WO2013002087A1 - Radiation image capturing device, method, and system - Google Patents

Radiation image capturing device, method, and system Download PDF

Info

Publication number
WO2013002087A1
WO2013002087A1 PCT/JP2012/065713 JP2012065713W WO2013002087A1 WO 2013002087 A1 WO2013002087 A1 WO 2013002087A1 JP 2012065713 W JP2012065713 W JP 2012065713W WO 2013002087 A1 WO2013002087 A1 WO 2013002087A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
light
subject
image
irradiation
Prior art date
Application number
PCT/JP2012/065713
Other languages
French (fr)
Japanese (ja)
Inventor
中津川 晴康
俊孝 阿賀野
美広 岡田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013002087A1 publication Critical patent/WO2013002087A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/046Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters

Definitions

  • the present invention relates to a radiation image capturing apparatus and method using a radiation image detector for detecting a radiation image, and a radiation image capturing system using a radiation image capturing apparatus.
  • the radiation imaging system for imaging a subject (a region to be imaged of a patient) using radiation (for example, X-rays) to perform image diagnosis.
  • the radiation imaging system includes a radiation generating apparatus for emitting radiation and a radiation imaging apparatus for capturing a radiation image of a subject.
  • the radiation imaging apparatus includes a stationary type incorporated in a standing position imaging table or a reclining position imaging table, and a portable type that can be carried (so-called electronic cassette).
  • a portable radiographic imaging device can be inserted under the patient sleeping on a bed in a hospital room or the like and imaged.
  • the radiation image detector is generally called FPD (flat panel detector).
  • FPD flat panel detector
  • a signal charge is accumulated for each pixel on an image detection surface to detect a radiation image and output it as digital image data.
  • a direct conversion type FPD that converts radiation directly into signal charge in a conversion layer made of amorphous selenium (a-Se) or the like, and an indirect conversion that converts radiation once into visible light and converts visible light into signal charge Type FPD is known.
  • the indirect type FPD is composed of a scintillator that converts radiation into visible light, a sensor panel disposed opposite to the scintillator, and an electrical control circuit.
  • the sensor panel has an image detection surface in which a photoelectric conversion unit that generates signal charges by photoelectric conversion is formed for each pixel on an insulating substrate such as a glass substrate, and converts visible light from the scintillator into signal charges. Accumulate.
  • a TFT panel in which TFTs (thin-film transistors) and photoelectric conversion parts are arranged in a matrix on a glass substrate, or a CMOS image sensor (hereinafter referred to as a CMOS sensor) is used.
  • the TFT is formed of an amorphous semiconductor such as amorphous silicon (a-Si).
  • a-Si amorphous silicon
  • photoelectric conversion parts and MOS transistors are formed in a matrix on a single crystal semiconductor substrate of silicon (Si) by a semiconductor process.
  • the MOS transistor of the CMOS sensor is formed of a single crystal semiconductor, its carrier mobility is three to four orders of magnitude higher than that of a TFT panel formed of an amorphous semiconductor, enabling high-speed readout of signal charges. is there.
  • the variation of characteristics for example, the threshold voltage of the MOS transistor and the like
  • the CMOS sensor is suitable for moving image shooting and high-quality shooting.
  • CMOS sensors can now be manufactured using a 12 inch wafer, with one side of the square having a size of about 200 mm. Therefore, for example, a 17-inch FPD generally used for medical use can be configured using four CMOS sensors.
  • the radiation generating apparatus is provided with a collimator that limits the irradiation range of the radiation, and the radiation exposure dose of the patient is reduced by limiting the irradiation range with the collimator. For example, if the subject is smaller than the size of the entire image detection surface of the radiation image detector, for example, when the imaging site captures the hand or foot of a patient, the subject region where the object faces in the image detection surface Reduce the irradiation range according to the size of.
  • an area around the subject where the subject does not face is a blank area where radiation enters without passing through the subject. Radiation incident on a clear area not only does not contribute to the depiction of an object in a radiation image, but also may be irradiated to a patient by scattering or the like. Therefore, if the irradiation range is reduced in accordance with the size of the subject area, the blank area can be reduced, and the exposure dose of the patient can be reduced.
  • Japanese Patent Application Laid-Open No. 2009-082169 discloses a technique for determining an object area and a blank area using an optical camera. Specifically, first, the relative position and posture of the radiation image capturing apparatus and the subject are adjusted, and the subject is positioned with respect to the image detection surface. Since the subject and the radiation imaging apparatus are illuminated with room illumination light (such as fluorescent light) and natural light, the subject and the radiation imaging apparatus are imaged by the optical camera under the illumination light. Since the positional relationship between the radiation image capturing apparatus and the subject is recorded in the captured image, image analysis such as pattern recognition and contour extraction is performed on the captured image, and the subject region and blank area in the image detection plane Determine the area. The size of the irradiation area is determined in accordance with the size of the subject area, and the size of the irradiation opening of the collimator is adjusted.
  • room illumination light such as fluorescent light
  • the subject and the radiation imaging apparatus are imaged by the optical camera under the illumination light. Since the positional relationship between the radiation image capturing
  • JP 2009-082169 A is a method for capturing an object illuminated with room illumination or natural light and an optical image of a radiation image capturing apparatus
  • a pattern is used to discriminate between a subject region and a clear region.
  • Image analysis such as recognition and contour extraction is required, and there is a concern that the apparatus configuration becomes complicated.
  • highly accurate image analysis is required.
  • Japanese Patent Application Laid-Open No. 05-042135 a small amount of radiation is irradiated from a radiation generation apparatus, a subject is pre-photographed by a radiation image photographing apparatus, and a radiographic image obtained by pre-photographing is image analyzed There is disclosed a technique for determining the blank area and the blank area. According to the technique disclosed in Japanese Patent Application Laid-Open No. 05-042135, although the optical camera is not required, there is a problem that the exposure dose of the patient is increased by the preliminary imaging using radiation. Furthermore, even with the technique described in Japanese Patent Application Laid-Open No.
  • An object of the present invention is to distinguish between a subject area and a blank area with a simple configuration without performing preliminary imaging with radiation in radiation imaging.
  • a radiographic imaging device of the present invention is provided with a radiation generation device, a radiographic imaging device, a light source, and a field distinction part.
  • the radiation generator comprises a radiation source for irradiating the subject with radiation.
  • the radiation imaging apparatus has an image detection surface in which a plurality of pixels are arranged in a matrix, and includes a radiation image detector that receives radiation transmitted through a subject and detects a radiation image of the subject.
  • the light source emits detection light to the subject positioned with respect to the image detection surface.
  • the area determination unit has a light detection unit that receives detection light emitted from the light source and enters the periphery of the subject and outputs a light quantity signal, and based on the light quantity signal, the subject area where the subject faces in the image detection plane And an uncovered area around the subject.
  • the light detection unit is preferably a photo sensor array having a light receiving surface in which a plurality of photo sensors that output light quantity signals according to the amount of light received of detection light are arranged in a matrix.
  • the photosensor array is preferably disposed closer to the light source than the radiation image detector.
  • the photosensor array is preferably arranged such that the light receiving surface is parallel to the image detection surface of the radiation image detector.
  • parallel includes, in addition to completely parallel, substantially parallel. It is preferable that the area discrimination unit discriminates between the subject area and the blank area by comparing the light amount signals output from the plurality of photosensors with a preset threshold.
  • the light source is preferably provided in the radiation generation apparatus, and the detection light is preferably emitted to the subject from the same direction as the radiation.
  • the detection light is preferably any one of visible light, infrared light and ultraviolet light.
  • the radiation generating apparatus is composed of a plurality of shielding plates that define an irradiation opening that transmits radiation, and a collimator that limits the irradiation range in the image detection plane by adjusting the size of the irradiation opening by moving the shielding plate. It is preferable to have.
  • the driving amount of the collimator is set so that the irradiation range determination unit that determines the irradiation range and the irradiation range determined by the irradiation range determination unit so that the blank area is reduced based on the determination result of the area determination unit. It is preferable to include a collimator drive amount determination unit to determine.
  • the irradiation range determination unit specifies the number of pixels of the radiation image detector which are present in the region of the missing portion based on the determination result of the region determining portion, and the number of the missing pixels does not exceed the preset allowable value. It is preferable to determine the irradiation range as described above. It is preferable that the allowable value of the number of unfiltered pixels is set in accordance with the irradiation dose of radiation emitted from the radiation source.
  • the photosensor array is configured by tiling a plurality of array units having a light receiving surface in which a plurality of photosensors are arrayed, and the image detection is performed more than the array unit disposed at the center of the image detection surface.
  • the size of the light receiving surface may be smaller in the array unit disposed at the peripheral edge of the surface.
  • the collimator has at least a pair of shielding plates that change the width of the irradiation opening, and the cross-sectional shape of the shielding plate is a wedge shape whose thickness increases from the edge defining the irradiation opening toward the outside Good.
  • the collimator may have a first collimator that limits the irradiation range of the radiation, and a second collimator that absorbs an energy component that is relatively low in energy from the radiation that is irradiated to the blank area.
  • the pair of shielding plates may be movable independently.
  • the radiation image detector includes a scintillator that absorbs radiation and converts it into light, and a sensor panel that is disposed on the radiation irradiation side of the scintillator and in which a plurality of pixels that detect light converted by the scintillator are arranged in a matrix. It is preferable to include.
  • the sensor panel is preferably composed of a CMOS type image sensor.
  • the sensor panel may also be used as a light detection unit.
  • the radiation imaging apparatus has an irradiation surface for transmitting radiation and detection light, and a housing for accommodating the sensor panel, and has transparency to radiation while shielding light to the detection light.
  • the light shielding plate may be displaceable between a light shielding position for shielding the detection light incident on the sensor panel and a retracted position for retreating from the light shielding position.
  • the radiation image capturing apparatus may have an attachment removably attachable to the radiation imaging apparatus, and the attachment may be provided with a light detection unit.
  • the radiation image capturing apparatus of the present invention includes a radiation image detector, a light detection unit, and an area determination unit.
  • the radiation image detector has an image detection surface in which a plurality of pixels are arranged in a matrix, receives radiation transmitted from the radiation source and transmitted through the subject, and detects a radiation image of the subject.
  • the light detection unit receives the detection light emitted from the light source and incident on the periphery of the subject in a state in which the subject is positioned with respect to the image detection surface, and outputs a light amount signal.
  • the area determination unit determines, based on the light amount signal, a subject area where the subject faces in the image detection plane and a blank area around the subject.
  • the step of irradiating the subject with detection light, and the detection light which is incident around the subject is received. And outputting a light amount signal, and determining a subject region facing the subject in the image detection plane based on the light amount signal and a blank region around the subject.
  • FIG. 15A It is a conceptual diagram which shows the state which performed the swing by the swing mechanism of FIG. 15A. It is explanatory drawing of the collimator which enabled it to drive a pair of shielding board separately. It is explanatory drawing of the structure which provides a removable light-shielding plate in a top plate. It is explanatory drawing of the state which inserted the light-shielding plate in the top plate of FIG. 17A. It is explanatory drawing which shows the attachment which can be attached or detached to a radiographic imaging apparatus. It is explanatory drawing which shows the state which attached the attachment to the radiographic imaging apparatus.
  • a radiation imaging system 5 using the present invention comprises a radiation generator 6 for emitting X-rays to the imaging region of a subject (patient) H and radiation based on the X-rays transmitted through the subject H.
  • a radiation image capturing apparatus 7 for capturing an image, and a console 8 for controlling the radiation generating apparatus 6 and the radiation image capturing apparatus 7 are provided.
  • the radiation generator 6 includes an X-ray tube 10, a collimator 11, a source filter 12, a reflection mirror 13, and a light source 14.
  • the X-ray tube 10 corresponding to the radiation source of the present invention has a cathode made of a filament that emits thermal electrons, and an anode (target) that emits thermal X rays when the thermal electrons emitted from the cathode collide. X-ray toward the subject H. The x-rays emanate radially from the focal point where the thermal electrons strike at the anode.
  • the collimator 11 is disposed in front of the irradiation direction of the X-ray tube 10, and shields a part of the radially expanding X-rays to limit the X-ray irradiation range.
  • the collimator 11 has, for example, four shielding plates 17a, 17b, 18a, 18b for shielding X-rays, which define a rectangular irradiation opening 11a for transmitting X-rays. Do.
  • the collimator 11 can adjust the size of the irradiation opening 11a by moving the shielding plates 17a, 17b, 18a and 18b.
  • the pair of shielding plates 17a and 17b are movable in the x direction of the xy plane perpendicular to the irradiation direction z of the X-ray.
  • the first shielding portion 17 is configured to change the width of the irradiation opening 11 a in the x direction.
  • the other pair of shielding plates 18a and 18b is movable in the y direction of the xy plane, and constitutes a second shielding portion 18 that changes the width of the irradiation opening 11a in the y direction.
  • a structure combining such two sets of shielding plates is called a so-called double leaf structure.
  • the two shield plates 17a and 17b and the shield plates 18a and 18b move in conjunction with one another so that the center of the irradiation opening 11a does not change even if the width of the irradiation opening 11a changes.
  • the width of the irradiation opening 11a changes due to the movement of the shielding plates 17a and 17b, the center in the width direction of the irradiation opening 11a does not change because they are interlocked.
  • the shield plates 17a, 17b and 18a, 18b lead or the like excellent in X-ray absorptivity is used, and the cross section thereof is in the z direction from the edge defining the irradiation opening 11a to the outer end Has a thick wedge shape.
  • the collimator 11 has a collimator drive mechanism 19 for driving the first shielding portion 17 and the second shielding portion 18, and the size of the irradiation opening can be changed electrically.
  • the collimator drive mechanism 19 includes, for example, a motor, and a gear and a link mechanism for transmitting the rotational force of the motor to the shielding plates 17a, 17b, 18a, and 18b.
  • the collimator drive mechanism 19 can drive, for example, the first shielding unit 17 and the second shielding unit 18 independently of each other, and can change the widths of the irradiation opening 11 a in the x direction and the y direction independently. . Therefore, it is possible to make the shape of the irradiation opening 11 a rectangular other than square, and it is also possible to change the ratio of the long side to the short side of the rectangle.
  • the radiation source filter 12 removes low energy components that scatter from the X-ray emitted from the X-ray tube 10 as they pass through the object H and cause deterioration of the image quality of the radiation image.
  • a material having a property of absorbing only low energy components is used.
  • aluminum is suitable.
  • the high energy component of the X-ray transmitted through the radiation source filter 6 b is used for imaging the subject H.
  • the energy distribution of the X-rays emitted from the X-ray tube 10 changes with the tube voltage applied to the X-ray tube 10. For example, when the tube voltage of the X-ray tube 10 is 70 kV, the maximum energy of X-rays emitted from the X-ray tube 10 is 70 KeV, and the energy distribution of the X-rays is approximately 15 to 70 KeV.
  • the source filter 12 absorbs a low energy component of 1/2 or less, for example, 15 to 40 KeV, of the X-ray energy distribution at a tube voltage of 70 kV, and a high energy component of 1/2 or more (40 to 70 KeV) To Penetrate.
  • the source filter 12 is detachably attached to the X-ray generator 6 so that it can be changed according to the tube voltage.
  • the reflection mirror 13 and the light source 14 are used when determining the irradiation range of the X-ray by the collimator 11.
  • the reflection mirror 13 is disposed between the X-ray tube 10 and the collimator 11, and the light source 14 is disposed to the side of the reflection mirror 13.
  • the light source 14 comprises a lamp or the like for emitting visible light which is detection light.
  • the reflection mirror 13 is inclined to reflect the visible light emitted from the light source 14 toward the collimator 11.
  • the visible light is irradiated from the light source 14 toward the reflection mirror 13 in a state where the subject H is positioned with respect to the radiation imaging device 7.
  • the visible light is reflected by the reflection mirror 13, the optical path is bent, and travels to the collimator 11.
  • the visible light passes through the irradiation opening 11 a of the collimator 11 and is irradiated on the subject H positioned in the radiation imaging device 7.
  • the reflection mirror 13 is formed of, for example, a material that transmits X-rays. Therefore, it is not necessary to retract the reflection mirror 13 even during X-ray irradiation, and the position of the reflection mirror 13 is fixed. Of course, the reflection mirror 13 may be retracted at the time of X-ray irradiation.
  • the radiation image capturing apparatus 7 has an FPD 31 which is a radiation image detector, a photosensor array 32 which is a light detection unit, and a housing 23 which accommodates these.
  • the housing 23 is a portable type, and the radiation imaging device 7 is a so-called electronic cassette.
  • the housing 23 is a box having a flat overall shape, and has a rectangular planar shape.
  • the housing 23 is configured of a housing body 25 and a top plate 24 that seals the opening of the upper portion of the housing body 25.
  • the upper surface of the top plate 24 is an irradiation surface 22 to which X-rays emitted from the radiation generation device 6 are irradiated.
  • the housing body 25 is made of, for example, an ABS resin or the like, and the top plate 24 is made of a plastic or the like having high transparency to visible light and X-rays. Thereby, the transmittance
  • the housing 23 is, for example, the same size (for example, 17-inch square) as a conventional film cassette for recording a radiation image on a photosensitive material.
  • the radiographic imaging device 7 has the same portability as the film cassette, and can be used instead of the film cassette.
  • the top plate 24 of the radiation imaging device 7 is provided with a display unit 28 configured of a plurality of LEDs.
  • the display unit 28 displays an operation mode (e.g., "ready state” or “during data transmission” or the like) of the radiation imaging device 7 and an operation state such as the remaining capacity of the battery.
  • the display unit 28 may be configured of a light emitting element other than an LED, a liquid crystal display, an organic EL display, or the like.
  • the display unit 28 may be provided on the housing body 25.
  • the photosensor array 32 and the FPD 31 are stacked in order from the top plate 24 side.
  • the FPD 31 receives a radiation of X-rays emitted by the radiation generator 6 and detects a radiation image of the subject H.
  • the photosensor array 32 is disposed between the top 24 and the FPDFPD 31.
  • the photosensor array 32 is configured by tiling a plurality of (in this example, four) array units 33.
  • the array unit 33 has a plurality of photosensors 33a arranged in a matrix, and has a light receiving surface on which the photosensors 33a are arranged.
  • Each photosensor 33a is, for example, a light receiving element composed of a photodiode, receives an visible light emitted from the light source 14, and photoelectrically converts it to an electric signal (light amount signal) such as a voltage signal according to the amount of light received.
  • an electric signal light amount signal
  • the photosensor array 32 is an enlargement of the light receiving surface 32 a by tiling a plurality of small-sized (four in this example) array units 33 having a relatively small light receiving surface.
  • the photosensor array 32 is disposed with its light receiving surface 32 a facing the top 24.
  • the light receiving surface 32a of the photosensor array 32 is substantially parallel to the image detection surface 39a (see FIG. 4) of the FPD 31, and the shape and size of the light receiving surface 32a are the shape and size of the image detection surface 39a of the FPD 31. It is almost the same.
  • the photosensor array 32 is an area where the subject H faces on the image detection surface 39a of the FPD 31, that is, a subject area where X-rays transmitted through the subject H are incident, and an area around the subject H, that is, the X-ray is the subject H Used in order to distinguish directly from non-passing areas that do not pass through. If the size of the subject H placed on the top 24 is smaller than the size of the image detection surface 39 a of the FPD 31, the entire area of the image detection surface 39 a does not become the subject area. A blank area occurs.
  • visible light from the light source 14 is blocked without transmitting the subject H. Since the photosensor array 32 is located behind the subject H when viewed from the light source 14 side, visible light does not enter the subject area on the light receiving surface 23 a thereof, but enters only the blank area around the subject H Do. In this case, the output value of the light amount signal output from the photosensor 33a located in the object area and the output value of the light amount signal output from the photosensor 33a located in the blank area are different according to the light amount of visible light . By identifying the respective positions (coordinates in the light receiving surface 32a) of the photosensor 33a located in the subject area and the photosensor 33a located in the blank area based on this difference, the subject area and the blank area are discriminated. can do.
  • the photosensors 33a do not correspond one-to-one with the pixels 48a of the FPD 31, and the size and arrangement pitch of the light receiving area of each photosensor 33a are the size and arrangement of the pixels 48a (see FIG. 6) of the FPD 31. Large compared to the pitch. Therefore, the number of photosensors 33 of the photosensor array 32 is smaller than the number of pixels of the FPD 31, and the resolution is lower than that of the FPD 31. Since the photosensor array 32 does not detect an image, it is sufficient that the photosensor array 32 has a resolution enough to discriminate between the subject area and the blank area. Since the light receiving area of the photosensor 33a can be increased by the lower resolution, the light receiving sensitivity can be increased. Of course, the resolution of the photosensor array 32 may be the same as that of the FPD 31.
  • the photosensor array 32 Since the photosensor array 32 is disposed closer to the irradiation surface 22 than the FPD 31, all X-rays incident on the FPD 31 pass through the photosensor array 32. Therefore, the attenuation of X-rays by the photosensor array 32 should be as small as possible. Therefore, as the photosensor array 32, a photosensor formed of an organic photoelectric conversion material (OPC) as a photoelectric conversion material is used. OPC can be reduced in thickness and has good X-ray transmission characteristics with almost no absorption of X-rays.
  • OPC organic photoelectric conversion material
  • a case 36 for containing various electronic circuits including a microcomputer and a rechargeable and detachable battery (secondary battery) is provided inside the housing 23, at one end side along the lateral direction of the irradiation surface 22, a case 36 for containing various electronic circuits including a microcomputer and a rechargeable and detachable battery (secondary battery) is provided. It is arranged. Various electronic circuits of the radiation imaging device 7 including the FPD 31 operate by power supplied from a battery housed in the case 36. Note that, on the irradiation surface 22 side of the case 36 in the housing 23, radiation composed of a lead plate or the like is provided to avoid damage to various electronic circuits accommodated in the case 36 due to the irradiation of X-rays. A shielding member (not shown) is provided.
  • the photosensor array 32 is bonded to the inner surface of the top plate 24 with an adhesive over the entire surface. Further, the FPD 31 is bonded to the lower surface of the photosensor array 32 by an adhesive. As described above, by attaching the photosensor array 32 and the FPD 31 to the top plate 24, the gaps between the respective parts are eliminated, so that the radiation imaging device 7 can be thinned and the FPD 31 can be reinforced by the photosensor array 32.
  • the photosensor array 32 preferably has an outer size equal to or larger than that of the FPD 31 because the FPD 31 is bonded.
  • a sensor panel 39 and a scintillator 40 are stacked in order from the irradiation surface 22 side.
  • a support substrate 41 supporting the scintillator 40 is disposed on the lower surface of the scintillator 40.
  • a sealant 42 is provided on the outer periphery of the FPD 31 to protect the scintillator 40 from moisture and the like.
  • a control board 43 is disposed on the bottom of the housing 23. The control substrate 43, the sensor panel 39 and the photosensor array 32 are electrically connected via flexible cables 44, 45.
  • the scintillator 40 transmits the subject H and is irradiated to the irradiation surface 22 of the housing 23, transmits the top plate 24, the photosensor array 32 and the sensor panel 39, absorbs the irradiated X-rays, and emits light.
  • materials such as CsI: Tl (cesium iodide to which thallium is added), CsI: Na (sodium activated cesium iodide), GOS (Gd2O2S: Tb) and the like can be used.
  • CsI: Tl is vapor-deposited on the support substrate 41 as the scintillator 40 to form a plurality of columnar crystals along the light emission direction from the support substrate 41 toward the sensor panel 39.
  • the columnar crystals are approximately uniform in average diameter along the longitudinal direction of the columnar crystals.
  • the light generated by the scintillator 40 travels in the columnar crystal due to the light guide effect of the columnar crystal and is emitted to the sensor panel 39. At that time, the diffusion of the light emitted to the sensor panel 39 side is suppressed, so that the sharpness of the radiation image detected by the radiation imaging device 7 is improved. Further, the light reaching the deep portion of the scintillator 40 is provided on the inner surface of the support substrate 41 and light oil of the scintillator 40 is reflected again by the reflective layer and reflected to the sensor panel 39 side. The detection efficiency of the light emitted at 40 is improved.
  • the sensor panel 39 is disposed on the radiation-irradiated side of the scintillator 40, but the method of arranging the scintillator and the sensor panel in such a positional relationship is referred to as “surface reading method (ISS: Irradiation It is called "Side Sampling". Since the scintillator emits light more strongly on the X-ray incident side, the front reading method (ISS) in which the sensor panel is disposed on the X-ray incident side of the scintillator is arranged on the opposite side of the scintillator on the X-ray incident side.
  • ISS front reading method
  • the resolution of the radiation image obtained by imaging is higher, and the light reception amount of the sensor panel is increased. As a result, the sensitivity of the radiation imaging apparatus is improved.
  • the FPD 31 uses an indirect type using the scintillator 40, it is assumed that visible light transmitted through the top 24 and the photosensor array 32 from the outside of the radiation imaging device 7 such as visible light emitted by the light source 14 enters the FPD 31 Since the FPD 31 detects visible light, the radiation image may be degraded. Therefore, when the light transmitted through the top plate 24 can not be blocked only by the photosensor array 32, it is preferable to provide a light shielding layer 34 having X-ray transparency between the photosensor array 32 and the FPD 31.
  • the sensor panel 39 is configured by four CMOS type image sensors (hereinafter referred to as CMOS sensors) 48.
  • CMOS sensors 48 has a plurality of pixels 48a (see FIG. 8) arranged in a matrix.
  • Each CMOS sensor 48 has a rectangular shape with a side length of about 200 mm.
  • the four CMOS sensors 48 are arranged adjacent to each other vertically and horizontally to form a quadrangle of approximately 17 inches on one side.
  • the 17-inch size is a common size as a medical FPD 31 size.
  • the CMOS sensor 48 has a configuration similar to that disclosed in US Patent Publication 2009/0224162. Specifically, the CMOS sensor 48 includes the single crystal semiconductor substrate 50, the insulating layer 54, the first electrode 51, the photoelectric conversion layer 52, and the second electrode 53.
  • the single crystal semiconductor substrate 50 is made of single crystal Si.
  • the insulating layer 54 is formed of silicon oxide or the like on the surface of the single crystal semiconductor substrate 50.
  • the first electrode 51 is individually formed on the surface of the insulating layer 54 for each pixel 48 a.
  • the photoelectric conversion layer 52 is provided on the surface of each first electrode 51 in common to each pixel 48 a.
  • the second electrode 53 is provided commonly to the respective pixels 48 a on the surface of the photoelectric conversion layer 52.
  • the aforementioned scintillator 40 is bonded onto the surface of the second electrode 53 by an adhesive (not shown).
  • the second electrode 53 is formed of a conductive material (for example, indium tin oxide (ITO)) which is transparent to visible light so that visible light generated by the scintillator 40 may be incident on the photoelectric conversion layer 52.
  • ITO indium tin oxide
  • the second electrode 53 is provided in common to each pixel 48a, but may be provided individually for each pixel 48a.
  • the photoelectric conversion layer 52 generates a signal charge according to the amount of incident X-rays by the combination with the scintillator 40.
  • the photoelectric conversion layer 52 absorbs visible light generated by the scintillator 26, and the amount of light corresponds to the amount of light. It generates signal charges and is made of an organic or inorganic photoelectric conversion material.
  • an inorganic photoelectric conversion material there is, for example, amorphous silicon (a-Si).
  • a-Si amorphous silicon
  • quinacridone for example.
  • the sensitivity of the organic photoelectric conversion material (OPC) made of quinacridone is visible when the scintillator 40 made of CsI: Tl is generated as compared to CsI: Na, single crystal Si (c-Si) or the like. It is close to the wavelength range of light.
  • the photoelectric conversion layer 52 is preferably formed of quinacridone, and high detection efficiency can be obtained.
  • the single crystal semiconductor substrate 34 is provided with a signal output circuit 57 for each pixel 48 a.
  • the signal output circuit 57 is formed of a CMOS circuit.
  • the signal output circuit 57 and the first electrode 51 are electrically connected by the contact wiring 58.
  • a bias voltage is applied to the second electrode 53 (see FIG. 8), and the signal charge generated by the photoelectric conversion layer 52 is collected by the first electrode 51 of each pixel 48a.
  • the signal output circuit 57 converts the signal charge collected by the first electrode 36 into a voltage signal corresponding to the signal charge amount and outputs the voltage signal.
  • the signal output circuit 57 includes an output transistor T1, a row selection transistor T2, a reset transistor T3, a row selection line L1, a signal output line L2, and a reset line L3.
  • the output transistor T1, the row selection transistor T2, and the reset transistor T3 are each a MOS transistor.
  • the row selection line L1, the signal output line L2, and the reset line L3 are formed of a metal such as aluminum in the insulating layer 54 described above.
  • the output transistor T1 is connected to the first electrode 51, and a voltage corresponding to the signal charge collected by the first electrode 51 is applied to the gate.
  • the row selection transistor T2 is turned on by the selection signal applied to the row selection line L1, and a voltage signal controlled according to the gate voltage of the output transistor T1 is applied to the signal output line L2.
  • the reset transistor T3 is turned on by the selection signal applied to the reset line L3, and discards the signal charge collected by the first electrode 51 to the power supply wiring Vdd.
  • the carrier mobility of each of the transistors T1 to T3 is higher than that of a TFT made of an amorphous semiconductor such as a-Si.
  • the single crystal semiconductor substrate 50 has less variation in characteristics (for example, threshold voltage and the like) at the time of manufacturing than a TFT made of an amorphous semiconductor. Therefore, it is suitable for high image quality shooting and moving image shooting that require high sensitivity, high S / N, and high speed readout.
  • peripheral circuits such as a control unit of the FPD 31 can be mixedly mounted on the single crystal semiconductor substrate 50.
  • the row selection line L1, the signal output line L2, and the reset line L3 are formed of metal such as aluminum, so the deterioration due to X-ray is small, but the output transistor T1, the row selection transistor T2, the reset Since the transistor T3 is formed of single crystal Si, there is a possibility that the characteristics are degraded (change in threshold voltage and dark current increase) due to X-rays. This is because in the MOS structure using single crystal Si, charges (hereinafter referred to as interface charges) are generated and accumulated on the sea surface of the single crystal semiconductor substrate 50 and the insulating layer 54 by absorption of X-rays.
  • interface charges charges
  • the imaging region of the subject H is a hand
  • the hand is smaller than the entire size of the image detection surface 39a (see FIG. 4) of the FPD 31. Therefore, when the entire image detection surface 39a is set as the X-ray irradiation range, all areas other than the subject area where the hand is located become a blank area where X-rays directly enter without passing through the subject H.
  • the X-ray incident on the blank area is an unnecessary X-ray that does not contribute to the depiction of the subject H in the radiation image, and furthermore, it may be irradiated to the patient by scattering, thus increasing the dose of the patient.
  • the light source 14 and the photosensor array 32 are used to determine the subject area and the blank area, and the irradiation range is determined so as to reduce the blank area.
  • the radiation image capturing apparatus 7 includes a sensor panel 39, a signal processing unit 65, an image memory 66, a control unit 67, and a wireless communication unit 68 which constitute the FPD 31 described above. , And a region determination unit 70 including the power supply unit 69 and the photosensor array 32.
  • the signal processing unit 65 includes an amplifier for amplifying a voltage signal output from each pixel 48 a of the sensor panel 39, a multiplexer, an A / D (analog / digital) converter, etc., and the voltage output from the sensor panel 39 Convert the signal into digital image data.
  • An image memory 66 is connected to the signal processing unit 65, and the image data output from the A / D converter of the signal processing unit 65 is sequentially stored in the image memory 66.
  • the image memory 66 has a storage capacity capable of storing image data for a plurality of frames, and image data obtained by imaging is sequentially stored in the image memory 66 each time a radiation image is captured.
  • the image memory 66 is connected to a control unit 67 that controls the overall operation of the radiation imaging device 7.
  • the control unit 67 is configured to include a microcomputer, and includes a CPU 67a, a RAM 67b, and a ROM 67c.
  • the RAM 67 b is a temporary storage memory made of a DRAM or the like.
  • the ROM 67c is a non-volatile memory including a flash memory or the like.
  • the console 8 When the console 8 receives the operation instruction for determining the irradiation range by the operation input, the console 8 instructs the radiation generator 6 to turn on the light source 14. At the same time, it instructs the radiation image capturing apparatus 7 to determine the subject area and the blank area.
  • the control unit 67 receives a command from the console 8, the control unit 67 operates the area determination unit 70 to execute the area determination process.
  • each photosensor When each photosensor receives visible light from the light source 14, the photosensor array 32 outputs a light amount signal according to the amount of received light.
  • the visible light from the light source 14 is irradiated to the entire light receiving surface 32 a of the photosensor array 32.
  • the subject H When the subject H is placed on the top 24 of the radiographic imaging device 7 and the subject H is positioned with respect to the image detection surface 39a of the FPD 31, visible light is blocked by the subject H in the subject region Therefore, no visible light is incident on the photosensor 33a located in the subject area.
  • visible light is incident on the photosensor 33a positioned in the blank area around the subject H.
  • the circuit unit 70a determines the subject area and the missing area based on the light amount signal output from each photosensor 33a of the photosensor array 32, generates coordinate information of each area, and generates the generated coordinate information as an area determination result. Output to the control unit 67.
  • the circuit unit 70a compares the read light amount signal with a preset threshold value and outputs a comparison result by sequentially selecting a light amount signal output from each of the photosensors 33a arranged in a matrix. And a memory for storing the comparison result.
  • the comparator compares the magnitudes of the threshold voltage and the input voltage, and outputs the comparison result. Specifically, “Hi” is output when the light amount signal is equal to or greater than the threshold, and “Low” is output when the light amount signal is less than the threshold.
  • the threshold value is that of the visible light emitted by the light source 14 such that the output value of the photosensor 33a receiving the visible light emitted by the light source 14 is equal to or higher than the threshold, and the output value of the photosensor 33a not receiving the visible light is smaller than the threshold. It is set according to the light emission amount.
  • the circuit unit 70a stores the comparison result output from the comparator in association with the coordinates in the light receiving surface 32a of the photosensor 32 of each photosensor 33a.
  • the comparison result is "Hi”
  • the circuit unit 70a determines that the coordinates of the photosensor 33a that has output the light amount signal belongs to the blank area, and identifies the coordinates and the blank area. Information is stored in memory in association with it.
  • the comparison result is "Low”
  • the circuit unit 70a performs such processing on all the photosensors 33a, and outputs coordinate information of each of the subject area and the blank area stored in the memory to the control unit 67 as an area discrimination result.
  • a wireless communication unit 68 is connected to the control unit 67.
  • the wireless communication unit 68 is an IEEE (Institute Electrical and Electronics Engineers) Supports wireless LAN (Local Area Network) standards represented by 802.11a / b / g / n etc., and controls transmission of various information to / from external equipment by wireless communication .
  • the control unit 67 can wirelessly communicate with the console 8 (see FIG. 11) via the wireless communication unit 68, and can transmit and receive various types of information to and from the console 8.
  • the radiation image capturing apparatus 7 is provided with a power supply unit 69, and the various electronic circuits described above (the signal processing unit 65, the image memory 66, the control unit 67, the wireless communication unit 68, etc.) are connected to the power supply unit 69, respectively. (Not shown) and operated by the power supplied from the power supply 69.
  • the power supply unit 69 incorporates the above-described battery (secondary battery) so as not to impair the portability of the radiation imaging device 7, and supplies power from the charged battery to various electronic circuits.
  • the signal processing unit 65, the image memory 66, the control unit 67, and the wireless communication unit 68 are provided in the case 36 or the control board 43 described above.
  • the console 8 comprises a computer, a CPU 74 which controls the operation of the entire apparatus, a ROM 75 in which various programs including control programs are stored in advance, a RAM 76 temporarily storing various data, and various data , And are connected to one another via a bus.
  • the communication I / F 78 and the wireless communication unit 79 are connected to the bus, the display 80 is connected via the display driver 81, and the operation panel 82 is connected via the operation input detection unit 83.
  • the communication I / F 78 is connected to the communication I / F 87 of the radiation generation device 6 via the connection terminal 78 a, the communication cable 86, and the connection terminal 87 a of the radiation generation device 6.
  • the console 8 (the CPU 74 thereof) instructs the radiation generating apparatus 6 to turn on and off the light source 14 through the communication I / F 87, and transmits and receives various information such as the irradiation condition and the collimator driving amount to the radiation generating apparatus 6.
  • the wireless communication unit 79 has a function of performing wireless communication with the wireless communication unit 68 of the radiation image capturing apparatus 7.
  • the console 8 (the CPU 74 thereof) instructs the radiation image capturing apparatus 7 to perform area discrimination processing by the wireless communication unit 79, and transmits and receives various information such as image data and area discrimination results.
  • the display driver 81 generates and outputs a signal for displaying various information to the display 80, and (the CPU 74 of the console 8) causes the display 80 to display an operation menu, a radiographic image taken, etc. via the display driver 81.
  • the operation panel 82 is configured to include a plurality of keys, and various information and operation instructions are input.
  • the operation input detection unit 83 detects an operation on the operation panel 82 and notifies the CPU 74 of the detection result.
  • the console 8 is provided with a collimator drive amount determination unit 91 that determines the drive amount of the collimator 11 based on the area determination result transmitted from the radiation imaging device 7.
  • the collimator drive amount determination unit 91 includes an irradiation range determination unit 91a. As shown in FIG. 12A and FIG. 12B, the irradiation range determination unit 91a determines the irradiation range so that the blank area decreases, based on the result of the area determination.
  • the irradiation range determination unit 91a has table data storing the correspondence between the position in the light receiving surface 32a of the photosensor array 32 and the position of each pixel in the image detection surface 39a of the FPD 31. The irradiation range is determined based on the and table data.
  • FIG. 12A is an example in which the irradiation range is determined such that the entire outline of the subject H fits
  • FIG. 12B is an example in which the irradiation range is determined such that the irradiation range fits in the outline of the subject H.
  • the irradiation range A1 is determined based on the result of area determination so as to be the smallest size among sizes in which the subject area corresponding to the entire outline of the subject H can be contained.
  • the irradiation range determination unit 91a is configured such that the outermost part of the outline of the subject H and the outline of the irradiation range A1 substantially match, that is, the longitudinal direction and the lateral direction of the subject H
  • the width of the irradiation range A1 is determined in accordance with the respective maximum widths of. In this way, the area of the blank area B indicated by hatching in the irradiation range A1 can be reduced as compared to the case where the irradiation range is the entire image detection surface 39a.
  • the radiographic image to be captured it is possible to visualize the entire image of the subject H.
  • the blank area B remains in the irradiation range A1.
  • a part is a missing area. It is better for the blank area to be smaller.
  • the irradiation range A2 may be determined so as to be within the contour of the subject H as shown in FIG. 12B.
  • a region such as the blank region B in FIG. 12A can be substantially eliminated, so the area of the blank region can be further reduced compared to the irradiation range A1.
  • the irradiation range A2 is determined as follows.
  • the irradiation range determination unit 91a specifies the contour position of the subject H from the coordinate information of the subject area included in the area determination result. Then, the size of the irradiation range A2 is determined so as to be within the contour of the subject H.
  • each of the shielding plates 17a, 17b, 18a and 18b of the collimator 11 has a wedge-shaped cross section (see FIG. 2), and the thickness thereof is thinner on the irradiation opening 11a side. A small amount of X-rays is transmitted near the opening 11a.
  • an area outside the contour of the subject H is a blank area where X rays are directly incident on the irradiation surface 22 without transmitting the subject H.
  • the X-rays entering the region C are transmitted through the shielding plates 17a, 17b, 18a and 18b, their energy and dose are greatly attenuated. Therefore, in comparison with the X-ray incident to the region B in FIG. 12A, the influence on the dose of the patient or the characteristic deterioration of the CMOS sensor 48 is small.
  • Whether the irradiation range is determined as the irradiation range A1 or the irradiation range A2 can be selected, for example, by manual setting.
  • the irradiation range determination unit 91a determines the irradiation range according to the selected method.
  • the collimator drive amount determination unit 91 determines the drive amount of the collimator 11 based on the irradiation range determined by the irradiation range determination unit 91 a. Since the X-ray irradiated from the X-ray tube 10 is a divergent beam having a spread angle, the irradiation range in the radiographic imaging device 7 depends on the imaging distance between the X-ray tube 10 and the radiographic imaging device 7 The size is larger than the size of the irradiation opening 11 a of the collimator 11.
  • the collimator drive amount determination unit 91 determines the size of the irradiation opening 11 a of the collimator 11 based on the irradiation range A1 determined by the irradiation range determination unit 91 a and the imaging distance between the radiographic imaging device 7 and the X-ray tube 10. The amount of driving of the collimator 11 is determined so that the irradiation opening 11a has the size.
  • the collimator drive amount determination unit 91 transmits the determined collimator drive amount to the radiation generator 6 via the communication I / Fs 78 and 87.
  • the radiation generator 6 communicates with the console 8 along with the X-ray tube 10, the collimator 11, the light source 14, and the collimator drive mechanism 19 to transmit and receive various information such as exposure conditions and the amount of collimator drive. / F 87 and a radiation source control unit 89.
  • the radiation source control unit 89 controls the collimator drive mechanism 19 to maximize the irradiation opening 11 a of the collimator 11 and turn on the light source 14.
  • the radiation source control unit 89 controls the collimator driving mechanism 19 based on the collimator driving amount.
  • the collimator drive mechanism 19 drives the collimator 11 to adjust the size of the irradiation opening 11 a. Further, the radiation source control unit 89 controls the X-ray tube 10 based on the irradiation condition (the irradiation condition includes the information of the tube voltage and the tube current) received from the console 8.
  • the irradiation condition includes the information of the tube voltage and the tube current
  • a radiographer for example, a radiographer or the like
  • a radiographic imaging device with the irradiation surface 22 facing upward between the subject H and the imaging table 7 is inserted, and the orientation of the subject H with respect to the irradiation surface 22 and the position of the subject H in the irradiation surface 22 are adjusted.
  • the subject H is a hand, it is placed directly on the center of the top of the radiation image capturing apparatus with the palm directed to the irradiation surface 22. Thereby, the positioning of the subject H with respect to the image detection surface 39a is completed.
  • the photographer When the positioning is completed, the photographer operates the operation panel 82 to instruct area determination.
  • the console 8 transmits a region discrimination command to the radiation generation device 6 and the radiation imaging device 7.
  • the radiation source control unit 89 of the radiation generating apparatus 6 receiving the command from the console 8 controls the collimator drive mechanism 19 to maximize the irradiation opening 11 a of the collimator 11 and turn on the light source 14.
  • the visible light emitted from the light source is reflected by the reflection mirror 13 and emitted to the subject H and the radiation imaging device 7. Since the irradiation opening 11 a is at the maximum, the irradiation range of visible light is the entire surface of the irradiation surface 22. Since the visible light does not pass through the subject H, only the visible light irradiated around the subject H on the illumination surface 22 passes through the illumination surface 22.
  • the control unit 67 of the radiation image capturing apparatus 7 having received an instruction for area determination from the console 8 operates the area determination unit 70 to execute area determination processing of the subject area and the missing area.
  • the photosensor array 32 In the photosensor array 32, visible light does not enter the subject region, but visible light enters only the clear region around the subject H.
  • the photosensor array 32 outputs a light amount signal corresponding to the amount of light received by each photosensor 33a to the circuit unit 70a.
  • the circuit unit 70a compares the light amount signal of each photosensor 33a with the threshold, and determines that the coordinates of the photosensor 33a whose light amount signal is equal to or greater than the threshold is a missing area, and the light amount signal of the photosensor 33a is less than the threshold The coordinates are determined to be the subject area.
  • the circuit unit 70a generates coordinate information in which the information indicating each of the determined areas is associated with the coordinates of the photosensor 33a, and outputs the generated information to the control unit 67 as an area determination result.
  • the control unit 67 transmits the area determination result to the console 8 by the wireless communication units 68 and 79.
  • the irradiation range determination unit 91 a determines the irradiation range as the irradiation range A1 illustrated in FIG. 12A or the irradiation range A2 illustrated in FIG. 12B according to the selected determination method. As a result, compared to the case where the irradiation range is the entire image detection surface 39a, it is possible to reduce the X-ray clear area. Moreover, since the irradiation range is determined based on the highly accurate area discrimination result by the light source 14 and the area discrimination unit 70, it is more accurate than when the irradiation range is determined visually.
  • the collimator drive amount determination unit 91 determines a collimator drive amount based on the irradiation range determined by the irradiation range determination unit 91a.
  • the determined amount of driving of the collimator is transmitted to the radiation generator 6 by the communication I / Fs 78 and 87.
  • the collimator drive mechanism 19 drives the collimator 11 based on the received collimator drive amount to turn off the light source 14. Thereby, the size of the irradiation opening 11a is adjusted so that it may become the irradiation range which the irradiation range determination part 91a determined.
  • the photographer operates the operation panel 82 and instructs start of imaging.
  • the console 8 transmits an instruction signal instructing the start of exposure to the radiation generator 6, and the radiation generator 6 causes the X-ray tube 10 to emit radiation.
  • the X-rays emitted from the X-ray tube 10 are narrowed by passing through the irradiation opening 11 a of the collimator 11.
  • the X-rays that have passed through the irradiation opening 11 a of the collimator 11 are transmitted through the radiation source filter 12 to remove low energy components, and are irradiated onto the subject H on the irradiation surface 22 of the radiographic imaging device 7.
  • the irradiation range of X-rays is determined so that the blank area is reduced, it is possible to reduce X-rays directly incident on the irradiation surface 22 of the radiation imaging device 7 without transmitting the subject H. it can. Since wasteful X-rays are reduced, the amount of exposure to the patient is reduced, and it also contributes to the reduction of characteristic deterioration of the CMOS sensor 48 constituting the sensor panel 39.
  • the X-rays transmitted through the subject H are transmitted through the top 24, the photosensor array 32 and the sensor panel 39 of the radiation imaging device 7, and are applied to the scintillator 40.
  • the X-rays irradiated to the scintillator 40 are converted into light in the vicinity of the X-ray incident surface of the scintillator 40, that is, in the vicinity of the sensor panel 39, and travel toward the sensor panel 39. Further, among the light generated by the scintillator 40, the light directed to the support substrate 41 side is reflected by the reflective layer of the support substrate 41 and is directed to the sensor panel 39. Thereby, the resolution of the radiographic image obtained by imaging
  • the visible light converted by the scintillator 40 passes through the second electrode 53 and enters the photoelectric conversion layer 52, where it is converted into a signal charge.
  • the signal charge generated in the photoelectric conversion layer 52 is converted into a voltage signal by the signal output circuit 57, and this voltage signal is sequentially output from each pixel.
  • the output voltage signal is converted into image data by the signal processing unit 65 and stored in the image memory 66.
  • the CPU 67 a transmits the image data stored in the image memory 66 to the console 8 by the wireless communication unit 68.
  • the CPU 74 of the console 8 stores the image data received from the radiation imaging device 7 in the HDD 77 via the RAM 76. Further, the CPU 74 causes the display 80 to display a radiation image composed of image data stored in the HDD 77 via the display driver 81.
  • each of the shield plates 17a, 17b, 18a, 18b of the collimator 11 has a wedge-shaped cross section. Because of this, X-rays are slightly transmitted through the thin portions of the shielding plates 17a, 17b and 18a, 18b on the irradiation opening 11a side. Therefore, since the X-ray is slightly irradiated to the outline portion of the subject H, the outline of the subject H is depicted on the radiation image. Thus, even if X-rays are irradiated near the contour, the amount of X-rays is small, so the effect on the increase in the exposure dose of the patient is small.
  • the radiation image taken by the radiation imaging device 7 is compared with the radiation image in the past, the one where the outline of the subject H is reflected in the radiation image identifies the imaging site.
  • Cheap According to the present embodiment, it is possible to reduce the exposure dose of the patient without impairing the convenience in comparison with the past radiation image.
  • the subject area and the blank area are discriminated by using the light source 14 for emitting visible light and the area discrimination unit 70 having the photosensor array 32.
  • the amount of exposure to the patient can be reduced because there is no pre-imaging using X-rays.
  • the visible light is emitted from the light source 14 to the subject positioned on the radiation imaging apparatus, and the light is incident on the periphery of the subject by the photosensor array 32 disposed behind the subject. Visible light is detected. Since visible light does not pass through the subject, the photosensor array 32 can output a light amount signal having a large contrast between the subject area and a clear area around the subject. If there is a difference between light and dark in the two regions, it is possible to determine the two by comparing the magnitude with one threshold. Therefore, in the present embodiment, there is no need to perform image analysis such as pattern recognition and contour extraction, so the configuration can be simplified.
  • the contrast can also be adjusted by a simple method of adjusting the light emission amount of the light source 14. Furthermore, since the detection light emitted from the light source 14 is visible light, there is no concern that the patient is exposed.
  • the FPD 31 of this embodiment is an ISS type in which the sensor panel 48 and the scintillator 40 are arranged in order from the irradiation surface 22 side, but in the ISS type, the scintillator 40 and sensor panel 39 are arranged in order from the irradiation surface side
  • the PSS type X-rays transmitted without being converted into light by the scintillator 40 enter the sensor panel 39, while in the case of the ISS type, before entering the scintillator 40. X-rays enter the sensor panel 39.
  • the present invention is highly useful for ISS type radiation imaging apparatus.
  • the present invention is particularly effective for a radiation imaging apparatus using a CMOS sensor.
  • the low energy component of the X-rays not used for the radiation imaging influences the characteristic deterioration of the CMOS sensor.
  • the high energy component of the X-ray passes through the CMOS sensor, but the low energy component of the X-ray is absorbed by the CMOS sensor because there is not enough energy to pass through the CMOS sensor. It is because there is a possibility of increasing the charge.
  • the low energy component of the X-ray is cut by the radiation source filter 12, characteristic deterioration of the CMOS sensor can be further suppressed.
  • X-ray absorption of alkali-free glass used as a substrate of the TFT panel is large, and therefore, it is difficult to use for mammography with a low tube voltage.
  • application to mammography has been expected because the single crystal Si substrate of the CMOS sensor has low absorption of X-rays.
  • by reducing the area where light passes through characteristic deterioration due to X-ray irradiation in the CMOS sensor can also be suppressed, so it becomes possible to use the CMOS sensor as an ISS type FPD, and application to mammography is easy Become.
  • a method of determining the irradiation range as in the irradiation range A1 shown in FIG. 12A, a method of placing the entire subject H within the irradiation range A1 and a subject H as in the irradiation range A2 shown in FIG.
  • two methods of the method of putting irradiation range A2 within the outline of are illustrated, it may be made to be able to determine in the middle size of irradiation range A1 and irradiation range A2 like irradiation range A3 shown to FIG. 12C.
  • the subject H is simplified and shown as an ellipse, but the actual subject H is not a simple outline of the actual subject H as shown in FIG. 12C, and the subject H is a hand. In the case, there is also a gap between the fingers.
  • the irradiation range may be determined such that a part of the outline of the subject H is contained and a part thereof protrudes.
  • the irradiation range determination unit 91a specifies each array unit 33 in which the outline of the subject H is located and each blank area in each array unit 33 based on the area determination result.
  • the irradiation range determination unit 91a counts the number of pixels of the sensor panel 39 corresponding to the blank area of each array unit 33, that is, the number of blank pixels. Then, the irradiation range A3 is determined so that the number of missing pixels does not exceed a preset allowable value. That is, the irradiation range A3 is determined so that the number of missing pixels located in the region B in the irradiation range A3 does not exceed the allowable value. By doing this, it is possible to determine the irradiation range A3 that does not disturb the observation of the region of interest while reducing the blank region.
  • the allowable value of the number of missing pixels is stored in advance in, for example, the ROM 75 or the HDD 77, and can be changed by setting.
  • the allowable value may be changed according to the imaging site such as the head, chest, abdomen, and hand.
  • the tolerance is low (relatively low pixel count is relatively low), and in the case of a complicated shape such as a hand, the tolerance is high ( Relatively large number of missing pixels).
  • table data in which the relationship between the imaging region and the tolerance value is recorded is stored in the ROM 75, the HDD 77, and the like. Then, the irradiation range determination unit 91a determines the irradiation range with reference to the table data according to the selected imaging region.
  • the tolerance value is not uniform for the X-ray irradiation dose, and the tolerance value may be changed according to the irradiation dose. For example, when the irradiation dose is large, the tolerance is low, and when the irradiation dose is small, the tolerance is high.
  • the ROM 75 or the HDD 77 stores, as table data, an allowable value of the number of missing pixels corresponding to the X-ray irradiation dose. For example, when the irradiation dose is large, since the characteristic deterioration of the CMOS sensor 48 is large, the allowable value table of the number of missing pixels is set such that the number of missing pixels becomes “0”.
  • the irradiation range is determined as an irradiation range A2 shown in FIG. 12B.
  • the cross sections of the shielding plates 17a and 17b and 18a and 18b of the collimator 11 have a wedge shape, X-rays are made in a range slightly larger than the irradiation range A2 as in the area C shown in FIG. Since it is slightly transmitted, it is possible to roughly determine the contour of the object H.
  • the collimator 11 having a wedge-shaped cross section is used.
  • a normal first collimator 101 having a constant thickness in the cross section and a wedge-shaped cross section The second collimator 102 may be used.
  • the first collimator 101 is formed of a lead plate or the like to limit the X-ray irradiation range as usual.
  • the second collimator 102 is made of aluminum or the like excellent in absorption of the low energy component of the X-ray, and used for absorption of the low energy component in the blank area.
  • the second collimator 102 is fully opened, and the opening degree of the first collimator 101 and the second collimator 102 is controlled according to the determined irradiation range, Adjust the size of each irradiation opening.
  • the irradiation aperture of the first collimator 101 is adjusted such that the irradiation range has a size indicated by a two-dot chain line L in FIG. 12B, and the opening range of the second collimator 102 is irradiated with a size of the irradiation range It is adjusted to be in the range A2. Also in this case, the same effect as that of the first embodiment can be obtained.
  • the size of the array unit 33 constituting the photosensor array 32 is made uniform, the size of the light receiving surface of the array unit may be different.
  • the area of the light receiving surface of the array unit 106 disposed in the central portion is increased over the entire light receiving surface 105 a, and the light receiving surface of the array unit 107 disposed in the peripheral portion The area of may be reduced.
  • the array unit 106 Since the light receiving surface 105 a of the photosensor panel 105 corresponds to the image detection surface 39 a of the FPD 31, the array unit 106 is located at the center of the image detection surface 39 a and the array unit 107 is located at the periphery of the image detection surface 39 a. Since the peripheral part often corresponds to the contour part of the subject, the resolution of that part is increased by reducing the area of the array unit 107 in the peripheral part, so the boundary between the subject area and the blank area can be made more precisely. It can be determined.
  • the radiation generating apparatus 110 is provided with a swing mechanism 112 for rotating the X-ray tube 10 about the focal point of the X-ray tube 10 and used together with the control of the opening degree of the collimator 11. May be The swinging angle changes the X-ray irradiation angle.
  • a lesion G to be a region of interest is present at the end of the subject H, as shown in FIG. 15A, the lesion G faces the center of the irradiation path of the X-ray tube 10 when no swing is performed. Position the subject H to do so. Then, the opening degree of the collimator 11 is controlled to narrow the irradiation range so that the blank area is reduced.
  • the collimator 11 interlocks the pair of shielding plates to adjust the width of the irradiation opening 11 a so that the center of the irradiation opening 11 a does not change. Therefore, when the irradiation opening 11a is narrowed so as to reduce the blank area in the irradiation range, the lesion G is located at the end of the subject H, so the irradiation range becomes very narrow.
  • the irradiation range can be expanded as compared with the example shown in FIG. 15A. If the irradiation range is expanded, the outline of the subject H around the lesion G can be imprinted in the radiation image. It is easier to compare the radiation image taken in the past if the contour is known.
  • the determination as to whether or not to cause the radiation generator 110 to swing is when there is a significant difference in the size of the left and right blank areas in the width direction of the irradiation range. Specifically, as shown in FIG. 15A, when the irradiation range is expanded without swinging, many missing areas exist on the right side of the subject H with the lesion G, and on the left side There is a subject H, and there is only a few blank areas. If the difference is large, as shown in FIG. 15B, the swing is performed so that the blank area on the right side decreases.
  • the radiation generating apparatus is provided with a swing mechanism, but as shown in FIG. 16, the pair of shield plates 115 a and 115 b of the collimator 115 can be individually driven, and the central axis CX of the X-ray bundle
  • the collimator openings a and b may be different on the left and right. According to this, the same effect as the swing mechanism can be obtained.
  • the light transmitted through the top plate 24 is prevented from entering the FPD 31 by the light shielding property of the photosensor array 32 itself or the light shielding layer disposed between the photosensor array 32 and the FPD 31.
  • a light shielding plate may be used to provide the top plate with a light shielding property as needed.
  • the top plate 120 of the present embodiment shown in FIG. 17 is made of plastic or the like having high visible light and X-ray permeability, as in the first embodiment.
  • the top plate 120 is provided with a slit 122 in which the light shielding plate 121 can be inserted and removed from the side.
  • the light shielding plate 121 has high light shielding properties for visible light, and has high transparency for X-rays.
  • the light shielding plate 121 can be pulled out from the top 120 and visible light can be transmitted through the top 120 make it Further, when radiation imaging is performed, as shown in FIG. 17B, the light shielding plate 121 is inserted into the top plate 120 so that visible light does not enter the FPD 31.
  • top plate 120 By using such a top plate 120, it is possible to prevent visible light from being incident on the FPD 31.
  • the form which provides the light-shielding plate 121 in the slit 122 of the top plate 120 so that insertion and removal is possible is illustrated, another form may be sufficient.
  • one end of the light shielding plate 121 is rotatably attached to the top plate 120 or the housing body via a hinge, and between the light shielding position for shielding visible light incident on the FPD 31 and the retracted position for retreating from the light shielding position. You may make it displace.
  • the sensor panel 39 of the FPD 31 can also be used as a light detection unit. Similar to the photosensor array 32, the sensor panel 39 also has a function of detecting visible light and outputting a light amount signal. If the top plate 120 is provided, the light shielding plate 121 is removed from the slit 122 to distinguish visible light from the sensor panel 39 in the area determination, and the light shielding plate 121 is slit in the radiation imaging. The light blocking state of the sensor panel 39 can be switched such that the visible light is blocked by inserting the light source into the light source 122. As described above, when the sensor panel 39 is also used as a light detection unit, the photosensor array 32 can be omitted, so that the configuration can be simplified as compared with the prior art.
  • the radiation image capturing apparatus itself is provided with the area determining function.
  • the radiation image capturing apparatus may be provided with the area determining function.
  • the radiation imaging system 130 of the present embodiment includes a radiation imaging device 131 and an attachment 132 which can be detachably attached to the radiation imaging device 131.
  • the radiographic imaging device 131 is not provided with a configuration for realizing the area discrimination function such as the transparent top plate 24 and the photosensor array 32 as the radiographic imaging device 7 of the first embodiment is not provided. It is a conventional radiographic imaging device 131 in which a housing including a top plate has a light shielding property.
  • the attachment 132 has a jacket shape having a slit 133 into which the radiographic imaging device 131 can be inserted and removed, and covers the outer peripheral surface of the radiographic imaging device 131 when the radiographic imaging device 131 is inserted into the slit 133.
  • the attachment 132 is formed of, for example, a transparent plastic that is highly transparent to visible light and X-rays.
  • the attachment 132 is provided with a photosensor array 134, a circuit unit (not shown) similar to the circuit unit 70a, a wire 135, and a connector 136.
  • the photosensor array 134 is the same as the photosensor array 32 according to the first embodiment, and is disposed at a position facing the upper surface of the radiographic imaging device 131 when the radiographic imaging device 131 is inserted into the slit 133.
  • the wiring 135 and the connector 136 electrically connect the photosensor array 134 and the radiographic imaging device 131 when the radiographic imaging device 131 is inserted into the slit 133.
  • the radiation imaging apparatus 131 When the area is determined by the radiation imaging system 130 according to the present embodiment, as shown in FIG. 18A, the radiation imaging apparatus 131 is inserted into the slit 133 to insert the conventional radiation imaging apparatus 131 into the slit 133. Attachment 132 is attached to the state shown in FIG. 18B. In this state, the subject H is positioned to emit visible light from the light source 14. In the passthrough region around the subject H, visible light passes through the attachment 132 and enters the photosensor array 134. In the radiographic imaging device 131, since the casing has a light shielding property, visible light for area determination does not enter the built-in FPD 31.
  • the photosensor array 134 outputs a light amount signal to the circuit unit.
  • the circuit unit transmits the area determination result to the radiation image capturing apparatus 131 via the wiring 135 and the connector 136.
  • the radiographic imaging device 131 transmits the area discrimination result to the console 8.
  • the irradiation range and the collimator driving amount are determined by the collimator driving amount determination unit 91 of the console 8, and the collimator 11 of the radiation generating device 6 is adjusted so as to reduce the blank area.
  • Radiography is performed after adjustment of the collimator 11 is completed. Since the attachment 132 is made of a material having high X-ray transparency, as shown in FIG. 18B, radiation imaging can be performed with the attachment 132 attached.
  • the region discrimination result is transmitted to the console 8 via the radiation imaging device 131, it may be directly transmitted to the console 8 without passing through the radiation imaging device 131.
  • the attachment 132 is provided with a wired or wireless transmission unit for transmitting to the console 8 instead of the wire 135 and the connector 136.
  • the photosensor array may be provided separately from the radiation imaging device.
  • the region determination is always performed at the time of X-ray imaging, but may be performed only when the X-ray dose is a predetermined dose or more.
  • the purpose of reducing the blank area is to reduce the exposure dose of the patient and the characteristic deterioration of the CMOS sensor, so the higher the dose, the more problematic.
  • the photosensor array 32 is used as the light detection unit of the present invention, and the area determination is performed by the photosensor array 32.
  • the light shielding plate 121 or the like When using a structure capable of switching between a state in which visible light from the outside can be incident on the FPD 31 and a light blocking state in which the FPD 31 is blocked, false detection by visible light from the outside can be prevented during radiation imaging.
  • the sensor panel 39 may also be used as a light detection unit for area determination. When the sensor panel 39 is used for area discrimination, it is preferable that the light receiving sensitivity of the sensor panel 39 be high.
  • CMOS sensor In order to increase the light reception sensitivity of the sensor panel 39, it is conceivable to reduce the thickness of the substrate or the like to suppress the light loss and to increase the amount of light incident on the photoelectric conversion portion.
  • a flexible CMOS sensor in which a CMOS sensor is formed on a flexible plastic substrate such as a transparent plastic film is used as the sensor panel 39 instead of the CMOS sensor using a single crystal semiconductor substrate. There is a way.
  • An organic thin film transistor can be used as a transistor of the flexible CMOS sensor.
  • organic thin film transistors see “Tsuyoshi Sekitani,” “Flexible organic transistors and circuits with extreme bending. As described in detail in “Stability”, Nature Materials 9, November 7, 2010, pp. 1015-1022 ”, the detailed description is omitted.
  • a structure in which a photodiode and a transistor formed of single crystal Si are provided over a plastic substrate may be used.
  • the arrangement of photodiodes and transistors on a plastic substrate can be performed, for example, by spraying a device block having a size of several tens of microns in a solution and placing it at a required position on any substrate.
  • the Assembly (FSA) method can be used.
  • FSA method "Koichi Maezawa,” Resonant tunnel device block fabrication technology for Fluidic Self-Assembly ", Technical Report of IEICE, ED, Electronic Device, The Institute of Electronics, Information and Communication Engineers, 2008 6 Since it is described in detail on May 6, 108, 87, pp. 67-71, the detailed description is omitted.
  • the scintillator 40 made of CsI emits a slight amount of light even when irradiated with ultraviolet light, in addition to radiation. Since the emitted light has a wavelength in the visible light range, this light may be detected by the sensor panel 39 or the photosensor array 32 and used for area determination.
  • the FPD is described using an example in which a CMOS sensor is used, but the present invention may use a CCD image sensor using a single crystal semiconductor substrate as in the CMOS sensor.
  • a TFT type FPD using a glass substrate may be used, and either an indirect conversion type or a direct conversion type may be used.
  • the ISS type FPD has been described as an example, the present invention is also applicable to the PSS type FPD.
  • the present invention is particularly effective for ISS type FPDs using a single crystal semiconductor substrate.
  • the light detection unit in the case where the light detection unit is provided separately from the FPD, an example using a photosensor array as the light detection unit has been described.
  • the light receiving surface in which elements having a light detection function are arranged in a matrix Any sensor may be used, and a CMOS sensor or a CCD sensor may be used instead of the photosensor array.
  • the detection light is emitted to the subject from the light source 14 and the detection light incident on the periphery of the subject is received, so that a light quantity signal with a large difference in brightness between the subject area and the clear area is obtained. Therefore, since the area determination can be performed by comparing the light amount signal with the threshold, image analysis such as pattern recognition and contour extraction is unnecessary.
  • CMOS sensor or a CCD sensor is used as the light detection unit, the image analysis function is not necessary, and the effect of the present invention of simplifying the configuration can be obtained.
  • a photosensor array is simpler and cheaper than the CMOS sensor or the CCD sensor.
  • the light source 14 is provided in the radiation generating apparatus in each of the above embodiments, the light source 14 may not be provided in the radiation generating apparatus. Since visible light from the light source 14 is irradiated on the entire light receiving surface of the light detection unit including the subject, it is not necessary to narrow the irradiation range with a collimator. Therefore, there is no problem even if the light source 14 is provided separately from the radiation generator.
  • the irradiation range is determined based on the area discrimination result, and the collimator is automatically controlled based on the determined irradiation range.
  • the control of the collimator may not be performed automatically.
  • the determination result of the area and the determined irradiation range may be displayed on the console display, and the opening degree of the collimator may be manually adjusted while confirming the display on the display.
  • automatic control of the collimator is preferable because it reduces the time and effort.
  • even when the control of the collimator is automatically performed it is preferable to be able to perform fine adjustment manually.
  • the FPD can be incorporated in a standing or lying-down stationary imaging apparatus or a mammography apparatus.
  • X-rays have been described as an example of radiation
  • the present invention may use radiation other than X-rays, such as ⁇ -rays.
  • the configuration of the radiation image capturing apparatus according to the present invention described in the above embodiment is merely an example, and it goes without saying that the configuration can be appropriately changed without departing from the scope of the present invention.

Abstract

A light source (14) of a radiation generation device (6) is turned on, and visible light reflected by a reflecting mirror (13) is applied to a subject (H). A photosensor array (32) of a radiation image capturing device (7) has a light receiving surface of approximately the same size as an image detection surface of an FPD (31), receives the visible light from the light source (14), and outputs light quantity signals. In the photosensor array (32), the visible light is not incident on a subject region which the subject (H) faces, and the visible light is incident on only a direct incidence region around the subject (H). Discrimination between the two regions is performed on the basis of the difference between a light quantity signal in the subject region and a light quantity signal in the direct incidence region.

Description

放射線画像撮影装置及び方法、並びにシステムRadiation imaging apparatus and method, and system
 本発明は、放射線画を検出する放射線画像検出器を用いた放射線画像撮影装置及び方法と、放射線画像撮影装置を用いた放射線画像撮影システムに関する。 The present invention relates to a radiation image capturing apparatus and method using a radiation image detector for detecting a radiation image, and a radiation image capturing system using a radiation image capturing apparatus.
 医療分野において、画像診断を行うために、放射線(例えば、X線)を利用して被写体(患者の撮影部位)を撮影する放射線画像撮影システムが知られている。放射線画像撮影システムは、放射線を照射する放射線発生装置と、被写体の放射線画像を撮影する放射線画像撮影装置とを有する。放射線画像撮影装置には、立位撮影台や臥位撮影台に組み込まれた据え置き型のものや、持ち運び可能な可搬型のもの(いわゆる電子カセッテ)がある。可搬型の放射線画像撮影装置は、病室等でベッドに寝ている患者の下に挿入して撮影することができる。 In the medical field, there is known a radiation imaging system for imaging a subject (a region to be imaged of a patient) using radiation (for example, X-rays) to perform image diagnosis. The radiation imaging system includes a radiation generating apparatus for emitting radiation and a radiation imaging apparatus for capturing a radiation image of a subject. The radiation imaging apparatus includes a stationary type incorporated in a standing position imaging table or a reclining position imaging table, and a portable type that can be carried (so-called electronic cassette). A portable radiographic imaging device can be inserted under the patient sleeping on a bed in a hospital room or the like and imaged.
 放射線画像撮影装置としては、放射線の入射量に応じた信号電荷を蓄積する画素がマトリクス状に配列された画像検出面を有する放射線画像検出器を利用したものが実用化されている。放射線画像検出器は、一般にFPD(flat panel detector)と呼ばれている。FPDでは、画像検出面において画素毎に信号電荷を蓄積することで、放射線画像を検出し、これをデジタルな画像データとして出力する。 As a radiographic imaging apparatus, what utilized the radiographic image detector which has an image detection surface by which the pixel which accumulate | stores the signal charge according to the incident amount of radiation was arranged in matrix form is utilized. The radiation image detector is generally called FPD (flat panel detector). In FPD, a signal charge is accumulated for each pixel on an image detection surface to detect a radiation image and output it as digital image data.
 FPDには、アモルファスセレン(a-Se)等からなる変換層で放射線を直接信号電荷に変換する直接変換型FPDと、放射線を一旦可視光に変換し、可視光を信号電荷に変換する間接変換型FPDが知られている。間接型FPDは、放射線を可視光に変換するシンチレータと、このシンチレータに対向して配置されたセンサパネルと、電気制御回路とで構成されている。センサパネルは、ガラス基板などの絶縁基板上に、光電変換により信号電荷を発生する光電変換部を画素ごとに形成した画像検出面を有しており、シンチレータからの可視光を信号電荷に変換して蓄積する。 In FPD, a direct conversion type FPD that converts radiation directly into signal charge in a conversion layer made of amorphous selenium (a-Se) or the like, and an indirect conversion that converts radiation once into visible light and converts visible light into signal charge Type FPD is known. The indirect type FPD is composed of a scintillator that converts radiation into visible light, a sensor panel disposed opposite to the scintillator, and an electrical control circuit. The sensor panel has an image detection surface in which a photoelectric conversion unit that generates signal charges by photoelectric conversion is formed for each pixel on an insulating substrate such as a glass substrate, and converts visible light from the scintillator into signal charges. Accumulate.
 センサパネルとしては、ガラス基板上にTFT(thin-film transistor)と光電変換部とをマトリクス状に配列したTFTパネルや、CMOS型イメージセンサ(以下、CMOSセンサという)が用いられる。TFTは、アモルファスシリコン(a-Si)等の非晶質半導体により形成されている。CMOSセンサは、シリコン(Si)の単結晶半導体基板に、半導体プロセスにより光電変換部とMOSトランジスタとがマトリクス状に形成されている。 As a sensor panel, a TFT panel in which TFTs (thin-film transistors) and photoelectric conversion parts are arranged in a matrix on a glass substrate, or a CMOS image sensor (hereinafter referred to as a CMOS sensor) is used. The TFT is formed of an amorphous semiconductor such as amorphous silicon (a-Si). In a CMOS sensor, photoelectric conversion parts and MOS transistors are formed in a matrix on a single crystal semiconductor substrate of silicon (Si) by a semiconductor process.
 CMOSセンサのMOSトランジスタは、単結晶半導体により形成されているため、非晶質半導体で形成されたTFTパネルに比べて、キャリア移動度が3~4桁以上高く、信号電荷の高速読み出しが可能である。また、CMOSセンサは、光電変換部やMOSトランジスタの製造時の特性(例えば、MOSトランジスタの閾値電圧等)のばらつきが小さいため、高S/Nの画像を得ることが可能である。このように、CMOSセンサは、動画撮影や高画質撮影に適している。 Since the MOS transistor of the CMOS sensor is formed of a single crystal semiconductor, its carrier mobility is three to four orders of magnitude higher than that of a TFT panel formed of an amorphous semiconductor, enabling high-speed readout of signal charges. is there. In addition, since the variation of characteristics (for example, the threshold voltage of the MOS transistor and the like) at the time of manufacturing the photoelectric conversion unit and the MOS transistor is small in the CMOS sensor, it is possible to obtain a high S / N image. Thus, the CMOS sensor is suitable for moving image shooting and high-quality shooting.
 CMOSセンサは、現在では12インチウエハを用いて、四角形の一辺が約200mmのサイズを有するものが製造可能である。このため、例えば、医療用として一般的な一辺が17インチのFPDは、4枚のCMOSセンサを用いて構成することができる。 CMOS sensors can now be manufactured using a 12 inch wafer, with one side of the square having a size of about 200 mm. Therefore, for example, a 17-inch FPD generally used for medical use can be configured using four CMOS sensors.
 放射線撮影を行う場合には、患者の被曝量を最小限に抑えるために、患者に対してできる限り不要な放射線が照射されないことが好ましい。そのため、放射線発生装置には、放射線の照射範囲を限定するコリメータが設けられており、コリメータで照射範囲を限定することで、患者の被曝量を低減している。例えば、撮影部位が患者の手や足を撮影する場合など、被写体が、放射線画像検出器の画像検出面全体の大きさに対して小さい場合には、画像検出面内において被写体が対面する被写体領域の大きさに合わせて、照射範囲を小さくする。 When performing radiography, it is preferable that the patient not be irradiated with unnecessary radiation as much as possible in order to minimize the exposure dose of the patient. Therefore, the radiation generating apparatus is provided with a collimator that limits the irradiation range of the radiation, and the radiation exposure dose of the patient is reduced by limiting the irradiation range with the collimator. For example, if the subject is smaller than the size of the entire image detection surface of the radiation image detector, for example, when the imaging site captures the hand or foot of a patient, the subject region where the object faces in the image detection surface Reduce the irradiation range according to the size of.
 画像検出面内において、被写体が対面しない被写体の周囲の領域は、放射線が被写体を透過せずに入射する素抜け領域となる。素抜け領域に入射する放射線は、放射線画像において被写体の描出に寄与しないばかりか、散乱などにより患者に照射される可能性もある。したがって、被写体領域の大きさに合わせて照射範囲を小さくすれば、素抜け領域を少なくすることができ、患者の被曝量を低減することができる。 In the image detection plane, an area around the subject where the subject does not face is a blank area where radiation enters without passing through the subject. Radiation incident on a clear area not only does not contribute to the depiction of an object in a radiation image, but also may be irradiated to a patient by scattering or the like. Therefore, if the irradiation range is reduced in accordance with the size of the subject area, the blank area can be reduced, and the exposure dose of the patient can be reduced.
 コリメータによる照射範囲の調節を正確に行うためには、撮影範囲内における被写体領域と素抜け領域が正確に判別されて、特定されることが必要である。目視による判別では正確さにかけるため、特開2009-082169号公報(米国特許公開公報US2009/0086885)や特開平05-042135号公報においては、被写体領域と素抜け領域を自動判別する技術が提案されている。 In order to accurately adjust the irradiation range by the collimator, it is necessary to accurately determine and identify the subject area and the blank area in the imaging range. In order to apply accuracy in visual discrimination, in Japanese Patent Application Laid-Open No. 2009-082169 (US Patent Publication No. US 2009/0086885) and Japanese Patent Application Laid-open No. 05-042135, a technique for automatically discriminating between a subject area and a blank area is proposed. It is done.
特開2009-082169号公報には、光学式カメラを用いて、被写体領域と素抜け領域とを判別する技術が開示されている。具体的には、まず、放射線画像撮影装置と被写体の相対的な位置や姿勢を調整して、画像検出面に対して被写体をポジショニングする。被写体や放射線画像撮影装置は、室内照明光(蛍光灯の光など)や自然光で照らされているので、その照明光の下、光学式カメラによって被写体と放射線画像撮影装置を撮影する。撮影した画像には放射線画像撮影装置と被写体の位置関係が記録されるので、撮影した画像に対して、パターン認識や輪郭抽出などの画像解析を行って、画像検出面内における被写体領域と素抜け領域とを判別する。被写体領域の大きさに合わせて照射範囲の大きさを決定して、コリメータの照射開口の大きさを調節する。 Japanese Patent Application Laid-Open No. 2009-082169 discloses a technique for determining an object area and a blank area using an optical camera. Specifically, first, the relative position and posture of the radiation image capturing apparatus and the subject are adjusted, and the subject is positioned with respect to the image detection surface. Since the subject and the radiation imaging apparatus are illuminated with room illumination light (such as fluorescent light) and natural light, the subject and the radiation imaging apparatus are imaged by the optical camera under the illumination light. Since the positional relationship between the radiation image capturing apparatus and the subject is recorded in the captured image, image analysis such as pattern recognition and contour extraction is performed on the captured image, and the subject region and blank area in the image detection plane Determine the area. The size of the irradiation area is determined in accordance with the size of the subject area, and the size of the irradiation opening of the collimator is adjusted.
 しかしながら、特開2009-082169号公報の方式は、室内照明や自然光で照明された被写体及び放射線画像撮影装置の光学像を撮影する方式であるため、被写体領域と素抜け領域の判別には、パターン認識や輪郭抽出などの画像解析が必要になり、装置構成が複雑化する懸念がある。例えば、被写体の着衣が白で放射線画像撮影装置の筐体の色も白というように、被写体と放射線画像撮影装置の色が似ている場合には、精度の高い画像解析が必要となる。 However, since the method of JP 2009-082169 A is a method for capturing an object illuminated with room illumination or natural light and an optical image of a radiation image capturing apparatus, a pattern is used to discriminate between a subject region and a clear region. Image analysis such as recognition and contour extraction is required, and there is a concern that the apparatus configuration becomes complicated. For example, when the color of the subject and the radiographic imaging apparatus are similar such that the clothes of the subject are white and the color of the casing of the radiographic imaging apparatus is also white, highly accurate image analysis is required.
 また、特開平05-042135号公報においては、放射線発生装置から少量の放射線を照射して、放射線画像撮影装置により被写体のプレ撮影を行い、プレ撮影によって得た放射線画像を画像解析して被写体領域と素抜け領域を判別する技術が開示されている。特開平05-042135号公報の技術によれば、光学式カメラが不要となる反面、放射線を用いたプレ撮影を行うため、その分患者の被曝量が増えてしまうという問題がある。また、特開平05-042135号公報に記載の技術でも、放射線は被写体を透過するため、被写体領域と素抜け領域の判別には、パターン認識や輪郭抽出などの画像解析が必要となるため、特開2009-082169号公報に記載の技術と同様に装置構成が複雑化する懸念がある。 Further, in Japanese Patent Application Laid-Open No. 05-042135, a small amount of radiation is irradiated from a radiation generation apparatus, a subject is pre-photographed by a radiation image photographing apparatus, and a radiographic image obtained by pre-photographing is image analyzed There is disclosed a technique for determining the blank area and the blank area. According to the technique disclosed in Japanese Patent Application Laid-Open No. 05-042135, although the optical camera is not required, there is a problem that the exposure dose of the patient is increased by the preliminary imaging using radiation. Furthermore, even with the technique described in Japanese Patent Application Laid-Open No. 05-042135, since radiation passes through the subject, it is necessary to perform image analysis such as pattern recognition and contour extraction in order to discriminate between the subject area and the clear area. Similar to the technique described in JP-A-2009-082169, there is a concern that the apparatus configuration may be complicated.
 本発明の目的は、放射線撮影において、放射線によるプレ撮影をすることなく、簡単な構成で、被写体領域と素抜け領域を判別することにある。 An object of the present invention is to distinguish between a subject area and a blank area with a simple configuration without performing preliminary imaging with radiation in radiation imaging.
 上記課題を解決するために、本発明の放射線画像撮影装置は、放射線発生装置と、放射線画像撮影装置と、光源と、領域判別部とを備えている。放射線発生装置は、被写体に放射線を照射する放射線源を有する。放射線画像撮影装置は、複数の画素がマトリクス状に配列された画像検出面を持ち、被写体を透過した放射線を受けて被写体の放射線画像を検出する放射線画像検出器を有する。光源は、画像検出面に対してポジショニングされた被写体に、検出光を照射する。領域判別部は、光源から照射され被写体の周囲に入射する検出光を受光して光量信号を出力する光検出部を有し、光量信号に基づいて、画像検出面内において被写体が対面する被写体領域と被写体の周囲の素抜け領域とを判別する。 In order to solve the above-mentioned subject, a radiographic imaging device of the present invention is provided with a radiation generation device, a radiographic imaging device, a light source, and a field distinction part. The radiation generator comprises a radiation source for irradiating the subject with radiation. The radiation imaging apparatus has an image detection surface in which a plurality of pixels are arranged in a matrix, and includes a radiation image detector that receives radiation transmitted through a subject and detects a radiation image of the subject. The light source emits detection light to the subject positioned with respect to the image detection surface. The area determination unit has a light detection unit that receives detection light emitted from the light source and enters the periphery of the subject and outputs a light quantity signal, and based on the light quantity signal, the subject area where the subject faces in the image detection plane And an uncovered area around the subject.
 光検出部は、検出光の受光量に応じた光量信号を出力する複数のフォトセンサがマトリクス状に配列された受光面を有するフォトセンサアレイであることが好ましい。フォトセンサアレイは、放射線画像検出器よりも光源側に配置されていることが好ましい。フォトセンサアレイは、受光面が、放射線画像検出器の画像検出面と平行な状態で配置されていることが好ましい。ここで、平行には、完全に平行な場合に加えて、ほぼ平行な場合を含む。領域判別部は、複数のフォトセンサが出力するそれぞれの光量信号と予め設定された閾値とを比較することにより、被写体領域と素抜け領域とを判別することが好ましい。 The light detection unit is preferably a photo sensor array having a light receiving surface in which a plurality of photo sensors that output light quantity signals according to the amount of light received of detection light are arranged in a matrix. The photosensor array is preferably disposed closer to the light source than the radiation image detector. The photosensor array is preferably arranged such that the light receiving surface is parallel to the image detection surface of the radiation image detector. Here, parallel includes, in addition to completely parallel, substantially parallel. It is preferable that the area discrimination unit discriminates between the subject area and the blank area by comparing the light amount signals output from the plurality of photosensors with a preset threshold.
 光源は、放射線発生装置に設けられており、検出光は放射線と同じ方向から被写体に照射されることが好ましい。検出光は、可視光、赤外光、紫外光のいずれかであることが好ましい。放射線発生装置は、放射線を透過させる照射開口を画定する複数枚の遮蔽板で構成され、遮蔽板の移動により照射開口の大きさを調節して、画像検出面内における照射範囲を限定するコリメータを有していることが好ましい。 The light source is preferably provided in the radiation generation apparatus, and the detection light is preferably emitted to the subject from the same direction as the radiation. The detection light is preferably any one of visible light, infrared light and ultraviolet light. The radiation generating apparatus is composed of a plurality of shielding plates that define an irradiation opening that transmits radiation, and a collimator that limits the irradiation range in the image detection plane by adjusting the size of the irradiation opening by moving the shielding plate. It is preferable to have.
 領域判別部の判別結果に基づいて、素抜け領域が低減されるように、照射範囲を決定する照射範囲決定部と、照射範囲決定部が決定した照射範囲となるように、コリメータの駆動量を決定するコリメータ駆動量決定部とを備えていることが好ましい。 The driving amount of the collimator is set so that the irradiation range determination unit that determines the irradiation range and the irradiation range determined by the irradiation range determination unit so that the blank area is reduced based on the determination result of the area determination unit. It is preferable to include a collimator drive amount determination unit to determine.
 照射範囲決定部は、領域判別部の判別結果に基づいて、素抜け領域に存在する放射線画像検出器の素抜け画素数を特定し、素抜け画素数が予め設定されている許容値を超えないように照射範囲を決定することが好ましい。素抜け画素数の許容値は、放射線源から照射される放射線の照射線量に応じて設定されていることが好ましい。 The irradiation range determination unit specifies the number of pixels of the radiation image detector which are present in the region of the missing portion based on the determination result of the region determining portion, and the number of the missing pixels does not exceed the preset allowable value. It is preferable to determine the irradiation range as described above. It is preferable that the allowable value of the number of unfiltered pixels is set in accordance with the irradiation dose of radiation emitted from the radiation source.
 フォトセンサアレイは、複数のフォトセンサが配列された受光面を有する複数のアレイユニットを複数枚タイリングして構成されており、画像検出面の中央部に配置されるアレイユニットよりも、画像検出面の周縁部に配置されるアレイユニットのほうが受光面のサイズが小さくしてもよい。 The photosensor array is configured by tiling a plurality of array units having a light receiving surface in which a plurality of photosensors are arrayed, and the image detection is performed more than the array unit disposed at the center of the image detection surface. The size of the light receiving surface may be smaller in the array unit disposed at the peripheral edge of the surface.
 コリメータは、照射開口の幅を変化させる少なくとも一対の遮蔽板を有し、遮蔽板の断面形状は、照射開口を画定する端縁から外側に向かうにしたがって厚みが厚くなるくさび型形状であってもよい。 The collimator has at least a pair of shielding plates that change the width of the irradiation opening, and the cross-sectional shape of the shielding plate is a wedge shape whose thickness increases from the edge defining the irradiation opening toward the outside Good.
 コリメータは、放射線の照射範囲を限定する第1コリメータと、素抜け領域に照射される放射線から比較的エネルギが低いエネルギ成分を吸収する第2のコリメータとを有していてもよい。 The collimator may have a first collimator that limits the irradiation range of the radiation, and a second collimator that absorbs an energy component that is relatively low in energy from the radiation that is irradiated to the blank area.
 一対の遮蔽板は、それぞれ独立に移動可能であってもよい。 The pair of shielding plates may be movable independently.
 放射線画像検出器は、放射線を吸収して光に変換するシンチレータと、シンチレータの放射線照射側に配置され、シンチレータで変換された光を検出する複数の画素がマトリクス状に配列されたセンサパネルとを含むことが好ましい。センサパネルは、CMOS型イメージセンサで構成されていることが好ましい。 The radiation image detector includes a scintillator that absorbs radiation and converts it into light, and a sensor panel that is disposed on the radiation irradiation side of the scintillator and in which a plurality of pixels that detect light converted by the scintillator are arranged in a matrix. It is preferable to include. The sensor panel is preferably composed of a CMOS type image sensor.
 センサパネルを光検出部として兼用させてもよい。放射線画像撮影装置は、放射線及び検出光を透過させる照射面が形成され、前記センサパネルを収容する筐体と、放射線に対しては透過性を有する一方、前記検出光に対しては遮光性を有する遮光板とを有しており、遮光板は、センサパネルに入射する前記検出光を遮光する遮光位置と、遮光位置から退避する退避位置との間で変位自在に設けられていてもよい。 The sensor panel may also be used as a light detection unit. The radiation imaging apparatus has an irradiation surface for transmitting radiation and detection light, and a housing for accommodating the sensor panel, and has transparency to radiation while shielding light to the detection light. The light shielding plate may be displaceable between a light shielding position for shielding the detection light incident on the sensor panel and a retracted position for retreating from the light shielding position.
 放射線画像撮影装置に対して着脱自在に取り付け可能なアタッチメントを有しており、アタッチメントに、光検出部が設けられていてもよい。 The radiation image capturing apparatus may have an attachment removably attachable to the radiation imaging apparatus, and the attachment may be provided with a light detection unit.
 本発明の放射線画像撮影装置は、放射線画像検出器と、光検出部と、領域判別部とを備えている。放射線画像検出器は、複数の画素がマトリクス状に配列された画像検出面を持ち、放射線源から照射され被写体を透過した放射線を受けて被写体の放射線画像を検出する。光検出部は、画像検出面に対して前記被写体がポジショニングされた状態で、光源から照射され被写体の周囲に入射する前記検出光を受光して光量信号を出力する。領域判別部は、光量信号に基づいて、画像検出面内において被写体が対面する被写体領域と被写体の周囲の素抜け領域とを判別する。 The radiation image capturing apparatus of the present invention includes a radiation image detector, a light detection unit, and an area determination unit. The radiation image detector has an image detection surface in which a plurality of pixels are arranged in a matrix, receives radiation transmitted from the radiation source and transmitted through the subject, and detects a radiation image of the subject. The light detection unit receives the detection light emitted from the light source and incident on the periphery of the subject in a state in which the subject is positioned with respect to the image detection surface, and outputs a light amount signal. The area determination unit determines, based on the light amount signal, a subject area where the subject faces in the image detection plane and a blank area around the subject.
 本発明の放射線画像撮影方法は、放射線画像検出器の画像検出面に対して被写体がポジショニングされた状態で、被写体に検出光を照射するステップと、前記被写体の周囲に入射する前記検出光を受光して、光量信号を出力するステップと、前記光量信号に基づいて、前記画像検出面内において前記被写体が対面する被写体領域と前記被写体の周囲の素抜け領域とを判別するステップとを含むことを特徴とする。 In the radiation image capturing method of the present invention, in the state where the subject is positioned with respect to the image detection surface of the radiation image detector, the step of irradiating the subject with detection light, and the detection light which is incident around the subject is received. And outputting a light amount signal, and determining a subject region facing the subject in the image detection plane based on the light amount signal and a blank region around the subject. It features.
本発明の効果Effect of the present invention
 本発明によれば、放射線によるプレ撮影をすることなく、簡単な構成で、被写体領域と素抜け領域を判別することができる。 According to the present invention, it is possible to distinguish between a subject area and a blank area with a simple configuration without performing preliminary imaging with radiation.
放射線画像撮影システムの構成図である。It is a block diagram of a radiographic imaging system. 放射線画像撮影装置及びコリメータの斜視図である。It is a perspective view of a radiographic imaging apparatus and a collimator. アレイユニットの説明図である。It is explanatory drawing of an array unit. 放射線画像撮影装置の断面図である。It is sectional drawing of a radiographic imaging apparatus. 天板に貼り合わされたセンサパネルを示す底面図である。It is a bottom view which shows the sensor panel bonded together to the top plate. FPDの構成を概略的に示す断面図である。It is sectional drawing which shows the structure of FPD roughly. 光電変換層の感度域及びシンチレータの発光領域を示すグラフである。It is a graph which shows the sensitivity area of a photoelectric converting layer, and the luminescence field of a scintillator. 信号出力回路の構成を示す回路図である。It is a circuit diagram showing composition of a signal output circuit. 天板上に被写体が載置されている状態を示す斜視図である。It is a perspective view which shows the state in which the to-be-photographed object is mounted on the top plate. 放射線画像撮影装置の電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electric system of a radiographic imaging apparatus. コンソール及び放射線発生装置の電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of an electric system of a console and a radiation generation apparatus. 照射範囲の第1の決定方法を示す説明図である。It is explanatory drawing which shows the 1st determination method of irradiation range. 照射範囲の第2の決定方法を示す説明図である。It is explanatory drawing which shows the 2nd determination method of irradiation range. 照射範囲の第3の決定方法を示す説明図である。It is explanatory drawing which shows the 3rd determination method of irradiation range. 第1及び第2コリメータを備えた放射線発生装置の説明図である。It is explanatory drawing of the radiation generation apparatus provided with the 1st and 2nd collimator. 領域ごとにアレイユニットのサイズを異ならせたフォトセンサアレイを示す説明図である。It is explanatory drawing which shows the photosensor array which varied the size of the array unit for every area | region. 首振り機構を備えた放射線発生装置を示す説明図である。It is an explanatory view showing a radiation generator provided with a swing mechanism. 図15Aの首振り機構で首振りを行った状態を示す概念図である。It is a conceptual diagram which shows the state which performed the swing by the swing mechanism of FIG. 15A. 一対の遮蔽板を個別に駆動できるようにしたコリメータの説明図である。It is explanatory drawing of the collimator which enabled it to drive a pair of shielding board separately. 天板に着脱自在な遮光板を設ける構成の説明図である。It is explanatory drawing of the structure which provides a removable light-shielding plate in a top plate. 図17Aの天板に遮光板を挿入した状態の説明図である。It is explanatory drawing of the state which inserted the light-shielding plate in the top plate of FIG. 17A. 放射線画像撮影装置に着脱可能なアタッチメントを示す説明図である。It is explanatory drawing which shows the attachment which can be attached or detached to a radiographic imaging apparatus. 放射線画像撮影装置にアタッチメントを取り付けた状態を示す説明図である。It is explanatory drawing which shows the state which attached the attachment to the radiographic imaging apparatus.
[第1実施形態]
 図1に示すように、本発明を用いた放射線画像撮影システム5は、被写体(患者)Hの撮影部位にX線を照射する放射線発生装置6と、被写体Hを透過したX線に基づいて放射線画像を撮影する放射線画像撮影装置7と、放射線発生装置6と放射線画像撮影装置7とを制御するコンソール8とを備える。
First Embodiment
As shown in FIG. 1, a radiation imaging system 5 using the present invention comprises a radiation generator 6 for emitting X-rays to the imaging region of a subject (patient) H and radiation based on the X-rays transmitted through the subject H. A radiation image capturing apparatus 7 for capturing an image, and a console 8 for controlling the radiation generating apparatus 6 and the radiation image capturing apparatus 7 are provided.
 放射線発生装置6は、X線管10、コリメータ11、線源フィルタ12、反射ミラー13及び光源14を有する。本発明の放射線源に相当するX線管10は、熱電子を放出するフィラメントからなる陰極と、陰極から放出された熱電子が衝突してX線を放射する陽極(ターゲット)とを有しており、被写体Hに向けてX線を照射する。X線は、陽極において熱電子が衝突する焦点から放射状に広がる。 The radiation generator 6 includes an X-ray tube 10, a collimator 11, a source filter 12, a reflection mirror 13, and a light source 14. The X-ray tube 10 corresponding to the radiation source of the present invention has a cathode made of a filament that emits thermal electrons, and an anode (target) that emits thermal X rays when the thermal electrons emitted from the cathode collide. X-ray toward the subject H. The x-rays emanate radially from the focal point where the thermal electrons strike at the anode.
 コリメータ11は、X線管10の照射方向の前方に配置されており、放射状に広がるX線の一部を遮蔽してX線の照射範囲を限定する。図2に示すように、コリメータ11は、例えば、X線を遮蔽する4枚の遮蔽板17a、17b、18a、18bを有しており、これらによってX線を透過させる四角形の照射開口11aを画定する。コリメータ11は、遮蔽板17a、17b、18a、18bを移動することで照射開口11aの大きさを調節することが可能である。一対の遮蔽板17a、17bは、X線の照射方向zに対して垂直なxy平面のx方向に移動自在である。x方向の照射開口11aの幅を変更する第1遮蔽部17を構成する。もう一対の遮蔽板18a、18bは、xy平面のy方向に移動自在であり、y方向の照射開口11aの幅を変更する第2遮蔽部18を構成する。このような2組の遮蔽板を組み合わせる構造は、いわゆるダブルリーフ構造と呼ばれる。 The collimator 11 is disposed in front of the irradiation direction of the X-ray tube 10, and shields a part of the radially expanding X-rays to limit the X-ray irradiation range. As shown in FIG. 2, the collimator 11 has, for example, four shielding plates 17a, 17b, 18a, 18b for shielding X-rays, which define a rectangular irradiation opening 11a for transmitting X-rays. Do. The collimator 11 can adjust the size of the irradiation opening 11a by moving the shielding plates 17a, 17b, 18a and 18b. The pair of shielding plates 17a and 17b are movable in the x direction of the xy plane perpendicular to the irradiation direction z of the X-ray. The first shielding portion 17 is configured to change the width of the irradiation opening 11 a in the x direction. The other pair of shielding plates 18a and 18b is movable in the y direction of the xy plane, and constitutes a second shielding portion 18 that changes the width of the irradiation opening 11a in the y direction. A structure combining such two sets of shielding plates is called a so-called double leaf structure.
 2組の遮蔽板17a、17b及び遮蔽板18a、18bは、照射開口11aの幅が変化しても照射開口11aの中心が変化しないように、それぞれ連動して移動する。例えば、一対の遮蔽板17a、17bは、x方向において一方が移動すると、その移動量に応じた分だけ他方も反対方向に移動する。各遮蔽板17a、17bの移動により照射開口11aの幅は変化するが、連動しているため、照射開口11aの幅方向の中心は変化しない。 The two shield plates 17a and 17b and the shield plates 18a and 18b move in conjunction with one another so that the center of the irradiation opening 11a does not change even if the width of the irradiation opening 11a changes. For example, when one of the shield plates 17a and 17b moves in the x direction, the other moves in the opposite direction by an amount corresponding to the movement amount. Although the width of the irradiation opening 11a changes due to the movement of the shielding plates 17a and 17b, the center in the width direction of the irradiation opening 11a does not change because they are interlocked.
 遮蔽板17a、17b及び18a、18bには、X線吸収性に優れた鉛等が用いられており、その断面は、照射開口11aを画定する端縁から外側の端部にいくにしたがってz方向の厚みが厚くされたくさび型形状となっている。これにより、遮蔽板17a、17b、18a、18bにおいて、照射開口11a側の端縁近傍では、X線は完全には遮蔽されず、一部が透過する。 For the shield plates 17a, 17b and 18a, 18b, lead or the like excellent in X-ray absorptivity is used, and the cross section thereof is in the z direction from the edge defining the irradiation opening 11a to the outer end Has a thick wedge shape. Thereby, in the shielding plates 17a, 17b, 18a, and 18b, X-rays are not completely shielded near the end edge on the irradiation opening 11a side, and a part of the X-rays is transmitted.
 また、コリメータ11は、第1遮蔽部17及び第2遮蔽部18を駆動するコリメータ駆動機構19を有しており、電動によって照射開口の大きさを変更することが可能である。コリメータ駆動機構19は、例えば、モータと、モータの回転力を各遮蔽板17a、17b、18a、18bに伝達するためのギヤやリンク機構などで構成される。コリメータ駆動機構19は、例えば、第1遮蔽部17と第2遮蔽部18をそれぞれ独立に駆動することが可能であり、照射開口11aのx方向とy方向の幅を独立に変化させることができる。そのため、照射開口11aの形状を、正方形以外に長方形にすることも可能であり、さらに、長方形の長辺と短辺の比率を変化させることも可能である。 Further, the collimator 11 has a collimator drive mechanism 19 for driving the first shielding portion 17 and the second shielding portion 18, and the size of the irradiation opening can be changed electrically. The collimator drive mechanism 19 includes, for example, a motor, and a gear and a link mechanism for transmitting the rotational force of the motor to the shielding plates 17a, 17b, 18a, and 18b. The collimator drive mechanism 19 can drive, for example, the first shielding unit 17 and the second shielding unit 18 independently of each other, and can change the widths of the irradiation opening 11 a in the x direction and the y direction independently. . Therefore, it is possible to make the shape of the irradiation opening 11 a rectangular other than square, and it is also possible to change the ratio of the long side to the short side of the rectangle.
 線源フィルタ12は、X線管10から放射されたX線から、被写体Hを透過する際に散乱して放射線画像の画質が劣化する原因となる低エネルギ成分を除去する。線源フィルタ12には、低エネルギ成分のみを吸収する性質を有する材料が用いられる。このような材料としては、例えばアルミニウムが好適である。線源フィルタ6bを透過したX線の高エネルギ成分が被写体Hの撮影に用いられる。 The radiation source filter 12 removes low energy components that scatter from the X-ray emitted from the X-ray tube 10 as they pass through the object H and cause deterioration of the image quality of the radiation image. For the source filter 12, a material having a property of absorbing only low energy components is used. As such a material, for example, aluminum is suitable. The high energy component of the X-ray transmitted through the radiation source filter 6 b is used for imaging the subject H.
 X線管10から放射されるX線のエネルギ分布は、X線管10に与えられる管電圧によって変化する。例えば、X線管10の管電圧が70kVである場合には、X線管10から放射されるX線の最大エネルギが70KeVになり、X線のエネルギ分布はおおよそ15~70KeVとなる。線源フィルタ12は、管電圧が70kVの場合におけるX線のエネルギ分布の1/2以下、例えば15~40KeVの低エネルギ成分を吸収し、1/2以上(40~70KeV)の高エネルギ成分を透過する。なお、線源フィルタ12は、管電圧に応じて変更できるように、X線発生装置6に着脱自在に取り付けられている。 The energy distribution of the X-rays emitted from the X-ray tube 10 changes with the tube voltage applied to the X-ray tube 10. For example, when the tube voltage of the X-ray tube 10 is 70 kV, the maximum energy of X-rays emitted from the X-ray tube 10 is 70 KeV, and the energy distribution of the X-rays is approximately 15 to 70 KeV. The source filter 12 absorbs a low energy component of 1/2 or less, for example, 15 to 40 KeV, of the X-ray energy distribution at a tube voltage of 70 kV, and a high energy component of 1/2 or more (40 to 70 KeV) To Penetrate. The source filter 12 is detachably attached to the X-ray generator 6 so that it can be changed according to the tube voltage.
 反射ミラー13と光源14は、コリメータ11によるX線の照射範囲を決定する際に用いられる。反射ミラー13は、X線管10とコリメータ11との間に配置されており、光源14は反射ミラー13の側方に配置されている。光源14は、検出光である可視光を照射するランプ等からなる。反射ミラー13は、光源14から照射された可視光をコリメータ11に向けて反射するように傾けられている。 The reflection mirror 13 and the light source 14 are used when determining the irradiation range of the X-ray by the collimator 11. The reflection mirror 13 is disposed between the X-ray tube 10 and the collimator 11, and the light source 14 is disposed to the side of the reflection mirror 13. The light source 14 comprises a lamp or the like for emitting visible light which is detection light. The reflection mirror 13 is inclined to reflect the visible light emitted from the light source 14 toward the collimator 11.
コリメータ11によるX線の照射範囲を決定する際には、放射線画像撮影装置7に対して被写体Hをポジショニングした状態で、光源14から反射ミラー13に向けて可視光が照射される。可視光は反射ミラー13により反射されて光路が曲げられてコリメータ11に向かい、コリメータ11の照射開口11aを通過して、放射線画像撮影装置7にポジショニングされた被写体Hに照射される。反射ミラー13は、例えば、X線を透過する材料で形成されている。そのため、X線照射時においても反射ミラー13を退避させる必要はなく、反射ミラー13の位置は固定されている。もちろん、X線照射時に反射ミラー13を退避させてもよい。 When determining the irradiation range of the X-ray by the collimator 11, the visible light is irradiated from the light source 14 toward the reflection mirror 13 in a state where the subject H is positioned with respect to the radiation imaging device 7. The visible light is reflected by the reflection mirror 13, the optical path is bent, and travels to the collimator 11. The visible light passes through the irradiation opening 11 a of the collimator 11 and is irradiated on the subject H positioned in the radiation imaging device 7. The reflection mirror 13 is formed of, for example, a material that transmits X-rays. Therefore, it is not necessary to retract the reflection mirror 13 even during X-ray irradiation, and the position of the reflection mirror 13 is fixed. Of course, the reflection mirror 13 may be retracted at the time of X-ray irradiation.
 図2に示すように、本発明に係る放射線画像撮影装置7は、放射線画像検出器であるFPD31と、光検出部であるフォトセンサアレイ32と、これらを収容する筐体23とを有する。筐体23は可搬型であり、放射線画像撮影装置7は、いわゆる電子カセッテである。筐体23は、全体形状が扁平な箱形で、平面形状は矩形状をしている。筐体23は、筐体本体25と、筐体本体25の上部の開口部を封止する天板24とで構成される。天板24の上面は、放射線発生装置6が発するX線が照射される照射面22であり、照射面22上に被写体Hが載置されることにより、放射線画像撮影装置7に対して被写体Hがポジショニングされる。筐体本体25は、例えばABS樹脂等から構成されており、天板24は、可視光及びX線の透過性が高いプラスチック等から構成されている。これにより、天板24による放射線の吸収を抑制しつつ、上述した光源14が発する可視光の透過性が確保される。また、天板24の材料を比較的強度が高いプラスチックを使用することにより、強度も確保されている。 As shown in FIG. 2, the radiation image capturing apparatus 7 according to the present invention has an FPD 31 which is a radiation image detector, a photosensor array 32 which is a light detection unit, and a housing 23 which accommodates these. The housing 23 is a portable type, and the radiation imaging device 7 is a so-called electronic cassette. The housing 23 is a box having a flat overall shape, and has a rectangular planar shape. The housing 23 is configured of a housing body 25 and a top plate 24 that seals the opening of the upper portion of the housing body 25. The upper surface of the top plate 24 is an irradiation surface 22 to which X-rays emitted from the radiation generation device 6 are irradiated. When the object H is placed on the irradiation surface 22, the object H with respect to the radiation image capturing device 7 Is positioned. The housing body 25 is made of, for example, an ABS resin or the like, and the top plate 24 is made of a plastic or the like having high transparency to visible light and X-rays. Thereby, the transmittance | permeability of the visible light which the light source 14 mentioned above emits is ensured, suppressing absorption of the radiation by the top plate 24. As shown in FIG. Further, the strength is also secured by using the material of the top plate 24 of a relatively high strength plastic.
 筐体23は、例えば、放射線画像を感光材料に記録する従来のフィルムカセッテと同じサイズ(例えば、17インチ角)である。放射線画像撮影装置7は、フィルムカセッテと同様に可搬性を有し、フィルムカセッテに代えて用いることが可能である。 The housing 23 is, for example, the same size (for example, 17-inch square) as a conventional film cassette for recording a radiation image on a photosensitive material. The radiographic imaging device 7 has the same portability as the film cassette, and can be used instead of the film cassette.
 放射線画像撮影装置7の天板24には、複数個のLEDにより構成された表示部28が設けられている。表示部28には、放射線画像撮影装置7の動作モード(例えば「レディ状態」や「データ送信中」等)やバッテリの残容量等の動作状態が表示される。なお、表示部28を、LED以外の発光素子や、液晶ディスプレイや有機ELディスプレイ等で構成してもよい。また、表示部28を、筐体本体25に設けてもよい。 The top plate 24 of the radiation imaging device 7 is provided with a display unit 28 configured of a plurality of LEDs. The display unit 28 displays an operation mode (e.g., "ready state" or "during data transmission" or the like) of the radiation imaging device 7 and an operation state such as the remaining capacity of the battery. The display unit 28 may be configured of a light emitting element other than an LED, a liquid crystal display, an organic EL display, or the like. In addition, the display unit 28 may be provided on the housing body 25.
 放射線画像撮影装置7の筐体23内には、天板24側から順にフォトセンサアレイ32とFPD31が積層されている。FPD31は、放射線発生装置6が発するX線の照射を受けて被写体Hの放射線画像を検出する。 In the housing 23 of the radiation imaging device 7, the photosensor array 32 and the FPD 31 are stacked in order from the top plate 24 side. The FPD 31 receives a radiation of X-rays emitted by the radiation generator 6 and detects a radiation image of the subject H.
 また、フォトセンサアレイ32は、天板24とFPDFPD31との間に配置されている。フォトセンサアレイ32は、複数枚(本例では4枚)のアレイユニット33をタイリングして構成されている。アレイユニット33は、複数のフォトセンサ33aをマトリクス状に配列したものであり、フォトセンサ33aが配列された受光面を有する。各フォトセンサ33aは、例えばフォトダイオードで構成された受光素子であり、光源14が照射する可視光を受光して、光電変換することにより受光量に応じた電圧信号などの電気信号(光量信号)を出力する。 The photosensor array 32 is disposed between the top 24 and the FPDFPD 31. The photosensor array 32 is configured by tiling a plurality of (in this example, four) array units 33. The array unit 33 has a plurality of photosensors 33a arranged in a matrix, and has a light receiving surface on which the photosensors 33a are arranged. Each photosensor 33a is, for example, a light receiving element composed of a photodiode, receives an visible light emitted from the light source 14, and photoelectrically converts it to an electric signal (light amount signal) such as a voltage signal according to the amount of light received. Output
 フォトセンサアレイ32は、受光面が比較的小さな小サイズの複数枚(本例では4枚)のアレイユニット33をタイリングすることにより、受光面32aを大型化したものである。 The photosensor array 32 is an enlargement of the light receiving surface 32 a by tiling a plurality of small-sized (four in this example) array units 33 having a relatively small light receiving surface.
 フォトセンサアレイ32は、その受光面32aを天板24と対面させて配置されている。また、フォトセンサアレイ32の受光面32aは、FPD31の画像検出面39a(図4参照)とほぼ平行であり、受光面32aの形状及び大きさは、FPD31の画像検出面39aの形状及び大きさとほぼ同じである。 The photosensor array 32 is disposed with its light receiving surface 32 a facing the top 24. The light receiving surface 32a of the photosensor array 32 is substantially parallel to the image detection surface 39a (see FIG. 4) of the FPD 31, and the shape and size of the light receiving surface 32a are the shape and size of the image detection surface 39a of the FPD 31. It is almost the same.
 フォトセンサアレイ32は、FPD31の画像検出面39aにおいて被写体Hが対面する領域、すなわち、被写体Hを透過したX線が入射する被写体領域と、被写体Hの周囲の領域、すなわち、X線が被写体Hを透過せずに直接入射する素抜け領域とを判別するために使用される。天板24上に載置される被写体Hの大きさが、FPD31の画像検出面39aのサイズよりも小さな場合には、画像検出面39aの全域が被写体領域にはならないため、被写体Hの周囲に素抜け領域が生じる。 The photosensor array 32 is an area where the subject H faces on the image detection surface 39a of the FPD 31, that is, a subject area where X-rays transmitted through the subject H are incident, and an area around the subject H, that is, the X-ray is the subject H Used in order to distinguish directly from non-passing areas that do not pass through. If the size of the subject H placed on the top 24 is smaller than the size of the image detection surface 39 a of the FPD 31, the entire area of the image detection surface 39 a does not become the subject area. A blank area occurs.
 光源14からの可視光は、X線と異なり、被写体Hを透過せずに遮光される。フォトセンサアレイ32は、光源14側から見ると被写体Hの背後に位置するため、その受光面23aにおいては、可視光は被写体領域には入射せず、被写体Hの周囲の素抜け領域のみに入射する。この場合、被写体領域に位置するフォトセンサ33aが出力する光量信号の出力値と、素抜け領域に位置するフォトセンサ33aが出力する光量信号の出力値では、可視光の光量に応じた差が生じる。この差に基づいて、被写体領域に位置するフォトセンサ33aと素抜け領域に位置するフォトセンサ33aのそれぞれの位置(受光面32a内における座標)を特定することにより、被写体領域と素抜け領域を判別することができる。 Unlike X-rays, visible light from the light source 14 is blocked without transmitting the subject H. Since the photosensor array 32 is located behind the subject H when viewed from the light source 14 side, visible light does not enter the subject area on the light receiving surface 23 a thereof, but enters only the blank area around the subject H Do. In this case, the output value of the light amount signal output from the photosensor 33a located in the object area and the output value of the light amount signal output from the photosensor 33a located in the blank area are different according to the light amount of visible light . By identifying the respective positions (coordinates in the light receiving surface 32a) of the photosensor 33a located in the subject area and the photosensor 33a located in the blank area based on this difference, the subject area and the blank area are discriminated. can do.
 なお、フォトセンサ33aは、FPD31の画素48aと一対一で対応している訳でなく、各フォトセンサ33aの受光面積のサイズや配列ピッチは、FPD31の画素48a(図6参照)のサイズ及び配列ピッチと比較して大きい。したがって、フォトセンサアレイ32は、フォトセンサ33の数がFPD31の画素数よりも少なく、FPD31と比較して解像度が低い。フォトセンサアレイ32は、画像を検出するものではないので、被写体領域と素抜け領域とを判別できる程度の解像度を持っていれば十分である。解像度が低い分、フォトセンサ33aの受光面積を大きくできるため、受光感度を上げることができる。もちろん、フォトセンサアレイ32の解像度を、FPD31と同じ解像度としてもよい。 The photosensors 33a do not correspond one-to-one with the pixels 48a of the FPD 31, and the size and arrangement pitch of the light receiving area of each photosensor 33a are the size and arrangement of the pixels 48a (see FIG. 6) of the FPD 31. Large compared to the pitch. Therefore, the number of photosensors 33 of the photosensor array 32 is smaller than the number of pixels of the FPD 31, and the resolution is lower than that of the FPD 31. Since the photosensor array 32 does not detect an image, it is sufficient that the photosensor array 32 has a resolution enough to discriminate between the subject area and the blank area. Since the light receiving area of the photosensor 33a can be increased by the lower resolution, the light receiving sensitivity can be increased. Of course, the resolution of the photosensor array 32 may be the same as that of the FPD 31.
 フォトセンサアレイ32はFPD31よりも照射面22側に配置されるので、FPD31に入射するX線は、すべてフォトセンサアレイ32を透過する。そのため、フォトセンサアレイ32によるX線の減衰はできるだけ少ない方がよい。そこで、フォトセンサアレイ32としては、光電変換材料として有機光電変換材料(OPC)で形成されたフォトセンサが使用される。OPCは、厚みを薄くすることができるとともに、X線の吸収がほとんど無い良好なX線透過特性を有している。 Since the photosensor array 32 is disposed closer to the irradiation surface 22 than the FPD 31, all X-rays incident on the FPD 31 pass through the photosensor array 32. Therefore, the attenuation of X-rays by the photosensor array 32 should be as small as possible. Therefore, as the photosensor array 32, a photosensor formed of an organic photoelectric conversion material (OPC) as a photoelectric conversion material is used. OPC can be reduced in thickness and has good X-ray transmission characteristics with almost no absorption of X-rays.
 筐体23の内部には、照射面22の短手方向に沿った一端側に、マイクロコンピュータを含む各種の電子回路や、充電可能かつ着脱可能なバッテリ(二次電池)を収容するケース36が配置されている。FPD31を含む放射線画像撮影装置7の各種電子回路は、ケース36内に収容されたバッテリから供給される電力によって作動する。なお、筐体23内のうちケース36の照射面22側には、ケース36内に収容された各種電子回路がX線の照射に伴って損傷することを回避するため、鉛板等からなる放射線遮蔽部材(図示せず)が配設されている。 Inside the housing 23, at one end side along the lateral direction of the irradiation surface 22, a case 36 for containing various electronic circuits including a microcomputer and a rechargeable and detachable battery (secondary battery) is provided. It is arranged. Various electronic circuits of the radiation imaging device 7 including the FPD 31 operate by power supplied from a battery housed in the case 36. Note that, on the irradiation surface 22 side of the case 36 in the housing 23, radiation composed of a lead plate or the like is provided to avoid damage to various electronic circuits accommodated in the case 36 due to the irradiation of X-rays. A shielding member (not shown) is provided.
 図4に示すように、フォトセンサアレイ32は、天板24の内面に全面にわたって接着剤によって貼り合わされている。また、フォトセンサアレイ32の下面には、FPD31が接着剤によって貼り合わされている。このように、天板24にフォトセンサアレイ32及びFPD31を貼り合わせることにより、各部の隙間が無くなるので、放射線画像撮影装置7を薄型化し、かつフォトセンサアレイ32によってFPD31を補強することができる。なお、フォトセンサアレイ32は、FPD31が貼り合わせられるため、FPD31と同等もしくはより大きな外形サイズを有することが好ましい。 As shown in FIG. 4, the photosensor array 32 is bonded to the inner surface of the top plate 24 with an adhesive over the entire surface. Further, the FPD 31 is bonded to the lower surface of the photosensor array 32 by an adhesive. As described above, by attaching the photosensor array 32 and the FPD 31 to the top plate 24, the gaps between the respective parts are eliminated, so that the radiation imaging device 7 can be thinned and the FPD 31 can be reinforced by the photosensor array 32. The photosensor array 32 preferably has an outer size equal to or larger than that of the FPD 31 because the FPD 31 is bonded.
 FPD31は、照射面22側からセンサパネル39及びシンチレータ40が順に積層されている。シンチレータ40の下面には、シンチレータ40を支持する支持基板41が配置されている。FPD31の外周には、シンチレータ40を湿気等から保護するために封止剤42が設けられている。筐体23内の底面には、制御基板43が配置されている。制御基板43とセンサパネル39及びフォトセンサアレイ32とは、フレキシブルケーブル44、45を介して電気的に接続されている。 In the FPD 31, a sensor panel 39 and a scintillator 40 are stacked in order from the irradiation surface 22 side. A support substrate 41 supporting the scintillator 40 is disposed on the lower surface of the scintillator 40. A sealant 42 is provided on the outer periphery of the FPD 31 to protect the scintillator 40 from moisture and the like. A control board 43 is disposed on the bottom of the housing 23. The control substrate 43, the sensor panel 39 and the photosensor array 32 are electrically connected via flexible cables 44, 45.
 シンチレータ40は、被写体Hを透過して筐体23の照射面22に照射され、天板24、フォトセンサアレイ32及びセンサパネル39を透過して照射されたX線を吸収して光を放出する。シンチレータ40としては、例えばCsI:Tl(タリウムを添加したヨウ化セシウム))や、CsI:Na(ナトリウム賦活ヨウ化セシウム)、GOS(Gd2O2S:Tb)等の材料を用いることができる。本実施形態では、シンチレータ40として、支持基板41にCsI:Tlを蒸着することにより、支持基板41からセンサパネル39に向かう光出射方向に沿って、複数の柱状結晶を形成している。柱状結晶は、その平均径が柱状結晶の長手方向に沿っておよそ均一である。 The scintillator 40 transmits the subject H and is irradiated to the irradiation surface 22 of the housing 23, transmits the top plate 24, the photosensor array 32 and the sensor panel 39, absorbs the irradiated X-rays, and emits light. . As the scintillator 40, for example, materials such as CsI: Tl (cesium iodide to which thallium is added), CsI: Na (sodium activated cesium iodide), GOS (Gd2O2S: Tb) and the like can be used. In the present embodiment, CsI: Tl is vapor-deposited on the support substrate 41 as the scintillator 40 to form a plurality of columnar crystals along the light emission direction from the support substrate 41 toward the sensor panel 39. The columnar crystals are approximately uniform in average diameter along the longitudinal direction of the columnar crystals.
 シンチレータ40で発生した光は、柱状結晶のライトガイド効果によって柱状結晶内を進行し、センサパネル39へ射出される。その際に、センサパネル39側へ射出される光の拡散が抑制されるので、放射線画像撮影装置7によって検出される放射線画像の鮮鋭度が向上する。また、シンチレータ40の深部に到達した光は、支持基板41の内面に設けられ反射層によってシンチレータ40を再度軽油してセンサパネル39側へ反射されるので、センサパネル39に入射される光量(シンチレータ40で発光された光の検出効率)が向上する。 The light generated by the scintillator 40 travels in the columnar crystal due to the light guide effect of the columnar crystal and is emitted to the sensor panel 39. At that time, the diffusion of the light emitted to the sensor panel 39 side is suppressed, so that the sharpness of the radiation image detected by the radiation imaging device 7 is improved. Further, the light reaching the deep portion of the scintillator 40 is provided on the inner surface of the support substrate 41 and light oil of the scintillator 40 is reflected again by the reflective layer and reflected to the sensor panel 39 side. The detection efficiency of the light emitted at 40 is improved.
 なお、本実施形態では、シンチレータ40の放射線照射面側にセンサパネル39が配置されているが、シンチレータとセンサパネルとをこのような位置関係で配置する方式は、「表面読取方式(ISS:Irradiation Side Sampling)」と称する。シンチレータは、X線入射側がより強く発光するので、シンチレータのX線入射側にセンサパネルを配置する表面読取方式(ISS)は、シンチレータのX線入射側と反対側にセンサパネルを配置する「裏面読取方式(PSS:Penetration Side Sampling)」よりもセンサパネルとシンチレータの発光位置とが接近することから、撮影によって得られる放射線画像の分解能が高く、またセンサパネルの受光量が増大することで、結果として放射線画像撮影装置の感度が向上する。 In the present embodiment, the sensor panel 39 is disposed on the radiation-irradiated side of the scintillator 40, but the method of arranging the scintillator and the sensor panel in such a positional relationship is referred to as “surface reading method (ISS: Irradiation It is called "Side Sampling". Since the scintillator emits light more strongly on the X-ray incident side, the front reading method (ISS) in which the sensor panel is disposed on the X-ray incident side of the scintillator is arranged on the opposite side of the scintillator on the X-ray incident side. Since the sensor panel and the light emission position of the scintillator are closer than in the scanning method (PSS: Penetration Side Sampling), the resolution of the radiation image obtained by imaging is higher, and the light reception amount of the sensor panel is increased. As a result, the sensitivity of the radiation imaging apparatus is improved.
 FPD31は、シンチレータ40を用いる間接型を使用しているため、光源14が発する可視光など、放射線画像撮影装置7の外部から天板24及びフォトセンサアレイ32を透過した可視光がFPD31に入射すると、FPD31が可視光を検出してしまうので放射線画像が劣化するおそれがある。そのため、フォトセンサアレイ32だけで天板24を透過した光を遮光できない場合には、フォトセンサアレイ32とFPD31との間にX線透過性を有する遮光層34を設けるのが好ましい。 Since the FPD 31 uses an indirect type using the scintillator 40, it is assumed that visible light transmitted through the top 24 and the photosensor array 32 from the outside of the radiation imaging device 7 such as visible light emitted by the light source 14 enters the FPD 31 Since the FPD 31 detects visible light, the radiation image may be degraded. Therefore, when the light transmitted through the top plate 24 can not be blocked only by the photosensor array 32, it is preferable to provide a light shielding layer 34 having X-ray transparency between the photosensor array 32 and the FPD 31.
 図5に示すように、センサパネル39は、4枚のCMOS型イメージセンサ(以下、CMOSセンサという)48により構成されている。各CMOSセンサ48は、マトリクス状に配置された複数の画素48a(図8参照)を有する。各CMOSセンサ48は、一辺の長さが200mm程度の矩形状である。4枚のCMOSセンサ48は、上下左右に互いに隣接するように並べられ、およそ一辺が17インチの四角形を形成する。17インチのサイズは、医療用のFPD31のサイズとして一般的なサイズである。 As shown in FIG. 5, the sensor panel 39 is configured by four CMOS type image sensors (hereinafter referred to as CMOS sensors) 48. Each CMOS sensor 48 has a plurality of pixels 48a (see FIG. 8) arranged in a matrix. Each CMOS sensor 48 has a rectangular shape with a side length of about 200 mm. The four CMOS sensors 48 are arranged adjacent to each other vertically and horizontally to form a quadrangle of approximately 17 inches on one side. The 17-inch size is a common size as a medical FPD 31 size.
 図6に示すように、CMOSセンサ48は、米国公開2009/0224162号公報に開示されたものと同様の構成である。具体的には、CMOSセンサ48は、単結晶半導体基板50と、絶縁層54と、第1電極51と、光電変換層52と、第2電極53とにより構成されている。 As shown in FIG. 6, the CMOS sensor 48 has a configuration similar to that disclosed in US Patent Publication 2009/0224162. Specifically, the CMOS sensor 48 includes the single crystal semiconductor substrate 50, the insulating layer 54, the first electrode 51, the photoelectric conversion layer 52, and the second electrode 53.
 単結晶半導体基板50は、単結晶Siで作られている。絶縁層54は、単結晶半導体基板50の表面上に酸化シリコン等で形成されている。第1電極51は、絶縁層54の表面上に、画素48a毎に個別に形成されている。光電変換層52は、各第1電極51の表面上に、各画素48aに共通に設けられている。第2電極53は、光電変換層52の表面上に、各画素48aに共通に設けられている。第2電極53の表面上には、前述のシンチレータ40が接着剤(図示せず)により貼り合わされている。 The single crystal semiconductor substrate 50 is made of single crystal Si. The insulating layer 54 is formed of silicon oxide or the like on the surface of the single crystal semiconductor substrate 50. The first electrode 51 is individually formed on the surface of the insulating layer 54 for each pixel 48 a. The photoelectric conversion layer 52 is provided on the surface of each first electrode 51 in common to each pixel 48 a. The second electrode 53 is provided commonly to the respective pixels 48 a on the surface of the photoelectric conversion layer 52. The aforementioned scintillator 40 is bonded onto the surface of the second electrode 53 by an adhesive (not shown).
 第2電極53は、シンチレータ40で発生した可視光を光電変換層52に入射させるように、可視光に対して透明な導電性材料(例えば、酸化インジウムスズ(ITO))で形成されている。なお、本実施形態では、第2電極53を各画素48aに共通に設けているが、画素48a毎に個別に設けてもよい。 The second electrode 53 is formed of a conductive material (for example, indium tin oxide (ITO)) which is transparent to visible light so that visible light generated by the scintillator 40 may be incident on the photoelectric conversion layer 52. In the present embodiment, the second electrode 53 is provided in common to each pixel 48a, but may be provided individually for each pixel 48a.
 光電変換層52は、シンチレータ40との組み合わせにより、X線の入射量に応じた信号電荷を発生する光電変換層52は、シンチレータ26により発生された可視光を吸収して、その光量に応じた信号電荷を発生するものであり、有機又は無機の光電変換材料で構成される。無機の光電変換材料としては、例えばアモルファスシリコン(a-Si)がある。また、有機の光電変換材料としては、例えばキナクリドンがある。 The photoelectric conversion layer 52 generates a signal charge according to the amount of incident X-rays by the combination with the scintillator 40. The photoelectric conversion layer 52 absorbs visible light generated by the scintillator 26, and the amount of light corresponds to the amount of light. It generates signal charges and is made of an organic or inorganic photoelectric conversion material. As an inorganic photoelectric conversion material, there is, for example, amorphous silicon (a-Si). Moreover, as an organic photoelectric conversion material, there is quinacridone, for example.
 図7に示すように、キナクリドンからなる有機光電変換材料(OPC)の感度は、CsI:Naや、単結晶Si(c-Si)等に比べて、CsI:Tlからなるシンチレータ40が発生する可視光の波長域に近い。このため、シンチレータ40としてCsI:Tlを用いた本実施形態では、光電変換層52をキナクリドンで形成することが好ましく、高い検出効率を得ることができる。なお、高画質撮像及び動画撮像の向上を図るには、光電変換層52の材料としてキャリア移動度が速く且つ製造バラつきの少ない有機光電変換材料を用いることが好ましい。 As shown in FIG. 7, the sensitivity of the organic photoelectric conversion material (OPC) made of quinacridone is visible when the scintillator 40 made of CsI: Tl is generated as compared to CsI: Na, single crystal Si (c-Si) or the like. It is close to the wavelength range of light. For this reason, in the present embodiment using CsI: Tl as the scintillator 40, the photoelectric conversion layer 52 is preferably formed of quinacridone, and high detection efficiency can be obtained. In order to improve high-quality imaging and moving-image imaging, it is preferable to use an organic photoelectric conversion material having a fast carrier mobility and little variation in manufacturing as the material of the photoelectric conversion layer 52.
 単結晶半導体基板34には、画素48a毎に、信号出力回路57が設けられている。信号出力回路57は、CMOS回路により形成されている。信号出力回路57と第1電極51との間は、コンタクト配線58によって電気的に接続されている。第2電極53には、バイアス電圧が印加されており(図8参照)、光電変換層52により発生された信号電荷を各画素48aの第1電極51により収集する。信号出力回路57は、第1電極36により収集された信号電荷を、その信号電荷量に応じた電圧信号に変換して出力する。 The single crystal semiconductor substrate 34 is provided with a signal output circuit 57 for each pixel 48 a. The signal output circuit 57 is formed of a CMOS circuit. The signal output circuit 57 and the first electrode 51 are electrically connected by the contact wiring 58. A bias voltage is applied to the second electrode 53 (see FIG. 8), and the signal charge generated by the photoelectric conversion layer 52 is collected by the first electrode 51 of each pixel 48a. The signal output circuit 57 converts the signal charge collected by the first electrode 36 into a voltage signal corresponding to the signal charge amount and outputs the voltage signal.
 図8に示すように信号出力回路57は、出力トランジスタT1、行選択トランジスタT2、リセットトランジスタT3、行選択線L1、信号出力線L2、リセット線L3により構成されている。出力トランジスタT1、行選択トランジスタT2、リセットトランジスタT3は、それぞれMOSトランジスタである。行選択線L1、信号出力線L2、リセット線L3は、前述の絶縁層54内にアルミニウム等の金属で形成されている。 As shown in FIG. 8, the signal output circuit 57 includes an output transistor T1, a row selection transistor T2, a reset transistor T3, a row selection line L1, a signal output line L2, and a reset line L3. The output transistor T1, the row selection transistor T2, and the reset transistor T3 are each a MOS transistor. The row selection line L1, the signal output line L2, and the reset line L3 are formed of a metal such as aluminum in the insulating layer 54 described above.
 出力トランジスタT1は、第1電極51に接続されており、第1電極51により収集された信号電荷に応じた電圧がゲートに印加される。行選択トランジスタT2は、行選択線L1に印加される選択信号よりオンとなり、出力トランジスタT1のゲート電圧に応じて制御された電圧信号が信号出力線L2に印加される。リセットトランジスタT3は、リセット線L3に印加される選択信号よりオンとなり、第1電極51により収集された信号電荷を電源配線Vddに廃棄する。 The output transistor T1 is connected to the first electrode 51, and a voltage corresponding to the signal charge collected by the first electrode 51 is applied to the gate. The row selection transistor T2 is turned on by the selection signal applied to the row selection line L1, and a voltage signal controlled according to the gate voltage of the output transistor T1 is applied to the signal output line L2. The reset transistor T3 is turned on by the selection signal applied to the reset line L3, and discards the signal charge collected by the first electrode 51 to the power supply wiring Vdd.
 以上のように、CMOSセンサ48の単結晶半導体基板50には、シリコンが用いられているため、各トランジスタT1~T3のキャリア移動度は、a-Si等の非晶質半導体からなるTFTに比べて、3~4桁以上高く、高速読み出しが可能である。また、単結晶半導体基板50は、非晶質半導体からなるTFTに比べて、製造時の特性(例えば閾値電圧等)のばらつきが小さい。そのため、高感度、高S/N、高速読み出しが必要な高画質撮影や動画撮影に適している。さらに、単結晶半導体基板50には、FPD31の制御部等の周辺回路を混載することも可能である。 As described above, since silicon is used for the single crystal semiconductor substrate 50 of the CMOS sensor 48, the carrier mobility of each of the transistors T1 to T3 is higher than that of a TFT made of an amorphous semiconductor such as a-Si. Thus, high speed reading is possible by three to four digits or more. Further, the single crystal semiconductor substrate 50 has less variation in characteristics (for example, threshold voltage and the like) at the time of manufacturing than a TFT made of an amorphous semiconductor. Therefore, it is suitable for high image quality shooting and moving image shooting that require high sensitivity, high S / N, and high speed readout. Furthermore, peripheral circuits such as a control unit of the FPD 31 can be mixedly mounted on the single crystal semiconductor substrate 50.
 信号出力回路57のうち、行選択線L1、信号出力線L2、リセット線L3は、アルミニウム等の金属で形成されているためX線による劣化は少ないが、出力トランジスタT1、行選択トランジスタT2、リセットトランジスタT3は、単結晶Siで形成されているため、X線により特性が劣化(閾値電圧の変化や暗電流が増加)するおそれがある。これは、単結晶Siを用いたMOS構造では、X線の吸収によって単結晶半導体基板50と絶縁層54との海面に電荷(以下、界面電荷という)が生じて蓄積されるためである。 Of the signal output circuit 57, the row selection line L1, the signal output line L2, and the reset line L3 are formed of metal such as aluminum, so the deterioration due to X-ray is small, but the output transistor T1, the row selection transistor T2, the reset Since the transistor T3 is formed of single crystal Si, there is a possibility that the characteristics are degraded (change in threshold voltage and dark current increase) due to X-rays. This is because in the MOS structure using single crystal Si, charges (hereinafter referred to as interface charges) are generated and accumulated on the sea surface of the single crystal semiconductor substrate 50 and the insulating layer 54 by absorption of X-rays.
 図9に示すように、被写体Hの撮影部位が手の場合には、手はFPD31の画像検出面39a(図4参照)全体の大きさよりも小さい。そのため、画像検出面39a全体をX線の照射範囲としてしまうと、手が位置する被写体領域以外は、すべて被写体Hを介さずにX線が直接入射する素抜け領域となる。 As shown in FIG. 9, when the imaging region of the subject H is a hand, the hand is smaller than the entire size of the image detection surface 39a (see FIG. 4) of the FPD 31. Therefore, when the entire image detection surface 39a is set as the X-ray irradiation range, all areas other than the subject area where the hand is located become a blank area where X-rays directly enter without passing through the subject H.
 素抜け領域に入射するX線は、放射線画像において被写体Hの描出には寄与しない不要なX線であり、そればかりか、散乱により患者に照射されることもあるため、患者の被曝量を増加させる原因になる。そのため、本実施形態では、光源14とフォトセンサアレイ32を用いて被写体領域と素抜け領域を判別して、素抜け領域が低減するように照射範囲を決定している。 The X-ray incident on the blank area is an unnecessary X-ray that does not contribute to the depiction of the subject H in the radiation image, and furthermore, it may be irradiated to the patient by scattering, thus increasing the dose of the patient. Cause it to Therefore, in the present embodiment, the light source 14 and the photosensor array 32 are used to determine the subject area and the blank area, and the irradiation range is determined so as to reduce the blank area.
 また、素抜け領域では、CMOSセンサ48において特性劣化が発生しやすい。そのため、素抜け領域を低減することは、CMOSセンサ48の特性劣化の抑制にも寄与する。 In addition, characteristic degradation is likely to occur in the CMOS sensor 48 in the blank region. Therefore, reducing the blank area contributes to suppression of the characteristic deterioration of the CMOS sensor 48.
 放射線画像撮影装置7の電気構成の概略を示す図10において、放射線画像撮影装置7は、上述したFPD31を構成するセンサパネル39、信号処理部65、画像メモリ66、制御部67、無線通信部68、電源部69、フォトセンサアレイ32を含む領域判別部70等を備えている。信号処理部65は、センサパネル39の各画素48aから出力された電圧信号を増幅するアンプ、マルチプレクサ、A/D(アナログ/デジタル)変換器等を備えており、センサパネル39から出力された電圧信号をデジタルの画像データに変換する。 In FIG. 10 schematically showing the electrical configuration of the radiation image capturing apparatus 7, the radiation image capturing apparatus 7 includes a sensor panel 39, a signal processing unit 65, an image memory 66, a control unit 67, and a wireless communication unit 68 which constitute the FPD 31 described above. , And a region determination unit 70 including the power supply unit 69 and the photosensor array 32. The signal processing unit 65 includes an amplifier for amplifying a voltage signal output from each pixel 48 a of the sensor panel 39, a multiplexer, an A / D (analog / digital) converter, etc., and the voltage output from the sensor panel 39 Convert the signal into digital image data.
 信号処理部65には画像メモリ66が接続されており、信号処理部65のA/D変換器から出力された画像データは画像メモリ66に順に記憶される。画像メモリ66は複数フレーム分の画像データを記憶可能な記憶容量を有しており、放射線画像の撮影が行われる毎に、撮影によって得られた画像データが画像メモリ66に順次記憶される。 An image memory 66 is connected to the signal processing unit 65, and the image data output from the A / D converter of the signal processing unit 65 is sequentially stored in the image memory 66. The image memory 66 has a storage capacity capable of storing image data for a plurality of frames, and image data obtained by imaging is sequentially stored in the image memory 66 each time a radiation image is captured.
 画像メモリ66は、放射線画像撮影装置7全体の動作を制御する制御部67と接続されている。制御部67は、マイクロコンピュータを含んで構成されており、CPU67a、RAM67b、ROM67cを備えている。RAM67bは、DRAM等からなる一時記憶メモリである。ROM67cは、フラッシュメモリ等からなる不揮発性メモリである。 The image memory 66 is connected to a control unit 67 that controls the overall operation of the radiation imaging device 7. The control unit 67 is configured to include a microcomputer, and includes a CPU 67a, a RAM 67b, and a ROM 67c. The RAM 67 b is a temporary storage memory made of a DRAM or the like. The ROM 67c is a non-volatile memory including a flash memory or the like.
 コンソール8は、操作入力により、照射範囲決定の操作指示を受け付けると、コンソール8は、放射線発生装置6に対して光源14の点灯を指令する。同時に、放射線画像撮影装置7に対しては被写体領域と素抜け領域の領域判別を指令する。制御部67は、コンソール8からの指令を受けたときに、領域判別部70を動作させて、領域判別処理を実行させる。 When the console 8 receives the operation instruction for determining the irradiation range by the operation input, the console 8 instructs the radiation generator 6 to turn on the light source 14. At the same time, it instructs the radiation image capturing apparatus 7 to determine the subject area and the blank area. When the control unit 67 receives a command from the console 8, the control unit 67 operates the area determination unit 70 to execute the area determination process.
 フォトセンサアレイ32は、各フォトセンサが光源14からの可視光を受光すると、受光量に応じた光量信号を出力する。光源14からの可視光は、フォトセンサアレイ32の受光面32aの全域に照射される。放射線画像撮影装置7の天板24に被写体Hが載置されて、FPD31の画像検出面39aに対して被写体Hがポジショニングされている場合には、被写体領域では被写体Hによって可視光が遮光されるため、被写体領域に位置するフォトセンサ33aには可視光は入射しない。一方、被写体Hの周囲の素抜け領域に位置するフォトセンサ33aには可視光が入射する。 When each photosensor receives visible light from the light source 14, the photosensor array 32 outputs a light amount signal according to the amount of received light. The visible light from the light source 14 is irradiated to the entire light receiving surface 32 a of the photosensor array 32. When the subject H is placed on the top 24 of the radiographic imaging device 7 and the subject H is positioned with respect to the image detection surface 39a of the FPD 31, visible light is blocked by the subject H in the subject region Therefore, no visible light is incident on the photosensor 33a located in the subject area. On the other hand, visible light is incident on the photosensor 33a positioned in the blank area around the subject H.
 回路部70aは、フォトセンサアレイ32の各フォトセンサ33aが出力する光量信号に基づいて、被写体領域と素抜け領域を判別して、それぞれの座標情報を生成し、生成した座標情報を領域判別結果として制御部67に出力する。 The circuit unit 70a determines the subject area and the missing area based on the light amount signal output from each photosensor 33a of the photosensor array 32, generates coordinate information of each area, and generates the generated coordinate information as an area determination result. Output to the control unit 67.
 回路部70aは、マトリクス状に配列された各フォトセンサ33aが出力する光量信号を順次選択的に読み出すための走査回路と、読み出した光量信号を予め設定された閾値と比較して比較結果を出力するコンパレータと、比較結果を記憶するメモリなどを有する。 The circuit unit 70a compares the read light amount signal with a preset threshold value and outputs a comparison result by sequentially selecting a light amount signal output from each of the photosensors 33a arranged in a matrix. And a memory for storing the comparison result.
 コンパレータは、例えば、閾値電圧と入力電圧の大小を比較して、その比較結果を出力する。具体的には、光量信号が閾値以上の場合には「Hi」、閾値未満の場合には「Low」を出力する。閾値は、光源14が発する可視光を受光したフォトセンサ33aの出力値が、閾値以上に、可視光を受光しないフォトセンサ33aの出力値が閾値未満となるように、光源14が発する可視光の発光量に応じて設定される。 The comparator, for example, compares the magnitudes of the threshold voltage and the input voltage, and outputs the comparison result. Specifically, “Hi” is output when the light amount signal is equal to or greater than the threshold, and “Low” is output when the light amount signal is less than the threshold. The threshold value is that of the visible light emitted by the light source 14 such that the output value of the photosensor 33a receiving the visible light emitted by the light source 14 is equal to or higher than the threshold, and the output value of the photosensor 33a not receiving the visible light is smaller than the threshold. It is set according to the light emission amount.
 回路部70aは、コンパレータが出力する比較結果を、各フォトセンサ33aのフォトセンサ32の受光面32a内における座標と関連づけて記憶する。回路部70aは、比較結果が「Hi」の場合には、その光量信号を出力したフォトセンサ33aの座標が、素抜け領域に属すると判定し、その座標と素抜け領域であることを示す識別情報とを関連づけてメモリに記憶する。一方、比較結果が「Low」の場合には、その光量信号を出力したフォトセンサ33aの座標が、被写体領域に属すると判定し、その座標と被写体領域であることを示す識別情報とを関連づけてメモリに記憶する。回路部70aは、こうした処理をすべてのフォトセンサ33aについて行って、メモリに記憶した被写体領域及び素抜け領域のそれぞれの座標情報を領域判別結果として制御部67に出力する。 The circuit unit 70a stores the comparison result output from the comparator in association with the coordinates in the light receiving surface 32a of the photosensor 32 of each photosensor 33a. When the comparison result is "Hi", the circuit unit 70a determines that the coordinates of the photosensor 33a that has output the light amount signal belongs to the blank area, and identifies the coordinates and the blank area. Information is stored in memory in association with it. On the other hand, if the comparison result is "Low", it is determined that the coordinates of the photosensor 33a that has output the light quantity signal belongs to the subject area, and the coordinates are associated with identification information indicating that it is the subject area. Store in memory. The circuit unit 70a performs such processing on all the photosensors 33a, and outputs coordinate information of each of the subject area and the blank area stored in the memory to the control unit 67 as an area discrimination result.
 制御部67には無線通信部68が接続されている。無線通信部68は、IEEE(Institute of
Electrical and Electronics Engineers)802.11a/b/g/n等に代表される無線LAN(Local Area Network)規格に対応しており、無線通信による外部機器との間での各種情報の伝送を制御する。制御部67は、無線通信部68を介してコンソール8(図11参照)と無線通信が可能とされており、コンソール8との間で各種情報の送受信が可能とされている。
A wireless communication unit 68 is connected to the control unit 67. The wireless communication unit 68 is an IEEE (Institute
Electrical and Electronics Engineers) Supports wireless LAN (Local Area Network) standards represented by 802.11a / b / g / n etc., and controls transmission of various information to / from external equipment by wireless communication . The control unit 67 can wirelessly communicate with the console 8 (see FIG. 11) via the wireless communication unit 68, and can transmit and receive various types of information to and from the console 8.
 また、放射線画像撮影装置7には電源部69が設けられており、上述した各種電子回路(信号処理部65、画像メモリ66、制御部67、無線通信部68等)は電源部69と各々接続され(図示省略)、電源部69から供給された電力によって作動する。電源部69は、放射線画像撮影装置7の可搬性を損なわないように、前述のバッテリ(二次電池)を内蔵しており、充電されたバッテリから各種電子回路へ電力を供給する。信号処理部65、画像メモリ66、制御部67、無線通信部68は、上述したケース36内、もしくは制御基板43に設けられている。 In addition, the radiation image capturing apparatus 7 is provided with a power supply unit 69, and the various electronic circuits described above (the signal processing unit 65, the image memory 66, the control unit 67, the wireless communication unit 68, etc.) are connected to the power supply unit 69, respectively. (Not shown) and operated by the power supplied from the power supply 69. The power supply unit 69 incorporates the above-described battery (secondary battery) so as not to impair the portability of the radiation imaging device 7, and supplies power from the charged battery to various electronic circuits. The signal processing unit 65, the image memory 66, the control unit 67, and the wireless communication unit 68 are provided in the case 36 or the control board 43 described above.
 図11に示すように、コンソール8はコンピュータからなり、装置全体の動作を司るCPU74、制御プログラムを含む各種プログラム等が予め記憶されたROM75、各種データを一時的に記憶するRAM76、及び、各種データを記憶するHDD77を備え、これらはバスを介して互いに接続されている。またバスには、通信I/F78及び無線通信部79が接続され、ディスプレイ80がディスプレイドライバ81を介して接続され、更に、操作パネル82が操作入力検出部83を介して接続されている。 As shown in FIG. 11, the console 8 comprises a computer, a CPU 74 which controls the operation of the entire apparatus, a ROM 75 in which various programs including control programs are stored in advance, a RAM 76 temporarily storing various data, and various data , And are connected to one another via a bus. The communication I / F 78 and the wireless communication unit 79 are connected to the bus, the display 80 is connected via the display driver 81, and the operation panel 82 is connected via the operation input detection unit 83.
 通信I/F78は、接続端子78a、通信ケーブル86及び放射線発生装置6の接続端子87aを介して、放射線発生装置6の通信I/F87と接続されている。コンソール8(のCPU74)は、通信I/F87により、放射線発生装置6に光源14の点灯及び消灯を指令する他、曝射条件、コリメータ駆動量等の各種情報を放射線発生装置6に送受信する。無線通信部79は、放射線画像撮影装置7の無線通信部68と無線通信を行う機能を備えている。コンソール8(のCPU74)は、無線通信部79により、放射線画像撮影装置7に対して領域判別処理を指令する他、画像データ、領域判別結果等、各種情報の送受信を行なう。 The communication I / F 78 is connected to the communication I / F 87 of the radiation generation device 6 via the connection terminal 78 a, the communication cable 86, and the connection terminal 87 a of the radiation generation device 6. The console 8 (the CPU 74 thereof) instructs the radiation generating apparatus 6 to turn on and off the light source 14 through the communication I / F 87, and transmits and receives various information such as the irradiation condition and the collimator driving amount to the radiation generating apparatus 6. The wireless communication unit 79 has a function of performing wireless communication with the wireless communication unit 68 of the radiation image capturing apparatus 7. The console 8 (the CPU 74 thereof) instructs the radiation image capturing apparatus 7 to perform area discrimination processing by the wireless communication unit 79, and transmits and receives various information such as image data and area discrimination results.
 ディスプレイドライバ81はディスプレイ80への各種情報を表示させるための信号を生成・出力し、コンソール8(のCPU74)はディスプレイドライバ81を介して操作メニューや撮影された放射線画像等をディスプレイ80に表示させる。また、操作パネル82は複数のキーを含んで構成され、各種の情報や操作指示が入力される。操作入力検出部83は操作パネル82に対する操作を検出し、検出結果をCPU74へ通知する。 The display driver 81 generates and outputs a signal for displaying various information to the display 80, and (the CPU 74 of the console 8) causes the display 80 to display an operation menu, a radiographic image taken, etc. via the display driver 81. . The operation panel 82 is configured to include a plurality of keys, and various information and operation instructions are input. The operation input detection unit 83 detects an operation on the operation panel 82 and notifies the CPU 74 of the detection result.
 コンソール8は、放射線画像撮影装置7から送信された領域判別結果に基づいて、コリメータ11の駆動量を決定するコリメータ駆動量決定部91を備えている。コリメータ駆動量決定部91は、照射範囲決定部91aを備えている。図12Aや図12Bに示すように、照射範囲決定部91aは、領域判別結果に基づいて、素抜け領域が少なくなるように照射範囲を決定する。照射範囲決定部91aは、フォトセンサアレイ32の受光面32a内の位置と、FPD31の画像検出面39a内の各画素の位置との対応関係を記憶したテーブルデータを有しており、領域判別結果とテーブルデータに基づいて、照射範囲を決定する。 The console 8 is provided with a collimator drive amount determination unit 91 that determines the drive amount of the collimator 11 based on the area determination result transmitted from the radiation imaging device 7. The collimator drive amount determination unit 91 includes an irradiation range determination unit 91a. As shown in FIG. 12A and FIG. 12B, the irradiation range determination unit 91a determines the irradiation range so that the blank area decreases, based on the result of the area determination. The irradiation range determination unit 91a has table data storing the correspondence between the position in the light receiving surface 32a of the photosensor array 32 and the position of each pixel in the image detection surface 39a of the FPD 31. The irradiation range is determined based on the and table data.
 コリメータ11の照射開口11aは矩形状であるため、図12Aや図12Bに示すように、フォトセンサアレイ32の受光面32a及びFPD31の画像検出面39aにおける照射範囲A1、A2も矩形状となる。図12Aは、被写体Hの輪郭全体が収まるように照射範囲を決定する例であり、図12Bは、被写体Hの輪郭内に照射範囲が収まるように照射範囲を決定する例である。 Since the irradiation opening 11a of the collimator 11 is rectangular, as shown in FIGS. 12A and 12B, the irradiation areas A1 and A2 on the light receiving surface 32a of the photosensor array 32 and the image detection surface 39a of the FPD 31 are also rectangular. FIG. 12A is an example in which the irradiation range is determined such that the entire outline of the subject H fits, and FIG. 12B is an example in which the irradiation range is determined such that the irradiation range fits in the outline of the subject H.
 図12Aにおいて、照射範囲A1は、領域判別結果に基づいて、被写体Hの輪郭全体に対応する被写体領域を収めることが可能なサイズの中で、最小サイズとなるように決定される。具体的には、照射範囲決定部91aは、被写体Hの輪郭線のうち、最も外側に突出する部分と照射範囲A1の外形線がほぼ一致するように、すなわち、被写体Hの縦方向及び横方向のそれぞれの最大幅に合わせて照射範囲A1の幅を決定する。こうすれば、照射範囲を画像検出面39aの全体にする場合と比べて、照射範囲A1内におけるハッチングで示す素抜け領域Bの面積を低減することができる。また、撮影される放射線画像においては、被写体Hの全体像を描出することが可能となる。 In FIG. 12A, the irradiation range A1 is determined based on the result of area determination so as to be the smallest size among sizes in which the subject area corresponding to the entire outline of the subject H can be contained. Specifically, the irradiation range determination unit 91a is configured such that the outermost part of the outline of the subject H and the outline of the irradiation range A1 substantially match, that is, the longitudinal direction and the lateral direction of the subject H The width of the irradiation range A1 is determined in accordance with the respective maximum widths of. In this way, the area of the blank area B indicated by hatching in the irradiation range A1 can be reduced as compared to the case where the irradiation range is the entire image detection surface 39a. In addition, in the radiographic image to be captured, it is possible to visualize the entire image of the subject H.
 ただし、被写体Hの形状は、照射範囲A1のように矩形状ではないため、被写体Hの輪郭が収まるように照射範囲A1を決定すると、照射範囲A1内に素抜け領域Bが残る。具体的には、被写体Hの輪郭線が位置する各アレイユニット33a~33jにおいて、一部が素抜け領域となる。素抜け領域は少ないほどよい。 However, since the shape of the subject H is not rectangular like the irradiation range A1, if the irradiation range A1 is determined so that the contour of the subject H is contained, the blank area B remains in the irradiation range A1. Specifically, in each of the array units 33a to 33j in which the outline of the subject H is located, a part is a missing area. It is better for the blank area to be smaller.
 そこで、関心領域が被写体H全体の中の一部である場合には、図12Bに示すように被写体Hの輪郭内に収まるように照射範囲A2を決定してもよい。こうすると、照射範囲A2内において、図12Aの素抜け領域Bのような領域をほぼ無くすことができるため、照射範囲A1と比べて、より素抜け領域の面積を低減することができる。 Therefore, when the region of interest is a part of the entire subject H, the irradiation range A2 may be determined so as to be within the contour of the subject H as shown in FIG. 12B. Thus, in the irradiation range A2, a region such as the blank region B in FIG. 12A can be substantially eliminated, so the area of the blank region can be further reduced compared to the irradiation range A1.
 照射範囲A2は、以下のように決定される。照射範囲決定部91aは、領域判別結果に含まれる被写体領域の座標情報から、被写体Hの輪郭位置を特定する。そして、被写体Hの輪郭内に収まるように照射範囲A2の大きさを決定する。 The irradiation range A2 is determined as follows. The irradiation range determination unit 91a specifies the contour position of the subject H from the coordinate information of the subject area included in the area determination result. Then, the size of the irradiation range A2 is determined so as to be within the contour of the subject H.
 照射範囲A2のように決定すると、被写体Hの輪郭部分は照射範囲A2外にはみ出してしまうため、撮影した放射線画像において被写体Hの輪郭部分が描出されない懸念がある。しかしながら、上述したように、コリメータ11の各遮蔽板17a、17b、18a、18bは断面がくさび形状になっており(図2参照)、その厚みが照射開口11a側で薄くなっているので、照射開口11aの近くは僅かながらX線を透過する。そのため、照射範囲A2外において照射範囲A2よりも一回り大きな二点鎖線Lで囲われた領域Cのように、照射範囲A2外からはみ出る被写体Hの輪郭付近においては、僅かながらX線が照射される。そのため、放射線画像においては、被写体Hは、その輪郭が判別できる程度に描出することができる。 If the irradiation range A2 is determined, the contour portion of the subject H will extend out of the irradiation range A2, so there is a concern that the contour portion of the subject H will not be drawn in the radiographed image. However, as described above, each of the shielding plates 17a, 17b, 18a and 18b of the collimator 11 has a wedge-shaped cross section (see FIG. 2), and the thickness thereof is thinner on the irradiation opening 11a side. A small amount of X-rays is transmitted near the opening 11a. Therefore, as in the area C surrounded by the alternate long and two short dashes line L larger than the irradiation range A2 outside the irradiation range A2, X-rays are slightly emitted in the vicinity of the outline of the object H that protrudes from the outside of the irradiation range A2. Ru. Therefore, in the radiation image, the subject H can be depicted to such an extent that the outline thereof can be determined.
 領域Cにおいて、被写体Hの輪郭よりも外側の領域は、被写体Hを透過せずに照射面22に対して直接X線が入射する素抜け領域となる。しかし、領域C内に入射するX線は、各遮蔽板17a、17b、18a、18bを透過しているため、そのエネルギや線量は大きく減衰されている。そのため、図12Aにおける領域Bに入射するX線と比較すれば、患者の被曝量やCMOSセンサ48の特性劣化に与える影響は僅かである。 In the area C, an area outside the contour of the subject H is a blank area where X rays are directly incident on the irradiation surface 22 without transmitting the subject H. However, since the X-rays entering the region C are transmitted through the shielding plates 17a, 17b, 18a and 18b, their energy and dose are greatly attenuated. Therefore, in comparison with the X-ray incident to the region B in FIG. 12A, the influence on the dose of the patient or the characteristic deterioration of the CMOS sensor 48 is small.
 照射範囲を、照射範囲A1のように決定するか、照射範囲A2のように決定するかは、例えば、マニュアル設定により選択が可能である。照射範囲決定部91aは、選択された方法によって照射範囲を決定する。 Whether the irradiation range is determined as the irradiation range A1 or the irradiation range A2 can be selected, for example, by manual setting. The irradiation range determination unit 91a determines the irradiation range according to the selected method.
 コリメータ駆動量決定部91は、照射範囲決定部91aが決定した照射範囲に基づいて、コリメータ11の駆動量を決定する。X線管10から照射されるX線は広がり角を有する発散ビームであるので、放射線画像撮影装置7における照射範囲は、X線管10と放射線画像撮影装置7との間の撮影距離に応じて、コリメータ11の照射開口11aのサイズよりも拡大される。コリメータ駆動量決定部91は、照射範囲決定部91aにおいて決定された照射範囲A1と、放射線画像撮影装置7とX線管10との撮影距離とに基づいて、コリメータ11の照射開口11aの大きさを求めて、照射開口11aがその大きさになるようにコリメータ11の駆動量を決定する。 The collimator drive amount determination unit 91 determines the drive amount of the collimator 11 based on the irradiation range determined by the irradiation range determination unit 91 a. Since the X-ray irradiated from the X-ray tube 10 is a divergent beam having a spread angle, the irradiation range in the radiographic imaging device 7 depends on the imaging distance between the X-ray tube 10 and the radiographic imaging device 7 The size is larger than the size of the irradiation opening 11 a of the collimator 11. The collimator drive amount determination unit 91 determines the size of the irradiation opening 11 a of the collimator 11 based on the irradiation range A1 determined by the irradiation range determination unit 91 a and the imaging distance between the radiographic imaging device 7 and the X-ray tube 10. The amount of driving of the collimator 11 is determined so that the irradiation opening 11a has the size.
 コリメータ駆動量決定部91は、決定したコリメータ駆動量を、通信I/F78、87を介して放射線発生装置6に送信する。 The collimator drive amount determination unit 91 transmits the determined collimator drive amount to the radiation generator 6 via the communication I / Fs 78 and 87.
 図11において、放射線発生装置6は、X線管10、コリメータ11、光源14、コリメータ駆動機構19とともに、コンソール8との間で曝射条件、コリメータ駆動量等の各種情報の送受信を行う通信I/F87と、線源制御部89とを備えている。線源制御部89は、コンソール8から領域判別の指令を受信したときに、コリメータ駆動機構19を制御してコリメータ11の照射開口11aを最大にして、光源14を点灯させる。また、線源制御部89は、コンソール8からコリメータ駆動量を受信したときには、コリメータ駆動量に基づいてコリメータ駆動機構19を制御する。コリメータ駆動機構19は、コリメータ11を駆動して、照射開口11aの大きさを調節する。更に、線源制御部89は、コンソール8から受信した曝射条件(この曝射条件には管電圧、管電流の情報が含まれている)に基づいてX線管10を制御する。 In FIG. 11, the radiation generator 6 communicates with the console 8 along with the X-ray tube 10, the collimator 11, the light source 14, and the collimator drive mechanism 19 to transmit and receive various information such as exposure conditions and the amount of collimator drive. / F 87 and a radiation source control unit 89. When receiving a command for area determination from the console 8, the radiation source control unit 89 controls the collimator drive mechanism 19 to maximize the irradiation opening 11 a of the collimator 11 and turn on the light source 14. Further, when receiving the collimator driving amount from the console 8, the radiation source control unit 89 controls the collimator driving mechanism 19 based on the collimator driving amount. The collimator drive mechanism 19 drives the collimator 11 to adjust the size of the irradiation opening 11 a. Further, the radiation source control unit 89 controls the X-ray tube 10 based on the irradiation condition (the irradiation condition includes the information of the tube voltage and the tube current) received from the console 8.
 次に本実施形態の作用を説明する。放射線画像撮影装置7を使用して放射線画像の撮影を行う場合、撮影者(例えば放射線技師等)は、被写体Hと撮影台との間に、照射面22側を上方へ向けた放射線画像撮影装置7を挿入し、照射面22に対する被写体Hの向きや照射面22内における被写体Hの位置等を調整する。例えば、図9に示すように、被写体Hが手である場合は、手のひらを照射面22に向けた姿勢で、放射線画像撮影装置天板24上の中央部に直接載置される。これにより、画像検出面39aに対する被写体Hのポジショニングが完了する。 Next, the operation of the present embodiment will be described. When imaging a radiographic image using the radiographic imaging device 7, a radiographer (for example, a radiographer or the like) is a radiographic imaging device with the irradiation surface 22 facing upward between the subject H and the imaging table 7 is inserted, and the orientation of the subject H with respect to the irradiation surface 22 and the position of the subject H in the irradiation surface 22 are adjusted. For example, as shown in FIG. 9, when the subject H is a hand, it is placed directly on the center of the top of the radiation image capturing apparatus with the palm directed to the irradiation surface 22. Thereby, the positioning of the subject H with respect to the image detection surface 39a is completed.
 撮影者は、ポジショニングが完了すると、操作パネル82を操作して領域判別を指示する。これにより、コンソール8は、領域判別の指令を放射線発生装置6及び放射線画像撮影装置7に送信する。コンソール8から指令を受けた放射線発生装置6の線源制御部89は、コリメータ駆動機構19を制御してコリメータ11の照射開口11aを最大にして、光源14を点灯させる。光源から照射された可視光は、反射ミラー13により反射されて被写体H及び放射線画像撮影装置7に照射される。照射開口11aが最大になっているので、可視光の照射範囲は、照射面22の全面になっている。可視光は被写体Hを透過しないため、照射面22において被写体Hの周囲に照射された可視光のみが、照射面22を透過する。 When the positioning is completed, the photographer operates the operation panel 82 to instruct area determination. Thus, the console 8 transmits a region discrimination command to the radiation generation device 6 and the radiation imaging device 7. The radiation source control unit 89 of the radiation generating apparatus 6 receiving the command from the console 8 controls the collimator drive mechanism 19 to maximize the irradiation opening 11 a of the collimator 11 and turn on the light source 14. The visible light emitted from the light source is reflected by the reflection mirror 13 and emitted to the subject H and the radiation imaging device 7. Since the irradiation opening 11 a is at the maximum, the irradiation range of visible light is the entire surface of the irradiation surface 22. Since the visible light does not pass through the subject H, only the visible light irradiated around the subject H on the illumination surface 22 passes through the illumination surface 22.
 コンソール8から、領域判別の指令を受けた放射線画像撮影装置7の制御部67は、領域判別部70を動作させて、被写体領域と素抜け領域の領域判別処理を実行させる。 The control unit 67 of the radiation image capturing apparatus 7 having received an instruction for area determination from the console 8 operates the area determination unit 70 to execute area determination processing of the subject area and the missing area.
 フォトセンサアレイ32において、被写体領域に対しては可視光は入射せず、被写体Hの周囲の素抜け領域に対してのみ可視光が入射する。フォトセンサアレイ32は、各フォトセンサ33aが受光量に応じた光量信号を回路部70aに出力する。回路部70aは、各フォトセンサ33aの光量信号と閾値を比較して、光量信号が閾値以上のフォトセンサ33aの座標は素抜け領域であると判別し、光量信号が閾値未満のフォトセンサ33aの座標は被写体領域であると判別する。回路部70aは、判別した各領域を示す情報とフォトセンサ33aの座標とを関連づけた座標情報を生成して、それを領域判別結果として制御部67に出力する。制御部67は、領域判別結果を無線通信部68、79によってコンソール8に送信する。 In the photosensor array 32, visible light does not enter the subject region, but visible light enters only the clear region around the subject H. The photosensor array 32 outputs a light amount signal corresponding to the amount of light received by each photosensor 33a to the circuit unit 70a. The circuit unit 70a compares the light amount signal of each photosensor 33a with the threshold, and determines that the coordinates of the photosensor 33a whose light amount signal is equal to or greater than the threshold is a missing area, and the light amount signal of the photosensor 33a is less than the threshold The coordinates are determined to be the subject area. The circuit unit 70a generates coordinate information in which the information indicating each of the determined areas is associated with the coordinates of the photosensor 33a, and outputs the generated information to the control unit 67 as an area determination result. The control unit 67 transmits the area determination result to the console 8 by the wireless communication units 68 and 79.
 コンソール8において、照射範囲決定部91aは、選択された決定方法に応じて、図12Aに示す照射範囲A1や図12Bに示す照射範囲A2のように、照射範囲を決定する。
これにより、照射範囲を画像検出面39aの全体にした場合と比較して、X線の素抜け領域を低減することができる。また、照射範囲は、光源14と領域判別部70とによる精度の高い領域判別結果に基づいて決定されるので、目視で照射範囲を決定する場合と比べて、正確である。
In the console 8, the irradiation range determination unit 91 a determines the irradiation range as the irradiation range A1 illustrated in FIG. 12A or the irradiation range A2 illustrated in FIG. 12B according to the selected determination method.
As a result, compared to the case where the irradiation range is the entire image detection surface 39a, it is possible to reduce the X-ray clear area. Moreover, since the irradiation range is determined based on the highly accurate area discrimination result by the light source 14 and the area discrimination unit 70, it is more accurate than when the irradiation range is determined visually.
 コリメータ駆動量決定部91は、照射範囲決定部91aが決定した照射範囲に基づいて、コリメータ駆動量を決定する。決定したコリメータ駆動量は、通信I/F78、87により放射線発生装置6に送信される。コリメータ駆動機構19は、受信したコリメータ駆動量に基づいてコリメータ11を駆動させ、光源14を消灯させる。これにより、照射範囲決定部91aが決定した照射範囲になるように照射開口11aの大きさが調節される。 The collimator drive amount determination unit 91 determines a collimator drive amount based on the irradiation range determined by the irradiation range determination unit 91a. The determined amount of driving of the collimator is transmitted to the radiation generator 6 by the communication I / Fs 78 and 87. The collimator drive mechanism 19 drives the collimator 11 based on the received collimator drive amount to turn off the light source 14. Thereby, the size of the irradiation opening 11a is adjusted so that it may become the irradiation range which the irradiation range determination part 91a determined.
 撮影者は、コリメータ11の調節が完了した後、操作パネル82を操作して撮影開始を指示する。これにより、コンソール8では、曝射開始を指示する指示信号を放射線発生装置6へ送信し、放射線発生装置6はX線管10から放射線を射出させる。X線管10から射出されたX線は、コリメータ11の照射開口11aを通過することによりX線が絞られる。そして、コリメータ11の照射開口11aを通過したX線は、線源フィルタ12を透過して低エネルギ成分が除去されて、放射線画像撮影装置7の照射面22上の被写体Hに照射される。X線の照射範囲は、素抜け領域が低減されるように決定されているので、放射線画像撮影装置7の照射面22において、被写体Hを透過せずに直接入射するX線を低減することができる。無駄なX線が減るので、患者の被曝量が低減されるとともに、センサパネル39を構成するCMOSセンサ48の特性劣化の低減にも寄与する。 After the adjustment of the collimator 11 is completed, the photographer operates the operation panel 82 and instructs start of imaging. Thereby, the console 8 transmits an instruction signal instructing the start of exposure to the radiation generator 6, and the radiation generator 6 causes the X-ray tube 10 to emit radiation. The X-rays emitted from the X-ray tube 10 are narrowed by passing through the irradiation opening 11 a of the collimator 11. Then, the X-rays that have passed through the irradiation opening 11 a of the collimator 11 are transmitted through the radiation source filter 12 to remove low energy components, and are irradiated onto the subject H on the irradiation surface 22 of the radiographic imaging device 7. Since the irradiation range of X-rays is determined so that the blank area is reduced, it is possible to reduce X-rays directly incident on the irradiation surface 22 of the radiation imaging device 7 without transmitting the subject H. it can. Since wasteful X-rays are reduced, the amount of exposure to the patient is reduced, and it also contributes to the reduction of characteristic deterioration of the CMOS sensor 48 constituting the sensor panel 39.
 被写体Hを透過したX線は、放射線画像撮影装置7の天板24、フォトセンサアレイ32及びセンサパネル39を透過して、シンチレータ40に照射される。 The X-rays transmitted through the subject H are transmitted through the top 24, the photosensor array 32 and the sensor panel 39 of the radiation imaging device 7, and are applied to the scintillator 40.
 シンチレータ40に照射されたX線は、シンチレータ40のX線の入射面近傍、すなわちセンサパネル39の近傍で大部分が光に変換され、センサパネル39に向かう。また、シンチレータ40で発生した光のうち、支持基板41側に向かった光は、支持基板41の反射層により反射されてセンサパネル39に向かう。これにより、撮影によって得られる放射線画像の分解能が高く、またセンサパネル39の受光量が増大することで、結果として放射線画像撮影装置7の感度が向上する。また、シンチレータ40からセンサパネル39に向かう光は、CsI:Tlからなるシンチレータ40の柱状結晶によってガイドされるので、画像ボケが抑制される。 Most of the X-rays irradiated to the scintillator 40 are converted into light in the vicinity of the X-ray incident surface of the scintillator 40, that is, in the vicinity of the sensor panel 39, and travel toward the sensor panel 39. Further, among the light generated by the scintillator 40, the light directed to the support substrate 41 side is reflected by the reflective layer of the support substrate 41 and is directed to the sensor panel 39. Thereby, the resolution of the radiographic image obtained by imaging | photography is high, and the light reception amount of the sensor panel 39 increases, As a result, the sensitivity of the radiographic imaging apparatus 7 improves. In addition, light directed from the scintillator 40 to the sensor panel 39 is guided by the columnar crystals of the scintillator 40 made of CsI: Tl, so image blurring is suppressed.
 シンチレータ40で変換された可視光は、第2電極53を透過して光電変換層52に入射し、ここで信号電荷に変換される。露光終了後、光電変換層52で発生した信号電荷が信号出力回路57によって電圧信号に変換され、この電圧信号が各画素から順次出力される。出力された電圧信号は、信号処理部65により画像データに変換され、画像メモリ66に記憶される。CPU67aは、画像メモリ66に記憶された画像データを無線通信部68によってコンソール8へ送信する。コンソール8のCPU74は、放射線画像撮影装置7から受信した画像データを、RAM76を介してHDD77に記憶する。また、CPU74は、ディスプレイドライバ81を介して、HDD77に記憶されている画像データからなる放射線画像をディスプレイ80に表示させる。 The visible light converted by the scintillator 40 passes through the second electrode 53 and enters the photoelectric conversion layer 52, where it is converted into a signal charge. After completion of the exposure, the signal charge generated in the photoelectric conversion layer 52 is converted into a voltage signal by the signal output circuit 57, and this voltage signal is sequentially output from each pixel. The output voltage signal is converted into image data by the signal processing unit 65 and stored in the image memory 66. The CPU 67 a transmits the image data stored in the image memory 66 to the console 8 by the wireless communication unit 68. The CPU 74 of the console 8 stores the image data received from the radiation imaging device 7 in the HDD 77 via the RAM 76. Further, the CPU 74 causes the display 80 to display a radiation image composed of image data stored in the HDD 77 via the display driver 81.
 照射範囲が、図12Bに示す照射範囲A2のように被写体Hの輪郭内に収まるように決定された場合でも、コリメータ11の各遮蔽板17a,17b、18a,18bは、断面がくさび型形状となっているので、X線は遮蔽板17a,17b及び18a,18bの照射開口11a側の薄い部分を僅かに透過する。そのため、被写体Hの輪郭部分にX線が僅かに照射されるので、放射線画像には被写体Hの輪郭が描出される。このように輪郭付近にX線が照射されても、そのX線は僅かであるため、患者の被曝量の増加に対する影響は少ない。 Even when the irradiation range is determined to be within the contour of the subject H as in the irradiation range A2 shown in FIG. 12B, each of the shield plates 17a, 17b, 18a, 18b of the collimator 11 has a wedge-shaped cross section. Because of this, X-rays are slightly transmitted through the thin portions of the shielding plates 17a, 17b and 18a, 18b on the irradiation opening 11a side. Therefore, since the X-ray is slightly irradiated to the outline portion of the subject H, the outline of the subject H is depicted on the radiation image. Thus, even if X-rays are irradiated near the contour, the amount of X-rays is small, so the effect on the increase in the exposure dose of the patient is small.
 経過観察を行う場合のように、放射線画像撮影装置7で撮影した放射線画像を、過去の放射線画像と比較する際には、放射線画像に被写体Hの輪郭が写っているほうが撮影部位の特定がしやすい。本実施形態によれば、過去の放射線画像との比較における利便性を損なうことなく、患者の被曝量を低減することができる。 As in the case of follow-up observation, when the radiation image taken by the radiation imaging device 7 is compared with the radiation image in the past, the one where the outline of the subject H is reflected in the radiation image identifies the imaging site. Cheap. According to the present embodiment, it is possible to reduce the exposure dose of the patient without impairing the convenience in comparison with the past radiation image.
 本実施形態では、可視光を照射する光源14とフォトセンサアレイ32を有する領域判別部70とを利用して、被写体領域と素抜け領域を判別しているため、X線を使用するプレ撮影により被写体領域と素抜け領域を判別する従来技術(特開平05-042135号公報)と比較して、X線を使用するプレ撮影が無い分、患者の被曝量を低減することができる。 In the present embodiment, the subject area and the blank area are discriminated by using the light source 14 for emitting visible light and the area discrimination unit 70 having the photosensor array 32. Compared to the prior art (Japanese Patent Application Laid-Open No. 05-042135) for determining the subject area and the blank area, the amount of exposure to the patient can be reduced because there is no pre-imaging using X-rays.
 また、室内照明や自然光を利用する光学式カメラを用いて、放射線画像撮影装置上にポジショニングされた被写体を撮影し、撮影した画像に対して画像解析を行う従来技術(特開2009-082169号公報(米国特許公開公報US2009/0086885)と比較して、本実施形態は、簡単な構成とすることができる。この従来技術の場合には、室内照明や自然光が被写体で反射した反射光を利用して撮影するため、撮影した画像において、被写体領域と素抜け領域の明暗差が付きにくい。例えば、被写体の衣服の色が白で、放射線画像撮影装置の照射面の色が同じように白である場合には、被写体領域と素抜け領域の明暗差はほとんどない。そのため、被写体領域と素抜け領域を判別するためには、パターン認識や輪郭抽出といった画像解析が必要になる。 In addition, a conventional technique for imaging an object positioned on a radiographic imaging device using an optical camera that uses indoor lighting or natural light, and performing image analysis on the captured image (Japanese Patent Laid-Open No. 2009-082169) This embodiment can have a simple configuration as compared with (US Patent Publication No. US 2009/0086885.) In the case of this prior art, it is possible to use indoor illumination or reflected light that is reflected by natural light from an object. The difference between light and dark areas between the subject area and the blank area in the photographed image is difficult: For example, the color of the clothes of the subject is white, and the color of the irradiation surface of the radiographic imaging device is white as well. In this case, there is almost no difference in brightness between the subject area and the blank area, so pattern recognition or contour extraction is necessary to distinguish between the subject area and the blank area. Image analysis is required.
 これに対して、本実施形態は、放射線画像撮影装置上にポジショニングされた被写体に対して光源14から可視光を照射し、被写体の背後に配置されたフォトセンサアレイ32で被写体の周囲に入射する可視光を検出している。可視光は被写体を透過しないため、フォトセンサアレイ32は、被写体領域と被写体の周囲の素抜け領域の明暗差が大きな光量信号を出力することができる。2つの領域に明暗差があれば、両者の判別は1つの閾値に対する大小比較で行うことが可能である。そのため、本実施形態では、パターン認識や輪郭抽出といった画像解析をする必要がないため、構成を簡略化できる。 On the other hand, in the present embodiment, the visible light is emitted from the light source 14 to the subject positioned on the radiation imaging apparatus, and the light is incident on the periphery of the subject by the photosensor array 32 disposed behind the subject. Visible light is detected. Since visible light does not pass through the subject, the photosensor array 32 can output a light amount signal having a large contrast between the subject area and a clear area around the subject. If there is a difference between light and dark in the two regions, it is possible to determine the two by comparing the magnitude with one threshold. Therefore, in the present embodiment, there is no need to perform image analysis such as pattern recognition and contour extraction, so the configuration can be simplified.
 また、判別する2つの領域の明暗差が大きいほど、両者の判別は容易であり、2つの領域の判別精度も向上する。本発明では光源14を用いているため、光源14の発光量を調節するという簡単な方法により、明暗差の調節もできる。さらに、光源14が発する検出光は可視光であるため、患者が被曝する懸念もない。 Further, as the difference in brightness between the two areas to be determined is larger, the determination of the two areas is easier, and the determination accuracy of the two areas is also improved. In the present invention, since the light source 14 is used, the contrast can also be adjusted by a simple method of adjusting the light emission amount of the light source 14. Furthermore, since the detection light emitted from the light source 14 is visible light, there is no concern that the patient is exposed.
 また、本実施形態のFPD31は、照射面22側から、センサパネル48、シンチレータ40の順に配置されるISSタイプであるが、ISSタイプは、照射面側から、シンチレータ40、センサパネル39の順に配置されるPSSタイプよりも素抜け領域を低減する必要性が高い。というのは、PSSタイプの場合には、シンチレータ40で光に変換されずに透過したX線が、センサパネル39に入射するのに対して、ISSタイプの場合には、シンチレータ40に入射する前にセンサパネル39にX線が入射する。そのため、同じ素抜け領域であっても、ISSタイプの方がセンサパネル39に入射するX線のエネルギや線量が大きく、素抜け領域がセンサパネル39に与えるダメージは、ISSタイプの方が大きくなるからである。そのため、本発明は、ISSタイプの放射線画像撮影装置に対して有用性が高い。 Further, the FPD 31 of this embodiment is an ISS type in which the sensor panel 48 and the scintillator 40 are arranged in order from the irradiation surface 22 side, but in the ISS type, the scintillator 40 and sensor panel 39 are arranged in order from the irradiation surface side There is a great need to reduce the blank area more than the PSS type. That is, in the case of the PSS type, X-rays transmitted without being converted into light by the scintillator 40 enter the sensor panel 39, while in the case of the ISS type, before entering the scintillator 40. X-rays enter the sensor panel 39. Therefore, even in the same blank area, the energy and dose of X-rays incident on the sensor panel 39 are larger in the ISS type, and the damage of the blank area to the sensor panel 39 is larger in the ISS type. It is from. Therefore, the present invention is highly useful for ISS type radiation imaging apparatus.
 また、上述したように、単結晶SiからなるCMOSセンサは、X線照射により、MOSトランジスタの閾値電圧Vthの変化や、暗電流が増加する等の特性劣化が発生する。これは、単結晶Siを用いたMOS構造では界面電荷が増加するためである。CMOSセンサにおいて、このようなX線照射による特性劣化の影響は、TFTパネルと比較して大きい。そのため、本発明は、CMOSセンサを用いた放射線画像撮影装置に対して特に有効である。 Further, as described above, in the CMOS sensor made of single crystal Si, characteristic deterioration such as a change in threshold voltage Vth of the MOS transistor and an increase in dark current occurs due to the X-ray irradiation. This is because the interface charge increases in the MOS structure using single crystal Si. In the CMOS sensor, the influence of the characteristic deterioration due to such X-ray irradiation is large as compared with the TFT panel. Therefore, the present invention is particularly effective for a radiation imaging apparatus using a CMOS sensor.
 また、放射線画像撮影装置に照射されるX線のうち、CMOSセンサの特性劣化に影響するのは、放射線撮影に使用されないX線の低エネルギ成分と考えられる。というのは、X線の高エネルギ成分は、CMOSセンサを透過してしまうが、X線の低エネルギ成分は、CMOSセンサを透過するだけのエネルギが無いため、CMOSセンサに吸収されてしまい、界面電荷を増加させる可能性があるためである。本実施形態では、線源フィルタ12によってX線の低エネルギ成分をカットしているため、CMOSセンサの特性劣化をさらに抑制することができる。 Further, among the X-rays irradiated to the radiation imaging apparatus, it is considered that the low energy component of the X-rays not used for the radiation imaging influences the characteristic deterioration of the CMOS sensor. In other words, the high energy component of the X-ray passes through the CMOS sensor, but the low energy component of the X-ray is absorbed by the CMOS sensor because there is not enough energy to pass through the CMOS sensor. It is because there is a possibility of increasing the charge. In the present embodiment, since the low energy component of the X-ray is cut by the radiation source filter 12, characteristic deterioration of the CMOS sensor can be further suppressed.
 また、TFTパネルを用いたISSタイプのFPD31では、TFTパネルの基板として用いられる無アルカリガラスのX線吸収が大きいため、管電圧が低いマンモグラフィには利用しにくかった。これに対して、CMOSセンサの単結晶Si基板は、X線の吸収が低いため、マンモグラフィへの適用が期待されていた。本実施形態のように素抜け領域を低減することで、CMOSセンサにおけるX線照射による特性劣化も抑制できるため、ISSタイプのFPDとしてCMOSセンサを用いることが可能となり、マンモグラフィへの適用も容易となる。 Further, in the ISS type FPD 31 using a TFT panel, X-ray absorption of alkali-free glass used as a substrate of the TFT panel is large, and therefore, it is difficult to use for mammography with a low tube voltage. On the other hand, application to mammography has been expected because the single crystal Si substrate of the CMOS sensor has low absorption of X-rays. As in the present embodiment, by reducing the area where light passes through, characteristic deterioration due to X-ray irradiation in the CMOS sensor can also be suppressed, so it becomes possible to use the CMOS sensor as an ISS type FPD, and application to mammography is easy Become.
 また、本例では、照射範囲の決定方法について、図12Aに示す照射範囲A1のように、照射範囲A1内に被写体H全体を収める方法と、図12Bに示す照射範囲A2のように、被写体Hの輪郭内に照射範囲A2を収める方法の2つの方法を例示したが、図12Cに示す照射範囲A3のように、照射範囲A1と照射範囲A2の中間のサイズに決定できるようにしてもよい。 Further, in the present example, as a method of determining the irradiation range, as in the irradiation range A1 shown in FIG. 12A, a method of placing the entire subject H within the irradiation range A1 and a subject H as in the irradiation range A2 shown in FIG. Although two methods of the method of putting irradiation range A2 within the outline of are illustrated, it may be made to be able to determine in the middle size of irradiation range A1 and irradiation range A2 like irradiation range A3 shown to FIG. 12C.
 図12A、12Bにおいては被写体Hを簡略化して楕円形で示したが、実際の被写体Hは、図12Cに示すように、実際の被写体Hの輪郭は単純な形状でなく、被写体Hが手の場合には、指と指の隙間も存在する。このような被写体Hの場合には、図12Bに示す照射範囲A2のように、関心領域を含めつつ照射範囲の全部を被写体Hの輪郭内に収めることは難しい場合が多い。そのため、図12Cに示す照射範囲A3のように、照射範囲を、被写体Hの輪郭の一部は収まり、一部がはみ出すように決定してもよい。 In FIGS. 12A and 12B, the subject H is simplified and shown as an ellipse, but the actual subject H is not a simple outline of the actual subject H as shown in FIG. 12C, and the subject H is a hand. In the case, there is also a gap between the fingers. In the case of such a subject H, it is often difficult to fit the entire irradiation range within the contour of the subject H, including the region of interest, as in the case of the irradiation range A2 shown in FIG. 12B. Therefore, as in the irradiation range A3 shown in FIG. 12C, the irradiation range may be determined such that a part of the outline of the subject H is contained and a part thereof protrudes.
 この場合には、照射範囲決定部91aは、領域判別結果に基づいて、被写体Hの輪郭が位置する各アレイユニット33と、各アレイユニット33内におけるそれぞれの素抜け領域を特定する。 In this case, the irradiation range determination unit 91a specifies each array unit 33 in which the outline of the subject H is located and each blank area in each array unit 33 based on the area determination result.
 照射範囲決定部91aは、各アレイユニット33の素抜け領域に対応するセンサパネル39の画素数、すなわち素抜け画素数をカウントする。そして、この素抜け画素数が予め設定されている許容値を超えないように照射範囲A3を決定する。すなわち、照射範囲A3内における領域Bに位置する素抜け画素数が、許容値を超えないように照射範囲A3を決定する。こうすることで、素抜け領域を低減しつつ、関心領域の観察に支障が無い照射範囲A3を決定することができる。 The irradiation range determination unit 91a counts the number of pixels of the sensor panel 39 corresponding to the blank area of each array unit 33, that is, the number of blank pixels. Then, the irradiation range A3 is determined so that the number of missing pixels does not exceed a preset allowable value. That is, the irradiation range A3 is determined so that the number of missing pixels located in the region B in the irradiation range A3 does not exceed the allowable value. By doing this, it is possible to determine the irradiation range A3 that does not disturb the observation of the region of interest while reducing the blank region.
 素抜け画素数の許容値は、例えばROM75やHDD77に予め格納されており、設定により変更することが可能である。許容値は、頭部、胸部、腹部、手といった撮影部位に応じて変化させてもよい。例えば、頭部、胸部、腹部といった比較的単純な形状の場合には、許容値を低く(素抜け画素数を比較的少なく)、手のような複雑な形状の場合には許容値を高く(素抜け画素数を比較的多く)する。この場合には、ROM75やHDD77などの中に、撮影部位と許容値との関係を記録したテーブルデータが格納される。そして、照射範囲決定部91aは、選択された撮影部位に応じてテーブルデータを参照して、照射範囲を決定する。 The allowable value of the number of missing pixels is stored in advance in, for example, the ROM 75 or the HDD 77, and can be changed by setting. The allowable value may be changed according to the imaging site such as the head, chest, abdomen, and hand. For example, in the case of relatively simple shapes such as the head, chest, and abdomen, the tolerance is low (relatively low pixel count is relatively low), and in the case of a complicated shape such as a hand, the tolerance is high ( Relatively large number of missing pixels). In this case, table data in which the relationship between the imaging region and the tolerance value is recorded is stored in the ROM 75, the HDD 77, and the like. Then, the irradiation range determination unit 91a determines the irradiation range with reference to the table data according to the selected imaging region.
 また、許容値は、X線の照射線量に対して一律ではなく、照射線量に応じて許容値を変化させてもよい。例えば、照射線量が大きい場合には、許容値を低く、照射線量が小さい場合には許容値を高くする。この場合には、ROM75やHDD77に、X線の照射線量に対応した素抜け画素数の許容値をテーブルデータとして格納する。この素抜け画素数の許容値テーブルは、例えば、照射線量が大きい場合には、CMOSセンサ48の特性劣化が大きいため、素抜け画素数が「0」になるように許容値を設定する。 Further, the tolerance value is not uniform for the X-ray irradiation dose, and the tolerance value may be changed according to the irradiation dose. For example, when the irradiation dose is large, the tolerance is low, and when the irradiation dose is small, the tolerance is high. In this case, the ROM 75 or the HDD 77 stores, as table data, an allowable value of the number of missing pixels corresponding to the X-ray irradiation dose. For example, when the irradiation dose is large, since the characteristic deterioration of the CMOS sensor 48 is large, the allowable value table of the number of missing pixels is set such that the number of missing pixels becomes “0”.
 素抜け画素数を「0」に設定すると、照射範囲は、図12Bに示す照射範囲A2のように決定される。上述したとおり、コリメータ11の各遮蔽板17a,17b及び18a,18bの断面をくさび型形状にしていれば、図12Bに示す領域Cのように、照射範囲A2よりも一回り大きい範囲にX線が僅かに透過するので、被写体Hの輪郭をおおよそ判別することは可能である。 When the number of missing pixels is set to “0”, the irradiation range is determined as an irradiation range A2 shown in FIG. 12B. As described above, if the cross sections of the shielding plates 17a and 17b and 18a and 18b of the collimator 11 have a wedge shape, X-rays are made in a range slightly larger than the irradiation range A2 as in the area C shown in FIG. Since it is slightly transmitted, it is possible to roughly determine the contour of the object H.
[第2実施形態]
 上記実施形態では、断面がくさび型形状のコリメータ11を用いたが、図13に示す放射線発生装置100のように、断面の厚みが一定の通常の第1コリメータ101と、断面がくさび型形状の第2コリメータ102とを用いてもよい。この場合、第1コリメータ101は鉛板等によって構成して通常通りX線の照射範囲を限定する。第2コリメータ102はX線の低エネルギ成分の吸収に優れたアルミニウム等で構成して、素抜け領域の低エネルギ成分の吸収に用いる。そして、X線の照射範囲を決定する時は、第2コリメータ102を全開状態にして実施し、決定された照射範囲に合わせて第1コリメータ101及び第2コリメータ102の開度を制御して、それぞれの照射開口の大きさを調節する。
Second Embodiment
In the above embodiment, the collimator 11 having a wedge-shaped cross section is used. However, as in a radiation generating apparatus 100 shown in FIG. 13, a normal first collimator 101 having a constant thickness in the cross section and a wedge-shaped cross section The second collimator 102 may be used. In this case, the first collimator 101 is formed of a lead plate or the like to limit the X-ray irradiation range as usual. The second collimator 102 is made of aluminum or the like excellent in absorption of the low energy component of the X-ray, and used for absorption of the low energy component in the blank area. Then, when determining the irradiation range of the X-ray, the second collimator 102 is fully opened, and the opening degree of the first collimator 101 and the second collimator 102 is controlled according to the determined irradiation range, Adjust the size of each irradiation opening.
 例えば、第1コリメータ101の照射開口は、照射範囲が、図12Bにおいて二点鎖線Lで示す大きさになるように調節され、第2コリメータ102の開度については、照射範囲の大きさが照射範囲A2になるように調節される。こうしても、第1実施形態と同様の効果が得られる。 For example, the irradiation aperture of the first collimator 101 is adjusted such that the irradiation range has a size indicated by a two-dot chain line L in FIG. 12B, and the opening range of the second collimator 102 is irradiated with a size of the irradiation range It is adjusted to be in the range A2. Also in this case, the same effect as that of the first embodiment can be obtained.
[第3実施形態]
 また、上記実施形態では、フォトセンサアレイ32を構成するアレイユニット33の大きさを均一にしたが、アレイユニットの受光面の大きさは異なっていてもよい。例えば、図14に示すフォトセンサアレイ105のように、受光面105a全体において、中央部に配置されるアレイユニット106の受光面の面積を大きくし、周縁部に配置されるアレイユニット107の受光面の面積を小さくしてもよい。フォトセンサパネル105の受光面105aと、FPD31の画像検出面39aは対応するので、アレイユニット106は画像検出面39aの中央部に、アレイユニット107は、画像検出面39aの周縁部に位置する。周縁部は、被写体の輪郭部分に対応することが多いので、周縁部のアレイユニット107の面積を小さくすることでその部分の解像度が上がるため、被写体領域と素抜け領域の境界を、より精密に判別することができる。
Third Embodiment
Further, in the above embodiment, although the size of the array unit 33 constituting the photosensor array 32 is made uniform, the size of the light receiving surface of the array unit may be different. For example, as in the case of the photosensor array 105 shown in FIG. 14, the area of the light receiving surface of the array unit 106 disposed in the central portion is increased over the entire light receiving surface 105 a, and the light receiving surface of the array unit 107 disposed in the peripheral portion The area of may be reduced. Since the light receiving surface 105 a of the photosensor panel 105 corresponds to the image detection surface 39 a of the FPD 31, the array unit 106 is located at the center of the image detection surface 39 a and the array unit 107 is located at the periphery of the image detection surface 39 a. Since the peripheral part often corresponds to the contour part of the subject, the resolution of that part is increased by reducing the area of the array unit 107 in the peripheral part, so the boundary between the subject area and the blank area can be made more precisely. It can be determined.
[第4実施形態]
 また、図15A、15Bに示すように、放射線発生装置110に、X線管10の焦点を中心にX線管10を回転させる首振り機構112を設けてコリメータ11の開度の制御と併用してもよい。首振りにより、X線の照射角度が変化する。関心領域となる病変部Gが被写体Hの端部に存在する場合において、図15Aに示すように、首振りを行わない場合には、病変部GがX線管10の照射路の中心と対向するように被写体Hをポジショニングする。そして、コリメータ11の開度を制御して、素抜け領域が少なくなるように照射範囲を絞る。上述したとおり、コリメータ11は、照射開口11aの中心が変化しないように一対の遮蔽板が連動して照射開口11aの幅を調節する。そのため、照射範囲内の素抜け領域が少なくなるように照射開口11aを絞ると、病変部Gは被写体Hの端部に位置しているため、照射範囲が非常に狭くなる。
Fourth Embodiment
Further, as shown in FIGS. 15A and 15B, the radiation generating apparatus 110 is provided with a swing mechanism 112 for rotating the X-ray tube 10 about the focal point of the X-ray tube 10 and used together with the control of the opening degree of the collimator 11. May be The swinging angle changes the X-ray irradiation angle. When a lesion G to be a region of interest is present at the end of the subject H, as shown in FIG. 15A, the lesion G faces the center of the irradiation path of the X-ray tube 10 when no swing is performed. Position the subject H to do so. Then, the opening degree of the collimator 11 is controlled to narrow the irradiation range so that the blank area is reduced. As described above, the collimator 11 interlocks the pair of shielding plates to adjust the width of the irradiation opening 11 a so that the center of the irradiation opening 11 a does not change. Therefore, when the irradiation opening 11a is narrowed so as to reduce the blank area in the irradiation range, the lesion G is located at the end of the subject H, so the irradiation range becomes very narrow.
 このような場合には、図15Bに示すように、首振りを行ってX線の照射角度を変化させれば、被写体Hの端部付近の素抜け領域が少なくなるように照射開口11aを絞った場合でも、図15Aに示す例と比較して、照射範囲を広げることができる。照射範囲が広がれば、放射線画像において病変部Gとともにその周囲の被写体Hの輪郭を写し込むことができる。輪郭が分かる方が、過去に撮影した放射線画像との比較もしやすい。 In such a case, as shown in FIG. 15B, if the irradiation angle of X-rays is changed by swinging, the irradiation opening 11a is narrowed so that the blank area near the end of the object H is reduced. Even in this case, the irradiation range can be expanded as compared with the example shown in FIG. 15A. If the irradiation range is expanded, the outline of the subject H around the lesion G can be imprinted in the radiation image. It is easier to compare the radiation image taken in the past if the contour is known.
更に、被写体Hを放射線発生装置110の中心部にポジショニングしたつもりでも少しずれている場合が想定される。このような場合も、放射線発生装置110を僅かに首振りさせることで、照射範囲内の素抜け領域を減らしやすい。なお、放射線発生装置110を首振りさせるか否かの判断は、照射範囲の幅方向において、左右の素抜け領域の大きさに有意差があった場合である。具体的には、図15Aに示すように、首振りをせずに照射範囲を広げた場合には、病変部Gがある被写体Hの右側には、素抜け領域が多く存在し、左側には被写体Hがあり、素抜け領域が僅かしかないことになる。その差が大きい場合には、図15Bに示すように、右側の素抜け領域が少なくなるように、首振りを行う。 Furthermore, even if the subject H is intended to be positioned at the center of the radiation generator 110, a slight deviation may occur. Also in such a case, by slightly swinging the radiation generator 110, it is easy to reduce the blank area within the irradiation range. The determination as to whether or not to cause the radiation generator 110 to swing is when there is a significant difference in the size of the left and right blank areas in the width direction of the irradiation range. Specifically, as shown in FIG. 15A, when the irradiation range is expanded without swinging, many missing areas exist on the right side of the subject H with the lesion G, and on the left side There is a subject H, and there is only a few blank areas. If the difference is large, as shown in FIG. 15B, the swing is performed so that the blank area on the right side decreases.
[第5実施形態]
 上記第4実施形態では、放射線発生装置に首振り機構を設けたが、図16に示すように、コリメータ115の一対の遮蔽板115a,115bを個別に駆動できるようにし、X線束の中心軸CXに対して、左右でコリメータ開度a,bを異ならせてもよい。これによれば、首振り機構と同様の効果が得られる。
Fifth Embodiment
In the fourth embodiment, the radiation generating apparatus is provided with a swing mechanism, but as shown in FIG. 16, the pair of shield plates 115 a and 115 b of the collimator 115 can be individually driven, and the central axis CX of the X-ray bundle On the other hand, the collimator openings a and b may be different on the left and right. According to this, the same effect as the swing mechanism can be obtained.
[第6実施形態]
 上記第1実施形態では、フォトセンサアレイ32自体の遮光性、またはフォトセンサアレイ32とFPD31との間に配置した遮光層により、天板24を透過した光がFPD31に入射しないようにしているが、遮光板などを用いて、必要に応じて天板に遮光性を付与できるようにしてもよい。
Sixth Embodiment
In the first embodiment, the light transmitted through the top plate 24 is prevented from entering the FPD 31 by the light shielding property of the photosensor array 32 itself or the light shielding layer disposed between the photosensor array 32 and the FPD 31. A light shielding plate may be used to provide the top plate with a light shielding property as needed.
 図17に示す本実施形態の天板120は、第1実施形態と同様に可視光及びX線の透過性が高いプラスチック等から構成されている。この天板120には、遮光板121が側面から挿脱自在なスリット122が設けられている。遮光板121は、可視光に対しては高い遮光性を有する一方、X線に対しては高い透過性を有する。 The top plate 120 of the present embodiment shown in FIG. 17 is made of plastic or the like having high visible light and X-ray permeability, as in the first embodiment. The top plate 120 is provided with a slit 122 in which the light shielding plate 121 can be inserted and removed from the side. The light shielding plate 121 has high light shielding properties for visible light, and has high transparency for X-rays.
 本実施形態の天板120を用いた放射線画像撮影装置によって領域判別を行う際には、図17Aに示すように、天板120から遮光板121を引き出して可視光が天板120を透過できるようにする。また、放射線撮影を行なう際には、図17Bに示すように、天板120内に遮光板121を挿入して可視光がFPD31に入射しないようにする。 When performing region determination by the radiation image capturing apparatus using the top 120 of the present embodiment, as shown in FIG. 17A, the light shielding plate 121 can be pulled out from the top 120 and visible light can be transmitted through the top 120 Make it Further, when radiation imaging is performed, as shown in FIG. 17B, the light shielding plate 121 is inserted into the top plate 120 so that visible light does not enter the FPD 31.
 このような天板120を用いることにより、FPD31に可視光が入射されるのを防止することができる。なお、遮光板121を、天板120のスリット122に挿抜自在に設ける形態を例示しているが、他の形態でもよい。例えば、遮光板121の一端を、天板120や筐体本体にヒンジを介して回転自在に取り付けて、FPD31に入射する可視光を遮光する遮光位置と遮光位置から退避する退避位置との間で変位させるようにしてもよい。 By using such a top plate 120, it is possible to prevent visible light from being incident on the FPD 31. In addition, although the form which provides the light-shielding plate 121 in the slit 122 of the top plate 120 so that insertion and removal is possible is illustrated, another form may be sufficient. For example, one end of the light shielding plate 121 is rotatably attached to the top plate 120 or the housing body via a hinge, and between the light shielding position for shielding visible light incident on the FPD 31 and the retracted position for retreating from the light shielding position. You may make it displace.
 また、天板120を設ければ、FPD31のセンサパネル39を光検出部として兼用することができる。センサパネル39も、フォトセンサアレイ32と同様に、可視光を検出して光量信号を出力する機能を備えている。天板120を設ければ、領域判別の際には遮光板121をスリット122から取り外して、センサパネル39に対して可視光が入射する状態とし、放射線撮影の際には、遮光板121をスリット122に挿入して可視光を遮光する状態とする、というようにセンサパネル39の遮光状態を切り替えることができる。このようにセンサパネル39を光検出部として兼用させれば、フォトセンサアレイ32を省略することができるので、従来技術と比較して、より簡単な構成とすることができる。 Further, if the top plate 120 is provided, the sensor panel 39 of the FPD 31 can also be used as a light detection unit. Similar to the photosensor array 32, the sensor panel 39 also has a function of detecting visible light and outputting a light amount signal. If the top plate 120 is provided, the light shielding plate 121 is removed from the slit 122 to distinguish visible light from the sensor panel 39 in the area determination, and the light shielding plate 121 is slit in the radiation imaging. The light blocking state of the sensor panel 39 can be switched such that the visible light is blocked by inserting the light source into the light source 122. As described above, when the sensor panel 39 is also used as a light detection unit, the photosensor array 32 can be omitted, so that the configuration can be simplified as compared with the prior art.
[第7実施形態]
 また、上記各実施形態では、放射線画像撮影装置自体に領域判別機能を設けたが、放射線画像撮影装置に対し領域判別機能を後付けできるようにしてもよい。図18A、18Bにおいて、本実施形態の放射線画像撮影システム130は、放射線画像撮影装置131と、放射線画像撮影装置131に対して着脱自在に取り付け可能なアタッチメント132とを有する。放射線画像撮影装置131は、第1実施形態の放射線画像撮影装置7のように透明な天板24やフォトセンサアレイ32等の領域判別機能を実現する構成が設けられていないを有しておらず、天板を含む筐体が遮光性を有する従来の放射線画像撮影装置131である。
Seventh Embodiment
In each of the above-described embodiments, the radiation image capturing apparatus itself is provided with the area determining function. However, the radiation image capturing apparatus may be provided with the area determining function. 18A and 18B, the radiation imaging system 130 of the present embodiment includes a radiation imaging device 131 and an attachment 132 which can be detachably attached to the radiation imaging device 131. The radiographic imaging device 131 is not provided with a configuration for realizing the area discrimination function such as the transparent top plate 24 and the photosensor array 32 as the radiographic imaging device 7 of the first embodiment is not provided. It is a conventional radiographic imaging device 131 in which a housing including a top plate has a light shielding property.
 アタッチメント132は、放射線画像撮影装置131が挿脱可能なスリット133を有するジャケット形状をしており、放射線画像撮影装置131がスリット133に挿入されたときに放射線画像撮影装置131の外周面を覆う。アタッチメント132は、例えば可視光及びX線の透過性が高い透明なプラスチックによって形成されている。 The attachment 132 has a jacket shape having a slit 133 into which the radiographic imaging device 131 can be inserted and removed, and covers the outer peripheral surface of the radiographic imaging device 131 when the radiographic imaging device 131 is inserted into the slit 133. The attachment 132 is formed of, for example, a transparent plastic that is highly transparent to visible light and X-rays.
 アタッチメント132には、フォトセンサアレイ134と、回路部70aと同様の回路部(図示せず)と、配線135及びコネクタ136が設けられている。フォトセンサアレイ134は、第1実施形態のフォトセンサアレイ32と同様であり、スリット133に放射線画像撮影装置131が挿入されたときに放射線画像撮影装置131の上面と対面する位置に配置される。 The attachment 132 is provided with a photosensor array 134, a circuit unit (not shown) similar to the circuit unit 70a, a wire 135, and a connector 136. The photosensor array 134 is the same as the photosensor array 32 according to the first embodiment, and is disposed at a position facing the upper surface of the radiographic imaging device 131 when the radiographic imaging device 131 is inserted into the slit 133.
 配線135及びコネクタ136は、スリット133に放射線画像撮影装置131が挿入されたときにフォトセンサアレイ134と放射線画像撮影装置131とを電気的に接続する。 The wiring 135 and the connector 136 electrically connect the photosensor array 134 and the radiographic imaging device 131 when the radiographic imaging device 131 is inserted into the slit 133.
 本実施形態の放射線画像撮影システム130によって領域判別をする際には、図18Aに示すように、従来型の放射線画像撮影装置131をスリット133に挿入することにより、放射線画像撮影装置131に対してアタッチメント132を取り付けて、図18Bの状態にする。この状態で被写体Hをポジショニングして、光源14から可視光を照射する。被写体Hの周囲の素抜け領域では、可視光は、アタッチメント132を透過してフォトセンサアレイ134に入射する。放射線画像撮影装置131は、筐体が遮光性を有しているため、内蔵するFPD31に領域判別用の可視光が入射することはない。 When the area is determined by the radiation imaging system 130 according to the present embodiment, as shown in FIG. 18A, the radiation imaging apparatus 131 is inserted into the slit 133 to insert the conventional radiation imaging apparatus 131 into the slit 133. Attachment 132 is attached to the state shown in FIG. 18B. In this state, the subject H is positioned to emit visible light from the light source 14. In the passthrough region around the subject H, visible light passes through the attachment 132 and enters the photosensor array 134. In the radiographic imaging device 131, since the casing has a light shielding property, visible light for area determination does not enter the built-in FPD 31.
 フォトセンサアレイ134は光量信号を回路部に出力する。回路部は領域判別結果を、配線135及びコネクタ136を介して放射線画像撮影装置131に送信する。放射線画像撮影装置131は、領域判別結果をコンソール8に送信する。第1実施形態と同様に、コンソール8のコリメータ駆動量決定部91により照射範囲及びコリメータ駆動量が決定され、放射線発生装置6のコリメータ11が素抜け領域が少なくなるように調節される。 The photosensor array 134 outputs a light amount signal to the circuit unit. The circuit unit transmits the area determination result to the radiation image capturing apparatus 131 via the wiring 135 and the connector 136. The radiographic imaging device 131 transmits the area discrimination result to the console 8. As in the first embodiment, the irradiation range and the collimator driving amount are determined by the collimator driving amount determination unit 91 of the console 8, and the collimator 11 of the radiation generating device 6 is adjusted so as to reduce the blank area.
 コリメータ11の調節が完了後、放射線撮影が行われる。アタッチメント132はX線透過性が高い材質を用いているため、図18Bに示すように、アタッチメント132を取り付けた状態で、放射線撮影を行なうことができる。 Radiography is performed after adjustment of the collimator 11 is completed. Since the attachment 132 is made of a material having high X-ray transparency, as shown in FIG. 18B, radiation imaging can be performed with the attachment 132 attached.
 なお、本例では、領域判別結果を、放射線画像撮影装置131を経由してコンソール8に送信しているが、放射線画像撮影装置131を経由せずに、コンソール8に直接送信してもよい。この場合には、アタッチメント132には、配線135及びコネクタ136の代わりに、コンソール8に送信するための有線又は無線の送信部が設けられる。本実施形態のように、フォトセンサアレイは、放射線画像撮影装置とは別に設けてもよい。 In this example, although the region discrimination result is transmitted to the console 8 via the radiation imaging device 131, it may be directly transmitted to the console 8 without passing through the radiation imaging device 131. In this case, the attachment 132 is provided with a wired or wireless transmission unit for transmitting to the console 8 instead of the wire 135 and the connector 136. As in the present embodiment, the photosensor array may be provided separately from the radiation imaging device.
 上記各実施形態では、X線撮影時に領域判別を必ず行なうようにしているが、X線量が所定線量以上のときにのみ行なうようにしてもよい。素抜け領域を低減する目的は、患者の被曝量やCMOSセンサの特性劣化を低減することにあるので、線量が高いほど問題になるからである。 In the above embodiments, the region determination is always performed at the time of X-ray imaging, but may be performed only when the X-ray dose is a predetermined dose or more. The purpose of reducing the blank area is to reduce the exposure dose of the patient and the characteristic deterioration of the CMOS sensor, so the higher the dose, the more problematic.
 また、上記各実施形態では、本発明の光検出部としてフォトセンサアレイ32を用い、フォトセンサアレイ32により領域判別を行うようにしたが、第6実施形態のように、遮光板121などにより、外部からの可視光がFPD31に入射可能な状態と、FPD31を遮光する遮光状態を切換可能にして、放射線撮影時において外部からの可視光による誤検出を防止できる構造を用いる場合には、FPD31のセンサパネル39を領域判別用の光検出部に兼用してもよい。センサパネル39を領域判別に用いる場合には、センサパネル39の受光感度は高い方がよい。 In each of the above embodiments, the photosensor array 32 is used as the light detection unit of the present invention, and the area determination is performed by the photosensor array 32. However, as in the sixth embodiment, the light shielding plate 121 or the like When using a structure capable of switching between a state in which visible light from the outside can be incident on the FPD 31 and a light blocking state in which the FPD 31 is blocked, false detection by visible light from the outside can be prevented during radiation imaging. The sensor panel 39 may also be used as a light detection unit for area determination. When the sensor panel 39 is used for area discrimination, it is preferable that the light receiving sensitivity of the sensor panel 39 be high.
 センサパネル39の受光感度を高めるには、基板などの厚みを薄くして光損失を抑えて、光電変換部に入射する光量を多くすることが考えられる。基板の厚みを薄くする方法としては、センサパネル39として、単結晶半導体基板を用いたCMOSセンサの代わりに、透明なプラスチックフイルムなどのフレキシブルなプラスチック基板上にCMOSセンサを形成したフレキシブルCMOSセンサを用いる方法がある。 In order to increase the light reception sensitivity of the sensor panel 39, it is conceivable to reduce the thickness of the substrate or the like to suppress the light loss and to increase the amount of light incident on the photoelectric conversion portion. As a method of reducing the thickness of the substrate, a flexible CMOS sensor in which a CMOS sensor is formed on a flexible plastic substrate such as a transparent plastic film is used as the sensor panel 39 instead of the CMOS sensor using a single crystal semiconductor substrate. There is a way.
 フレキシブルCMOSセンサのトランジスタとしては、有機薄膜トランジスタを用いることができる。なお、有機薄膜トランジスタについては、「Tsuyoshi Sekitani、「Flexible organic transistors and circuits with extreme bending
stability」、Nature Materials 9、平成22年11月7日、p.1015-1022」において詳細に説明されているので、詳しい説明は省略する。
An organic thin film transistor can be used as a transistor of the flexible CMOS sensor. For organic thin film transistors, see “Tsuyoshi Sekitani,” “Flexible organic transistors and circuits with extreme bending.
As described in detail in “Stability”, Nature Materials 9, November 7, 2010, pp. 1015-1022 ”, the detailed description is omitted.
 また、プラスチック基板上に、単結晶Siによって形成されたフォトダイオード及びトランジスタを配置した構成を用いてもよい。プラスチック基板上へのフォトダイオード及びトランジスタの配置には、例えば、数十ミクロン程度の大きさのデバイスブロックを溶液中で散布し、任意の基板上の必要な位置に配置する技術であるFluidic Self-Assembly(FSA)法を用いることができる。なお、FSA法については、「前澤宏一、「Fluidic Self-Assemblyのための共鳴トンネルデバイスブロック作製技術」、電子情報通信学会技術研究報告 ED,電子デバイス、社団法人電子情報通信学会、平成20年6月6日、108巻、87号、p.67-71」において詳細に説明されているので、詳しい説明は省略する。 Alternatively, a structure in which a photodiode and a transistor formed of single crystal Si are provided over a plastic substrate may be used. The arrangement of photodiodes and transistors on a plastic substrate can be performed, for example, by spraying a device block having a size of several tens of microns in a solution and placing it at a required position on any substrate. The Assembly (FSA) method can be used. Regarding the FSA method, "Koichi Maezawa," Resonant tunnel device block fabrication technology for Fluidic Self-Assembly ", Technical Report of IEICE, ED, Electronic Device, The Institute of Electronics, Information and Communication Engineers, 2008 6 Since it is described in detail on May 6, 108, 87, pp. 67-71, the detailed description is omitted.
 上記各実施形態では、領域判別に使用する検出光として可視光を用いた例で説明したが、可視光以外でもよく、赤外光、紫外光等の被写体を被曝させない放射線以外の電磁波を用いてもよい。当然ながら、光検出部は、使用する検出光の波長に応じた感度特性を持つものが使用されるが、光電変換部自体の感度特性を検出光の波長に合わせる代わりに、シンチレータなどの波長変換部材を使用してもよい。 In each of the above embodiments, an example using visible light as detection light used for area discrimination has been described, but it may be other than visible light and may be electromagnetic waves other than radiation that does not expose a subject such as infrared light or ultraviolet light. It is also good. As a matter of course, as the light detection unit, one having sensitivity characteristics according to the wavelength of detection light to be used is used, but instead of matching the sensitivity characteristics of the photoelectric conversion unit itself to the wavelength of detection light A member may be used.
 例えば、CsIからなるシンチレータ40は、放射線以外に、紫外光を照射しても僅かに発光する。発光する光は可視光域の波長を持つので、この光をセンサパネル39またはフォトセンサアレイ32で検出して領域判別に用いてもよい。 For example, the scintillator 40 made of CsI emits a slight amount of light even when irradiated with ultraviolet light, in addition to radiation. Since the emitted light has a wavelength in the visible light range, this light may be detected by the sensor panel 39 or the photosensor array 32 and used for area determination.
 上記各実施形態では、FPDとしてCMOSセンサを用いた例で説明したが、本発明は、CMOSセンサと同じく単結晶の半導体基板を使用するCCDイメージセンサを用いてもよい。また、ガラス基板を使用するTFT型のFPDでもよいし、間接変換型でも直接変換型のどちらでもよい。また、ISSタイプのFPDを例に説明したが、本発明は、PSSタイプのFPDにも適用可能である。 In each of the above embodiments, the FPD is described using an example in which a CMOS sensor is used, but the present invention may use a CCD image sensor using a single crystal semiconductor substrate as in the CMOS sensor. In addition, a TFT type FPD using a glass substrate may be used, and either an indirect conversion type or a direct conversion type may be used. Also, although the ISS type FPD has been described as an example, the present invention is also applicable to the PSS type FPD.
 ただし、上述のとおり、CMOSセンサなど単結晶の半導体基板を使用するFPDは、ガラス基板を使用するTFT型と異なり、X線の照射による特性劣化の懸念があるので、素抜け領域の低減の必要性が高い。また、ISSタイプの場合には、シンチレータを介さずに基板に対して直接X線が入射するため、特性劣化の懸念はより問題となる。したがって、本発明は、単結晶の半導体基板を使用するISSタイプのFPDに対して特に有効である。 However, as described above, unlike FPDs that use a single crystal semiconductor substrate such as a CMOS sensor, unlike TFTs that use a glass substrate, there is a concern that the characteristics will deteriorate due to X-ray irradiation. Sex is high. Further, in the case of the ISS type, since the X-rays are directly incident on the substrate without passing through the scintillator, the concern about the characteristic deterioration becomes more problematic. Therefore, the present invention is particularly effective for ISS type FPDs using a single crystal semiconductor substrate.
 上記各実施形態において、FPDとは別に光検出部を設ける場合には、光検出部としてフォトセンサアレイを使用した例で説明したが、光検出機能を有する素子をマトリクス状に配列した受光面を持つセンサであればよく、フォトセンサアレイの代わりに、CMOSセンサやCCDセンサなどを使用してもよい。本発明では、光源14から被写体に検出光を照射して、被写体の周囲に入射する検出光を受光するので、被写体領域と素抜け領域で明暗差の大きな光量信号が得られる。そのため、領域判別には光量信号と閾値との大小比較によって行えるため、パターン認識や輪郭抽出などの画像解析は不要である。そのため、光検出部としてCMOSセンサやCCDセンサを用いても画像解析機能は不要であるため、構成を簡略化するという本発明の効果は得られる。もちろん、CMOSセンサやCCDセンサと比較して、フォトセンサアレイの方が構成も簡単で安価だと考えられるので、光検出部としてはフォトセンサアレイを用いることが好ましい。 In each of the above-described embodiments, in the case where the light detection unit is provided separately from the FPD, an example using a photosensor array as the light detection unit has been described. However, the light receiving surface in which elements having a light detection function are arranged in a matrix Any sensor may be used, and a CMOS sensor or a CCD sensor may be used instead of the photosensor array. In the present invention, the detection light is emitted to the subject from the light source 14 and the detection light incident on the periphery of the subject is received, so that a light quantity signal with a large difference in brightness between the subject area and the clear area is obtained. Therefore, since the area determination can be performed by comparing the light amount signal with the threshold, image analysis such as pattern recognition and contour extraction is unnecessary. Therefore, even if a CMOS sensor or a CCD sensor is used as the light detection unit, the image analysis function is not necessary, and the effect of the present invention of simplifying the configuration can be obtained. Of course, it is preferable to use a photosensor array as the light detection unit because the photosensor array is simpler and cheaper than the CMOS sensor or the CCD sensor.
 上記各実施形態において、光源14を放射線発生装置に設けた例で説明したが、光源14は放射線発生装置に設けなくてもよい。光源14からの可視光は、被写体を含む光検出部の受光面の全域に照射されるので、コリメータで照射範囲を絞る必要は無い。そのため、放射線発生装置とは別に光源14を設けても不都合は無い。 Although the light source 14 is provided in the radiation generating apparatus in each of the above embodiments, the light source 14 may not be provided in the radiation generating apparatus. Since visible light from the light source 14 is irradiated on the entire light receiving surface of the light detection unit including the subject, it is not necessary to narrow the irradiation range with a collimator. Therefore, there is no problem even if the light source 14 is provided separately from the radiation generator.
 上記各実施形態において、領域判別結果に基づいて照射範囲を決定して、決定した照射範囲に基づいてコリメータを自動的に制御しているが、コリメータの制御は自動的に行わなくてもよい。例えば、領域判別結果や決定した照射範囲をコンソールのディスプレイに表示し、ディスプレイの表示を確認しながら、コリメータの開度をマニュアルで調節してもよい。もちろん、コリメータの制御を自動的に行う方が手間の軽減にはなるため好ましい。また、コリメータの制御を自動的に行う場合でも、マニュアルで微調節ができるようにしておくとよい。 In each of the above embodiments, the irradiation range is determined based on the area discrimination result, and the collimator is automatically controlled based on the determined irradiation range. However, the control of the collimator may not be performed automatically. For example, the determination result of the area and the determined irradiation range may be displayed on the console display, and the opening degree of the collimator may be manually adjusted while confirming the display on the display. Of course, automatic control of the collimator is preferable because it reduces the time and effort. In addition, even when the control of the collimator is automatically performed, it is preferable to be able to perform fine adjustment manually.
 また、FPDをカセッテサイズの筐体に組み込んだ可搬型の例について説明したが、立位型、臥位型の据え置き型の撮影装置や、マンモグラフィ装置に組み込むことも可能である。また、放射線としてX線を例に説明したが、本発明は、γ線など、X線以外の放射線を使用するものでもよい。その他、上記の実施形態で説明した本発明に係る放射線画像撮影装置の構成は一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能であることは言うまでもない。 In addition, although a portable example in which the FPD is incorporated in a cassette-sized casing has been described, the FPD can be incorporated in a standing or lying-down stationary imaging apparatus or a mammography apparatus. Also, although X-rays have been described as an example of radiation, the present invention may use radiation other than X-rays, such as γ-rays. In addition, the configuration of the radiation image capturing apparatus according to the present invention described in the above embodiment is merely an example, and it goes without saying that the configuration can be appropriately changed without departing from the scope of the present invention.

Claims (20)

  1.  被写体に放射線を照射する放射線源を有する放射線発生装置と、
     複数の画素がマトリクス状に配列された画像検出面を持ち、前記被写体を透過した放射線を受けて被写体の放射線画像を検出する放射線画像検出器を有する放射線画像撮影装置と、
     前記画像検出面に対してポジショニングされた前記被写体に、検出光を照射する光源と、
     前記光源から照射され前記被写体の周囲に入射する前記検出光を受光して光量信号を出力する光検出部を有し、前記光量信号に基づいて、前記画像検出面内において前記被写体が対面する被写体領域と前記被写体の周囲の素抜け領域とを判別する領域判別部と、
     を備えていることを特徴とする放射線画像撮影システム。
    A radiation generator having a radiation source for irradiating the subject with radiation;
    A radiation imaging apparatus having an image detection surface in which a plurality of pixels are arranged in a matrix, and having a radiation image detector that receives radiation transmitted through the subject and detects a radiation image of the subject;
    A light source that emits detection light to the subject positioned with respect to the image detection surface;
    A light detection unit that receives the detection light emitted from the light source and enters the periphery of the subject and outputs a light amount signal, and based on the light amount signal, the subject facing the subject in the image detection plane An area determination unit that determines an area and a missing area around the subject;
    A radiation imaging system comprising:
  2.  前記光検出部は、前記検出光の受光量に応じた光量信号を出力する複数のフォトセンサがマトリクス状に配列された受光面を有するフォトセンサアレイであることを特徴とする請求の範囲第1項に記載の放射線画像撮影システム。 The light detection section is a photo sensor array having a light receiving surface in which a plurality of photo sensors for outputting light quantity signals according to the light receiving amount of the detection light are arranged in a matrix. The radiographic imaging system as described in a term.
  3.  前記フォトセンサアレイは、前記放射線画像検出器よりも前記光源側に配置されていることを特徴とする請求の範囲第1項に記載の放射線画像撮影システム。 The radiation imaging system according to claim 1, wherein the photo sensor array is disposed closer to the light source than the radiation image detector.
  4.  前記フォトセンサアレイは、前記受光面が、前記放射線画像検出器の前記画像検出面と平行な状態で配置されていることを特徴とする請求の範囲第3項に記載の放射線画像撮影システム。 The radiation imaging system according to claim 3, wherein the light receiving surface of the photo sensor array is disposed in parallel with the image detection surface of the radiation image detector.
  5.  前記領域判別部は、前記複数のフォトセンサが出力するそれぞれの光量信号と予め設定された閾値とを比較することにより、前記被写体領域と前記素抜け領域とを判別することを特徴とする請求の範囲第2項に記載の放射線画像撮影システム。 The area determination unit determines the subject area and the blank area by comparing the light amount signals output from the plurality of photosensors with a preset threshold value. The radiation imaging system according to claim 2.
  6.  前記光源は、前記放射線発生装置に設けられており、前記検出光は前記放射線と同じ方向から被写体に照射されることを特徴とする請求の範囲第1項に記載の放射線画像撮影システム。 The radiation image capturing system according to claim 1, wherein the light source is provided in the radiation generating apparatus, and the detection light is emitted to the subject from the same direction as the radiation.
  7.  前記放射線発生装置は、前記放射線を透過させる照射開口を画定する複数枚の遮蔽板で構成され、前記遮蔽板の移動により前記照射開口の大きさを調節して、前記画像検出面内における照射範囲を限定するコリメータを有しており、
     前記領域判別部の判別結果に基づいて、前記素抜け領域が低減されるように、前記照射範囲を決定する照射範囲決定部と、
     前記照射範囲決定部が決定した照射範囲となるように、前記コリメータの駆動量を決定するコリメータ駆動量決定部とを備えていることを特徴とする請求の範囲第1項に記載の放射線画像撮影システム。
    The radiation generating apparatus is composed of a plurality of shielding plates that define an irradiation opening that transmits the radiation, and the size of the irradiation opening is adjusted by the movement of the shielding plate, and the irradiation range in the image detection plane Have a collimator that limits
    An irradiation range determination unit that determines the irradiation range so that the blank area is reduced based on the determination result of the area determination unit;
    The radiation image photographing according to claim 1, further comprising: a collimator drive amount determination unit that determines a drive amount of the collimator so as to be the irradiation range determined by the irradiation range determination unit. system.
  8.  前記照射範囲決定部は、前記領域判別部の判別結果に基づいて、前記素抜け領域に存在する前記放射線画像検出器の素抜け画素数を特定し、前記素抜け画素数が予め設定されている許容値を超えないように前記照射範囲を決定することを特徴とする請求の範囲第7項に記載の放射線画像撮影システム。 The irradiation range determination unit specifies the number of unfiltered pixels of the radiation image detector present in the unfiltered region based on the determination result of the region judging unit, and the number of unfiltered pixels is set in advance. The radiation imaging system according to claim 7, wherein the irradiation range is determined so as not to exceed an allowable value.
  9.  前記素抜け画素数の許容値は、前記放射線源から照射される放射線の照射線量に応じて設定されていることを特徴とする請求の範囲第8項に記載の放射線画像撮影システム。 9. The radiation image capturing system according to claim 8, wherein the allowable value of the unfiltered number of pixels is set in accordance with an irradiation dose of radiation emitted from the radiation source.
  10.  前記フォトセンサアレイは、複数のフォトセンサが配列された受光面を有する複数のアレイユニットを複数枚タイリングして構成されており、
     前記画像検出面の中央部に配置される前記アレイユニットよりも、前記画像検出面の周縁部に配置される前記アレイユニットのほうが前記受光面のサイズが小さいことを特徴とする請求の範囲第3項に記載の放射線画像撮影システム。
    The photosensor array is configured by tiling a plurality of array units each having a light receiving surface in which a plurality of photosensors are arrayed,
    The size of the light receiving surface of the array unit arranged at the peripheral portion of the image detecting surface is smaller than that of the array unit arranged at the central portion of the image detecting surface. The radiographic imaging system as described in a term.
  11.  前記コリメータは、前記照射開口の幅を変化させる少なくとも一対の前記遮蔽板を有し、前記遮蔽板の断面形状は、前記照射開口を画定する端縁から外側に向かうにしたがって厚みが厚くなるくさび型形状であることを特徴とする請求の範囲第7項に記載の放射線画像撮影システム。 The collimator has at least a pair of the shielding plates that changes the width of the irradiation opening, and the cross-sectional shape of the shielding plate is a wedge shape whose thickness increases from the edge defining the irradiation opening toward the outside. The radiation imaging system according to claim 7, which is a shape.
  12.  前記コリメータは、放射線の照射範囲を限定する第1コリメータと、前記素抜け領域に照射される放射線から比較的エネルギが低いエネルギ成分を吸収する第2のコリメータとを有することを特徴とする請求の範囲第7項に記載の放射線画像撮影システム。 The collimator is characterized by having a first collimator which limits an irradiation range of radiation, and a second collimator which absorbs an energy component whose energy is relatively low from radiation irradiated to the blank area. Range The radiographic imaging system of Claim 7.
  13.  前記一対の遮蔽板は、それぞれ独立に移動可能であることを特徴とする請求の範囲第11項に記載の放射線画像撮影システム。 The radiation imaging system according to claim 11, wherein the pair of shielding plates are movable independently of each other.
  14.  前記放射線画像検出器は、放射線を吸収して光に変換するシンチレータと、前記シンチレータの放射線照射側に配置され、前記シンチレータで変換された光を検出する複数の画素がマトリクス状に配列されたセンサパネルとを含むことを特徴とする請求の範囲第1項に記載の放射線画像撮影システム。 The radiation image detector is a scintillator that absorbs radiation and converts it into light, and a sensor that is disposed on the radiation irradiation side of the scintillator and in which a plurality of pixels that detect light converted by the scintillator are arranged in a matrix The radiation imaging system according to claim 1, further comprising a panel.
  15.  前記センサパネルは、CMOS型イメージセンサで構成されていることを特徴とする請求の範囲第14項に記載の放射線画像撮影システム。 The radiation image capturing system according to claim 14, wherein the sensor panel is configured of a CMOS type image sensor.
  16.  前記センサパネルを前記光検出部として兼用させることを特徴とする請求の範囲第14項に記載の放射線画像撮影システム。 The radiation imaging system according to claim 14, wherein the sensor panel is also used as the light detection unit.
  17.  前記放射線画像撮影装置は、前記放射線及び前記検出光を透過させる照射面が形成され、前記センサパネルを収容する筐体と、
     前記放射線に対しては透過性を有する一方、前記検出光に対しては遮光性を有する遮光板とを有しており、
     前記遮光板は、前記センサパネルに入射する前記検出光を遮光する遮光位置と、前記遮光位置から退避する退避位置との間で変位自在に設けられている、
     ことを特徴とする請求の範囲第16項に記載の放射線画像撮影システム。
    The radiation image capturing apparatus is formed with an irradiation surface that transmits the radiation and the detection light, and a housing that accommodates the sensor panel;
    A light shielding plate having transparency to the radiation, and a light shielding property to the detection light;
    The light shielding plate is provided so as to be displaceable between a light shielding position for shielding the detection light incident on the sensor panel and a retracted position for retreating from the light shielding position.
    The radiographic imaging system of Claim 16 characterized by the above-mentioned.
  18.  前記放射線画像撮影装置に対して着脱自在に取り付け可能なアタッチメントを有しており、
     前記アタッチメントに、前記光検出部が設けられていることを特徴とする請求の範囲第1項に記載の放射線画像撮影システム。
    An attachment removably attachable to the radiation imaging apparatus;
    The radiation imaging system according to claim 1, wherein the light detection unit is provided in the attachment.
  19.  複数の画素がマトリクス状に配列された画像検出面を持ち、放射線源から照射され被写体を透過した放射線を受けて前記被写体の放射線画像を検出する放射線画像検出器と、
     前記画像検出面に対して前記被写体がポジショニングされた状態で、光源から照射され前記被写体の周囲に入射する前記検出光を受光して光量信号を出力する光検出部を有し、前記光量信号に基づいて、前記画像検出面内において前記被写体が対面する被写体領域と前記被写体の周囲の素抜け領域とを判別する領域判別部と、
     を備えていることを特徴とする放射線画像撮影装置。
    A radiation image detector having an image detection surface in which a plurality of pixels are arranged in a matrix, receiving radiation transmitted from the radiation source and transmitted through the subject to detect a radiation image of the subject;
    A light detection unit for receiving the detection light emitted from the light source and incident on the periphery of the subject in a state in which the subject is positioned with respect to the image detection surface, and outputting a light amount signal; An area determination unit that determines, based on the subject area where the subject faces in the image detection plane, and the blank area around the subject;
    A radiation image capturing apparatus comprising:
  20.  放射線画像検出器の画像検出面に対して被写体がポジショニングされた状態で、被写体に検出光を照射するステップと、
     前記被写体の周囲に入射する前記検出光を受光して、光量信号を出力するステップと、
     前記光量信号に基づいて、前記画像検出面内において前記被写体が対面する被写体領域と前記被写体の周囲の素抜け領域とを判別するステップとを、
     を含むことを特徴とする放射線画像撮影方法。
    Irradiating the subject with detection light while the subject is positioned with respect to the image detection surface of the radiation image detector;
    Receiving the detection light incident on the periphery of the subject and outputting a light amount signal;
    Determining a subject area facing the subject in the image detection plane based on the light amount signal and a blank area around the subject;
    A radiation image capturing method comprising:
PCT/JP2012/065713 2011-06-30 2012-06-20 Radiation image capturing device, method, and system WO2013002087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-145383 2011-06-30
JP2011145383A JP2013011553A (en) 2011-06-30 2011-06-30 Radiographic system, radiographic apparatus and radiographic method

Publications (1)

Publication Number Publication Date
WO2013002087A1 true WO2013002087A1 (en) 2013-01-03

Family

ID=47423984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065713 WO2013002087A1 (en) 2011-06-30 2012-06-20 Radiation image capturing device, method, and system

Country Status (2)

Country Link
JP (1) JP2013011553A (en)
WO (1) WO2013002087A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113633303A (en) * 2021-09-07 2021-11-12 上海联影医疗科技股份有限公司 Auxiliary image segmentation device, auxiliary image segmentation system, imaging method, electronic device, and medium
CN113729741A (en) * 2021-09-07 2021-12-03 上海联影医疗科技股份有限公司 Human body region detection device, human body region detection system, imaging method, electronic device, and medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168849A1 (en) * 2016-03-28 2017-10-05 富士フイルム株式会社 Radiation image capturing device and radiation image capturing method
CN108523911A (en) * 2018-05-11 2018-09-14 沈阳东软医疗系统有限公司 A kind of digital radiography equipment and automatic exposure control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542135A (en) * 1991-01-19 1993-02-23 Philips Gloeilampenfab:Nv X-ray inspection apparatus
JP2004177251A (en) * 2002-11-27 2004-06-24 Canon Inc Radiographic imaging device
JP2004261490A (en) * 2003-03-04 2004-09-24 Hitachi Medical Corp Radiographic apparatus
JP2006043251A (en) * 2004-08-06 2006-02-16 Konica Minolta Medical & Graphic Inc Radiographic image photography system and apparatus
JP2006204403A (en) * 2005-01-26 2006-08-10 Konica Minolta Medical & Graphic Inc Radiographic imaging system and apparatus for mammography
JP2006255216A (en) * 2005-03-18 2006-09-28 Hitachi Medical Corp X-ray diagnostic imaging apparatus
JP2010078385A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Radiation image detecting device
WO2010044168A1 (en) * 2008-10-17 2010-04-22 株式会社島津製作所 X-ray equipment
JP2011115566A (en) * 2009-11-09 2011-06-16 Fujifilm Corp Imaging area specifying apparatus, radiographic system, imaging area specifying method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542135A (en) * 1991-01-19 1993-02-23 Philips Gloeilampenfab:Nv X-ray inspection apparatus
JP2004177251A (en) * 2002-11-27 2004-06-24 Canon Inc Radiographic imaging device
JP2004261490A (en) * 2003-03-04 2004-09-24 Hitachi Medical Corp Radiographic apparatus
JP2006043251A (en) * 2004-08-06 2006-02-16 Konica Minolta Medical & Graphic Inc Radiographic image photography system and apparatus
JP2006204403A (en) * 2005-01-26 2006-08-10 Konica Minolta Medical & Graphic Inc Radiographic imaging system and apparatus for mammography
JP2006255216A (en) * 2005-03-18 2006-09-28 Hitachi Medical Corp X-ray diagnostic imaging apparatus
JP2010078385A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Radiation image detecting device
WO2010044168A1 (en) * 2008-10-17 2010-04-22 株式会社島津製作所 X-ray equipment
JP2011115566A (en) * 2009-11-09 2011-06-16 Fujifilm Corp Imaging area specifying apparatus, radiographic system, imaging area specifying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113633303A (en) * 2021-09-07 2021-11-12 上海联影医疗科技股份有限公司 Auxiliary image segmentation device, auxiliary image segmentation system, imaging method, electronic device, and medium
CN113729741A (en) * 2021-09-07 2021-12-03 上海联影医疗科技股份有限公司 Human body region detection device, human body region detection system, imaging method, electronic device, and medium
CN113633303B (en) * 2021-09-07 2023-09-22 上海联影医疗科技股份有限公司 Auxiliary image segmentation device, auxiliary image segmentation system, imaging method, electronic equipment and medium

Also Published As

Publication number Publication date
JP2013011553A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
EP0714038B1 (en) Digital sensor cassette for mammography
US9697923B2 (en) Radiation image capturing system
JP5714770B2 (en) Radiation image capturing apparatus, radiation image capturing system, method for controlling radiation image capturing apparatus, and control program for radiation image capturing apparatus
US9006671B2 (en) Radiological image detection apparatus
JP5595876B2 (en) Radiography apparatus and radiation imaging system
EP2080038A2 (en) Retrofit digital mammography detector
WO1998020796A1 (en) Dental radiography using an intra-oral linear array sensor
JP2005526961A (en) X-ray image sensor
JP5507415B2 (en) Radiation imaging device
JP6138715B2 (en) Radiographic imaging system, radiographic imaging system control method, and radiographic imaging system control program
WO2013002087A1 (en) Radiation image capturing device, method, and system
WO2013015016A1 (en) Radiographic equipment
WO2012165155A1 (en) Radiographic imaging device
JP5624447B2 (en) Radiation detection apparatus and scintillator panel manufacturing method
WO2013015267A1 (en) Radiographic equipment
EP2604188A1 (en) Digital detector and radiation apparatus using the same
CN105931214B (en) Image processing apparatus, radiographic imaging system, and image processing method
WO2013125325A1 (en) Radiography device, radiography system, radiography device control method, and radiography device control program
JP2008178522A (en) Radiographic apparatus and driving method for the same
WO2013015062A1 (en) Radiographic equipment
JP3578378B2 (en) X-ray equipment
JP2012247402A (en) Radiographic apparatus
JP3535842B2 (en) X-ray image detector
KR20240039262A (en) Radiation detector and apparatus for radiography having the same
WO2013180078A1 (en) Radiographic imaging equipment, radiographic imaging system, radiographic imaging method, and radiographic imaging program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803953

Country of ref document: EP

Kind code of ref document: A1