WO2012169010A1 - Biometric feature measurement device and biometric feature measurement program - Google Patents

Biometric feature measurement device and biometric feature measurement program Download PDF

Info

Publication number
WO2012169010A1
WO2012169010A1 PCT/JP2011/063039 JP2011063039W WO2012169010A1 WO 2012169010 A1 WO2012169010 A1 WO 2012169010A1 JP 2011063039 W JP2011063039 W JP 2011063039W WO 2012169010 A1 WO2012169010 A1 WO 2012169010A1
Authority
WO
WIPO (PCT)
Prior art keywords
character
input
dial
scans
smoothness
Prior art date
Application number
PCT/JP2011/063039
Other languages
French (fr)
Japanese (ja)
Inventor
木戸 邦彦
山本 剛
邦昭 小澤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/063039 priority Critical patent/WO2012169010A1/en
Publication of WO2012169010A1 publication Critical patent/WO2012169010A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/08Elderly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head

Definitions

  • the present invention relates to a biological feature measuring apparatus and a biological feature measuring program.
  • Patent Document 1 describes a system that tests Kanji identification tests and broad tests on computers for the purpose of early detection of early symptoms of senile dementia, and tests the degree of dementia from answers within the response time limit. Yes.
  • Patent Document 2 discloses an apparatus for supporting character communication of a disabled person or an elderly person by sequentially lighting characters on the dial for each block and selecting a block with a touch sensor or the like to input characters. There is a description about the device.
  • the present invention provides a biological feature measuring apparatus and a biological feature measuring program capable of performing simple brain function measurement even for a slow subject who is difficult to operate a computer, such as a physically handicapped person or an elderly person. Objective.
  • the present invention examines brain function as a biometric feature by evaluating the smoothness of the ability to recall words based on the smoothness of character input using the dial.
  • biometric feature measuring apparatus in a biometric feature measuring apparatus using a language, character input is performed by selecting a character from a cursor that sequentially scans a character or a set of characters on a dial.
  • An input unit to perform a character input smoothness evaluation unit that evaluates the smoothness of character input based on the number of scans required for the character input, and a brain function evaluation unit that evaluates a brain function level from the smoothness of the character input; It is characterized by having.
  • a character is selected from a cursor that sequentially scans a character or a set of characters on a dial.
  • an input unit for inputting characters with a character a character input smoothness evaluating unit for evaluating the smoothness of character input based on the number of scans required for the character input
  • An activation degree calculation unit that calculates the activation degree of the brain from the brain function measurement data
  • a brain function level determination unit that determines the brain function level based on the smoothness of the character input and the activation degree of the brain It is characterized by having.
  • An example of the biometric feature measurement program of the present invention is a biometric feature measurement program that causes a computer to execute the following procedure so as to measure a biometric feature using a language.
  • Displaying a dial on the screen, scanning a character or a set of characters on the dial sequentially with a cursor, and moving the cursor on the dial via the input means of the computer Receiving a character input; storing the number of scans required for the character input in a storage unit; evaluating a smoothness of character input based on the stored number of scans; and the character input And a step of evaluating a brain function level from the smoothness of the brain.
  • biometric feature measurement program of the present invention is a biometric feature measurement program that causes a computer to execute the following procedure so as to measure a biometric feature using a language.
  • a step of displaying a dial on a display screen of the computer, a step of sequentially scanning a character or a set of characters on the dial with a cursor, and an input of the computer by moving the cursor on the dial Receiving character input via the means, storing the number of scans required for the character input in a storage means, and evaluating the smoothness of character input based on the stored number of scans; From the brain function measurement data when the same task as the brain function test using language is repeated, Calculating a degree, on the basis of smoothness of the character input and the activation of the brain and is characterized by comprising a step of determining the brain function level.
  • a simple brain function test can be performed even for a slow subject who is difficult to operate a computer, such as a physically handicapped person or an elderly person.
  • FIG. 1 It is a block block diagram of the frontal lobe function test
  • an example of a device that performs a brain function test will be described.
  • an example of the frontal lobe test is shown as an example of the biometric feature test and the brain function test.
  • the present invention is not limited to this, and it is needless to say that the entire brain function can be tested.
  • the frontal lobe inspection device 100 or the brain function inspection device 100 it will be referred to as the frontal lobe inspection device 100 or the brain function inspection device 100.
  • FIG. 1 is a block diagram of a frontal lobe function inspection apparatus 100 which is an example of a biological feature measurement apparatus according to the first embodiment.
  • the frontal lobe function testing device 100 includes a dial control unit 101, a character input smoothness evaluation unit 102, and a frontal lobe evaluation unit 103.
  • the dial control unit 101 includes a switch input detection unit 104, a dial input / output control unit 105, a dial / scan method conversion unit 106, and an input character prediction unit 107.
  • the character input smoothness evaluation unit 102 includes an input character string & scan history management unit 108, a difference calculation unit 109 between a scan history and the minimum number of scans, and a character input smoothness vector generation unit 110.
  • the frontal lobe evaluation unit 103 includes a character input smoothness vector management unit 111, an average scan count calculation unit 112 per word, and a frontal lobe function level output unit 113.
  • the frontal lobe function testing device 100 includes a CPU 201, a memory 202, an external storage device 203 such as a hard disk, a communication device 204 for communicating with other devices via a network 210, and input devices such as a switch, a keyboard, and a mouse. 205, an output device 206 such as a monitor or a printer, a reading device 207 that reads data from a storage medium 209 such as a CD-ROM or FD, and an interface 208 that transmits and receives data between these components. It is a general computer.
  • the frontal lobe function testing apparatus 100 can be realized by executing a predetermined program loaded on the memory 202 by the CPU 201.
  • the predetermined program is input from the storage medium 209 in which the program is stored via the reading device 207 or input from the network 210 via the communication device 204 and directly loaded on the memory 202 or once. Then, the data may be stored in the external storage device 203 and then loaded onto the memory 202.
  • the invention of the program according to the present invention is a program that is incorporated in a computer and operates as a biological feature measuring device.
  • the biological feature measuring apparatus shown in the block diagram of FIG. 1 is configured.
  • the screen 300 includes an input character display unit 301 that displays input characters, a dial 302 in which characters are arranged in a grid, and a cursor 303.
  • the cursor is focused on the block “A row to a row”.
  • an example of a two-block scan with a cursor will be described with reference to FIG.
  • the “A row to row” block 403 shown on the dial 401 and the “Ha row to W row” block 404 shown on the dial 402 are alternately focused. If the block 403 “A row to row” is selected, in the second scan of the column selection, the block 407 “A row to row” shown on the dial 405 and the block 406 are shown. Blocks 406 of “Sa line to Na line” are alternately focused. If the block 408 “Sa line to Na line” is selected, the “Sa line to Ta line” block 411 shown on the dial 409 and the face 410 are shown as the third scan of column selection. The “na row” blocks 412 are alternately focused.
  • the cursor is set to the initial position.
  • the initial position is always the state in which the left block is in focus.
  • the initial position is the state where the block 403 shown in the dial 401 in FIG. 4 is focused.
  • a cursor scan is started.
  • the scan is performed according to a predetermined cycle. For example, if the period is 1 second, the blocks 403 and 404 are alternately focused every second in the first scan of the column.
  • step 503 information on the cursor position in the middle is recorded in the input character string & scan history management unit 108 in FIG. 1 in the format of FIG.
  • FIG. 6 is an example of a scan history when inputting characters “ka” and “ri” for the character “Akari” in response to a character generation task related to the first character “A”.
  • the section 601 in FIG. 6 describes [column: dial 1: 1-1-1]. This is the first step in the dial arrangement designated by the name “clock 1” for the scan related to “column”. This means that the block 403 in FIG. 4 has been scanned as the eye scan.
  • the first 1 of “1-1” represents the first-stage scan, and the last 1 represents the block 403. If it is “1-2”, it means that the block 404 in FIG. 4 has been scanned as the first scan.
  • section 602 [line: dial 1, 1-or -1] in FIG. 6 is the first stage in the dial arrangement designated by the name “dial 1” for the scan related to “line”. This means that the block 415 in FIG. 4 has been scanned as an eye scan.
  • the first 1 of "1- or -1” represents the first scan, and the next "ka-1" is the first block of "ka line”. That is, it means the block 415 in FIG. If “ka-2”, the second block of “ka row”. That is, it means the block 416 in FIG.
  • “Dial 1” represents a dial having the same arrangement as the standard 50-note table as shown in FIG.
  • step 504 the switch input is monitored from the input device 205 in FIG. If the switch is ON, the cursor scan is stopped at step 505. If the column selection is completed at step 506, the process proceeds to step 507. If the column selection is in progress, the block is changed at step 516. As shown in FIG. 4, when the first stage scan performed in block 403 and block 404 is completed, the block change is performed in the second stage, such as reducing the block to block 407 and block 408. This is a process for changing the size to be used. After the block change is performed in step 516, the process returns to step 501.
  • the initial position of the cursor is set for line scanning.
  • the initial position is always the state where the upper block is focused.
  • a cursor scan is started.
  • the scan is performed according to a predetermined cycle. For example, if the period is 1 second, the blocks 415 and 416 are alternately focused every second in the first scan of the column.
  • the information on the cursor position in the middle is recorded in the input character string & scan history management unit 108 in FIG. 1 in the format of FIG.
  • switch input is monitored from the input device 205 of FIG.
  • step 511 If the switch is ON, the cursor scan is stopped in step 511. If the character selection is completed in step 512, the process proceeds to step 513. If the character selection is in progress, the block is changed in step 517. After changing the block in step 517, the process returns to step 507.
  • step 513 the selected character is recorded.
  • step 514 a line feed is made. If no double click is detected, the process returns to step 501.
  • step 701 the scan history is acquired from the input character string & scan history management unit 108.
  • step 702 one character is acquired from the input character.
  • the character “Akari” will be described as an example for the character generation task in FIG. 6 where the first character is “A”. In this case, the first character is “ka”.
  • step 703 dial face information is acquired.
  • “Dial 1” is set as described in the section 601. As described above, “Dial 1” is a dial having the same arrangement as the standard 50-note table as shown in FIG.
  • step 705 the minimum number of scans in each stage is calculated. For example, in the case of “KA” of “AKARI”, the first-stage scan of column selection starts from the left side as shown in block 403 in FIG. Therefore, since “ka row” is included in the block 403, the minimum number of scans is one. Similarly, in the second-stage scan of column selection, “ka row” is included in the block 407, so the minimum number of scans is 1. On the other hand, in step 707, the actual number of scans is obtained from the scan history. In FIG. 6, the first scan of column selection is one time. In step 708, the difference between the minimum number of scans obtained in step 705 and the actual number of scans obtained in step 706 is calculated.
  • step 706 if there is no input character, the average number of scans per stage is calculated from the difference of each stage calculated in step 708. For example, in the case of FIG. 6, when “ka” is input, “ka” is input with the shortest number of scans, and thus the difference in each stage is zero. That is, the difference is 0 in all three stages of column selection and two stages of character selection. Therefore, the average number of scans per stage is zero.
  • the minimum number of scans in the first row of the column selection is 2 times, the second row is 2 times, and the third row is 1 time.
  • the minimum number of scans in the first stage of character selection is 1 and the second stage is 2 times.
  • the second stage of character selection is missed, and scanning is performed five times. Therefore, the difference in the second stage of character selection is 3.
  • a character input smoothness vector is generated.
  • the average number of scans per stage number of “ka” is 0, “ri” is 0.6, and the character input smoothness vector is (0, 0.6) as shown in FIG.
  • This character input smoothness vector is recorded in the character input smoothness vector management unit 111 of FIG.
  • step 901 a character input smoothness vector is acquired from the character input smoothness vector management unit 111 for each word successfully input in the word generation task.
  • step 902 the number of characters constituting each word is calculated. For example, in the case of “AKARI”, the number of constituent characters is two except for the leading “A”.
  • step 904 the average number of scans per word is calculated.
  • the frontal lobe function level output unit 113 in FIG. 1 outputs the value calculated in step 904.
  • step 1201 related to the input character prediction unit 107 in FIG. 1 input characters are predicted from the tri-tree.
  • the trees 1001, 1002, 1003, and 1004 are traced, and “RI”, “SI”, “SU”, and “NE” are predicted as the next input characters.
  • “ri” is predicted as the next input character for the tree 1003 by the tree 1005 at the lower part.
  • step 1202 Based on this input character prediction, in step 1202, according to the number of characters of the predicted character, priority is given to “A” to “W”, and the columns are rearranged. For example, when “Aka” is entered, “Sa line” including the input predicted characters “shi” and “su” has the highest priority, followed by “Ra line” including “ri”, “Na row” including “Ne” has the same priority.
  • step 1203 the current cursor position is obtained, and in step 1204, the top three columns having a large number including the next input character are replaced. For example, immediately after “ka” is input, “sa line”, “ta line”, and “na line” on the right side of “ka line” are changed to “sa line” and “ra line” as indicated by 1101 in FIG. Replace it with the column “Na row”.
  • the dial arrangement is changed in this way, the name of the dial is changed. If the name is dial 2, when recording the scan history, in the case of section 601 in FIG. 6, [column: dial 1: 1- 1] becomes [column: dial 2: 1-1].
  • an example of an apparatus that also utilizes data obtained by brain function measurement will be described.
  • a brain function measuring device such as optical topography or fMRI (functional MRI), but the use of these devices is not limited.
  • Example 2 the block shown in FIG. 13 is added to the frontal lobe evaluation unit 103 of the apparatus 100.
  • the blocks to be added are a brain function evaluation vector generation unit 1301, a composite vector generation unit 1302, a frontal function determination processing unit 1303, and a determination data management unit 1305.
  • FIG. 15 shows a measurement position.
  • the entire forehead is measured by 12 light sources and 12 light receiving units.
  • a black circle 1501 is an example of a light source, and a white circle 1502 is a light receiving unit. It is an example.
  • there are 22 channels, and m 22.
  • step 1601 after removing the trend component for each block, block averaging processing based on Equation 1 may be performed.
  • step 1602 for each channel k, the activation degree U (k) of the brain is calculated from the absolute value of the difference between the average value of the rest obtained by block averaging and the average value of the task based on Equation 2.
  • step 1603 a composite vector is generated from the brain activation level obtained for each channel k and the frontal lobe function level based on the smoothness of character input as follows.
  • step 1604 the normality / abnormality is determined from the combined vector according to Equation 3.
  • w is calculated according to equation (4). To do. It is assumed that a i is determined in advance based on linear discriminant analysis based on the three vectors collected by a plurality of subjects.
  • the accuracy of the frontal lobe function test can be improved by combining with the brain function measurement data.
  • a simple brain frontal lobe function test can be performed, which can be used for early detection of dementia and senile dementia. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Psychiatry (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Neurosurgery (AREA)
  • Educational Technology (AREA)
  • Social Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

The invention makes it possible to conduct simple cerebral function tests even on testees for whom computer operation is difficult and slow such as physically challenged people and elderly people. The invention comprises: an input unit that inputs characters by selecting characters with a cursor that sequentially scans characters or character sets on a character board in a biometric feature measurement device that uses language; a character input smoothness-evaluating unit that evaluates the smoothness of character input based on the number of scans needed for the character input; and a cerebral function-evaluating unit that evaluates the level of cerebral function from the smoothness of character input.

Description

生体特徴計測装置および生体特徴計測プログラムBiological feature measuring apparatus and biological feature measuring program
 本発明は、生体特徴計測装置および生体特徴計測プログラムに関するものである。 The present invention relates to a biological feature measuring apparatus and a biological feature measuring program.
 本技術分野の背景技術として、特許文献1がある。この文献には、老人性痴呆症の初期症状の早期発見を目的に、漢字識別テストやかなひろいテストをコンピュータ上で実施し、回答制限時間内の回答から痴呆度を検定するシステムが記載されている。 There is Patent Document 1 as background art in this technical field. This document describes a system that tests Kanji identification tests and broad tests on computers for the purpose of early detection of early symptoms of senile dementia, and tests the degree of dementia from answers within the response time limit. Yes.
 また、特許文献2には、障害者や高齢者の意思伝達を支援する装置として、文字盤の文字をブロックごとに順次点灯させ、ブロックをタッチセンサー等で選択することで文字入力を行う意思伝達装置に関する記載がある。 Patent Document 2 discloses an apparatus for supporting character communication of a disabled person or an elderly person by sequentially lighting characters on the dial for each block and selecting a block with a touch sensor or the like to input characters. There is a description about the device.
特開2005-46289号公報JP 2005-46289 JP 特開2004-286768号公報JP 2004-286768 A
 簡易的な脳の前頭葉機能検査として、単語生成課題によるテストがよく行われる。この課題では、「あ」などのひらがな一文字を選んで、一分間に「あ」がつく単語をできる限り答えてもらうテストである。しかし、筋萎縮性側索硬化症(ALS)など重度の肢体不自由障害者の中には、人工呼吸器を装着し発話ができず、運動機能も表情筋、眼球、手足のごく一部が微かに動くのみになり、上記テストの適用が著しく困難になる。同じ理由により、上記の漢字識別テストやかなひろいテストの実施は難しい。一方、このような患者は、上記の文字盤とスイッチによる意思伝達装置によりコミュニケーションを図るのが一般的である。しかし、当該装置による文字入力は、一文字あたり数十秒かかる。このため、単語生成課題によるテスト、漢字識別テスト、かなひろいテストなど、短時間で回答を列挙する種類のテストを、当該装置で行うのは限界がある。
  また、コンピュータ操作に慣れていない高齢者も、同様の課題を有している。
As a simple brain frontal lobe function test, a test using a word generation task is often performed. In this exercise, you will select a single hiragana character such as “A” and have it answer as many words as possible with “A” per minute. However, some people with severe physical disabilities, such as amyotrophic lateral sclerosis (ALS), cannot wear a ventilator and cannot speak, and their motor functions are limited to facial muscles, eyeballs, and limbs. It only moves slightly, making the application of the test extremely difficult. For the same reason, it is difficult to carry out the above-mentioned kanji identification test and the broad test. On the other hand, it is common for such patients to communicate with each other by means of the above-described dial and switch communication device. However, character input by the device takes several tens of seconds per character. For this reason, there is a limit in performing the type of tests for enumerating answers in a short time, such as a test using a word generation task, a kanji identification test, and a kanahiroi test.
In addition, elderly people who are not used to computer operations have similar problems.
 本発明は、肢体不自由障害者や高齢者など、コンピュータの操作が困難で遅い被験者でも、簡易的な脳機能計測を実施することができる生体特徴計測装置および生体特徴計測プログラムを提供することを目的とする。 The present invention provides a biological feature measuring apparatus and a biological feature measuring program capable of performing simple brain function measurement even for a slow subject who is difficult to operate a computer, such as a physically handicapped person or an elderly person. Objective.
 本発明は、文字盤による文字入力の円滑さから、単語を想起する能力の円滑さを評価することで、生体特徴として脳機能の検査を行うものである。 The present invention examines brain function as a biometric feature by evaluating the smoothness of the ability to recall words based on the smoothness of character input using the dial.
 本発明の生体特徴計測装置の一例を挙げるならば、言語を用いた生体特徴計測装置において、文字盤上にある文字あるいは文字の集合を順次スキャンするカーソルから、文字を選択することで文字入力を行う入力部と、前記文字入力に要したスキャン回数に基づき、文字入力の円滑度を評価する文字入力円滑度評価部と、前記文字入力の円滑度から脳機能レベルを評価する脳機能評価部とを有することを特徴とするものである。 If an example of the biometric feature measuring apparatus of the present invention is given, in a biometric feature measuring apparatus using a language, character input is performed by selecting a character from a cursor that sequentially scans a character or a set of characters on a dial. An input unit to perform, a character input smoothness evaluation unit that evaluates the smoothness of character input based on the number of scans required for the character input, and a brain function evaluation unit that evaluates a brain function level from the smoothness of the character input; It is characterized by having.
 また、本発明の生体特徴計測装置の他の例を挙げるならば、言語を用いた生体特徴計測装置において、文字盤上にある文字あるいは文字の集合を順次スキャンするカーソルから、文字を選択することで文字入力を行う入力部と、前記文字入力に要したスキャン回数に基づき、文字入力の円滑度を評価する文字入力円滑度評価部と、言語を用いた脳機能検査と同じ課題を繰り返し行ったときの脳機能計測データから、脳の賦活度を計算する賦活度計算部と、前記文字入力の円滑度と前記脳の賦活度に基づいて、脳機能レベルを判定する脳機能レベル判定部とを有すること特徴とするものである。 In another example of the biometric feature measuring apparatus of the present invention, in a biometric feature measuring apparatus using a language, a character is selected from a cursor that sequentially scans a character or a set of characters on a dial. Repeated the same task as a brain function test using a language, an input unit for inputting characters with a character, a character input smoothness evaluating unit for evaluating the smoothness of character input based on the number of scans required for the character input, and An activation degree calculation unit that calculates the activation degree of the brain from the brain function measurement data, and a brain function level determination unit that determines the brain function level based on the smoothness of the character input and the activation degree of the brain It is characterized by having.
 本発明の生体特徴計測プログラムの一例を挙げるならば、言語を用いて生体特徴を計測するように、コンピュータの演算部において以下の手順を実行させる生体特徴計測プログラムであって、前記コンピュータの表示画面に文字盤を表示させるステップと、前記文字盤上にある文字あるいは文字の集合を、カーソルにより順次スキャンさせるステップと、当該カーソルの前記文字盤上での移動により、前記コンピュータの入力手段を介して文字入力を受け付けるステップと、前記文字入力に要した前記スキャンの回数を記憶手段に記憶するステップと、当該記憶した前記スキャンの回数に基づき、文字入力の円滑度を評価するステップと、前記文字入力の円滑度から脳機能レベルを評価するステップとを備えることを特徴とするものである。 An example of the biometric feature measurement program of the present invention is a biometric feature measurement program that causes a computer to execute the following procedure so as to measure a biometric feature using a language. Displaying a dial on the screen, scanning a character or a set of characters on the dial sequentially with a cursor, and moving the cursor on the dial via the input means of the computer Receiving a character input; storing the number of scans required for the character input in a storage unit; evaluating a smoothness of character input based on the stored number of scans; and the character input And a step of evaluating a brain function level from the smoothness of the brain.
 また、本発明の生体特徴計測プログラムの他の例を挙げるならば、言語を用いて生体特徴を計測するように、コンピュータの演算部において以下の手順を実行させる生体特徴計測プログラムであって、前記コンピュータの表示画面に文字盤を表示させるステップと、前記文字盤上にある文字あるいは文字の集合を、カーソルにより順次スキャンさせるステップと、当該カーソルの前記文字盤上での移動により、前記コンピュータの入力手段を介して文字入力を受け付けるステップと、前記文字入力に要した前記スキャンの回数を記憶手段に記憶するステップと、当該記憶した前記スキャンの回数に基づき、文字入力の円滑度を評価するステップと、言語を用いた脳機能検査と同じ課題を繰り返し行ったときの脳機能計測データから、脳の賦活度を計算するステップと、前記文字入力の円滑度と前記脳の賦活度に基づいて、脳機能レベルを判定するステップとを備えること特徴とするものである。 Another example of the biometric feature measurement program of the present invention is a biometric feature measurement program that causes a computer to execute the following procedure so as to measure a biometric feature using a language. A step of displaying a dial on a display screen of the computer, a step of sequentially scanning a character or a set of characters on the dial with a cursor, and an input of the computer by moving the cursor on the dial Receiving character input via the means, storing the number of scans required for the character input in a storage means, and evaluating the smoothness of character input based on the stored number of scans; From the brain function measurement data when the same task as the brain function test using language is repeated, Calculating a degree, on the basis of smoothness of the character input and the activation of the brain and is characterized by comprising a step of determining the brain function level.
 本発明によれば、肢体不自由障害者や高齢者など、コンピュータの操作が困難で遅い被験者でも、簡易的な脳機能検査を実施することができる。 According to the present invention, a simple brain function test can be performed even for a slow subject who is difficult to operate a computer, such as a physically handicapped person or an elderly person.
本発明の実施例1の前頭葉機能検査装置のブロック構成図である。It is a block block diagram of the frontal lobe function test | inspection apparatus of Example 1 of this invention. 本発明の実施例1の前頭葉機能検査装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of the frontal lobe function test | inspection apparatus of Example 1 of this invention. 前頭葉機能検査装置の画面の例である。It is an example of the screen of a frontal lobe function test | inspection apparatus. 前頭葉機能検査装置の文字盤の例である。It is an example of the dial of a frontal lobe function inspection apparatus. 文字盤入出力制御部および文字盤・スキャン方法変換部の処理を説明するフローチャートである。It is a flowchart explaining the process of a dial face input / output control part and a dial face / scan method conversion part. 入力文字列&スキャン履歴に関する書式の例である。It is an example of the format regarding an input character string & scan history. スキャン履歴と最短スキャン回数の差分計算部および文字入力円滑ベクトル生成部に関する処理を説明するフローチャートである。It is a flowchart explaining the process regarding the difference calculation part and character input smooth vector generation part of a scanning history and the shortest scanning frequency | count. 文字入力円滑ベクトルの例である。It is an example of a character input smooth vector. 単語あたりの平均スキャン回数計算に関する処理を説明するフローチャートである。It is a flowchart explaining the process regarding the average number of scans per word. 入力文字予測部で使うトライツリーの例である。It is an example of the tritree used in the input character prediction part. 文字盤の列の入れ替え例である。It is an example of replacement of dial rows. 入力文字予測部および文字盤・スキャン方法変換部の処理を説明するフローチャートである。It is a flowchart explaining the process of an input character estimation part and a dial face / scan method conversion part. 本発明の実施例2の前頭葉機能レベル判定部のブロック構成図である。It is a block block diagram of the frontal lobe function level determination part of Example 2 of this invention. 脳機能計測におけるタスクの例である。It is an example of the task in brain function measurement. 脳機能計測における計測位置の例である。It is an example of the measurement position in brain function measurement. 本発明の実施例2の処理を説明するフローチャートである。It is a flowchart explaining the process of Example 2 of this invention.
 以下、本発明の実施例を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例では、脳機能検査を行う装置の例を説明する。ここでは、生体特徴検査および脳機能検査の一例として前頭葉検査の例を示すが、特にこれに限るものではなく、脳機能全般を検査可能であることは云うまでも無い。以後、前頭葉検査装置100もしくは脳機能検査装置100と云うものとする。 In this embodiment, an example of a device that performs a brain function test will be described. Here, an example of the frontal lobe test is shown as an example of the biometric feature test and the brain function test. However, the present invention is not limited to this, and it is needless to say that the entire brain function can be tested. Hereinafter, it will be referred to as the frontal lobe inspection device 100 or the brain function inspection device 100.
 図1は、実施例1の生体特徴計測装置の一例である前頭葉機能検査装置100のブロック図である。前頭葉機能検査装置100は、文字盤制御部101、文字入力円滑度評価部102、前頭葉評価部103からなる。また、文字盤制御部101は、スイッチ入力検知部104、文字盤入出力制御部105、文字盤・スキャン方法変換部106、入力文字予測部107からなる。文字入力円滑度評価部102は、入力文字列&スキャン履歴管理部108、スキャン履歴と最短スキャン回数の差分計算部109、文字入力円滑度ベクトルの生成部110からなる。また、前頭葉評価部103は、文字入力円滑度ベクトル管理部111、単語あたりの平均スキャン回数計算部112、前頭葉機能レベル出力部113からなる。 FIG. 1 is a block diagram of a frontal lobe function inspection apparatus 100 which is an example of a biological feature measurement apparatus according to the first embodiment. The frontal lobe function testing device 100 includes a dial control unit 101, a character input smoothness evaluation unit 102, and a frontal lobe evaluation unit 103. The dial control unit 101 includes a switch input detection unit 104, a dial input / output control unit 105, a dial / scan method conversion unit 106, and an input character prediction unit 107. The character input smoothness evaluation unit 102 includes an input character string & scan history management unit 108, a difference calculation unit 109 between a scan history and the minimum number of scans, and a character input smoothness vector generation unit 110. The frontal lobe evaluation unit 103 includes a character input smoothness vector management unit 111, an average scan count calculation unit 112 per word, and a frontal lobe function level output unit 113.
 次に、図2により、前頭葉機能検査装置100のハードウェア構成を説明する。前頭葉機能検査装置100は、CPU201と、メモリ202と、ハードディスク等の外部記憶装置203と、ネットワーク210を介して他装置と通信を行うための通信装置204と、スイッチ、キーボード、マウス等の入力装置205と、モニタ、プリンタ等の出力装置206と、CD-ROMやFD等の記憶媒体209からデータを読み取る読み取り装置207と、これらの各構成要素間のデータ送受を行うインターフェース208とを備えた、一般的なコンピュータである。 Next, the hardware configuration of the frontal lobe function testing apparatus 100 will be described with reference to FIG. The frontal lobe function testing device 100 includes a CPU 201, a memory 202, an external storage device 203 such as a hard disk, a communication device 204 for communicating with other devices via a network 210, and input devices such as a switch, a keyboard, and a mouse. 205, an output device 206 such as a monitor or a printer, a reading device 207 that reads data from a storage medium 209 such as a CD-ROM or FD, and an interface 208 that transmits and receives data between these components. It is a general computer.
 前頭葉機能検査装置100は、CPU201がメモリ202上にロードした所定のプラグラムを実行することにより実現できる。この所定のプログラムは、読み取り装置207を介して当該プログラムが記憶された記憶媒体209から、または、通信装置204を介してネットワーク210から入力して、直接メモリ202上にロードするか、もしくは、一旦、外部記憶装置203に格納してから、メモリ202上にロードすれば良い。 The frontal lobe function testing apparatus 100 can be realized by executing a predetermined program loaded on the memory 202 by the CPU 201. The predetermined program is input from the storage medium 209 in which the program is stored via the reading device 207 or input from the network 210 via the communication device 204 and directly loaded on the memory 202 or once. Then, the data may be stored in the external storage device 203 and then loaded onto the memory 202.
 本発明におけるプログラムの発明は、このようにコンピュータに組み込まれ、コンピュータを生体特徴計測装置として動作させるプログラムである。本発明のプログラムをコンピュータに組み込むことにより、図1のブロック図に示される生体特徴計測装置が構成される。 The invention of the program according to the present invention is a program that is incorporated in a computer and operates as a biological feature measuring device. By incorporating the program of the present invention into a computer, the biological feature measuring apparatus shown in the block diagram of FIG. 1 is configured.
 次に、図3により、前頭葉機能検査装置100の画面構成を説明する。画面300は、入力済みの文字を表示する入力文字表示部301、文字を格子状に並べた文字盤302、カーソル303から構成される。図3のカーソル303では、「あ行~な行」のブロックにカーソルがフォーカスされている。ここで、図4により、カーソルによる2ブロックスキャンの例を説明する。 Next, the screen configuration of the frontal lobe function testing apparatus 100 will be described with reference to FIG. The screen 300 includes an input character display unit 301 that displays input characters, a dial 302 in which characters are arranged in a grid, and a cursor 303. In the cursor 303 of FIG. 3, the cursor is focused on the block “A row to a row”. Here, an example of a two-block scan with a cursor will be described with reference to FIG.
 まず、列選択のためのスキャンから説明する。
  列選択の第一段目のスキャンでは、文字盤401に示す「あ行~な行」のブロック403と文字盤402に示す「は行~わ行」のブロック404が、交互にフォーカスされる。もし「あ行~な行」のブロック403が選択されたとき、列選択の第二段目のスキャンでは、文字盤405に示す「あ行~か行」のブロック407と、文字盤406に示す「さ行~な行」のブロック406が交互にフォーカスされる。
  もし「さ行~な行」のブロック408が選択されたとき、列選択の第三段目のスキャンとして、文字盤409に示す「さ行~た行」のブロック411と、文字盤410に示す「な行」のブロック412が、交互にフォーカスされる。
  「か行」の列が選択された場合、列が選択されたので、文字選択のためのスキャンに処理が移る。文字選択の第一段目のスキャンとして、文字盤413が示す「か、き、く」のブロック415と文字盤414が示す「け、こ」をブロック416が、交互にフォーカスされる。ここで、「け、こ」をブロック416が選択されたとき、文字選択の第二段目のスキャンとして、文字「け」と文字「こ」が交互にスキャンされ、最後にどちらかの文字が選択されることになる。
First, scanning for column selection will be described.
In the first scan of column selection, the “A row to row” block 403 shown on the dial 401 and the “Ha row to W row” block 404 shown on the dial 402 are alternately focused. If the block 403 “A row to row” is selected, in the second scan of the column selection, the block 407 “A row to row” shown on the dial 405 and the block 406 are shown. Blocks 406 of “Sa line to Na line” are alternately focused.
If the block 408 “Sa line to Na line” is selected, the “Sa line to Ta line” block 411 shown on the dial 409 and the face 410 are shown as the third scan of column selection. The “na row” blocks 412 are alternately focused.
When the column “ka row” is selected, the column is selected, and the process moves to scanning for character selection. As a first-stage scan of character selection, a block 415 of “ka, ki, koku” indicated by the dial 413 and a block 416 of “ke, ko” indicated by the dial 414 are alternately focused. Here, when “Keko” is selected in block 416, the character “ke” and the character “ko” are alternately scanned as the second scan of the character selection, and finally one of the characters is scanned. Will be selected.
 図5により、文字盤制御部101の文字盤入出力制御部105、文字盤・スキャン方法変換部106の処理について説明する。 The processing of the dial input / output control unit 105 and the dial / scanning method conversion unit 106 of the dial control unit 101 will be described with reference to FIG.
 まずステップ501において、カーソルを初期位置にセットする。本実施列では、必ず左側のブロックにフォーカスが当たった状態を初期位置とする。例えば、第一段目のスキャンでは、図4の文字盤401に示すブロック403にフォーカスがあたった状態が初期位置になる。ステップ502において、カーソルのスキャンを開始する。ここで、スキャンは、所定の周期に応じて行われるものとする。例えば周期が1秒とすれば、列の第一段目のスキャンでは、ブロック403とブロック404が、1秒ごとに交互にフォーカス
される。
First, at step 501, the cursor is set to the initial position. In this embodiment, the initial position is always the state in which the left block is in focus. For example, in the first scan, the initial position is the state where the block 403 shown in the dial 401 in FIG. 4 is focused. In step 502, a cursor scan is started. Here, the scan is performed according to a predetermined cycle. For example, if the period is 1 second, the blocks 403 and 404 are alternately focused every second in the first scan of the column.
 スキャン中は、ステップ503により、途中のカーソル位置の情報を図6の書式で、図1の入力文字列&スキャン履歴管理部108に記録する。図6は、先頭の文字が「あ」に関する文字生成課題に対し、「あかり」という文字について、「か」と「り」の文字入力に際してのスキャン履歴の一例である。例として、「か」の文字入力の場合を説明する。図6のセクション601は[列:文字盤1:1-1]という記述だが、これは「列」に関するスキャンについて、「文字盤1」という名前で指定される文字盤の配列において、第一段目のスキャンとして、図4のブロック403をスキャンしたことを意味する。「1-1」の最初の1は、第一段目のスキャンを表し、最後の1はブロック403を表す。もし「1-2」であれば、第一段目のスキャンとして、図4のブロック404をスキャンしたことを意味する。同様に、図6のセクション602[行:文字盤1、1-か-1]は、「行」に関するスキャンについて、「文字盤1」という名前で指定される文字盤の配列において、第一段目のスキャンとして、図4のブロック415をスキャンしたことを意味する。「1-か-1」の最初の1は、第一段目のスキャンを表し、次の「か-1」は「か行」の最初のブロック。すなわち、図4のブロック415を意味する。「か-2」であれば、「か行」の第2ブロック。すなわち、図4のブロック416を意味する。なお「文字盤1」は、本実施例では、図4のように標準的な50音表と同じ配列の文字盤を表すこととする。 During scanning, in step 503, information on the cursor position in the middle is recorded in the input character string & scan history management unit 108 in FIG. 1 in the format of FIG. FIG. 6 is an example of a scan history when inputting characters “ka” and “ri” for the character “Akari” in response to a character generation task related to the first character “A”. As an example, the case of inputting the character “ka” will be described. The section 601 in FIG. 6 describes [column: dial 1: 1-1-1]. This is the first step in the dial arrangement designated by the name “clock 1” for the scan related to “column”. This means that the block 403 in FIG. 4 has been scanned as the eye scan. The first 1 of “1-1” represents the first-stage scan, and the last 1 represents the block 403. If it is “1-2”, it means that the block 404 in FIG. 4 has been scanned as the first scan. Similarly, section 602 [line: dial 1, 1-or -1] in FIG. 6 is the first stage in the dial arrangement designated by the name “dial 1” for the scan related to “line”. This means that the block 415 in FIG. 4 has been scanned as an eye scan. The first 1 of "1- or -1" represents the first scan, and the next "ka-1" is the first block of "ka line". That is, it means the block 415 in FIG. If “ka-2”, the second block of “ka row”. That is, it means the block 416 in FIG. In the present embodiment, “Dial 1” represents a dial having the same arrangement as the standard 50-note table as shown in FIG.
 ステップ504にて、図2の入力装置205からスイッチ入力を監視する。スイッチONの場合、ステップ505にてカーソルのスキャンをSTOPし、ステップ506により列選択が終了であればステップ507に進み、列選択が途中であれば、ステップ516でブロック変更を行う。ブロック変更とは、図4のように、ブロック403とブロック404で行った第一段目のスキャンが終了すれば、第二段目で、ブロック407とブロック408にブロックを縮小するなど、スキャンに使用するサイズを変更する処理である。ステップ516により、ブロック変更を行った後に、ステップ501に戻る。 In step 504, the switch input is monitored from the input device 205 in FIG. If the switch is ON, the cursor scan is stopped at step 505. If the column selection is completed at step 506, the process proceeds to step 507. If the column selection is in progress, the block is changed at step 516. As shown in FIG. 4, when the first stage scan performed in block 403 and block 404 is completed, the block change is performed in the second stage, such as reducing the block to block 407 and block 408. This is a process for changing the size to be used. After the block change is performed in step 516, the process returns to step 501.
 ステップ507では、行のスキャン用にカーソルの初期位置を設定する。本実施列では、必ず上側のブロックにフォーカスが当たった状態を初期位置とする。例えば、「か行」に関する第一段目のスキャンでは、図4の文字盤413に示すブロック415にフォーカスがあたった状態を初期位置になる。ステップ508において、カーソルのスキャンを開始する。ここで、スキャンは、所定の周期に応じて行われるものとする。例えば周期が1秒とすれば、列の第一段目のスキャンでは、ブロック415とブロック416が、1秒ごとに交互にフォーカスされる。スキャン中はステップ509にて、途中のカーソル位置の情報を図6の書式で、図1の入力文字列&スキャン履歴管理部108に記録する。ステップ510にて、図2の入力装置205からスイッチ入力を監視する。スイッチONの場合、ステップ511にてカーソルのスキャンをSTOPし、ステップ512により文字選択が終了であればステップ513に進み、文字選択が途中であれば、ステップ517でブロック変更を行う。ステップ517によりブロック変更を行った後に、ステップ507に戻る。 In step 507, the initial position of the cursor is set for line scanning. In this embodiment, the initial position is always the state where the upper block is focused. For example, in the first-stage scan relating to “ka line”, a state where the block 415 shown in the dial 413 in FIG. In step 508, a cursor scan is started. Here, the scan is performed according to a predetermined cycle. For example, if the period is 1 second, the blocks 415 and 416 are alternately focused every second in the first scan of the column. During scanning, in step 509, the information on the cursor position in the middle is recorded in the input character string & scan history management unit 108 in FIG. 1 in the format of FIG. In step 510, switch input is monitored from the input device 205 of FIG. If the switch is ON, the cursor scan is stopped in step 511. If the character selection is completed in step 512, the process proceeds to step 513. If the character selection is in progress, the block is changed in step 517. After changing the block in step 517, the process returns to step 507.
 ステップ513では、選択された文字が記録される。ここで、ステップ514により、ダブルクリックが検知されれば改行する。ダブルクリックが検知されなければ、ステップ501に戻る。 In step 513, the selected character is recorded. Here, if a double click is detected in step 514, a line feed is made. If no double click is detected, the process returns to step 501.
 図7により、文字入力円滑度評価部102の、スキャン履歴と最短スキャン回数の差分計算部109、文字入力円滑度ベクトルの生成部110の処理を説明する。
  ステップ701により、入力文字列&スキャン履歴管理部108より、スキャン履歴を取得する。ステップ702により、入力された文字を一文字取得する。ここでは、図6の、先頭の文字が「あ」に関する文字生成課題に対し、「あかり」という文字を例に説明する。この場合、第一文字目は「か」である。ステップ703にて、文字盤情報を取得する。図6の場合、セクション601の記載のとおり「文字盤1」となる。上記で説明したとおり、「文字盤1」は、図4のように標準的な50音表と同じ配列の文字盤である。ステップ705により、各段の最小スキャン数を計算する。例えば、「あかり」の「か」の場合には、列選択の第一段目のスキャンは、図4のブロック403のように左側からスタートする。したがって、「か行」はブロック403に含まれるために、最小のスキャン数は1となる。同様に、列選択の第二段目のスキャンは、「か行」はブロック407に含まれるために、最小のスキャン数は1となる。一方、ステップ707では、実際のスキャン回数をスキャン履歴から求める。図6では、列選択の第一段目のスキャンは一回である。ステップ708では、ステップ705で求めた最小スキャン数と、ステップ706で求めた実際のスキャン回数の差分を計算する。ステップ706により、もし入力文字がない場合には、ステップ708で計算した、各段の差分から、段数あたりの平均スキャン回数を計算する。例えば、図6の場合、「か」の入力では、すべて最短のスキャン回数で「か」が入力されたので、各段の差分は0となる。すなわち、列選択の3段、文字選択の2段すべてにおいて、差分が0となる。したがって、段数あたりの平均スキャン回数は0である。
With reference to FIG. 7, the processing of the difference calculation unit 109 and the character input smoothness vector generation unit 110 of the scan history and the shortest scan count of the character input smoothness evaluation unit 102 will be described.
In step 701, the scan history is acquired from the input character string & scan history management unit 108. In step 702, one character is acquired from the input character. Here, the character “Akari” will be described as an example for the character generation task in FIG. 6 where the first character is “A”. In this case, the first character is “ka”. In step 703, dial face information is acquired. In the case of FIG. 6, “Dial 1” is set as described in the section 601. As described above, “Dial 1” is a dial having the same arrangement as the standard 50-note table as shown in FIG. In step 705, the minimum number of scans in each stage is calculated. For example, in the case of “KA” of “AKARI”, the first-stage scan of column selection starts from the left side as shown in block 403 in FIG. Therefore, since “ka row” is included in the block 403, the minimum number of scans is one. Similarly, in the second-stage scan of column selection, “ka row” is included in the block 407, so the minimum number of scans is 1. On the other hand, in step 707, the actual number of scans is obtained from the scan history. In FIG. 6, the first scan of column selection is one time. In step 708, the difference between the minimum number of scans obtained in step 705 and the actual number of scans obtained in step 706 is calculated. In step 706, if there is no input character, the average number of scans per stage is calculated from the difference of each stage calculated in step 708. For example, in the case of FIG. 6, when “ka” is input, “ka” is input with the shortest number of scans, and thus the difference in each stage is zero. That is, the difference is 0 in all three stages of column selection and two stages of character selection. Therefore, the average number of scans per stage is zero.
 次に、「り」の入力の場合、列選択の第一段目の最小スキャン数は2回、第二段目は2回、第3段目は1回である。文字選択の第一段目の最小スキャン数は1回、第二段目は2回である。図6のスキャン履歴では、文字選択の第二段目でミスしており、5回スキャンしている。したがって、文字選択の第二段目の差分は3である。 Next, in the case of “RI” input, the minimum number of scans in the first row of the column selection is 2 times, the second row is 2 times, and the third row is 1 time. The minimum number of scans in the first stage of character selection is 1 and the second stage is 2 times. In the scan history of FIG. 6, the second stage of character selection is missed, and scanning is performed five times. Therefore, the difference in the second stage of character selection is 3.
 一方、段数は、列選択の3段、文字選択の2段の計5段である。したがって、段数あたりの平均スキャン回数は3/5=0.6となる。 On the other hand, the number of stages is 5 in total, 3 for column selection and 2 for character selection. Therefore, the average number of scans per stage is 3/5 = 0.6.
 最後に、ステップ710では、文字入力円滑度ベクトルの生成を行う。上記の例では、「か」の段数あたりの平均スキャン回数は0、「り」は0.6であり、図8のように、文字入力円滑度ベクトルは(0,0.6)となる。この文字入力円滑度ベクトルを、図1の文字入力円滑度ベクトル管理部111に記録する。 Finally, in step 710, a character input smoothness vector is generated. In the above example, the average number of scans per stage number of “ka” is 0, “ri” is 0.6, and the character input smoothness vector is (0, 0.6) as shown in FIG. This character input smoothness vector is recorded in the character input smoothness vector management unit 111 of FIG.
 次に、図9により、前頭葉評価部103の、単語あたりの平均スキャン回数計算部112の処理を説明する。ステップ901では、単語生成課題で入力に成功した各単語について、文字入力円滑度ベクトル管理部111から文字入力円滑度ベクトルを取得する。ステップ902では、各単語の構成文字数を計算する。例えば、「あかり」であれば、先頭の「あ」を除くと、構成文字数は2個である。次に、ステップ903では、各単語の平均スキャン回数を計算する。例えば、「あかり」であれば、図8の文字入力円滑度ベクトルの場合、0.6/2=0.3となる。最後にステップ904において、単語あたりの平均スキャン回数を計算する。すなわち、単語生成課題で入力に成功した全ての単語について、ステップ903で求めた平均スキャン回数の和をとり、入力に成功した単語の単語数で割る。最後に、図1の前頭葉機能レベル出力部113において、ステップ904で計算した値を出力する。 Next, the processing of the average scan count calculation unit 112 per word in the frontal lobe evaluation unit 103 will be described with reference to FIG. In step 901, a character input smoothness vector is acquired from the character input smoothness vector management unit 111 for each word successfully input in the word generation task. In step 902, the number of characters constituting each word is calculated. For example, in the case of “AKARI”, the number of constituent characters is two except for the leading “A”. Next, in step 903, the average number of scans for each word is calculated. For example, in the case of “light”, in the case of the character input smoothness vector of FIG. 8, 0.6 / 2 = 0.3. Finally, in step 904, the average number of scans per word is calculated. That is, for all the words that have been successfully input in the word generation task, the sum of the average number of scans obtained in step 903 is taken and divided by the number of words of the words that have been successfully input. Finally, the frontal lobe function level output unit 113 in FIG. 1 outputs the value calculated in step 904.
 ここで、図5のステップ516のブロック変換において、入力された文字に応じて、文字盤の配列を変えても良い。この処理を、図12により説明する。図1の入力文字予測部107に関するステップ1201では、トライツリーから入力文字の予測を行う。本実施例では、図10にもとづき説明する。たとえば、「あか」と入力されると、ツリー1001、1002、1003、1004を辿り、次に入力される文字として、「り」「し」「す」「ね」が予測される。「あかす」が入力されれば、ツリー1003については、さらに下部のツリー1005により、次に入力される文字として「り」が予測される。 Here, in the block conversion of step 516 in FIG. 5, the arrangement of the dials may be changed according to the input characters. This process will be described with reference to FIG. In step 1201 related to the input character prediction unit 107 in FIG. 1, input characters are predicted from the tri-tree. In this embodiment, description will be made based on FIG. For example, when “Aka” is input, the trees 1001, 1002, 1003, and 1004 are traced, and “RI”, “SI”, “SU”, and “NE” are predicted as the next input characters. If “Akasu” is input, “ri” is predicted as the next input character for the tree 1003 by the tree 1005 at the lower part.
 この入力文字予測にもとづき、ステップ1202では、予測された文字の文字数の多さにより、「あ行」~「わ行」の優先度をつけ、列の並び替えを行う。例えば、「あか」と入力された場合には、入力予測文字「し」「す」を含む「さ行」の優先度が一番高く、その次は、「り」を含む「ら行」、「ね」を含む「な行」が同じ優先度になる。 Based on this input character prediction, in step 1202, according to the number of characters of the predicted character, priority is given to “A” to “W”, and the columns are rearranged. For example, when “Aka” is entered, “Sa line” including the input predicted characters “shi” and “su” has the highest priority, followed by “Ra line” including “ri”, “Na row” including “Ne” has the same priority.
 ステップ1203では現在のカーソル位置を求め、ステップ1204では次の入力文字が含まれる数の多い上位3つの列の入れ替えを行う。例えば、「か」が入力された直後に、「か行」の右隣にある「さ行」「た行」「な行」を、図11の1101のとおり、「さ行」「ら行」「な行」の列に入れ替える。このように文字盤の配列を変えた場合には、文字盤の名前を変更する。その名前が文字盤2とすれば、スキャン履歴の記録に際して、図6のセクション601の場合、[列:文字盤1:1-1]が[列:文字盤2:1-1]となる。 In step 1203, the current cursor position is obtained, and in step 1204, the top three columns having a large number including the next input character are replaced. For example, immediately after “ka” is input, “sa line”, “ta line”, and “na line” on the right side of “ka line” are changed to “sa line” and “ra line” as indicated by 1101 in FIG. Replace it with the column “Na row”. When the dial arrangement is changed in this way, the name of the dial is changed. If the name is dial 2, when recording the scan history, in the case of section 601 in FIG. 6, [column: dial 1: 1- 1] becomes [column: dial 2: 1-1].
 以上、次に入力される可能性の高い文字を含む列を、現在のカーソル位置に近い列と入れ替えた時、次の入力文字を明確に想起していない被験者の場合、カーソルを最短で止めることができない可能性が高まる。すなわち、列を入れ替える操作は、単語想起能力の円滑さの評価に寄与する。 As described above, when a column that contains a character that is likely to be input next is replaced with a column that is close to the current cursor position, if the subject does not clearly recall the next input character, the cursor should be stopped as soon as possible. The possibility of not being able to be increased. That is, the operation of switching the columns contributes to the evaluation of the smoothness of the word recall ability.
 本実施例では、脳機能計測によるデータも活用する装置の例を説明する。脳機能計測では、光トポグラフィやfMRI(functional MRI)などの脳機能計測装置を使うことが考えられるが、これらの装置の使用に制限されるものではない。本実施例では、脳機能計測には光トポグラフィを想定し、計測データとして、mチャンネルのOxyHb信号S(t)(k=1~m)を考える。 In this embodiment, an example of an apparatus that also utilizes data obtained by brain function measurement will be described. In brain function measurement, it is conceivable to use a brain function measuring device such as optical topography or fMRI (functional MRI), but the use of these devices is not limited. In the present embodiment, optical topography is assumed for brain function measurement, and m-channel OxyHb signal S k (t) (k = 1 to m) is considered as measurement data.
 実施例2では、装置100の前頭葉評価部103に、図13で示すブロックを追加する。追加するブロックは、脳機能評価ベクトル生成部1301、合成ベクトル生成部1302、前頭葉機能判定処理部1303、判定用データ管理部1305である。 In Example 2, the block shown in FIG. 13 is added to the frontal lobe evaluation unit 103 of the apparatus 100. The blocks to be added are a brain function evaluation vector generation unit 1301, a composite vector generation unit 1302, a frontal function determination processing unit 1303, and a determination data management unit 1305.
 本実施例では、脳機能計測として、図14で示す実験方法によりデータを計測する。レスト期間と前頭葉を活性化するタスクを行う期間を、n回繰り返すものとする。本実施例では、30秒のレストの後に、30秒の単語生成課題を繰り返すことを考える。図15は、計測位置であり、本実施例では、額全体を12個の光源、12個の受光部により計測を行うものとする、1501の黒丸が光源の例、1502の白丸が受光部の例である。図15の場合は22チャンネルであり、m=22となる。 In this embodiment, data is measured by the experimental method shown in FIG. 14 as brain function measurement. The rest period and the period for performing the task of activating the frontal lobe shall be repeated n times. In the present embodiment, it is assumed that the word generation task for 30 seconds is repeated after the rest for 30 seconds. FIG. 15 shows a measurement position. In this embodiment, the entire forehead is measured by 12 light sources and 12 light receiving units. A black circle 1501 is an example of a light source, and a white circle 1502 is a light receiving unit. It is an example. In the case of FIG. 15, there are 22 channels, and m = 22.
 次に、脳機能評価ベクトル生成部1301、合成ベクトル生成部1302、前頭葉機能判定処理部1303の処理を、図16のフローにもとづき説明する。 Next, processing of the brain function evaluation vector generation unit 1301, the combined vector generation unit 1302, and the frontal function determination processing unit 1303 will be described based on the flow of FIG.
 ステップ1601では、数1にもとづき、S(t)(k=1~22)のチャンネルkごとにブロック平均を行う。 In step 1601, block averaging is performed for each channel k of S k (t) (k = 1 to 22) based on Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ステップ1601では、ブロックごとにトレンド成分を除去した後に、数1にもとづくブロック平均処理を行っても良い。 In step 1601, after removing the trend component for each block, block averaging processing based on Equation 1 may be performed.
 ステップ1602では、チャンネルkごとに、数2にもとづき、ブロック平均したレストの平均値とタスクの平均値の差について、その絶対値により脳の賦活度U(k)を計算する。 In step 1602, for each channel k, the activation degree U (k) of the brain is calculated from the absolute value of the difference between the average value of the rest obtained by block averaging and the average value of the task based on Equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ステップ1603では、チャンネルkごとに求めた脳の賦活度と、文字入力円滑度による前頭葉機能レベルから合成ベクトルを次のように生成する。 In step 1603, a composite vector is generated from the brain activation level obtained for each channel k and the frontal lobe function level based on the smoothness of character input as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
ステップ1604では、数3による合成ベクトルから正常・異常の判定を行う。 In step 1604, the normality / abnormality is determined from the combined vector according to Equation 3.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 すなわち、X1= U(1)、X2= U(2)、・・・、Xm+1=Lとして、数4によりwを計算し、w>0なら正常、W≦0なら異常とする。なお、aについては、事前に、複数の被験者により集めた数3のベクトルにもとづき、線形判別分析にもとづき決定されているものとする。 That is, assuming that X 1 = U (1), X 2 = U (2),..., X m + 1 = L, w is calculated according to equation (4). To do. It is assumed that a i is determined in advance based on linear discriminant analysis based on the three vectors collected by a plurality of subjects.
 本実施例によれば、脳機能計測データと組み合わせることにより、前頭葉機能検査の精度を向上させることができる。 According to the present embodiment, the accuracy of the frontal lobe function test can be improved by combining with the brain function measurement data.
 肢体不自由障害者や高齢者など、コンピュータの操作が困難で遅い被験者でも、簡易的な脳の前頭葉機能検査を実施することができ、認知症や老人性痴呆症の早期発見に用いることができる。 Even for subjects with physical disabilities and the elderly who have difficulty in computer operation and can be slow, a simple brain frontal lobe function test can be performed, which can be used for early detection of dementia and senile dementia. .
100 前頭葉機能検査装置
101 文字盤制御部
102 文字入力円滑度評価部
103 前頭葉評価部
104 スイッチ入力検知部
105 文字盤入出力制御部
106 文字盤・スキャン方法変換部
107 入力文字予測部
108 入力文字列&スキャン履歴管理部
109 スキャン履歴と最短スキャン回数の差分計算部
110 文字入力円滑度ベクトルの生成部
111 文字入力円滑度ベクトル管理部
112 単語あたりの平均スキャン回数計算部
113 前頭葉機能レベル出力部
201 CPU
202 メモリ
203 外部記録装置
204 通信装置
205 入力装置
206 出力装置
207 読み取り装置
208 インターフェース
209 記憶媒体
210 ネットワーク
300 画面
301 入力文字表示部
302 文字盤
303 カーソル
1301 脳機能評価ベクトル生成部
1302 合成ベクトル生成部
1303 前頭葉機能判定処理部
1304 前頭葉機能レベル出力部
1305 判定用データ管理部
1501 光源
1502 受光部
DESCRIPTION OF SYMBOLS 100 Frontal lobe function test apparatus 101 Dial control part 102 Character input smoothness evaluation part 103 Frontal lobe evaluation part 104 Switch input detection part 105 Dial input / output control part 106 Dial / scan method conversion part 107 Input character prediction part 108 Input character string & Scan history management unit 109 Difference calculation unit between scan history and minimum number of scans 110 Character input smoothness vector generation unit 111 Character input smoothness vector management unit 112 Average scan number per word calculation unit 113 Frontal lobe function level output unit 201 CPU
202 Memory 203 External Recording Device 204 Communication Device 205 Input Device 206 Output Device 207 Reading Device 208 Interface 209 Storage Medium 210 Network 300 Screen 301 Input Character Display Unit 302 Dial 303 Cursor 1301 Brain Function Evaluation Vector Generation Unit 1302 Synthetic Vector Generation Unit 1303 Frontal lobe function determination processing unit 1304 Frontal lobe function level output unit 1305 Determination data management unit 1501 Light source 1502 Light receiving unit

Claims (12)

  1.  言語を用いた生体特徴計測装置において、
     文字盤上にある文字あるいは文字の集合を順次スキャンするカーソルから、文字を選択することで文字入力を行う入力部と、
     前記文字入力に要したスキャン回数に基づき、文字入力の円滑度を評価する文字入力円滑度評価部と、
     前記文字入力の円滑度から脳機能レベルを評価する脳機能評価部と
    を有することを特徴とする生体特徴計測装置。
    In a biological feature measurement device using language,
    An input unit for inputting characters by selecting a character from a cursor that sequentially scans a character or a set of characters on the dial, and
    A character input smoothness evaluation unit that evaluates the smoothness of character input based on the number of scans required for the character input;
    And a brain function evaluation unit that evaluates a brain function level from the smoothness of the character input.
  2.  請求項1記載の生体特徴計測装置において、
     前記文字入力円滑度評価部は、各入力文字について、当該文字を入力するに必要な最短のスキャン回数を計算する最短スキャン数計算部と、当該文字の文字入力に実際に要したスキャン回数と、前記最短のスキャン回数との差を求める差分計算部を有することを特徴とする生体特徴計測装置。
    In the biological feature measuring device according to claim 1,
    The character input smoothness evaluation unit, for each input character, the shortest scan number calculation unit for calculating the shortest number of scans necessary to input the character, the number of scans actually required for character input of the character, A biological feature measurement apparatus comprising a difference calculation unit for obtaining a difference from the shortest number of scans.
  3.  請求項2記載の生体特徴計測装置において、
     前記文字入力円滑度評価部は、スキャン中のカーソル位置の情報を記録するスキャン履歴管理部を有し、記録したスキャン履歴に基づいて前記スキャン回数を求めることを特徴とする生体特徴計測装置。
    The biological feature measuring apparatus according to claim 2,
    The biometric feature measurement apparatus, wherein the character input smoothness evaluation unit includes a scan history management unit that records information on a cursor position during a scan, and obtains the number of scans based on the recorded scan history.
  4.  請求項1に記載の生体特徴計測装置において、
     前記入力部は、文字盤を左右、あるいは、上下に2分割し、2分割された領域を交互にカーソルがスキャンすることを特徴とする生体特徴計測装置。
    In the biological feature measuring device according to claim 1,
    The biometric feature measuring apparatus, wherein the input unit divides the dial into two parts, left and right or up and down, and the cursor alternately scans the two divided areas.
  5.  請求項1に記載の生体特徴計測装置において、更に、
     入力された文字から次に入力される文字を予測する入力文字予測部と、予測文字が多く含まれている文字盤の列あるいは行を選択し、前記選択された列あるいは行を、文字盤の残りの列あるいは行と入れ替える文字盤変換部を有することを特徴とする生体特徴計測装置。
    The biological feature measuring apparatus according to claim 1, further comprising:
    An input character prediction unit that predicts a character to be input next from input characters, and a column or row of a dial plate that includes a large number of predicted characters, and the selected column or row is selected from the dial A biometric feature measuring apparatus comprising a dial conversion unit that replaces the remaining columns or rows.
  6.  言語を用いた生体特徴計測装置において、
     文字盤上にある文字あるいは文字の集合を順次スキャンするカーソルから、文字を選択することで文字入力を行う入力部と、
     前記文字入力に要したスキャン回数に基づき、文字入力の円滑度を評価する文字入力円滑度評価部と、
     言語を用いた脳機能検査と同じ課題を繰り返し行ったときの脳機能計測データから、脳の賦活度を計算する賦活度計算部と、
     前記文字入力の円滑度と前記脳の賦活度に基づいて、脳機能レベルを判定する脳機能レベル判定部と
    を有すること特徴とする生体特徴計測装置。
    In a biological feature measurement device using language,
    An input unit for inputting characters by selecting a character from a cursor that sequentially scans a character or a set of characters on the dial, and
    A character input smoothness evaluation unit that evaluates the smoothness of character input based on the number of scans required for the character input;
    From the brain function measurement data when the same task as the brain function test using language is repeated, an activation degree calculation unit that calculates the activation degree of the brain,
    A biological feature measuring apparatus comprising: a brain function level determination unit that determines a brain function level based on the smoothness of the character input and the activation degree of the brain.
  7.  言語を用いて生体特徴を計測するように、コンピュータの演算部において以下の手順を実行させる生体特徴計測プログラムであって、
     前記コンピュータの表示画面に文字盤を表示させるステップと、
     前記文字盤上にある文字あるいは文字の集合を、カーソルにより順次スキャンさせるステップと、
     当該カーソルの前記文字盤上での移動により、前記コンピュータの入力手段を介して文字入力を受け付けるステップと、
     前記文字入力に要した前記スキャンの回数を記憶手段に記憶するステップと、
     当該記憶した前記スキャンの回数に基づき、文字入力の円滑度を評価するステップと、
     前記文字入力の円滑度から脳機能レベルを評価するステップと
    を備えることを特徴とする生体特徴計測プログラム。
    A biometric feature measurement program that executes the following procedure in a computing unit of a computer so as to measure biometric features using a language,
    Displaying a dial on a display screen of the computer;
    Scanning a character or a set of characters on the dial sequentially with a cursor;
    Receiving a character input via the input means of the computer by moving the cursor on the dial;
    Storing the number of scans required for the character input in a storage means;
    Evaluating the smoothness of character input based on the stored number of scans;
    And a step of evaluating a brain function level from the smoothness of the character input.
  8.  請求項7記載の生体特徴計測プログラムにおいて、
     前記文字入力の円滑度を評価するステップは、各入力文字について、当該文字を入力するに必要な最短のスキャン回数を計算するステップと、当該文字の文字入力に実際に要したスキャン回数と、前記最短のスキャン回数との差を求めるステップを有することを特徴とする前頭葉機能検査方法。
    The biological feature measurement program according to claim 7,
    The step of evaluating the smoothness of character input includes, for each input character, calculating the shortest number of scans necessary to input the character, the number of scans actually required for character input of the character, A frontal lobe function inspection method comprising a step of obtaining a difference from the shortest scan count.
  9.  請求項8記載の生体特徴計測プログラムにおいて、
     前記文字入力の円滑度を評価するステップは、スキャン中のカーソル位置の情報を記録し、記録したスキャン履歴に基づいて前記スキャン回数を求めることを特徴とする生体特徴計測プログラム。
    The biological feature measurement program according to claim 8,
    The step of evaluating the smoothness of character input records information on a cursor position during a scan, and obtains the number of scans based on the recorded scan history.
  10.  請求項7に記載の生体特徴計測プログラムにおいて、
     前記文字入力を行うステップは、文字盤を左右、あるいは、上下に2分割し、2分割された領域を交互にカーソルがスキャンすることを特徴とする生体特徴計測プログラム。
    In the biological feature measurement program according to claim 7,
    The step of inputting characters is a biological feature measurement program characterized in that the dial is divided into left and right or up and down, and the cursor alternately scans the two divided regions.
  11.  請求項7に記載の生体特徴計測プログラムにおいて、更に、
     入力された文字から次に入力される文字を予測するステップと、
     予測文字が多く含まれている文字盤の列あるいは行を選択し、前記選択された列あるいは行を、文字盤の残りの列あるいは行と入れ替えるステップを有することを特徴とする生体特徴計測プログラム。
    The biological feature measurement program according to claim 7, further comprising:
    Predicting the next input character from the input characters;
    A biological feature measurement program comprising a step of selecting a column or row of a dial plate containing a large number of predicted characters and replacing the selected column or row with a remaining column or row of the dial.
  12.  言語を用いて生体特徴を計測するように、コンピュータの演算部において以下の手順を実行させる生体特徴計測プログラムであって、
     前記コンピュータの表示画面に文字盤を表示させるステップと、
     前記文字盤上にある文字あるいは文字の集合を、カーソルにより順次スキャンさせるステップと、
     当該カーソルの前記文字盤上での移動により、前記コンピュータの入力手段を介して文字入力を受け付けるステップと、
     前記文字入力に要した前記スキャンの回数を記憶手段に記憶するステップと、
     当該記憶した前記スキャンの回数に基づき、文字入力の円滑度を評価するステップと、
     言語を用いた脳機能検査と同じ課題を繰り返し行ったときの脳機能計測データから、脳の賦活度を計算するステップと、
     前記文字入力の円滑度と前記脳の賦活度に基づいて、脳機能レベルを判定するステップと
    を備えること特徴とする生体特徴計測プログラム。
    A biometric feature measurement program that executes the following procedure in a computing unit of a computer so as to measure biometric features using a language,
    Displaying a dial on a display screen of the computer;
    Scanning a character or a set of characters on the dial sequentially with a cursor;
    Receiving a character input via the input means of the computer by moving the cursor on the dial;
    Storing the number of scans required for the character input in a storage means;
    Evaluating the smoothness of character input based on the stored number of scans;
    Calculating brain activation from brain function measurement data when the same task as the brain function test using language is repeated,
    And a step of determining a brain function level based on the smoothness of the character input and the activation degree of the brain.
PCT/JP2011/063039 2011-06-07 2011-06-07 Biometric feature measurement device and biometric feature measurement program WO2012169010A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063039 WO2012169010A1 (en) 2011-06-07 2011-06-07 Biometric feature measurement device and biometric feature measurement program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063039 WO2012169010A1 (en) 2011-06-07 2011-06-07 Biometric feature measurement device and biometric feature measurement program

