WO2012153685A1 - Three-dimensional video recognition system and video display device for three-dimensional video recognition system - Google Patents

Three-dimensional video recognition system and video display device for three-dimensional video recognition system Download PDF

Info

Publication number
WO2012153685A1
WO2012153685A1 PCT/JP2012/061584 JP2012061584W WO2012153685A1 WO 2012153685 A1 WO2012153685 A1 WO 2012153685A1 JP 2012061584 W JP2012061584 W JP 2012061584W WO 2012153685 A1 WO2012153685 A1 WO 2012153685A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
polarizing element
recognition system
linearly polarizing
liquid crystal
Prior art date
Application number
PCT/JP2012/061584
Other languages
French (fr)
Japanese (ja)
Inventor
雅浩 長谷川
坂井 彰
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012153685A1 publication Critical patent/WO2012153685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/16Stereoscopic photography by sequential viewing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/03Number of plates being 3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Definitions

  • the present invention relates to a stereoscopic video recognition system and a video display device for a stereoscopic video recognition system. More specifically, the present invention relates to an active shutter glasses method (hereinafter also referred to simply as an active method) stereoscopic image recognition system and an active display device for a stereoscopic image recognition system.
  • an active shutter glasses method hereinafter also referred to simply as an active method
  • an anaglyph method As a stereoscopic image recognition system using glasses, an anaglyph method, a passive glasses method (hereinafter also simply referred to as a passive method), an active method, and the like are known. Both the passive method and the active method use polarized glasses.
  • the anaglyph method has very poor display quality, and a phenomenon in which the left-eye image and the right-eye image appear to be mixed, so-called crosstalk, occurs.
  • the polarized glasses themselves can be manufactured lightly and inexpensively, but separate pixels need to be used to generate the left-eye image and the right-eye image. For this reason, a spatial resolution twice as high as that when displaying a normal flat image is required when displaying a stereoscopic image, and the resolution of a stereoscopic image is generally low. Also, the display quality is lower than that of the active method. Furthermore, it is necessary to pattern each pixel with a birefringent layer such as a ⁇ / 2 plate or a ⁇ / 4 plate, which increases the cost of the video display device.
  • the active method is excellent in display performance.
  • a video display device for a stereoscopic video recognition system hereinafter also referred to as a 3D display device
  • the full-high-definition resolution is maintained.
  • Display can be made.
  • the main performance required for an active 3D display device is a high frame rate and a high-performance image processing capability, which can be satisfied even with current high-end video display devices. That is, it can be developed as a 3D display device even before the spread of 3D content without creating a special member in the video display device itself.
  • polarized glasses used in the active method are also referred to as active shutter glasses.
  • an active 3D image recognition system for example, a technique using active shutter glasses having a pair of polarizing plates and a liquid crystal interposed between the pair of polarizing plates is disclosed (for example, see Patent Document 1). .
  • flicker may be felt when viewing the screen other than the display screen of the 3D display device with the glasses on.
  • a first polarizing filter disposed on the display surface, a second polarizing filter disposed in front of both eyes of the observer, and a liquid crystal enclosure interposed between the both polarizing filters are used.
  • the technique to do is disclosed (for example, refer patent document 2).
  • a laminate is formed by adhering a shrinkable film on one or both sides of a resin film, and the laminate is subjected to a heat stretching treatment to stretch the resin film.
  • a heat stretching treatment to stretch the resin film.
  • the system 1100 includes a liquid crystal display 1110 that functions as a 3D display device, and active shutter glasses 1120.
  • the liquid crystal display 1110 includes a linearly polarizing plate 1111, a liquid crystal panel (liquid crystal cell) 1112, and a linearly polarizing plate 1113 in this order from the back side.
  • the transmission axis of the polarizing plate 1111 is set to 0 ° azimuth
  • the transmission axis of the polarizing plate 1113 is set to 90 ° azimuth.
  • the glasses 1120 include a liquid crystal panel (liquid crystal cell) 1122 and a linearly polarizing plate 1123 in this order from the outside.
  • the transmission axis of the polarizing plate 1123 is set to 0 ° azimuth.
  • the polarizing plate 1113 on the viewer side of the liquid crystal display 1110 and the polarizing plate 1123 of the glasses 1120 are arranged in crossed Nicols.
  • the polarizing plate 1113 and the liquid crystal panel 1122 and the polarizing plate 1123 of the glasses 1120 obtain a shutter function. That is, the shutter function is exhibited only when the display area (display screen) of the liquid crystal display 1110 is observed. Therefore, when an area other than the display area (for example, a surrounding wall) is observed, the glasses 1120 having one polarizing plate 1123 do not function as a shutter, and thus the observer does not feel flicker.
  • the case where the observer himself / herself tilts his / her face includes a case where the observer lies on the floor and observes the screen.
  • the cause of the problem (1) will be described.
  • a case will be described in which the liquid crystal mode of the liquid crystal panel 1122 is set to a mode in which the shutter light shielding state (close) can be obtained in a state where the phase difference of the liquid crystal layer of the liquid crystal panel 1122 is zero.
  • the polarizing plate 1113 and the polarizing plate 1123 are in a crossed Nicol state, and the phase difference of the liquid crystal layer of the liquid crystal panel 1122 is zero. Therefore, the shutter is in a light shielding state (see FIG. 19).
  • Patent Document 2 discloses a stereoscopic video recognition system for solving the problems (1) and (2).
  • FIG. 23 shows a configuration of a stereoscopic video recognition system 1200 according to comparative form 2 using the technique of Patent Document 2.
  • the system 1200 includes a video display device 1210 that functions as a 3D display device and active shutter glasses 1220.
  • the display device 1210 includes a CRT 1211, a linear polarization filter 1212, and a ⁇ / 4 plate 1213 in this order from the back side.
  • the glasses 1220 include a ⁇ / 4 plate 1221, a liquid crystal panel 1222, and a linear polarization filter 1223 in this order from the outside.
  • the light emitted from the display device 1210 can be circularly polarized. Therefore, even when the observer himself / herself tilts his / her face (glasses 1220), the shutter function does not deteriorate as in the system 1100, and the screen does not become dark.
  • Patent Document 2 assumes a front view, that is, only when the display screen is observed in a state where the display screen of the 3D display device and the surface of the liquid crystal panel of the glasses are substantially parallel. Therefore, the case where the viewing angle direction is oblique (oblique viewing angle) is not described.
  • the shutter function does not deteriorate due to the effects of the ⁇ / 4 plates 1213 and 1221 in the front view, but the shutter function decreases in the oblique viewing angle, and crosstalk occurs. This is because the phase difference of the ⁇ / 4 plate 1213 deviates from the ⁇ / 4 condition at an oblique viewing angle.
  • the system 1300 includes a liquid crystal display 1310 that functions as a 3D display device, and active shutter glasses 1320.
  • the liquid crystal display 1310 includes a linearly polarizing element 1311, a liquid crystal panel (liquid crystal cell) 1312, a linearly polarizing element 1313, and a ⁇ / 4 plate 1314 in this order from the back side.
  • the glasses 1320 include a ⁇ / 4 plate 1321, a liquid crystal panel 1322, and a linearly polarizing element 1323 in this order from the outside.
  • the shutter function at an oblique viewing angle is improved by optimizing the NZ coefficient of the ⁇ / 4 plate 1314 within a range of less than 1.
  • FIGS. 25 and 26 illustrate a state in which the orbit of the polarization state in the system 1300 is projected onto the S1-S2 plane of the Poincare sphere.
  • FIG. 25 shows a state at a polar angle of 60 ° and an azimuth angle of 0 °
  • FIG. 26 shows a state at a polar angle of 60 ° and an azimuth angle of 45 °.
  • the polarization state immediately after exiting the polarizing element 1313 is indicated by a point P0
  • the polarization state immediately after exiting the ⁇ / 4 plate 1314 is indicated by a point P2.
  • the polar angle is 60 ° and the azimuth angle is 0 °
  • the light transmitted through the ⁇ / 4 plate 1314 is circularly polarized
  • the polar angle is 60 ° and the azimuth angle is 45 °. Then, the light transmitted through the ⁇ / 4 plate 1314 does not become circularly polarized light.
  • the technique described in the prior application has room for improvement in terms of further improving the shutter function and further reducing the occurrence of crosstalk at an oblique viewing angle.
  • the present invention has been made in view of the above-described situation, and an object thereof is to provide a stereoscopic video recognition system and a video display device for a stereoscopic video recognition system that can reduce the occurrence of crosstalk at an oblique viewing angle. It is.
  • the inventors of the present invention have studied various stereoscopic image recognition systems that can reduce the occurrence of crosstalk at an oblique viewing angle, and have focused on using a ⁇ / 2 plate together with a set of ⁇ / 4 plates.
  • a ⁇ / 2 plate is provided on the viewer side of the linearly polarizing element of the 3D display device, and a first ⁇ / 4 plate is provided on the viewer side of the ⁇ / 2 plate.
  • the second ⁇ / 4 plate to the optical disc and adjusting the characteristics and axial directions of these optical members, the light emitted from the first ⁇ / 4 plate can be seen at an oblique viewing angle as compared with the conventional case.
  • the present inventors have found that the polarization state can be made closer to circularly polarized light, and have conceived that the above-mentioned problems can be solved brilliantly, and have reached the present invention.
  • one aspect of the present invention is an image display device having a first linearly polarizing element provided on the viewer side, a ⁇ / 2 plate provided on the viewer side of the first linearly polarizing element, A first ⁇ / 4 plate, a second ⁇ / 4 plate, a liquid crystal panel (liquid crystal cell), and a second linearly polarizing element provided on the viewer side of the ⁇ / 2 plate are arranged in this order from the outside.
  • Active shutter glasses having an angle formed by the transmission axis of the first linearly polarizing element and the in-plane slow axis of the first ⁇ / 4 plate is ⁇ 1, and the transmission of the second linearly polarizing element is When the angle formed between the axis and the in-plane slow axis of the second ⁇ / 4 plate is defined as ⁇ 2, the following formulas (1) and (2) or (3) and (4) are satisfied,
  • the NZ coefficient of the first ⁇ / 4 plate is 1 or less, and the transmission axis of the first linearly polarizing element and the in-plane slow axis of the ⁇ / 2 plate form.
  • the NZ coefficient of the lambda / 2 plate NZ defined is h, the following equation (5) and (6), or a stereoscopic image recognition system that satisfies (7) and (8).
  • ⁇ 1 is measured as viewed from the first ⁇ / 4 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the first linearly polarizing element.
  • ⁇ 2 is measured from the side of the second ⁇ / 4 plate, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the second linearly polarizing element.
  • ⁇ 3 is measured as viewed from the ⁇ / 2 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the first linearly polarizing element.
  • the NZ coefficient of the first ⁇ / 4 plate exceeds 1, the occurrence of crosstalk may not be sufficiently reduced at an oblique viewing angle.
  • the configuration of the stereoscopic image recognition system is not particularly limited by other components as long as such components are formed as essential.
  • a preferred embodiment of the stereoscopic image recognition system will be described in detail below. The various forms shown below may be combined as appropriate.
  • the NZ coefficient of the first ⁇ / 4 plate is ⁇ 0.6 or more and 0.6 or less from the viewpoint of effectively reducing the transmittance when the shutter is shielded at an oblique viewing angle. Is preferable, and is more preferably ⁇ 0.2 or more and 0.4 or less.
  • the ⁇ / 2 plate is affixed on the viewer side surface of the first linearly polarizing element, and the first ⁇ / 4 plate is the viewer side of the ⁇ / 2 plate.
  • the NZ coefficient of the first ⁇ / 4 plate is 0 or more and 1 or less.
  • the ⁇ / 2 plate is affixed on the viewer side surface of the first linearly polarizing element, and the first ⁇ / 4 plate is the viewer side of the ⁇ / 2 plate.
  • the stereoscopic image recognition system further includes a retardation film affixed on the viewer side surface of the first ⁇ / 4 plate, and the in-plane retardation of the retardation film is 10 nm or less, the thickness direction retardation of the retardation film is 20 nm or more and 80 nm or less, and the NZ coefficient of the first ⁇ / 4 plate is ⁇ 0.4 or more and 0.5 or less.
  • the ⁇ / 2 plate is affixed on the surface on the viewer side of the first linearly polarizing element, and the stereoscopic image recognition system is on the surface on the viewer side of the ⁇ / 2 plate.
  • the first ⁇ / 4 plate is affixed on the observer side surface of the retardation film, and the in-plane retardation of the retardation film is 10 nm or less.
  • the retardation film has a thickness direction retardation of 20 nm or more and 80 nm or less, and the NZ coefficient of the first ⁇ / 4 plate is ⁇ 0.2 or more and 0.6 or less.
  • the shutter function can be sufficiently exhibited in a polar angle (viewing angle) range wider than the polar angle range of ⁇ 60 ° to + 60 °.
  • the liquid crystal panel is a first liquid crystal panel
  • the video display device is a liquid crystal display, and includes a third linearly polarizing element, a second liquid crystal panel, and the first linearly polarizing element.
  • a general liquid crystal display usually includes an observer-side linear polarizing plate (front polarizing plate). Therefore, according to the said form (D), the linearly polarized light element contained in a general surface polarizing plate can be utilized as a 1st linearly polarized light element, and it is not necessary to newly provide a 1st linearly polarized light element. . Therefore, cost reduction is possible.
  • the video display device used in the stereoscopic video recognition system is also one aspect of the present invention.
  • another aspect of the present invention provides a linearly polarizing element provided on the observer side, a ⁇ / 2 plate provided on the observer side of the linearly polarizing element, and an observer of the ⁇ / 2 plate
  • the angle formed by the transmission axis of the linearly polarizing element and the in-plane slow axis of the ⁇ / 4 plate is defined as ⁇ 1
  • the following formula (I) or (II) is satisfied
  • the NZ coefficient of the ⁇ / 4 plate is 1 or less
  • the angle formed by the transmission axis of the linearly polarizing element and the in-plane slow axis of the ⁇ / 2 plate is ⁇ 2
  • the image display device for the stereoscopic image recognition system satisfies the following formulas (III) and (IV) or (V) and (VI).
  • ⁇ 1 is measured as viewed from the ⁇ / 4 plate side, and is measured as positive in the counterclockwise direction with respect to the direction of the transmission axis of the linearly polarizing element.
  • ⁇ 2 is measured as viewed from the ⁇ / 2 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the linearly polarizing element.
  • the NZ coefficient of the ⁇ / 4 plate exceeds 1, the occurrence of crosstalk may not be sufficiently reduced at an oblique viewing angle.
  • the configuration of the video display device for the stereoscopic image recognition system is not particularly limited by other components as long as such components are essential.
  • a preferred embodiment of the video display device for the stereoscopic video recognition system will be described in detail below. The various forms shown below may be combined as appropriate.
  • the linearly polarizing element, the ⁇ / 2 plate, the ⁇ / 4 plate, the angle ⁇ 1, the angle ⁇ 2, the formula (I), the formula (II), The formula (III), the formula (IV), the formula (V), and the formula (VI) are respectively the first linearly polarizing element, the ⁇ / 2 plate, and the first in the stereoscopic image recognition system.
  • the NZ coefficient of the ⁇ / 4 plate is preferably ⁇ 0.6 or more and 0.6 or less, It is more preferably ⁇ 0.2 or more and 0.4 or less.
  • stereoscopic image recognition system image display apparatus include, for example, the following forms (E) to (H).
  • the ⁇ / 2 plate is affixed on the viewer side surface of the linearly polarizing element, and the ⁇ / 4 plate is affixed on the viewer side surface of the ⁇ / 2 plate.
  • the NZ coefficient of the ⁇ / 4 plate is 0 or more and 1 or less.
  • the ⁇ / 2 plate is affixed on the viewer side surface of the linearly polarizing element
  • the ⁇ / 4 plate is affixed on the viewer side surface of the ⁇ / 2 plate.
  • the image display device for a stereoscopic image recognition system further includes a retardation film affixed on the surface on the viewer side of the ⁇ / 4 plate, and the in-plane retardation of the retardation film is 10 nm or less.
  • the retardation in the thickness direction of the retardation film is 20 nm or more and 80 nm or less
  • the NZ coefficient of the ⁇ / 4 plate is ⁇ 0.4 or more and 0.5 or less.
  • the ⁇ / 2 plate is affixed on a viewer-side surface of the linearly polarizing element, and the video display device for a stereoscopic image recognition system is the viewer-side surface of the ⁇ / 2 plate.
  • the ⁇ / 4 plate is affixed on the observer side surface of the retardation film, the in-plane retardation of the retardation film is 10 nm or less, The retardation in the thickness direction of the retardation film is 20 nm or more and 80 nm or less, and the NZ coefficient of the ⁇ / 4 plate is ⁇ 0.2 or more and 0.6 or less.
  • the shutter function can be sufficiently exerted in a polar angle (viewing angle) range wider than the polar angle range of ⁇ 60 ° to + 60 °.
  • the linearly polarizing element is a first linearly polarizing element
  • the stereoscopic image recognition system image display device is a liquid crystal display
  • the second linearly polarizing element is provided in this order from the back side.
  • a general liquid crystal display usually includes an observer-side linear polarizing plate (front polarizing plate). Therefore, according to the said form (H), the linearly polarizing element contained in a general surface polarizing plate can be utilized as a 1st linearly polarizing element, and it is not necessary to newly provide a 1st linearly polarizing element. . Therefore, cost reduction is possible.
  • the said 2nd linearly polarizing element and said liquid crystal panel in the said form (H) respond
  • a stereoscopic video recognition system and a video display device for a stereoscopic video recognition system that can reduce the occurrence of crosstalk at an oblique viewing angle.
  • FIG. 1 is a perspective exploded schematic diagram illustrating a configuration of a stereoscopic image recognition system of Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 1.
  • FIG. It is a perspective exploded schematic diagram which shows the structure of the three-dimensional-image recognition system of Embodiment 1, and shows the state in which a shutter is light-shielding, and an observer does not tilt a face.
  • It is a perspective exploded schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 1, and shows the state which the shutter inclined and the observer inclined the face 90 degrees.
  • FIG. 6 is a schematic diagram showing a state in which the polarization state trajectory is projected onto the S1-S2 plane of the Poincare sphere in the stereoscopic image recognition system of Embodiment 1, and shows a state at a polar angle of 60 ° and an azimuth angle of 0 °.
  • FIG. 6 is a schematic diagram showing a state in which the polarization state trajectory is projected onto the S1-S2 plane of the Poincare sphere in the stereoscopic image recognition system of Embodiment 1, and shows a state at a polar angle of 60 ° and an azimuth angle of 0 °.
  • FIG. 5 is a schematic diagram showing a state in which the polarization state trajectory is projected onto the S1-S2 plane of the Poincare sphere in the stereoscopic image recognition system of Embodiment 1, and shows a state at a polar angle of 60 ° and an azimuth angle of 45 °.
  • It is a cross-sectional schematic diagram which shows the structure of the three-dimensional video recognition system of Embodiment 1, and shows the state which observed the screen of the video display apparatus from diagonally.
  • permeability in Embodiment 2 is shown.
  • FIG. 3 It is a cross-sectional schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 3.
  • permeability in Embodiment 3 is shown.
  • permeability in Embodiment 4 is shown.
  • FIG. It is a cross-sectional schematic diagram which shows the structure of the three-dimensional image recognition system which concerns on the comparison form 1.
  • FIG. 1 It is a perspective exploded schematic diagram which shows the structure of the three-dimensional-image recognition system which concerns on the comparison form 1, and shows the case where a shutter will be in the light-shielding state as a result of inclining a face 90 degrees. It is a perspective exploded schematic diagram which shows the structure of the three-dimensional video recognition system which concerns on the comparison form 2 using the technique of patent document 2. FIG. It is a perspective exploded schematic diagram which shows the structure of the three-dimensional video recognition system as described in a prior application.
  • the observer side when wearing glasses is defined as the inside, and the opposite side is defined as the outside.
  • the opposite side of the viewer is defined as the back side. It can be said that the back side is the opposite side of the screen of the liquid crystal display device.
  • the azimuth (azimuth angle) of the glasses is defined with the 3 o'clock direction as a reference (0 ° azimuth) viewed from the observer and the counterclockwise direction being positive when the observer is wearing the glasses. Is done.
  • the azimuth (azimuth angle) of the video display device is based on the 3 o'clock direction as viewed from the observer (0 ° azimuth direction) when the viewer looks at the screen of the display device in front, and counterclockwise is positive. It is prescribed.
  • the linearly polarizing element has a function of extracting polarized light (linearly polarized light) that vibrates only in a specific direction from non-polarized light (natural light), partially polarized light, or polarized light.
  • the contrast of the linearly polarizing element does not necessarily need to be infinite, and may be 5000 or more (preferably 10,000 or more).
  • the term “linearly polarizing element” or “polarizing element” in this specification refers to only an element having a polarizing function without including a protective film.
  • the ⁇ / 4 plate is a layer having a retardation of approximately 1 ⁇ 4 wavelength with respect to light having a wavelength of at least 550 nm.
  • the retardation (particularly the in-plane retardation Re) of the ⁇ / 4 plate is ideally 137.5 nm for light having a wavelength of 550 nm, but may be 100 nm or more and 180 nm or less, and 120 nm or more and 160 nm or less. It is preferable that it is 130 nm or more and 145 nm or less.
  • the ⁇ / 2 plate is a layer having a retardation of approximately 1 ⁇ 2 wavelength with respect to light having a wavelength of 550 nm.
  • the retardation (particularly the in-plane retardation Re) of the ⁇ / 2 plate is ideally 275 nm for light having a wavelength of 550 nm, but may be 250 nm or more and 300 nm or less, and 260 nm or more and 290 nm or less. Is preferable, and it is more preferable that it is 270 nm or more and 280 nm or less.
  • the in-plane retardation Re is the main refraction in the direction (that is, the direction of the slow axis) in which the refractive index is maximum in the in-plane direction of the birefringent layer (including the liquid crystal panel, ⁇ / 2 plate, and ⁇ / 4 plate).
  • the main refractive index in the direction orthogonal to nx is defined as ny
  • Re
  • ⁇ d is the in-plane direction phase difference (unit: nm).
  • the measurement wavelength of optical parameters such as the main refractive index, phase difference, and NZ coefficient is 550 nm unless otherwise specified.
  • the NZ coefficient is calculated by unifying the average refractive index of each birefringent layer to 1.5 unless otherwise specified. Birefringent layers having an actual average refractive index different from 1.5 are also converted assuming an average refractive index of 1.5. The same treatment is applied to the thickness direction retardation Rth.
  • a birefringent layer (birefringent film, retardation film) is a layer (film) having optical anisotropy.
  • the birefringent layer means that at least one of the in-plane retardation Re and the absolute value of the thickness direction retardation Rth has a value of 10 nm or more, preferably from the viewpoint of sufficiently achieving the effects of the present invention. Means having a value of 20 nm or more.
  • the isotropic film means that both the in-plane retardation Re and the absolute value of the thickness direction retardation Rth have a value of 10 nm or less, preferably 5 nm or less. Means.
  • the single transmittance (T) of a polarizing element is a transmittance when a single polarizing element is used, and is obtained from the formula: (k1 + k2) / 2.
  • the parallel transmittance (Tp) is a value of transmittance when two polarizing elements of the same type are stacked and used such that their absorption axes are parallel to each other.
  • the parallel transmittance (Tp) is obtained from the formula: (k1 2 + k2 2 ) / 2.
  • main transmittance k1 and k2 are referred to as main transmittance, and the main transmittance k1 refers to the transmittance when linearly polarized light that vibrates in a direction parallel to the transmission axis is incident on the polarizing element.
  • the main transmittance k2 refers to the transmittance when linearly polarized light that vibrates in a direction orthogonal to the transmission axis is incident on the polarizing element.
  • the orthogonal transmittance (Tc) is a value of transmittance when two polarizing elements of the same type are stacked and used so that their absorption axes are orthogonal to each other.
  • Tc orthogonal transmittance
  • Examples of the measuring device for the main transmittance k1 and the main transmittance k2 include an ultraviolet-visible spectrophotometer (trade name “V-7100” manufactured by JASCO Corporation).
  • V-7100 ultraviolet-visible spectrophotometer
  • an ideal polarizing element such as a Glan-Thompson prism or a Gran Taylor prism, which is prepared as an option of the measuring instrument, may be used.
  • the spectral transmittance in the visible wavelength region (wavelength 380 nm to 780 nm) is measured, and the Y value that has been corrected for visibility with the two-degree field of view (C light source) defined in JIS Z8701-1982 is defined as the transmittance.
  • a polarizing plate containing members such as a protective film and a birefringent layer
  • unit can be obtained.
  • the stereoscopic video recognition system 100 includes a video display device (video display device for a stereoscopic video recognition system) 110 that functions as a 3D display device, and active shutter glasses 120.
  • a video display device video display device for a stereoscopic video recognition system
  • active shutter glasses 120 active shutter glasses
  • the display device 110 is alternately supplied with a right-eye video signal and a left-eye video signal, and the display device 110 has a parallax right-eye image and a left-eye image alternately. Are displayed in a time-sharing manner.
  • the glasses 120 can alternately switch between light transmission and light shielding (opening and closing of the shutter) of the left and right shutter parts (lens parts).
  • the switching timing is synchronized with the right-eye image and the left-eye image.
  • the right eye image is projected onto the viewer's right eye
  • the left eye image is projected onto the left eye
  • the viewer can recognize the stereoscopic video.
  • the left and right shutter portions (lens portions) of the glasses 120 may function as shutters, and do not need to function as prescription lenses.
  • the display device 110 is a transmissive liquid crystal display, and includes a backlight unit (not shown), a linearly polarizing element 111, a liquid crystal panel (liquid crystal cell) 112, a linearly polarizing element 113, a ⁇ / 2 plate 118, and a ⁇ / 4 plate. 114 are provided in this order from the back side.
  • the linearly polarizing elements 111 and 113 may be linearly polarizing plates.
  • the left and right shutter portions of the glasses 120 each include a ⁇ / 4 plate 121, a liquid crystal panel (liquid crystal cell) 122, and a linearly polarizing element 123 in this order from the outside.
  • the linearly polarizing element 123 may be a linearly polarizing plate.
  • the polarizing element 113, the ⁇ / 2 plate 118 and the ⁇ / 4 plate 114 of the display device 110, and the ⁇ / 4 plate 121, the liquid crystal panel (liquid crystal cell) 122, and the polarizing element 123 of the glasses 120 provide a shutter function. It has gained. That is, the shutter function is exhibited only when the display area (display screen) of the display device 110 is observed. Therefore, when an area other than the display area (for example, a surrounding wall) is observed, the glasses 120 having one polarizing element 123 do not function as a shutter, and thus the observer does not feel flicker.
  • the angle formed by the transmission axis 113t of the linear polarization element 113 and the in-plane slow axis 114s of the ⁇ / 4 plate 114 is ⁇ 1, and the transmission axis 123t of the linear polarization element 123 and the in-plane of the ⁇ / 4 plate 121
  • the system 100 satisfies the following formulas (1) and (2) or (3) and (4). 40 ° ⁇ ⁇ 1 ⁇ 50 ° (1) 130 ° ⁇ ⁇ 2 ⁇ 140 ° (2) 130 ° ⁇ ⁇ 1 ⁇ 140 ° (3) 40 ° ⁇ ⁇ 2 ⁇ 50 ° (4)
  • the NZ coefficient of the ⁇ / 2 plate 118 is defined as NZ, h, 100 satisfies the following formulas (5) and (6) or (7) and (8). 85 ° ⁇ ⁇ 3 ⁇ 95 ° (5) 0.7 ⁇ NZ, h ⁇ 0.8 (6) -5 ° ⁇ ⁇ 3 ⁇ 5 ° (7) 0.2 ⁇ NZ, h ⁇ 0.3 (8)
  • ⁇ 1 is measured when viewed from the ⁇ / 4 plate 114 side, and is measured to be positive in the counterclockwise direction with reference to the direction of the transmission axis 113t of the linearly polarizing element 113.
  • ⁇ 2 is measured as viewed from the ⁇ / 4 plate 121 side, and is measured to be positive in the counterclockwise direction with reference to the direction of the transmission axis 123t of the linearly polarizing element 123.
  • ⁇ 3 is measured from the ⁇ / 2 plate 118 side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis 113t of the linearly polarizing element 113.
  • the preferred range is 42 ° ⁇ ⁇ 1 ⁇ 48 ° or 132 ° ⁇ ⁇ 1 ⁇ 138 °, the more preferred range is 44 ° ⁇ ⁇ 1 ⁇ 46 ° or 134 ° ⁇ ⁇ 1 ⁇ 136 °,
  • the preferred range is 42 ° ⁇ ⁇ 2 ⁇ 48 ° or 132 ° ⁇ ⁇ 2 ⁇ 138 °, the more preferred range is 44 ° ⁇ ⁇ 2 ⁇ 46 ° or 134 ° ⁇ ⁇ 2 ⁇ 136 °,
  • the preferred range is 87 ° ⁇ ⁇ 3 ⁇ 93 ° or ⁇ 3 ° ⁇ ⁇ 3 ⁇ 3 °, and the more preferred range is 89 ° ⁇ ⁇ 3 ⁇ 91 ° or ⁇ 1 ° ⁇ ⁇ 3 ⁇ 1 °. is there.
  • a preferred range is 0.72 ⁇ NZ, h ⁇ 0.78 or 0.22 ⁇ NZ, h ⁇ 0.28, and a more preferred range is 0.74 ⁇ NZ, h ⁇ 0.76 or 0.24 ⁇ NZ, h ⁇ 0.26.
  • the emitted light from the display device 110 can be circularly polarized, the above problems (1) and (2) can be solved.
  • the principle will be specifically described below.
  • the transmission axis 111t of the polarizing element 111 is set to 0 ° azimuth
  • the transmission axis 113t of the polarizing element 113 is set to 90 ° azimuth
  • the in-plane slow axis 118s of the ⁇ / 2 plate 118 is set to Set to 0 ° or 90 °
  • set NZ coefficient NZ, h of ⁇ / 2 plate 118 to 0.75 or 0.25 and set in-plane slow axis 114s of ⁇ / 4 plate 114 to 135 °
  • the in-plane slow axis 121s of the ⁇ / 4 plate 121 is set to 45 ° azimuth
  • the transmission axis 123t of the polarizing element 123 is set to 0 ° azimuth
  • the phase difference of the liquid crystal layer of the liquid crystal panel 122 is zero.
  • the liquid crystal mode of the liquid crystal panel 122 is set so that the shutter light-shielding state can be obtained in this state.
  • the in-plane slow axis 118s is set to 0 ° azimuth, that is, when the in-plane slow axis 118s is orthogonal to the transmission axis 113t, NZ, h is set to 0.75.
  • the in-plane slow axis 118s is set in the 90 ° azimuth, that is, when the in-plane slow axis 118s is parallel to the transmission axis 113t, NZ, h is set to 0.25.
  • the in-plane slow axis 118 s of the ⁇ / 2 plate 118 is disposed orthogonally or parallel to the transmission axis 113 t of the polarizing element 113. Therefore, when viewed from the front, that is, when the display screen is observed in a state where the display screen of the display device 110 and the surface of the liquid crystal panel 122 of the glasses 120 are substantially parallel, the ⁇ / 2 plate 118 is a polarizing element. 113 does not affect the phase difference of the polarized light transmitted through 113. Therefore, in the following description of the principle, the function of the ⁇ / 2 plate 118 is not described.
  • the problem (1) occurs when the shutter is in a light-transmitting state when it should be in a light-blocking state. Therefore, in the following (i) and (ii), the phase difference of the liquid crystal layer of the liquid crystal panel 122 is zero.
  • the ⁇ / 4 plates 114 and 121 are arranged between the polarizing element 113 and the polarizing element 123 in the crossed Nicols state so that the in-plane slow axes thereof are orthogonal to each other. Therefore, the effect of the ⁇ / 4 plates 114 and 121 is substantially invalidated. Therefore, the shutter is shielded from light (see FIG. 4).
  • the problem (2) occurs when the shutter is in a light shielding state when it should be in a light transmitting state. Therefore, in the following (i) and (ii), the phase difference of the liquid crystal layer of the liquid crystal panel 122 is ⁇ / 2.
  • the ⁇ / 4 plates 114 and 121 are arranged between the polarizing element 113 and the polarizing element 123 in the crossed Nicols state so that the in-plane slow axes thereof are orthogonal to each other. Therefore, the effect of the ⁇ / 4 plates 114 and 121 is substantially invalidated.
  • the liquid crystal layer ( ⁇ / 2) of the liquid crystal panel 122 exists between the polarizing element 113 and the polarizing element 123, and the shutter is in a light-transmitting state (see FIG. 6).
  • the polarizing element 123 is also tilted by 90 °, so the relationship between the polarizing element 113 and the polarizing element 123 is parallel Nicol.
  • the ⁇ / 4 plate 121 is also inclined by 90 °, so that the in-plane slow axis 114 s of the ⁇ / 4 plate 114 and the in-plane slow axis 121 s of the ⁇ / 4 plate 121 are parallel to each other.
  • the ⁇ / 4 plates 114 and 121 substantially function as ⁇ / 2 plates.
  • this embodiment satisfies the above formulas (5) and (6) or (7) and (8).
  • the above formula (1) or (3) is satisfied, and the NZ coefficient of the ⁇ / 4 plate 114 is set to 1 or less (preferably less than 1).
  • the polarization state of the light transmitted through the ⁇ / 4 plate 114 can be made closer to circularly polarized light at an oblique viewing angle as compared with the system 1300 described above.
  • Particularly preferable setting conditions include the following. That is, the NZ coefficient of the ⁇ / 4 plate 114 is set to 0.5, the angle formed between the in-plane slow axis 114s and the transmission axis 113t is set to 45 °, and the ⁇ / 4 plate 121 is further moved to the surface.
  • the inner slow axis 121s is arranged so as to be orthogonal to the in-plane slow axis 114s, and the following (a) or (b) is set.
  • (A) NZ and h are set to 0.75, and the in-plane slow axis 118s is orthogonal to the transmission axis 113t.
  • the transition of the polarization state when the above-mentioned particularly preferable conditions are set will be specifically described with reference to FIGS. 8 and 9, the polarization state immediately after exiting the polarizing element 113 is point P0, the polarization state immediately after exiting the ⁇ / 2 plate 118 is point P1, and the polarization state immediately after exiting the ⁇ / 4 plate 114. Is indicated by a point P2.
  • the ⁇ / 2 plate 118 does not affect the polarization state of the light transmitted through the polarizing element 113. Therefore, as shown in FIG. 8, at the polar angle of 60 ° and the azimuth angle of 0 °, the polarization state P1 immediately after exiting the ⁇ / 2 plate 118 is the same as the polarization state P0 immediately after exiting the polarization element 113. .
  • the light emitted from the ⁇ / 2 plate 118 is converted to circularly polarized light by passing through the ⁇ / 4 plate 114.
  • the light emitted from the polarizing element 113 is converted into light in the polarization state P1 by passing through the ⁇ / 2 plate 118.
  • the light emitted from the ⁇ / 2 plate 118 is converted to circularly polarized light by passing through the ⁇ / 4 plate 114.
  • the difference between the two in-plane main refractive indexes nx and ny was important.
  • the present embodiment also considers the characteristics of the ⁇ / 4 plate 114 at an oblique viewing angle, the main refractive index nz in the thickness direction of the ⁇ / 4 plate 114 is also an important parameter.
  • the ⁇ / 4 plate 121 is almost always observed from the front when the glasses 120 are worn. Therefore, the in-plane retardation of the ⁇ / 4 plate 121 only needs to satisfy the ⁇ / 4 condition, and the NZ coefficient of the ⁇ / 4 plate 121 can be set to an arbitrary value. This is because the NZ coefficient of the ⁇ / 4 plate 121 does not depend on the transmittance.
  • the viewing angle is used in two meanings.
  • A The viewing angle of the shutter function when the observer tilts his face while wearing the active shutter glasses and viewing the 3D display device from the front.
  • B The viewing angle of the shutter function when the observer moves in an oblique direction with respect to the screen of the 3D display device with the active shutter glasses on.
  • Patent Document 2 provides a solution to the viewing angle of (A).
  • this embodiment not only the viewing angle of (A) but also the viewing angle of (B) can be improved as shown in FIG.
  • the polarizing elements 111 and 113 are arranged in crossed Nicols. That is, the angle formed by the transmission axis 111t of the polarizing element 111 and the transmission axis 113t of the polarizing element 113 is set to approximately 90 ° (preferably 87 to 93 °, more preferably 89 to 91 °).
  • the arrangement relationship of the transmission axes of the polarizing elements 111 and 113 can be appropriately set according to the liquid crystal mode of the liquid crystal panel 112, and may be parallel Nicols.
  • the transmission axis 113t of the polarizing element 113 is set so as to face substantially the vertical direction when the screen of the display device 110 is viewed from the front. More specifically, the transmission axis 113t is set in the range of 87 to 93 ° azimuth (preferably 89 to 91 ° azimuth).
  • the transmission axis 123t of the polarizing element 123 is set so as to face in the left-right direction when the observer wears the glasses 120. More specifically, the transmission axis 123t is set within a range of ⁇ 3 to + 3 ° azimuth (preferably ⁇ 1 to + 1 ° azimuth).
  • the arrangement direction of the transmission axis 123t of the polarizing element 123 is not particularly limited and can be set as appropriate.
  • the polarizing element 123, the liquid crystal panel 122, and the ⁇ / 4 plate 121 may be appropriately rotated together from the state shown in FIG.
  • linearly polarizing elements 111, 113, and 123 typically include a material obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism on a polyvinyl alcohol (PVA) film.
  • PVA polyvinyl alcohol
  • a protective film such as a triacetyl cellulose (TAC) film may be laminated on both sides of the PVA film.
  • TAC triacetyl cellulose
  • one or more birefringent layers may be provided as appropriate for the purpose of optical compensation.
  • a back polarizing plate including the polarizing element 111 and the optical compensation film and a front polarizing plate including the polarizing element 113 and the optical compensation film may be used.
  • Each optical compensation film may be directly bonded to the corresponding polarizing element, or may function as a protective film for the corresponding polarizing element.
  • a surface treatment layer may be provided on the outermost surface of the display device 110 on the viewer side.
  • a surface treatment layer the following three things are mainly mentioned. First, a hard coat layer for preventing scratches, second, an AG (Anti Glare) layer for imparting antiglare properties, and third, an antireflection layer for reducing surface reflection.
  • AG Anti Glare
  • an antireflection layer for reducing surface reflection.
  • antireflection layer examples include an AR (Anti Reflection) layer having a low reflectance, an LR (Low Reflection) layer having a higher reflectance than the AR layer, and a moth-eye layer.
  • AR Anti Reflection
  • LR Low Reflection
  • the surface treatment layer may be formed on the ⁇ / 4 plate 114, or may be formed on another transparent base film (for example, a TAC film).
  • the materials of the ⁇ / 4 plates 114 and 121 and the ⁇ / 2 plate 118 are not particularly limited, and for example, a stretched polymer film can be used.
  • the polymer include materials having a positive intrinsic birefringence, and more specifically, for example, polycarbonate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene, polyvinyl alcohol, norbornene, triacetylcellulose, diacylcellulose, and the like. Is mentioned.
  • the method for forming the ⁇ / 2 plate 118 is not particularly limited, but for example, it can be produced by the method described in JP-A-2007-219478.
  • the ⁇ / 2 plate 118 is preferably adjacent to the polarizing element 113. That is, it is preferable that no birefringent layer is provided between the ⁇ / 2 plate 118 and the polarizing element 113. However, an isotropic film may be disposed between the ⁇ / 2 plate 118 and the polarizing element 113. Further, a protective film such as a TAC film as described later may be disposed between the ⁇ / 2 plate 118 and the polarizing element 113. Further, a birefringent layer may be provided between the ⁇ / 2 plate 118 and the polarizing element 113.
  • the slow axis of the birefringent layer is substantially orthogonal to the transmission axis 113t of the polarizing element 113. Setting the direction substantially invalidates the birefringence function of the birefringent layer, and the same effect as when no birefringent layer is provided between the ⁇ / 2 plate 118 and the polarizing element 113 is obtained. be able to.
  • substantially orthogonal means that the angle formed by both axes is preferably in the range of 90 ° ⁇ 3 °, and more preferably in the range of 90 ° ⁇ 1 °.
  • the ⁇ / 4 plate 114 is preferably adjacent to the ⁇ / 2 plate 118. That is, it is preferable that a birefringent layer is not provided between the ⁇ / 4 plate 114 and the ⁇ / 2 plate 118. However, an isotropic film may be disposed between the ⁇ / 4 plate 114 and the ⁇ / 2 plate 118. Further, a protective film such as a TAC film may be disposed between the ⁇ / 4 plate 114 and the ⁇ / 2 plate 118.
  • the ⁇ / 4 plate 121 is preferably adjacent to the liquid crystal panel 122. That is, it is preferable that no birefringent layer is provided between the ⁇ / 4 plate 121 and the liquid crystal panel 122. However, an isotropic film may be disposed between the ⁇ / 4 plate 121 and the liquid crystal panel 122. Further, a birefringent layer may be provided between the ⁇ / 4 plate 121 and the liquid crystal panel 122. In this case, the slow axis of the birefringent layer is substantially parallel or substantially orthogonal to the transmission axis 123t of the polarizing element 123.
  • substantially parallel means that the angle formed by both axes is preferably in the range of 0 ° ⁇ 3 °, more preferably in the range of 0 ° ⁇ 1 °, The angle formed by both axes is preferably in the range of 90 ° ⁇ 3 °, and more preferably in the range of 90 ° ⁇ 1 °.
  • the liquid crystal mode (display mode) of the liquid crystal panel 112 is not particularly limited.
  • the liquid crystal panel 112 includes two transparent substrates, a liquid crystal layer sandwiched between the two substrates, and a transparent electrode formed on at least one of the two substrates.
  • the driving method of the liquid crystal panel 112 is not particularly limited, and a simple matrix method (passive matrix method), a plasma addressing method, or the like may be used. Among them, a TFT method (active matrix method) is preferable.
  • the liquid crystal mode (display mode) of the liquid crystal panel 122 is not particularly limited as long as the pair of linearly polarizing elements in the crossed Nicols state can be used for black display.
  • VA mode VA mode
  • IPS mode twisted nematic (twisted nematic (twisted nematic) TN)) mode
  • STN Super Twisted Nematic
  • OBC Optically Compensated Birefringence
  • FFS mode FFS mode.
  • the liquid crystal panel 122 preferably has a response speed that can be synchronized with the frame rate of the display device 110.
  • the liquid crystal panel 122 includes two transparent substrates, a liquid crystal layer sandwiched between the two substrates, and a transparent electrode formed on at least one of the two substrates.
  • the retardation ⁇ n ⁇ d of the liquid crystal panel 122 is not particularly limited, and can be appropriately set in consideration of the transmittance at the time of transmitting through the shutter.
  • ⁇ n and d represent the birefringence anisotropy and the cell gap of the liquid crystal panel 122, respectively.
  • the optimum ⁇ n ⁇ d varies depending on the liquid crystal mode to be employed, the ⁇ n ⁇ d of the liquid crystal panel 122 can usually be set in a range of 200 to 800 nm.
  • the optimal NZ coefficient of the ⁇ / 4 plate 121 does not change depending on ⁇ n ⁇ d of the liquid crystal panel 122.
  • the backlight unit may be a direct type or an edge light type.
  • the display device 110 may be a transflective or reflective liquid crystal display. In the case of a reflective type, the backlight unit can be omitted.
  • the display device 110 is not particularly limited to a liquid crystal display, but may be a plasma display, an organic or inorganic EL display, a CRT display, a projector, or the like. However, when these display devices are applied, it is necessary to provide the polarizing element 113 separately, which causes a cost increase. On the other hand, by applying a liquid crystal display as the display device 110, a linearly polarizing element included in a general surface polarizing plate can be used as the polarizing element 113. Therefore, the polarizing element 113 does not cause an increase in cost.
  • the stereoscopic image recognition system 100 of the present embodiment may further include a front plate (not shown), and the ⁇ / 4 plate 114 and the ⁇ / 2 plate 118 may be provided on the front plate.
  • the front plate is a transparent member disposed on the viewer side of the screen of the display device 110, that is, in front of the screen, and is disposed so as to cover the screen (display area) of the display device 110.
  • the front plate includes a protective plate or a touch panel.
  • the protective plate protects the display device 110 from various impacts.
  • the above-mentioned surface treatment layer may be provided on the outermost surface of the front plate on the viewer side.
  • the protective plate As a material for the protective plate, high transparency and high mechanical strength are preferred, and a resin made of tempered glass, polycarbonate, acrylic, or the like is suitable.
  • the touch panel is an input device for inputting various types of information, and information can be input while seeing through the screen of the display device 110 by touching (pressing) the surface of the touch panel.
  • the touch panel can interactively and intuitively operate the display device 110 only by touching a predetermined portion on the screen with a finger, a pen, or the like.
  • the operation principle of the touch panel is not particularly limited, and includes a resistive film method, a capacitive coupling method, an infrared method, an ultrasonic method, an electromagnetic induction coupling method, etc. Among them, from the viewpoint of cost reduction, the resistive film method and A capacitive coupling method is preferable.
  • the configuration between the display device 110 and the front plate is not particularly limited as long as the polarization state of the light emitted from the display device 110 is not significantly changed. There may or may not be an air layer between them. Moreover, there may be a layer containing an adhesive or an adhesive. Furthermore, there may be an isotropic film.
  • the front plate may be a member that can be arbitrarily installed by an observer. As a result, the front panel can be removed when displaying a flat image, and the flat image can be viewed without using the front panel, so that the screen brightness when displaying a flat image can be improved.
  • Embodiment 2 A stereoscopic image recognition system according to the second embodiment will be described. The main differences between this embodiment and Embodiment 1 are as follows.
  • the ⁇ / 2 plate 118 is directly attached to the polarizing element 113 with an adhesive or an adhesive.
  • the ⁇ / 4 plate 114 is attached to the ⁇ / 2 plate 118 with an adhesive or an adhesive.
  • Optical compensation films 216 and 217 are provided between the liquid crystal panel 112 and the polarizing element 111 and between the liquid crystal panel 112 and the polarizing element 113 in order to compensate the viewing angle of the liquid crystal panel 112, respectively.
  • the optical compensation films 216 and 217 function as a birefringent layer.
  • a protective film such as a TAC film may be provided instead of the optical compensation films 216 and 217.
  • an isotropic film may be attached to the surface of the ⁇ / 4 plate 114 on the observer side, and a surface treatment layer may be provided on the surface of the isotropic film on the observer side.
  • the surface treatment layer may be formed directly on the surface of the ⁇ / 4 plate 114 on the viewer side.
  • the ⁇ / 4 plate 121 is attached to the liquid crystal panel 122 with an adhesive or an adhesive.
  • a protective film such as a TAC film is attached to both surfaces of the polarizing element 123 with an adhesive or an adhesive. Further, a protective film on the liquid crystal panel 122 side is attached to the liquid crystal panel 122 with an adhesive or an adhesive, whereby the polarizing element 123 is fixed to the liquid crystal panel 122.
  • the transmittance of the stereoscopic image recognition system can be calculated by the following formula (9) by calculating the Mueller matrix of the liquid crystal display and the active shutter glasses, respectively.
  • the Mueller matrix M glasses are limited to the Mueller matrix in the front direction. 2 and 3, since the shutter function is exhibited between the polarizing elements 113 and 123, when evaluating the shutter function, the rear side (backlight side) of the polarizing element 113. The characteristics of these members need not be considered. That is, the transmittance S 'is in each viewing direction of the stereoscopic image recognition system, the Mueller matrix M TV in each viewing direction of the liquid crystal display, multiplied by the Mueller matrix M glasses in the front direction of the active shutter glasses further incident light ( It is obtained by multiplying the non-polarized) Stokes parameter S. The effect of the shutter function is confirmed by whether the shutter can sufficiently exhibit a light shielding state, that is, whether the transmittance is low in this verification.
  • FIG. 12 shows the azimuth angle dependence of the transmittance in this embodiment.
  • FIG. 12 shows the transmittance when the shutter is shielded, and shows the result at a polar angle of 60 °.
  • FIG. 12 also shows the result of the configuration estimated from Patent Document 2 as a comparative example.
  • This comparative example includes the same members as the present embodiment except that the ⁇ / 2 plate 118 is not provided. However, the NZ coefficient of the ⁇ / 4 plate 114 is set to 1.0.
  • the transmittance at an azimuth angle of 180 ° to 360 ° exhibits the same behavior as the transmittance at an azimuth angle of 0 ° to 180 °.
  • the NZ coefficient is 0.5, it can be said that the shutter function is most effectively exhibited because the transmittance when the shutter is shielded is particularly low in the azimuth angle range of 0 ° to 180 °. Therefore, in the present embodiment, it is particularly preferable that the NZ coefficient of the ⁇ / 4 plate 114 is substantially 0.5.
  • a viewing angle range satisfying a contrast ratio of 10: 1 or more is defined as a viewing angle. This is because if the contrast ratio is about 10: 1, it is possible for a human to see the luminance ratio sufficiently. Therefore, also in this embodiment, if the contrast ratio between the light transmitting state and the light shielding state of the shutter is about 10: 1, it can be said that the shutter function is sufficiently exhibited.
  • the transmittance at the time of shutter light transmission in the viewing angle direction with a polar angle of 60 ° and an azimuth angle of 45 ° is about 25%.
  • the transmittance when the shutter is shielded is relatively large at an azimuth angle of about 45 °. Therefore, the contrast ratio becomes relatively low near the azimuth angle of 45 °. Therefore, from the viewpoint of satisfying the contrast ratio of 10: 1 or more when the polar angle is in the range of ⁇ 60 ° to + 60 °, that is, the shutter function is sufficiently exhibited, the transmittance when the shutter is shielded is approximately 2.5% or less. I just need it.
  • the transmittance at the time of shutter light shielding is particularly preferably about 1% or less.
  • the NZ coefficient of the ⁇ / 4 plate 114 is preferably 0 or more and 1 or less.
  • the present embodiment is the same as the second embodiment except that a retardation film 315 that functions as a birefringent layer is provided on the viewer side of the ⁇ / 4 plate 114.
  • the retardation film 315 is attached to the ⁇ / 4 plate 114 with an adhesive or an adhesive.
  • the in-plane retardation of the retardation film 315 is 10 nm or less (preferably 5 nm or less), and the thickness direction retardation of the retardation film 315 is 20 nm or more and 80 nm or less (preferably 30 nm or more and 60 nm or less). is there.
  • the retardation film 315 functions as a so-called negative C plate.
  • the direction of the in-plane slow axis of the retardation film 315 is not particularly limited and can be set as appropriate.
  • the retardation film 315 As a material of the retardation film 315, triacetyl cellulose (TAC) is suitable, and the retardation film 315 is preferably a TAC film.
  • TAC triacetyl cellulose
  • an isotropic film may be affixed to the surface of the retardation film 315 on the viewer side, and a surface treatment layer may be provided on the surface of the isotropic film on the viewer side.
  • the surface treatment layer may be directly formed on the surface of the retardation film 315 on the viewer side.
  • the parameters described in the second embodiment were used.
  • FIG. 14 shows the azimuth angle dependency of the transmittance in the present embodiment.
  • FIG. 14 shows the transmittance when the shutter is shielded, and shows the result at a polar angle of 60 °.
  • FIG. 14 also shows the results of the comparative example. Further, the transmittance at an azimuth angle of 180 ° to 360 ° shows the same behavior as the transmittance at an azimuth angle of 0 ° to 180 °.
  • the NZ coefficient 0
  • the transmittance when the shutter is shielded is particularly low in the range of the azimuth angle of 0 ° to 180 °, and the shutter function is most effectively exhibited. Therefore, in the present embodiment, it is particularly preferable that the NZ coefficient of the ⁇ / 4 plate 114 is substantially zero.
  • the NZ coefficient of the ⁇ / 4 plate 114 is preferably ⁇ 0.4 or more and 0.5 or less from the viewpoint of setting the transmittance when the shutter is shielded to about 1% or less. Accordingly, the shutter function can be sufficiently exhibited in a polar angle (viewing angle) range wider than the polar angle range of ⁇ 60 ° to + 60 °.
  • this embodiment is the same as Embodiment 2 except that a retardation film 415 that functions as a birefringent layer is provided between the ⁇ / 2 plate 118 and the ⁇ / 4 plate 114. is there.
  • the retardation film 415 is affixed to the ⁇ / 2 plate 118 with an adhesive or an adhesive.
  • the in-plane retardation of the retardation film 415 is 10 nm or less (preferably 5 nm or less), and the thickness direction retardation of the retardation film 415 is 20 nm or more and 80 nm or less (preferably 30 nm or more and 60 nm or less). is there.
  • the retardation film 415 functions as a so-called negative C plate.
  • the direction of the in-plane slow axis of the retardation film 415 is not particularly limited and can be set as appropriate.
  • the retardation film 415 As a material of the retardation film 415, triacetyl cellulose (TAC) is suitable, and the retardation film 415 is preferably a TAC film.
  • TAC triacetyl cellulose
  • the ⁇ / 4 plate 114 is attached to the retardation film 415 with an adhesive or an adhesive.
  • the parameters described in the second embodiment were used.
  • FIG. 16 shows the azimuth angle dependency of the transmittance in this embodiment.
  • FIG. 16 shows the transmittance when the shutter is shielded, and shows the result at a polar angle of 60 °.
  • FIG. 16 also shows the results of the comparative example. Further, the transmittance at an azimuth angle of 180 ° to 360 ° shows the same behavior as the transmittance at an azimuth angle of 0 ° to 180 °.
  • the transmittance when the shutter is shielded can be lowered as compared with the comparative example.
  • the NZ coefficient is 0.2, it can be said that the shutter function is most effectively exhibited because the transmittance when the shutter is shielded is particularly low in the range of the azimuth angle of 0 ° to 180 °. Therefore, in the present embodiment, it is particularly preferable that the NZ coefficient of the ⁇ / 4 plate 114 is substantially 0.2.
  • the NZ coefficient of the ⁇ / 4 plate 114 is preferably ⁇ 0.2 or more and 0.6 or less from the viewpoint of setting the transmittance when the shutter is shielded to about 1% or less. Accordingly, the shutter function can be sufficiently exhibited in a polar angle (viewing angle) range wider than the polar angle range of ⁇ 60 ° to + 60 °.
  • stereoscopic image recognition system 110 video display devices 111, 113, 123: linearly polarizing elements 111t, 113t, 123t: transmission axes 112, 122: liquid crystal panel (liquid crystal cell) 114, 121: ⁇ / 4 plate 114s, 121s: in-plane slow axis 118: ⁇ / 2 plate 118s: in-plane slow axis 120: active shutter glasses 315, 415: retardation film 216, 217: optical compensation film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a three-dimensional video recognition system capable of reducing crosstalk at an oblique viewing angle, and a video display device for the three-dimensional video recognition system. The present invention is a three-dimensional video recognition system which comprises a video display device having a first linear polarization element (113), a λ/2 plate (118) (NZ coefficient = NZ, h) on the first linear polarization element (113), a first λ/4 plate (114) (NZ coefficient ≤ 1) on the a λ/2 plate (118), and active shutter glasses (120) having a second λ/4 plate (121), a liquid crystal panel (122) and a second linear polarization element (123) in this order, satisfies 40°≤φ1≤50° and 130°≤φ2≤140° or 130°≤φ1≤140° and 40°≤φ2≤50°, and satisfies 85°≤φ3≤95° and 0.7≤NZ, h≤0.8 or -5°≤φ3≤5° and 0.2≤NZ, h≤0.3 where φ1 and φ2 are the angles between the transmission axes (113t, 123t) of the first and second linear polarization elements and the in-plane slow axes (114s, 121s) of the first and second λ/4 plates, respectively, and φ3 is the angle between the transmission axis (113t) of the first linear polarization element and the in-plane slow axis (118s) of the λ/2 plate.

Description

立体映像認識システム及び立体映像認識システム用映像表示装置Stereoscopic video recognition system and video display device for stereoscopic video recognition system
本発明は、立体映像認識システム及び立体映像認識システム用映像表示装置に関する。より詳しくは、アクティブシャッターメガネ方式(以下、単にアクティブ方式とも言う。)の立体映像認識システムと、アクティブ方式の立体映像認識システム用映像表示装置とに関するものである。 The present invention relates to a stereoscopic video recognition system and a video display device for a stereoscopic video recognition system. More specifically, the present invention relates to an active shutter glasses method (hereinafter also referred to simply as an active method) stereoscopic image recognition system and an active display device for a stereoscopic image recognition system.
メガネを使用する立体映像認識システムとしては、アナグリフ方式、パッシブメガネ方式(以下、単にパッシブ方式とも言う。)、アクティブ方式等が知られている。パッシブ方式及びアクティブ方式はいずれも偏光メガネを利用する。 As a stereoscopic image recognition system using glasses, an anaglyph method, a passive glasses method (hereinafter also simply referred to as a passive method), an active method, and the like are known. Both the passive method and the active method use polarized glasses.
アナグリフ方式は、表示品位が非常に悪く、左眼用画像及び右眼用画像が混じって見える現象、いわゆるクロストークが発生してしまう。 The anaglyph method has very poor display quality, and a phenomenon in which the left-eye image and the right-eye image appear to be mixed, so-called crosstalk, occurs.
パッシブ方式は、偏光メガネ自体を軽量かつ安価に製造することができるが、左眼用画像及び右眼用画像を生成するためには別々の画素を用いる必要がある。そのため、立体映像表示時において通常の平面映像表示時と比べて2倍の空間解像度を必要とし、一般的には立体映像の解像度が低い。また、表示品位もアクティブ方式に比べて低い。更に、λ/2板、λ/4板等の複屈折層を各画素にパターン形成する必要があり、映像表示装置のコストアップとなる。 In the passive method, the polarized glasses themselves can be manufactured lightly and inexpensively, but separate pixels need to be used to generate the left-eye image and the right-eye image. For this reason, a spatial resolution twice as high as that when displaying a normal flat image is required when displaying a stereoscopic image, and the resolution of a stereoscopic image is generally low. Also, the display quality is lower than that of the active method. Furthermore, it is necessary to pattern each pixel with a birefringent layer such as a λ / 2 plate or a λ / 4 plate, which increases the cost of the video display device.
アクティブ方式は、表示性能に優れ、例えば、立体映像認識システム用映像表示装置(以下、3D表示装置とも言う。)の空間解像度がフルハイビジョン(1920×1080)の場合、フルハイビジョンの解像度のまま立体表示を行うことができる。また、アクティブ方式の3D表示装置に求められる主な性能は、高フレームレートと、高性能の画像処理能力であり、これらは現在のハイエンドの映像表示装置でも満足することができる。すなわち、映像表示装置自体に特別な部材を作り込むことなく、3Dコンテンツの普及前の段階においても3D表示装置として展開することができる。 The active method is excellent in display performance. For example, when the spatial resolution of a video display device for a stereoscopic video recognition system (hereinafter also referred to as a 3D display device) is full high-definition (1920 × 1080), the full-high-definition resolution is maintained. Display can be made. The main performance required for an active 3D display device is a high frame rate and a high-performance image processing capability, which can be satisfied even with current high-end video display devices. That is, it can be developed as a 3D display device even before the spread of 3D content without creating a special member in the video display device itself.
以下、アクティブ方式に用いられる偏光メガネをアクティブシャッターメガネとも言う。 Hereinafter, polarized glasses used in the active method are also referred to as active shutter glasses.
アクティブ方式の立体映像認識システムとしては、例えば、一対の偏光板と、該一対の偏光板の間に介在する液晶とを有するアクティブシャッターメガネを用いる技術が開示されている(例えば、特許文献1参照。)。しかしながら、このメガネをかけた状態で3D表示装置の表示画面以外を見た場合、フリッカーを感じることがある。 As an active 3D image recognition system, for example, a technique using active shutter glasses having a pair of polarizing plates and a liquid crystal interposed between the pair of polarizing plates is disclosed (for example, see Patent Document 1). . However, flicker may be felt when viewing the screen other than the display screen of the 3D display device with the glasses on.
このフリッカー対策として、表示面上に配置された第1の偏光フィルタと、観察者の両眼前方に配置された第2の偏光フィルタと、該両偏光フィルタ間に介在する液晶封入体とを利用する技術が開示されている(例えば、特許文献2参照。)。 As a countermeasure against this flicker, a first polarizing filter disposed on the display surface, a second polarizing filter disposed in front of both eyes of the observer, and a liquid crystal enclosure interposed between the both polarizing filters are used. The technique to do is disclosed (for example, refer patent document 2).
また、液晶ディスプレイ用の複屈折性フィルムの製造方法として、樹脂フィルムの片面又は両面に収縮性フィルムを接着して積層体を形成し、その積層体を加熱延伸処理して前記樹脂フィルムの延伸方向と直交する方向の収縮力を付与する方法が開示されている(例えば、特許文献3参照。)。 Further, as a method for producing a birefringent film for a liquid crystal display, a laminate is formed by adhering a shrinkable film on one or both sides of a resin film, and the laminate is subjected to a heat stretching treatment to stretch the resin film. Has been disclosed (see, for example, Patent Document 3).
特開昭61-227498号公報JP-A 61-227498 特開2002-82307号公報JP 2002-82307 A 特許第2818983号明細書Japanese Patent No. 2818983
ここで、図17、18を用いて、特許文献2の技術を利用した比較形態1に係る立体映像認識システム1100について説明する。 Here, with reference to FIGS. 17 and 18, a stereoscopic video recognition system 1100 according to the comparative example 1 using the technique of Patent Document 2 will be described.
システム1100は、図17、18に示すように、3D表示装置として機能する液晶ディスプレイ1110と、アクティブシャッターメガネ1120とを含んで構成される。液晶ディスプレイ1110は、直線偏光板1111、液晶パネル(液晶セル)1112、及び、直線偏光板1113を背面側からこの順に備える。偏光板1111の透過軸は、0°方位に設定され、偏光板1113の透過軸は、90°方位に設定されている。メガネ1120は、液晶パネル(液晶セル)1122及び直線偏光板1123を外側からこの順に備える。偏光板1123の透過軸は、0°方位に設定されている。 As shown in FIGS. 17 and 18, the system 1100 includes a liquid crystal display 1110 that functions as a 3D display device, and active shutter glasses 1120. The liquid crystal display 1110 includes a linearly polarizing plate 1111, a liquid crystal panel (liquid crystal cell) 1112, and a linearly polarizing plate 1113 in this order from the back side. The transmission axis of the polarizing plate 1111 is set to 0 ° azimuth, and the transmission axis of the polarizing plate 1113 is set to 90 ° azimuth. The glasses 1120 include a liquid crystal panel (liquid crystal cell) 1122 and a linearly polarizing plate 1123 in this order from the outside. The transmission axis of the polarizing plate 1123 is set to 0 ° azimuth.
液晶ディスプレイ1110の観察者側の偏光板1113と、メガネ1120の偏光板1123とは、互いにクロスニコルに配置されている。そして、システム1100では、偏光板1113と、メガネ1120の液晶パネル1122及び偏光板1123とでシャッター機能を得ている。すなわち、液晶ディスプレイ1110の表示領域(表示画面)を観察した時にのみシャッター機能が発揮される。したがって、表示領域以外の領域(例えば周囲の壁)を観察した時、1枚の偏光板1123を有するメガネ1120は、シャッターとして機能しないため、観察者はフリッカーを感じることがない。 The polarizing plate 1113 on the viewer side of the liquid crystal display 1110 and the polarizing plate 1123 of the glasses 1120 are arranged in crossed Nicols. In the system 1100, the polarizing plate 1113 and the liquid crystal panel 1122 and the polarizing plate 1123 of the glasses 1120 obtain a shutter function. That is, the shutter function is exhibited only when the display area (display screen) of the liquid crystal display 1110 is observed. Therefore, when an area other than the display area (for example, a surrounding wall) is observed, the glasses 1120 having one polarizing plate 1123 do not function as a shutter, and thus the observer does not feel flicker.
しかしながら、システム1100では、メガネ1120の液晶パネル1122の液晶モードによっては、以下の2つの課題が発生する。
(1)観察者自身が顔(メガネ1120)を傾けた場合、シャッター機能が低下し、クロストークが発生する。
(2)観察者自身が顔(メガネ1120)を傾けた場合、画面が暗くなる。
However, in the system 1100, the following two problems occur depending on the liquid crystal mode of the liquid crystal panel 1122 of the glasses 1120.
(1) When the observer himself / herself tilts his / her face (glasses 1120), the shutter function is lowered and crosstalk occurs.
(2) When the observer tilts his face (glasses 1120), the screen becomes dark.
なお、観察者自身が顔を傾ける場合としては、観察者が床に寝転がって画面を観察するような場合が挙げられる。 Note that the case where the observer himself / herself tilts his / her face includes a case where the observer lies on the floor and observes the screen.
上記課題(1)の原因を説明する。ここでは、液晶パネル1122の液晶層の位相差をゼロにした状態でシャッターの遮光状態(close)が得られるモードに液晶パネル1122の液晶モードを設定した場合について説明する。
(i)顔を傾けない場合、偏光板1113と偏光板1123はクロスニコル状態であり、液晶パネル1122の液晶層の位相差はゼロである。そのため、シャッターは遮光状態である(図19参照)。
(ii)顔を90°傾けた場合、偏光板1123も90°傾くため、偏光板1113と偏光板1123の関係はパラレルニコルになる。そのため、シャッターは透光状態(open)になる(図20参照)。
このように、シャッターが遮光状態になっているべき時に透光状態になってしまうため、クロストークが発生する。
The cause of the problem (1) will be described. Here, a case will be described in which the liquid crystal mode of the liquid crystal panel 1122 is set to a mode in which the shutter light shielding state (close) can be obtained in a state where the phase difference of the liquid crystal layer of the liquid crystal panel 1122 is zero.
(I) When the face is not tilted, the polarizing plate 1113 and the polarizing plate 1123 are in a crossed Nicol state, and the phase difference of the liquid crystal layer of the liquid crystal panel 1122 is zero. Therefore, the shutter is in a light shielding state (see FIG. 19).
(Ii) When the face is tilted by 90 °, the polarizing plate 1123 is also tilted by 90 °, and the relationship between the polarizing plate 1113 and the polarizing plate 1123 becomes parallel Nicols. Therefore, the shutter is in a translucent state (open) (see FIG. 20).
As described above, when the shutter should be in a light shielding state, the light is in a translucent state, so that crosstalk occurs.
上記課題(2)の原因を説明する。ここでは、液晶パネル1122の液晶を45°方位に並べた状態でシャッターの透光状態が得られるモードに液晶パネル1122の液晶モードを設定した場合について説明する。
(i)顔を傾けない場合、クロスニコル状態の偏光板1113と偏光板1123の間に、λ/2条件に設定された液晶層が存在することになる。そのため、シャッターは透光状態である(図21参照)。
(ii)顔を90°傾けた場合、偏光板1113と偏光板1123の関係はパラレルニコルになり、その間にλ/2条件に設定された液晶層が存在することになる。そのため、シャッターは遮光状態になる(図22参照)。
このように、シャッターが透光状態になっているべき時に遮光状態になってしまうため、画面が暗くなる。
The cause of the above problem (2) will be described. Here, a case where the liquid crystal mode of the liquid crystal panel 1122 is set to a mode in which the light transmission state of the shutter can be obtained in a state where the liquid crystals of the liquid crystal panel 1122 are arranged in a 45 ° azimuth direction will be described.
(I) When the face is not tilted, a liquid crystal layer set to a λ / 2 condition exists between the polarizing plate 1113 and the polarizing plate 1123 in the crossed Nicols state. Therefore, the shutter is in a light transmitting state (see FIG. 21).
(Ii) When the face is tilted by 90 °, the relationship between the polarizing plate 1113 and the polarizing plate 1123 becomes parallel Nicol, and a liquid crystal layer set to a λ / 2 condition exists between them. Therefore, the shutter is in a light shielding state (see FIG. 22).
In this way, when the shutter should be in a light-transmitting state, the screen is darkened, and the screen becomes dark.
特許文献2には、上記課題(1)、(2)を解決するための立体映像認識システムが開示されている。図23に特許文献2の技術を利用した比較形態2に係る立体映像認識システム1200の構成を示す。 Patent Document 2 discloses a stereoscopic video recognition system for solving the problems (1) and (2). FIG. 23 shows a configuration of a stereoscopic video recognition system 1200 according to comparative form 2 using the technique of Patent Document 2.
システム1200は、図23に示すように、3D表示装置として機能する映像表示装置1210と、アクティブシャッターメガネ1220とを含んで構成される。表示装置1210は、CRT1211、直線偏光フィルタ1212及びλ/4板1213を背面側からこの順に備える。メガネ1220は、λ/4板1221、液晶パネル1222及び直線偏光フィルタ1223を外側からこの順に備える。 As shown in FIG. 23, the system 1200 includes a video display device 1210 that functions as a 3D display device and active shutter glasses 1220. The display device 1210 includes a CRT 1211, a linear polarization filter 1212, and a λ / 4 plate 1213 in this order from the back side. The glasses 1220 include a λ / 4 plate 1221, a liquid crystal panel 1222, and a linear polarization filter 1223 in this order from the outside.
システム1200では、表示装置1210からの出射光を円偏光にすることができる。そのため、観察者自身が顔(メガネ1220)を傾けた場合でも、システム1100のようにシャッター機能が低下せず、画面が暗くならない。 In the system 1200, the light emitted from the display device 1210 can be circularly polarized. Therefore, even when the observer himself / herself tilts his / her face (glasses 1220), the shutter function does not deteriorate as in the system 1100, and the screen does not become dark.
しかしながら、特許文献2は、正面視の場合、すなわち、3D表示装置の表示画面と、メガネの液晶パネルの面とが実質的に平行な状態で表示画面を観察した場合のみを想定している。そのため、視角方向が斜め(斜め視角)の場合については記載されていない。 However, Patent Document 2 assumes a front view, that is, only when the display screen is observed in a state where the display screen of the 3D display device and the surface of the liquid crystal panel of the glasses are substantially parallel. Therefore, the case where the viewing angle direction is oblique (oblique viewing angle) is not described.
また、特許文献2の出願当時、λ/4板として機能する2軸性フィルムは無く、λ/4板といえば、1軸延伸されたNZ係数が1.0のフィルムであった。また、直線偏光素子とλ/4板とを互いに直接、貼り合わせる技術も無く、直線偏光素子とλ/4板との間には、直線偏光素子の保護フィルムとしてTACフィルムを配置する必要があった。 Further, at the time of filing of Patent Document 2, there was no biaxial film functioning as a λ / 4 plate, and the λ / 4 plate was a uniaxially stretched NZ coefficient of 1.0. Further, there is no technique for directly bonding the linearly polarizing element and the λ / 4 plate to each other, and it is necessary to dispose a TAC film as a protective film for the linearly polarizing element between the linearly polarizing element and the λ / 4 plate. It was.
以上より、システム1200においては、正面視ではλ/4板1213、1221の効果でシャッター機能が低下しないが、斜め視角ではシャッター機能が低下し、クロストークが発生する。これは、斜め視角ではλ/4板1213の位相差がλ/4条件から外れるためである。 As described above, in the system 1200, the shutter function does not deteriorate due to the effects of the λ / 4 plates 1213 and 1221 in the front view, but the shutter function decreases in the oblique viewing angle, and crosstalk occurs. This is because the phase difference of the λ / 4 plate 1213 deviates from the λ / 4 condition at an oblique viewing angle.
そこで、本発明者らは、斜め視角においてクロストークの発生を低減することができる立体映像認識システムについて種々検討した。そして、3D表示装置の観察者側に設けられた第1のλ/4板のNZ係数を1未満に設定することにより、斜め視角において、シャッター遮光時の透過率を低減できることを見いだし、先に特許出願(特願2010-265616。以下、この特許出願を先願とも言う。)している。 Therefore, the present inventors have studied various stereoscopic image recognition systems that can reduce the occurrence of crosstalk at an oblique viewing angle. Then, by setting the NZ coefficient of the first λ / 4 plate provided on the viewer side of the 3D display device to be less than 1, it was found that the transmittance at the time of light blocking the shutter can be reduced at an oblique viewing angle. A patent application has been filed (Japanese Patent Application No. 2010-265616. Hereinafter, this patent application is also referred to as a prior application).
ここで、図24を用いて、先願に記載の立体映像認識システム1300について説明する。 Here, the stereoscopic image recognition system 1300 described in the prior application will be described with reference to FIG.
システム1300は、図24に示すように、3D表示装置として機能する液晶ディスプレイ1310と、アクティブシャッターメガネ1320とを含んで構成される。液晶ディスプレイ1310は、直線偏光素子1311、液晶パネル(液晶セル)1312、直線偏光素子1313、及び、λ/4板1314を背面側からこの順に備える。メガネ1320は、λ/4板1321、液晶パネル1322及び直線偏光素子1323を外側からこの順に備える。 As shown in FIG. 24, the system 1300 includes a liquid crystal display 1310 that functions as a 3D display device, and active shutter glasses 1320. The liquid crystal display 1310 includes a linearly polarizing element 1311, a liquid crystal panel (liquid crystal cell) 1312, a linearly polarizing element 1313, and a λ / 4 plate 1314 in this order from the back side. The glasses 1320 include a λ / 4 plate 1321, a liquid crystal panel 1322, and a linearly polarizing element 1323 in this order from the outside.
そして、システム1300では、λ/4板1314のNZ係数を1未満の範囲内で最適化することによって、斜め視角でのシャッター機能を向上している。 In the system 1300, the shutter function at an oblique viewing angle is improved by optimizing the NZ coefficient of the λ / 4 plate 1314 within a range of less than 1.
しかしながら、特定の方位(例えば、45°方位)では液晶ディスプレイ1310からの出射光が楕円偏光となる場合があった。一例として、図25及び26に、システム1300における偏光状態の軌道をポアンカレ球のS1-S2平面に投影した状態を図示する。ここでは、λ/4板1314のNZ係数を0.5に設定した場合を図示している。図25は、極角60°、方位角0°における状態を、図26は、極角60°、方位角45°における状態を示す。図25及び26中、偏光素子1313を出射した直後の偏光状態は点P0で、λ/4板1314を出射した直後の偏光状態は点P2で示される。図25に示すように、極角60°、方位角0°では、λ/4板1314を透過した光は円偏光になるが、図26に示すように、極角60°、方位角45°では、λ/4板1314を透過した光は円偏光にならない。 However, in a specific orientation (for example, 45 ° orientation), the emitted light from the liquid crystal display 1310 may be elliptically polarized. As an example, FIGS. 25 and 26 illustrate a state in which the orbit of the polarization state in the system 1300 is projected onto the S1-S2 plane of the Poincare sphere. Here, a case where the NZ coefficient of the λ / 4 plate 1314 is set to 0.5 is illustrated. FIG. 25 shows a state at a polar angle of 60 ° and an azimuth angle of 0 °, and FIG. 26 shows a state at a polar angle of 60 ° and an azimuth angle of 45 °. 25 and 26, the polarization state immediately after exiting the polarizing element 1313 is indicated by a point P0, and the polarization state immediately after exiting the λ / 4 plate 1314 is indicated by a point P2. As shown in FIG. 25, when the polar angle is 60 ° and the azimuth angle is 0 °, the light transmitted through the λ / 4 plate 1314 is circularly polarized, but as shown in FIG. 26, the polar angle is 60 ° and the azimuth angle is 45 °. Then, the light transmitted through the λ / 4 plate 1314 does not become circularly polarized light.
このように、先願に記載の技術には、斜め視角において、シャッター機能を更に向上し、クロストークの発生を更に低減するという点で改善の余地があった。 Thus, the technique described in the prior application has room for improvement in terms of further improving the shutter function and further reducing the occurrence of crosstalk at an oblique viewing angle.
本発明は、上記現状に鑑みてなされたものであり、斜め視角においてクロストークの発生を低減することができる立体映像認識システム及び立体映像認識システム用映像表示装置を提供することを目的とするものである。 The present invention has been made in view of the above-described situation, and an object thereof is to provide a stereoscopic video recognition system and a video display device for a stereoscopic video recognition system that can reduce the occurrence of crosstalk at an oblique viewing angle. It is.
本発明者らは、斜め視角においてクロストークの発生を低減することができる立体映像認識システムについて種々検討したところ、一組のλ/4板とともに、λ/2板を利用することに着目した。そして、3D表示装置の直線偏光素子の観察者側にλ/2板を設け、また、このλ/2板の観察者側に第1のλ/4板を設け、更に、アクティブシャッターメガネの外側に第2のλ/4板を設け、そして、これらの光学部材の特性と軸の方向とを調節することにより、従来に比べて、斜め視角において、第1のλ/4板からの出射光の偏光状態を円偏光により近づけることができることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The inventors of the present invention have studied various stereoscopic image recognition systems that can reduce the occurrence of crosstalk at an oblique viewing angle, and have focused on using a λ / 2 plate together with a set of λ / 4 plates. A λ / 2 plate is provided on the viewer side of the linearly polarizing element of the 3D display device, and a first λ / 4 plate is provided on the viewer side of the λ / 2 plate. By providing the second λ / 4 plate to the optical disc and adjusting the characteristics and axial directions of these optical members, the light emitted from the first λ / 4 plate can be seen at an oblique viewing angle as compared with the conventional case. The present inventors have found that the polarization state can be made closer to circularly polarized light, and have conceived that the above-mentioned problems can be solved brilliantly, and have reached the present invention.
すなわち、本発明の一側面は、観察者側に設けられた第1の直線偏光素子を有する映像表示装置と、前記第1の直線偏光素子の観察者側に設けられたλ/2板と、前記λ/2板の観察者側に設けられた第1のλ/4板と、第2のλ/4板、液晶パネル(液晶セル)、及び、第2の直線偏光素子を外側からこの順に有するアクティブシャッターメガネとを含み、前記第1の直線偏光素子の透過軸と、前記第1のλ/4板の面内遅相軸とがなす角度をφ1、前記第2の直線偏光素子の透過軸と、前記第2のλ/4板の面内遅相軸とがなす角度をφ2と定義するとき、下記式(1)及び(2)、又は、(3)及び(4)を満たし、前記第1のλ/4板のNZ係数は、1以下であり、前記第1の直線偏光素子の透過軸と、前記λ/2板の面内遅相軸とがなす角度をφ3、前記λ/2板のNZ係数をNZ,hと定義するとき、下記式(5)及び(6)、又は、(7)及び(8)を満たす立体映像認識システムである。
40°≦φ1≦50°       (1)
130°≦φ2≦140°     (2)
130°≦φ1≦140°     (3)
40°≦φ2≦50°       (4)
85°≦φ3≦95°       (5)
0.7≦NZ,h≦0.8     (6)
-5°≦φ3≦5°        (7)
0.2≦NZ,h≦0.3     (8)
ただし、φ1は、前記第1のλ/4板側から見て測り、前記第1の直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。φ2は、前記第2のλ/4板側から見て測り、前記第2の直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。φ3は、前記λ/2板側から見て測り、前記第1の直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。
That is, one aspect of the present invention is an image display device having a first linearly polarizing element provided on the viewer side, a λ / 2 plate provided on the viewer side of the first linearly polarizing element, A first λ / 4 plate, a second λ / 4 plate, a liquid crystal panel (liquid crystal cell), and a second linearly polarizing element provided on the viewer side of the λ / 2 plate are arranged in this order from the outside. Active shutter glasses having an angle formed by the transmission axis of the first linearly polarizing element and the in-plane slow axis of the first λ / 4 plate is φ1, and the transmission of the second linearly polarizing element is When the angle formed between the axis and the in-plane slow axis of the second λ / 4 plate is defined as φ2, the following formulas (1) and (2) or (3) and (4) are satisfied, The NZ coefficient of the first λ / 4 plate is 1 or less, and the transmission axis of the first linearly polarizing element and the in-plane slow axis of the λ / 2 plate form. When the degree .phi.3, the NZ coefficient of the lambda / 2 plate NZ, defined is h, the following equation (5) and (6), or a stereoscopic image recognition system that satisfies (7) and (8).
40 ° ≦ φ1 ≦ 50 ° (1)
130 ° ≦ φ2 ≦ 140 ° (2)
130 ° ≦ φ1 ≦ 140 ° (3)
40 ° ≦ φ2 ≦ 50 ° (4)
85 ° ≦ φ3 ≦ 95 ° (5)
0.7 ≦ NZ, h ≦ 0.8 (6)
-5 ° ≦ φ3 ≦ 5 ° (7)
0.2 ≦ NZ, h ≦ 0.3 (8)
However, φ1 is measured as viewed from the first λ / 4 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the first linearly polarizing element. φ2 is measured from the side of the second λ / 4 plate, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the second linearly polarizing element. φ3 is measured as viewed from the λ / 2 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the first linearly polarizing element.
前記第1のλ/4板のNZ係数が1を超えると、斜め視角においてクロストークの発生を充分には低減できないことがある。 If the NZ coefficient of the first λ / 4 plate exceeds 1, the occurrence of crosstalk may not be sufficiently reduced at an oblique viewing angle.
前記立体映像認識システムの構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。前記立体映像認識システムにおける好ましい形態について以下に詳しく説明する。なお、以下に示す各種形態は、適宜、組み合わされてもよい。 The configuration of the stereoscopic image recognition system is not particularly limited by other components as long as such components are formed as essential. A preferred embodiment of the stereoscopic image recognition system will be described in detail below. The various forms shown below may be combined as appropriate.
種々の形態において、斜め視角におけるシャッター遮光時の透過率を効果的に低減する観点からは、前記第1のλ/4板のNZ係数は、-0.6以上、0.6以下であることが好ましく、-0.2以上、0.4以下であることがより好ましい。 In various embodiments, the NZ coefficient of the first λ / 4 plate is −0.6 or more and 0.6 or less from the viewpoint of effectively reducing the transmittance when the shutter is shielded at an oblique viewing angle. Is preferable, and is more preferably −0.2 or more and 0.4 or less.
前記立体映像認識システムにおける他の好ましい形態としては、例えば、下記形態(A)~(D)が挙げられる。 Other preferable forms in the stereoscopic image recognition system include, for example, the following forms (A) to (D).
形態(A)において、前記λ/2板は、前記第1の直線偏光素子の観察者側の面上に貼付され、前記第1のλ/4板は、前記λ/2板の観察者側の面上に貼付され、前記第1のλ/4板のNZ係数は、0以上、1以下である。 In the form (A), the λ / 2 plate is affixed on the viewer side surface of the first linearly polarizing element, and the first λ / 4 plate is the viewer side of the λ / 2 plate. The NZ coefficient of the first λ / 4 plate is 0 or more and 1 or less.
形態(B)において、前記λ/2板は、前記第1の直線偏光素子の観察者側の面上に貼付され、前記第1のλ/4板は、前記λ/2板の観察者側の面上に貼付され、前記立体映像認識システムは、前記第1のλ/4板の観察者側の面上に貼付された位相差フィルムを更に含み、前記位相差フィルムの面内位相差は、10nm以下であり、前記位相差フィルムの厚み方向位相差は、20nm以上、80nm以下であり、前記第1のλ/4板のNZ係数は、-0.4以上、0.5以下である。 In the form (B), the λ / 2 plate is affixed on the viewer side surface of the first linearly polarizing element, and the first λ / 4 plate is the viewer side of the λ / 2 plate. The stereoscopic image recognition system further includes a retardation film affixed on the viewer side surface of the first λ / 4 plate, and the in-plane retardation of the retardation film is 10 nm or less, the thickness direction retardation of the retardation film is 20 nm or more and 80 nm or less, and the NZ coefficient of the first λ / 4 plate is −0.4 or more and 0.5 or less. .
形態(C)において、前記λ/2板は、前記第1の直線偏光素子の観察者側の面上に貼付され、前記立体映像認識システムは、前記λ/2板の観察者側の面上に貼付された位相差フィルムを更に含み、前記第1のλ/4板は、前記位相差フィルムの観察者側の面上に貼付され、前記位相差フィルムの面内位相差は、10nm以下であり、前記位相差フィルムの厚み方向位相差は、20nm以上、80nm以下であり、前記第1のλ/4板のNZ係数は、-0.2以上、0.6以下である。 In the form (C), the λ / 2 plate is affixed on the surface on the viewer side of the first linearly polarizing element, and the stereoscopic image recognition system is on the surface on the viewer side of the λ / 2 plate. And the first λ / 4 plate is affixed on the observer side surface of the retardation film, and the in-plane retardation of the retardation film is 10 nm or less. The retardation film has a thickness direction retardation of 20 nm or more and 80 nm or less, and the NZ coefficient of the first λ / 4 plate is −0.2 or more and 0.6 or less.
上記形態(A)~(C)によれば、-60°から+60°の極角範囲よりも広い極角(視角)範囲でシャッター機能を充分に発揮することができる。 According to the above forms (A) to (C), the shutter function can be sufficiently exhibited in a polar angle (viewing angle) range wider than the polar angle range of −60 ° to + 60 °.
形態(D)において、前記液晶パネルは、第1の液晶パネルであり、前記映像表示装置は、液晶ディスプレイであり、第3の直線偏光素子、第2の液晶パネル及び前記第1の直線偏光素子を背面側からこの順に有する。一般的な液晶ディスプレイは、通常、観察者側の直線偏光板(表偏光板)を備える。したがって、上記形態(D)によれば、一般的な表偏光板に含まれる直線偏光素子を第1の直線偏光素子として利用することができ、第1の直線偏光素子を新規に設ける必要がない。そのため、コスト削減が可能になる。 In the form (D), the liquid crystal panel is a first liquid crystal panel, and the video display device is a liquid crystal display, and includes a third linearly polarizing element, a second liquid crystal panel, and the first linearly polarizing element. In this order from the back side. A general liquid crystal display usually includes an observer-side linear polarizing plate (front polarizing plate). Therefore, according to the said form (D), the linearly polarized light element contained in a general surface polarizing plate can be utilized as a 1st linearly polarized light element, and it is not necessary to newly provide a 1st linearly polarized light element. . Therefore, cost reduction is possible.
前記立体映像認識システムに用いられる前記映像表示装置もまた本発明の一つである。 The video display device used in the stereoscopic video recognition system is also one aspect of the present invention.
このように、本発明の他の側面は、観察者側に設けられた直線偏光素子と、前記直線偏光素子の観察者側に設けられたλ/2板と、前記λ/2板の観察者側に設けられたλ/4板とを備え、前記直線偏光素子の透過軸と、前記λ/4板の面内遅相軸とがなす角度をθ1と定義するとき、下記式(I)又は(II)を満たし、前記λ/4板のNZ係数は、1以下であり、前記直線偏光素子の透過軸と、前記λ/2板の面内遅相軸とがなす角度をθ2、前記λ/2板のNZ係数をNZ,hと定義するとき、下記式(III)及び(IV)、又は、(V)及び(VI)を満たす立体映像認識システム用映像表示装置である。
40°≦θ1≦50°       (I)
130°≦θ1≦140°     (II)
85°≦θ2≦95°       (III)
0.7≦NZ,h≦0.8     (IV)
-5°≦θ2≦5°        (V)
0.2≦NZ,h≦0.3     (VI)
ただし、θ1は、前記λ/4板側から見て測り、前記直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。θ2は、前記λ/2板側から見て測り、前記直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。
Thus, another aspect of the present invention provides a linearly polarizing element provided on the observer side, a λ / 2 plate provided on the observer side of the linearly polarizing element, and an observer of the λ / 2 plate When the angle formed by the transmission axis of the linearly polarizing element and the in-plane slow axis of the λ / 4 plate is defined as θ1, the following formula (I) or (II) is satisfied, the NZ coefficient of the λ / 4 plate is 1 or less, and the angle formed by the transmission axis of the linearly polarizing element and the in-plane slow axis of the λ / 2 plate is θ2, and the λ When the NZ coefficient of the / 2 plate is defined as NZ, h, the image display device for the stereoscopic image recognition system satisfies the following formulas (III) and (IV) or (V) and (VI).
40 ° ≦ θ1 ≦ 50 ° (I)
130 ° ≦ θ1 ≦ 140 ° (II)
85 ° ≦ θ2 ≦ 95 ° (III)
0.7 ≦ NZ, h ≦ 0.8 (IV)
-5 ° ≦ θ2 ≦ 5 ° (V)
0.2 ≦ NZ, h ≦ 0.3 (VI)
However, θ1 is measured as viewed from the λ / 4 plate side, and is measured as positive in the counterclockwise direction with respect to the direction of the transmission axis of the linearly polarizing element. θ2 is measured as viewed from the λ / 2 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the linearly polarizing element.
前記λ/4板のNZ係数が1を超えると、斜め視角においてクロストークの発生を充分には低減できないことがある。 If the NZ coefficient of the λ / 4 plate exceeds 1, the occurrence of crosstalk may not be sufficiently reduced at an oblique viewing angle.
前記立体映像認識システム用映像表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。前記立体映像認識システム用映像表示装置における好ましい形態について以下に詳しく説明する。なお、以下に示す各種形態は、適宜、組み合わされてもよい。 The configuration of the video display device for the stereoscopic image recognition system is not particularly limited by other components as long as such components are essential. A preferred embodiment of the video display device for the stereoscopic video recognition system will be described in detail below. The various forms shown below may be combined as appropriate.
また、前記立体映像認識システム用映像表示装置における、前記直線偏光素子、前記λ/2板、前記λ/4板、前記角度θ1、前記角度θ2、前記式(I)、前記式(II)、前記式(III)、前記式(IV)、前記式(V)及び前記式(VI)はそれぞれ、前記立体映像認識システムにおける、前記第1の直線偏光素子、前記λ/2板、前記第1のλ/4板、前記角度φ1、前記角度φ3、前記式(1)、前記式(3)、前記式(5)、前記式(6)、前記式(7)及び前記式(8)に対応する。 Further, in the image display device for the stereoscopic image recognition system, the linearly polarizing element, the λ / 2 plate, the λ / 4 plate, the angle θ1, the angle θ2, the formula (I), the formula (II), The formula (III), the formula (IV), the formula (V), and the formula (VI) are respectively the first linearly polarizing element, the λ / 2 plate, and the first in the stereoscopic image recognition system. Λ / 4 plate, the angle φ1, the angle φ3, the equation (1), the equation (3), the equation (5), the equation (6), the equation (7), and the equation (8). Correspond.
種々の形態において、斜め視角におけるシャッター遮光時の透過率を効果的に低減する観点からは、前記λ/4板のNZ係数は、-0.6以上、0.6以下であることが好ましく、-0.2以上、0.4以下であることがより好ましい。 In various forms, from the viewpoint of effectively reducing the transmittance at the time of shutter light shielding at an oblique viewing angle, the NZ coefficient of the λ / 4 plate is preferably −0.6 or more and 0.6 or less, It is more preferably −0.2 or more and 0.4 or less.
前記立体映像認識システム用映像表示装置における他の好ましい形態としては、例えば、下記形態(E)~(H)が挙げられる。 Other preferable forms of the stereoscopic image recognition system image display apparatus include, for example, the following forms (E) to (H).
形態(E)において、前記λ/2板は、前記直線偏光素子の観察者側の面上に貼付され、前記λ/4板は、前記λ/2板の観察者側の面上に貼付され、前記λ/4板のNZ係数は、0以上、1以下である。 In the embodiment (E), the λ / 2 plate is affixed on the viewer side surface of the linearly polarizing element, and the λ / 4 plate is affixed on the viewer side surface of the λ / 2 plate. The NZ coefficient of the λ / 4 plate is 0 or more and 1 or less.
形態(F)において、前記λ/2板は、前記直線偏光素子の観察者側の面上に貼付され、前記λ/4板は、前記λ/2板の観察者側の面上に貼付され、前記立体映像認識システム用映像表示装置は、前記λ/4板の観察者側の面上に貼付された位相差フィルムを更に備え、前記位相差フィルムの面内位相差は、10nm以下であり、前記位相差フィルムの厚み方向位相差は、20nm以上、80nm以下であり、前記λ/4板のNZ係数は、-0.4以上、0.5以下である。 In the form (F), the λ / 2 plate is affixed on the viewer side surface of the linearly polarizing element, and the λ / 4 plate is affixed on the viewer side surface of the λ / 2 plate. The image display device for a stereoscopic image recognition system further includes a retardation film affixed on the surface on the viewer side of the λ / 4 plate, and the in-plane retardation of the retardation film is 10 nm or less. The retardation in the thickness direction of the retardation film is 20 nm or more and 80 nm or less, and the NZ coefficient of the λ / 4 plate is −0.4 or more and 0.5 or less.
形態(G)において、前記λ/2板は、前記直線偏光素子の観察者側の面上に貼付され、前記立体映像認識システム用映像表示装置は、前記λ/2板の観察者側の面上に貼付された位相差フィルムを更に備え、前記λ/4板は、前記位相差フィルムの観察者側の面上に貼付され、前記位相差フィルムの面内位相差は、10nm以下であり、前記位相差フィルムの厚み方向位相差は、20nm以上、80nm以下であり、前記λ/4板のNZ係数は、-0.2以上、0.6以下である。 In the form (G), the λ / 2 plate is affixed on a viewer-side surface of the linearly polarizing element, and the video display device for a stereoscopic image recognition system is the viewer-side surface of the λ / 2 plate. Further comprising a retardation film affixed on, the λ / 4 plate is affixed on the observer side surface of the retardation film, the in-plane retardation of the retardation film is 10 nm or less, The retardation in the thickness direction of the retardation film is 20 nm or more and 80 nm or less, and the NZ coefficient of the λ / 4 plate is −0.2 or more and 0.6 or less.
上記形態(E)~(G)によれば、-60°から+60°の極角範囲よりも広い極角(視角)範囲でシャッター機能を充分に発揮することができる。 According to the embodiments (E) to (G), the shutter function can be sufficiently exerted in a polar angle (viewing angle) range wider than the polar angle range of −60 ° to + 60 °.
形態(H)において、前記直線偏光素子は、第1の直線偏光素子であり、前記立体映像認識システム用映像表示装置は、液晶ディスプレイであり、第2の直線偏光素子、液晶パネル及び前記第1の直線偏光素子を背面側からこの順に有する。一般的な液晶ディスプレイは、通常、観察者側の直線偏光板(表偏光板)を備える。したがって、上記形態(H)によれば、一般的な表偏光板に含まれる直線偏光素子を第1の直線偏光素子として利用することができ、第1の直線偏光素子を新規に設ける必要がない。そのため、コスト削減が可能になる。 In the form (H), the linearly polarizing element is a first linearly polarizing element, the stereoscopic image recognition system image display device is a liquid crystal display, the second linearly polarizing element, the liquid crystal panel, and the first Are provided in this order from the back side. A general liquid crystal display usually includes an observer-side linear polarizing plate (front polarizing plate). Therefore, according to the said form (H), the linearly polarizing element contained in a general surface polarizing plate can be utilized as a 1st linearly polarizing element, and it is not necessary to newly provide a 1st linearly polarizing element. . Therefore, cost reduction is possible.
なお、上記形態(H)における、前記第2の直線偏光素子及び前記液晶パネルはそれぞれ、上記形態(D)における、前記第3の直線偏光素子及び前記第2の液晶パネルに対応する。 In addition, the said 2nd linearly polarizing element and said liquid crystal panel in the said form (H) respond | correspond to the said 3rd linearly polarizing element and the said 2nd liquid crystal panel in the said form (D), respectively.
本発明によれば、斜め視角においてクロストークの発生を低減できる立体映像認識システム及び立体映像認識システム用映像表示装置を実現することができる。 According to the present invention, it is possible to realize a stereoscopic video recognition system and a video display device for a stereoscopic video recognition system that can reduce the occurrence of crosstalk at an oblique viewing angle.
実施形態1の立体映像認識システムの構成を示す斜視模式図である。It is a perspective schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 1. FIG. 実施形態1の立体映像認識システムの構成を示す斜視分解模式図である。1 is a perspective exploded schematic diagram illustrating a configuration of a stereoscopic image recognition system of Embodiment 1. FIG. 実施形態1の立体映像認識システムの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 1. FIG. 実施形態1の立体映像認識システムの構成を示す斜視分解模式図であり、シャッターが遮光状態、かつ、観察者が顔を傾けない状態を示す。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional-image recognition system of Embodiment 1, and shows the state in which a shutter is light-shielding, and an observer does not tilt a face. 実施形態1の立体映像認識システムの構成を示す斜視分解模式図であり、シャッターが遮光状態、かつ、観察者が顔を90°傾けた状態を示す。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 1, and shows the state which the shutter inclined and the observer inclined the face 90 degrees. 実施形態1の立体映像認識システムの構成を示す斜視分解模式図であり、シャッターが透光状態、かつ、観察者が顔を傾けない状態を示す。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional-image recognition system of Embodiment 1, and shows the state in which a shutter is translucent and an observer does not incline a face. 実施形態1の立体映像認識システムの構成を示す斜視分解模式図であり、シャッターが透光状態、かつ、観察者が顔を90°傾けた状態を示す。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 1, and shows the state in which the shutter was translucent and the observer inclined the face 90 degrees. 実施形態1の立体映像認識システムにおける偏光状態の軌道をポアンカレ球のS1-S2平面に投影した状態を示す模式図であり、極角60°、方位角0°における状態を示す。FIG. 6 is a schematic diagram showing a state in which the polarization state trajectory is projected onto the S1-S2 plane of the Poincare sphere in the stereoscopic image recognition system of Embodiment 1, and shows a state at a polar angle of 60 ° and an azimuth angle of 0 °. 実施形態1の立体映像認識システムにおける偏光状態の軌道をポアンカレ球のS1-S2平面に投影した状態を示す模式図であり、極角60°、方位角45°における状態を示す。FIG. 5 is a schematic diagram showing a state in which the polarization state trajectory is projected onto the S1-S2 plane of the Poincare sphere in the stereoscopic image recognition system of Embodiment 1, and shows a state at a polar angle of 60 ° and an azimuth angle of 45 °. 実施形態1の立体映像認識システムの構成を示す断面模式図であり、映像表示装置の画面を斜めから観察した状態を示す。It is a cross-sectional schematic diagram which shows the structure of the three-dimensional video recognition system of Embodiment 1, and shows the state which observed the screen of the video display apparatus from diagonally. 実施形態2の立体映像認識システムの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 2. FIG. 実施形態2における透過率の方位角依存性を示す。The azimuth angle dependence of the transmittance | permeability in Embodiment 2 is shown. 実施形態3の立体映像認識システムの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 3. 実施形態3における透過率の方位角依存性を示す。The azimuth angle dependence of the transmittance | permeability in Embodiment 3 is shown. 実施形態4の立体映像認識システムの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the three-dimensional image recognition system of Embodiment 4. 実施形態4における透過率の方位角依存性を示す。The azimuth angle dependence of the transmittance | permeability in Embodiment 4 is shown. 比較形態1に係る立体映像認識システムの構成を示す斜視分解模式図である。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional video recognition system which concerns on the comparison form 1. FIG. 比較形態1に係る立体映像認識システムの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the three-dimensional image recognition system which concerns on the comparison form 1. FIG. 比較形態1に係る立体映像認識システムの構成を示す斜視分解模式図であり、シャッターが遮光状態、かつ、観察者が顔を傾けない状態を示す。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional-image recognition system which concerns on the comparison form 1, and shows the state in which a shutter is light-shielding, and an observer does not tilt a face. 比較形態1に係る立体映像認識システムの構成を示す斜視分解模式図であり、観察者が顔を90°傾けた結果、シャッターが透光状態になった場合を示す。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional image recognition system which concerns on the comparison form 1, and shows the case where a shutter will be in the translucent state as a result of inclining a face 90 degrees. 比較形態1に係る立体映像認識システムの構成を示す斜視分解模式図であり、シャッターが透光状態、かつ、観察者が顔を傾けない状態を示す。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional image recognition system which concerns on the comparison form 1, and shows the state in which a shutter is a translucent state and an observer does not tilt a face. 比較形態1に係る立体映像認識システムの構成を示す斜視分解模式図であり、観察者が顔を90°傾けた結果、シャッターが遮光状態になった場合を示す。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional-image recognition system which concerns on the comparison form 1, and shows the case where a shutter will be in the light-shielding state as a result of inclining a face 90 degrees. 特許文献2の技術を利用した比較形態2に係る立体映像認識システムの構成を示す斜視分解模式図である。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional video recognition system which concerns on the comparison form 2 using the technique of patent document 2. FIG. 先願に記載の立体映像認識システムの構成を示す斜視分解模式図である。It is a perspective exploded schematic diagram which shows the structure of the three-dimensional video recognition system as described in a prior application. 先願に記載の立体映像認識システムにおける偏光状態の軌道をポアンカレ球のS1-S2平面に投影した状態を示す模式図であり、極角60°、方位角0°における状態を示す。It is a schematic diagram which shows the state which projected the orbit of the polarization state in the S1-S2 plane of a Poincare sphere in the stereoscopic image recognition system described in the prior application, and shows a state at a polar angle of 60 ° and an azimuth angle of 0 °. 先願に記載の立体映像認識システムにおける偏光状態の軌道をポアンカレ球のS1-S2平面に投影した状態を示す模式図であり、極角60°、方位角45°における状態を示す。It is a schematic diagram which shows the state which projected the track | orbit of the polarization state in the S1-S2 plane of a Poincare sphere in the three-dimensional-image recognition system described in a prior application, and shows the state in the polar angle of 60 degrees and the azimuth angle of 45 degrees.
本明細書において、アクティブシャッターメガネの内外については、メガネ装着時の観察者側を内側、その反対側を外側と定義する。 In this specification, for the inside and outside of the active shutter glasses, the observer side when wearing glasses is defined as the inside, and the opposite side is defined as the outside.
また、映像表示装置の前後については、観察者(視聴者)の反対側を背面側と定義する。背面側は、液晶表示装置の画面の反対側とも言える。 In addition, for the front and rear of the video display device, the opposite side of the viewer (viewer) is defined as the back side. It can be said that the back side is the opposite side of the screen of the liquid crystal display device.
本明細書において、メガネの方位(方位角)は、観察者が当該メガネを装着した状態において、当該観察者から見て3時方向を基準(0°方位)とし、反時計回りを正として規定される。映像表示装置の方位(方位角)は、観察者が当該表示装置の画面を正面視した状態において、当該観察者から見て3時方向を基準(0°方位)とし、反時計回りを正として規定される。 In this specification, the azimuth (azimuth angle) of the glasses is defined with the 3 o'clock direction as a reference (0 ° azimuth) viewed from the observer and the counterclockwise direction being positive when the observer is wearing the glasses. Is done. The azimuth (azimuth angle) of the video display device is based on the 3 o'clock direction as viewed from the observer (0 ° azimuth direction) when the viewer looks at the screen of the display device in front, and counterclockwise is positive. It is prescribed.
直線偏光素子は、無偏光(自然光)、部分偏光又は偏光から、特定方向にのみ振動する偏光(直線偏光)を取り出す機能を有するものである。ただし、本明細書において、直線偏光素子のコントラストは、必ずしも無限大である必要はなく、5000以上(好適には10000以上)であってもよい。特に断りのない限り、本明細書中で「直線偏光素子」又は「偏光素子」というときは保護フィルムを含まず、偏光機能を有する素子だけを指す。 The linearly polarizing element has a function of extracting polarized light (linearly polarized light) that vibrates only in a specific direction from non-polarized light (natural light), partially polarized light, or polarized light. However, in this specification, the contrast of the linearly polarizing element does not necessarily need to be infinite, and may be 5000 or more (preferably 10,000 or more). Unless otherwise specified, the term “linearly polarizing element” or “polarizing element” in this specification refers to only an element having a polarizing function without including a protective film.
本明細書において、λ/4板は、少なくとも波長550nmの光に対して略1/4波長のリタデーションを有する層である。λ/4板のリタデーション(特に面内位相差Re)は、波長550nmの光に対して理想的には137.5nmであるが、100nm以上、180nm以下であればよく、120nm以上、160nm以下であることが好ましく、130nm以上、145nm以下であることがより好ましい。 In this specification, the λ / 4 plate is a layer having a retardation of approximately ¼ wavelength with respect to light having a wavelength of at least 550 nm. The retardation (particularly the in-plane retardation Re) of the λ / 4 plate is ideally 137.5 nm for light having a wavelength of 550 nm, but may be 100 nm or more and 180 nm or less, and 120 nm or more and 160 nm or less. It is preferable that it is 130 nm or more and 145 nm or less.
また、λ/2板は、少なくとも波長550nmの光に対して略1/2波長のリタデーションを有する層である。λ/2板のリタデーション(特に面内位相差Re)は、波長550nmの光に対して理想的には275nmであるが、250nm以上、300nm以下であればよく、260nm以上、290nm以下であることが好ましく、270nm以上、280nm以下であることがより好ましい。 The λ / 2 plate is a layer having a retardation of approximately ½ wavelength with respect to light having a wavelength of 550 nm. The retardation (particularly the in-plane retardation Re) of the λ / 2 plate is ideally 275 nm for light having a wavelength of 550 nm, but may be 250 nm or more and 300 nm or less, and 260 nm or more and 290 nm or less. Is preferable, and it is more preferable that it is 270 nm or more and 280 nm or less.
面内位相差Reは、複屈折層(液晶パネル、λ/2板及びλ/4板を含む)の面内方向で屈折率が最大となる方向(すなわち、遅相軸の方向)の主屈折率をnx、nxに直交する方向の主屈折率をnyと定義し、面外方向、すなわち、複屈折層の面に対して垂直方向の主屈折率をnz、複屈折層の厚みをdと定義したとき、Re=|nx-ny|×dで定義される面内方向の位相差(単位:nm)である。これに対して、厚み方向位相差Rthは、Rth=(nz-(nx+ny)/2)×dで定義される面外方向(厚み方向)の位相差(単位:nm)である。 The in-plane retardation Re is the main refraction in the direction (that is, the direction of the slow axis) in which the refractive index is maximum in the in-plane direction of the birefringent layer (including the liquid crystal panel, λ / 2 plate, and λ / 4 plate). The main refractive index in the direction orthogonal to nx is defined as ny, the main refractive index in the out-of-plane direction, that is, the direction perpendicular to the surface of the birefringent layer is nz, and the thickness of the birefringent layer is d. When defined, Re = | nx−ny | × d is the in-plane direction phase difference (unit: nm). In contrast, the thickness direction retardation Rth is an out-of-plane direction (thickness direction) phase difference (unit: nm) defined by Rth = (nz− (nx + ny) / 2) × d.
また、NZ係数は、複屈折層の二軸性の程度を表わすパラメータであり、NZ=(nx-nz)/(nx-ny)で定義される。 The NZ coefficient is a parameter representing the degree of biaxiality of the birefringent layer, and is defined by NZ = (nx−nz) / (nx−ny).
なお、本明細書中で主屈折率、位相差、NZ係数等の光学パラメータの測定波長は、特に断りのない限り550nmとする。 In this specification, the measurement wavelength of optical parameters such as the main refractive index, phase difference, and NZ coefficient is 550 nm unless otherwise specified.
また、同じNZ係数をもつ複屈折層でも、複屈折層の平均屈折率=(nx+ny+nz)/3が異なれば、屈折角の影響で斜め方向からの入射に対して複屈折層の実効的な位相差が異なり、設計指針が複雑になってしまう。この問題を避けるため、本明細書では特に断りのない限り、各複屈折層の平均屈折率を1.5に統一してNZ係数を算出している。実際の平均屈折率が1.5と異なる複屈折層についても平均屈折率1.5を想定して換算してある。また、厚み方向位相差Rthについても同様の扱いをしている。 Even in the case of a birefringent layer having the same NZ coefficient, if the average refractive index of the birefringent layer = (nx + ny + nz) / 3 is different, the effective position of the birefringent layer with respect to incidence from an oblique direction is affected by the refraction angle. The phase difference is different and the design guideline becomes complicated. In order to avoid this problem, the NZ coefficient is calculated by unifying the average refractive index of each birefringent layer to 1.5 unless otherwise specified. Birefringent layers having an actual average refractive index different from 1.5 are also converted assuming an average refractive index of 1.5. The same treatment is applied to the thickness direction retardation Rth.
本明細書において、複屈折層(複屈折フィルム、位相差フィルム)とは、光学的異方性を有する層(フィルム)のことである。複屈折層は、本発明の作用効果を充分に奏する観点から、面内位相差Reと、厚み方向位相差Rthの絶対値との少なくとも一方が10nm以上の値を有するものを意味し、好ましくは、20nm以上の値を有するものを意味する。 In this specification, a birefringent layer (birefringent film, retardation film) is a layer (film) having optical anisotropy. The birefringent layer means that at least one of the in-plane retardation Re and the absolute value of the thickness direction retardation Rth has a value of 10 nm or more, preferably from the viewpoint of sufficiently achieving the effects of the present invention. Means having a value of 20 nm or more.
また、等方性フィルムとは、面内位相差Reと、厚み方向位相差Rthの絶対値とのいずれもが10nm以下の値を有するものを意味し、好ましくは、5nm以下の値を有するものを意味する。 The isotropic film means that both the in-plane retardation Re and the absolute value of the thickness direction retardation Rth have a value of 10 nm or less, preferably 5 nm or less. Means.
また、本明細書で偏光素子の単体透過率(T)は、偏光素子を1枚で使用する場合の透過率であり、式:(k1+k2)/2より求める。 In this specification, the single transmittance (T) of a polarizing element is a transmittance when a single polarizing element is used, and is obtained from the formula: (k1 + k2) / 2.
平行透過率(Tp)は、同じ種類の2枚の偏光素子を、互いの吸収軸が平行となるように積層して使用する場合の透過率の値である。 The parallel transmittance (Tp) is a value of transmittance when two polarizing elements of the same type are stacked and used such that their absorption axes are parallel to each other.
また、平行透過率(Tp)は、式:(k1+k2)/2より求める。 The parallel transmittance (Tp) is obtained from the formula: (k1 2 + k2 2 ) / 2.
k1及びk2は主透過率といい、主透過率k1は、偏光素子にその透過軸と平行な方向に振動する直線偏光を入射させたときの透過率をいう。主透過率k2は、偏光素子にその透過軸と直交する方向に振動する直線偏光を入射させたときの透過率をいう。 k1 and k2 are referred to as main transmittance, and the main transmittance k1 refers to the transmittance when linearly polarized light that vibrates in a direction parallel to the transmission axis is incident on the polarizing element. The main transmittance k2 refers to the transmittance when linearly polarized light that vibrates in a direction orthogonal to the transmission axis is incident on the polarizing element.
直交透過率(Tc)は、同じ種類の2枚の偏光素子を、互いに吸収軸が直交するように積層して使用する場合の透過率の値である。 The orthogonal transmittance (Tc) is a value of transmittance when two polarizing elements of the same type are stacked and used so that their absorption axes are orthogonal to each other.
また、直交透過率(Tc)は、式:k1×k2より求める。 Further, the orthogonal transmittance (Tc) is obtained from the equation: k1 × k2.
主透過率k1及び主透過率k2の測定機器としては、例えば、紫外可視分光光度計(日本分光社製、商品名「V-7100」)が挙げられる。測定光(偏光素子試料への入射光)を直線偏光とするためには、測定機器のオプションとして用意されているグラントムソンプリズム、グランテーラープリズム等の理想的な偏光素子を用いればよい。可視波長域(波長380nm~780nm)における分光透過率を測定し、JIS Z8701-1982に規定の2度視野(C光源)により、視感度補正を行ったY値を透過率とする。 Examples of the measuring device for the main transmittance k1 and the main transmittance k2 include an ultraviolet-visible spectrophotometer (trade name “V-7100” manufactured by JASCO Corporation). In order to make the measurement light (light incident on the polarizing element sample) linearly polarized light, an ideal polarizing element such as a Glan-Thompson prism or a Gran Taylor prism, which is prepared as an option of the measuring instrument, may be used. The spectral transmittance in the visible wavelength region (wavelength 380 nm to 780 nm) is measured, and the Y value that has been corrected for visibility with the two-degree field of view (C light source) defined in JIS Z8701-1982 is defined as the transmittance.
本明細書で偏光素子のコントラスト(CR)は、偏光素子の平行透過率(Tp)及び直交透過率(Tc)を測定し、式:CR=Tp/Tcより求める。 In this specification, the contrast (CR) of the polarizing element is obtained from the formula: CR = Tp / Tc by measuring the parallel transmittance (Tp) and the orthogonal transmittance (Tc) of the polarizing element.
なお、偏光素子のこれらの特性は、保護フィルム、複屈折層等の部材を含む所謂、偏光板を用いて測定しても、偏光素子単体で測定した場合と同じ結果を得ることができる。 In addition, even if these characteristics of a polarizing element are measured using what is called a polarizing plate containing members, such as a protective film and a birefringent layer, the same result as the case where it measures with a polarizing element single-piece | unit can be obtained.
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Embodiments will be described below, and the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited only to these embodiments.
(実施形態1)
本実施形態の立体映像認識システム100は、図1に示すように、3D表示装置として機能する映像表示装置(立体映像認識システム用映像表示装置)110と、アクティブシャッターメガネ120とを含んで構成される。
(Embodiment 1)
As shown in FIG. 1, the stereoscopic video recognition system 100 according to the present embodiment includes a video display device (video display device for a stereoscopic video recognition system) 110 that functions as a 3D display device, and active shutter glasses 120. The
表示装置110には、右眼用の映像信号と、左眼用の映像信号とが交互に供給され、表示装置110の画面には、視差のついた右眼用画像及び左眼用画像が交互に時分割方式で表示される。 The display device 110 is alternately supplied with a right-eye video signal and a left-eye video signal, and the display device 110 has a parallax right-eye image and a left-eye image alternately. Are displayed in a time-sharing manner.
メガネ120は、左右のシャッター部(レンズ部)の透光及び遮光(シャッターの開閉)を交互に切り替えることができる。切り替えのタイミングは上記右眼用画像及び左眼用画像に同期される。これにより、視聴者の右眼には右眼用画像が投影され、左眼には左眼用画像が投影され、視聴者は、立体映像を認識することができる。なお、メガネ120の左右のシャッター部(レンズ部)はそれぞれ、シャッターとして機能すればよく、度付きレンズとして機能する必要はない。 The glasses 120 can alternately switch between light transmission and light shielding (opening and closing of the shutter) of the left and right shutter parts (lens parts). The switching timing is synchronized with the right-eye image and the left-eye image. As a result, the right eye image is projected onto the viewer's right eye, the left eye image is projected onto the left eye, and the viewer can recognize the stereoscopic video. Note that the left and right shutter portions (lens portions) of the glasses 120 may function as shutters, and do not need to function as prescription lenses.
以下、図2、3を参照して表示装置110及びメガネ120の構成について説明する。
表示装置110は、透過型の液晶ディスプレイであり、バックライトユニット(図示せず)、直線偏光素子111、液晶パネル(液晶セル)112、直線偏光素子113、λ/2板118及びλ/4板114を背面側からこの順に備える。直線偏光素子111、113は、直線偏光板であってもよい。
Hereinafter, the configuration of the display device 110 and the glasses 120 will be described with reference to FIGS.
The display device 110 is a transmissive liquid crystal display, and includes a backlight unit (not shown), a linearly polarizing element 111, a liquid crystal panel (liquid crystal cell) 112, a linearly polarizing element 113, a λ / 2 plate 118, and a λ / 4 plate. 114 are provided in this order from the back side. The linearly polarizing elements 111 and 113 may be linearly polarizing plates.
メガネ120の左右のシャッター部はそれぞれ、λ/4板121、液晶パネル(液晶セル)122及び直線偏光素子123を外側からこの順に備える。直線偏光素子123は、直線偏光板であってもよい。 The left and right shutter portions of the glasses 120 each include a λ / 4 plate 121, a liquid crystal panel (liquid crystal cell) 122, and a linearly polarizing element 123 in this order from the outside. The linearly polarizing element 123 may be a linearly polarizing plate.
システム100では、表示装置110の偏光素子113、λ/2板118及びλ/4板114と、メガネ120のλ/4板121、液晶パネル(液晶セル)122及び偏光素子123とでシャッター機能を得ている。すなわち、表示装置110の表示領域(表示画面)を観察した時にのみシャッター機能が発揮される。したがって、表示領域以外の領域(例えば周囲の壁)を観察した時、1枚の偏光素子123を有するメガネ120は、シャッターとして機能しないため、観察者はフリッカーを感じることがない。 In the system 100, the polarizing element 113, the λ / 2 plate 118 and the λ / 4 plate 114 of the display device 110, and the λ / 4 plate 121, the liquid crystal panel (liquid crystal cell) 122, and the polarizing element 123 of the glasses 120 provide a shutter function. It has gained. That is, the shutter function is exhibited only when the display area (display screen) of the display device 110 is observed. Therefore, when an area other than the display area (for example, a surrounding wall) is observed, the glasses 120 having one polarizing element 123 do not function as a shutter, and thus the observer does not feel flicker.
また、直線偏光素子113の透過軸113tと、λ/4板114の面内遅相軸114sとがなす角度をφ1とし、直線偏光素子123の透過軸123tと、λ/4板121の面内遅相軸121sとがなす角度をφ2と定義するとき、システム100は、下記式(1)及び(2)、又は、(3)及び(4)を満たす。
40°≦φ1≦50°       (1)
130°≦φ2≦140°     (2)
130°≦φ1≦140°     (3)
40°≦φ2≦50°       (4)
Further, the angle formed by the transmission axis 113t of the linear polarization element 113 and the in-plane slow axis 114s of the λ / 4 plate 114 is φ1, and the transmission axis 123t of the linear polarization element 123 and the in-plane of the λ / 4 plate 121 When the angle formed by the slow axis 121s is defined as φ2, the system 100 satisfies the following formulas (1) and (2) or (3) and (4).
40 ° ≦ φ1 ≦ 50 ° (1)
130 ° ≦ φ2 ≦ 140 ° (2)
130 ° ≦ φ1 ≦ 140 ° (3)
40 ° ≦ φ2 ≦ 50 ° (4)
更に、直線偏光素子113の透過軸113tと、λ/2板118の面内遅相軸118sとがなす角度をφ3とし、λ/2板118のNZ係数をNZ,hと定義するとき、システム100は、下記式(5)及び(6)、又は、(7)及び(8)を満たす。
85°≦φ3≦95°       (5)
0.7≦NZ,h≦0.8     (6)
-5°≦φ3≦5°        (7)
0.2≦NZ,h≦0.3     (8)
Further, when the angle formed between the transmission axis 113t of the linearly polarizing element 113 and the in-plane slow axis 118s of the λ / 2 plate 118 is φ3, and the NZ coefficient of the λ / 2 plate 118 is defined as NZ, h, 100 satisfies the following formulas (5) and (6) or (7) and (8).
85 ° ≦ φ3 ≦ 95 ° (5)
0.7 ≦ NZ, h ≦ 0.8 (6)
-5 ° ≦ φ3 ≦ 5 ° (7)
0.2 ≦ NZ, h ≦ 0.3 (8)
ただし、φ1は、λ/4板114側から見て測り、直線偏光素子113の透過軸113tの方向を基準として反時計方向に正と測る。φ2は、λ/4板121側から見て測り、直線偏光素子123の透過軸123tの方向を基準として反時計方向に正と測る。φ3は、λ/2板118側から見て測り、直線偏光素子113の透過軸113tの方向を基準として反時計方向に正と測る。 However, φ1 is measured when viewed from the λ / 4 plate 114 side, and is measured to be positive in the counterclockwise direction with reference to the direction of the transmission axis 113t of the linearly polarizing element 113. φ2 is measured as viewed from the λ / 4 plate 121 side, and is measured to be positive in the counterclockwise direction with reference to the direction of the transmission axis 123t of the linearly polarizing element 123. φ3 is measured from the λ / 2 plate 118 side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis 113t of the linearly polarizing element 113.
φ1について、好適な範囲は、42°≦φ1≦48°又は132°≦φ1≦138°であり、より好適な範囲は、44°≦φ1≦46°又は134°≦φ1≦136°であり、φ2について、好適な範囲は、42°≦φ2≦48°又は132°≦φ2≦138°であり、より好適な範囲は、44°≦φ2≦46°又は134°≦φ2≦136°であり、φ3について、好適な範囲は、87°≦φ3≦93°又は-3°≦φ3≦3°であり、より好適な範囲は、89°≦φ3≦91°又は-1°≦φ3≦1°である。 For φ1, the preferred range is 42 ° ≦ φ1 ≦ 48 ° or 132 ° ≦ φ1 ≦ 138 °, the more preferred range is 44 ° ≦ φ1 ≦ 46 ° or 134 ° ≦ φ1 ≦ 136 °, For φ2, the preferred range is 42 ° ≦ φ2 ≦ 48 ° or 132 ° ≦ φ2 ≦ 138 °, the more preferred range is 44 ° ≦ φ2 ≦ 46 ° or 134 ° ≦ φ2 ≦ 136 °, For φ3, the preferred range is 87 ° ≦ φ3 ≦ 93 ° or −3 ° ≦ φ3 ≦ 3 °, and the more preferred range is 89 ° ≦ φ3 ≦ 91 ° or −1 ° ≦ φ3 ≦ 1 °. is there.
NZ,hについて、好適な範囲は、0.72≦NZ,h≦0.78又は0.22≦NZ,h≦0.28であり、より好適な範囲は、0.74≦NZ,h≦0.76又は0.24≦NZ,h≦0.26である。 For NZ, h, a preferred range is 0.72 ≦ NZ, h ≦ 0.78 or 0.22 ≦ NZ, h ≦ 0.28, and a more preferred range is 0.74 ≦ NZ, h ≦ 0.76 or 0.24 ≦ NZ, h ≦ 0.26.
本実施形態によれば、表示装置110からの出射光を円偏光にすることができるため、上記課題(1)、(2)を解決することができる。以下、その原理を具体的に説明する。 According to this embodiment, since the emitted light from the display device 110 can be circularly polarized, the above problems (1) and (2) can be solved. The principle will be specifically described below.
なお、以下の説明では、偏光素子111の透過軸111tを0°方位に設定し、偏光素子113の透過軸113tを90°方位に設定し、λ/2板118の面内遅相軸118sを0°方位又は90°方位に設定し、λ/2板118のNZ係数NZ,hを0.75又は0.25に設定し、λ/4板114の面内遅相軸114sを135°方位に設定し、λ/4板121の面内遅相軸121sを45°方位に設定し、偏光素子123の透過軸123tを0°方位に設定し、液晶パネル122の液晶層の位相差をゼロにした状態でシャッターの遮光状態が得られるように液晶パネル122の液晶モードを設定している。面内遅相軸118sが0°方位に設定された場合、すなわち、面内遅相軸118sが透過軸113tと直交する場合、NZ,hは、0.75に設定される。面内遅相軸118sが90°方位に設定された場合、すなわち、面内遅相軸118sが透過軸113tと平行である場合、NZ,hは、0.25に設定される。このように、λ/2板118の面内遅相軸118sは、偏光素子113の透過軸113tに対して直交又は平行に配置されている。そのため、正面視した時、すなわち、表示装置110の表示画面と、メガネ120の液晶パネル122の面とが実質的に平行な状態で表示画面を観察した時、λ/2板118は、偏光素子113を透過した偏光の位相差に影響を及ぼさない。したがって、以下の原理説明では、λ/2板118の機能について説明していない。 In the following description, the transmission axis 111t of the polarizing element 111 is set to 0 ° azimuth, the transmission axis 113t of the polarizing element 113 is set to 90 ° azimuth, and the in-plane slow axis 118s of the λ / 2 plate 118 is set to Set to 0 ° or 90 °, set NZ coefficient NZ, h of λ / 2 plate 118 to 0.75 or 0.25, and set in-plane slow axis 114s of λ / 4 plate 114 to 135 ° The in-plane slow axis 121s of the λ / 4 plate 121 is set to 45 ° azimuth, the transmission axis 123t of the polarizing element 123 is set to 0 ° azimuth, and the phase difference of the liquid crystal layer of the liquid crystal panel 122 is zero. The liquid crystal mode of the liquid crystal panel 122 is set so that the shutter light-shielding state can be obtained in this state. When the in-plane slow axis 118s is set to 0 ° azimuth, that is, when the in-plane slow axis 118s is orthogonal to the transmission axis 113t, NZ, h is set to 0.75. When the in-plane slow axis 118s is set in the 90 ° azimuth, that is, when the in-plane slow axis 118s is parallel to the transmission axis 113t, NZ, h is set to 0.25. As described above, the in-plane slow axis 118 s of the λ / 2 plate 118 is disposed orthogonally or parallel to the transmission axis 113 t of the polarizing element 113. Therefore, when viewed from the front, that is, when the display screen is observed in a state where the display screen of the display device 110 and the surface of the liquid crystal panel 122 of the glasses 120 are substantially parallel, the λ / 2 plate 118 is a polarizing element. 113 does not affect the phase difference of the polarized light transmitted through 113. Therefore, in the following description of the principle, the function of the λ / 2 plate 118 is not described.
まず、課題(1)について説明する。課題(1)は、シャッターが遮光状態になっているべき時に透光状態になった場合に発生する。したがって、下記(i)、(ii)において、液晶パネル122の液晶層の位相差はゼロである。
(i)顔を傾けない場合は、クロスニコル状態の偏光素子113と偏光素子123の間に、互いの面内遅相軸が直交するようにλ/4板114及び121が配置されている。そのため、λ/4板114、121の効果は実質的に無効化される。したがって、シャッターは遮光状態になる(図4参照)。
(ii)顔を90°傾けた場合、偏光素子123も90°傾くため、偏光素子113と偏光素子123の関係はパラレルニコルになる。同時にλ/4板121も90°傾くため、λ/4板114の面内遅相軸114sと、λ/4板121の面内遅相軸121sとが平行になる。したがって、λ/4板114及び121は、実質的にλ/2板として機能する。よって、顔を傾けても、シャッターは遮光状態になる(図5参照)。
First, the problem (1) will be described. The problem (1) occurs when the shutter is in a light-transmitting state when it should be in a light-blocking state. Therefore, in the following (i) and (ii), the phase difference of the liquid crystal layer of the liquid crystal panel 122 is zero.
(I) When the face is not tilted, the λ / 4 plates 114 and 121 are arranged between the polarizing element 113 and the polarizing element 123 in the crossed Nicols state so that the in-plane slow axes thereof are orthogonal to each other. Therefore, the effect of the λ / 4 plates 114 and 121 is substantially invalidated. Therefore, the shutter is shielded from light (see FIG. 4).
(Ii) When the face is tilted by 90 °, the polarizing element 123 is also tilted by 90 °, so the relationship between the polarizing element 113 and the polarizing element 123 is parallel Nicol. At the same time, the λ / 4 plate 121 is also inclined by 90 °, so that the in-plane slow axis 114 s of the λ / 4 plate 114 and the in-plane slow axis 121 s of the λ / 4 plate 121 are parallel to each other. Accordingly, the λ / 4 plates 114 and 121 substantially function as λ / 2 plates. Therefore, even if the face is tilted, the shutter is in a light shielding state (see FIG. 5).
次に、課題(2)について説明する。課題(2)は、シャッターが透光状態になっているべき時に遮光状態になった場合に発生する。したがって、下記(i)、(ii)において、液晶パネル122の液晶層の位相差はλ/2である。
(i)顔を傾けない場合は、クロスニコル状態の偏光素子113と偏光素子123の間に、互いの面内遅相軸が直交するようにλ/4板114及び121が配置されている。そのため、λ/4板114、121の効果は実質的に無効化される。よって、偏光素子113と偏光素子123の間には液晶パネル122の液晶層(λ/2)だけが存在し、シャッターは透光状態になる(図6参照)。
(ii)顔を90°傾けた場合、偏光素子123も90°傾くため、偏光素子113と偏光素子123の関係はパラレルニコルになる。同時にλ/4板121も90°傾くため、λ/4板114の面内遅相軸114sと、λ/4板121の面内遅相軸121sとが平行になる。したがって、λ/4板114及び121は、実質的にλ/2板として機能する。実質的にλ/2板として機能するλ/4板114及び121と、液晶層(λ/2)とが、互いの位相差を、無効化するか、又は、足し合わすことになる。すなわち、実質的にパラレルニコル状態の偏光素子113及び123だけが存在することになるので、シャッターは透光状態になる(図7参照)。
Next, the problem (2) will be described. The problem (2) occurs when the shutter is in a light shielding state when it should be in a light transmitting state. Therefore, in the following (i) and (ii), the phase difference of the liquid crystal layer of the liquid crystal panel 122 is λ / 2.
(I) When the face is not tilted, the λ / 4 plates 114 and 121 are arranged between the polarizing element 113 and the polarizing element 123 in the crossed Nicols state so that the in-plane slow axes thereof are orthogonal to each other. Therefore, the effect of the λ / 4 plates 114 and 121 is substantially invalidated. Therefore, only the liquid crystal layer (λ / 2) of the liquid crystal panel 122 exists between the polarizing element 113 and the polarizing element 123, and the shutter is in a light-transmitting state (see FIG. 6).
(Ii) When the face is tilted by 90 °, the polarizing element 123 is also tilted by 90 °, so the relationship between the polarizing element 113 and the polarizing element 123 is parallel Nicol. At the same time, the λ / 4 plate 121 is also inclined by 90 °, so that the in-plane slow axis 114 s of the λ / 4 plate 114 and the in-plane slow axis 121 s of the λ / 4 plate 121 are parallel to each other. Accordingly, the λ / 4 plates 114 and 121 substantially function as λ / 2 plates. The λ / 4 plates 114 and 121 that substantially function as λ / 2 plates and the liquid crystal layer (λ / 2) invalidate or add to each other's phase difference. That is, since only the polarization elements 113 and 123 in a substantially parallel Nicol state are present, the shutter is in a translucent state (see FIG. 7).
以上のようにして、上記課題(1)、(2)は解決される。ただし、これらは正面視した時の現象である。 As described above, the problems (1) and (2) are solved. However, these are phenomena when viewed from the front.
そこで、本実施形態は、上記式(5)及び(6)、又は、(7)及び(8)を満たす。また、本実施形態は、上記式(1)、又は、(3)を満たし、λ/4板114のNZ係数は1以下(好適には1未満)に設定される。これにより、後述するシミュレーションの結果で示されるように、上述のシステム1300に比べて、斜め視角において、λ/4板114を透過した光の偏光状態を円偏光により近づけることができる。 Therefore, this embodiment satisfies the above formulas (5) and (6) or (7) and (8). In the present embodiment, the above formula (1) or (3) is satisfied, and the NZ coefficient of the λ / 4 plate 114 is set to 1 or less (preferably less than 1). As a result, as shown in the simulation results described below, the polarization state of the light transmitted through the λ / 4 plate 114 can be made closer to circularly polarized light at an oblique viewing angle as compared with the system 1300 described above.
特に好ましい設定条件としては以下が挙げられる。すなわち、λ/4板114のNZ係数を0.5に設定し、その面内遅相軸114sと透過軸113tとのなす角を45°に設定し、更に、λ/4板121をその面内遅相軸121sが面内遅相軸114sと直交するように配置し、そして、下記(a)又は(b)に設定する。
(a)NZ,hを0.75とし、面内遅相軸118sを透過軸113tと直交させる。
(b)NZ,hを0.25とし、面内遅相軸118sを透過軸113tと平行にする。
これにより、斜め視角において、λ/4板114を透過した光の偏光状態は、常に円偏光となる。
Particularly preferable setting conditions include the following. That is, the NZ coefficient of the λ / 4 plate 114 is set to 0.5, the angle formed between the in-plane slow axis 114s and the transmission axis 113t is set to 45 °, and the λ / 4 plate 121 is further moved to the surface. The inner slow axis 121s is arranged so as to be orthogonal to the in-plane slow axis 114s, and the following (a) or (b) is set.
(A) NZ and h are set to 0.75, and the in-plane slow axis 118s is orthogonal to the transmission axis 113t.
(B) NZ and h are set to 0.25, and the in-plane slow axis 118s is parallel to the transmission axis 113t.
As a result, the polarization state of the light transmitted through the λ / 4 plate 114 is always circularly polarized at an oblique viewing angle.
ここで、上記特に好ましい条件に設定した場合の偏光状態の変遷を図8及び9を用いて具体的に説明する。図8及び9中、偏光素子113を出射した直後の偏光状態は点P0で、λ/2板118を出射した直後の偏光状態は点P1で、λ/4板114を出射した直後の偏光状態は点P2で示される。 Here, the transition of the polarization state when the above-mentioned particularly preferable conditions are set will be specifically described with reference to FIGS. 8 and 9, the polarization state immediately after exiting the polarizing element 113 is point P0, the polarization state immediately after exiting the λ / 2 plate 118 is point P1, and the polarization state immediately after exiting the λ / 4 plate 114. Is indicated by a point P2.
極角60°、方位角0°において、λ/2板118は、偏光素子113を透過した光の偏光状態に影響を及ぼさない。したがって、図8に示すように、極角60°、方位角0°において、λ/2板118を出射した直後の偏光状態P1は、偏光素子113を出射した直後の偏光状態P0と同じである。そして、λ/2板118を出射した光は、λ/4板114を透過することによって円偏光に変換される。 At a polar angle of 60 ° and an azimuth angle of 0 °, the λ / 2 plate 118 does not affect the polarization state of the light transmitted through the polarizing element 113. Therefore, as shown in FIG. 8, at the polar angle of 60 ° and the azimuth angle of 0 °, the polarization state P1 immediately after exiting the λ / 2 plate 118 is the same as the polarization state P0 immediately after exiting the polarization element 113. . The light emitted from the λ / 2 plate 118 is converted to circularly polarized light by passing through the λ / 4 plate 114.
図9に示すように、極角60°、方位角45°においては、まず、偏光素子113を出射した光は、λ/2板118を透過することによって偏光状態P1の光に変換される。そして、λ/2板118を出射した光は、λ/4板114を透過することによって円偏光に変換される。 As shown in FIG. 9, at a polar angle of 60 ° and an azimuth angle of 45 °, first, the light emitted from the polarizing element 113 is converted into light in the polarization state P1 by passing through the λ / 2 plate 118. The light emitted from the λ / 2 plate 118 is converted to circularly polarized light by passing through the λ / 4 plate 114.
以上、説明したように、本実施形態によれば、システム1300に比べて、斜め視角におけるシャッター遮光時の透過率をより低減することができるので、斜め視角においてクロストークの発生をより低減することができる。 As described above, according to the present embodiment, it is possible to further reduce the transmittance when the shutter is shielded at an oblique viewing angle, as compared with the system 1300. Therefore, it is possible to further reduce the occurrence of crosstalk at the oblique viewing angle. Can do.
また、一般的なλ/4板、すなわち、1軸延伸されたNZ係数が1.0のフィルムにおいては、面内の2つの主屈折率nx及びnyの差が重要であった。それに対して、本実施形態は、斜め視角でのλ/4板114の特性も考慮しているため、λ/4板114の厚み方向の主屈折率nzも重要なパラメータとなる。 Further, in a general λ / 4 plate, that is, a uniaxially stretched film having an NZ coefficient of 1.0, the difference between the two in-plane main refractive indexes nx and ny was important. On the other hand, since the present embodiment also considers the characteristics of the λ / 4 plate 114 at an oblique viewing angle, the main refractive index nz in the thickness direction of the λ / 4 plate 114 is also an important parameter.
λ/4板114とは異なり、λ/4板121は、メガネ120装着時、ほぼ常に正面から観察される。したがって、λ/4板121の面内位相差がλ/4条件を満たせばよく、λ/4板121のNZ係数は、任意の値に設定することができる。λ/4板121のNZ係数は、透過率に依存しないためである。 Unlike the λ / 4 plate 114, the λ / 4 plate 121 is almost always observed from the front when the glasses 120 are worn. Therefore, the in-plane retardation of the λ / 4 plate 121 only needs to satisfy the λ / 4 condition, and the NZ coefficient of the λ / 4 plate 121 can be set to an arbitrary value. This is because the NZ coefficient of the λ / 4 plate 121 does not depend on the transmittance.
本実施形態と、特許文献2に記載の技術との違いを要約すると以下の通りである。
立体映像認識システムにおいて、視野角は2つの意味で用いられる。
(A)アクティブシャッターメガネを掛けて3D表示装置を正面視した状態で、観察者が顔を傾けた場合のシャッター機能の視野角。
(B)アクティブシャッターメガネを掛けた状態で、3D表示装置の画面に対して観察者が斜め方向に移動した場合のシャッター機能の視野角。
特許文献2では、(A)の視野角に対しての解決策を提供している。それに対して、本実施形態では、(A)の視野角のみならず、図10に示すように、(B)の視野角も改善することができる。
The differences between the present embodiment and the technique described in Patent Document 2 are summarized as follows.
In the stereoscopic image recognition system, the viewing angle is used in two meanings.
(A) The viewing angle of the shutter function when the observer tilts his face while wearing the active shutter glasses and viewing the 3D display device from the front.
(B) The viewing angle of the shutter function when the observer moves in an oblique direction with respect to the screen of the 3D display device with the active shutter glasses on.
Patent Document 2 provides a solution to the viewing angle of (A). On the other hand, in this embodiment, not only the viewing angle of (A) but also the viewing angle of (B) can be improved as shown in FIG.
以下、本実施形態の構成部材について詳述する。 Hereinafter, the constituent members of this embodiment will be described in detail.
偏光素子111、113は、互いにクロスニコルに配置されている。すなわち、偏光素子111の透過軸111tと、偏光素子113の透過軸113tとのなす角は、略90°(好適には87~93°、より好適には89~91°)に設定される。 The polarizing elements 111 and 113 are arranged in crossed Nicols. That is, the angle formed by the transmission axis 111t of the polarizing element 111 and the transmission axis 113t of the polarizing element 113 is set to approximately 90 ° (preferably 87 to 93 °, more preferably 89 to 91 °).
ただし、偏光素子111、113の透過軸の配置関係は液晶パネル112の液晶モードに合せて適宜設定でき、パラレルニコルであってもよい。 However, the arrangement relationship of the transmission axes of the polarizing elements 111 and 113 can be appropriately set according to the liquid crystal mode of the liquid crystal panel 112, and may be parallel Nicols.
偏光素子113の透過軸113tは、表示装置110の画面を正面視した時、実質的に鉛直方向を向くように設定されている。より具体的には、透過軸113tは、87~93°方位(好適には89~91°方位)の範囲内に設定されている。 The transmission axis 113t of the polarizing element 113 is set so as to face substantially the vertical direction when the screen of the display device 110 is viewed from the front. More specifically, the transmission axis 113t is set in the range of 87 to 93 ° azimuth (preferably 89 to 91 ° azimuth).
偏光素子123の透過軸123tは、観察者がメガネ120装着時、左右方向を向くように設定されている。より具体的には、透過軸123tは、-3~+3°方位(好適には-1~+1°方位)の範囲内に設定されている。 The transmission axis 123t of the polarizing element 123 is set so as to face in the left-right direction when the observer wears the glasses 120. More specifically, the transmission axis 123t is set within a range of −3 to + 3 ° azimuth (preferably −1 to + 1 ° azimuth).
ただし、偏光素子123、液晶パネル122及びλ/4板121の配置関係が上述の関係を満たす限り、偏光素子123の透過軸123tの配置方向は特に限定されず、適宜、設定することができる。例えば、偏光素子123、液晶パネル122及びλ/4板121を一緒に、図2に示した状態から適宜回転してもよい。 However, as long as the arrangement relationship of the polarizing element 123, the liquid crystal panel 122, and the λ / 4 plate 121 satisfies the above relationship, the arrangement direction of the transmission axis 123t of the polarizing element 123 is not particularly limited and can be set as appropriate. For example, the polarizing element 123, the liquid crystal panel 122, and the λ / 4 plate 121 may be appropriately rotated together from the state shown in FIG.
直線偏光素子111、113、123としては、典型的にはポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体等の異方性材料を吸着配向させたものが挙げられる。機械強度及び耐湿熱性を確保するために、PVAフィルムの両面上にトリアセチルセルロース(TAC)フィルム等の保護フィルムをラミネートしてもよい。このように、直線偏光素子111、113、123は、所謂、偏光板として利用されてもよい。 Examples of the linearly polarizing elements 111, 113, and 123 typically include a material obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism on a polyvinyl alcohol (PVA) film. In order to ensure mechanical strength and heat-and-moisture resistance, a protective film such as a triacetyl cellulose (TAC) film may be laminated on both sides of the PVA film. Thus, the linearly polarizing elements 111, 113, and 123 may be used as so-called polarizing plates.
偏光素子111及び113の間には、光学補償を目的として、適宜、1以上の複屈折層(光学補償フィルム)が設けられてもよい。このように、偏光素子111及び光学補償フィルムを含む裏偏光板と、偏光素子113及び光学補償フィルムを含む表偏光板とを用いてもよい。各光学補償フィルムは、対応する偏光素子に直接貼り合わされてもよいし、対応する偏光素子の保護フィルムとして機能してもよい。 Between the polarizing elements 111 and 113, one or more birefringent layers (optical compensation films) may be provided as appropriate for the purpose of optical compensation. Thus, a back polarizing plate including the polarizing element 111 and the optical compensation film and a front polarizing plate including the polarizing element 113 and the optical compensation film may be used. Each optical compensation film may be directly bonded to the corresponding polarizing element, or may function as a protective film for the corresponding polarizing element.
また、表示装置110の観察者側の最表面には、表面処理層が設けられてもよい。 Further, a surface treatment layer may be provided on the outermost surface of the display device 110 on the viewer side.
なお、表面処理層としては、大きく次の3つのものが挙げられる。第一に、傷付防止のためのハードコート層、第二に、防眩性を付与するためのAG(Anti Glare)層、第三に、表面反射を低減させるための反射防止層である。 In addition, as a surface treatment layer, the following three things are mainly mentioned. First, a hard coat layer for preventing scratches, second, an AG (Anti Glare) layer for imparting antiglare properties, and third, an antireflection layer for reducing surface reflection.
反射防止層としては、反射率が低いAR(Anti Reflection)層、反射率がAR層よりも高いLR(Low Reflection)層、モスアイ層等が挙げられる。 Examples of the antireflection layer include an AR (Anti Reflection) layer having a low reflectance, an LR (Low Reflection) layer having a higher reflectance than the AR layer, and a moth-eye layer.
なお、表面処理層は、λ/4板114上に形成されてもよいし、別の透明な基材フィルム(例えば、TACフィルム)上に形成されていてもよい。 The surface treatment layer may be formed on the λ / 4 plate 114, or may be formed on another transparent base film (for example, a TAC film).
λ/4板114、121及びλ/2板118の材料については特に限定されず、例えば、ポリマーフィルムを延伸したものを用いることができる。ポリマーとしては、固有複屈折が正の材料が挙げられ、より具体的には、例えば、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリエチレンテレフタレート、ポリエチレン、ポリビニルアルコール、ノルボルネン、トリアセチルセルロース、ジアチルセルロース等が挙げられる。 The materials of the λ / 4 plates 114 and 121 and the λ / 2 plate 118 are not particularly limited, and for example, a stretched polymer film can be used. Examples of the polymer include materials having a positive intrinsic birefringence, and more specifically, for example, polycarbonate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene, polyvinyl alcohol, norbornene, triacetylcellulose, diacylcellulose, and the like. Is mentioned.
λ/4板114、121の形成方法は特に限定されないが、λ/4板114、121のNZ係数が0<NZ≦1を満たす場合、例えば、上記特許文献3に記載の方法で作製することができる。NZ=0を満たす場合、例えば、光軸がフィルム面の法線に対して垂直になるようにディスコティック液晶を並べる方法で作製することができる。NZ<0を満たす場合、負の固有複屈折を示す熱可塑性樹脂を2軸延伸する方法で作製することができる。 The method of forming the λ / 4 plates 114 and 121 is not particularly limited. However, when the NZ coefficient of the λ / 4 plates 114 and 121 satisfies 0 <NZ ≦ 1, for example, the λ / 4 plates 114 and 121 are manufactured by the method described in Patent Document 3 above. Can do. When NZ = 0 is satisfied, for example, the discotic liquid crystal can be prepared by aligning the optical axes so that the optical axis is perpendicular to the normal of the film surface. When NZ <0 is satisfied, a thermoplastic resin exhibiting negative intrinsic birefringence can be produced by a biaxial stretching method.
λ/2板118の形成方法は特に限定されないが、例えば、特開2007-219478号公報に記載の方法で作製することができる。 The method for forming the λ / 2 plate 118 is not particularly limited, but for example, it can be produced by the method described in JP-A-2007-219478.
また、λ/2板118は、偏光素子113に隣接することが好ましい。すなわち、λ/2板118と偏光素子113の間には複屈折層が設けられないことが好ましい。ただし、λ/2板118と偏光素子113の間には、等方性フィルムが配置されてもよい。また、λ/2板118と偏光素子113の間には、後述するようなTACフィルム等の保護フィルムが配置されてもよい。更に、λ/2板118と偏光素子113との間に複屈折層があってもよく、この場合でも、該複屈折層の遅相軸を、偏光素子113の透過軸113tと略直交をなす方向に設定することで、該複屈折層の複屈折機能を実質的に無効化し、λ/2板118と偏光素子113との間に複屈折層が設けられていない場合と同様の効果を得ることができる。なお、この場合において、略直交とは、両軸のなす角が90°±3°の範囲内であることが好ましく、90°±1°の範囲内であることがより好ましい。 The λ / 2 plate 118 is preferably adjacent to the polarizing element 113. That is, it is preferable that no birefringent layer is provided between the λ / 2 plate 118 and the polarizing element 113. However, an isotropic film may be disposed between the λ / 2 plate 118 and the polarizing element 113. Further, a protective film such as a TAC film as described later may be disposed between the λ / 2 plate 118 and the polarizing element 113. Further, a birefringent layer may be provided between the λ / 2 plate 118 and the polarizing element 113. In this case, the slow axis of the birefringent layer is substantially orthogonal to the transmission axis 113t of the polarizing element 113. Setting the direction substantially invalidates the birefringence function of the birefringent layer, and the same effect as when no birefringent layer is provided between the λ / 2 plate 118 and the polarizing element 113 is obtained. be able to. In this case, “substantially orthogonal” means that the angle formed by both axes is preferably in the range of 90 ° ± 3 °, and more preferably in the range of 90 ° ± 1 °.
また、λ/4板114は、λ/2板118に隣接することが好ましい。すなわち、λ/4板114とλ/2板118の間には複屈折層が設けられないことが好ましい。ただし、λ/4板114とλ/2板118の間には、等方性フィルムが配置されてもよい。また、λ/4板114とλ/2板118の間には、TACフィルム等の保護フィルムが配置されてもよい。 The λ / 4 plate 114 is preferably adjacent to the λ / 2 plate 118. That is, it is preferable that a birefringent layer is not provided between the λ / 4 plate 114 and the λ / 2 plate 118. However, an isotropic film may be disposed between the λ / 4 plate 114 and the λ / 2 plate 118. Further, a protective film such as a TAC film may be disposed between the λ / 4 plate 114 and the λ / 2 plate 118.
また、λ/4板121は、液晶パネル122に隣接することが好ましい。すなわち、λ/4板121と液晶パネル122の間には複屈折層が設けられないことが好ましい。ただし、λ/4板121と液晶パネル122の間には、等方性フィルムが配置されてもよい。また、λ/4板121と液晶パネル122の間に複屈折層があってもよく、この場合でも、該複屈折層の遅相軸を、偏光素子123の透過軸123tと略平行又は略直交をなす方向に設定することで、該複屈折層の複屈折機能を実質的に無効化し、λ/4板121と液晶パネル122との間に複屈折層が設けられていない場合と同様の効果を得ることができる。なお、この場合において、略平行とは、両軸のなす角が0°±3°の範囲内であることが好ましく、0°±1°の範囲内であることがより好ましく、略直交とは、両軸のなす角が90°±3°の範囲内であることが好ましく、90°±1°の範囲内であることがより好ましい。 The λ / 4 plate 121 is preferably adjacent to the liquid crystal panel 122. That is, it is preferable that no birefringent layer is provided between the λ / 4 plate 121 and the liquid crystal panel 122. However, an isotropic film may be disposed between the λ / 4 plate 121 and the liquid crystal panel 122. Further, a birefringent layer may be provided between the λ / 4 plate 121 and the liquid crystal panel 122. In this case, the slow axis of the birefringent layer is substantially parallel or substantially orthogonal to the transmission axis 123t of the polarizing element 123. Is set to a direction that substantially eliminates the birefringence function of the birefringent layer, and has the same effect as when no birefringent layer is provided between the λ / 4 plate 121 and the liquid crystal panel 122. Can be obtained. In this case, “substantially parallel” means that the angle formed by both axes is preferably in the range of 0 ° ± 3 °, more preferably in the range of 0 ° ± 1 °, The angle formed by both axes is preferably in the range of 90 ° ± 3 °, and more preferably in the range of 90 ° ± 1 °.
液晶パネル112の液晶モード(表示モード)は特に限定されず、例えば、垂直配向(Vertical Alignment(VA))モード、面内スイッチング(In Plane Switching(IPS))モード、フィールドフリンジスイッチング(Field Fringe Switching(FFS))モード等の液晶モードが挙げられる。液晶パネル112は、2枚の透明基板と、この2枚の基板の間に狭持された液晶層と、2枚の基板の少なくとも一方に形成された透明電極とを備える。液晶パネル112の駆動方式としては特に限定されず、単純マトリクス方式(パッシブマトリクス方式)、プラズマアドレス方式等であってもよいが、なかでもTFT方式(アクティブマトリクス方式)が好適である。 The liquid crystal mode (display mode) of the liquid crystal panel 112 is not particularly limited. For example, the vertical alignment (Vertical Alignment (VA)) mode, the in-plane switching (IPS) mode, the field fringe switching (Field Fringe Switching) Liquid crystal modes such as FFS)) mode. The liquid crystal panel 112 includes two transparent substrates, a liquid crystal layer sandwiched between the two substrates, and a transparent electrode formed on at least one of the two substrates. The driving method of the liquid crystal panel 112 is not particularly limited, and a simple matrix method (passive matrix method), a plasma addressing method, or the like may be used. Among them, a TFT method (active matrix method) is preferable.
液晶パネル122の液晶モード(表示モード)は、クロスニコル状態の一対の直線偏光素子を黒表示に利用できるモードであれば特に限定されず、例えば、VAモード、IPSモード、捩れネマチック(Twisted Nematic(TN))モード、スーパー捩れネマチック(Super Twisted Nematic(STN))モード、光学補償複屈折(Optically Compensated Birefringence(OCB))モード、FFSモード等の液晶モードが挙げられる。液晶パネル122は、表示装置110のフレームレートに同期できる程度の応答速度を確保できるものであることが好ましい。また、液晶パネル122は、2枚の透明基板と、この2枚の基板の間に狭持された液晶層と、2枚の基板の少なくとも一方に形成された透明電極とを備える。 The liquid crystal mode (display mode) of the liquid crystal panel 122 is not particularly limited as long as the pair of linearly polarizing elements in the crossed Nicols state can be used for black display. For example, VA mode, IPS mode, twisted nematic (twisted nematic (twisted nematic) TN)) mode, Super Twisted Nematic (STN) mode, Optically Compensated Birefringence (OCB) mode, and FFS mode. The liquid crystal panel 122 preferably has a response speed that can be synchronized with the frame rate of the display device 110. The liquid crystal panel 122 includes two transparent substrates, a liquid crystal layer sandwiched between the two substrates, and a transparent electrode formed on at least one of the two substrates.
なお、液晶パネル122の液晶モードによって、λ/4板121の最適なNZ係数が変化することはない。 Note that the optimum NZ coefficient of the λ / 4 plate 121 does not change depending on the liquid crystal mode of the liquid crystal panel 122.
液晶パネル122のリタデーションΔn・dは特に限定されず、シャッター透過時の透過率を考慮して、適宜、設定することができる。Δn、及び、dはそれぞれ、液晶パネル122の複屈折異方性、及び、セルギャップを表す。最適なΔn・dは、採用する液晶モードによって異なるが、液晶パネル122のΔn・dは、通常、200~800nmの範囲で設定することができる。 The retardation Δn · d of the liquid crystal panel 122 is not particularly limited, and can be appropriately set in consideration of the transmittance at the time of transmitting through the shutter. Δn and d represent the birefringence anisotropy and the cell gap of the liquid crystal panel 122, respectively. Although the optimum Δn · d varies depending on the liquid crystal mode to be employed, the Δn · d of the liquid crystal panel 122 can usually be set in a range of 200 to 800 nm.
なお、液晶パネル122のΔn・dによって、λ/4板121の最適なNZ係数が変化することはない。 Note that the optimal NZ coefficient of the λ / 4 plate 121 does not change depending on Δn · d of the liquid crystal panel 122.
バックライトユニットは、直下型であってもよいし、エッジライト型であってもよい。表示装置110は、半透過型又は反射型の液晶ディスプレイであってもよく、反射型の場合は、バックライトユニットを省略することができる。 The backlight unit may be a direct type or an edge light type. The display device 110 may be a transflective or reflective liquid crystal display. In the case of a reflective type, the backlight unit can be omitted.
表示装置110としては液晶ディスプレイに特に限定されず、その他、プラズマディスプレイ、有機又は無機ELディスプレイ、CRTディスプレイ、プロジェクタ等であってもよい。ただし、これらの表示装置を適用する場合は、別途、偏光素子113を設ける必要があり、コストアップ要因となる。それに対して、表示装置110として液晶ディスプレイを適用することで、偏光素子113として一般的な表偏光板に含まれる直線偏光素子を利用することができるので、偏光素子113がコストアップ要因とならない。 The display device 110 is not particularly limited to a liquid crystal display, but may be a plasma display, an organic or inorganic EL display, a CRT display, a projector, or the like. However, when these display devices are applied, it is necessary to provide the polarizing element 113 separately, which causes a cost increase. On the other hand, by applying a liquid crystal display as the display device 110, a linearly polarizing element included in a general surface polarizing plate can be used as the polarizing element 113. Therefore, the polarizing element 113 does not cause an increase in cost.
なお、λ/4板114及びλ/2板118は、偏光素子113及びλ/4板121の間に配置される限りは、その配置場所は特に限定されない。例えば、本実施形態の立体映像認識システム100は、更に前面板(図示せず)を含み、λ/4板114及びλ/2板118は、この前面板に設けられてもよい。 In addition, as long as the λ / 4 plate 114 and the λ / 2 plate 118 are arranged between the polarizing element 113 and the λ / 4 plate 121, the arrangement positions thereof are not particularly limited. For example, the stereoscopic image recognition system 100 of the present embodiment may further include a front plate (not shown), and the λ / 4 plate 114 and the λ / 2 plate 118 may be provided on the front plate.
前面板は、表示装置110の画面の観察者側、すなわち画面前方に配置される透明な部材であり、表示装置110の画面(表示領域)を覆って配置される。前面板は、保護板、又は、タッチパネルを含む。保護板は、様々な衝撃から表示装置110を保護する。前面板の観察者側の最表面には、上述の表面処理層が設けられてもよい。 The front plate is a transparent member disposed on the viewer side of the screen of the display device 110, that is, in front of the screen, and is disposed so as to cover the screen (display area) of the display device 110. The front plate includes a protective plate or a touch panel. The protective plate protects the display device 110 from various impacts. The above-mentioned surface treatment layer may be provided on the outermost surface of the front plate on the viewer side.
保護板の材料としては、透明性が高く、かつ機械的強度が高いことが好ましく、強化ガラスや、ポリカーボネート、アクリル等からなる樹脂が好適である。 As a material for the protective plate, high transparency and high mechanical strength are preferred, and a resin made of tempered glass, polycarbonate, acrylic, or the like is suitable.
タッチパネルは、各種の情報を入力する入力装置であり、タッチパネルの表面をタッチ(押圧)することによって表示装置110の画面を透視しながら情報を入力することができる。このように、タッチパネルは、画面上の所定の箇所を指、ペン等でタッチするだけで表示装置110を対話的、直感的に操作することができる。 The touch panel is an input device for inputting various types of information, and information can be input while seeing through the screen of the display device 110 by touching (pressing) the surface of the touch panel. As described above, the touch panel can interactively and intuitively operate the display device 110 only by touching a predetermined portion on the screen with a finger, a pen, or the like.
タッチパネルの動作原理は特に限定されず、抵抗膜方式、静電容量結合方式、赤外線方式、超音波方式、電磁誘導結合方式等が挙げられるが、なかでもコスト削減の観点からは、抵抗膜方式及び静電容量結合方式が好適である。 The operation principle of the touch panel is not particularly limited, and includes a resistive film method, a capacitive coupling method, an infrared method, an ultrasonic method, an electromagnetic induction coupling method, etc. Among them, from the viewpoint of cost reduction, the resistive film method and A capacitive coupling method is preferable.
表示装置110及び前面板の間の構成は、表示装置110から出射される光の偏光状態を大きく変化させることがなければ特に限定されない。これらの間には、空気層があってもよいし、なくてもよい。また、粘着剤又は接着剤を含む層があってもよい。更に、等方性フィルムがあってもよい。 The configuration between the display device 110 and the front plate is not particularly limited as long as the polarization state of the light emitted from the display device 110 is not significantly changed. There may or may not be an air layer between them. Moreover, there may be a layer containing an adhesive or an adhesive. Furthermore, there may be an isotropic film.
また、前面板は、観察者によって任意に設置可能な部材であってもよい。これにより、平面映像表示時は前面板を取り外し、前面板を介さずに平面映像を視認することができるので、平面映像表示時の画面輝度を向上することができる。 The front plate may be a member that can be arbitrarily installed by an observer. As a result, the front panel can be removed when displaying a flat image, and the flat image can be viewed without using the front panel, so that the screen brightness when displaying a flat image can be improved.
(実施形態2)
実施形態2の立体映像認識システムについて説明する。本実施形態と実施形態1との主な相違点は、以下の通りである。
(Embodiment 2)
A stereoscopic image recognition system according to the second embodiment will be described. The main differences between this embodiment and Embodiment 1 are as follows.
図11に示すように、λ/2板118は、粘着剤又は接着剤によって偏光素子113に直に貼付されている。 As shown in FIG. 11, the λ / 2 plate 118 is directly attached to the polarizing element 113 with an adhesive or an adhesive.
λ/4板114は、粘着剤又は接着剤によってλ/2板118に貼付されている。 The λ / 4 plate 114 is attached to the λ / 2 plate 118 with an adhesive or an adhesive.
液晶パネル112及び偏光素子111の間と、液晶パネル112及び偏光素子113の間とには、それぞれ、液晶パネル112の視野角を補償するために光学補償フィルム216及び217が設けられている。光学補償フィルム216、217は、複屈折層として機能する。 Optical compensation films 216 and 217 are provided between the liquid crystal panel 112 and the polarizing element 111 and between the liquid crystal panel 112 and the polarizing element 113 in order to compensate the viewing angle of the liquid crystal panel 112, respectively. The optical compensation films 216 and 217 function as a birefringent layer.
なお、光学補償フィルム216、217の代わりに、TACフィルム等の保護フィルムを設けてもよい。 Note that a protective film such as a TAC film may be provided instead of the optical compensation films 216 and 217.
また、λ/4板114の観察者側の面には、等方性フィルムが貼付されてもよく、この等方性フィルムの観察者側の面には、表面処理層が設けられてもよい。 Further, an isotropic film may be attached to the surface of the λ / 4 plate 114 on the observer side, and a surface treatment layer may be provided on the surface of the isotropic film on the observer side. .
なお、表面処理層は、λ/4板114の観察者側の面上に直接形成されてもよい。 The surface treatment layer may be formed directly on the surface of the λ / 4 plate 114 on the viewer side.
λ/4板121は、粘着剤又は接着剤によって液晶パネル122に貼付されている。 The λ / 4 plate 121 is attached to the liquid crystal panel 122 with an adhesive or an adhesive.
偏光素子123の両面には、各々、粘着剤又は接着剤によってTACフィルム等の保護フィルム(図示せず)が貼付されている。また、液晶パネル122側の保護フィルムが粘着剤又は接着剤によって液晶パネル122に貼付され、これにより、偏光素子123が液晶パネル122に固定されている。 A protective film (not shown) such as a TAC film is attached to both surfaces of the polarizing element 123 with an adhesive or an adhesive. Further, a protective film on the liquid crystal panel 122 side is attached to the liquid crystal panel 122 with an adhesive or an adhesive, whereby the polarizing element 123 is fixed to the liquid crystal panel 122.
以下、本実施形態の効果をシミュレーションした結果について説明する。なお、シミュレーションソフトには、液晶シミュレータ「LCD Master」を使用した。 Hereinafter, the result of simulating the effect of this embodiment will be described. As the simulation software, a liquid crystal simulator “LCD Master” was used.
立体映像認識システムの透過率は、液晶ディスプレイ及びアクティブシャッターメガネのミューラーマトリクスをそれぞれ計算し、下記式(9)により算出することができる。 The transmittance of the stereoscopic image recognition system can be calculated by the following formula (9) by calculating the Mueller matrix of the liquid crystal display and the active shutter glasses, respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
また、観察者はアクティブシャッターメガネをかけているため、観察者は、ほぼ常に、アクティブシャッターメガネの液晶パネルを正面から見ていることになる。したがって、ミューラーマトリクスMメガネは正面方向におけるミューラーマトリクスに限定される。また、図2、3に示したように、シャッター機能は、偏光素子113及び123の間で発揮されるので、シャッター機能を評価する際には、偏光素子113よりも背面側(バックライト側)の部材の特性は考慮しなくてよい。すなわち、立体映像認識システムの各視角方向における透過率S’は、液晶ディスプレイの各視角方向におけるミューラーマトリクスMTVに、アクティブシャッターメガネの正面方向におけるミューラーマトリクスMメガネを掛け合わせ、更に、入射光(無偏光)のストークスパラメータSを掛け合わせることによって求められる。そして、シャッター機能の効果は、シャッターが遮光状態を充分に発揮することができるか、すなわち本検証において透過率が低いかどうかで確認される。 Further, since the observer wears active shutter glasses, the observer almost always looks at the liquid crystal panel of the active shutter glasses from the front. Therefore, the Mueller matrix M glasses are limited to the Mueller matrix in the front direction. 2 and 3, since the shutter function is exhibited between the polarizing elements 113 and 123, when evaluating the shutter function, the rear side (backlight side) of the polarizing element 113. The characteristics of these members need not be considered. That is, the transmittance S 'is in each viewing direction of the stereoscopic image recognition system, the Mueller matrix M TV in each viewing direction of the liquid crystal display, multiplied by the Mueller matrix M glasses in the front direction of the active shutter glasses further incident light ( It is obtained by multiplying the non-polarized) Stokes parameter S. The effect of the shutter function is confirmed by whether the shutter can sufficiently exhibit a light shielding state, that is, whether the transmittance is low in this verification.
シミュレーションに用いた各部材のパラメータを以下に示す。
λ/2板118:面内位相差Re=275nm、NZ係数=0.75、遅相軸=0°方位
λ/4板114:面内位相差Re=138nm、NZ係数=0.0、0.2、0.5、0.8又は1.0、遅相軸=135°方位
λ/4板121:面内位相差Re=138nm、NZ係数=1.0、遅相軸=45°方位
偏光素子113、123:単体透過率=42.9%、平行透過率=36.8%、直交透過率=0.0025%
偏光素子113:透過軸=90°方位
偏光素子123:透過軸=0°方位
液晶パネル122:Δn・d=300nm、VAモード
The parameters of each member used for the simulation are shown below.
λ / 2 plate 118: in-plane retardation Re = 275 nm, NZ coefficient = 0.75, slow axis = 0 ° azimuth λ / 4 plate 114: in-plane retardation Re = 138 nm, NZ coefficient = 0.0, 0 .2, 0.5, 0.8 or 1.0, slow axis = 135 ° azimuth λ / 4 plate 121: in-plane retardation Re = 138 nm, NZ coefficient = 1.0, slow axis = 45 ° azimuth Polarizing elements 113 and 123: single transmittance = 42.9%, parallel transmittance = 36.8%, orthogonal transmittance = 0.005%
Polarizing element 113: Transmission axis = 90 ° azimuth Polarizing element 123: Transmission axis = 0 ° azimuth liquid crystal panel 122: Δn · d = 300 nm, VA mode
図12に、本実施形態における透過率の方位角依存性を示す。なお、図12は、シャッター遮光時の透過率を示し、極角60°における結果を示す。また、図12には、比較例として、特許文献2から推測される構成の結果も示す。この比較例は、λ/2板118を備えないことを除いて、本実施形態と同じ部材を備える。ただし、λ/4板114のNZ係数は1.0に設定している。なお、方位角180°から360°における透過率は、方位角0°から180°における透過率と同様の挙動を示す。 FIG. 12 shows the azimuth angle dependence of the transmittance in this embodiment. FIG. 12 shows the transmittance when the shutter is shielded, and shows the result at a polar angle of 60 °. FIG. 12 also shows the result of the configuration estimated from Patent Document 2 as a comparative example. This comparative example includes the same members as the present embodiment except that the λ / 2 plate 118 is not provided. However, the NZ coefficient of the λ / 4 plate 114 is set to 1.0. The transmittance at an azimuth angle of 180 ° to 360 ° exhibits the same behavior as the transmittance at an azimuth angle of 0 ° to 180 °.
図12に示すように、λ/4板114のNZ係数が0~1の範囲において、比較例に比べて、シャッター遮光時の透過率を低くすることができる。 As shown in FIG. 12, when the NZ coefficient of the λ / 4 plate 114 is in the range of 0 to 1, the transmittance when the shutter is shielded can be lowered compared to the comparative example.
また、NZ係数=0.5の場合、方位角0°から180°の範囲においてシャッター遮光時の透過率が特に低く、シャッター機能が最も効果的に発揮されていると言える。したがって、本実施形態において、λ/4板114のNZ係数は、実質的に0.5であることが特に好ましい。 When the NZ coefficient is 0.5, it can be said that the shutter function is most effectively exhibited because the transmittance when the shutter is shielded is particularly low in the azimuth angle range of 0 ° to 180 °. Therefore, in the present embodiment, it is particularly preferable that the NZ coefficient of the λ / 4 plate 114 is substantially 0.5.
ところで、視野角を決定するための基準として、JEITAの規格がある。この規格ではコントラスト比が10:1以上を満たす視角範囲を視野角と規定している。これは、コントラスト比が10:1程度であれば、人間が充分に輝度比を視認することが可能であるためである。したがって、本実施形態においても、シャッターの透光状態及び遮光状態の間のコントラスト比が10:1程度あれば、シャッター機能が充分に発揮されていると言える。 Incidentally, there is a JEITA standard as a reference for determining the viewing angle. In this standard, a viewing angle range satisfying a contrast ratio of 10: 1 or more is defined as a viewing angle. This is because if the contrast ratio is about 10: 1, it is possible for a human to see the luminance ratio sufficiently. Therefore, also in this embodiment, if the contrast ratio between the light transmitting state and the light shielding state of the shutter is about 10: 1, it can be said that the shutter function is sufficiently exhibited.
本シミュレーションの構成において、極角60°かつ方位角45°の視角方向でのシャッター透光時の透過率は、25%程度である。また、図12に示したように、方位角45°付近でシャッター遮光時の透過率は相対的に大きい。そのため、方位角45°付近でコントラスト比が相対的に低くなる。したがって、極角が-60°から+60°の範囲で、コントラスト比10:1以上を満たす、すなわちシャッター機能を充分に発揮する観点からは、シャッター遮光時の透過率が略2.5%以下であればよい。 In the configuration of this simulation, the transmittance at the time of shutter light transmission in the viewing angle direction with a polar angle of 60 ° and an azimuth angle of 45 ° is about 25%. Also, as shown in FIG. 12, the transmittance when the shutter is shielded is relatively large at an azimuth angle of about 45 °. Therefore, the contrast ratio becomes relatively low near the azimuth angle of 45 °. Therefore, from the viewpoint of satisfying the contrast ratio of 10: 1 or more when the polar angle is in the range of −60 ° to + 60 °, that is, the shutter function is sufficiently exhibited, the transmittance when the shutter is shielded is approximately 2.5% or less. I just need it.
また、-60°から+60°の極角範囲よりも広い極角(視角)範囲で、コントラスト比10:1以上を満たす、すなわちシャッター機能を充分に発揮する観点からは、シャッター遮光時の透過率が略1%以下であることが特に好ましい。このような観点からも、本実施形態において、λ/4板114のNZ係数は、0以上、1以下であることが好ましい。 Further, from the viewpoint of satisfying a contrast ratio of 10: 1 or more in a polar angle (viewing angle) range wider than the polar angle range of −60 ° to + 60 °, that is, from the viewpoint of sufficiently exhibiting the shutter function, the transmittance at the time of shutter light shielding. Is particularly preferably about 1% or less. Also from this viewpoint, in the present embodiment, the NZ coefficient of the λ / 4 plate 114 is preferably 0 or more and 1 or less.
また、λ/2板118のNZ係数を0.25に設定し、λ/2板118の面内遅相軸を90°方位に設定した場合でも、上記シミュレーション結果と同じ結果を得ることができた。 Further, even when the NZ coefficient of the λ / 2 plate 118 is set to 0.25 and the in-plane slow axis of the λ / 2 plate 118 is set to 90 ° azimuth, the same result as the simulation result can be obtained. It was.
(実施形態3)
図13に示すように、本実施形態は、λ/4板114の観察者側に、複屈折層として機能する位相差フィルム315を備えることを除いて、実施形態2と同じである。
(Embodiment 3)
As shown in FIG. 13, the present embodiment is the same as the second embodiment except that a retardation film 315 that functions as a birefringent layer is provided on the viewer side of the λ / 4 plate 114.
位相差フィルム315は、粘着剤又は接着剤によってλ/4板114に貼付されている。 The retardation film 315 is attached to the λ / 4 plate 114 with an adhesive or an adhesive.
位相差フィルム315の面内位相差は、10nm以下(好適には5nm以下)であり、位相差フィルム315の厚み方向位相差は、20nm以上、80nm以下(好適には30nm以上、60nm以下)である。位相差フィルム315は、所謂ネガティブCプレートとして機能する。 The in-plane retardation of the retardation film 315 is 10 nm or less (preferably 5 nm or less), and the thickness direction retardation of the retardation film 315 is 20 nm or more and 80 nm or less (preferably 30 nm or more and 60 nm or less). is there. The retardation film 315 functions as a so-called negative C plate.
なお、位相差フィルム315の面内位相差は、10nm以下と小さいので、位相差フィルム315の面内遅相軸の方向は、特に限定されず、適宜設定することができる。 In addition, since the in-plane retardation of the retardation film 315 is as small as 10 nm or less, the direction of the in-plane slow axis of the retardation film 315 is not particularly limited and can be set as appropriate.
位相差フィルム315の材料としては、トリアセチルセルロース(TAC)が好適であり、位相差フィルム315は、TACフィルムであることが好ましい。 As a material of the retardation film 315, triacetyl cellulose (TAC) is suitable, and the retardation film 315 is preferably a TAC film.
なお、位相差フィルム315の観察者側の面には、等方性フィルムが貼付されてもよく、この等方性フィルムの観察者側の面には、表面処理層が設けられてもよい。 In addition, an isotropic film may be affixed to the surface of the retardation film 315 on the viewer side, and a surface treatment layer may be provided on the surface of the isotropic film on the viewer side.
また、表面処理層は、位相差フィルム315の観察者側の面上に直接形成されてもよい。 The surface treatment layer may be directly formed on the surface of the retardation film 315 on the viewer side.
以下、実施形態2と同じようにして、本実施形態の効果をシミュレーションした結果について説明する。 Hereinafter, the result of simulating the effect of the present embodiment in the same manner as in the second embodiment will be described.
シミュレーションに用いた各部材のパラメータを以下に示す。
λ/4板114:NZ係数=-0.6、-0.4、-0.2、0.0、0.2、0.4、0.5又は0.6
位相差フィルム315:面内位相差Re=0nm、厚み方向位相差Rth=50nm
ここに示したパラメータ以外については、実施形態2で記載したパラメータを用いた。
The parameters of each member used for the simulation are shown below.
λ / 4 plate 114: NZ coefficient = −0.6, −0.4, −0.2, 0.0, 0.2, 0.4, 0.5 or 0.6
Retardation film 315: in-plane retardation Re = 0 nm, thickness direction retardation Rth = 50 nm
Other than the parameters shown here, the parameters described in the second embodiment were used.
図14に、本実施形態における透過率の方位角依存性を示す。なお、図14は、シャッター遮光時の透過率を示し、極角60°における結果を示す。また、図14には、上記比較例の結果も示す。また、方位角180°から360°における透過率は、方位角0°から180°における透過率と同様の挙動を示す。 FIG. 14 shows the azimuth angle dependency of the transmittance in the present embodiment. FIG. 14 shows the transmittance when the shutter is shielded, and shows the result at a polar angle of 60 °. FIG. 14 also shows the results of the comparative example. Further, the transmittance at an azimuth angle of 180 ° to 360 ° shows the same behavior as the transmittance at an azimuth angle of 0 ° to 180 °.
図14に示すように、λ/4板114のNZ係数が-0.6~0.6の範囲において、比較例に比べて、シャッター遮光時の透過率を低くすることができる。 As shown in FIG. 14, when the NZ coefficient of the λ / 4 plate 114 is in the range of −0.6 to 0.6, the transmittance when the shutter is shielded can be lowered as compared with the comparative example.
また、NZ係数=0の場合、方位角0°から180°の範囲においてシャッター遮光時の透過率が特に低く、シャッター機能が最も効果的に発揮されていると言える。したがって、本実施形態において、λ/4板114のNZ係数は、実質的に0であることが特に好ましい。 In addition, when the NZ coefficient = 0, it can be said that the transmittance when the shutter is shielded is particularly low in the range of the azimuth angle of 0 ° to 180 °, and the shutter function is most effectively exhibited. Therefore, in the present embodiment, it is particularly preferable that the NZ coefficient of the λ / 4 plate 114 is substantially zero.
また、シャッター遮光時の透過率を略1%以下にする観点からは、本実施形態において、λ/4板114のNZ係数は、-0.4以上、0.5以下であることが好ましい。これにより、-60°から+60°の極角範囲よりも広い極角(視角)範囲でシャッター機能を充分に発揮することができる。 Further, in the present embodiment, the NZ coefficient of the λ / 4 plate 114 is preferably −0.4 or more and 0.5 or less from the viewpoint of setting the transmittance when the shutter is shielded to about 1% or less. Accordingly, the shutter function can be sufficiently exhibited in a polar angle (viewing angle) range wider than the polar angle range of −60 ° to + 60 °.
また、λ/2板118のNZ係数を0.25に設定し、λ/2板118の面内遅相軸を90°方位に設定した場合でも、上記シミュレーション結果と同じ結果を得ることができた。 Further, even when the NZ coefficient of the λ / 2 plate 118 is set to 0.25 and the in-plane slow axis of the λ / 2 plate 118 is set to 90 ° azimuth, the same result as the simulation result can be obtained. It was.
(実施形態4)
図15に示すように、本実施形態は、λ/2板118及びλ/4板114の間に、複屈折層として機能する位相差フィルム415を備えることを除いて、実施形態2と同じである。
(Embodiment 4)
As shown in FIG. 15, this embodiment is the same as Embodiment 2 except that a retardation film 415 that functions as a birefringent layer is provided between the λ / 2 plate 118 and the λ / 4 plate 114. is there.
位相差フィルム415は、粘着剤又は接着剤によってλ/2板118に貼付されている。 The retardation film 415 is affixed to the λ / 2 plate 118 with an adhesive or an adhesive.
位相差フィルム415の面内位相差は、10nm以下(好適には5nm以下)であり、位相差フィルム415の厚み方向位相差は、20nm以上、80nm以下(好適には30nm以上、60nm以下)である。位相差フィルム415は、所謂ネガティブCプレートとして機能する。 The in-plane retardation of the retardation film 415 is 10 nm or less (preferably 5 nm or less), and the thickness direction retardation of the retardation film 415 is 20 nm or more and 80 nm or less (preferably 30 nm or more and 60 nm or less). is there. The retardation film 415 functions as a so-called negative C plate.
なお、位相差フィルム415の面内位相差は、10nm以下と小さいので、位相差フィルム415の面内遅相軸の方向は、特に限定されず、適宜設定することができる。 In addition, since the in-plane retardation of the retardation film 415 is as small as 10 nm or less, the direction of the in-plane slow axis of the retardation film 415 is not particularly limited and can be set as appropriate.
位相差フィルム415の材料としては、トリアセチルセルロース(TAC)が好適であり、位相差フィルム415は、TACフィルムであることが好ましい。 As a material of the retardation film 415, triacetyl cellulose (TAC) is suitable, and the retardation film 415 is preferably a TAC film.
λ/4板114は、粘着剤又は接着剤によって位相差フィルム415に貼付されている。 The λ / 4 plate 114 is attached to the retardation film 415 with an adhesive or an adhesive.
以下、実施形態2と同じようにして、本実施形態の効果をシミュレーションした結果について説明する。 Hereinafter, the result of simulating the effect of the present embodiment in the same manner as in the second embodiment will be described.
シミュレーションに用いた各部材のパラメータを以下に示す。
λ/4板114:NZ係数=-0.6、-0.4、-0.2、0.0、0.2、0.4又は0.6
位相差フィルム415:面内位相差Re=0nm、厚み方向位相差Rth=50nm
ここに示したパラメータ以外については、実施形態2で記載したパラメータを用いた。
The parameters of each member used for the simulation are shown below.
λ / 4 plate 114: NZ coefficient = −0.6, −0.4, −0.2, 0.0, 0.2, 0.4 or 0.6
Retardation film 415: In-plane retardation Re = 0 nm, thickness direction retardation Rth = 50 nm
Other than the parameters shown here, the parameters described in the second embodiment were used.
図16に、本実施形態における透過率の方位角依存性を示す。なお、図16は、シャッター遮光時の透過率を示し、極角60°における結果を示す。また、図16には、上記比較例の結果も示す。また、方位角180°から360°における透過率は、方位角0°から180°における透過率と同様の挙動を示す。 FIG. 16 shows the azimuth angle dependency of the transmittance in this embodiment. FIG. 16 shows the transmittance when the shutter is shielded, and shows the result at a polar angle of 60 °. FIG. 16 also shows the results of the comparative example. Further, the transmittance at an azimuth angle of 180 ° to 360 ° shows the same behavior as the transmittance at an azimuth angle of 0 ° to 180 °.
図16に示すように、λ/4板114のNZ係数が-0.6~0.6の範囲において、比較例に比べて、シャッター遮光時の透過率を低くすることができる。 As shown in FIG. 16, in the range where the NZ coefficient of the λ / 4 plate 114 is in the range of −0.6 to 0.6, the transmittance when the shutter is shielded can be lowered as compared with the comparative example.
また、NZ係数=0.2の場合、方位角0°から180°の範囲においてシャッター遮光時の透過率が特に低く、シャッター機能が最も効果的に発揮されていると言える。したがって、本実施形態において、λ/4板114のNZ係数は、実質的に0.2であることが特に好ましい。 In addition, when the NZ coefficient is 0.2, it can be said that the shutter function is most effectively exhibited because the transmittance when the shutter is shielded is particularly low in the range of the azimuth angle of 0 ° to 180 °. Therefore, in the present embodiment, it is particularly preferable that the NZ coefficient of the λ / 4 plate 114 is substantially 0.2.
また、シャッター遮光時の透過率を略1%以下にする観点からは、本実施形態において、λ/4板114のNZ係数は、-0.2以上、0.6以下であることが好ましい。これにより、-60°から+60°の極角範囲よりも広い極角(視角)範囲でシャッター機能を充分に発揮することができる。 Further, in the present embodiment, the NZ coefficient of the λ / 4 plate 114 is preferably −0.2 or more and 0.6 or less from the viewpoint of setting the transmittance when the shutter is shielded to about 1% or less. Accordingly, the shutter function can be sufficiently exhibited in a polar angle (viewing angle) range wider than the polar angle range of −60 ° to + 60 °.
また、λ/2板118のNZ係数を0.25に設定し、λ/2板118の面内遅相軸を90°方位に設定した場合でも、上記シミュレーション結果と同じ結果を得ることができた。 Further, even when the NZ coefficient of the λ / 2 plate 118 is set to 0.25 and the in-plane slow axis of the λ / 2 plate 118 is set to 90 ° azimuth, the same result as the simulation result can be obtained. It was.
上述した実施形態は、本発明の要旨を逸脱しない範囲において、適宜組み合わされてもよい。 The above-described embodiments may be combined as appropriate without departing from the scope of the present invention.
本願は、2011年5月12日に出願された日本国特許出願2011-107459号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 This application claims the priority based on the Paris Convention or the laws and regulations in the country of transition based on Japanese Patent Application No. 2011-1074559 filed on May 12, 2011. The contents of the application are hereby incorporated by reference in their entirety.
100:立体映像認識システム
110:映像表示装置
111、113、123:直線偏光素子
111t、113t、123t:透過軸
112、122:液晶パネル(液晶セル)
114、121:λ/4板
114s、121s:面内遅相軸
118:λ/2板
118s:面内遅相軸
120:アクティブシャッターメガネ
315、415:位相差フィルム
216、217:光学補償フィルム
 
100: stereoscopic image recognition system 110: video display devices 111, 113, 123: linearly polarizing elements 111t, 113t, 123t: transmission axes 112, 122: liquid crystal panel (liquid crystal cell)
114, 121: λ / 4 plate 114s, 121s: in-plane slow axis 118: λ / 2 plate 118s: in-plane slow axis 120: active shutter glasses 315, 415: retardation film 216, 217: optical compensation film

Claims (10)

  1. 観察者側に設けられた第1の直線偏光素子を有する映像表示装置と、
    前記第1の直線偏光素子の観察者側に設けられたλ/2板と、
    前記λ/2板の観察者側に設けられた第1のλ/4板と、
    第2のλ/4板、液晶パネル、及び、第2の直線偏光素子を外側からこの順に有するアクティブシャッターメガネとを含み、
    前記第1の直線偏光素子の透過軸と、前記第1のλ/4板の面内遅相軸とがなす角度をφ1、前記第2の直線偏光素子の透過軸と、前記第2のλ/4板の面内遅相軸とがなす角度をφ2と定義するとき、下記式(1)及び(2)、又は、(3)及び(4)を満たし、
    前記第1のλ/4板のNZ係数は、1以下であり、
    前記第1の直線偏光素子の透過軸と、前記λ/2板の面内遅相軸とがなす角度をφ3、前記λ/2板のNZ係数をNZ,hと定義するとき、下記式(5)及び(6)、又は、(7)及び(8)を満たす立体映像認識システム。
    40°≦φ1≦50°       (1)
    130°≦φ2≦140°     (2)
    130°≦φ1≦140°     (3)
    40°≦φ2≦50°       (4)
    85°≦φ3≦95°       (5)
    0.7≦NZ,h≦0.8     (6)
    -5°≦φ3≦5°        (7)
    0.2≦NZ,h≦0.3     (8)
    ただし、φ1は、前記第1のλ/4板側から見て測り、前記第1の直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。φ2は、前記第2のλ/4板側から見て測り、前記第2の直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。φ3は、前記λ/2板側から見て測り、前記第1の直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。
    An image display device having a first linearly polarizing element provided on the viewer side;
    A λ / 2 plate provided on the viewer side of the first linearly polarizing element;
    A first λ / 4 plate provided on the viewer side of the λ / 2 plate;
    A second λ / 4 plate, a liquid crystal panel, and active shutter glasses having a second linearly polarizing element in this order from the outside,
    The angle formed by the transmission axis of the first linearly polarizing element and the in-plane slow axis of the first λ / 4 plate is φ1, the transmission axis of the second linearly polarizing element, and the second λ / 4 When the angle formed by the in-plane slow axis of the plate is defined as φ2, the following formulas (1) and (2) or (3) and (4) are satisfied,
    The NZ coefficient of the first λ / 4 plate is 1 or less,
    When the angle formed between the transmission axis of the first linearly polarizing element and the in-plane slow axis of the λ / 2 plate is defined as φ3, and the NZ coefficient of the λ / 2 plate is defined as NZ, h, the following formula ( A stereoscopic image recognition system satisfying 5) and (6) or (7) and (8).
    40 ° ≦ φ1 ≦ 50 ° (1)
    130 ° ≦ φ2 ≦ 140 ° (2)
    130 ° ≦ φ1 ≦ 140 ° (3)
    40 ° ≦ φ2 ≦ 50 ° (4)
    85 ° ≦ φ3 ≦ 95 ° (5)
    0.7 ≦ NZ, h ≦ 0.8 (6)
    -5 ° ≦ φ3 ≦ 5 ° (7)
    0.2 ≦ NZ, h ≦ 0.3 (8)
    However, φ1 is measured as viewed from the first λ / 4 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the first linearly polarizing element. φ2 is measured from the second λ / 4 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the second linearly polarizing element. φ3 is measured as viewed from the λ / 2 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the first linearly polarizing element.
  2. 前記λ/2板は、前記第1の直線偏光素子の観察者側の面上に貼付され、
    前記第1のλ/4板は、前記λ/2板の観察者側の面上に貼付され、
    前記第1のλ/4板のNZ係数は、0以上、1以下である請求項1記載の立体映像認識システム。
    The λ / 2 plate is affixed on the surface of the first linearly polarizing element on the viewer side,
    The first λ / 4 plate is affixed on the observer side surface of the λ / 2 plate,
    The stereoscopic image recognition system according to claim 1, wherein an NZ coefficient of the first λ / 4 plate is 0 or more and 1 or less.
  3. 前記λ/2板は、前記第1の直線偏光素子の観察者側の面上に貼付され、
    前記第1のλ/4板は、前記λ/2板の観察者側の面上に貼付され、
    前記立体映像認識システムは、前記第1のλ/4板の観察者側の面上に貼付された位相差フィルムを更に含み、
    前記位相差フィルムの面内位相差は、10nm以下であり、
    前記位相差フィルムの厚み方向位相差は、20nm以上、80nm以下であり、
    前記第1のλ/4板のNZ係数は、-0.4以上、0.5以下である請求項1記載の立体映像認識システム。
    The λ / 2 plate is affixed on the surface of the first linearly polarizing element on the viewer side,
    The first λ / 4 plate is affixed on the observer side surface of the λ / 2 plate,
    The stereoscopic image recognition system further includes a retardation film affixed on a viewer side surface of the first λ / 4 plate,
    In-plane retardation of the retardation film is 10 nm or less,
    The thickness direction retardation of the retardation film is 20 nm or more and 80 nm or less,
    The 3D image recognition system according to claim 1, wherein the NZ coefficient of the first λ / 4 plate is not less than -0.4 and not more than 0.5.
  4. 前記λ/2板は、前記第1の直線偏光素子の観察者側の面上に貼付され、
    前記立体映像認識システムは、前記λ/2板の観察者側の面上に貼付された位相差フィルムを更に含み、
    前記第1のλ/4板は、前記位相差フィルムの観察者側の面上に貼付され、
    前記位相差フィルムの面内位相差は、10nm以下であり、
    前記位相差フィルムの厚み方向位相差は、20nm以上、80nm以下であり、
    前記第1のλ/4板のNZ係数は、-0.2以上、0.6以下である請求項1記載の立体映像認識システム。
    The λ / 2 plate is affixed on the surface of the first linearly polarizing element on the viewer side,
    The stereoscopic image recognition system further includes a retardation film affixed on the viewer side surface of the λ / 2 plate,
    The first λ / 4 plate is affixed on the observer side surface of the retardation film,
    In-plane retardation of the retardation film is 10 nm or less,
    The thickness direction retardation of the retardation film is 20 nm or more and 80 nm or less,
    The stereoscopic image recognition system according to claim 1, wherein the NZ coefficient of the first λ / 4 plate is not less than -0.2 and not more than 0.6.
  5. 前記液晶パネルは、第1の液晶パネルであり、
    前記映像表示装置は、液晶ディスプレイであり、第3の直線偏光素子、第2の液晶パネル及び前記第1の直線偏光素子を背面側からこの順に有する請求項1~4のいずれかに記載の立体映像認識システム。
    The liquid crystal panel is a first liquid crystal panel;
    The three-dimensional display according to any one of claims 1 to 4, wherein the video display device is a liquid crystal display and includes a third linearly polarizing element, a second liquid crystal panel, and the first linearly polarizing element in this order from the back side. Video recognition system.
  6. 観察者側に設けられた直線偏光素子と、
    前記直線偏光素子の観察者側に設けられたλ/2板と、
    前記λ/2板の観察者側に設けられたλ/4板とを備え、
    前記直線偏光素子の透過軸と、前記λ/4板の面内遅相軸とがなす角度をθ1と定義するとき、下記式(I)又は(II)を満たし、
    前記λ/4板のNZ係数は、1以下であり、
    前記直線偏光素子の透過軸と、前記λ/2板の面内遅相軸とがなす角度をθ2、前記λ/2板のNZ係数をNZ,hと定義するとき、下記式(III)及び(IV)、又は、(V)及び(VI)を満たす立体映像認識システム用映像表示装置。
    40°≦θ1≦50°       (I)
    130°≦θ1≦140°     (II)
    85°≦θ2≦95°       (III)
    0.7≦NZ,h≦0.8     (IV)
    -5°≦θ2≦5°        (V)
    0.2≦NZ,h≦0.3     (VI)
    ただし、θ1は、前記λ/4板側から見て測り、前記直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。θ2は、前記λ/2板側から見て測り、前記直線偏光素子の透過軸の方向を基準として反時計方向に正と測る。
    A linearly polarizing element provided on the observer side;
    A λ / 2 plate provided on the viewer side of the linearly polarizing element;
    A λ / 4 plate provided on the viewer side of the λ / 2 plate,
    When the angle formed by the transmission axis of the linearly polarizing element and the in-plane slow axis of the λ / 4 plate is defined as θ1, the following formula (I) or (II) is satisfied:
    The NZ coefficient of the λ / 4 plate is 1 or less,
    When the angle formed by the transmission axis of the linearly polarizing element and the in-plane slow axis of the λ / 2 plate is defined as θ2, and the NZ coefficient of the λ / 2 plate is defined as NZ, h, the following formula (III) and An image display device for a stereoscopic image recognition system that satisfies (IV) or (V) and (VI).
    40 ° ≦ θ1 ≦ 50 ° (I)
    130 ° ≦ θ1 ≦ 140 ° (II)
    85 ° ≦ θ2 ≦ 95 ° (III)
    0.7 ≦ NZ, h ≦ 0.8 (IV)
    -5 ° ≦ θ2 ≦ 5 ° (V)
    0.2 ≦ NZ, h ≦ 0.3 (VI)
    However, θ1 is measured as viewed from the λ / 4 plate side, and is measured as positive in the counterclockwise direction with respect to the direction of the transmission axis of the linearly polarizing element. θ2 is measured as viewed from the λ / 2 plate side, and is measured as positive in the counterclockwise direction with reference to the direction of the transmission axis of the linearly polarizing element.
  7. 前記λ/2板は、前記直線偏光素子の観察者側の面上に貼付され、
    前記λ/4板は、前記λ/2板の観察者側の面上に貼付され、
    前記λ/4板のNZ係数は、0以上、1以下である請求項6記載の立体映像認識システム用映像表示装置。
    The λ / 2 plate is affixed on the observer-side surface of the linearly polarizing element,
    The λ / 4 plate is affixed on the surface of the λ / 2 plate on the viewer side,
    The video display device for a stereoscopic video recognition system according to claim 6, wherein the NZ coefficient of the λ / 4 plate is 0 or more and 1 or less.
  8. 前記λ/2板は、前記直線偏光素子の観察者側の面上に貼付され、
    前記λ/4板は、前記λ/2板の観察者側の面上に貼付され、
    前記立体映像認識システム用映像表示装置は、前記λ/4板の観察者側の面上に貼付された位相差フィルムを更に備え、
    前記位相差フィルムの面内位相差は、10nm以下であり、
    前記位相差フィルムの厚み方向位相差は、20nm以上、80nm以下であり、
    前記λ/4板のNZ係数は、-0.4以上、0.5以下である請求項6記載の立体映像認識システム用映像表示装置。
    The λ / 2 plate is affixed on the observer-side surface of the linearly polarizing element,
    The λ / 4 plate is affixed on the surface of the λ / 2 plate on the viewer side,
    The image display device for the stereoscopic image recognition system further includes a retardation film attached on the surface of the λ / 4 plate on the observer side,
    In-plane retardation of the retardation film is 10 nm or less,
    The thickness direction retardation of the retardation film is 20 nm or more and 80 nm or less,
    The video display device for a stereoscopic video recognition system according to claim 6, wherein the NZ coefficient of the λ / 4 plate is not less than -0.4 and not more than 0.5.
  9. 前記λ/2板は、前記直線偏光素子の観察者側の面上に貼付され、
    前記立体映像認識システム用映像表示装置は、前記λ/2板の観察者側の面上に貼付された位相差フィルムを更に備え、
    前記λ/4板は、前記位相差フィルムの観察者側の面上に貼付され、
    前記位相差フィルムの面内位相差は、10nm以下であり、
    前記位相差フィルムの厚み方向位相差は、20nm以上、80nm以下であり、
    前記λ/4板のNZ係数は、-0.2以上、0.6以下である請求項6記載の立体映像認識システム用映像表示装置。
    The λ / 2 plate is affixed on the observer-side surface of the linearly polarizing element,
    The image display device for the stereoscopic image recognition system further includes a retardation film attached on the surface of the λ / 2 plate on the viewer side,
    The λ / 4 plate is affixed on the observer side surface of the retardation film,
    In-plane retardation of the retardation film is 10 nm or less,
    The thickness direction retardation of the retardation film is 20 nm or more and 80 nm or less,
    The video display apparatus for a stereoscopic video recognition system according to claim 6, wherein the NZ coefficient of the λ / 4 plate is not less than -0.2 and not more than 0.6.
  10. 前記直線偏光素子は、第1の直線偏光素子であり、
    前記立体映像認識システム用映像表示装置は、液晶ディスプレイであり、第2の直線偏光素子、液晶パネル及び前記第1の直線偏光素子を背面側からこの順に有する請求項6~9のいずれかに記載の立体映像認識システム用映像表示装置。
     
    The linearly polarizing element is a first linearly polarizing element;
    The video display device for a stereoscopic image recognition system is a liquid crystal display, and has a second linearly polarizing element, a liquid crystal panel, and the first linearly polarizing element in this order from the back side. Display device for 3D image recognition system.
PCT/JP2012/061584 2011-05-12 2012-05-02 Three-dimensional video recognition system and video display device for three-dimensional video recognition system WO2012153685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-107459 2011-05-12
JP2011107459 2011-05-12

Publications (1)

Publication Number Publication Date
WO2012153685A1 true WO2012153685A1 (en) 2012-11-15

Family

ID=47139165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061584 WO2012153685A1 (en) 2011-05-12 2012-05-02 Three-dimensional video recognition system and video display device for three-dimensional video recognition system

Country Status (1)

Country Link
WO (1) WO2012153685A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191670A (en) * 2007-02-06 2008-08-21 Tcl Corp Method of reducing visual fatigue occurring when watching liquid crystal display device
JP2010243705A (en) * 2009-04-03 2010-10-28 Hitachi Ltd Stereoscopic display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191670A (en) * 2007-02-06 2008-08-21 Tcl Corp Method of reducing visual fatigue occurring when watching liquid crystal display device
JP2010243705A (en) * 2009-04-03 2010-10-28 Hitachi Ltd Stereoscopic display

Similar Documents

Publication Publication Date Title
US20200348527A1 (en) Pancake lens assembly and optical system thereof
US9304322B2 (en) Phase difference element and display unit
JP5580331B2 (en) Stereoscopic image recognition system, video display device, and active shutter glasses
WO2012005036A1 (en) Active shutter glasses and three-dimensional image recognition unit
JP5634503B2 (en) Active shutter glasses and 3D image recognition system
US20160004089A1 (en) Display device and display system
JP2010151954A (en) Polarizing glasses and method of manufacturing the same
KR20110048203A (en) In-plane switching mode liquid crystal display
US8964136B2 (en) Active shutter glasses comprising a half-wave plate disposed at an outer side of a linear polarizing element and a stereoscopic image projection system
JP7444983B2 (en) 3D display device
WO2012073736A1 (en) Stereoscopic vision recognition system
JP4893846B2 (en) Display device
WO2011111267A1 (en) Active shutter glasses, passive glasses, and three-dimensional video recognition system
WO2012153685A1 (en) Three-dimensional video recognition system and video display device for three-dimensional video recognition system
KR20100060091A (en) Upper plate polarizer and in-plane switching mode liquid crystal display comprising the same
KR20100060092A (en) Upper plate polarizer and in-plane switching mode liquid crystal display comprising the same
WO2012053435A1 (en) Three-dimensional video recognition system and active shutter glasses
US11927775B2 (en) 3D glasses, optical device, and three-dimensional image display device
JP2011039532A (en) Image separating device
KR20100071255A (en) Bottom plate polarizer and in-plane switching mode liquid crystal display comprising the same
WO2013011781A1 (en) Liquid crystal display
KR20110107531A (en) Stereoscopic image system
JP2023104136A (en) Optical element and three-dimensional display device
CN116931316A (en) Liquid crystal display device having a light shielding layer
WO2012111516A1 (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP