WO2012157507A1 - Surface-treating agent and surface treatment method - Google Patents

Surface-treating agent and surface treatment method Download PDF

Info

Publication number
WO2012157507A1
WO2012157507A1 PCT/JP2012/061972 JP2012061972W WO2012157507A1 WO 2012157507 A1 WO2012157507 A1 WO 2012157507A1 JP 2012061972 W JP2012061972 W JP 2012061972W WO 2012157507 A1 WO2012157507 A1 WO 2012157507A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
surface treatment
compound
acid
substrate
Prior art date
Application number
PCT/JP2012/061972
Other languages
French (fr)
Japanese (ja)
Inventor
尚正 古田
鈴木 浩
勝可 原田
柱賢 鄭
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2013515097A priority Critical patent/JPWO2012157507A1/en
Publication of WO2012157507A1 publication Critical patent/WO2012157507A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present invention relates to a surface treatment agent and a surface treatment method for improving the water repellency of a surface of an object to be treated, and more specifically, a surface treatment agent for making a substrate surface of a liquid crystal, a semiconductor or the like to which a lithography technique is applied to be water repellent.
  • the present invention also relates to a surface treatment method for making a substrate surface water repellent using the surface treatment agent.
  • lithography technology is used when processing such as etching on a substrate.
  • a photosensitive resin layer is provided on a substrate using a photosensitive resin composition, and then exposed to selective irradiation with actinic radiation for exposure and development, and then a photosensitive resin layer. Is selectively dissolved and removed, a resin pattern is formed on the substrate, and an etching process is performed using the resin pattern as a mask, whereby a pattern to be etched is formed on the substrate.
  • a photosensitive resin layer is formed in order to build a plurality of types of elements and circuits on the substrate.
  • the surface of a semiconductor substrate to which lithography technology is applied can be a mixture of various surface states, such as a previously formed surface or a surface after being removed by etching.
  • a SiO 2 film is usually formed on the surface of a silicon wafer before manufacturing a semiconductor product, and moisture in the atmosphere is bonded to the outermost surface of the SiO 2 film to form Si—OH.
  • Patent Document 1 discloses a method for trimethylsilylation by reacting hexamethyldisilazane with an OH group on an oxidized silicon wafer surface after oxidizing the silicon wafer surface. Is disclosed. It is also known that such a water repellency treatment can improve the adhesion between the substrate surface and the resist resin.
  • Patent Document 2 as a method for preventing pattern collapse, a method for treating a substrate surface using a surface treatment solution obtained by diluting a silylating agent such as N, N-dimethylaminotrimethylsilane or hexamethyldisilazane with an organic solvent. Is disclosed.
  • Patent Document 3 a plurality of convex patterns having a hydroxyl group on the surface formed on a semiconductor substrate, a surface treatment agent containing a silane coupling agent having a hydrolyzable group that reacts with the hydroxyl group, It is disclosed that a water-repellent protective film having low wettability to water can be formed, and that the water repellency is increased by cleaning the substrate surface using sulfuric acid and hydrogen peroxide.
  • Patent Documents 2 and 3 as a method for evaluating the water repellency of the substrate surface, it is described that a contact angle to water is measured, and those having a large contact angle value can suppress pattern collapse. It is known that increasing the contact angle is a solution to pattern collapse.
  • Patent Document 3 describes that surface treatment with a surface treatment agent can be used for a silicon nitride film, but in the case of a silicon-based film, contact with water after forming a water-repellent protective film. In contrast to the angle of 89 degrees, in the case of a silicon nitride film, only about 46 degrees can be obtained, and the contact angle is improved to 59 degrees by converting the silicon nitride film surface to SiO 2 with an oxidizing agent. There is a description.
  • the silicon nitride film is easier to obtain a dense film quality than the oxide film, and also has a characteristic as an antireflection film. Therefore, the silicon nitride film is a material frequently used in recent highly integrated semiconductor devices. A method for providing sufficient water repellency to the surface of the material has been demanded.
  • the subject of this invention is providing the surface treating agent which improves the water repellency of the surface of to-be-processed objects, such as a board
  • Another object of the present invention is to provide a method for making the surface of an object to be treated such as a semiconductor substrate water repellent using the surface treating agent.
  • the present invention is shown below. 1.
  • the surface treating agent characterized by including the compound (A) represented by following General formula (1).
  • R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a cyanoalkyl group,
  • a, w, x, y and z are each independently 0 or a positive number, at least one of w and x is a positive number, 0 ⁇ w / (x + y) ⁇ 5, 0 ⁇ z / (a + w + x + y) ⁇ 1.
  • Compound A may contain only 1 type of each structural unit, and may contain 2 or more types. ] 2.
  • R 3 and R 5 are each independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group, a cycloaralkyl group or an aryl group, and w, x and y are independently of each other, It is a positive number and z is 0 or a positive number.
  • 3. The surface treating agent according to 1 above, wherein at least one of R 1 , R 2 , R 3 , R 4 and R 5 in the general formula (1) is a cyanoalkyl group. 4). 4. The surface treating agent according to 3 above, wherein the compound (A) is represented by the following general formula (7).
  • B is a cyanoalkyl group
  • b, x, y and z are each independently 0 or a positive number
  • c is a positive number.
  • R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group
  • R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom. ] 8).
  • the surface treatment method according to 11 or 12 above, wherein the object to be treated contains silicon nitride on a part of its surface. 14 14. The surface treatment method according to any one of 11 to 13, wherein the object to be treated includes silicon oxide on a part of the surface thereof. 15. The surface treatment method according to any one of the above 11 to 14, wherein the object to be treated contains metallic silicon in a part of its surface. 16. The surface treatment method according to any one of 11 to 15, further comprising an acid contact step in which an acidic liquid containing an acid is brought into contact with the object to be processed before the contact step. 17. 17. The surface treatment method according to 16 above, wherein the acid is an inorganic acid having an acid dissociation constant (pKa) of less than 0. 18.
  • pKa acid dissociation constant
  • the object to be processed has a silicon nitride film and a silicon oxide film on the surface thereof, and after the contact step, the contact angle (Can) of water on the surface of the silicon nitride film and the surface of the silicon oxide film 18.
  • a surface treatment method for making a surface of a semiconductor substrate water repellent a first step of bringing an acid liquid containing an acid into contact with the semiconductor substrate, and a surface treatment agent containing a compound represented by the following general formula (11):
  • a surface treatment method comprising sequentially providing a second step of contacting the semiconductor substrate.
  • R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group
  • R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom.
  • the semiconductor substrate has a silicon nitride film and a silicon oxide film on its surface, and after the second step, the contact angle (Can) of water on the surface of the silicon nitride film and the surface of the silicon oxide film 24.
  • the surface treating agent of the present invention it is possible to improve the water repellency by forming a film on the surface of an object to be treated such as a substrate used for a liquid crystal or a semiconductor. It is known that the surface of a water-repellent semiconductor substrate or the like has good adhesion to a resist resin, and it is known that the problem of so-called pattern collapse does not occur.
  • the surface treatment agent of the present invention improves the yield of semiconductor manufacturing. Can be expected to do.
  • the surface of the substrate having different surface materials and states can be made water repellent to the same extent, so that the yield is particularly high in a semiconductor substrate or the like in which patterns made of different materials are mixed. The improvement effect can be expected.
  • the contact angle is a value measured using water by a method according to JIS R1257.
  • the surface treating agent of the present invention contains a compound (A) represented by the following general formula (1), and if necessary, contains other silicone compounds, organic solvents, additives and the like.
  • R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a cyanoalkyl group,
  • a, w, x, y and z are each independently 0 or a positive number, at least one of w and x is a positive number, 0 ⁇ w / (x + y) ⁇ 5, 0 ⁇ z / (a + w + x + y) ⁇ 1.
  • Compound A may contain only 1 type of each structural unit, and may contain 2 or more types.
  • the said compound (A) is a silicon compound containing the structural unit shown below as represented by the said General formula (1).
  • the content rate of each structural unit is based on prescription
  • the said compound (A) may not contain all the structural units.
  • the compound (A) represented by the general formula (1) is a kind of polysiloxane in which structural units represented by (SiO 4/2 ) and the like are bonded to each other through a siloxane bond,
  • the bonding form of the structural units may not necessarily be the arrangement order of the general formula (1).
  • a, w, x, y, z represent the composition ratio (molar ratio) of each structural unit.
  • the compound (A) since any one of R 1 , R 2 , R 3 , R 4 and R 5 is a hydrogen atom, the compound (A) has an Si—H bond having chemical reactivity. Will be included. Si—H bonds are sometimes referred to as Si—H groups or hydrosilyl groups.
  • the number average molecular weight (Mn) of the compound (A) represented by the general formula (1) is preferably 120 or more and 20000 or less, more preferably 200 or more and 10,000 or less, and further preferably 240 or more and 10,000 or less.
  • Mn number average molecular weight
  • a surface treating agent containing the compound (A) having Mn in the above range is used, a highly water-repellent film can be formed, and in particular, a water-repellent film can be efficiently formed even on fine uneven surfaces. .
  • a preferred compound (A) is a compound represented by the following general formulas (2) to (6) from the viewpoint of water repellency, and more preferred compounds are represented by the general formulas (3) and (4), and particularly preferred compounds.
  • the compound represented by the general formula (3) has a trifunctional structural unit having both a Si—O bond and a Si—H bond, and the compound represented by the general formula (4) includes two Si— It has a structural unit having both an O bond and a Si—H bond.
  • R 2 , R 4 and R 5 are each independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, and R 6 is a hydrogen atom or a carbon atom number of 1 to 6
  • x and y are positive numbers
  • z is 0 or a positive number
  • the ratio of x / y is preferably 0.5 to 2000, more preferably 1 to 200.
  • R 5 independently of one another represents a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • w and y are positive numbers
  • z is 0 or a positive number
  • the ratio of w / y is preferably 0.3 to 5.0.
  • R 3 and R 5 are each independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group
  • R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • w, x and y are positive numbers
  • z is 0 or a positive number.
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group, a cycloaralkyl group or an aryl group.
  • x is preferably 0.1 to 0.9, more preferably 0.2 to 0.5 and w are preferably 0.05 to 0.5, more preferably 0.1 to 0.4, and y is preferably 0.05 to 0.5, more preferably 0.1 to 0.00. 4, z is preferably 0.001 to 0.2, more preferably 0.005 to 0.1.
  • the compound (A) in which at least one of R 1 , R 2 , R 3 , R 4 and R 5 in the general formula (1) is a cyanoalkyl group is also a preferred embodiment, and particularly preferably at least R A compound in which 1 is a cyanoalkyl group.
  • a compound in which two or more of R 1 , R 2 , R 3 , R 4 and R 5 are cyanoalkyl groups may be used, and preferred examples in that case include, for example, R 1 and R 5 .
  • the cyanoalkyl group is represented by NC—R 7 —.
  • R 7 is a linear or branched divalent alkyl group having 1 to 5 carbon atoms.
  • R 7 preferably has 1 to 3 carbon atoms.
  • Specific examples of the cyanoalkyl group include a cyanomethyl group, a cyanoethyl group, a cyanopropyl group, and the like. In the present invention, a cyanoethyl group or a cyanopropyl group is more preferable, and a cyanoethyl group is particularly preferable.
  • the ratio of x / y is preferably 0.1 to 200, more preferably 0.5 to 20.
  • the ratio of w / y when w and y are not 0 is preferably 0.3 to 5.0.
  • a preferred compound is represented by the following general formula (7).
  • B is cyanoalkyl group, R 2, R 3, R 4 and R 5, independently of one another, a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group
  • R 6 Is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • b, x, y and z are each independently 0 or a positive number
  • c is a positive number.
  • a more preferable compound can be represented by the following general formula (8).
  • B is a cyanoalkyl group
  • R 3 and R 5 are each independently an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group
  • R 6 is a hydrogen atom or a carbon atom of 1 -6 alkyl groups
  • b, x, y and z are independently of each other 0 or a positive number
  • c is a positive number.
  • the compound represented by the general formula (8) is also a kind of polysiloxane.
  • R 2 , R 4 and R 5 are each independently a hydrogen atom, a cyanoalkyl group, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, and R 2 , R 4 and R 5 are At least one of them is a cyanoalkyl group, R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, x and y are positive numbers, and z is 0 or a positive number.
  • X / y ratio is preferably 0.1 to 200, more preferably 0.5 to 20.
  • one R 5 is a cyanoalkyl group
  • the other R 5 is independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group
  • R 6 is a hydrogen atom.
  • An atom or an alkyl group having 1 to 6 carbon atoms, w and y are positive numbers, z is 0 or a positive number, and the ratio of w / y is preferably 0.3 to 5.0. More preferably, it is 0.8 to 4.0.
  • the manufacturing method of the said compound (A) is not specifically limited, The method of using for the raw material organosilicon compound which forms each structural unit to hydrolytic condensation on acidic conditions is common.
  • the structural unit (i) tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrachlorosilane, or the like can be used as a raw material organic silicon compound.
  • trimethoxysilane, triethoxysilane, tripropoxysilane, trichlorosilane, cyanopropyltrimethoxysilane, cyanoethyltriethoxysilane, or the like can be used as the raw material organic silicon compound.
  • dimethoxymethylsilane, diethoxymethylsilane, dipropoxymethylsilane, dichloromethylsilane, or the like can be used as a raw material organic silicon compound.
  • methoxytrimethylsilane, chlorotrimethylsilane, trimethylsilanol, hexamethyldisiloxane, tetramethyldisiloxane, or the like can be used as a raw material organic silicon compound.
  • methanol, ethanol, propanol, s-butanol, or the like can be used.
  • the surface treating agent of the present invention may contain only one kind of the above compound (A), or may contain two or more kinds. For example, you may combine the compound represented by the said General formula (4), and the compound represented by the said General formula (7).
  • the surface treating agent of the present invention contains the compound (A) represented by the general formula (1) and may be composed only of the compound (A), or the compound (A) and other repellent materials. It may consist of a hydrating agent. As another water repellent, a compound represented by the following general formula (11) (hereinafter referred to as “compound (B)”) is preferable.
  • R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group
  • R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom.
  • Examples of the compound (B) include N, N-dimethylaminotrimethylsilane (hereinafter abbreviated as “DMATMS”), N, N-dimethylaminotriethylsilane, N, N-diphenylaminotriethylsilane, N, N-diethylaminotrimethyl.
  • DMATMS N, N-dimethylaminotrimethylsilane
  • N, N-dimethylaminotriethylsilane N, N-diphenylaminotriethylsilane
  • N-diethylaminotrimethyl N, N-diethylaminotrimethyl.
  • the content ratio of the compound (A) and the compound (B) is not limited.
  • the sum total of a compound (A) and a compound (B) is 100 mass%, the ratio of a compound (B) becomes like this.
  • it is less than 60 mass%, More preferably, it is 1 to 40 mass%.
  • the surface treatment agent of the present invention may further contain an organic solvent and additives (pH adjuster, leveling agent, surfactant, silane coupling agent, stabilizer, etc.).
  • an organic solvent a solvent that dissolves the compound (A) or a solvent that does not dissolve the compound (A) but disperses the compound (A) and additives can be used.
  • a compound capable of dissolving the compound (A) is preferable because a surface treatment agent having a more uniform concentration distribution can be obtained.
  • substrate of a semiconductor or the to-be-etched pattern surface can be used.
  • sulfoxides such as dimethylsulfoxide; sulfones such as dimethylsulfone, diethylsulfone, bis (2-hydroxyethyl) sulfone, tetramethylenesulfone; N, N-dimethylformamide, N-methylformamide, N, N Amides such as dimethylacetamide, N-methylacetamide, N, N-diethylacetamide; N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N-hydroxymethyl-2 -Lactams such as pyrrolidone and N-hydroxyethyl-2-pyrrolidone; 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-diisopropyl-2-imidazolidi
  • Non-imidazolidinones such as non-dimethyl ether, die
  • organic solvents those having a relatively small polarity and a small molecular weight are preferred. However, if the molecular weight is too small, the volatility is too high and handling becomes difficult. Accordingly, preferred organic solvents are linear or branched hydrocarbon solvents or terpene solvents having 6 to 12 carbon atoms, and specifically include n-hexane, n-heptane, n-octane. N-nonane, methyloctane, n-decane, n-undecane, n-dodecane and the like.
  • Terpene solvents include p-menthane, o-menthane, m-menthan and other menthane, diphenylmenthane, limonene, ⁇ -terpinene, ⁇ -terpinene, ⁇ -terpinene and other terpinenes, bornane, norbornane, pinane, ⁇ -Pinenes such as pinene and ⁇ -pinene, monoterpenes such as karan and longifolene, diterpenes such as abiethane, and the like.
  • These organic solvents may be used alone or in combination of two or more. More preferred organic solvents are linear hydrocarbon solvents having 7 to 10 carbon atoms, menthane and pinane, particularly preferably hexane and octane.
  • the concentration of the compound (A) or the concentration of the total amount of the compound (A) and other water repellent is relative to the total amount of the surface treatment agent.
  • it is 0.1 to 60%, more preferably 0.5 to 30%, more preferably 1 to 20%.
  • Si As the substrate suitable for water repellency of the surface of the object to be processed using the surface treatment agent of the present invention, Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al , Cu, Al—Si, Si—C, alumina, sapphire, glass, resin, and the like.
  • the substrate is not limited to the above-mentioned material
  • the base surface has Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, Al-Si, alumina, Water repellency can be similarly applied to a laminated substrate film having a film made of sapphire, ITO, ZnO, glass or the like.
  • the above film is formed using a conventionally known technique such as CVD, vacuum vapor deposition, plating, plating, or the like.
  • CVD methods such as plasma CVD, thermal CVD, and photo-CVD are known, but a film formed by any method may be used.
  • various types such as a low temperature film formation technique such as plasma and a method of epitaxial growth at high temperature are known.
  • SiN is not necessarily a composition of Si 3 N 4 which is a stoichiometric value but an intermediate composition expressed as SiN x .
  • any of the compositions has an effect, it is typically referred to as SiN (or silicon nitride).
  • a preferable object to be treated has a material having a contact angle of preferably 0 to 80 degrees, more preferably 5 to 60 degrees, and still more preferably 10 to 50 degrees on the surface.
  • it is a semiconductor substrate using a silicon wafer, and a film or pattern of SiN, SiO 2 , metal silicon (Si) or the like (including the case of having Si—OH) may be placed on the surface thereof, A resist resin film or its pattern may be placed thereon.
  • the effect of the present invention is most remarkable in at least a part of the surface of the substrate on three kinds of materials such as SiN such as Si 3 N 4 and SiON, SiO 2 , and Si such as amorphous silicon and crystalline silicon.
  • a high water-repellent film can be provided regardless of the material of the surface of the object to be treated.
  • the Si—H bond in the compound (A) is such that the H atom is negative and the Si atom is positively polarized.
  • the —H bond since the O atom is negative and the H atom is positively polarized, a hydrogen bond is generated here, and the compound (A) is oriented on the substrate surface to make the substrate surface water repellent. It is thought that the effect is given.
  • the surface treatment agent of the present invention contains a compound (A) in which at least one of R 1 , R 2 , R 3 , R 4 and R 5 in the general formula (1) is a cyanoalkyl group
  • a high water-repellent film can be provided for any of SiO 2 , SiN, and Si.
  • the compound (A) contains a cyanoalkyl group
  • the magnitude of the effect on each surface material can be controlled by the amount of the cyanoalkyl group and the amount of Si—H bond.
  • the ratio of the total amount of structural units having a cyanoalkyl group and the total amount of structural units having a Si—H bond is 1 to 20 mol% when the sum of both is 100 mol% and 99 to 80 mol%.
  • the amount of the structural unit having a cyanoalkyl group focused on the cyanoalkyl group and an Si—H bond focused on the Si—H bond If the calculation is carried out with the total of both as the amount of structural units being 100 mol%, the above control can be made the same. By such control, the values of the contact angles on the surfaces of different materials of SiO 2 , SiN, and Si can be made closer.
  • the latest liquid crystal and semiconductor substrate surfaces have micropatterns of various surface materials such as SiO 2 , SiN, Si, etc., so that not only can the substrate surface be made water-repellent, but the same level on the surface of different materials
  • the ability to impart the water repellency is an extremely advantageous effect in solving the problem of pattern collapse on the substrate surface of a semiconductor or the like having a complicated pattern. Such an effect has not been conventionally known.
  • the surface treatment method of the present invention includes a contact step of bringing the surface treatment agent of the present invention into contact with the surface of an object to be processed.
  • the specific method of a contact process is not specifically limited,
  • coating a surface treating agent is simple.
  • the coating may be any method such as spray coating, spin coating or dipping, but spin coating is preferred from the viewpoint that a thin and uniform water-repellent film can be obtained.
  • what contains an organic solvent is preferably used for a surface treating agent.
  • the surface treatment agent of the present invention contains the compound (A) and the compound (B), it is preferable to use them in a mixed state from the viewpoint of the uniformity of the thickness of the coating film.
  • Either one of the compound (A) and the compound (B) is first brought into contact with the surface of the semiconductor substrate and then brought into contact with the other, or both the compound (A) and the compound (B) are supplied from separate supply ports.
  • a method of supplying the surface of the semiconductor substrate can be used.
  • the object to be processed is preferably a semiconductor substrate having a film made of at least one of SiO 2 , SiN and Si on a part of its surface.
  • pretreatment such as cleaning and drying of the semiconductor substrate may be performed, and after the contacting step, post-processing such as washing and drying may be performed.
  • post-processing such as washing and drying may be performed.
  • the cleaning method in the pretreatment step is not particularly limited, but for example, a method called “SC1 cleaning” using ammonia and hydrogen peroxide is known. Further, acid treatment of the surface (hereinafter referred to as “acid contact step”) may be performed before and after cleaning the semiconductor substrate.
  • the acid contact step is to bring an acidic liquid containing acid into contact with the surface of the semiconductor substrate by a method such as coating, spraying, dipping, or vapor contact.
  • the method of immersing the substrate in an aqueous acid solution is preferable because it can be carried out with a simple apparatus.
  • the concentration of the acid when an aqueous solution is used as the acidic liquid is preferably 0.1% by mass or more and 96% by mass or less, more preferably 1% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 20% by mass or less. is there.
  • the condition for bringing the acidic liquid into contact with the surface of the semiconductor substrate is not particularly limited, but it is preferably about 1 second to 30 minutes, more preferably 10 seconds to 10 minutes at a temperature higher than 0 ° C. and lower than 70 ° C. Thus, effects such as impurity removal can be obtained.
  • the acid used in the acid contact step may be either an organic acid or an inorganic acid.
  • an acid having an acid dissociation constant (pKa) of 2.0 or less such as oxalic acid, trichloroacetic acid, trifluoroacetic acid, or dichloroacetic acid, is preferable, and oxalic acid is more preferable.
  • an inorganic acid having an acid dissociation constant (pKa) of 0.0 or less is preferable.
  • hydrochloric acid, sulfuric acid, nitric acid, hydroiodic acid, hydrobromic acid, chloric acid, bromic acid examples thereof include iodic acid, permanganic acid, thiocyanic acid, perchloric acid, perbromic acid, tetrafluoroboric acid, hexafluorophosphoric acid and the like.
  • hydrochloric acid, sulfuric acid, and nitric acid that are easily obtained industrially are preferable, and hydrochloric acid is particularly preferable because it is safe in that it is not oxidizable and hardly forms a hardly soluble salt.
  • organic acids and inorganic acids inorganic acids are preferred in that high purity products are easily obtained.
  • acids are preferably highly pure to the extent that they are commercially available.
  • EL grade except a particle can also be used preferably similarly.
  • an acid having low water solubility such as oxalic acid
  • a solution using 2-propanol, methyl ethyl ketone or the like as an organic solvent can be used in the same manner as other acid aqueous solutions.
  • the compound (A) contained in the surface treatment agent of the present invention may be hydrolyzed by contact with water, and a preferable solvent in the case where the surface treatment agent contains an organic solvent is one having a relatively small polarity. Therefore, when water is used in the cleaning in the pretreatment process or the acid contact process after cleaning, the water and the surface between the cleaning process and the acid contact process, and between the acid contact process and the contact process. It is preferable to provide a step of replacing the medium remaining on the surface of the semiconductor substrate with an organic solvent such as alcohol having an intermediate polarity of the organic solvent contained in the treatment agent.
  • the substrate is washed by a washing method using deionized water, then washed with water, and alcohol.
  • a contact process with the surface treatment agent the surface treatment agent diluted with a low-polarity solvent is brought into contact with the substrate, then the solvent is replaced with alcohol, washed with deionized water, and dried.
  • the substrate is cleaned by a cleaning method using deionized water, and then the acid is added.
  • the main constituent material of the formed water-repellent film is the compound (A) itself or the compound (A).
  • the contact angle in this water-repellent coating is preferably 80 to 120 degrees, more preferably 85 to 95 degrees.
  • the main constituent material of the formed water-repellent film is the compound (A) and the compound (B) itself.
  • the contact angle in this water-repellent coating is preferably 80 to 120 degrees, more preferably 85 to 95 degrees.
  • the object to be processed is a silicon wafer (semiconductor substrate) having a silicon nitride film and a silicon oxide film on its surface, a contact angle (Can) on the surface of the silicon nitride film after the contact step.
  • the contact angle (Cao) at the surface of the silicon oxide film (Can / Cao) is preferably in the range of 0.7 to 1.3, more preferably 0.9 to 1.1, particularly preferably 0. 97 to 1.03.
  • Another aspect of the present invention is a surface treatment method for imparting water repellency to the surface of a semiconductor substrate, which is represented by a first step in which an acidic liquid containing an acid is brought into contact with the semiconductor substrate, and the following general formula (11):
  • a surface treatment method comprising sequentially providing a second step of bringing a surface treatment agent containing a compound (B) into contact with the semiconductor substrate.
  • the semiconductor substrate means a silicon wafer having a material with a contact angle of preferably 0 to 80 degrees, more preferably 5 to 60 degrees, and still more preferably 10 to 50 degrees on the surface, and SiN, A film or pattern of SiO 2 , (Si) or the like (including the case of having Si—OH) may be placed, or a resist resin film or pattern thereof may be placed.
  • R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group
  • R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom.
  • the substrate surface can be cleaned before the step of bringing the acidic liquid into contact with the semiconductor substrate surface, which is the first step.
  • a cleaning method for example, a method called “SC1 cleaning” using ammonia and hydrogen peroxide and a method called “SC2 cleaning” using hydrochloric acid and hydrogen peroxide are known, and any known cleaning method can be used. Can be used. However, for example, a cleaning method using a mixture of hydrofluoric acid and nitric acid obviously erodes the semiconductor substrate surface, and it goes without saying that it is not preferable to apply it to the surface after the pattern is formed. .
  • the SC1 cleaning solution is alkaline, it is preferable to perform a water washing step in the present invention before performing the step of bringing the acidic liquid into contact with the semiconductor substrate surface. Similarly, it is preferable to perform water washing after SC2 washing.
  • the acidic liquid used in the present invention and the cleaning liquid in which hydrochloric acid and hydrogen peroxide used in SC2 cleaning coexist are different in the presence or absence of hydrogen peroxide, and even if SC2 cleaning is performed instead of the step of contacting the acidic liquid, There is no effect.
  • the compound (B) used in the second step may be hydrolyzed, and a preferable solvent when the surface treatment agent is used after being diluted with a solvent is relatively small in polarity. After that, it is preferable to carry out water washing, and further sandwich a step of solvent replacement using a solvent such as alcohol having an intermediate polarity between water and the solvent used in the second step.
  • the method of bringing the surface treatment agent into contact with the substrate is not particularly limited, but the method of applying the surface treatment agent is simple. Coating may be any method such as spray coating, spin coating or dipping, but spin coating is preferred in that a thin and uniform treated film can be obtained. Further, the surface treatment agent is preferably diluted with a solvent.
  • pretreatment such as cleaning and drying of the substrate
  • posttreatment such as washing and drying may be performed, but the surface tension when the cleaning liquid dries.
  • it is not preferable to put a drying step in the pretreatment and it is preferable to perform the surface treatment using the surface treatment agent used in the present invention without drying after washing with the washing liquid.
  • a drying step is usually included, and it is an effect of the present invention that pattern collapse does not occur in the drying step, but an excessive surface treatment agent is present before the drying step. If a large amount remains, it may cause spots on the substrate surface. Therefore, it is preferable that the surface treatment agent diluted with a solvent having a relatively small polarity is brought into contact with the substrate surface, and then the surface treatment with water is performed. It is preferable to wash with water with a step of solvent replacement using a solvent such as alcohol having an intermediate polarity of the solvent used in step 1.
  • the substrate surface that has been subjected to the surface treatment of the present invention can maintain water repellency even after the above-described solvent replacement or cleaning, and pattern collapse can be suppressed even after drying.
  • a process such as dry ashing, ozone oxidation, or wet oxidation can be performed.
  • the substrate is washed by a washing method using deionized water, and then immersed in an aqueous solution containing an acidic liquid (first step) and washed with water.
  • the solvent was replaced with alcohol, and as a contact step (second step) with the surface treatment agent containing compound (B), the surface treatment agent diluted with a low-polar solvent was brought into contact with the substrate, and then the solvent with alcohol was used. Subsequently, a series of steps of washing with deionized water and then drying can be mentioned.
  • the present inventors consider that the reason why the effect does not appear on the silicon nitride surface is that there is a basic functional group on the substrate surface, and in order to change the substrate surface to acidic, hydrogen peroxide is allowed to coexist.
  • the surface treatment was performed with a surface treatment agent containing a specific water repellent, the present invention was completed by finding an excellent effect.
  • the number average molecular weight of the polysiloxane such as the compound (A) according to the present invention was measured by a high-speed GPC system “HLC-8320GPC” (model name) manufactured by Tosoh Corporation as a GPC apparatus.
  • the column used was “TSKgel G4000H XL ” and “TSKgel G2000H XL ” manufactured by Tosoh Corporation.
  • the viscosity of the polysiloxane was measured with an E-type viscometer.
  • HMDS 1,1,1,3,3,3-hexamethyldisilazane manufactured by Kishida Chemical Co., Ltd.
  • TMCT 2,4,6,8-tetramethylcyclotetrasiloxane manufactured by Alpha Eiser.
  • OMCT Octamethylcyclotetrasiloxane manufactured by Tokyo Chemical Industry Co., Ltd., a compound having no Si—H bond.
  • KF-96 This is a dimethyl silicone oil “KF-96-30cs” (trade name) manufactured by Shin-Etsu Silicone Co., which is a compound having no Si—H bond with z of 0 in the general formula (1).
  • KF-99 This is a hydrogen silicone oil “KF-99” (trade name) manufactured by Shin-Etsu Silicone Co., which is a compound in which a, w and z in the general formula (1) are all 0.
  • Synthesis Example 1-1 The manufacturing method of the compound (A) based on this invention is described.
  • a 300 ml four-necked flask was equipped with a magnetic rotor, a liquid feed pump, a reflux condenser and a thermometer, and the system was replaced with nitrogen gas.
  • the temperature in the flask was kept at 25 ° C., and a mixture of 9.30 g of a 3.14% hydrochloric acid aqueous solution and 12.35 g of 2-butanol was gradually added from the dropping funnel while stirring. After completion of dropping, the reaction solution was allowed to stand at 25 ° C. for 22 hours.
  • PCN1 a colorless liquid
  • Mn number average molecular weight
  • PCN1 polysiloxane
  • CN represents a cyano group
  • Me represents a methyl group
  • s-Bu represents a secondary butyl group
  • Et represents an ethyl group.
  • composition was subjected to 1 H-NMR (proton nuclear magnetic resonance) and 29 Si-NMR measurements using polysiloxane (PCN1) as a CDCl 3 (deuterated chloroform) solvent, and analyzed from the obtained chemical shift. That is, a signal having a chemical shift ⁇ (ppm) in the 1 H-NMR spectrum of 2.2 to 2.5 is derived from (CH 2 CH 2 CN), and ⁇ (ppm) is 3.6 to 3.8. signal, (OCH 2 CH 3), the signal [delta] (ppm) is 3.8-4.1, from (OCH (CH 3) CH 2 CH 3).
  • PCN1 polysiloxane
  • the signal with ⁇ (ppm) of ⁇ 10 to 0 is derived from the structure of SiO 1/2
  • the signal with ⁇ (ppm) of ⁇ 40 to ⁇ 35 is SiO 2/2 Derived from the structure.
  • a raw material compound giving a structure having three Si—O— bonds expressed as SiO 1.5 or SiO 3/2 (called T monomer), and Si—O expressed as SiO 1.0 or SiO 2/2 -It has been found that for raw material compounds (called D monomers) that give a structure having two bonds, the raw material compounds charged in the condensation reaction are incorporated into the polysiloxane in a proportion of the amount used.
  • Synthesis Example 1-2 A 300 ml four-necked flask was equipped with a magnetic rotor, a liquid feed pump, a reflux condenser and a thermometer, and the system was replaced with nitrogen gas. To this flask, 12.32 g (75 mmol) of triethoxysilane, 5.43 g (25 mmol) of 2-cyanoethyltriethoxysilane, 10.62 g (100 mmol) of dimethoxymethylsilane, 1,1,3,3-tetramethyldisiloxane 20 .15 g (150 mmol), 2-butanol 24.71 g and xylene 74.12 g were accommodated, and the reaction system was put in a nitrogen gas atmosphere.
  • the temperature in the flask was kept at 25 ° C., and a mixture of 9.30 g of a 3.14% hydrochloric acid aqueous solution and 12.35 g of 2-butanol was gradually added from the dropping funnel while stirring. After completion of dropping, the reaction solution was allowed to stand at 25 ° C. for 22 hours.
  • PCN2 a colorless liquid
  • Mn number average molecular weight
  • PCN2 polysiloxane
  • CN represents a cyano group
  • Me represents a methyl group
  • s-Bu represents a secondary butyl group
  • Et represents an ethyl group.
  • Synthesis Example 1-3 A 300 ml four-necked flask was equipped with a magnetic rotor, a liquid feed pump, a reflux condenser and a thermometer, and the system was replaced with nitrogen gas. This flask was charged with 32.85 g (200 mmol) of triethoxysilane, 20.15 g (150 mmol) of 1,1,3,3-tetramethyldisiloxane, 24.04 g of 2-propanol and 72.12 g of xylene. Was put in a nitrogen gas atmosphere.
  • the temperature in the flask was kept at 25 ° C., and a mixed solution of 2.63% hydrochloric acid aqueous solution (11.10 g) and 2-propanol (12.02 g) was gradually added from the dropping funnel. After completion of dropping, the reaction solution was allowed to stand at 25 ° C. for 22 hours.
  • composition of polysiloxane (P1) is shown in the following structural formula (14) together with the molar ratio of structural units.
  • Me represents a methyl group
  • i-Pr represents an isopropyl group
  • Et represents an ethyl group.
  • composition was subjected to 1 H-NMR (proton nuclear magnetic resonance) measurement using polysiloxane (P1) as a CDCl 3 (deuterated chloroform) solvent and analyzed from the obtained chemical shift. That is, a signal with a chemical shift ⁇ (ppm) of ⁇ 0.2 to 0.6 in the 1 H-NMR spectrum is a signal with a ⁇ (ppm) of 0.9 to 1.5 based on the structure of Si—CH 3. Is (OCH (CH 3 ) 2 and OCH 2 CH 3 ), and a signal with ⁇ (ppm) of 3.5 to 4.1 is OCH 2 CH 3 and ⁇ (ppm) of 4.1 to 5.5.
  • P1 polysiloxane
  • Synthesis Example 1-4 A 300 ml four-necked flask was equipped with a magnetic rotor, a liquid feed pump, a reflux condenser and a thermometer, and the system was replaced with nitrogen gas. To this flask, 16.43 g (100 mmol) of triethoxysilane, 10.62 g (100 mmol) of dimethoxymethylsilane, 20.15 g (150 mmol) of 1,1,3,3-tetramethyldisiloxane, 20.03 g of 2-propanol and 60.10 g of xylene was accommodated, and the reaction system was placed in a nitrogen gas atmosphere.
  • the temperature in the flask was kept at 25 ° C., and a mixture of 9.30 g of a 3.14% hydrochloric acid aqueous solution and 10.02 g of 2-propanol was stirred while gradually being added from the dropping funnel. After completion of dropping, the reaction solution was allowed to stand at 25 ° C. for 22 hours.
  • composition of polysiloxane (P2) is shown in the following structural formula (15) together with the molar ratio of structural units.
  • Me represents a methyl group
  • Et represents an ethyl group
  • i-Pr represents an isopropyl group.
  • composition was subjected to 1 H-NMR (proton nuclear magnetic resonance) measurement using polysiloxane (P2) as a CDCl 3 (deuterated chloroform) solvent and analyzed from the obtained chemical shift. That is, a signal with a chemical shift ⁇ (ppm) of ⁇ 0.2 to 0.6 in the 1 H-NMR spectrum is a signal with a ⁇ (ppm) of 0.9 to 1.5 based on the structure of Si—CH 3. Is (OCH (CH 3 ) 2 and OCH 2 CH 3 ), and a signal with ⁇ (ppm) of 3.5 to 4.1 is OCH 2 CH 3 and ⁇ (ppm) of 4.1 to 5.5.
  • P2 polysiloxane
  • T monomer which gives a structure having three Si—O— bonds represented by SiO 1.5 or SiO 3/2
  • the charged raw material compound is almost in proportion to the amount used. It has been found to be incorporated into polysiloxanes. Therefore, simultaneous equations relating to the side chains were prepared from the integrated values of the signal intensities, and the molar ratio of each structural unit contained in the polysiloxane (P2) was determined from the charged amount of each monomer and the integrated value of NMR. .
  • substrate An object to be processed (hereinafter referred to as “substrate”) is a silicon wafer with a silicon nitride film (hereinafter sometimes referred to as “SiN substrate”) cut into a size of 10 mm ⁇ 50 mm, or a silicon wafer with a silicon oxide film (hereinafter referred to as “SiN substrate”). , “Sometimes referred to as“ SiO 2 substrate ”) and silicon wafer (hereinafter sometimes referred to as“ Si substrate ”). The substrate is designated as No. 2 in Table 2. 1-1 to No.
  • the contact angle on the surface of the substrate after the surface treatment is determined by JIS R1257: 1999 static droplets in air using a dataphysics automatic contact angle measuring device “OCA20 type” for the substrate after drying by nitrogen gas blowing for 20 seconds. It is the average value measured five times by the method.
  • Table 1 shows standard deviations (calculated values) of contact angles on three types of substrate surfaces.
  • the standard deviation is defined according to JIS Z8101-1.
  • the standard deviation is defined as the positive square root of the dispersion of the three contact angle values on the surfaces of the SiN substrate, the SiO 2 substrate and the Si substrate shown in Table 1. The closer this standard deviation value is to 0, the smaller the contact angle deviation due to the type of substrate.
  • Experimental Example 1-13 This experimental example is No. 1 in Table 2. 1-1 to No. This is a blank test in which, in the order of 1-5, each chemical solution (about 5 ml) was immersed in a predetermined temperature at a predetermined temperature for a predetermined time, then nitrogen gas was blown for 20 seconds to remove water, and the contact angle was measured immediately. (See Table 1).
  • Experimental example 2-1 A surface treating agent was prepared by mixing 5 parts by mass of KF-99 and 95 parts by mass of n-octane (see Table 3). Using the chemical solution containing this surface treatment agent, the surface treatment of the object to be treated was performed. The specific method of surface treatment is as shown in Table 2.
  • the object to be processed is a silicon wafer with a SiN film (SiN substrate) having a size of 10 mm ⁇ 50 mm.
  • the contact angle measurement method is also the same as in Experimental Example 1-1 and the like (see Table 3).
  • Experimental Example 2-2 10 parts by mass of KF-99 and 90 parts by mass of n-octane were mixed to prepare a surface treatment agent, and the surface treatment of the SiN substrate surface was performed in the same manner as in Experimental Example 2-1, and the substrate after the treatment The contact angle at the surface was measured. The results are shown in Table 3.
  • Experimental Example 2-3 A surface treating agent was prepared by mixing 5 parts by mass of the polysiloxane (P1) obtained in Synthesis Example 1-3 and 95 parts by mass of n-octane, and the surface of the SiN substrate in the same manner as in Experimental Example 2-1. The contact angle on the substrate surface after the treatment was measured. The results are shown in Table 3.
  • Experimental Example 2-7 The treatment was performed in the same manner as in Experimental Example 2-6 except that a SiO 2 substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 3. In the case of an SiO 2 substrate, No. is used so that the oxide film does not melt. In the treatment in 1-4, the immersion time of the 1% HF aqueous solution was 30 seconds.
  • Experimental Example 2-8 The treatment was performed in the same manner as in Experimental Example 2-6, except that a Si substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 3.
  • Experimental Example 2-13 The treatment was performed in the same manner as in Experimental Example 2-10 except that a SiO 2 substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 3. In the case of an SiO 2 substrate, No. is used so that the oxide film does not melt. In the treatment in 1-4, the immersion time of the 1% HF aqueous solution was 30 seconds.
  • Experimental Example 2-14 The treatment was performed in the same manner as in Experimental Example 2-10 except that a Si substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 3.
  • Experimental Examples 2-9 to 2-14 are examples using a surface treating agent containing a compound containing no Si—H group, and show a low contact angle of less than 85 degrees. It was.
  • Experimental Examples 2-1 to 2-8 are examples using a surface treating agent containing a compound containing a Si—H group, and the contact angle was 86 degrees or more, indicating good water repellency.
  • Experimental Example 3-1 A surface treating agent was prepared by mixing 1 part by mass of KF-99, 4 parts by mass of DMATMS, and 95 parts by mass of n-octane (see Table 4). Using the chemical solution containing this surface treatment agent, the surface treatment of the object to be treated was performed. The specific method of surface treatment is as shown in Table 2.
  • the object to be processed is a silicon wafer with a SiN film (SiN substrate) having a size of 10 mm ⁇ 50 mm.
  • the contact angle measurement method is also the same as in Experimental Example 1-1 and the like (see Table 4).
  • Experimental Example 3-12 The treatment was performed in the same manner as in Experimental Example 3-4 except that a SiO 2 substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 4. In the case of an SiO 2 substrate, No. is used so that the oxide film does not melt. In the treatment in 1-4, the immersion time of the 1% HF aqueous solution was 30 seconds.
  • Experimental Example 3-13 The treatment was performed in the same manner as in Experimental Example 3-4, except that a Si substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 4.
  • Experimental Example 3-21 The treatment was performed in the same manner as in Experimental Example 3-15 except that a SiO 2 substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 4. In the case of an SiO 2 substrate, No. is used so that the oxide film does not melt. In the treatment in 1-4, the immersion time of the 1% HF aqueous solution was 30 seconds.
  • Experimental Example 3-22 The treatment was performed in the same manner as in Experimental Example 3-15 except that a Si substrate was used instead of the SiN substrate, and the contact angle on the substrate surface after the treatment was measured. The results are shown in Table 4.
  • surface treatment agents 4-1 to 4-7 shown in Table 5 were prepared, and surface treatment was performed on the SiN substrate, the SiO 2 substrate, and the Si substrate.
  • Experimental Example 4-1 Surface treatment of the object to be treated was performed using a chemical solution containing the individual surface treatment agents 4-1 to 4-7.
  • Table 6 shows specific methods of surface treatment.
  • the object to be processed is a silicon wafer with a SiN film (SiN substrate), a SiO 2 substrate, and a Si substrate having a size of 10 mm ⁇ 50 mm.
  • the substrate was designated as No. 6 in Table 6. 2-1.
  • 2-14 After immersing each chemical solution (about 5 ml) weighed in a resin cup at a predetermined temperature for a predetermined time, blow off nitrogen gas for 20 seconds to remove water, and quickly contact angle Was measured. No. In the HF process in 2-4, a 1 minute process is performed.
  • Experimental Example 4-2 No. The surface treatment of the SiN substrate was performed in the same manner as in Experimental Example 4-1, except that 16% sulfuric acid aqueous solution was used in the acid treatment in 2-9. The results are shown in Table 7.
  • Experimental Example 4-3 No. Surface treatment of the SiN substrate was performed in the same manner as in Experimental Example 4-1, except that 20% nitric acid aqueous solution was used in the acid treatment in 2-9. The results are shown in Table 7.
  • Experimental Example 4-4 No. A surface treatment of the SiN substrate was performed in the same manner as in Experimental Example 4-1, except that a 14% oxalic acid aqueous solution was used in the acid treatment in 2-9. The results are shown in Table 7.
  • the surface of a semiconductor substrate or the like that has a pattern with a high aspect ratio can be made water repellent uniformly, and the yield during semiconductor manufacturing can be improved. .
  • the surface of the semiconductor substrate having a high aspect ratio pattern can be made water repellent uniformly, and the yield during semiconductor manufacturing can be improved. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Silicon Polymers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The present invention is a surface-treating agent suitable for rendering the surface of an object of interest water-repellent, which comprises a compound (A) represented by general formula (1). [In the formula, R6 represents a hydrogen atom or an alkyl group having 1-6 carbon atoms; R1, R2, R3, R4 and R5 independently represent a hydrogen atom, a cyanoalkyl group, an alkyl group, an aralkyl group, a cycloalkyl group, a cycloaralkyl group or an aryl group, wherein at least one of R1, R2, R3, R4 and R5 represents a hydrogen atom; and a, w, x, y and z independently represent 0 or a positive number, wherein w and/or x represents a positive number and the following formulae 0 ≤ w/(x+y) ≤ 5 and 0 ≤ z/(a+w+x+y) ≤ 1 are fulfilled.]

Description

表面処理剤及び表面処理方法Surface treatment agent and surface treatment method
 本発明は、被処理物の表面の撥水性を向上させる表面処理剤及び表面処理方法に関し、更に詳しくは、リソグラフィ技術を応用する液晶や半導体等の基板表面を撥水化するための表面処理剤、及び、その表面処理剤を用いて基板表面を撥水化する表面処理方法に関する。
The present invention relates to a surface treatment agent and a surface treatment method for improving the water repellency of a surface of an object to be treated, and more specifically, a surface treatment agent for making a substrate surface of a liquid crystal, a semiconductor or the like to which a lithography technique is applied to be water repellent. The present invention also relates to a surface treatment method for making a substrate surface water repellent using the surface treatment agent.
 半導体デバイス等の製造においては、基板にエッチング等の処理を施す際にリソグラフィ技術が用いられている。リソグラフィ技術においては、感光性樹脂組成物を用いて基板上に感光性樹脂層を設け、次いで、これを活性放射線で選択的に照射して露光し、現像処理を行った後、感光性樹脂層を選択的に溶解除去して、基板上に樹脂パターンを形成し、樹脂パターンをマスクとしてエッチング処理を行うことにより、基板に被エッチングパターンが形成される。 In the manufacture of semiconductor devices and the like, lithography technology is used when processing such as etching on a substrate. In lithography technology, a photosensitive resin layer is provided on a substrate using a photosensitive resin composition, and then exposed to selective irradiation with actinic radiation for exposure and development, and then a photosensitive resin layer. Is selectively dissolved and removed, a resin pattern is formed on the substrate, and an etching process is performed using the resin pattern as a mask, whereby a pattern to be etched is formed on the substrate.
 液晶や半導体等に用いられる基板には様々な材質のものがあるうえ、基板上に複数の種類の素子や回路を作りこんでいくために、感光性樹脂層が形成される。リソグラフィ技術の応用される半導体基板の表面は、先に形成された表面、あるいは、エッチングで除去された後の表面等、様々な表面状態が混在したものとなり得る。例えば、半導体製品を製造する前のシリコンウェハ表面には、通常、SiO2膜が形成されており、このSiO2膜の最表面には、大気中の水分が結合してSi-OHとなっていることが知られている。シリコンウェハ表面の改質方法として、特許文献1には、シリコンウェハ表面に酸化性浄化処理をした後で、ヘキサメチルジシラザンを酸化されたシリコンウェハ表面のOH基と反応させてトリメチルシリル化する方法が開示されている。また、このような撥水化処理によって基板表面とレジスト樹脂との密着性を向上させることができることも知られている。 There are various types of substrates used for liquid crystals, semiconductors, and the like, and a photosensitive resin layer is formed in order to build a plurality of types of elements and circuits on the substrate. The surface of a semiconductor substrate to which lithography technology is applied can be a mixture of various surface states, such as a previously formed surface or a surface after being removed by etching. For example, a SiO 2 film is usually formed on the surface of a silicon wafer before manufacturing a semiconductor product, and moisture in the atmosphere is bonded to the outermost surface of the SiO 2 film to form Si—OH. It is known that As a method for modifying the surface of a silicon wafer, Patent Document 1 discloses a method for trimethylsilylation by reacting hexamethyldisilazane with an OH group on an oxidized silicon wafer surface after oxidizing the silicon wafer surface. Is disclosed. It is also known that such a water repellency treatment can improve the adhesion between the substrate surface and the resist resin.
 近年、半導体デバイスの高集積化及び微小化の傾向が高まり、パターンの面積に対する高さの比率が大きくなる、いわゆる高アスペクト比化が進んでいる影響により、パターン倒れと呼ばれる問題が生じるようになっている。このパターン倒れは、当初は、基板上に多数の感光性樹脂パターンを並列状に形成させる際、隣接する樹脂パターン同士がもたれ合うように近接し、場合によっては樹脂パターンが基部から折損したり、剥離したりするという現象として発見された。このようなパターン倒れが生じると、所望の製品が得られないため、製品の歩留りや信頼性の低下を引き起こすことになる。また、最近では、半導体素子回路の複雑化に伴って半導体素子形状も高アスペクト化が進んだため、感光性樹脂パターンのみならず、被エッチングパターン、すなわち、半導体素子側についても、パターン倒れの問題が生じるようになっている。 In recent years, the trend toward higher integration and miniaturization of semiconductor devices has increased, and the ratio of height to the area of the pattern has increased, and so-called high aspect ratio has been promoted, and a problem called pattern collapse has arisen. ing. This pattern collapse initially, when forming a large number of photosensitive resin patterns in parallel on the substrate, adjacent resin patterns are close to each other, in some cases the resin pattern breaks from the base, It was discovered as a phenomenon of peeling. When such a pattern collapse occurs, a desired product cannot be obtained, which causes a decrease in product yield and reliability. Recently, as the semiconductor element circuit has become more complex, the shape of the semiconductor element has been increased, so that not only the photosensitive resin pattern but also the pattern to be etched, that is, the pattern of the semiconductor element, can be collapsed. Has come to occur.
 このパターン倒れは、パターン形成後の洗浄処理において、洗浄液が乾燥する際、その洗浄液の表面張力により発生することが知られている。すなわち、乾燥過程で洗浄液が除去される際に、パターン間に洗浄液の表面張力に基づく応力が作用し、高アスペクト比で細長い壁であるパターンが耐え切れずに倒れが生じると言われている。特許文献2には、パターン倒れを防ぐ方法として、N,N-ジメチルアミノトリメチルシランやヘキサメチルジシラザン等のシリル化剤を有機溶剤で希釈した表面処理液、を用いて基板表面を処理する方法が開示されている。特許文献3には、半導体基板上に形成された、表面にヒドロキシル基を有する複数の凸形状パターンに対して、ヒドロキシル基と反応する加水分解基を有するシランカップリング剤を含む表面処理剤によって、水に対する濡れ性の低い撥水性保護膜を形成できることや、硫酸と過酸化水素を用いた基板表面の洗浄によっても、撥水性が増すことが開示されている。 This pattern collapse is known to occur due to the surface tension of the cleaning liquid when the cleaning liquid dries in the cleaning process after pattern formation. That is, when the cleaning liquid is removed in the drying process, a stress based on the surface tension of the cleaning liquid acts between the patterns, and it is said that the pattern which is a long wall with a high aspect ratio cannot endure and falls down. In Patent Document 2, as a method for preventing pattern collapse, a method for treating a substrate surface using a surface treatment solution obtained by diluting a silylating agent such as N, N-dimethylaminotrimethylsilane or hexamethyldisilazane with an organic solvent. Is disclosed. In Patent Document 3, a plurality of convex patterns having a hydroxyl group on the surface formed on a semiconductor substrate, a surface treatment agent containing a silane coupling agent having a hydrolyzable group that reacts with the hydroxyl group, It is disclosed that a water-repellent protective film having low wettability to water can be formed, and that the water repellency is increased by cleaning the substrate surface using sulfuric acid and hydrogen peroxide.
 尚、特許文献2及び3では、基板表面の撥水性の評価方法として、水に対する接触角を測定して、接触角の値が大きいものはパターン倒れを抑制することができることが記載されているので、接触角を大きくすることがパターン倒れの解決策であることは知られている。 In Patent Documents 2 and 3, as a method for evaluating the water repellency of the substrate surface, it is described that a contact angle to water is measured, and those having a large contact angle value can suppress pattern collapse. It is known that increasing the contact angle is a solution to pattern collapse.
 特許文献3には、表面処理剤による表面処理が、シリコン窒化膜にも用いることができることが記載されているが、シリコン系膜の場合には、撥水性保護膜を形成した後の水の接触角が89度であるのに対して、シリコン窒化膜の場合には約46度しか得られず、シリコン窒化膜表面を酸化剤によりSiO2化することにより接触角が59度まで向上したことの記載がある。すなわち、特許文献3の発明は表面にヒドロキシル基を有するシリコン系膜には有効であったが、シリコン窒化膜に対する撥水性付与の効果は十分でない問題があり、いったんSiO2化してから表面処理しても尚、シリコン系膜よりは劣る撥水性しか得られなかったので効果が不十分であったということができる。 Patent Document 3 describes that surface treatment with a surface treatment agent can be used for a silicon nitride film, but in the case of a silicon-based film, contact with water after forming a water-repellent protective film. In contrast to the angle of 89 degrees, in the case of a silicon nitride film, only about 46 degrees can be obtained, and the contact angle is improved to 59 degrees by converting the silicon nitride film surface to SiO 2 with an oxidizing agent. There is a description. That is, a valid and the silicon-based film invention having a hydroxyl group on the surface of the Patent Document 3, there is the effect is not sufficient problems providing water repellency to the silicon nitride film, a surface treatment from once SiO 2 turned into However, since only water repellency inferior to that of the silicon-based film was obtained, it can be said that the effect was insufficient.
 一方で、半導体デバイスの高集積化、微小化の傾向には限りがなく、また、基板表面の材質や状態が多様化するにつれて、従来の表面処理方法では効果が不十分であり、半導体製造の歩留まりが低い場合があることが問題となってきた。特に、シリコン窒化膜は酸化膜よりも緻密な膜質を得やすく、反射防止膜としての特性も有することから、近年の高集積半導体デバイスでは多用される材質であるので、シリコン窒化膜を含む多様な材質の表面に対して、十分な撥水性をもたらす方法が求められていた。
On the other hand, there is no limit to the trend toward higher integration and miniaturization of semiconductor devices, and the effects of conventional surface treatment methods are inadequate as the materials and conditions of the substrate surface diversify. There has been a problem that the yield may be low. In particular, the silicon nitride film is easier to obtain a dense film quality than the oxide film, and also has a characteristic as an antireflection film. Therefore, the silicon nitride film is a material frequently used in recent highly integrated semiconductor devices. A method for providing sufficient water repellency to the surface of the material has been demanded.
特開昭62-120031号公報JP 62-120031 A 特開2010-129932号公報JP 2010-129932 A 特開2010-114467号公報JP 2010-114467 A
 本発明の課題は、液晶や半導体等に用いられる基板等の被処理物の表面の撥水性を向上させる表面処理剤を提供することである。また、本発明の課題は、その表面処理剤を用いて、半導体基板等の被処理物の表面を撥水化する方法を提供することである。
The subject of this invention is providing the surface treating agent which improves the water repellency of the surface of to-be-processed objects, such as a board | substrate used for a liquid crystal, a semiconductor, etc. Another object of the present invention is to provide a method for making the surface of an object to be treated such as a semiconductor substrate water repellent using the surface treating agent.
 本発明は、以下に示される。
1.下記一般式(1)で表される化合物(A)を含むことを特徴とする表面処理剤。
Figure JPOXMLDOC01-appb-C000006
〔式中、R6は、水素原子又は炭素原子数1~6のアルキル基であり、R1、R2、R3、R4及びR5は、互いに独立して、水素原子、シアノアルキル基、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、R1、R2、R3、R4及びR5の少なくとも1つは水素原子である。a、w、x、y及びzは、互いに独立して、0又は正の数であり、w及びxの少なくとも一方は正の数であり、0≦w/(x+y)≦5であり、0≦z/(a+w+x+y)≦1である。化合物Aは、各構造単位を1種のみ含んでよいし、2種以上を含んでもよい。〕
2.上記化合物(A)が、下記一般式(4)で表される上記1に記載の表面処理剤。
Figure JPOXMLDOC01-appb-C000007
〔式中、R3及びR5は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、w、x及びyは、互いに独立して、正の数であり、zは0又は正の数である。〕
3.上記一般式(1)におけるR1、R2、R3、R4及びR5の少なくとも1つがシアノアルキル基である上記1に記載の表面処理剤。
4.上記化合物(A)が、下記一般式(7)で表される上記3に記載の表面処理剤。
Figure JPOXMLDOC01-appb-C000008
〔式中、Bはシアノアルキル基であり、b、x、y及びzは、互いに独立して、0又は正の数であり、cは正の数である。〕
5.上記一般式(7)において、b/cの比が0.1~20の範囲である上記4に記載の表面処理剤。
6.上記化合物(A)の数平均分子量が240~10,000である上記1乃至5のいずれか一項に記載の表面処理剤。
7.更に、下記一般式(11)で表される化合物(B)を含有する上記1乃至6のいずれか一項に記載の表面処理剤。
Figure JPOXMLDOC01-appb-C000009
〔式中、R11、R12及びR13は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、R14及びR15は、互いに独立して、水素原子、飽和若しくは不飽和アルキル基、飽和若しくは不飽和シクロアルキル基、トリメチルシリル基、ジメチルシリル基、又は、飽和若しくは不飽和ヘテロシクロアルキル基であり、R14及びR15は、互いに結合して、窒素原子を有する飽和又は不飽和ヘテロシクロアルキル基であってもよい。〕
8.上記化合物(B)が、N,N-ジエチルアミノトリメチルシラン及びN,N-ジメチルアミノトリメチルシランのうちの少なくとも一方である上記7に記載の表面処理剤。
9.更に、有機溶剤を含有する上記1乃至8のいずれか一項に記載の表面処理剤。
10.被処理物の表面の撥水化に用いられる上記1乃至9のいずれか一項に記載の表面処理剤。
11.被処理物の表面の撥水化を行う表面処理方法において、上記1乃至9のいずれか一項に記載の表面処理剤を上記被処理物に接触させる接触工程を備えることを特徴とする表面処理方法。
12.上記被処理物が、半導体基板である上記11に記載の表面処理方法。
13.上記被処理物が、その表面の一部に窒化ケイ素を含む上記11又は12に記載の表面処理方法。
14.上記被処理物が、その表面の一部に酸化ケイ素を含む上記11乃至13のいずれか一項に記載の表面処理方法。
15.上記被処理物が、その表面の一部に金属ケイ素を含む上記11乃至14のいずれか一項に記載の表面処理方法。
16.上記接触工程の前に、酸を含む酸性液体を上記被処理物に接触させる酸接触工程を備える上記11乃至15のいずれか一項に記載の表面処理方法。
17.上記酸が、酸解離定数(pKa)が0より小さい無機酸である上記16に記載の表面処理方法。
18.上記被処理物が、その表面に窒化ケイ素膜と酸化ケイ素膜とを有し、上記接触工程の後、該窒化ケイ素膜の表面における水の接触角(Can)と、該酸化ケイ素膜の表面における水の接触角(Cao)との比(Can/Cao)が0.7~1.3の範囲となる上記17に記載の表面処理方法。
19.水を含む液体と接触する工程の後、溶剤置換工程を含み、次いで、有機溶剤で希釈した表面処理剤を上記被処理物に接触させる、上記11乃至15のいずれか一項に記載の表面処理方法。
20.半導体基板の表面の撥水化を行う表面処理方法において、酸を含む酸性液体を上記半導体基板に接触させる第1工程と、下記一般式(11)で表される化合物を含有する表面処理剤を上記半導体基板に接触させる第2工程とを、順次、備えることを特徴とする表面処理方法。
Figure JPOXMLDOC01-appb-C000010
〔式中、R11、R12及びR13は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、R14及びR15は、互いに独立して、水素原子、飽和若しくは不飽和アルキル基、飽和若しくは不飽和シクロアルキル基、トリメチルシリル基、ジメチルシリル基、又は、飽和若しくは不飽和ヘテロシクロアルキル基であり、R14及びR15は、互いに結合して、窒素原子を有する飽和又は不飽和ヘテロシクロアルキル基であってもよい。〕
21.上記酸が、酸解離定数(pKa)が0より小さい無機酸である上記20に記載の表面処理方法。
22.上記半導体基板が、その表面の少なくとも一部に窒化ケイ素を有する上記20又は21に記載の半導体基板の表面処理方法。
23.上記半導体基板が、その表面の少なくとも一部に、金属ケイ素と窒化ケイ素と酸化ケイ素のうちの少なくとも2種の部分を有する上記22に記載の半導体基板の表面処理方法。
24.上記半導体基板が、その表面に窒化ケイ素膜と酸化ケイ素膜とを有し、上記第2工程の後、該窒化ケイ素膜の表面における水の接触角(Can)と、該酸化ケイ素膜の表面における水の接触角(Cao)との比(Can/Cao)が0.7~1.3の範囲となる上記20乃至23のいずれか一項に記載の半導体基板の表面処理方法。
The present invention is shown below.
1. The surface treating agent characterized by including the compound (A) represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000006
[Wherein R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a cyanoalkyl group, , An alkyl group, an aralkyl group, a cycloalkyl group, a cycloaralkyl group or an aryl group, and at least one of R 1 , R 2 , R 3 , R 4 and R 5 is a hydrogen atom. a, w, x, y and z are each independently 0 or a positive number, at least one of w and x is a positive number, 0 ≦ w / (x + y) ≦ 5, 0 ≦ z / (a + w + x + y) ≦ 1. Compound A may contain only 1 type of each structural unit, and may contain 2 or more types. ]
2. 2. The surface treating agent according to 1 above, wherein the compound (A) is represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000007
[Wherein, R 3 and R 5 are each independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group, a cycloaralkyl group or an aryl group, and w, x and y are independently of each other, It is a positive number and z is 0 or a positive number. ]
3. 2. The surface treating agent according to 1 above, wherein at least one of R 1 , R 2 , R 3 , R 4 and R 5 in the general formula (1) is a cyanoalkyl group.
4). 4. The surface treating agent according to 3 above, wherein the compound (A) is represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000008
[Wherein, B is a cyanoalkyl group, b, x, y and z are each independently 0 or a positive number, and c is a positive number. ]
5. 5. The surface treating agent according to 4 above, wherein in the general formula (7), the ratio b / c is in the range of 0.1-20.
6). 6. The surface treating agent according to any one of 1 to 5 above, wherein the compound (A) has a number average molecular weight of 240 to 10,000.
7. Furthermore, the surface treating agent as described in any one of said 1 thru | or 6 containing the compound (B) represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000009
[Wherein R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group, and R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom. ]
8). 8. The surface treating agent according to 7 above, wherein the compound (B) is at least one of N, N-diethylaminotrimethylsilane and N, N-dimethylaminotrimethylsilane.
9. Furthermore, the surface treating agent as described in any one of said 1 thru | or 8 containing an organic solvent.
10. 10. The surface treatment agent according to any one of 1 to 9 above, which is used for water repellency on the surface of an object to be treated.
11. A surface treatment method for making a surface of a treatment object water-repellent, comprising a contact step of bringing the surface treatment agent according to any one of 1 to 9 into contact with the treatment object. Method.
12 12. The surface treatment method according to 11 above, wherein the object to be treated is a semiconductor substrate.
13. 13. The surface treatment method according to 11 or 12 above, wherein the object to be treated contains silicon nitride on a part of its surface.
14 14. The surface treatment method according to any one of 11 to 13, wherein the object to be treated includes silicon oxide on a part of the surface thereof.
15. The surface treatment method according to any one of the above 11 to 14, wherein the object to be treated contains metallic silicon in a part of its surface.
16. The surface treatment method according to any one of 11 to 15, further comprising an acid contact step in which an acidic liquid containing an acid is brought into contact with the object to be processed before the contact step.
17. 17. The surface treatment method according to 16 above, wherein the acid is an inorganic acid having an acid dissociation constant (pKa) of less than 0.
18. The object to be processed has a silicon nitride film and a silicon oxide film on the surface thereof, and after the contact step, the contact angle (Can) of water on the surface of the silicon nitride film and the surface of the silicon oxide film 18. The surface treatment method according to 17 above, wherein the ratio (Can / Cao) to the water contact angle (Cao) is in the range of 0.7 to 1.3.
19. The surface treatment according to any one of 11 to 15, further comprising a solvent replacement step after the step of contacting with the liquid containing water, and then bringing the surface treatment agent diluted with an organic solvent into contact with the object to be treated. Method.
20. In a surface treatment method for making a surface of a semiconductor substrate water repellent, a first step of bringing an acid liquid containing an acid into contact with the semiconductor substrate, and a surface treatment agent containing a compound represented by the following general formula (11): A surface treatment method comprising sequentially providing a second step of contacting the semiconductor substrate.
Figure JPOXMLDOC01-appb-C000010
[Wherein R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group, and R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom. ]
21. 21. The surface treatment method as described in 20 above, wherein the acid is an inorganic acid having an acid dissociation constant (pKa) of less than 0.
22. 22. The method for treating a surface of a semiconductor substrate according to 20 or 21, wherein the semiconductor substrate has silicon nitride on at least a part of its surface.
23. 23. The surface treatment method for a semiconductor substrate as described in 22 above, wherein the semiconductor substrate has at least two portions of metal silicon, silicon nitride and silicon oxide on at least a part of the surface thereof.
24. The semiconductor substrate has a silicon nitride film and a silicon oxide film on its surface, and after the second step, the contact angle (Can) of water on the surface of the silicon nitride film and the surface of the silicon oxide film 24. The method for surface treatment of a semiconductor substrate according to any one of 20 to 23, wherein the ratio (Can / Cao) to the contact angle (Cao) of water is in the range of 0.7 to 1.3.
 本発明の表面処理剤によれば、液晶や半導体等に用いられる基板等の被処理物の表面に皮膜を形成させて、撥水性を向上させることができる。撥水化された半導体基板等の表面では、レジスト樹脂との密着性がよく、いわゆるパターン倒れの問題が起きにくいことが知られており、本発明の表面処理剤により、半導体製造の歩留まりが向上することが期待できる。更に、本発明の表面処理剤によれば、表面材質や状態の異なる基板表面を同程度に撥水化することができるので、異種の材質からなるパターンが混在する半導体基板等においては、特に歩留まり向上の効果が期待できる。
According to the surface treating agent of the present invention, it is possible to improve the water repellency by forming a film on the surface of an object to be treated such as a substrate used for a liquid crystal or a semiconductor. It is known that the surface of a water-repellent semiconductor substrate or the like has good adhesion to a resist resin, and it is known that the problem of so-called pattern collapse does not occur. The surface treatment agent of the present invention improves the yield of semiconductor manufacturing. Can be expected to do. Furthermore, according to the surface treating agent of the present invention, the surface of the substrate having different surface materials and states can be made water repellent to the same extent, so that the yield is particularly high in a semiconductor substrate or the like in which patterns made of different materials are mixed. The improvement effect can be expected.
 以下の記載において、接触角は、JIS R1257に準ずる方法により、水を用いて測定された値である。 In the following description, the contact angle is a value measured using water by a method according to JIS R1257.
 本発明の表面処理剤は、下記一般式(1)で表される化合物(A)を含み、必要により、他のシリコーン系化合物、有機溶剤、添加剤等を含む。
Figure JPOXMLDOC01-appb-C000011
〔式中、R6は、水素原子又は炭素原子数1~6のアルキル基であり、R1、R2、R3、R4及びR5は、互いに独立して、水素原子、シアノアルキル基、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、R1、R2、R3、R4及びR5の少なくとも1つは水素原子である。a、w、x、y及びzは、互いに独立して、0又は正の数であり、w及びxの少なくとも一方は正の数であり、0≦w/(x+y)≦5であり、0≦z/(a+w+x+y)≦1である。化合物Aは、各構造単位を1種のみ含んでよいし、2種以上を含んでもよい。〕
The surface treating agent of the present invention contains a compound (A) represented by the following general formula (1), and if necessary, contains other silicone compounds, organic solvents, additives and the like.
Figure JPOXMLDOC01-appb-C000011
[Wherein R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a cyanoalkyl group, , An alkyl group, an aralkyl group, a cycloalkyl group, a cycloaralkyl group or an aryl group, and at least one of R 1 , R 2 , R 3 , R 4 and R 5 is a hydrogen atom. a, w, x, y and z are each independently 0 or a positive number, at least one of w and x is a positive number, 0 ≦ w / (x + y) ≦ 5, 0 ≦ z / (a + w + x + y) ≦ 1. Compound A may contain only 1 type of each structural unit, and may contain 2 or more types. ]
 上記化合物(A)は、上記一般式(1)で表されるように、以下に示される構造単位を含むケイ素化合物である。
Figure JPOXMLDOC01-appb-C000012
 尚、各構造単位の含有割合は、a、w、x、y及びzの規定に基づき、本発明において、上記化合物(A)が全ての構造単位を含まない場合があってもよい。
The said compound (A) is a silicon compound containing the structural unit shown below as represented by the said General formula (1).
Figure JPOXMLDOC01-appb-C000012
In addition, the content rate of each structural unit is based on prescription | regulation of a, w, x, y, and z, In this invention, the said compound (A) may not contain all the structural units.
 上記一般式(1)で表される化合物(A)は、(SiO4/2)等で表される構造単位が互いにシロキサン結合で結合したポリシロキサンの1種であり、実際のポリシロキサン分子内の構造単位の結合形態は、必ずしも上記一般式(1)の配列順でなくてもよい。a,w,x,y,zは、それぞれの構造単位の構成比(モル比)を表す。 The compound (A) represented by the general formula (1) is a kind of polysiloxane in which structural units represented by (SiO 4/2 ) and the like are bonded to each other through a siloxane bond, The bonding form of the structural units may not necessarily be the arrangement order of the general formula (1). a, w, x, y, z represent the composition ratio (molar ratio) of each structural unit.
 上記一般式(1)において、R1、R2、R3、R4及びR5のいずれか1つが水素原子であるので、化合物(A)は、化学的反応性を有するSi-H結合を含むことになる。Si-H結合は、Si-H基又はヒドロシリル基と呼ばれることがある。 In the general formula (1), since any one of R 1 , R 2 , R 3 , R 4 and R 5 is a hydrogen atom, the compound (A) has an Si—H bond having chemical reactivity. Will be included. Si—H bonds are sometimes referred to as Si—H groups or hydrosilyl groups.
 上記一般式(1)で表される化合物(A)の数平均分子量(Mn)は、好ましくは120以上20000以下、より好ましくは200以上10000以下、更に好ましくは240以上10000以下である。上記範囲のMnを有する化合物(A)を含む表面処理剤を用いると、撥水性の高い皮膜を形成することができ、特に、微細な凹凸表面にも効率よく撥水性皮膜を形成することができる。 The number average molecular weight (Mn) of the compound (A) represented by the general formula (1) is preferably 120 or more and 20000 or less, more preferably 200 or more and 10,000 or less, and further preferably 240 or more and 10,000 or less. When a surface treating agent containing the compound (A) having Mn in the above range is used, a highly water-repellent film can be formed, and in particular, a water-repellent film can be efficiently formed even on fine uneven surfaces. .
 上記一般式(1)において、R1、R2、R3、R4及びR5が、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基又はアリール基である場合、好ましい化合物(A)は、撥水性の観点から、下記一般式(2)~(6)で表される化合物であり、更に好ましい化合物は、一般式(3)及び(4)で表され、特に好ましい化合物は、一般式(4)で表される。一般式(3)で表される化合物は、三官能の、Si-O結合とSi-H結合とを併せ持つ構造単位を有し、一般式(4)で表される化合物は、2つのSi-O結合とSi-H結合とを併せ持つ構造単位を有する。
Figure JPOXMLDOC01-appb-C000013
〔式中、R2、R4及びR5は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基又はアリール基であり、R6は、水素原子又は炭素原子数1~6のアルキル基であり、x及びyは正の数であり、zは0又は正の数であり、x/yの比は、好ましくは0.5~2000、更に好ましくは1~200である。〕
Figure JPOXMLDOC01-appb-C000014
〔式中、R5は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基又はアリール基であり、R6は、水素原子又は炭素原子数1~6のアルキル基であり、w及びyは正の数であり、zは0又は正の数であり、w/yの比は、好ましくは0.3~5.0である。〕
Figure JPOXMLDOC01-appb-C000015
〔式中、R3及びR5は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基又はアリール基であり、R6は、水素原子又は炭素原子数1~6のアルキル基であり、w,x及びyは正の数であり、zは0又は正の数である。〕
In the general formula (1), when R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, a preferred compound (A) is a compound represented by the following general formulas (2) to (6) from the viewpoint of water repellency, and more preferred compounds are represented by the general formulas (3) and (4), and particularly preferred compounds. Is represented by the general formula (4). The compound represented by the general formula (3) has a trifunctional structural unit having both a Si—O bond and a Si—H bond, and the compound represented by the general formula (4) includes two Si— It has a structural unit having both an O bond and a Si—H bond.
Figure JPOXMLDOC01-appb-C000013
[Wherein R 2 , R 4 and R 5 are each independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, and R 6 is a hydrogen atom or a carbon atom number of 1 to 6 Wherein x and y are positive numbers, z is 0 or a positive number, and the ratio of x / y is preferably 0.5 to 2000, more preferably 1 to 200. ]
Figure JPOXMLDOC01-appb-C000014
[Wherein, R 5 independently of one another represents a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, w and y are positive numbers, z is 0 or a positive number, and the ratio of w / y is preferably 0.3 to 5.0. ]
Figure JPOXMLDOC01-appb-C000015
[Wherein, R 3 and R 5 are each independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, and R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Where w, x and y are positive numbers and z is 0 or a positive number. ]
Figure JPOXMLDOC01-appb-C000016
〔式中、R5は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基又はアリール基であり、a及びyは、正の数であり、好ましくはa=y=8である。〕
Figure JPOXMLDOC01-appb-C000016
[In the formula, R 5 independently of one another represents a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, and a and y are positive numbers, preferably a = y = 8. is there. ]
Figure JPOXMLDOC01-appb-C000017
〔式中、R2及びR3は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基である。〕
Figure JPOXMLDOC01-appb-C000017
[Wherein, R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group, a cycloaralkyl group or an aryl group. ]
 上記一般式(4)において、w、x、y及びzの好ましい関係は、これらの合計を1とした場合に、xは、好ましくは0.1~0.9、より好ましくは0.2~0.5、wは、好ましくは0.05~0.5、より好ましくは0.1~0.4、yは、好ましくは0.05~0.5、より好ましくは0.1~0.4、zは、好ましくは0.001~0.2、より好ましくは0.005~0.1である。 In the above general formula (4), the preferable relationship between w, x, y and z is that x is preferably 0.1 to 0.9, more preferably 0.2 to 0.5 and w are preferably 0.05 to 0.5, more preferably 0.1 to 0.4, and y is preferably 0.05 to 0.5, more preferably 0.1 to 0.00. 4, z is preferably 0.001 to 0.2, more preferably 0.005 to 0.1.
 本発明において、上記一般式(1)におけるR1、R2、R3、R4及びR5の少なくとも1つがシアノアルキル基である化合物(A)も好ましい態様であり、特に好ましくは、少なくともR1がシアノアルキル基である化合物である。尚、R1、R2、R3、R4及びR5の2つ又はそれ以上がシアノアルキル基である化合物であってもよく、その場合の好ましい例は、例えば、R1及びR5をシアノアルキル基とした化合物である。
 シアノアルキル基は、NC-R7-で表される。R7は、炭素原子数1~5の直鎖又は分枝状の2価のアルキル基である。R7の炭素原子数は、好ましくは1~3である。シアノアルキル基の具体例としては、シアノメチル基、シアノエチル基、シアノプロピル基等が例示できる。本発明において、更に好ましくはシアノエチル基又はシアノプロピル基であり、特に好ましくはシアノエチル基である。
In the present invention, the compound (A) in which at least one of R 1 , R 2 , R 3 , R 4 and R 5 in the general formula (1) is a cyanoalkyl group is also a preferred embodiment, and particularly preferably at least R A compound in which 1 is a cyanoalkyl group. In addition, a compound in which two or more of R 1 , R 2 , R 3 , R 4 and R 5 are cyanoalkyl groups may be used, and preferred examples in that case include, for example, R 1 and R 5 . A compound having a cyanoalkyl group.
The cyanoalkyl group is represented by NC—R 7 —. R 7 is a linear or branched divalent alkyl group having 1 to 5 carbon atoms. R 7 preferably has 1 to 3 carbon atoms. Specific examples of the cyanoalkyl group include a cyanomethyl group, a cyanoethyl group, a cyanopropyl group, and the like. In the present invention, a cyanoethyl group or a cyanopropyl group is more preferable, and a cyanoethyl group is particularly preferable.
 上記一般式(1)におけるR1、R2、R3、R4及びR5の少なくとも1つがシアノアルキル基である場合の各構造単位の構成比については、x及びyが共に0でない場合のx/yの比は、好ましくは0.1~200、更に好ましくは0.5~20である。また、w及びyが共に0でない場合のw/yの比は、好ましくは0.3~5.0である。 Regarding the constituent ratio of each structural unit when at least one of R 1 , R 2 , R 3 , R 4 and R 5 in the general formula (1) is a cyanoalkyl group, The ratio of x / y is preferably 0.1 to 200, more preferably 0.5 to 20. The ratio of w / y when w and y are not 0 is preferably 0.3 to 5.0.
 上記シアノアルキル基を有する化合物(A)のうち、好ましい化合物は、下記一般式(7)で表される。
Figure JPOXMLDOC01-appb-C000018
〔式中、Bはシアノアルキル基であり、R2、R3、R4及びR5は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基又はアリール基であり、R6は、水素原子又は炭素原子数1~6のアルキル基であり、b、x、y及びzは、互いに独立して、0又は正の数であり、cは正の数である。〕
Of the compounds (A) having the cyanoalkyl group, a preferred compound is represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000018
Wherein, B is cyanoalkyl group, R 2, R 3, R 4 and R 5, independently of one another, a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, R 6 Is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, b, x, y and z are each independently 0 or a positive number, and c is a positive number. ]
 上記一般式(7)における(H-SiO3/2b(B-SiO3/2cは、上記一般式(1)における(R1-SiO3/2wに含まれる。即ち、(b+c)=wである。bとcのモル比(b/c)が高いほど、撥水性が高い傾向にあるが、好ましい撥水性のバランスの観点から、好ましくは20~0.1、更に好ましくは10~0.2、特に好ましくは5~0.5の間である。 (H—SiO 3/2 ) b (B—SiO 3/2 ) c in the general formula (7) is included in (R 1 —SiO 3/2 ) w in the general formula (1). That is, (b + c) = w. The higher the molar ratio of b to c (b / c), the higher the water repellency. However, from the viewpoint of a preferable balance of water repellency, it is preferably 20 to 0.1, more preferably 10 to 0.2, Particularly preferred is between 5 and 0.5.
 上記一般式(7)で表される化合物のうち、更に好ましい化合物は、下記一般式(8)で表すことができる。
Figure JPOXMLDOC01-appb-C000019
〔式中、Bはシアノアルキル基であり、R3及びR5は、互いに独立して、アルキル基、アラルキル基、シクロアルキル基又はアリール基であり、R6は、水素原子又は炭素原子数1~6のアルキル基であり、b、x、y及びzは、互いに独立して、0又は正の数であり、cは正の数である。〕
Among the compounds represented by the general formula (7), a more preferable compound can be represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000019
[Wherein, B is a cyanoalkyl group, R 3 and R 5 are each independently an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, and R 6 is a hydrogen atom or a carbon atom of 1 -6 alkyl groups, b, x, y and z are independently of each other 0 or a positive number, and c is a positive number. ]
 上記一般式(8)で表される化合物もまた、ポリシロキサンの1種である。 The compound represented by the general formula (8) is also a kind of polysiloxane.
 上記一般式(1)で表され、シアノアルキル基を有する化合物の他の例は、下記一般式(9)及び(10)で表される。
Figure JPOXMLDOC01-appb-C000020
〔式中、R2、R4及びR5は、互いに独立して、水素原子、シアノアルキル基、アルキル基、アラルキル基、シクロアルキル基又はアリール基であり、R2、R4及びR5のうちの少なくとも1つは、シアノアルキル基であり、R6は、水素原子又は炭素原子数1~6のアルキル基であり、x及びyは正の数であり、zは0又は正の数であり、x/yの比は、好ましくは0.1~200、更に好ましくは0.5~20である。〕
Figure JPOXMLDOC01-appb-C000021
〔式中、1つのR5は、シアノアルキル基であり、他方のR5は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基又はアリール基であり、R6は、水素原子又は炭素原子数1~6のアルキル基であり、w及びyは正の数であり、zは0又は正の数であり、w/yの比は、好ましくは0.3~5.0、更に好ましくは0.8~4.0である。〕
Other examples of the compound represented by the general formula (1) and having a cyanoalkyl group are represented by the following general formulas (9) and (10).
Figure JPOXMLDOC01-appb-C000020
[Wherein R 2 , R 4 and R 5 are each independently a hydrogen atom, a cyanoalkyl group, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, and R 2 , R 4 and R 5 are At least one of them is a cyanoalkyl group, R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, x and y are positive numbers, and z is 0 or a positive number. X / y ratio is preferably 0.1 to 200, more preferably 0.5 to 20. ]
Figure JPOXMLDOC01-appb-C000021
[In the formula, one R 5 is a cyanoalkyl group, and the other R 5 is independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group or an aryl group, and R 6 is a hydrogen atom. An atom or an alkyl group having 1 to 6 carbon atoms, w and y are positive numbers, z is 0 or a positive number, and the ratio of w / y is preferably 0.3 to 5.0. More preferably, it is 0.8 to 4.0. ]
 上記化合物(A)の製造方法は、特に限定されないが、各構造単位を形成する原料有機ケイ素化合物を、酸性条件下、加水分解縮合に供する方法が一般的である。
 上記構造単位(i)を形成する場合には、原料有機ケイ素化合物として、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラクロロシラン等を用いることができる。
 上記構造単位(ii)を形成する場合には、原料有機ケイ素化合物として、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリクロロシラン、シアノプロピルトリメトキシシラン、シアノエチルトリエトキシシラン等を用いることができる。
 上記構造単位(iii)を形成する場合には、原料有機ケイ素化合物として、ジメトキシメチルシラン、ジエトキシメチルシラン、ジプロポキシメチルシラン、ジクロロメチルシラン等を用いることができる。
 上記構造単位(iv)を形成する場合には、原料有機ケイ素化合物として、メトキシトリメチルシラン、クロロトリメチルシラン、トリメチルシラノール、ヘキサメチルジシロキサン、テトラメチルジシロキサン等を用いることができる。
 上記構造単位(v)を形成する場合には、メタノール,エタノール、プロパノール、s-ブタノール等を用いることができる。
Although the manufacturing method of the said compound (A) is not specifically limited, The method of using for the raw material organosilicon compound which forms each structural unit to hydrolytic condensation on acidic conditions is common.
When forming the structural unit (i), tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrachlorosilane, or the like can be used as a raw material organic silicon compound.
When the structural unit (ii) is formed, trimethoxysilane, triethoxysilane, tripropoxysilane, trichlorosilane, cyanopropyltrimethoxysilane, cyanoethyltriethoxysilane, or the like can be used as the raw material organic silicon compound. .
When forming the structural unit (iii), dimethoxymethylsilane, diethoxymethylsilane, dipropoxymethylsilane, dichloromethylsilane, or the like can be used as a raw material organic silicon compound.
In the case of forming the structural unit (iv), methoxytrimethylsilane, chlorotrimethylsilane, trimethylsilanol, hexamethyldisiloxane, tetramethyldisiloxane, or the like can be used as a raw material organic silicon compound.
In forming the structural unit (v), methanol, ethanol, propanol, s-butanol, or the like can be used.
 本発明の表面処理剤は、上記化合物(A)を1種のみ含んでよいし、2種以上を含んでもよい。例えば、上記一般式(4)で表される化合物と、上記一般式(7)で表される化合物とを組み合わせてもよい。 The surface treating agent of the present invention may contain only one kind of the above compound (A), or may contain two or more kinds. For example, you may combine the compound represented by the said General formula (4), and the compound represented by the said General formula (7).
 本発明の表面処理剤は、上記一般式(1)で表される化合物(A)を含み、この化合物(A)のみからなるものであってよいし、上記化合物(A)と、他の撥水化剤とからなるものであってもよい。他の撥水化剤としては、下記一般式(11)で表される化合物(以下、「化合物(B)」という)が好ましい。
Figure JPOXMLDOC01-appb-C000022
〔式中、R11、R12及びR13は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、R14及びR15は、互いに独立して、水素原子、飽和若しくは不飽和アルキル基、飽和若しくは不飽和シクロアルキル基、トリメチルシリル基、ジメチルシリル基、又は、飽和若しくは不飽和ヘテロシクロアルキル基であり、R14及びR15は、互いに結合して、窒素原子を有する飽和又は不飽和ヘテロシクロアルキル基であってもよい。〕
The surface treating agent of the present invention contains the compound (A) represented by the general formula (1) and may be composed only of the compound (A), or the compound (A) and other repellent materials. It may consist of a hydrating agent. As another water repellent, a compound represented by the following general formula (11) (hereinafter referred to as “compound (B)”) is preferable.
Figure JPOXMLDOC01-appb-C000022
[Wherein R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group, and R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom. ]
 上記化合物(B)としては、N,N-ジメチルアミノトリメチルシラン(以下、「DMATMS」と略す)、N,N-ジメチルアミノトリエチルシラン、N,N-ジフェニルアミノトリエチルシラン、N,N-ジエチルアミノトリメチルシラン、t-ブチルアミノトリメチルシラン、アリルアミノトリメチルシラン、トリメチルシリルアセタミド、トリメチルシリルピペリジン、トリメチルシリルイミダゾール、トリメチルシリルピロリジン、ヘキサメチルジシラザン、N-メチルヘキサメチルジシラザン、1,2-ジ-N-オクチルテトラメチルジシラザン、1,2-ジビニルテトラメチルジシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、トリス(ジメチルシリル)アミン等が挙げられる。これらの化合物は、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。 Examples of the compound (B) include N, N-dimethylaminotrimethylsilane (hereinafter abbreviated as “DMATMS”), N, N-dimethylaminotriethylsilane, N, N-diphenylaminotriethylsilane, N, N-diethylaminotrimethyl. Silane, t-butylaminotrimethylsilane, allylaminotrimethylsilane, trimethylsilylacetamide, trimethylsilylpiperidine, trimethylsilylimidazole, trimethylsilylpyrrolidine, hexamethyldisilazane, N-methylhexamethyldisilazane, 1,2-di-N-octyl Examples thereof include tetramethyldisilazane, 1,2-divinyltetramethyldisilazane, heptamethyldisilazane, nonamethyltrisilazane, and tris (dimethylsilyl) amine. These compounds may be used alone or in combination of two or more.
 本発明の表面処理剤が化合物(B)を含む場合、化合物(A)と化合物(B)との含有比率に限定はない。化合物(A)及び化合物(B)の合計を100質量%とした場合、化合物(B)の割合は、好ましくは60質量%未満であり、更に好ましくは1質量%以上40質量%未満である。 When the surface treating agent of the present invention contains the compound (B), the content ratio of the compound (A) and the compound (B) is not limited. When the sum total of a compound (A) and a compound (B) is 100 mass%, the ratio of a compound (B) becomes like this. Preferably it is less than 60 mass%, More preferably, it is 1 to 40 mass%.
 本発明の表面処理剤は、更に、有機溶剤、添加剤(pH調整剤、レベリング剤、界面活性剤、シランカップリング剤、安定剤等)を含有してもよい。有機溶剤としては、化合物(A)を溶解する溶剤、又は、化合物(A)を溶解しないが、この化合物(A)と、添加剤等とを分散させる溶剤、を用いることができる。本発明においては、より均一な濃度分布の表面処理剤が得られることから、化合物(A)を溶解可能な化合物が好ましい。また、被処理物、特に、有機液晶や半導体の基板に形成された樹脂パターン又は被エッチングパターンの表面に対するダメージの少ない、従来公知の溶剤を使用することができる。具体的には、ジメチルスルホキシド等のスルホキシド類;ジメチルスルホン、ジエチルスルホン、ビス(2-ヒドロキシエチル)スルホン、テトラメチレンスルホン等のスルホン類;N,N-ジメチルホルムアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジエチルアセトアミド等のアミド類;N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-プロピル-2-ピロリドン、N-ヒドロキシメチル-2-ピロリドン、N-ヒドロキシエチル-2-ピロリドン等のラクタム類;1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジイソプロピル-2-イミダゾリジノン等のイミダゾリジノン類;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル等のジアルキルエーテル類;ジメチルグリコール、ジメチルジグリコール、ジメチルトリグリコール、メチルエチルジグリコール、ジエチルグリコール等のジアルキルグリコールエーテル類;プロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート,酢酸エチル,酢酸ブチル等のエステル類;メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等のケトン類;p-メンタン、ジフェニルメンタン、リモネン、テルピネン、ボルナン、ノルボルナン、ピナン等のテルペン類;直鎖状、分枝状、又は環状の炭化水素系溶剤、芳香族炭化水素系溶剤、等が挙げられる。これらの有機溶剤は、単独で用いても2種以上組み合わせて用いてもよい。 The surface treatment agent of the present invention may further contain an organic solvent and additives (pH adjuster, leveling agent, surfactant, silane coupling agent, stabilizer, etc.). As the organic solvent, a solvent that dissolves the compound (A) or a solvent that does not dissolve the compound (A) but disperses the compound (A) and additives can be used. In the present invention, a compound capable of dissolving the compound (A) is preferable because a surface treatment agent having a more uniform concentration distribution can be obtained. Moreover, a conventionally well-known solvent with little damage with respect to the to-be-processed object, especially the resin pattern formed in the organic liquid crystal or the board | substrate of a semiconductor or the to-be-etched pattern surface can be used. Specifically, sulfoxides such as dimethylsulfoxide; sulfones such as dimethylsulfone, diethylsulfone, bis (2-hydroxyethyl) sulfone, tetramethylenesulfone; N, N-dimethylformamide, N-methylformamide, N, N Amides such as dimethylacetamide, N-methylacetamide, N, N-diethylacetamide; N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N-hydroxymethyl-2 -Lactams such as pyrrolidone and N-hydroxyethyl-2-pyrrolidone; 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-diisopropyl-2-imidazolidi Non-imidazolidinones such as non-dimethyl ether, diethyl ether Dialkyl ethers such as tellurium, methyl ethyl ether, dipropyl ether, diisopropyl ether and dibutyl ether; dialkyl glycol ethers such as dimethyl glycol, dimethyl diglycol, dimethyltriglycol, methylethyl diglycol and diethyl glycol; propylene glycol monomethyl ether Alkylene glycol monoalkyl ethers such as propylene glycol monomethyl ether acetate, esters such as ethyl acetate and butyl acetate; ketones such as methyl ethyl ketone, cyclohexanone, 2-heptanone and 3-heptanone; p-menthane, diphenylmenthane, limonene, Terpenes such as terpinene, bornane, norbornane, pinane; linear, branched, or cyclic hydrocarbon solvents, aromatic Hydrocarbon solvents, and the like. These organic solvents may be used alone or in combination of two or more.
 これらの有機溶剤のうち、極性が比較的小さく、分子量の小さなものが好ましい。しかしながら、分子量が小さすぎると揮発性が高すぎて取り扱いが難しくなる。そこで、好ましい有機溶剤としては、炭素原子数6~12の直鎖状若しくは分枝状の炭化水素系溶剤又はテルペン系溶剤であり、具体的には、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、メチルオクタン、n-デカン、n-ウンデカン、n-ドデカン等が挙げられる。また、テルペン系溶剤としては、p-メンタン、o-メンタン、m-メンタン等のメンタン、ジフェニルメンタン、リモネン、α-テルピネン、β-テルピネン、γ-テルピネン等のテルピネン、ボルナン、ノルボルナン、ピナン、α-ピネン、β-ピネン等のピネン、カラン、ロンギホレン等のモノテルペン類、アビエタン等のジテルペン類、等が挙げられる。これらの有機溶剤は、単独で用いてよいし、2種以上を組み合わせて用いてもよい。より好ましい有機溶剤は、炭素原子数7~10の直鎖状の炭化水素系溶剤、メンタン及びピナンであり、特に好ましくはヘキサン及びオクタンである。 Of these organic solvents, those having a relatively small polarity and a small molecular weight are preferred. However, if the molecular weight is too small, the volatility is too high and handling becomes difficult. Accordingly, preferred organic solvents are linear or branched hydrocarbon solvents or terpene solvents having 6 to 12 carbon atoms, and specifically include n-hexane, n-heptane, n-octane. N-nonane, methyloctane, n-decane, n-undecane, n-dodecane and the like. Terpene solvents include p-menthane, o-menthane, m-menthan and other menthane, diphenylmenthane, limonene, α-terpinene, β-terpinene, γ-terpinene and other terpinenes, bornane, norbornane, pinane, α -Pinenes such as pinene and β-pinene, monoterpenes such as karan and longifolene, diterpenes such as abiethane, and the like. These organic solvents may be used alone or in combination of two or more. More preferred organic solvents are linear hydrocarbon solvents having 7 to 10 carbon atoms, menthane and pinane, particularly preferably hexane and octane.
 本発明の表面処理剤が有機溶剤を含有する場合、化合物(A)の濃度、又は、化合物(A)及び他の撥水化剤の合計量の濃度は、表面処理剤の全量に対して、好ましくは0.1~60%であり、更に好ましくは0.5~30%、より好ましくは1~20%である。 When the surface treatment agent of the present invention contains an organic solvent, the concentration of the compound (A) or the concentration of the total amount of the compound (A) and other water repellent is relative to the total amount of the surface treatment agent. Preferably, it is 0.1 to 60%, more preferably 0.5 to 30%, more preferably 1 to 20%.
 本発明の表面処理剤を用いて、被処理物の表面の撥水化に好適な基板としては、Si、SiO2、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si、Si-C、アルミナ、サファイア、ガラス、樹脂等からなる基板が挙げられる。また、上記の材質からなる基板に限らず、基部の表面に、Si、SiO2、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si、アルミナ、サファイア、ITO、ZnO、ガラス等からなる膜を有する積層型基板の膜に対しても、同様に撥水化することができる。 As the substrate suitable for water repellency of the surface of the object to be processed using the surface treatment agent of the present invention, Si, SiO 2 , SiON, SiN, p-Si, α-Si, W, W-Si, Al , Cu, Al—Si, Si—C, alumina, sapphire, glass, resin, and the like. Further, the substrate is not limited to the above-mentioned material, and the base surface has Si, SiO 2 , SiON, SiN, p-Si, α-Si, W, W-Si, Al, Cu, Al-Si, alumina, Water repellency can be similarly applied to a laminated substrate film having a film made of sapphire, ITO, ZnO, glass or the like.
 上記の膜は、CVD、真空蒸着、メッキ、鍍金等の従来公知の技術を用いて形成されたものである。CVDには、プラズマCVD、熱CVD、光CVD等の方法が知られているが、いずれの方法で形成した膜であってもよい。より具体的には、SiO2、SiON、SiN、Si等の膜の製造方法としては、プラズマ等の低温成膜技術や高温でエピタキシャル成長させる方法等、多種が知られている。例えば、SiNは、必ずしも化学量論値であるSi34の組成ではなく、SiNxと表記される中間組成であることはよく知られている。本発明では、いずれの組成でも効果を奏するので、代表して、SiN(又は窒化ケイ素)と称する。 The above film is formed using a conventionally known technique such as CVD, vacuum vapor deposition, plating, plating, or the like. For CVD, methods such as plasma CVD, thermal CVD, and photo-CVD are known, but a film formed by any method may be used. More specifically, as a method for producing a film of SiO 2 , SiON, SiN, Si, etc., various types such as a low temperature film formation technique such as plasma and a method of epitaxial growth at high temperature are known. For example, it is well known that SiN is not necessarily a composition of Si 3 N 4 which is a stoichiometric value but an intermediate composition expressed as SiN x . In the present invention, since any of the compositions has an effect, it is typically referred to as SiN (or silicon nitride).
 本発明において、好ましい被処理物は、接触角が好ましくは0~80度、より好ましくは5~60度、更に好ましくは10~50度の材質を表面に有する。特に好ましくは、シリコンウェハを用いた半導体基板であり、その表面に、SiN、SiO2、金属ケイ素(Si)等(Si-OHを有する場合を含む)の膜やパターンが載っていてもよく、レジスト樹脂の膜やそのパターンが載っていてもよい。本発明の効果が最も著しいのは、基板の表面の少なくとも一部に、Si34やSiON等のSiN、SiO2、並びに、非晶質シリコン及び結晶質シリコン等のSiの3種類の材質のうち、少なくとも2種を有する基板であり、更に好ましくは、これら3種類の材質を有する基板である。 In the present invention, a preferable object to be treated has a material having a contact angle of preferably 0 to 80 degrees, more preferably 5 to 60 degrees, and still more preferably 10 to 50 degrees on the surface. Particularly preferably, it is a semiconductor substrate using a silicon wafer, and a film or pattern of SiN, SiO 2 , metal silicon (Si) or the like (including the case of having Si—OH) may be placed on the surface thereof, A resist resin film or its pattern may be placed thereon. The effect of the present invention is most remarkable in at least a part of the surface of the substrate on three kinds of materials such as SiN such as Si 3 N 4 and SiON, SiO 2 , and Si such as amorphous silicon and crystalline silicon. Of these, a substrate having at least two types, more preferably a substrate having these three types of materials.
 本発明の表面処理剤によれば、被処理物の表面の材質に関わらず高い撥水性皮膜を与えることができる。表面にSi-OHを有するシリコンウェハの場合において、化合物(A)におけるSi-H結合は、H原子が負に、Si原子が正に分極しており、シリコンウェハ表面のSi-OH基のO-H結合において、O原子が負に、H原子が正に分極していることと正反対なため、ここで水素結合を生じ、化合物(A)が基板表面に配向して基板表面に撥水性を与える効果を生じているものと考えられる。 According to the surface treatment agent of the present invention, a high water-repellent film can be provided regardless of the material of the surface of the object to be treated. In the case of a silicon wafer having Si—OH on the surface, the Si—H bond in the compound (A) is such that the H atom is negative and the Si atom is positively polarized. In the —H bond, since the O atom is negative and the H atom is positively polarized, a hydrogen bond is generated here, and the compound (A) is oriented on the substrate surface to make the substrate surface water repellent. It is thought that the effect is given.
 特に、本発明の表面処理剤が、上記一般式(1)においてR1、R2、R3、R4及びR5の少なくとも1つがシアノアルキル基である化合物(A)を含む場合には、SiO2、SiN、及びSiのいずれに対しても高い撥水性皮膜を与えることできる。更に、化合物(A)がシアノアルキル基を含む場合に、シアノアルキル基の量及びSi-H結合の量によって、それぞれの表面材質に対する効果の大きさを制御することができる。即ち、シアノアルキル基を有する構造単位の合計量、及び、Si-H結合を有する構造単位の合計量の割合を、両者の合計を100モル%とした場合に、それぞれ、1~20モル%及び99~80モル%とするものである。一つの構造単位がシアノアルキル基とSi-H結合の両方を有する場合は、シアノアルキル基に着目したシアノアルキル基を有する構造単位の量と、Si-H結合に着目したSi-H結合を有する構造単位の量として、両者の合計を100モル%として計算を行えば、上記の制御を同様にすることができる。このような制御によって、SiO2、SiN、及びSiの異なる材質の表面における各接触角の値を近づけることができる。最新の液晶や半導体の基板表面では、SiO2、SiN、Si等の様々な表面材質の微小パターンが併存しているので、単に基板表面を撥水化できるだけでなく、異なる材質の表面に同程度の撥水性を付与できることは、複雑なパターンを有する半導体等の基板表面でのパターン倒れの問題を解決する上で極めて有利な効果である。このような効果は、従来知られていなかったものである。 In particular, when the surface treatment agent of the present invention contains a compound (A) in which at least one of R 1 , R 2 , R 3 , R 4 and R 5 in the general formula (1) is a cyanoalkyl group, A high water-repellent film can be provided for any of SiO 2 , SiN, and Si. Further, when the compound (A) contains a cyanoalkyl group, the magnitude of the effect on each surface material can be controlled by the amount of the cyanoalkyl group and the amount of Si—H bond. That is, the ratio of the total amount of structural units having a cyanoalkyl group and the total amount of structural units having a Si—H bond is 1 to 20 mol% when the sum of both is 100 mol% and 99 to 80 mol%. In the case where one structural unit has both a cyanoalkyl group and an Si—H bond, the amount of the structural unit having a cyanoalkyl group focused on the cyanoalkyl group and an Si—H bond focused on the Si—H bond If the calculation is carried out with the total of both as the amount of structural units being 100 mol%, the above control can be made the same. By such control, the values of the contact angles on the surfaces of different materials of SiO 2 , SiN, and Si can be made closer. The latest liquid crystal and semiconductor substrate surfaces have micropatterns of various surface materials such as SiO 2 , SiN, Si, etc., so that not only can the substrate surface be made water-repellent, but the same level on the surface of different materials The ability to impart the water repellency is an extremely advantageous effect in solving the problem of pattern collapse on the substrate surface of a semiconductor or the like having a complicated pattern. Such an effect has not been conventionally known.
 本発明の表面処理方法は、上記本発明の表面処理剤を、被処理物の表面に接触させる接触工程を備える。
 接触工程の具体的な方法は、特に限定されるものではないが、表面処理剤を塗布する方法が簡便である。塗布は、スプレー塗布や回転塗布、ディッピング等のどんな方法でもよいが、薄く均一な撥水性皮膜が得られるという観点から、回転塗布が好ましい。また、表面処理剤は、有機溶剤を含有するものが好ましく用いられる。
The surface treatment method of the present invention includes a contact step of bringing the surface treatment agent of the present invention into contact with the surface of an object to be processed.
Although the specific method of a contact process is not specifically limited, The method of apply | coating a surface treating agent is simple. The coating may be any method such as spray coating, spin coating or dipping, but spin coating is preferred from the viewpoint that a thin and uniform water-repellent film can be obtained. Moreover, what contains an organic solvent is preferably used for a surface treating agent.
 本発明の表面処理剤が、上記化合物(A)及び化合物(B)を含有する場合には、塗膜の厚さの均一性の観点から、これらが混合された状態で用いるのが好ましいが、上記化合物(A)及び化合物(B)のいずれか一方を先に半導体基板の表面に接触させてから他方を接触させる方法や、別々の供給口から化合物(A)及び化合物(B)の両方を同時に半導体基板の表面に供給する方法等も用いることができる。 When the surface treatment agent of the present invention contains the compound (A) and the compound (B), it is preferable to use them in a mixed state from the viewpoint of the uniformity of the thickness of the coating film. Either one of the compound (A) and the compound (B) is first brought into contact with the surface of the semiconductor substrate and then brought into contact with the other, or both the compound (A) and the compound (B) are supplied from separate supply ports. At the same time, a method of supplying the surface of the semiconductor substrate can be used.
 本発明において、被処理物は、その表面の一部に、SiO2、SiN及びSiの少なくとも1種からなる膜を有する半導体基板であることが好ましい。
 接触工程の前に、半導体基板の洗浄、乾燥等の前処理を行ってもよく、接触工程の後に、洗浄や乾燥等の後処理を行ってもよい。しかしながら、前処理に用いた洗浄液が乾燥する際の表面張力によって、パターン倒れが引き起こされるメカニズムを考慮すると、前処理に乾燥工程を備えるのは好ましくなく、前処理用洗浄液による洗浄後、乾燥することなく、本発明の表面処理剤を用いて接触工程を行うことが好ましい。
In the present invention, the object to be processed is preferably a semiconductor substrate having a film made of at least one of SiO 2 , SiN and Si on a part of its surface.
Prior to the contacting step, pretreatment such as cleaning and drying of the semiconductor substrate may be performed, and after the contacting step, post-processing such as washing and drying may be performed. However, considering the mechanism that causes pattern collapse due to the surface tension when the cleaning liquid used in the pretreatment dries, it is not preferable to have a drying step in the pretreatment, and it should be dried after cleaning with the pretreatment cleaning liquid. It is preferable to perform the contact step using the surface treatment agent of the present invention.
 前処理工程における洗浄方法としては、特に限定されないが、例えば、アンモニア及び過酸化水素を用いる「SC1洗浄」と呼ばれる方法が知られている。また、半導体基板の洗浄の前後に、表面の酸処理(以下、「酸接触工程」という)を行ってもよい。 The cleaning method in the pretreatment step is not particularly limited, but for example, a method called “SC1 cleaning” using ammonia and hydrogen peroxide is known. Further, acid treatment of the surface (hereinafter referred to as “acid contact step”) may be performed before and after cleaning the semiconductor substrate.
 上記酸接触工程は、具体的には、塗布、スプレー、浸漬、蒸気接触等の方法で、半導体基板の表面に、酸を含む酸性液体を接触させることである。本発明においては、酸の水溶液に基板を浸漬する方法が、簡便な装置で実施できるので好ましい。酸性液体として水溶液を用いる場合の酸の濃度は、好ましくは0.1質量%以上96質量%以下、更に好ましくは1質量%以上30質量%以下、より好ましくは5質量%以上20質量%以下である。
 半導体基板の表面に酸性液体を接触させる条件は、特に限定されないが、好ましくは0℃より高く70℃以下の温度で、1秒~30分程度、更に好ましくは10秒~10分間接触させることで、不純物除去等の効果を得ることができる。
Specifically, the acid contact step is to bring an acidic liquid containing acid into contact with the surface of the semiconductor substrate by a method such as coating, spraying, dipping, or vapor contact. In the present invention, the method of immersing the substrate in an aqueous acid solution is preferable because it can be carried out with a simple apparatus. The concentration of the acid when an aqueous solution is used as the acidic liquid is preferably 0.1% by mass or more and 96% by mass or less, more preferably 1% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 20% by mass or less. is there.
The condition for bringing the acidic liquid into contact with the surface of the semiconductor substrate is not particularly limited, but it is preferably about 1 second to 30 minutes, more preferably 10 seconds to 10 minutes at a temperature higher than 0 ° C. and lower than 70 ° C. Thus, effects such as impurity removal can be obtained.
 上記酸接触工程で用いる酸は、有機酸、無機酸のいずれでもよい。有機酸の場合はシュウ酸やトリクロロ酢酸、トリフルオロ酢酸、ジクロロ酢酸等、2.0以下の酸解離定数(pKa)を有する酸が好ましく、シュウ酸が更に好ましい。無機酸の場合は0.0以下の酸解離定数(pKa)を有する無機酸が好ましく、具体的には、塩酸、硫酸、硝酸、ヨウ化水素酸、臭化水素酸、塩素酸、臭素酸、ヨウ素酸、過マンガン酸、チオシアン酸、過塩素酸、過臭素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸等が挙げられる。これらのうち、工業的に得やすい塩酸、硫酸及び硝酸が好ましく、酸化性がない点で安全であり、難溶性塩を生じにくい点で、塩酸が特に好ましい。有機酸と無機酸とでは、高純度品が得やすい点で無機酸の方が好ましい。これらの酸は、市販されている程度で高純度のものが好ましい。また、半導体用途で用いるために、パーティクルを除いたELグレードと呼ばれるものも同様に好ましく用いることができる。
 更に、シュウ酸等の水溶性の低い酸では、2-プロパノールやメチルエチルケトン等を有機溶媒とした溶液を、他の酸水溶液と同様に用いることができる。
The acid used in the acid contact step may be either an organic acid or an inorganic acid. In the case of an organic acid, an acid having an acid dissociation constant (pKa) of 2.0 or less, such as oxalic acid, trichloroacetic acid, trifluoroacetic acid, or dichloroacetic acid, is preferable, and oxalic acid is more preferable. In the case of an inorganic acid, an inorganic acid having an acid dissociation constant (pKa) of 0.0 or less is preferable. Specifically, hydrochloric acid, sulfuric acid, nitric acid, hydroiodic acid, hydrobromic acid, chloric acid, bromic acid, Examples thereof include iodic acid, permanganic acid, thiocyanic acid, perchloric acid, perbromic acid, tetrafluoroboric acid, hexafluorophosphoric acid and the like. Of these, hydrochloric acid, sulfuric acid, and nitric acid that are easily obtained industrially are preferable, and hydrochloric acid is particularly preferable because it is safe in that it is not oxidizable and hardly forms a hardly soluble salt. Among organic acids and inorganic acids, inorganic acids are preferred in that high purity products are easily obtained. These acids are preferably highly pure to the extent that they are commercially available. Moreover, in order to use for a semiconductor use, what is called EL grade except a particle can also be used preferably similarly.
Further, in the case of an acid having low water solubility such as oxalic acid, a solution using 2-propanol, methyl ethyl ketone or the like as an organic solvent can be used in the same manner as other acid aqueous solutions.
 本発明の表面処理剤に含まれる化合物(A)は、水と接触して加水分解することがあり、また、表面処理剤が有機溶剤を含む場合の好ましい溶剤は、極性が比較的小さいものであるので、前処理工程における洗浄や、洗浄後の酸接触工程で水を用いた場合は、洗浄工程と酸接触工程との間、並びに、酸接触工程と接触工程との間において、水及び表面処理剤に含まれる有機溶剤の中間の極性を有する、例えば、アルコールのような有機溶剤を用いて、半導体基板の表面に残存した媒体を置換する工程を備えることが好ましい。 The compound (A) contained in the surface treatment agent of the present invention may be hydrolyzed by contact with water, and a preferable solvent in the case where the surface treatment agent contains an organic solvent is one having a relatively small polarity. Therefore, when water is used in the cleaning in the pretreatment process or the acid contact process after cleaning, the water and the surface between the cleaning process and the acid contact process, and between the acid contact process and the contact process. It is preferable to provide a step of replacing the medium remaining on the surface of the semiconductor substrate with an organic solvent such as alcohol having an intermediate polarity of the organic solvent contained in the treatment agent.
 また、接触工程の後は、通常、乾燥が行われるが、半導体基板の表面に過剰の表面処理剤が残っていると、基板表面に斑を生じる可能性がある。そこで、極性が比較的小さな有機溶剤を含む表面処理剤を半導体基板表面に接触させた後、水及び表面処理剤に含まれていた有機溶剤の中間の極性を有する、例えば、アルコールのような有機溶剤を用いて、半導体基板の表面に残存した媒体を置換する工程を行い、その後、水で洗浄することが好ましい。本発明の表面処理剤により撥水化が行われた基板表面では、上記の置換工程や洗浄工程を行った後でも、優れた撥水性を保ち、更に乾燥工程を行っても、パターン倒れを抑えることができる。その後の半導体製造工程において、基板表面を親水化する場合には、ドライアッシングやオゾン酸化処理、湿式酸化等の処理を行うことができる。 Also, after the contacting step, drying is usually performed, but if an excessive surface treatment agent remains on the surface of the semiconductor substrate, there is a possibility that spots are generated on the surface of the substrate. Therefore, after bringing a surface treatment agent containing an organic solvent having a relatively small polarity into contact with the surface of the semiconductor substrate, water having an intermediate polarity between the organic solvent contained in the surface treatment agent and an organic material such as alcohol It is preferable to perform a step of replacing the medium remaining on the surface of the semiconductor substrate using a solvent, and then wash with water. On the substrate surface that has been made water-repellent by the surface treatment agent of the present invention, even after the above replacement step and cleaning step, the excellent water repellency is maintained, and even after the drying step, pattern collapse is suppressed. be able to. In the subsequent semiconductor manufacturing process, when the surface of the substrate is made hydrophilic, treatments such as dry ashing, ozone oxidation treatment, and wet oxidation can be performed.
 本発明の表面処理方法における一形態としての、本発明の表面処理剤を用いた基板表面の具体的処理方法としては、脱イオン水を用いた洗浄方法によって基板を洗浄した後、水洗し、アルコールによる溶剤置換を行い、表面処理剤との接触工程として、低極性溶剤で希釈した表面処理剤を基板に接触させ、その後、アルコールによる溶剤置換をした後、脱イオン水で洗浄した後に乾燥する一連の工程を挙げることができる。 As a specific method for treating the substrate surface using the surface treating agent of the present invention as one embodiment of the surface treating method of the present invention, the substrate is washed by a washing method using deionized water, then washed with water, and alcohol. As a contact process with the surface treatment agent, the surface treatment agent diluted with a low-polarity solvent is brought into contact with the substrate, then the solvent is replaced with alcohol, washed with deionized water, and dried. Can be mentioned.
 本発明の表面処理方法における別の一形態としての、本発明の表面処理剤を用いた基板表面の具体的処理方法としては、脱イオン水を用いた洗浄方法によって基板を洗浄した後、酸を含む水溶液に浸漬し、水洗し、アルコールによる溶剤置換を行い、表面処理剤との接触工程として、低極性溶剤で希釈した表面処理剤を基板に接触させ、その後、アルコールによる溶剤置換をした後、脱イオン水で洗浄した後に乾燥する一連の工程を挙げることができる。 As another embodiment of the surface treatment method of the present invention, as a specific method of treating the substrate surface using the surface treatment agent of the present invention, the substrate is cleaned by a cleaning method using deionized water, and then the acid is added. Immerse in the aqueous solution containing, wash with water, perform solvent replacement with alcohol, as a contact process with the surface treatment agent, contact the surface treatment agent diluted with a low polarity solvent to the substrate, and then after solvent replacement with alcohol, A series of steps of washing with deionized water and then drying can be mentioned.
 本発明の表面処理方法において、表面処理剤が化合物(A)を主とする場合、形成される撥水性皮膜の主な構成材料は、化合物(A)そのものであるか、あるいは、化合物(A)に含まれる官能基と、被処理物の表面を構成する材質に含まれる官能基とが反応して得られたケイ素化合物である。この撥水性皮膜における接触角は、好ましくは80~120度、より好ましくは85~95度である。
 また、本発明の表面処理方法において、表面処理剤が化合物(A)及び(B)を含む場合、形成される撥水性皮膜の主な構成材料は、化合物(A)及び化合物(B)そのものであるか、化合物(A)及び化合物(B)が縮合して形成されたケイ素化合物、あるいは、化合物(A)に含まれる官能基及び/又は化合物(B)に含まれる官能基と、被処理物の表面を構成する材質に含まれる官能基とが反応して得られたケイ素化合物である。この撥水性皮膜における接触角は、好ましくは80~120度、より好ましくは85~95度である。
In the surface treatment method of the present invention, when the surface treatment agent is mainly the compound (A), the main constituent material of the formed water-repellent film is the compound (A) itself or the compound (A). Is a silicon compound obtained by a reaction between a functional group contained in the substrate and a functional group contained in the material constituting the surface of the workpiece. The contact angle in this water-repellent coating is preferably 80 to 120 degrees, more preferably 85 to 95 degrees.
In the surface treatment method of the present invention, when the surface treatment agent contains the compounds (A) and (B), the main constituent material of the formed water-repellent film is the compound (A) and the compound (B) itself. A silicon compound formed by condensation of the compound (A) and the compound (B), or a functional group contained in the compound (A) and / or a functional group contained in the compound (B), and an object to be treated It is a silicon compound obtained by the reaction with the functional group contained in the material constituting the surface of The contact angle in this water-repellent coating is preferably 80 to 120 degrees, more preferably 85 to 95 degrees.
 上記被処理物が、その表面に窒化ケイ素膜と酸化ケイ素膜とを有するシリコンウェハ(半導体基板)等であった場合には、上記接触工程の後、窒化ケイ素膜の表面における接触角(Can)と、酸化ケイ素膜の表面における接触角(Cao)との比(Can/Cao)を、好ましくは0.7~1.3の範囲、より好ましくは0.9~1.1、特に好ましくは0.97~1.03とすることができる。 When the object to be processed is a silicon wafer (semiconductor substrate) having a silicon nitride film and a silicon oxide film on its surface, a contact angle (Can) on the surface of the silicon nitride film after the contact step. And the contact angle (Cao) at the surface of the silicon oxide film (Can / Cao) is preferably in the range of 0.7 to 1.3, more preferably 0.9 to 1.1, particularly preferably 0. 97 to 1.03.
 他の本発明は、半導体基板の表面の撥水化を行う表面処理方法であって、酸を含む酸性液体を上記半導体基板に接触させる第1工程と、下記一般式(11)で表される化合物(B)を含有する表面処理剤を上記半導体基板に接触させる第2工程とを、順次、備えることを特徴とする表面処理方法である。尚、半導体基板は、接触角が好ましくは0~80度、より好ましくは5~60度、更に好ましくは10~50度の材質を表面に有する、シリコンウェハを意味し、その表面に、SiN、SiO2、(Si)等(Si-OHを有する場合を含む)の膜やパターンが載っていてもよく、レジスト樹脂の膜やそのパターンが載っていてもよい。
Figure JPOXMLDOC01-appb-C000023
〔式中、R11、R12及びR13は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、R14及びR15は、互いに独立して、水素原子、飽和若しくは不飽和アルキル基、飽和若しくは不飽和シクロアルキル基、トリメチルシリル基、ジメチルシリル基、又は、飽和若しくは不飽和ヘテロシクロアルキル基であり、R14及びR15は、互いに結合して、窒素原子を有する飽和又は不飽和ヘテロシクロアルキル基であってもよい。〕
Another aspect of the present invention is a surface treatment method for imparting water repellency to the surface of a semiconductor substrate, which is represented by a first step in which an acidic liquid containing an acid is brought into contact with the semiconductor substrate, and the following general formula (11): A surface treatment method comprising sequentially providing a second step of bringing a surface treatment agent containing a compound (B) into contact with the semiconductor substrate. The semiconductor substrate means a silicon wafer having a material with a contact angle of preferably 0 to 80 degrees, more preferably 5 to 60 degrees, and still more preferably 10 to 50 degrees on the surface, and SiN, A film or pattern of SiO 2 , (Si) or the like (including the case of having Si—OH) may be placed, or a resist resin film or pattern thereof may be placed.
Figure JPOXMLDOC01-appb-C000023
[Wherein R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group, and R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom. ]
 第1工程である、半導体基板表面に酸性液体を接触させる工程を行う前に、基板表面の洗浄をすることができる。洗浄方法としては、例えば、アンモニアと過酸化水素を用いる「SC1洗浄」や、塩酸と過酸化水素を用いる、「SC2洗浄」と呼ばれる方法が知られている他、公知の洗浄方法ならばいずれでも用いることができる。しかし、例えば、フッ酸と硝酸の混合物を用いるような洗浄方法では半導体基板表面が浸食されてしまうことは明らかであり、パターンの形成された後の表面に適用するのが好ましくないことは言うまでもない。 The substrate surface can be cleaned before the step of bringing the acidic liquid into contact with the semiconductor substrate surface, which is the first step. As a cleaning method, for example, a method called “SC1 cleaning” using ammonia and hydrogen peroxide and a method called “SC2 cleaning” using hydrochloric acid and hydrogen peroxide are known, and any known cleaning method can be used. Can be used. However, for example, a cleaning method using a mixture of hydrofluoric acid and nitric acid obviously erodes the semiconductor substrate surface, and it goes without saying that it is not preferable to apply it to the surface after the pattern is formed. .
 また、SC1洗浄液はアルカリ性であるから、洗浄した後は、本発明において、半導体基板表面に酸性液体を接触させる工程を行う前に水洗工程を行うことが好ましい。同様に、SC2洗浄をした後も、水洗をするのが好ましい。本発明で用いる酸性液体とSC2洗浄で用いる塩酸と過酸化水素を共存させた洗浄液とは過酸化水素の有無が異なり、酸性液体を接触させる工程の代わりにSC2洗浄を行っても、本発明の効果は得られない。 In addition, since the SC1 cleaning solution is alkaline, it is preferable to perform a water washing step in the present invention before performing the step of bringing the acidic liquid into contact with the semiconductor substrate surface. Similarly, it is preferable to perform water washing after SC2 washing. The acidic liquid used in the present invention and the cleaning liquid in which hydrochloric acid and hydrogen peroxide used in SC2 cleaning coexist are different in the presence or absence of hydrogen peroxide, and even if SC2 cleaning is performed instead of the step of contacting the acidic liquid, There is no effect.
 また、第2工程で用いる化合物(B)は加水分解する場合があり、また、表面処理剤を溶剤希釈して用いる場合の好ましい溶剤は、比較的極性が小さいものであるので、第1工程の後は、水洗浄を行い、更に、水と第2工程で用いる溶剤の中間の極性を有する例えばアルコールのような溶剤を用いて溶剤置換する工程を挟むことが好ましい。 In addition, the compound (B) used in the second step may be hydrolyzed, and a preferable solvent when the surface treatment agent is used after being diluted with a solvent is relatively small in polarity. After that, it is preferable to carry out water washing, and further sandwich a step of solvent replacement using a solvent such as alcohol having an intermediate polarity between water and the solvent used in the second step.
 第2工程において、基板に表面処理剤を接触させる方法としては、特に限定されるものではないが、表面処理剤を塗布する方法が簡便である。塗布はスプレー塗布や回転塗布、ディッピング等のどんな方法でもよいが、薄く均一な処理膜が得られるという点は回転塗布が好ましい。また、表面処理剤は溶剤で希釈したものが好ましく用いられる。 In the second step, the method of bringing the surface treatment agent into contact with the substrate is not particularly limited, but the method of applying the surface treatment agent is simple. Coating may be any method such as spray coating, spin coating or dipping, but spin coating is preferred in that a thin and uniform treated film can be obtained. Further, the surface treatment agent is preferably diluted with a solvent.
 表面処理を行う前に、基板の洗浄、乾燥等の前処理を行っても良く、表面処理の後でも、洗浄や乾燥等の後処理をすることもできるが、洗浄液が乾燥する際の表面張力によってパターン倒れが引き起こされるメカニズムを考慮すると、前処理に乾燥工程を挟むのは好ましくなく、洗浄液による洗浄後、乾燥することなく本発明で用いる表面処理剤を用いて表面処理を行うのが好ましい。 Before the surface treatment, pretreatment such as cleaning and drying of the substrate may be performed, and after the surface treatment, posttreatment such as washing and drying may be performed, but the surface tension when the cleaning liquid dries. In view of the mechanism that causes pattern collapse, it is not preferable to put a drying step in the pretreatment, and it is preferable to perform the surface treatment using the surface treatment agent used in the present invention without drying after washing with the washing liquid.
 また、表面処理剤と接触させる工程の後は、通常、乾燥工程が含まれ、乾燥工程でパターン倒れが起きないことが本願発明の効果であるが、乾燥工程の前に過剰の表面処理剤が多量に残っていると、基板表面に斑を生じたりする可能性があるので、好ましいのは、極性が比較的小さな溶剤で希釈した表面処理剤と基板表面を接触させた後、水と表面処理で用いた溶剤の中間の極性を有する例えばアルコールのような溶剤を用いて溶剤置換する工程を挟み、水で洗浄することが好ましい。本発明の表面処理が行われた基板表面では、上記の溶剤置換や洗浄を行った後でも撥水性を保ち、乾燥を行ってもパターン倒れを抑えることができる。その後の半導体製造工程において、基板表面を親水化したい場合にはドライアッシングやオゾン酸化処理、湿式酸化等の処理を行うことができる。 In addition, after the step of contacting with the surface treatment agent, a drying step is usually included, and it is an effect of the present invention that pattern collapse does not occur in the drying step, but an excessive surface treatment agent is present before the drying step. If a large amount remains, it may cause spots on the substrate surface. Therefore, it is preferable that the surface treatment agent diluted with a solvent having a relatively small polarity is brought into contact with the substrate surface, and then the surface treatment with water is performed. It is preferable to wash with water with a step of solvent replacement using a solvent such as alcohol having an intermediate polarity of the solvent used in step 1. The substrate surface that has been subjected to the surface treatment of the present invention can maintain water repellency even after the above-described solvent replacement or cleaning, and pattern collapse can be suppressed even after drying. In a subsequent semiconductor manufacturing process, when it is desired to make the substrate surface hydrophilic, a process such as dry ashing, ozone oxidation, or wet oxidation can be performed.
 本発明の一形態としての、半導体基板表面の具体的処理方法としては、脱イオン水を用いた洗浄方法によって基板を洗浄した後、酸性液体を含む水溶液に浸漬し(第1工程)、水洗し、アルコールによる溶剤置換を行い、化合物(B)を含む表面処理剤との接触工程(第2工程)として、低極性溶剤で希釈した表面処理剤を基板に接触させ、その後、アルコールによる溶剤をした後、脱イオン水で洗浄した後に乾燥する一連の工程を挙げることができる。 As a specific method for treating the surface of a semiconductor substrate as one embodiment of the present invention, the substrate is washed by a washing method using deionized water, and then immersed in an aqueous solution containing an acidic liquid (first step) and washed with water. The solvent was replaced with alcohol, and as a contact step (second step) with the surface treatment agent containing compound (B), the surface treatment agent diluted with a low-polar solvent was brought into contact with the substrate, and then the solvent with alcohol was used. Subsequently, a series of steps of washing with deionized water and then drying can be mentioned.
 シリコンウェハの洗浄方法として、フッ酸/硝酸や塩酸/過酸化水素等を用いる方法が知られているが、これらは基板表面の酸化膜や金属を溶去する作用があるのに比べて、本発明において酸を用いる意味はまったく異なる。基板表面には酸性のSi-OH基が存在することは知られており、従来公知のシリル化剤は表面のSi-OH基と反応して表面を撥水化すると言われてきたが、窒化ケイ素表面において、この効果が十分現れないことは、特許文献3で開示されているとおりである。本発明者らは、窒化ケイ素表面で効果が現れない理由は、基板表面に塩基性を帯びた官能基があるためではないかと考え、基板表面を酸性に変える目的で、過酸化水素を共存させずに酸を接触させ、その後、特定の撥水化剤を含む表面処理剤で表面処理をしてみたところ、優れた効果を見出して本願発明を完成させたものである。
As cleaning methods for silicon wafers, methods using hydrofluoric acid / nitric acid, hydrochloric acid / hydrogen peroxide, etc. are known, but these methods are more effective than those that have the effect of leaching oxide films and metals on the substrate surface. The meaning of using an acid in the invention is completely different. It is known that acidic Si—OH groups exist on the substrate surface, and conventionally known silylating agents have been said to react with the Si—OH groups on the surface to make the surface water repellent. The fact that this effect does not sufficiently appear on the silicon surface is as disclosed in Patent Document 3. The present inventors consider that the reason why the effect does not appear on the silicon nitride surface is that there is a basic functional group on the substrate surface, and in order to change the substrate surface to acidic, hydrogen peroxide is allowed to coexist. When the surface treatment was performed with a surface treatment agent containing a specific water repellent, the present invention was completed by finding an excellent effect.
 以下、本発明を実施例により具体的に説明する。但し、本発明は、この実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to this embodiment.
 本発明に係る化合物(A)等のポリシロキサンの数平均分子量は、GPC装置として、東ソー社製高速GPCシステム「HLC-8320GPC」(型式名)により測定した。カラムは、東ソー社製「TSKgel G4000HXL」及び「TSKgel G2000HXL」を連結して用いた。
 また、ポリシロキサンの粘度は、E型粘度計により測定した。
The number average molecular weight of the polysiloxane such as the compound (A) according to the present invention was measured by a high-speed GPC system “HLC-8320GPC” (model name) manufactured by Tosoh Corporation as a GPC apparatus. The column used was “TSKgel G4000H XL ” and “TSKgel G2000H XL ” manufactured by Tosoh Corporation.
The viscosity of the polysiloxane was measured with an E-type viscometer.
 表面処理剤の調製に用いた他の化合物は、以下に示される。
(1)DMATMS
 東京化成社製N,N-ジメチルアミノトリメチルシランである。
(2)HMDS
 キシダ化学社製1,1,1,3,3,3-ヘキサメチルジシラザンである。
(3)TMCT
 アルファーエイザー社製2,4,6,8-テトラメチルシクロテトラシロキサンである。
(4)OMCT
 東京化成社製オクタメチルシクロテトラシロキサンであり、Si-H結合を有さない化合物である。
(5)KF-96
 信越シリコーン社製ジメチルシリコーンオイル「KF-96-30cs」(商品名)であり、一般式(1)におけるzが0の、Si-H結合を有さない化合物である。
(6)KF-99
 信越シリコーン社製ハイドロジェンシリコーンオイル「KF-99」(商品名)であり、一般式(1)におけるa、w及びzがすべて0の化合物である。
(7)Q-2
 Mayaterials Inc.社製オクタ(ヒドロジメチルシロキシ)シルセスキオキサンである。
(8)n-オクタン
Other compounds used for the preparation of the surface treatment agent are shown below.
(1) DMATMS
N, N-dimethylaminotrimethylsilane manufactured by Tokyo Chemical Industry Co., Ltd.
(2) HMDS
It is 1,1,1,3,3,3-hexamethyldisilazane manufactured by Kishida Chemical Co., Ltd.
(3) TMCT
It is 2,4,6,8-tetramethylcyclotetrasiloxane manufactured by Alpha Eiser.
(4) OMCT
Octamethylcyclotetrasiloxane manufactured by Tokyo Chemical Industry Co., Ltd., a compound having no Si—H bond.
(5) KF-96
This is a dimethyl silicone oil “KF-96-30cs” (trade name) manufactured by Shin-Etsu Silicone Co., which is a compound having no Si—H bond with z of 0 in the general formula (1).
(6) KF-99
This is a hydrogen silicone oil “KF-99” (trade name) manufactured by Shin-Etsu Silicone Co., which is a compound in which a, w and z in the general formula (1) are all 0.
(7) Q-2
Mayerials Inc. This is octa (hydrodimethylsiloxy) silsesquioxane manufactured by the company.
(8) n-octane
  合成例1-1
 本発明に係る化合物(A)の製造方法を記載する。
 300ml四つ口フラスコに、磁気回転子、送液ポンプ、還流冷却器及び温度計を装着し、系内を窒素ガスで置換した。このフラスコに、トリエトキシシラン8.21g(50mmol)、2-シアノエチルトリエトキシシラン10.87g(50mmol)、ジメトキシメチルシラン10.62g(100mmol)、1,1,3,3-テトラメチルジシロキサン20.15g(150mmol)、2-ブタノール24.71g及びキシレン74.12gを収容し、反応系を窒素ガス雰囲気にした。フラスコ内の温度を25℃に保ち、3.14%塩酸水溶液9.30g及び2-ブタノール12.35gの混合液を、滴下ロートから徐々に加えながら撹拌した。滴下終了後、反応液を25℃で22時間静置した。
Synthesis Example 1-1
The manufacturing method of the compound (A) based on this invention is described.
A 300 ml four-necked flask was equipped with a magnetic rotor, a liquid feed pump, a reflux condenser and a thermometer, and the system was replaced with nitrogen gas. To this flask, 8.21 g (50 mmol) of triethoxysilane, 10.87 g (50 mmol) of 2-cyanoethyltriethoxysilane, 10.62 g (100 mmol) of dimethoxymethylsilane, 1,1,3,3-tetramethyldisiloxane 20 .15 g (150 mmol), 2-butanol 24.71 g and xylene 74.12 g were accommodated, and the reaction system was put in a nitrogen gas atmosphere. The temperature in the flask was kept at 25 ° C., and a mixture of 9.30 g of a 3.14% hydrochloric acid aqueous solution and 12.35 g of 2-butanol was gradually added from the dropping funnel while stirring. After completion of dropping, the reaction solution was allowed to stand at 25 ° C. for 22 hours.
 次いで、反応液を蒸留装置内に配置し、到達圧力133Paまで減圧した状態で、反応液の温度を16℃から60℃まで上昇させて水を含む揮発性成分を減圧留去した。そして、無色の液体(以下、「ポリシロキサン(PCN1)」という。)21.4gを得た。このポリシロキサン(PCN1)について、GPCにより、数平均分子量(Mn)を測定したところ、600であった。また、25℃における粘度を測定したところ、7mPa・sであった。 Next, the reaction solution was placed in a distillation apparatus, and while the pressure was reduced to an ultimate pressure of 133 Pa, the temperature of the reaction solution was increased from 16 ° C. to 60 ° C., and volatile components including water were distilled off under reduced pressure. As a result, 21.4 g of a colorless liquid (hereinafter referred to as “polysiloxane (PCN1)”) was obtained. With respect to this polysiloxane (PCN1), the number average molecular weight (Mn) was measured by GPC and found to be 600. Moreover, it was 7 mPa * s when the viscosity in 25 degreeC was measured.
 ポリシロキサン(PCN1)の組成を、構造単位のモル比とともに、下記構造式(12)に示す。
Figure JPOXMLDOC01-appb-C000024
(CNはシアノ基、Meはメチル基、s-Buはセカンダリーブチル基、Etはエチル基を示す。)
The composition of polysiloxane (PCN1) is shown in the following structural formula (12) together with the molar ratio of structural units.
Figure JPOXMLDOC01-appb-C000024
(CN represents a cyano group, Me represents a methyl group, s-Bu represents a secondary butyl group, and Et represents an ethyl group.)
 組成は、ポリシロキサン(PCN1)を、CDCl3(重クロロホルム)溶媒とした、1H-NMR(プロトン核磁気共鳴)及び29Si-NMRの測定に供し、得られたケミカルシフトから解析した。すなわち、1H-NMRスペクトルにおけるケミカルシフトδ(ppm)が2.2~2.5のシグナルは、(CH2CH2CN)に由来し、δ(ppm)が3.6~3.8のシグナルは、(OCH2CH3)、δ(ppm)が3.8~4.1のシグナルは、(OCH(CH3)CH2CH3)に由来する。更に、29Si-NMRスペクトルより、δ(ppm)が-10~0のシグナルは、SiO1/2の構造に由来し、δ(ppm)が-40~-35のシグナルは、SiO2/2の構造に由来する。SiO1.5あるいはSiO3/2として表記される、Si-O-結合を3つ有する構造を与える原料化合物(Tモノマーと呼ばれる)、及び、SiO1.0あるいはSiO2/2として表記される、Si-O-結合を2つ有する構造を与える原料化合物(Dモノマーと呼ばれる)については、縮合反応において仕込んだ原料化合物が、ほぼその使用量の割合でポリシロキサンに組み込まれることが分かっている。そこで、各々のシグナル強度積分値から、側鎖に関する連立方程式を作製し、各モノマーの仕込み量と、NMRの積分値とから、ポリシロキサン(PCN1)に含まれる各構成単位のモル比を決定した。 The composition was subjected to 1 H-NMR (proton nuclear magnetic resonance) and 29 Si-NMR measurements using polysiloxane (PCN1) as a CDCl 3 (deuterated chloroform) solvent, and analyzed from the obtained chemical shift. That is, a signal having a chemical shift δ (ppm) in the 1 H-NMR spectrum of 2.2 to 2.5 is derived from (CH 2 CH 2 CN), and δ (ppm) is 3.6 to 3.8. signal, (OCH 2 CH 3), the signal [delta] (ppm) is 3.8-4.1, from (OCH (CH 3) CH 2 CH 3). Further, from the 29 Si-NMR spectrum, the signal with δ (ppm) of −10 to 0 is derived from the structure of SiO 1/2 , and the signal with δ (ppm) of −40 to −35 is SiO 2/2 Derived from the structure. A raw material compound giving a structure having three Si—O— bonds expressed as SiO 1.5 or SiO 3/2 (called T monomer), and Si—O expressed as SiO 1.0 or SiO 2/2 -It has been found that for raw material compounds (called D monomers) that give a structure having two bonds, the raw material compounds charged in the condensation reaction are incorporated into the polysiloxane in a proportion of the amount used. Therefore, simultaneous equations relating to the side chains were prepared from the integrated values of the signal intensities, and the molar ratio of each structural unit contained in the polysiloxane (PCN1) was determined from the charged amount of each monomer and the integrated value of NMR. .
  合成例1-2
 300ml四つ口フラスコに、磁気回転子、送液ポンプ、還流冷却器及び温度計を装着し、系内を窒素ガスで置換した。このフラスコに、トリエトキシシラン12.32g(75mmol)、2-シアノエチルトリエトキシシラン5.43g(25mmol)、ジメトキシメチルシラン10.62g(100mmol)、1,1,3,3-テトラメチルジシロキサン20.15g(150mmol)、2-ブタノール24.71g及びキシレン74.12gを収容し、反応系を窒素ガス雰囲気にした。フラスコ内の温度を25℃に保ち、3.14%塩酸水溶液9.30g及び2-ブタノール12.35gの混合液を、滴下ロートから徐々に加えながら撹拌した。滴下終了後、反応液を25℃で22時間静置した。
Synthesis Example 1-2
A 300 ml four-necked flask was equipped with a magnetic rotor, a liquid feed pump, a reflux condenser and a thermometer, and the system was replaced with nitrogen gas. To this flask, 12.32 g (75 mmol) of triethoxysilane, 5.43 g (25 mmol) of 2-cyanoethyltriethoxysilane, 10.62 g (100 mmol) of dimethoxymethylsilane, 1,1,3,3-tetramethyldisiloxane 20 .15 g (150 mmol), 2-butanol 24.71 g and xylene 74.12 g were accommodated, and the reaction system was put in a nitrogen gas atmosphere. The temperature in the flask was kept at 25 ° C., and a mixture of 9.30 g of a 3.14% hydrochloric acid aqueous solution and 12.35 g of 2-butanol was gradually added from the dropping funnel while stirring. After completion of dropping, the reaction solution was allowed to stand at 25 ° C. for 22 hours.
 次いで、反応液を蒸留装置内に配置し、到達圧力133Paまで減圧した状態で、反応液の温度を17℃から60℃まで上昇させて水を含む揮発性成分を減圧留去した。そして、無色の液体(以下、「ポリシロキサン(PCN2)」という。)23.97gを得た。このポリシロキサン(PCN2)について、GPCにより、数平均分子量(Mn)を測定したところ、730であった。また、25℃における粘度を測定したところ、6mPa・sであった。 Next, the reaction solution was placed in a distillation apparatus, and with the pressure reduced to an ultimate pressure of 133 Pa, the temperature of the reaction solution was increased from 17 ° C. to 60 ° C. to distill off volatile components including water under reduced pressure. As a result, 23.97 g of a colorless liquid (hereinafter referred to as “polysiloxane (PCN2)”) was obtained. This polysiloxane (PCN2) was measured to have a number average molecular weight (Mn) of 730 by GPC. Moreover, it was 6 mPa * s when the viscosity in 25 degreeC was measured.
 ポリシロキサン(PCN2)の組成を、構造単位のモル比とともに、下記構造式(13)に示す。
Figure JPOXMLDOC01-appb-C000025
(CNはシアノ基、Meはメチル基、s-Buはセカンダリーブチル基、Etはエチル基を示す。)
The composition of polysiloxane (PCN2) is shown in the following structural formula (13) together with the molar ratio of structural units.
Figure JPOXMLDOC01-appb-C000025
(CN represents a cyano group, Me represents a methyl group, s-Bu represents a secondary butyl group, and Et represents an ethyl group.)
  合成例1-3
 300ml四つ口フラスコに、磁気回転子、送液ポンプ、還流冷却器及び温度計を装着し、系内を窒素ガスで置換した。このフラスコに、トリエトキシシラン32.85g(200mmol)、1,1,3,3-テトラメチルジシロキサン20.15g(150mmol)、2-プロパノール24.04g及びキシレン72.12gを収容し、反応系を窒素ガス雰囲気にした。フラスコ内の温度を25℃に保ち、2.63%塩酸水溶液11.10g及び2-プロパノール12.02gの混合液を、滴下ロートから徐々に加えながら撹拌した。滴下終了後、反応液を25℃で22時間静置した。
Synthesis Example 1-3
A 300 ml four-necked flask was equipped with a magnetic rotor, a liquid feed pump, a reflux condenser and a thermometer, and the system was replaced with nitrogen gas. This flask was charged with 32.85 g (200 mmol) of triethoxysilane, 20.15 g (150 mmol) of 1,1,3,3-tetramethyldisiloxane, 24.04 g of 2-propanol and 72.12 g of xylene. Was put in a nitrogen gas atmosphere. The temperature in the flask was kept at 25 ° C., and a mixed solution of 2.63% hydrochloric acid aqueous solution (11.10 g) and 2-propanol (12.02 g) was gradually added from the dropping funnel. After completion of dropping, the reaction solution was allowed to stand at 25 ° C. for 22 hours.
 次いで、反応液を蒸留装置内に配置し、到達圧力1mmHgまで減圧した状態で、反応液の温度を9℃から60℃まで上昇させて水を含む揮発性成分を減圧留去した。そして、無色の液体(以下、「ポリシロキサン(P1)」という。)19.3gを得た。このポリシロキサン(P1)について、GPCにより、数平均分子量(Mn)を測定したところ、1,050であった。また、25℃における粘度を測定したところ、7mPa・sであった。 Next, the reaction solution was placed in a distillation apparatus, and with the pressure reduced to an ultimate pressure of 1 mmHg, the temperature of the reaction solution was increased from 9 ° C. to 60 ° C. to distill off volatile components including water under reduced pressure. As a result, 19.3 g of a colorless liquid (hereinafter referred to as “polysiloxane (P1)”) was obtained. The number average molecular weight (Mn) of this polysiloxane (P1) measured by GPC was 1,050. Moreover, it was 7 mPa * s when the viscosity in 25 degreeC was measured.
 ポリシロキサン(P1)の組成を、構造単位のモル比とともに、下記構造式(14)に示す。
Figure JPOXMLDOC01-appb-C000026
(Meはメチル基、i-Prはイソプロピル基、Etはエチル基を示す。)
The composition of polysiloxane (P1) is shown in the following structural formula (14) together with the molar ratio of structural units.
Figure JPOXMLDOC01-appb-C000026
(Me represents a methyl group, i-Pr represents an isopropyl group, and Et represents an ethyl group.)
 組成は、ポリシロキサン(P1)を、CDCl3(重クロロホルム)溶媒とした、1H-NMR(プロトン核磁気共鳴)の測定に供し、得られたケミカルシフトから解析した。すなわち、1H-NMRスペクトルにおけるケミカルシフトδ(ppm)が-0.2~0.6のシグナルは、Si-CH3の構造に基づき、δ(ppm)が0.9~1.5のシグナルは、(OCH(CH32、及びOCH2CH3)、δ(ppm)が3.5~4.1のシグナルは、OCH2CH3、δ(ppm)が4.1~5.5のシグナルは、OCH(CH32及びSi-Hに基づくと考えられる。SiO1.5あるいはSiO3/2で表記される、Si-O-結合を3つ有する構造を与える原料化合物(Tモノマーと呼ばれる)、及び、SiO1.0あるいはSiO2/2として表記される、Si-O-結合を2つ有する構造を与える原料化合物(Dモノマーと呼ばれる)については、縮合反応において仕込んだ原料化合物が、ほぼその使用量の割合でポリシロキサンに組み込まれることが分かっている。そこで、各々のシグナル強度積分値から、側鎖に関する連立方程式を作製し、各モノマーの仕込み量と、NMRの積分値とから、ポリシロキサン(P1)に含まれる各構成単位のモル比を決定した。 The composition was subjected to 1 H-NMR (proton nuclear magnetic resonance) measurement using polysiloxane (P1) as a CDCl 3 (deuterated chloroform) solvent and analyzed from the obtained chemical shift. That is, a signal with a chemical shift δ (ppm) of −0.2 to 0.6 in the 1 H-NMR spectrum is a signal with a δ (ppm) of 0.9 to 1.5 based on the structure of Si—CH 3. Is (OCH (CH 3 ) 2 and OCH 2 CH 3 ), and a signal with δ (ppm) of 3.5 to 4.1 is OCH 2 CH 3 and δ (ppm) of 4.1 to 5.5. Is considered to be based on OCH (CH 3 ) 2 and Si—H. A raw material compound giving a structure having three Si—O— bonds represented by SiO 1.5 or SiO 3/2 (called T monomer), and Si—O represented by SiO 1.0 or SiO 2/2 -It has been found that for raw material compounds (called D monomers) that give a structure having two bonds, the raw material compounds charged in the condensation reaction are incorporated into the polysiloxane in a proportion of the amount used. Therefore, simultaneous equations related to the side chains were prepared from the integrated values of the signal intensities, and the molar ratio of each structural unit contained in the polysiloxane (P1) was determined from the charged amount of each monomer and the integrated value of NMR. .
  合成例1-4
 300ml四つ口フラスコに、磁気回転子、送液ポンプ、還流冷却器及び温度計を装着し、系内を窒素ガスで置換した。このフラスコに、トリエトキシシラン16.43g(100mmol)、ジメトキシメチルシラン10.62g(100mmol)、1,1,3,3-テトラメチルジシロキサン20.15g(150mmol)、2-プロパノール20.03g及びキシレン60.10gを収容し、反応系を窒素ガス雰囲気にした。フラスコ内の温度を25℃に保ち、3.14%塩酸水溶液9.30g及び2-プロパノール10.02gの混合液を、滴下ロートから徐々に加えながら撹拌した。滴下終了後、反応液を25℃で22時間静置した。
Synthesis Example 1-4
A 300 ml four-necked flask was equipped with a magnetic rotor, a liquid feed pump, a reflux condenser and a thermometer, and the system was replaced with nitrogen gas. To this flask, 16.43 g (100 mmol) of triethoxysilane, 10.62 g (100 mmol) of dimethoxymethylsilane, 20.15 g (150 mmol) of 1,1,3,3-tetramethyldisiloxane, 20.03 g of 2-propanol and 60.10 g of xylene was accommodated, and the reaction system was placed in a nitrogen gas atmosphere. The temperature in the flask was kept at 25 ° C., and a mixture of 9.30 g of a 3.14% hydrochloric acid aqueous solution and 10.02 g of 2-propanol was stirred while gradually being added from the dropping funnel. After completion of dropping, the reaction solution was allowed to stand at 25 ° C. for 22 hours.
 次いで、反応液を蒸留装置内に配置し、到達圧力133Paまで減圧した状態で、反応液の温度を7℃から60℃まで上昇させて水を含む揮発性成分を減圧留去した。そして、無色の液体(以下、「ポリシロキサン(P2)」という。)15.6gを得た。このポリシロキサン(P2)について、GPCにより、数平均分子量(Mn)を測定したところ、1,000であった。また、25℃における粘度を測定したところ、3mPa・sであった。 Next, the reaction solution was placed in a distillation apparatus, and while the pressure was reduced to an ultimate pressure of 133 Pa, the temperature of the reaction solution was increased from 7 ° C. to 60 ° C. to distill off volatile components including water under reduced pressure. As a result, 15.6 g of a colorless liquid (hereinafter referred to as “polysiloxane (P2)”) was obtained. The number average molecular weight (Mn) of this polysiloxane (P2) measured by GPC was 1,000. Moreover, it was 3 mPa * s when the viscosity in 25 degreeC was measured.
 ポリシロキサン(P2)の組成を、構造単位のモル比とともに、下記構造式(15)に示す。
Figure JPOXMLDOC01-appb-C000027
(Meはメチル基、Etはエチル基、i-Prはイソプロピル基を表す。)
The composition of polysiloxane (P2) is shown in the following structural formula (15) together with the molar ratio of structural units.
Figure JPOXMLDOC01-appb-C000027
(Me represents a methyl group, Et represents an ethyl group, and i-Pr represents an isopropyl group.)
 組成は、ポリシロキサン(P2)を、CDCl3(重クロロホルム)溶媒とした、1H-NMR(プロトン核磁気共鳴)の測定に供し、得られたケミカルシフトから解析した。すなわち、1H-NMRスペクトルにおけるケミカルシフトδ(ppm)が-0.2~0.6のシグナルは、Si-CH3の構造に基づき、δ(ppm)が0.9~1.5のシグナルは、(OCH(CH32、及びOCH2CH3)、δ(ppm)が3.5~4.1のシグナルは、OCH2CH3、δ(ppm)が4.1~5.5のシグナルは、OCH(CH32及びSi-Hに基づくと考えられる。また、SiO1.5あるいはSiO3/2で表記される、Si-O-結合を3つ有する構造を与える原料化合物(Tモノマーと呼ばれる)については、仕込んだ原料化合物が、ほぼその使用量の割合でポリシロキサンに組み込まれることが分かっている。そこで、各々のシグナル強度積分値から、側鎖に関する連立方程式を作製し、各モノマーの仕込み量と、NMRの積分値とから、ポリシロキサン(P2)に含まれる各構成単位のモル比を決定した。 The composition was subjected to 1 H-NMR (proton nuclear magnetic resonance) measurement using polysiloxane (P2) as a CDCl 3 (deuterated chloroform) solvent and analyzed from the obtained chemical shift. That is, a signal with a chemical shift δ (ppm) of −0.2 to 0.6 in the 1 H-NMR spectrum is a signal with a δ (ppm) of 0.9 to 1.5 based on the structure of Si—CH 3. Is (OCH (CH 3 ) 2 and OCH 2 CH 3 ), and a signal with δ (ppm) of 3.5 to 4.1 is OCH 2 CH 3 and δ (ppm) of 4.1 to 5.5. Is considered to be based on OCH (CH 3 ) 2 and Si—H. In addition, as for the raw material compound (referred to as T monomer) which gives a structure having three Si—O— bonds represented by SiO 1.5 or SiO 3/2 , the charged raw material compound is almost in proportion to the amount used. It has been found to be incorporated into polysiloxanes. Therefore, simultaneous equations relating to the side chains were prepared from the integrated values of the signal intensities, and the molar ratio of each structural unit contained in the polysiloxane (P2) was determined from the charged amount of each monomer and the integrated value of NMR. .
  実験例1-1
 合成例1-2で得られたポリシロキサン(PCN2)2.0質量部と、N,N-ジメチルアミノトリメチルシラン(DMATMS)8.0質量部と、n-オクタン90.0質量部とを混合して、表面処理剤を調製した(表1参照)。この表面処理剤を含む薬液を用いて、被処理物の表面処理を行った。表2に、表面処理の具体的な方法を示す。被処理物(以下、「基板」という)は、10mm×50mmの大きさに切断した窒化ケイ素膜付シリコンウェハ(以下、「SiN基板」と示す場合がある)、酸化ケイ素膜付シリコンウェハ(以下、「SiO2基板」と示す場合がある)及びシリコンウェハ(以下、「Si基板」と示す場合がある)の3種である。基板を、表2のNo.1-1からNo.1-12の順に、樹脂製のカップに秤取った各薬液(約5ml)に、所定の温度で所定時間浸漬させた後、20秒間窒素ガスをブローして水を除去し、速やかに接触角を測定した。尚、被処理物がSiO2基板の場合は、酸化膜が溶けてなくなってしまわないように、No.1-4における処理において、1%HF水溶液の浸漬時間を30秒間とした。
Experimental Example 1-1
Mixing 2.0 parts by mass of polysiloxane (PCN2) obtained in Synthesis Example 1-2, 8.0 parts by mass of N, N-dimethylaminotrimethylsilane (DMATMS), and 90.0 parts by mass of n-octane Thus, a surface treatment agent was prepared (see Table 1). Using the chemical solution containing this surface treatment agent, the surface treatment of the object to be treated was performed. Table 2 shows specific methods of surface treatment. An object to be processed (hereinafter referred to as “substrate”) is a silicon wafer with a silicon nitride film (hereinafter sometimes referred to as “SiN substrate”) cut into a size of 10 mm × 50 mm, or a silicon wafer with a silicon oxide film (hereinafter referred to as “SiN substrate”). , “Sometimes referred to as“ SiO 2 substrate ”) and silicon wafer (hereinafter sometimes referred to as“ Si substrate ”). The substrate is designated as No. 2 in Table 2. 1-1 to No. In the order of 1-12, after immersing each chemical solution (about 5 ml) weighed in a resin cup at a predetermined temperature for a predetermined time, nitrogen gas was blown for 20 seconds to remove water, and the contact angle was quickly Was measured. In the case where the object to be processed is a SiO 2 substrate, No. is used so that the oxide film is not melted. In the treatment in 1-4, the immersion time of the 1% HF aqueous solution was 30 seconds.
 表面処理後の基板表面における接触角は、20秒間の窒素ガスブローによる乾燥後の基板について、Dataphysics社製自動接触角測定装置「OCA20型」を用い、JIS R1257:1999に定める空気中での静滴法によって、5回測定した平均値である。 The contact angle on the surface of the substrate after the surface treatment is determined by JIS R1257: 1999 static droplets in air using a dataphysics automatic contact angle measuring device “OCA20 type” for the substrate after drying by nitrogen gas blowing for 20 seconds. It is the average value measured five times by the method.
 表1には、3種類の基板表面における接触角の標準偏差(計算値)を載せた。標準偏差の定義は、JIS Z8101-1に従い、表1に示したSiN基板、SiO2基板及びSi基板の各表面における3つの接触角の値の分散の正の平方根を標準偏差とした。この標準偏差の値が0に近いほど、基板の種類による接触角の偏差が小さいことを表す。 Table 1 shows standard deviations (calculated values) of contact angles on three types of substrate surfaces. The standard deviation is defined according to JIS Z8101-1. The standard deviation is defined as the positive square root of the dispersion of the three contact angle values on the surfaces of the SiN substrate, the SiO 2 substrate and the Si substrate shown in Table 1. The closer this standard deviation value is to 0, the smaller the contact angle deviation due to the type of substrate.
  実験例1-2~1-12
 表1に示す表面処理剤を調製し、実験例1-1と同様にして表面処理を行い、各基板表面における接触角を測定し、標準偏差を算出した。その結果を表1に示す。
Experimental Examples 1-2 to 1-12
The surface treatment agent shown in Table 1 was prepared, surface treatment was performed in the same manner as in Experimental Example 1-1, the contact angle on each substrate surface was measured, and the standard deviation was calculated. The results are shown in Table 1.
  実験例1-13
 この実験例は、表2におけるNo.1-1からNo.1-5の順に、各薬液(約5ml)に、所定の温度で所定時間浸漬させた後、20秒間窒素ガスをブローして水を除去し、速やかに接触角を測定した、ブランクテストである(表1参照)。
Experimental Example 1-13
This experimental example is No. 1 in Table 2. 1-1 to No. This is a blank test in which, in the order of 1-5, each chemical solution (about 5 ml) was immersed in a predetermined temperature at a predetermined temperature for a predetermined time, then nitrogen gas was blown for 20 seconds to remove water, and the contact angle was measured immediately. (See Table 1).
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表1に示す実験例1-8~1-12によれば、SiN、SiO2及びSiの基板の中には、接触角の大きいものはあったが、接触角の大きい基板と接触角の小さい基板との間で差が大きく、標準偏差が2を超えた。一方、シアノアルキル基を有するポリシロキサンを用いた実験例1-1~1-6では、3種の基板表面における接触角の差がより小さく、標準偏差が1を下回ったことから、基板の表面組成に依存することなく撥水膜が形成されて撥水性を示したことが分かる。このことは、その表面に、互いに異なる材質のパターンが複数併存する場合に、各位置において表面処理剤による撥水性の差が小さいことを意味する。そして、洗浄工程において、異なる材質のパターン間で洗浄液の表面張力に基づく応力が不均一に作用することを防ぐものであるから、優れた結果を示したということができる。 According to Experimental Examples 1-8 to 1-12 shown in Table 1, some of the SiN, SiO 2 and Si substrates had a large contact angle, but the substrate with a large contact angle and a small contact angle. The difference with the substrate was large, and the standard deviation exceeded 2. On the other hand, in Experimental Examples 1-1 to 1-6 using a polysiloxane having a cyanoalkyl group, the difference in contact angle between the three types of substrate surfaces was smaller and the standard deviation was less than 1. It can be seen that the water-repellent film was formed without depending on the composition and showed water repellency. This means that when a plurality of patterns of different materials coexist on the surface, the difference in water repellency due to the surface treatment agent is small at each position. In the cleaning process, it is possible to prevent the stress based on the surface tension of the cleaning liquid from acting unevenly between patterns of different materials, and thus it can be said that excellent results have been shown.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
  実験例2-1
 KF-99の5質量部と、n-オクタン95質量部とを混合して、表面処理剤を調製した(表3参照)。この表面処理剤を含む薬液を用いて、被処理物の表面処理を行った。表面処理の具体的な方法は、表2に示した通りである。被処理物は、10mm×50mmの大きさのSiN膜付シリコンウェハ(SiN基板)である。尚、接触角の測定方法も、実験例1-1等と同じである(表3参照)。
Experimental example 2-1
A surface treating agent was prepared by mixing 5 parts by mass of KF-99 and 95 parts by mass of n-octane (see Table 3). Using the chemical solution containing this surface treatment agent, the surface treatment of the object to be treated was performed. The specific method of surface treatment is as shown in Table 2. The object to be processed is a silicon wafer with a SiN film (SiN substrate) having a size of 10 mm × 50 mm. The contact angle measurement method is also the same as in Experimental Example 1-1 and the like (see Table 3).
  実験例2-2
 KF-99の10質量部と、n-オクタン90質量部とを混合して、表面処理剤を調製し、実験例2-1と同様にしてSiN基板表面の表面処理を行い、処理後の基板表面における接触角を測定した。その結果を表3に示す。
Experimental Example 2-2
10 parts by mass of KF-99 and 90 parts by mass of n-octane were mixed to prepare a surface treatment agent, and the surface treatment of the SiN substrate surface was performed in the same manner as in Experimental Example 2-1, and the substrate after the treatment The contact angle at the surface was measured. The results are shown in Table 3.
  実験例2-3
 合成例1-3で得られたポリシロキサン(P1)5質量部と、n-オクタン95質量部とを混合して、表面処理剤を調製し、実験例2-1と同様にしてSiN基板表面の表面処理を行い、処理後の基板表面における接触角を測定した。その結果を表3に示す。
Experimental Example 2-3
A surface treating agent was prepared by mixing 5 parts by mass of the polysiloxane (P1) obtained in Synthesis Example 1-3 and 95 parts by mass of n-octane, and the surface of the SiN substrate in the same manner as in Experimental Example 2-1. The contact angle on the substrate surface after the treatment was measured. The results are shown in Table 3.
  実験例2-4~2-6
 表3に示す表面処理剤を調製し、実験例2-1と同様にしてSiN基板表面の表面処理を行い、処理後の基板表面における接触角を測定した。その結果を表3に示す。
Experimental Examples 2-4 to 2-6
The surface treatment agent shown in Table 3 was prepared, the surface treatment of the SiN substrate surface was performed in the same manner as in Experimental Example 2-1, and the contact angle on the substrate surface after the treatment was measured. The results are shown in Table 3.
  実験例2-7
 SiN基板の代わりにSiO2基板を用いた以外は、実験例2-6と同様にして処理を行い、処理後の基板表面における接触角を測定した。その結果を表3に示す。尚、SiO2基板の場合は、酸化膜が溶けてなくなってしまわないように、No.1-4における処理において、1%HF水溶液の浸漬時間を30秒間とした。
Experimental Example 2-7
The treatment was performed in the same manner as in Experimental Example 2-6 except that a SiO 2 substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 3. In the case of an SiO 2 substrate, No. is used so that the oxide film does not melt. In the treatment in 1-4, the immersion time of the 1% HF aqueous solution was 30 seconds.
  実験例2-8
 SiN基板の代わりにSi基板を用いた以外は、実験例2-6と同様にして処理を行い、処理後の基板表面における接触角を測定した。その結果を表3に示す。
Experimental Example 2-8
The treatment was performed in the same manner as in Experimental Example 2-6, except that a Si substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 3.
  2-9~2-12
 表3に示す表面処理剤を調製し、実験例2-1と同様にしてSiN基板表面の表面処理を行い、処理後の基板表面における接触角を測定した。その結果を表3に示す。
2-9 to 2-12
The surface treatment agent shown in Table 3 was prepared, the surface treatment of the SiN substrate surface was performed in the same manner as in Experimental Example 2-1, and the contact angle on the substrate surface after the treatment was measured. The results are shown in Table 3.
  実験例2-13
 SiN基板の代わりにSiO2基板を用いた以外は、実験例2-10と同様にして処理を行い、処理後の基板表面における接触角を測定した。その結果を表3に示す。尚、SiO2基板の場合は、酸化膜が溶けてなくなってしまわないように、No.1-4における処理において、1%HF水溶液の浸漬時間を30秒間とした。
Experimental Example 2-13
The treatment was performed in the same manner as in Experimental Example 2-10 except that a SiO 2 substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 3. In the case of an SiO 2 substrate, No. is used so that the oxide film does not melt. In the treatment in 1-4, the immersion time of the 1% HF aqueous solution was 30 seconds.
  実験例2-14
 SiN基板の代わりにSi基板を用いた以外は、実験例2-10と同様にして処理を行い、処理後の基板表面における接触角を測定した。その結果を表3に示す。
Experimental Example 2-14
The treatment was performed in the same manner as in Experimental Example 2-10 except that a Si substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表3から明らかなように、実験例2-9~2-14は、Si-H基を含まない化合物を含む表面処理剤を用いた例であり、接触角が85度未満と低い値を示した。一方、実験例2-1~2-8は、Si-H基を含む化合物を含む表面処理剤を用いた例であり、接触角が86度以上となり、良好な撥水性を示した。 As is apparent from Table 3, Experimental Examples 2-9 to 2-14 are examples using a surface treating agent containing a compound containing no Si—H group, and show a low contact angle of less than 85 degrees. It was. On the other hand, Experimental Examples 2-1 to 2-8 are examples using a surface treating agent containing a compound containing a Si—H group, and the contact angle was 86 degrees or more, indicating good water repellency.
  実験例3-1
 KF-99の1質量部と、DMATMSの4質量部と、n-オクタン95質量部とを混合して、表面処理剤を調製した(表4参照)。この表面処理剤を含む薬液を用いて、被処理物の表面処理を行った。表面処理の具体的な方法は、表2に示した通りである。被処理物は、10mm×50mmの大きさのSiN膜付シリコンウェハ(SiN基板)である。尚、接触角の測定方法も、実験例1-1等と同じである(表4参照)。
Experimental Example 3-1
A surface treating agent was prepared by mixing 1 part by mass of KF-99, 4 parts by mass of DMATMS, and 95 parts by mass of n-octane (see Table 4). Using the chemical solution containing this surface treatment agent, the surface treatment of the object to be treated was performed. The specific method of surface treatment is as shown in Table 2. The object to be processed is a silicon wafer with a SiN film (SiN substrate) having a size of 10 mm × 50 mm. The contact angle measurement method is also the same as in Experimental Example 1-1 and the like (see Table 4).
  実験例3-2~3-11
 表4に示す表面処理剤を調製し、実験例3-1と同様にしてSiN基板表面の表面処理を行い、処理後の基板表面における接触角を測定した。その結果を表4に示す。
Experimental Examples 3-2 to 3-11
Surface treatment agents shown in Table 4 were prepared, and the surface treatment of the SiN substrate surface was performed in the same manner as in Experimental Example 3-1, and the contact angle on the substrate surface after the treatment was measured. The results are shown in Table 4.
  実験例3-12
 SiN基板の代わりにSiO2基板を用いた以外は、実験例3-4と同様にして処理を行い、処理後の基板表面における接触角を測定した。その結果を表4に示す。尚、SiO2基板の場合は、酸化膜が溶けてなくなってしまわないように、No.1-4における処理において、1%HF水溶液の浸漬時間を30秒間とした。
Experimental Example 3-12
The treatment was performed in the same manner as in Experimental Example 3-4 except that a SiO 2 substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 4. In the case of an SiO 2 substrate, No. is used so that the oxide film does not melt. In the treatment in 1-4, the immersion time of the 1% HF aqueous solution was 30 seconds.
  実験例3-13
 SiN基板の代わりにSi基板を用いた以外は、実験例3-4と同様にして処理を行い、処理後の基板表面における接触角を測定した。その結果を表4に示す。
Experimental Example 3-13
The treatment was performed in the same manner as in Experimental Example 3-4, except that a Si substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 4.
  実験例3-14~3-20
 表4に示す表面処理剤を調製し、実験例3-1と同様にしてSiN基板表面の表面処理を行い、処理後の基板表面における接触角を測定した。その結果を表4に示す。
Experimental Examples 3-14 to 3-20
Surface treatment agents shown in Table 4 were prepared, and the surface treatment of the SiN substrate surface was performed in the same manner as in Experimental Example 3-1, and the contact angle on the substrate surface after the treatment was measured. The results are shown in Table 4.
  実験例3-21
 SiN基板の代わりにSiO2基板を用いた以外は、実験例3-15と同様にして処理を行い、処理後の基板表面における接触角を測定した。その結果を表4に示す。尚、SiO2基板の場合は、酸化膜が溶けてなくなってしまわないように、No.1-4における処理において、1%HF水溶液の浸漬時間を30秒間とした。
Experimental Example 3-21
The treatment was performed in the same manner as in Experimental Example 3-15 except that a SiO 2 substrate was used instead of the SiN substrate, and the contact angle on the treated substrate surface was measured. The results are shown in Table 4. In the case of an SiO 2 substrate, No. is used so that the oxide film does not melt. In the treatment in 1-4, the immersion time of the 1% HF aqueous solution was 30 seconds.
  実験例3-22
 SiN基板の代わりにSi基板を用いた以外は、実験例3-15と同様にして処理を行い、処理後の基板表面における接触角を測定した。その結果を表4に示す。
Experimental Example 3-22
The treatment was performed in the same manner as in Experimental Example 3-15 except that a Si substrate was used instead of the SiN substrate, and the contact angle on the substrate surface after the treatment was measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 以下の実験では、表5に示す表面処理剤4-1~4-7を調製し、SiN基板、SiO2基板及びSi基板に対して表面処理を行った。 In the following experiment, surface treatment agents 4-1 to 4-7 shown in Table 5 were prepared, and surface treatment was performed on the SiN substrate, the SiO 2 substrate, and the Si substrate.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
  実験例4-1
 表面処理剤4-1~4-7を個別に含む薬液を用いて、被処理物の表面処理を行った。表6に、表面処理の具体的な方法を示す。被処理物は、10mm×50mmの大きさのSiN膜付シリコンウェハ(SiN基板)、SiO2基板及びSi基板である。基板を、表6のNo.2-1からNo.2-14の順に、樹脂製のカップに秤取った各薬液(約5ml)に、所定の温度で所定時間浸漬させた後、20秒間窒素ガスをブローして水を除去し、速やかに接触角を測定した。尚、No.2-4におけるHF処理では、1分間の処理を行い、No.2-9における酸処理では、12%塩酸水溶液を用いた。また、SiO2基板の場合は、酸化膜が溶けてなくなってしまわないように、No.2-4における処理において、1%HF水溶液の浸漬時間を30秒間とした。更に、接触角の測定方法は、実験例1-1等と同じとした。接触角の測定結果を表7に示す。
Experimental Example 4-1
Surface treatment of the object to be treated was performed using a chemical solution containing the individual surface treatment agents 4-1 to 4-7. Table 6 shows specific methods of surface treatment. The object to be processed is a silicon wafer with a SiN film (SiN substrate), a SiO 2 substrate, and a Si substrate having a size of 10 mm × 50 mm. The substrate was designated as No. 6 in Table 6. 2-1. In the order of 2-14, after immersing each chemical solution (about 5 ml) weighed in a resin cup at a predetermined temperature for a predetermined time, blow off nitrogen gas for 20 seconds to remove water, and quickly contact angle Was measured. No. In the HF process in 2-4, a 1 minute process is performed. In the acid treatment in 2-9, a 12% hydrochloric acid aqueous solution was used. In the case of a SiO 2 substrate, No. is used so that the oxide film does not melt. In the treatment in 2-4, the immersion time of the 1% HF aqueous solution was 30 seconds. Furthermore, the contact angle measurement method was the same as in Experimental Example 1-1. Table 7 shows the measurement results of the contact angle.
  実験例4-2
 No.2-9における酸処理で、16%硫酸水溶液を用いた以外は、実験例4-1と同様にして、SiN基板の表面処理を行った。その結果を表7に示す。
Experimental Example 4-2
No. The surface treatment of the SiN substrate was performed in the same manner as in Experimental Example 4-1, except that 16% sulfuric acid aqueous solution was used in the acid treatment in 2-9. The results are shown in Table 7.
  実験例4-3
 No.2-9における酸処理で、20%硝酸水溶液を用いた以外は、実験例4-1と同様にして、SiN基板の表面処理を行った。その結果を表7に示す。
Experimental Example 4-3
No. Surface treatment of the SiN substrate was performed in the same manner as in Experimental Example 4-1, except that 20% nitric acid aqueous solution was used in the acid treatment in 2-9. The results are shown in Table 7.
  実験例4-4
 No.2-9における酸処理で、14%シュウ酸水溶液を用いた以外は、実験例4-1と同様にして、SiN基板の表面処理を行った。その結果を表7に示す。
Experimental Example 4-4
No. A surface treatment of the SiN substrate was performed in the same manner as in Experimental Example 4-1, except that a 14% oxalic acid aqueous solution was used in the acid treatment in 2-9. The results are shown in Table 7.
  実験例4-5
 No.2-9における酸処理を省略し、代わりに、脱イオン水に2分間浸漬した以外は、実験例4-1と同様にして、SiN基板の表面処理を行った。その結果を表7に示す。
Experimental Example 4-5
No. The surface treatment of the SiN substrate was carried out in the same manner as in Experimental Example 4-1, except that the acid treatment in 2-9 was omitted and instead it was immersed in deionized water for 2 minutes. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 本発明の表面処理剤を用いれば、高アスペクト比のパターンを有するようになった半導体基板等の表面を、均一に撥水化することができ、半導体の製造時の歩留まりを向上させることができる。 By using the surface treating agent of the present invention, the surface of a semiconductor substrate or the like that has a pattern with a high aspect ratio can be made water repellent uniformly, and the yield during semiconductor manufacturing can be improved. .
 また、本発明の表面処理方法によれば、高アスペクト比のパターンを有するようになった半導体基板の表面を、均一に撥水化することができ、半導体の製造時の歩留まりを向上させることができる。 In addition, according to the surface treatment method of the present invention, the surface of the semiconductor substrate having a high aspect ratio pattern can be made water repellent uniformly, and the yield during semiconductor manufacturing can be improved. it can.

Claims (24)

  1.  下記一般式(1)で表される化合物(A)を含むことを特徴とする表面処理剤。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R6は、水素原子又は炭素原子数1~6のアルキル基であり、R1、R2、R3、R4及びR5は、互いに独立して、水素原子、シアノアルキル基、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、R1、R2、R3、R4及びR5の少なくとも1つは水素原子である。a、w、x、y及びzは、互いに独立して、0又は正の数であり、w及びxの少なくとも一方は正の数であり、0≦w/(x+y)≦5であり、0≦z/(a+w+x+y)≦1である。化合物Aは、各構造単位を1種のみ含んでよいし、2種以上を含んでもよい。〕
    The surface treating agent characterized by including the compound (A) represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a cyanoalkyl group, , An alkyl group, an aralkyl group, a cycloalkyl group, a cycloaralkyl group or an aryl group, and at least one of R 1 , R 2 , R 3 , R 4 and R 5 is a hydrogen atom. a, w, x, y and z are each independently 0 or a positive number, at least one of w and x is a positive number, 0 ≦ w / (x + y) ≦ 5, 0 ≦ z / (a + w + x + y) ≦ 1. Compound A may contain only 1 type of each structural unit, and may contain 2 or more types. ]
  2.  上記化合物(A)が、下記一般式(4)で表される請求項1に記載の表面処理剤。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R3及びR5は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、w、x及びyは、互いに独立して、正の数であり、zは0又は正の数である。〕
    The surface treating agent according to claim 1, wherein the compound (A) is represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, R 3 and R 5 are each independently a hydrogen atom, an alkyl group, an aralkyl group, a cycloalkyl group, a cycloaralkyl group or an aryl group, and w, x and y are independently of each other, It is a positive number and z is 0 or a positive number. ]
  3.  上記一般式(1)におけるR1、R2、R3、R4及びR5の少なくとも1つがシアノアルキル基である請求項1に記載の表面処理剤。 The surface treating agent according to claim 1, wherein at least one of R 1 , R 2 , R 3 , R 4 and R 5 in the general formula (1) is a cyanoalkyl group.
  4.  上記化合物(A)が、下記一般式(7)で表される請求項3に記載の表面処理剤。
    Figure JPOXMLDOC01-appb-C000003
    〔式中、Bはシアノアルキル基であり、b、x、y及びzは、互いに独立して、0又は正の数であり、cは正の数である。〕
    The surface treating agent according to claim 3, wherein the compound (A) is represented by the following general formula (7).
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, B is a cyanoalkyl group, b, x, y and z are each independently 0 or a positive number, and c is a positive number. ]
  5.  上記一般式(7)において、b/cの比が0.1~20の範囲である請求項4に記載の表面処理剤。 The surface treating agent according to claim 4, wherein in the general formula (7), the ratio b / c is in the range of 0.1 to 20.
  6.  上記化合物(A)の数平均分子量が240~10,000である請求項1乃至5のいずれか一項に記載の表面処理剤。 The surface treating agent according to any one of claims 1 to 5, wherein the number average molecular weight of the compound (A) is 240 to 10,000.
  7.  更に、下記一般式(11)で表される化合物(B)を含有する請求項1乃至6のいずれか一項に記載の表面処理剤。
    Figure JPOXMLDOC01-appb-C000004
    〔式中、R11、R12及びR13は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、R14及びR15は、互いに独立して、水素原子、飽和若しくは不飽和アルキル基、飽和若しくは不飽和シクロアルキル基、トリメチルシリル基、ジメチルシリル基、又は、飽和若しくは不飽和ヘテロシクロアルキル基であり、R14及びR15は、互いに結合して、窒素原子を有する飽和又は不飽和ヘテロシクロアルキル基であってもよい。〕
    Furthermore, the surface treating agent as described in any one of Claims 1 thru | or 6 containing the compound (B) represented by following General formula (11).
    Figure JPOXMLDOC01-appb-C000004
    [Wherein R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group, and R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom. ]
  8.  上記化合物(B)が、N,N-ジエチルアミノトリメチルシラン及びN,N-ジメチルアミノトリメチルシランのうちの少なくとも一方である請求項7に記載の表面処理剤。 The surface treating agent according to claim 7, wherein the compound (B) is at least one of N, N-diethylaminotrimethylsilane and N, N-dimethylaminotrimethylsilane.
  9.  更に、有機溶剤を含有する請求項1乃至8のいずれか一項に記載の表面処理剤。 Furthermore, the surface treating agent according to any one of claims 1 to 8, further comprising an organic solvent.
  10.  被処理物の表面の撥水化に用いられる請求項1乃至9のいずれか一項に記載の表面処理剤。 The surface treating agent according to any one of claims 1 to 9, which is used for water repellency of a surface of an object to be treated.
  11.  被処理物の表面の撥水化を行う表面処理方法において、請求項1乃至9のいずれか一項に記載の表面処理剤を上記被処理物に接触させる接触工程を備えることを特徴とする表面処理方法。 A surface treatment method for making a surface of a treatment object water repellent, comprising a contact step of bringing the surface treatment agent according to claim 1 into contact with the treatment object. Processing method.
  12.  上記被処理物が、半導体基板である請求項11に記載の表面処理方法。 The surface treatment method according to claim 11, wherein the workpiece is a semiconductor substrate.
  13.  上記被処理物が、その表面の一部に窒化ケイ素を含む請求項11又は12に記載の表面処理方法。 The surface treatment method according to claim 11 or 12, wherein the object to be treated contains silicon nitride in a part of its surface.
  14.  上記被処理物が、その表面の一部に酸化ケイ素を含む請求項11乃至13のいずれか一項に記載の表面処理方法。 The surface treatment method according to any one of claims 11 to 13, wherein the object to be treated contains silicon oxide in a part of its surface.
  15.  上記被処理物が、その表面の一部に金属ケイ素を含む請求項11乃至14のいずれか一項に記載の表面処理方法。 The surface treatment method according to any one of claims 11 to 14, wherein the object to be treated contains metallic silicon in a part of its surface.
  16.  上記接触工程の前に、酸を含む酸性液体を上記被処理物に接触させる酸接触工程を備える請求項11乃至15のいずれか一項に記載の表面処理方法。 The surface treatment method according to any one of claims 11 to 15, further comprising an acid contact step in which an acidic liquid containing an acid is brought into contact with the object to be processed before the contact step.
  17.  上記酸が、酸解離定数(pKa)が0より小さい無機酸である請求項16に記載の表面処理方法。 The surface treatment method according to claim 16, wherein the acid is an inorganic acid having an acid dissociation constant (pKa) of less than 0.
  18.  上記被処理物が、その表面に窒化ケイ素膜と酸化ケイ素膜とを有し、上記接触工程の後、該窒化ケイ素膜の表面における水の接触角(Can)と、該酸化ケイ素膜の表面における水の接触角(Cao)との比(Can/Cao)が0.7~1.3の範囲となる請求項17に記載の表面処理方法。 The object to be processed has a silicon nitride film and a silicon oxide film on the surface thereof, and after the contact step, the contact angle (Can) of water on the surface of the silicon nitride film and the surface of the silicon oxide film The surface treatment method according to claim 17, wherein the ratio (Can / Cao) to the contact angle (Cao) of water is in the range of 0.7 to 1.3.
  19.  水を含む液体と接触する工程の後、溶剤置換工程を含み、次いで、有機溶剤で希釈した表面処理剤を上記被処理物に接触させる、請求項11乃至15のいずれか一項に記載の表面処理方法。 The surface according to any one of claims 11 to 15, further comprising a solvent replacement step after the step of contacting with the liquid containing water, and then bringing the surface treatment agent diluted with an organic solvent into contact with the object to be treated. Processing method.
  20.  半導体基板の表面の撥水化を行う表面処理方法において、酸を含む酸性液体を上記半導体基板に接触させる第1工程と、下記一般式(11)で表される化合物を含有する表面処理剤を上記半導体基板に接触させる第2工程とを、順次、備えることを特徴とする表面処理方法。
    Figure JPOXMLDOC01-appb-C000005
    〔式中、R11、R12及びR13は、互いに独立して、水素原子、アルキル基、アラルキル基、シクロアルキル基、シクロアラルキル基又はアリール基であり、R14及びR15は、互いに独立して、水素原子、飽和若しくは不飽和アルキル基、飽和若しくは不飽和シクロアルキル基、トリメチルシリル基、ジメチルシリル基、又は、飽和若しくは不飽和ヘテロシクロアルキル基であり、R14及びR15は、互いに結合して、窒素原子を有する飽和又は不飽和ヘテロシクロアルキル基であってもよい。〕
    In a surface treatment method for making a surface of a semiconductor substrate water repellent, a first step of bringing an acid liquid containing an acid into contact with the semiconductor substrate, and a surface treatment agent containing a compound represented by the following general formula (11): A surface treatment method comprising sequentially providing a second step of contacting the semiconductor substrate.
    Figure JPOXMLDOC01-appb-C000005
    [Wherein R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl group, aralkyl group, cycloalkyl group, cycloaralkyl group or aryl group, and R 14 and R 15 are independently A hydrogen atom, a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, a trimethylsilyl group, a dimethylsilyl group, or a saturated or unsaturated heterocycloalkyl group, and R 14 and R 15 are bonded to each other. Or a saturated or unsaturated heterocycloalkyl group having a nitrogen atom. ]
  21.  上記酸が、酸解離定数(pKa)が0より小さい無機酸である請求項20に記載の表面処理方法。 21. The surface treatment method according to claim 20, wherein the acid is an inorganic acid having an acid dissociation constant (pKa) of less than 0.
  22.  上記半導体基板が、その表面の少なくとも一部に窒化ケイ素を有する請求項20又は21に記載の半導体基板の表面処理方法。 The method for treating a surface of a semiconductor substrate according to claim 20 or 21, wherein the semiconductor substrate has silicon nitride on at least a part of its surface.
  23.  上記半導体基板が、その表面の少なくとも一部に、金属ケイ素と窒化ケイ素と酸化ケイ素のうちの少なくとも2種の部分を有する請求項22に記載の半導体基板の表面処理方法。 23. The surface treatment method for a semiconductor substrate according to claim 22, wherein the semiconductor substrate has at least two portions of metal silicon, silicon nitride, and silicon oxide on at least a part of the surface thereof.
  24.  上記半導体基板が、その表面に窒化ケイ素膜と酸化ケイ素膜とを有し、上記第2工程の後、該窒化ケイ素膜の表面における水の接触角(Can)と、該酸化ケイ素膜の表面における水の接触角(Cao)との比(Can/Cao)が0.7~1.3の範囲となる請求項20乃至23のいずれか一項に記載の半導体基板の表面処理方法。 The semiconductor substrate has a silicon nitride film and a silicon oxide film on its surface, and after the second step, the contact angle (Can) of water on the surface of the silicon nitride film and the surface of the silicon oxide film The surface treatment method for a semiconductor substrate according to any one of claims 20 to 23, wherein a ratio (Can / Cao) to a water contact angle (Cao) is in a range of 0.7 to 1.3.
PCT/JP2012/061972 2011-05-17 2012-05-10 Surface-treating agent and surface treatment method WO2012157507A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013515097A JPWO2012157507A1 (en) 2011-05-17 2012-05-10 Surface treatment agent and surface treatment method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-110853 2011-05-17
JP2011110853 2011-05-17
JP2011110852 2011-05-17
JP2011-110854 2011-05-17
JP2011110854 2011-05-17
JP2011-110852 2011-05-17
JP2011-264220 2011-12-02
JP2011264220 2011-12-02

Publications (1)

Publication Number Publication Date
WO2012157507A1 true WO2012157507A1 (en) 2012-11-22

Family

ID=47176837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061972 WO2012157507A1 (en) 2011-05-17 2012-05-10 Surface-treating agent and surface treatment method

Country Status (3)

Country Link
JP (1) JPWO2012157507A1 (en)
TW (1) TW201311771A (en)
WO (1) WO2012157507A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032735A (en) * 2013-08-05 2015-02-16 株式会社東芝 Washing method of semiconductor substrate and washing station of semiconductor substrate
JP2019210476A (en) * 2018-06-04 2019-12-12 東亞合成株式会社 Water repellent oil repellent composition and application thereof
CN111512418A (en) * 2017-12-22 2020-08-07 中央硝子株式会社 Surface treatment agent and method for producing surface-treated body
WO2020196563A1 (en) * 2019-03-28 2020-10-01 日産化学株式会社 Film-forming composition
US11981828B2 (en) 2018-06-04 2024-05-14 Toagosei Co. Ltd. Water repellent and oil repellent film composition and use thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048296A (en) * 1973-08-22 1975-04-30
JPS5284299A (en) * 1976-01-01 1977-07-13 Union Carbide Corp Cyano polylkylsiloxane hydride
JPH06256756A (en) * 1993-03-08 1994-09-13 Shin Etsu Chem Co Ltd Water-repelling agent composition
JPH09310024A (en) * 1996-05-21 1997-12-02 Toray Dow Corning Silicone Co Ltd Curable organopolysiloxane composition and semiconductor device
JP2002241743A (en) * 2001-02-21 2002-08-28 Shin Etsu Chem Co Ltd Water-repellent gravel and method for producing the same
JP2006124408A (en) * 2004-09-30 2006-05-18 Jsr Corp Composition for surface hydrophobization, surface hydrophobization method, semiconductor device and its manufacturing method
JP2006290919A (en) * 2005-04-05 2006-10-26 Shin Etsu Chem Co Ltd Silicone mist-suppressing agent and coating composition comprising the same
JP2010129932A (en) * 2008-11-28 2010-06-10 Tokyo Ohka Kogyo Co Ltd Surface treatment method and liquid
JP2010254927A (en) * 2009-04-28 2010-11-11 Kaneka Corp Photo-polymerizable composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7857905B2 (en) * 2007-03-05 2010-12-28 Momentive Performance Materials Inc. Flexible thermal cure silicone hardcoats
US7838425B2 (en) * 2008-06-16 2010-11-23 Kabushiki Kaisha Toshiba Method of treating surface of semiconductor substrate
JP2010045254A (en) * 2008-08-15 2010-02-25 Toshiba Corp Method of manufacturing semiconductor device
US9244358B2 (en) * 2008-10-21 2016-01-26 Tokyo Ohka Kogyo Co., Ltd. Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate
JP5882583B2 (en) * 2010-02-04 2016-03-09 東京応化工業株式会社 Silica-based film forming material for air gap formation and air gap forming method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048296A (en) * 1973-08-22 1975-04-30
JPS5284299A (en) * 1976-01-01 1977-07-13 Union Carbide Corp Cyano polylkylsiloxane hydride
JPH06256756A (en) * 1993-03-08 1994-09-13 Shin Etsu Chem Co Ltd Water-repelling agent composition
JPH09310024A (en) * 1996-05-21 1997-12-02 Toray Dow Corning Silicone Co Ltd Curable organopolysiloxane composition and semiconductor device
JP2002241743A (en) * 2001-02-21 2002-08-28 Shin Etsu Chem Co Ltd Water-repellent gravel and method for producing the same
JP2006124408A (en) * 2004-09-30 2006-05-18 Jsr Corp Composition for surface hydrophobization, surface hydrophobization method, semiconductor device and its manufacturing method
JP2006290919A (en) * 2005-04-05 2006-10-26 Shin Etsu Chem Co Ltd Silicone mist-suppressing agent and coating composition comprising the same
JP2010129932A (en) * 2008-11-28 2010-06-10 Tokyo Ohka Kogyo Co Ltd Surface treatment method and liquid
JP2010254927A (en) * 2009-04-28 2010-11-11 Kaneka Corp Photo-polymerizable composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032735A (en) * 2013-08-05 2015-02-16 株式会社東芝 Washing method of semiconductor substrate and washing station of semiconductor substrate
CN111512418A (en) * 2017-12-22 2020-08-07 中央硝子株式会社 Surface treatment agent and method for producing surface-treated body
CN111512418B (en) * 2017-12-22 2023-08-29 中央硝子株式会社 Surface treatment agent and method for producing surface-treated body
JP2019210476A (en) * 2018-06-04 2019-12-12 東亞合成株式会社 Water repellent oil repellent composition and application thereof
JP7397558B2 (en) 2018-06-04 2023-12-13 東亞合成株式会社 Water- and oil-repellent film composition and its use
US11981828B2 (en) 2018-06-04 2024-05-14 Toagosei Co. Ltd. Water repellent and oil repellent film composition and use thereof
WO2020196563A1 (en) * 2019-03-28 2020-10-01 日産化学株式会社 Film-forming composition

Also Published As

Publication number Publication date
JPWO2012157507A1 (en) 2014-07-31
TW201311771A (en) 2013-03-16

Similar Documents

Publication Publication Date Title
JP7026782B2 (en) Compositions and Methods for Etching Silicon Nitride-Containing Substrates
CN109207151B (en) Etching composition and etching method using same
US9748092B2 (en) Liquid chemical for forming protecting film
US8828144B2 (en) Process for cleaning wafers
US7368173B2 (en) Siloxane resin-based anti-reflective coating composition having high wet etch rate
WO2012157507A1 (en) Surface-treating agent and surface treatment method
KR20170135889A (en) Compositions, methods and apparatus for treating surfaces of substrates
CN107068540A (en) The cleaning method of chip
CN102934207A (en) Chemical solution for formation of protective film
US20130255534A1 (en) Method of Preparing Liquid Chemical for Forming Protective Film
CN113557287B (en) Etching solution and method for selectively removing silicon nitride in semiconductor device manufacturing process
US20190341246A1 (en) Chemical Liquid for Forming Water Repellent Protective Film
WO2018193841A1 (en) Wafer surface processing method and composition for use with said method
JP2013168583A (en) Surface treatment agent and surface treatment method
TW202128722A (en) Etching composition and method for selectively removing silicon nitride during manufacture of a semiconductor device
CN112513192A (en) Surface treatment composition and method
US20220228062A1 (en) Etching Composition And Method For Selectively Removing Silicon Nitride During Manufacture Of A Semiconductor Device
CN111699546A (en) Water-repellent protective film forming agent, chemical solution for forming water-repellent protective film, and method for surface treatment of wafer
WO2013069499A1 (en) Wafer surface-treatment method and surface-treatment liquid, and surface-treatment agent, surface-treatment liquid, and surface-treatment method for silicon-nitride-containing wafers
JP2010087154A (en) Composition for etching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013515097

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786688

Country of ref document: EP

Kind code of ref document: A1