the wireless unit 19 up-converts the frequency of the signal output from the adding unit 18 to RF (Radio Frequency), and wirelessly transmits it to the wireless terminal via the antenna 20.
  • FIG. 2 is a diagram illustrating SCH power control.
  • FIG. 2 shows a radio frame transmitted from the base station to the radio terminal. As shown in FIG. 2, the radio frame is formed of a plurality of slots. The horizontal direction in FIG. 2 indicates time, and the vertical direction indicates transmission power. The shaded area shown in FIG. 2 indicates the transmission power of the SCH.
  • the area D11 indicates an area having a higher transmission rate than the other areas of the radio frame shown in FIG.
  • the SCH power control unit 16 controls the SCH power to decrease when the transmission rate of the user channel increases. Therefore, in the area D11 in FIG. 2, the SCH power is smaller than in the other areas.
  • the SCH is code spread with a spreading code that is non-orthogonal to the user channel. For this reason, the user channel does not have zero interference from the SCH, and characteristic degradation occurs. In particular, in HSDPA, when a transmission format with a high transmission rate is used, characteristic deterioration becomes significant.
  • the base station in FIG. 1 reduces the power of the SCH when the user channel has a high transmission rate, as shown in a region D11 in FIG.
  • the interference from SCH is suppressed and the characteristic degradation of the user channel in a radio
  • wireless terminal is suppressed.
  • the wireless terminal can obtain a user channel with good characteristics without performing SCH cancellation processing.
  • the SCH power is reduced, but the SCH power may be zero.
  • FIG. 3 is a flowchart showing the operation of the base station.
  • the operation shown in the flowchart can be executed by a processor such as a DSP or a CPU.
  • a processor such as a DSP or a CPU.
  • the SCH power control unit 16 of the base station inputs the transmission format information FI.
  • the SCH power control unit 16 calculates a transmission rate of data (transmission bit string B1) transmitted to the wireless terminal based on the transmission format information FI.
  • the SCH power control unit 16 determines whether or not the calculated transmission rate is greater than a predetermined threshold. If the calculated transmission rate is greater than the predetermined threshold, the SCH power control unit 16 proceeds to step S4. If the calculated transmission rate is equal to or lower than the predetermined threshold, the SCH power control unit 16 proceeds to step S5.
  • the SCH power control unit 16 outputs a coefficient for a high transmission rate to the multiplier 17. For example, the SCH power control unit 16 outputs a coefficient having a value smaller than the coefficient in step S5 described below to the multiplier 17, and controls the SCH power to be reduced.
  • Step S5 The SCH power control unit 16 outputs a coefficient for a low transmission rate to the multiplier 17. Note that the SCH whose power is controlled in steps S4 and S5 is wirelessly transmitted to the wireless terminal by the wireless unit 19.
  • the base station controls the SCH power for the wireless terminal to synchronize with the base station based on the transmission format information of the user channel for transmitting user data to the wireless terminal.
  • the base station can suppress the degradation of the user channel and can eliminate the SCH cancellation process of the wireless terminal.
  • the transmission format information FI includes the number of multicodes
  • the SCH power control unit 16 calculates a coefficient for controlling the SCH power based on the number of multicodes included in the transmission format information FI. For example, as the number of multicodes increases, the transmission rate increases, so the SCH power control unit 16 decreases the coefficient.
  • the SCH average power is controlled to be constant.
  • FIG. 4 is a block diagram of a base station according to the second embodiment. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the base station includes a transmission format information generation unit 31 and an SCH power control unit 32.
  • Transmission format schedule information FIS is input to transmission format information generation unit 31 and SCH power control unit 32.
  • the transmission format of the user channel is determined in advance by the scheduler before user data is transmitted. Therefore, the SCH power control unit 32 can know the future transmission format (transmission format information FI) from the transmission format schedule information FIS determined before data transmission.
  • transmission format information FI transmission format information
  • the transmission format schedule information FIS includes a coding rate, a modulation method, and a spreading rate of data to be transmitted wirelessly.
  • the transmission format information generation unit 31 generates transmission format information FI including these pieces of information included in the transmission format schedule information FIS, and outputs the transmission format information FI to the error correction coding unit 11a, the modulation unit 12a, and the spread modulation unit 13a. That is, the transmission format information generation unit 31 delays the coding rate, modulation method, and spreading factor included in the transmission format schedule information FIS so that the timing matches the transmission bit string B1 that is wirelessly transmitted. Output as information FI.
  • the SCH power control unit 32 receives transmission format schedule information FIS. Accordingly, the SCH power control unit 32 can know the transmission format information of the data at a timing before the data is wirelessly transmitted. That is, the SCH power control unit 32 can know the transmission rate of data before the data is wirelessly transmitted.
  • the SCH power control unit 32 calculates in advance the transmission rate of data to be wirelessly transmitted based on the coding rate, modulation scheme, and spreading factor included in the transmission format schedule information FIS.
  • the SCH power control unit 32 calculates a coefficient for controlling the SCH power in advance based on the transmission rate calculated in advance.
  • the SCH power control unit 32 calculates the SCH coefficient of the slot before the slot to decrease the SCH power when the coefficient for decreasing the SCH power is calculated in advance.
  • the SCH power control unit 32 calculates a coefficient for increasing the power of the SCH so that the average power of the SCH becomes constant.
  • the SCH power control unit 32 calculates the coefficient of the SCH in the slot after the slot for reducing the power of the SCH.
  • the SCH power control unit 32 calculates a coefficient for increasing the power of the SCH so that the average power of the SCH becomes constant.
  • FIG. 5 is a diagram illustrating SCH power control.
  • FIG. 5 shows a radio frame transmitted from the base station to the radio terminal. As shown in FIG. 5, the radio frame is formed of a plurality of slots. The horizontal direction in FIG. 5 indicates time, and the vertical direction indicates transmission power. The shaded area shown in FIG. 5 indicates the SCH transmission power.
  • a radio frame area D21 shown in FIG. 5 indicates an area where the transmission rate of the user channel is larger than a predetermined threshold. That is, the area D21 indicates an area having a higher transmission rate than the other areas of the radio frame illustrated in FIG.
  • the SCH power control unit 32 controls the SCH power to be reduced so that the interference of the SCH to the user channel is suppressed. Therefore, in region D21 in FIG. 5, the power of SCH is smaller than in other regions.
  • the SCH power control unit 32 can calculate the transmission rate of the area D21 in advance based on the transmission format schedule information FIS, and can know the SCH power of the area D21.
  • the SCH power control unit 32 also controls the SCH power in slots before and after the region D21 so that the average SCH power is constant. For example, the SCH power control unit 32 calculates the coefficient so that the SCH power in the regions D22 and D23 increases. As a result, the average power of the SCH is constant.
  • the cell search performance of the wireless terminal may be affected. Normally, since cell search of a wireless terminal averages several frames of SCH, if the average SCH power is maintained, the influence on cell search performance is small.
  • the base station in FIG. 4 when the SCH power is lowered as shown in the region D21 of FIG. 5, the SCH power is increased in the regions D22 and D23 before and after the SCH power, and the average power of the SCH is controlled to be constant. . Accordingly, the base station in FIG. 4 can suppress the influence on the cell search performance of the radio terminal, suppress the degradation of the user channel, and can eliminate the SCH canceling process of the radio terminal.
  • the SCH power control unit 32 controls the power of both the SCH before and after the SCH power is controlled to be small, but may control the power of one SCH.
  • the SCH power control unit 32 may control only the SCH power in the region D22 such that the average SCH power is constant.
  • the base station controls the SCH power so that the average SCH power is constant. Accordingly, the base station can suppress the degradation of the user channel while suppressing the influence on the cell search performance of the wireless terminal, and can eliminate the need for the SCH canceling process of the wireless terminal.
  • DC-HSDPA Dual Cell HSDPA
  • a base station generates W-CDMA signals in two bands, and a wireless terminal receives both of them to improve the transmission rate.
  • DC-HSDPA Dual Cell HSDPA
  • FIG. 6 is a block diagram of a base station according to the third embodiment.
  • the base station shown in FIG. 6 performs wireless communication with a wireless terminal using a DC-HSDPA communication method. That is, the base station in FIG. 6 transmits data to the wireless terminal in two bands. 6, the same components as those in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted.
  • the base station shown in FIG. 6 has a transmission unit 41 and an SCH power control unit 42.
  • the transmission unit 41 includes the error correction code units 11a and 11b, the modulation units 12a to 12c, the spread modulation units 13a to 13c, the addition units 14 and 18, the multipliers 15 and 17, the SCH power control unit 16, the wireless communication unit shown in FIG.
  • the unit 19 and the antenna 20 are included.
  • the transmission bit string B11 is input to the error correction code unit 11a of the transmission unit 41, and the transmission bit string B12 is input to the error correction code unit 11b.
  • Transmission format information FI1 is input to error correction coding unit 11a, modulation unit 12a, spread modulation unit 13a, and SCH power control unit 16 of transmission unit 41.
  • the pilot pattern P is input to the modulation unit 12 c of the transmission unit 41.
  • the transmission bit strings B1 and B11 are transmitted to a wireless terminal of a certain user, and the transmission bit strings B2 and B12 are transmitted to a wireless terminal of another user.
  • Each of the transmission bit sequences B1 and B11 is wirelessly transmitted to a wireless terminal of a certain user in a different band by the wireless unit 19 and the wireless unit 19 included in the transmission unit 41, and each of the transmission bit sequences B2 and B12 is transmitted to the wireless unit 19
  • Wireless transmission is performed to a wireless terminal of another user in a different band depending on the wireless unit 19 included in the transmission unit 41.
  • the SCH power control information output from the SCH power control unit 16 of the transmission unit 41 is input to the SCH power control unit 42.
  • the SCH power control information is information indicating whether or not the SCH power control unit 16 performs power control (whether or not the SCH power is reduced).
  • the SCH power control unit 42 has the same function as the SCH power control unit 32 described in FIG. However, the SCH power control unit 42 does not perform SCH average power control when the SCH power control information indicating that power control is not being performed is output from the SCH power control unit 16 of the transmission unit 41.
  • the SCH power control unit 42 when SCH power control information indicating that power control is not performed is output from the SCH power control unit 16 of the transmission unit 41, the SCH power control unit 42 does not perform the SCH power control illustrated in FIG. SCH power control shown in FIG. 2 is performed. In other words, when the SCH power control unit 16 of the transmission unit 41 controls the SCH power to be reduced, the SCH power control unit 42 controls the SCH power so that the average power of the SCH is constant. To do.
  • the SCH is also transmitted to the wireless terminal in a different band. Therefore, the wireless terminal only needs to detect the SCH of one band (for example, the SCH of the transmission unit 41). Therefore, if the power of the SCH transmitted in one band is not controlled to be small, the wireless terminal has a reduced power of the SCH transmitted in the other band (for example, the SCH controlled by the SCH power control unit 42). Even so, the cell search performance degradation is small. That is, the base station can suppress the cell terminal performance degradation of the radio terminal without controlling the SCH average power constant in the other band.
  • the SCH power control unit 42 controls the SCH power so that the average power of the SCH is constant.
  • the SCH power control unit 42 controls the average power of the SCH according to the SCH power control of the SCH power control unit 16 included in the transmission unit 41. Accordingly, the base station can suppress the degradation of the user channel while suppressing the influence on the cell search performance of the wireless terminal, and can eliminate the need for the SCH canceling process of the wireless terminal.
  • FIG. 7 is a block diagram of a base station according to the fourth embodiment. 7, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the base station includes an ARQ (Automatic Repeat reQuest) control unit 51 and an SCH power control unit 52.
  • ARQ Automatic Repeat reQuest
  • a wireless terminal when a wireless terminal detects an error in received data, it makes a retransmission request for that data to the base station.
  • the wireless terminal receives the retransmission data from the base station, the wireless terminal combines with the initial transmission data to improve the SN (Signal Noise) ratio and perform reception processing. If the state of the propagation path does not change much at the time of initial transmission and retransmission of data, the S / N ratio is improved about twice.
  • the degradation of the user channel due to SCH interference is small. That is, even if the SCH power is not controlled to be small when retransmitting data at a high transmission rate, the degradation of the received data of the wireless terminal is small. Therefore, the base station in FIG. 7 does not perform SCH power control when data is retransmitted.
  • the ARQ control unit 51 performs data retransmission control. For example, the ARQ control unit 51 performs data retransmission processing in response to a data retransmission request from a wireless terminal. When retransmitting data, the ARQ control unit 51 outputs retransmission information indicating that the data is retransmitted to the SCH power control unit 52.
  • the SCH power control unit 52 has the same function as the SCH power control unit 16 described in FIG. However, when retransmission information indicating that data is retransmitted is output from the ARQ control unit 51, the SCH power control unit 52 sets a coefficient for performing SCH power control even if the transmission rate of the user channel is a high transmission rate. It does not change. That is, the SCH power control unit 52 does not control the SCH power to be reduced even when the retransmission data has a high transmission rate.
  • the base station does not change the SCH power when the user channel is retransmitted. Accordingly, the base station can suppress the degradation of the user channel while suppressing the influence on the cell search performance of the wireless terminal, and can eliminate the need for the SCH canceling process of the wireless terminal.
  • FIG. 8 is a block diagram of a base station according to the fifth embodiment. 8, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the base station includes error correction code sections 61a and 61b, modulation sections 62a to 62c, spread modulation sections 63a to 63c, addition sections 64 and 67, multipliers 65 and 66, radio section 68, antenna 69, and SCH.
  • a power control unit 70 is included.
  • the transmission bit string B1 input to the error correction code unit 11a is input to the error correction code unit 61a.
  • the transmission bit string B2 input to the error correction code unit 11b is input to the error correction code unit 61b.
  • the pilot pattern P input to the modulation unit 12c is input to the modulation unit 62c.
  • transmission format information FI input to the error correction code unit 11a, the modulation unit 12a, and the spread modulation unit 13a is input to the error correction code unit 61a, the modulation unit 62a, and the spread modulation unit 63a.
  • the error correction code units 11a and 11b, the modulation units 12a to 12c, the spread modulation units 13a to 13c, the addition units 14 and 18, the multipliers 15 and 17, the radio unit 19, and the antenna 20 are referred to as a first transmission block.
  • the error correction code units 61a and 61b, the modulation units 62a to 62c, the spread modulation units 63a to 63c, the addition units 64 and 67, the multipliers 65 and 66, the radio unit 68, and the antenna 69 are referred to as a second transmission block.
  • the first transmission block is the same as each unit described in FIG. 1, and each unit of the second transmission block has the same function as the corresponding unit of the first transmission block. Description of the transmission block is omitted.
  • the base station in FIG. 8 outputs the transmission bit strings B1 and B2, the SCH signal, and the pilot signal simultaneously in the same band by the two antennas 20 and 69.
  • the radio terminal performs demodulation by separating these signals transmitted at the same time.
  • the base station When the base station has a plurality of antennas, it can deflect the radiation of the radio wave output from each antenna by controlling the power of each antenna. Therefore, the SCH power control unit 70 controls the SCH power output from the antennas 20 and 69 to deflect the SCH radio wave radiation and change the SCH power received by the wireless terminal.
  • the SCH power control unit 70 has the same function as the SCH power control unit 16 described in FIG. However, the SCH power control unit 70 changes the coefficient output to each of the multipliers 17 and 66 based on the transmission format information FI. That is, the SCH power control unit 70 changes the SCH power output from each of the antennas 20 and 69.
  • the SCH power control unit 70 calculates the transmission rate of the transmission bit string B1 based on the transmission format information FI.
  • the SCH power control unit 70 changes the coefficient output to the multipliers 17 and 66 when the calculated transmission rate of the transmission bit string B1 is, for example, a high transmission rate, and the SCH radio wave output from the antennas 20 and 69. Deflects radiation.
  • the SCH power control unit 70 reduces the power of the SCH received by the wireless terminal that receives the transmission bit string B1. That is, the SCH power control unit 70 adds weights to the SCHs corresponding to the antennas 20 and 69, deflects the SCH radio wave radiation output from the antennas 20 and 69, and reduces the SCH power received by the wireless terminal. Like that.
  • the coefficient output from the SCH power control unit 70 is, for example, a complex number.
  • the SCH power control unit 70 changes the amplitude and phase of the SCH by the complex coefficient, and deflects the radio wave radiation of the SCH.
  • FIG. 9 is a diagram for explaining SCH radio wave radiation.
  • FIG. 9A shows SCH radio emission when the transmission rate of the transmission bit string B1 is a low transmission rate.
  • FIG. 9B shows SCH radio emission when the transmission rate of the transmission bit string B1 is a high transmission rate.
  • Radiations E11 to E13 shown in FIGS. 9A and 9B indicate SCH radio wave radiation.
  • 9A and 9B show the antennas 20 and 69 shown in FIG.
  • the position of a wireless terminal built in a vending machine can be known in advance.
  • the wireless terminal that receives the transmission bit string B1 is referred to as a vending machine.
  • the crosses shown in FIGS. 9A and 9B indicate the position of the vending machine that receives the transmission bit string B1.
  • the SCH power control unit 70 does not lower the SCH power when the transmission rate of the transmission bit string B1 transmitted to the vending machine is a low transmission rate. In this case, the SCH power control unit 70 outputs the coefficients to the multipliers 17 and 66 so that the SCH radio waves are radiated in all directions, as shown in FIG.
  • the SCH power control unit 70 sets the coefficient output to one of the multipliers 17 and 66 to zero so that the SCH radio wave radiation is indicated by the radiation E11 in FIG. 9A. be able to.
  • the SCH power control unit 70 reduces the SCH power when the transmission rate of the transmission bit string B1 transmitted to the vending machine is a high transmission rate.
  • the SCH power control unit 70 outputs the coefficients to the multipliers 17 and 66 so that the SCH radio wave is deflected and radiated as indicated by the radiation E12 and E13 in FIG. That is, the SCH power control unit 70 deflects the SCH radio wave radiation so that the power of the SCH at the position where the vending machine is present is reduced, thereby reducing the power of the SCH received by the vending machine.
  • the vending machine suppresses the interference by the SCH of the user channel.
  • the base station adds weights to the SCHs output to the plurality of antennas 20 and 69 so that the SCH radio wave radiation is deflected.
  • the base station can suppress the degradation of the user channel and can eliminate the SCH cancellation process of the wireless terminal.
  • FIG. 10 is a block diagram of a base station according to the sixth embodiment. 10, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the base station includes precoding units 81 and 84, error correction code unit 82, modulation unit 83, spread modulation unit 85, addition units 86 and 88, multipliers 87 and 92, radio unit 89, antenna 90, and An SCH power control unit 91 is included.
  • the transmission bit string B1 input to the error correction code unit 11a is input to the error correction code unit 82. Further, the transmission format information FI is input to the error correction code unit 82.
  • the modulation unit 83, the spread modulation unit 85, the addition units 86 and 88, the multiplier 87, the radio unit 89, and the antenna 90 are the modulation unit 12a, the spread modulation unit 13a, the addition units 14 and 18, the multiplier 15, and the radio unit 19. , And the antenna 20, and the description thereof is omitted.
  • the transmission format information FI is input to the precoding units 81 and 84.
  • the transmission format information FI includes a precoding coefficient.
  • the precoding units 81 and 84 precode the signals output from the modulation units 12a and 83 by multiplying the signals by the precoding coefficient included in the transmission format information FI.
  • the information for calculating the precoding coefficient is transmitted from the wireless terminal.
  • the coefficient calculation unit (not shown in FIG. 10) calculates the precoding coefficient based on the information received from the wireless terminal so that the received power of the user channel received by the wireless terminal is increased. Then, the coefficient calculation unit includes the calculated precoding coefficient in the transmission format information FI.
  • the coefficient calculation unit calculates the weight (precoding coefficient) of the user channel transmitted by the plurality of antennas 20 and 90 based on feedback information from the wireless terminal, and includes it in the transmission format information FI.
  • the precoding unit 81 adds weights included in the transmission format information FI to user channels transmitted by the plurality of antennas 20 and 90, and deflects radio wave radiation of the user channels output from the antennas 20 and 90. That is, the precoding units 81 and 84 deflect the radio wave radiation of the antennas 20 and 90 so that the reception power of the user channel of the wireless terminal is increased.
  • the transmission bit string B1 is precoded, but the transmission bit string B2 may also be precoded.
  • the SCH power control unit 91 has the same function as the SCH power control unit 16 described in FIG. However, the SCH power control unit 91 changes the coefficient output to each of the multipliers 17 and 92 based on the precoding coefficient included in the transmission format information FI. That is, the SCH power control unit 91 changes the SCH power output from each of the antennas 20 and 90.
  • the SCH power control unit 91 calculates the transmission rate of the transmission bit string B1 based on the coding rate, modulation scheme, and spreading factor included in the transmission format information FI.
  • the SCH power control unit 91 calculates a coefficient to be output to the multipliers 17 and 92 based on the precoding coefficient included in the transmission format information FI when the calculated transmission rate of the transmission bit string B1 is, for example, a high transmission rate.
  • the SCH radio wave radiation output from the antennas 20 and 90 is changed.
  • the SCH power control unit 91 calculates a coefficient for radio wave radiation orthogonal to precoding radio wave radiation, and outputs the coefficient to the multipliers 17 and 92.
  • the SCH power control unit 91 adds weighting to the SCH output from the antennas 20 and 90, and deflects the radio wave radiation of the SCH output from the antennas 20 and 90 to be orthogonal to the radio wave radiation of the user channel. The power of the SCH received by the wireless terminal is reduced.
  • the coefficient output from the SCH power control unit 91 is, for example, a complex number.
  • the SCH power control unit 91 changes the amplitude and phase of the SCH according to the complex coefficient, and deflects the radio wave radiation of the SCH.
  • FIG. 11 is a diagram for explaining SCH radio wave radiation.
  • a solid line radiation E21 shown in FIG. 11 indicates radio wave radiation of the user channel.
  • a dotted line radiation E22 indicates SCH radio wave radiation.
  • the crosses shown in FIG. 11 indicate the position of the wireless terminal that receives the transmission bit string B1.
  • the radio wave radiation of the user channel received by the wireless terminal is formed so as to increase its power by precoding.
  • radio wave radiation of the user channel received by the wireless terminal is as indicated by radiation E21.
  • the SCH power control unit 91 controls the SCH power to be small when the transmission rate of the transmission bit string B1 is a high transmission rate.
  • the SCH power control unit 91 can control the radiation of the SCH as indicated by the radiation E22 by calculating a coefficient orthogonal to the precoding coefficient and outputting the coefficient to the multipliers 17 and 92. That is, the SCH power control unit 91 deflects the SCH radio wave radiation based on the precoding coefficient of the user channel so that the SCH power at the position where the wireless terminal exists is reduced.
  • the precoding units 81 and 84 can control the power of the user channel at the position where the mobile terminal exists even if the wireless terminal moves. Since the SCH power control unit 91 deflects the SCH radio wave radiation based on the feedback precoding coefficient, the SCH power control unit 91 reduces the SCH power at the position where the mobile terminal exists even if the mobile terminal moves. Can be controlled. Thereby, even if the wireless terminal moves, interference due to the SCH of the user channel is suppressed.
  • the base station adds weights to the SCHs output to the plurality of antennas 20 and 69 so that the radio wave radiation of the SCH is orthogonal to the radio wave radiation of the user channel. Therefore, even if a radio terminal moves, the base station can suppress degradation of the user channel and can eliminate the SCH cancellation process of the radio terminal.
  • FIG. 12 is a block diagram of a base station according to the seventh embodiment. 12, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the base station includes an uplink signal reception unit 101, a type information generation unit 102, and an SCH power control unit 103.
  • the uplink signal receiving unit 101 receives an uplink signal from a wireless terminal. Based on the uplink signal received by the uplink signal receiving unit 101, the type information generating unit 102 generates type information indicating whether the wireless terminal that has transmitted the uplink signal has an SCH canceller.
  • a wireless terminal that does not have an SCH canceller transmits information to the base station that it does not have an SCH canceller.
  • the type information generation unit 102 generates type information indicating that the SCH canceller is not included, based on the information (uplink signal) received by the uplink signal receiving unit 101 indicating that the SCH canceller is not included.
  • the SCH power control unit 103 has the same function as the SCH power control unit 16 described in FIG. However, the SCH power control unit 103 outputs a coefficient for controlling the SCH power to the multiplier 17 based on the type information output from the type information generation unit 102.
  • the wireless terminal that receives the transmission bit string B1 does not have an SCH canceller.
  • the type information output from the type information generation unit 102 indicates that no SCH canceller is provided, and the SCH power control unit 103 outputs a coefficient for controlling the power of the SCH to the multiplier 17.
  • the wireless terminal that receives the transmission bit string B1 has an SCH canceller.
  • the SCH power control unit 103 does not output a coefficient for controlling the SCH power to the multiplier 17.
  • the base station controls the power of the SCH for the wireless terminal that does not have the SCH canceller, and the power of the synchronization channel for the wireless terminal that cancels the SCH and extracts the user channel. I tried not to change. Thereby, the base station can suppress the influence of the cell search due to the SCH power change of the wireless terminal.
  • the base station transmits P-SCH (Primary SCH) for synchronizing slot timing and S-SCH (Secondary SCH) for synchronizing frame timing to the radio terminal as SCH. ing.
  • P-SCH Primary SCH
  • S-SCH Secondary SCH
  • FIG. 13 is a block diagram of a base station according to the eighth embodiment.
  • a multiplier 17 receives a P-SCH signal.
  • the S-SCH signal is input to the adding unit 18. Therefore, in the base station of FIG. 13, the P-SCH is power controlled by the SCH power control unit 16, and the S-SCH is not power controlled.
  • the P-SCH and S-SCH are combined by the adding unit 18 and wirelessly transmitted to the wireless terminal by the wireless unit 19.
  • the P-SCH transmits the same code in each slot.
  • the S-SCH transmits a different code for each slot and transmits information using a code pattern for one frame. Therefore, the average power of the P-SCH affects the detection performance of the code pattern, and the power of each slot of the S-SCH affects the detection performance of the code pattern even if the average power is constant. Therefore, the SCH power control unit 16 controls the power of the P-SCH and does not control the power of the S-SCH. That is, the SCH power control unit 16 controls part of the power of the plurality of types of SCHs.
  • the base station controls part of the power of multiple types of SCH.
  • the base station can suppress the influence of the cell search due to the power change of some SCHs, and can suppress the degradation of the user channel due to interference of other SCHs.
  • the S-SCH power is made constant.
  • the S-SCH power may be controlled to change.
  • the SCH power control unit 16 changes the S-SCH power to be smaller than the P-SCH power change so as not to be affected by the S-SCH cell search.
  • the base station can also suppress the influence of interference due to the P-SCH of the user channel of the wireless terminal.
  • FIG. 14 is a block diagram of a base station according to the ninth embodiment. 14, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the transmission rate is varied in the transmission bit strings B1 to B3 of a plurality of users A, B, and C.
  • Transmission format information FI1 is input to the error correction code unit 11a, the modulation unit 12a, and the spread modulation unit 13a.
  • Transmission format information FI2 is input to the error correction code unit 11b, the modulation unit 12b, and the spread modulation unit 13b.
  • Transmission format information FI3 is input to error correction coding unit 11d, modulation unit 12d, and spread modulation unit 13d.
  • the operations of the error correction code units 11b and 11d, the modulation units 12b and 12d, and the spread modulation units 13b and 13d are the same as those of the error correction code unit 11a, the modulation unit 12a, and the spread modulation unit 13a described in FIG. The description is omitted.
  • the SCH power control unit 111 receives transmission format information FI1 to FI3.
  • the SCH power control unit 111 controls the SCH power based on the coding rate, modulation scheme, and spreading factor included in the transmission format information FI.
  • the SCH power control unit 111 transmits each of the transmission bit sequences B1 to B3 from the coding rate, modulation scheme, and spreading factor of the transmission bit sequences B1 to B3 included in each of the transmission format information FI1 to FI3. Calculate the rate. Then, the SCH power control unit 111 adds the calculated transmission rates, and outputs the first coefficient to the multiplier 17 if the added transmission rate is, for example, a predetermined threshold value or less. Further, if the added transmission rate is larger than a predetermined threshold, SCH power control section 111 outputs a second coefficient smaller than the first coefficient to multiplier 17. That is, when the transmission rate obtained by adding the transmission bit strings B1 to B3 is changed to a high transmission rate, the SCH power control unit 111 multiplies a small coefficient so that the SCH power becomes small.
  • the base station controls the SCH power based on the transmission format information FI1 to FI3 of the user channels of a plurality of wireless terminals.
  • the base station can suppress degradation of user channels of a plurality of wireless terminals and can eliminate the need for SCH cancellation processing of the wireless terminals.
  • the SCH power is controlled based on the transmission format information of the user channel.
  • the power of the SCH is made constant and the power of the user channel is controlled.
  • FIG. 15 is a block diagram of a base station according to the tenth embodiment. 15 that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
  • the base station in FIG. 15 does not have the SCH power control unit 16 described in FIG. In the base station of FIG. 15, the SCH signal is input to the adder 18 without power control.
  • the base station in FIG. 15 has a power control unit 121 and a multiplier 122.
  • the power control unit 121 controls the power of the user channel of the transmission bit string B1 based on the transmission format information of the transmission bit string B1.
  • the power control unit 121 controls the power of the user channel of the transmission bit string B1 in the user channel region overlapping with the SCH. For example, the power control unit 121 controls the power of the user channel in the region overlapping the shaded portion shown in FIG.
  • the power control unit 121 calculates the transmission rate of the transmission bit string B1 from, for example, the coding rate, the modulation scheme, and the spreading factor included in the transmission format information FI. Then, the power control unit 121 outputs the first coefficient to the multiplier 122 if the calculated transmission rate is equal to or less than a predetermined threshold, for example, and if the calculated transmission rate is greater than the predetermined threshold, the first The second coefficient larger than the first coefficient is output to the multiplier 122. That is, when the transmission rate of transmission bit string B1 is changed to a high rate, power control unit 121 outputs a large coefficient to multiplier 122 so that the power of the user channel is increased. That is, the power control unit 121 outputs a coefficient proportional to the transmission rate to the multiplier 122. Thereby, the influence of interference by SCH is suppressed in the user channel.
  • a coefficient output from the power control unit 121 is input to the multiplier 122.
  • the multiplier 122 multiplies the signal output from the spread modulation unit 13 a by the coefficient and outputs the result to the addition unit 14. That is, the transmission bit string B ⁇ b> 1 is controlled in power by the coefficient output from the power control unit 121 and output to the addition unit 14.
  • the base station controls the power of the user channel in the area overlapping with the synchronization channel transmitted to the wireless terminal based on the transmission format information of the user channel transmitting user data to the wireless terminal.
  • the base station can suppress the degradation of the user channel and can eliminate the SCH cancellation process of the wireless terminal.
  • the second to ninth embodiments can also be applied to control the power of the user channel.
  • the first embodiment to the tenth embodiment can be combined.
  • the control of constant SCH average power described in the second embodiment and the SCH weighting control by precoding transmission described in the sixth embodiment are combined, or described in the first embodiment.
  • SCH power control and the user channel described in the tenth embodiment may be combined.
  • FIG. 16 is a diagram illustrating a hardware configuration example of the base station.
  • the base station includes a CPU (Central Processing Unit) 131, a DSP (Digital Signal Processing) 132, a memory 133, a radio unit 134, and a bus 135.
  • a DSP 132, a memory 133, and a wireless unit 134 are connected to the CPU 131 via a bus 135 to control the entire apparatus.
  • the memory 133 stores an OS (Operating System) program and application programs executed by the CPU 131 and the DSP 132.
  • the memory 133 stores various data necessary for processing by the CPU 131 and the DSP 132.
  • the wireless unit 134 performs wireless communication with a wireless terminal. For example, the wireless unit 134 performs D / A (Digital-to-Analog) conversion on the digital signal processed by the CPU 131 and the DSP 132, up-converts the frequency of the D / A converted signal, and transmits the converted signal to the wireless terminal. Further, the wireless unit 134 down-converts the frequency of the signal received from the wireless terminal, for example, and performs A / D (Analog-to-Digital) conversion. The A / D converted signal is subjected to predetermined processing by the CPU 131 and the DSP 132.
  • D / A Digital-to-Analog
  • the functions of the units described in the first to tenth embodiments can be realized by the CPU 131 and the DSP 132, for example.
  • the radio unit described in the first to tenth embodiments is realized by the radio unit 134.
  • the functions of the units described in the first to tenth embodiments can be realized by, for example, dedicated hardware.
  • the function can be realized by FPGA (Field Programmable Gate Gate Array).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention is able to suppress deterioration in a user channel, and to render processing for cancelling the synchronization channel of a wireless terminal unnecessary. On the basis of transmission format information (FI) of a user channel that transmits user data to the wireless terminal, the SCH power control unit (16) of a base station controls the power of an SCH for the wireless terminal synchronizing with the base station. For example, the SCH power control unit (16) reduces the power of the SCH when it is determined by means of the transmission format information (FI) that the user channel has a high transmission rate. As a result, in the user channel, deterioration resulting from SCH interference is suppressed. Also, in the wireless terminal, processing for cancelling the SCH is rendered unnecessary.

Description

基地局および電力制御方法Base station and power control method
 本件は、無線端末と無線通信を行う基地局およびその電力制御方法に関する。 This case relates to a base station that performs wireless communication with a wireless terminal and its power control method.
 W-CDMA(Wideband Code Division Multiple Access)通信方式では、携帯電話機等の無線端末が基地局と同期をとるために、基地局が音声データ等に同期信号(SCH:Synchronization CHannel)を多重して無線端末に送信している。W-CDMA通信方式では、複数のユーザチャネルのそれぞれに、直交コードを割り当ててユーザデータを送信し、これらの直交コードとは非直交なコードによりSCHを送信している。このため、ユーザチャネルは、理想的な伝搬路においても、SCHからの干渉がゼロにならず、特性劣化が生じる。特に、W-CDMA通信方式を拡張したHSDPA(High Speed Downlink Packet Access)では、高伝送レートの送信フォーマットが用いられる場合、特性劣化が顕著となる。 In a W-CDMA (Wideband Code Division Multiple Access) communication system, a radio terminal such as a mobile phone synchronizes with a base station, so that the base station multiplexes a synchronization signal (SCH: Synchronization CHannel) with voice data or the like to perform radio communication. Sending to the terminal. In the W-CDMA communication system, orthogonal data is allocated to each of a plurality of user channels to transmit user data, and SCH is transmitted using a code that is non-orthogonal to these orthogonal codes. For this reason, even in an ideal propagation path, the user channel does not have zero interference from the SCH, and characteristic degradation occurs. Particularly in HSDPA (High Speed Downlink Packet Access), which is an extension of the W-CDMA communication method, when a transmission format with a high transmission rate is used, characteristic degradation becomes significant.
 そこで、無線端末には、ユーザチャネルからSCHをキャンセルするSCHキャンセラを備えたものがある。例えば、無線端末のRAKE受信機は、複数の遅延器によって、遅れて受信する複数の信号のタイミングを合わせる。そして、無線端末のRAKE受信機は、受信するSCHの振幅を推定し、タイミングを合わせたそれぞれの受信信号においてSCHを減算し、合成する。これにより、無線端末は、SCHをキャンセルしたユーザチャネルを得ることができる。しかし、一方では、無線端末は、処理量が多くなる。 Therefore, some wireless terminals include an SCH canceller that cancels SCH from the user channel. For example, a RAKE receiver of a wireless terminal uses a plurality of delay devices to synchronize the timing of a plurality of signals received with a delay. Then, the RAKE receiver of the wireless terminal estimates the amplitude of the SCH to be received, and subtracts and combines the SCHs in the respective received signals having the same timing. Thereby, the radio | wireless terminal can acquire the user channel which canceled SCH. However, on the other hand, the processing amount of the wireless terminal increases.
 なお、従来、W-CDMA通信方式において、定常的な送信電力の増大を防止しつつDCCH(Dedicated Control CHannel)の通信エラーを未然に防止することが可能な送信電力制御方式が提案されている(例えば、特許文献1参照)。 Conventionally, in the W-CDMA communication system, a transmission power control system that can prevent a DCCH (Dedicated Control Channel) communication error in advance while preventing a steady increase in transmission power has been proposed ( For example, see Patent Document 1).
 また、従来、通信開始時またはハンドオーバ時のセルサーチにおいて、チャネル相互間の干渉を抑え、通信端末が簡易に同期捕捉を行うことができる送信電力制御装置が提案されている(例えば、特許文献2参照)。 Conventionally, a transmission power control apparatus has been proposed in which interference between channels is suppressed in a cell search at the start of communication or handover, and a communication terminal can easily perform synchronization acquisition (for example, Patent Document 2). reference).
 さらに、従来、雑音や干渉の影響が軽減された、より精度の高い移動通信システムにおける移動局の同期確立方法が提案されている(例えば、特許文献3参照)。 Furthermore, conventionally, a method for establishing synchronization of mobile stations in a mobile communication system with higher accuracy in which the influence of noise and interference has been reduced has been proposed (see, for example, Patent Document 3).
特開2008-166882号公報JP 2008-166882 A 特開2003-218788号公報JP 2003-218788 A 特開2001-358635号公報JP 2001-358635 A
 このように、ユーザチャネルは、同期チャネルによって特性劣化が生じるという問題点があった。また、無線端末は、ユーザチャネルから同期チャネルをキャンセルする場合、処理量が多くなるという問題点があった。 As described above, the user channel has a problem that characteristic deterioration occurs due to the synchronization channel. Further, when the wireless terminal cancels the synchronization channel from the user channel, there is a problem that the processing amount increases.
 本件はこのような点に鑑みてなされたものであり、同期チャネルによるユーザチャネルの劣化を抑制することを目的とする。また、無線端末の同期チャネルのキャンセル処理を不要にすることができる基地局および電力制御方法を提供することを目的とする。 This case has been made in view of these points, and aims to suppress degradation of the user channel due to the synchronization channel. It is another object of the present invention to provide a base station and a power control method that can eliminate the process of canceling the synchronization channel of the wireless terminal.
 上記課題を解決するために、無線端末と無線通信を行う基地局が提供される。この基地局は、前記無線端末にユーザデータを送信するユーザチャネルの送信フォーマット情報に基づいて、前記無線端末が当該基地局と同期をとるための同期チャネルの電力を制御する制御部、を有する。 In order to solve the above problems, a base station that performs wireless communication with a wireless terminal is provided. The base station includes a control unit that controls the power of a synchronization channel for the wireless terminal to synchronize with the base station based on transmission format information of a user channel that transmits user data to the wireless terminal.
 また、上記課題を解決するために、無線端末と無線通信を行う基地局が提供される。この基地局は、前記無線端末にユーザデータを送信するユーザチャネルの送信フォーマット情報に基づいて、前記無線端末に送信する同期チャネルと重なる前記ユーザチャネルの電力を制御する制御部、を有する。 Also, in order to solve the above problems, a base station that performs wireless communication with a wireless terminal is provided. The base station includes a control unit that controls power of the user channel overlapping with a synchronization channel transmitted to the wireless terminal based on transmission format information of a user channel that transmits user data to the wireless terminal.
 開示の装置および方法によれば、ユーザチャネルの劣化を抑制するとともに、無線端末の同期チャネルのキャンセル処理を不要にすることができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
According to the disclosed apparatus and method, it is possible to suppress degradation of the user channel and eliminate the need for canceling the synchronization channel of the wireless terminal.
These and other objects, features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings which illustrate preferred embodiments by way of example of the present invention.
第1の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 1st Embodiment. SCHの電力制御を説明する図である。It is a figure explaining the electric power control of SCH. 基地局の動作を示したフローチャートである。It is the flowchart which showed operation | movement of the base station. 第2の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 2nd Embodiment. SCHの電力制御を説明する図である。It is a figure explaining the electric power control of SCH. 第3の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 3rd Embodiment. 第4の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 4th Embodiment. 第5の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 5th Embodiment. SCHの電波放射を説明する図である。It is a figure explaining the radio wave radiation of SCH. 第6の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 6th Embodiment. SCHの電波放射を説明する図である。It is a figure explaining the radio wave radiation of SCH. 第7の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 7th Embodiment. 第8の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 8th Embodiment. 第9の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 9th Embodiment. 第10の実施の形態に係る基地局のブロック図である。It is a block diagram of the base station which concerns on 10th Embodiment. 基地局のハードウェア構成例を示した図である。It is the figure which showed the hardware structural example of the base station.
 以下、実施の形態を、図面を参照して詳細に説明する。
 [第1の実施の形態]
 図1は、第1の実施の形態に係る基地局のブロック図である。図1に示す基地局は、例えば、携帯電話機などの無線端末とW-CDMA通信方式により無線通信を行う。図1に示すように、基地局は、誤り訂正符号部11a,11b、変調部12a~12c、拡散変調部13a~13c、加算部14,18、乗算器15,17、SCH電力制御部16、無線部19、およびアンテナ20を有している。図1では、説明のため2つの送信ビット列B1,B2を符号拡散して無線送信する例を示しているが、3以上の送信ビット列を符号拡散して無線送信してもよい。すなわち、誤り訂正符号部、変調部、および拡散変調部の組が、3以上あってもよい。
Hereinafter, embodiments will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a block diagram of a base station according to the first embodiment. The base station shown in FIG. 1 performs wireless communication with a wireless terminal such as a mobile phone by the W-CDMA communication method, for example. As shown in FIG. 1, the base station includes error correction code units 11a and 11b, modulation units 12a to 12c, spread modulation units 13a to 13c, addition units 14 and 18, multipliers 15 and 17, SCH power control unit 16, A wireless unit 19 and an antenna 20 are provided. Although FIG. 1 shows an example in which two transmission bit sequences B1 and B2 are code-spread for radio transmission for explanation, three or more transmission bit sequences may be code-spread for radio transmission. That is, there may be three or more sets of error correction code units, modulation units, and spread modulation units.
 図1に示す誤り訂正符号部11a、変調部12a、拡散変調部13a、およびSCH電力制御部16には、送信ビット列B1を無線端末に無線送信するユーザチャネルの送信フォーマット情報FIが入力される。送信フォーマット情報FIには、送信ビット列B1を無線送信するユーザチャネルの符号化率、変調方式、および拡散率が含まれている。 The user channel transmission format information FI for wirelessly transmitting the transmission bit string B1 to the wireless terminal is input to the error correction coding unit 11a, the modulation unit 12a, the spread modulation unit 13a, and the SCH power control unit 16 illustrated in FIG. The transmission format information FI includes the coding rate, modulation scheme, and spreading factor of the user channel that wirelessly transmits the transmission bit string B1.
 ユーザチャネルの符号化率、変調方式、および拡散率は、スケジューラによって管理されている。従って、送信フォーマット情報FIは、スケジューラの有する情報から生成される。 The user channel coding rate, modulation scheme, and spreading rate are managed by the scheduler. Therefore, the transmission format information FI is generated from information held by the scheduler.
 誤り訂正符号部11aには、ユーザチャネルにて無線端末に無線送信する送信ビット列B1が入力される。また、誤り訂正符号部11aには、送信フォーマット情報FIが入力される。誤り訂正符号部11aは、送信フォーマット情報FIに含まれている符号化率で、入力される送信ビット列B1に誤り訂正符号処理を施す。 The transmission bit string B1 that is wirelessly transmitted to the wireless terminal through the user channel is input to the error correction code unit 11a. The transmission format information FI is input to the error correction code unit 11a. The error correction code unit 11a performs error correction code processing on the input transmission bit string B1 at the coding rate included in the transmission format information FI.
 変調部12aは、送信フォーマット情報FIに含まれている変調方式に基づいて、誤り訂正符号部11aから出力される信号を変調する。変調方式は、例えば、QPSK(Quadrature Phase Shift Keying)や16QAM(Quadrature Amplitude Modulation)である。 The modulation unit 12a modulates the signal output from the error correction code unit 11a based on the modulation method included in the transmission format information FI. The modulation method is, for example, QPSK (Quadrature Phase Shift Keying) or 16QAM (Quadrature Amplitude Modulation).
 拡散変調部13aは、送信フォーマット情報FIに含まれている拡散率に基づいて、変調部12aから出力される信号を符号拡散する。
 送信フォーマット情報FIに含まれる情報は、例えば、無線端末との通信状況に応じて変化する。例えば、無線端末との伝搬路の状態が良好であれば、送信ビット列B1の伝送レートが高くなるように、送信フォーマット情報FIは変更される。具体的には、無線端末との伝搬路の状態が良好であれば、符号化率は低く変更され、変調方式は多値に変更される。また、拡散率は小さく変更される。これにより、送信ビット列B1の伝送レートは高くなる。
The spread modulation unit 13a code spreads the signal output from the modulation unit 12a based on the spreading factor included in the transmission format information FI.
The information included in the transmission format information FI changes according to the communication status with the wireless terminal, for example. For example, if the state of the propagation path with the wireless terminal is good, the transmission format information FI is changed so that the transmission rate of the transmission bit string B1 is increased. Specifically, if the state of the propagation path with the wireless terminal is good, the coding rate is changed to a low value, and the modulation scheme is changed to a multi-value. Further, the diffusion rate is changed to be small. As a result, the transmission rate of the transmission bit string B1 is increased.
 誤り訂正符号部11bには、ユーザチャネルにて無線端末に無線送信する送信ビット列B2が入力される。誤り訂正符号部11bは、入力される送信ビット列B2に誤り訂正符号処理を施す。なお、送信ビット列B1は、あるユーザの無線端末に送信されるビット列であり、送信ビット列B2は、別のユーザの無線端末に無線送信されるビット列である。 The transmission bit string B2 that is wirelessly transmitted to the wireless terminal through the user channel is input to the error correction code unit 11b. The error correction code unit 11b performs error correction code processing on the input transmission bit string B2. The transmission bit string B1 is a bit string transmitted to a wireless terminal of a certain user, and the transmission bit string B2 is a bit string wirelessly transmitted to a wireless terminal of another user.
 変調部12bは、誤り訂正符号部11bによって誤り訂正符号処理が施された送信ビット列B2を変調する。拡散変調部13bは、変調部12bから出力される信号を符号拡散する。拡散変調部13bの拡散符号は、送信ビット列B1,B2が干渉しないように、拡散変調部13aの拡散符号と直交している。 The modulation unit 12b modulates the transmission bit string B2 that has been subjected to the error correction code processing by the error correction code unit 11b. The spread modulation unit 13b code spreads the signal output from the modulation unit 12b. The spread code of the spread modulation unit 13b is orthogonal to the spread code of the spread modulation unit 13a so that the transmission bit strings B1 and B2 do not interfere with each other.
 なお、誤り訂正符号部11b、変調部12b、および拡散変調部13bには、送信フォーマット情報FIは入力されない。従って、送信ビット列B2の伝送レートは一定である。 Note that the transmission format information FI is not input to the error correction code unit 11b, the modulation unit 12b, and the spread modulation unit 13b. Therefore, the transmission rate of the transmission bit string B2 is constant.
 変調部12cには、パイロットパターンPが入力される。変調部12cは、入力されるパイロットパターンPを変調する。拡散変調部13cは、変調部12cから出力される信号を符号拡散する。 The pilot pattern P is input to the modulation unit 12c. The modulation unit 12c modulates the input pilot pattern P. The spread modulation unit 13c code spreads the signal output from the modulation unit 12c.
 加算部14は、拡散変調部13a~13cから出力される信号を加算する。乗算器15は、加算部14から出力される信号をスクランブルコードscで符号拡散する。
 SCH電力制御部16は、送信フォーマット情報FIに含まれている符号化率、変調方式、および拡散率に基づいて、SCH(SCH信号)の電力を制御する。例えば、SCH電力制御部16は、送信フォーマット情報FIに含まれる符号化率、変調方式、および拡散率から、送信ビット列B1の伝送レートを算出する。そして、SCH電力制御部16は、算出した伝送レートが、例えば、所定の閾値以下であれば、第1の係数を乗算器17に出力し、算出した伝送レートが所定の閾値より大きければ、第1の係数より小さい第2の係数を乗算器17に出力する。すなわち、SCH電力制御部16は、送信ビット列B1の伝送レートが高いレートに変更された場合、SCHの電力が小さくなるように小さい係数を乗算器17に出力する。つまり、SCH電力制御部16は、伝送レートに反比例する係数を乗算器17に出力する。
The adding unit 14 adds the signals output from the spread modulation units 13a to 13c. The multiplier 15 code spreads the signal output from the adder 14 with the scramble code sc.
The SCH power control unit 16 controls the power of the SCH (SCH signal) based on the coding rate, modulation scheme, and spreading factor included in the transmission format information FI. For example, the SCH power control unit 16 calculates the transmission rate of the transmission bit string B1 from the coding rate, modulation scheme, and spreading factor included in the transmission format information FI. Then, the SCH power control unit 16 outputs the first coefficient to the multiplier 17 if the calculated transmission rate is equal to or less than a predetermined threshold, for example, and if the calculated transmission rate is greater than the predetermined threshold, A second coefficient smaller than 1 is output to the multiplier 17. That is, when the transmission rate of the transmission bit string B1 is changed to a high rate, the SCH power control unit 16 outputs a small coefficient to the multiplier 17 so that the SCH power becomes small. That is, the SCH power control unit 16 outputs a coefficient that is inversely proportional to the transmission rate to the multiplier 17.
 なお、上記では、閾値が1つの場合について説明したが、複数あってもよい。すなわち、SCH電力制御部16は、より段階的にSCHの電力を制御することもできる。
 乗算器17には、無線端末が図1に示す基地局と同期をとるためのSCH信号と、SCH電力制御部16から出力される係数とが入力される。乗算器17は、入力されるSCH信号と係数とを乗算して、加算部18に出力する。すなわち、SCH信号は、SCH電力制御部16から出力される係数によって電力が制御されて、加算部18へ出力される。なお、SCH信号は、送信ビット列B1,B2の拡散符号と非直交の拡散符号で符号拡散されている。
In addition, although the case where there was one threshold value was demonstrated above, there may be multiple. That is, the SCH power control unit 16 can also control the SCH power in stages.
The multiplier 17 receives an SCH signal for the wireless terminal to synchronize with the base station shown in FIG. 1 and a coefficient output from the SCH power control unit 16. Multiplier 17 multiplies the input SCH signal by a coefficient and outputs the result to adder 18. That is, the power of the SCH signal is controlled by the coefficient output from the SCH power control unit 16 and output to the adding unit 18. Note that the SCH signal is code-spread with non-orthogonal spreading codes and spreading codes of transmission bit strings B1 and B2.
 加算部18は、乗算器15から出力される信号と乗算器17から出力される信号とを加算する。すなわち、加算部18は、ユーザチャネルの信号とSCHの信号とを合成する。
 無線部19は、加算部18から出力される信号の周波数をRF(Radio Frequency)にアップコンバートし、アンテナ20を介して、無線端末に無線送信する。
The adder 18 adds the signal output from the multiplier 15 and the signal output from the multiplier 17. That is, the adding unit 18 combines the user channel signal and the SCH signal.
The wireless unit 19 up-converts the frequency of the signal output from the adding unit 18 to RF (Radio Frequency), and wirelessly transmits it to the wireless terminal via the antenna 20.
 図2は、SCHの電力制御を説明する図である。図2には、基地局から無線端末に送信される無線フレームが示してある。無線フレームは、図2に示すように、複数のスロットから形成されている。図2の横方向は時間を示し、縦方向は送信電力を示している。図2に示す斜線部は、SCHの送信電力を示している。 FIG. 2 is a diagram illustrating SCH power control. FIG. 2 shows a radio frame transmitted from the base station to the radio terminal. As shown in FIG. 2, the radio frame is formed of a plurality of slots. The horizontal direction in FIG. 2 indicates time, and the vertical direction indicates transmission power. The shaded area shown in FIG. 2 indicates the transmission power of the SCH.
 図2に示す無線フレームの領域D11は、ユーザチャネルの伝送レートが所定の閾値より大きくなる領域を示している。すなわち、領域D11は、図2に示す無線フレームの他の領域より、伝送レートが高い領域を示している。 2 is an area where the transmission rate of the user channel is greater than a predetermined threshold. That is, the area D11 indicates an area having a higher transmission rate than the other areas of the radio frame shown in FIG.
 SCH電力制御部16は、上述したように、ユーザチャネルの伝送レートが高くなると、SCHの電力を小さくなるように制御する。従って、図2の領域D11では、SCHの電力は、他の領域より小さくなっている。 As described above, the SCH power control unit 16 controls the SCH power to decrease when the transmission rate of the user channel increases. Therefore, in the area D11 in FIG. 2, the SCH power is smaller than in the other areas.
 SCHは、ユーザチャネルと非直交の拡散符号で符号拡散されている。このため、ユーザチャネルは、SCHからの干渉がゼロにならず、特性劣化が生じる。特に、HSDPAでは、高伝送レートの送信フォーマットが用いられる場合、特性劣化が顕著となる。 The SCH is code spread with a spreading code that is non-orthogonal to the user channel. For this reason, the user channel does not have zero interference from the SCH, and characteristic degradation occurs. In particular, in HSDPA, when a transmission format with a high transmission rate is used, characteristic deterioration becomes significant.
 しかし、図1の基地局は、図2の領域D11に示すように、ユーザチャネルが高伝送レートの場合、SCHの電力を下げる。これにより、ユーザチャネルは、SCHからの干渉が抑制され、無線端末でのユーザチャネルの特性劣化が抑制される。また、ユーザチャネルは、SCHによる干渉が抑制されるので、無線端末は、SCHのキャンセル処理をしなくても、特性のよいユーザチャネルを得ることができる。なお、上記では、SCHの電力を下げるとしたが、SCHの電力をゼロとしてもよい。 However, the base station in FIG. 1 reduces the power of the SCH when the user channel has a high transmission rate, as shown in a region D11 in FIG. Thereby, as for a user channel, the interference from SCH is suppressed and the characteristic degradation of the user channel in a radio | wireless terminal is suppressed. Further, since interference with the SCH is suppressed in the user channel, the wireless terminal can obtain a user channel with good characteristics without performing SCH cancellation processing. In the above description, the SCH power is reduced, but the SCH power may be zero.
 図3は、基地局の動作を示したフローチャートである。フローチャートに示される動作は、例えば、DSPやCPUなどのプロセッサにより実行可能である。
 [ステップS1]基地局のSCH電力制御部16は、送信フォーマット情報FIを入力する。
FIG. 3 is a flowchart showing the operation of the base station. The operation shown in the flowchart can be executed by a processor such as a DSP or a CPU.
[Step S1] The SCH power control unit 16 of the base station inputs the transmission format information FI.
 [ステップS2]SCH電力制御部16は、送信フォーマット情報FIに基づいて、無線端末に送信されるデータ(送信ビット列B1)の伝送レートを算出する。
 [ステップS3]SCH電力制御部16は、算出した伝送レートが所定の閾値より大きいか否か判断する。SCH電力制御部16は、算出した伝送レートが所定の閾値より大きければ、ステップS4へ進む。SCH電力制御部16は、算出した伝送レートが所定の閾値以下であれば、ステップS5へ進む。
[Step S2] The SCH power control unit 16 calculates a transmission rate of data (transmission bit string B1) transmitted to the wireless terminal based on the transmission format information FI.
[Step S3] The SCH power control unit 16 determines whether or not the calculated transmission rate is greater than a predetermined threshold. If the calculated transmission rate is greater than the predetermined threshold, the SCH power control unit 16 proceeds to step S4. If the calculated transmission rate is equal to or lower than the predetermined threshold, the SCH power control unit 16 proceeds to step S5.
 [ステップS4]SCH電力制御部16は、高伝送レート用の係数を乗算器17に出力する。例えば、SCH電力制御部16は、次に説明するステップS5の係数より小さい値の係数を乗算器17に出力し、SCHの電力が小さくなるように制御する。 [Step S4] The SCH power control unit 16 outputs a coefficient for a high transmission rate to the multiplier 17. For example, the SCH power control unit 16 outputs a coefficient having a value smaller than the coefficient in step S5 described below to the multiplier 17, and controls the SCH power to be reduced.
 [ステップS5]SCH電力制御部16は、低伝送レート用の係数を乗算器17に出力する。なお、ステップS4,S5で電力制御されたSCHは、無線部19によって、無線端末に無線送信される。 [Step S5] The SCH power control unit 16 outputs a coefficient for a low transmission rate to the multiplier 17. Note that the SCH whose power is controlled in steps S4 and S5 is wirelessly transmitted to the wireless terminal by the wireless unit 19.
 このように、基地局は、無線端末にユーザデータを送信するユーザチャネルの送信フォーマット情報に基づいて、無線端末が基地局と同期をとるためのSCHの電力を制御するようにした。これにより、基地局は、ユーザチャネルの劣化を抑制するとともに、無線端末のSCHのキャンセル処理を不要にすることができる。 As described above, the base station controls the SCH power for the wireless terminal to synchronize with the base station based on the transmission format information of the user channel for transmitting user data to the wireless terminal. Thereby, the base station can suppress the degradation of the user channel and can eliminate the SCH cancellation process of the wireless terminal.
 なお、上記では、1ユーザの送信ビット列B1を1つの拡散符号で拡散して無線送信する例を示したが、1ユーザの複数の送信ビット列を複数の拡散符号で拡散して無線送信するマルチコード送信にも適用できる。この場合、送信フォーマット情報FIには、マルチコード数が含まれ、SCH電力制御部16は、送信フォーマット情報FIに含まれるマルチコード数にも基づいて、SCHの電力を制御する係数を算出する。例えば、マルチコード数が増えると、伝送レートが高くなるので、SCH電力制御部16は、係数を小さくする。 In the above description, an example is shown in which one user's transmission bit string B1 is spread and wirelessly transmitted with one spreading code. However, a multicode that wirelessly transmits a plurality of one user's transmission bit strings with a plurality of spreading codes It can also be applied to transmission. In this case, the transmission format information FI includes the number of multicodes, and the SCH power control unit 16 calculates a coefficient for controlling the SCH power based on the number of multicodes included in the transmission format information FI. For example, as the number of multicodes increases, the transmission rate increases, so the SCH power control unit 16 decreases the coefficient.
 [第2の実施の形態]
 次に、第2の実施の形態を、図面を参照して詳細に説明する。第2の実施の形態では、SCHの平均電力を一定となるように制御する。
[Second Embodiment]
Next, a second embodiment will be described in detail with reference to the drawings. In the second embodiment, the SCH average power is controlled to be constant.
 図4は、第2の実施の形態に係る基地局のブロック図である。図4において、図1と同じものには同じ符号を付し、その説明を省略する。
 図4では、基地局は、送信フォーマット情報生成部31およびSCH電力制御部32を有している。送信フォーマット情報生成部31およびSCH電力制御部32には、送信フォーマットスケジュール情報FISが入力される。
FIG. 4 is a block diagram of a base station according to the second embodiment. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
In FIG. 4, the base station includes a transmission format information generation unit 31 and an SCH power control unit 32. Transmission format schedule information FIS is input to transmission format information generation unit 31 and SCH power control unit 32.
 ユーザチャネルの送信フォーマットは、ユーザデータが送信される前にスケジューラによって予め決められている。従って、SCH電力制御部32は、データ送信前に決められた送信フォーマットスケジュール情報FISによって、将来の送信フォーマット(送信フォーマット情報FI)を知ることができる。 The transmission format of the user channel is determined in advance by the scheduler before user data is transmitted. Therefore, the SCH power control unit 32 can know the future transmission format (transmission format information FI) from the transmission format schedule information FIS determined before data transmission.
 送信フォーマットスケジュール情報FISには、無線送信しようとするデータの符号化率、変調方式、および拡散率が含まれている。送信フォーマット情報生成部31は、送信フォーマットスケジュール情報FISに含まれているこれらの情報を含む送信フォーマット情報FIを生成し、誤り訂正符号部11a、変調部12a、および拡散変調部13aへ出力する。すなわち、送信フォーマット情報生成部31は、送信フォーマットスケジュール情報FISに含まれている符号化率、変調方式、および拡散率を、無線送信される送信ビット列B1とタイミングが合うように遅延し、送信フォーマット情報FIとして出力する。 The transmission format schedule information FIS includes a coding rate, a modulation method, and a spreading rate of data to be transmitted wirelessly. The transmission format information generation unit 31 generates transmission format information FI including these pieces of information included in the transmission format schedule information FIS, and outputs the transmission format information FI to the error correction coding unit 11a, the modulation unit 12a, and the spread modulation unit 13a. That is, the transmission format information generation unit 31 delays the coding rate, modulation method, and spreading factor included in the transmission format schedule information FIS so that the timing matches the transmission bit string B1 that is wirelessly transmitted. Output as information FI.
 SCH電力制御部32には、送信フォーマットスケジュール情報FISが入力される。従って、SCH電力制御部32は、データが無線送信されるタイミングより前のタイミングにおいて、そのデータの送信フォーマット情報を知ることができる。すなわち、SCH電力制御部32は、データが無線送信される前に、そのデータの伝送レートを知ることができる。 The SCH power control unit 32 receives transmission format schedule information FIS. Accordingly, the SCH power control unit 32 can know the transmission format information of the data at a timing before the data is wirelessly transmitted. That is, the SCH power control unit 32 can know the transmission rate of data before the data is wirelessly transmitted.
 SCH電力制御部32は、送信フォーマットスケジュール情報FISに含まれている符号化率、変調方式、および拡散率に基づいて、無線送信されるデータの伝送レートを予め算出する。SCH電力制御部32は、予め算出した伝送レートに基づき、予めSCHの電力を制御する係数を算出する。 The SCH power control unit 32 calculates in advance the transmission rate of data to be wirelessly transmitted based on the coding rate, modulation scheme, and spreading factor included in the transmission format schedule information FIS. The SCH power control unit 32 calculates a coefficient for controlling the SCH power in advance based on the transmission rate calculated in advance.
 SCH電力制御部32は、SCHの電力を下げる係数を予め算出した場合、そのSCHの電力を下げるスロットより前のスロットのSCHの係数を算出する。SCH電力制御部32は、SCHの電力を大きくする係数を算出し、SCHの平均電力が一定となるようにする。 The SCH power control unit 32 calculates the SCH coefficient of the slot before the slot to decrease the SCH power when the coefficient for decreasing the SCH power is calculated in advance. The SCH power control unit 32 calculates a coefficient for increasing the power of the SCH so that the average power of the SCH becomes constant.
 また、SCH電力制御部32は、SCHの電力を下げる係数を予め算出した場合、そのSCHの電力を下げるスロットより後ろのスロットのSCHの係数を算出する。SCH電力制御部32は、SCHの電力を大きくする係数を算出し、SCHの平均電力が一定となるようにする。 Also, when the SCH power control unit 32 previously calculates a coefficient for reducing the power of the SCH, the SCH power control unit 32 calculates the coefficient of the SCH in the slot after the slot for reducing the power of the SCH. The SCH power control unit 32 calculates a coefficient for increasing the power of the SCH so that the average power of the SCH becomes constant.
 図5は、SCHの電力制御を説明する図である。図5には、基地局から無線端末に送信される無線フレームが示してある。無線フレームは、図5に示すように、複数のスロットから形成されている。図5の横方向は時間を示し、縦方向は送信電力を示している。図5に示す斜線部は、SCHの送信電力を示している。 FIG. 5 is a diagram illustrating SCH power control. FIG. 5 shows a radio frame transmitted from the base station to the radio terminal. As shown in FIG. 5, the radio frame is formed of a plurality of slots. The horizontal direction in FIG. 5 indicates time, and the vertical direction indicates transmission power. The shaded area shown in FIG. 5 indicates the SCH transmission power.
 図5に示す無線フレームの領域D21は、ユーザチャネルの伝送レートが所定の閾値より大きい領域を示している。すなわち、領域D21は、図5に示す無線フレームの他の領域より、伝送レートが高い領域を示している。 A radio frame area D21 shown in FIG. 5 indicates an area where the transmission rate of the user channel is larger than a predetermined threshold. That is, the area D21 indicates an area having a higher transmission rate than the other areas of the radio frame illustrated in FIG.
 SCH電力制御部32は、上述したように、ユーザチャネルの伝送レートが高くなると、ユーザチャネルへのSCHの干渉が抑制されるよう、SCHの電力を小さくなるように制御する。従って、図5の領域D21では、SCHの電力は、他の領域より小さくなっている。 As described above, when the transmission rate of the user channel increases, the SCH power control unit 32 controls the SCH power to be reduced so that the interference of the SCH to the user channel is suppressed. Therefore, in region D21 in FIG. 5, the power of SCH is smaller than in other regions.
 また、SCH電力制御部32は、送信フォーマットスケジュール情報FISによって、予め領域D21の伝送レートを算出でき、領域D21のSCHの電力を知ることができる。SCH電力制御部32は、SCHの平均電力が一定となるよう、領域D21の前後のスロットにおけるSCHの電力も制御する。例えば、SCH電力制御部32は、領域D22,D23のSCHの電力が大きくなるように係数を算出する。これにより、SCHの平均電力は一定となる。 Further, the SCH power control unit 32 can calculate the transmission rate of the area D21 in advance based on the transmission format schedule information FIS, and can know the SCH power of the area D21. The SCH power control unit 32 also controls the SCH power in slots before and after the region D21 so that the average SCH power is constant. For example, the SCH power control unit 32 calculates the coefficient so that the SCH power in the regions D22 and D23 increases. As a result, the average power of the SCH is constant.
 SCHの電力を下げると、無線端末のセルサーチの性能に影響が生じる場合がある。通常、無線端末のセルサーチは、SCHを数フレーム平均するため、平均のSCHの電力が保たれていれば、セルサーチの性能に与える影響が小さい。図4の基地局では、図5の領域D21に示すようにSCHの電力を下げた場合、その前後の領域D22,D23でSCHの電力を上げ、SCHの平均電力が一定となるように制御する。これにより、図4の基地局は、無線端末のセルサーチの性能に与える影響を抑制して、ユーザチャネルの劣化を抑制するとともに、無線端末のSCHのキャンセル処理を不要にすることができる。 If the power of the SCH is reduced, the cell search performance of the wireless terminal may be affected. Normally, since cell search of a wireless terminal averages several frames of SCH, if the average SCH power is maintained, the influence on cell search performance is small. In the base station of FIG. 4, when the SCH power is lowered as shown in the region D21 of FIG. 5, the SCH power is increased in the regions D22 and D23 before and after the SCH power, and the average power of the SCH is controlled to be constant. . Accordingly, the base station in FIG. 4 can suppress the influence on the cell search performance of the radio terminal, suppress the degradation of the user channel, and can eliminate the SCH canceling process of the radio terminal.
 なお、図5では、SCH電力制御部32は、SCHの電力を小さく制御する前と後ろの両方のSCHの電力を制御するとしたが、一方のSCHの電力を制御するようにしてもよい。例えば、SCH電力制御部32は、SCHの平均電力が一定となるように、領域D22のSCHの電力だけを制御してもよい。 In FIG. 5, the SCH power control unit 32 controls the power of both the SCH before and after the SCH power is controlled to be small, but may control the power of one SCH. For example, the SCH power control unit 32 may control only the SCH power in the region D22 such that the average SCH power is constant.
 このように、基地局は、SCHの平均電力が一定となるように、SCHの電力を制御するようにした。これにより、基地局は、無線端末のセルサーチの性能に与える影響を抑制しつつ、ユーザチャネルの劣化を抑制するとともに、無線端末のSCHのキャンセル処理を不要にすることができる。 In this way, the base station controls the SCH power so that the average SCH power is constant. Accordingly, the base station can suppress the degradation of the user channel while suppressing the influence on the cell search performance of the wireless terminal, and can eliminate the need for the SCH canceling process of the wireless terminal.
 [第3の実施の形態]
 次に、第3の実施の形態を、図面を参照して詳細に説明する。W-CDMA通信方式の拡張方式として、DC-HSDPA(Dual Cell HSDPA)が策定されている。この方式は、基地局がW-CDMAの信号を2つの帯域で生成し、無線端末がその両方を受信して、伝送レートを向上させる技術である。第3の実施の形態では、DC-HSDPAの場合について説明する。
[Third Embodiment]
Next, a third embodiment will be described in detail with reference to the drawings. DC-HSDPA (Dual Cell HSDPA) has been formulated as an extension of the W-CDMA communication system. In this method, a base station generates W-CDMA signals in two bands, and a wireless terminal receives both of them to improve the transmission rate. In the third embodiment, a case of DC-HSDPA will be described.
 図6は、第3の実施の形態に係る基地局のブロック図である。図6に示す基地局は、DC-HSDPAの通信方式により、無線端末と無線通信を行う。すなわち、図6の基地局は、2つの帯域で無線端末にデータを送信する。図6において、図4と同じものには同じ符号を付し、その説明を省略する。 FIG. 6 is a block diagram of a base station according to the third embodiment. The base station shown in FIG. 6 performs wireless communication with a wireless terminal using a DC-HSDPA communication method. That is, the base station in FIG. 6 transmits data to the wireless terminal in two bands. 6, the same components as those in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted.
 図6に示す基地局は、送信部41およびSCH電力制御部42を有している。送信部41は、図1で示した誤り訂正符号部11a,11b、変調部12a~12c、拡散変調部13a~13c、加算部14,18、乗算器15,17、SCH電力制御部16、無線部19、およびアンテナ20を有している。 The base station shown in FIG. 6 has a transmission unit 41 and an SCH power control unit 42. The transmission unit 41 includes the error correction code units 11a and 11b, the modulation units 12a to 12c, the spread modulation units 13a to 13c, the addition units 14 and 18, the multipliers 15 and 17, the SCH power control unit 16, the wireless communication unit shown in FIG. The unit 19 and the antenna 20 are included.
 送信部41の誤り訂正符号部11aには、送信ビット列B11が入力され、誤り訂正符号部11bには、送信ビット列B12が入力される。送信部41の誤り訂正符号部11a、変調部12a、拡散変調部13a、およびSCH電力制御部16には、送信フォーマット情報FI1が入力される。送信部41の変調部12cには、パイロットパターンPが入力される。 The transmission bit string B11 is input to the error correction code unit 11a of the transmission unit 41, and the transmission bit string B12 is input to the error correction code unit 11b. Transmission format information FI1 is input to error correction coding unit 11a, modulation unit 12a, spread modulation unit 13a, and SCH power control unit 16 of transmission unit 41. The pilot pattern P is input to the modulation unit 12 c of the transmission unit 41.
 送信ビット列B1,B11は、あるユーザの無線端末に送信され、送信ビット列B2,B12は、別のユーザの無線端末に送信される。送信ビット列B1,B11のそれぞれは、無線部19と送信部41の有する無線部19とにより異なる帯域で、あるユーザの無線端末に無線送信され、送信ビット列B2,B12のそれぞれは、無線部19と送信部41の有する無線部19とにより異なる帯域で、別のユーザの無線端末に無線送信される。 The transmission bit strings B1 and B11 are transmitted to a wireless terminal of a certain user, and the transmission bit strings B2 and B12 are transmitted to a wireless terminal of another user. Each of the transmission bit sequences B1 and B11 is wirelessly transmitted to a wireless terminal of a certain user in a different band by the wireless unit 19 and the wireless unit 19 included in the transmission unit 41, and each of the transmission bit sequences B2 and B12 is transmitted to the wireless unit 19 Wireless transmission is performed to a wireless terminal of another user in a different band depending on the wireless unit 19 included in the transmission unit 41.
 SCH電力制御部42には、送信部41のSCH電力制御部16から出力されるSCH電力制御情報が入力される。SCH電力制御情報は、SCH電力制御部16が電力制御を行っているか否か(SCHの電力を小さくしているか否か)を示す情報である。 SCH power control information output from the SCH power control unit 16 of the transmission unit 41 is input to the SCH power control unit 42. The SCH power control information is information indicating whether or not the SCH power control unit 16 performs power control (whether or not the SCH power is reduced).
 SCH電力制御部42は、図4で説明したSCH電力制御部32と同様の機能を有している。ただし、SCH電力制御部42は、送信部41のSCH電力制御部16から、電力制御を行っていない旨のSCH電力制御情報が出力されている場合には、SCHの平均電力制御を行わない。 The SCH power control unit 42 has the same function as the SCH power control unit 32 described in FIG. However, the SCH power control unit 42 does not perform SCH average power control when the SCH power control information indicating that power control is not being performed is output from the SCH power control unit 16 of the transmission unit 41.
 例えば、SCH電力制御部42は、送信部41のSCH電力制御部16から、電力制御を行っていない旨のSCH電力制御情報が出力されている場合、図5に示すSCH電力制御を行わず、図2に示すSCHの電力制御を行う。言いかえれば、SCH電力制御部42は、送信部41のSCH電力制御部16がSCHの電力を小さくなるように制御している場合、SCHの平均電力が一定となるようにSCHの電力を制御する。 For example, when SCH power control information indicating that power control is not performed is output from the SCH power control unit 16 of the transmission unit 41, the SCH power control unit 42 does not perform the SCH power control illustrated in FIG. SCH power control shown in FIG. 2 is performed. In other words, when the SCH power control unit 16 of the transmission unit 41 controls the SCH power to be reduced, the SCH power control unit 42 controls the SCH power so that the average power of the SCH is constant. To do.
 図6に示す基地局では、SCHも異なる帯域で無線端末に送信される。そのため、無線端末は、一方の帯域のSCH(例えば、送信部41のSCH)を検出できればよい。従って、無線端末は、一方の帯域で送信されるSCHの電力が小さく制御されていなければ、他方の帯域で送信されるSCH(例えば、SCH電力制御部42で制御されるSCH)の電力が低下しても、セルサーチの性能劣化が小さい。すなわち、基地局は、他方の帯域において、SCHの平均電力を一定に制御しなくても、無線端末のセルサーチの性能劣化を抑制することができる。 In the base station shown in FIG. 6, the SCH is also transmitted to the wireless terminal in a different band. Therefore, the wireless terminal only needs to detect the SCH of one band (for example, the SCH of the transmission unit 41). Therefore, if the power of the SCH transmitted in one band is not controlled to be small, the wireless terminal has a reduced power of the SCH transmitted in the other band (for example, the SCH controlled by the SCH power control unit 42). Even so, the cell search performance degradation is small. That is, the base station can suppress the cell terminal performance degradation of the radio terminal without controlling the SCH average power constant in the other band.
 これに対し、一方の帯域で送信されるSCHの電力が小さく制御されていれば、他方の帯域で送信されるSCHの平均電力が低下すると、セルサーチの性能劣化に影響がおよぶ可能性がある。そこでこの場合、SCH電力制御部42は、SCHの平均電力が一定となるようにSCHの電力を制御する。 On the other hand, if the power of the SCH transmitted in one band is controlled to be small, if the average power of the SCH transmitted in the other band decreases, the cell search performance degradation may be affected. . Therefore, in this case, the SCH power control unit 42 controls the SCH power so that the average power of the SCH is constant.
 このように、SCH電力制御部42は、送信部41の有するSCH電力制御部16のSCH電力制御に応じて、SCHの平均電力の制御を行うようにした。これにより、基地局は、無線端末のセルサーチの性能に与える影響を抑制しつつ、ユーザチャネルの劣化を抑制するとともに、無線端末のSCHのキャンセル処理を不要にすることができる。 As described above, the SCH power control unit 42 controls the average power of the SCH according to the SCH power control of the SCH power control unit 16 included in the transmission unit 41. Accordingly, the base station can suppress the degradation of the user channel while suppressing the influence on the cell search performance of the wireless terminal, and can eliminate the need for the SCH canceling process of the wireless terminal.
 [第4の実施の形態]
 次に、第4の実施の形態を、図面を参照して詳細に説明する。第4の実施の形態では、基地局がデータを再送処理する場合のSCHの電力制御について説明する。
[Fourth Embodiment]
Next, a fourth embodiment will be described in detail with reference to the drawings. In the fourth embodiment, SCH power control when the base station retransmits data will be described.
 図7は、第4の実施の形態に係る基地局のブロック図である。図7において、図1と同じものには同じ符号を付し、その説明を省略する。図7では、基地局は、ARQ(Automatic Repeat reQuest)制御部51およびSCH電力制御部52を有している。 FIG. 7 is a block diagram of a base station according to the fourth embodiment. 7, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 7, the base station includes an ARQ (Automatic Repeat reQuest) control unit 51 and an SCH power control unit 52.
 HSDPAでは、無線端末は、受信したデータの誤りを検出した場合、そのデータの再送要求を基地局に対して行う。無線端末は、基地局から再送データを受信すると、初送のデータと合成することでSN(Signal Noise)比を向上させ、受信処理を行う。伝搬路の状況がデータの初送時と再送時であまり変化していなければ、SN比は約2倍に向上する。 In HSDPA, when a wireless terminal detects an error in received data, it makes a retransmission request for that data to the base station. When the wireless terminal receives the retransmission data from the base station, the wireless terminal combines with the initial transmission data to improve the SN (Signal Noise) ratio and perform reception processing. If the state of the propagation path does not change much at the time of initial transmission and retransmission of data, the S / N ratio is improved about twice.
 このSN比の向上に比べれば、SCHの干渉によるユーザチャネルの劣化は小さい。すなわち、高伝送レートのデータ再送時にSCHの電力を小さく制御しなくても、無線端末の受信データの劣化は小さい。そこで、図7の基地局は、データの再送時には、SCHの電力制御を行わない。 Compared with the improvement of the SN ratio, the degradation of the user channel due to SCH interference is small. That is, even if the SCH power is not controlled to be small when retransmitting data at a high transmission rate, the degradation of the received data of the wireless terminal is small. Therefore, the base station in FIG. 7 does not perform SCH power control when data is retransmitted.
 ARQ制御部51は、データの再送制御を行う。例えば、ARQ制御部51は、無線端末からデータの再送要求に応じて、データの再送処理を行う。ARQ制御部51は、データの再送を行う場合、データを再送する旨の再送情報をSCH電力制御部52に出力する。 The ARQ control unit 51 performs data retransmission control. For example, the ARQ control unit 51 performs data retransmission processing in response to a data retransmission request from a wireless terminal. When retransmitting data, the ARQ control unit 51 outputs retransmission information indicating that the data is retransmitted to the SCH power control unit 52.
 SCH電力制御部52は、図1で説明したSCH電力制御部16と同様の機能を有している。ただし、SCH電力制御部52は、ARQ制御部51からデータを再送する旨の再送情報が出力された場合、ユーザチャネルの伝送レートが高伝送レートであっても、SCHの電力制御を行う係数を変更しない。すなわち、SCH電力制御部52は、再送データが高伝送レートの場合でも、SCHの電力を小さくするように制御しない。 The SCH power control unit 52 has the same function as the SCH power control unit 16 described in FIG. However, when retransmission information indicating that data is retransmitted is output from the ARQ control unit 51, the SCH power control unit 52 sets a coefficient for performing SCH power control even if the transmission rate of the user channel is a high transmission rate. It does not change. That is, the SCH power control unit 52 does not control the SCH power to be reduced even when the retransmission data has a high transmission rate.
 このように、基地局は、ユーザチャネルが再送される場合、SCHの電力を変化しないようにした。これにより、基地局は、無線端末のセルサーチの性能に与える影響を抑制しつつ、ユーザチャネルの劣化を抑制するとともに、無線端末のSCHのキャンセル処理を不要にすることができる。 In this way, the base station does not change the SCH power when the user channel is retransmitted. Accordingly, the base station can suppress the degradation of the user channel while suppressing the influence on the cell search performance of the wireless terminal, and can eliminate the need for the SCH canceling process of the wireless terminal.
 [第5の実施の形態]
 次に、第5の実施の形態を、図面を参照して詳細に説明する。第5の実施の形態では、基地局が複数のアンテナでデータ送信する場合について説明する。
[Fifth Embodiment]
Next, a fifth embodiment will be described in detail with reference to the drawings. In the fifth embodiment, a case where a base station transmits data using a plurality of antennas will be described.
 図8は、第5の実施の形態に係る基地局のブロック図である。図8において、図1と同じものには同じ符号を付し、その説明を省略する。図8では、基地局は、誤り訂正符号部61a,61b、変調部62a~62c、拡散変調部63a~63c、加算部64,67、乗算器65,66、無線部68、アンテナ69、およびSCH電力制御部70を有している。 FIG. 8 is a block diagram of a base station according to the fifth embodiment. 8, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 8, the base station includes error correction code sections 61a and 61b, modulation sections 62a to 62c, spread modulation sections 63a to 63c, addition sections 64 and 67, multipliers 65 and 66, radio section 68, antenna 69, and SCH. A power control unit 70 is included.
 図8に示すように、誤り訂正符号部61aには、誤り訂正符号部11aに入力される送信ビット列B1が入力される。誤り訂正符号部61bには、誤り訂正符号部11bに入力される送信ビット列B2が入力される。変調部62cには、変調部12cに入力されるパイロットパターンPが入力される。また、誤り訂正符号部61a、変調部62a、および拡散変調部63aには、誤り訂正符号部11a、変調部12a、および拡散変調部13aに入力される送信フォーマット情報FIが入力される。以下では、誤り訂正符号部11a,11b、変調部12a~12c、拡散変調部13a~13c、加算部14,18、乗算器15,17、無線部19、およびアンテナ20を第1の送信ブロックと呼び、誤り訂正符号部61a,61b、変調部62a~62c、拡散変調部63a~63c、加算部64,67、乗算器65,66、無線部68、およびアンテナ69を第2の送信ブロックと呼ぶことがある。 As shown in FIG. 8, the transmission bit string B1 input to the error correction code unit 11a is input to the error correction code unit 61a. The transmission bit string B2 input to the error correction code unit 11b is input to the error correction code unit 61b. The pilot pattern P input to the modulation unit 12c is input to the modulation unit 62c. Further, transmission format information FI input to the error correction code unit 11a, the modulation unit 12a, and the spread modulation unit 13a is input to the error correction code unit 61a, the modulation unit 62a, and the spread modulation unit 63a. In the following, the error correction code units 11a and 11b, the modulation units 12a to 12c, the spread modulation units 13a to 13c, the addition units 14 and 18, the multipliers 15 and 17, the radio unit 19, and the antenna 20 are referred to as a first transmission block. The error correction code units 61a and 61b, the modulation units 62a to 62c, the spread modulation units 63a to 63c, the addition units 64 and 67, the multipliers 65 and 66, the radio unit 68, and the antenna 69 are referred to as a second transmission block. Sometimes.
 第1の送信ブロックは、図1で説明した各部と同様であり、第2の送信ブロックの各部は、第1の送信ブロックの対応する各部と同様の機能を有しているため、第2の送信ブロックの説明を省略する。 The first transmission block is the same as each unit described in FIG. 1, and each unit of the second transmission block has the same function as the corresponding unit of the first transmission block. Description of the transmission block is omitted.
 図8の基地局は、送信ビット列B1,B2、SCH信号、およびパイロット信号を、2つのアンテナ20,69で同時に同じ帯域で出力する。無線端末は、同時に送信されるこれらの信号を分離して復調を行う。 The base station in FIG. 8 outputs the transmission bit strings B1 and B2, the SCH signal, and the pilot signal simultaneously in the same band by the two antennas 20 and 69. The radio terminal performs demodulation by separating these signals transmitted at the same time.
 基地局は、複数のアンテナを有している場合、各アンテナの電力を制御することにより、各アンテナから出力される電波の放射を偏向することができる。そこで、SCH電力制御部70は、アンテナ20,69から出力するSCHの電力を制御することにより、SCHの電波放射を偏向し、無線端末の受信するSCHの電力を変更する。 When the base station has a plurality of antennas, it can deflect the radiation of the radio wave output from each antenna by controlling the power of each antenna. Therefore, the SCH power control unit 70 controls the SCH power output from the antennas 20 and 69 to deflect the SCH radio wave radiation and change the SCH power received by the wireless terminal.
 SCH電力制御部70は、図1で説明したSCH電力制御部16と同様の機能を有している。ただし、SCH電力制御部70は、送信フォーマット情報FIに基づいて、乗算器17,66のそれぞれに出力する係数を変更する。すなわち、SCH電力制御部70は、アンテナ20,69のそれぞれから出力されるSCHの電力を変更する。 The SCH power control unit 70 has the same function as the SCH power control unit 16 described in FIG. However, the SCH power control unit 70 changes the coefficient output to each of the multipliers 17 and 66 based on the transmission format information FI. That is, the SCH power control unit 70 changes the SCH power output from each of the antennas 20 and 69.
 例えば、SCH電力制御部70は、送信フォーマット情報FIに基づいて、送信ビット列B1の伝送レートを算出する。SCH電力制御部70は、算出した送信ビット列B1の伝送レートが、例えば、高伝送レートである場合、乗算器17,66に出力する係数を変更し、アンテナ20,69から出力されるSCHの電波放射を偏向させる。そして、SCH電力制御部70は、送信ビット列B1を受信する無線端末の受信するSCHの電力が小さくなるようにする。すなわち、SCH電力制御部70は、アンテナ20,69に対応するSCHに重み付けを付加し、アンテナ20,69から出力されるSCHの電波放射を偏向させ、無線端末の受信するSCHの電力が小さくなるようにする。 For example, the SCH power control unit 70 calculates the transmission rate of the transmission bit string B1 based on the transmission format information FI. The SCH power control unit 70 changes the coefficient output to the multipliers 17 and 66 when the calculated transmission rate of the transmission bit string B1 is, for example, a high transmission rate, and the SCH radio wave output from the antennas 20 and 69. Deflects radiation. Then, the SCH power control unit 70 reduces the power of the SCH received by the wireless terminal that receives the transmission bit string B1. That is, the SCH power control unit 70 adds weights to the SCHs corresponding to the antennas 20 and 69, deflects the SCH radio wave radiation output from the antennas 20 and 69, and reduces the SCH power received by the wireless terminal. Like that.
 SCH電力制御部70の出力する係数は、例えば、複素数である。SCH電力制御部70は、複素数の係数によって、SCHの振幅および位相を変化させ、SCHの電波放射を偏向させる。 The coefficient output from the SCH power control unit 70 is, for example, a complex number. The SCH power control unit 70 changes the amplitude and phase of the SCH by the complex coefficient, and deflects the radio wave radiation of the SCH.
 図9は、SCHの電波放射を説明する図である。図9の(A)は、送信ビット列B1の伝送レートが低伝送レートの場合のSCHの電波放射を示している。図9の(B)は、送信ビット列B1の伝送レートが高伝送レートの場合のSCHの電波放射を示している。図9の(A),(B)に示す放射E11~E13は、SCHの電波放射を示している。図9の(A),(B)には、図8で示したアンテナ20,69が示してある。 FIG. 9 is a diagram for explaining SCH radio wave radiation. FIG. 9A shows SCH radio emission when the transmission rate of the transmission bit string B1 is a low transmission rate. FIG. 9B shows SCH radio emission when the transmission rate of the transmission bit string B1 is a high transmission rate. Radiations E11 to E13 shown in FIGS. 9A and 9B indicate SCH radio wave radiation. 9A and 9B show the antennas 20 and 69 shown in FIG.
 ここで、一例として自動販売機などに内蔵されている無線端末は、予めその位置が分かる。以下では、送信ビット列B1を受信する無線端末を自動販売機とする。図9の(A),(B)に示すバツ印は、送信ビット列B1を受信する自動販売機の位置を示している。 Here, as an example, the position of a wireless terminal built in a vending machine can be known in advance. Hereinafter, the wireless terminal that receives the transmission bit string B1 is referred to as a vending machine. The crosses shown in FIGS. 9A and 9B indicate the position of the vending machine that receives the transmission bit string B1.
 SCH電力制御部70は、自動販売機に送信する送信ビット列B1の伝送レートが低伝送レートの場合、SCHの電力を下げない。この場合、SCH電力制御部70は、図9の(A)に示すように、SCHの電波が全方向に放射されるよう、係数を乗算器17,66に出力する。 The SCH power control unit 70 does not lower the SCH power when the transmission rate of the transmission bit string B1 transmitted to the vending machine is a low transmission rate. In this case, the SCH power control unit 70 outputs the coefficients to the multipliers 17 and 66 so that the SCH radio waves are radiated in all directions, as shown in FIG.
 例えば、アンテナ20,69の一方のみから電波を出力するようにすると、その電波は、全方向に放射される。従って、SCH電力制御部70は、例えば、乗算器17,66の一方に出力する係数をゼロにすることにより、SCHの電波の放射を、図9の(A)の放射E11に示すようにすることができる。 For example, if a radio wave is output from only one of the antennas 20 and 69, the radio wave is radiated in all directions. Therefore, for example, the SCH power control unit 70 sets the coefficient output to one of the multipliers 17 and 66 to zero so that the SCH radio wave radiation is indicated by the radiation E11 in FIG. 9A. be able to.
 SCH電力制御部70は、自動販売機に送信する送信ビット列B1の伝送レートが高伝送レートの場合、SCHの電力を下げる。この場合、SCH電力制御部70は、図9の(B)の放射E12,E13に示すように、SCHの電波が偏向して放射されるよう、係数を乗算器17,66に出力する。すなわち、SCH電力制御部70は、自動販売機の存在している位置でのSCHの電力が小さくなるようにSCHの電波放射を偏向させ、自動販売機の受信するSCHの電力を小さくする。これにより、自動販売機は、ユーザチャネルのSCHによる干渉が抑制される。 The SCH power control unit 70 reduces the SCH power when the transmission rate of the transmission bit string B1 transmitted to the vending machine is a high transmission rate. In this case, the SCH power control unit 70 outputs the coefficients to the multipliers 17 and 66 so that the SCH radio wave is deflected and radiated as indicated by the radiation E12 and E13 in FIG. That is, the SCH power control unit 70 deflects the SCH radio wave radiation so that the power of the SCH at the position where the vending machine is present is reduced, thereby reducing the power of the SCH received by the vending machine. Thereby, the vending machine suppresses the interference by the SCH of the user channel.
 このように、基地局は、SCHの電波放射が偏向するように、複数のアンテナ20,69に出力するSCHに重み付けを付加するようにした。これにより、基地局は、ユーザチャネルの劣化を抑制するとともに、無線端末のSCHのキャンセル処理を不要にすることができる。 Thus, the base station adds weights to the SCHs output to the plurality of antennas 20 and 69 so that the SCH radio wave radiation is deflected. Thereby, the base station can suppress the degradation of the user channel and can eliminate the SCH cancellation process of the wireless terminal.
 [第6の実施の形態]
 次に、第6の実施の形態を、図面を参照して詳細に説明する。第6の実施の形態では、基地局がユーザチャネルをプリコーディングして送信する場合について説明する。
[Sixth Embodiment]
Next, a sixth embodiment will be described in detail with reference to the drawings. In the sixth embodiment, a case will be described in which a base station precodes and transmits a user channel.
 図10は、第6の実施の形態に係る基地局のブロック図である。図10において、図1と同じものには同じ符号を付し、その説明を省略する。図10では、基地局は、プリコーディング部81,84、誤り訂正符号部82、変調部83、拡散変調部85、加算部86,88、乗算器87,92、無線部89、アンテナ90、およびSCH電力制御部91を有している。 FIG. 10 is a block diagram of a base station according to the sixth embodiment. 10, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 10, the base station includes precoding units 81 and 84, error correction code unit 82, modulation unit 83, spread modulation unit 85, addition units 86 and 88, multipliers 87 and 92, radio unit 89, antenna 90, and An SCH power control unit 91 is included.
 誤り訂正符号部82には、誤り訂正符号部11aに入力される送信ビット列B1が入力される。また、誤り訂正符号部82には、送信フォーマット情報FIが入力される。変調部83、拡散変調部85、加算部86,88、乗算器87、無線部89、およびアンテナ90は、変調部12a、拡散変調部13a、加算部14,18、乗算器15、無線部19、およびアンテナ20と同様であり、その説明を省略する。 The transmission bit string B1 input to the error correction code unit 11a is input to the error correction code unit 82. Further, the transmission format information FI is input to the error correction code unit 82. The modulation unit 83, the spread modulation unit 85, the addition units 86 and 88, the multiplier 87, the radio unit 89, and the antenna 90 are the modulation unit 12a, the spread modulation unit 13a, the addition units 14 and 18, the multiplier 15, and the radio unit 19. , And the antenna 20, and the description thereof is omitted.
 プリコーディング部81,84には、送信フォーマット情報FIが入力される。送信フォーマット情報FIには、プリコーディング係数が含まれている。プリコーディング部81,84は、変調部12a,83から出力される信号に、送信フォーマット情報FIに含まれるプリコーディング係数を乗算してプリコーディングする。 The transmission format information FI is input to the precoding units 81 and 84. The transmission format information FI includes a precoding coefficient. The precoding units 81 and 84 precode the signals output from the modulation units 12a and 83 by multiplying the signals by the precoding coefficient included in the transmission format information FI.
 プリコーディング係数を算出するための情報は、無線端末から送信される。例えば、図10に図示しない係数算出部は、無線端末から受信した情報に基づき、無線端末の受信するユーザチャネルの受信電力が大きくなるように、プリコーディング係数を算出する。そして、係数算出部は、算出したプリコーディング係数を、送信フォーマット情報FIに含める。 The information for calculating the precoding coefficient is transmitted from the wireless terminal. For example, the coefficient calculation unit (not shown in FIG. 10) calculates the precoding coefficient based on the information received from the wireless terminal so that the received power of the user channel received by the wireless terminal is increased. Then, the coefficient calculation unit includes the calculated precoding coefficient in the transmission format information FI.
 すなわち、係数算出部は、無線端末からのフィードバック情報に基づき、複数のアンテナ20,90で送信するユーザチャネルの重み付け(プリコーディング係数)を算出し、送信フォーマット情報FIに含める。プリコーディング部81は、複数のアンテナ20,90で送信するユーザチャネルに、送信フォーマット情報FIに含まれる重み付けを付加し、アンテナ20,90から出力されるユーザチャネルの電波放射を偏向する。つまり、プリコーディング部81,84は、アンテナ20,90の電波放射を偏向させ、無線端末のユーザチャネルの受信電力が大きくなるようにする。なお、図10では、送信ビット列B1についてプリコーディングしているが、送信ビット列B2についてもプリコーディングしてもよい。 That is, the coefficient calculation unit calculates the weight (precoding coefficient) of the user channel transmitted by the plurality of antennas 20 and 90 based on feedback information from the wireless terminal, and includes it in the transmission format information FI. The precoding unit 81 adds weights included in the transmission format information FI to user channels transmitted by the plurality of antennas 20 and 90, and deflects radio wave radiation of the user channels output from the antennas 20 and 90. That is, the precoding units 81 and 84 deflect the radio wave radiation of the antennas 20 and 90 so that the reception power of the user channel of the wireless terminal is increased. In FIG. 10, the transmission bit string B1 is precoded, but the transmission bit string B2 may also be precoded.
 SCH電力制御部91は、図1で説明したSCH電力制御部16と同様の機能を有している。ただし、SCH電力制御部91は、送信フォーマット情報FIに含まれるプリコーディング係数にも基づいて、乗算器17,92のそれぞれに出力する係数を変更する。すなわち、SCH電力制御部91は、アンテナ20,90のそれぞれから出力されるSCHの電力を変更する。 The SCH power control unit 91 has the same function as the SCH power control unit 16 described in FIG. However, the SCH power control unit 91 changes the coefficient output to each of the multipliers 17 and 92 based on the precoding coefficient included in the transmission format information FI. That is, the SCH power control unit 91 changes the SCH power output from each of the antennas 20 and 90.
 例えば、SCH電力制御部91は、送信フォーマット情報FIに含まれる符号化率、変調方式、および拡散率に基づいて、送信ビット列B1の伝送レートを算出する。SCH電力制御部91は、算出した送信ビット列B1の伝送レートが、例えば、高伝送レートである場合、送信フォーマット情報FIに含まれるプリコーディング係数に基づいて、乗算器17,92に出力する係数を変更し、アンテナ20,90から出力されるSCHの電波放射を変更させる。例えば、SCH電力制御部91は、プリコーディングの電波放射と直交する電波放射をするための係数を算出し、乗算器17,92に出力する。すなわち、SCH電力制御部91は、アンテナ20,90から出力されるSCHに重み付けを付加し、アンテナ20,90から出力されるSCHの電波放射がユーザチャネルの電波放射と直交するように偏向させ、無線端末の受信するSCHの電力が小さくなるようにする。 For example, the SCH power control unit 91 calculates the transmission rate of the transmission bit string B1 based on the coding rate, modulation scheme, and spreading factor included in the transmission format information FI. The SCH power control unit 91 calculates a coefficient to be output to the multipliers 17 and 92 based on the precoding coefficient included in the transmission format information FI when the calculated transmission rate of the transmission bit string B1 is, for example, a high transmission rate. The SCH radio wave radiation output from the antennas 20 and 90 is changed. For example, the SCH power control unit 91 calculates a coefficient for radio wave radiation orthogonal to precoding radio wave radiation, and outputs the coefficient to the multipliers 17 and 92. That is, the SCH power control unit 91 adds weighting to the SCH output from the antennas 20 and 90, and deflects the radio wave radiation of the SCH output from the antennas 20 and 90 to be orthogonal to the radio wave radiation of the user channel. The power of the SCH received by the wireless terminal is reduced.
 SCH電力制御部91の出力する係数は、例えば、複素数である。SCH電力制御部91は、複素数の係数によって、SCHの振幅および位相を変化させ、SCHの電波放射を偏向させる。 The coefficient output from the SCH power control unit 91 is, for example, a complex number. The SCH power control unit 91 changes the amplitude and phase of the SCH according to the complex coefficient, and deflects the radio wave radiation of the SCH.
 図11は、SCHの電波放射を説明する図である。図11に示す実線の放射E21は、ユーザチャネルの電波放射を示している。点線の放射E22は、SCHの電波放射を示している。図11に示すバツ印は、送信ビット列B1を受信する無線端末の位置を示している。 FIG. 11 is a diagram for explaining SCH radio wave radiation. A solid line radiation E21 shown in FIG. 11 indicates radio wave radiation of the user channel. A dotted line radiation E22 indicates SCH radio wave radiation. The crosses shown in FIG. 11 indicate the position of the wireless terminal that receives the transmission bit string B1.
 無線端末の受信するユーザチャネルの電波放射は、プリコーディングによって、その電力が大きくなるように形成される。例えば、無線端末の受信するユーザチャネルの電波放射は、放射E21に示すようになる。 The radio wave radiation of the user channel received by the wireless terminal is formed so as to increase its power by precoding. For example, radio wave radiation of the user channel received by the wireless terminal is as indicated by radiation E21.
 SCH電力制御部91は、送信ビット列B1の伝送レートが高伝送レートの場合、SCHの電力が小さくなるように制御する。SCH電力制御部91は、プリコーディング係数と直交する係数を算出し、乗算器17,92に出力することにより、SCHの電波放射を放射E22に示すように制御することができる。すなわち、SCH電力制御部91は、ユーザチャネルのプリコーディング係数に基づいて、SCHの電波放射を偏向し、無線端末が存在している位置でのSCHの電力が小さくなるようにする。 The SCH power control unit 91 controls the SCH power to be small when the transmission rate of the transmission bit string B1 is a high transmission rate. The SCH power control unit 91 can control the radiation of the SCH as indicated by the radiation E22 by calculating a coefficient orthogonal to the precoding coefficient and outputting the coefficient to the multipliers 17 and 92. That is, the SCH power control unit 91 deflects the SCH radio wave radiation based on the precoding coefficient of the user channel so that the SCH power at the position where the wireless terminal exists is reduced.
 上記したように、プリコーディング係数を算出するための情報は、無線端末からフィードバックされる。従って、プリコーディング部81,84は、無線端末が移動しても、移動端末が存在している位置のユーザチャネルの電力を大きくなるように制御することができる。そして、SCH電力制御部91は、フィードバックされるプリコーディング係数に基づいて、SCHの電波放射を偏向させるので、移動端末が移動しても、移動端末が存在している位置のSCHの電力を小さくなるように制御することができる。これにより、無線端末は、移動しても、ユーザチャネルのSCHによる干渉が抑制される。 As described above, information for calculating the precoding coefficient is fed back from the wireless terminal. Accordingly, the precoding units 81 and 84 can control the power of the user channel at the position where the mobile terminal exists even if the wireless terminal moves. Since the SCH power control unit 91 deflects the SCH radio wave radiation based on the feedback precoding coefficient, the SCH power control unit 91 reduces the SCH power at the position where the mobile terminal exists even if the mobile terminal moves. Can be controlled. Thereby, even if the wireless terminal moves, interference due to the SCH of the user channel is suppressed.
 このように、基地局は、ユーザチャネルの電波放射に対し、SCHの電波放射が直交するように、複数のアンテナ20,69に出力するSCHに重み付けを付加するようにした。これにより、基地局は、無線端末が移動しても、ユーザチャネルの劣化を抑制するとともに、無線端末のSCHのキャンセル処理を不要にすることができる。 As described above, the base station adds weights to the SCHs output to the plurality of antennas 20 and 69 so that the radio wave radiation of the SCH is orthogonal to the radio wave radiation of the user channel. Thereby, even if a radio terminal moves, the base station can suppress degradation of the user channel and can eliminate the SCH cancellation process of the radio terminal.
 [第7の実施の形態]
 次に、第7の実施の形態を、図面を参照して詳細に説明する。第7の実施の形態では、無線端末がSCHをキャンセルするSCHキャンセラを備えているか否かによって、SCHの電力制御を行う場合について説明する。
[Seventh Embodiment]
Next, a seventh embodiment will be described in detail with reference to the drawings. In the seventh embodiment, a case will be described in which SCH power control is performed depending on whether a wireless terminal includes an SCH canceller that cancels SCH.
 図12は、第7の実施の形態に係る基地局のブロック図である。図12において、図1と同じものには同じ符号を付し、その説明を省略する。図12では、基地局は、上り信号受信部101、種別情報生成部102、およびSCH電力制御部103を有している。 FIG. 12 is a block diagram of a base station according to the seventh embodiment. 12, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 12, the base station includes an uplink signal reception unit 101, a type information generation unit 102, and an SCH power control unit 103.
 上り信号受信部101は、無線端末から上り信号を受信する。種別情報生成部102は、上り信号受信部101によって受信された上り信号に基づいて、上り信号を送信した無線端末がSCHキャンセラを有しているか否かを示す種別情報を生成する。 The uplink signal receiving unit 101 receives an uplink signal from a wireless terminal. Based on the uplink signal received by the uplink signal receiving unit 101, the type information generating unit 102 generates type information indicating whether the wireless terminal that has transmitted the uplink signal has an SCH canceller.
 例えば、SCHキャンセラを有していない無線端末は、基地局との通信リンクの確立後、SCHキャンセラを有していない旨の情報を基地局に送信する。種別情報生成部102は、上り信号受信部101によって受信された、SCHキャンセラを有していない旨の情報(上り信号)によって、SCHキャンセラを有していない旨の種別情報を生成する。 For example, after establishing a communication link with a base station, a wireless terminal that does not have an SCH canceller transmits information to the base station that it does not have an SCH canceller. The type information generation unit 102 generates type information indicating that the SCH canceller is not included, based on the information (uplink signal) received by the uplink signal receiving unit 101 indicating that the SCH canceller is not included.
 SCH電力制御部103は、図1で説明したSCH電力制御部16と同様の機能を有している。ただし、SCH電力制御部103は、種別情報生成部102から出力される種別情報に基づいて、乗算器17にSCHの電力を制御する係数を出力する。 The SCH power control unit 103 has the same function as the SCH power control unit 16 described in FIG. However, the SCH power control unit 103 outputs a coefficient for controlling the SCH power to the multiplier 17 based on the type information output from the type information generation unit 102.
 例えば、送信ビット列B1を受信する無線端末は、SCHキャンセラを有していないとする。この場合、種別情報生成部102から出力される種別情報は、SCHキャンセラを有していない旨を示し、SCH電力制御部103は、SCHの電力を制御する係数を乗算器17に出力する。一方、送信ビット列B1を受信する無線端末は、SCHキャンセラを有しているとする。この場合、SCH電力制御部103は、SCHの電力を制御する係数を乗算器17に出力しない。 For example, it is assumed that the wireless terminal that receives the transmission bit string B1 does not have an SCH canceller. In this case, the type information output from the type information generation unit 102 indicates that no SCH canceller is provided, and the SCH power control unit 103 outputs a coefficient for controlling the power of the SCH to the multiplier 17. On the other hand, it is assumed that the wireless terminal that receives the transmission bit string B1 has an SCH canceller. In this case, the SCH power control unit 103 does not output a coefficient for controlling the SCH power to the multiplier 17.
 このように、基地局は、SCHキャンセラを有していない無線端末に対して、SCHの電力を制御し、SCHをキャンセルしてユーザチャネルを抽出する無線端末に対しては、同期チャネルの電力を変化しないようにした。これにより、基地局は、無線端末のSCHの電力変化によるセルサーチの影響を抑制することができる。 In this way, the base station controls the power of the SCH for the wireless terminal that does not have the SCH canceller, and the power of the synchronization channel for the wireless terminal that cancels the SCH and extracts the user channel. I tried not to change. Thereby, the base station can suppress the influence of the cell search due to the SCH power change of the wireless terminal.
 [第8の実施の形態]
 次に、第8の実施の形態を、図面を参照して詳細に説明する。W-CDMAでは、基地局はSCHとして、スロットタイミングの同期をとるためのP-SCH(Primary SCH)と、フレームタイミングの同期をとるためのS-SCH(Secondary SCH)とを無線端末に送信している。第8の実施の形態では、SCHのP-SCHを電力制御する場合について説明する。
[Eighth Embodiment]
Next, an eighth embodiment will be described in detail with reference to the drawings. In W-CDMA, the base station transmits P-SCH (Primary SCH) for synchronizing slot timing and S-SCH (Secondary SCH) for synchronizing frame timing to the radio terminal as SCH. ing. In the eighth embodiment, a case will be described in which power control is performed on the SCH P-SCH.
 図13は、第8の実施の形態に係る基地局のブロック図である。図13において、図1と同じものには同じ符号を付し、その説明を省略する。
 図13の基地局では、乗算器17には、P-SCH信号が入力されている。また、加算部18には、S-SCH信号が入力されている。従って、図13の基地局では、P-SCHは、SCH電力制御部16によって電力制御がされ、S-SCHは電力制御されない。P-SCHとS-SCHは、加算部18によって合成され、無線部19によって無線端末に無線送信される。
FIG. 13 is a block diagram of a base station according to the eighth embodiment. In FIG. 13, the same components as those in FIG.
In the base station of FIG. 13, a multiplier 17 receives a P-SCH signal. Further, the S-SCH signal is input to the adding unit 18. Therefore, in the base station of FIG. 13, the P-SCH is power controlled by the SCH power control unit 16, and the S-SCH is not power controlled. The P-SCH and S-SCH are combined by the adding unit 18 and wirelessly transmitted to the wireless terminal by the wireless unit 19.
 P-SCHは、各スロットで同じ符号を送信している。一方、S-SCHは、スロットごとに異なる符号を送信し、1フレーム分の符号パターンにより情報を送信している。従って、P-SCHは、その平均電力が符号パターンの検出性能に影響を与え、S-SCHは、その平均電力が一定でも、各スロットでの電力が符号パターンの検出性能に影響を与える。そこで、SCH電力制御部16は、P-SCHの電力を制御し、S-SCHの電力を制御しないようにする。すなわち、SCH電力制御部16は、複数種類のSCHの一部の電力を制御する。 P-SCH transmits the same code in each slot. On the other hand, the S-SCH transmits a different code for each slot and transmits information using a code pattern for one frame. Therefore, the average power of the P-SCH affects the detection performance of the code pattern, and the power of each slot of the S-SCH affects the detection performance of the code pattern even if the average power is constant. Therefore, the SCH power control unit 16 controls the power of the P-SCH and does not control the power of the S-SCH. That is, the SCH power control unit 16 controls part of the power of the plurality of types of SCHs.
 このように、基地局は、複数種類のSCHの一部の電力を制御するようにした。これにより、基地局は、一部のSCHの電力変化によるセルサーチの影響を抑制でき、また、他のSCHの干渉によるユーザチャネルの劣化を抑制することができる。 In this way, the base station controls part of the power of multiple types of SCH. Thereby, the base station can suppress the influence of the cell search due to the power change of some SCHs, and can suppress the degradation of the user channel due to interference of other SCHs.
 なお、上記では、S-SCHの電力を一定にするようにしたが、S-SCHの電力を変化するように制御してもよい。例えば、SCH電力制御部16は、S-SCHのセルサーチの影響がないように、S-SCHの電力をP-SCHの電力変化より小さく変化させる。これにより、基地局は、無線端末のユーザチャネルのP-SCHによる干渉の影響も抑制することが可能になる。 In the above description, the S-SCH power is made constant. However, the S-SCH power may be controlled to change. For example, the SCH power control unit 16 changes the S-SCH power to be smaller than the P-SCH power change so as not to be affected by the S-SCH cell search. As a result, the base station can also suppress the influence of interference due to the P-SCH of the user channel of the wireless terminal.
 [第9の実施の形態]
 次に、第9の実施の形態を、図面を参照して詳細に説明する。上記では、あるユーザの送信フォーマット情報(伝送レート)に着目し、そのユーザのユーザチャネルのSCHによる干渉を抑制するようにした。第9の実施の形態では、複数のユーザのユーザチャネルのSCHによる干渉を抑制する場合について説明する。
[Ninth Embodiment]
Next, a ninth embodiment will be described in detail with reference to the drawings. In the above, paying attention to transmission format information (transmission rate) of a certain user, the interference due to SCH of the user channel of the user is suppressed. 9th Embodiment demonstrates the case where the interference by SCH of the user channel of a some user is suppressed.
 図14は、第9の実施の形態に係る基地局のブロック図である。図14において、図1と同じものには同じ符号を付し、その説明を省略する。
 図14では、例えば、複数のユーザA,B,Cの送信ビット列B1~B3において、伝送レートが可変される。誤り訂正符号部11a、変調部12a、および拡散変調部13aには、送信フォーマット情報FI1が入力される。誤り訂正符号部11b、変調部12b、および拡散変調部13bには、送信フォーマット情報FI2が入力される。誤り訂正符号部11d、変調部12d、および拡散変調部13dには、送信フォーマット情報FI3が入力される。誤り訂正符号部11b,11d、変調部12b,12d、および拡散変調部13b,13dの動作は、図1で説明した誤り訂正符号部11a、変調部12a、および拡散変調部13aと同様であり、その説明を省略する。
FIG. 14 is a block diagram of a base station according to the ninth embodiment. 14, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
In FIG. 14, for example, the transmission rate is varied in the transmission bit strings B1 to B3 of a plurality of users A, B, and C. Transmission format information FI1 is input to the error correction code unit 11a, the modulation unit 12a, and the spread modulation unit 13a. Transmission format information FI2 is input to the error correction code unit 11b, the modulation unit 12b, and the spread modulation unit 13b. Transmission format information FI3 is input to error correction coding unit 11d, modulation unit 12d, and spread modulation unit 13d. The operations of the error correction code units 11b and 11d, the modulation units 12b and 12d, and the spread modulation units 13b and 13d are the same as those of the error correction code unit 11a, the modulation unit 12a, and the spread modulation unit 13a described in FIG. The description is omitted.
 SCH電力制御部111には、送信フォーマット情報FI1~FI3が入力される。SCH電力制御部111は、送信フォーマット情報FIに含まれている符号化率、変調方式、および拡散率に基づいて、SCHの電力を制御する。 The SCH power control unit 111 receives transmission format information FI1 to FI3. The SCH power control unit 111 controls the SCH power based on the coding rate, modulation scheme, and spreading factor included in the transmission format information FI.
 例えば、SCH電力制御部111は、送信フォーマット情報FI1~FI3のそれぞれに含まれている、送信ビット列B1~B3の符号化率、変調方式、および拡散率から、送信ビット列B1~B3のそれぞれの伝送レートを算出する。そして、SCH電力制御部111は、算出した伝送レートを加算し、加算した伝送レートが、例えば、所定の閾値以下であれば、第1の係数を乗算器17に出力する。また、SCH電力制御部111は、加算した伝送レートが所定の閾値より大きければ、第1の係数より小さい第2の係数を乗算器17に出力する。すなわち、SCH電力制御部111は、送信ビット列B1~B3の加算した伝送レートが高い伝送レートに変更された場合、SCHの電力が小さくなるように小さい係数を乗算する。 For example, the SCH power control unit 111 transmits each of the transmission bit sequences B1 to B3 from the coding rate, modulation scheme, and spreading factor of the transmission bit sequences B1 to B3 included in each of the transmission format information FI1 to FI3. Calculate the rate. Then, the SCH power control unit 111 adds the calculated transmission rates, and outputs the first coefficient to the multiplier 17 if the added transmission rate is, for example, a predetermined threshold value or less. Further, if the added transmission rate is larger than a predetermined threshold, SCH power control section 111 outputs a second coefficient smaller than the first coefficient to multiplier 17. That is, when the transmission rate obtained by adding the transmission bit strings B1 to B3 is changed to a high transmission rate, the SCH power control unit 111 multiplies a small coefficient so that the SCH power becomes small.
 このように、基地局は、複数の無線端末のユーザチャネルの送信フォーマット情報FI1~FI3に基づいて、SCHの電力を制御するようにした。これにより、基地局は、複数の無線端末のユーザチャネルの劣化を抑制するとともに、無線端末のSCHのキャンセル処理を不要にすることができる。 As described above, the base station controls the SCH power based on the transmission format information FI1 to FI3 of the user channels of a plurality of wireless terminals. Thereby, the base station can suppress degradation of user channels of a plurality of wireless terminals and can eliminate the need for SCH cancellation processing of the wireless terminals.
 [第10の実施の形態]
 次に、第10の実施の形態を、図面を参照して詳細に説明する。上記では、ユーザチャネルの送信フォーマット情報に基づいて、SCHの電力を制御した。第10の実施の形態では、SCHの電力を一定にし、ユーザチャネルの電力を制御する。
[Tenth embodiment]
Next, a tenth embodiment will be described in detail with reference to the drawings. In the above description, the SCH power is controlled based on the transmission format information of the user channel. In the tenth embodiment, the power of the SCH is made constant and the power of the user channel is controlled.
 図15は、第10の実施の形態に係る基地局のブロック図である。図15において、図1と同じものには同じ符号を付し、その説明を省略する。
 図15の基地局は、図1で説明したSCH電力制御部16を有していない。図15の基地局では、SCH信号が電力制御されずに加算部18に入力されている。
FIG. 15 is a block diagram of a base station according to the tenth embodiment. 15 that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
The base station in FIG. 15 does not have the SCH power control unit 16 described in FIG. In the base station of FIG. 15, the SCH signal is input to the adder 18 without power control.
 図15の基地局では、電力制御部121および乗算器122を有している。電力制御部121は、送信ビット列B1の送信フォーマット情報に基づいて、送信ビット列B1のユーザチャネルの電力を制御する。電力制御部121は、SCHと重なるユーザチャネルの領域において、送信ビット列B1のユーザチャネルの電力を制御する。例えば、電力制御部121は、図2に示す斜線部分と重なる領域のユーザチャネルの電力を制御する。 The base station in FIG. 15 has a power control unit 121 and a multiplier 122. The power control unit 121 controls the power of the user channel of the transmission bit string B1 based on the transmission format information of the transmission bit string B1. The power control unit 121 controls the power of the user channel of the transmission bit string B1 in the user channel region overlapping with the SCH. For example, the power control unit 121 controls the power of the user channel in the region overlapping the shaded portion shown in FIG.
 電力制御部121は、例えば、送信フォーマット情報FIに含まれる符号化率、変調方式、および拡散率から、送信ビット列B1の伝送レートを算出する。そして、電力制御部121は、算出した伝送レートが、例えば、所定の閾値以下であれば、第1の係数を乗算器122に出力し、算出した伝送レートが所定の閾値より大きければ、第1の係数より大きい第2の係数を乗算器122に出力する。すなわち、電力制御部121は、送信ビット列B1の伝送レートが高いレートに変更された場合、ユーザチャネルの電力が大きくなるように大きい係数を乗算器122に出力する。つまり、電力制御部121は、伝送レートに比例する係数を乗算器122に出力する。これにより、ユーザチャネルは、SCHによる干渉の影響が抑制される。 The power control unit 121 calculates the transmission rate of the transmission bit string B1 from, for example, the coding rate, the modulation scheme, and the spreading factor included in the transmission format information FI. Then, the power control unit 121 outputs the first coefficient to the multiplier 122 if the calculated transmission rate is equal to or less than a predetermined threshold, for example, and if the calculated transmission rate is greater than the predetermined threshold, the first The second coefficient larger than the first coefficient is output to the multiplier 122. That is, when the transmission rate of transmission bit string B1 is changed to a high rate, power control unit 121 outputs a large coefficient to multiplier 122 so that the power of the user channel is increased. That is, the power control unit 121 outputs a coefficient proportional to the transmission rate to the multiplier 122. Thereby, the influence of interference by SCH is suppressed in the user channel.
 乗算器122には、電力制御部121から出力される係数が入力される。乗算器122は、拡散変調部13aから出力される信号と係数とを乗算して、加算部14に出力する。すなわち、送信ビット列B1は、電力制御部121から出力される係数によって電力が制御されて、加算部14へ出力される。 A coefficient output from the power control unit 121 is input to the multiplier 122. The multiplier 122 multiplies the signal output from the spread modulation unit 13 a by the coefficient and outputs the result to the addition unit 14. That is, the transmission bit string B <b> 1 is controlled in power by the coefficient output from the power control unit 121 and output to the addition unit 14.
 このように、基地局は、無線端末にユーザデータを送信するユーザチャネルの送信フォーマット情報に基づいて、無線端末に送信する同期チャネルと重なる領域のユーザチャネルの電力を制御するようにした。これにより、基地局は、ユーザチャネルの劣化を抑制するとともに、無線端末のSCHのキャンセル処理を不要にすることができる。 As described above, the base station controls the power of the user channel in the area overlapping with the synchronization channel transmitted to the wireless terminal based on the transmission format information of the user channel transmitting user data to the wireless terminal. Thereby, the base station can suppress the degradation of the user channel and can eliminate the SCH cancellation process of the wireless terminal.
 なお、ユーザチャネルの電力を制御する場合も、上記の第2の実施の形態から第9の実施の形態を適用することができる。
 また、第1の実施の形態から第10の実施の形態を組み合わせることもできる。例えば、第2の実施の形態で説明したSCHの平均電力一定の制御と、第6の実施の形態で説明したプリコーディング送信によるSCHの重み付け制御を組み合わせたり、第1の実施の形態で説明したSCHの電力制御と、第10の実施の形態で説明したユーザチャネルとを組み合わせたりすることもできる。
Note that the second to ninth embodiments can also be applied to control the power of the user channel.
Also, the first embodiment to the tenth embodiment can be combined. For example, the control of constant SCH average power described in the second embodiment and the SCH weighting control by precoding transmission described in the sixth embodiment are combined, or described in the first embodiment. SCH power control and the user channel described in the tenth embodiment may be combined.
 以下、基地局のハードウェア構成について説明する。
 図16は、基地局のハードウェア構成例を示した図である。図16に示すように、基地局は、CPU(Central Processing Unit)131、DSP(Digital Signal Processing)132、メモリ133、無線部134、およびバス135を有している。CPU131には、バス135を介して、DSP132、メモリ133、および無線部134が接続され、装置全体を制御している。
Hereinafter, the hardware configuration of the base station will be described.
FIG. 16 is a diagram illustrating a hardware configuration example of the base station. As illustrated in FIG. 16, the base station includes a CPU (Central Processing Unit) 131, a DSP (Digital Signal Processing) 132, a memory 133, a radio unit 134, and a bus 135. A DSP 132, a memory 133, and a wireless unit 134 are connected to the CPU 131 via a bus 135 to control the entire apparatus.
 メモリ133には、CPU131およびDSP132が実行するOS(Operating System)のプログラムやアプリケーションプログラムが格納される。また、メモリ133には、CPU131およびDSP132による処理に必要な各種データが格納される。 The memory 133 stores an OS (Operating System) program and application programs executed by the CPU 131 and the DSP 132. The memory 133 stores various data necessary for processing by the CPU 131 and the DSP 132.
 無線部134は、無線端末と無線通信を行う。例えば、無線部134は、CPU131およびDSP132によって処理されたデジタル信号をD/A(Digital to Analog)変換し、D/A変換した信号の周波数をアップコンバートして無線端末に送信する。また、無線部134は、例えば、無線端末から受信した信号の周波数をダウンコンバートし、A/D(Analog to Digital)変換する。A/D変換された信号は、CPU131およびDSP132によって所定の処理が施される。 The wireless unit 134 performs wireless communication with a wireless terminal. For example, the wireless unit 134 performs D / A (Digital-to-Analog) conversion on the digital signal processed by the CPU 131 and the DSP 132, up-converts the frequency of the D / A converted signal, and transmits the converted signal to the wireless terminal. Further, the wireless unit 134 down-converts the frequency of the signal received from the wireless terminal, for example, and performs A / D (Analog-to-Digital) conversion. The A / D converted signal is subjected to predetermined processing by the CPU 131 and the DSP 132.
 第1の実施の形態から第10の実施の形態で説明した各部の機能は、例えば、CPU131およびDSP132によって実現することができる。ただし、第1の実施の形態から第10の実施の形態で説明した無線部は、無線部134によって実現される。 The functions of the units described in the first to tenth embodiments can be realized by the CPU 131 and the DSP 132, for example. However, the radio unit described in the first to tenth embodiments is realized by the radio unit 134.
 また、第1の実施の形態から第10の実施の形態で説明した各部の機能は、例えば、専用のハードウェアによって実現することができる。例えば、FPGA(Field Programmable Gate Array)によってその機能を実現することができる。 Also, the functions of the units described in the first to tenth embodiments can be realized by, for example, dedicated hardware. For example, the function can be realized by FPGA (Field Programmable Gate Gate Array).
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。 The above merely shows the principle of the present invention. In addition, many modifications and changes can be made by those skilled in the art, and the present invention is not limited to the precise configuration and application shown and described above, and all corresponding modifications and equivalents may be And the equivalents thereof are considered to be within the scope of the invention.
 11a,11b 誤り訂正符号部
 12a~12c 変調部
 13a~13c 拡散変調部
 14,18 加算部
 15,17 乗算器
 16 SCH電力制御部
 19 無線部
 20 アンテナ
11a, 11b Error correcting code unit 12a-12c Modulating unit 13a-13c Spreading modulation unit 14, 18 Adder unit 15, 17 Multiplier 16 SCH power control unit 19 Radio unit 20 Antenna

Claims (12)

  1.  無線端末と無線通信を行う基地局において、
     前記無線端末にユーザデータを送信するユーザチャネルの送信フォーマット情報に基づいて、前記無線端末が当該基地局と同期をとるための同期チャネルの電力を制御する制御部、
     を有することを特徴とする基地局。
    In a base station that performs wireless communication with a wireless terminal,
    A control unit for controlling power of a synchronization channel for the wireless terminal to synchronize with the base station based on transmission format information of a user channel for transmitting user data to the wireless terminal;
    A base station characterized by comprising:
  2.  前記制御部は、前記同期チャネルの平均電力が一定となるように前記同期チャネルの電力を制御することを特徴とする請求の範囲第1項記載の基地局。 The base station according to claim 1, wherein the control unit controls the power of the synchronization channel so that an average power of the synchronization channel is constant.
  3.  前記同期チャネルを複数の周波数で無線送信する送信部をさらに有し、
     前記制御部は、前記複数の周波数に対応して複数設けられ、
     前記制御部の1つは、他の制御部が前記同期チャネルの電力制御を行っている場合、前記同期チャネルの平均電力が一定となるように前記同期チャネルの電力を制御することを特徴とする請求の範囲第2項記載の基地局。
    A transmitter that wirelessly transmits the synchronization channel at a plurality of frequencies;
    A plurality of the control units are provided corresponding to the plurality of frequencies,
    One of the control units controls the power of the synchronization channel so that an average power of the synchronization channel is constant when another control unit performs power control of the synchronization channel. The base station according to claim 2.
  4.  前記制御部は、前記ユーザチャネルが再送される場合、前記同期チャネルの電力を変化しないことを特徴とする請求の範囲第1項記載の基地局。 The base station according to claim 1, wherein the control unit does not change power of the synchronization channel when the user channel is retransmitted.
  5.  複数のアンテナをさらに有し、
     前記制御部は、前記同期チャネルの電波放射が偏向するように前記複数のアンテナに出力される前記同期チャネルに重み付けを付加することを特徴とする請求の範囲第1項記載の基地局。
    A plurality of antennas;
    The base station according to claim 1, wherein the control unit adds weighting to the synchronization channel output to the plurality of antennas such that radio wave radiation of the synchronization channel is deflected.
  6.  複数のアンテナをさらに有し、
     前記制御部は、前記データチャネルの電波放射に対し、前記同期チャネルの電波放射が直交するように前記同期チャネルに重み付けを付加することを特徴とする請求の範囲第1項記載の基地局。
    A plurality of antennas;
    The base station according to claim 1, wherein the control unit adds weighting to the synchronization channel so that the radio wave radiation of the synchronization channel is orthogonal to the radio wave radiation of the data channel.
  7.  前記制御部は、前記同期チャネルをキャンセルして前記ユーザチャネルを抽出する機能を備える前記無線端末に対しては、前記同期チャネルの電力を変化しないことを特徴とする請求の範囲第1項記載の基地局。 The said control part does not change the electric power of the said synchronization channel with respect to the said radio | wireless terminal provided with the function which cancels the said synchronization channel and extracts the said user channel, The range of Claim 1 characterized by the above-mentioned. base station.
  8.  複数種類の前記同期チャネルを無線送信する送信部をさらに有し、
     前記制御部は、複数種類の前記同期チャネルの一部の電力を制御することを特徴とする請求の範囲第1項記載の基地局。
    A transmitter that wirelessly transmits a plurality of types of the synchronization channels;
    The base station according to claim 1, wherein the control unit controls power of a part of the plurality of types of synchronization channels.
  9.  前記制御部は、複数の前記無線端末の前記ユーザチャネルの送信フォーマット情報に基づいて、前記同期チャネルの電力を制御することを特徴とする請求の範囲第1項記載の基地局。 The base station according to claim 1, wherein the control unit controls power of the synchronization channel based on transmission format information of the user channel of a plurality of the wireless terminals.
  10.  無線端末と無線通信を行う基地局において、
     前記無線端末にユーザデータを送信するユーザチャネルの送信フォーマット情報に基づいて、前記無線端末に送信する同期チャネルと重なる前記ユーザチャネルの電力を制御する制御部、
     を有することを特徴とする基地局。
    In a base station that performs wireless communication with a wireless terminal,
    A control unit for controlling power of the user channel overlapping with a synchronization channel to be transmitted to the wireless terminal based on transmission format information of the user channel for transmitting user data to the wireless terminal;
    A base station characterized by comprising:
  11.  無線端末と無線通信を行う基地局の電力制御方法において、
     前記無線端末にユーザデータを送信するユーザチャネルの送信フォーマット情報に基づいて、前記無線端末が当該基地局と同期をとるための同期チャネルの電力を制御する、
     ことを特徴とする電力制御方法。
    In a power control method of a base station that performs wireless communication with a wireless terminal,
    Based on transmission format information of a user channel that transmits user data to the wireless terminal, the wireless terminal controls the power of a synchronization channel for synchronizing with the base station,
    A power control method characterized by the above.
  12.  無線端末と無線通信を行う基地局の電力制御方法において、
     前記無線端末にユーザデータを送信するユーザチャネルの送信フォーマット情報に基づいて、前記無線端末に送信する同期チャネルと重なる前記ユーザチャネルの電力を制御する、
     ことを特徴とする電力制御方法。
    In a power control method of a base station that performs wireless communication with a wireless terminal,
    Based on transmission format information of a user channel that transmits user data to the wireless terminal, the power of the user channel that overlaps a synchronization channel that is transmitted to the wireless terminal is controlled.
    A power control method characterized by the above.
PCT/JP2011/065155 2011-07-01 2011-07-01 Base station and power control method WO2013005273A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013522612A JP5729470B2 (en) 2011-07-01 2011-07-01 Base station and power control method
PCT/JP2011/065155 WO2013005273A1 (en) 2011-07-01 2011-07-01 Base station and power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065155 WO2013005273A1 (en) 2011-07-01 2011-07-01 Base station and power control method

Publications (1)

Publication Number Publication Date
WO2013005273A1 true WO2013005273A1 (en) 2013-01-10

Family

ID=47436647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065155 WO2013005273A1 (en) 2011-07-01 2011-07-01 Base station and power control method

Country Status (2)

Country Link
JP (1) JP5729470B2 (en)
WO (1) WO2013005273A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218788A (en) * 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Device and method for controlling transmission power during cell searching
WO2004002018A1 (en) * 2002-06-25 2003-12-31 Fujitsu Limited Power control method and device
JP2006345363A (en) * 2005-06-10 2006-12-21 Ntt Docomo Inc Wireless communication device and wireless communication method
JP2007221743A (en) * 2005-06-14 2007-08-30 Ntt Docomo Inc Transmitter, receiver, mobile communication system and synchronization channel transmission method
JP2010130131A (en) * 2008-11-26 2010-06-10 Kyocera Corp Radio communication device and radio communication method
JP2011504062A (en) * 2007-11-16 2011-01-27 クゥアルコム・インコーポレイテッド Time slot reservation by direct communication between interfering base station and interfering base station for dominant interference scenarios in wireless communication networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218788A (en) * 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Device and method for controlling transmission power during cell searching
WO2004002018A1 (en) * 2002-06-25 2003-12-31 Fujitsu Limited Power control method and device
JP2006345363A (en) * 2005-06-10 2006-12-21 Ntt Docomo Inc Wireless communication device and wireless communication method
JP2007221743A (en) * 2005-06-14 2007-08-30 Ntt Docomo Inc Transmitter, receiver, mobile communication system and synchronization channel transmission method
JP2011504062A (en) * 2007-11-16 2011-01-27 クゥアルコム・インコーポレイテッド Time slot reservation by direct communication between interfering base station and interfering base station for dominant interference scenarios in wireless communication networks
JP2010130131A (en) * 2008-11-26 2010-06-10 Kyocera Corp Radio communication device and radio communication method

Also Published As

Publication number Publication date
JP5729470B2 (en) 2015-06-03
JPWO2013005273A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
US6778507B1 (en) Method and apparatus for beamforming in a wireless communication system
US7349504B2 (en) Method and system for mitigating interference in communication system
EP1384330B1 (en) Multipath interference reduction for a cdma system
JP4185127B2 (en) Wireless communication control device and wireless communication control method
JP6397447B2 (en) Method and apparatus for interference coordination transmission and reception in a wireless network
KR20040037217A (en) Transmission power control method and base station device
US9083413B2 (en) Method for reducing interference in a radio network equipment and equipment performing the method
AU2012277420A1 (en) Estimation of frequency offset between a base station and mobile terminal
US7885617B2 (en) Base station, radio line control station, and radio communication method
US20110280163A1 (en) Precoding in Telecommunication Network
JP2011077822A (en) Radio communication apparatus, radio communication system, and radio communication method in radio communication system
CN105917695B (en) Base station, user equipment and method for operating base station for wireless network
US10469223B2 (en) Wireless node, radio node and methods for transmitting and receiving a reference signal
Al Attabi Single Relay Selection in the Cognitive Cooperative Network: Toward Bandwidth Efficiency Improvement
Al-Mishmish et al. Improvement of Underlay Cooperative Cognitive Networks Bandwidth Efficiency under Interference and Power Constraints
JP2005510125A (en) Method for increasing CDMA communication network capacity and communication terminal apparatus
JP5536614B2 (en) Communication apparatus and communication method
JP5729470B2 (en) Base station and power control method
US11284368B2 (en) Wireless communication method, control device, node, and terminal device
US10917861B2 (en) Radio device and radio cell with multiplexed data sequences with unequal power allocation
US7454168B2 (en) Radio communication system, base station apparatus, and downlink transmission directing characteristic method used therefor
US20130279360A1 (en) Mobile communication device and channel quality index estimation method
JP2003101461A (en) Base station device and method for controlling the same
CN109565754A (en) A kind of coding method and device
JP2002280946A (en) Receiver for master station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869029

Country of ref document: EP

Kind code of ref document: A1