WO2013001591A1 - Inductor and manufacturing method therefor - Google Patents

Inductor and manufacturing method therefor Download PDF

Info

Publication number
WO2013001591A1
WO2013001591A1 PCT/JP2011/064686 JP2011064686W WO2013001591A1 WO 2013001591 A1 WO2013001591 A1 WO 2013001591A1 JP 2011064686 W JP2011064686 W JP 2011064686W WO 2013001591 A1 WO2013001591 A1 WO 2013001591A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
coil
insert molding
molding resin
core
Prior art date
Application number
PCT/JP2011/064686
Other languages
French (fr)
Japanese (ja)
Inventor
上野 泰弘
文夫 野溝
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013522381A priority Critical patent/JP5626466B2/en
Priority to PCT/JP2011/064686 priority patent/WO2013001591A1/en
Priority to CN201180071943.8A priority patent/CN103650077B/en
Priority to EP11868702.9A priority patent/EP2725591B9/en
Priority to US14/129,176 priority patent/US9153372B2/en
Publication of WO2013001591A1 publication Critical patent/WO2013001591A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a reactor and a manufacturing method thereof, and more particularly to a reactor mounted on an electric vehicle, a hybrid vehicle, and the like and a manufacturing method thereof.
  • a reactor is incorporated in a part of a power conversion circuit mounted on an electric vehicle such as a hybrid vehicle.
  • This reactor is used, for example, in a converter that boosts DC power supplied from a battery and outputs the boosted power to a motor that is a power source.
  • a reactor is composed of a plurality of core members made of a magnetic material, a reactor core formed by annularly connecting these core members with a non-magnetic gap plate interposed therebetween, and a periphery of a coil mounting position of the reactor core including the gap plate. And a coil disposed on the surface.
  • the reactor including the reactor core and the coil is mounted on the vehicle in a state of being fixed by a bolt or the like in a metal case such as an aluminum alloy.
  • Patent Document 1 a reactor core including a coil is accommodated and fixed in a housing, and the housing and the reactor core are connected. And a method of manufacturing a reactor in which a silicone resin is impregnated and cured between the coil and a coil to fix the reactor in a housing.
  • Patent Document 2 discloses that a core unit is formed by connecting a plurality of magnetic I-type cores via a gap, and a gap is formed between the ends of the two core units.
  • a substantially annular reactor core is formed by connecting U-shaped cores having a core, a coil is formed on the outer periphery of the core unit to form a reactor, and a resin is placed between the reactor and the housing in a posture in which the reactor is accommodated in the housing.
  • a reactor device in which a mold body is formed is disclosed. In this reactor device, it is described that the resin mold body is formed at the coil forming portion of the reactor, and the resin mold body is not formed between the U-shaped core and the housing.
  • an annular reactor core with a coil assembled therein is accommodated in a housing, and a silicone resin, which is a thermosetting resin, is poured into a gap between the housing, the reactor core and the coil, and filled.
  • the potting process is performed, and the silicone resin is cured by performing a heat treatment, so that the coil is fixed to the reactor core, and the heat dissipation from the coil to the housing is interposed with a highly thermally conductive silicone resin. It is secured by letting.
  • the objective of this invention provides the reactor which abolishes the potting process of the thermosetting resin in a vacuum furnace, and the heat-hardening process in a heating furnace, and enables manufacture in a high cycle, and its manufacturing method There is.
  • a reactor according to an aspect of the present invention covers a reactor core in which a plurality of core members are annularly connected via a gap portion, and covers an outer peripheral surface of the reactor core except at least a facing surface between the core members.
  • a primary insert molding resin portion made of a thermoplastic resin provided; a coil disposed around the primary insert molding resin portion of the gap portion and the reactor core; and the coil formed by insert molding around the coil.
  • a secondary insert molding resin part made of a thermoplastic resin that fixes the resin to the reactor core.
  • the reactor which concerns on this invention WHEREIN contains the coil exposure part which exposes the said coil in the part facing the reactor installation member in which the said reactor is installed, and the said coil exposure part is via a thermal radiation material. And may be attached in contact with the reactor installation member.
  • the secondary insert molding resin portion may be formed of a resin material having higher thermal conductivity than the primary insert molding resin portion.
  • the primary insert molding resin portion or the secondary insert molding resin portion may be integrally formed with an attachment portion for bolting the reactor to a reactor installation member.
  • a method for manufacturing a reactor comprising: a reactor core in which a plurality of core members are annularly connected via a gap portion; and a coil provided around the reactor core including the gap portion.
  • a reactor manufacturing method comprising: preparing the plurality of core members and the coil; covering at least an outer peripheral surface of the core member excluding an opposing surface of the core members; and a primary insert molding resin portion made of a thermoplastic resin And surrounding the coil disposed around the gap portion and the primary insert molding resin portion of the reactor core, with the plurality of core members being inserted into the coil in a ring shape through a gap portion.
  • the secondary insert molding resin portion may be formed of a resin material having higher thermal conductivity than the primary insert molding resin portion.
  • an attachment portion for bolting the reactor to the reactor installation member is integrally formed. Also good.
  • the coil disposed around the gap portion and the primary insert molding resin portion in the reactor core is fixed by the secondary insert molding resin portion made of thermoplastic resin. Therefore, the potting process of the thermosetting resin in the vacuum furnace and the heat curing treatment in the heating furnace are abolished, and the reactor can be manufactured in a high cycle.
  • FIG. 4 is a perspective view showing a reactor core and a coil in a state in which a core member, a coil, and a gap plate shown in FIG. 3 are assembled. It is a perspective view which shows the state which formed the secondary insert molding resin part in the reactor core and coil shown in FIG. 4, and fixed the coil.
  • FIG. 6 shows a mode that the secondary insert molding resin part protrudes in the coil exposure part, and the burr
  • FIG. 8 shows the longitudinal cross-sectional view similar to FIG. 8 which shows the state which covered the secondary insert molding resin part without exposing a coil, and was attached directly on the metal case bottom plate.
  • FIG. 1 is a perspective view showing a core member 14 of a reactor core 12 constituting a reactor 10 according to an embodiment of the present invention.
  • the reactor core 12 in this embodiment is composed of two core members 14 having the same shape.
  • the core member 14 is formed in a substantially U shape in a plan view, and has a substantially arc shape in a plan view connecting the first leg portion 16 and the second leg portion 18 projecting parallel to each other and the leg portions 16 and 18. Connection portion 20.
  • the core member 14 is preferably constituted by a powder magnetic core formed by pressure-molding resin-coated magnetic powder with a binder mixed.
  • the core member 14 may be formed of a steel plate laminate formed by laminating a plurality of electromagnetic steel plates punched into a substantially U shape and integrally connecting them by caulking or the like.
  • the first and second leg portions 16 and 18 of the core member 14 have rectangular end surfaces 16a and 18a, respectively. These end surfaces 16a and 18a serve as opposing surfaces of the core members when the two core members 14 are abutted in a substantially annular shape through the gap portion.
  • FIG. 2 is a perspective view showing a state in which a primary insert molding resin portion 22 made of a thermoplastic resin is formed on the core member 14 of FIG.
  • the entire outer peripheral surface of the core member 14 excluding the leg end surfaces 16 a and 18 a is covered with a primary insert molding resin portion 22.
  • the primary insert molding resin portion 22 is formed by mounting the core member 14 in a molding die and injection molding a thermoplastic resin.
  • the primary insert molding resin part 22 includes a leg covering part 24 that covers the four sides of the leg parts 16 and 18.
  • the leg covering portion 24 has a function of securing an insulation distance between the coil and the reactor core when the coil is disposed around the leg portions 16 and 18 as will be described later.
  • the primary insert molding resin part 22 includes a wall part 26 protruding from the upper and lower surfaces.
  • the wall portion 26 has a function of positioning the coil by abutting or substantially abutting against the coil end surface when the coil is disposed around the leg portions 16 and 18.
  • the leg covering portion 24 of the first leg portion 16 is formed with an edge portion forming a rectangular frame shape protruding from the end surface 16a of the first leg portion 16, and the protruding portion thereof.
  • recesses 25 a that are recessed in a substantially trapezoidal shape are formed on two sides facing each other in the lateral direction.
  • the leg covering portion 24 of the second leg portion 18 is formed such that the edge portion forming a rectangular frame is substantially flush with the end surface 18a of the second leg portion 18 and is opposed to the lateral direction 2.
  • Convex portions 25b projecting in a substantially trapezoidal shape are formed on the side portions.
  • the primary insert molding resin portion 22 as described above is similarly formed on the two core members 14 constituting the reactor core 12. Then, as shown in FIG. 2, the orientation of one core member 14 is reversed and the two core members 14 are arranged so that the first leg portion 16 and the second leg portion 18 face each other. Thereby, when the two core members 14 are connected in a ring shape, the concave portion 25a formed in the leg portion covering portion 24 of the first leg portion 16 and the convex portion formed in the leg portion covering portion 24 of the second leg portion 18. By fitting the portion 25b, the distance between the end surfaces 16a, 18a of the first and second leg portions 16, 18 facing each other, that is, the dimension of the gap portion can be accurately defined.
  • the above-described concave and convex portions are also formed on the two sides facing in the vertical direction in the leg covering portion 24 formed in a rectangular frame shape around the leg end faces 16a and 18a. Each may be formed.
  • the relative position in the horizontal direction when the two core members 14 are combined can be reliably positioned.
  • the said recessed part and a convex part have only the vertical and / or horizontal positioning function of the leg parts which oppose, and an opposing direction is because end surfaces other than the recessed part and convex part in a leg part coating
  • the position may be determined to define the dimension of the gap portion.
  • the primary insert molding resin portion 22 is formed so as to cover the entire outer peripheral surface except for the leg end surfaces 16a and 18a, the core member 14 made of a dust core having a relatively low strength and easily chipped is prevented. In addition to having a protective function, as described later, it also has a function of ensuring insulation performance between the core member 14 and the metal case when the reactor is attached to the metal case.
  • FIG. 3 is an exploded perspective view showing a state in which the two core members 14, the coil 28, and the two gap plates 30 shown in FIG. 2 are assembled.
  • the coil 28 that constitutes the reactor 10 of the present embodiment is an edgewise coil that is formed in advance by winding a flat rectangular conductor wire that has been subjected to an insulating film treatment with, for example, enamel, around a coil, and two coils that are connected in series It is comprised by the parts 28a and 28b.
  • Each coil part 28a, 28b is formed by winding a single continuous flat rectangular conductive wire.
  • the conducting wire end 29a of one coil portion 28a is started to be wound, a flat rectangular conducting wire is wound counterclockwise therefrom to form the coil portion 28a, from which the other coil portion is formed.
  • the coil portion 28b is formed while moving to 28b and wound clockwise, and is connected to the winding end portion 29b.
  • the conducting wire end portions 29a and 29b protruding from the coil portions 28a and 28b are connected to the power input / output terminal for the coil 28 (that is, the reactor 10).
  • the coil portions 28a, 28b are formed in a substantially rectangular inner peripheral shape that is slightly larger than the leg covering portion 24 formed on the outer periphery of the leg portions 16, 18 of the core member 14. Thereby, the leg portions 16 and 18 of the core member 14 can be inserted into the coil portions 28a and 28b. Further, the length in the winding direction of the coil portions 28a, 28b is formed slightly shorter than the distance between the wall portions 26 of the primary insert molding resin portions 22 of the two core members 14 connected in an annular shape. Thus, when the reactor core 12 is assembled, the coil portions 28a, 28b are positioned with a slight margin between the two wall portions 26.
  • the gap plate 30 is a rectangular flat plate member made of a nonmagnetic material, and for example, a ceramic plate such as alumina is preferably used.
  • an adhesive 32 is applied to both sides of the gap plate 30 as shown in FIG.
  • the gap plate is interposed between the end surfaces 16a and 18a of the first leg portion 16 and the second leg portion 18.
  • the two core members 14 are bonded and fixed in a state where 30 is sandwiched. Therefore, in the reactor of this embodiment, the gap part formed between the two core members 14 is constituted by the gap plate 30 and the adhesive layer.
  • thermosetting adhesive such as an epoxy resin having strong adhesive force and excellent heat resistance is preferably used. Even when such a thermosetting adhesive is used, it can be sufficiently cured using the heat of the molten resin forming the secondary insert molding resin portion as will be described later, and the adhesive strength can be secured quickly. be able to.
  • the adhesive is not limited to the thermosetting type, and for example, a room temperature curing type adhesive may be used. Further, the adhesive may be applied in advance to the leg end surfaces 16 a and 18 a of the core member 14 instead of the gap plate 30. Further, when the two core members 14 each having the primary insert molding resin portion 22 are connected, the gap dimension between the end surfaces 16a and 18a of the first and second leg portions 16 and 18 facing each other is convex with the concave portion 25a. Since it is precisely defined by fitting with the portion 25b, the gap plate may be eliminated and the gap portion may be configured with only a predetermined amount of adhesive. In this way, there are advantages that the number of parts and the cost can be reduced and the assembly can be facilitated.
  • FIG. 4 is a perspective view showing the reactor core 12 and the coil 28 in a state where the core member 14, the coil 28, and the gap plate 30 shown in FIG. 3 are assembled.
  • the leg portions 16 and 18 are respectively inserted into the coil portions 28a and 28b and the two core members 14 are connected via the gap plate 30 and the adhesive layer, the two core members 14 are interposed via the gap portions.
  • Reactor cores 12 connected in an annular shape and coils 28 arranged around leg portions 16 and 18 including gap portions in the reactor core 12 are assembled.
  • FIG. 5 is a perspective view showing a state where the secondary insert molding resin portion 34 is formed on the reactor core 12 and the coil 28 shown in FIG. In FIG. 5 (the same applies to FIG. 7), the conductor end portions 29a and 29b extending from the secondary insert molding resin portion 34 are not shown.
  • FIG. 6 is a perspective view showing a coil exposed portion 36 formed in the lower portion of the secondary insert molding resin portion 34.
  • the secondary insert molding resin portion 34 is formed by mounting the reactor core 12 and the coil 28 assembled as shown in FIG. 4 in another mold and injection molding a thermoplastic resin.
  • the secondary insert molding resin portion 34 may be formed of the same thermoplastic resin material as the primary insert molding resin portion 22 or may be formed of a different thermoplastic resin material. Further, the secondary insert molding resin portion 34 is formed so as to cover substantially the entire periphery of the coil portions 28 a and 28 b constituting the coil 28. Thereby, the two coil portions 28a and 28b constituting the coil 28 are firmly fixed to the annular reactor core 12.
  • the secondary insert molding resin portion 34 is formed so as to cover the outside of the wall portion 26 of the primary insert molding resin portion 22, the two core members 14 are connected in an annular shape by the anchor effect of the wall portion 26. It is securely fixed in the state. In this way, the manufacture of the reactor 10 is completed.
  • the secondary insert molding resin portion 34 is formed so as to cover the upper portions of the coil portions 28 a and 28 b, the outer peripheral side portion, and the inner peripheral side portion, thereby forming the two coil portions 28 a constituting the coil 28. , 28b are fixed to the reactor core 12.
  • the secondary insert molding resin portion 34 includes a coil exposed portion 36 that is exposed without the lower portions of the coil portions 28 a and 28 b being covered.
  • the secondary insert molding resin portion 34 is integrally formed with a plurality of attachment portions 38 for attaching the reactor 10 to the reactor installation member by bolt fastening.
  • an example in which four attachment portions 38 are formed is shown.
  • a bolt insertion hole 40 is formed through the mounting portion 38.
  • attachment part 38 in the secondary insert molding resin part 34
  • the attachment portion may be integrally formed with the exposed portion of the molded resin portion 22.
  • FIG. 7 is an exploded perspective view showing a state in which the reactor 10 to which the coil 28 is fixed by the secondary insert molding resin portion 34 is bolted onto the reactor installation member 44 through the heat dissipating material 42.
  • FIG. 8 is a longitudinal sectional view of the reactor 10 fixed on the reactor installation member 44.
  • the reactor 10 manufactured as described above is inserted into the mounting portion 38 of the secondary insert molding resin portion 34 with bolts 46, and a reactor installation member, specifically, a bottom plate 44 of a metal case made of, for example, an aluminum alloy or the like.
  • the sheet-like heat dissipation material 42 is sandwiched between the metal case bottom plate 44 and the metal case bottom plate 44 so as to be fixed.
  • mounting recesses 50a and 50b in which the exposed portions of the coil portions 28a and 28b protruding from the coil exposed portion 36 provided in the secondary insert molding resin portion 34 of the reactor 10 are fitted.
  • the lower portions of the coil portions 28 a and 28 b exposed without being covered by the secondary insert molding resin portion in the reactor 10 may be in close contact with the metal case bottom plate 44 through the heat dissipation material 42.
  • good heat dissipation from the coil portions 28a, 28b to the metal case bottom plate 44 can be ensured.
  • the heat dissipation material 42 is also an insulating sheet, it is possible to ensure insulation performance between the coil portions 28a and 28b and the metal case bottom plate 44.
  • a sheet-like heat dissipation material is preferably used for reasons such as easy handling, but is not limited to this.
  • a thermally conductive and insulating adhesive is placed in the mounting recess. The adhesive layer may be applied in advance and used as a heat dissipation material.
  • the metal case bottom plate 44 constitutes a side wall of the cooler to which the cooling water is circulated or supplied, or a cooler on the back surface thereof (that is, the surface opposite to the mounting surface of the reactor 10). Are forcedly cooled by being provided adjacent to each other.
  • two core members 14, a coil 28 including coil portions 28a and 28b, and two gap plates 30 are prepared (see FIGS. 1 and 3).
  • a primary insert molding resin portion 22 made of a thermoplastic resin is formed so as to cover at least the outer peripheral surface excluding the facing surfaces of the core members (see FIG. 2).
  • the two core members 14 are arranged so that the leg portions 16 and 18 face each other, the leg portions 16 and 18 are inserted into the coil portions 28a and 28b, and the end surfaces 16a and 18a of the leg portions 16 and 18 are connected to each other.
  • the adhesive plate 32 is bonded and fixed through the gap plate 30 (see FIGS. 3 and 4).
  • a secondary insert molding resin portion 34 made of a thermoplastic resin is formed on the reactor core 12 in which the coil 28 is disposed around the gap portion, and the coil portions 28a and 28b constituting the coil 28 are connected to the reactor core. 12 (see FIG. 5). Thereby, manufacture of reactor 10 is completed.
  • the coil portions 28a and 28b disposed around the gap plate 30 and the primary insert molding resin portion 22 in the reactor core 12 are the secondary insert molding resin portions made of thermoplastic resin. 34, the potting step of the thermosetting resin in the vacuum furnace and the heat curing treatment in the heating furnace are eliminated, and a high cycle (for example, an insert molding time required for one reactor is about 40 seconds). ) Makes it possible to manufacture the reactor 10.
  • the insulation distance between the coil 28 and the core member 14 is ensured by the primary insert molding resin part 22 which covers the circumference
  • a coil exposed portion 36 is provided in the secondary insert molding resin portion 34, and the exposed coil 28 is brought into close contact with the metal case bottom plate 44 with a highly heat conductive and insulating heat dissipation material 42 interposed therebetween. With the configuration in which 10 is attached, good heat dissipation and insulation can be secured for the coil 28.
  • FIG. 9 is a perspective view similar to FIG. 6, showing a state where the secondary insert molding resin portion 34 protrudes from the coil exposed portion 36 and a burr portion 35 is formed.
  • thermoplastic resin flows in when forming the secondary insert molding resin portion 34, and the coil portions 28a and 28b are exposed.
  • a burr portion 35 that partially covers the surface may be formed.
  • the resin portion 34 may be formed using a thermoplastic resin material having a higher thermal conductivity than the primary insert molding resin portion 22.
  • high thermal conductivity particles such as silica may be mixed with the same thermoplastic resin material as the primary insert molding resin portion 22 to improve thermal conductivity.
  • the secondary insert molding resin portion 34 is formed of a high thermal conductivity thermoplastic resin material as described above, the lower portions of the coil portions 28a and 28b are provided without providing the coil exposed portions as in the reactor of the above embodiment. May be covered with the secondary insert molding resin portion 34.
  • the presence of the secondary insert molding resin portion 34 between the coil portions 28a, 28b and the metal case bottom plate 44 can improve the insulation performance.
  • the heat dissipating material 42 may be slightly insulative as long as it has high thermal conductivity, and accordingly, the cost of the heat dissipating material can be reduced.
  • the secondary insert molding resin portion 34 when the secondary insert molding resin portion 34 is formed so as to cover the lower portions of the coil portions 28a and 28b as described above, it may be mounted directly on the metal case bottom plate 44 as shown in FIG. Good. In this way, the cost can be reduced and the assembly can be facilitated by omitting the heat dissipation material, and the heat dissipation from the coil 28 to the metal case bottom plate 44 can be further improved.
  • the primary insert molding resin portion 22 has been described as being formed so as to cover the entire outer periphery of the core member 14 except the leg end surfaces 16a and 18a.
  • the primary insert molding resin portion 22 is not limited to this.
  • only the portions corresponding to the leg covering portion 24 and the wall portion 26 may be formed to expose the whole or a part of the connecting portion 20 of the core member 14.
  • the coil exposed portion 36 is provided at the lower portion of the secondary insert molding resin portion 34 to expose the lower portions of the coil portions 28a and 28b, but when the reactor is attached to the lower surface of the metal case bottom plate 44, What is necessary is just to attach the reactor 10 shown in FIG. 5 in the direction turned upside down (namely, direction shown in FIG. 6).
  • the reactor core 12 is configured by the two U-shaped core members 14 has been described.
  • the present invention is not limited to this, and one is provided between the two U-shaped core members.
  • the reactor core may be configured by interposing a plurality of rectangular parallelepiped core members.
  • the reactor core includes three or more gap portions.
  • a secondary insert molding resin portion may be formed to fix the coil to the reactor core.
  • reactors 10 reactors, 12 reactor cores, 14 core members, 16 first leg, 18 second leg, 16a, 18a leg end face, 20 connecting part, 22 primary insert molding resin part, 24 leg covering part, 25a concave part, 25b convex part, 26 wall part, 28 coil, 28a, 28b coil part, 29a, 29b conducting wire end part, 30 gap plate, 32 adhesive, 34 secondary insert molding resin part, 35 burr part, 36 coil exposed part, 38 Mounting part, 40 bolt insertion hole, 42 heat dissipation material, 44 reactor installation member or metal case bottom plate, 46 bolt, 48 female screw hole, 50a, 50b mounting recess.

Abstract

An inductor that has the following: an inductor core comprising a plurality of core members arranged in a ring with gaps therebetween; primary insert-molded resin parts comprising a thermoplastic resin covering the outside surface of the inductor core, excluding the surfaces of the core members that face each other; coils disposed around the aforementioned gaps and the primary insert-molded resin parts on the inductor core; and secondary insert-molded resin parts comprising a thermoplastic resin insert-molded around the coils to affix said coils to the inductor core. This allows high-cycle manufacturing of inductors without a thermosetting-resin potting step in a vacuum furnace or a heat curing treatment in a heating furnace.

Description

リアクトル、および、その製造方法Reactor and manufacturing method thereof
 本発明は、リアクトルおよびその製造方法に係り、特に、電気自動車やハイブリッド車等に搭載されるリアクトルおよびその製造方法に関する。 The present invention relates to a reactor and a manufacturing method thereof, and more particularly to a reactor mounted on an electric vehicle, a hybrid vehicle, and the like and a manufacturing method thereof.
 従来、ハイブリッド車両等の電動車両に搭載される電力変換回路の一部にリアクトルが組み込まれたものがある。このリアクトルは、例えば、バッテリから供給される直流電力を昇圧して動力源であるモータ側へ出力するコンバータ等に用いられる。 Conventionally, a reactor is incorporated in a part of a power conversion circuit mounted on an electric vehicle such as a hybrid vehicle. This reactor is used, for example, in a converter that boosts DC power supplied from a battery and outputs the boosted power to a motor that is a power source.
 リアクトルは、一般に、磁性材からなる複数のコア部材と、これらのコア部材を非磁性ギャップ板を挟んで環状に連結されてなるリアクトルコアと、ギャップ板を含んだリアクトルコアのコイル取付位置の周囲に配置されたコイルとを備える。そして、リアクトルコアおよびコイルを含むリアクトルは、例えばアルミ合金等の金属製のケース内にボルト等によって固定された状態で車両に搭載される。 Generally, a reactor is composed of a plurality of core members made of a magnetic material, a reactor core formed by annularly connecting these core members with a non-magnetic gap plate interposed therebetween, and a periphery of a coil mounting position of the reactor core including the gap plate. And a coil disposed on the surface. The reactor including the reactor core and the coil is mounted on the vehicle in a state of being fixed by a bolt or the like in a metal case such as an aluminum alloy.
 ここで上記のようなリアクトルに関連する先行技術文献として、例えば、特開2009-99793号公報(特許文献1)には、コイルを具備するリアクトルコアをハウジング内に収容固定し、ハウジングとリアクトルコアおよびコイルとの間にシリコーン樹脂を含浸硬化させてリアクトルをハウジング内に固定するリアクトルの製造方法が開示されている。 Here, as a prior art document related to the reactor as described above, for example, Japanese Patent Laid-Open No. 2009-99793 (Patent Document 1), a reactor core including a coil is accommodated and fixed in a housing, and the housing and the reactor core are connected. And a method of manufacturing a reactor in which a silicone resin is impregnated and cured between the coil and a coil to fix the reactor in a housing.
 また、特開2009-27000号公報(特許文献2)には、ギャップを介して複数の磁性を有するI型コアが繋げられてコアユニットが形成され、2つの該コアユニットの端部間を磁性を有するU型コアを繋ぐことによって略環状のリアクトルコアが形成され、コアユニットの外周にコイルが形成されてリアクトルを成し、リアクトルがハウジング内に収容された姿勢でリアクトルとハウジングの間に樹脂モールド体が形成されたリアクトル装置が開示されている。このリアクトル装置では、樹脂モールド体がリアクトルのコイル形成箇所に形成されており、U型コアとハウジングとの間には樹脂モールド体が形成されていない構成とすることが記載されている。 Japanese Patent Laid-Open No. 2009-27000 (Patent Document 2) discloses that a core unit is formed by connecting a plurality of magnetic I-type cores via a gap, and a gap is formed between the ends of the two core units. A substantially annular reactor core is formed by connecting U-shaped cores having a core, a coil is formed on the outer periphery of the core unit to form a reactor, and a resin is placed between the reactor and the housing in a posture in which the reactor is accommodated in the housing. A reactor device in which a mold body is formed is disclosed. In this reactor device, it is described that the resin mold body is formed at the coil forming portion of the reactor, and the resin mold body is not formed between the U-shaped core and the housing.
特開2009-99793号公報JP 2009-99793 A 特開2009-27000号公報JP 2009-27000 A
 上記特許文献1および2のリアクトルでは、コイルが組み付けられた環状のリアクトルコアをハウジング内に収容し、ハウジングとリアクトルコアおよびコイルとの間の隙間に熱硬化型樹脂であるシリコーン樹脂を注ぎ込んで充填するポッティング工程を行い、そして、加熱処理を実行して上記シリコーン樹脂を硬化させることにより、リアクトルコアに対してコイルを固定するともに、コイルからハウジングへの放熱性を高熱伝導性のシリコーン樹脂を介在させることで確保している。 In the reactors of Patent Documents 1 and 2, an annular reactor core with a coil assembled therein is accommodated in a housing, and a silicone resin, which is a thermosetting resin, is poured into a gap between the housing, the reactor core and the coil, and filled. The potting process is performed, and the silicone resin is cured by performing a heat treatment, so that the coil is fixed to the reactor core, and the heat dissipation from the coil to the housing is interposed with a highly thermally conductive silicone resin. It is secured by letting.
 上記のようなポッティング工程は、注ぎ込まれるシリコーン樹脂に気泡が含まれてしまうと断熱層を形成してコイルからハウジングへの放熱性が阻害されることになる。そのため、このような気泡が含有されないように真空炉内で真空引きした状態でシリコーン樹脂のポッティングを行う必要がある。 In the potting process as described above, if bubbles are included in the poured silicone resin, a heat insulating layer is formed and heat dissipation from the coil to the housing is hindered. Therefore, it is necessary to pot the silicone resin in a vacuumed state in a vacuum furnace so as not to contain such bubbles.
 また、このようにポッティングしたシリコーン樹脂を十分に硬化させるには、加熱炉内に移して例えば2~3時間程度の熱処理をする必要があり、リアクトルの製造サイクル時間を長くする要因となっていた。 In addition, in order to sufficiently cure the potted silicone resin, it is necessary to transfer it into a heating furnace and perform a heat treatment of, for example, about 2 to 3 hours, which has been a factor in prolonging the reactor manufacturing cycle time. .
 本発明の目的は、真空炉中での熱硬化性樹脂のポッティング工程および加熱炉内での加熱硬化処理を廃止してハイサイクルでの製造を可能にするリアクトル、および、その製造方法を提供することにある。 The objective of this invention provides the reactor which abolishes the potting process of the thermosetting resin in a vacuum furnace, and the heat-hardening process in a heating furnace, and enables manufacture in a high cycle, and its manufacturing method There is.
 本発明の一態様であるリアクトルは、複数のコア部材がギャップ部を介して環状に連設されてなるリアクトルコアと、少なくとも前記コア部材同士の対向面を除く前記リアクトルコアの外周面を覆って設けられた熱可塑性樹脂からなる一次インサート成形樹脂部と、前記ギャップ部および前記リアクトルコアの一次インサート成形樹脂部の周囲に配置されるコイルと、前記コイルの周囲にインサート成形されることにより前記コイルを前記リアクトルコアに固定する熱可塑性樹脂からなる二次インサート成形樹脂部と、を備えるものである。 A reactor according to an aspect of the present invention covers a reactor core in which a plurality of core members are annularly connected via a gap portion, and covers an outer peripheral surface of the reactor core except at least a facing surface between the core members. A primary insert molding resin portion made of a thermoplastic resin provided; a coil disposed around the primary insert molding resin portion of the gap portion and the reactor core; and the coil formed by insert molding around the coil. And a secondary insert molding resin part made of a thermoplastic resin that fixes the resin to the reactor core.
 本発明に係るリアクトルにおいて、前記二次インサート成形樹脂部は前記リアクトルが設置されるリアクトル設置部材に対向する部分にて前記コイルを露出させるコイル露出部を含み、前記コイル露出部が放熱材を介して前記リアクトル設置部材に接触して取り付けられてもよい。 The reactor which concerns on this invention WHEREIN: The said secondary insert molding resin part contains the coil exposure part which exposes the said coil in the part facing the reactor installation member in which the said reactor is installed, and the said coil exposure part is via a thermal radiation material. And may be attached in contact with the reactor installation member.
 また、本発明に係るリアクトルにおいて、前記二次インサート成形樹脂部は、前記一次インサート成形樹脂部よりも高熱伝導性の樹脂材料により形成されてもよい。 Further, in the reactor according to the present invention, the secondary insert molding resin portion may be formed of a resin material having higher thermal conductivity than the primary insert molding resin portion.
 さらに、本発明に係るリアクトルにおいて、前記一次インサート成形樹脂部または前記二次インサート成形樹脂部には、前記リアクトルをリアクトル設置部材にボルト締結するための取付部が一体形成されていてもよい。 Furthermore, in the reactor according to the present invention, the primary insert molding resin portion or the secondary insert molding resin portion may be integrally formed with an attachment portion for bolting the reactor to a reactor installation member.
 本発明の別の態様であるリアクトルの製造方法は、複数のコア部材がギャップ部を介して環状に連設されてなるリアクトルコアと、ギャップ部を含む前記リアクトルコアの周囲に設けられるコイルとを備えるリアクトルの製造方法であって、前記複数のコア部材および前記コイルを準備し、前記コア部材について少なくとも前記コア部材同士の対向面を除く外周面を覆って熱可塑性樹脂からなる一次インサート成形樹脂部を形成し、前記複数のコア部材を前記コイルに挿通した状態でギャップ部を介して環状に連結し、前記ギャップ部および前記リアクトルコアの一次インサート成形樹脂部の周囲に配置された前記コイルの周囲に熱可塑性樹脂からなる二次インサート成形樹脂部を形成して前記コイルを前記リアクトルコアに固定する、ことを含む。 According to another aspect of the present invention, there is provided a method for manufacturing a reactor comprising: a reactor core in which a plurality of core members are annularly connected via a gap portion; and a coil provided around the reactor core including the gap portion. A reactor manufacturing method comprising: preparing the plurality of core members and the coil; covering at least an outer peripheral surface of the core member excluding an opposing surface of the core members; and a primary insert molding resin portion made of a thermoplastic resin And surrounding the coil disposed around the gap portion and the primary insert molding resin portion of the reactor core, with the plurality of core members being inserted into the coil in a ring shape through a gap portion. Forming a secondary insert molding resin portion made of thermoplastic resin on the coil and fixing the coil to the reactor core. Including the.
 本発明に係るリアクトルの製造方法において、前記二次インサート成形樹脂部を形成するとき、前記リアクトルが設置されるリアクトル設置部材に対向する部分にて前記コイルを露出させるコイル露出部を形成し、前記コイル露出部が放熱材を介して前記リアクトル設置部材に接触した状態に組み付けてもよい。 In the manufacturing method of the reactor according to the present invention, when forming the secondary insert molding resin portion, forming a coil exposure portion that exposes the coil at a portion facing a reactor installation member where the reactor is installed, You may assemble | attach in the state which the coil exposure part contacted the said reactor installation member via the heat radiating material.
 また、本発明に係るリアクトルの製造方法において、前記二次インサート成形樹脂部を、前記一次インサート成形樹脂部よりも高熱伝導性の樹脂材料により形成してもよい。 Further, in the reactor manufacturing method according to the present invention, the secondary insert molding resin portion may be formed of a resin material having higher thermal conductivity than the primary insert molding resin portion.
 さらに、本発明に係るリアクトルの製造方法において、前記一次インサート成形樹脂部または前記二次インサート成形樹脂部を形成するとき、前記リアクトルをリアクトル設置部材にボルト締結するための取付部を一体形成してもよい。 Furthermore, in the method for manufacturing a reactor according to the present invention, when the primary insert molding resin portion or the secondary insert molding resin portion is formed, an attachment portion for bolting the reactor to the reactor installation member is integrally formed. Also good.
 本発明に係るリアクトル、および、その製造方法によれば、リアクトルコアにおけるギャップ部および一次インサート成形樹脂部の周囲に配置されたコイルを熱可塑性樹脂からなる二次インサート成形樹脂部によって固定する構成としたので、真空炉中での熱硬化性樹脂のポッティング工程および加熱炉内での加熱硬化処理を廃止してハイサイクルでのリアクトルの製造が可能になる。 According to the reactor according to the present invention and the manufacturing method thereof, the coil disposed around the gap portion and the primary insert molding resin portion in the reactor core is fixed by the secondary insert molding resin portion made of thermoplastic resin. Therefore, the potting process of the thermosetting resin in the vacuum furnace and the heat curing treatment in the heating furnace are abolished, and the reactor can be manufactured in a high cycle.