Publications (1)

Publication Number Publication Date
WO2012169010A1 true WO2012169010A1 (en) 2012-12-13

Family

ID=47295617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063039 WO2012169010A1 (en) 2011-06-07 2011-06-07 Biometric feature measurement device and biometric feature measurement program

Country Status (1)

Country Link
WO (1) WO2012169010A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114639A (en) * 1990-09-03 1992-04-15 Kyoto Densoku Kk Dementia inspector
JPH0919419A (en) * 1995-07-03 1997-01-21 Casio Comput Co Ltd Inspecting device
JP2002112981A (en) * 2000-10-06 2002-04-16 Osami Kajimoto Mental examination method and mental function examination apparatus
JP2004129825A (en) * 2002-10-10 2004-04-30 Communication Research Laboratory Device for inspecting high degree brain dysfunction by higher degree
JP2004286768A (en) * 2003-01-27 2004-10-14 Matsushita Electric Ind Co Ltd Intention transmitting device
JP2005137629A (en) * 2003-11-07 2005-06-02 Shinji Murakami Cognitive skill evaluating system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114639A (en) * 1990-09-03 1992-04-15 Kyoto Densoku Kk Dementia inspector
JPH0919419A (en) * 1995-07-03 1997-01-21 Casio Comput Co Ltd Inspecting device
JP2002112981A (en) * 2000-10-06 2002-04-16 Osami Kajimoto Mental examination method and mental function examination apparatus
JP2004129825A (en) * 2002-10-10 2004-04-30 Communication Research Laboratory Device for inspecting high degree brain dysfunction by higher degree
JP2004286768A (en) * 2003-01-27 2004-10-14 Matsushita Electric Ind Co Ltd Intention transmitting device
JP2005137629A (en) * 2003-11-07 2005-06-02 Shinji Murakami Cognitive skill evaluating system

Similar Documents

Publication Publication Date Title
Ciman et al. Individuals’ stress assessment using human-smartphone interaction analysis
JP6122130B2 (en) Cerebral dysfunction evaluation method, cerebral dysfunction evaluation apparatus and program thereof
Bonnen et al. When the ventral visual stream is not enough: A deep learning account of medial temporal lobe involvement in perception
JP5641629B1 (en) Personal characteristic prediction system, personal characteristic prediction method and program
JP5958825B2 (en) KANSEI evaluation system, KANSEI evaluation method, and program
JP6291107B2 (en) Cerebral dysfunction evaluation method, cerebral dysfunction evaluation apparatus and program thereof
JPWO2014155690A1 (en) Model updating method, apparatus, and program
JP2023116604A (en) Mild cognitive impairment determination system
CN102302358B (en) Hepatic fibrosis detection equipment and system
JP2013131211A (en) Device and method for determining optimum diagnosis element set for disease diagnosis
IL280428A (en) Dementia risk presentation system and method
JP6193225B2 (en) Liver fibrosis detection device and detection system
JP7059151B2 (en) Time series data analyzer, time series data analysis method, and time series data analysis program
WO2012169010A1 (en) Biometric feature measurement device and biometric feature measurement program
Valladares-Rodríguez et al. A machine learning approach to the early diagnosis of Alzheimer’s disease based on an ensemble of classifiers
Hsieh et al. GestaltMatcher: Overcoming the limits of rare disease matching using facial phenotypic descriptors
JP2019208758A (en) Cognitive function measurement system, cognitive function measurement communication system, and program
Pannasch et al. Eye typing in application: A comparison of two systems with ALS patients
Juliet Investigations on Machine Learning Models for Mental Health Analysis and Prediction
Schlick et al. Self-generated complexity and human-machine interaction
Vu et al. Predicting Humans’ Balance Disorder Based on Center of Gravity Using Support Vector Machine
Getmantsev et al. A novel health risk model based on intraday physical activity time series collected by smartphones
Bottos et al. An approach to track reading progression using eye-gaze fixation points
Messan et al. Intra-individual reproducibility as essential determinant of clinical utility of smartphone-based neurological disability tests
JP6615424B1 (en) Worker support device, worker support system, worker support method, and worker support program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP