WO2013002380A1 - Analysis device - Google Patents

Analysis device Download PDF

Info

Publication number
WO2013002380A1
WO2013002380A1 PCT/JP2012/066723 JP2012066723W WO2013002380A1 WO 2013002380 A1 WO2013002380 A1 WO 2013002380A1 JP 2012066723 W JP2012066723 W JP 2012066723W WO 2013002380 A1 WO2013002380 A1 WO 2013002380A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
sensor
viscosity
flow path
main body
Prior art date
Application number
PCT/JP2012/066723
Other languages
French (fr)
Japanese (ja)
Inventor
勲 下山
潔 松本
裕介 竹井
堅太郎 野田
良介 木戸
神谷 哲
義雄 外山
Original Assignee
国立大学法人東京大学
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社明治 filed Critical 国立大学法人東京大学
Priority to JP2013522982A priority Critical patent/JP6103646B2/en
Priority to CN201280026774.0A priority patent/CN103649716B/en
Publication of WO2013002380A1 publication Critical patent/WO2013002380A1/en
Priority to HK14103651.8A priority patent/HK1190459A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials

Definitions

  • the present invention relates to an analyzer, and is suitable for application to an analyzer that analyzes the viscosity of a fluid such as fluid food.
  • a rotational viscometer called a rheometer is used as a method for measuring the viscosity of fluid food.
  • this rotary viscometer is based on the viscous resistance of the fluid that the bottom surface receives from the fluid when the rotor is rotated after the conical bottom surface of the rotor is immersed in the fluid whose viscosity is to be measured. Can be measured (see, for example, Patent Document 1).
  • the measurement of the viscosity of fluids such as fluid foods is also important when elderly people with reduced swallowing ability cook fluid foods that are easy to swallow. It is desirable to be able to measure the viscosity of a fluid at various locations. In addition, for example, even when comparing the viscosity of multiple types of fluid foods, in addition to using a viscosity analysis method with a rotary viscometer that rotates a rotor, the viscosity of each fluid can be analyzed. Proposals for new analytical methods are also desired.
  • an object of the present invention is to propose an analysis apparatus using a novel analysis technique that has not been conventionally used.
  • claim 1 of the present invention is an analyzer for identifying the viscosity of a fluid, and an elastic layer that is displaced by shear stress from the fluid when the fluid flows on the surface of a flow path.
  • a sensor unit that is covered with the elastic body layer, and that obtains a measurement result that specifies the viscosity of the fluid based on a change state of a movable part that is movable when the elastic body layer is displaced.
  • the sensor unit includes a piezoresistive layer that detects the movable state of the movable unit as a change in resistance value, and the measurement result is obtained from the piezoresistive layer. It is characterized by being.
  • a shear stress calculating means for calculating a shear stress received from the fluid based on the resistance value change rate obtained from the sensor unit.
  • a sensor body covered with the elastic body layer, a pressure sensor for measuring a pressure received from the fluid, and a main body moved in the fluid, and the sensor Viscosity coefficient calculating means for calculating the viscosity coefficient of the fluid from the measurement result obtained from the section and the pressure measurement result obtained from the pressure sensor.
  • the main body is provided with the sensor portion covered with the elastic body layer on a side surface orthogonal to a moving direction in which the main body is moved in the fluid,
  • the pressure sensor is provided on one end surface perpendicular to the moving direction in the fluid.
  • the main body is provided with a plurality of the sensor portions, and each of the sensor portions detects a shear stress from the fluid in three axial directions and specifies the viscosity of the fluid. The measurement result is obtained.
  • a surface flow velocity of the fluid flowing on the surface of the flow path and a fluid height that is a height from the surface of the flow path of the fluid flowing on the flow path surface are acquired, It is characterized by comprising a calculation means for calculating a viscosity coefficient of the fluid from the measurement result from the sensor unit, the surface flow velocity, and the fluid height.
  • an eighth aspect of the present invention includes a rotating substrate that moves the fluid by rotating in a state where the fluid is disposed between the flow path surfaces of the elastic body layer, and the sensor unit includes the sensor unit, A measurement result that specifies the viscosity of the fluid is obtained based on a change state of the movable part that is moved by the displacement of the elastic layer when the rotating substrate is rotated.
  • a tubular main body through which the fluid passes through an internal hollow region, and the wall of the main body is provided with the sensor unit covered with the elastic layer.
  • the sensor unit obtains a measurement result that specifies the viscosity of the fluid based on a change state of the movable unit that is moved when the elastic body layer is displaced when the fluid passes through the hollow region. It is characterized by.
  • FIG. 5 is a side sectional view of a doubly supported beam schematically shown for explaining the relationship between the resistance value change rate ⁇ R / R and the pressure P. It is a graph which shows the shearing stress and pressure when an analyzer is reciprocated in water.
  • Sensor unit 7 Information processing device (calculation means) 50a 1st sensor part (sensor part) 50b Second sensor part (sensor part) 50c 3rd sensor part (sensor part) 95a Cantilever sensor unit (sensor unit) 95b Dual beam sensor unit (sensor unit)
  • reference numeral 1 denotes an analyzer according to the present invention, in which a sensor unit 3 includes a viscosity sensor 4a having a shear force sensor 4 covered with an elastic layer 2, and a surface flow velocity of a fluid whose viscosity is to be specified (described later). ) And fluid height (described later), an amplifier 6 that amplifies an output signal from the sensor unit 3, and an information processing device 7 electrically connected to the imaging device 5 and the amplifier 6 It consists of and.
  • the viscosity sensor 4a includes a flow path forming portion 9 and a base 10, and the flow path forming portion 9 includes the shear force sensor 4.
  • the flow path forming portion 9 is installed on the base 10 so that the flow path surface 2a of the shear force sensor 4 is inclined at an inclination angle ⁇ with respect to the horizontal line, and the fluid is self-weighted on the flow path surface 2a. It is made to flow down.
  • the axis parallel to the flow channel surface 2a of the shear force sensor 4 is taken as the x axis, and the fluid flows in the x direction along the flow channel surface 2a.
  • the flow path forming portion 9 is provided with a rectangular plate portion 12 made of, for example, an acrylic plate, and a wall portion 13a made of, for example, an acrylic plate along the upper end portion and both side portions of the plate portion 12. , 13b, 13c are provided, and a rectangular channel forming region ER1 surrounded by the walls 13a, 13b, 13c is formed on the plate portion 12.
  • the flow path forming unit 9 is provided with a shear force sensor 4 in the flow path forming region ER1.
  • the flow path forming portion 9 has a discharge port 15 formed in the center of a wall portion 13a provided along the upper end portion of the plate portion 12, and fluid is supplied to the discharge port 15 via a tube 16. Means 17 are connected.
  • the flow path forming unit 9 can discharge the fluid from the discharge port 15 onto the flow path surface 2 a of the elastic layer 2 of the shear force sensor 4.
  • the fluid discharged from the discharge port 15 of the wall portion 13a flows down to the elastic body layer 2 along the planar flow channel surface 2a and can pass through the flow channel surface 2a on the sensor unit 3. Has been made.
  • the shear force sensor 4 is formed in the flow path forming region ER1 so as to cover the sensor section 3 described later provided at a predetermined position on the plate section 12 of the flow path forming section 9 and the plate section 12 and the sensor section 3. And an elastic body layer 2.
  • the elastic body layer 2 has flexibility, and the fluid flows on the channel surface 2a exposed to the outside, and the shear stress generated from the fluid at this time (acts in the x direction parallel to the flow velocity surface 2a) It can be elastically deformed in the x direction by force).
  • the elastic body layer 2 is mainly composed of silicon rubber such as PDMS (Polydimethylsiloxane), and a two-component liquid comprising PDMS and a curing agent is mixed at a predetermined mixing ratio (for example, , 20: 1), and is cured while adjusting flexibility, and can be elastically deformed in the x direction by shearing stress from the fluid flowing down the flow path surface 2a.
  • PDMS Polydimethylsiloxane
  • a two-component liquid comprising PDMS and a curing agent is mixed at a predetermined mixing ratio (for example, 20: 1), and is cured while adjusting flexibility, and can be elastically deformed in the x direction by shearing stress from the fluid flowing down the flow path surface 2a.
  • the elastic body layer 2 has a flow path surface 2a on which the fluid FL flows in a flat shape, and the fluid FL flows evenly on the flow path surface 2a. It passes through the surface 2a and flows to the lower end opening of the flow path
  • the elastic body layer 2 moves in the direction of the flow of the fluid FL (x direction) due to the shear stress from the fluid FL generated when the fluid FL flows down along the flow path surface 2a.
  • An angle of the sensor unit 3 is displaced, and a resistance value R of a piezoresistive layer (described later) included in the sensor unit 3 can be changed.
  • R resistance value of a piezoresistive layer included in the sensor unit 3
  • the sensor unit 3 is displaced by the load given by the displacement of the elastic body layer 2, This can be measured as a resistance value change rate ⁇ R / R.
  • is the shear stress applied to the shear force sensor 4 by the fluid FL
  • is the viscosity coefficient (also referred to herein as viscosity), and as shown in FIG.
  • the flow velocity on the surface of the flowing fluid FL (hereinafter referred to as the surface flow velocity) is U, and the height from the flow path surface 2a of the fluid FL extending in the y axis orthogonal to the x axis (hereinafter referred to as the fluid height). ) Is h, the following relationship is established.
  • the analyzer 1 calculates the shear stress ⁇ based on the resistance value change rate ⁇ R / R in the sensor unit 3, and measures the surface flow velocity U of the fluid FL flowing on the flow path surface 2a separately from this, In addition to this, by determining the fluid height h on the flow path surface 2a, the information processing device 7 can calculate the viscosity coefficient ⁇ , and based on this viscosity coefficient ⁇ , how much viscosity the fluid FL has. It is possible to make the user determine whether or not he / she is doing. The calculation of the shear stress ⁇ will be described later in “(1-2) Configuration of sensor unit”.
  • the fluid FL is imaged by the imaging device 5 from the wall 13b side, and the imaging data obtained from the imaging device 5 is analyzed by the information processing device 7 to obtain the surface velocity U and the fluid height h.
  • the imaging device 5 is composed of, for example, a camera, and as shown in FIG. 2, the side surface side (x of the fluid FL) is such that the fluid FL flowing within the measurement distance of the flow path surface 2a falls within the angle of view range.
  • the fluid FL is adjusted so as to be imaged from the z-axis direction side orthogonal to the axis and the y-axis.
  • the information processing device 7 Based on the image data received from the image pickup device 5, the information processing device 7 measures how much time the characteristic points such as bubbles of the fluid FL move within the angle of view, and measures the measurement distance.
  • the surface flow velocity U can be calculated from the result and a preset measurement distance.
  • the imaging device 5 captures an image of the fluid FL flowing on the flow path surface 2a from the wall 13b side, and analyzes the captured data by the information processing device 7, thereby allowing the fluid height h of the fluid FL from the flow path surface 2a Can be measured.
  • any method may be used as a method for calculating the fluid height h.
  • the information processing device 7 may store the fluid height h as a constant in advance.
  • the imaging device 5 may be used to calculate only the fluid velocity U, and may capture the feature point of the fluid FL from the upper surface side (y-axis direction side).
  • the analysis apparatus 1 uses the information processing apparatus 7 based on the equation 1 given above based on the shear stress ⁇ due to the fluid FL, the surface flow velocity U of the fluid FL, and the fluid height h of the fluid FL.
  • the viscosity coefficient ⁇ is calculated from the above, and the user can determine the viscosity of the fluid FL by notifying the user of the viscosity coefficient ⁇ using a display unit or the like.
  • the sensor part 3 of the shear force sensor 4 includes a base part 20 fixed to the plate part 12 of the flow path forming part 9, and the base part 20 is bent in an L shape. One end of the cantilever portion 21 is fixed.
  • the cantilever part 21 is provided at one end and fixed to the base part 20, a pair of hinge parts 21b connected to the base part 21a, and provided at the other end, with the hinge part 21b interposed in the base part 21a.
  • the movable portion 21c is connected to the flat plate-like movable portion 21c, and when the external force is not applied, the movable portion 21c can be held substantially vertically with respect to the plate portion 12 by the bent hinge portion 21b.
  • the cantilever portion 21 has an L-shaped Si upper layer 23 formed of an Si thin film, and a thin film piezoresistive layer 24 is formed on the surface of the Si upper layer 23, and the piezo of the base portion 21a and the movable portion 21c. Au / Ni thin films 25 and 26 are provided on the resistance layer 24.
  • the base portion 20 is provided with an Si lower layer 27, and a base portion 21a of the cantilever portion 21 is provided at a predetermined position of the Si lower layer 27 with an SiO 2 layer 28 interposed therebetween.
  • each hinge part 21b is formed in an elongated rectangular shape, when an external force is applied from the elastic body layer 2,
  • the movable portion 21c receives an external force and can easily tilt around the hinge portion 21b of the bent portion, and the piezoresistive layer 24 of the hinge portion 21b can function as a piezo element.
  • the cantilever part 21 is covered with the Au / Ni thin films 25 and 26 except for the hinge part 21b, so that only deformation of the hinge part 21b can be measured as a resistance value.
  • the cantilever portion 21 when the hinge portion 21b is deformed by an external force, the crystal lattice of the hinge portion 21b is distorted, and the amount of semiconductor carriers and mobility are changed to change the resistance value.
  • a potential difference is applied between the electrodes (Au / Ni thin film 25) at the end points of the hinge part 21b of the bipod structure, and the resistance value change rate ⁇ R / R of the hinge part 21b is measured.
  • the force acting on the cantilever portion 21 can be measured.
  • the cantilever portion 21 is electrically connected to the Au / Ni thin film 25 provided on the base portion 21a, and the resistance value change rate ⁇ R / R at the hinge portion 21b is measured.
  • the wiring 29 is electrically connected to the amplifier 6 using a Wheatstone bridge circuit.
  • the sensor unit 3 is covered with a protective film 30 having a thickness of about 1 [ ⁇ m] made of polyparaxylene (trade name: Parylene) that covers the plate part 12.
  • a protective film 30 having a thickness of about 1 [ ⁇ m] made of polyparaxylene (trade name: Parylene) that covers the plate part 12.
  • an SOI (Silicon On Insulator) substrate 32 is prepared in which an Si upper layer 23, an SiO 2 layer 28, and an Si lower layer 27 are stacked in this order from the surface.
  • the SOI substrate 32 is washed in an HF (hydrogen fluoride) solution, and the natural oxide film formed on the surface of the SOI substrate 32 is removed.
  • HF hydrogen fluoride
  • n-type impurity reagent P-59230 (OCD, Tokyo Ohka) is spin-coated on the surface of the SOI substrate 32, and the SOI substrate 32 is thermally diffused using a thermal oxidation furnace, and impurities are 100 [nm] or less.
  • the piezoresistive layer 24 is formed on the Si upper layer 23 as shown in FIGS. 6A and 6B.
  • an Au / Ni layer is formed on the surface of the piezoresistive layer 24 of the SOI substrate 32 by sputtering, and then patterned into a predetermined shape. Using this Au / Ni layer as a mask, the piezoresistive layer 24 and the Si upper layer 23 are formed.
  • the SOI substrate 32 has the Au / Ni thin film 25 formed in the base forming region 33a to be the base 21a and the piezoelectric in the hinge forming region 33b to be the hinge 21b.
  • the resistance layer 24 is exposed, and the Au / Ni thin film 26 can be formed in the movable part region 33c to be the movable part 21c.
  • the Si lower layer 27 directly under the hinge portion forming region 33b and the movable portion region 33c is etched by DRIE while leaving the base portion forming region 33a, and the SiO 2 layer 28 is removed by HF (hydrofluoric acid) gas.
  • HF hydrofluoric acid
  • a flow path forming portion 9 formed by bonding an acrylic plate with an adhesive is prepared, and as shown in FIG. 9, a plate portion 12 of this flow path forming portion 9 is interposed with an adhesive.
  • a magnetic field (in the direction of arrow B in the figure) is applied in the y-axis direction from below the plate part 12, and the movable part that is a free end having the Au / Ni thin film 26 by the magnetic field. 21c can be displaced in the y-axis direction.
  • the hinge portion 21b is bent and the movable portion 21c is erected, and the surface portion of the movable portion 21c is arranged perpendicular to the x-axis direction.
  • the magnetic field is applied using a neodymium magnet (NE009, 26 Manufacturing Co., Ltd.).
  • a protective film 30 having a thickness of 1 [ ⁇ m] made of parylene is formed on the plate part 12 and the sensor part 3 by the CVD method to protect the movable part 21c from standing. It can be maintained by the membrane 30.
  • the wiring 29 connected to the amplifier 6 is connected to the Au / Ni thin film 25 provided as an electrode on the base 20 of the sensor unit 3.
  • the flow path region ER1 (FIG. 1) surrounded by the walls 13a, 13b, and 13c of the flow path forming section 9 covers the entire sensor section 3, and the elastic surface layer 2 having a flat flow path surface 2a.
  • PDMS Polydimethylsioxane
  • SILPOT184 is used as the elastic material for the elastic layer 2 here.
  • the base material of PDMS and the curing agent are mixed at a weight ratio of 20: 1, for example, to produce an elastic material to be the elastic layer 2.
  • the weight ratio 20 lower Young's modulus than the elastic member in which the weight ratio of the main agent and the curing agent is 10: 1: It is preferable to use 1 elastic member.
  • PDMS which is an elastic material in which the main agent and curing agent are mixed
  • a centrifugal defoaming device (Awatori Rentaro ARE-250, Sinky), defoamed with a desiccator, and then passed through the flow path.
  • it is baked for 40 minutes in an oven maintained at about 70 [° C.], and the elastic layer 2 is formed by curing PDMS as an elastic member, thereby forming a shear force on the flow path forming region ER1 of the flow path forming portion 9.
  • a sensor 4 can be formed.
  • the viscosity sensor 4a can be manufactured by fixing the flow path forming portion 9 to the base 10 in a state where the flow path surface 2a of the elastic body layer 2 is inclined at a predetermined inclination angle ⁇ with respect to the horizontal line.
  • the displacement ⁇ at the tip of the cantilever part 21 generated by the force F is as follows.
  • I is a cross-sectional second moment of the movable part 21c (beam), and is obtained from the following equation.
  • the above equation 2 can be expressed by the relationship between the load F due to the shear stress ⁇ of the fluid FL and the resistance value change rate ⁇ R / R, as in the following equation.
  • the thickness t of the cantilever portion 21 [m], the total length L1 [m], Itacho L 2 [m], the full width b [m], Ashihaba w [m], a Young's modulus E [Pa ], Constants of piezoelectric coefficient ⁇ L and surface area S [m 2 ] are stored in advance in the information processing apparatus, and the resistance value change rate ⁇ R / R measured in sensor unit 3 is processed via amplifier 6 as information processing.
  • the information processing apparatus 7 can calculate the shear stress ⁇ based on each constant related to the cantilever part 21 and the resistance value change rate ⁇ R / R measured by the sensor part 3.
  • the viscosity coefficient (viscosity) ⁇ of the fluid FL can be calculated from the above equation (1).
  • the elastic body layer 2 covers the sensor portion 3 in which the resistance value of the piezoresistive layer 24 changes due to the deformation of the hinge portion 21b.
  • the planar flow channel surface 2a of the elastic layer 2 is provided so as to be inclined at a predetermined inclination angle ⁇ .
  • this shear force sensor 4 a predetermined input voltage is applied in advance to the sensor unit 3, and in this state, the fluid FL flows from above along the flow path surface 2a of the elastic layer 2.
  • the shear force sensor 4 as shown in FIG. 11A, the cantilever portion 21 of the sensor portion 3 standing upright on the plate portion 12 before the fluid FL flows on the flow path surface 2a, and the fluid FL on the flow path surface 2a.
  • the elastic body layer 2 is deformed in the flow direction (X direction) of the fluid FL by the shear stress ⁇ from the fluid FL, and the deformation of the elastic body layer 2 is transmitted to the cantilever portion 21.
  • the upright cantilever portion 21 is tilted in the direction in which the fluid FL flows.
  • the elastic body layer 2 is formed of an elastic member having a low Young's modulus by mixing the main agent of PDMS and a curing agent at a predetermined weight ratio, so that the shear stress ⁇ from the fluid FL is temporarily Even if it is small, it can be reliably deformed in the direction of the applied shear stress ⁇ , and the cantilever portion 21 can be tilted by the shear stress ⁇ from the fluid FL.
  • the change in the resistance value can be measured by the deformation of the hinge part 21b of the sensor part 3.
  • the shear stress ⁇ from the fluid FL can be calculated using Equation 6 described above based on the resistance value change rate ⁇ R / R in the sensor unit 3.
  • this analyzer 1 when comparing a plurality of types of fluids FL, by flowing these fluids FL at the same flow rate, the user can refer to the difference in the shearing stress ⁇ as the measurement result from the sensor unit 3 by referring to the user.
  • the difference in the viscosity of the fluid FL can be compared, and as a result, the viscosity of the fluid FL can be analyzed.
  • the imaging device 5 can image the state of the fluid FL flowing through a predetermined measurement distance by simultaneously imaging the fluid FL flowing on the flow path surface 2a, and at the same time, the fluid It is possible to image how much fluid height h the FL is from the flow path surface 2a.
  • this analyzer 1 the moving distance and moving time of the fluid FL flowing on the flow path surface 2a are identified by analyzing the imaging data from the imaging device 5, and the fluid FL is determined from these moving distance and moving time. It is possible to calculate the surface velocity U when the gas flows on the flow path surface 2a.
  • the fluid FL flowing on the flow channel surface 2a is imaged by the imaging device 5 from the side surface, so that the image data obtained thereby is analyzed by the information processing device 7 and the flow channel surface 2a
  • the fluid height h of the fluid FL flowing through the fluid can be specified.
  • the resistance value change rate ⁇ R / R of the fluid FL obtained from the shear force sensor 4, and the surface velocity U of the fluid FL specified based on the imaging data obtained from the imaging device 5 Based on the fluid height h of the fluid FL, the viscosity coefficient (viscosity) ⁇ of the fluid FL can be calculated based on the above-described Equation 1, and the user can be notified of the viscosity coefficient ⁇ , and the fluid FL The degree of viscosity can be recognized.
  • the shear force sensor 4 is covered with the elastic body layer 2, and the cantilever part 21 is in an unexposed state to the outside, thereby preventing damage caused by direct contact with a substance such as the fluid FL, It is possible to provide a shear force sensor 4 that is not easily broken.
  • the elastic body layer 2 when the fluid FL flows on the flow path surface 2a, the elastic body layer 2 is displaced by the shearing stress from the fluid FL, and the elastic body layer 2 is covered with the elastic body layer 2.
  • the change state of the movable part 21c is changed by providing the sensor part 3 having the movable part 21c that moves by being displaced. Therefore, it is possible to analyze the viscosity of the fluid FL, and thus to propose an analysis apparatus 1 that uses a novel analysis technique that has not existed before.
  • the analyzer 1 including the viscosity sensor 4a manufactured according to the above-mentioned “(1-3) Manufacturing method of shear force sensor and viscosity sensor” was prepared, and various verification tests were performed.
  • the viscosity sensor 4a uses the flow path forming section 9 having a sufficiently large flow path width of 30 [mm] with respect to the chip of the sensor section 3 which is about 2 [mm] square. Further, in the flow path forming part 9, the sensor part 3 is arranged at a position away from the lower end opening to about 40 [mm] which is about 5 times the height of the wall surface.
  • the length of the flow path region ER1 from the wall 13a to the lower end opening is set to 200 [mm] in order to measure a steady flow of the fluid FL.
  • the flow path forming unit 9 was installed on the base 10 inclined at 45 degrees, and the flow path surface 2a was inclined at about 45 degrees.
  • the fluid FL used as a sample is a Newtonian fluid whose shear stress ⁇ can be easily calculated, and a silicone oil (KF-96-100cs, KF-96H-30,000cs, Shin-Etsu Silicone) that can adjust the viscosity.
  • a silicone oil KF-96-100cs, KF-96H-30,000cs, Shin-Etsu Silicone
  • the viscosity coefficient ⁇ was adjusted by mixing two types of silicone oils having different viscosity coefficients.
  • KF-96-100cs has a kinematic viscosity of 100 [cs], a density of 0.965 ⁇ 10 3 [kg / m 3 ], and a viscosity coefficient ⁇ of 9.65 ⁇ 10 ⁇ 2 [Pa ⁇ s].
  • KF-96H-30000cs has a kinematic viscosity of 30000 [cs], a density of 0.976 ⁇ 10 3 [kg / m 3 ], and a viscosity coefficient ⁇ of 29.28 [Pa ⁇ s].
  • the fluid FL whose viscosity is analyzed by the analyzer 1 is adjusted for the viscosity coefficient ⁇ by mixing the two types of silicone oils described above, with the food having a viscosity range of 0.1 to 1.0 [Pa ⁇ s] in mind.
  • Four types of sample fluids having different sample viscosities having viscosity coefficients ⁇ of 0.1 [Pa ⁇ s], 0.5 [Pa ⁇ s], 0.75 [Pa ⁇ s], and 1.0 [Pa ⁇ s] were prepared.
  • the weight ratio (weight ratio KF-96-100cs: KF-96H-30000cs) of the two types of KF-96-100cs and KF- 96H-30000cs used for the preparation of the sample fluid is shown in Table 1 below.
  • the cantilever part 21 when the cantilever part 21 receives a load, the resistance value changes accordingly. However, since the resistance value output from the cantilever part 21 is very small, a Wheatstone bridge circuit is provided for measurement. An amplifier 6 was used.
  • fluid supply means 17 with 12 [ml], an inner diameter of 15 [mm], a cross-sectional area of 177 [mm 2 ] and filled with a sample fluid inside is prepared, and the syringe is fixed to a uniaxial movable stage (not shown) Then, by driving the uniaxial movable stage, the sample fluid in the syringe was discharged from the discharge port 15 (FIG. 1) of the flow path forming unit 9 to the flow path surface 2a. At this time, the discharge amount of the sample fluid per unit time onto the flow path surface 2a was kept constant by driving the uniaxial movable stage at a constant speed.
  • the sample fluid flowing on the flow channel surface 2a was imaged using the camera as the imaging device 5.
  • feature points such as bubbles formed on the surface of the sample fluid flowing on the channel surface 2a were used as an index of the surface flow velocity U of the sample fluid.
  • a line was drawn every 5 [mm] across 20 [mm] across the sensor part 3 across the wall 13b of the flow path forming part 9. The time during which the characteristic point of the sample fluid passes is measured to identify the surface flow velocity U of the sample fluid.
  • the camera used here can divide 1 second into 30 frames, it can measure in units of 1/30 second.
  • the resistance value change rate ⁇ R / R from the sensor unit 3 is stored in the information processing device 7. Then, when all of the sample fluid contained in the syringe of the fluid supply means 17 has been completely flowed, the recording of the captured image by the camera is stopped, and the resistance value change rate ⁇ R / R from these sensor units 3 and the imaging from the camera Image recordings were recorded for each sample fluid.
  • the sensor part 3 of the shear force sensor 4 is very fragile, the flow path surface 2a cannot be wiped directly. Therefore, the sample fluid that flows next on the channel surface 2a was flowed three times on the channel surface 2a, and the channel surface 2a was washed away so that the previous sample fluid did not remain on the channel surface 2a.
  • a from 0 [s] to less than 1.5 [s] is a state before the sample fluid passes over the sensor unit 3 as shown in FIG. 13A.
  • B in s] is when the sample fluid starts to pass over the sensor unit 3 as shown in FIG. 13B.
  • C between 1.5 [s] and less than 3.25 [s] is shown in FIG. Is a state before the sample fluid stably passes over the sensor unit 3
  • D from 3.25 [s] to 5 [s] is sample fluid as shown in FIG. 13D. This is when a constant amount is flowing stably and constantly on the sensor unit 3.
  • the sample fluid in C does not sufficiently spread in the channel width, and the sample fluid moves not only in the flow direction (x direction) but also in the channel width direction perpendicular to the sample fluid flow. It is thought that there is. Therefore, it is considered that the data at stage C is not due to shear stress in the flow direction of pure sample fluid.
  • the sample fluid is in a state as shown in FIG. 13D, the sample fluid is sufficiently spread over the channel width, and the flow is considered to be stable and in a steady state.
  • the fluid height h of each sample fluid on the channel surface 2a was measured, and the viscosity coefficient ⁇ was calculated based on the above equation 1 from the surface flow velocity U, shear stress ⁇ , and fluid height h. Then, as a result of examining the relationship between the calculated viscosity coefficient ⁇ and the sample viscosity ⁇ ′ at the time of adjusting each sample fluid, a result as shown in FIG. 17 was obtained. From the results shown in FIG. 17, it can be confirmed that the calculated viscosity coefficient ⁇ and the sample viscosity ⁇ ′ are compatible, and based on the surface flow velocity U, the shear stress ⁇ , and the fluid height h measured by the analyzer. It was confirmed that the optimum viscosity coefficient ⁇ of the sample fluid could be calculated.
  • reference numeral 35 denotes a stick-type analyzer according to the second embodiment, and the viscosity of the fluid FL can be increased only by moving it in a predetermined direction in the fluid FL. It is configured so that it can be measured, and the size is reduced so that the user can easily carry it.
  • the analyzer 35 includes a main body 36 made of a rod-like member formed in an elongated quadrangular prism shape, and a shear force sensor 37 is provided on one side surface 36a of the four sides of the main body 36, and A pressure sensor 38 is provided on one end surface 36b arranged at right angles to the one side surface 36a.
  • the main body 36 is provided with both a shear force sensor 37 and a pressure sensor 38 in the vicinity of the lower end lower than the center position.
  • the main body 36 can be immersed in the fluid FL at the same time by placing the fluid FL whose viscosity is to be analyzed into the container CA in which the fluid FL is stored up to the vicinity of the center position.
  • Such an analyzer 1 is moved in the front-rear direction (movement direction) x2 in which the one end surface 36b and the other end surface 36c are opposed to each other with the shear force sensor 37 and the pressure sensor 38 disposed in the fluid FL. Accordingly, as shown in FIG. 19 showing the cross-sectional configuration of the AA ′ portion of FIG. 18, the fluid FL hits the one end surface 36b of the main body 36, and the fluid FL flows along the one side surface 36a. Thereby, in the analyzer 1, the shear stress from the fluid FL flowing along the one side surface 36a can be measured by the shear force sensor 37, and the pressure from the fluid FL can be measured by the pressure sensor 38.
  • the main body 36 is also formed with a flat surface on which the one side surface 36a and the other side surface 36d are not uneven, and has a shear force sensor 37 in a recess 36e formed in a part of the one side surface 36a.
  • the flow path surface 2a of the elastic body layer 2 of the force sensor 37 and the one side surface 36a are formed flush with each other.
  • the fluid FL that flows along one side surface and the other side surface of the main body also flows to the flow path surface 2a of the shear force sensor 37 (in FIG. 19, (Indicated by arrow FL1).
  • the shear stress from the fluid FL applied to the shear force sensor 37 can be considered as follows. However, here, it is assumed that the fluid FL has a sufficiently high viscosity like a food and the moving speed of the main body 36 in the front-rear direction x2 is slow (the Reynolds number of the generated flow is sufficiently small, for example, 1 or less). In this case, when the coordinates are set with the axis parallel to the side surface 36a as the x axis and the axis perpendicular to the side surface 36a as the y axis, the shear force sensor 37 is near the flow path surface 2a. In the (boundary layer), a velocity gradient as shown in FIG. 20A is generated. The frictional force applied to the flow path surface 2a of the shear force sensor 37 by the flow of the fluid FL becomes a shear stress expressed by the following equation.
  • ⁇ (x) is a shear stress applied to the flow path surface 2a of the shear force sensor 37
  • u is a flow velocity in the x-axis direction generated on the flow path surface 2a
  • is a viscosity (viscosity coefficient) of the fluid FL.
  • U is the surface flow velocity in the region where the flow velocity outside the boundary layer is constant, and ⁇ is similar regardless of the velocity distribution of the fluid FL flow on the flow path surface 2a regardless of the position on the x-axis. It is a similar variable that represents taking a shape, and ⁇ is the thickness of the boundary layer (the distance from the flow path surface 2a to the position where the velocity distribution becomes constant).
  • the thickness of the boundary layer generated on the flow path surface 2a is a time-varying function as shown below, and is determined by the surface velocity of the steady flow and the position of the shear force sensor 37. be able to.
  • is the density of the liquid.
  • the shear stress ⁇ (x) applied from the fluid FL to the flow path surface 2a of the shear force sensor 37 can be expressed as follows.
  • k is a proportionality constant.
  • the force F in the pressure direction applied to the pressure sensor 38 provided on the one end surface 36b of the main body 36 can be expressed as follows.
  • Q is the flow rate of the fluid FL applied to the pressure sensor 38 per unit time
  • A is the surface area of the pressure sensor 38 (FIG. 20B).
  • K is a proportional constant.
  • the proportional constant K includes two variables, that is, a sensor portion (described later) position x of the shear force sensor 37 and a density ⁇ of the fluid FL. Can be determined uniquely. Density ⁇ is limited to foods, etc., and most viscometric analytes have a density of about 1.0. Can do.
  • the pressure sensor 38 is provided on the one end surface 36b of the main body 36, and the shear force sensor 37 is provided on one side surface 36a of the main body 36.
  • the shear force sensor 37 has the same configuration as the shear force sensor 4 of the first embodiment described above, and the sensor unit 3 is disposed on the plate unit 12.
  • the elastic body layer 2 is provided so as to cover the sensor unit 3.
  • a cantilever portion 21 is disposed so as to stand upright with respect to one side surface 36a of the main body 36, and a surface portion of the movable portion 21c in the cantilever portion 21 is disposed perpendicular to the front-rear direction x2. (FIG. 4).
  • the elastic body layer 2 covering the sensor unit 3 is made of an elastic member similar to that of the first embodiment described above, the flow path surface 2a exposed to the outside is formed in a flat shape, and the flow path plane 2a is the main body 35. Is formed flush with one side surface 36a.
  • the elastic body layer 2 flows the fluid FL along the flow path surface 2a, and when shear stress from the fluid FL is applied to the flow path surface 2a, The sensor unit 3 can be deformed and tilted in the front-rear direction x2.
  • the tilting degree of the cantilever unit 21 changes in accordance with the magnitude of the shear stress from the fluid FL, and the resistance value of the piezoresistive layer 24 can also change in accordance with this.
  • the main body 35 incorporates information processing means (not shown) composed of a CPU or the like, and by this information processing means, based on the resistance value change rate ⁇ R / R from the shear force sensor 37, The shear stress ⁇ from the fluid FL can be calculated from Equation 6 described above. Further, the information processing means receives the pressure P from the fluid FL applied to the pressure sensor 38 from the pressure sensor 38, and calculates the viscosity coefficient ⁇ from the measured shear stress ⁇ and the pressure P based on the above formula 13. It is made to be able to do.
  • the shear force sensor 37 and the pressure sensor 38 are immersed in the fluid FL, and the main body 36 is moved in the front-rear direction x2 in this state, so that the sensor unit 3 of the shear force sensor 37 Is deformed, whereby the resistance value change rate ⁇ R / R can be measured.
  • the information processing means built in the main body 36 calculates the shear stress ⁇ from the fluid FL using Equation 6 described above based on the resistance value change rate ⁇ R / R in the sensor unit 3.
  • the user can analyze the viscosity of the fluid FL.
  • the analyzer 1 is provided with the pressure sensor 38, so that when the main body 36 is moved in the front-rear direction x2 in the fluid FL, the pressure sensor 38 measures the pressure P received from the fluid FL. Can do.
  • the viscosity coefficient of the fluid FL (from the shear stress ⁇ of the fluid FL and the pressure P received from the fluid FL is calculated by the information processing means provided in the main body 36 based on the above-described Expression 13. (Viscosity) ⁇ can be calculated, and thus the user can be notified by displaying the viscosity coefficient ⁇ on the voice notification or the display unit, and can recognize the viscosity of the fluid FL.
  • the pressure sensor 38 described above can be applied to various structures, for example, a third cantilever 51 having a cantilever 51 described in “(3) Third Embodiment” described later.
  • a pressure sensor that includes a sensor unit 50c (described with reference to FIG. 24) and is covered with an elastic layer may be applied.
  • the elastic body layer 2 when the fluid FL flows on the flow path surface 2a, the elastic body layer 2 is displaced by the shearing stress from the fluid FL, and the elastic body layer 2 is covered with the elastic body layer 2.
  • the change state of the movable part 21c is changed by providing the sensor part 3 having the movable part 21c that moves by being displaced. Based on this, it is possible to analyze the viscosity of the fluid FL, and thus it is possible to propose an analysis apparatus 35 that uses a novel analysis technique that has not existed before.
  • the measurement result obtained from the sensor unit 3 is provided by providing the sensor unit 3 covered with the elastic body layer 2a and the pressure sensor 38 for measuring the pressure received from the fluid FL. From the pressure measurement result obtained from the pressure sensor 38, the viscosity coefficient ⁇ of the fluid FL can be calculated, and thus the viscosity of the fluid FL is analyzed based on the viscosity coefficient ⁇ . Can do.
  • reference numeral 41 denotes a portable analyzer according to the third embodiment. This analyzer 41 is different from the analyzer 35 according to the second embodiment in the fluid FL.
  • the direction in which the fluid is stirred is not particularly determined, and the viscosity of the fluid FL can be measured simply by moving the main body 42 in the fluid FL in an arbitrary direction.
  • the analyzer 41 includes a main body 42 formed of a rod-shaped member formed in a columnar shape, and a plurality of shear force sensors 44a, 44b,... Are provided on a peripheral surface 42a near the lower end of the main body 42. ing.
  • the main body 42 is provided with four shear force sensors 44a, 44b, 44c, 44d at equal intervals, and the main body 42 is placed in the fluid FL.
  • the fluid FL flows along the peripheral surface 42a of the main body 42, and the fluid FL also flows on the flow path surface 45a of the shear force sensors 44a, 44b, 44c, 44d.
  • the plurality of shear force sensors 44a, 44b, 44c, and 44d all have the same configuration, the configuration will be described by focusing on one of the shear force sensors 44a.
  • the shear force sensor 44a includes a sensor group 46 and a rectangular parallelepiped elastic body layer 45 that covers the sensor group 46, and includes 3 in the x-axis direction, the y-axis direction, and the z-axis direction orthogonal to each other.
  • the sensor group 46 can measure the shear stress from the fluid FL applied in the axial direction.
  • the sensor group 46 includes a first sensor unit 50a that senses an external force acting in the x-axis direction, a second sensor unit 50b that senses an external force acting in the y-axis direction orthogonal to the x-axis direction, and the x-axis direction and the y-axis direction.
  • a third sensor unit 50c that senses an external force acting in the z-axis direction orthogonal to the base unit 49 is provided on the base unit 49, and the first sensor unit 50a, the second sensor unit 50b, and the third sensor unit 50c are predetermined to each other. It has the structure arrange
  • the first sensor unit 50a and the second sensor unit 50b have the same configuration as the sensor unit 3 according to the first embodiment described above and are fixed to the base unit 49.
  • the surface part of the movable part 21c is arranged perpendicular to the x-axis direction, and the movable part 21c becomes x by shearing stress from the fluid FL applied in the x-axis direction. It can be tilted in the axial direction.
  • the surface part of the movable part 21c is arranged perpendicular to the y-axis direction, and the movable part 21c tilts in the y-axis direction due to the shear stress from the fluid FL applied in the y-axis direction.
  • the third sensor unit 50c is different from the first sensor unit 50a and the second sensor unit 50b in that the planar movable unit 51c is provided substantially flush with the base unit 49.
  • a planar cantilever 51 is provided.
  • the cantilever part 51 is provided with thin plate-like hinge parts 51b at both opposing ends of the movable part 51c, and deformed when shear stress from the fluid FL is applied to the flow path surface 2a from the z-axis direction.
  • the force from the elastic layer 45 is received by the movable portion 51c, and the movable portion 51c can be displaced in the z-axis direction.
  • the degree of displacement of the cantilever 51 changes according to the magnitude of the shear stress applied in the z-axis direction from the fluid FL, and the resistance value of the piezoresistive layer can also change accordingly. Has been made.
  • the first sensor unit 50a, the second sensor unit 50b, and the third sensor unit 50c respectively apply the external force applied from the three axial directions to the corresponding movable units 21c and 51c. Therefore, only the deformation of the hinge portions 21b and 51b can be measured as a resistance value by the piezoresistive layer of the hinge portions 21b and 51b by the displacement of the hinge portions 21b and 51b. That is, the first sensor unit 50a, the second sensor unit 50b, and the third sensor unit 50c give a potential difference between the electrodes at the end points of the hinge units 21b and 51b, and the resistance value change ⁇ R / R of the hinge units 21b and 51b. The force acting on the cantilever parts 21 and 51 (shear stress ⁇ from the fluid FL) can be measured from the measurement result.
  • the analyzer 1 when the main body 42 is immersed in the fluid FL and moved in an arbitrary direction, for example, it faces the flow of the fluid FL (the fluid FL Based on the direction and magnitude of the resultant force calculated from the outputs from the two shear force sensors 44b and 44c (reacting to the flow), the pressure P on the channel surface 45a of the main body 42 and the channel surface 45a It is configured to measure the shear coefficient ⁇ from the fluid FL, derive the same relationship as the above-described Expression 13 based on the magnitude, and measure the viscosity coefficient ⁇ .
  • the shear force sensor 44b When the main body 42 is moved in the fluid FL and the fluid FL flows in the y-axis direction as shown in FIG. 25 where the same reference numerals are given to the same parts as in FIG. 4, for example, the shear force sensor 44b The fluid FL also flows on the flow path surface 45a of the elastic body layer 45, and the elastic body layer 45 of the shear force sensor 44b can be moved and displaced in the flow direction y1 of the fluid FL due to the shear stress received from the fluid FL.
  • the shearing force sensor 44b shown in FIG. 25 can be manufactured according to the shearing force sensor 4 and the manufacturing method described in “(1-3) Manufacturing method of shearing force sensor and viscosity sensor” described above.
  • the sensor group 46 has the cantilever 51 of the third sensor part 50c having the movable part 51c parallel to the flow path surface 2a receiving the external force from the elastic layer 45, so that the movable part 51c is recessed.
  • the resistance value at the bent hinge portion 51b can change.
  • the shear force sensors 44a, 44b, 44c, and 44d are arranged at four locations in consideration of the flow of the fluid FL when the main body 42 is moved in the fluid FL (FIG. 22).
  • the direction and magnitude of the resultant force of the fluid FL that is directly opposed to the flow of the fluid FL (that is, that reacts to the flow of the fluid), for example, based on the outputs obtained from the two shear force sensors 44b and 44c, respectively.
  • the pressure P from the fluid FL and the shear stress ⁇ from the fluid FL can be measured from the direction and magnitude of these resultant forces.
  • the fluid FL is calculated from the above-described relational expression 13 based on the pressure P from the fluid FL obtained from the two shear force sensors 44b and 44c and the shear stress ⁇ from the fluid FL.
  • the viscosity coefficient ⁇ can be measured.
  • the analyzer 41 is provided with a plurality of shear force sensors 44a, 44b, 44c, and 44d on the peripheral surface 42a of the main body 42, and a sensor group 46 capable of measuring shear stress in three axial directions is provided for each shear force.
  • a sensor group 46 capable of measuring shear stress in three axial directions is provided for each shear force.
  • Each of the sensors 44a, 44b, 44c, and 44d is provided.
  • these shear force sensors 44a, 44b, 44c, and 44d are immersed in the fluid FL, and the longitudinal direction of the main body 42 is maintained vertical by the user, for example, as shown in FIG.
  • the analyzer 41 can calculate the viscosity coefficient ⁇ from the above equation 13 based on the shear stress ⁇ and the pressure P of the fluid FL obtained from the sensor group 46.
  • these shear force sensors 44a, 44b, 44c, and 44d are immersed in the fluid FL, and, for example, as shown in FIG. Even if the main body 42 is moved along this angular direction in the state where it is held, among the first sensor unit 50a, the second sensor unit 50b and the third sensor unit 50c shown in FIG. A shear stress ⁇ from the fluid FL is generated by the first sensor unit 50a disposed perpendicular to the x-axis direction and the second sensor unit 50b in which the surface portion of the movable unit 21c is disposed perpendicular to the y-axis direction. Can be measured.
  • the pressure P from the fluid FL can be measured by the third sensor unit 50c in which the surface part of the movable part 51 is arranged perpendicular to the z-axis direction.
  • the analyzer 41 can calculate the viscosity coefficient ⁇ from the above equation 13 based on the shear stress ⁇ and the pressure P of the fluid FL obtained from the sensor group 46.
  • the direction in which the fluid FL is agitated is not particularly determined, and the sensor group 46 simply moves the main body 42 in the fluid FL, and the sensor group 46 causes the shear stress ⁇ and pressure of the fluid FL.
  • P can be measured, and the viscosity coefficient ⁇ of the fluid FL can be calculated from these measurement results, thus notifying the user of the viscosity coefficient ⁇ and recognizing how much viscosity the fluid FL has. it can.
  • FIG. 28 denotes a portable analyzer according to the fourth embodiment, and this analyzer 55 is different from the analyzer 35 according to the second embodiment in the main body 52. Is different in that it is formed in a Y shape and in that two shear force sensors 37 are provided.
  • the main body 52 has a predetermined thickness and bifurcates into a first leg portion 54a and a second leg portion 54b from the lower end portion of the rod-shaped gripping portion 53, and the first leg portion 54a and the first leg portion 54a.
  • the two leg portions 54b are formed so as to become wider as the distance from the lower end portion increases.
  • two shear force sensors 37 are arranged in the vertical direction on the inner surface 52b facing the second leg 54b, and the front surface 52a orthogonal to the inner surface 52b.
  • a pressure sensor 38 is provided.
  • Such an analyzer 55 can be obtained by immersing the shear force sensor 37 and the pressure sensor 38 provided in the main body 52 in the fluid FL and moving the main body 52 in the front-rear direction (movement direction) x2 in this state. It is configured so that the viscosity coefficient ⁇ of FL can be measured.
  • the shear force sensor 37 has the same configuration as that of the first and second embodiments described above, and the sensor unit 3 is disposed on the plate unit 12 (FIG. 4).
  • the elastic body layer 2 is provided so as to cover it.
  • the cantilever part 21 is arranged so as to stand upright with respect to the inner surface 52b of the first leg part 54a, and the surface part of the movable part 21c in the cantilever part 21 is arranged perpendicular to the front-rear direction x2. Has been.
  • the elastic body layer 2 covering the sensor unit 3 has a channel surface 2a exposed to the outside formed in a flat shape, and the channel surface 2a is formed flush with the inner surface 52b of the first leg 54b.
  • the elastic body layer 2 flows the fluid FL along the flow path surface 2a, and is deformed by the shear stress from the fluid FL to transmit an external force to the sensor unit 3.
  • the sensor unit 3 can be tilted in the front-rear direction x2.
  • the tilting degree of the cantilever part 21 changes according to the magnitude of the shear stress from the fluid FL, and the resistance value of the piezoresistive layer can also change according to this.
  • the main body 52 is provided with information processing means (not shown) including a CPU or the like, and the information processing means described above based on the resistance value change rate ⁇ R / R from the sensor unit 3. From Equation 6, the shear stress ⁇ from the fluid FL can be calculated. Further, the information processing means receives the pressure P from the fluid FL applied to the pressure sensor 38 from the pressure sensor 38, and can calculate the viscosity coefficient ⁇ from the measured shear stress ⁇ and the pressure P based on the above equation 13.
  • the analyzer 55 including the Y-shaped main body 52 in which the distance between the first leg portion 54a and the second leg portion 54b gradually increases is described.
  • the present invention is not limited to this, and as shown in FIG. 29, an analyzer 61 including a main body 62 in which the distance between the first leg 63a and the second leg 63b is kept constant may be applied. .
  • the main body 62 has one end portion of the first leg portion 63a and one end portion of the second leg portion 63b connected by a rod-like connecting portion 64, and a rod-like shape extending outwardly in the center of the connecting portion 64.
  • the gripping portion 65 has a configuration in which it stands upright.
  • three shear force sensors 37 are arranged in the longitudinal direction on the inner surface 62b facing the second leg 63b, and the pressure sensor 38 is disposed on the front surface 62a orthogonal to the inner surface 62b. Is provided.
  • the other components have the same configuration as that of the analyzer 55 according to the fourth embodiment described above.
  • the shear stress ⁇ from the fluid FL is calculated from the above equation 6, and the pressure P from the fluid FL applied to the pressure sensor 38 is measured.
  • the viscosity coefficient ⁇ can be calculated on the basis of Equation 13 described above.
  • reference numeral 70 denotes a rotary analyzer according to the fifth embodiment, and a shear force sensor 37 having the same configuration as that of the second embodiment is a substrate. 72 is provided.
  • the analysis device 70 has a configuration in which a rotating substrate 73 is installed so as to face an upright sensor portion (not shown) covered with the elastic layer 2 in the shear force sensor 37.
  • the rotating substrate 73 is formed in a disc shape, and the planar opposed surface portion can be arranged substantially parallel to the planar flow path surface 2a of the elastic body layer 2, and the flow path surface of the elastic body layer 2 It may be arranged so that a predetermined gap can be formed between 2a.
  • the rotating substrate 73 is maintained in a state where the facing surface portion is substantially parallel to the flow channel surface 2a of the shear force sensor 37, and the rotation substrate z is centered on the rotation axis z3, for example, either clockwise or counterclockwise. It can rotate in one direction at a constant shear rate.
  • the counter surface portion is kept substantially parallel at a constant shear rate clockwise around the rotation axis z3. After the rotation, it may be reversed counterclockwise and rotated at a constant shear speed, and these clockwise and counterclockwise rotations may be repeated at a constant cycle.
  • the rotating substrate 73 can move along the direction of the rotation axis z3 and has a configuration capable of adjusting a gap between the shearing force sensor 37 and the flow path surface 2a.
  • the fluid FL having a predetermined viscosity is disposed between the flow channel surface 2a and the facing surface portion. Then, the fluid FL is sandwiched between the flow path surface 2a of the shear force sensor 37 and the facing surface portion by moving the rotating substrate 73 closer to the fluid FL side.
  • a sensor unit 3 (not shown in FIG. 30) having the same configuration as that of the first embodiment described above is fixed to the plate unit 12 and covers the sensor unit 3.
  • the elastic body layer 2 is formed, and the cantilever portion 21 of the sensor section 3 is tilted and the resistance value of the sensor section 3 is changed according to the deformation of the elastic body layer 2 as in the first embodiment. Has been made to get.
  • the shear force sensor 37 is disposed on the substrate 72 so as to avoid the rotation axis z3 of the rotating substrate 73, and the sensor unit 3 is provided at a position facing the facing surface portion of the rotating substrate 73.
  • the surface part of the movable part of the sensor part 3 is arranged perpendicular to the rotational direction x4 of the rotary substrate 73.
  • the shear force sensor 37 rotates the rotating substrate 73 at a predetermined shear speed while the fluid FL is closely disposed between the rotating substrate 73 and the elastic body layer 2, thereby rotating the fluid FL in the rotation direction. It can be moved to x4. At this time, the sensor unit 3 receives the shear stress from the fluid FL moving in the rotation direction x4 from the elastic body layer 2, and the cantilever unit 21 tilts toward the rotation direction x4, so that the resistance value can change.
  • the fluid FL disposed between the rotating substrate 73 and the elastic layer 2 the fluid FL having a low viscosity and the fluid FL having a high viscosity are more viscous than the fluid FL having a low viscosity. Since the shear stress is high and the resistance value change rate ⁇ R / R generated in the sensor unit 3 is accordingly increased, the user can determine the viscosity of the fluid FL based on the resistance value change rate ⁇ R / R. Can be analyzed. (6) Sixth embodiment
  • reference numeral 80 denotes an analyzer according to the sixth embodiment.
  • This analyzer 80 has a tubular main body 81 formed in a cylindrical shape, and has a hollow region ER2 formed in the main body 81.
  • the fluids FL3 and FL4 are configured to pass through.
  • This analyzer 80 does not take out the fluids FL3 and FL4 flowing in the main body 81 from the main body 81, and the viscosity of the fluids FL3 and FL4 flowing in the main body 81 is high. It is possible to obtain a measurement result capable of guessing in what state the current flows.
  • the main body 81 has a configuration in which a semi-cylindrical half-body wall portion 82 and a semi-cylindrical shear force sensor 83 are fixed in a state where the edges are aligned and formed into a cylindrical shape.
  • the shear force sensor 83 is provided with a semi-cylindrical substrate 85, and a plurality of sensor portions 86a, 86b, 86c, 86d, 86e, 86f, and 86g are provided on the inner peripheral surface of the substrate 85.
  • An elastic body layer 87 is formed so as to cover all of the plurality of sensor portions 86a, 86b, 86c, 86d, 86e, 86f, and 86g.
  • the shearing force sensor 83 is formed such that the thickness of the substrate 85 is thinner than the thickness of the half wall portion 82, and an elastic body that covers the sensor portions 86a, 86b, 86c, 86d, 86e, 86f, and 86g on the substrate 85.
  • the flow path surface 87a of the layer 87 is formed flush with the inner peripheral surface of the half wall portion 82, and the hollow region ER2 has no unevenness on the boundary with the half wall portion 82, and the hollow region ER2 in the main body 81 is Fluids FL3 and FL4 flow smoothly.
  • the shear force sensor 83 for example, a plurality of sensor portions 86a, 86b, 86c, 86d, 86e, 86f, 86g are provided at predetermined intervals along the circumferential direction from the upper end portion to the lower end portion.
  • the shear force sensor 83 is provided with sensor portions 86a, 86d, 86g at the upper end portion, the intermediate portion, and the lower end portion, respectively, and two sensor portions 86b, 86c are provided between the upper end portion and the intermediate portion.
  • sensor portions 86e, 86f are also provided between the intermediate portion and the lower end portion, and a total of six sensor portions 86a, 86b, 86c, 86d, 86e, 86f, 86g are provided along the circumferential direction. Has been placed.
  • each sensor part 86a, 86b, 86c, 86d, 86e, 86f, 86g has the same configuration as the sensor part 3 according to the first embodiment described above, and the movable part 21c of the cantilever part 21 has the same configuration.
  • the surface portion (FIG. 4) is disposed perpendicular to the direction in which the fluids FL3 and FL4 flow, and the movable portion 21c is formed upright with respect to the surface of the substrate 85.
  • the elastic body layer 87 covers the plurality of sensor parts 86a, 86b, 86c, 86d, 86e, 86f, and 86g, so that the sensor parts 86a, 86b, 86c, 86d, 86e, 86f, and 86g are included in the main body 81. Is not exposed.
  • the elastic body layer 87 has a flow path surface 87a exposed in the main body 81 formed in a smooth semicircular shape with no irregularities, and the fluids FL3 and FL4 flowing in the main body 81 are formed on the flow path surface 87a. It is formed to flow smoothly along.
  • the analyzer 80 by measuring output voltages from the sensor units 86a, 86b, 86c, 86d, 86e, 86f, 86g by an information processing means (not shown), the sensor units 86a, 86b, 86c, 86d, 86e, Changes in resistance at 86f and 86g can be measured.
  • the analyzer 80 analyzes the viscosity of the fluids FL3 and FL4 flowing in the main body 81 based on the resistance value change rate ⁇ R / R in the sensor units 86a, 86b, 86c, 86d, 86e, 86f, and 86g. be able to. Further, in this analyzer 80, the elastic layer 87 in the region not in contact with the fluids FL3 and FL4 is not displaced, and only the elastic layer 87 in contact with the fluids FL3 and FL4 is removed from the fluids FL3 and FL4. Only the resistance values of the sensor portions 86d, 86e, 86f, 86g are changed to the height at which the fluids FL3, FL4 flow by being displaced by the shear stress.
  • the fluid FL3, FL4 flows in the main body 81 up to what height based on the resistance value change rate ⁇ R / R of the sensor units 86a, 86b, 86c, 86d, 86e, 86f, 86g. You can easily guess.
  • this analyzer 80 for example, when a mixed fluid of water and oil flows in the main body 81, water (in this case, the fluid FL4) is placed in the lower portion of the main body 81 as shown in FIG.
  • the oil with low specific gravity in this case, fluid FL3 flows in the upper part.
  • the degree of displacement between the elastic layer 87 part in contact with water and the elastic layer 87 part in contact with oil is different.
  • the resistance value change rate ⁇ R / R from the sensor units 86e, 86f, 86g in the region where water flows, and the resistance value change rate ⁇ R / R from the sensor unit 86d in the region where oil flows Will be different.
  • the flow rate when water flows into the main body 81, and the resistance value change rate ⁇ R / R from the sensor units 86a, 86b, 86c, 86d, 86e, 86f, 86g at that time The flow rate when oil flows into the main body and the rate of change in resistance value from the sensor parts 86a, 86b, 86c, 86d, 86e, 86f, 86g at that time ⁇ R / R Is previously measured, and this relationship data is stored in the information processing means.
  • the analyzer 80 when water and oil are flowed into the main body 81 and analyzed, the resistance value change rate ⁇ R / measured by the sensor units 86a, 86b, 86c, 86d, 86e, 86f, 86 is analyzed. By comparing R with this relational data, the flow rate of water flowing in the main body 81 and the flow rate of oil can be estimated.
  • reference numeral 90 denotes a stick-type analyzer according to the seventh embodiment. Similar to the embodiment, the fluid viscosity ⁇ can be measured only by reciprocating in a predetermined direction in the fluid.
  • the analyzer 90 includes a main body 91 made of a rod-like member formed in an elongated quadrangular prism shape so that the user can hold the main body 91 with the thumb, forefinger and middle finger, and is easy for the user to carry. The main body 91 is downsized.
  • the main body 91 has a configuration in which a shear force sensor 92 is provided on one side surface 91a of the four sides, and a pressure sensor 93 is provided on one end surface 91b arranged at right angles to the one side surface 91a.
  • the main body 91 is provided with both a shear force sensor 92 and a pressure sensor 93 in the vicinity of the lower end, so that the shear force sensor 92 and the pressure sensor 93 can be immersed in the fluid stored in the container at the same time. Yes.
  • such an analyzer 90 has a shear force sensor 92 and a pressure sensor 93 arranged in the fluid in a direction perpendicular to the one end surface 91b (the longitudinal direction of the main body 91 ( Z-axis direction) and the front-rear direction x2 that is perpendicular to the perpendicular direction (y-axis direction) from one side 91a (y-axis direction), the fluid directly hits one end surface 91b of the main body 91, A fluid flows along one side 91a.
  • the analyzer 90 can calculate the shear stress ⁇ that the one side surface 91a receives from the fluid based on the measurement result detected by the shear force sensor 92. Yes.
  • the analyzer 90 can calculate the pressure P received by the one end face 91b from the fluid based on the measurement result detected by the pressure sensor 93.
  • the main body 91 is formed with quadrilateral recesses 91e and 91f in a part near the lower end portion of the one side surface 91a and the one end surface 91b formed in a flat shape, and the inside of the one recess 91e
  • the shear force sensor 92 is disposed in the second recess 91f
  • the pressure sensor 93 is disposed in the other recess 91f.
  • the flow path surface of the elastic layer 98a provided in the shear force sensor 92 is exposed to the outside, and the flow path surface is flush with the one side surface 91a.
  • the surface of the elastic layer 98b provided in the pressure sensor 93 is also exposed to the outside, and the surface of the flow path is also formed flush with the one end face 91b.
  • the analyzer 90 according to the seventh embodiment differs from the second embodiment described above in the configuration of the shear force sensor 92 and the configuration of the pressure sensor 93, and is shown in FIG.
  • a cantilever sensor unit 95a having the same configuration as that of the first sensor unit 50a of the cantilever according to the third embodiment is provided in the shear force sensor 92, and the third embodiment shown in FIG.
  • a pressure sensor 93 is provided with a doubly supported beam sensor part 95b having the same configuration as the third sensor part 50c of the doubly supported beam.
  • this shear force sensor 92 has a cantilever sensor portion 95a installed at the bottom of the recess 91e, and is elastic so as to cover the entire cantilever sensor portion 95a.
  • the layer 98a is provided.
  • the shear force sensor 92 deforms the elastic body layer 98a by the external force received from the fluid, and cantilever the external force acting in the x-axis direction accordingly.
  • the beam sensor unit 95a can sense it.
  • the cantilever sensor unit 95a and the cantilever sensor unit 95b have the same configuration as the first sensor unit 50a and the third sensor unit 50c shown in FIG. Since the description of such a configuration is redundant, the description is omitted here.
  • the surface portion of the movable portion 21c is arranged perpendicular to the x-axis direction, and the movable portion 21c tilts in the x-axis direction due to the shear stress ⁇ from the fluid applied in the x-axis direction. It is made to be able to do.
  • the degree of displacement of the cantilever portion 21 changes according to the magnitude of the shear stress ⁇ applied from the fluid, and the resistance value of the piezoresistive layer can also change accordingly.
  • the cantilever sensor part 95a applies a potential difference between the electrodes at the end of the hinge part 21b, measures the resistance value change ⁇ R / R of the hinge part 21b, and determines the force acting on the cantilever part 21 from the measurement result. (Shear stress ⁇ from fluid) can be measured.
  • the pressure sensor 93 has a structure in which a double-supported beam sensor portion 95b is disposed at the bottom of the recessed portion 91f and an elastic body layer 98a is provided so as to cover the entire dual-supported beam sensor portion 95b.
  • the recess 91f is formed with a gap 91h at the bottom, and the movable part 51c and the hinge part 51b of the doubly supported beam sensor part 95b are positioned on the gap 91h.
  • a base portion 51a of 95b is fixed to the bottom.
  • the pressure sensor 93 causes the elastic body layer 98b to be slightly crushed and deformed by the pressure P.
  • the force from 98b is received by the movable portion 51c, and the movable portion 51c can be displaced in the x-axis direction.
  • the degree of displacement of the cantilever part 51 changes according to the magnitude of the pressure applied from the fluid in the x-axis direction, and the resistance value of the piezoresistive layer can also change accordingly. Has been made.
  • the doubly supported beam sensor part 95b gives a potential difference between the electrodes at the end of the hinge part 51b, measures the resistance value change ⁇ R / R of the hinge part 51b, and determines the force acting on the cantilever part 51 from the measurement result ( The pressure P) from the fluid can be measured.
  • the shear stress ⁇ is calculated from the measurement result of the shear force sensor 92
  • the pressure P is calculated from the measurement result of the pressure sensor 93.
  • the cantilever sensor unit 95a of the shear force sensor 92 can obtain a resistance value change rate ⁇ R / R as a measurement result and send it to an information processing means (not shown) built in the main body 91.
  • the information processing means can calculate the shear stress ⁇ based on the resistance value change rate ⁇ R / R received from the shear force sensor 92 and the above-described equation 6.
  • FIGS. 34A and 34B are side cross-sectional views schematically showing the doubly supported beam sensor portion 95b of the pressure sensor 93 in order to explain the relationship between the resistance value change rate ⁇ R / R and the pressure P.
  • the magnitude of the moment generated at the end of the double-supported beam 51d (hinge 51b) M can be expressed as the following Expression 15.
  • the strain ⁇ generated in the hinge part 51b which is the end part can be expressed as in the following Expression 16, considering that the cross section of the doubly supported beam 51d is rectangular.
  • the resistance value change rate ⁇ R / R of the piezoresistive element caused by the strain ⁇ can be expressed as the following Expression 17, where K is the gauge factor of the piezoresistive element.
  • the pressure sensor 93 can calculate the pressure P based on the equations 16 and 17 using the resistance value change rate ⁇ R / R obtained as a measurement result.
  • the doubly-supported beam sensor unit 95b of the pressure sensor 93 can obtain the resistance value change rate ⁇ R / R from the external force received from the fluid as a measurement result, and sends this to the information processing means.
  • the information processing means can calculate the pressure P based on the resistance value change rate ⁇ R / R received from the pressure sensor 93 and the above-described equations 16 and 17.
  • the shear force sensor 92 that measures shear stress in the moving direction is provided with a cantilever sensor unit 95a of about 200 [ ⁇ m], and the pressure sensor 93 that measures pressure from the moving direction has about 200 [ ⁇ m].
  • a double-supported beam sensor portion 95b of about ⁇ m] is provided.
  • a drive device having an arm portion that performs a fixed piston motion is prepared, and after the analyzer 90 is vertically fixed to the arm portion, the shear force sensor 92 and the pressure sensor 93 of the analyzer 90 are placed in water. I put it in. And it was made to reciprocate linearly in the direction (x-axis direction in FIG. 32) perpendicular to the one end surface 91b of the main body 91 by the driving device (frequency 2 [Hz], reciprocating width 50 [mm]. ).
  • the pressure P and the shear stress ⁇ obtained from the analyzer 90 were examined at this time, the result shown in FIG. 35 was obtained. Of the results shown in FIG. 35, the values were read using the peaks and valleys of the waveform as sampling points.
  • the pressure P was 10 [Pa] and the shear stress ⁇ was 0.4 [Pa].
  • the cantilever sensor portion 95a in which the movable portion 21c can tilt in the x-axis direction is provided on the one side surface 91b, and the one-end surface 91b that receives the pressure applied in the x-axis direction is provided.
  • the present invention is not limited thereto,
  • the surface portion of the portion 21c is disposed perpendicular to the z-axis direction (the axial direction of the main body 91), and the cantilever sensor portion on which the movable portion 21c can be tilted in the z-axis direction is provided on one side surface 91b and applied in the z-axis direction
  • a doubly supported beam sensor unit 95b may be provided on the bottom surface of the main body 91 that receives the pressure, and the main body 91 may be moved up and down along the z-axis direction in the fluid to calculate the viscosity ⁇ of the fluid.
  • an acceleration sensor may be provided in each of the analysis device 35 according to the second embodiment, the analysis device 41 according to the third embodiment, and the like.
  • the acceleration sensor When the acceleration sensor is provided in this way, when the acceleration detected by the acceleration sensor is 0, if the measurement results of the shear force sensor 37, the pressure sensor 38, etc. are measured, the main body has started to move. Instead, the shear stress ⁇ and the pressure P when the main body is moved in the fluid FL at a constant speed can be measured, and a more accurate viscosity coefficient ⁇ can be calculated.
  • the present invention is not limited thereto, and various measurement means such as a gyro sensor are provided, and measurement results obtained from these measurement means. May be used as supplementary data for calculating the viscosity coefficient ⁇ .
  • various measurement means such as a gyro sensor are provided, and measurement results obtained from these measurement means. May be used as supplementary data for calculating the viscosity coefficient ⁇ .
  • the movement speed of the acceleration sensor can be calculated by integrating the output from the acceleration sensor. In this case, no pressure sensor is required, and the viscosity can be calculated only by the acceleration sensor and the shear force sensor.
  • the flow path forming unit 9 is used as a calculation means for calculating the viscosity coefficient of the fluid from the measurement result from the sensor unit, the surface flow velocity, and the fluid height.
  • the present invention is not limited to this, and information processing means built in the flow path forming unit 9 may be applied as calculation means.
  • the viscosity coefficient of the fluid is calculated from the measurement result obtained from the sensor unit and the pressure measurement result obtained from the pressure sensor.
  • the information processing means (not shown) incorporated in the main bodies 36, 42, 52, 62, 91 is applied as the viscosity coefficient calculating means
  • the present invention is not limited thereto, and the main bodies 36, 42, 52 are not limited thereto.
  • 62, 91 may be applied as the viscosity coefficient calculating means.
  • a shearing force for detecting an external force in one direction is used.
  • a shear force sensor 44a that can detect an external force in the three-axis directions used in the third embodiment may be applied.
  • the analyzer according to the present invention adds, for example, a trolley adjusting agent to food such as milk, juice, nursing food, etc. It can be used when you want to check if

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)
  • Micromachines (AREA)

Abstract

Provided is an analysis device which uses a new analysis method that has not been introduced in the past. The analysis device (1) is provided with: an elastic body layer (2) which is displaced by shearing stress from fluid (FL) caused by the fluid (FL) flowing along a flow path surface (2a); and a sensor part (3) which is covered by the elastic body layer (2) and has a cantilever part (21) that can be moved by the displacement of the elastic body layer (2). As a result, unlike a conventional rotary type viscometer which measures fluid viscosity on the basis of viscous resistance, the viscosity of the fluid (FL) can be specified on the basis of change in the cantilever part (21). It is possible to provide the analysis device (1) which uses a new analysis method.

Description

分析装置Analysis equipment
 本発明は、分析装置に関し、例えば流動性食品等の流体の粘性を分析する分析装置に適用して好適なものである。 The present invention relates to an analyzer, and is suitable for application to an analyzer that analyzes the viscosity of a fluid such as fluid food.
 現在、流動性食品の粘度を計測する手法としては、レオメータと言われる回転式粘度計が用いられている。例えば、この回転式粘度計は、回転子の円錐状の底面を、粘度測定対象の流体に浸漬した後、回転子を回転させたときに底面が流体から受ける粘性抵抗力に基づいて流体の粘度を測定し得るようになされている(例えば、特許文献1参照)。 Currently, a rotational viscometer called a rheometer is used as a method for measuring the viscosity of fluid food. For example, this rotary viscometer is based on the viscous resistance of the fluid that the bottom surface receives from the fluid when the rotor is rotated after the conical bottom surface of the rotor is immersed in the fluid whose viscosity is to be measured. Can be measured (see, for example, Patent Document 1).
特開平9-61333号公報JP-A-9-61333
 ところで、流動性食品等のような流体の粘度の測定は、嚥下能力の低下した高齢者が嚥下の容易な流動性食品を調理等する際にも重要となっており、高齢化社会に向けて様々な場所で流体の粘度を測定できることが望まれている。また、例えば、複数種類の流動性食品の粘性を比較する場合でも、各流体の粘度を分析するのに、回転子を回転させる回転式粘度計による粘度の分析手法を用いるだけでなく、その他にも新たな分析手法の提案が望まれている。 By the way, the measurement of the viscosity of fluids such as fluid foods is also important when elderly people with reduced swallowing ability cook fluid foods that are easy to swallow. It is desirable to be able to measure the viscosity of a fluid at various locations. In addition, for example, even when comparing the viscosity of multiple types of fluid foods, in addition to using a viscosity analysis method with a rotary viscometer that rotates a rotor, the viscosity of each fluid can be analyzed. Proposals for new analytical methods are also desired.
 そこで、本発明は以上の点を考慮してなされたもので、従来にない新規な分析手法を用いた分析装置を提案することを目的とする。 Therefore, the present invention has been made in consideration of the above points, and an object of the present invention is to propose an analysis apparatus using a novel analysis technique that has not been conventionally used.
 かかる課題を解決するため本発明の請求項1は、流体の粘性を特定する分析装置であって、流路表面に前記流体が流れることで、該流体からのせん断応力により変位する弾性体層と、前記弾性体層に覆われており、該弾性体層が変位することにより可動する可動部の変化状態を基に前記流体の粘性を特定する計測結果を得るセンサ部とを備えることを特徴とする。 In order to solve such a problem, claim 1 of the present invention is an analyzer for identifying the viscosity of a fluid, and an elastic layer that is displaced by shear stress from the fluid when the fluid flows on the surface of a flow path. A sensor unit that is covered with the elastic body layer, and that obtains a measurement result that specifies the viscosity of the fluid based on a change state of a movable part that is movable when the elastic body layer is displaced. To do.
 また、本発明の請求項2は、前記センサ部は、前記可動部の可動状態を抵抗値の変化として検知するピエゾ抵抗層を備え、前記計測結果が前記ピエゾ抵抗層から得られる抵抗値変化率であることを特徴とする。 According to a second aspect of the present invention, the sensor unit includes a piezoresistive layer that detects the movable state of the movable unit as a change in resistance value, and the measurement result is obtained from the piezoresistive layer. It is characterized by being.
 また、本発明の請求項3は、前記センサ部から得られた前記抵抗値変化率を基に、前記流体から受けるせん断応力を算出するせん断応力算出手段を備えることを特徴とする。 Further, according to a third aspect of the present invention, there is provided a shear stress calculating means for calculating a shear stress received from the fluid based on the resistance value change rate obtained from the sensor unit.
 また、本発明の請求項4は、前記弾性体層に覆われた前記センサ部と、前記流体から受ける圧力を計測する圧力センサとが設けられ、前記流体内にて移動させる本体と、前記センサ部から得られた計測結果と、前記圧力センサから得られた圧力計測結果とから、前記流体の粘度係数を算出する粘度係数算出手段とを備えることを特徴とする。 According to a fourth aspect of the present invention, there is provided a sensor body covered with the elastic body layer, a pressure sensor for measuring a pressure received from the fluid, and a main body moved in the fluid, and the sensor Viscosity coefficient calculating means for calculating the viscosity coefficient of the fluid from the measurement result obtained from the section and the pressure measurement result obtained from the pressure sensor.
 また、本発明の請求項5は、前記本体には、該本体を前記流体内で移動させる移動方向と直交する側面に前記弾性体層に覆われた前記センサ部が設けられ、前記本体を前記流体内で移動させる移動方向に垂直な一端面に前記圧力センサが設けられていることを特徴とする。 According to a fifth aspect of the present invention, the main body is provided with the sensor portion covered with the elastic body layer on a side surface orthogonal to a moving direction in which the main body is moved in the fluid, The pressure sensor is provided on one end surface perpendicular to the moving direction in the fluid.
 また、本発明の請求項6は、前記本体には前記センサ部が複数設けられており、各前記センサ部は、3軸方向の前記流体からのせん断応力を検知して前記流体の粘性を特定する前記計測結果を得ることを特徴とする。 According to a sixth aspect of the present invention, the main body is provided with a plurality of the sensor portions, and each of the sensor portions detects a shear stress from the fluid in three axial directions and specifies the viscosity of the fluid. The measurement result is obtained.
 また、本発明の請求項7は、前記流路表面を流れる前記流体の表面流速と、前記流路表面を流れる前記流体の該流路表面からの高さである流体高さとを取得し、前記センサ部からの前記計測結果と、前記表面流速と、前記流体高さとから、前記流体の粘度係数を算出する算出手段を備えることを特徴とする。 Further, according to a seventh aspect of the present invention, a surface flow velocity of the fluid flowing on the surface of the flow path and a fluid height that is a height from the surface of the flow path of the fluid flowing on the flow path surface are acquired, It is characterized by comprising a calculation means for calculating a viscosity coefficient of the fluid from the measurement result from the sensor unit, the surface flow velocity, and the fluid height.
 また、本発明の請求項8は、前記弾性体層の流路表面と間に前記流体を配置させた状態で回動することで該流体を移動させる回転基板を備え、前記センサ部は、前記回転基板が回動したときに前記弾性体層が変位することで可動した前記可動部の変化状態を基に、前記流体の粘性を特定する計測結果を得ることを特徴とする。 In addition, an eighth aspect of the present invention includes a rotating substrate that moves the fluid by rotating in a state where the fluid is disposed between the flow path surfaces of the elastic body layer, and the sensor unit includes the sensor unit, A measurement result that specifies the viscosity of the fluid is obtained based on a change state of the movable part that is moved by the displacement of the elastic layer when the rotating substrate is rotated.
 また、本発明の請求項9は、前記流体が内部の中空領域を通過する管状の本体を備え、前記本体の壁部には、前記弾性体層で覆われた前記センサ部が設けられており、前記センサ部は、前記中空領域を前記流体が通過するときに前記弾性体層が変位することにより可動した前記可動部の変化状態を基に、前記流体の粘性を特定する計測結果を得ることを特徴とする。 According to a ninth aspect of the present invention, there is provided a tubular main body through which the fluid passes through an internal hollow region, and the wall of the main body is provided with the sensor unit covered with the elastic layer. The sensor unit obtains a measurement result that specifies the viscosity of the fluid based on a change state of the movable unit that is moved when the elastic body layer is displaced when the fluid passes through the hollow region. It is characterized by.
 本発明によれば、従来にない新規な分析手法を用いた分析装置を提案することができる。 According to the present invention, it is possible to propose an analysis apparatus that uses a novel analysis technique that has not existed before.
第1の実施の形態による分析装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the analyzer by 1st Embodiment. せん断力センサの流路表面を流体が流れる際の様子を示す概略図である。It is the schematic which shows a mode when a fluid flows through the flow-path surface of a shear force sensor. 流路表面を流れる流体の速度分布を示す概略図である。It is the schematic which shows the velocity distribution of the fluid which flows through the flow-path surface. せん断力センサの詳細構成を示す概略図である。It is the schematic which shows the detailed structure of a shear force sensor. せん断力センサの製造方法の説明に供する概略図である。It is the schematic where it uses for description of the manufacturing method of a shear force sensor. せん断力センサの製造方法の説明に供する概略図である。It is the schematic where it uses for description of the manufacturing method of a shear force sensor. せん断力センサの製造方法の説明に供する概略図である。It is the schematic where it uses for description of the manufacturing method of a shear force sensor. せん断力センサの製造方法の説明に供する概略図である。It is the schematic where it uses for description of the manufacturing method of a shear force sensor. カンチレバー部の可動部を起立させるときの説明に供する概略図である。It is the schematic where it uses for description when raising the movable part of a cantilever part. カンチレバー部の詳細構成を示す概略図である。It is the schematic which shows the detailed structure of a cantilever part. せん断力センサの流路表面に流体が流れる前と後のセンサ部の変位の様子を示した概略図である。It is the schematic which showed the mode of the displacement of the sensor part before and after the fluid flows into the flow-path surface of a shear force sensor. 流体が流路表面を流れる際の抵抗値変化率の時間変化を示すグラフである。It is a graph which shows the time change of the resistance value change rate when a fluid flows through the flow-path surface. 流体が流路表面を流れる際の様子を示す写真である。It is a photograph which shows a mode when a fluid flows through the flow-path surface. 抵抗値変化率と流量との関係を示すグラフである。It is a graph which shows the relationship between resistance value change rate and flow volume. 表面流速と流量との関係を示すグラフである。It is a graph which shows the relationship between a surface flow velocity and a flow volume. せん断応力と表面流速との関係を示すグラフである。It is a graph which shows the relationship between a shear stress and a surface flow velocity. 算出した粘度係数とサンプル粘度との関係を示すグラフである。It is a graph which shows the relationship between the calculated viscosity coefficient and sample viscosity. 第2の実施の形態による分析装置の構成を示す概略図である。It is the schematic which shows the structure of the analyzer by 2nd Embodiment. 本体を動かした際に本体の周辺を流れる流体の様子を示す概略図である。It is the schematic which shows the mode of the fluid which flows around the main body when moving a main body. せん断力センサ及び圧力センサ周辺で流体の流れる様子を示す概略図である。It is the schematic which shows a mode that a fluid flows around a shear force sensor and a pressure sensor. 第3の実施の形態による分析装置を示す概略図である。It is the schematic which shows the analyzer by 3rd Embodiment. 本体を動かした際に本体の周辺面を流れる流体の様子を示す概略図である。It is the schematic which shows the mode of the fluid which flows through the peripheral surface of a main body when a main body is moved. せん断力センサにおけるセンサ群の構成を示す概略図である。It is the schematic which shows the structure of the sensor group in a shear force sensor. 第1センサ部、第2センサ部及び第3センサ部の詳細構成を示す概略図である。It is the schematic which shows the detailed structure of a 1st sensor part, a 2nd sensor part, and a 3rd sensor part. 流体からy軸方向にせん断応力が与えられたときの第1センサ部、第2センサ部及び第3センサ部の様子を示す概略図である。It is the schematic which shows the mode of a 1st sensor part, a 2nd sensor part, and a 3rd sensor part when shear stress is given to the y-axis direction from the fluid. 流体からz軸方向に圧力が与えられたときの第1センサ部、第2センサ部及び第3センサ部の様子を示す概略図である。It is the schematic which shows the mode of a 1st sensor part, a 2nd sensor part, and a 3rd sensor part when a pressure is given to the z-axis direction from the fluid. 第3の実施の形態による分析装置を任意の方向に移動させるときの一例を示す概略図である。It is the schematic which shows an example when moving the analyzer by 3rd Embodiment to arbitrary directions. 第4の実施の形態による分析装置の構成を示す概略図である。It is the schematic which shows the structure of the analyzer by 4th Embodiment. 第4の実施の形態における変形例の分析装置の構成を示す概略図である。It is the schematic which shows the structure of the analyzer of the modification in 4th Embodiment. 第5の実施の形態による分析装置の構成を示す概略図である。It is the schematic which shows the structure of the analyzer by 5th Embodiment. 第6の実施の形態による分析装置の構成を示す概略図である。It is the schematic which shows the structure of the analyzer by 6th Embodiment. 第7の実施の形態による分析装置の構成を示す概略図である。It is the schematic which shows the structure of the analyzer by 7th Embodiment. 図32の分析装置の詳細構成を示す断面図である。It is sectional drawing which shows the detailed structure of the analyzer of FIG. 抵抗値変化率△R/Rと圧力Pの関係を説明するために、概略的に示した両持ち梁の側断面図である。FIG. 5 is a side sectional view of a doubly supported beam schematically shown for explaining the relationship between the resistance value change rate ΔR / R and the pressure P. 分析装置を水内にて往復移動させたときのせん断応力と圧力とを示すグラフである。It is a graph which shows the shearing stress and pressure when an analyzer is reciprocated in water.
 1,35,41,55,61,70,80,90 分析装置
 2,45,87,98a,98b 弾性体層
 3 センサ部
 7 情報処理装置(算出手段)
 50a 第1センサ部(センサ部)
 50b 第2センサ部(センサ部)
 50c 第3センサ部(センサ部)
 95a 片持ち梁センサ部(センサ部)
 95b 両持ち梁センサ部(センサ部)
1,35,41,55,61,70,80,90 Analyzer 2,45,87,98a, 98b Elastic layer 3 Sensor unit 7 Information processing device (calculation means)
50a 1st sensor part (sensor part)
50b Second sensor part (sensor part)
50c 3rd sensor part (sensor part)
95a Cantilever sensor unit (sensor unit)
95b Dual beam sensor unit (sensor unit)
 以下図面に基づいて本発明の実施の形態を詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (1)第1の実施の形態
 (1-1)分析装置の全体構成
(1) First embodiment (1-1) Overall configuration of analyzer
 図1において、1は本発明による分析装置を示し、センサ部3が弾性体層2で覆われたせん断力センサ4を有した粘度センサ4aと、粘度特定対象となる流体の表面流速(後述する)及び流体高さ(後述する)を計測するための撮像装置5と、センサ部3からの出力信号を増幅する増幅器6と、撮像装置5及び増幅器6と電気的に接続された情報処理装置7とから構成されている。 In FIG. 1, reference numeral 1 denotes an analyzer according to the present invention, in which a sensor unit 3 includes a viscosity sensor 4a having a shear force sensor 4 covered with an elastic layer 2, and a surface flow velocity of a fluid whose viscosity is to be specified (described later). ) And fluid height (described later), an amplifier 6 that amplifies an output signal from the sensor unit 3, and an information processing device 7 electrically connected to the imaging device 5 and the amplifier 6 It consists of and.
 ここで、粘度センサ4aは、流路形成部9と基台10とから構成されており、流路形成部9にせん断力センサ4を備えている。流路形成部9は、水平線に対し傾斜角度θの傾きでせん断力センサ4の流路表面2aが傾斜するように基台10上に設置されており、当該流路表面2a上を流体が自重により流れ落ちるようになされている。なお、図1においては、せん断力センサ4の流路表面2aと平行な軸をx軸とし、流体が流路表面2aに沿ってx方向に流れることとなる。 Here, the viscosity sensor 4a includes a flow path forming portion 9 and a base 10, and the flow path forming portion 9 includes the shear force sensor 4. The flow path forming portion 9 is installed on the base 10 so that the flow path surface 2a of the shear force sensor 4 is inclined at an inclination angle θ with respect to the horizontal line, and the fluid is self-weighted on the flow path surface 2a. It is made to flow down. In FIG. 1, the axis parallel to the flow channel surface 2a of the shear force sensor 4 is taken as the x axis, and the fluid flows in the x direction along the flow channel surface 2a.
 実際上、この流路形成部9には、例えばアクリル板からなる長方形状の板部12が設けられており、この板部12の上端部と両側部に沿って例えばアクリル板からなる壁部13a,13b,13cが設けられ、これら壁部13a,13b,13cで取り囲まれた長方形状の流路形成領域ER1が板部12上に形成されている。そして、流路形成部9には、この流路形成領域ER1にせん断力センサ4が設けられている。 In practice, the flow path forming portion 9 is provided with a rectangular plate portion 12 made of, for example, an acrylic plate, and a wall portion 13a made of, for example, an acrylic plate along the upper end portion and both side portions of the plate portion 12. , 13b, 13c are provided, and a rectangular channel forming region ER1 surrounded by the walls 13a, 13b, 13c is formed on the plate portion 12. The flow path forming unit 9 is provided with a shear force sensor 4 in the flow path forming region ER1.
 また、流路形成部9には、板部12の上端部に沿って設けられた壁部13aの中央に吐出口15が穿設されており、この吐出口15にチューブ16を介して流体供給手段17が接続されている。流路形成部9は、流体供給手段17により流体が注入されると、吐出口15からせん断力センサ4の弾性体層2の流路表面2a上に流体が吐出され得る。これにより弾性体層2には、壁部13aの吐出口15から吐出された流体が平面状の流路表面2aに沿って流れ落ちてゆき、センサ部3上の流路表面2aを通過し得るようになされている。 Further, the flow path forming portion 9 has a discharge port 15 formed in the center of a wall portion 13a provided along the upper end portion of the plate portion 12, and fluid is supplied to the discharge port 15 via a tube 16. Means 17 are connected. When the fluid is supplied from the fluid supply means 17, the flow path forming unit 9 can discharge the fluid from the discharge port 15 onto the flow path surface 2 a of the elastic layer 2 of the shear force sensor 4. As a result, the fluid discharged from the discharge port 15 of the wall portion 13a flows down to the elastic body layer 2 along the planar flow channel surface 2a and can pass through the flow channel surface 2a on the sensor unit 3. Has been made.
 せん断力センサ4は、流路形成部9の板部12上の所定位置に設けられた後述するセンサ部3と、板部12及びセンサ部3を覆うように流路形成領域ER1に形成された弾性体層2とから構成されている。弾性体層2は、柔軟性を有しており、外部に露出した流路表面2a上を流体が流れ、この際に際に生じる流体からのせん断応力(流速表面2aに平行なx方向に働く力)によって同じくx方向に弾性変形し得るようになされている。 The shear force sensor 4 is formed in the flow path forming region ER1 so as to cover the sensor section 3 described later provided at a predetermined position on the plate section 12 of the flow path forming section 9 and the plate section 12 and the sensor section 3. And an elastic body layer 2. The elastic body layer 2 has flexibility, and the fluid flows on the channel surface 2a exposed to the outside, and the shear stress generated from the fluid at this time (acts in the x direction parallel to the flow velocity surface 2a) It can be elastically deformed in the x direction by force).
 実際上、この実施の形態の場合、弾性体層2は、例えばPDMS(Polydimethylsiloxane;ポリジメチルシロキサン)等のシリコンゴムを主剤とし、このPDMSと硬化剤とからなる二液を所定の混合比率(例えば、20:1)で混合して柔軟性を調整しつつ硬化されており、流路表面2aを流れ落ちる流体からのせん断応力により、x方向に弾性変形し得るようになされている。また、図2に示すように、弾性体層2は、流体FLが流れ落ちる流路表面2aが平面状に形成され、流体FLが流路表面2a上を均一に流れ落ち、センサ部3上の流路表面2aを通過して流路形成部9の下端開口部まで流れるようになされている。 In practice, in the case of this embodiment, the elastic body layer 2 is mainly composed of silicon rubber such as PDMS (Polydimethylsiloxane), and a two-component liquid comprising PDMS and a curing agent is mixed at a predetermined mixing ratio (for example, , 20: 1), and is cured while adjusting flexibility, and can be elastically deformed in the x direction by shearing stress from the fluid flowing down the flow path surface 2a. As shown in FIG. 2, the elastic body layer 2 has a flow path surface 2a on which the fluid FL flows in a flat shape, and the fluid FL flows evenly on the flow path surface 2a. It passes through the surface 2a and flows to the lower end opening of the flow path forming part 9.
 弾性体層2は、流路表面2aに沿って流体FLが流れ落ちる際に生じる流体FLからのせん断応力により、流体FLが流れる方向(x方向)に向けて全体が移動し、これによりカンチレバー構造のセンサ部3の角度を変位させ、当該センサ部3に有するピエゾ抵抗層(後述する)の抵抗値Rを変化させ得るようになされている。このようにセンサ部3は、変位前のピエゾ抵抗層の抵抗値をRとしたとき、流路表面2aを流体が流れ落ちる際に、弾性体層2が変位することで与えられる負荷により変位し、これを抵抗値変化率△R/Rとして計測し得る。 The elastic body layer 2 moves in the direction of the flow of the fluid FL (x direction) due to the shear stress from the fluid FL generated when the fluid FL flows down along the flow path surface 2a. An angle of the sensor unit 3 is displaced, and a resistance value R of a piezoresistive layer (described later) included in the sensor unit 3 can be changed. Thus, when the resistance value of the piezoresistive layer before displacement is R, when the fluid flows down the flow path surface 2a, the sensor unit 3 is displaced by the load given by the displacement of the elastic body layer 2, This can be measured as a resistance value change rate ΔR / R.
 ここで、流体FLによりせん断力センサ4に対して与えられるせん断応力をτとし、粘度係数(ここでは粘度とも言う)をμとし、図3に示すように、流路表面2a上をx方向に流れる流体FLの表面の流速(以下、これを表面流速と呼ぶ)をUとし、x軸と直交するy軸に延びる流体FLの流路表面2aからの高さ(以下、これを流体高さと呼ぶ)をhとすると、次式の関係が成立する。 Here, τ is the shear stress applied to the shear force sensor 4 by the fluid FL, μ is the viscosity coefficient (also referred to herein as viscosity), and as shown in FIG. The flow velocity on the surface of the flowing fluid FL (hereinafter referred to as the surface flow velocity) is U, and the height from the flow path surface 2a of the fluid FL extending in the y axis orthogonal to the x axis (hereinafter referred to as the fluid height). ) Is h, the following relationship is established.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 従って、分析装置1では、センサ部3での抵抗値変化率△R/Rを基にせん断応力τを算出し、これとは別に流路表面2aで流れる流体FLの表面流速Uを測定し、さらにこれとは別に流路表面2aでの流体高さhを確定することで、情報処理装置7において粘度係数μを算出し得、この粘度係数μを基に流体FLがどの程度の粘性を有しているか否かを使用者に判断させることができる。なお、せん断応力τの算出は、「(1-2)センサ部の構成」にて後述する。 Therefore, the analyzer 1 calculates the shear stress τ based on the resistance value change rate ΔR / R in the sensor unit 3, and measures the surface flow velocity U of the fluid FL flowing on the flow path surface 2a separately from this, In addition to this, by determining the fluid height h on the flow path surface 2a, the information processing device 7 can calculate the viscosity coefficient μ, and based on this viscosity coefficient μ, how much viscosity the fluid FL has. It is possible to make the user determine whether or not he / she is doing. The calculation of the shear stress τ will be described later in “(1-2) Configuration of sensor unit”.
 表面流速Uは、センサ部3を跨いだ計測距離(20[mm])間を、流体FLがどの程度時間を要して移動したかを基に、速度(表面流速)=計測距離/時間で算出する。実際上、分析装置1では、流体FLを壁部13b側から撮像装置5によって撮像し、撮像装置5から得られる撮像データを情報処理装置7にて解析して表面速度Uと流体高さhとを特性し得る。実際上、撮像装置5は、例えばカメラからなり、図2に示したように、流路表面2aの計測距離内を流れる流体FLが画角範囲内に納まるように、流体FLの側面側(x軸及びy軸と直交するz軸方向側)から流体FLを撮像するように調整されている。 The surface flow velocity U is the speed (surface flow velocity) = measurement distance / time based on how long the fluid FL traveled between the measurement distances (20 [mm]) across the sensor unit 3 calculate. Actually, in the analysis device 1, the fluid FL is imaged by the imaging device 5 from the wall 13b side, and the imaging data obtained from the imaging device 5 is analyzed by the information processing device 7 to obtain the surface velocity U and the fluid height h. Can be characterized. In practice, the imaging device 5 is composed of, for example, a camera, and as shown in FIG. 2, the side surface side (x of the fluid FL) is such that the fluid FL flowing within the measurement distance of the flow path surface 2a falls within the angle of view range. The fluid FL is adjusted so as to be imaged from the z-axis direction side orthogonal to the axis and the y-axis.
 情報処理装置7は、撮像装置5から受け取った撮像データを基に、画角中において流体FLの気泡等の特徴点が、計測距離をどの程度時間をかけて移動したかを計測し、その計測結果と、予め設定された計測距離とから表面流速Uを算出し得るようになされている。 Based on the image data received from the image pickup device 5, the information processing device 7 measures how much time the characteristic points such as bubbles of the fluid FL move within the angle of view, and measures the measurement distance. The surface flow velocity U can be calculated from the result and a preset measurement distance.
 また、表面流速Uを算出する際には、同じ粘性を有した流体FLであっても流路表面2aを流れる流量によって表面流速Uも変化するため、流路表面2aでの流体高さhも重要となる。そこで、撮像装置5は、流路表面2aを流れる流体FLを壁部13b側から撮像し、情報処理装置7によりその撮像データを解析することで流路表面2aからの流体FLの流体高さhを測定し得るようになされている。 Further, when calculating the surface flow velocity U, even if the fluid FL has the same viscosity, the surface flow velocity U also changes depending on the flow rate flowing through the flow channel surface 2a. It becomes important. Therefore, the imaging device 5 captures an image of the fluid FL flowing on the flow path surface 2a from the wall 13b side, and analyzes the captured data by the information processing device 7, thereby allowing the fluid height h of the fluid FL from the flow path surface 2a Can be measured.
 因みに、流体高さhの算出手法としては、どのような手法を用いてもよく、例えば予め設定した流体高さhとなるように流体供給手段17から流路表面2aに吐出する流体FLの流量を調整し、情報処理装置7にて流体高さhを定数として予め記憶させておくようにしてもよい。なお、この場合、撮像装置5は、流体速度Uのみを算出するために用いられ、流体FLの特徴点を上面側(y軸方向側)から撮像してもよい。 Incidentally, any method may be used as a method for calculating the fluid height h. For example, the flow rate of the fluid FL discharged from the fluid supply means 17 to the flow path surface 2a so as to have a preset fluid height h. And the information processing device 7 may store the fluid height h as a constant in advance. In this case, the imaging device 5 may be used to calculate only the fluid velocity U, and may capture the feature point of the fluid FL from the upper surface side (y-axis direction side).
 このようにして、分析装置1は、情報処理装置7において、流体FLによるせん断応力τと、流体FLの表面流速Uと、流体FLの流体高さhとを基に、上述した数1の式から粘度係数μを算出し、当該粘度係数μを使用者に表示部等を用いて通知することで、使用者が流体FLの粘性を判断し得る。 In this way, the analysis apparatus 1 uses the information processing apparatus 7 based on the equation 1 given above based on the shear stress τ due to the fluid FL, the surface flow velocity U of the fluid FL, and the fluid height h of the fluid FL. The viscosity coefficient μ is calculated from the above, and the user can determine the viscosity of the fluid FL by notifying the user of the viscosity coefficient μ using a display unit or the like.
 (1-2)センサ部の詳細構成
 次に、せん断力センサ4におけるセンサ部3の詳細構成について説明する。図4に示すように、せん断力センサ4のセンサ部3は、流路形成部9の板部12に固着される基台部20を備え、この基台部20にL字状に折り曲げられたカンチレバー部21の一端が固定された構成を有する。
(1-2) Detailed Configuration of Sensor Unit Next, a detailed configuration of the sensor unit 3 in the shear force sensor 4 will be described. As shown in FIG. 4, the sensor part 3 of the shear force sensor 4 includes a base part 20 fixed to the plate part 12 of the flow path forming part 9, and the base part 20 is bent in an L shape. One end of the cantilever portion 21 is fixed.
 カンチレバー部21は、一端に設けられ、基台部20に固定される基部21aと、基部21aに連接した一対のヒンジ部21bと、他端に設けられ、ヒンジ部21bを介在させて基部21aに連接した平板状の可動部21cとで構成されており、外力が加えられていないとき、屈曲したヒンジ部21bによって可動部21cが板部12に対しほぼ垂直に起立した状態に保持され得る。 The cantilever part 21 is provided at one end and fixed to the base part 20, a pair of hinge parts 21b connected to the base part 21a, and provided at the other end, with the hinge part 21b interposed in the base part 21a. The movable portion 21c is connected to the flat plate-like movable portion 21c, and when the external force is not applied, the movable portion 21c can be held substantially vertically with respect to the plate portion 12 by the bent hinge portion 21b.
 カンチレバー部21は、Si薄膜で形成されたL字状のSi上層23を有し、このSi上層23の表面に薄膜状のピエゾ抵抗層24が形成されており、基部21a及び可動部21cのピエゾ抵抗層24上にAu/Ni薄膜25,26が設けられている。なお、基台部20には、Si下層27が設けられており、Si下層27の所定位置にSiO2層28を介してカンチレバー部21の基部21aが設けられている。 The cantilever portion 21 has an L-shaped Si upper layer 23 formed of an Si thin film, and a thin film piezoresistive layer 24 is formed on the surface of the Si upper layer 23, and the piezo of the base portion 21a and the movable portion 21c. Au / Ni thin films 25 and 26 are provided on the resistance layer 24. The base portion 20 is provided with an Si lower layer 27, and a base portion 21a of the cantilever portion 21 is provided at a predetermined position of the Si lower layer 27 with an SiO 2 layer 28 interposed therebetween.
 カンチレバー部21は、Si上層23及びピエゾ抵抗層24がnmオーダーの薄膜状に形成され、各ヒンジ部21bが細長い長方形状に形成されていることから、弾性体層2から外力が加わると、この外力を可動部21cが受けとめ、屈曲部分のヒンジ部21bを中心に容易に傾倒し得、ヒンジ部21bのピエゾ抵抗層24がピエゾ素子として機能し得る。 In the cantilever part 21, since the Si upper layer 23 and the piezoresistive layer 24 are formed in a thin film shape of nm order, and each hinge part 21b is formed in an elongated rectangular shape, when an external force is applied from the elastic body layer 2, The movable portion 21c receives an external force and can easily tilt around the hinge portion 21b of the bent portion, and the piezoresistive layer 24 of the hinge portion 21b can function as a piezo element.
 ここで、この実施の形態の場合、カンチレバー部21は、ヒンジ部21bを除いてAu/Ni薄膜25,26で覆われていることにより、ヒンジ部21bの変形のみを抵抗値として計測し得るようになされている。すなわち、このカンチレバー部21は、外力によってヒンジ部21bが変形すると、ヒンジ部21bの結晶格子に歪みが生じ、半導体のキャリアの量や移動度が変動して抵抗値が変化し得る。かくしてセンサ部3では、二脚構造のヒンジ部21bの端点の電極(Au/Ni薄膜25)間に電位差を与え、ヒンジ部21bの抵抗値変化率△R/Rを計測し、その計測結果からカンチレバー部21に働く力(流体からのせん断応力τ)を計測し得るようになされている。 Here, in the case of this embodiment, the cantilever part 21 is covered with the Au / Ni thin films 25 and 26 except for the hinge part 21b, so that only deformation of the hinge part 21b can be measured as a resistance value. Has been made. That is, in the cantilever portion 21, when the hinge portion 21b is deformed by an external force, the crystal lattice of the hinge portion 21b is distorted, and the amount of semiconductor carriers and mobility are changed to change the resistance value. Thus, in the sensor unit 3, a potential difference is applied between the electrodes (Au / Ni thin film 25) at the end points of the hinge part 21b of the bipod structure, and the resistance value change rate ΔR / R of the hinge part 21b is measured. The force acting on the cantilever portion 21 (shear stress τ from the fluid) can be measured.
 なお、このカンチレバー部21には、基部21aに設けたAu/Ni薄膜25に配線29が電気的に接続されているとともに、ヒンジ部21bでの抵抗値変化率△R/Rを計測するために当該配線29がホイーストンブリッジ回路を用いた増幅器6に電気的に接続されている。 The cantilever portion 21 is electrically connected to the Au / Ni thin film 25 provided on the base portion 21a, and the resistance value change rate ΔR / R at the hinge portion 21b is measured. The wiring 29 is electrically connected to the amplifier 6 using a Wheatstone bridge circuit.
 また、センサ部3は、板部12を被覆するポリパラキシレン(商品名パリレン)でなる厚さ1[μm]程度の保護膜30により被覆されており、この保護膜30によって、カンチレバー部21における可動部21cの直立状態が維持されているものの、弾性体層2が変位した際にはこれに応じて可動部21cが傾倒し得るように形成されている。 The sensor unit 3 is covered with a protective film 30 having a thickness of about 1 [μm] made of polyparaxylene (trade name: Parylene) that covers the plate part 12. Although the upright state of the movable portion 21c is maintained, the movable portion 21c can be tilted accordingly when the elastic layer 2 is displaced.
 (1-3)せん断力センサ及び粘度センサの製造方法
 次に、上述したせん断力センサ3の製造方法について以下説明する。図5A及び図5Bに示すように、表面からSi上層23、SiO2層28及びSi下層27の順に積層されたSOI(Silicon On Insulator)基板32を用意する。なお、このSOI基板32をHF(フッ化水素)溶液中で洗浄し、SOI基板32の表面に形成されている自然酸化膜を除去する。
(1-3) Method for Manufacturing Shear Force Sensor and Viscosity Sensor Next, a method for manufacturing the above-described shear force sensor 3 will be described below. As shown in FIGS. 5A and 5B, an SOI (Silicon On Insulator) substrate 32 is prepared in which an Si upper layer 23, an SiO 2 layer 28, and an Si lower layer 27 are stacked in this order from the surface. The SOI substrate 32 is washed in an HF (hydrogen fluoride) solution, and the natural oxide film formed on the surface of the SOI substrate 32 is removed.
 その後、すぐにn型不純物試薬P-59230(OCD,東京応化)をSOI基板32の表面にスピンコートし、熱酸化炉を用いて当該SOI基板32を熱拡散し、不純物を100[nm]以下の厚さでドープして、図6A及び図6Bに示すように、Si上層23にピエゾ抵抗層24を形成する。次いで、SOI基板32のピエゾ抵抗層24表面にAu/Ni層をスパッタリングにより形成し、その後、所定の形状にパターニングして、このAu/Ni層をマスクとして用い、ピエゾ抵抗層24及びSi上層23をDRIE(Deep Reactive Ion Etching)にてエッチングを行う。これにより、図7A及び図7Bに示すように、SOI基板32は、基部21aとなる基部形成領域33aにAu/Ni薄膜25が形成されるとともに、ヒンジ部21bとなるヒンジ部形成領域33bにピエゾ抵抗層24が露出し、可動部21cとなる可動部領域33cにAu/Ni薄膜26が形成され得る。 Immediately thereafter, n-type impurity reagent P-59230 (OCD, Tokyo Ohka) is spin-coated on the surface of the SOI substrate 32, and the SOI substrate 32 is thermally diffused using a thermal oxidation furnace, and impurities are 100 [nm] or less. The piezoresistive layer 24 is formed on the Si upper layer 23 as shown in FIGS. 6A and 6B. Next, an Au / Ni layer is formed on the surface of the piezoresistive layer 24 of the SOI substrate 32 by sputtering, and then patterned into a predetermined shape. Using this Au / Ni layer as a mask, the piezoresistive layer 24 and the Si upper layer 23 are formed. Etching is performed by DRIE (Deep Reactive Ion Etching). As a result, as shown in FIGS. 7A and 7B, the SOI substrate 32 has the Au / Ni thin film 25 formed in the base forming region 33a to be the base 21a and the piezoelectric in the hinge forming region 33b to be the hinge 21b. The resistance layer 24 is exposed, and the Au / Ni thin film 26 can be formed in the movable part region 33c to be the movable part 21c.
 次に、基部形成領域33aを残して、ヒンジ部形成領域33b及び可動部領域33cの直下にあるSi下層27をDRIEによってエッチングし、さらにSiO2層28をHF(フッ酸)ガスによって除去することで、図8A及び図8Bに示すように、基台部27の開口領域27aにカンチレバー部21のヒンジ部21b及び可動部21cが配置され、可動部21cを自由端とした状態を形成し得る。 Next, the Si lower layer 27 directly under the hinge portion forming region 33b and the movable portion region 33c is etched by DRIE while leaving the base portion forming region 33a, and the SiO 2 layer 28 is removed by HF (hydrofluoric acid) gas. 8A and 8B, the hinge part 21b and the movable part 21c of the cantilever part 21 are arranged in the opening region 27a of the base part 27, and a state where the movable part 21c is a free end can be formed.
 次いで、これとは別に、アクリル板を接着剤により貼り合わせて形成した流路形成部9を用意し、図9に示すように、この流路形成部9の板部12に接着剤を介して上述したセンサ部3を固定させた後、板部12の下方からy軸方向に磁場(本図中矢印B方向)を加え、磁場により、Au/Ni薄膜26を有した自由端である可動部21cをy軸方向に変位させ得る。これによりカンチレバー部21は、ヒンジ部21bが折り曲がり可動部21cが起立して、当該可動部21cの面部がx軸方向に対し垂直に配置された状態となる。なお、磁場は、ネオジム磁石(NE009,二六製作所)を用いて加える。 Next, separately from this, a flow path forming portion 9 formed by bonding an acrylic plate with an adhesive is prepared, and as shown in FIG. 9, a plate portion 12 of this flow path forming portion 9 is interposed with an adhesive. After fixing the sensor part 3 described above, a magnetic field (in the direction of arrow B in the figure) is applied in the y-axis direction from below the plate part 12, and the movable part that is a free end having the Au / Ni thin film 26 by the magnetic field. 21c can be displaced in the y-axis direction. Thereby, in the cantilever portion 21, the hinge portion 21b is bent and the movable portion 21c is erected, and the surface portion of the movable portion 21c is arranged perpendicular to the x-axis direction. The magnetic field is applied using a neodymium magnet (NE009, 26 Manufacturing Co., Ltd.).
 この状態で、図4に示すように、CVD法により板部12及びセンサ部3上にパリレンからなる厚さ1[μm]の保護膜30を成膜し、可動部21cが起立した状態を保護膜30によって維持させ得る。次いで、センサ部3の基台部20に電極として設けたAu/Ni薄膜25に、増幅器6に接続されている配線29を接続させる。 In this state, as shown in FIG. 4, a protective film 30 having a thickness of 1 [μm] made of parylene is formed on the plate part 12 and the sensor part 3 by the CVD method to protect the movable part 21c from standing. It can be maintained by the membrane 30. Next, the wiring 29 connected to the amplifier 6 is connected to the Au / Ni thin film 25 provided as an electrode on the base 20 of the sensor unit 3.
 続いて、流路形成部9の壁部13a,13b,13cで囲まれた流路領域ER1(図1)に、センサ部3全体を覆い、流路表面2aが平面状の弾性体層2を形成する。具体的にここでは、弾性体層2となる弾性材料としてPolydimethylsioxane(PDMS:(株)東レ・ダウコーニング製、SILPOT184)を使用する。この場合、先ずPDMSの主剤と硬化剤とを例えば重量比20:1の割合で混合し、弾性体層2となる弾性材料を作製する。なお、ここでは、せん断力センサ4での流体FLの粘度の計測精度を向上させるため、例えば主剤と硬化剤とを重量比10:1とした弾性部材よりも、ヤング率の低い重量比20:1の弾性部材を用いることが好ましい。 Subsequently, the flow path region ER1 (FIG. 1) surrounded by the walls 13a, 13b, and 13c of the flow path forming section 9 covers the entire sensor section 3, and the elastic surface layer 2 having a flat flow path surface 2a. Form. Specifically, Polydimethylsioxane (PDMS: manufactured by Toray Dow Corning Co., Ltd., SILPOT184) is used as the elastic material for the elastic layer 2 here. In this case, first, the base material of PDMS and the curing agent are mixed at a weight ratio of 20: 1, for example, to produce an elastic material to be the elastic layer 2. Here, in order to improve the measurement accuracy of the viscosity of the fluid FL in the shear force sensor 4, for example, the weight ratio 20: lower Young's modulus than the elastic member in which the weight ratio of the main agent and the curing agent is 10: 1: It is preferable to use 1 elastic member.
 次いで、主剤と硬化剤を混合した弾性材料たるPDMSを遠心式脱泡装置(あわとり錬太郎 ARE-250,シンキー)を用いて攪拌し、デシケータで脱泡作業を行った後、これを流路形成部9の壁部13a,13b,13cで囲まれた流路領域ER1に流し込み、当該流路形成部9を再度デシケータに入れて脱泡を行う。その後、約70[℃]に保ったオーブンにて40分間ベークし、弾性部材たるPDMSを硬化させて弾性体層2を形成することで、流路形成部9の流路形成領域ER1にせん断力センサ4を形成し得る。 Next, PDMS, which is an elastic material in which the main agent and curing agent are mixed, is stirred using a centrifugal defoaming device (Awatori Rentaro ARE-250, Sinky), defoamed with a desiccator, and then passed through the flow path. Pour into the channel region ER1 surrounded by the walls 13a, 13b, 13c of the forming unit 9, and the channel forming unit 9 is again placed in the desiccator to perform defoaming. After that, it is baked for 40 minutes in an oven maintained at about 70 [° C.], and the elastic layer 2 is formed by curing PDMS as an elastic member, thereby forming a shear force on the flow path forming region ER1 of the flow path forming portion 9. A sensor 4 can be formed.
 なお、この際、流路形成部9が傾いてしまうと、弾性体層2の流路表面2aが平面状とならず一様な流れが保障され難いことから、流路表面2aが傾かないよう3分毎に90度ずつ回転させながらベークすることが好ましい。最後に、弾性体層2の流路表面2aを水平線に対して所定の傾斜角度θに傾斜させた状態で流路形成部9を基台10に固定することで、粘度センサ4aを作製できる。 At this time, if the flow path forming portion 9 is inclined, the flow path surface 2a of the elastic body layer 2 is not flat and it is difficult to ensure a uniform flow. It is preferable to bake while rotating 90 degrees every 3 minutes. Finally, the viscosity sensor 4a can be manufactured by fixing the flow path forming portion 9 to the base 10 in a state where the flow path surface 2a of the elastic body layer 2 is inclined at a predetermined inclination angle θ with respect to the horizontal line.
 (1-4)せん断力センサの抵抗値変化率とせん断応力との関係について
 ここで、せん断力センサ4のセンサ部3で計測した抵抗値変化率△R/Rと、流体FLからのせん断応力τとの関係について説明する。図10Aに示すように、可動部21c及びヒンジ部21bの厚さは微小であることから、これら可動部21c及びヒンジ部21bの厚さをt[m]とし、図10Bに示すように、可動部21c及びヒンジ部21bの全長L1[m]、可動部21cの板長L2[m]、可動部21cの全幅b[m]、1つのヒンジ部21bの脚幅w[m]、可動部21c(梁)の先端に負荷される力F[N]、可動部21c(梁)のヤング率E[Pa]、カンチレバー部21の圧電係数πLとした場合、カンチレバー部21の先端における変位νと、カンチレバー部21の抵抗値変化率△R/Rの関係は下記のようになる。但し、ここでは、カンチレバー部21の変形は、片持ち梁の1次モード変形に近似できるとし、その他の変形は無視できるものとする。
(1-4) Relationship between the change rate of resistance value of the shear force sensor and the shear stress Here, the change rate of resistance value ΔR / R measured by the sensor unit 3 of the shear force sensor 4 and the shear stress from the fluid FL The relationship with τ will be described. As shown in FIG. 10A, since the thickness of the movable part 21c and the hinge part 21b is very small, the thickness of the movable part 21c and the hinge part 21b is t [m], and the movable part 21c and the hinge part 21b are movable as shown in FIG. 10B. Total length L1 [m] of the part 21c and the hinge part 21b, plate length L2 [m] of the movable part 21c, full width b [m] of the movable part 21c, leg width w [m] of one hinge part 21b, movable part 21c When the force F [N] applied to the tip of the (beam), the Young's modulus E [Pa] of the movable part 21c (beam), and the piezoelectric coefficient πL of the cantilever part 21, the displacement ν at the tip of the cantilever part 21; The relationship of the resistance value change rate ΔR / R of the cantilever portion 21 is as follows. However, here, the deformation of the cantilever portion 21 can be approximated to the primary mode deformation of the cantilever beam, and other deformations can be ignored.
Figure JPOXMLDOC01-appb-M000002
 また、静定梁問題としてカンチレバー部21の変形を考えると、力Fにより発生するカンチレバー部21の先端での変位νは以下のようになる。
Figure JPOXMLDOC01-appb-M000002
Further, considering the deformation of the cantilever part 21 as a static beam problem, the displacement ν at the tip of the cantilever part 21 generated by the force F is as follows.
Figure JPOXMLDOC01-appb-M000003
 但し、Iは可動部21c(梁)の断面二次モーメントであり、以下の式より求められる。
Figure JPOXMLDOC01-appb-M000003
However, I is a cross-sectional second moment of the movable part 21c (beam), and is obtained from the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 これら数3及び数4を用いたとき、上述した数2は以下の式のように、流体FLのせん断応力τによる荷重Fと抵抗値変化率△R/Rとの関係に表すことができる。 When these equations 3 and 4 are used, the above equation 2 can be expressed by the relationship between the load F due to the shear stress τ of the fluid FL and the resistance value change rate ΔR / R, as in the following equation.
Figure JPOXMLDOC01-appb-M000005
 また、センサ部3の表面積S[m2]とすると、上記数5は下記のように表される。
Figure JPOXMLDOC01-appb-M000005
Further, when the surface area S [m 2 ] of the sensor unit 3 is given, the above formula 5 is expressed as follows.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 かくして、分析装置1では、カンチレバー部21の厚さt[m]、全長L1[m]、板長L[m]、全幅b[m]、脚幅w[m]、ヤング率E[Pa]、圧電係数πL、表面積S[m2]の各定数を情報処理装置に予め記憶させておき、センサ部3において計測された抵抗値変化率△R/Rを、増幅器6を介して情報処理装置7に送出する。これにより情報処理装置7は、これらカンチレバー部21に関する各定数と、センサ部3にて計測した抵抗値変化率△R/Rとを基にせん断応力τを算出し得るようになされている。 Thus, in the analyzer 1, the thickness t of the cantilever portion 21 [m], the total length L1 [m], Itacho L 2 [m], the full width b [m], Ashihaba w [m], a Young's modulus E [Pa ], Constants of piezoelectric coefficient πL and surface area S [m 2 ] are stored in advance in the information processing apparatus, and the resistance value change rate ΔR / R measured in sensor unit 3 is processed via amplifier 6 as information processing. Send to device 7. As a result, the information processing apparatus 7 can calculate the shear stress τ based on each constant related to the cantilever part 21 and the resistance value change rate ΔR / R measured by the sensor part 3.
 そして、情報処理装置7では、撮像装置5からの撮像データを基に測定した流路表面2aで流れる流体FLの表面流速Uと、特定した流路表面2aでの流体高さhと、上述したセンサ部3の抵抗値変化率△R/Rを基に得たせん断応力τとに基づいて、上述した数1の式から流体FLの粘度係数(粘度)μを算出することができ、これを表示部等の通知手段でユーザに通知することで、流体FLの粘性を分析させ得るようになされている。 Then, in the information processing device 7, the surface flow velocity U of the fluid FL flowing on the channel surface 2a measured based on the imaging data from the imaging device 5, the fluid height h on the specified channel surface 2a, and the above-described Based on the shear stress τ obtained based on the resistance value change rate ΔR / R of the sensor unit 3, the viscosity coefficient (viscosity) μ of the fluid FL can be calculated from the above equation (1). By notifying the user with a notification means such as a display unit, the viscosity of the fluid FL can be analyzed.
 (1-5)動作及び効果
 以上の構成において、せん断力センサ4では、ヒンジ部21bが変形することによりピエゾ抵抗層24の抵抗値が変化するセンサ部3が弾性体層2に覆われており、この弾性体層2の平面状の流路表面2aが所定の傾斜角度θで傾斜するように設けられている。
(1-5) Operation and Effect In the configuration described above, in the shear force sensor 4, the elastic body layer 2 covers the sensor portion 3 in which the resistance value of the piezoresistive layer 24 changes due to the deformation of the hinge portion 21b. The planar flow channel surface 2a of the elastic layer 2 is provided so as to be inclined at a predetermined inclination angle θ.
 また、このせん断力センサ4では、センサ部3に対して予め所定の入力電圧が印加され、この状態で、弾性体層2の流路表面2aに沿って上方から流体FLが流される。これにより、せん断力センサ4では、図11Aに示すように、流体FLが流路表面2aを流れる前に板部12に直立したセンサ部3のカンチレバー部21が、流路表面2aに流体FLが流れることで、図11Bに示すように、流体FLからのせん断応力τにより弾性体層2が流体FLの流れる方向(X方向)に変形し、この弾性体層2の変形がカンチレバー部21まで伝わり、直立していたカンチレバー部21が流体FLの流れる方向に傾倒する。 Further, in this shear force sensor 4, a predetermined input voltage is applied in advance to the sensor unit 3, and in this state, the fluid FL flows from above along the flow path surface 2a of the elastic layer 2. Thus, in the shear force sensor 4, as shown in FIG. 11A, the cantilever portion 21 of the sensor portion 3 standing upright on the plate portion 12 before the fluid FL flows on the flow path surface 2a, and the fluid FL on the flow path surface 2a. By flowing, as shown in FIG. 11B, the elastic body layer 2 is deformed in the flow direction (X direction) of the fluid FL by the shear stress τ from the fluid FL, and the deformation of the elastic body layer 2 is transmitted to the cantilever portion 21. The upright cantilever portion 21 is tilted in the direction in which the fluid FL flows.
 ここで、弾性体層2は、PDMSの主剤と硬化剤とが所定の重量比の割合で混合させ低いヤング率とした弾性部材により形成されていることから、流体FLからのせん断応力τが仮に小さくても、加えられたせん断応力τの方向へ確実に変形でき、流体FLからのせん断応力τによりカンチレバー部21を傾倒させることができる。 Here, the elastic body layer 2 is formed of an elastic member having a low Young's modulus by mixing the main agent of PDMS and a curing agent at a predetermined weight ratio, so that the shear stress τ from the fluid FL is temporarily Even if it is small, it can be reliably deformed in the direction of the applied shear stress τ, and the cantilever portion 21 can be tilted by the shear stress τ from the fluid FL.
 これにより分析装置1では、センサ部3のヒンジ部21bが変形することにより、抵抗値の変化を計測することができる。情報処理装置7では、センサ部3での抵抗値変化率△R/Rを基に、上述した数6を用いて流体FLからのせん断応力τを算出することができる。 Thereby, in the analyzer 1, the change in the resistance value can be measured by the deformation of the hinge part 21b of the sensor part 3. In the information processing apparatus 7, the shear stress τ from the fluid FL can be calculated using Equation 6 described above based on the resistance value change rate ΔR / R in the sensor unit 3.
 かくして、この分析装置1では、例えば複数種類の流体FLを比較するときには、これら流体FLを同じ流量で流すことで、センサ部3からの計測結果たるせん断応力τの相違を参考にして、使用者に対し流体FLの粘性の相違を比較させることができ、その結果、流体FLの粘度を分析させることができる。 Thus, in this analyzer 1, for example, when comparing a plurality of types of fluids FL, by flowing these fluids FL at the same flow rate, the user can refer to the difference in the shearing stress τ as the measurement result from the sensor unit 3 by referring to the user. The difference in the viscosity of the fluid FL can be compared, and as a result, the viscosity of the fluid FL can be analyzed.
 また、この分析装置1では、撮像装置5が流路表面2aを流れる流体FLを、側面側から撮像するようにしたことにより、所定の計測距離を流れる流体FLの様子を撮像できると同時に、流体FLが流路表面2aからどの程度の流体高さhにあるかを撮像できる。 Further, in this analyzer 1, the imaging device 5 can image the state of the fluid FL flowing through a predetermined measurement distance by simultaneously imaging the fluid FL flowing on the flow path surface 2a, and at the same time, the fluid It is possible to image how much fluid height h the FL is from the flow path surface 2a.
 これにより、この分析装置1では、この撮像装置5からの撮像データを解析することにより流路表面2aを流れる流体FLの移動距離と、移動時間を特定し、これら移動距離及び移動時間から流体FLが流路表面2aを流れる際の表面速度Uを算出できる。 Thereby, in this analyzer 1, the moving distance and moving time of the fluid FL flowing on the flow path surface 2a are identified by analyzing the imaging data from the imaging device 5, and the fluid FL is determined from these moving distance and moving time. It is possible to calculate the surface velocity U when the gas flows on the flow path surface 2a.
 さらに、この分析装置1では、流路表面2aを流れる流体FLを側面から撮像装置5で撮像していることで、これにより得られる撮像データを情報処理装置7にて解析して流路表面2aを流れる流体FLの流体高さhを特定することができる。 Further, in the analyzer 1, the fluid FL flowing on the flow channel surface 2a is imaged by the imaging device 5 from the side surface, so that the image data obtained thereby is analyzed by the information processing device 7 and the flow channel surface 2a The fluid height h of the fluid FL flowing through the fluid can be specified.
 これにより情報処理装置7では、せん断力センサ4から得られた流体FLの抵抗値変化率△R/Rと、撮像装置5から得られた撮像データを基に特定した流体FLの表面速度Uと、流体FLの流体高さhとを基に、上述した数1に基づいて流体FLの粘度係数(粘度)μを算出することができ、かくして粘度係数μを使用者に通知し、流体FLがどの程度の粘性を有しているかを認識させることができる。 Thereby, in the information processing device 7, the resistance value change rate ΔR / R of the fluid FL obtained from the shear force sensor 4, and the surface velocity U of the fluid FL specified based on the imaging data obtained from the imaging device 5 , Based on the fluid height h of the fluid FL, the viscosity coefficient (viscosity) μ of the fluid FL can be calculated based on the above-described Equation 1, and the user can be notified of the viscosity coefficient μ, and the fluid FL The degree of viscosity can be recognized.
 また、せん断力センサ4は、弾性体層2により覆われ、カンチレバー部21が外部に非露出状態になっていることにより、流体FL等の物質が直接接触してしまうことによる損傷を防止でき、壊れ難いせん断力センサ4を提供することができる。 Further, the shear force sensor 4 is covered with the elastic body layer 2, and the cantilever part 21 is in an unexposed state to the outside, thereby preventing damage caused by direct contact with a substance such as the fluid FL, It is possible to provide a shear force sensor 4 that is not easily broken.
 以上の構成によれば、流路表面2aに流体FLが流れることで、流体FLからのせん断応力により変位する弾性体層2と、この弾性体層2に覆われており、弾性体層2が変位することにより可動する可動部21cを有するセンサ部3とを設けたことにより、粘性抵抗力に基づいて流体の粘度を測定する従来の回転式粘度計とは異なり、可動部21cの変化状態を基に流体FLの粘性を分析することができ、かくして従来にない新規な分析手法を用いた分析装置1を提案できる。 According to the above configuration, when the fluid FL flows on the flow path surface 2a, the elastic body layer 2 is displaced by the shearing stress from the fluid FL, and the elastic body layer 2 is covered with the elastic body layer 2. Unlike the conventional rotary viscometer that measures the viscosity of the fluid based on the viscous resistance force, the change state of the movable part 21c is changed by providing the sensor part 3 having the movable part 21c that moves by being displaced. Therefore, it is possible to analyze the viscosity of the fluid FL, and thus to propose an analysis apparatus 1 that uses a novel analysis technique that has not existed before.
 (1-6)検証試験
 次に、上述した「(1-3)せん断力センサ及び粘度センサの製造方法」に従って製造した粘度センサ4aを備える分析装置1を用意し、各種検証試験を行った。実際上、粘度センサ4aは、約2[mm]四方であるセンサ部3のチップに対し、十分大きな流路幅として30[mm]をとった流路形成部9を用いた。また、流路形成部9は、壁面の高さの約5倍である40[mm]程度まで下端開口部から離した位置にセンサ部3を配置した。また、流路形成部9では、流体FLの定常な流れを計測するため、壁部13aから下端開口部までの流路領域ER1の長さを200[mm]とした。そして、流路形成部9は、45度に傾いた基台10上に設置し、流路表面2aを約45度に傾けた。
(1-6) Verification Test Next, the analyzer 1 including the viscosity sensor 4a manufactured according to the above-mentioned “(1-3) Manufacturing method of shear force sensor and viscosity sensor” was prepared, and various verification tests were performed. In practice, the viscosity sensor 4a uses the flow path forming section 9 having a sufficiently large flow path width of 30 [mm] with respect to the chip of the sensor section 3 which is about 2 [mm] square. Further, in the flow path forming part 9, the sensor part 3 is arranged at a position away from the lower end opening to about 40 [mm] which is about 5 times the height of the wall surface. Further, in the flow path forming unit 9, the length of the flow path region ER1 from the wall 13a to the lower end opening is set to 200 [mm] in order to measure a steady flow of the fluid FL. The flow path forming unit 9 was installed on the base 10 inclined at 45 degrees, and the flow path surface 2a was inclined at about 45 degrees.
 また、サンプルとして用いる流体FLは、せん断応力τの計算の容易なニュートン流体で、かつ粘性の調整できる液体であるシリコーンオイル(KF-96-100cs,KF-96H-3万cs,信越シリコーン)を用いた。ここでは、粘度係数μをパラメータとして設定するために、異なる粘度係数を持つ2種類のシリコーンオイルを混合することで、粘度係数μの調整を行った。なお、KF-96-100csは、動粘度100[cs]、密度0.965×103[kg/m3]であり、粘度係数μが9.65×10-2[Pa・s]である。また、KF-96H-30000csは、動粘度30000[cs]、密度0.976×103[kg/m3]であり、粘度係数μが29.28[Pa・s]である。 The fluid FL used as a sample is a Newtonian fluid whose shear stress τ can be easily calculated, and a silicone oil (KF-96-100cs, KF-96H-30,000cs, Shin-Etsu Silicone) that can adjust the viscosity. Using. Here, in order to set the viscosity coefficient μ as a parameter, the viscosity coefficient μ was adjusted by mixing two types of silicone oils having different viscosity coefficients. KF-96-100cs has a kinematic viscosity of 100 [cs], a density of 0.965 × 10 3 [kg / m 3 ], and a viscosity coefficient μ of 9.65 × 10 −2 [Pa · s]. KF-96H-30000cs has a kinematic viscosity of 30000 [cs], a density of 0.976 × 10 3 [kg / m 3 ], and a viscosity coefficient μ of 29.28 [Pa · s].
 ここでは、分析装置1によって粘性を分析する流体FLとして、粘度域が0.1~1.0[Pa・s]の食品を念頭において、上述した2種類のシリコーンオイルを混合して粘度係数μを調整し、粘度係数μが0.1[Pa・s]、0.5[Pa・s]、0.75[Pa・s]、1.0[Pa・s]の異なるサンプル粘度でなる4種類のサンプル流体を用意した。なお、サンプル流体の作製に用いた2種類のKF-96-100cs とKF- 96H-30000csの重量比(重量比KF-96-100cs:KF-96H-30000cs)は、下記の表1に示す。 Here, the fluid FL whose viscosity is analyzed by the analyzer 1 is adjusted for the viscosity coefficient μ by mixing the two types of silicone oils described above, with the food having a viscosity range of 0.1 to 1.0 [Pa · s] in mind. Four types of sample fluids having different sample viscosities having viscosity coefficients μ of 0.1 [Pa · s], 0.5 [Pa · s], 0.75 [Pa · s], and 1.0 [Pa · s] were prepared. The weight ratio (weight ratio KF-96-100cs: KF-96H-30000cs) of the two types of KF-96-100cs and KF- 96H-30000cs used for the preparation of the sample fluid is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 なお、分析装置1では、カンチレバー部21が荷重を受けると、それに応じて抵抗値が変化するものの、カンチレバー部21から出力する抵抗値変化は微小であるため、計測にはホイーストンブリッジ回路を備えた増幅器6を用いた。 In the analyzer 1, when the cantilever part 21 receives a load, the resistance value changes accordingly. However, since the resistance value output from the cantilever part 21 is very small, a Wheatstone bridge circuit is provided for measurement. An amplifier 6 was used.
 ここでは、12[ml]、内径15[mm]、断面積177[mm2]で、内部がサンプル流体でシリンジが満たされた流体供給手段17を用意し、図示しない一軸可動ステージにシリンジを固定して一軸可動ステージを駆動させることによりシリンジ内のサンプル流体を流路形成部9の吐出口15(図1)から流路表面2aに吐出させた。この際、単位時間当たりのサンプル流体の流路表面2aへの吐出量は、一軸可動ステージを一定速度で駆動させることによって一定量に保った。 Here, fluid supply means 17 with 12 [ml], an inner diameter of 15 [mm], a cross-sectional area of 177 [mm 2 ] and filled with a sample fluid inside is prepared, and the syringe is fixed to a uniaxial movable stage (not shown) Then, by driving the uniaxial movable stage, the sample fluid in the syringe was discharged from the discharge port 15 (FIG. 1) of the flow path forming unit 9 to the flow path surface 2a. At this time, the discharge amount of the sample fluid per unit time onto the flow path surface 2a was kept constant by driving the uniaxial movable stage at a constant speed.
 次いで、流路形成部9における流路表面2aを流れるサンプル流体の表面流速Uを計測するため、撮像装置5としてカメラを用いてこの流路表面2aを流れるサンプル流体を撮像した。この際、サンプル流体の表面流速Uの指標として、流路表面2aを流れるサンプル流体の表面に形成された気泡等の特徴点を用いた。なお、流路形成部9の壁部13bにセンサ部3を跨いで、20[mm]間に渡って5[mm]ごとに線を引いた。その間をサンプル流体の特徴点が通過する時間を計測して、サンプル流体の表面流速Uを特定した。なお、ここで用いたカメラは1秒を30フレームに分けて撮影し得るため、1/30秒単位での計測が可能である。 Next, in order to measure the surface flow velocity U of the sample fluid flowing on the flow channel surface 2a in the flow channel forming unit 9, the sample fluid flowing on the flow channel surface 2a was imaged using the camera as the imaging device 5. At this time, feature points such as bubbles formed on the surface of the sample fluid flowing on the channel surface 2a were used as an index of the surface flow velocity U of the sample fluid. A line was drawn every 5 [mm] across 20 [mm] across the sensor part 3 across the wall 13b of the flow path forming part 9. The time during which the characteristic point of the sample fluid passes is measured to identify the surface flow velocity U of the sample fluid. In addition, since the camera used here can divide 1 second into 30 frames, it can measure in units of 1/30 second.
 この際、センサ部3からの抵抗値変化率△R/Rを情報処理装置7にて保存するようにした。そして、流体供給手段17のシリンジに入っているサンプル流体を全て流しきった時点でカメラによる撮像画像の録画を止め、これらセンサ部3からの抵抗値変化率△R/Rと、カメラからの撮像画像の録画とを各サンプル流体毎にそれぞれ記録した。なお、ここでせん断力センサ4はセンサ部3が非常に脆いため、流路表面2aを直接拭くことができない。そのため、次に流路表面2aを流すサンプル流体を流路表面2aに3回流し、流路表面2aに前のサンプル流体が残らないように流路表面2aを洗い流した。 At this time, the resistance value change rate ΔR / R from the sensor unit 3 is stored in the information processing device 7. Then, when all of the sample fluid contained in the syringe of the fluid supply means 17 has been completely flowed, the recording of the captured image by the camera is stopped, and the resistance value change rate ΔR / R from these sensor units 3 and the imaging from the camera Image recordings were recorded for each sample fluid. Here, since the sensor part 3 of the shear force sensor 4 is very fragile, the flow path surface 2a cannot be wiped directly. Therefore, the sample fluid that flows next on the channel surface 2a was flowed three times on the channel surface 2a, and the channel surface 2a was washed away so that the previous sample fluid did not remain on the channel surface 2a.
 ここで、流路形成部9の板部12に固定したセンサ部3から得られた抵抗値変化率△R/Rの計測結果としては、図12に示すような結果が得られた。この結果から、サンプル流体を流路表面2aに流し始めてから約1.5秒後にサンプル流体がセンサ部3上を通過したことが分かる。また、カメラにより得られた撮像画像としては、図13A~図13Dに示すような結果が得られた。なお、図13A~図13Dにおいて、点線DL1はサンプル流路の外郭を示し、その点線DL1の内側がサンプル流体を示している。 Here, as a measurement result of the resistance value change rate ΔR / R obtained from the sensor part 3 fixed to the plate part 12 of the flow path forming part 9, a result as shown in FIG. 12 was obtained. From this result, it can be seen that the sample fluid passed over the sensor unit 3 about 1.5 seconds after the sample fluid started to flow on the channel surface 2a. Further, as a captured image obtained by the camera, results as shown in FIGS. 13A to 13D were obtained. In FIGS. 13A to 13D, a dotted line DL1 indicates the outline of the sample flow path, and the inside of the dotted line DL1 indicates the sample fluid.
 ここで、図12において、0[s]以上1.5[s]未満までのAは、図13Aに示すようにサンプル流体がセンサ部3上を通過する前の状態であり、図12において、1.5[s]でのBは、図13Bに示すようにサンプル流体がセンサ部3上を通過開始するときであり、図12において、1.5[s]を超え3.25[s]未満までのCは、図13Cに示すようにサンプル流体がセンサ部3上を安定して通過する前の状態であり、図12において、3.25[s]以上5[s]以下までのDは、図13Dに示すようにサンプル流体がセンサ部3上を安定して定常的に一定量が流れているときである。 Here, in FIG. 12, A from 0 [s] to less than 1.5 [s] is a state before the sample fluid passes over the sensor unit 3 as shown in FIG. 13A. B in s] is when the sample fluid starts to pass over the sensor unit 3 as shown in FIG. 13B. In FIG. 12, C between 1.5 [s] and less than 3.25 [s] is shown in FIG. Is a state before the sample fluid stably passes over the sensor unit 3, and in FIG. 12, D from 3.25 [s] to 5 [s] is sample fluid as shown in FIG. 13D. This is when a constant amount is flowing stably and constantly on the sensor unit 3.
 図13Cに示す画像からCでのサンプル流体は流路幅に十分広がっておらず、流れ方向(x方向)だけでなく、サンプル流体の流れに垂直な流路幅方向にもサンプル流体が動いていること考えられる。そのため、このCの段階でのデータは純粋なサンプル流体の流れ方向のせん断応力によるものではないと考えられる。サンプル流体が、図13Dに示すような状態になると、サンプル流体は流路幅に十分広がり、流れが安定し定常状態にあると考えられる。 From the image shown in FIG. 13C, the sample fluid in C does not sufficiently spread in the channel width, and the sample fluid moves not only in the flow direction (x direction) but also in the channel width direction perpendicular to the sample fluid flow. It is thought that there is. Therefore, it is considered that the data at stage C is not due to shear stress in the flow direction of pure sample fluid. When the sample fluid is in a state as shown in FIG. 13D, the sample fluid is sufficiently spread over the channel width, and the flow is considered to be stable and in a steady state.
 ここで図13Aに示すようなサンプル流体の状態でのセンサ部3の平均抵抗値をRAとし、図13Dに示すようなサンプル流体の状態でのセンサ部3の平均抵抗値をRDとすると、サンプル流体が図13Dに示すような状態にあるとき、センサ部3に(RD-RA)/RAに対応する力が働いていることが分かる。 Here, if the average resistance value of the sensor unit 3 in the state of the sample fluid as shown in FIG. 13A is R A and the average resistance value of the sensor unit 3 in the state of the sample fluid as shown in FIG. 13D is R D When the sample fluid is in the state shown in FIG. 13D, it can be seen that a force corresponding to (R D −R A ) / R A is acting on the sensor unit 3.
 ただし,RAは図12に示すBからの直前の1秒間の平均をとり、RDは図12に示すCからの直後1秒間の平均をとった。そして、4種類の各サンプル流体について、それぞれ5段階の流量に対して、このような抵抗値変化率△R/Rの計測を行った結果、各サンプル流体の流量Qと、そのときのせん断力センサ4での抵抗値変化率△R/Rとの関係について、図14に示すような結果が得られた。なお、このような計測は3回行い、その分散をエラーバーとして図14に示した。この図14に示す結果から、サンプル流体の流量Qが多く、また粘性が大きいほど、センサ部3での抵抗値変化率△R/Rが高くなる傾向があることが確認できた。 However, RA took the average of 1 second immediately before from B shown in FIG. 12, and RD took the average of 1 second immediately after from C shown in FIG. For each of the four types of sample fluids, the resistance value change rate ΔR / R was measured for each of the five stages of flow rates. As a result, the flow rate Q of each sample fluid and the shear force at that time were measured. With respect to the relationship with the resistance value change rate ΔR / R of the sensor 4, the result as shown in FIG. 14 was obtained. Such measurement was performed three times, and the dispersion is shown in FIG. 14 as error bars. From the results shown in FIG. 14, it was confirmed that the resistance value change rate ΔR / R in the sensor unit 3 tends to increase as the flow rate Q of the sample fluid increases and the viscosity increases.
 次に、サンプル流体の表面流速Uと、サンプル流体の流量Qとの関係について確認したところ、図15に示すような結果が得られた。なお、表面流速Uは、カメラからの撮像画像を解析し、流体FLの気泡等の特徴点が20[mm]移動するのに要する時間△Tを計測し、表面流速U=20/△T[mm/s]として算出する。図15に示す結果から、サンプル流体では、流量Qが大きくなると、それに応じて表面流速Uも大きくなる傾向があることが確認できた。 Next, when the relationship between the surface flow velocity U of the sample fluid and the flow rate Q of the sample fluid was confirmed, a result as shown in FIG. 15 was obtained. The surface flow velocity U is obtained by analyzing a captured image from the camera, measuring a time ΔT required for the feature point such as a bubble of the fluid FL to move 20 [mm], and the surface flow velocity U = 20 / ΔT [ mm / s]. From the results shown in FIG. 15, it was confirmed that in the sample fluid, when the flow rate Q increases, the surface flow velocity U tends to increase accordingly.
 次に、各サンプル流体について、せん断力センサ4上での表面流速Uと、せん断力センサ4からの抵抗値変化率△R/Rを基に算出した各サンプル流体のせん断応力τとの関係について検証した結果、図16に示すような結果が得られた。図16に示す結果から、サンプル流体の表面流速U[m/s]と、せん断力センサ4でのサンプル流体からのせん断応力τ(抵抗値変換率△R/R)とは比例関係にあることを確認できた。 Next, for each sample fluid, the relationship between the surface flow velocity U on the shear force sensor 4 and the shear stress τ of each sample fluid calculated based on the resistance value change rate ΔR / R from the shear force sensor 4 As a result of the verification, a result as shown in FIG. 16 was obtained. From the result shown in FIG. 16, the surface flow velocity U [m / s] of the sample fluid and the shear stress τ (resistance value conversion rate ΔR / R) from the sample fluid in the shear force sensor 4 are in a proportional relationship. Was confirmed.
 さらに、流路表面2aでの各サンプル流体の流体高さhを計測し、表面流速Uとせん断応力τと流体高さhとから上述した数1を基に粘度係数μを算出した。そして、この算出した粘度係数μと、各サンプル流体の調整時のサンプル粘度μ´との関係を調べた結果、図17に示すような結果が得られた。図17に示した結果から、算出した粘度係数μとサンプル粘度μ´との対応が取れていることが確認でき、分析装置によって計測した表面流速Uとせん断応力τと流体高さhとに基づいて、サンプル流体の最適な粘度係数μを算出できたことを確認できた。 Furthermore, the fluid height h of each sample fluid on the channel surface 2a was measured, and the viscosity coefficient μ was calculated based on the above equation 1 from the surface flow velocity U, shear stress τ, and fluid height h. Then, as a result of examining the relationship between the calculated viscosity coefficient μ and the sample viscosity μ ′ at the time of adjusting each sample fluid, a result as shown in FIG. 17 was obtained. From the results shown in FIG. 17, it can be confirmed that the calculated viscosity coefficient μ and the sample viscosity μ ′ are compatible, and based on the surface flow velocity U, the shear stress τ, and the fluid height h measured by the analyzer. It was confirmed that the optimum viscosity coefficient μ of the sample fluid could be calculated.
 (2)第2の実施の形態
 図18において、35は、第2の実施の形態によるスティック型の分析装置を示し、流体FL内にて所定の方向に移動させるだけで、流体FLの粘度を計測し得るように構成されており、使用者が携帯し易いように小型化が図られている。実際上、この分析装置35は、細長い四角柱形状で形成された棒状部材からなる本体36を備えており、この本体36の四辺のうち一側面36aにせん断力センサ37が設けられているとともに、一側面36aと直角に配置された一端面36bに圧力センサ38が設けられた構成を有する。
(2) Second Embodiment In FIG. 18, reference numeral 35 denotes a stick-type analyzer according to the second embodiment, and the viscosity of the fluid FL can be increased only by moving it in a predetermined direction in the fluid FL. It is configured so that it can be measured, and the size is reduced so that the user can easily carry it. In practice, the analyzer 35 includes a main body 36 made of a rod-like member formed in an elongated quadrangular prism shape, and a shear force sensor 37 is provided on one side surface 36a of the four sides of the main body 36, and A pressure sensor 38 is provided on one end surface 36b arranged at right angles to the one side surface 36a.
 ここで、本体36には、せん断力センサ37及び圧力センサ38がともに中央位置よりも低い下端部近傍に設けられている。これにより本体36は、粘性を分析する流体FLが貯溜した容器CAに中央位置付近まで入れることで、せん断力センサ37及び圧力センサ38を同時に流体FL内に浸漬し得るようになされている。 Here, the main body 36 is provided with both a shear force sensor 37 and a pressure sensor 38 in the vicinity of the lower end lower than the center position. Thus, the main body 36 can be immersed in the fluid FL at the same time by placing the fluid FL whose viscosity is to be analyzed into the container CA in which the fluid FL is stored up to the vicinity of the center position.
 このような分析装置1は、せん断力センサ37及び圧力センサ38が流体FL内に配置させた状態で、一端面36b及び他端面36cが対向している前後方向(移動方向)x2に動かされることにより、図18のA-A´部分の断面構成を示す図19に示すように、本体36の一端面36bに流体FLが当たるとともに、一側面36aに沿って流体FLが流れる。これにより分析装置1では、一側面36aに沿って流れる流体FLからのせん断応力をせん断力センサ37で計測し得るとともに、流体FLからの圧力を圧力センサ38で計測し得るようになされている。 Such an analyzer 1 is moved in the front-rear direction (movement direction) x2 in which the one end surface 36b and the other end surface 36c are opposed to each other with the shear force sensor 37 and the pressure sensor 38 disposed in the fluid FL. Accordingly, as shown in FIG. 19 showing the cross-sectional configuration of the AA ′ portion of FIG. 18, the fluid FL hits the one end surface 36b of the main body 36, and the fluid FL flows along the one side surface 36a. Thereby, in the analyzer 1, the shear stress from the fluid FL flowing along the one side surface 36a can be measured by the shear force sensor 37, and the pressure from the fluid FL can be measured by the pressure sensor 38.
 実際上、本体36は、一側面36a及び他側面36dも凹凸のない平面状に形成され、当該一側面36aの一部に形成された凹み部36e内にせん断力センサ37を有し、当該せん断力センサ37の弾性体層2の流路表面2aと、一側面36aとが面一に形成されている。ここで、流体FL内にて例えば前後方向x2に動かした場合、本体の一側面及び他側面に沿って流れた流体FLは、せん断力センサ37の流路表面2aにも流れる(図19中、矢印FL1で示す)。 In practice, the main body 36 is also formed with a flat surface on which the one side surface 36a and the other side surface 36d are not uneven, and has a shear force sensor 37 in a recess 36e formed in a part of the one side surface 36a. The flow path surface 2a of the elastic body layer 2 of the force sensor 37 and the one side surface 36a are formed flush with each other. Here, for example, when moved in the front-rear direction x2 in the fluid FL, the fluid FL that flows along one side surface and the other side surface of the main body also flows to the flow path surface 2a of the shear force sensor 37 (in FIG. 19, (Indicated by arrow FL1).
 ここで、せん断力センサ37に与えられる流体FLからのせん断応力については以下のように考察できる。但し、ここでは、流体FLが食品のように十分粘度が高く、本体36を前後方向x2に移動させる速度が遅い(生じる流れのレイノルズ数が十分小さく、例えば1以下である)ものとする。この場合、せん断力センサ37上を基準とし、一側面36aに平行な軸をx軸とし、一側面36aに垂直な軸をy軸として座標を設定すると、せん断力センサ37の流路表面2a付近(境界層)には、図20Aに示すような速度勾配が生じる。この流体FLの流れによってせん断力センサ37の流路表面2aに加えられる摩擦力は、下記の式で表されるせん断応力となる。 Here, the shear stress from the fluid FL applied to the shear force sensor 37 can be considered as follows. However, here, it is assumed that the fluid FL has a sufficiently high viscosity like a food and the moving speed of the main body 36 in the front-rear direction x2 is slow (the Reynolds number of the generated flow is sufficiently small, for example, 1 or less). In this case, when the coordinates are set with the axis parallel to the side surface 36a as the x axis and the axis perpendicular to the side surface 36a as the y axis, the shear force sensor 37 is near the flow path surface 2a. In the (boundary layer), a velocity gradient as shown in FIG. 20A is generated. The frictional force applied to the flow path surface 2a of the shear force sensor 37 by the flow of the fluid FL becomes a shear stress expressed by the following equation.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、τ(x)はせん断力センサ37の流路表面2aに加わるせん断応力、uは流路表面2a上に生じるx軸方向の流速、μは流体FLの粘度(粘度係数)とする。ここで、流路表面2a上の流体FLの流れの速度に関するブラシウスの方程式によると、平板上でのx軸方向の流速は下記のように表される。 Here, τ (x) is a shear stress applied to the flow path surface 2a of the shear force sensor 37, u is a flow velocity in the x-axis direction generated on the flow path surface 2a, and μ is a viscosity (viscosity coefficient) of the fluid FL. Here, according to the Blaus equation concerning the flow velocity of the fluid FL on the flow path surface 2a, the flow velocity in the x-axis direction on the flat plate is expressed as follows.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 但し、Uは、境界層外側の流速が一定となっている領域の表面流速であり、ηは、流路表面2a上での流体FLの流れの速度分布がx軸上の位置に寄らず相似形を取ることを表す相似変数であり、δは、境界層の厚み(流路表面2a上から速度分布が一定になる位置までの距離)である。ナビエ・ストークス方程式によると、流路表面2a上に生成される境界層の厚みは、下記に示すように、時間変化する関数であり、定常流れの表面流速と、せん断力センサ37の位置によって求めることができる。ただし、ρは液体の密度である。 However, U is the surface flow velocity in the region where the flow velocity outside the boundary layer is constant, and η is similar regardless of the velocity distribution of the fluid FL flow on the flow path surface 2a regardless of the position on the x-axis. It is a similar variable that represents taking a shape, and δ is the thickness of the boundary layer (the distance from the flow path surface 2a to the position where the velocity distribution becomes constant). According to the Navier-Stokes equation, the thickness of the boundary layer generated on the flow path surface 2a is a time-varying function as shown below, and is determined by the surface velocity of the steady flow and the position of the shear force sensor 37. be able to. Where ρ is the density of the liquid.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 上述した数7~数9から、せん断力センサ37の流路表面2aに流体FLから加わるせん断応力τ(x)は下記のように表すことができる。但し、kは比例定数とする。 From the equations 7 to 9, the shear stress τ (x) applied from the fluid FL to the flow path surface 2a of the shear force sensor 37 can be expressed as follows. However, k is a proportionality constant.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 一方、本体36の一端面36bに設けた圧力センサ38に加わる圧力方向の力Fは下記のように表すことができる。但し、Qは圧力センサ38に単位時間当たり加わる流体FLの流れの流量であり、Aは圧力センサ38の表面積である(図20B)。 On the other hand, the force F in the pressure direction applied to the pressure sensor 38 provided on the one end surface 36b of the main body 36 can be expressed as follows. However, Q is the flow rate of the fluid FL applied to the pressure sensor 38 per unit time, and A is the surface area of the pressure sensor 38 (FIG. 20B).
Figure JPOXMLDOC01-appb-M000013
 上述した数11及び数12から流体の粘度μは下記のように表すことができる。
Figure JPOXMLDOC01-appb-M000013
From the above formulas (11) and (12), the fluid viscosity μ can be expressed as follows.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 但し、Pは圧力センサ38前面に加わる流体FLの圧力とし、Kは比例定数とする。数14に示すように、比例定数Kにはせん断力センサ37のセンサ部(後述する)位置xと流体FLの密度ρの二つの変数が含まれているが、せん断力センサ37のセンサ部位置は一意に決定することが可能であること、密度ρは計測する対象が食品などと限られており、ほとんどの粘性分析対象物の密度が1.0程度であることから、定数と近似して扱うことができる。 However, P is the pressure of the fluid FL applied to the front surface of the pressure sensor 38, and K is a proportional constant. As shown in Equation 14, the proportional constant K includes two variables, that is, a sensor portion (described later) position x of the shear force sensor 37 and a density ρ of the fluid FL. Can be determined uniquely. Density ρ is limited to foods, etc., and most viscometric analytes have a density of about 1.0. Can do.
 かくして、第2の実施の形態による分析装置1では、上述した数13の結果が示すように、本体36の一端面36bに圧力センサ38を設けるとともに、本体36の一側面36aにせん断力センサ37を設けることにより、流体FLの粘度(粘度係数)μを計測することができる。 Thus, in the analyzer 1 according to the second embodiment, as shown by the above-described result of Equation 13, the pressure sensor 38 is provided on the one end surface 36b of the main body 36, and the shear force sensor 37 is provided on one side surface 36a of the main body 36. By providing the above, the viscosity (viscosity coefficient) μ of the fluid FL can be measured.
 なお、せん断力センサ37は、図4に示したように、上述した第1の実施の形態のせん断力センサ4と同一構成を有しており、センサ部3が板部12上に配置され、このセンサ部3を覆うように弾性体層2が設けられた構成を有する。このセンサ部3は、本体36の一側面36aに対して直立するようにカンチレバー部21が配置されているとともに、当該カンチレバー部21における可動部21cの面部が前後方向x2に対して垂直に配置されている(図4)。 As shown in FIG. 4, the shear force sensor 37 has the same configuration as the shear force sensor 4 of the first embodiment described above, and the sensor unit 3 is disposed on the plate unit 12. The elastic body layer 2 is provided so as to cover the sensor unit 3. In the sensor unit 3, a cantilever portion 21 is disposed so as to stand upright with respect to one side surface 36a of the main body 36, and a surface portion of the movable portion 21c in the cantilever portion 21 is disposed perpendicular to the front-rear direction x2. (FIG. 4).
 センサ部3を覆う弾性体層2は、上述した第1の実施の形態と同様の弾性部材からなり、外部に露出した流路表面2aが平面状に形成され、当該流路平面2aが本体35の一側面36aと面一に形成されている。弾性体層2は、前後方向x2に本体35が動かされることにより、流体FLが流路表面2aに沿って流れ、当該流体FLからのせん断応力が流路表面2aに与えられると、それに応じて変形してセンサ部3を前後方向x2に傾倒させ得るようになされている。かくしてセンサ部3では、流体FLからのせん断応力の大きさに応じてカンチレバー部21の傾倒度合いが変化し、これに応じてピエゾ抵抗層24の抵抗値も変化し得るようになされている。 The elastic body layer 2 covering the sensor unit 3 is made of an elastic member similar to that of the first embodiment described above, the flow path surface 2a exposed to the outside is formed in a flat shape, and the flow path plane 2a is the main body 35. Is formed flush with one side surface 36a. When the main body 35 is moved in the front-rear direction x2, the elastic body layer 2 flows the fluid FL along the flow path surface 2a, and when shear stress from the fluid FL is applied to the flow path surface 2a, The sensor unit 3 can be deformed and tilted in the front-rear direction x2. Thus, in the sensor unit 3, the tilting degree of the cantilever unit 21 changes in accordance with the magnitude of the shear stress from the fluid FL, and the resistance value of the piezoresistive layer 24 can also change in accordance with this.
 ここで、本体35には、CPU等からなる情報処理手段(図示せず)を内蔵しており、この情報処理手段によって、せん断力センサ37からの抵抗値変化率△R/Rを基に、上述した数6から流体FLからのせん断応力τを算出し得る。また、情報処理手段は、圧力センサ38に加わる流体FLからの圧力Pを、当該圧力センサ38から受け取り、上述した数13を基に、計測したせん断応力τと圧力Pとから粘度係数μを算出し得るようになされている。 Here, the main body 35 incorporates information processing means (not shown) composed of a CPU or the like, and by this information processing means, based on the resistance value change rate ΔR / R from the shear force sensor 37, The shear stress τ from the fluid FL can be calculated from Equation 6 described above. Further, the information processing means receives the pressure P from the fluid FL applied to the pressure sensor 38 from the pressure sensor 38, and calculates the viscosity coefficient μ from the measured shear stress τ and the pressure P based on the above formula 13. It is made to be able to do.
 以上の構成において、分析装置35では、流体FL内にせん断力センサ37と圧力センサ38とを浸し、この状態のまま前後方向x2に本体36を移動させることにより、せん断力センサ37のセンサ部3が変形し、これにより抵抗値変化率△R/Rを計測することができる。 In the above configuration, in the analyzer 35, the shear force sensor 37 and the pressure sensor 38 are immersed in the fluid FL, and the main body 36 is moved in the front-rear direction x2 in this state, so that the sensor unit 3 of the shear force sensor 37 Is deformed, whereby the resistance value change rate ΔR / R can be measured.
 また、分析装置1では、本体36に内蔵させた情報処理手段によって、センサ部3での抵抗値変化率△R/Rを基に上述した数6を用い流体FLからのせん断応力τを算出することができ、かくしてせん断力センサ37からの抵抗値変化率△R/Rを基に使用者に対し流体FLの粘性を分析させることができる。 Further, in the analyzer 1, the information processing means built in the main body 36 calculates the shear stress τ from the fluid FL using Equation 6 described above based on the resistance value change rate ΔR / R in the sensor unit 3. Thus, based on the resistance value change rate ΔR / R from the shear force sensor 37, the user can analyze the viscosity of the fluid FL.
 また、この分析装置1では、圧力センサ38が設けられていることにより、流体FL内にて本体36を前後方向x2に移動させた際、圧力センサ38が流体FLから受ける圧力Pを計測することができる。これにより、分析装置1では、本体36内部に設けた情報処理手段によって、上述した数13を基に、これら流体FLのせん断応力τと、流体FLから受ける圧力Pとから流体FLの粘度係数(粘度)μを算出することができ、かくして粘度係数μを音声通知や表示部に表示することで使用者に通知し、流体FLがどの程度の粘性を有しているかを認識させることができる。 In addition, the analyzer 1 is provided with the pressure sensor 38, so that when the main body 36 is moved in the front-rear direction x2 in the fluid FL, the pressure sensor 38 measures the pressure P received from the fluid FL. Can do. Thereby, in the analyzer 1, the viscosity coefficient of the fluid FL (from the shear stress τ of the fluid FL and the pressure P received from the fluid FL is calculated by the information processing means provided in the main body 36 based on the above-described Expression 13. (Viscosity) μ can be calculated, and thus the user can be notified by displaying the viscosity coefficient μ on the voice notification or the display unit, and can recognize the viscosity of the fluid FL.
 因みに、上述した圧力センサ38は、種々の構造のものを適用することができ、例えば後述する「(3)第3の実施の形態」にて述べる両持ち梁のカンチレバー部51を備えた第3センサ部50c(図24にて説明する)を備え、この第3センサ部50cが弾性体層で覆われた圧力センサを適用してもよい。 Incidentally, the pressure sensor 38 described above can be applied to various structures, for example, a third cantilever 51 having a cantilever 51 described in “(3) Third Embodiment” described later. A pressure sensor that includes a sensor unit 50c (described with reference to FIG. 24) and is covered with an elastic layer may be applied.
 以上の構成によれば、流路表面2aに流体FLが流れることで、流体FLからのせん断応力により変位する弾性体層2と、この弾性体層2に覆われており、弾性体層2が変位することにより可動する可動部21cを有するセンサ部3とを設けたことにより、粘性抵抗力に基づいて流体の粘度を測定する従来の回転式粘度計とは異なり、可動部21cの変化状態を基に流体FLの粘性を分析することができ、かくして従来にない新規な分析手法を用いた分析装置35を提案できる。 According to the above configuration, when the fluid FL flows on the flow path surface 2a, the elastic body layer 2 is displaced by the shearing stress from the fluid FL, and the elastic body layer 2 is covered with the elastic body layer 2. Unlike the conventional rotary viscometer that measures the viscosity of the fluid based on the viscous resistance force, the change state of the movable part 21c is changed by providing the sensor part 3 having the movable part 21c that moves by being displaced. Based on this, it is possible to analyze the viscosity of the fluid FL, and thus it is possible to propose an analysis apparatus 35 that uses a novel analysis technique that has not existed before.
 また、この分析装置35では、弾性体層2aに覆われたセンサ部3と、流体FLから受ける圧力を計測する圧力センサ38とを設けるようにしたことにより、センサ部3から得られた計測結果と、圧力センサ38から得られた圧力計測結果とから、流体FLの粘度係数μを算出することでき、かくして粘度係数μに基づいて流体FLがどのような粘性を有しているかを分析することができる。 Further, in this analyzer 35, the measurement result obtained from the sensor unit 3 is provided by providing the sensor unit 3 covered with the elastic body layer 2a and the pressure sensor 38 for measuring the pressure received from the fluid FL. From the pressure measurement result obtained from the pressure sensor 38, the viscosity coefficient μ of the fluid FL can be calculated, and thus the viscosity of the fluid FL is analyzed based on the viscosity coefficient μ. Can do.
 (3)第3の実施の形態
 図21において、41は第3の実施の形態による携帯型の分析装置を示し、この分析装置41は、第2の実施の形態による分析装置35と異なり流体FLをかき混ぜる方向が特に決められておらず、流体FL内にて本体42を任意の方向に移動させるだけで、流体FLの粘度を計測し得るように構成されている。
(3) Third Embodiment In FIG. 21, reference numeral 41 denotes a portable analyzer according to the third embodiment. This analyzer 41 is different from the analyzer 35 according to the second embodiment in the fluid FL. The direction in which the fluid is stirred is not particularly determined, and the viscosity of the fluid FL can be measured simply by moving the main body 42 in the fluid FL in an arbitrary direction.
 実際上、この分析装置41は、円柱状に形成された棒状部材からなる本体42を備えており、当該本体42の下端部近傍の周辺面42aに複数のせん断力センサ44a,44b…が設けられている。この実施の形態の場合、図22に示すように、本体42には、等間隔を開けて4つのせん断力センサ44a,44b,44c,44dが設けられており、本体42を流体FL内にて所定の方向に移動させることにより、流体FLが本体42の周辺面42aに沿って流れるとともに、せん断力センサ44a,44b,44c,44dの流路表面45aにも流体FLが流れるように構成さている。ここで、これら複数のせん断力センサ44a,44b,44c,44dは全て同一構成を有していることから、そのうち1つのせん断力センサ44aに着目してその構成について説明する。 In practice, the analyzer 41 includes a main body 42 formed of a rod-shaped member formed in a columnar shape, and a plurality of shear force sensors 44a, 44b,... Are provided on a peripheral surface 42a near the lower end of the main body 42. ing. In the case of this embodiment, as shown in FIG. 22, the main body 42 is provided with four shear force sensors 44a, 44b, 44c, 44d at equal intervals, and the main body 42 is placed in the fluid FL. By moving in a predetermined direction, the fluid FL flows along the peripheral surface 42a of the main body 42, and the fluid FL also flows on the flow path surface 45a of the shear force sensors 44a, 44b, 44c, 44d. . Here, since the plurality of shear force sensors 44a, 44b, 44c, and 44d all have the same configuration, the configuration will be described by focusing on one of the shear force sensors 44a.
 図23に示すように、せん断力センサ44aは、センサ群46と、センサ群46を覆う直方体状の弾性体層45とを備え、互いに直交するx軸方向、y軸方向及びz軸方向の3軸方向にそれぞれ加わる流体FLからのせん断応力をセンサ群46において計測し得るようになされている。センサ群46は、x軸方向に働く外力を感知する第1センサ部50aと、x軸方向と直交するy軸方向に働く外力を感知する第2センサ部50bと、x軸方向及びy軸方向と直交するz軸方向に働く外力を感知する第3センサ部50cとが基台部49に設けられており、これら第1センサ部50a、第2センサ部50b及び第3センサ部50cが互いに所定間隔を空けて基台部49上に配置された構成を有する。 As shown in FIG. 23, the shear force sensor 44a includes a sensor group 46 and a rectangular parallelepiped elastic body layer 45 that covers the sensor group 46, and includes 3 in the x-axis direction, the y-axis direction, and the z-axis direction orthogonal to each other. The sensor group 46 can measure the shear stress from the fluid FL applied in the axial direction. The sensor group 46 includes a first sensor unit 50a that senses an external force acting in the x-axis direction, a second sensor unit 50b that senses an external force acting in the y-axis direction orthogonal to the x-axis direction, and the x-axis direction and the y-axis direction. A third sensor unit 50c that senses an external force acting in the z-axis direction orthogonal to the base unit 49 is provided on the base unit 49, and the first sensor unit 50a, the second sensor unit 50b, and the third sensor unit 50c are predetermined to each other. It has the structure arrange | positioned on the base part 49 at intervals.
 図24に示すように、第1センサ部50a及び第2センサ部50bは、上述した第1の実施の形態によるセンサ部3と同一構成を有しており、基台部49に固定される基部21aと、基部21aに連接した一対のヒンジ部21bと、自由端たる可動部21cとで構成されたカンチレバー部21を備え、2脚構造のヒンジ部21bによって可動部21cが基台部49に対して直立した状態に保持され得る。この実施の形態の場合、第1センサ部50aは、可動部21cの面部がx軸方向に対して垂直に配置されており、x軸方向に加わる流体FLからのせん断応力により可動部21cがx軸方向に傾倒し得るようになされている。 As shown in FIG. 24, the first sensor unit 50a and the second sensor unit 50b have the same configuration as the sensor unit 3 according to the first embodiment described above and are fixed to the base unit 49. 21a, a pair of hinge parts 21b connected to the base part 21a, and a cantilever part 21 composed of a movable part 21c as a free end, and the movable part 21c is connected to the base part 49 by the hinge part 21b having a two-leg structure. And can be held upright. In the case of this embodiment, in the first sensor unit 50a, the surface part of the movable part 21c is arranged perpendicular to the x-axis direction, and the movable part 21c becomes x by shearing stress from the fluid FL applied in the x-axis direction. It can be tilted in the axial direction.
 また、第2センサ部50bは、可動部21cの面部がy軸方向に対して垂直に配置されており、y軸方向に加わる流体FLからのせん断応力により可動部21cがy軸方向に傾倒し得るようになされている。一方、これに対して第3センサ部50cは、これら第1センサ部50a及び第2センサ部50bとは異なり、平面状の可動部51cが基台部49に対してほぼ面一に設けられた平面型のカンチレバー部51を備えている。 In the second sensor unit 50b, the surface part of the movable part 21c is arranged perpendicular to the y-axis direction, and the movable part 21c tilts in the y-axis direction due to the shear stress from the fluid FL applied in the y-axis direction. Has been made to get. On the other hand, the third sensor unit 50c is different from the first sensor unit 50a and the second sensor unit 50b in that the planar movable unit 51c is provided substantially flush with the base unit 49. A planar cantilever 51 is provided.
 このカンチレバー部51は、可動部51cの対向する両端部に薄板状のヒンジ部51bがそれぞれ設けられており、流体FLからのせん断応力がz軸方向から流路表面2aに与えられると、変形した弾性体層45からの力を可動部51cにて受け止め、当該可動部51cがz軸方向に変位し得るようになされている。かくして第3センサ部50cでは、流体FLからz軸方向に加わるせん断応力の大きさに応じて、カンチレバー部51の変位度合いが変化し、これに応じてピエゾ抵抗層の抵抗値も変化し得るようになされている。 The cantilever part 51 is provided with thin plate-like hinge parts 51b at both opposing ends of the movable part 51c, and deformed when shear stress from the fluid FL is applied to the flow path surface 2a from the z-axis direction. The force from the elastic layer 45 is received by the movable portion 51c, and the movable portion 51c can be displaced in the z-axis direction. Thus, in the third sensor unit 50c, the degree of displacement of the cantilever 51 changes according to the magnitude of the shear stress applied in the z-axis direction from the fluid FL, and the resistance value of the piezoresistive layer can also change accordingly. Has been made.
 このように、これら第1センサ部50a、第2センサ部50b及び第3センサ部50cは、弾性体層45から外力が加わると、3軸方向からそれぞれ加わる外力を、対応する可動部21c,51cが受けとめ、それぞれのヒンジ部21b,51bが変位することで当該ヒンジ部21b,51bのピエゾ抵抗層によりヒンジ部21b,51bの変形のみを抵抗値として計測し得るようになされている。すなわち、これら第1センサ部50a、第2センサ部50b及び第3センサ部50cは、ヒンジ部21b,51bの端点の電極間に電位差を与え、ヒンジ部21b,51bの抵抗値変化△R/Rを計測し、その計測結果からカンチレバー部21,51にそれぞれ働く力(流体FLからのせん断応力τ)を計測し得るようになされている。 Thus, when the external force is applied from the elastic body layer 45, the first sensor unit 50a, the second sensor unit 50b, and the third sensor unit 50c respectively apply the external force applied from the three axial directions to the corresponding movable units 21c and 51c. Therefore, only the deformation of the hinge portions 21b and 51b can be measured as a resistance value by the piezoresistive layer of the hinge portions 21b and 51b by the displacement of the hinge portions 21b and 51b. That is, the first sensor unit 50a, the second sensor unit 50b, and the third sensor unit 50c give a potential difference between the electrodes at the end points of the hinge units 21b and 51b, and the resistance value change ΔR / R of the hinge units 21b and 51b. The force acting on the cantilever parts 21 and 51 (shear stress τ from the fluid FL) can be measured from the measurement result.
 そして、図22に示すように、分析装置1では、本体42を流体FL内に浸けた状態で、任意の方向へ移動させた際、例えば、流体FLの流れに正対している(流体FLの流れに反応している)2箇所のせん断力センサ44b,44cからの出力から算出した合力の向きや大きさを基に、本体42の流路表面45aでの圧力Pと、流路表面45aの流体FLからのせん断応力τを計測し、その大きさを基に上述した数13と同様の関係を導きだし、粘度係数μを計測し得るように構成されている。 As shown in FIG. 22, in the analyzer 1, when the main body 42 is immersed in the fluid FL and moved in an arbitrary direction, for example, it faces the flow of the fluid FL (the fluid FL Based on the direction and magnitude of the resultant force calculated from the outputs from the two shear force sensors 44b and 44c (reacting to the flow), the pressure P on the channel surface 45a of the main body 42 and the channel surface 45a It is configured to measure the shear coefficient τ from the fluid FL, derive the same relationship as the above-described Expression 13 based on the magnitude, and measure the viscosity coefficient μ.
 実際上、図4との同一部分に同一符号を付した図25のように、流体FL内で本体42を移動させ、y軸方向に流体FLが流れた場合には、例えばせん断力センサ44bの弾性体層45の流路表面45aにも流体FLが流れて、当該流体FLから受けるせん断応力によって、このせん断力センサ44bの弾性体層45が流体FLの流れる方向y1に移動し変位し得る。これによりセンサ群46は、流路表面2aに対し可動部21cが直立している第1センサ部50a及び第2センサ部50bのカンチレバー部21が、弾性体層45の変位にともない傾倒し、これにより第1センサ部50a及び第2センサ部50bの抵抗値が変化し得る。因みに、図25に示すせん断力センサ44bは、上述した「(1-3)せん断力センサ及び粘度センサの製造方法」にて説明したせん断力センサ4と製造方法に従って作製できる。 In practice, when the main body 42 is moved in the fluid FL and the fluid FL flows in the y-axis direction as shown in FIG. 25 where the same reference numerals are given to the same parts as in FIG. 4, for example, the shear force sensor 44b The fluid FL also flows on the flow path surface 45a of the elastic body layer 45, and the elastic body layer 45 of the shear force sensor 44b can be moved and displaced in the flow direction y1 of the fluid FL due to the shear stress received from the fluid FL. As a result, in the sensor group 46, the cantilever portions 21 of the first sensor portion 50a and the second sensor portion 50b in which the movable portion 21c stands upright with respect to the flow path surface 2a are tilted as the elastic body layer 45 is displaced, Thus, the resistance values of the first sensor unit 50a and the second sensor unit 50b can change. Incidentally, the shearing force sensor 44b shown in FIG. 25 can be manufactured according to the shearing force sensor 4 and the manufacturing method described in “(1-3) Manufacturing method of shearing force sensor and viscosity sensor” described above.
 一方、図26に示すように、流体FL内で本体42を移動させ、z軸方向に流体FLが流れた場合、例えばせん断力センサ44bでは、弾性体層45の流路表面45aに流体FLが当たり、当該流体FLから受ける圧力Pによって、このせん断力センサ44bの弾性体層45がz軸方向から内側に向けて押され、当該弾性体層45が流体FLの流れる方向z1に変位し得る。これによりセンサ群46は、流路表面2aと平行した可動部51cを有した第3センサ部50cのカンチレバー部51が、弾性体層45からの外力を受け止めることで可動部51cが凹み、これにより曲がったヒンジ部51bでの抵抗値が変化し得る。 On the other hand, as shown in FIG. 26, when the main body 42 is moved in the fluid FL and the fluid FL flows in the z-axis direction, for example, in the shear force sensor 44b, the fluid FL is applied to the flow path surface 45a of the elastic body layer 45. The elastic body layer 45 of the shear force sensor 44b is pushed inward from the z-axis direction by the pressure P received from the fluid FL, and the elastic body layer 45 can be displaced in the direction z1 in which the fluid FL flows. As a result, the sensor group 46 has the cantilever 51 of the third sensor part 50c having the movable part 51c parallel to the flow path surface 2a receiving the external force from the elastic layer 45, so that the movable part 51c is recessed. The resistance value at the bent hinge portion 51b can change.
 ここで、分析装置41では、流体FL中で本体42を移動させた際の流体FLの流れ方を考慮して、4箇所にせん断力センサ44a,44b,44c,44dを配置し(図22)、流体FLの流れに正対している(すなわち、流体の流れに反応している)例えば2箇所のせん断力センサ44b,44cからそれぞれ得られた出力を基に流体FLの合力の向き・大きさを求め、これら合力の向き・大きさから、流体FLからの圧力Pと、流体FLからのせん断応力τとを計測し得る。 Here, in the analyzer 41, the shear force sensors 44a, 44b, 44c, and 44d are arranged at four locations in consideration of the flow of the fluid FL when the main body 42 is moved in the fluid FL (FIG. 22). The direction and magnitude of the resultant force of the fluid FL that is directly opposed to the flow of the fluid FL (that is, that reacts to the flow of the fluid), for example, based on the outputs obtained from the two shear force sensors 44b and 44c, respectively. And the pressure P from the fluid FL and the shear stress τ from the fluid FL can be measured from the direction and magnitude of these resultant forces.
 そして、分析装置41では、例えば2箇所のせん断力センサ44b,44cから得られた流体FLからの圧力Pと、流体FLからのせん断応力τとから、上述した数13の関係式から、流体FLの粘度係数μを計測し得るようになされている。 In the analyzer 41, for example, the fluid FL is calculated from the above-described relational expression 13 based on the pressure P from the fluid FL obtained from the two shear force sensors 44b and 44c and the shear stress τ from the fluid FL. The viscosity coefficient μ can be measured.
 以上の構成において、この分析装置41では、本体42の周辺面42aに複数のせん断力センサ44a,44b,44c,44dを設け、3軸方向のせん断応力が計測可能なセンサ群46を各せん断力センサ44a,44b,44c,44dにそれぞれ設けるようにした。このような分析装置41では、これらせん断力センサ44a,44b,44c,44dを流体FL内に浸けて、例えば、図21に示すように、使用者によって本体42の長手方向が鉛直に維持されたまま、本体42が水平に移動されても、図23に示す第1センサ部50a、第2センサ部50b及び第3センサ部50cのうち、可動部21cの面部がx軸方向に対して垂直に配置された第1センサ部50aにより流体FLからのせん断応力τを計測できる。また、分析装置41では、これと同時に、可動部51cの面部がz軸方向に対して垂直に配置された第3センサ部50cにより流体FLからの圧力Pを計測できる。これにより、分析装置41では、センサ群46から得られた流体FLのせん断応力τと圧力Pとを基に、上述した数13から粘度係数μを算出することができる。 In the above-described configuration, the analyzer 41 is provided with a plurality of shear force sensors 44a, 44b, 44c, and 44d on the peripheral surface 42a of the main body 42, and a sensor group 46 capable of measuring shear stress in three axial directions is provided for each shear force. Each of the sensors 44a, 44b, 44c, and 44d is provided. In such an analyzer 41, these shear force sensors 44a, 44b, 44c, and 44d are immersed in the fluid FL, and the longitudinal direction of the main body 42 is maintained vertical by the user, for example, as shown in FIG. Even if the main body 42 is moved horizontally, the surface portion of the movable portion 21c is perpendicular to the x-axis direction among the first sensor portion 50a, the second sensor portion 50b, and the third sensor portion 50c shown in FIG. The shear stress τ from the fluid FL can be measured by the arranged first sensor unit 50a. At the same time, in the analyzer 41, the pressure P from the fluid FL can be measured by the third sensor unit 50c in which the surface part of the movable part 51c is arranged perpendicular to the z-axis direction. As a result, the analyzer 41 can calculate the viscosity coefficient μ from the above equation 13 based on the shear stress τ and the pressure P of the fluid FL obtained from the sensor group 46.
 また、分析装置41では、これらせん断力センサ44a,44b,44c,44dを流体FL内に浸けて、例えば、図27に示すように、使用者によって本体42の長手方向が鉛直から所定角度θ1傾けられた状態のまま、本体42がこの角度方向に沿って移動されても、図23に示す第1センサ部50a、第2センサ部50b及び第3センサ部50cのうち、可動部21cの面部がx軸方向に対して垂直に配置された第1センサ部50aと、可動部21cの面部がy軸方向に対して垂直に配置された第2センサ部50bとにより、流体FLからのせん断応力τを計測できる。またこれと同時に、分析装置41では、可動部51の面部がz軸方向に対して垂直に配置された第3センサ部50cにより流体FLからの圧力Pを計測できる。これにより、分析装置41では、センサ群46から得られた流体FLのせん断応力τと圧力Pとを基に、上述した数13から粘度係数μを算出することができる。 Further, in the analyzer 41, these shear force sensors 44a, 44b, 44c, and 44d are immersed in the fluid FL, and, for example, as shown in FIG. Even if the main body 42 is moved along this angular direction in the state where it is held, among the first sensor unit 50a, the second sensor unit 50b and the third sensor unit 50c shown in FIG. A shear stress τ from the fluid FL is generated by the first sensor unit 50a disposed perpendicular to the x-axis direction and the second sensor unit 50b in which the surface portion of the movable unit 21c is disposed perpendicular to the y-axis direction. Can be measured. At the same time, in the analyzer 41, the pressure P from the fluid FL can be measured by the third sensor unit 50c in which the surface part of the movable part 51 is arranged perpendicular to the z-axis direction. As a result, the analyzer 41 can calculate the viscosity coefficient μ from the above equation 13 based on the shear stress τ and the pressure P of the fluid FL obtained from the sensor group 46.
 このように分析装置41では、流体FLをかき混ぜる方向が特に決められておらず、流体FL内にて本体42を任意の方向に移動させるだけで、センサ群46により流体FLのせん断応力τ及び圧力Pを計測でき、これら計測結果から流体FLの粘度係数μを算出することができ、かくして粘度係数μを使用者に通知し、流体FLがどの程度の粘性を有しているかを認識させることができる。 Thus, in the analyzer 41, the direction in which the fluid FL is agitated is not particularly determined, and the sensor group 46 simply moves the main body 42 in the fluid FL, and the sensor group 46 causes the shear stress τ and pressure of the fluid FL. P can be measured, and the viscosity coefficient μ of the fluid FL can be calculated from these measurement results, thus notifying the user of the viscosity coefficient μ and recognizing how much viscosity the fluid FL has. it can.
 (4)第4の実施の形態
 図28において、55は第4の実施の形態による携帯型の分析装置を示し、この分析装置55は、第2の実施の形態による分析装置35とは本体52の形状がY字状に形成されている点と、せん断力センサ37が2つ設けられている点とで相違している。
(4) Fourth Embodiment In FIG. 28, 55 denotes a portable analyzer according to the fourth embodiment, and this analyzer 55 is different from the analyzer 35 according to the second embodiment in the main body 52. Is different in that it is formed in a Y shape and in that two shear force sensors 37 are provided.
 この場合、本体52は、所定の厚みを有しており、棒状の把持部53の下端部から第1脚部54aと第2脚部54bに二股に分岐し、これら第1脚部54a及び第2脚部54b間が下端部から離れるに従って幅広になるように形成されている。これに加えて、第1脚部54aには、第2脚部54bと対向する内面52bに2つのせん断力センサ37が縦方向に並んで配置されているとともに、この内面52bと直交する前面52aに圧力センサ38が設けられている。 In this case, the main body 52 has a predetermined thickness and bifurcates into a first leg portion 54a and a second leg portion 54b from the lower end portion of the rod-shaped gripping portion 53, and the first leg portion 54a and the first leg portion 54a. The two leg portions 54b are formed so as to become wider as the distance from the lower end portion increases. In addition, in the first leg 54a, two shear force sensors 37 are arranged in the vertical direction on the inner surface 52b facing the second leg 54b, and the front surface 52a orthogonal to the inner surface 52b. A pressure sensor 38 is provided.
 このような分析装置55は、本体52に設けられたせん断力センサ37及び圧力センサ38を流体FL内に浸し、この状態のまま本体52を前後方向(移動方向)x2に移動させるだけで、流体FLの粘度係数μを計測し得るように構成されている。ここで、せん断力センサ37は、上述した第1及び第2の実施の形態と同一構成を有しており、センサ部3が板部12上に配置され(図4)、このセンサ部3を覆うように弾性体層2が設けられた構成を有している。センサ部3は、第1脚部54aの内面52bに対して直立するようにカンチレバー部21が配置されているとともに、当該カンチレバー部21における可動部21cの面部が前後方向x2に対して垂直に配置されている。 Such an analyzer 55 can be obtained by immersing the shear force sensor 37 and the pressure sensor 38 provided in the main body 52 in the fluid FL and moving the main body 52 in the front-rear direction (movement direction) x2 in this state. It is configured so that the viscosity coefficient μ of FL can be measured. Here, the shear force sensor 37 has the same configuration as that of the first and second embodiments described above, and the sensor unit 3 is disposed on the plate unit 12 (FIG. 4). The elastic body layer 2 is provided so as to cover it. In the sensor unit 3, the cantilever part 21 is arranged so as to stand upright with respect to the inner surface 52b of the first leg part 54a, and the surface part of the movable part 21c in the cantilever part 21 is arranged perpendicular to the front-rear direction x2. Has been.
 センサ部3を覆う弾性体層2は、外部に露出した流路表面2aが平面状に形成され、当該流路平面2aが第1脚部54bの内面52bと面一に形成されている。弾性体層2は、前後方向x2に本体52が動かされることにより、流体FLが流路表面2aに沿って流れ、当該流体FLからのせん断応力により変形してセンサ部3に外力を伝え、当該センサ部3を前後方向x2に傾倒させ得るようになされている。かくしてセンサ部3では、流体FLからのせん断応力の大きさに応じてカンチレバー部21の傾倒度合いが変化し、これに応じてピエゾ抵抗層の抵抗値も変化し得るようになされている。 The elastic body layer 2 covering the sensor unit 3 has a channel surface 2a exposed to the outside formed in a flat shape, and the channel surface 2a is formed flush with the inner surface 52b of the first leg 54b. When the main body 52 is moved in the front-rear direction x2, the elastic body layer 2 flows the fluid FL along the flow path surface 2a, and is deformed by the shear stress from the fluid FL to transmit an external force to the sensor unit 3. The sensor unit 3 can be tilted in the front-rear direction x2. Thus, in the sensor unit 3, the tilting degree of the cantilever part 21 changes according to the magnitude of the shear stress from the fluid FL, and the resistance value of the piezoresistive layer can also change according to this.
 本体52には、CPU等からなる情報処理手段(図示せず)が内部に設けられており、この情報処理手段によって、センサ部3からの抵抗値変化率△R/Rを基に、上述した数6から流体FLからのせん断応力τを算出し得る。また、情報処理手段は、圧力センサ38に加わる流体FLからの圧力Pを圧力センサ38から受け取り、上述した数13を基に、計測したせん断応力τと圧力Pとから粘度係数μを算出できる。 The main body 52 is provided with information processing means (not shown) including a CPU or the like, and the information processing means described above based on the resistance value change rate ΔR / R from the sensor unit 3. From Equation 6, the shear stress τ from the fluid FL can be calculated. Further, the information processing means receives the pressure P from the fluid FL applied to the pressure sensor 38 from the pressure sensor 38, and can calculate the viscosity coefficient μ from the measured shear stress τ and the pressure P based on the above equation 13.
 なお、上述した実施の形態においては、第1脚部54a及び第2脚部54b間の距離が次第に広がってゆくY字状でなる本体52からなる分析装置55を適用した場合について述べたが、本発明はこれに限らず、図29に示すように、第1脚部63a及び第2脚部63b間の距離が一定の距離に保たれた本体62からなる分析装置61を適用してもよい。 In the above-described embodiment, the case where the analyzer 55 including the Y-shaped main body 52 in which the distance between the first leg portion 54a and the second leg portion 54b gradually increases is described. The present invention is not limited to this, and as shown in FIG. 29, an analyzer 61 including a main body 62 in which the distance between the first leg 63a and the second leg 63b is kept constant may be applied. .
 実際上、本体62は、第1脚部63aの一端部及び第2脚部63bの一端部が棒状の連接部64で連接されており、この連接部64の中央に外方に延びた棒状の把持部65が立設した構成を有している。第1脚部63aには、第2脚部63bと対向する内面62bに例えば3つのせん断力センサ37が縦方向に並んで配置されているとともに、この内面62bと直交する前面62aに圧力センサ38が設けられている。 In practice, the main body 62 has one end portion of the first leg portion 63a and one end portion of the second leg portion 63b connected by a rod-like connecting portion 64, and a rod-like shape extending outwardly in the center of the connecting portion 64. The gripping portion 65 has a configuration in which it stands upright. In the first leg 63a, for example, three shear force sensors 37 are arranged in the longitudinal direction on the inner surface 62b facing the second leg 63b, and the pressure sensor 38 is disposed on the front surface 62a orthogonal to the inner surface 62b. Is provided.
 このような本体62を有した分析装置62でも、他の構成が上述した第4の実施の形態による分析装置55と同一構成を有していることにより、内部の情報処理手段によって、各せん断力センサ37においてセンサ部3からの抵抗値変化率△R/Rを基に、上述した数6から流体FLからのせん断応力τを算出し、圧力センサ38に加わる流体FLからの圧力Pと、計測したせん断応力τとから、上述した数13を基に粘度係数μを算出できる。 Even in the analyzer 62 having such a main body 62, the other components have the same configuration as that of the analyzer 55 according to the fourth embodiment described above. Based on the resistance value change rate ΔR / R from the sensor unit 3 in the sensor 37, the shear stress τ from the fluid FL is calculated from the above equation 6, and the pressure P from the fluid FL applied to the pressure sensor 38 is measured. From the shear stress τ, the viscosity coefficient μ can be calculated on the basis of Equation 13 described above.
 (5)第5の実施の形態
 図30において、70は第5の実施の形態による回転型の分析装置を示し、上述した第2の実施の形態と同一構成を有したせん断力センサ37が基板72に設けられた構成を有している。また、この分析装置70は、せん断力センサ37において弾性体層2で覆われた直立したセンサ部(図示せず)に対向するように回転基板73が設置された構成を有する。回転基板73は、円盤状に形成されており、弾性体層2の平面状の流路表面2aに対し、平面状の対向面部をほぼ平行に配置させ得るとともに、弾性体層2の流路表面2aとの間に所定の隙間が形成され得るように配置され得る。
(5) Fifth Embodiment In FIG. 30, reference numeral 70 denotes a rotary analyzer according to the fifth embodiment, and a shear force sensor 37 having the same configuration as that of the second embodiment is a substrate. 72 is provided. The analysis device 70 has a configuration in which a rotating substrate 73 is installed so as to face an upright sensor portion (not shown) covered with the elastic layer 2 in the shear force sensor 37. The rotating substrate 73 is formed in a disc shape, and the planar opposed surface portion can be arranged substantially parallel to the planar flow path surface 2a of the elastic body layer 2, and the flow path surface of the elastic body layer 2 It may be arranged so that a predetermined gap can be formed between 2a.
 また、この回転基板73は、せん断力センサ37の流路表面2aに対して対向面部をほぼ平行に保った状態のまま、回転軸z3を中心にして、例えば時計回り又は反時計回りのいずれか一方方向に、一定のずり速度で回転し得るようになされている。なお、他の実施の形態として、この際、せん断力センサ37の流路表面2aに対して対向面部をほぼ平行に保った状態のまま、回転軸z3を中心に時計回りに一定のずり速度で回転した後、反時計回りに反転して一定のずり速度で回転し、これら時計回りと反時計回りを一定周期で繰り返すようにしてもよい。 In addition, the rotating substrate 73 is maintained in a state where the facing surface portion is substantially parallel to the flow channel surface 2a of the shear force sensor 37, and the rotation substrate z is centered on the rotation axis z3, for example, either clockwise or counterclockwise. It can rotate in one direction at a constant shear rate. As another embodiment, at this time, with the surface facing the flow path surface 2a of the shear force sensor 37 being substantially parallel, the counter surface portion is kept substantially parallel at a constant shear rate clockwise around the rotation axis z3. After the rotation, it may be reversed counterclockwise and rotated at a constant shear speed, and these clockwise and counterclockwise rotations may be repeated at a constant cycle.
 また、この回転基板73は、回転軸z3方向に沿って移動し得、せん断力センサ37の流路表面2aとの隙間を調整可能な構成を有している。これにより、分析装置70では、せん断力センサ37の流路表面2aと、回転基板73の対向面部との間隔を空けた後、これら流路表面2a及び対向面部間に所定粘度の流体FLを配置させ、回転基板73を流体FL側に近づけてゆくことで、せん断力センサ37の流路表面2aと対向面部とにより流体FLを挟み込めるように構成されている。 Further, the rotating substrate 73 can move along the direction of the rotation axis z3 and has a configuration capable of adjusting a gap between the shearing force sensor 37 and the flow path surface 2a. Thus, in the analyzer 70, after the gap between the flow channel surface 2a of the shear force sensor 37 and the facing surface portion of the rotating substrate 73 is spaced, the fluid FL having a predetermined viscosity is disposed between the flow channel surface 2a and the facing surface portion. Then, the fluid FL is sandwiched between the flow path surface 2a of the shear force sensor 37 and the facing surface portion by moving the rotating substrate 73 closer to the fluid FL side.
 ここで、せん断力センサ37は、上述した第1の実施の形態と同一構成を有したセンサ部3(図30では図示せず)が板部12に固定され、このセンサ部3を覆うように弾性体層2が形成されており、上述した第1の実施の形態と同様に弾性体層2の変形に応じてセンサ部3のカンチレバー部21が傾倒してセンサ部3の抵抗値が変化し得るようになされている。 Here, in the shear force sensor 37, a sensor unit 3 (not shown in FIG. 30) having the same configuration as that of the first embodiment described above is fixed to the plate unit 12 and covers the sensor unit 3. The elastic body layer 2 is formed, and the cantilever portion 21 of the sensor section 3 is tilted and the resistance value of the sensor section 3 is changed according to the deformation of the elastic body layer 2 as in the first embodiment. Has been made to get.
 実際上、このせん断力センサ37は、回転基板73の回転軸z3を避けるように基板72上に配置されており、センサ部3が回転基板73の対向面部と対向する位置に設けられているとともに、センサ部3の可動部の面部が回転基板73の回動方向x4に対して垂直に配置されている。 In practice, the shear force sensor 37 is disposed on the substrate 72 so as to avoid the rotation axis z3 of the rotating substrate 73, and the sensor unit 3 is provided at a position facing the facing surface portion of the rotating substrate 73. The surface part of the movable part of the sensor part 3 is arranged perpendicular to the rotational direction x4 of the rotary substrate 73.
 これによりせん断力センサ37は、回転基板73と弾性体層2との間に流体FLを密着配置させた状態で、回転基板73を所定のずり速度で回転させることにより、流体FLを回動方向x4へ移動させ得るようになされている。この際、センサ部3は、回動方向x4に移動する流体FLからのせん断応力を弾性体層2から受け、カンチレバー部21が回動方向x4側へ傾倒し、抵抗値が変化し得る。 As a result, the shear force sensor 37 rotates the rotating substrate 73 at a predetermined shear speed while the fluid FL is closely disposed between the rotating substrate 73 and the elastic body layer 2, thereby rotating the fluid FL in the rotation direction. It can be moved to x4. At this time, the sensor unit 3 receives the shear stress from the fluid FL moving in the rotation direction x4 from the elastic body layer 2, and the cantilever unit 21 tilts toward the rotation direction x4, so that the resistance value can change.
 実際上、回転基板73と弾性体層2との間に配置される流体FLとして、粘性の低い流体FLと、粘性の高い流体FLとでは、粘性の高い流体FLが粘性の低い流体FLよりも、せん断応力が高く、これに応じてセンサ部3にて生じる抵抗値変化率△R/Rも高くなることから、使用者がこの抵抗値変化率△R/Rを基に流体FLの粘性を分析し得る。
 (6)第6の実施の形態
In practice, as the fluid FL disposed between the rotating substrate 73 and the elastic layer 2, the fluid FL having a low viscosity and the fluid FL having a high viscosity are more viscous than the fluid FL having a low viscosity. Since the shear stress is high and the resistance value change rate ΔR / R generated in the sensor unit 3 is accordingly increased, the user can determine the viscosity of the fluid FL based on the resistance value change rate ΔR / R. Can be analyzed.
(6) Sixth embodiment
 図31において、80は第6の実施の形態による分析装置を示し、この分析装置80は、円筒形状に形成された管状型の本体81を有し、本体81内に形成された中空領域ER2を流体FL3,FL4が通過し得るように構成されている。この分析装置80は、本体81内を流れる流体FL3,FL4を本体81内から取り出すことなく、本体81内を流れる流体FL3,FL4がどのような粘性を有し、本体81内で流体FL3,FL4がどのような状態で流れているかを推測可能な計測結果を得ることができる。 In FIG. 31, reference numeral 80 denotes an analyzer according to the sixth embodiment. This analyzer 80 has a tubular main body 81 formed in a cylindrical shape, and has a hollow region ER2 formed in the main body 81. The fluids FL3 and FL4 are configured to pass through. This analyzer 80 does not take out the fluids FL3 and FL4 flowing in the main body 81 from the main body 81, and the viscosity of the fluids FL3 and FL4 flowing in the main body 81 is high. It is possible to obtain a measurement result capable of guessing in what state the current flows.
 実際上、本体81には、半円筒状の半体壁部82と、半円筒状のせん断力センサ83とが縁部を合わせた状態にて固定され、円筒形状に形成された構成を有している。実際上、せん断力センサ83には、半円筒状に形成された基板85が設けられ、この基板85の内周面に複数のセンサ部86a,86b,86c,86d,86e,86f,86gが設けられており、これら複数のセンサ部86a,86b,86c,86d,86e,86f,86g全てを覆うように弾性体層87が形成されている。 In practice, the main body 81 has a configuration in which a semi-cylindrical half-body wall portion 82 and a semi-cylindrical shear force sensor 83 are fixed in a state where the edges are aligned and formed into a cylindrical shape. ing. In practice, the shear force sensor 83 is provided with a semi-cylindrical substrate 85, and a plurality of sensor portions 86a, 86b, 86c, 86d, 86e, 86f, and 86g are provided on the inner peripheral surface of the substrate 85. An elastic body layer 87 is formed so as to cover all of the plurality of sensor portions 86a, 86b, 86c, 86d, 86e, 86f, and 86g.
 せん断力センサ83は、基板85の厚みが半体壁部82の厚みよりも薄肉に形成されており、基板85上のセンサ部86a,86b,86c,86d,86e,86f,86gを覆う弾性体層87の流路表面87aが半体壁部82の内周面と面一に形成されており、中空領域ER2において半体壁部82と境に凹凸がなく、本体81内の中空領域ER2を流体FL3,FL4がスムーズに流れるようになされている。 The shearing force sensor 83 is formed such that the thickness of the substrate 85 is thinner than the thickness of the half wall portion 82, and an elastic body that covers the sensor portions 86a, 86b, 86c, 86d, 86e, 86f, and 86g on the substrate 85. The flow path surface 87a of the layer 87 is formed flush with the inner peripheral surface of the half wall portion 82, and the hollow region ER2 has no unevenness on the boundary with the half wall portion 82, and the hollow region ER2 in the main body 81 is Fluids FL3 and FL4 flow smoothly.
 実際上、せん断力センサ83には、例えば上端部から下端部まで周方向に沿って複数のセンサ部86a,86b,86c,86d,86e,86f,86gが所定間隔を開けて設けられている。この実施の形態の場合、せん断力センサ83には、上端部と中間部と下端部とにそれぞれセンサ部86a,86d,86gが設けられ、上端部及び中間部間に2つのセンサ部86b,86cが設けられているとともに、中間部及び下端部間にも2つのセンサ部86e,86fが設けられ、合計6つのセンサ部86a,86b,86c,86d,86e,86f,86gが周方向に沿って配置されている。 Actually, in the shear force sensor 83, for example, a plurality of sensor portions 86a, 86b, 86c, 86d, 86e, 86f, 86g are provided at predetermined intervals along the circumferential direction from the upper end portion to the lower end portion. In the case of this embodiment, the shear force sensor 83 is provided with sensor portions 86a, 86d, 86g at the upper end portion, the intermediate portion, and the lower end portion, respectively, and two sensor portions 86b, 86c are provided between the upper end portion and the intermediate portion. And two sensor portions 86e, 86f are also provided between the intermediate portion and the lower end portion, and a total of six sensor portions 86a, 86b, 86c, 86d, 86e, 86f, 86g are provided along the circumferential direction. Has been placed.
 ここで、各センサ部86a,86b,86c,86d,86e,86f,86gは、上述した第1の実施の形態によるセンサ部3と同一構成を有しており、カンチレバー部21における可動部21cの面部(図4)が流体FL3,FL4の流れる方向に対して垂直に配置され、基板85表面に対し可動部21cが直立するように形成されている。弾性体層87は、このような複数のセンサ部86a,86b,86c,86d,86e,86f,86gを覆うことで、センサ部86a,86b,86c,86d,86e,86f,86gを本体81内に対して非露出状態とさせている。また、この弾性体層87は、本体81内に露出する流路表面87aが凹凸のない滑らかな断面半円状に形成されており、本体81内を流れる流体FL3,FL4が流路表面87aに沿ってスムーズに流れるように形成されている。 Here, each sensor part 86a, 86b, 86c, 86d, 86e, 86f, 86g has the same configuration as the sensor part 3 according to the first embodiment described above, and the movable part 21c of the cantilever part 21 has the same configuration. The surface portion (FIG. 4) is disposed perpendicular to the direction in which the fluids FL3 and FL4 flow, and the movable portion 21c is formed upright with respect to the surface of the substrate 85. The elastic body layer 87 covers the plurality of sensor parts 86a, 86b, 86c, 86d, 86e, 86f, and 86g, so that the sensor parts 86a, 86b, 86c, 86d, 86e, 86f, and 86g are included in the main body 81. Is not exposed. In addition, the elastic body layer 87 has a flow path surface 87a exposed in the main body 81 formed in a smooth semicircular shape with no irregularities, and the fluids FL3 and FL4 flowing in the main body 81 are formed on the flow path surface 87a. It is formed to flow smoothly along.
 以上の構成において、このような分析装置80では、本体81内に流体FL3,FL4が流れると、当該流体FL3,FL4が接触している弾性体層87部分が流体FL3,FL4からのせん断応力によって流れ方向に変位し、これに対応したセンサ部86a,86b,86c,86d,86e,86f,86gが変形することにより抵抗値が変化し得る。また、分析装置80では、図示しない情報処理手段によりセンサ部86a,86b,86c,86d,86e,86f,86gからの出力電圧を測定することで、センサ部86a,86b,86c,86d,86e,86f,86gでの抵抗値の変化を計測することができる。 In the above-described configuration, in such an analyzer 80, when the fluids FL3 and FL4 flow into the main body 81, the elastic body layer 87 portion in contact with the fluids FL3 and FL4 is caused by shear stress from the fluids FL3 and FL4. The resistance value can be changed by the displacement in the flow direction and the deformation of the sensor portions 86a, 86b, 86c, 86d, 86e, 86f, 86g corresponding thereto. Further, in the analyzer 80, by measuring output voltages from the sensor units 86a, 86b, 86c, 86d, 86e, 86f, 86g by an information processing means (not shown), the sensor units 86a, 86b, 86c, 86d, 86e, Changes in resistance at 86f and 86g can be measured.
 これにより、分析装置80では、センサ部86a,86b,86c,86d,86e,86f,86gでの抵抗値変化率△R/Rを基に本体81内を流れる流体FL3,FL4の粘性を分析することができる。また、この分析装置80では、流体FL3,FL4と接触していない領域の弾性体層87は変位することなく、流体FL3,FL4と接触している弾性体層87だけが流体FL3,FL4からのせん断応力により変位し、当該流体FL3,FL4の流れる高さにまでのセンサ部86d,86e,86f,86gの抵抗値だけが変化する。かくして、分析装置80では、これらセンサ部86a,86b,86c,86d,86e,86f,86gの抵抗値変化率△R/Rを基に本体81内にてどの高さまで流体FL3,FL4が流れているか容易に推測することができる。 Thus, the analyzer 80 analyzes the viscosity of the fluids FL3 and FL4 flowing in the main body 81 based on the resistance value change rate ΔR / R in the sensor units 86a, 86b, 86c, 86d, 86e, 86f, and 86g. be able to. Further, in this analyzer 80, the elastic layer 87 in the region not in contact with the fluids FL3 and FL4 is not displaced, and only the elastic layer 87 in contact with the fluids FL3 and FL4 is removed from the fluids FL3 and FL4. Only the resistance values of the sensor portions 86d, 86e, 86f, 86g are changed to the height at which the fluids FL3, FL4 flow by being displaced by the shear stress. Thus, in the analyzer 80, the fluid FL3, FL4 flows in the main body 81 up to what height based on the resistance value change rate ΔR / R of the sensor units 86a, 86b, 86c, 86d, 86e, 86f, 86g. You can easily guess.
 さらに、この分析装置80では、本体81内を例えば水とオイルの混合流体が流れた場合、比重の違いによって、図31に示すように本体81内の下部に水(この場合、流体FL4)が流れ、上部に比重の小さいオイル(この場合、流体FL3)が流れる。このとき、分析装置80では、水とオイルの粘性の違いから、水が接触している弾性体層87部分と、オイルが接触している弾性体層87部分との変位の程度が異なることから、水が流れている領域でのセンサ部86e,86f,86gからの抵抗値変化率△R/Rと、オイルが流れている領域でのセンサ部86dからの抵抗値変化率△R/Rとが異なるものとなる。 Further, in this analyzer 80, for example, when a mixed fluid of water and oil flows in the main body 81, water (in this case, the fluid FL4) is placed in the lower portion of the main body 81 as shown in FIG. The oil with low specific gravity (in this case, fluid FL3) flows in the upper part. At this time, in the analyzer 80, due to the difference in viscosity between water and oil, the degree of displacement between the elastic layer 87 part in contact with water and the elastic layer 87 part in contact with oil is different. The resistance value change rate ΔR / R from the sensor units 86e, 86f, 86g in the region where water flows, and the resistance value change rate ΔR / R from the sensor unit 86d in the region where oil flows Will be different.
 この場合、分析装置80では、本体81内に水を流したときの流量と、そのときのセンサ部86a,86b,86c,86d,86e,86f,86gからの抵抗値変化率△R/Rとの関係を予め計測しておくとともに、本体内にオイルを流したときの流量と、そのときのセンサ部86a,86b,86c,86d,86e,86f,86gからの抵抗値変化率△R/Rとの関係を予め計測しておき、この関係データを情報処理手段に記憶させておく。 In this case, in the analyzer 80, the flow rate when water flows into the main body 81, and the resistance value change rate ΔR / R from the sensor units 86a, 86b, 86c, 86d, 86e, 86f, 86g at that time The flow rate when oil flows into the main body and the rate of change in resistance value from the sensor parts 86a, 86b, 86c, 86d, 86e, 86f, 86g at that time ΔR / R Is previously measured, and this relationship data is stored in the information processing means.
 これにより分析装置80では、本体81内に水とオイルを流してこれを解析する際に、センサ部86a,86b,86c,86d,86e,86f,86にて計測した抵抗値変化率△R/Rを、この関係データと対比することで本体81内に流れる水の流量やオイルの流量を推測することもできる。 Thus, in the analyzer 80, when water and oil are flowed into the main body 81 and analyzed, the resistance value change rate ΔR / measured by the sensor units 86a, 86b, 86c, 86d, 86e, 86f, 86 is analyzed. By comparing R with this relational data, the flow rate of water flowing in the main body 81 and the flow rate of oil can be estimated.
 (7)第7の実施の形態
 図18との対応部分に同一符号を付して示す図32において、90は、第7の実施の形態によるスティック型の分析装置を示し、第2の実施の形態と同様に、流体内にて所定の方向に往復移動させるだけで、流体の粘度μを計測し得るように構成されている。実際上、この分析装置90は、細長い四角柱形状に形成された棒状部材からなる本体91を備え、使用者が親指、人差し指及び中指で本体91を把持し得、かつ使用者が携帯し易いように本体91の小型化が図られている。
(7) Seventh Embodiment In FIG. 32, in which parts corresponding to those in FIG. 18 are assigned the same reference numerals, reference numeral 90 denotes a stick-type analyzer according to the seventh embodiment. Similar to the embodiment, the fluid viscosity μ can be measured only by reciprocating in a predetermined direction in the fluid. In practice, the analyzer 90 includes a main body 91 made of a rod-like member formed in an elongated quadrangular prism shape so that the user can hold the main body 91 with the thumb, forefinger and middle finger, and is easy for the user to carry. The main body 91 is downsized.
 本体91は、四辺のうち一側面91aにせん断力センサ92が設けられているとともに、この一側面91aと直角に配置された一端面91bに圧力センサ93が設けられた構成を有する。ここで、本体91は、せん断力センサ92及び圧力センサ93をともに下端部近傍に備えており、容器に貯溜した流体内に、せん断力センサ92及び圧力センサ93を同時に浸漬し得るようになされている。 The main body 91 has a configuration in which a shear force sensor 92 is provided on one side surface 91a of the four sides, and a pressure sensor 93 is provided on one end surface 91b arranged at right angles to the one side surface 91a. Here, the main body 91 is provided with both a shear force sensor 92 and a pressure sensor 93 in the vicinity of the lower end, so that the shear force sensor 92 and the pressure sensor 93 can be immersed in the fluid stored in the container at the same time. Yes.
 このような分析装置90は、第2の実施の形態と同様に、せん断力センサ92及び圧力センサ93を流体内に配置させた状態で、一端面91bに対し垂直方向(本体91の長手方向(Z軸方向)と、一側面91aからの垂線方向(y軸方向)とに直交するX軸方向)となる前後方向x2に動かされることにより、本体91の一端面91bに流体が直接当たるとともに、一側面91aに沿って流体が流れる。これにより分析装置90では、一側面91aに沿って流体が流れる際、せん断力センサ92にて検出した計測結果を基に、一側面91aが流体から受けるせん断応力τを算出し得るようになされている。また、これと同時に分析装置90では、この際、圧力センサ93にて検出した計測結果を基に、一端面91bが流体から受ける圧力Pを算出し得るようになされている。 Similar to the second embodiment, such an analyzer 90 has a shear force sensor 92 and a pressure sensor 93 arranged in the fluid in a direction perpendicular to the one end surface 91b (the longitudinal direction of the main body 91 ( Z-axis direction) and the front-rear direction x2 that is perpendicular to the perpendicular direction (y-axis direction) from one side 91a (y-axis direction), the fluid directly hits one end surface 91b of the main body 91, A fluid flows along one side 91a. As a result, when the fluid flows along the one side surface 91a, the analyzer 90 can calculate the shear stress τ that the one side surface 91a receives from the fluid based on the measurement result detected by the shear force sensor 92. Yes. At the same time, the analyzer 90 can calculate the pressure P received by the one end face 91b from the fluid based on the measurement result detected by the pressure sensor 93.
 実際上、本体91には、平面状に形成された一側面91a及び一端面91bの下端部近傍の一部に、四辺状の凹み部91e,91fが形成されており、一方の凹み部91e内にせん断力センサ92が配置され、他方の凹み部91f内に圧力センサ93が配置されている。本体91は、せん断力センサ92に設けられた弾性体層98aの流路表面が外部に露出しており、この流路表面が一側面91aと面一に形成されている。また、本体91は、圧力センサ93に設けられた弾性体層98bの流路表面も外部に露出しており、この流路表面も一端面91bと面一に形成されている。 Actually, the main body 91 is formed with quadrilateral recesses 91e and 91f in a part near the lower end portion of the one side surface 91a and the one end surface 91b formed in a flat shape, and the inside of the one recess 91e The shear force sensor 92 is disposed in the second recess 91f, and the pressure sensor 93 is disposed in the other recess 91f. In the main body 91, the flow path surface of the elastic layer 98a provided in the shear force sensor 92 is exposed to the outside, and the flow path surface is flush with the one side surface 91a. In the main body 91, the surface of the elastic layer 98b provided in the pressure sensor 93 is also exposed to the outside, and the surface of the flow path is also formed flush with the one end face 91b.
 ここで、この第7の実施の形態による分析装置90は、せん断力センサ92の構成と、圧力センサ93の構成とが上述した第2の実施の形態とは相違しており、図23に示した第3の実施の形態である片持ち梁の第1センサ部50aと同一構成でなる片持ち梁センサ部95aがせん断力センサ92に設けられ、同じく図23で示した第3の実施の形態である両持ち梁の第3センサ部50cと同一構成でなる両持ち梁センサ部95bが圧力センサ93に設けられている点に特徴を有する。 Here, the analyzer 90 according to the seventh embodiment differs from the second embodiment described above in the configuration of the shear force sensor 92 and the configuration of the pressure sensor 93, and is shown in FIG. A cantilever sensor unit 95a having the same configuration as that of the first sensor unit 50a of the cantilever according to the third embodiment is provided in the shear force sensor 92, and the third embodiment shown in FIG. This is characterized in that a pressure sensor 93 is provided with a doubly supported beam sensor part 95b having the same configuration as the third sensor part 50c of the doubly supported beam.
 実際上、図33に示すように、このせん断力センサ92は、片持ち梁センサ部95aが凹み部91e内の底部に設置されており、これら片持ち梁センサ部95a全体を覆うように弾性体層98aが設けられた構成を有する。せん断力センサ92は、流体内にて本体91がx軸方向に沿って移動されると、流体から受ける外力により弾性体層98aが変形し、これに応じてx軸方向に働く外力を片持ち梁センサ部95aが感知し得る。 In practice, as shown in FIG. 33, this shear force sensor 92 has a cantilever sensor portion 95a installed at the bottom of the recess 91e, and is elastic so as to cover the entire cantilever sensor portion 95a. The layer 98a is provided. When the main body 91 is moved in the fluid along the x-axis direction in the fluid, the shear force sensor 92 deforms the elastic body layer 98a by the external force received from the fluid, and cantilever the external force acting in the x-axis direction accordingly. The beam sensor unit 95a can sense it.
 因みに、片持ち梁センサ部95a及び両持ち梁センサ部95bは、上述したように、図23に示した第1センサ部50a及び第3センサ部50cと同一構成を有していることから、詳細な構成については説明が重複するため、ここでは説明を省略する。この場合、片持ち梁センサ部95aは、可動部21cの面部がx軸方向に対し垂直に配置されており、x軸方向に加わる流体からのせん断応力τにより可動部21cがx軸方向に傾倒し得るようになされている。 Incidentally, as described above, the cantilever sensor unit 95a and the cantilever sensor unit 95b have the same configuration as the first sensor unit 50a and the third sensor unit 50c shown in FIG. Since the description of such a configuration is redundant, the description is omitted here. In this case, in the cantilever sensor unit 95a, the surface portion of the movable portion 21c is arranged perpendicular to the x-axis direction, and the movable portion 21c tilts in the x-axis direction due to the shear stress τ from the fluid applied in the x-axis direction. It is made to be able to do.
 片持ち梁センサ部95aでは、流体から加わるせん断応力τの大きさに応じて、カンチレバー部21の変位度合いが変化し、これに応じてピエゾ抵抗層の抵抗値も変化し得るようになされている。この場合、片持ち梁センサ部95aは、ヒンジ部21bの端点の電極間に電位差を与え、ヒンジ部21bの抵抗値変化△R/Rを計測し、その計測結果からカンチレバー部21にそれぞれ働く力(流体からのせん断応力τ)を計測し得る。 In the cantilever sensor portion 95a, the degree of displacement of the cantilever portion 21 changes according to the magnitude of the shear stress τ applied from the fluid, and the resistance value of the piezoresistive layer can also change accordingly. . In this case, the cantilever sensor part 95a applies a potential difference between the electrodes at the end of the hinge part 21b, measures the resistance value change ΔR / R of the hinge part 21b, and determines the force acting on the cantilever part 21 from the measurement result. (Shear stress τ from fluid) can be measured.
 一方、圧力センサ93は、両持ち梁センサ部95bが凹み部91f内の底部に配置され、当該両持ち梁センサ部95b全体を覆うように弾性体層98aが設けられた構成を有する。この場合、凹み部91fには、底部に空隙部91hが形成されており、この空隙部91h上に両持ち梁センサ部95bの可動部51c及びヒンジ部51bが位置するように両持ち梁センサ部95bの基台部51aが底部に固定されている。 On the other hand, the pressure sensor 93 has a structure in which a double-supported beam sensor portion 95b is disposed at the bottom of the recessed portion 91f and an elastic body layer 98a is provided so as to cover the entire dual-supported beam sensor portion 95b. In this case, the recess 91f is formed with a gap 91h at the bottom, and the movable part 51c and the hinge part 51b of the doubly supported beam sensor part 95b are positioned on the gap 91h. A base portion 51a of 95b is fixed to the bottom.
 これにより、圧力センサ93は、流体からの圧力Pがx軸方向側から弾性体層98bの流路表面に与えられると、その圧力Pにより弾性体層98bが僅かに潰れ、変形した弾性体層98bからの力を可動部51cにて受け止め、当該可動部51cがx軸方向に変位し得るようになされている。かくして両持ち梁センサ部95bでは、流体からx軸方向に加わる圧力の大きさに応じて、カンチレバー部51の変位度合いが変化し、これに応じてピエゾ抵抗層の抵抗値も変化し得るようになされている。この場合、両持ち梁センサ部95bは、ヒンジ部51bの端点の電極間に電位差を与え、ヒンジ部51bの抵抗値変化△R/Rを計測し、その計測結果からカンチレバー部51に働く力(流体からの圧力P)を計測し得る。 Thus, when the pressure P from the fluid is applied to the flow path surface of the elastic body layer 98b from the x-axis direction side, the pressure sensor 93 causes the elastic body layer 98b to be slightly crushed and deformed by the pressure P. The force from 98b is received by the movable portion 51c, and the movable portion 51c can be displaced in the x-axis direction. Thus, in the doubly-supported beam sensor part 95b, the degree of displacement of the cantilever part 51 changes according to the magnitude of the pressure applied from the fluid in the x-axis direction, and the resistance value of the piezoresistive layer can also change accordingly. Has been made. In this case, the doubly supported beam sensor part 95b gives a potential difference between the electrodes at the end of the hinge part 51b, measures the resistance value change ΔR / R of the hinge part 51b, and determines the force acting on the cantilever part 51 from the measurement result ( The pressure P) from the fluid can be measured.
 このような構成を有する分析装置90であっても、上述した数7~14の関係が成り立ち、せん断力センサ92の計測結果からせん断応力τを算出し、圧力センサ93の計測結果から圧力Pを算出して、数13のμ=K(τ2/P3/2)を基に、流体の粘度(粘度係数)μを算出し得る。具体的に、せん断力センサ92の片持ち梁センサ部95aは、計測結果として抵抗値変化率△R/Rを得、本体91内に内蔵した情報処理手段(図示せず)に送出し得る。これにより情報処理手段は、せん断力センサ92から受け取った抵抗値変化率△R/Rと、上述した数6とを基に、せん断応力τを算出し得るようになされている。 Even in the analyzer 90 having such a configuration, the relationship of the above equations 7 to 14 is established, the shear stress τ is calculated from the measurement result of the shear force sensor 92, and the pressure P is calculated from the measurement result of the pressure sensor 93. By calculating, the viscosity (viscosity coefficient) μ of the fluid can be calculated based on μ = K (τ 2 / P 3/2 ) of Equation 13. Specifically, the cantilever sensor unit 95a of the shear force sensor 92 can obtain a resistance value change rate ΔR / R as a measurement result and send it to an information processing means (not shown) built in the main body 91. Thus, the information processing means can calculate the shear stress τ based on the resistance value change rate ΔR / R received from the shear force sensor 92 and the above-described equation 6.
 一方、圧力センサ93では、圧力Pを受けると、抵抗値変化率△R/Rと、圧力Pについて、下記のような関係が成り立つと考えられる。ここで、図34A及び図34Bは、抵抗値変化率△R/Rと圧力Pの関係を説明するために、圧力センサ93の両持ち梁センサ部95bを概略的に表した側断面図である。 On the other hand, when the pressure sensor 93 receives the pressure P, it is considered that the following relationship is established between the resistance value change rate ΔR / R and the pressure P. Here, FIGS. 34A and 34B are side cross-sectional views schematically showing the doubly supported beam sensor portion 95b of the pressure sensor 93 in order to explain the relationship between the resistance value change rate ΔR / R and the pressure P. FIG. .
 先ず、図34Aに示すように、弾性体層98b中に埋め込まれた両持ち梁構造の両持ち梁センサ部95bに対して圧力P[Pa]が加えられた際、両持ち梁51dの端部たるヒンジ部51bに生じるひずみεを算出する。因みに、このとき、圧力Pの大きさが十分に小さく、弾性体層98bの変形量が十分に小さいと仮定すると、仮に、両持ち梁51dの下部にも弾性体層98bの弾性体が入り込んでいても、この部分の弾性体の変形はほぼ無視できると考えられる。この仮定の下では、弾性体層98bに対しx軸方向から圧力P[Pa]が加わると、図34Bに示すように、弾性体層98b表面に加えられた圧力Pと同じ大きさの圧力Pが、ヒンジ部51bによって両端を固定された両持ち梁51dにも加わっていると考えられる。 First, as shown in FIG. 34A, when pressure P [Pa] is applied to the doubly supported beam sensor portion 95b of the doubly supported beam structure embedded in the elastic body layer 98b, the end portion of the cantilever beam 51d A strain ε generated in the hinge portion 51b is calculated. Incidentally, at this time, assuming that the magnitude of the pressure P is sufficiently small and the deformation amount of the elastic layer 98b is sufficiently small, the elastic body of the elastic layer 98b also enters the lower portion of the both-end supported beam 51d. However, the deformation of the elastic body in this part is considered to be almost negligible. Under this assumption, when a pressure P [Pa] is applied to the elastic layer 98b from the x-axis direction, as shown in FIG. 34B, a pressure P having the same magnitude as the pressure P applied to the surface of the elastic layer 98b. However, it is considered that it is also added to the doubly supported beam 51d whose both ends are fixed by the hinge portion 51b.
 ここで、両持ち梁51dの長さをL[mm]、幅をW [mm]、厚みをT[mm]とすると、両持ち梁51dの端部(ヒンジ部51b)に生じるモーメントの大きさMは次の数15のように表すことができる。 Here, if the length of the double-supported beam 51d is L [mm], the width is W [mm], and the thickness is T [mm], the magnitude of the moment generated at the end of the double-supported beam 51d (hinge 51b) M can be expressed as the following Expression 15.
Figure JPOXMLDOC01-appb-M000016
 このとき、端部たるヒンジ部51bに生じるひずみεは、両持ち梁51dの断面が長方形であることを考え下記の数16のように表すことができる。
Figure JPOXMLDOC01-appb-M000016
At this time, the strain ε generated in the hinge part 51b which is the end part can be expressed as in the following Expression 16, considering that the cross section of the doubly supported beam 51d is rectangular.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 ただし、Zは両持ち梁51dの断面二次係数とし、Eは両持ち梁51dのヤング率とする。このひずみεによって生じるピエゾ抵抗素子の抵抗値変化率△R/Rは、ピエゾ抵抗素子のゲージ率をKとしたとき、下記の数17のように表すことができる。 (However, Z is the second-order coefficient of cross section of the cantilever beam 51d, and E is the Young's modulus of the cantilever beam 51d.) The resistance value change rate ΔR / R of the piezoresistive element caused by the strain ε can be expressed as the following Expression 17, where K is the gauge factor of the piezoresistive element.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 以上より、圧力センサ93は、計測結果として得られた抵抗値変化率△R/Rを用いて、数16と数17とを基に、圧力Pを算出し得るようになされている。実際上、圧力センサ93の両持ち梁センサ部95bは、流体から受ける外力から抵抗値変化率△R/Rを計測結果とし得、これを情報処理手段に送出する。情報処理手段は、圧力センサ93から受け取った抵抗値変化率△R/Rと、上述した数16及び数17を基に、圧力Pを算出し得る。これにより分析装置90は、情報処理手段によって、せん断力センサ92の計測結果から算出したせん断応力τと、圧力センサ93の計測結果から算出した圧力Pとを用い、数13のμ=K(τ2/P3/2)から粘度μを算出し得る。 As described above, the pressure sensor 93 can calculate the pressure P based on the equations 16 and 17 using the resistance value change rate ΔR / R obtained as a measurement result. In practice, the doubly-supported beam sensor unit 95b of the pressure sensor 93 can obtain the resistance value change rate ΔR / R from the external force received from the fluid as a measurement result, and sends this to the information processing means. The information processing means can calculate the pressure P based on the resistance value change rate ΔR / R received from the pressure sensor 93 and the above-described equations 16 and 17. As a result, the analysis apparatus 90 uses the shear stress τ calculated from the measurement result of the shear force sensor 92 and the pressure P calculated from the measurement result of the pressure sensor 93 by the information processing means, and μ = K (τ 2 / P 3/2 ), the viscosity μ can be calculated.
 次に、図32に示した分析装置90を実際に作製し、この分析装置90を用いてせん断応力τ及び圧力Pの計測試験を行った。なお、移動方向のせん断応力を計測するせん断力センサ92には、約200[μm]程度の片持ち梁センサ部95aを設け、移動方向からの圧力を計測する圧力センサ93には、約200[μm]程度の両持ち梁センサ部95bを設けた。 Next, the analyzer 90 shown in FIG. 32 was actually produced, and the measurement test of the shear stress τ and the pressure P was performed using the analyzer 90. The shear force sensor 92 that measures shear stress in the moving direction is provided with a cantilever sensor unit 95a of about 200 [μm], and the pressure sensor 93 that measures pressure from the moving direction has about 200 [μm]. A double-supported beam sensor portion 95b of about μm] is provided.
 この場合、一定のピストン運動を行うアーム部を備えた駆動装置を用意し、当該アーム部に分析装置90を鉛直に固定させた後、分析装置90のせん断力センサ92及び圧力センサ93を水中に入れた。そして、駆動装置によって、本体91の一端面91bと垂直方向となる方向(図32中のx軸方向)に向けて直線上に往復運動させた(周波数2[Hz]、往復幅50[mm])。このとき分析装置90から得られた圧力Pとせん断応力τとを調べったところ、図35に示すような結果が得られた。図35の結果のうち、波形の山部及び谷部をサンプリングポイントとして値を読み取ったところ、圧力Pは10[Pa]であり、せん断応力τは0.4[Pa]であった。 In this case, a drive device having an arm portion that performs a fixed piston motion is prepared, and after the analyzer 90 is vertically fixed to the arm portion, the shear force sensor 92 and the pressure sensor 93 of the analyzer 90 are placed in water. I put it in. And it was made to reciprocate linearly in the direction (x-axis direction in FIG. 32) perpendicular to the one end surface 91b of the main body 91 by the driving device (frequency 2 [Hz], reciprocating width 50 [mm]. ). When the pressure P and the shear stress τ obtained from the analyzer 90 were examined at this time, the result shown in FIG. 35 was obtained. Of the results shown in FIG. 35, the values were read using the peaks and valleys of the waveform as sampling points. The pressure P was 10 [Pa] and the shear stress τ was 0.4 [Pa].
 なお、他の粘度計にて予め測定した試料(水)の粘度mは0.9[mPa・s]であった。そこで、粘度μを0.9[mPa・s]とし、圧力Pを10[Pa]とし、せん断応力τを0.4[Pa]として、上述した数13のμ=K(τ2/P3/2)から比例定数Kを求めたところ175.8であった。従って、分析装置90では、比例定数K=175.8を代入した数13を予め記憶しておくことで、せん断力センサ92の計測結果から算出したせん断応力τと、圧力センサ93の計測結果から算出した圧力Pとを用い、数13から粘度μを算出し得る。 The viscosity m of the sample (water) measured in advance with another viscometer was 0.9 [mPa · s]. Therefore, when the viscosity μ is set to 0.9 [mPa · s], the pressure P is set to 10 [Pa], the shear stress τ is set to 0.4 [Pa], the above-described formula 13 μ = K (τ 2 / P 3/2 ) The proportionality constant K was determined to be 175.8. Therefore, in the analyzer 90, the number 13 obtained by substituting the proportional constant K = 175.8 is stored in advance, thereby calculating the shear stress τ calculated from the measurement result of the shear force sensor 92 and the measurement result of the pressure sensor 93. Using the pressure P, the viscosity μ can be calculated from Equation 13.
 因みに、上述した実施の形態においては、可動部21cがx軸方向に傾倒し得る片持ち梁センサ部95aを一側面91bに設け、x軸方向に加わる圧力を受け止める一端面91bに両持ち梁センサ部95bを設けて、流体内で本体91をx軸方向に沿って往復移動させて、流体の粘度μを算出するようにした場合について述べたが、本発明はこれに限らず、例えば、可動部21cの面部をz軸方向(本体91の軸方向)に対し垂直に配置し、可動部21cがz軸方向に傾倒し得る片持ち梁センサ部を一側面91bに設け、z軸方向に加わる圧力を受け止める本体91の底面部に両持ち梁センサ部95bを設けて、流体内で本体91をz軸方向に沿って上下移動させて、流体の粘度μを算出するようにしてもよい。 Incidentally, in the above-described embodiment, the cantilever sensor portion 95a in which the movable portion 21c can tilt in the x-axis direction is provided on the one side surface 91b, and the one-end surface 91b that receives the pressure applied in the x-axis direction is provided. Although the case where the portion 95b is provided and the main body 91 is reciprocated in the fluid along the x-axis direction to calculate the fluid viscosity μ has been described, the present invention is not limited thereto, The surface portion of the portion 21c is disposed perpendicular to the z-axis direction (the axial direction of the main body 91), and the cantilever sensor portion on which the movable portion 21c can be tilted in the z-axis direction is provided on one side surface 91b and applied in the z-axis direction A doubly supported beam sensor unit 95b may be provided on the bottom surface of the main body 91 that receives the pressure, and the main body 91 may be moved up and down along the z-axis direction in the fluid to calculate the viscosity μ of the fluid.
 (8)他の実施の形態
 なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能であり、これら上述した実施の形態を組み合わせたりしてもよく、また第2の実施の形態による分析装置35や、第3の実施の形態による分析装置41等に、それぞれ加速度センサを設けるようにしてもよい。
(8) Other Embodiments The present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention, and these embodiments described above are combined. Alternatively, an acceleration sensor may be provided in each of the analysis device 35 according to the second embodiment, the analysis device 41 according to the third embodiment, and the like.
 このように加速度センサを設けた場合には、加速度センサにより検知した加速度が0のとき、せん断力センサ37や圧力センサ38などの計測結果を測定すれば、本体を動かし始めた不安定な状態時ではなく、本体を一定の速度で流体FL内にて移動させているときのせん断応力τや圧力Pを計測し得、より正確な粘度係数μを算出することができる。 When the acceleration sensor is provided in this way, when the acceleration detected by the acceleration sensor is 0, if the measurement results of the shear force sensor 37, the pressure sensor 38, etc. are measured, the main body has started to move. Instead, the shear stress τ and the pressure P when the main body is moved in the fluid FL at a constant speed can be measured, and a more accurate viscosity coefficient μ can be calculated.
 また、上述した実施の形態においては、圧力センサ38を用いるようにした場合について述べたが、本発明はこれに限らず、ジャイロセンサ等の各種計測手段を設け、これら計測手段から得られる計測結果を、粘度係数τを算出するのに補足のデータとして用いるようにしてもよい。因みに、加速度センサを組み込んだ場合には、加速度センサからの出力を積分して、加速度センサの移動速度を算出することができる。この場合、圧力センサが不要となり、加速度センサとせん断力センサのみで粘度を算出することができる。 In the above-described embodiment, the case where the pressure sensor 38 is used has been described. However, the present invention is not limited thereto, and various measurement means such as a gyro sensor are provided, and measurement results obtained from these measurement means. May be used as supplementary data for calculating the viscosity coefficient τ. Incidentally, when an acceleration sensor is incorporated, the movement speed of the acceleration sensor can be calculated by integrating the output from the acceleration sensor. In this case, no pressure sensor is required, and the viscosity can be calculated only by the acceleration sensor and the shear force sensor.
 さらに、上述した第1の実施の形態において、前記センサ部からの前記計測結果と、前記表面流速と、前記流体高さとから、前記流体の粘度係数を算出する算出手段として、流路形成部9と別体に設けた情報処理装置7を適用した場合について述べたが、本発明はこれに限らず、流路形成部9に内蔵した情報処理手段を算出手段として適用してもよい。 Furthermore, in the first embodiment described above, the flow path forming unit 9 is used as a calculation means for calculating the viscosity coefficient of the fluid from the measurement result from the sensor unit, the surface flow velocity, and the fluid height. However, the present invention is not limited to this, and information processing means built in the flow path forming unit 9 may be applied as calculation means.
 さらに、上述した第2~第4、第7の実施の形態において、前記センサ部から得られた計測結果と、前記圧力センサから得られた圧力計測結果とから、前記流体の粘度係数を算出する粘度係数算出手段として、本体36,42,52,62,91に内蔵した情報処理手段(図示せず)を適用した場合について述べたが、本発明はこれに限らず、本体36,42,52,62,91とは別体に設けた情報処理手段を粘度係数算出手段として適用してもよい。 Furthermore, in the second to fourth and seventh embodiments described above, the viscosity coefficient of the fluid is calculated from the measurement result obtained from the sensor unit and the pressure measurement result obtained from the pressure sensor. Although the case where the information processing means (not shown) incorporated in the main bodies 36, 42, 52, 62, 91 is applied as the viscosity coefficient calculating means has been described, the present invention is not limited thereto, and the main bodies 36, 42, 52 are not limited thereto. , 62, 91 may be applied as the viscosity coefficient calculating means.
 さらに、上述した第1~第7の実施の形態については各構成を適宜組み合わせても良く、例えば、第4の実施の形態による分析装置55,61には、一方向の外力を検知するせん断力センサ37に換えて、第3の実施の形態に用いた3軸方向の外力を検知し得るせん断力センサ44aを適用してもよい。 Furthermore, the configurations of the first to seventh embodiments described above may be appropriately combined. For example, in the analyzers 55 and 61 according to the fourth embodiment, a shearing force for detecting an external force in one direction is used. Instead of the sensor 37, a shear force sensor 44a that can detect an external force in the three-axis directions used in the third embodiment may be applied.
 本発明の分析装置は、例えば牛乳やジュース、介護食等の食品にトロミ調整剤を添加し、食品にトロミを与えた際、このトロミを与えた流動性食品がどの程度の粘度を有しているかを確認したいときに利用できる。

 
The analyzer according to the present invention adds, for example, a trolley adjusting agent to food such as milk, juice, nursing food, etc. It can be used when you want to check if

Claims (9)

  1.  流体の粘性を特定する分析装置であって、
     流路表面に前記流体が流れることで、該流体からのせん断応力により変位する弾性体層と、
     前記弾性体層に覆われており、該弾性体層が変位することにより可動する可動部の変化状態を基に前記流体の粘性を特定する計測結果を得るセンサ部と
     を備えることを特徴とする分析装置。
    An analyzer for identifying the viscosity of a fluid,
    An elastic body layer that is displaced by shearing stress from the fluid when the fluid flows on the surface of the flow path;
    A sensor unit that is covered with the elastic body layer, and that obtains a measurement result that specifies the viscosity of the fluid based on a change state of a movable part that is movable when the elastic body layer is displaced. Analysis equipment.
  2.  前記センサ部は、前記可動部の可動状態を抵抗値の変化として検知するピエゾ抵抗層を備え、前記計測結果が前記ピエゾ抵抗層から得られる抵抗値変化率である
     ことを特徴とする請求項1記載の分析装置。
    The said sensor part is provided with the piezoresistive layer which detects the movable state of the said movable part as a change of resistance value, The said measurement result is a resistance value change rate obtained from the said piezoresistive layer. The analyzer described.
  3.  前記センサ部から得られた前記抵抗値変化率を基に、前記流体から受けるせん断応力を算出するせん断応力算出手段を備える
     ことを特徴とする請求項2記載の分析装置。
    The analysis apparatus according to claim 2, further comprising a shear stress calculation unit that calculates a shear stress received from the fluid based on the resistance value change rate obtained from the sensor unit.
  4.  前記弾性体層に覆われた前記センサ部と、前記流体から受ける圧力を計測する圧力センサとが設けられ、前記流体内にて移動させる本体と、
     前記センサ部から得られた計測結果と、前記圧力センサから得られた圧力計測結果とから、前記流体の粘度係数を算出する粘度係数算出手段と
     を備えることを特徴とする請求項1~3のうちいずれか1記載の分析装置。
    A main body that is provided with the sensor section covered with the elastic body layer and a pressure sensor that measures a pressure received from the fluid;
    The viscosity coefficient calculating means for calculating a viscosity coefficient of the fluid from a measurement result obtained from the sensor unit and a pressure measurement result obtained from the pressure sensor. Any one of them.
  5.  前記本体には、該本体を前記流体内で移動させる移動方向と直交する側面に前記弾性体層に覆われた前記センサ部が設けられ、前記本体を前記流体内で移動させる移動方向に垂直な一端面に前記圧力センサが設けられている
     ことを特徴とする請求項4記載の分析装置。
    The main body is provided with the sensor section covered with the elastic layer on a side surface orthogonal to a moving direction in which the main body is moved in the fluid, and is perpendicular to the moving direction in which the main body is moved in the fluid. The analyzer according to claim 4, wherein the pressure sensor is provided on one end surface.
  6.  前記本体には前記センサ部が複数設けられており、各前記センサ部は、3軸方向の前記流体からのせん断応力を検知して前記流体の粘性を特定する前記計測結果を得る
     ことを特徴とする請求項1~3のうちいずれか1項記載の分析装置。
    The main body is provided with a plurality of the sensor units, and each sensor unit detects the shear stress from the fluid in three axial directions and obtains the measurement result specifying the viscosity of the fluid. The analyzer according to any one of claims 1 to 3.
  7.  前記流路表面を流れる前記流体の表面流速と、前記流路表面を流れる前記流体の該流路表面からの高さである流体高さとを取得し、前記センサ部からの前記計測結果と、前記表面流速と、前記流体高さとから、前記流体の粘度係数を算出する算出手段を備える
     ことを特徴とする請求項1~3のうちいずれか1項記載の分析装置。
    Obtaining the surface flow velocity of the fluid flowing through the flow path surface and the fluid height that is the height of the fluid flowing through the flow path surface from the flow path surface, the measurement result from the sensor unit, and The analyzer according to any one of claims 1 to 3, further comprising calculation means for calculating a viscosity coefficient of the fluid from a surface flow velocity and the fluid height.
  8.  前記弾性体層の流路表面と間に前記流体を配置させた状態で回動することで該流体を移動させる回転基板を備え、
     前記センサ部は、前記回転基板が回動したときに前記弾性体層が変位することで可動した前記可動部の変化状態を基に、前記流体の粘性を特定する計測結果を得る
     ことを特徴とする請求項1~3のうちいずれか1項記載の分析装置。
    A rotating substrate that moves the fluid by rotating in a state where the fluid is disposed between the flow path surface of the elastic layer;
    The sensor unit obtains a measurement result that specifies the viscosity of the fluid based on a change state of the movable unit that is moved when the elastic layer is displaced when the rotating substrate is rotated. The analyzer according to any one of claims 1 to 3.
  9.  前記流体が内部の中空領域を通過する管状の本体を備え、
     前記本体の壁部には、前記弾性体層で覆われた前記センサ部が設けられており、
     前記センサ部は、前記中空領域を前記流体が通過するときに前記弾性体層が変位することにより可動した前記可動部の変化状態を基に、前記流体の粘性を特定する計測結果を得る
     ことを特徴とする請求項1~3のうちいずれか1項記載の分析装置。

     
    Comprising a tubular body through which the fluid passes through an internal hollow region;
    The sensor unit covered with the elastic body layer is provided on the wall of the main body,
    The sensor unit obtains a measurement result that specifies the viscosity of the fluid based on a change state of the movable unit that is moved when the elastic layer is displaced when the fluid passes through the hollow region. The analyzer according to any one of claims 1 to 3, characterized in that:

PCT/JP2012/066723 2011-06-30 2012-06-29 Analysis device WO2013002380A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013522982A JP6103646B2 (en) 2011-06-30 2012-06-29 Analysis equipment
CN201280026774.0A CN103649716B (en) 2011-06-30 2012-06-29 Analytical equipment
HK14103651.8A HK1190459A1 (en) 2011-06-30 2014-04-16 Analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-145603 2011-06-30
JP2011145603 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002380A1 true WO2013002380A1 (en) 2013-01-03

Family

ID=47424265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066723 WO2013002380A1 (en) 2011-06-30 2012-06-29 Analysis device

Country Status (4)

Country Link
JP (1) JP6103646B2 (en)
CN (1) CN103649716B (en)
HK (1) HK1190459A1 (en)
WO (1) WO2013002380A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219284A (en) * 2013-05-08 2014-11-20 ディーアイティー株式会社 Fluidity evaluation device of powder, and fluidity evaluation method of powder
JP2015010963A (en) * 2013-06-28 2015-01-19 国立大学法人 東京大学 Measurement device
WO2016096976A1 (en) * 2014-12-17 2016-06-23 Institut Recherche Pour Le Developpement Device for measuring basal stresses of a granular flow
JP2016192196A (en) * 2015-03-30 2016-11-10 福井県立病院 Simple viscosity measuring method and inclined plate for determining viscosity
WO2017026090A1 (en) * 2015-08-07 2017-02-16 株式会社明治 Measurement device and method for estimating mouthfeel and behavior of alimentary bolus during eating and swallowing
JP2019095361A (en) * 2017-11-27 2019-06-20 株式会社松栄電子研究所 Simple viscosity measuring device and viscosity measurement method
JP2019117160A (en) * 2017-12-27 2019-07-18 花王株式会社 Method and device for determining presence of defect in heat generation composition
JP2019148588A (en) * 2018-02-24 2019-09-05 株式会社アール・ティー・シー Viscosity discriminator
KR20190135775A (en) * 2018-05-29 2019-12-09 인제대학교 산학협력단 Accurate tractive force measuring apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769680B (en) * 2016-11-24 2019-06-14 烟台坤正密封制品有限公司 A kind of oil viscosity measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311250A (en) * 1988-06-08 1989-12-15 Seiko Instr Inc Method and device for measuring fluid viscosity
JPH10239185A (en) * 1997-02-26 1998-09-11 Ohbayashi Corp Method and apparatus for measuring shearing force of fluid
JPH1151841A (en) * 1997-06-09 1999-02-26 Dickey John Corp Portable viscometer with resonator-type sensor
JP2001141529A (en) * 1999-09-24 2001-05-25 Anton Paar Gmbh Rotary flowmeter
JP2001153780A (en) * 1999-11-24 2001-06-08 Maruyasu Industries Co Ltd Characteristic-value detecting apparatus for liquid using surface acoustic wave device
JP2006078477A (en) * 2004-08-10 2006-03-23 Kanagawa Acad Of Sci & Technol Method and system for measuring of droplet migration behavior

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106844A2 (en) * 2003-05-21 2004-12-09 University Of Wyoming Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow
EP1634052A4 (en) * 2003-06-06 2008-04-30 Univ Illinois Sensor chip and apparatus for tactile and/or flow

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311250A (en) * 1988-06-08 1989-12-15 Seiko Instr Inc Method and device for measuring fluid viscosity
JPH10239185A (en) * 1997-02-26 1998-09-11 Ohbayashi Corp Method and apparatus for measuring shearing force of fluid
JPH1151841A (en) * 1997-06-09 1999-02-26 Dickey John Corp Portable viscometer with resonator-type sensor
JP2001141529A (en) * 1999-09-24 2001-05-25 Anton Paar Gmbh Rotary flowmeter
JP2001153780A (en) * 1999-11-24 2001-06-08 Maruyasu Industries Co Ltd Characteristic-value detecting apparatus for liquid using surface acoustic wave device
JP2006078477A (en) * 2004-08-10 2006-03-23 Kanagawa Acad Of Sci & Technol Method and system for measuring of droplet migration behavior

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIHITO NAKAI ET AL.: "3-axis Tactile Sensor Chip by MEMS Technologies", ANNUAL CONFERENCE OF THE ROBOTICS SOCIETY OF JAPAN YOKOSHU, vol. 27TH, 15 September 2009 (2009-09-15), pages ROMBUNNO.3E2 - 08 *
KENTARO NODA ET AL.: "A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material", SENSORS AND ACTUATORS A: PHYSICAL, vol. 127, no. ISSUE, 13 March 2006 (2006-03-13), pages 295 - 301 *
KOICHI ISHITAKI ET AL.: "Surface Shape Detection with Shear Stress Sensor", JAPAN SOCIETY OF MECHANICAL ENGINEERS CONFERENCE ON ROBOTICS AND MECHATRONICS KOEN RONBUNSHU, vol. 2007, 10 May 2007 (2007-05-10), pages 1A2 - A11 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219284A (en) * 2013-05-08 2014-11-20 ディーアイティー株式会社 Fluidity evaluation device of powder, and fluidity evaluation method of powder
JP2015010963A (en) * 2013-06-28 2015-01-19 国立大学法人 東京大学 Measurement device
WO2016096976A1 (en) * 2014-12-17 2016-06-23 Institut Recherche Pour Le Developpement Device for measuring basal stresses of a granular flow
FR3030747A1 (en) * 2014-12-17 2016-06-24 Inst De Rech Pour Le Dev DEVICE FOR MEASURING BASAL CONSTRAINTS OF A GRANULAR FLOW.
JP2016192196A (en) * 2015-03-30 2016-11-10 福井県立病院 Simple viscosity measuring method and inclined plate for determining viscosity
EP3333565A4 (en) * 2015-08-07 2019-03-27 Meiji Co., Ltd. Measurement device and method for estimating mouthfeel and behavior of alimentary bolus during eating and swallowing
CN107923832A (en) * 2015-08-07 2018-04-17 株式会社明治 During presumption food/movement of food block when swallowing or the measuring device and method of mouthfeel
JPWO2017026090A1 (en) * 2015-08-07 2018-05-31 株式会社明治 Measuring apparatus and method for estimating bolus behavior and texture during eating and swallowing
WO2017026090A1 (en) * 2015-08-07 2017-02-16 株式会社明治 Measurement device and method for estimating mouthfeel and behavior of alimentary bolus during eating and swallowing
US10753839B2 (en) 2015-08-07 2020-08-25 Meiji Co., Ltd. Measurement device and method for estimating mouthfeel and behavior of alimentary bolus during eating and swallowing
JP2019095361A (en) * 2017-11-27 2019-06-20 株式会社松栄電子研究所 Simple viscosity measuring device and viscosity measurement method
JP2019117160A (en) * 2017-12-27 2019-07-18 花王株式会社 Method and device for determining presence of defect in heat generation composition
JP2019148588A (en) * 2018-02-24 2019-09-05 株式会社アール・ティー・シー Viscosity discriminator
JP7300137B2 (en) 2018-02-24 2023-06-29 株式会社アール・ティー・シー Thickness discriminator
KR20190135775A (en) * 2018-05-29 2019-12-09 인제대학교 산학협력단 Accurate tractive force measuring apparatus
KR102092895B1 (en) 2018-05-29 2020-03-24 인제대학교 산학협력단 Accurate tractive force measuring apparatus

Also Published As

Publication number Publication date
HK1190459A1 (en) 2014-07-04
CN103649716A (en) 2014-03-19
JPWO2013002380A1 (en) 2015-02-23
JP6103646B2 (en) 2017-03-29
CN103649716B (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP6103646B2 (en) Analysis equipment
WO2009131185A1 (en) Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity
CN203772280U (en) Integrated detecting structure and related resonator sensor equipment
Sharp Resonant properties of sessile droplets; contact angle dependence of the resonant frequency and width in glycerol/water mixtures
US9038443B1 (en) Microfabricated resonant fluid density and viscosity sensor
Smith et al. A MEMS-based Coriolis mass flow sensor for industrial applications
JP2010019694A (en) Viscosity or/and elasticity measuring method of liquid
WO2013111608A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
US20180172663A1 (en) A mems thrombelastograph/viscoelasticity analyzer
CN102183441A (en) Method for measuring surface adhesive capacity and elastic modulus of soft material
US20130276518A1 (en) Apparatus And A Method Of Measuring Fluid Properties Using A Suspended Plate Device
RU2460987C1 (en) Method of determining surface tension coefficient and wetting angle
KR102035859B1 (en) Process for Measuring Viscosity
KR101458320B1 (en) Viscometer using Terminal setting velocity and Method of measuring viscosity
Jeong et al. High-resolution capacitive microinclinometer with oblique comb electrodes using (110) silicon
CN205562310U (en) Pressure sensitive meet an emergency factor testing arrangement and used cantilever beam test component
Mehdizadeh et al. Piezoelectric rotational mode disk resonators for liquid viscosity monitoring
RU2307339C2 (en) Method for measuring cleanness of substrate surfaces
KR101842350B1 (en) The measurement apparatus for capacitive membrane sensor using mechanical resonance characteristics of membrane and the method thereof
KR102011569B1 (en) Device for measuring viscosity of minute volume liquids and method thereof
Dheringe et al. Recent advances in mems sensor technology biomedical mechanical thermo-fluid & electromagnetic sensors
Bittner et al. Plasma techniques in the production of customized MEMS‐applications
JP6128552B2 (en) Measuring device
WO2021220868A1 (en) Physical property measuring method, physical property measuring device, and probe
Yamane et al. A Sub-1G Mems Sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280026774.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804187

Country of ref document: EP

Kind code of ref document: A1