本発明の一実施の形態であるリアクトルを構成するリアクトルコアのコア部材を示す斜視図である。It is a perspective view which shows the core member of the reactor core which comprises the reactor which is one embodiment of this invention. 図1のコア部材に熱可塑性樹脂からなる一次インサート成形樹脂部を形成した状態を示す斜視図である。It is a perspective view which shows the state which formed the primary insert molding resin part which consists of thermoplastic resins in the core member of FIG. 図2に示す2つのコア部材と、コイルと、2つのギャップ板とが組み付けられる様子を示す分解斜視図である。It is a disassembled perspective view which shows a mode that the two core members shown in FIG. 2, a coil, and two gap plates are assembled | attached. 図3に示すコア部材、コイルおよびギャップ板が組み付けられた状態のリアクトルコアおよびコイルを示す斜視図である。FIG. 4 is a perspective view showing a reactor core and a coil in a state in which a core member, a coil, and a gap plate shown in FIG. 3 are assembled. 図4に示すリアクトルコアおよびコイルに二次インサート成形樹脂部を形成してコイルを固定した状態を示す斜視図である。It is a perspective view which shows the state which formed the secondary insert molding resin part in the reactor core and coil shown in FIG. 4, and fixed the coil. 二次インサート成形樹脂部の下部に形成されたコイル露出部を示す斜視図である。It is a perspective view which shows the coil exposure part formed in the lower part of the secondary insert molding resin part. コイルが固定されたリアクトルが放熱材を介して金属製ケース底板上にボルト固定される様子を示す分解斜視図である。It is a disassembled perspective view which shows a mode that the reactor to which the coil was fixed is bolt-fixed on a metal case bottom plate via a heat radiating material. 金属製ケース底板上に固定されたリアクトルの縦断面図である。It is a longitudinal cross-sectional view of the reactor fixed on the metal case bottom plate. コイル露出部に二次インサート成形樹脂部がはみ出してバリ部が形成されている様子を示す、図6と同様の斜視図である。It is a perspective view similar to FIG. 6 which shows a mode that the secondary insert molding resin part protrudes in the coil exposure part, and the burr | flash part is formed. コイルを露出させることなく二次インサート成形樹脂部で覆って金属製ケース底板上に直に取り付けた状態を示す、図8と同様の縦断面図である。It is the longitudinal cross-sectional view similar to FIG. 8 which shows the state which covered the secondary insert molding resin part without exposing a coil, and was attached directly on the metal case bottom plate.
 以下に、本発明に係る実施の形態(以下、実施形態という)について添付図面を参照しながら詳細に説明する。この説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、用途、目的、仕様等にあわせて適宜変更することができる。また、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。 Hereinafter, embodiments (hereinafter referred to as embodiments) according to the present invention will be described in detail with reference to the accompanying drawings. In this description, specific shapes, materials, numerical values, directions, and the like are examples for facilitating the understanding of the present invention, and can be appropriately changed according to the application, purpose, specification, and the like. In addition, when a plurality of embodiments and modifications are included in the following, it is assumed from the beginning that these characteristic portions are used in appropriate combinations.
 図1は、本発明の一実施の形態であるリアクトル10を構成するリアクトルコア12のコア部材14を示す斜視図である。本実施形態におけるリアクトルコア12は、同一形状をなす2つのコア部材14より構成される。 FIG. 1 is a perspective view showing a core member 14 of a reactor core 12 constituting a reactor 10 according to an embodiment of the present invention. The reactor core 12 in this embodiment is composed of two core members 14 having the same shape.
 コア部材14は、平面視で略U字型に形成されており、互いに平行に突き出た第1脚部16および第2脚部18と各脚部16,18を接続する平面視で略円弧状の接続部20とを有する。また、コア部材14は、樹脂コーティングされた磁性粉をバインダを混合して加圧成形してなる圧粉磁心によって好適に構成される。ただし、コア部材14は、略U字型に打ち抜き加工された多数枚の電磁鋼板を積層してカシメ等により一体に連結してなる鋼板積層体で構成されてもよい。 The core member 14 is formed in a substantially U shape in a plan view, and has a substantially arc shape in a plan view connecting the first leg portion 16 and the second leg portion 18 projecting parallel to each other and the leg portions 16 and 18. Connection portion 20. The core member 14 is preferably constituted by a powder magnetic core formed by pressure-molding resin-coated magnetic powder with a binder mixed. However, the core member 14 may be formed of a steel plate laminate formed by laminating a plurality of electromagnetic steel plates punched into a substantially U shape and integrally connecting them by caulking or the like.
 コア部材14の第1および第2脚部16,18は、矩形状の端面16a,18aをそれぞれ有している。これらの端面16a,18aは、2つのコア部材14がギャップ部を介して略環状に突き合わされたときのコア部材同士の対向面となる。 The first and second leg portions 16 and 18 of the core member 14 have rectangular end surfaces 16a and 18a, respectively. These end surfaces 16a and 18a serve as opposing surfaces of the core members when the two core members 14 are abutted in a substantially annular shape through the gap portion.
 図2は、図1のコア部材14に熱可塑性樹脂からなる一次インサート成形樹脂部22を形成した状態を示す斜視図である。コア部材14は、上記脚部端面16a,18aを除く外周面全体が一次インサート成形樹脂部22によって覆われている。一次インサート成形樹脂部22は、コア部材14を成形型内に装着して熱可塑性樹脂を射出成形することによって形成される。 FIG. 2 is a perspective view showing a state in which a primary insert molding resin portion 22 made of a thermoplastic resin is formed on the core member 14 of FIG. The entire outer peripheral surface of the core member 14 excluding the leg end surfaces 16 a and 18 a is covered with a primary insert molding resin portion 22. The primary insert molding resin portion 22 is formed by mounting the core member 14 in a molding die and injection molding a thermoplastic resin.
 一次インサート成形樹脂部22は、脚部16,18の四方周囲を覆う脚部被覆部24を含む。この脚部被覆部24は、後述するように脚部16,18の周囲にコイルが配置されたときに、コイルとリアクトルコアとの間の絶縁距離を確保する機能を有する。 The primary insert molding resin part 22 includes a leg covering part 24 that covers the four sides of the leg parts 16 and 18. The leg covering portion 24 has a function of securing an insulation distance between the coil and the reactor core when the coil is disposed around the leg portions 16 and 18 as will be described later.
 また、一次インサート成形樹脂部22は、上下面からそれぞれ突出した壁部26を含む。この壁部26は、脚部16,18の周囲にコイルが配置されたときにコイル端面に当接または略当接することによりコイルを位置決めする機能を有する。 Moreover, the primary insert molding resin part 22 includes a wall part 26 protruding from the upper and lower surfaces. The wall portion 26 has a function of positioning the coil by abutting or substantially abutting against the coil end surface when the coil is disposed around the leg portions 16 and 18.
 さらに、一次インサート成形樹脂部22において第1脚部16の脚部被覆部24は、矩形枠状をなす縁部が第1脚部16の端面16aから突出して形成されており、その突出した部分において横方向に対向する2辺部に略台形状に凹んだ凹部25aが形成されている。他方、第2脚部18の脚部被覆部24は、矩形枠状をなす縁部が第2脚部18の端面18aとほぼ面一をなすように形成されており、横方向に対向する2辺部に略台形状に突出した凸部25bが形成されている。 Further, in the primary insert molding resin portion 22, the leg covering portion 24 of the first leg portion 16 is formed with an edge portion forming a rectangular frame shape protruding from the end surface 16a of the first leg portion 16, and the protruding portion thereof. In FIG. 2, recesses 25 a that are recessed in a substantially trapezoidal shape are formed on two sides facing each other in the lateral direction. On the other hand, the leg covering portion 24 of the second leg portion 18 is formed such that the edge portion forming a rectangular frame is substantially flush with the end surface 18a of the second leg portion 18 and is opposed to the lateral direction 2. Convex portions 25b projecting in a substantially trapezoidal shape are formed on the side portions.
 リアクトルコア12を構成する2つのコア部材14には、上記のような一次インサート成形樹脂部22が同様に形成されている。そして、図2に示すように、一方のコア部材14の向きを反転させて2つのコア部材14について第1脚部16と第2脚部18とが対向するように配置する。これにより、2つのコア部材14を環状に連結したとき、第1脚部16の脚部被覆部24に形成された凹部25aと、第2脚部18の脚部被覆部24に形成された凸部25bとが嵌合することによって、互いに対向する第1および第2脚部16,18の端面16a,18a間の距離、すなわちギャップ部の寸法を正確に規定することができる。 The primary insert molding resin portion 22 as described above is similarly formed on the two core members 14 constituting the reactor core 12. Then, as shown in FIG. 2, the orientation of one core member 14 is reversed and the two core members 14 are arranged so that the first leg portion 16 and the second leg portion 18 face each other. Thereby, when the two core members 14 are connected in a ring shape, the concave portion 25a formed in the leg portion covering portion 24 of the first leg portion 16 and the convex portion formed in the leg portion covering portion 24 of the second leg portion 18. By fitting the portion 25b, the distance between the end surfaces 16a, 18a of the first and second leg portions 16, 18 facing each other, that is, the dimension of the gap portion can be accurately defined.
 一次インサート成形樹脂部22については、脚部端面16a,18aの周囲に矩形枠状に形成された脚部被覆部24において縦方向に対向する2辺部にも上記のような凹部および凸部をそれぞれ形成してもよい。このようにすれば、2つのコア部材14を組み合わせたときの横方向の相対位置を確実に位置決めすることが可能になる。また、上記凹部および凸部は、対向する脚部同士の縦方向および/または横方向の位置決め機能だけを有し、脚部被覆部における凹部および凸部以外の端面同士が当接することによって対向方向の位置が決められて上記ギャップ部の寸法を規定するように構成してもよい。 As for the primary insert molding resin portion 22, the above-described concave and convex portions are also formed on the two sides facing in the vertical direction in the leg covering portion 24 formed in a rectangular frame shape around the leg end faces 16a and 18a. Each may be formed. In this way, the relative position in the horizontal direction when the two core members 14 are combined can be reliably positioned. Moreover, the said recessed part and a convex part have only the vertical and / or horizontal positioning function of the leg parts which oppose, and an opposing direction is because end surfaces other than the recessed part and convex part in a leg part coating | cover part contact | abut. The position may be determined to define the dimension of the gap portion.
 また、一次インサート成形樹脂部22は、脚部端面16a,18aを除く外周面全体を覆って形成されているため、比較的強度が低くて欠けやすい圧粉磁心からなるコア部材14の破損を防止する保護機能を有するとともに、後述するように金属製ケースにリアクトルが取り付けられたときにコア部材14と金属製ケースとの間の絶縁性能を確保する機能も有する。 Further, since the primary insert molding resin portion 22 is formed so as to cover the entire outer peripheral surface except for the leg end surfaces 16a and 18a, the core member 14 made of a dust core having a relatively low strength and easily chipped is prevented. In addition to having a protective function, as described later, it also has a function of ensuring insulation performance between the core member 14 and the metal case when the reactor is attached to the metal case.
 図3は、図2に示す2つのコア部材14と、コイル28と、2つのギャップ板30とが組み付けられる様子を示す分解斜視図である。 FIG. 3 is an exploded perspective view showing a state in which the two core members 14, the coil 28, and the two gap plates 30 shown in FIG. 2 are assembled.
 本実施形態のリアクトル10を構成するコイル28は、例えばエナメル等で絶縁皮膜処理された扁平角形導線を巻型に巻いて予め形成されたエッジワイズ型のコイルであり、直列接続された2つのコイル部28a,28bによって構成される。各コイル部28a,28bは、一本の連続した扁平角形導線が巻回されて形成されている。 The coil 28 that constitutes the reactor 10 of the present embodiment is an edgewise coil that is formed in advance by winding a flat rectangular conductor wire that has been subjected to an insulating film treatment with, for example, enamel, around a coil, and two coils that are connected in series It is comprised by the parts 28a and 28b. Each coil part 28a, 28b is formed by winding a single continuous flat rectangular conductive wire.
 具体的には、一方のコイル部28aの導線端部29aを巻始めとしたとき、そこから扁平角形導線が反時計周り方向に巻回されてコイル部28aが形成され、そこから他方のコイル部28bへと移って時計周り方向に巻回されながらコイル部28bが形成されて巻終わり端部29bまで繋がっている。このようにコイル部28a,28bから突出した導線端部29a,29bがコイル28(すなわちリアクトル10)に対する電力の入出力端子に接続されることになる。 Specifically, when the conducting wire end 29a of one coil portion 28a is started to be wound, a flat rectangular conducting wire is wound counterclockwise therefrom to form the coil portion 28a, from which the other coil portion is formed. The coil portion 28b is formed while moving to 28b and wound clockwise, and is connected to the winding end portion 29b. Thus, the conducting wire end portions 29a and 29b protruding from the coil portions 28a and 28b are connected to the power input / output terminal for the coil 28 (that is, the reactor 10).
 また、コイル部28a,28bは、コア部材14の脚部16,18の外周に形成された脚部被覆部24よりも少し大きい略矩形状の内周形状に形成されている。これにより、コイル部28a,28bへのコア部材14の脚部16,18を挿通することが可能になる。また、コイル部28a,28bの巻き方向の長さは、環状に連結された2つのコア部材14の一次インサート成形樹脂部22の壁部26間の距離よりも少し短く形成されている。これにより、リアクトルコア12が組み立てられるときに、コイル部28a,28bが2つの壁部26間で若干の余裕を持って位置決めされるようにしている。 The coil portions 28a, 28b are formed in a substantially rectangular inner peripheral shape that is slightly larger than the leg covering portion 24 formed on the outer periphery of the leg portions 16, 18 of the core member 14. Thereby, the leg portions 16 and 18 of the core member 14 can be inserted into the coil portions 28a and 28b. Further, the length in the winding direction of the coil portions 28a, 28b is formed slightly shorter than the distance between the wall portions 26 of the primary insert molding resin portions 22 of the two core members 14 connected in an annular shape. Thus, when the reactor core 12 is assembled, the coil portions 28a, 28b are positioned with a slight margin between the two wall portions 26.
 ギャップ板30は、非磁性材料からなる長方形状の平板部材であり、例えばアルミナ等のセラミック板が好適に用いられる。リアクトルが組み付けられるときギャップ板30の両面には、図3中にクロスハッチングで一方面だけ示されるように接着剤32が塗付される。これにより、コイル部28a,28bに脚部16,18をそれぞれ挿通して2つのコア部材14を環状に組み付けると、第1脚部16と第2脚部18の端面16a,18a間にギャップ板30が挟持された状態で2つのコア部材14が接着固定されて連結されることになる。したがって、本実施形態のリアクトルでは、2つのコア部材14間に形成されるギャップ部がギャップ板30および接着剤層によって構成される。 The gap plate 30 is a rectangular flat plate member made of a nonmagnetic material, and for example, a ceramic plate such as alumina is preferably used. When the reactor is assembled, an adhesive 32 is applied to both sides of the gap plate 30 as shown in FIG. Thus, when the leg portions 16 and 18 are inserted into the coil portions 28a and 28b, respectively, and the two core members 14 are assembled in an annular shape, the gap plate is interposed between the end surfaces 16a and 18a of the first leg portion 16 and the second leg portion 18. The two core members 14 are bonded and fixed in a state where 30 is sandwiched. Therefore, in the reactor of this embodiment, the gap part formed between the two core members 14 is constituted by the gap plate 30 and the adhesive layer.
 上記接着剤には、接着力が強く且つ耐熱性に優れた例えばエポキシ系樹脂等の熱硬化型接着剤が好適に用いられる。このような熱硬化型接着剤を用いた場合でも、後述するように二次インサート成形樹脂部を形成する溶融樹脂の熱を利用して十分に硬化させることができ、迅速に接着強度を確保することができる。 As the adhesive, a thermosetting adhesive such as an epoxy resin having strong adhesive force and excellent heat resistance is preferably used. Even when such a thermosetting adhesive is used, it can be sufficiently cured using the heat of the molten resin forming the secondary insert molding resin portion as will be described later, and the adhesive strength can be secured quickly. be able to.
 ただし、接着剤は、熱硬化型のものに限定されず、例えば常温硬化型の接着剤が用いられてもよい。また、接着剤は、ギャップ板30ではなく、コア部材14の脚部端面16a,18aに予め塗付されてもよい。さらに、一次インサート成形樹脂部22をそれぞれ備えた2つのコア部材14が連結されたとき、互いに対向する第1および第2脚部16,18の端面16a,18a間のギャップ寸法が凹部25aと凸部25bとの嵌合によって正確に規定されるため、ギャップ板を廃止して所定量の接着剤だけでギャップ部が構成されるようにしてもよい。このようにすれば、部品数およびコストを削減でき、組み付けを容易にできる利点がある。 However, the adhesive is not limited to the thermosetting type, and for example, a room temperature curing type adhesive may be used. Further, the adhesive may be applied in advance to the leg end surfaces 16 a and 18 a of the core member 14 instead of the gap plate 30. Further, when the two core members 14 each having the primary insert molding resin portion 22 are connected, the gap dimension between the end surfaces 16a and 18a of the first and second leg portions 16 and 18 facing each other is convex with the concave portion 25a. Since it is precisely defined by fitting with the portion 25b, the gap plate may be eliminated and the gap portion may be configured with only a predetermined amount of adhesive. In this way, there are advantages that the number of parts and the cost can be reduced and the assembly can be facilitated.
 図4は、図3に示すコア部材14、コイル28およびギャップ板30が組み付けられた状態のリアクトルコア12およびコイル28を示す斜視図である。上記のようにコイル部28a,28bに脚部16,18をそれぞれ挿通して2つのコア部材14をギャップ板30および接着剤層を介して連結すると、2つのコア部材14がギャップ部を介して環状に連設されてなるリアクトルコア12と、リアクトルコア12においてギャップ部を含む脚部16,18の周囲に配置されたコイル28とが組み上がる。 FIG. 4 is a perspective view showing the reactor core 12 and the coil 28 in a state where the core member 14, the coil 28, and the gap plate 30 shown in FIG. 3 are assembled. As described above, when the leg portions 16 and 18 are respectively inserted into the coil portions 28a and 28b and the two core members 14 are connected via the gap plate 30 and the adhesive layer, the two core members 14 are interposed via the gap portions. Reactor cores 12 connected in an annular shape and coils 28 arranged around leg portions 16 and 18 including gap portions in the reactor core 12 are assembled.
 このとき、コア部材14の一次インサート成形樹脂部22の壁部26とコイル部28a,28bの端部との間には若干の隙間が形成された状態になっている。これにより、後述する二次インサート成形樹脂部を形成する溶融樹脂がコイル部28a,28bの内側へと流れ込むことが可能になっている。 At this time, a slight gap is formed between the wall portion 26 of the primary insert molding resin portion 22 of the core member 14 and the end portions of the coil portions 28a and 28b. Thereby, the molten resin forming the secondary insert molding resin portion described later can flow into the coil portions 28a, 28b.
 図5は、図4に示すリアクトルコア12およびコイル28に二次インサート成形樹脂部34を形成してコイル28を固定した状態を示す斜視図である。図5(図7も同様)においては二次インサート成形樹脂部34から突出して延びる導線端部29a,29bの図示が省略されている。また、図6は、二次インサート成形樹脂部34の下部に形成されたコイル露出部36を示す斜視図である。 FIG. 5 is a perspective view showing a state where the secondary insert molding resin portion 34 is formed on the reactor core 12 and the coil 28 shown in FIG. In FIG. 5 (the same applies to FIG. 7), the conductor end portions 29a and 29b extending from the secondary insert molding resin portion 34 are not shown. FIG. 6 is a perspective view showing a coil exposed portion 36 formed in the lower portion of the secondary insert molding resin portion 34.
 図4に示すように組み付けられたリアクトルコア12およびコイル28を別の成形型内に装着して、熱可塑性樹脂を射出成形することにより二次インサート成形樹脂部34が形成される。二次インサート成形樹脂部34は、一次インサート成形樹脂部22と同じ熱可塑性樹脂材料によって形成されてもよいし、または、異なる熱可塑性樹脂材料によって形成されてもよい。また、二次インサート成形樹脂部34は、コイル28を構成するコイル部28a,28bの周囲の略全体を覆って形成されている。これにより、コイル28を構成する2つのコイル部28a,28bが環状をなすリアクトルコア12に対してしっかりと固定される。また、二次インサート成形樹脂部34は、一次インサート成形樹脂部22の壁部26の外側までそれぞれ覆って成形されるため、壁部26のアンカー効果によって2つのコア部材14同士が環状に連結された状態で確実に固定される。このようにしてリアクトル10の製造が完了する。 The secondary insert molding resin portion 34 is formed by mounting the reactor core 12 and the coil 28 assembled as shown in FIG. 4 in another mold and injection molding a thermoplastic resin. The secondary insert molding resin portion 34 may be formed of the same thermoplastic resin material as the primary insert molding resin portion 22 or may be formed of a different thermoplastic resin material. Further, the secondary insert molding resin portion 34 is formed so as to cover substantially the entire periphery of the coil portions 28 a and 28 b constituting the coil 28. Thereby, the two coil portions 28a and 28b constituting the coil 28 are firmly fixed to the annular reactor core 12. In addition, since the secondary insert molding resin portion 34 is formed so as to cover the outside of the wall portion 26 of the primary insert molding resin portion 22, the two core members 14 are connected in an annular shape by the anchor effect of the wall portion 26. It is securely fixed in the state. In this way, the manufacture of the reactor 10 is completed.
 二次インサート成形樹脂部34は、コイル部28a,28bの上部と外周側の側部と内周側の側部とを覆って形成されていることで、コイル28を構成する2つのコイル部28a,28bがリアクトルコア12に対して固定される。一方、二次インサート成形樹脂部34は、図6に示すように、コイル部28a,28bの下部が覆われずに露出させたコイル露出部36を含んでいる。このように二次インサート成形樹脂部34にコイル露出部36を設けることで、コイル部28a,28bからの放熱性を良好なものにできる。 The secondary insert molding resin portion 34 is formed so as to cover the upper portions of the coil portions 28 a and 28 b, the outer peripheral side portion, and the inner peripheral side portion, thereby forming the two coil portions 28 a constituting the coil 28. , 28b are fixed to the reactor core 12. On the other hand, as shown in FIG. 6, the secondary insert molding resin portion 34 includes a coil exposed portion 36 that is exposed without the lower portions of the coil portions 28 a and 28 b being covered. Thus, by providing the coil exposure part 36 in the secondary insert molding resin part 34, the heat dissipation from the coil parts 28a and 28b can be made favorable.
 図5,6に示すように、二次インサート成形樹脂部34には、リアクトル10をリアクトル設置部材にボルト締結により取り付けるための複数の取付部38が一体に突出形成されている。本実施形態では、4つの取付部38が形成された例を示す。そして、取付部38には、ボルト挿通穴40が貫通して形成されている。このように取付部38を二次インサート成形樹脂部34に一体成形することで、金属板製の取付部を特別に設ける必要がなく、構成部品数の削減およびコスト低減を図れる。なお、本実施形態では、二次インサート成形樹脂部34に取付部38を一体形成した例について説明したが、これに限定されるものではなく、二次インサート成形樹脂部34によって覆われない一次インサート成形樹脂部22の露出部分に取付部を一体成形してもよい。 As shown in FIGS. 5 and 6, the secondary insert molding resin portion 34 is integrally formed with a plurality of attachment portions 38 for attaching the reactor 10 to the reactor installation member by bolt fastening. In the present embodiment, an example in which four attachment portions 38 are formed is shown. A bolt insertion hole 40 is formed through the mounting portion 38. Thus, by integrally forming the attachment portion 38 on the secondary insert molding resin portion 34, it is not necessary to provide a special attachment portion made of a metal plate, and the number of components and cost can be reduced. In addition, although this embodiment demonstrated the example which integrally formed the attachment part 38 in the secondary insert molding resin part 34, it is not limited to this, The primary insert which is not covered with the secondary insert molding resin part 34 The attachment portion may be integrally formed with the exposed portion of the molded resin portion 22.
 図7は、二次インサート成形樹脂部34によってコイル28が固定されたリアクトル10が放熱材42を介してリアクトル設置部材44上にボルト固定される様子を示す分解斜視図である。図8は、リアクトル設置部材44上に固定されたリアクトル10の縦断面図である。 FIG. 7 is an exploded perspective view showing a state in which the reactor 10 to which the coil 28 is fixed by the secondary insert molding resin portion 34 is bolted onto the reactor installation member 44 through the heat dissipating material 42. FIG. 8 is a longitudinal sectional view of the reactor 10 fixed on the reactor installation member 44.
 上記のようにして製造されたリアクトル10は、二次インサート成形樹脂部34の取付部38にボルト46を挿通してリアクトル設置部材、具体的には例えばアルミ合金等からなる金属製ケースの底板44に形成された雌ねじ穴48に締付けることによりシート状の放熱材42を挟み込んだ状態で金属製ケース底板44上に固定される。 The reactor 10 manufactured as described above is inserted into the mounting portion 38 of the secondary insert molding resin portion 34 with bolts 46, and a reactor installation member, specifically, a bottom plate 44 of a metal case made of, for example, an aluminum alloy or the like. The sheet-like heat dissipation material 42 is sandwiched between the metal case bottom plate 44 and the metal case bottom plate 44 so as to be fixed.
 金属製ケースの底板44には、リアクトル10の二次インサート成形樹脂部34に設けられたコイル露出部36において突出したコイル部28a,28bの露出部分が嵌り込む形状の取付凹部50a,50bが形成されている。これにより、図8に示すように、リアクトル10において二次インサート成形樹脂部に覆われることなく露出したコイル部28a,28bの下部が放熱材42を介して金属製ケース底板44に密着することができ、その結果、コイル部28a,28bから金属製ケース底板44への良好な放熱性を確保できる。また、放熱材42は、絶縁性シートでもあるため、コイル部28a,28bと金属製ケース底板44との間の絶縁性能も確保することができる。なお、本実施形態では取扱いが容易等の理由からシート状の放熱材が好適に用いられるが、これに限定されるものではなく、例えば、熱伝導性および絶縁性の接着剤を取付凹部内に予め塗布しておき、この接着剤層を放熱材として用いてもよい。 On the bottom plate 44 of the metal case, there are formed mounting recesses 50a and 50b in which the exposed portions of the coil portions 28a and 28b protruding from the coil exposed portion 36 provided in the secondary insert molding resin portion 34 of the reactor 10 are fitted. Has been. As a result, as shown in FIG. 8, the lower portions of the coil portions 28 a and 28 b exposed without being covered by the secondary insert molding resin portion in the reactor 10 may be in close contact with the metal case bottom plate 44 through the heat dissipation material 42. As a result, good heat dissipation from the coil portions 28a, 28b to the metal case bottom plate 44 can be ensured. Moreover, since the heat dissipation material 42 is also an insulating sheet, it is possible to ensure insulation performance between the coil portions 28a and 28b and the metal case bottom plate 44. In this embodiment, a sheet-like heat dissipation material is preferably used for reasons such as easy handling, but is not limited to this. For example, a thermally conductive and insulating adhesive is placed in the mounting recess. The adhesive layer may be applied in advance and used as a heat dissipation material.
 図示していないが、金属製ケース底板44は、冷却水が循環供給される冷却器の側壁を構成するか、または、その裏面(すなわちリアクトル10の取付面とは反対側表面)側に冷却器が隣接して設けられることによって強制冷却される。 Although not shown, the metal case bottom plate 44 constitutes a side wall of the cooler to which the cooling water is circulated or supplied, or a cooler on the back surface thereof (that is, the surface opposite to the mounting surface of the reactor 10). Are forcedly cooled by being provided adjacent to each other.
 続いて、上記構成からなるリアクトル10の製造方法をまとめると次のようになる。 Subsequently, the manufacturing method of the reactor 10 having the above configuration is summarized as follows.
 まず、2つコア部材14と、コイル部28a,28bを含むコイル28と、2つのギャップ板30とを準備する(図1,3参照)。 First, two core members 14, a coil 28 including coil portions 28a and 28b, and two gap plates 30 are prepared (see FIGS. 1 and 3).
 続いて、コア部材14について、少なくともコア部材同士の対向面を除く外周面を覆って熱可塑性樹脂からなる一次インサート成形樹脂部22を形成する(図2参照)。 Subsequently, for the core member 14, a primary insert molding resin portion 22 made of a thermoplastic resin is formed so as to cover at least the outer peripheral surface excluding the facing surfaces of the core members (see FIG. 2).
 次に、2つのコア部材14を脚部16,18同士が対向する向きに配置し、脚部16,18をコイル部28a,28bに挿通し、脚部16,18の端面16a,18a同士をギャップ板30を介して接着剤32により接着固定する(図3,4参照)。 Next, the two core members 14 are arranged so that the leg portions 16 and 18 face each other, the leg portions 16 and 18 are inserted into the coil portions 28a and 28b, and the end surfaces 16a and 18a of the leg portions 16 and 18 are connected to each other. The adhesive plate 32 is bonded and fixed through the gap plate 30 (see FIGS. 3 and 4).
 そして、ギャップ部の周囲にコイル28が配置されたリアクトルコア12に対して、熱可塑性樹脂からなる二次インサート成形樹脂部34を形成して、コイル28を構成するコイル部28a,28bをリアクトルコア12に固定する(図5参照)。これにより、リアクトル10の製造が完了する。 Then, a secondary insert molding resin portion 34 made of a thermoplastic resin is formed on the reactor core 12 in which the coil 28 is disposed around the gap portion, and the coil portions 28a and 28b constituting the coil 28 are connected to the reactor core. 12 (see FIG. 5). Thereby, manufacture of reactor 10 is completed.
 上述したように、本実施形態のリアクトル10では、リアクトルコア12においてギャップ板30および一次インサート成形樹脂部22の周囲に配置されたコイル部28a,28bを熱可塑性樹脂からなる二次インサート成形樹脂部34によって固定する構成としたので、真空炉中での熱硬化性樹脂のポッティング工程および加熱炉内での加熱硬化処理を廃止してハイサイクル(例えば、1つのリアクトルに要するインサート成形時間約40秒)でのリアクトル10の製造が可能になる。 As described above, in the reactor 10 according to the present embodiment, the coil portions 28a and 28b disposed around the gap plate 30 and the primary insert molding resin portion 22 in the reactor core 12 are the secondary insert molding resin portions made of thermoplastic resin. 34, the potting step of the thermosetting resin in the vacuum furnace and the heat curing treatment in the heating furnace are eliminated, and a high cycle (for example, an insert molding time required for one reactor is about 40 seconds). ) Makes it possible to manufacture the reactor 10.
 また、本実施形態のリアクトル10では、コイル28が取り付けられるコア部材14の脚部16,18の周囲を覆う一次インサート成形樹脂部22によってコイル28とコア部材14との間の絶縁距離が確保される。これにより、コイルを絶縁性の樹脂ボビンに巻装した状態でリアクトルコアに組み付ける必要がなく、樹脂ボビンを省略することができる。 Moreover, in the reactor 10 of this embodiment, the insulation distance between the coil 28 and the core member 14 is ensured by the primary insert molding resin part 22 which covers the circumference | surroundings of the leg parts 16 and 18 of the core member 14 to which the coil 28 is attached. The Accordingly, it is not necessary to assemble the coil around the insulating resin bobbin, and the resin bobbin can be omitted.
 さらに、二次インサート成形樹脂部34にコイル露出部36を設けて、露出したコイル28を、高熱伝導性で且つ絶縁性の放熱材42を挟んで金属製ケース底板44に密接させた状態でリアクトル10を取り付ける構成としたことで、コイル28について良好な放熱性および絶縁性を確保することができる。 Further, a coil exposed portion 36 is provided in the secondary insert molding resin portion 34, and the exposed coil 28 is brought into close contact with the metal case bottom plate 44 with a highly heat conductive and insulating heat dissipation material 42 interposed therebetween. With the configuration in which 10 is attached, good heat dissipation and insulation can be secured for the coil 28.
 次に、図9,10を参照して、上記実施形態の変形例について説明する。図9や、コイル露出部36に二次インサート成形樹脂部34がはみ出してバリ部35が形成されている様子を示す、図6と同様の斜視図である。 Next, a modification of the above embodiment will be described with reference to FIGS. FIG. 9 is a perspective view similar to FIG. 6, showing a state where the secondary insert molding resin portion 34 protrudes from the coil exposed portion 36 and a burr portion 35 is formed.
 コイル露出部36において露出するコイル部28a,28bの下部は、湾曲した外表面を有するために二次インサート成形樹脂部34を形成するときに熱可塑性樹脂が流れ込んで、コイル部28a,28bの露出表面を部分的に覆うバリ部35が形成されることがある。 Since the lower portions of the coil portions 28a and 28b exposed in the coil exposed portion 36 have curved outer surfaces, the thermoplastic resin flows in when forming the secondary insert molding resin portion 34, and the coil portions 28a and 28b are exposed. A burr portion 35 that partially covers the surface may be formed.
 このようなバリ部35によってコイル部28a,28bの露出部が部分的に覆われても、放熱材42を介して金属製ケース底板44への放熱性を良好にするために、二次インサート成形樹脂部34を一次インサート成形樹脂部22よりも高熱伝導性の熱可塑性樹脂材料を用いて形成してもよい。この場合、例えば、一次インサート成形樹脂部22と同じ熱可塑性樹脂材料にシリカ等の高熱伝導性粒子を混合して熱伝導性を改善してもよい。このように二次インサート成形樹脂部34だけを高熱伝導性の熱可塑性樹脂材料で形成すれば、材料コスト増加を抑制することができる。 Even if the exposed portions of the coil portions 28a and 28b are partially covered by the burrs 35, secondary insert molding is performed in order to improve heat dissipation to the metal case bottom plate 44 via the heat dissipation material 42. The resin portion 34 may be formed using a thermoplastic resin material having a higher thermal conductivity than the primary insert molding resin portion 22. In this case, for example, high thermal conductivity particles such as silica may be mixed with the same thermoplastic resin material as the primary insert molding resin portion 22 to improve thermal conductivity. Thus, if only the secondary insert molding resin portion 34 is formed of a high thermal conductivity thermoplastic resin material, an increase in material cost can be suppressed.
 また、上記のように二次インサート成形樹脂部34を高熱伝導性の熱可塑性樹脂材料で形成する場合、上記実施形態のリアクトルのようにコイル露出部を設けることなく、コイル部28a,28bの下部も二次インサート成形樹脂部34で覆ってもよい。この場合、コイル部28a,28bと金属製ケース底板44との間に二次インサート成形樹脂部34が存在することで絶縁性能を向上させることができる。また、この場合、放熱材42は高熱伝導性であれば絶縁性が若干劣るものであってもよく、その分、放熱材のコスト低減を図れる。 Further, when the secondary insert molding resin portion 34 is formed of a high thermal conductivity thermoplastic resin material as described above, the lower portions of the coil portions 28a and 28b are provided without providing the coil exposed portions as in the reactor of the above embodiment. May be covered with the secondary insert molding resin portion 34. In this case, the presence of the secondary insert molding resin portion 34 between the coil portions 28a, 28b and the metal case bottom plate 44 can improve the insulation performance. In this case, the heat dissipating material 42 may be slightly insulative as long as it has high thermal conductivity, and accordingly, the cost of the heat dissipating material can be reduced.
 さらに、上記のように二次インサート成形樹脂部34がコイル部28a,28bの下部も覆って形成される場合、図10に示すように、金属製ケース底板44上に直に取り付けるようにしてもよい。このようにすれば、放熱材の省略によるコスト低減と組付けの容易化を図れるとともに、コイル28から金属製ケース底板44への放熱性をより向上させることができる。 Further, when the secondary insert molding resin portion 34 is formed so as to cover the lower portions of the coil portions 28a and 28b as described above, it may be mounted directly on the metal case bottom plate 44 as shown in FIG. Good. In this way, the cost can be reduced and the assembly can be facilitated by omitting the heat dissipation material, and the heat dissipation from the coil 28 to the metal case bottom plate 44 can be further improved.
 なお、上記において本発明の実施形態およびその変形例について説明したが、本発明のリアクトルは上記構成に限定されるものではなく、種々の変更や改良が可能である。 In addition, although embodiment of this invention and its modification were demonstrated in the above, the reactor of this invention is not limited to the said structure, A various change and improvement are possible.
 例えば、上記では一次インサート成形樹脂部22は、脚部端面16a,18aを除くコア部材14の外周全体を覆って形成されるものとして説明したが、これに限定されるものではなく、一次インサート成形により脚部被覆部24および壁部26に相当する部分だけを形成して、コア部材14の接続部20の全体または一部を露出させてもよい。このようにコア部材を露出させることで、コア部材からの放熱性が向上する利点がある。 For example, in the above description, the primary insert molding resin portion 22 has been described as being formed so as to cover the entire outer periphery of the core member 14 except the leg end surfaces 16a and 18a. However, the primary insert molding resin portion 22 is not limited to this. Thus, only the portions corresponding to the leg covering portion 24 and the wall portion 26 may be formed to expose the whole or a part of the connecting portion 20 of the core member 14. By exposing the core member in this way, there is an advantage that heat dissipation from the core member is improved.
 また、上記においては二次インサート成形樹脂部34の下部にコイル露出部36を設けてコイル部28a,28bの下部を露出させたが、リアクトルが金属製ケース底板44の下面に取り付けられる場合には図5に示すリアクトル10を上下反転させた向き(すなわち図6に示す向き)で取り付ければよい。 Further, in the above, the coil exposed portion 36 is provided at the lower portion of the secondary insert molding resin portion 34 to expose the lower portions of the coil portions 28a and 28b, but when the reactor is attached to the lower surface of the metal case bottom plate 44, What is necessary is just to attach the reactor 10 shown in FIG. 5 in the direction turned upside down (namely, direction shown in FIG. 6).
 さらに、上記実施形態では、2つのU字型コア部材14でリアクトルコア12を構成する例について説明したが、これに限定されるのもではなく、2つのU字型コア部材の間に1つ又は複数の直方体状コア部材を介在させてリアクトルコアが構成されてもよい。この場合、リアクトルコアには3つ以上のギャップ部が含まれることになる。そしてこの場合、直方体状コア部材のコア部材同士の対向面を除く外周面に上記脚部被覆部24と同様の一次インサート成形樹脂部を形成しておき、全てのコア部材を環状に連結した後に二次インサート成形樹脂部を形成してリアクトルコアに対するコイルの固定を行えばよい。 Further, in the above-described embodiment, the example in which the reactor core 12 is configured by the two U-shaped core members 14 has been described. However, the present invention is not limited to this, and one is provided between the two U-shaped core members. Alternatively, the reactor core may be configured by interposing a plurality of rectangular parallelepiped core members. In this case, the reactor core includes three or more gap portions. And in this case, after forming the primary insert molding resin part similar to the said leg part coating | coated part 24 in the outer peripheral surface except the opposing surface of the core members of a rectangular parallelepiped core member, and connecting all the core members cyclically | annularly A secondary insert molding resin portion may be formed to fix the coil to the reactor core.
 10 リアクトル、12 リアクトルコア、14 コア部材、16 第1脚部、18 第2脚部、16a,18a 脚部端面、20 接続部、22 一次インサート成形樹脂部、24 脚部被覆部、25a 凹部、25b 凸部、26 壁部、28 コイル、28a,28b コイル部、29a,29b 導線端部、30 ギャップ板、32 接着剤、34 二次インサート成形樹脂部、35 バリ部、36 コイル露出部、38 取付部、40 ボルト挿通穴、42 放熱材、44 リアクトル設置部材または金属製ケース底板、46 ボルト、48 雌ねじ穴、50a,50b 取付凹部。 10 reactors, 12 reactor cores, 14 core members, 16 first leg, 18 second leg, 16a, 18a leg end face, 20 connecting part, 22 primary insert molding resin part, 24 leg covering part, 25a concave part, 25b convex part, 26 wall part, 28 coil, 28a, 28b coil part, 29a, 29b conducting wire end part, 30 gap plate, 32 adhesive, 34 secondary insert molding resin part, 35 burr part, 36 coil exposed part, 38 Mounting part, 40 bolt insertion hole, 42 heat dissipation material, 44 reactor installation member or metal case bottom plate, 46 bolt, 48 female screw hole, 50a, 50b mounting recess.

Claims (8)

  1.  複数のコア部材がギャップ部を介して環状に連設されてなるリアクトルコアと、
     少なくとも前記コア部材同士の対向面を除く前記リアクトルコアの外周面を覆って設けられた熱可塑性樹脂からなる一次インサート成形樹脂部と、
     前記ギャップ部および前記リアクトルコアの一次インサート成形樹脂部の周囲に配置されるコイルと、
     前記コイルの周囲にインサート成形されることにより前記コイルを前記リアクトルコアに固定する熱可塑性樹脂からなる二次インサート成形樹脂部と、
     を備える、リアクトル。
    A reactor core formed by annularly connecting a plurality of core members via a gap portion;
    A primary insert molding resin portion made of a thermoplastic resin provided to cover the outer peripheral surface of the reactor core except at least the facing surfaces of the core members;
    A coil disposed around the gap portion and the primary insert molding resin portion of the reactor core;
    A secondary insert molding resin portion made of a thermoplastic resin that is fixed to the reactor core by insert molding around the coil;
    Reactor with
  2.  請求項1に記載のリアクトルにおいて、
     前記二次インサート成形樹脂部は前記リアクトルが設置されるリアクトル設置部材に対向する部分にて前記コイルを露出させるコイル露出部を含み、前記コイル露出部が放熱材を介して前記リアクトル設置部材に接触することを特徴とするリアクトル。
    The reactor according to claim 1,
    The secondary insert molding resin portion includes a coil exposure portion that exposes the coil at a portion facing the reactor installation member on which the reactor is installed, and the coil exposure portion contacts the reactor installation member via a heat dissipation material. A reactor characterized by
  3.  請求項1または2に記載のリアクトルにおいて、
     前記二次インサート成形樹脂部は、前記一次インサート成形樹脂部よりも高熱伝導性の樹脂材料により形成されていることを特徴とするリアクトル。
    In the reactor according to claim 1 or 2,
    The secondary insert molding resin part is formed of a resin material having higher thermal conductivity than the primary insert molding resin part.
  4.  請求項1ないし3のいずれか一項に記載のリアクトルにおいて、
     前記一次インサート成形樹脂部または前記二次インサート成形樹脂部には、前記リアクトルをリアクトル設置部材にボルト締結するための取付部が一体形成されていることを特徴とするリアクトル。
    In the reactor according to any one of claims 1 to 3,
    The primary insert molding resin portion or the secondary insert molding resin portion is integrally formed with an attachment portion for bolting the reactor to a reactor installation member.
  5.  複数のコア部材がギャップ部を介して環状に連設されてなるリアクトルコアと、ギャップ部を含む前記リアクトルコアの周囲に設けられるコイルとを備えるリアクトルの製造方法であって、
     前記複数のコア部材および前記コイルを準備し、
     前記コア部材について少なくとも前記コア部材同士の対向面を除く外周面を覆って熱可塑性樹脂からなる一次インサート成形樹脂部を形成し、
     前記複数のコア部材を前記コイルに挿通した状態でギャップ部を介して環状に連結し、
     前記ギャップ部および前記リアクトルコアの一次インサート成形樹脂部の周囲に配置された前記コイルの周囲に熱可塑性樹脂からなる二次インサート成形樹脂部を形成して前記コイルを前記リアクトルコアに固定する、リアクトルの製造方法。
    A reactor manufacturing method comprising: a reactor core in which a plurality of core members are annularly connected via a gap portion; and a coil provided around the reactor core including the gap portion,
    Preparing the plurality of core members and the coil;
    Covering at least the outer peripheral surface of the core member excluding the facing surfaces of the core members to form a primary insert molding resin portion made of a thermoplastic resin,
    In a state where the plurality of core members are inserted through the coil, it is connected annularly through a gap portion,
    A reactor in which a secondary insert molding resin portion made of a thermoplastic resin is formed around the coil disposed around the gap portion and the primary insert molding resin portion of the reactor core, and the coil is fixed to the reactor core. Manufacturing method.
  6.  請求項5に記載のリアクトルの製造方法において、
     前記二次インサート成形樹脂部を形成するとき、前記リアクトルが設置されるリアクトル設置部材に対向する部分にて前記コイルを露出させるコイル露出部を形成し、前記コイル露出部が放熱材を介して前記リアクトル設置部材に接触した状態に組み付けることを特徴とするリアクトルの製造方法。
    In the manufacturing method of the reactor according to claim 5,
    When forming the secondary insert molding resin portion, a coil exposed portion that exposes the coil is formed at a portion facing a reactor installation member on which the reactor is installed, and the coil exposed portion is disposed via the heat dissipation material. A reactor manufacturing method, wherein the reactor is assembled in contact with a reactor installation member.
  7.  請求項5または6に記載のリアクトルの製造方法において、
     前記二次インサート成形樹脂部を、前記一次インサート成形樹脂部よりも高熱伝導性の樹脂材料により形成することを特徴とするリアクトルの製造方法。
    In the manufacturing method of the reactor of Claim 5 or 6,
    The method for manufacturing a reactor, wherein the secondary insert molding resin portion is formed of a resin material having higher thermal conductivity than the primary insert molding resin portion.
  8.  請求項5から7のいずれか一項に記載のリアクトルの製造方法において、
     前記一次インサート成形樹脂部または前記二次インサート成形樹脂部を形成するとき、前記リアクトルをリアクトル設置部材にボルト締結するための取付部を一体形成することを特徴とするリアクトルの製造方法。
    In the manufacturing method of the reactor as described in any one of Claim 5 to 7,
    A method of manufacturing a reactor, wherein when forming the primary insert molding resin portion or the secondary insert molding resin portion, an attachment portion for bolting the reactor to a reactor installation member is integrally formed.
PCT/JP2011/064686 2011-06-27 2011-06-27 Inductor and manufacturing method therefor WO2013001591A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013522381A JP5626466B2 (en) 2011-06-27 2011-06-27 Reactor and manufacturing method thereof
PCT/JP2011/064686 WO2013001591A1 (en) 2011-06-27 2011-06-27 Inductor and manufacturing method therefor
CN201180071943.8A CN103650077B (en) 2011-06-27 2011-06-27 Reactor and manufacture method thereof
EP11868702.9A EP2725591B9 (en) 2011-06-27 2011-06-27 Inductor and manufacturing method therefor
US14/129,176 US9153372B2 (en) 2011-06-27 2011-06-27 Inductor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064686 WO2013001591A1 (en) 2011-06-27 2011-06-27 Inductor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2013001591A1 true WO2013001591A1 (en) 2013-01-03

Family

ID=47423537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064686 WO2013001591A1 (en) 2011-06-27 2011-06-27 Inductor and manufacturing method therefor

Country Status (5)

Country Link
US (1) US9153372B2 (en)
EP (1) EP2725591B9 (en)
JP (1) JP5626466B2 (en)
CN (1) CN103650077B (en)
WO (1) WO2013001591A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033928A (en) * 2011-07-04 2013-02-14 Sumitomo Electric Ind Ltd Reactor, converter, and electronic power conversion apparatus
US8749335B2 (en) 2011-06-27 2014-06-10 Toyota Jidosha Kabushiki Kaisha Reactor
CN104052246A (en) * 2013-03-15 2014-09-17 福特全球技术公司 Vehicle
JP2014192516A (en) * 2013-03-28 2014-10-06 Toyota Motor Corp Reactor
JP2015070140A (en) * 2013-09-30 2015-04-13 日立金属株式会社 Reactor
US9153372B2 (en) 2011-06-27 2015-10-06 Toyota Jidosha Kabushiki Kaisha Inductor and manufacturing method therefor
JP2015188016A (en) * 2014-03-26 2015-10-29 新電元工業株式会社 Heat radiation structure of coil and electric device
US9183981B2 (en) 2011-06-27 2015-11-10 Toyota Jidosha Kabushiki Kaisha Reactor and manufacturing method thereof
KR20160078276A (en) * 2014-12-24 2016-07-04 도요타 지도샤(주) Reactor
JP2016127070A (en) * 2014-12-26 2016-07-11 本田技研工業株式会社 Reactor
US9543069B2 (en) 2012-11-09 2017-01-10 Ford Global Technologies, Llc Temperature regulation of an inductor assembly
US9581234B2 (en) 2012-11-09 2017-02-28 Ford Global Technologies, Llc Liquid cooled power inductor
JP2018006650A (en) * 2016-07-06 2018-01-11 トヨタ自動車株式会社 Reactor
JP2018082129A (en) * 2016-11-18 2018-05-24 トヨタ自動車株式会社 Reactor
JP2018190934A (en) * 2017-05-11 2018-11-29 スミダコーポレーション株式会社 Coil component and coil device
JP2019102563A (en) * 2017-11-30 2019-06-24 パナソニックIpマネジメント株式会社 Inductor and manufacturing method thereof
US10460865B2 (en) 2012-11-09 2019-10-29 Ford Global Technologies, Llc Inductor assembly
JP2020141025A (en) * 2019-02-27 2020-09-03 トヨタ自動車株式会社 Reactor
JP2021072404A (en) * 2019-11-01 2021-05-06 株式会社デンソー Reactor
JP7418172B2 (en) 2019-09-18 2024-01-19 株式会社タムラ製作所 reactor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243298B2 (en) * 2014-06-13 2017-12-06 株式会社豊田中央研究所 Powder magnetic core and reactor
EP2958118A1 (en) * 2014-06-19 2015-12-23 SMA Solar Technology AG Inductor assembly comprising at least one inductor coil thermally coupled to a metallic inductor housing
US10902993B2 (en) 2014-06-19 2021-01-26 Sma Solar Technology Ag Inductor assembly comprising at least one inductor coil thermally coupled to a metallic inductor housing
DE102014116139A1 (en) 2014-11-05 2016-05-12 Epcos Ag Inductive component
JP6130349B2 (en) * 2014-12-25 2017-05-17 トヨタ自動車株式会社 Reactor manufacturing method
JP6361884B2 (en) * 2015-04-14 2018-07-25 株式会社オートネットワーク技術研究所 Reactor and reactor manufacturing method
JP2018142624A (en) * 2017-02-28 2018-09-13 株式会社オートネットワーク技術研究所 Reactor
JP7104897B2 (en) * 2018-11-14 2022-07-22 株式会社オートネットワーク技術研究所 Reactor
JP2021048319A (en) * 2019-09-19 2021-03-25 株式会社村田製作所 Inductor component and manufacturing method of the inductor component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181022A (en) * 1994-12-22 1996-07-12 Mitsumi Electric Co Ltd Transformer
JP2007180140A (en) * 2005-12-27 2007-07-12 Denso Corp Magnetic component
JP2009027000A (en) 2007-07-20 2009-02-05 Toyota Motor Corp Reactor apparatus
JP2009099793A (en) 2007-10-17 2009-05-07 Toyota Motor Corp Manufacturing method of reactor
JP2010226138A (en) * 2008-08-22 2010-10-07 Sumitomo Electric Ind Ltd Component for reactor and the reactor

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911604A (en) 1957-04-30 1959-11-03 Hughes Aircraft Co Hermetically sealed housing
US4311978A (en) 1979-06-01 1982-01-19 Teccor Electronics, Inc. U-Core pulse transformer
JPS5735021U (en) 1980-08-07 1982-02-24
JPS588926U (en) 1981-07-10 1983-01-20 株式会社デンソー Integrated core molded ignition coil
JPS6061709U (en) 1983-10-04 1985-04-30 ティーディーケイ株式会社 inductor
JPS62219607A (en) 1986-03-20 1987-09-26 Matsushita Electric Ind Co Ltd High-voltage transformer
US4891620A (en) 1988-07-22 1990-01-02 Cheng Bruce C H Insulating tubeless transformer
JPH0256910A (en) 1988-08-22 1990-02-26 Nippon Denso Co Ltd Core of ignition coil
JPH0338603U (en) 1989-08-24 1991-04-15
US5210514A (en) 1990-08-17 1993-05-11 Tdk Corporation Coil device
JPH0521242A (en) 1991-07-11 1993-01-29 Aisan Ind Co Ltd Ignition coil for internal combustion engine
JP3311391B2 (en) 1991-09-13 2002-08-05 ヴィエルティー コーポレーション Leakage inductance reducing transformer, high frequency circuit and power converter using the same, and method of reducing leakage inductance in transformer
US5977855A (en) 1991-11-26 1999-11-02 Matsushita Electric Industrial Co., Ltd. Molded transformer
JPH0645322U (en) 1992-11-25 1994-06-14 ティーディーケイ株式会社 choke coil
JPH06198669A (en) 1992-12-28 1994-07-19 Nippon Petrochem Co Ltd Method for resin sealing of electronic parts
JP2569556Y2 (en) 1993-06-30 1998-04-28 ティーディーケイ株式会社 High current choke coil
JP3545019B2 (en) 1993-11-04 2004-07-21 株式会社豊田自動織機 Electronic product sealed case
JP2684593B2 (en) 1994-04-09 1997-12-03 ティーディーケイ株式会社 Coil device
JP3039755B2 (en) 1994-08-19 2000-05-08 河西工業株式会社 Manufacturing method for automotive interior parts
DE69631462D1 (en) 1995-11-27 2004-03-11 Vlt Corp Plating permeable cores
JP2905186B1 (en) 1998-01-12 1999-06-14 株式会社タムラ製作所 Reactor
JPH11345715A (en) 1998-06-02 1999-12-14 Kijima:Kk Miniaturized electric winding parts
JP2000200726A (en) 1999-01-04 2000-07-18 Sony Corp Fly-back transformer and its manufacture
JP3398820B2 (en) 2000-07-28 2003-04-21 ミネベア株式会社 Reactor
GB2369428B (en) * 2000-11-22 2004-11-10 Imperial College Detection system
JP2003051414A (en) 2001-05-29 2003-02-21 Toyota Motor Corp Resin mold sealed electromagnetic equipment and method of manufacturing the same
JP2004095570A (en) 2002-08-29 2004-03-25 Toyota Motor Corp Reactor and its manufacturing process
JP4333277B2 (en) 2003-08-22 2009-09-16 トヨタ自動車株式会社 Low noise reactor and method for manufacturing the same
JP2007134513A (en) 2005-11-10 2007-05-31 Hitachi Media Electoronics Co Ltd Transformer
DE112007000624T5 (en) 2006-03-17 2009-02-19 Tamura Corp. Core fastener and its construction
JP4466684B2 (en) 2007-06-12 2010-05-26 トヨタ自動車株式会社 Reactor
KR20090002902A (en) 2007-07-04 2009-01-09 엘지이노텍 주식회사 Inverter transformer
JP2009032922A (en) 2007-07-27 2009-02-12 Toyota Motor Corp Reactor core and reactor
JP2009259986A (en) 2008-04-16 2009-11-05 Tamura Seisakusho Co Ltd Electronic component
JP2010103307A (en) 2008-10-23 2010-05-06 Toyota Motor Corp Reactor
JP5246502B2 (en) 2009-01-22 2013-07-24 住友電気工業株式会社 Reactor and converter
EP2413336A4 (en) 2009-03-25 2017-10-04 Sumitomo Electric Industries, Ltd. Reactor
JP2010272584A (en) 2009-05-19 2010-12-02 Toyota Motor Corp Reactor
JP2011029336A (en) * 2009-07-23 2011-02-10 Sumitomo Electric Ind Ltd Reactor and mounting structure of reactor
JP5353618B2 (en) 2009-10-09 2013-11-27 Jfeスチール株式会社 Reactor iron core parts
JP2011086657A (en) 2009-10-13 2011-04-28 Toyota Motor Corp Reactor
JP2011086801A (en) 2009-10-16 2011-04-28 Toyota Motor Corp Reactor, and method of manufacturing the same
CN103650077B (en) 2011-06-27 2016-01-27 丰田自动车株式会社 Reactor and manufacture method thereof
DE112011105383B4 (en) 2011-06-27 2022-11-24 Toyota Jidosha Kabushiki Kaisha Choke and manufacturing method therefor
DE112011105382B4 (en) 2011-06-27 2016-06-30 Toyota Jidosha Kabushiki Kaisha Throttle and manufacturing process for it
JP5899926B2 (en) 2011-12-28 2016-04-06 トヨタ自動車株式会社 Reactor and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181022A (en) * 1994-12-22 1996-07-12 Mitsumi Electric Co Ltd Transformer
JP2007180140A (en) * 2005-12-27 2007-07-12 Denso Corp Magnetic component
JP2009027000A (en) 2007-07-20 2009-02-05 Toyota Motor Corp Reactor apparatus
JP2009099793A (en) 2007-10-17 2009-05-07 Toyota Motor Corp Manufacturing method of reactor
JP2010226138A (en) * 2008-08-22 2010-10-07 Sumitomo Electric Ind Ltd Component for reactor and the reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725591A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153372B2 (en) 2011-06-27 2015-10-06 Toyota Jidosha Kabushiki Kaisha Inductor and manufacturing method therefor
US8749335B2 (en) 2011-06-27 2014-06-10 Toyota Jidosha Kabushiki Kaisha Reactor
US9183981B2 (en) 2011-06-27 2015-11-10 Toyota Jidosha Kabushiki Kaisha Reactor and manufacturing method thereof
JP2013033928A (en) * 2011-07-04 2013-02-14 Sumitomo Electric Ind Ltd Reactor, converter, and electronic power conversion apparatus
US9581234B2 (en) 2012-11-09 2017-02-28 Ford Global Technologies, Llc Liquid cooled power inductor
US9543069B2 (en) 2012-11-09 2017-01-10 Ford Global Technologies, Llc Temperature regulation of an inductor assembly
US11195649B2 (en) 2012-11-09 2021-12-07 Ford Global Technologies, Llc Temperature regulation of an inductor assembly
US10460865B2 (en) 2012-11-09 2019-10-29 Ford Global Technologies, Llc Inductor assembly
US10490333B2 (en) 2013-03-15 2019-11-26 Ford Global Technologies, Llc Inductor assembly support structure
US20140266527A1 (en) * 2013-03-15 2014-09-18 Ford Global Technologies, Llc Inductor assembly support structure
CN104052246A (en) * 2013-03-15 2014-09-17 福特全球技术公司 Vehicle
US9892842B2 (en) * 2013-03-15 2018-02-13 Ford Global Technologies, Llc Inductor assembly support structure
JP2014192516A (en) * 2013-03-28 2014-10-06 Toyota Motor Corp Reactor
JP2015070140A (en) * 2013-09-30 2015-04-13 日立金属株式会社 Reactor
JP2015188016A (en) * 2014-03-26 2015-10-29 新電元工業株式会社 Heat radiation structure of coil and electric device
KR101720638B1 (en) 2014-12-24 2017-03-28 도요타 지도샤(주) Reactor
KR20160078276A (en) * 2014-12-24 2016-07-04 도요타 지도샤(주) Reactor
JP2016127070A (en) * 2014-12-26 2016-07-11 本田技研工業株式会社 Reactor
JP2018006650A (en) * 2016-07-06 2018-01-11 トヨタ自動車株式会社 Reactor
JP2018082129A (en) * 2016-11-18 2018-05-24 トヨタ自動車株式会社 Reactor
JP2018190934A (en) * 2017-05-11 2018-11-29 スミダコーポレーション株式会社 Coil component and coil device
JP2019102563A (en) * 2017-11-30 2019-06-24 パナソニックIpマネジメント株式会社 Inductor and manufacturing method thereof
JP2020141025A (en) * 2019-02-27 2020-09-03 トヨタ自動車株式会社 Reactor
JP7418172B2 (en) 2019-09-18 2024-01-19 株式会社タムラ製作所 reactor
JP2021072404A (en) * 2019-11-01 2021-05-06 株式会社デンソー Reactor

Also Published As

Publication number Publication date
US9153372B2 (en) 2015-10-06
US20140125440A1 (en) 2014-05-08
EP2725591B1 (en) 2016-03-02
JP5626466B2 (en) 2014-11-19
EP2725591B9 (en) 2016-05-18
EP2725591A1 (en) 2014-04-30
CN103650077B (en) 2016-01-27
EP2725591A4 (en) 2014-11-05
JPWO2013001591A1 (en) 2015-02-23
CN103650077A (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5626466B2 (en) Reactor and manufacturing method thereof
JP5672303B2 (en) Reactor and manufacturing method thereof
JP5278559B2 (en) Reactor and manufacturing method thereof
CN103189942B (en) Reactor
JP5465151B2 (en) Reactor
WO2012111499A1 (en) Reactor, method for the manufacture thereof, and reactor component
JP6361884B2 (en) Reactor and reactor manufacturing method
CN110326071B (en) Electric reactor
JP2009194198A (en) Reactor
JP2012209333A (en) Reactor and manufacturing method of the same
JP7133295B2 (en) Reactor
JP2012209328A (en) Reactor structure
CN109564815B (en) Electric reactor
JP5234517B2 (en) Reactor, reactor manufacturing method, and converter
JP2011054612A (en) Method of manufacturing reactor structure, and reactor structure
JP2020068367A (en) Reactor
CN111788646B (en) Electric reactor
CN111771252B (en) Electric reactor
JP2013026418A (en) Reactor
JP2011009791A (en) Reactor
JP6610903B2 (en) Reactor
JP2013105854A (en) Reactor
JP2011009660A (en) Reactor
CN111656470B (en) Electric reactor
JP2016100539A (en) Choke coil, and method for producing choke coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011868702

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013522381

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14129176

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE