WO2013001608A1 - シート弁を用いた吸着式ヒートポンプ及び情報処理システム - Google Patents

シート弁を用いた吸着式ヒートポンプ及び情報処理システム Download PDF

Info

Publication number
WO2013001608A1
WO2013001608A1 PCT/JP2011/064825 JP2011064825W WO2013001608A1 WO 2013001608 A1 WO2013001608 A1 WO 2013001608A1 JP 2011064825 W JP2011064825 W JP 2011064825W WO 2013001608 A1 WO2013001608 A1 WO 2013001608A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorber
refrigerant
flow hole
opening
seat valve
Prior art date
Application number
PCT/JP2011/064825
Other languages
English (en)
French (fr)
Inventor
敏夫 眞鍋
吉田 宏章
徳康 安曽
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP11868619.5A priority Critical patent/EP2728281A4/en
Priority to CN201180071927.9A priority patent/CN103620319B/zh
Priority to PCT/JP2011/064825 priority patent/WO2013001608A1/ja
Priority to JP2013522392A priority patent/JP5668853B2/ja
Publication of WO2013001608A1 publication Critical patent/WO2013001608A1/ja
Priority to US14/107,543 priority patent/US9212837B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/28Disposition of valves, e.g. of on-off valves or flow control valves specially adapted for sorption cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • F25B17/083Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to an adsorption heat pump and an information processing system using a seat valve.
  • the adsorption heat pump uses the movement of latent heat generated when a refrigerant such as water or methanol adsorbs or desorbs to an adsorbent such as silica gel or activated carbon, thereby cooling the heat energy at a temperature of, for example, 100 ° C. or lower. It is a technology to convert.
  • the adsorption heat pump has an adsorber that has an adsorbent and can be switched between an adsorption process for adsorbing the refrigerant to the adsorbent and a desorption process for desorbing the refrigerant from the adsorbent.
  • the adsorption heat pump includes a condenser that condenses the refrigerant desorbed from the adsorber, and an evaporator that evaporates the refrigerant supplied from the condenser and supplies the evaporated refrigerant to the adsorber.
  • the liquid-phase refrigerant evaporates in the evaporator, and the refrigerant changed to the gas phase moves into the adsorber and is adsorbed by the adsorbent. At this time, the refrigerant takes heat of vaporization in the evaporator, so that cold heat can be taken out from the evaporator.
  • the adsorbent that has adsorbed the refrigerant is heated to desorb the refrigerant from the adsorbent, and the desorbed refrigerant is cooled and condensed in the condenser.
  • the refrigerant changed to the liquid phase is supplied to the evaporator. Since the heat used in this desorption step can be as low as about 60 ° C., for example, depending on the type of adsorbent, heat energy from various low-temperature waste heats can be used as a heat source.
  • a valve is disposed between the adsorber and the evaporator in a flow path for allowing a gas-phase refrigerant to flow from the evaporator to the adsorber.
  • a valve is disposed between the adsorber and the condenser in a flow passage for allowing the gas-phase refrigerant to flow from the adsorber to the condenser.
  • a seat valve having a seat-like valve body is used as such a valve.
  • the sheet-like valve body is opened and closed by the pressure difference between the adsorber and the evaporator, or the pressure difference between the adsorber and the condenser, so that the structure is simple and an additional opening and closing is required. Does not require driving force.
  • the sheet-like valve element closes the flow hole using a planar valve element, for example, the refrigerant that has condensed and changed into the liquid phase is adhered between the valve element and the portion around the flow passage. Then, the valve body may be difficult to open due to surface tension.
  • the seat valve having the conventional seat-like valve body has a problem in the opening / closing operation or responsiveness.
  • an object of the present specification is to provide an adsorption heat pump using a seat valve that can solve the above-described problems.
  • an object of the present specification is to provide an operation method of an information processing system including an adsorption heat pump having a seat valve that can solve the above-described problem.
  • an adsorber that has an adsorbent and can be switched between an adsorption process for adsorbing the refrigerant to the adsorbent and a desorption process for desorbing the refrigerant from the adsorbent;
  • a condenser for condensing the refrigerant desorbed from the adsorber; an evaporator for evaporating the refrigerant supplied from the condenser; and supplying the evaporated refrigerant to the adsorber; and the refrigerant from the adsorber to the condenser.
  • the first circulation hole to be circulated, the second circulation hole to circulate the refrigerant from the evaporator to the adsorber, the first circulation hole or the second circulation hole is disposed in at least one of the sheet material and the above
  • a seat valve having an opening / closing auxiliary plate member formed of a temperature-dependent material that is joined to an end portion of a sheet material and deforms according to temperature, and that opens and closes at least one of the first flow hole or the second flow hole.
  • the information processing unit that generates heat during operation, the cooling unit to which the heat medium is supplied, and the adsorbent are included, and the adsorbent adsorbs the refrigerant.
  • An adsorber that can be switched between an adsorption process and a desorption process that desorbs the refrigerant from the adsorbent, a condenser that condenses the refrigerant desorbed from the adsorber, and a refrigerant that evaporates and evaporates the refrigerant supplied from the condenser
  • An evaporator for supplying refrigerant to the adsorber, a first flow hole for flowing refrigerant from the adsorber to the condenser, a first flow hole for flowing refrigerant from the evaporator to the adsorber, and the first An opening / closing auxiliary plate material that is disposed in at least one of the flow hole or the second flow hole and is formed of a sheet material and a temperature-dependent material that is deformed according to the temperature and is joined to an end of the sheet material;
  • the first flow hole or the above An adsorption heat pump that opens and closes at least one of the two flow holes, and in the desorption step, the
  • An adsorber a condenser that condenses the refrigerant desorbed from the adsorber, an evaporator that evaporates the refrigerant supplied from the condenser and supplies the evaporated refrigerant to the adsorber, and the adsorber It is disposed in at least one of the first flow hole for flowing the refrigerant to the condenser, the second flow hole for flowing the refrigerant from the evaporator to the adsorber, and the first flow hole or the second flow hole.
  • an opening / closing auxiliary plate member formed of a sheet material and a temperature-dependent material that is bonded to an end portion of the sheet material and deforms according to temperature, and at least one of the first flow hole or the second flow hole Open and close the seat
  • An adsorption heat pump operating method wherein in the desorption step, the adsorber supplies the refrigerant desorbed from the adsorbent to the condenser through the first flow hole, and in the adsorption step The evaporator supplies the evaporated refrigerant to the adsorber through the second circulation hole.
  • the information processing unit that generates heat during operation, a cooling unit to which a heat medium is supplied, an adsorbent, and a refrigerant in the adsorbent.
  • An adsorber that can be switched between an adsorption step for adsorbing and a desorption step for desorbing the refrigerant from the adsorbent, a condenser for condensing the refrigerant desorbed from the adsorber, and evaporating the refrigerant supplied from the condenser, An evaporator for supplying evaporated refrigerant to the adsorber; a first flow hole for flowing the refrigerant from the adsorber to the condenser; a first flow hole for flowing the refrigerant from the evaporator to the adsorber; An opening / closing auxiliary plate material that is disposed in at least one of the first flow hole or the second flow hole and is formed of a temperature-dependent material that is bonded to an end portion of the sheet material and the sheet material and deforms according to temperature.
  • an operation method of an adsorption heat pump having a seat valve body that opens and closes at least one of the second flow holes, wherein the adsorber uses heat generated by the information processing unit in the desorption process.
  • the refrigerant is desorbed from the adsorbent, and the refrigerant desorbed from the adsorbent is supplied to the condenser through the first circulation hole.
  • the evaporator removes the evaporated refrigerant to the second circulation hole.
  • the heat medium is cooled by using the heat of vaporization when the refrigerant is evaporated, and the cooled heat medium is supplied to the cooling unit.
  • the opening / closing operation and responsiveness of the seat valve are improved, so that the heat exchange efficiency is increased.
  • cooling can be performed with high heat exchange efficiency.
  • the opening / closing operation and responsiveness of the seat valve are improved, so that the heat exchange efficiency is increased.
  • cooling can be performed with high heat exchange efficiency.
  • FIG. 6 is an end view showing a state in which the seat valve shown in FIG.
  • FIG. 1 is a diagram illustrating an embodiment of an information processing system disclosed in this specification.
  • FIG. 10 is a diagram illustrating a state where two four-way valves of the information processing system illustrated in FIG. 9 are switched.
  • 9 and 10 are diagrams for explaining an information processing unit and a cooling device of the information processing system.
  • FIG. 1 is a diagram showing a first embodiment of an adsorption heat pump disclosed in this specification.
  • the adsorption heat pump 20 of this embodiment includes a first adsorber 21a and a second adsorber 21b each having an adsorbent 23.
  • the first adsorber 21 a and the second adsorber 21 b can be switched between an adsorption process in which the refrigerant 24 is adsorbed by the adsorbent 23 and a desorption process in which the refrigerant 24 is desorbed from the adsorbent 23.
  • the adsorption heat pump 20 includes a condenser 25 that condenses the refrigerant 24 desorbed from the first adsorber 21a or the second adsorber 21b.
  • the adsorption heat pump 20 includes an evaporator 26 that evaporates the refrigerant 24 supplied from the condenser 25 and supplies the evaporated refrigerant 24 to the first adsorber 21a or the second adsorber 21b.
  • the adsorption heat pump 20 has a space divided into a first adsorber 21a, a second adsorber 21b, a condenser 25, and an evaporator 26, with a housing 20a partitioned.
  • the inside of the housing 20a is decompressed by a vacuum pump (not shown) or the like, and a predetermined amount of the refrigerant 24 is enclosed.
  • the coolant 24 for example, water or alcohol can be used.
  • first adsorber 21a and the second adsorber 21b will be further described below. Since the second adsorber 21b has the same structure as the first adsorber 21a, the description of the first adsorber 21a is also applied to the second adsorber 21b as appropriate.
  • the adsorbent 23 is disposed inside the first adsorber 21a.
  • the adsorbent 23 for example, silica gel, zeolite, activated carbon, or the like can be used.
  • the first adsorber 21a includes a first heat medium pipe 22a for heating or cooling the adsorbent 23.
  • the first heat medium pipe 22 a can be arranged such that the flow path meanders so that hot or cold heat can be sufficiently supplied to the adsorbent 23.
  • a high-temperature or low-temperature heat medium is supplied from the outside to the first heat medium pipe 22a.
  • a low-temperature heat medium is supplied from the outside to the first heat medium pipe 22a, and the low-temperature heat medium flows through the first heat medium pipe 22a, whereby the adsorbent 23 is cooled. Is done.
  • the cooled adsorbent 23 has a high adsorption capacity for the gas-phase refrigerant 24.
  • a high-temperature heat medium is supplied from the outside to the first heat medium pipe 22a, and the high-temperature heat medium flows through the first heat medium pipe 22a, whereby the adsorbent 23 is heated. Is done.
  • the heated adsorbent 23 desorbs the adsorbed refrigerant 24 to generate a gas-phase refrigerant 24.
  • the adsorbing capacity of the heated adsorbent 23 is regenerated by desorbing the adsorbed refrigerant 24.
  • the first adsorber 21a is used by switching between the adsorption process and the desorption process.
  • the second adsorber 21b is a desorption process when the first adsorber 21a is in the adsorption process, and is an adsorption process when the first adsorber 21a is in the desorption process.
  • the second adsorber 21b has a second heat medium pipe 22b to which a high-temperature or low-temperature heat medium is supplied from the outside.
  • the gas phase refrigerant 24 is supplied to the condenser 25 from the first adsorber 21a or the second adsorber 21b.
  • the condenser 25 has a third heat medium pipe 25 a for cooling the gas-phase refrigerant 24.
  • the third heat medium pipe 25 a can be arranged so that the flow path meanders so that cold heat can be sufficiently supplied to the gas-phase refrigerant 24.
  • a low temperature heat medium is supplied to the third heat medium pipe 25a from the outside.
  • the gas-phase refrigerant 24 cooled in the condenser 25 changes to a liquid phase.
  • the liquid phase refrigerant 24 falls below the condenser 25 and then moves to the evaporator 26 through the conducting tube 25b.
  • the evaporator 26 is positioned vertically below the condenser 25, and the liquid-phase refrigerant 24 moves to the evaporator 26 through the conducting tube 25b by gravity.
  • the liquid phase refrigerant 24 is supplied from the condenser 25 to the evaporator 26.
  • the evaporator 26 includes a fourth heat medium pipe 26 a for supplying vaporization heat when the liquid-phase refrigerant 24 evaporates.
  • the fourth heat medium pipe 26 a may be arranged so that the flow path meanders so that the heat of vaporization can be sufficiently supplied to the liquid phase refrigerant 24.
  • the fourth heat medium pipe 26a is supplied with a heat medium from the outside, and the heat medium cooled in the evaporator 26 is sent to the outside.
  • the refrigerant 26 changed into the gas phase in the evaporator 26 is supplied to the first adsorber 21a or the second adsorber 21b.
  • the first adsorber 21a and the condenser 25 are partitioned by the first partition wall 17a.
  • the first partition wall 17a is provided with a first flow hole 16a through which the refrigerant 24 flows from the first adsorber 21a to the condenser 25.
  • the first flow hole 16a is formed as a hole penetrating the first partition wall 17a that separates the space on the first adsorber 21a side and the space on the condenser 25 side.
  • the first adsorber 21a and the evaporator 26 are partitioned by the second partition wall 17b.
  • the 2nd flow hole 16b which distribute
  • the second flow hole 16b is formed as a hole that penetrates the second partition wall 17b that separates the space on the first adsorber 21a side and the space on the evaporator 26 side.
  • the second adsorber 21b and the condenser 25 are partitioned by the third partition wall 17c.
  • the third partition wall 17c is provided with a third flow hole 16c through which the refrigerant 24 flows from the second adsorber 21b to the condenser 25.
  • the second adsorber 21b and the evaporator 26 are partitioned by the fourth partition wall 17d.
  • a fourth flow hole 16d through which the refrigerant 24 flows from the evaporator 26 to the second adsorber 21b is disposed in the fourth partition wall 17d.
  • a seat valve 10a for opening and closing the first flow hole 16a is disposed in the first flow hole 16a.
  • a seat valve 10b that opens and closes the second flow hole 16b is disposed in the second flow hole 16b.
  • a seat valve 10c that opens and closes the third flow hole 16c is disposed in the third flow hole 16c.
  • a seat valve 10d that opens and closes the fourth flow hole 16d is disposed in the fourth flow hole 16d.
  • FIG. 2 is an end view showing the seat valve 10b in a closed state of the adsorption heat pump 20 shown in FIG.
  • FIG. 3 is an end view showing the seat valve 10b in the open state of the adsorption heat pump 20 shown in FIG.
  • FIG. 4 is a perspective view showing the seat valve 10b in the opened state of the adsorption heat pump 20 shown in FIG.
  • the seat valve 10b includes a seat valve body 13 having an opening / closing auxiliary plate member 12 formed of a sheet material 11 and a temperature-dependent material that is bonded to an end portion of the sheet material 11 and deforms according to temperature.
  • the seat valve body 13 opens and closes the second flow hole 16b.
  • the sheet material 11 has, for example, a rectangular shape as shown in FIG.
  • the opening / closing auxiliary plate member 13 has a vertically long rectangular shape.
  • One end of the sheet material 11 is joined to the opening / closing auxiliary plate material 12.
  • one end portion of the sheet material 11 is laminated and joined to the opening / closing auxiliary plate material 12.
  • the other end portion of the sheet material 11 is a free end portion, and the seat valve 10b can be opened and closed with the opening / closing auxiliary plate 12 side of the seat valve body 13 as a fulcrum.
  • the sheet material 11 is in contact with the surface of the second partition wall 17b on the first adsorber 21a side so as to cover the second flow hole 16b.
  • the seat valve 10b includes a heat conducting portion that conducts heat to the opening / closing auxiliary plate 12.
  • the heat conducting unit includes a pipe 15 that allows a heat medium to flow and conduct heat to the opening / closing auxiliary plate 12.
  • the said heat conduction part has the fixing member 14 which fixes the opening / closing auxiliary
  • the opening / closing auxiliary plate 12 has a portion including one end joined to the sheet material 11, and the other end is fixed around the second flow hole 16 b via the fixing member 14.
  • the opening / closing auxiliary plate 12 is fixed to the surface of the second partition wall 17 b on the first adsorber 21 a side using the fixing member 14.
  • the piping 15 is arrange
  • the material for forming the fixing member 14 is preferably a material having high thermal conductivity.
  • a metal for example, copper can be used.
  • the pipe 15 is arranged at a position close to the opening / closing auxiliary plate 12 in order to efficiently transmit the heat or cold of the heat medium flowing through the pipe 15 to the opening / closing auxiliary plate 12.
  • a part of the heat medium that flows to the first heat medium pipe 22 a of the first adsorber 21 a is supplied to the pipe 15. That is, when the first adsorber 21a is in the adsorption process, a low-temperature heat medium for cooling the adsorbent 23 is supplied to the pipe 15 in the adsorption process, and the first adsorber 21a is in the desorption process. In the desorption step, a high-temperature heat medium for heating the adsorbent 23 is supplied to the pipe 15.
  • the opening / closing auxiliary plate 12 to which the cold heat is transmitted is deformed so that the sheet material 11 opens the second flow hole 16b.
  • the opening / closing auxiliary plate 12 to which the cold heat is transmitted is deformed so as to curve from the evaporator 16 side toward the first adsorber 21a side.
  • FIG. 4 shows a perspective view of the seat valve 10b thus opened.
  • a plurality of second flow holes 16b covered by the seat valve body 13 are exposed in the space on the first adsorber 21a side, and the gas phase refrigerant 24 can flow.
  • FIG. 1 only one second flow hole 16b is shown for simplicity.
  • the opening / closing auxiliary plate 12 when a high-temperature heat medium is supplied to the pipe 15 in the desorption process of the first adsorber 21 a, the heat is transmitted to the opening / closing auxiliary plate 12 through the fixing member 14. The temperature of the refrigerant desorbed from the heated adsorbent is also transmitted to the opening / closing auxiliary plate 12. As shown in FIG. 2, the opening / closing auxiliary plate member 12 to which the heat is transmitted is deformed so that the sheet member 11 closes the second flow hole 16b. Specifically, the opening / closing auxiliary plate 12 to which the heat is transmitted is deformed so as to be flat.
  • the state where the seat valve 10b is closed in this way is shown in FIG.
  • the plurality of second circulation holes 16b are covered with the sheet material 11, and the gas-phase refrigerant 24 cannot flow.
  • the opening / closing auxiliary plate 12 is preferably formed by laminating a plurality of plates having different thermal expansion coefficients. Specifically, as the opening / closing auxiliary plate 12, bimetal or trimetal can be used.
  • the thermal expansion coefficient of the plate material 12a is larger than the thermal expansion coefficient of the plate material 12b. Accordingly, in the opening / closing auxiliary plate 12 to which cold heat is transmitted in the adsorption process of the first adsorber 21a, the thermal contraction amount of the plate material 12a is larger than the thermal contraction amount of the plate material 12b. It deform
  • the thermal expansion amount of the plate material 12a is larger than the thermal expansion amount of the plate material 12b. It deforms from a curved state toward the first adsorber 21a side from the 16th side to a flat state.
  • the opening / closing auxiliary plate 12 may be deformed so as to be curved from the first adsorber 21a side toward the evaporator 16 side through a flat state.
  • the opening / closing auxiliary plate 12 has a linear relationship between the temperature and the amount of displacement in the temperature range of cold or hot supplied by the pipe 15. Moreover, it is preferable that the displacement amount with respect to a predetermined temperature difference is large.
  • the curvature coefficient is preferably 10 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ) or more, and more preferably 20 ⁇ 10 ⁇ 6 (° C. ⁇ 1 ) or more.
  • K is a curvature coefficient
  • T 2 and T 1 are temperatures before and after displacement
  • l is the length of the flat bimetal
  • t is the thickness of the flat bimetal.
  • Examples of such a flat bimetal include those of JIS symbol TM1 or TM2.
  • JIS symbol TM1 or TM2 JIS symbol TM1 or TM2.
  • the timing for flowing the high-temperature heat medium or the low-temperature heat medium through the pipe 15 is the same as the timing for flowing the heat medium through the first heat medium pipe 22a of the first adsorber 21a. Therefore, it is preferable from the viewpoint of improving the responsiveness of the opening / closing operation of the seat valve 10b.
  • movement of the seat valve 10b is made by making the timing which flows a high temperature heat medium or a low temperature heat medium into the piping 15 earlier than the timing which flows a heat medium into the 1st heat medium piping 22a of the 1st adsorption device 21a. The responsiveness may be further improved.
  • the seat valve 10b having the structure described above is opened to allow the flow of the gas-phase refrigerant 24 from the evaporator 26 to the first adsorber 21a, but the flow from the first adsorber 21a to the evaporator 26 is closed. Not allowed.
  • the operation of the seat valve 10b will be described below.
  • the internal pressure of the first adsorber 21 a becomes lower than that of the evaporator 26. That is, the internal pressure of the evaporator 26 is higher than that of the first adsorber 21a.
  • the seat valve 10b opens toward the first adsorber 21a in response to an increase in the internal pressure of the evaporator 26 with respect to the first adsorber 21a.
  • the opening / closing auxiliary plate member 12 assists the opening operation of the seat valve 10b, so that the response of the operation is improved. In this way, the flow of the gas-phase refrigerant 24 from the evaporator 26 to the first adsorber 21a is allowed.
  • the heated adsorbent 23 in the first adsorber 21 a desorbs the adsorbed refrigerant 24, so that the internal pressure of the first adsorber 21 a becomes higher than that of the evaporator 26.
  • the seat valve 10b closes toward the evaporator 26 in response to an increase in the internal pressure of the first adsorber 21a with respect to the evaporator 26.
  • the operation of the opening / closing auxiliary plate 12 assists the closing operation of the seat valve 10b, so that the responsiveness of the closing operation is improved.
  • the closing operation of the seat valve 10b is also assisted by its own weight. Therefore, the flow of the gas-phase refrigerant 24 from the first adsorber 21a to the evaporator 26 is not allowed.
  • any material can be used without particular limitation as long as it prevents the gas-phase refrigerant 24 from permeating.
  • a material for forming the sheet material 11 for example, a plastic film sheet or a silicone sheet can be used.
  • the plastic material for example, PVA (polyvinyl alcohol), PVC (polyvinyl chloride), PET (polyethylene terephthalate), or the like can be used.
  • the rigidity or elastic modulus of the sheet material 11 may be low or high.
  • the entire sheet material 11 or a joint portion of the sheet material 11 with the opening / closing auxiliary plate member 11 follows the deformation of the opening / closing auxiliary plate member 11, so It is preferable to have a rigidity or elastic modulus that is separated from the surface on the side of the adsorber 21a.
  • the seat valve body 13 is arranged so as to open vertically downward, it is preferable to use the sheet material 11 having a high rigidity to ensure the opening and closing of the second flow hole 16b.
  • the thickness of the sheet material 11 is preferably thin from the viewpoint of ensuring an opening / closing operation with good responsiveness due to a pressure difference.
  • the thickness of the sheet material 11 can be set to 0.2 to 0.5 mm, for example.
  • one end of the seat valve body 13 is fixed to the surface of the first partition wall 17a on the condenser 25 side, and the seat valve body 13 can be opened and closed with the opening / closing auxiliary plate 12 side as a fulcrum. Yes.
  • the seat valve 10a is opened when the first adsorber 21a is in the desorption process, and is closed when the first adsorber 21a is in the adsorption process.
  • the structure of the seat valve 10a is the same as that of the seat valve 10b described above except that the direction of deformation according to the temperature of the opening / closing auxiliary plate 12 is opposite. This will be described below.
  • the first adsorber 21a when the first adsorber 21a is in the adsorption process, a low-temperature heat medium for cooling the adsorbent 23 is supplied to the pipe 15 in the adsorption process.
  • the sheet material 11 becomes flat so as to close the first flow hole 16a.
  • the internal pressure of the first adsorber 21 a is lower than that of the condenser 25. Therefore, the seat valve 10a receives a pressure difference so that the sheet material 11 closes the flow hole 16a.
  • the opening / closing auxiliary plate 12 of the seat valve 10a is deformed so as to assist the closing operation of the seat 11. In this way, the first adsorber 21a and the condenser 25 in the adsorption process are isolated by the seat valve 10a.
  • the first adsorber 21a when the first adsorber 21a is in the desorption process, a high-temperature heat medium for heating the adsorbent 23 is supplied to the pipe 15 of the seat valve 10a in the desorption process.
  • the plate material 12 is deformed so that the sheet material 11 opens the first flow hole 16a.
  • the internal pressure of the first adsorber 21 a is higher than that of the condenser 25. Therefore, the seat valve 10a receives a pressure difference so that the seat material 11 opens the flow hole 16a.
  • the opening / closing auxiliary plate 12 of the seat valve 10a is deformed so as to assist the opening operation of the seat 11.
  • the refrigerant 24 desorbed from the adsorbent 23 of the first adsorber 21a moves to the condenser 25 through the flow hole 16a.
  • the seat valve 10a having the above-described structure opens so as to allow the flow of the gas-phase refrigerant 24 from the first adsorber 21a to the condenser 25, but with respect to the flow from the condenser 25 to the first adsorber 21a. It is designed to close.
  • the opening / closing auxiliary plate 12 of the seat valve 10a is similar to the opening / closing auxiliary plate 12 of the seat valve 10b shown in FIGS. 2 and 3 in the operation of the above-described seat valve 10a by using a bimetal in which a plate 12a and a plate 12b are laminated. An example of the case of using this will be described below.
  • the plate 12a is disposed on the condenser 25 side, and the plate 12b is disposed on the first adsorber 21a.
  • the thermal expansion coefficient of the plate material 12b is larger than the thermal expansion coefficient of the plate material 12a. Therefore, in the opening / closing auxiliary plate member 12 to which the first adsorber 21a is removed in the desorption process, the thermal expansion amount of the plate member 12b is larger than the thermal expansion amount of the plate member 12a. It deform
  • the amount of thermal contraction of the plate 12b is larger than the amount of thermal contraction of the plate 12a. Is transformed from a curved state toward the condenser 25 side from the first adsorber 21a side into a flat state.
  • the opening / closing auxiliary plate 12 may be deformed so as to be curved from the condenser 25 side toward the first adsorber 21a side through a flat state. In this way, the opening / closing auxiliary plate 12 to which the cold heat is transmitted is deformed so that the sheet material 11 closes the first flow hole 16a.
  • the magnitude relationship of the thermal expansion coefficient between the plate material 12a and the plate material 12b of the opening / closing auxiliary plate 12 in the seat valve 10a is opposite to that of the opening / closing auxiliary plate 12 of the seat valve 10b.
  • the heat supplied to the first heat medium pipe 22a of the first adsorber 21a is reversed by reversing the direction of deformation depending on the temperature of the opening / closing auxiliary plate 12 of each of the seat valve 10a and the seat valve 10b.
  • a part of the medium can be used together. This eliminates the need to supply a part of the heat medium supplied to the second heat medium pipe 22b of the second adsorber 21b to the seat valve 10a or the seat valve 10b.
  • the length can be shortened.
  • the structure and function of the seat valve 10c disposed in the third flow hole 16c are the same as those of the seat valve 10a described above.
  • the structure and function of the seat valve 10d disposed in the fourth flow hole 16d are the same as those of the seat valve 10b described above.
  • the adsorption heat pump 20 uses the first adsorber 21a and the second adsorber 21b to continuously extract cold heat by a cycle process in which an adsorption process and a desorption process are alternately switched.
  • the supply of the refrigerant 24 evaporated from the evaporator 26 is received and the adsorption process is performed by the first adsorber 21a, and at the same time, the desorption process is performed by the second adsorber 21b.
  • the desorbed refrigerant 24 is supplied to the condenser 25 to be condensed.
  • the processes in the first adsorber 21a and the second adsorber 21b are switched, the desorption process is performed in the first adsorber 21a, and the adsorption process is performed in the second adsorber 21b.
  • the refrigerant 24 adsorbed on the adsorbent 23 in the previous cycle is desorbed and supplied to the condenser 25, and in the second adsorber 21b, the adsorbent 23 desorbed in the previous cycle is applied.
  • the refrigerant 24 from the evaporator 26 is adsorbed.
  • a low temperature heat medium and a high temperature heat medium are alternately supplied to the first adsorber 21a in accordance with the adsorption process and the desorption process.
  • the second adsorber 21b is alternately supplied with a high-temperature heat medium and a low-temperature heat medium in accordance with the desorption process and the adsorption process.
  • the heat of vaporization accompanying the change of the refrigerant 24 from the liquid phase to the gas phase continues to be absorbed from the heat medium flowing through the fourth heat medium pipe 26a.
  • Cold heat is taken out of the adsorption heat pump 20 using the heat medium cooled in this way.
  • the seat valves 10a, 10b, 10c, and 10d are driven only by the pressure difference and the supply of the heat medium to the pipe 15, so that the seat valves are controlled and the seat valves are driven. No external energy is required.
  • the switching between the adsorption process and the desorption process for each adsorber is controlled by switching the low-temperature or high-temperature heat medium supplied to each heat medium pipe.
  • switching is controlled based on the time required for the adsorption process.
  • the timing of switching the heat medium it is examined in advance how long the adsorption process is completed and the cooling capacity of the evaporator is stopped when a low-temperature heat medium of a certain temperature is flowed. Then, the switching of the heat medium is controlled based on the examined time.
  • the seat valve body reliably opens and closes the flow hole, assisted by the action of the opening / closing auxiliary plate material. Further, the responsiveness of the opening / closing operation of the seat valve body is improved by the assistance of the opening / closing auxiliary plate member. Therefore, since the seat valve opens and closes quickly with the generated pressure difference by eliminating the failure or delay of the opening and closing of the seat valve, it is possible to circulate through the gas-phase refrigerant circulation holes without delaying the generated pressure difference. The heat exchange efficiency of the adsorption heat pump is increased.
  • the opening / closing operation of the seat valve is assisted by the function of the opening / closing auxiliary plate member, even when the seat valve body opens vertically downward, the seat valve body can be reliably closed vertically upward. Therefore, since the degree of freedom of the position or direction in which the seat valve is arranged increases, the size of the adsorption heat pump can be further reduced. In addition, it is particularly preferable from the viewpoint of thermal efficiency to use the above-described efficient seat valve for a small adsorption heat pump.
  • the adsorption heat pump of this embodiment described above can be widely installed in medium and small-sized devices that generate low-temperature waste heat such as vehicles such as automobiles or information processing devices such as computers. In this way, energy saving or reduction of environmental load by using waste heat can be realized.
  • FIG. 5 and 6 show an example in which the seat valve of the present embodiment is disposed in the second flow hole of the adsorption heat pump shown in FIG.
  • FIG. 5 (A) is an end view showing a closed state of another embodiment of the seat valve disclosed in the present specification, and FIG. 5 (B) shows that the sheet material separated from the seat valve is flattened.
  • FIG. FIG. 6 is an end view showing a state in which the seat valve shown in FIG.
  • the seat valve body 13 includes two opening / closing auxiliary plate materials 12a and 12b.
  • the sheet material 11 is disposed so as to cover the second flow hole 16b.
  • One end of the sheet material 11 is joined to one opening / closing auxiliary plate member 12a, and the other end of the sheet material 11 is joined to the other opening / closing auxiliary plate member 12b.
  • one end portion of the sheet material 11 is laminated and joined to the surface on the second partition wall 17b side of the one opening / closing auxiliary plate material 12a.
  • the other end portion of the sheet material 11 is laminated and joined to the surface of the other opening / closing auxiliary plate material 12b on the second partition wall 17b side.
  • One open / close auxiliary plate member 12a has a portion including one end portion joined to the sheet material 11, and a portion including the other end portion is fixed around the second circulation hole 16b via a fixing member 14a.
  • the Specifically, one opening / closing auxiliary plate 12a is fixed to the surface of the second partition wall 17b on the first adsorber 21a side using the fixing member 14a.
  • the other opening / closing auxiliary plate member 12b is joined to the sheet material 11 at a portion including one end portion, and the portion including the other end portion is surrounded by the fixing member 14b around the second flow hole 16b. Fixed to. Specifically, the other opening / closing auxiliary plate 12b is fixed to the surface of the second partition wall 17b on the first adsorber 21a side using the fixing member 14b.
  • a part of the heat medium supplied to the first heat medium pipe 22a is supplied to the pipes 15a and 15b arranged in the fixing members 14a and 14b.
  • One open / close auxiliary plate member 12a joined to the fixing member 14a is fixed to a portion of the second partition wall 17b around the second flow hole 16b in a state of being separated from the second partition wall 17b. A portion on one end side of the sheet material 11 is also separated from the second partition wall 17b.
  • the other opening / closing auxiliary plate 12b joined to the fixing member 14b is fixed to a portion of the second partition wall 17b around the second flow hole 16b while being separated from the second partition wall 17b.
  • the portion on the other end side of the sheet material 11 is also separated from the second partition wall 17b.
  • the seat valve body 13 has one of the sheet materials 11 in a state in which the sheet material 11 is flattened more than the distance L between the one opening / closing auxiliary plate material 12a and the other opening / closing auxiliary plate material 12b.
  • the length M of the portion of the sheet material 11 located between the opening / closing auxiliary plate 12a and the other opening / closing auxiliary plate 12b is longer.
  • the seat valve body 13 is moved to the first adsorption as a whole by the pressure difference between the first adsorber 21a and the evaporator 16, as shown in FIG. It has a shape bent toward the evaporator 16 side from the vessel 21a side.
  • the plurality of second circulation holes 16b are covered with the seat valve body 13, and the gas-phase refrigerant 24 cannot flow.
  • one of the opening / closing auxiliary plate members 12a is deformed so as to be curved from the first adsorber 21a side toward the evaporator 16 side.
  • the other opening / closing auxiliary plate 12b is also deformed to be concavely curved from the first adsorber 21a side toward the evaporator 16 side.
  • the deformation of the one and the other auxiliary opening / closing plate members 12a and 12b is performed in such a manner that a high-temperature heat medium is supplied to the pipe 15 in the desorption process of the first adsorber 21a, and the heat is transferred via the fixing members 14a and 14b. This is caused by being transmitted to one and the other opening / closing auxiliary plate members 12a and 12b.
  • the portion of the sheet material 11 that is joined to the opening / closing auxiliary plate member 12 is the surface of the second partition wall 17b on the first adsorber 21a side.
  • the seat valve body 13 is moved from the evaporator 16 side as a whole by the pressure difference between the first adsorber 21a and the evaporator 16, as shown in FIG. It has a shape bent toward the adsorber 21a side. A plurality of second flow holes 16b covered by the seat valve body 13 are exposed in the space on the first adsorber 21a side, and the gas phase refrigerant 24 can flow.
  • the one opening / closing auxiliary plate 12a is deformed so as to be curved in a convex shape from the evaporator 16 side toward the first adsorber 21a side.
  • the other opening / closing auxiliary plate 12b is also deformed so as to curve from the evaporator 16 side toward the first adsorber 21a side.
  • Such deformation of the one and the other opening / closing auxiliary plate members 12a and 12b is caused by supplying a low-temperature heat medium to the pipe 15 in the adsorption process of the first adsorber 21a, so that the cold heat is passed through the fixing members 14a and 14b. This is caused by being transmitted to one and the other opening / closing auxiliary plate members 12a and 12b.
  • the portion of the sheet material 11 that is joined to the opening / closing auxiliary plate member 12 is the surface of the second partition wall 17b on the first adsorber 21a side.
  • the opening operation of the seat valve 10b is assisted from the distance.
  • the distance L and the length M described above are preferably set to dimensions that allow the second flow hole 16b to be closed without causing wrinkles or the like in the sheet material 11 when the seat valve 10b is closed.
  • the seat material 11 has elasticity in order to ensure the opening / closing operation of the seat valve 10b and to improve the response of the operation. If the sheet material 11 has elasticity, the sheet material 11 is deformed by utilizing the internal stress of the sheet material 11 in addition to the pressure difference, so that the closed state or the opened state of the seat valve body 13 is stabilized. Further, if the sheet material 11 has elasticity, the sheet material 11 is deformed by utilizing the internal stress of the sheet material 11 in addition to the pressure difference, so that the time required for opening and closing the seat valve 10b is shortened.
  • the elastic modulus of the seat material 11 can be set so that the seat valve 10b opens and closes in consideration of the pressure difference and the deformation amount of the opening / closing auxiliary plate materials 12a and 12b. For example, when the seat valve 10b receives a pressure difference, the deformation direction of the seat valve body 13 is reversed when the deformation amount of the one and the other opening / closing auxiliary plate members 12a and 12b exceeds a predetermined range. can do.
  • the above-described seat valve of the present embodiment has been described as an example in which the seat valve is disposed in the second flow hole of the adsorption heat pump shown in FIG.
  • the seat valve of this embodiment can be similarly disposed in the third flow hole of the adsorption heat pump shown in FIG.
  • the seat valve of this embodiment can also be arrange
  • the opening / closing operation can be performed regardless of the opening / closing direction of the seat valve body 13 with respect to the vertical direction. Hence done.
  • FIG. 7 is a diagram showing a second embodiment of the adsorption heat pump disclosed in this specification.
  • FIG. 8 is a diagram showing a desorption process of the adsorption heat pump shown in FIG.
  • the adsorption heat pump 20 of this embodiment includes only one adsorber 21c. Specifically, the adsorption heat pump 20 includes only the second adsorber and does not include the first adsorber as compared to the first embodiment described above.
  • the other structure of the adsorption heat pump 20 of this embodiment is the same as that of 1st Embodiment mentioned above.
  • the adsorption process is performed by the adsorber 21c upon receiving the supply of the evaporated refrigerant 24 from the evaporator 26.
  • the refrigerant 24 desorbed by the desorption process in the adsorber 21c is supplied to the condenser 25 to be condensed.
  • cold heat is taken out from the adsorption heat pump 20 in the adsorption step.
  • FIG. 9 is a diagram illustrating an embodiment of an information processing system disclosed in this specification.
  • FIG. 10 is a diagram illustrating a state where two four-way valves of the information processing system illustrated in FIG. 9 are switched.
  • FIG. 11 is a diagram illustrating the information processing unit and the cooling device of the information processing system illustrated in FIGS. 9 and 10.
  • the information processing system 30 includes an information processing unit 31 that generates heat during operation and a cooling device 33 to which a first heat medium is supplied.
  • the information processing system 30 includes the adsorption heat pump 20 shown in FIG.
  • the first heat medium circulates between the evaporator 26 and the cooling device 33.
  • the first heat medium is supplied to the fourth heat medium pipe 26a of the evaporator 26 and cooled, and then returns to the cooling device 33 to extract the cold temperature.
  • the cooling device 33 may cool the information processing unit 31 by taking out the cold heat of the first heat medium using a heat exchanger and generating cold air, for example.
  • the cooling device 33 may also be a device that cools the room in which the information processing unit 31 is disposed.
  • the information processing unit 31 includes a calculation unit such as a CPU or a storage unit such as a hard disk drive, and generates heat during operation.
  • the information processing unit 31 can be, for example, a server.
  • the information processing unit 31 heats the second heat medium using heat generated during operation, and supplies the high-temperature second heat medium to the adsorption heat pump 30.
  • the high-temperature second heat medium is supplied at a temperature of 50 to 70 ° C., for example.
  • the information processing unit 31 that is a server may include a CPU 31 a, a cold plate 31 b that is in thermal contact with the CPU 31 a, and a housing 31 c.
  • the CPU 31a is cooled by transferring the generated heat to the cold plate 31b.
  • the cold plate 31 b heats the second heat medium using the transferred heat, and supplies the heated second heat medium to the adsorption heat pump 30.
  • the information processing section 31 that is a server may include a fan 31d that discharges the air having heat in the casing 31c to the outside of the casing.
  • a dry coil serving as a cooling device 33 that draws in hot air discharged from the fan 31d and discharges cooled cold air can be disposed outside the housing 31c.
  • the cooling device 33 takes out cold heat from the first heat medium supplied from the evaporator 26, cools the hot air discharged from the fan 31 d, and discharges the cold air into the room where the information processing unit 31 is disposed.
  • the first heat medium heated by the dry coil 33 is returned to the evaporator 26.
  • the adsorption heat pump 20 is supplied with a low-temperature third heat medium from an external cooling water supply source 32.
  • the cooling water supply source 32 may be, for example, a cooling tower of a utility device of a building that supplies cooling water.
  • the low temperature third heat medium is supplied at a temperature of 20 to 30 ° C., for example.
  • the information processing system 30 includes a first four-way valve 34 and a second four-way valve 35 that switch the flow path of the high-temperature second heat medium and the low-temperature third heat medium.
  • the first four-way valve 34 and the second four-way valve 35 can be controlled by the information processing unit 31.
  • the first four-way valve 34 and the second four-way valve 35 may be controlled by a control unit different from the information processing unit 31.
  • Switching between the adsorption process and the desorption process for the first adsorber 21a and the second adsorber 21b is performed by the first four-way valve 34 and the second four-way valve 35 to change the flow path between the high-temperature second heat medium and the low-temperature third heat medium. This is done by switching.
  • each of the first heat medium, the second heat medium, and the third heat medium is circulated in the pipe by a pump (not shown).
  • the first adsorber 21a is in the adsorption process
  • the second adsorber 21b is in the desorption process.
  • the high-temperature second heat medium supplied from the information processing section 31 is supplied from the port 35a of the second four-way valve 35 to the second heat medium pipe 22b of the second adsorber 21b through the port 35d.
  • the adsorbent 23 in the second adsorber 21b is heated to perform the desorption process.
  • the second heat medium after the heat is taken out by the second adsorber 21b returns from the port 34d of the first four-way valve 34 to the information processing section 31 through the port 34a.
  • the second heat medium that has returned to the information processing section 31 is heated and then circulates again between the information processing section 31 and the second adsorber 21b.
  • the low-temperature third heat medium supplied from the cooling water supply source 32 branches at the branch portion 35 toward the condenser 25 and the first adsorber 21a.
  • the low-temperature third heat medium branched toward the condenser 25 is supplied to the third heat medium pipe 25a.
  • the gas-phase refrigerant 24 supplied from the second adsorber 21 b through the seat valve 10 c is cooled by the low-temperature third heat medium and changes to the liquid phase.
  • the refrigerant 24 changed to the liquid phase is supplied to the evaporator 26.
  • the third heat medium after the cold heat is taken out by the condenser 25 returns to the cooling water supply source 32.
  • the low temperature third heat medium branched toward the first adsorber 21a is supplied from the port 35c of the second four-way valve 35 to the first heat medium pipe 22a of the first adsorber 21a through the port 35b. .
  • the adsorption agent 23 in the 1st adsorption device 21a is cooled, and an adsorption process is performed.
  • the third heat medium after the cold heat is taken out by the first adsorber 21a returns from the port 34b of the first four-way valve 34 to the cooling water supply source 32 through the port 34c.
  • the third heat medium returned to the cooling water supply source 32 is cooled outside and then supplied to the adsorption heat pump 20 again.
  • the evaporated refrigerant 24 is supplied to the first adsorber 21a through the seat valve 10b due to an internal pressure difference.
  • the heat of vaporization accompanying the change of the refrigerant 24 from the liquid phase to the gas phase is absorbed from the first heat medium flowing through the fourth heat medium pipe 26a, and the first heat medium is cooled.
  • the cooled first heat medium is supplied to the cooling device 33, and cold heat is taken out from the adsorption heat pump 20.
  • the low temperature first heat medium for example, a temperature of 15 to 20 ° C. is obtained.
  • the first adsorber 21a is in the desorption process
  • the second adsorber 21b is in the adsorption process.
  • the high-temperature second heat medium supplied from the information processing section 31 is supplied from the port 35a of the second four-way valve 35 to the first heat medium pipe 22a of the first adsorber 21a through the port 35b.
  • the adsorbent 23 in the first adsorber 21a is heated to perform the desorption process.
  • the second heat medium after the heat is taken out by the first adsorber 21a returns from the port 34b of the first four-way valve 34 to the information processing section 31 through the port 34a.
  • the second heat medium that has returned to the information processing section 31 is heated and then circulates again between the information processing section 31 and the first adsorber 21a.
  • the low-temperature third heat medium supplied from the cooling water supply source 32 branches in the branch portion 35 toward the condenser 25 and the second adsorber 21b.
  • the description of the low-temperature third heat medium branched toward the condenser 25 is the same as in the case of FIG.
  • the low-temperature third heat medium branched toward the second adsorber 21b is supplied from the port 35c of the second four-way valve 35 to the second heat medium pipe 22b of the second adsorber 21b through the port 35d.
  • the adsorbent 23 in the second adsorber 21b is cooled and an adsorption process is performed.
  • the third heat medium after the cold heat is taken out by the second adsorber 21b returns from the port 34d of the first four-way valve 34 to the cooling water supply source 32 through the port 34c.
  • the third heat medium returned to the cooling water supply source 32 is cooled outside and then supplied to the adsorption heat pump 20 again.
  • the first adsorber 21a and the second adsorber 21b desorb the refrigerant 24 from the adsorbent 23 using the heat generated by the information processing unit 31. Further, in the adsorption process, the information processing system 30 uses the heat of vaporization when the evaporator 26 evaporates the refrigerant 24 to cool the first heat medium, and the cooled first heat medium is transferred to the cooling device 33. Supply.
  • the cooling device 33 it is possible to operate the cooling device 33 by continuously taking out cold heat from the adsorption heat pump 20 using the heat generated by the information processing section 31.
  • the information processing system 30 includes the adsorption heat pump 20 with good heat exchange efficiency, it can be cooled with high heat exchange efficiency.
  • the adsorption heat pump and information processing system using the seat valve of the above-described embodiment, the operation method of the adsorption heat pump, and the operation method of the information processing system can be appropriately changed without departing from the gist of the present invention. is there.
  • the configuration requirements of one embodiment can be applied to other embodiments as appropriate.
  • the adsorption heat pump may not have a heat conduction part.
  • the opening / closing auxiliary plate in the desorption process, can be deformed by the heat of the refrigerant desorbed from the heated adsorbent.
  • the opening / closing auxiliary plate in the adsorption step, can be deformed by the cold heat of the evaporated refrigerant.
  • the heat conducting unit may have a heating wire for heating the opening / closing auxiliary plate material by resistance heat and a Peltier element for cooling the opening / closing auxiliary plate material, instead of the piping through which the heat medium flows.
  • the heat conducting unit may have a heat pipe that transmits the heat or cold of the heat medium to the opening / closing auxiliary plate instead of the pipe through which the heat medium flows.
  • the hot or cold heat of the heat medium circulated in the pipe is transmitted to the opening / closing auxiliary plate through the heat pipe.
  • the first adsorber may have a heating wire for heating the adsorbent by resistance heat and a Peltier element for cooling the adsorbent instead of the first heat medium pipe.
  • the first adsorber may have a heat pipe that transmits the heat or cold of the heat medium to the adsorbent instead of the first heat medium pipe. In this case, the hot or cold heat of the heat medium circulated through the first heat medium pipe is transmitted to the adsorbent via the heat pipe.
  • the seat valve body is disposed in each of the first flow hole and the second flow hole.
  • the seat valve body is disposed in at least one of the first flow hole and the second flow hole. It only has to be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

 吸着式ヒートポンプは、吸着剤を有し吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換え可能な吸着器と、吸着器から脱着した冷媒を凝縮させる凝縮器と、凝縮器から供給された冷媒を蒸発させ、蒸発した冷媒を吸着器に供給する蒸発器と、吸着器から凝縮器へ冷媒を流通させる第1流通孔と、蒸発器から吸着器へ冷媒を流通させる第2流通孔と、第1流通孔又は第2流通孔の内の少なくとも一方に配置され、シート材及びシート材の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材を有し、第1流通孔又は第2流通孔の内の少なくとも一方を開閉するシート弁体と、を備える。

Description

シート弁を用いた吸着式ヒートポンプ及び情報処理システム
 本発明は、シート弁を用いた吸着式ヒートポンプ及び情報処理システムに関する。
 地球温暖化の防止等を目的として、近年、環境負荷を低減する技術の重要性が増している。このような技術の中で、従来は利用価値がなく捨てられていた廃熱を回収して、再利用する技術が注目を集めている。その一つが、吸着式ヒートポンプである。
 吸着式ヒートポンプは、水又はメタノール等の冷媒が、シリカゲル又は活性炭等の吸着剤に対して吸脱着する際に生じる潜熱の移動を利用することにより、例えば100℃以下の温度の熱エネルギーを冷熱に変換する技術である。
 吸着式ヒートポンプは、吸着剤を有し、吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換可能な吸着器を有する。また、吸着式ヒートポンプは、吸着器から脱着した冷媒を凝縮させる凝縮器と、凝縮器から供給された冷媒を蒸発させ、蒸発した冷媒を吸着器に供給する蒸発器とを備える。
 吸着工程では、蒸発器内で液相の冷媒が蒸発し、気相に変化した冷媒が吸着器内に移動して吸着剤に吸着される。この際、冷媒は、蒸発器内で気化熱を奪うので、蒸発器から冷熱を取り出すことができる。
 脱着工程では、冷媒を吸着した吸着剤を加熱して冷媒を吸着剤から脱着させ、脱着した冷媒が凝縮器内で冷却されて凝縮する。液相に変化した冷媒は、蒸発器に供給される。この脱着工程で使用される温熱は、吸着剤の種類によっては例えば60℃程度の低い温度でも可能であるため、温熱源として種々の低温の廃熱による熱エネルギーが利用され得る。
 これらの吸着工程及び脱着工程を繰り返すことにより、温熱から冷熱を生成することが可能である。
 上述した吸着式ヒートポンプでは、吸着器と蒸発器との間には、気相の冷媒を蒸発器から吸着器へ流通させる流通路に弁が配置される。また、吸着器と凝縮器との間にも、気相の冷媒を吸着器から凝縮器へ流通させる流通路に弁が配置される。これらの弁は、冷媒の逆流を防止する。
 このような弁として、シート状の弁体を有するシート弁が用いられている。シート状の弁体は、吸着器と蒸発器との間の圧力差、又は吸着器と凝縮器との間の圧力差により開閉されるので、構造が簡単であり、また開閉のための追加の駆動力を必要としない。
特開平9-152221号公報 特開平8-135524号公報
 しかし、シート状の弁体は、面状の弁体を用いて流通孔を閉じるので、例えば、結露して液相に変化した冷媒が、弁体と流通路の周囲の部分との間に付着すると、表面張力によって、弁体が開き難くなる場合がある。
 また、シート状の弁体の開く向きが、鉛直下方向である場合には、自重により閉じ難くなる場合がある。
 このように、従来のシート状の弁体を有するシート弁は、開閉の動作又は応答性に問題があった。
 そこで、本明細書では、上述した問題を解決し得るシート弁を用いた吸着式ヒートポンプを提供することを目的とする。
 また、本明細書では、上述した問題を解決し得るシート弁を有する吸着式ヒートポンプを備えた情報処理システム提供することを目的とする。
 また、本明細書では、上述した問題を解決し得るシート弁を用いた吸着式ヒートポンプの動作方法を提供することを目的とする。
 更に、本明細書では、上述した問題を解決し得るシート弁を有する吸着式ヒートポンプを備えた情報処理システムの動作方法を提供することを目的とする。
 本明細書に開示する吸着式ヒートポンプの一形態によれば、吸着剤を有し、吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換え可能な吸着器と、上記吸着器から脱着した冷媒を凝縮させる凝縮器と、上記凝縮器から供給された冷媒を蒸発させ、蒸発した冷媒を上記吸着器に供給する蒸発器と、上記吸着器から上記凝縮器へ冷媒を流通させる第1流通孔と、上記蒸発器から上記吸着器へ冷媒を流通させる第2流通孔と、上記第1流通孔又は上記第2流通孔の内の少なくとも一方に配置され、シート材及び上記シート材の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材を有し、上記第1流通孔又は上記第2流通孔の内の少なくとも一方を開閉するシート弁体と、を備える。
 また、本明細書に開示する情報処理システムの一形態によれば、動作時に発熱する情報処理部と、熱媒体が供給される冷却部と、吸着剤を有し、吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換え可能な吸着器と、上記吸着器から脱着した冷媒を凝縮させる凝縮器と、上記凝縮器から供給された冷媒を蒸発させ、蒸発した冷媒を上記吸着器に供給する蒸発器と、上記吸着器から上記凝縮器へ冷媒を流通させる第1流通孔と、上記蒸発器から上記吸着器へ冷媒を流通させる第1流通孔と、上記第1流通孔又は上記第2流通孔の内の少なくとも一方に配置され、シート材及び上記シート材の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材を有し、上記第1流通孔又は上記第2流通孔の内の少なくとも一方を開閉するシート弁体と、を有する吸着式ヒートポンプと、を備え、上記脱着工程では、上記吸着器が、上記情報処理部の発熱を用いて吸着剤から冷媒を脱着させ、上記吸着工程では、上記蒸発器が、冷媒を蒸発させる際の気化熱を用いて上記熱媒体を冷却し、冷却された上記熱媒体を上記冷却部に供給する。
 また、本明細書に開示する吸着式ヒートポンプの動作方法の一形態によれば、吸着剤を有し、吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換え可能な吸着器と、上記吸着器から脱着した冷媒を凝縮させる凝縮器と、上記凝縮器から供給された冷媒を蒸発させ、蒸発した冷媒を上記吸着器に供給する蒸発器と、上記吸着器から上記凝縮器へ冷媒を流通させる第1流通孔と、上記蒸発器から上記吸着器へ冷媒を流通させる第2流通孔と、上記第1流通孔又は上記第2流通孔の内の少なくとも一方に配置され、シート材及び上記シート材の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材を有し、上記第1流通孔又は上記第2流通孔の内の少なくとも一方を開閉するシート弁体と、を備える吸着式ヒートポンプの動作方法であって、上記脱着工程では、上記吸着器が、吸着剤から脱着した冷媒を上記第1流通孔を通して、上記凝縮器に供給し、上記吸着工程では、上記蒸発器が、蒸発させた冷媒を上記第2流通孔を通して上記吸着器に供給する。
 更に、本明細書に開示する情報処理システムの動作方法の一形態によれば、動作時に発熱する情報処理部と、熱媒体が供給される冷却部と、吸着剤を有し、吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換え可能な吸着器と、上記吸着器から脱着した冷媒を凝縮させる凝縮器と、上記凝縮器から供給された冷媒を蒸発させ、蒸発した冷媒を上記吸着器に供給する蒸発器と、上記吸着器から上記凝縮器へ冷媒を流通させる第1流通孔と、上記蒸発器から上記吸着器へ冷媒を流通させる第1流通孔と、上記第1流通孔又は上記第2流通孔の内の少なくとも一方に配置され、シート材及び上記シート材の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材を有し、上記第1流通孔又は上記第2流通孔の内の少なくとも一方を開閉するシート弁体と、を有する吸着式ヒートポンプの動作方法であって、上記脱着工程では、上記吸着器が、上記情報処理部の発熱を用いて吸着剤から冷媒を脱着させると共に、吸着剤から脱着した冷媒を上記第1流通孔を通して、上記凝縮器に供給し、上記吸着工程では、上記蒸発器が、蒸発させた冷媒を上記第2流通孔を通して上記吸着器に供給すると共に、冷媒を蒸発させる際の気化熱を用いて上記熱媒体を冷却し、冷却された上記熱媒体を上記冷却部に供給する。
 上述した本明細書に開示する吸着式ヒートポンプの一形態によれば、シート弁の開閉の動作及び応答性が向上するので、熱交換効率が高まる。
 また、上述した本明細書に開示する情報処理システムの一形態によれば、高い熱交換効率で冷却できる。
 上述した本明細書に開示する吸着式ヒートポンプの動作方法の一形態によれば、シート弁の開閉の動作及び応答性が向上するので、熱交換効率が高まる。
 更に、上述した本明細書に開示する情報処理システムの動作方法の一形態によれば、高い熱交換効率で冷却できる。
 本発明の目的及び効果は、特に請求項において指摘される構成要素及び組み合わせを用いることによって認識され且つ得られるだろう。
 前述の一般的な説明及び後述の詳細な説明の両方は、例示的及び説明的なものであり、特許請求の範囲に記載されている本発明を制限するものではない。
本明細書に開示する吸着式ヒートポンプの第1実施形態を示す図である。 図1に示す吸着式ヒートポンプの閉じた状態のシート弁を示す端面図である。 図1に示す吸着式ヒートポンプの開いた状態のシート弁を示す端面図である。 図1に示す吸着式ヒートポンプの開いた状態のシート弁を示す斜視図である。 (A)は、本明細書に開示するシート弁の他の実施形態の閉じた状態を示す端面図であり、(B)は、シート弁から分離されたシート材が平らになった状態を示す図である。 図5(A)に示すシート弁の開いた状態を示す端面図である。 本明細書に開示する吸着式ヒートポンプの第2実施形態を示す図である。 図7に示す吸着式ヒートポンプの脱着工程を示す図である。 本明細書に開示する情報処理システムの一実施形態を示す図である。 図9に示す情報処理システムの2つの四方弁が切り替えられた状態を示す図である。 図9及び図10に情報処理システムの情報処理部及び冷却装置を説明する図である。
 以下、本明細書で開示する吸着式ヒートポンプの好ましい第1実施形態を、図面を参照して説明する。但し、本発明の技術範囲はそれらの実施形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶものである。
 図1は、本明細書に開示する吸着式ヒートポンプの第1実施形態を示す図である。
 本実施形態の吸着式ヒートポンプ20は、吸着剤23を有する第1吸着器21a及び第2吸着器21bを備える。第1吸着器21a及び第2吸着器21bは、吸着剤23に冷媒24を吸着させる吸着工程と吸着剤23から冷媒24を脱着させる脱着工程とに切換え可能である。また、吸着式ヒートポンプ20は、第1吸着器21a又は第2吸着器21bから脱着した冷媒24を凝縮させる凝縮器25を備える。更に、吸着式ヒートポンプ20は、凝縮器25から供給された冷媒24を蒸発させ、蒸発した冷媒24を第1吸着器21a又は第2吸着器21bに供給する蒸発器26を備える。
 吸着式ヒートポンプ20は、ハウジング20aが区画されて、第1吸着器21aと、第2吸着器21bと、凝縮器25と、蒸発器26とに区分された空間を有する。ハウジング20a内は、図示しない真空ポンプ等により減圧されており、所定量の冷媒24が封入されている。冷媒24としては、例えば、水又はアルコール等を用いることができる。
 次に、第1吸着器21a及び第2吸着器21bについて、以下に更に説明する。第2吸着器21bは、第1吸着器21aと同様の構造を有しているので、第1吸着器21aに対する説明は、第2吸着器21bに対しても適宜適用される。
 第1吸着器21aの内部には、吸着剤23が配置される。吸着剤23としては、例えば、シリカゲル、ゼオライト又は活性炭等を用いることができる。また、第1吸着器21aは、吸着剤23を加熱又は冷却するための第1熱媒体配管22aを有する。第1熱媒体配管22aは、吸着剤23に対して温熱又は冷熱を十分に供給できるように、流路が蛇行するように配置され得る。第1熱媒体配管22aには、外部から高温又は低温の熱媒体が供給される。
 第1吸着器21aが吸着工程にある時には、外部から低温の熱媒体が第1熱媒体配管22aに供給され、低温の熱媒体が第1熱媒体配管22aを流れることにより、吸着剤23が冷却される。冷却された吸着剤23は、気相の冷媒24に対して高い吸着能力を有する。
 第1吸着器21aが脱着工程にある時には、外部から高温の熱媒体が第1熱媒体配管22aに供給され、高温の熱媒体が第1熱媒体配管22aを流れることにより、吸着剤23が加熱される。加熱された吸着剤23は、吸着していた冷媒24を脱着させて気相の冷媒24を生成する。また、加熱された吸着剤23は、吸着していた冷媒24を脱着させることにより、吸着能力が再生される。
 このように、第1吸着器21aは、吸着工程と脱着工程とに切換えられて使用される。第2吸着器21bは、第1吸着器21aが吸着工程の時には脱着工程となり、第1吸着器21aが脱着工程の時には吸着工程となる。第2吸着器21bは、外部から高温又は低温の熱媒体が供給される第2熱媒体配管22bを有する。
 以上が、第1吸着器21a及び第2吸着器21bの説明である。
 凝縮器25には、気相の冷媒24が、第1吸着器21a又は第2吸着器21bから供給される。凝縮器25は、気相の冷媒24を冷却するための第3熱媒体配管25aを有する。第3熱媒体配管25aは、気相の冷媒24に対して冷熱を十分に供給できるように、流路が蛇行するように配置され得る。第3熱媒体配管25aには、外部から低温の熱媒体が供給される。
 凝縮器25において冷却された気相の冷媒24は、液相に変化する。液相の冷媒24は、凝縮器25の下方に落下した後、導通管25bを通って蒸発器26へ移動する。蒸発器26は、凝縮器25に対して鉛直下方に位置しており、液相の冷媒24は、重力によって、導通管25bを通って蒸発器26へ移動する。
 蒸発器26には、凝縮器25から液相の冷媒24が供給される。蒸発器26は、液相の冷媒24が蒸発する際の気化熱を供給するための第4熱媒体配管26aを有する。第4熱媒体配管26aは、液相の冷媒24に対して十分に気化熱を供給できるように、流路が蛇行するように配置され得る。第4熱媒体配管26aには、外部から熱媒体が供給されて、蒸発器26において冷却された熱媒体が外部へ送られる。蒸発器26において気相に変化した冷媒26は、第1吸着器21a又は第2吸着器21bへ供給される。
 第1吸着器21aと凝縮器25とは、第1隔壁17aによって仕切られる。そして、第1隔壁17aには、第1吸着器21aから凝縮器25へ冷媒24を流通させる第1流通孔16aが配置される。第1流通孔16aは、第1吸着器21a側の空間と凝縮器25側の空間とを隔てる第1隔壁17aを貫通する孔として形成される。同様に、第1吸着器21aと蒸発器26とは、第2隔壁17bによって仕切られる。そして、第2隔壁17bには、蒸発器26から第1吸着器21aへ冷媒24を流通させる第2流通孔16bが配置される。第2流通孔16bは、第1吸着器21a側の空間と蒸発器26側の空間とを隔てる第2隔壁17bを貫通する孔として形成される。
 同様に、第2吸着器21bと凝縮器25とは、第3隔壁17cによって仕切られる。そして、第3隔壁17cには、第2吸着器21bから凝縮器25へ冷媒24を流通させる第3流通孔16cが配置される。同様に、第2吸着器21bと蒸発器26とは、第4隔壁17dによって仕切られる。そして、第4隔壁17dには、蒸発器26から第2吸着器21bへ冷媒24を流通させる第4流通孔16dが配置される。
 第1流通孔16aには、第1流通孔16aを開閉するシート弁10aが配置される。同様に、第2流通孔16bには、第2流通孔16bを開閉するシート弁10bが配置される。第3流通孔16cには、第3流通孔16cを開閉するシート弁10cが配置される。第4流通孔16dには、第4流通孔16dを開閉するシート弁10dが配置される。
 次に、シート弁10bの詳細な説明を、図2~図4を参照して以下に行う。
 図2は、図1に示す吸着式ヒートポンプ20の閉じた状態のシート弁10bを示す端面図である。図3は、図1に示す吸着式ヒートポンプ20の開いた状態のシート弁10bを示す端面図である。図4は、図1に示す吸着式ヒートポンプ20の開いた状態のシート弁10bを示す斜視図である。
 シート弁10bは、シート材11及びシート材11の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材12を有するシート弁体13を備える。シート弁体13は、第2流通孔16bを開閉する。
 シート材11は、例えば、図4に示すように、矩形の形状を有する。開閉補助板材13は、例えば、図4に示すように、縦長の矩形形状を有する。
 シート材11の一方の端部は、開閉補助板材12に接合される。本実施形態では、シート材11の一方の端部が、開閉補助板材12と積層されて接合されている。シート材11の他方の端部は自由端部となっており、シート弁10bは、シート弁体13の開閉補助板材12側を支点として開閉自在となっている。
 シート弁10bが閉じている状態では、図2に示すように、第2流通孔16bを覆うように、シート材11が第2隔壁17bの第1吸着器21a側の面と接している。
 また、シート弁10bは、開閉補助板材12に対して熱を伝導する熱伝導部を備える。具体的には、本実施形態では、上記熱伝導部は、熱媒体を流通させ、開閉補助板材12に対して熱を伝導可能な配管15を有する。また、上記熱伝導部は、開閉補助板材12を、シート弁体13が配置される第2流通孔16bの周囲に固定する固定部材14を有する。
 開閉補助板材12は、一方の端部を含む部分がシート材11に接合されており、他方の端部が固定部材14を介して、第2流通孔16bの周囲に固定される。開閉補助板材12は、固定部材14を用いて、第2隔壁17bの第1吸着器21a側の面に固定される。
 固定部材14の内部には配管15が配置されており、配管15と開閉補助板材12とは、固定部材14を介して熱的に接続される。
 固定部材14の形成材料としては、熱伝導率の高いものが好ましい。固定部材14の形成材料として、金属、例えば銅を用いることができる。
 配管15は、開閉補助板材12に対して近い位置に配置することが、配管15を流れる熱媒体の温熱又は冷熱を効率良く開閉補助板材12に伝達する上で好ましい。
 図1の鎖線に示すように、配管15には、第1吸着器21aの第1熱媒体配管22aに流れる熱媒体の一部が供給される。即ち、第1吸着器21aが吸着工程にある場合には、吸着工程において吸着剤23を冷却するための低温の熱媒体が配管15に供給され、第1吸着器21aが脱着工程にある場合には、脱着工程において吸着剤23を加熱するための高温の熱媒体が配管15に供給される。
 第1吸着器21aの吸着工程において、低温の熱媒体が配管15に供給された場合には、冷熱が、固定部材14を介して開閉補助板材12に伝達される。また、開閉補助板材12には、蒸発した冷媒の冷熱も伝達される。冷熱が伝達された開閉補助板材12は、図3に示すように、シート材11が第2流通孔16bを開くように変形する。具体的には、冷熱が伝達された開閉補助板材12は、蒸発器16側から第1吸着器21a側に向かって湾曲するように変形する。
 図3に示すように、開閉補助板材12が変形することにより、少なくともシート材11における開閉補助板材12と接合された部分を、第2隔壁17bから離間させて、シート弁10bの開く動作が補助される。
 このようにしてシート弁10bが開いた状態の斜視図が、図4に示されている。シート弁体13によって覆われていた複数の第2流通孔16bが第1吸着器21a側の空間に露出しており、気相の冷媒24が流通可能となっている。なお、図1には、簡単のため、第2流通孔16bを一つだけ示している。
 一方、第1吸着器21aの脱着工程において、高温の熱媒体が配管15に供給された場合には、温熱が、固定部材14を介して開閉補助板材12に伝達される。開閉補助板材12には、加熱された吸着剤から脱着した冷媒の温熱も伝達される。温熱が伝達された開閉補助板材12は、図2に示すように、シート材11が第2流通孔16bを閉じるように変形する。具体的には、温熱が伝達された開閉補助板材12は、平らな状態になるように変形する。
 図2に示すように、開閉補助板材12が平らな状態になることにより、少なくともシート材11における開閉補助板材12と接合された部分を、第2隔壁17bの第1吸着器21a側の面と密着させて、シート弁10bの閉じる動作が補助される。
 このようにしてシート弁10bの閉じた状態が、図2に示されている。複数の第2流通孔16bがシート材11によって覆われており、気相の冷媒24が流通不能となっている。
 次に、シート弁10bの開閉動作を確実にし、且つ応答性を高める観点から、開閉補助板材12の好ましい形成材料等について以下に説明する。
 開閉補助板材12は、熱膨張率が異なる複数の板材が積層されて形成されることが好ましい。具体的には、開閉補助板材12としては、バイメタル又はトリメタルを用いることができる。
 図3に示すシート弁10bの開閉補助板材12では、板材12aと板材12bとが積層されたバイメタルを用いた例が示されている。板材12aの熱膨張係数は、板材12bの熱膨張係数よりも大きい。従って、第1吸着器21aの吸着工程において、冷熱が伝達された開閉補助板材12では、板材12aの熱収縮量が、板材12bの熱収縮量よりも大きいので、開閉補助板材12は、蒸発器16側から第1吸着器21a側に向かって湾曲するように変形する。
 一方、第1吸着器21aの脱着工程において、温熱が伝達された開閉補助板材12では、板材12aの熱膨張量が、板材12bの熱膨張量よりも大きいので、開閉補助板材12は、蒸発器16側から第1吸着器21a側に向かって湾曲した状態から平らな状態に変形する。なお、開閉補助板材12は、平らな状態を通り超して第1吸着器21a側から蒸発器16側に向かって湾曲するように変形しても良い。
 開閉補助板材12は、配管15により供給される冷熱又は温熱による温度範囲において、温度と変位量との関係が直線関係にあることが好ましい。また、所定の温度差に対する変位量の大きいことが好ましい。
 開閉補助板材12として、平板形バイメタルを用いる場合には、湾曲係数は、10×10-6(℃-1)以上、特に、20×10-6(℃-1)以上であることが好ましい。平板形バイメタルの変位量は、D=K(T-T)l/tで与えられる。ここで、Kは湾曲係数であり、T及びTは、変位前及び変位後の温度であり、lは平板形バイメタルの長さであり、tは平板形バイメタルの厚さである。
 例えば、tが0.1mmであり、lが20mmであり、T-Tが25℃の場合に、湾曲係数Kが10×10-6(℃-1)以上であると、1mm以上の大きさの変位量Dが得られる。
 このような平板型バイメタルとして、例えば、JIS記号TM1又はTM2のものが挙げられる。以上が、開閉補助板材12の好ましい形成材料等に関する説明である。
 高温の熱媒体又は低温の熱媒体を配管15に流すタイミングは、第1吸着器21aの第1熱媒体配管22aに熱媒体を流すタイミングと同じにすることが、開閉補助板材12を速やかに変形させて、シート弁10bの開閉動作の応答性を高める観点から好ましい。また、高温の熱媒体又は低温の熱媒体を配管15に流すタイミングを、第1吸着器21aの第1熱媒体配管22aに熱媒体を流すタイミングよりも早くすることにより、シート弁10bの開閉動作の応答性を更に高めても良い。
 上述した構造を有するシート弁10bは、蒸発器26から第1吸着器21aへの気相の冷媒24の流れを許容するように開くが、第1吸着器21aから蒸発器26への流れは閉じて許容しない。このシート弁10bの動作について、以下に説明する。
 吸着工程では、第1吸着器21a内の冷却された吸着剤23が第1吸着器21a内の気相の冷媒24を吸着すると、第1吸着器21aの内圧が蒸発器26よりも低くなる。即ち、蒸発器26の内圧が、第1吸着器21aよりも高くなる。そして、シート弁10bは、第1吸着器21aに対する蒸発器26の内圧の上昇を受けて、第1吸着器21a側に向かって開く。この際、開閉補助板材12の働きにより、シート弁10bの開く動作が補助されるので、動作の応答性が向上する。このようにして、蒸発器26から第1吸着器21aへの気相の冷媒24の流れが許容される。
 一方、脱着工程では、第1吸着器21a内の加熱された吸着剤23が、吸着していた冷媒24を脱着させるので、第1吸着器21aの内圧が蒸発器26よりも高くなる。そして、シート弁10bは、蒸発器26に対する第1吸着器21aの内圧の上昇を受けて、蒸発器26側に向かって閉じる。この際、開閉補助板材12の働きにより、シート弁10bが閉じる動作が補助されるので、閉じる動作の応答性が向上する。また、シート弁10bのシート弁体13は、鉛直上方側の端部が第2隔壁17bに固定されているので、シート弁10bの閉じる動作は、自重によっても補助される。従って、第1吸着器21aから蒸発器26への気相の冷媒24の流れは許容されない。
 次に、シート弁10bの開閉動作を確実にし、且つ応答性を高める観点から、シート材11の好ましい形成材料等について以下に説明する。
 シート材11の形成材料としては、気相の冷媒24の透過を防止する材料であれば、特に制限無く用いることができる。シート材11の形成材料として、例えば、プラスチックフィルムシート又はシリコーンシートを用いることができる。プラスチックの材質として、例えば、PVA(ポリビニルアルコール)、PVC(ポリ塩化ビニル)、PET(ポリエチレンテレフタラート)等を用いることができる。
 シート材11の剛性率又は弾性率は、低くても良いし高くても良い。特に、開閉補助板材11が変形した際に、シート材11の全体か又はシート材11における開閉補助板材11との接合部分が開閉補助板材11の変形に追従して、第2隔壁17bの第1吸着器21a側の面から離間する程度の剛性率又は弾性率を有していることが好ましい。また、シート弁体13が鉛直下方向に開くように配置される場合には、高い剛性率を有するシート材11を用いることが、第2流通孔16bの開閉を確実にする上で好ましい。
 シート材11の厚さは、圧力差による応答性の良い開閉の動作を確保する観点から、薄いことが好ましい。シート材11の厚さは、例えば、0.2~0.5mmとすることができる。
 次に、第1流通孔16aに配置されるシート弁10aについて、以下に説明する。
 シート弁10aは、そのシート弁体13の一方の端部が第1隔壁17aにおける凝縮器25側の面に固定されて、シート弁体13が開閉補助板材12側を支点として開閉自在となっている。
 シート弁10aは、第1吸着器21aが脱着工程の時に開き、第1吸着器21aが吸着工程の時に閉じる。
 シート弁10aの構造は、開閉補助板材12の温度に応じて変形する向きが反対であることを除いては、上述したシート弁10bと同様である。このことについて、以下に説明する。
 図1の鎖線に示すように、シート弁10aの配管15に対しても、第1吸着器21aの第1熱媒体配管22aに供給される熱媒体の一部が供給される。
 即ち、第1吸着器21aが吸着工程の場合には、吸着工程において吸着剤23を冷却するための低温の熱媒体が配管15に供給されるが、冷熱が伝達された開閉補助板材12は、シート材11が第1流通孔16aを閉じるように平らになる。また、吸着工程では、第1吸着器21aの内圧は凝縮器25よりも低くなる。従って、シート弁10aは、シート材11が流通孔16aを閉じるように圧力差を受ける。シート弁10aの開閉補助板材12は、シート材11が閉じる動作を補助するように変形することになる。このようにして、吸着工程にある第1吸着器21aと凝縮器25とはシート弁10aによって隔離される。
 一方、第1吸着器21aが脱着工程の場合には、脱着工程において吸着剤23を加熱するための高温の熱媒体がシート弁10aの配管15に供給されるが、温熱が伝達された開閉補助板材12は、シート材11が第1流通孔16aを開くように変形する。また、脱着工程では、第1吸着器21aの内圧は凝縮器25よりも高くなる。従って、シート弁10aは、シート材11が流通孔16aを開くように圧力差を受ける。シート弁10aの開閉補助板材12は、シート材11が開く動作を補助するように変形することになる。このようにして、第1吸着器21aの吸着剤23から脱着した冷媒24が、流通孔16aを通って、凝縮器25に移動する。
 上述した構造を有するシート弁10aは、第1吸着器21aから凝縮器25への気相の冷媒24の流れを許容するように開くが、凝縮器25から第1吸着器21aへの流れに対しては閉じるようになっている。
 上述したシート弁10aの動作を、シート弁10aの開閉補助板材12が、図2及び図3に示すシート弁10bの開閉補助板材12と同様に、板材12aと板材12bとが積層されたバイメタルを用いて形成される場合を例にして以下に説明する。ここで、シート弁10aの開閉補助板材12では、板材12aが凝縮器25側に配置されており、板材12bは第1吸着器21aに配置される。
 シート弁10aでは、板材12bの熱膨張係数は、板材12aの熱膨張係数よりも大きい。従って、第1吸着器21aが脱着工程において、温熱が伝達された開閉補助板材12では、板材12bの熱膨張量が、板材12aの熱膨張量よりも大きいので、開閉補助板材12は、第1吸着器21a側から凝縮器25側に向かって湾曲するように変形する。このようにして、温熱が伝達された開閉補助板材12は、シート材11が第1流通孔16aを開くように変形する。
 一方、第1吸着器21aの吸着工程において、冷熱が伝達されたシート弁10aの開閉補助板材12では、板材12bの熱収縮量が、板材12aの熱収縮量よりも大きいので、開閉補助板材12は、第1吸着器21a側から凝縮器25側に向かって湾曲した状態から平らな状態に変形する。なお、開閉補助板材12は、平らな状態を通り超して凝縮器25側から第1吸着器21a側に向かって湾曲するように変形しても良い。このようにして、冷熱が伝達された開閉補助板材12は、シート材11が第1流通孔16aを閉じるように変形する。
 このように、シート弁10aにおける開閉補助板材12の板材12aと板材12bとの間の熱膨張係数の大小関係は、シート弁10bの開閉補助板材12とは反対の関係を有する。
 本実施形態では、シート弁10a及びシート弁10bそれぞれの開閉補助板材12の温度に応じて変形する向きを反対にすることにより、第1吸着器21aの第1熱媒体配管22aに供給される熱媒体の一部を共に使用できるようにした。これにより、シート弁10a又はシート弁10bに対して、第2吸着器21bの第2熱媒体配管22bに供給される熱媒体の一部を供給する必要がなくなるので、熱媒体を流通させる配管の長さを短くすることができる。もしシート弁10a及びシート弁10bそれぞれの開閉補助板材12が温度に応じて変形する向きが同じであれば、シート弁10a又はシート弁10bに対して、一方には高温の熱媒体を供給し、他方には低温の熱媒体を供給することが必要となる。そこで、第2吸着器21bの第2熱媒体配管22bに供給される熱媒体の一部をシート弁10a又はシート弁10bに対して供給する必要が生じることになる。
 第3流通孔16cに配置されるシート弁10cの構造及び働きは、上述したシート弁10aと同様である。また、第4流通孔16dに配置されるシート弁10dの構造及び働きは、上述したシート弁10bと同様である。
 次に、上述した吸着式ヒートポンプ20の動作の一例を以下に説明する。
 吸着式ヒートポンプ20は、第1吸着器21a及び第2吸着器21bを用いて、吸着工程と脱着工程とを交互に切換えるサイクル処理により、連続して冷熱を取り出すものである。
 まず、あるサイクルとして、図1に示すように、蒸発器26から蒸発した冷媒24の供給を受けて第1吸着器21aで吸着工程を行うと同時に、第2吸着器21bで脱着工程を行って脱着した冷媒24を凝縮器25に供給して凝縮させる。次のサイクルでは、第1吸着器21a及び第2吸着器21bでの工程を切換えて、第1吸着器21aで脱着工程を行うと同時に第2吸着器21bで吸着工程を行う。つまり、第1吸着器21aでは、前のサイクルで吸着剤23に吸着した冷媒24を脱着させて凝縮器25に供給し、第2吸着器21bでは、前のサイクルで脱着させた吸着剤23に蒸発器26からの冷媒24を吸着させる。
 この際、第1吸着器21aには、吸着工程及び脱着工程に伴って、低温の熱媒体及び高温の熱媒体が交互に供給される。また、第2吸着器21bには、脱着工程及び吸着工程に伴って、高温の熱媒体及び低温の熱媒体が交互に供給される。
 このようなサイクルを交互に繰り返すことにより、蒸発器26では、冷媒24の液相から気相への変化に伴う気化熱が、第4熱媒体配管26aを流通する熱媒体から吸収され続ける。このようにして冷却された熱媒体を用いて、吸着式ヒートポンプ20から冷熱が取り出される。
 また、このようなサイクルの繰り返しにおいて、シート弁10a、10b、10c、10dは、圧力差及び配管15に対する熱媒体の供給のみにより駆動されるので、シート弁の制御及びシート弁を駆動するための外部からのエネルギーは不要である。
 各吸着器に対する吸着工程及び脱着工程の切換えは、各熱媒体配管に供給される低温又は高温の熱媒体の切換えによって制御される。通常、吸着工程の方が脱着工程よりも時間がかかるので、吸着工程に要する時間に基づいて切換えが制御される。この熱媒体の切換えのタイミングは、ある温度の低温の熱媒体を流した時に、どの位の時間で吸着工程が終了して、蒸発器の冷却能力が停止するのかを事前に調べておく。そして、調べた時間に基づいて、熱媒体の切換えを制御する。
 上述した本実施形態の吸着式ヒートポンプによれば、開閉補助板材の働きにより補助されて、シート弁体が流通孔を確実に開閉する。また、開閉補助板材の働きに補助されて、シート弁体の開閉動作の応答性が向上する。従って、シート弁の開閉の不良又は遅れがなくなることにより、発生した圧力差に伴ってシート弁が速やかに開閉するので、生じた圧力差に遅れることなく気相の冷媒の流通孔を流通するため、吸着式ヒートポンプの熱交換効率が高まる。
 また、シート弁は、開閉補助板材の働きにより開閉の動作が補助されるので、シート弁体が鉛直下方に開く場合でも、シート弁体を鉛直上方に向けて確実に閉じることができる。従って、シート弁が配置される位置又は向きの自由度が増すので、吸着式ヒートポンプの寸法をより小型化することが可能となる。また、小型の吸着式ヒートポンプには、上述した効率の良いシート弁を用いることが、熱効率の観点から特に好ましい。
 上述した本実施形態の吸着式ヒートポンプは、自動車等の車両又はコンピュータ等の情報処理装置等の低温廃熱を発生する中・小型装置類に広く搭載することが可能である。このようにして、廃熱利用による省エネルギー又は環境負荷の低減が実現され得る。
 次に、上述した吸着式ヒートポンプに用いられ得るシート弁の他の実施形態を、図5及び図6を参照して、以下に説明する。シート弁の他の実施形態について特に説明しない点については、上述の実施形態に関して詳述した説明が適宜適用される。また、同一の構成要素には同一の符号を付してある。
 図5及び図6を用いた説明では、本実施形態のシート弁が、図1に示す吸着式ヒートポンプの第2流通孔に配置される例を示している。
 図5(A)は、本明細書に開示するシート弁の他の実施形態の閉じた状態を示す端面図であり、図5(B)は、シート弁から分離されたシート材が平らになった状態を示す図である。図6は、図5(A)に示すシート弁の開いた状態を示す端面図である。
 本実施形態のシート弁10bでは、シート弁体13は、2つの開閉補助板材12a、12bを備える。シート材11は、第2流通孔16bを覆うように配置される。シート材11の一方の端部が、一方の開閉補助板材12aと接合され、シート材11の他方の端部が、他方の開閉補助板材12bと接合される。
 本実施形態では、シート材11の一方の端部は、一方の開閉補助板材12aの第2隔壁17b側の面に積層されて接合されている。同様に、シート材11の他方の端部は、他方の開閉補助板材12bの第2隔壁17b側の面に積層されて接合されている。
 一方の開閉補助板材12aは、一方の端部を含む部分がシート材11に接合されており、他方の端部を含む部分が固定部材14aを介して、第2流通孔16bの周囲に固定される。具体的には、一方の開閉補助板材12aは、固定部材14aを用いて、第2隔壁17bの第1吸着器21a側の面に固定される。
 同様に、他方の開閉補助板材12bは、一方の端部を含む部分がシート材11に接合されており、他方の端部を含む部分が固定部材14bを介して、第2流通孔16bの周囲に固定される。具体的には、他方の開閉補助板材12bは、固定部材14bを用いて、第2隔壁17bの第1吸着器21a側の面に固定される。
 固定部材14a、14b内に配置される配管15a、15bには、第1熱媒体配管22aに供給される熱媒体の一部が供給される。
 固定部材14aに接合された一方の開閉補助板材12aは、第2隔壁17bに対して離間した状態で、第2流通孔16bの周囲の第2隔壁17bの部分に固定される。シート材11の一方の端部側の部分も、第2隔壁17bに対して離間している。
 同様に、固定部材14bに接合された他方の開閉補助板材12bは、第2隔壁17bに対して離間した状態で、第2流通孔16bの周囲の第2隔壁17bの部分に固定される。シート材11の他方の端部側の部分も、第2隔壁17bに対して離間している。
 図5(B)に示すように、シート弁体13は、一方の開閉補助板材12aと他方の開閉補助板材12bとの間の距離Lよりも、シート材11を平らに展開した状態における一方の開閉補助板材12aと他方の開閉補助板材12bとの間に位置するシート材11の部分の長さMの方が長い。
 従って、シート弁10bが閉じている状態では、シート弁体13は、図5(A)に示すように、第1吸着器21aと蒸発器16との間の圧力差によって、全体として第1吸着器21a側から蒸発器16側に向かって撓んだ形状を有する。複数の第2流通孔16bがシート弁体13によって覆われており、気相の冷媒24が流通不能となっている。
 また、シート弁10bが閉じている状態では、一方の開閉補助板材12aは、第1吸着器21a側から蒸発器16側に向かって湾曲するように変形している。同様に、他方の開閉補助板材12bも、第1吸着器21a側から蒸発器16側に向かって凹状に湾曲するように変形している。このような一方及び他方の開閉補助板材12a、12bの変形は、第1吸着器21aの脱着工程において、高温の熱媒体が配管15に供給されて、温熱が、固定部材14a、14bを介して、一方及び他方の開閉補助板材12a、12bに伝達されることにより生じる。
 このように、一方及び他方の開閉補助板材12a、12bが変形することにより、シート材11における開閉補助板材12と接合された側の部分を、第2隔壁17bの第1吸着器21a側の面と密着させて、シート弁10bの閉じる動作が補助される。
 一方、シート弁10bが開いた状態では、シート弁体13は、図6に示すように、第1吸着器21aと蒸発器16との間の圧力差によって、全体として蒸発器16側から第1吸着器21a側に向かって撓んだ形状を有する。シート弁体13によって覆われていた複数の第2流通孔16bが第1吸着器21a側の空間に露出しており、気相の冷媒24が流通可能となっている。
 また、シート弁10bが開いた状態では、一方の開閉補助板材12aは、蒸発器16側から第1吸着器21a側に向かって凸状に湾曲するように変形している。同様に、他方の開閉補助板材12bも、蒸発器16側から第1吸着器21a側に向かって湾曲するように変形している。このような一方及び他方の開閉補助板材12a、12bの変形は、第1吸着器21aの吸着工程において、低温の熱媒体が配管15に供給されて、冷熱が、固定部材14a、14bを介して、一方及び他方の開閉補助板材12a、12bに伝達されることにより生じる。
 このように、一方及び他方の開閉補助板材12a、12bが変形することにより、シート材11における開閉補助板材12と接合された側の部分を、第2隔壁17bの第1吸着器21a側の面から離間させて、シート弁10bの開く動作が補助される。
 上述した、距離L及び長さMは、シート弁10bが閉じている時に、シート材11にしわ等が生じることなく、第2流通孔16bを閉じることができる寸法に設定されることが好ましい。
 また、シート材11は、弾性を有することが、シート弁10bの開閉の動作を確実にし、且つ動作の応答性を向上させる上で好ましい。シート材11が弾性を有していると、圧力差以外にシート材11の内部応力が利用されてシート材11が変形するので、シート弁体13の閉じた状態又は開いた状態が安定する。また、シート材11が弾性を有していると、圧力差以外にシート材11の内部応力が利用されてシート材11が変形するので、シート弁10bの開閉に要する時間が短縮される。
 シート材11の弾性率は、圧力差及び開閉補助板材12a、12bの変形量を考慮して、シート弁10bが開閉するように設定され得る。例えば、シート弁10bは、圧力差を受けた状態において、一方及び他方の開閉補助板材12a、12bの変形量が所定の範囲を超えた時に、シート弁体13の変形の向きが反転するようにすることができる。
 上述した本実施形態のシート弁は、図1に示す吸着式ヒートポンプの第2流通孔に配置される場合を例として説明された。本実施形態のシート弁は、図1に示す吸着式ヒートポンプの第3流通孔にも同様に配置することができる。また、本実施形態のシート弁は、図1に示す吸着式ヒートポンプの第2流通孔及び第4流通孔に配置することもできる。この場合には、シート弁の構造は、開閉補助板材の温度に応じて変形する向きが反対となる。
 上述した本実施形態のシート弁によれば、シート弁体13の両端部が固定されているので、シート弁体13の開閉方向が鉛直方向に対して何れの方向であっても、開閉動作が確実に行われる。
 次に、上述した吸着式ヒートポンプの第2実施形態を、図7及び図8を参照して、以下に説明する。第2実施形態について特に説明しない点については、上述の第1実施形態に関して詳述した説明が適宜適用される。また、同一の構成要素には同一の符号を付してある。
 図7は、本明細書に開示する吸着式ヒートポンプの第2実施形態を示す図である。図8は、図7に示す吸着式ヒートポンプの脱着工程を示す図である。
 本実施形態の吸着式ヒートポンプ20は、1つの吸着器21cのみを備えている。具体的には、吸着式ヒートポンプ20は、上述の第1実施形態に対して、第2吸着器のみを備えており、第1吸着器は備えていない。本実施形態の吸着式ヒートポンプ20のその他の構造は、上述した第1実施形態と同様である。
 上述した吸着式ヒートポンプ20の動作の一例を以下に説明する。
 あるサイクルとして、図7に示すように、蒸発器26から蒸発した冷媒24の供給を受けて吸着器21cで吸着工程を行う。次のサイクルでは、図8に示すように、吸着器21cで脱着工程を行って脱着した冷媒24を凝縮器25に供給して凝縮させる。このようなサイクルを交互に繰り返すことにより、吸着工程において、吸着式ヒートポンプ20から冷熱が取り出される。
 次に、図1に示す吸着式ヒートポンプを備えた情報処理システムについて、図面を参照して、以下に説明する。
 図9は、本明細書に開示する情報処理システムの一実施形態を示す図である。図10は、図9に示す情報処理システムの2つの四方弁が切り替えられた状態を示す図である。図11は、図9及び図10に情報処理システムの情報処理部及び冷却装置を説明する図である。
 本実施形態の情報処理システム30は、動作時に発熱する情報処理部31と、第1熱媒体が供給される冷却装置33とを備える。また、情報処理システム30は、図1に示す吸着式ヒートポンプ20を備える。
 第1熱媒体は、蒸発器26と冷却装置33との間で循環する。第1熱媒体は、蒸発器26の第4熱媒体配管26aに供給されて冷却された後に冷却装置33に戻り、冷温が取り出される。冷却装置33は、例えば、熱交換器を用いて第1熱媒体の冷熱を取り出して冷風を生成し、情報処理部31を冷却しても良い。また、冷却装置33は、情報処理部31が配置された部屋を冷却するものでもあっても良い。
 情報処理部31は、CPU等の演算部又はハードディスクドライブ等の記憶部を備えており、動作時に発熱する。情報処理部31は、例えば、サーバ等であり得る。情報処理部31は、動作時の発熱を用いて第2熱媒体を加熱して、高温の第2熱媒体を吸着式ヒートポンプ30に供給する。高温の第2熱媒体としては、例えば、50~70℃の温度で供給される。
 例えば、図11に示すように、サーバである情報処理部31は、CPU31aと、CPU31aと熱的に接触するコールドプレート31bと、筐体31cとを備え得る。CPU31aは、発生した熱をコールドプレート31bに伝達することにより冷却される。コールドプレート31bは、伝達された熱を用いて第2熱媒体を加熱し、加熱された第2熱媒体を吸着式ヒートポンプ30に供給する。
 また、図11に示すように、サーバである情報処理部31は、筐体31c内の温熱を有する空気を筐体外に排出するファン31dを備え得る。筐体31cの外部には、ファン31dから排出される温風を吸気して、冷却された冷風を排出する冷却装置33としてのドライコイルが配置され得る。冷却装置33は、蒸発器26から供給された第1熱媒体から冷熱を取り出して、ファン31dから排出される温風を冷却し、情報処理部31が配置された部屋内に冷風を排出する。ドライコイル33で加熱された第1熱媒体は蒸発器26に戻される。
 また、吸着式ヒートポンプ20には、外部の冷却水供給源32から低温の第3熱媒体が供給される。冷却水供給源32は、例えば、冷却水を供給する建物のユーティリティ装置のクーリングタワーであっても良い。低温の第3熱媒体は、例えば、20~30℃の温度で供給される。
 情報処理システム30は、高温の第2熱媒体及び低温の第3熱媒体の流路を切換える第1四方弁34及び第2四方弁35を備える。第1四方弁34及び第2四方弁35は、情報処理部31によって制御され得る。また、第1四方弁34及び第2四方弁35は、情報処理部31とは異なる制御部によって制御されるようにしても良い。
 第1吸着器21a及び第2吸着器21bに対する吸着工程及び脱着工程の切換えは、第1四方弁34及び第2四方弁35によって高温の第2熱媒体及び低温の第3熱媒体の流路が切り換えられることにより行われる。
 また、第1熱媒体及び第2熱媒体及び第3熱媒体それぞれは、図示しないポンプによって、配管内を循環する。
 次に、上述した情報処理システム30の動作の一例を以下に説明する。
 図9に示す情報処理システム30では、第1吸着器21aが吸着工程にあり、第2吸着器21bが脱着工程にある。
 情報処理部31から供給される高温の第2熱媒体は、第2四方弁35のポート35aからポート35dを通って第2吸着器21bの第2熱媒体配管22bに供給される。第2吸着器21bでは、第2吸着器21b内の吸着剤23が加熱されて、脱着工程が行われる。第2吸着器21bで温熱が取り出された後の第2熱媒体は、第1四方弁34のポート34dからポート34aを通って情報処理部31に戻る。情報処理部31に戻った第2熱媒体は、加熱された後、再び情報処理部31と第2吸着器21bとの間を循環する。
 冷却水供給源32から供給される低温の第3熱媒体は、分岐部35において、凝縮器25及び第1吸着器21aに向かって分岐する。
 凝縮器25へ向かって分岐した低温の第3熱媒体は、第3熱媒体配管25aに供給される。凝縮器25では、シート弁10cを通って第2吸着器21bから供給された気相の冷媒24が、低温の第3熱媒体によって冷却されて液相に変化する。液相に変化した冷媒24は、蒸発器26へ供給される。凝縮器25で冷熱が取り出された後の第3熱媒体は、冷却水供給源32に戻る。
 一方、第1吸着器21aに向かって分岐した低温の第3熱媒体は、第2四方弁35のポート35cからポート35bを通って第1吸着器21aの第1熱媒体配管22aに供給される。第1吸着器21aでは、第1吸着器21a内の吸着剤23が冷却されて、吸着工程が行われる。第1吸着器21aで冷熱が取り出された後の第3熱媒体は、第1四方弁34のポート34bからポート34cを通って冷却水供給源32に戻る。冷却水供給源32に戻った第3熱媒体は、外部で冷却された後、再び吸着式ヒートポンプ20に供給される。
 蒸発器26では、蒸発した冷媒24が、内圧差によりシート弁10bを通って第1吸着器21aへ供給される。蒸発器25では、冷媒24の液相から気相への変化に伴う気化熱が、第4熱媒体配管26aを流通する第1熱媒体から吸収されて、第1熱媒体が冷却される。冷却された第1熱媒体が冷却装置33に供給されて、吸着式ヒートポンプ20から冷熱が取り出される。低温の第1熱媒体としては、例えば、15~20℃の温度が得られる。
 次に、第1四方弁34及び第2四方弁35が切換えられた状態について説明する。
 図10に示す情報処理システム30では、第1吸着器21aが脱着工程にあり、第2吸着器21bが吸着工程にある。
 情報処理部31から供給される高温の第2熱媒体は、第2四方弁35のポート35aからポート35bを通って第1吸着器21aの第1熱媒体配管22aに供給される。第1吸着器21aでは、第1吸着器21a内の吸着剤23が加熱されて、脱着工程が行われる。第1吸着器21aで温熱が取り出された後の第2熱媒体は、第1四方弁34のポート34bからポート34aを通って情報処理部31に戻る。情報処理部31に戻った第2熱媒体は、加熱された後、再び情報処理部31と第1吸着器21aとの間を循環する。
 冷却水供給源32から供給される低温の第3熱媒体は、分岐部35において、凝縮器25及び第2吸着器21bに向かって分岐する。凝縮器25へ向かって分岐した低温の第3熱媒体の説明は、図9の場合と同様である。
 一方、第2吸着器21bに向かって分岐した低温の第3熱媒体は、第2四方弁35のポート35cからポート35dを通って第2吸着器21bの第2熱媒体配管22bに供給される。第2吸着器21bでは、第2吸着器21b内の吸着剤23が冷却されて、吸着工程が行われる。第2吸着器21bで冷熱が取り出された後の第3熱媒体は、第1四方弁34のポート34dからポート34cを通って冷却水供給源32に戻る。冷却水供給源32に戻った第3熱媒体は、外部で冷却された後、再び吸着式ヒートポンプ20に供給される。
 蒸発器26と冷却装置33との間を循環する第1熱媒体の説明は、図9の場合と同様である。
 このように、情報処理システム30は、脱着工程では、第1吸着器21a及び第2吸着器21bが、情報処理部31の発熱を用いて吸着剤23から冷媒24を脱着させる。また、情報処理システム30は、吸着工程では、蒸発器26が、冷媒24を蒸発させる際の気化熱を利用して第1熱媒体を冷却し、冷却された第1熱媒体を冷却装置33に供給する。
 上述した本実施形態の情報処理システム30によれば、情報処理部31の発熱を利用し、吸着式ヒートポンプ20から連続して冷熱を取り出して、冷却装置33を作動することができる。
 そして、情報処理システム30は、熱交換効率の良い吸着式ヒートポンプ20を備えているので、高い熱交換効率で冷却できる。
 本発明では、上述した実施形態のシート弁を用いた吸着式ヒートポンプ及び情報処理システム、吸着式ヒートポンプの動作方法及び情報処理システムの動作方法は、本発明の趣旨を逸脱しない限り適宜変更が可能である。また、一の実施形態が有する構成要件は、他の実施形態にも適宜適用することができる。
 例えば、吸着式ヒートポンプは、熱伝導部を有していなくても良い。この場合には、脱着工程では、加熱された吸着剤から脱着した冷媒の温熱により、開閉補助板材を変形させることができる。同様に、吸着工程では、蒸発した冷媒の冷熱により、開閉補助板材を変形させることができる。
 また、熱伝導部は、熱媒体を流通させる配管の代わりに、抵抗熱により開閉補助板材を加熱する電熱線と、開閉補助板材を冷却するペルチエ素子とを有していても良い。
 また、熱伝導部は、熱媒体を流通させる配管の代わりに、熱媒体の温熱又は冷熱を開閉補助板材に伝達するヒートパイプを有していても良い。この場合には、配管に流通させていた熱媒体の温熱又は冷熱を、ヒートパイプを介在させて開閉補助板材に伝えることになる。
 また、第1吸着器は、第1熱媒体配管の代わりに、抵抗熱により吸着剤を加熱する電熱線と、吸着剤を冷却するペルチエ素子とを有していても良い。更に、第1吸着器は、第1熱媒体配管の代わりに、熱媒体の温熱又は冷熱を吸着剤に伝達するヒートパイプを有していても良い。この場合には、第1熱媒体配管に流通させていた熱媒体の温熱又は冷熱を、ヒートパイプを介在させて吸着剤に伝えることになる。これらは、第2吸着器の第2熱媒体配管に対しても適用される。
 また、上述した実施形態では、シート弁体が第1流通孔及び第2流通孔それぞれに配置されていたが、シート弁体は、第1流通孔又は第2流通孔の内の少なくとも一方に配置されていれば良い。
 ここで述べられた全ての例及び条件付きの言葉は、読者が、発明者によって寄与された発明及び概念を技術を深めて理解することを助けるための教育的な目的を意図する。ここで述べられた全ての例及び条件付きの言葉は、そのような具体的に述べられた例及び条件に限定されることなく解釈されるべきである。また、明細書のそのような例示の機構は、本発明の優越性及び劣等性を示すこととは関係しない。本発明の実施形態は詳細に説明されているが、その様々な変更、置き換え又は修正が本発明の精神及び範囲を逸脱しない限り行われ得ることが理解されるべきである。
 10、10a、10b、10c、10d  シート弁
 11  シート材
 12、12a、12b  開閉補助板材
 13  シート弁体
 14、14a、14b  固定部材
 15、15a、15b  配管
 16a  第1流通孔
 16b  第2流通孔
 16c  第3流通孔
 16d  第4流通孔
 17a  第1隔壁
 17b  第2隔壁
 17c  第3隔壁
 17d  第4隔壁
 20  吸着式ヒートポンプ
 20a  ハウジング
 21a  第1吸着器
 21b  第2吸着器
 21c  吸着器
 22a  第1熱媒体配管
 22b  第2熱媒体配管
 23  吸着剤
 24  冷媒
 25  凝縮器
 25a  第3熱媒体配管
 25b  導通管
 26  蒸発器
 26a  第4熱媒体配管
 30  情報処理システム
 31  情報処理部
 32  冷却水供給源
 33  冷却装置(冷却部)
 34  第1四方弁
 34a  第1ポート
 34b  第2ポート
 34c  第3ポート
 34d  第4ポート
 35  第2四方弁
 35a  第1ポート
 35b  第2ポート
 35c  第3ポート
 35d  第4ポート
 35  分岐部

Claims (13)

  1.  吸着剤を有し、吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換え可能な吸着器と、
     前記吸着器から脱着した冷媒を凝縮させる凝縮器と、
     前記凝縮器から供給された冷媒を蒸発させ、蒸発した冷媒を前記吸着器に供給する蒸発器と、
     前記吸着器から前記凝縮器へ冷媒を流通させる第1流通孔と、
     前記蒸発器から前記吸着器へ冷媒を流通させる第2流通孔と、
     前記第1流通孔又は前記第2流通孔の内の少なくとも一方に配置され、シート材及び前記シート材の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材を有し、前記第1流通孔又は前記第2流通孔の内の少なくとも一方を開閉するシート弁体と、
    を備える吸着式ヒートポンプ。
  2.  2つの前記シート弁体を備え、
     一方の前記シート弁体が、前記第1流通孔に配置され、他方の前記シート弁体が、前記第2流通孔に配置され、
     一方の前記シート弁体の前記開閉補助板材と、他方の前記シート弁体の前記開閉補助板材とは、温度に応じて変形する向きが反対である請求項1に記載の吸着式ヒートポンプ。
  3.  前記開閉補助板材の一方の端部は、前記シート材に接合され、
     前記開閉補助板材の他方の端部は、前記シート弁体が配置される前記第1流通孔又は前記第2流通孔の内の少なくとも一方の周囲に固定される請求項1~3の何れか一項に記載の吸着式ヒートポンプ。
  4.  前記開閉補助板材に対して熱を伝導する熱伝導部を備える請求項1~3の何れか一項に記載の吸着式ヒートポンプ。
  5.  前記熱伝導部は、熱媒体を流通させ、前記開閉補助板材に対して熱を伝導可能な配管を有し、
     前記熱媒体として、前記吸着工程において吸着剤を冷却するための熱媒体又は前記脱着工程において吸着剤を加熱するための熱媒体を用いる請求項4に記載の吸着式ヒートポンプ。
  6.  前記熱伝導部は、前記開閉補助板材を、前記シート弁体が配置される前記第1流通孔又は前記第2流通孔の内の少なくとも一方の周囲に固定する固定部材を有し、
     前記固定部材の内部には前記配管が配置されており、前記配管と前記開閉補助板材とは、前記固定部材を介して熱的に接続される請求項5に記載の吸着式ヒートポンプ。
  7.  前記開閉補助板材は、熱膨張率が異なる複数の板材が積層されて形成される請求項1~6の何れか一項に記載の吸着式ヒートポンプ。
  8.  前記シート弁体は、2つの前記開閉補助板材を備え、
     前記シート材の一方の端部が、一方の前記開閉補助板材と接合され、前記シート材の他方の端部が、他方の前記開閉補助板材と接合され、
     一方の前記開閉補助板材と他方の前記開閉補助板材との間の距離よりも、一方の前記開閉補助板材と他方の前記開閉補助板材との間に位置する前記シート材の部分の長さの方が長い請求項1~7の何れか一項に記載の吸着式ヒートポンプ。
  9.  動作時に発熱する情報処理部と、
     熱媒体が供給される冷却部と、
      吸着剤を有し、吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換え可能な吸着器と、
      前記吸着器から脱着した冷媒を凝縮させる凝縮器と、
      前記凝縮器から供給された冷媒を蒸発させ、蒸発した冷媒を前記吸着器に供給する蒸発器と、
      前記吸着器から前記凝縮器へ冷媒を流通させる第1流通孔と、
      前記蒸発器から前記吸着器へ冷媒を流通させる第1流通孔と、
      前記第1流通孔又は前記第2流通孔の内の少なくとも一方に配置され、シート材及び前記シート材の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材を有し、前記第1流通孔又は前記第2流通孔の内の少なくとも一方を開閉するシート弁体と、
    を有する吸着式ヒートポンプと、
    を備え、
     前記脱着工程では、前記吸着器が、前記情報処理部の発熱を用いて吸着剤から冷媒を脱着させ、
     前記吸着工程では、前記蒸発器が、冷媒を蒸発させる際の気化熱を用いて前記熱媒体を冷却し、冷却された前記熱媒体を前記冷却部に供給する、情報処理システム。
  10.  吸着剤を有し、吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換え可能な吸着器と、
     前記吸着器から脱着した冷媒を凝縮させる凝縮器と、
     前記凝縮器から供給された冷媒を蒸発させる蒸発器と、
     前記吸着器から前記凝縮器へ冷媒を流通させる第1流通孔と、
     前記蒸発器から前記吸着器へ冷媒を流通させる第2流通孔と、
     前記第1流通孔又は前記第2流通孔の内の少なくとも一方に配置され、シート材及び前記シート材の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材を有し、前記第1流通孔又は前記第2流通孔の内の少なくとも一方を開閉するシート弁体と、を備える吸着式ヒートポンプの動作方法であって、
     前記脱着工程では、前記吸着器が、吸着剤から脱着した冷媒を前記第1流通孔を通して、前記凝縮器に供給し、
     前記吸着工程では、前記蒸発器が、蒸発させた冷媒を前記第2流通孔を通して前記吸着器に供給する、吸着式ヒートポンプの動作方法。
  11.  前記吸着式ヒートポンプは、2つの前記シート弁体を備え、
     一方の前記シート弁体が、前記第1流通孔に配置され、他方の前記シート弁体が、前記第2流通孔に配置され、
     一方の前記シート弁体の前記開閉補助板材と、他方の前記シート弁体の前記開閉補助板材とを、温度に応じて反対向きに変形させる請求項10に記載の吸着式ヒートポンプの動作方法。
  12.  動作時に発熱する情報処理部と、
     熱媒体が供給される冷却部と、
      吸着剤を有し、吸着剤に冷媒を吸着させる吸着工程と吸着剤から冷媒を脱着させる脱着工程とに切換え可能な吸着器と、
      前記吸着器から脱着した冷媒を凝縮させる凝縮器と、
      前記凝縮器から供給された冷媒を蒸発させる蒸発器と、
      前記吸着器から前記凝縮器へ冷媒を流通させる第1流通孔と、
      前記蒸発器から前記吸着器へ冷媒を流通させる第1流通孔と、
      前記第1流通孔又は前記第2流通孔の内の少なくとも一方に配置され、シート材及び前記シート材の端部に接合され温度に応じて変形する温度依存性材料により形成された開閉補助板材を有し、前記第1流通孔又は前記第2流通孔の内の少なくとも一方を開閉するシート弁体と、
    を有する吸着式ヒートポンプと、
    を備える情報処理システムの動作方法であって、
     前記脱着工程では、前記吸着器が、前記情報処理部の発熱を用いて吸着剤から冷媒を脱着させると共に、吸着剤から脱着した冷媒を前記第1流通孔を通して、前記凝縮器に供給し、
     前記吸着工程では、前記蒸発器が、蒸発させた冷媒を前記第2流通孔を通して前記吸着器に供給すると共に、冷媒を蒸発させる際の気化熱を用いて前記熱媒体を冷却し、冷却された前記熱媒体を前記冷却部に供給する、情報処理システムの動作方法。
  13.  前記吸着式ヒートポンプは、2つの前記シート弁体を備え、
     一方の前記シート弁体が、前記第1流通孔に配置され、他方の前記シート弁体が、前記第2流通孔に配置され、
     一方の前記シート弁体の前記開閉補助板材と、他方の前記シート弁体の前記開閉補助板材とを、温度に応じて反対向きに変形させる請求項12に記載の情報処理システムの動作方法。
PCT/JP2011/064825 2011-06-28 2011-06-28 シート弁を用いた吸着式ヒートポンプ及び情報処理システム WO2013001608A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11868619.5A EP2728281A4 (en) 2011-06-28 2011-06-28 ADSORPTION HEAT PUMP WITH PLATE VALVE AND INFORMATION PROCESSING SYSTEM
CN201180071927.9A CN103620319B (zh) 2011-06-28 2011-06-28 使用提动阀的吸附式热泵和信息处理系统
PCT/JP2011/064825 WO2013001608A1 (ja) 2011-06-28 2011-06-28 シート弁を用いた吸着式ヒートポンプ及び情報処理システム
JP2013522392A JP5668853B2 (ja) 2011-06-28 2011-06-28 シート弁を用いた吸着式ヒートポンプ及び情報処理システム
US14/107,543 US9212837B2 (en) 2011-06-28 2013-12-16 Adsorption-type heat pump using seat valve and information processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064825 WO2013001608A1 (ja) 2011-06-28 2011-06-28 シート弁を用いた吸着式ヒートポンプ及び情報処理システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/107,543 Continuation US9212837B2 (en) 2011-06-28 2013-12-16 Adsorption-type heat pump using seat valve and information processing system

Publications (1)

Publication Number Publication Date
WO2013001608A1 true WO2013001608A1 (ja) 2013-01-03

Family

ID=47423552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064825 WO2013001608A1 (ja) 2011-06-28 2011-06-28 シート弁を用いた吸着式ヒートポンプ及び情報処理システム

Country Status (5)

Country Link
US (1) US9212837B2 (ja)
EP (1) EP2728281A4 (ja)
JP (1) JP5668853B2 (ja)
CN (1) CN103620319B (ja)
WO (1) WO2013001608A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200911B2 (ja) * 2015-03-03 2017-09-20 株式会社豊田中央研究所 ヒートポンプ及び冷熱生成方法
CN107543332A (zh) * 2017-10-09 2018-01-05 广州市香港科大霍英东研究院 一种紧凑式吸附制冷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626727A (ja) * 1992-05-13 1994-02-04 Daikin Ind Ltd 吸着式冷凍装置
JPH08135524A (ja) 1994-11-07 1996-05-28 Nissan Motor Co Ltd キャニスタ
JPH09152221A (ja) 1995-11-29 1997-06-10 Denso Corp 吸着式冷凍機
JP2000257861A (ja) * 1999-03-11 2000-09-22 Senshin Zairyo Riyo Gas Generator Kenkyusho:Kk ガスタービン用燃焼装置
JP2003278519A (ja) * 2002-03-25 2003-10-02 Mitsubishi Motors Corp オイルパンの構造
JP2010151386A (ja) * 2008-12-25 2010-07-08 Noritz Corp 吸着式ヒートポンプ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2587996A (en) * 1943-07-05 1952-03-04 Hoover Co Absorption refrigeration
US2463359A (en) * 1943-10-29 1949-03-01 Hoover Co Refrigeration
US3270512A (en) * 1963-12-09 1966-09-06 James E Webb Intermittent type silica gel adsorption refrigerator
GR82075B (ja) * 1983-05-18 1984-12-13 Kaptan Aps
EP0131869B1 (en) * 1983-07-08 1988-09-28 Matsushita Electric Industrial Co., Ltd. Thermal system based on thermally coupled intermittent absorption heat pump cycles
DE8714098U1 (ja) * 1987-10-22 1987-12-23 Dietz, Erwin, 7538 Keltern, De
DE4121131A1 (de) * 1991-06-26 1993-01-07 Zeolith Tech Sorptionsmittelbehaelter-anordnung und sorptionsverfahren mit regenerativem waermetausch
US5272891A (en) * 1992-10-21 1993-12-28 Erickson Donald C Intermittent sorption cycle with integral thermosyphon
US5666818A (en) * 1995-12-26 1997-09-16 Instituto Tecnologico And De Estudios Superiores Solar driven ammonia-absorption cooling machine
US6584797B1 (en) * 2001-06-06 2003-07-01 Nanopore, Inc. Temperature-controlled shipping container and method for using same
US6663358B2 (en) * 2001-06-11 2003-12-16 Bristol Compressors, Inc. Compressors for providing automatic capacity modulation and heat exchanging system including the same
DE20114702U1 (de) * 2001-09-06 2002-01-17 1St Memory Alloys Gmbh Temperaturregelventil mit einer durchflußsteuernden Memory-Metall-Membran
DE10250510A1 (de) * 2002-10-29 2004-05-19 Zeo-Tech Zeolith-Technologie Gmbh Adsorptions-Kühlapparat mit Pufferspeicher
WO2005108880A1 (en) * 2004-05-11 2005-11-17 Cyclect Singapore Pte Ltd A regenerative adsorption system
DE202004016750U1 (de) * 2004-10-28 2005-02-10 Hupfer Metallwerke Gmbh & Co. Kg Ventilanordnung, sowie mit einer derartigen Ventilanordnung versehene Kühleinrichtung
EP1967799B1 (de) * 2007-03-05 2012-11-21 ZEO-TECH Zeolith Technologie GmbH Sorptions-Kühlelement mit Regelorgan und zusätzlicher Wärmequelle
WO2008142358A1 (en) * 2007-05-17 2008-11-27 Gah Heating Products Ltd Adsorption cooling system and cooling method
NL2002560C2 (nl) * 2009-02-24 2010-08-25 Stichting Energie Sorptiekoelsysteem met zelfwerkende dampklep.
US8820113B2 (en) * 2009-12-31 2014-09-02 Facebook, Inc. Cooling computing devices in a data center with ambient air cooled using heat from the computing devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626727A (ja) * 1992-05-13 1994-02-04 Daikin Ind Ltd 吸着式冷凍装置
JPH08135524A (ja) 1994-11-07 1996-05-28 Nissan Motor Co Ltd キャニスタ
JPH09152221A (ja) 1995-11-29 1997-06-10 Denso Corp 吸着式冷凍機
JP2000257861A (ja) * 1999-03-11 2000-09-22 Senshin Zairyo Riyo Gas Generator Kenkyusho:Kk ガスタービン用燃焼装置
JP2003278519A (ja) * 2002-03-25 2003-10-02 Mitsubishi Motors Corp オイルパンの構造
JP2010151386A (ja) * 2008-12-25 2010-07-08 Noritz Corp 吸着式ヒートポンプ

Also Published As

Publication number Publication date
JP5668853B2 (ja) 2015-02-12
CN103620319A (zh) 2014-03-05
EP2728281A1 (en) 2014-05-07
US20140102121A1 (en) 2014-04-17
CN103620319B (zh) 2016-01-13
EP2728281A4 (en) 2015-03-25
JPWO2013001608A1 (ja) 2015-02-23
US9212837B2 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
JP4201011B2 (ja) 蓄熱装置
US9618238B2 (en) Adsorption refrigerator
US9752805B2 (en) Adsorption heat pump
US8640489B2 (en) Heat pump
JP4946894B2 (ja) 廃熱利用システム
JP2012037203A (ja) 電子機器の冷却・排熱回収システム
JP5668853B2 (ja) シート弁を用いた吸着式ヒートポンプ及び情報処理システム
JP6722860B2 (ja) 吸着冷凍機、吸着冷凍機を制御する方法および冷却システム
JP5747702B2 (ja) 吸着式ヒートポンプ及び情報処理システム
JP6083123B2 (ja) 吸着式ヒートポンプシステム及び吸着式ヒートポンプの駆動方法
JP2009121740A (ja) 吸着式ヒートポンプ及びその運転制御方法
WO2019146535A1 (ja) 冷却装置、制御方法、及び記憶媒体
JP4889528B2 (ja) ケミカルヒートポンプ及びこれを用いた熱利用システム
JP6139125B2 (ja) 吸着式空調装置
JP2012017960A (ja) 分離型固体吸着式冷却システム
WO2013145702A1 (ja) 車両用空調装置、熱交換装置および車両空調用のユニット装置
JP2004291669A (ja) 車両用吸着式空調装置
JP6459771B2 (ja) 熱遷移流ヒートポンプ
JP4086011B2 (ja) 冷凍装置
JP5375284B2 (ja) 冷凍装置
JP2007040592A (ja) 吸着器
JP2003072362A (ja) 吸着式冷凍機
US20180266296A1 (en) Exhaust heat recovery device
JP2012077935A (ja) 蓄熱装置およびこれを用いた空気調和機
WO2013069063A1 (en) Sorption air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522392

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011868619

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE