WO2012153553A1 - Electroconductive composition for forming solar cell collector electrode, and solar cell - Google Patents

Electroconductive composition for forming solar cell collector electrode, and solar cell Download PDF

Info

Publication number
WO2012153553A1
WO2012153553A1 PCT/JP2012/053000 JP2012053000W WO2012153553A1 WO 2012153553 A1 WO2012153553 A1 WO 2012153553A1 JP 2012053000 W JP2012053000 W JP 2012053000W WO 2012153553 A1 WO2012153553 A1 WO 2012153553A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
solar cell
metal
silver salt
conductive composition
Prior art date
Application number
PCT/JP2012/053000
Other languages
French (fr)
Japanese (ja)
Inventor
奈央 佐藤
石川 和憲
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011107292A external-priority patent/JP2012238754A/en
Priority claimed from JP2011110646A external-priority patent/JP2012243865A/en
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201280002595.3A priority Critical patent/CN103081114B/en
Publication of WO2012153553A1 publication Critical patent/WO2012153553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive composition for forming a solar battery collecting electrode and a solar battery cell.
  • Solar cells that convert light energy such as sunlight into electrical energy have been actively developed in various structures and configurations as interest in global environmental issues increases.
  • solar cells using a semiconductor substrate such as silicon are most commonly used due to advantages such as conversion efficiency and manufacturing cost.
  • Patent Document 1 discloses that “an organic binder, a solvent, conductive particles, glass frit, a metal oxide, and a temperature of 150 to 800 ° C.
  • Patent Document 2 discloses that “a conductive material for a solar cell electrode comprising an organic binder, a solvent, conductive particles, a glass frit, and a compound containing Al, Ga, In, or Tl. ”Is described ([Claim 1]), an organometallic compound or the like is described as the compound ([Claim 3]), and an acetylacetone complex or the like is described as the organometallic compound ( [Claim 4]).
  • Patent Document 3 the present applicant states that “silver powder (A), silver oxide (B), and organic solvent (D) are contained, and the silver powder (A) is contained in the composition.
  • a conductive composition that is 50% by mass or more in a simple substance and a silver compound has been proposed ([Claim 1]), and an embodiment that includes silver carboxylate as an optional component, and other additives such as glass frit.
  • a mode of inclusion is described ([Claim 2] [0030] [0031] [0032] and the like).
  • the yield may decrease when the solar cells are manufactured, or the firing temperature may be controlled with high accuracy in order to improve the yield. In some cases, problems such as unavoidable have occurred.
  • the present invention provides a conductive composition for forming a solar battery collecting electrode capable of obtaining a solar battery cell exhibiting a high fill factor in a wide firing temperature range (700 to 800 ° C.), and a solar battery cell using the same.
  • the issue is to provide.
  • the present inventor has found that a fatty acid silver salt and a metal comprising a metal other than silver and an ionic bond and / or a coordinate bond between an organic compound other than the fatty acid of the fatty acid silver salt. It has been found that by forming an electrode using a conductive composition containing a compound at a specific mass ratio, a solar battery cell exhibiting a high fill factor can be obtained in a wide firing temperature range (700 to 800 ° C.). The present invention has been completed. That is, the present invention provides the following (1) to (12).
  • a conductive composition for forming a solar cell collecting electrode comprising a metal compound (E) comprising an ionic bond and / or a coordinate bond, The electrically conductive composition for solar cell current collection electrode formation whose mass ratio (B / E) of content of the said fatty acid silver salt (B) and content of the said metal compound (E) is 1 or more.
  • the above metal compound (E) is a fatty acid metal salt (E1) comprising an ionic bond between a fatty acid different from the fatty acid of the fatty acid silver salt (B) and a metal other than silver.
  • a conductive composition for forming a solar cell collector electrode is a fatty acid metal salt (E1) comprising an ionic bond between a fatty acid different from the fatty acid of the fatty acid silver salt (B) and a metal other than silver.
  • the fatty acid silver salt (B) is a carboxylic acid silver salt
  • the fatty acid metal salt (E1) is selected from the group consisting of magnesium, nickel, copper, zinc, yttrium, zirconium, tin and lead.
  • the carboxylic acid metal salt is a metal salt of a fatty acid selected from the group consisting of 2-ethylhexanoic acid, octylic acid, naphthenic acid, stearic acid, and lauric acid.
  • a conductive composition for forming an electrode is a metal salt of a fatty acid selected from the group consisting of 2-ethylhexanoic acid, octylic acid, naphthenic acid, stearic acid, and lauric acid.
  • acetylacetone metal complex (E2) is a complex of a metal species selected from the group consisting of indium, nickel, copper, titanium, zinc and tin.
  • Conductive composition is a complex of a metal species selected from the group consisting of indium, nickel, copper, titanium, zinc and tin.
  • the content of the metal compound (E) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the conductive particles (A), according to any one of (1) to (9) above A conductive composition for forming a solar cell collecting electrode.
  • a light-receiving surface side surface electrode, an antireflection film, a semiconductor substrate, and a back surface electrode are provided, and at least the surface electrode is for forming a solar cell collecting electrode according to any one of (1) to (10) above A solar battery cell formed using a conductive composition.
  • a solar cell module in which the solar cells according to (11) are wired in series using an interconnector.
  • a conductive composition for forming a solar battery collecting electrode which can obtain a solar battery cell exhibiting a high fill factor in a wide firing temperature range (700 to 800 ° C.), and The used solar battery cell can be provided.
  • FIG. 1 is a cross-sectional view showing an example of a preferred embodiment of a solar battery cell.
  • the conductive composition for forming a solar cell collector electrode of the present invention (hereinafter also referred to as “the conductive composition of the present invention”) is composed of conductive particles (A), fatty acid silver salt (B), glass frit (C ), A solvent (D), and a collection of solar cells containing a metal compound (E) comprising an ionic bond and / or a coordinate bond between a metal other than silver and an organic compound other than the fatty acid of the fatty acid silver salt (B).
  • a solar cell collection wherein the mass ratio (B / E) of the content of the fatty acid silver salt (B) and the content of the metal compound (E) is 1 or more, which is a conductive composition for forming an electrode. It is an electroconductive composition for electric electrode formation.
  • the conductive particles (A), the fatty acid silver salt (B), the glass frit (C), the solvent (D), the metal compound (E), and other components that may be optionally contained are described in detail.
  • the conductive particles (A) used in the conductive composition of the present invention are not particularly limited, and for example, a metal material having an electrical resistivity of 20 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or less can be used.
  • the metal material include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and the like.
  • gold, silver, and copper are preferable, and silver is more preferable because an electrode with a small volume resistivity can be formed and a solar cell with high photoelectric conversion efficiency can be manufactured.
  • an average particle diameter means the average value of the particle diameter of a metal powder, and means the 50% volume cumulative diameter (D50) measured using the laser diffraction type particle size distribution measuring apparatus.
  • the particle diameter used as the basis for calculating the average value is an average value obtained by dividing the total value of the major axis and the minor axis by 2, and in the case of a perfect circle, Refers to the diameter.
  • the spherical shape refers to the shape of particles having a major axis / minor axis ratio of 2 or less.
  • the average particle diameter of the conductive particles (A) is preferably 0.7 to 5 ⁇ m because the printability is better, and the sintering speed is appropriate and the workability is improved.
  • the thickness is more preferably 1 to 3 ⁇ m.
  • a commercially available product can be used as the conductive particles (A).
  • Specific examples thereof include AgC-102 (shape: spherical, average particle size: 1.5 ⁇ m, Fukuda Metal Foil Powder Industry).
  • AGC-103 shape: spherical, average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Powder Co., Ltd.
  • AG4-8F shape: spherical, average particle size: 2.2 ⁇ m, manufactured by DOWA Electronics
  • AG2-1C shape: spherical, average particle size: 1.0 ⁇ m, manufactured by DOWA Electronics
  • AG3-11F shape: spherical, average particle size: 1.4 ⁇ m, manufactured by DOWA Electronics
  • SPN5J shape: spherical
  • EHD shape: spherical, average particle size
  • the fatty acid silver salt (B) used in the conductive composition of the present invention is not particularly limited as long as it is a silver salt of an organic carboxylic acid (fatty acid).
  • fatty acid a silver salt of an organic carboxylic acid (fatty acid).
  • JP-A-2008-198595 discloses [0063] to [0068].
  • JP 2010-92684 A The fatty acid silver salt having one or more hydroxyl groups described in the paragraph, the secondary fatty acid silver salt described in the paragraphs [0046] to [0056] of the publication, and [0022] to [0022] of JP 2011-35062 A
  • the silver carboxylate described in [0026] can be used.
  • a fatty acid silver salt B2 having one or more of each and a polycarboxylic acid silver salt (B3) having two or more carboxy silver bases (—COOAg) without having a hydroxyl group (—OH)
  • at least one fatty acid silver salt is used.
  • the polycarboxylic acid silver salt (B3) having 3 or more carboxy silver bases (—COOAg) without having a hydroxyl group (—OH) is used because the temperature dependence of the fill factor can be further reduced. Particularly preferred.
  • examples of the fatty acid silver salt (B2) include compounds represented by any of the following formulas (I) to (III).
  • n represents an integer of 0 to 2
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 6 carbon atoms.
  • the plurality of R 2 may be the same or different
  • the plurality of R 1 may be the same or different.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • a plurality of R 1 may be the same or different.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 3 represents an alkylene group having 1 to 6 carbon atoms.
  • the plurality of R 1 may be the same or different.
  • Examples of the polycarboxylic acid silver salt (B3) include compounds represented by the following formula (IV).
  • m represents an integer of 2 to 6
  • R 4 represents an m-valent saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms
  • an m-valent unsaturated fat having 2 to 12 carbon atoms.
  • fatty acid silver salt (B1) examples include 2-methylpropanoic acid silver salt (also known as isobutyric acid silver salt) and 2-methylbutanoic acid silver salt.
  • fatty acid silver salt (B2) examples include 2-hydroxyisobutyric acid silver salt and 2,2-bis (hydroxymethyl) -n-butyric acid silver salt.
  • polycarboxylic acid silver salt (B3) examples include 1,3,5-pentanetricarboxylic acid silver salt and 1,2,3,4-butanetetracarboxylic acid silver salt. Is done.
  • the content of the fatty acid silver salt (B) is 1 to 30 parts by mass with respect to 100 parts by mass of the conductive particles (A) because the printability is better. Preferably, it is 5 to 25 parts by mass.
  • the glass frit (C) used in the conductive composition of the present invention is not particularly limited, and it is preferable to use one having a softening temperature of 300 ° C. or higher and a firing temperature (heat treatment temperature) or lower.
  • Specific examples of the glass frit (C) include a borosilicate glass frit having a softening temperature of 300 to 800 ° C.
  • the shape of the glass frit (C) is not particularly limited, and may be spherical or crushed powder.
  • the average particle diameter (D50) of the spherical glass frit is preferably 0.1 to 20 ⁇ m, and more preferably 1 to 10 ⁇ m.
  • the average particle diameter means an average value of the particle diameters, and means a 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution measuring apparatus.
  • the content of the glass frit (C) is preferably 0.5 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the conductive particles (A).
  • the solvent (D) used in the conductive composition of the present invention is not particularly limited as long as it can apply the conductive composition of the present invention onto a substrate.
  • Specific examples of the solvent (D) include butyl carbitol, butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, diethylene glycol dibutyl ether, methyl ethyl ketone, isophorone, Examples thereof include ⁇ -terpineol, and these may be used alone or in combination of two or more.
  • the content of the solvent (D) is preferably 2 to 20 parts by weight, and more preferably 5 to 15 parts by weight with respect to 100 parts by weight of the conductive particles (A).
  • the metal compound (E) used in the conductive composition of the present invention is a metal compound comprising an ionic bond and / or a coordinate bond between a metal other than silver and an organic compound other than the fatty acid of the fatty acid silver salt (B). is there.
  • a solar battery cell exhibiting a high fill factor in a wide firing temperature range (700 to 800 ° C.) is obtained. Obtainable.
  • the dispersibility of the fatty acid silver salt (B) and the solvent (D) is improved by adding the metal compound (E), and the glass frit ( This is considered to be because the temperature range in which C) softens (decomposes) widens, fire-through proceeds moderately in a wide firing temperature range (700 to 800 ° C.), and good contacts are formed with respect to the silicon substrate.
  • the metal compound (E) from an ionic bond between a fatty acid different from the fatty acid of the fatty acid silver salt (B) (hereinafter also referred to as “specific fatty acid”) and a metal other than silver.
  • fatty acid metal salt (E1) a carboxylic acid metal salt of at least one metal selected from the group consisting of magnesium, nickel, copper, zinc, yttrium, zirconium, tin and lead because the temperature dependence of the fill factor can be further reduced. It is preferable that
  • the specific fatty acid that produces the fatty acid metal salt (E1) has good solubility in the solvent (D), and the storage stability of the resulting conductive composition of the present invention is also good.
  • Fatty acids having 5 to 20 alicyclic and / or chain saturated hydrocarbon groups are preferred.
  • Specific examples of the specific fatty acid include 2-ethylhexanoic acid, octylic acid, naphthenic acid, stearic acid, lauric acid and the like. These may be used alone or in combination of two or more. You may use together.
  • fatty acid metal salt (E1) examples include, for example, magnesium octylate, nickel octylate, copper octylate, zinc octylate, yttrium octylate, zirconium octylate, tin octylate, and lead octylate.
  • the acetylacetone metal complex (E2) which consists of a coordinate bond of acetylacetone and metals other than silver is mentioned.
  • a complex of a metal species selected from the group consisting of indium, nickel, copper, titanium, zinc, and tin is preferable because the temperature dependency of the fill factor can be further reduced, and the complex of indium. It is more preferable.
  • the acetylacetone metal complex (E2) may be a single acetylacetone metal complex or a combination of two or more acetylacetone metal complexes.
  • the content of the metal compound (E) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the conductive particles (A) because the temperature dependency of the fill factor can be further reduced. Parts, preferably 1 to 5 parts by mass.
  • the mass ratio (B / E) between the content of the fatty acid silver salt (B) and the content of the metal compound (E) is 1 or more, and the temperature dependence of the fill factor is more It is preferable that it is 2 or more because it can reduce.
  • the mass ratio is preferably 30 or less, more preferably 25 or less, because the paste formed by blending these components has a viscosity that can be easily printed with an appropriate viscosity. More preferably, it is as follows.
  • the conductive composition of the present invention may contain a resin binder (F) as necessary from the viewpoint of printability.
  • the resin binder (F) is obtained by dissolving a resin having a binder function in a solvent.
  • Specific examples of the resin include ethyl cellulose resin, nitrocellulose resin, alkyd resin, acrylic resin, styrene resin, phenol resin and the like, and these may be used alone or in combination of two or more. May be. Among these, it is preferable to use ethyl cellulose resin from the viewpoint of thermal decomposability.
  • the solvent examples include ⁇ -terpineol, butyl carbitol, butyl carbitol acetate, diacetone alcohol, methyl isobutyl ketone, and the like. You may use the above together.
  • the solvent may be a part of the solvent (D) described above.
  • the conductive composition of the present invention may contain a metal oxide.
  • the metal oxide include zinc oxide, silicon oxide, cerium oxide, bismuth oxide, tin oxide, and ABO 3 (wherein A is at least selected from the group consisting of Ba, Ca, and Sr). 1 represents one element, and B represents at least one element selected from the group consisting of Ti, Zr, and Hf and represents Ti).
  • A is at least selected from the group consisting of Ba, Ca, and Sr
  • 1 represents one element
  • B represents at least one element selected from the group consisting of Ti, Zr, and Hf and represents Ti.
  • One species may be used alone, or two or more species may be used in combination.
  • the content of silver oxide that can correspond to the metal oxide is determined by the solvent ( D) It is preferably 5 parts by mass or less with respect to 100 parts by mass, more preferably 1 part by mass or less, and most preferably an embodiment containing substantially no silver oxide.
  • the manufacturing method of the electroconductive composition of this invention is not specifically limited,
  • the said electroconductive particle (A), the said fatty acid silver salt (B), the said glass frit (C), the said solvent (D), and the said metal compound (E And a resin binder (F) and a metal oxide which may be optionally contained are mixed by a roll, a kneader, an extruder, a universal agitator or the like.
  • the solar cell of the present invention comprises a surface electrode on the light-receiving surface side, an antireflection film, a semiconductor substrate, and a back electrode, and at least the surface electrode is formed by using the above-described conductive composition of the present invention. It is a battery cell.
  • the conductive composition of the present invention described above can also be applied to the formation of the back electrode of an all back electrode type (so-called back contact type) solar battery cell, it is also applicable to an all back electrode type solar cell. can do.
  • FIG. 1 the structure of the photovoltaic cell of this invention is demonstrated using FIG. In FIG. 1, the solar cell of the present invention will be described by taking a crystalline silicon solar cell as an example. However, the present invention is not limited to this. For example, a thin-film amorphous silicon solar cell, a hybrid type (HIT) It may be a solar cell or the like.
  • a solar cell 10 of the present invention includes a surface electrode (finger electrode) 1 on the light receiving surface side, an antireflection film 2, a pn junction silicon substrate 4 in which an n layer 3 and a p layer 5 are joined. (Hereinafter, these are also referred to as “crystalline silicon substrate 7”.) And a back electrode (full-surface electrode) 6 are provided. Moreover, as shown in FIG. 1, it is preferable that the photovoltaic cell 10 of this invention forms a pyramid-like texture by, for example, etching the wafer surface in order to reduce reflectivity.
  • the surface electrode and the back electrode provided in the solar battery cell of the present invention are arranged (pitch), shape, height, width, etc. of the electrode as long as at least the surface electrode is formed using the conductive composition of the present invention. Is not particularly limited. Here, a plurality of surface electrodes are usually provided, but in the present invention, only a part of the plurality of surface electrodes may be formed of the conductive composition of the present invention.
  • the antireflection film included in the solar battery cell of the present invention is a film (film thickness: about 0.05 to 0.1 ⁇ m) formed on a portion where the surface electrode of the light receiving surface is not formed. It is composed of an oxide film, a silicon nitride film, a titanium oxide film, a laminated film of these, and the like.
  • the crystalline silicon substrate included in the solar battery cell of the present invention is not particularly limited, and a known silicon substrate (plate thickness: about 100 to 450 ⁇ m) for forming a solar battery can be used. Any polycrystalline silicon substrate may be used.
  • the crystalline silicon substrate has a pn junction, which means that a second conductivity type light-receiving surface impurity diffusion region is formed on the surface side of the first conductivity type semiconductor substrate.
  • the second conductivity type is p-type.
  • the impurity imparting p-type include boron and aluminum
  • examples of the impurity imparting n-type include phosphorus and arsenic.
  • the solar battery cell of the present invention exhibits a high fill factor in a wide firing temperature range (700 to 800 ° C.) because at least the surface electrode is formed of the conductive composition of the present invention.
  • an antireflection film forming step of forming an antireflection film on a crystalline silicon substrate, and applying the conductive composition of the present invention on the antireflection film There is a method including a wiring forming step for forming a wiring and a heat treatment step for heat-treating the obtained wiring to form an electrode (front electrode and / or back electrode).
  • the antireflection film forming step, the wiring forming step, and the heat treatment step will be described in detail.
  • the antireflection film forming step is a step of forming an antireflection film on the crystalline silicon substrate.
  • the formation method of the antireflection film is not particularly limited, and can be formed by a known method such as a plasma CVD method.
  • the said wiring formation process is a process of apply
  • specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
  • the heat treatment step is a step of obtaining a conductive wiring (electrode) by heat-treating the wiring obtained in the wiring forming step.
  • the heat treatment is not particularly limited, but is preferably a treatment of heating (firing) at a temperature of 700 to 800 ° C. for several seconds to several tens of minutes.
  • the wiring applied on the antireflection film is fire-through (fired through), whereby an electrode in contact with the crystalline silicon substrate can be formed.
  • the heat treatment step in the present invention may be performed by irradiation with ultraviolet rays or infrared rays.
  • the solar cell module of the present invention is a solar cell module in which the solar cells of the present invention are wired in series using an interconnector.
  • an interconnector a connector used in a conventionally known solar cell module can be used.
  • a copper ribbon coated with solder or a conductive adhesive is preferably used. it can.
  • Example 1-1 to 1-14, Examples 2-1 to 2-8, Comparative Examples 1-1 to 1-5, Comparative Examples 2-1 to 2-4 ⁇ Preparation of conductive composition>
  • conductive particles shown in Table 1 below were added so as to have the composition ratio (mass ratio) shown in Table 1 below, and these were mixed to prepare a conductive composition.
  • the nickel octylate used in Comparative Example 1-4 is an ionic bond between the fatty acid silver salt (B) (silver octylate) fatty acid (octylic acid) and the “same” fatty acid and a metal other than silver (nickel). It is a fatty acid metal salt consisting of
  • Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-4 were baked for 30 seconds in an infrared baking furnace at two peak temperatures of 720 ° C. and 800 ° C., and conductive wiring ( A sample of a solar battery cell on which an electrode) was formed was produced.
  • Silver powder AgC-103 (shape: spherical, average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Powder Industry)
  • Silver salt of isobutyrate First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 38 g of isobutyric acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and reacted by stirring at room temperature for 24 hours. It was. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white silver isobutyrate.
  • MEK methyl ethyl ketone
  • -1,3,5-pentanetricarboxylic acid silver salt First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 30 g of 1,3,5-pentanetricarboxylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are ball milled. And reacted by stirring at room temperature for 24 hours. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 1,3,5-pentanetricarboxylic acid silver salt.
  • MEK methyl ethyl ketone
  • -Silver octylate First, 50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 62.3 g of octylic acid (manufactured by Kyowa Hakko Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and stirred at room temperature for 24 hours. Was reacted. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare a white silver octylate.
  • MEK methyl ethyl ketone
  • Zinc naphthenate Naphtex zinc (manufactured by Nippon Chemical Industry Co., Ltd.)
  • Lead naphthenate Lead naphthex (manufactured by Nippon Chemical Industry Co., Ltd.)
  • Naphthenic acid copper Naphtex copper (manufactured by Nippon Chemical Industry Co., Ltd.)
  • Magnesium naphthenate naphthex magnesium (manufactured by Nippon Chemical Industry Co., Ltd.)
  • -Tin naphthenate Naphtex tin (manufactured by Nippon Chemical Industry Co., Ltd.) -Nickel octylate: Nikka octix nickel (manufactured by Nippon Chemical Industry Co., Ltd.)
  • Yttrium octylate Yttrium octylate (III) (Mitsuwa Chemical Co., Ltd.)
  • Glass frit C1 softening point 391 ° C., manufactured by Nippon Electric Glass Co., Ltd.
  • Glass frit C2 softening point 430 ° C., manufactured by Nippon Electric Glass Co., Ltd.
  • Glass frit C3 Pb glass frit Solvent: ⁇ -terpineol Resin binder: EC -100 FTP (ethyl cellulose resin solid content: 9%, manufactured by Nisshin Kasei Co., Ltd.) ⁇ Zinc oxide: ZnO (manufactured by Teika)
  • the conductive compositions of Comparative Examples 1-1 to 1-3 and 2-1 to 2-3 not containing at least one of fatty acid silver salt (B) and metal compound (E) Is a solar cell electrode by firing, the fill factor of the solar cell is lower when fired at 720 ° C. than when fired at 780 ° C. or 800 ° C. (Comparative Example 1-1). 1-2 and 2-1 to 2-3), or higher at 720 ° C. than at 780 ° C. (Comparative Example 1-3). It was.
  • Comparative Example 1-4 containing fatty acid silver salt (B), fatty acid silver salt (B) fatty acid metal salt composed of “same” fatty acid, and fatty acid silver salt (B) and metal composed of silver
  • fatty acid silver salt (B) fatty acid silver salt (B) and metal composed of silver
  • the conductive composition of Comparative Example 1-5 containing a compound when calcined to form an electrode of a solar battery cell, the temperature dependence of the curve factor of the solar battery cell is large as in the above Comparative Example, Furthermore, the absolute value of the fill factor was found to be low.
  • the conductive composition of Comparative Example 2-4 containing both the fatty acid silver salt (B) and the metal compound (E) but having a B / E of less than 1, In this case, the temperature dependence of the fill factor of the solar cell is small, but the absolute value of the fill factor is low.
  • the conductivity of Examples 1-1 to 1-14 and 2-1 to 2-8 containing both the fatty acid silver salt (B) and the metal compound (E) and having B / E of 1 or more When the composition is baked to form an electrode of a solar battery cell, the fill factor of the solar battery cell is the same when baked at 720 ° C. and when baked at 780 ° C. or 800 ° C. and wide.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

The purpose of the present invention is to provide an electroconductive composition for forming a solar cell collector electrode whereby a solar cell can be obtained that exhibits a high fill factor over a wide firing temperature range (700 to 800°C), and to provide a solar cell that uses this composition. This electroconductive composition for forming a solar cell collector electrode contains electroconductive particles (A), a fatty acid silver salt (B), a glass frit (C), a solvent (D), and a metal compound (E) composed of ionic bonds and/or coordinate bonds between a metal other than silver and an organic compound other than the fatty acid of the fatty acid silver salt (B), wherein the mass ratio (B/E) of the fatty acid silver salt (B) content to the metal compound (E) content is 1 or greater.

Description

太陽電池集電電極形成用導電性組成物および太陽電池セルConductive composition for forming solar battery collecting electrode and solar battery cell
 本発明は、太陽電池集電電極形成用導電性組成物および太陽電池セルに関する。 The present invention relates to a conductive composition for forming a solar battery collecting electrode and a solar battery cell.
 太陽光のような光エネルギーを電気エネルギーに変換する太陽電池は、地球環境問題に対する関心が高まるにつれ、積極的に種々の構造・構成のものが開発されている。その中でも、シリコンなどの半導体基板を用いた太陽電池は、その変換効率、製造コストなどの優位性により最も一般的に用いられている。 Solar cells that convert light energy such as sunlight into electrical energy have been actively developed in various structures and configurations as interest in global environmental issues increases. Among them, solar cells using a semiconductor substrate such as silicon are most commonly used due to advantages such as conversion efficiency and manufacturing cost.
 このような太陽電池の電極を形成する材料としては、例えば、特許文献1には、「有機バインダと、溶剤と、導電性粒子と、ガラスフリットと、金属酸化物と、150~800℃の温度範囲で気体に変化する物質とを含む、太陽電池電極用導電性ペースト。」が記載されており([請求項1])、上記気体に変化する物質として有機金属化合物が記載されており([請求項3][請求項4])、有機金属化合物の具体例として、Al、Ga、In等の金属のジケトン錯体やカルボン酸塩が記載されている([0039])。 As a material for forming such an electrode of a solar cell, for example, Patent Document 1 discloses that “an organic binder, a solvent, conductive particles, glass frit, a metal oxide, and a temperature of 150 to 800 ° C. A conductive paste for solar cell electrodes containing a substance that changes to a gas in a range ”([Claim 1]), and an organometallic compound as a substance that changes to a gas ([[ [Claim 3] [Claim 4]), and specific examples of organometallic compounds include diketone complexes and carboxylates of metals such as Al, Ga and In ([0039]).
 また、特許文献2には、「有機バインダと、溶剤と、導電性粒子と、ガラスフリットと、Al、Ga、In又はTlを含む化合物とを含有する、ことを特徴とする太陽電池電極用導電性ペースト」が記載されており([請求項1])、上記化合物として有機金属化合物等が記載されており([請求項3])、上記有機金属化合物としてアセチルアセトン錯体等が記載されている([請求項4])。 Further, Patent Document 2 discloses that “a conductive material for a solar cell electrode comprising an organic binder, a solvent, conductive particles, a glass frit, and a compound containing Al, Ga, In, or Tl. ”Is described ([Claim 1]), an organometallic compound or the like is described as the compound ([Claim 3]), and an acetylacetone complex or the like is described as the organometallic compound ( [Claim 4]).
 一方、特許文献3には、本出願人により、「銀粉(A)と、酸化銀(B)と、有機溶媒(D)とを含有し、該銀粉(A)が組成物に含有される銀単体および銀化合物中50質量%以上である導電性組成物」が提案されており([請求項1])、任意成分としてカルボン酸銀塩を含む態様や、ガラスフリット等の他の添加剤を含む態様が記載されている([請求項2][0030][0031][0032]等)。 On the other hand, in Patent Document 3, the present applicant states that “silver powder (A), silver oxide (B), and organic solvent (D) are contained, and the silver powder (A) is contained in the composition. A conductive composition that is 50% by mass or more in a simple substance and a silver compound has been proposed ([Claim 1]), and an embodiment that includes silver carboxylate as an optional component, and other additives such as glass frit. A mode of inclusion is described ([Claim 2] [0030] [0031] [0032] and the like).
特開2007-294677号公報JP 2007-294677 A 特開2007-294678号公報JP 2007-294678 A 特開2011-35062号公報JP 2011-35062 A
 しかしながら、本発明者が、特許文献1~3に記載された導電性ペーストや導電性組成物について検討したところ、電極を形成する焼成温度によっては、得られる太陽電池セルの曲線因子(FF)が低くなる場合があることが明らかとなった。 However, the present inventor has examined the conductive paste and conductive composition described in Patent Documents 1 to 3, and depending on the firing temperature for forming the electrode, the curve factor (FF) of the obtained solar cell may be It became clear that it might be lower.
 このように焼成温度によって特性が変化してしまうと、その程度によっては、太陽電池セルを製造したときに歩留まりが低下したり、歩留まりを向上させるために高い精度で焼成温度を制御したりしなければならない、等の問題が生じる場合があった。 If the characteristics change depending on the firing temperature in this way, depending on the degree, the yield may decrease when the solar cells are manufactured, or the firing temperature may be controlled with high accuracy in order to improve the yield. In some cases, problems such as unavoidable have occurred.
 そこで、本発明は、広い焼成温度範囲(700~800℃)で高い曲線因子を示す太陽電池セルを得ることができる太陽電池集電電極形成用導電性組成物およびそれを用いた太陽電池セルを提供することを課題とする。 Accordingly, the present invention provides a conductive composition for forming a solar battery collecting electrode capable of obtaining a solar battery cell exhibiting a high fill factor in a wide firing temperature range (700 to 800 ° C.), and a solar battery cell using the same. The issue is to provide.
 本発明者は、上記課題を解決するため鋭意検討した結果、脂肪酸銀塩および、銀以外の金属と、上記脂肪酸銀塩の脂肪酸以外の有機化合物とのイオン結合および/または配位結合からなる金属化合物とを特定の質量比で含有する導電性組成物を用いて電極を形成することにより、広い焼成温度範囲(700~800℃)で高い曲線因子を示す太陽電池セルを得ることができることを見出し、本発明を完成させた。即ち、本発明は、下記(1)~(12)を提供する。 As a result of intensive studies to solve the above problems, the present inventor has found that a fatty acid silver salt and a metal comprising a metal other than silver and an ionic bond and / or a coordinate bond between an organic compound other than the fatty acid of the fatty acid silver salt. It has been found that by forming an electrode using a conductive composition containing a compound at a specific mass ratio, a solar battery cell exhibiting a high fill factor can be obtained in a wide firing temperature range (700 to 800 ° C.). The present invention has been completed. That is, the present invention provides the following (1) to (12).
(1) 導電性粒子(A)、脂肪酸銀塩(B)、ガラスフリット(C)、溶媒(D)および、銀以外の金属と、上記脂肪酸銀塩(B)の脂肪酸以外の有機化合物とのイオン結合および/または配位結合からなる金属化合物(E)を含有する太陽電池集電電極形成用導電性組成物であって、
 上記脂肪酸銀塩(B)の含有量と上記金属化合物(E)の含有量との質量比(B/E)が1以上である、太陽電池集電電極形成用導電性組成物。
(1) Conductive particles (A), fatty acid silver salt (B), glass frit (C), solvent (D) and a metal other than silver and an organic compound other than fatty acid in the fatty acid silver salt (B) A conductive composition for forming a solar cell collecting electrode, comprising a metal compound (E) comprising an ionic bond and / or a coordinate bond,
The electrically conductive composition for solar cell current collection electrode formation whose mass ratio (B / E) of content of the said fatty acid silver salt (B) and content of the said metal compound (E) is 1 or more.
(2) 上記金属化合物(E)が、上記脂肪酸銀塩(B)の脂肪酸とは異なる脂肪酸と銀以外の金属とのイオン結合からなる脂肪酸金属塩(E1)である、上記(1)に記載の太陽電池集電電極形成用導電性組成物。 (2) The above metal compound (E) is a fatty acid metal salt (E1) comprising an ionic bond between a fatty acid different from the fatty acid of the fatty acid silver salt (B) and a metal other than silver. A conductive composition for forming a solar cell collector electrode.
(3) 上記脂肪酸銀塩(B)が、カルボン酸銀塩であり、上記脂肪酸金属塩(E1)が、マグネシウム、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、スズおよび鉛からなる群から選択される少なくとも1種以上のカルボン酸金属塩である、上記(2)に記載の太陽電池集電電極形成用導電性組成物。 (3) The fatty acid silver salt (B) is a carboxylic acid silver salt, and the fatty acid metal salt (E1) is selected from the group consisting of magnesium, nickel, copper, zinc, yttrium, zirconium, tin and lead. The conductive composition for forming a solar cell collector electrode according to (2) above, which is at least one metal salt of carboxylic acid.
(4) 上記カルボン酸金属塩が、2-エチルヘキサン酸、オクチル酸、ナフテン酸、ステアリン酸およびラウリン酸からなる群から選択される脂肪酸の金属塩である上記(3)に記載の太陽電池集電電極形成用導電性組成物。 (4) The solar cell collection according to (3), wherein the carboxylic acid metal salt is a metal salt of a fatty acid selected from the group consisting of 2-ethylhexanoic acid, octylic acid, naphthenic acid, stearic acid, and lauric acid. A conductive composition for forming an electrode.
(5) 上記金属化合物(E)が、アセチルアセトンと銀以外の金属との配位結合からなるアセチルアセトン金属錯体(E2)である、上記(1)に記載の太陽電池集電電極形成用導電性組成物。 (5) The conductive composition for forming a solar cell collecting electrode according to (1), wherein the metal compound (E) is an acetylacetone metal complex (E2) composed of a coordinate bond between acetylacetone and a metal other than silver. object.
(6) 上記アセチルアセトン金属錯体(E2)が、インジウム、ニッケル、銅、チタン、亜鉛および錫からなる群より選択される金属種の錯体である上記(5)に記載の太陽電池集電電極形成用導電性組成物。 (6) For forming a solar cell collecting electrode according to (5), wherein the acetylacetone metal complex (E2) is a complex of a metal species selected from the group consisting of indium, nickel, copper, titanium, zinc and tin. Conductive composition.
(7) 上記質量比(B/E)が、2以上である上記(1)~(6)のいずれかに記載の太陽電池集電電極形成用導電性組成物。 (7) The conductive composition for forming a solar cell collecting electrode according to any one of (1) to (6), wherein the mass ratio (B / E) is 2 or more.
(8) 上記脂肪酸銀塩(B)が、炭素数18以下の脂肪酸銀塩(B1)、カルボキシ銀塩基(-COOAg)と水酸基(-OH)とをそれぞれ1個以上有する脂肪酸銀塩(B2)、および、水酸基(-OH)を有さずにカルボキシ銀塩基(-COOAg)を2個以上有するポリカルボン酸銀塩(B3)からなる群より選択される脂肪酸銀塩である上記(1)~(7)のいずれかに記載の太陽電池集電電極形成用導電性組成物。 (8) The fatty acid silver salt (B2) wherein the fatty acid silver salt (B) has at least one fatty acid silver salt (B1), carboxy silver base (—COOAg) and hydroxyl group (—OH) each having 18 or less carbon atoms. And the fatty acid silver salt selected from the group consisting of a polycarboxylic acid silver salt (B3) having two or more carboxy silver bases (—COOAg) without having a hydroxyl group (—OH). (7) The electrically conductive composition for solar cell current collection electrode formation in any one of.
(9) 上記脂肪酸銀塩(B)の含有量が、上記導電性粒子(A)100質量部に対して1~30質量部である上記(1)~(8)のいずれかに記載の太陽電池集電電極形成用導電性組成物。 (9) The sun according to any one of (1) to (8), wherein the content of the fatty acid silver salt (B) is 1 to 30 parts by mass with respect to 100 parts by mass of the conductive particles (A). A conductive composition for forming a battery current collecting electrode.
(10) 上記金属化合物(E)の含有量が、上記導電性粒子(A)100質量部に対して0.1~10質量部である上記(1)~(9)のいずれかに記載の太陽電池集電電極形成用導電性組成物。 (10) The content of the metal compound (E) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the conductive particles (A), according to any one of (1) to (9) above A conductive composition for forming a solar cell collecting electrode.
(11) 受光面側の表面電極、反射防止膜、半導体基板および裏面電極を具備し、少なくとも上記表面電極が、上記(1)~(10)のいずれかに記載の太陽電池集電電極形成用導電性組成物を用いて形成される、太陽電池セル。 (11) A light-receiving surface side surface electrode, an antireflection film, a semiconductor substrate, and a back surface electrode are provided, and at least the surface electrode is for forming a solar cell collecting electrode according to any one of (1) to (10) above A solar battery cell formed using a conductive composition.
(12) インターコネクタを用いて上記(11)に記載の太陽電池セルを直列に配線した太陽電池モジュール。 (12) A solar cell module in which the solar cells according to (11) are wired in series using an interconnector.
 以下に示すように、本発明によれば、広い焼成温度範囲(700~800℃)で高い曲線因子を示す太陽電池セルを得ることができる太陽電池集電電極形成用導電性組成物およびそれを用いた太陽電池セルを提供することができる。 As shown below, according to the present invention, a conductive composition for forming a solar battery collecting electrode, which can obtain a solar battery cell exhibiting a high fill factor in a wide firing temperature range (700 to 800 ° C.), and The used solar battery cell can be provided.
図1は太陽電池セルの好適な実施態様の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a preferred embodiment of a solar battery cell.
 〔太陽電池集電電極形成用導電性組成物〕
 本発明の太陽電池集電電極形成用導電性組成物(以下、「本発明の導電性組成物」とも称する。)は、導電性粒子(A)、脂肪酸銀塩(B)、ガラスフリット(C)、溶媒(D)および、銀以外の金属と、上記脂肪酸銀塩(B)の脂肪酸以外の有機化合物とのイオン結合および/または配位結合からなる金属化合物(E)を含有する太陽電池集電電極形成用導電性組成物であって、上記脂肪酸銀塩(B)の含有量と上記金属化合物(E)の含有量との質量比(B/E)が1以上である、太陽電池集電電極形成用導電性組成物である。
 以下に、導電性粒子(A)、脂肪酸銀塩(B)、ガラスフリット(C)、溶媒(D)および金属化合物(E)ならびに所望により含有してもよい他の成分等について詳述する。
[Conductive composition for forming solar cell collector electrode]
The conductive composition for forming a solar cell collector electrode of the present invention (hereinafter also referred to as “the conductive composition of the present invention”) is composed of conductive particles (A), fatty acid silver salt (B), glass frit (C ), A solvent (D), and a collection of solar cells containing a metal compound (E) comprising an ionic bond and / or a coordinate bond between a metal other than silver and an organic compound other than the fatty acid of the fatty acid silver salt (B). A solar cell collection, wherein the mass ratio (B / E) of the content of the fatty acid silver salt (B) and the content of the metal compound (E) is 1 or more, which is a conductive composition for forming an electrode. It is an electroconductive composition for electric electrode formation.
Hereinafter, the conductive particles (A), the fatty acid silver salt (B), the glass frit (C), the solvent (D), the metal compound (E), and other components that may be optionally contained are described in detail.
 <導電性粒子(A)>
 本発明の導電性組成物で用いる導電性粒子(A)は特に限定されず、例えば、電気抵抗率が20×10-6Ω・cm以下の金属材料を用いることができる。
 上記金属材料としては、具体的には、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、体積抵抗率の小さい電極を形成することができ、光電変換効率の高い太陽電池セルを作製できる理由から、金、銀、銅であるのが好ましく、銀であるのがより好ましい。
<Conductive particles (A)>
The conductive particles (A) used in the conductive composition of the present invention are not particularly limited, and for example, a metal material having an electrical resistivity of 20 × 10 −6 Ω · cm or less can be used.
Specific examples of the metal material include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and the like. One species may be used alone, or two or more species may be used in combination.
Among these, gold, silver, and copper are preferable, and silver is more preferable because an electrode with a small volume resistivity can be formed and a solar cell with high photoelectric conversion efficiency can be manufactured.
 本発明においては、上記導電性粒子(A)は、印刷性が良好となる理由から、平均粒子径が0.5~10μmの金属粉末を用いるのが好ましい。
 上記金属粉末のうち、体積抵抗率の小さい電極を形成することができ、光電変換効率の高い太陽電池セルを作製できる理由から、球状の銀粉末を用いるのがより好ましい。
 ここで、平均粒子径とは、金属粉末の粒子径の平均値をいい、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。なお、平均値を算出する基になる粒子径は、金属粉末の断面が楕円形である場合はその長径と短径の合計値を2で割った平均値をいい、正円形である場合はその直径をいう。
 また、球状とは、長径/短径の比率が2以下の粒子の形状をいう。
In the present invention, it is preferable to use a metal powder having an average particle diameter of 0.5 to 10 μm for the conductive particles (A) because of good printability.
Among the above metal powders, it is more preferable to use spherical silver powder because an electrode with a small volume resistivity can be formed and a solar battery cell with high photoelectric conversion efficiency can be produced.
Here, an average particle diameter means the average value of the particle diameter of a metal powder, and means the 50% volume cumulative diameter (D50) measured using the laser diffraction type particle size distribution measuring apparatus. In addition, when the cross-section of the metal powder is an ellipse, the particle diameter used as the basis for calculating the average value is an average value obtained by dividing the total value of the major axis and the minor axis by 2, and in the case of a perfect circle, Refers to the diameter.
The spherical shape refers to the shape of particles having a major axis / minor axis ratio of 2 or less.
 また、本発明においては、上記導電性粒子(A)の平均粒子径は、印刷性がより良好となる理由から、0.7~5μmであるのが好ましく、焼結速度が適当となり作業性に優れる理由から、1~3μmであるのがより好ましい。 In the present invention, the average particle diameter of the conductive particles (A) is preferably 0.7 to 5 μm because the printability is better, and the sintering speed is appropriate and the workability is improved. For excellent reasons, the thickness is more preferably 1 to 3 μm.
 更に、本発明においては、上記導電性粒子(A)として市販品を用いることができ、その具体例としては、AgC-102(形状:球状、平均粒子径:1.5μm、福田金属箔粉工業社製)、AgC-103(形状:球状、平均粒子径:1.5μm、福田金属箔粉工業社製)、AG4-8F(形状:球状、平均粒子径:2.2μm、DOWAエレクトロニクス社製)、AG2-1C(形状:球状、平均粒子径:1.0μm、DOWAエレクトロニクス社製)、AG3-11F(形状:球状、平均粒子径:1.4μm、DOWAエレクトロニクス社製)、SPN5J(形状:球状、平均粒子径:1.2μm、三井金属社製)、EHD(形状:球状、平均粒子径:0.5μm、三井金属社製)、AgC-2011(形状:フレーク状、平均粒子径:2~10μm、福田金属箔粉工業社製)、AgC-301K(形状:フレーク状、平均粒子径:3~10μm、福田金属箔粉工業社製)等が挙げられる。 Furthermore, in the present invention, a commercially available product can be used as the conductive particles (A). Specific examples thereof include AgC-102 (shape: spherical, average particle size: 1.5 μm, Fukuda Metal Foil Powder Industry). AGC-103 (shape: spherical, average particle size: 1.5 μm, manufactured by Fukuda Metal Foil Powder Co., Ltd.), AG4-8F (shape: spherical, average particle size: 2.2 μm, manufactured by DOWA Electronics) AG2-1C (shape: spherical, average particle size: 1.0 μm, manufactured by DOWA Electronics), AG3-11F (shape: spherical, average particle size: 1.4 μm, manufactured by DOWA Electronics), SPN5J (shape: spherical) , Average particle size: 1.2 μm, manufactured by Mitsui Kinzoku Co., Ltd.), EHD (shape: spherical, average particle size: 0.5 μm, manufactured by Mitsui Kinzoku Co., Ltd.), AgC-2011 (shape: flake shape, average particle size: ~ 10 [mu] m, manufactured by Fukuda Metal Foil & Powder Co., Ltd.), AgC-301K (shape: flaky, average particle size: 3 ~ 10 [mu] m, Fukuda metal foil Powder Co., Ltd.) and the like.
 <脂肪酸銀塩(B)>
 本発明の導電性組成物で用いる脂肪酸銀塩(B)は、有機カルボン酸(脂肪酸)の銀塩であれば特に限定されず、例えば、特開2008-198595号公報の[0063]~[0068]段落に記載された脂肪酸金属塩(特に3級脂肪酸銀塩)、特許第4482930号公報の[0030]段落に記載された脂肪酸銀塩、特開2010-92684号公報の[0029]~[0045]段落に記載された水酸基を1個以上有する脂肪酸銀塩、同公報の[0046]~[0056]段落に記載された2級脂肪酸銀塩、特開2011-35062号公報の[0022]~[0026]に記載されたカルボン酸銀等を用いることができる。
 これらのうち、印刷性が良好となり、曲線因子の温度依存性をより低減できるという理由から、炭素数18以下の脂肪酸銀塩(B1)、カルボキシ銀塩基(-COOAg)と水酸基(-OH)とをそれぞれ1個以上有する脂肪酸銀塩(B2)、および、水酸基(-OH)を有さずにカルボキシ銀塩基(-COOAg)を2個以上有するポリカルボン酸銀塩(B3)からなる群から選択される少なくとも1種の脂肪酸銀塩を用いるのが好ましい。
 中でも、曲線因子の温度依存性を更に低減できるという理由から、水酸基(-OH)を有さずにカルボキシ銀塩基(-COOAg)を3個以上有するポリカルボン酸銀塩(B3)を用いるのが特に好ましい。
<Fatty acid silver salt (B)>
The fatty acid silver salt (B) used in the conductive composition of the present invention is not particularly limited as long as it is a silver salt of an organic carboxylic acid (fatty acid). For example, JP-A-2008-198595 discloses [0063] to [0068]. ] Fatty acid metal salts (particularly tertiary fatty acid silver salts) described in the paragraph, fatty acid silver salts described in the paragraph [0030] of Japanese Patent No. 4482930, [0029] to [0045] of JP 2010-92684 A ] The fatty acid silver salt having one or more hydroxyl groups described in the paragraph, the secondary fatty acid silver salt described in the paragraphs [0046] to [0056] of the publication, and [0022] to [0022] of JP 2011-35062 A The silver carboxylate described in [0026] can be used.
Among these, since the printability is improved and the temperature dependence of the fill factor can be further reduced, a fatty acid silver salt (B1) having 18 or less carbon atoms, a carboxy silver base (—COOAg) and a hydroxyl group (—OH) Selected from the group consisting of a fatty acid silver salt (B2) having one or more of each and a polycarboxylic acid silver salt (B3) having two or more carboxy silver bases (—COOAg) without having a hydroxyl group (—OH) Preferably, at least one fatty acid silver salt is used.
Among them, the polycarboxylic acid silver salt (B3) having 3 or more carboxy silver bases (—COOAg) without having a hydroxyl group (—OH) is used because the temperature dependence of the fill factor can be further reduced. Particularly preferred.
 ここで、上記脂肪酸銀塩(B2)としては、例えば、下記式(I)~(III)のいずれかで表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式(I)中、nは0~2の整数を表し、R1は水素原子または炭素数1~10のアルキル基を表し、R2は炭素数1~6のアルキレン基を表す。nが0または1である場合、複数のR2はそれぞれ同一であっても異なっていてもよい。nが2である場合、複数のR1はそれぞれ同一であっても異なっていてもよい。
 式(II)中、R1は水素原子または炭素数1~10のアルキル基を表し、複数のR1はそれぞれ同一であっても異なっていてもよい。
 式(III)中、R1は水素原子または炭素数1~10のアルキル基を表し、R3は炭素数1~6のアルキレン基を表す。複数のR1はそれぞれ同一であっても異なっていてもよい。)
Here, examples of the fatty acid silver salt (B2) include compounds represented by any of the following formulas (I) to (III).
Figure JPOXMLDOC01-appb-C000001
(In the formula (I), n represents an integer of 0 to 2, R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkylene group having 1 to 6 carbon atoms. When it is 0 or 1, the plurality of R 2 may be the same or different, and when n is 2, the plurality of R 1 may be the same or different.
In the formula (II), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and a plurality of R 1 may be the same or different.
In the formula (III), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 3 represents an alkylene group having 1 to 6 carbon atoms. The plurality of R 1 may be the same or different. )
 また、上記ポリカルボン酸銀塩(B3)としては、例えば、下記式(IV)で表される化合物であるが挙げられる。
Figure JPOXMLDOC01-appb-C000002
(式(IV)中、mは、2~6の整数を表し、R4は、炭素数1~24のm価の飽和脂肪族炭化水素基、炭素数2~12のm価の不飽和脂肪族炭化水素基、炭素数3~12のm価の脂環式炭化水素基、または、炭素数6~12のm価の芳香族炭化水素基を表す。R4の炭素数をpとすると、m≦2p+2である。)
Examples of the polycarboxylic acid silver salt (B3) include compounds represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000002
(In the formula (IV), m represents an integer of 2 to 6, R 4 represents an m-valent saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms, and an m-valent unsaturated fat having 2 to 12 carbon atoms. Represents an aromatic hydrocarbon group, an m-valent alicyclic hydrocarbon group having 3 to 12 carbon atoms, or an m-valent aromatic hydrocarbon group having 6 to 12 carbon atoms, where the carbon number of R 4 is p. m ≦ 2p + 2.)
 上記脂肪酸銀塩(B1)としては、具体的には、2-メチルプロパン酸銀塩(別名:イソ酪酸銀塩)、2-メチルブタン酸銀塩等が好適に例示される。
 また、上記脂肪酸銀塩(B2)としては、具体的には、2-ヒドロキシイソ酪酸銀塩、2,2-ビス(ヒドロキシメチル)-n-酪酸銀塩等が好適に例示される。
 また、上記ポリカルボン酸銀塩(B3)としては、具体的には、1,3,5-ペンタントリカルボン酸銀塩、1,2,3,4-ブタンテトラカルボン酸銀塩等が好適に例示される。
Specific examples of the fatty acid silver salt (B1) include 2-methylpropanoic acid silver salt (also known as isobutyric acid silver salt) and 2-methylbutanoic acid silver salt.
Specific examples of the fatty acid silver salt (B2) include 2-hydroxyisobutyric acid silver salt and 2,2-bis (hydroxymethyl) -n-butyric acid silver salt.
Specific examples of the polycarboxylic acid silver salt (B3) include 1,3,5-pentanetricarboxylic acid silver salt and 1,2,3,4-butanetetracarboxylic acid silver salt. Is done.
 本発明においては、上記脂肪酸銀塩(B)の含有量は、印刷性がより良好となる理由から、上記導電性粒子(A)100質量部に対して、1~30質量部であることが好ましく、5~25質量部であることがより好ましい。 In the present invention, the content of the fatty acid silver salt (B) is 1 to 30 parts by mass with respect to 100 parts by mass of the conductive particles (A) because the printability is better. Preferably, it is 5 to 25 parts by mass.
 <ガラスフリット(C)>
 本発明の導電性組成物で用いるガラスフリット(C)は特に限定されず、軟化温度が300℃以上で、焼成温度(熱処理温度)以下のものを用いるのが好ましい。
 上記ガラスフリット(C)としては、具体的には、例えば、軟化温度300~800℃のホウケイ酸ガラスフリット等が挙げられる。
 上記ガラスフリット(C)の形状は特に限定されず、球状でも破砕粉状でもよい。球状のガラスフリットの平均粒子径(D50)は、0.1~20μmであることが好ましく、1~10μmであることがより好ましい。さらに、15μm以上の粒子を除去した、シャープな粒度分布を持つガラスフリットを用いることが好ましい。
 ここで、平均粒子径とは、粒子径の平均値をいい、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。
 上記ガラスフリット(C)の含有量は、上記導電性粒子(A)100質量部に対して0.5~10質量部であるのが好ましく、1~5質量部であるのがより好ましい。
<Glass frit (C)>
The glass frit (C) used in the conductive composition of the present invention is not particularly limited, and it is preferable to use one having a softening temperature of 300 ° C. or higher and a firing temperature (heat treatment temperature) or lower.
Specific examples of the glass frit (C) include a borosilicate glass frit having a softening temperature of 300 to 800 ° C.
The shape of the glass frit (C) is not particularly limited, and may be spherical or crushed powder. The average particle diameter (D50) of the spherical glass frit is preferably 0.1 to 20 μm, and more preferably 1 to 10 μm. Furthermore, it is preferable to use a glass frit having a sharp particle size distribution from which particles of 15 μm or more are removed.
Here, the average particle diameter means an average value of the particle diameters, and means a 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution measuring apparatus.
The content of the glass frit (C) is preferably 0.5 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the conductive particles (A).
 <溶媒(D)>
 本発明の導電性組成物で用いる溶媒(D)は、本発明の導電性組成物を基材上に塗布することができるものであれば特に限定されない。
 上記溶媒(D)としては、具体的には、例えば、ブチルカルビトール、ブチルカルビトールアセテート、2,2,4-トリメチル-1,3-ペンタンジオールジイソブチレート、ジエチレングリコールジブチルエーテル、メチルエチルケトン、イソホロン、α-テルピネオール等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 また、上記溶媒(D)の含有量は、上記導電性粒子(A)100質量部に対して、2~20質量部であるのが好ましく、5~15重量部であるのがより好ましい。
<Solvent (D)>
The solvent (D) used in the conductive composition of the present invention is not particularly limited as long as it can apply the conductive composition of the present invention onto a substrate.
Specific examples of the solvent (D) include butyl carbitol, butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, diethylene glycol dibutyl ether, methyl ethyl ketone, isophorone, Examples thereof include α-terpineol, and these may be used alone or in combination of two or more.
In addition, the content of the solvent (D) is preferably 2 to 20 parts by weight, and more preferably 5 to 15 parts by weight with respect to 100 parts by weight of the conductive particles (A).
 <金属化合物(E)>
 本発明の導電性組成物で用いる金属化合物(E)は、銀以外の金属と、上記脂肪酸銀塩(B)の脂肪酸以外の有機化合物とのイオン結合および/または配位結合からなる金属化合物である。
 上記金属化合物(E)を含有する本発明の導電性組成物を用いて太陽電池セルの電極を形成することにより、広い焼成温度範囲(700~800℃)で高い曲線因子を示す太陽電池セルを得ることができる。
 これは、詳細には明らかではないが、上記金属化合物(E)を配合することにより、上記脂肪酸銀塩(B)と上記溶媒(D)との分散性が向上し、また、上記ガラスフリット(C)が軟化(分解)する温度領域が広がり、広い焼成温度範囲(700~800℃)でファイヤースルーが適度に進行し、シリコン基板に対して良好なコンタクトが形成されるためと考えられる。
<Metal compound (E)>
The metal compound (E) used in the conductive composition of the present invention is a metal compound comprising an ionic bond and / or a coordinate bond between a metal other than silver and an organic compound other than the fatty acid of the fatty acid silver salt (B). is there.
By forming an electrode of a solar battery cell using the conductive composition of the present invention containing the metal compound (E), a solar battery cell exhibiting a high fill factor in a wide firing temperature range (700 to 800 ° C.) is obtained. Obtainable.
Although this is not clear in detail, the dispersibility of the fatty acid silver salt (B) and the solvent (D) is improved by adding the metal compound (E), and the glass frit ( This is considered to be because the temperature range in which C) softens (decomposes) widens, fire-through proceeds moderately in a wide firing temperature range (700 to 800 ° C.), and good contacts are formed with respect to the silicon substrate.
 上記金属化合物(E)の第1の好適な態様としては、上記脂肪酸銀塩(B)の脂肪酸とは異なる脂肪酸(以下、「特定脂肪酸」とも称する。)と銀以外の金属とのイオン結合からなる脂肪酸金属塩(E1)が挙げられる。なかでも、曲線因子の温度依存性をより低減できるという理由から、マグネシウム、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、スズおよび鉛からなる群から選択される少なくとも1種以上の金属のカルボン酸金属塩であることが好ましい。 As a first preferred embodiment of the metal compound (E), from an ionic bond between a fatty acid different from the fatty acid of the fatty acid silver salt (B) (hereinafter also referred to as “specific fatty acid”) and a metal other than silver. And fatty acid metal salt (E1). Among them, a carboxylic acid metal salt of at least one metal selected from the group consisting of magnesium, nickel, copper, zinc, yttrium, zirconium, tin and lead because the temperature dependence of the fill factor can be further reduced. It is preferable that
 上記脂肪酸金属塩(E1)を生成する上記特定脂肪酸は、上記溶媒(D)に対する溶解性が良好であり、得られる本発明の導電性組成物の貯蔵安定性も良好となる理由から、炭素数5~20の脂環式および/または鎖状の飽和炭化水素基を有する脂肪酸であるのが好ましい。
 上記特定脂肪酸としては、具体的には、例えば、2-エチルヘキサン酸、オクチル酸、ナフテン酸、ステアリン酸、ラウリン酸等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
The specific fatty acid that produces the fatty acid metal salt (E1) has good solubility in the solvent (D), and the storage stability of the resulting conductive composition of the present invention is also good. Fatty acids having 5 to 20 alicyclic and / or chain saturated hydrocarbon groups are preferred.
Specific examples of the specific fatty acid include 2-ethylhexanoic acid, octylic acid, naphthenic acid, stearic acid, lauric acid and the like. These may be used alone or in combination of two or more. You may use together.
 このような脂肪酸金属塩(E1)としては、具体的には、例えば、オクチル酸マグネシウム、オクチル酸ニッケル、オクチル酸銅、オクチル酸亜鉛、オクチル酸イットリウム、オクチル酸ジルコニウム、オクチル酸スズ、オクチル酸鉛;ナフテン酸マグネシウム、ナフテン酸ニッケル、ナフテン酸銅、ナフテン酸亜鉛、ナフテン酸イットリウム、ナフテン酸ジルコニウム、ナフテン酸スズ、ナフテン酸鉛;ステアリン酸マグネシウム、ステアリン酸ニッケル、ステアリン酸銅、ステアリン酸亜鉛、ステアリン酸イットリウム、ステアリン酸ジルコニウム、ステアリン酸スズ、ステアリン酸鉛;ラウリン酸マグネシウム、ラウリン酸ニッケル、ラウリン酸銅、ラウリン酸亜鉛、ラウリン酸イットリウム、ラウリン酸ジルコニウム、ラウリン酸スズ、ラウリン酸鉛;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the fatty acid metal salt (E1) include, for example, magnesium octylate, nickel octylate, copper octylate, zinc octylate, yttrium octylate, zirconium octylate, tin octylate, and lead octylate. Magnesium naphthenate, nickel naphthenate, copper naphthenate, zinc naphthenate, yttrium naphthenate, zirconium naphthenate, tin naphthenate, lead naphthenate; magnesium stearate, nickel stearate, copper stearate, zinc stearate, stearin Yttrium acid, zirconium stearate, tin stearate, lead stearate; magnesium laurate, nickel laurate, copper laurate, zinc laurate, yttrium laurate, zirconium laurate, lauric acid 'S, lauric lead; and the like, may be used those either alone, or in combination of two or more.
 上記金属化合物(E)の第2の好適な態様としては、アセチルアセトンと銀以外の金属との配位結合からなるアセチルアセトン金属錯体(E2)が挙げられる。なかでも、曲線因子の温度依存性をより低減できるという理由から、インジウム、ニッケル、銅、チタン、亜鉛および錫からなる群から選択される金属種の錯体であることが好ましく、インジウムの錯体であることがより好ましい。
 また、本発明においては、上記アセチルアセトン金属錯体(E2)は、1種のアセチルアセトン金属錯体を単独で用いても、2種以上のアセチルアセトン金属錯体を併用してもよい。
As a 2nd suitable aspect of the said metal compound (E), the acetylacetone metal complex (E2) which consists of a coordinate bond of acetylacetone and metals other than silver is mentioned. Among these, a complex of a metal species selected from the group consisting of indium, nickel, copper, titanium, zinc, and tin is preferable because the temperature dependency of the fill factor can be further reduced, and the complex of indium. It is more preferable.
In the present invention, the acetylacetone metal complex (E2) may be a single acetylacetone metal complex or a combination of two or more acetylacetone metal complexes.
 本発明においては、上記金属化合物(E)の含有量は、曲線因子の温度依存性をより低減できるという理由から、上記導電性粒子(A)100質量部に対して、0.1~10質量部であることが好ましく、1~5質量部であることがより好ましい。 In the present invention, the content of the metal compound (E) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the conductive particles (A) because the temperature dependency of the fill factor can be further reduced. Parts, preferably 1 to 5 parts by mass.
 また、本発明において、上記脂肪酸銀塩(B)の含有量と上記金属化合物(E)の含有量との質量比(B/E)は、1以上であり、曲線因子の温度依存性をより低減できるという理由から、2以上であることが好ましい。
 また、これらの成分を配合して成るペーストが適度な粘度で容易に印刷できる粘度に仕上がるという理由から、上記質量比は、30以下であることが好ましく、25以下であることがより好ましく、19以下であることがさらに好ましい。
In the present invention, the mass ratio (B / E) between the content of the fatty acid silver salt (B) and the content of the metal compound (E) is 1 or more, and the temperature dependence of the fill factor is more It is preferable that it is 2 or more because it can reduce.
In addition, the mass ratio is preferably 30 or less, more preferably 25 or less, because the paste formed by blending these components has a viscosity that can be easily printed with an appropriate viscosity. More preferably, it is as follows.
 <樹脂バインダー(F)>
 本発明の導電性組成物は、印刷性の観点から、必要に応じて樹脂バインダー(F)を含有していてもよい。
 上記樹脂バインダー(F)は、バインダー機能を有する樹脂を溶媒に溶解したものである。
 上記樹脂としては、具体的には、例えば、エチルセルロース樹脂、ニトロセルロース樹脂、アルキド樹脂、アクリル樹脂、スチレン樹脂、フェノール樹脂等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。これらのうち、熱分解性の観点から、エチルセルロース樹脂を用いるのが好ましい。
 また、上記溶媒としては、具体的には、例えば、α-テルピネオール、ブチルカルビトール、ブチルカルビトールアセテート、ジアセトンアルコール、メチルイソブチルケトン等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。なお、本発明においては、上記溶媒は、上述した溶媒(D)の一部であってもよい。
<Resin binder (F)>
The conductive composition of the present invention may contain a resin binder (F) as necessary from the viewpoint of printability.
The resin binder (F) is obtained by dissolving a resin having a binder function in a solvent.
Specific examples of the resin include ethyl cellulose resin, nitrocellulose resin, alkyd resin, acrylic resin, styrene resin, phenol resin and the like, and these may be used alone or in combination of two or more. May be. Among these, it is preferable to use ethyl cellulose resin from the viewpoint of thermal decomposability.
Specific examples of the solvent include α-terpineol, butyl carbitol, butyl carbitol acetate, diacetone alcohol, methyl isobutyl ketone, and the like. You may use the above together. In the present invention, the solvent may be a part of the solvent (D) described above.
 <金属酸化物>
 本発明の導電性組成物は、光電変換効率を向上させるために、金属酸化物を含有していてもよい。
 上記金属酸化物としては、具体的には、例えば、酸化亜鉛、酸化ケイ素、酸化セリウム、酸化ビスマス、酸化スズ、ABO3(式中、AはBa、CaおよびSrからなる群から選択される少なくとも1種の元素を表し、BはTi、ZrおよびHfからなる群から選択される少なくとも1種の元素であってTiを含むものを表す。)で表されるペロブスカイト等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 なお、本発明においては、本発明の導電性組成物のチクソ性が良好となり、アスペクト比を高くすることができる理由から、上記金属酸化物に相当し得る酸化銀の含有量は、上記溶媒(D)100質量部に対して5質量部以下であるのが好ましく、1質量部以下であるのがより好ましく、実質的に酸化銀を含有していない態様が最も好ましい。
<Metal oxide>
In order to improve the photoelectric conversion efficiency, the conductive composition of the present invention may contain a metal oxide.
Specific examples of the metal oxide include zinc oxide, silicon oxide, cerium oxide, bismuth oxide, tin oxide, and ABO 3 (wherein A is at least selected from the group consisting of Ba, Ca, and Sr). 1 represents one element, and B represents at least one element selected from the group consisting of Ti, Zr, and Hf and represents Ti). One species may be used alone, or two or more species may be used in combination.
In the present invention, since the thixotropy of the conductive composition of the present invention is improved and the aspect ratio can be increased, the content of silver oxide that can correspond to the metal oxide is determined by the solvent ( D) It is preferably 5 parts by mass or less with respect to 100 parts by mass, more preferably 1 part by mass or less, and most preferably an embodiment containing substantially no silver oxide.
 本発明の導電性組成物の製造方法は特に限定されず、上記導電性粒子(A)、上記脂肪酸銀塩(B)、上記ガラスフリット(C)、上記溶媒(D)および上記金属化合物(E)ならびに所望により含有していてもよい樹脂バインダー(F)および金属酸化物を、ロール、ニーダー、押出し機、万能かくはん機等により混合する方法が挙げられる。 The manufacturing method of the electroconductive composition of this invention is not specifically limited, The said electroconductive particle (A), the said fatty acid silver salt (B), the said glass frit (C), the said solvent (D), and the said metal compound (E And a resin binder (F) and a metal oxide which may be optionally contained are mixed by a roll, a kneader, an extruder, a universal agitator or the like.
 〔太陽電池セル〕
 本発明の太陽電池セルは、受光面側の表面電極、反射防止膜、半導体基板および裏面電極を具備し、少なくとも上記表面電極が、上述した本発明の導電性組成物を用いて形成される太陽電池セルである。
 なお、上述した本発明の導電性組成物は、全裏面電極型(いわゆるバックコンタクト型)太陽電池セルの裏面電極の形成にも適用することができるため、全裏面電極型の太陽電池にも適用することができる。
 以下に、本発明の太陽電池セルの構成について図1を用いて説明する。なお、図1では、結晶系シリコン太陽電池を例に挙げて、本発明の太陽電池セルを説明するが、これに限られることはなく、例えば、薄膜系のアモルファスシリコン太陽電池、ハイブリッド型(HIT)太陽電池等であってもよい。
[Solar cells]
The solar cell of the present invention comprises a surface electrode on the light-receiving surface side, an antireflection film, a semiconductor substrate, and a back electrode, and at least the surface electrode is formed by using the above-described conductive composition of the present invention. It is a battery cell.
In addition, since the conductive composition of the present invention described above can also be applied to the formation of the back electrode of an all back electrode type (so-called back contact type) solar battery cell, it is also applicable to an all back electrode type solar cell. can do.
Below, the structure of the photovoltaic cell of this invention is demonstrated using FIG. In FIG. 1, the solar cell of the present invention will be described by taking a crystalline silicon solar cell as an example. However, the present invention is not limited to this. For example, a thin-film amorphous silicon solar cell, a hybrid type (HIT) It may be a solar cell or the like.
 図1に示すように、本発明の太陽電池セル10は、受光面側の表面電極(フィンガー電極)1と、反射防止膜2と、n層3およびp層5が接合したpn接合シリコン基板4(以下、これらを併せて「結晶系シリコン基板7」ともいう。)と、裏面電極(全面電極)6とを具備するものである。
 また、図1に示すように、本発明の太陽電池セル10は、反射率低減のため、例えば、ウェハー表面にエッチングを施して、ピラミッド状のテクスチャを形成するのが好ましい。
As shown in FIG. 1, a solar cell 10 of the present invention includes a surface electrode (finger electrode) 1 on the light receiving surface side, an antireflection film 2, a pn junction silicon substrate 4 in which an n layer 3 and a p layer 5 are joined. (Hereinafter, these are also referred to as “crystalline silicon substrate 7”.) And a back electrode (full-surface electrode) 6 are provided.
Moreover, as shown in FIG. 1, it is preferable that the photovoltaic cell 10 of this invention forms a pyramid-like texture by, for example, etching the wafer surface in order to reduce reflectivity.
 <表面電極/裏面電極>
 本発明の太陽電池セルが具備する表面電極および裏面電極は、少なくとも表面電極が本発明の導電性組成物を用いて形成されていれば、電極の配置(ピッチ)、形状、高さ、幅等は特に限定されない。
 ここで、表面電極は、通常、複数個有するものであるが、本発明においては、複数の表面電極の一部のみが本発明の導電性組成物で形成されたものであってもよい。
<Front electrode / Back electrode>
The surface electrode and the back electrode provided in the solar battery cell of the present invention are arranged (pitch), shape, height, width, etc. of the electrode as long as at least the surface electrode is formed using the conductive composition of the present invention. Is not particularly limited.
Here, a plurality of surface electrodes are usually provided, but in the present invention, only a part of the plurality of surface electrodes may be formed of the conductive composition of the present invention.
 <反射防止膜>
 本発明の太陽電池セルが具備する反射防止膜は、受光面の表面電極が形成されていない部分に形成される膜(膜厚:0.05~0.1μm程度)であって、例えば、シリコン酸化膜、シリコン窒化膜、酸化チタン膜、これらの積層膜等から構成されるものである。
<Antireflection film>
The antireflection film included in the solar battery cell of the present invention is a film (film thickness: about 0.05 to 0.1 μm) formed on a portion where the surface electrode of the light receiving surface is not formed. It is composed of an oxide film, a silicon nitride film, a titanium oxide film, a laminated film of these, and the like.
 <結晶系シリコン基板>
 本発明の太陽電池セルが具備する結晶系シリコン基板は特に限定されず、太陽電池を形成するための公知のシリコン基板(板厚:100~450μm程度)を用いることができ、また、単結晶または多結晶のいずれのシリコン基板であってもよい。
<Crystal silicon substrate>
The crystalline silicon substrate included in the solar battery cell of the present invention is not particularly limited, and a known silicon substrate (plate thickness: about 100 to 450 μm) for forming a solar battery can be used. Any polycrystalline silicon substrate may be used.
 また、上記結晶系シリコン基板はpn接合を有するが、これは、第1導電型の半導体基板の表面側に第2導電型の受光面不純物拡散領域が形成されていることを意味する。なお、第1導電型がn型の場合には、第2導電型はp型であり、第1導電型がp型の場合には、第2導電型はn型である。
 ここで、p型を与える不純物としては、ホウ素、アルミニウム等が挙げられ、n型を与える不純物としては、リン、砒素などが挙げられる。
The crystalline silicon substrate has a pn junction, which means that a second conductivity type light-receiving surface impurity diffusion region is formed on the surface side of the first conductivity type semiconductor substrate. When the first conductivity type is n-type, the second conductivity type is p-type. When the first conductivity type is p-type, the second conductivity type is n-type.
Here, examples of the impurity imparting p-type include boron and aluminum, and examples of the impurity imparting n-type include phosphorus and arsenic.
 本発明の太陽電池セルは、少なくとも上記表面電極が本発明の導電性組成物により形成されているため、広い焼成温度範囲(700~800℃)で高い曲線因子を示す。 The solar battery cell of the present invention exhibits a high fill factor in a wide firing temperature range (700 to 800 ° C.) because at least the surface electrode is formed of the conductive composition of the present invention.
 本発明の太陽電池セルの製造方法は特に限定されないが、結晶系シリコン基板上に反射防止膜を形成する反射防止膜形成工程と、本発明の導電性組成物を反射防止膜上に塗布して配線を形成する配線形成工程と、得られた配線を熱処理して電極(表面電極および/または裏面電極)を形成する熱処理工程とを有する方法が挙げられる。
 以下に、反射防止膜形成工程、配線形成工程、熱処理工程について詳述する。
Although the manufacturing method of the photovoltaic cell of the present invention is not particularly limited, an antireflection film forming step of forming an antireflection film on a crystalline silicon substrate, and applying the conductive composition of the present invention on the antireflection film. There is a method including a wiring forming step for forming a wiring and a heat treatment step for heat-treating the obtained wiring to form an electrode (front electrode and / or back electrode).
Hereinafter, the antireflection film forming step, the wiring forming step, and the heat treatment step will be described in detail.
 <反射防止膜形成工程>
 上記反射防止膜形成工程は、結晶系シリコン基板上に反射防止膜を形成する工程である。
 ここで、反射防止膜の形成方法は特に限定されず、プラズマCVD法等の公知の方法により形成することができる。
<Antireflection film formation process>
The antireflection film forming step is a step of forming an antireflection film on the crystalline silicon substrate.
Here, the formation method of the antireflection film is not particularly limited, and can be formed by a known method such as a plasma CVD method.
 <配線形成工程>
 上記配線形成工程は、本発明の導電性組成物を反射防止膜上に塗布して配線を形成する工程である。
 ここで、塗布方法としては、具体的には、例えば、インクジェット、スクリーン印刷、グラビア印刷、オフセット印刷、凸版印刷等が挙げられる。
<Wiring formation process>
The said wiring formation process is a process of apply | coating the electrically conductive composition of this invention on an antireflection film, and forming a wiring.
Here, specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
 <熱処理工程>
 上記熱処理工程は、上記配線形成工程で得られた配線を熱処理して導電性の配線(電極)を得る工程である。
 ここで、上記熱処理は特に限定されないが、700~800℃の温度で、数秒~数十分間、加熱(焼成)する処理であるのが好ましい。温度および時間がこの範囲であると、反射防止膜上に塗布された配線がファイヤースルー(焼成貫通)することにより、結晶系シリコン基板と接触する電極を形成することができる。
 なお、上述した配線形成工程で得られた配線は、紫外線または赤外線の照射でも電極を形成することができるため、本発明における熱処理工程は、紫外線または赤外線の照射によるものであってもよい。
<Heat treatment process>
The heat treatment step is a step of obtaining a conductive wiring (electrode) by heat-treating the wiring obtained in the wiring forming step.
Here, the heat treatment is not particularly limited, but is preferably a treatment of heating (firing) at a temperature of 700 to 800 ° C. for several seconds to several tens of minutes. When the temperature and time are within this range, the wiring applied on the antireflection film is fire-through (fired through), whereby an electrode in contact with the crystalline silicon substrate can be formed.
In addition, since the wiring obtained by the wiring formation process described above can form electrodes even by irradiation with ultraviolet rays or infrared rays, the heat treatment step in the present invention may be performed by irradiation with ultraviolet rays or infrared rays.
 〔太陽電池モジュール〕
 本発明の太陽電池モジュールは、インターコネクタを用いて本発明の太陽電池セルを直列に配線した太陽電池モジュールである。
 ここで、上記インターコネクタは、従来公知の太陽電池モジュールに使用されたコネクタを用いることができ、具体的には、例えば、半田または導電性接着剤をコートした銅リボン等を好適に用いることができる。
[Solar cell module]
The solar cell module of the present invention is a solar cell module in which the solar cells of the present invention are wired in series using an interconnector.
Here, as the interconnector, a connector used in a conventionally known solar cell module can be used. Specifically, for example, a copper ribbon coated with solder or a conductive adhesive is preferably used. it can.
 以下、実施例を用いて、本発明の導電性組成物について詳細に説明する。ただし、本発明はこれに限定されるものではない。 Hereinafter, the conductive composition of the present invention will be described in detail using examples. However, the present invention is not limited to this.
 (実施例1-1~1-14、実施例2-1~2-8、比較例1-1~1-5、比較例2-1~2-4)
 <導電性組成物の調製>
 ボールミルに、下記第1表に示す導電性粒子等を下記第1表中に示す組成比(質量比)となるように添加し、これらを混合することにより導電性組成物を調製した。
 なお、比較例1-4で用いたオクチル酸ニッケルは、脂肪酸銀塩(B)(オクチル酸銀塩)の脂肪酸(オクチル酸)と「同じ」脂肪酸と銀以外の金属(ニッケル)とのイオン結合からなる脂肪酸金属塩である。
(Examples 1-1 to 1-14, Examples 2-1 to 2-8, Comparative Examples 1-1 to 1-5, Comparative Examples 2-1 to 2-4)
<Preparation of conductive composition>
To the ball mill, conductive particles shown in Table 1 below were added so as to have the composition ratio (mass ratio) shown in Table 1 below, and these were mixed to prepare a conductive composition.
The nickel octylate used in Comparative Example 1-4 is an ionic bond between the fatty acid silver salt (B) (silver octylate) fatty acid (octylic acid) and the “same” fatty acid and a metal other than silver (nickel). It is a fatty acid metal salt consisting of
 <太陽電池セルの作製>
 アルカリテクスチャ処理を施した単結晶シリコンウェハーを準備し、裏面(受光面の反対側の面)の全面にアルミペーストをスクリーン印刷により塗布した後、150℃で15分間乾燥した。
 次いで、表面(受光面)に、反射防止膜としてシリコン窒化膜をプラズマCVD法により形成した後、調製した各導電性組成物をスクリーン印刷により塗布して配線パターンを形成した。
 その後、実施例1-1~1-14および比較例1-1~1-5については赤外線焼成炉にてピーク温度720℃および780℃の2つの条件で30秒間焼成し、導電性の配線(電極)を形成させた太陽電池セルのサンプルを作製した。
 また、実施例2-1~2-8および比較例2-1~2-4については赤外線焼成炉にてピーク温度720℃および800℃の2つの条件で30秒間焼成し、導電性の配線(電極)を形成させた太陽電池セルのサンプルを作製した。
<Production of solar cells>
A single crystal silicon wafer subjected to an alkali texture treatment was prepared, and an aluminum paste was applied to the entire back surface (the surface opposite to the light receiving surface) by screen printing, followed by drying at 150 ° C. for 15 minutes.
Next, a silicon nitride film as an antireflection film was formed on the surface (light-receiving surface) by a plasma CVD method, and each conductive composition thus prepared was applied by screen printing to form a wiring pattern.
Thereafter, Examples 1-1 to 1-14 and Comparative Examples 1-1 to 1-5 were fired in an infrared firing furnace for 30 seconds under two conditions of peak temperatures of 720 ° C. and 780 ° C., and conductive wiring ( A sample of a solar battery cell on which an electrode) was formed was produced.
Further, Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-4 were baked for 30 seconds in an infrared baking furnace at two peak temperatures of 720 ° C. and 800 ° C., and conductive wiring ( A sample of a solar battery cell on which an electrode) was formed was produced.
 <曲線因子>
 作製した各太陽電池セルのサンプルについて、セルテスター(山下電装社製)を用いて曲線因子の評価を行った。結果を下記第1表に示す。
<Curve factor>
About the sample of each produced photovoltaic cell, the fill factor was evaluated using a cell tester (manufactured by Yamashita Denso Co., Ltd.). The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 第1表中の各成分は、以下のものを使用した。
 ・銀粉:AgC-103(形状:球状、平均粒子径:1.5μm、福田金属箔粉工業社製)
 ・イソ酪酸銀塩:まず、酸化銀(東洋化学工業社製)50g、イソ酪酸(関東化学社製)38gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、白色のイソ酪酸銀塩を調製した。
 ・1,3,5-ペンタントリカルボン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、1,3,5-ペンタントリカルボン酸(東京化成社製)30gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることによって、白色の1,3,5-ペンタントリカルボン酸銀塩を調製した。
 ・オクチル酸銀塩:まず、酸化銀(東洋化学工業社製)50g、オクチル酸(協和発酵ケミカル社製)62.3gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることによって、白色のオクチル酸銀塩を調製した。
The following were used for each component in Table 1.
Silver powder: AgC-103 (shape: spherical, average particle size: 1.5 μm, manufactured by Fukuda Metal Foil Powder Industry)
Silver salt of isobutyrate: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 38 g of isobutyric acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and reacted by stirring at room temperature for 24 hours. It was. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white silver isobutyrate.
-1,3,5-pentanetricarboxylic acid silver salt: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 30 g of 1,3,5-pentanetricarboxylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are ball milled. And reacted by stirring at room temperature for 24 hours. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 1,3,5-pentanetricarboxylic acid silver salt.
-Silver octylate: First, 50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 62.3 g of octylic acid (manufactured by Kyowa Hakko Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and stirred at room temperature for 24 hours. Was reacted. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare a white silver octylate.
 ・ナフテン酸亜鉛:ナフテックス亜鉛(日本化学産業社製)
 ・ナフテン酸鉛:ナフテックス鉛(日本化学産業社製)
 ・ナフテン酸銅:ナフテックス銅(日本化学産業社製)
 ・ナフテン酸マグネシウム:ナフテックスマグネシウム(日本化学産業社製)
 ・ナフテン酸スズ:ナフテックススズ(日本化学産業社製)
 ・オクチル酸ニッケル:ニッカオクチックスニッケル(日本化学産業社製)
 ・オクチル酸イットリウム:オクチル酸イットリウム(III)(三津和化学薬品社製)
 ・オクチル酸ジルコニウム:ニッカオクチックジルコニウム(日本化学産業社製)
 ・ステアリン酸亜鉛:ステアリン酸亜鉛(和光純薬社製)
 ・ラウリン酸イットリウム:ラウリン酸イットリウム(III)(三津和化学薬品社製)
・ Zinc naphthenate: Naphtex zinc (manufactured by Nippon Chemical Industry Co., Ltd.)
・ Lead naphthenate: Lead naphthex (manufactured by Nippon Chemical Industry Co., Ltd.)
・ Naphthenic acid copper: Naphtex copper (manufactured by Nippon Chemical Industry Co., Ltd.)
・ Magnesium naphthenate: naphthex magnesium (manufactured by Nippon Chemical Industry Co., Ltd.)
-Tin naphthenate: Naphtex tin (manufactured by Nippon Chemical Industry Co., Ltd.)
-Nickel octylate: Nikka octix nickel (manufactured by Nippon Chemical Industry Co., Ltd.)
・ Yttrium octylate: Yttrium octylate (III) (Mitsuwa Chemical Co., Ltd.)
・ Zirconium octylate: Nikka Octic Zirconium (Nippon Chemical Industry Co., Ltd.)
・ Zinc stearate: Zinc stearate (Wako Pure Chemical Industries, Ltd.)
・ Yttrium laurate: Yttrium laurate (III) (manufactured by Mitsuwa Chemicals)
 ・In(C5723:ナーセムインジウム(日本化学産業社製)
 ・Ni(C5722・2H2O:ナーセムニッケル(日本化学産業社製)
 ・Cu(C5722:ナーセム銅(日本化学産業社製)
 ・Ti(OC492(C5722:ナーセムチタン(日本化学産業社製)
 ・Zn(C5722・H2O:ナーセム亜鉛(日本化学産業社製)
· In (C 5 H 7 O 2) 3: Toner Shem indium (Nihon Kagaku Sangyo Co., Ltd.)
· Ni (C 5 H 7 O 2) 2 · 2H 2 O: Toner Shem Nickel (Nihon Kagaku Sangyo Co., Ltd.)
Cu (C 5 H 7 O 2 ) 2 : Nursem copper (manufactured by Nippon Chemical Industry Co., Ltd.)
Ti (OC 4 H 9 ) 2 (C 5 H 7 O 2 ) 2 : Nursem titanium (manufactured by Nippon Chemical Industry Co., Ltd.)
・ Zn (C 5 H 7 O 2 ) 2 .H 2 O: Nursem zinc (manufactured by Nippon Chemical Industry Co., Ltd.)
 ・ガラスフリットC1:軟化点391℃、日本電気硝子社製
 ・ガラスフリットC2:軟化点430℃、日本電気硝子社製
 ・ガラスフリットC3:Pb系ガラスフリット
 ・溶媒:α-テルピネオール
 ・樹脂バインダー:EC-100FTP(エチルセルロース樹脂固形分:9%、日新化成社製)
 ・酸化亜鉛:ZnO(テイカ社製)
Glass frit C1: softening point 391 ° C., manufactured by Nippon Electric Glass Co., Ltd. Glass frit C2: softening point 430 ° C., manufactured by Nippon Electric Glass Co., Ltd. Glass frit C3: Pb glass frit Solvent: α-terpineol Resin binder: EC -100 FTP (ethyl cellulose resin solid content: 9%, manufactured by Nisshin Kasei Co., Ltd.)
・ Zinc oxide: ZnO (manufactured by Teika)
 第1表に示す結果から、脂肪酸銀塩(B)および金属化合物(E)の少なくともいずれか一方を含有しない比較例1-1~1-3および2-1~2-3の導電性組成物は、焼成して太陽電池セルの電極とした場合、その太陽電池セルの曲線因子は、780℃もしくは800℃で焼成したときよりも720℃で焼成したときの方が低い(比較例1-1、1-2および2-1~2-3)、または、780℃で焼成したときよりも720℃で焼成したときの方が高く(比較例1-3)、温度依存性が大きいことが分かった。また、脂肪酸銀塩(B)と脂肪酸銀塩(B)の脂肪酸と「同じ」脂肪酸からなる脂肪酸金属塩とを含有する比較例1-4、および、脂肪酸銀塩(B)と銀からなる金属化合物とを含有する比較例1-5の導電性組成物については、焼成して太陽電池セルの電極とした場合、上記比較例と同様にその太陽電池セルの曲線因子の温度依存性が大きく、さらに曲線因子の絶対値が低いことが分かった。また、脂肪酸銀塩(B)と金属化合物(E)の両方を含有するがB/Eが1未満である比較例2-4の導電性組成物については、焼成して太陽電池セルの電極とした場合、その太陽電池セルの曲線因子の温度依存性は小さいが、曲線因子の絶対値が低いことが分かった。
 一方、脂肪酸銀塩(B)と金属化合物(E)の両方を含有し、かつ、B/Eが1以上である実施例1-1~1-14および2-1~2-8の導電性組成物は、焼成して太陽電池セルの電極とした場合、その太陽電池セルの曲線因子は、720℃で焼成したときと780℃または800℃で焼成したときを比較して同等であり、広い焼成温度範囲(700~800℃)で高い曲線因子を示すことが分かった。
 実施例1-1~1-9および1-11~1-14と実施例1-10との対比から、脂肪酸銀塩(B)と金属化合物(E)の両方を含有し、かつ、B/Eが1以上である導電性組成物を用いると、ガラスフリットの種類に依らず、広い焼成温度範囲(700~800℃)で高い曲線因子を示すことが分かった。
From the results shown in Table 1, the conductive compositions of Comparative Examples 1-1 to 1-3 and 2-1 to 2-3 not containing at least one of fatty acid silver salt (B) and metal compound (E) Is a solar cell electrode by firing, the fill factor of the solar cell is lower when fired at 720 ° C. than when fired at 780 ° C. or 800 ° C. (Comparative Example 1-1). 1-2 and 2-1 to 2-3), or higher at 720 ° C. than at 780 ° C. (Comparative Example 1-3). It was. Further, Comparative Example 1-4 containing fatty acid silver salt (B), fatty acid silver salt (B) fatty acid metal salt composed of “same” fatty acid, and fatty acid silver salt (B) and metal composed of silver For the conductive composition of Comparative Example 1-5 containing a compound, when calcined to form an electrode of a solar battery cell, the temperature dependence of the curve factor of the solar battery cell is large as in the above Comparative Example, Furthermore, the absolute value of the fill factor was found to be low. Further, the conductive composition of Comparative Example 2-4 containing both the fatty acid silver salt (B) and the metal compound (E) but having a B / E of less than 1, In this case, the temperature dependence of the fill factor of the solar cell is small, but the absolute value of the fill factor is low.
On the other hand, the conductivity of Examples 1-1 to 1-14 and 2-1 to 2-8 containing both the fatty acid silver salt (B) and the metal compound (E) and having B / E of 1 or more When the composition is baked to form an electrode of a solar battery cell, the fill factor of the solar battery cell is the same when baked at 720 ° C. and when baked at 780 ° C. or 800 ° C. and wide. It was found that a high fill factor was exhibited in the firing temperature range (700 to 800 ° C.).
From a comparison of Examples 1-1 to 1-9 and 1-11 to 1-14 with Example 1-10, both fatty acid silver salt (B) and metal compound (E) were contained, and B / It was found that when a conductive composition having E of 1 or more was used, a high fill factor was exhibited in a wide firing temperature range (700 to 800 ° C.) regardless of the type of glass frit.
 1 表面電極
 2 反射防止膜
 3 n層
 4 pn接合シリコン基板
 5 p層
 6 裏面電極
 7 結晶系シリコン基板
 10 太陽電池セル
DESCRIPTION OF SYMBOLS 1 Front electrode 2 Antireflection film 3 N layer 4 pn junction silicon substrate 5 P layer 6 Back electrode 7 Crystalline silicon substrate 10 Solar cell

Claims (12)

  1.  導電性粒子(A)、脂肪酸銀塩(B)、ガラスフリット(C)、溶媒(D)および、銀以外の金属と、前記脂肪酸銀塩(B)の脂肪酸以外の有機化合物とのイオン結合および/または配位結合からなる金属化合物(E)を含有する太陽電池集電電極形成用導電性組成物であって、
     前記脂肪酸銀塩(B)の含有量と前記金属化合物(E)の含有量との質量比(B/E)が1以上である、太陽電池集電電極形成用導電性組成物。
    Ion bonds between the conductive particles (A), the fatty acid silver salt (B), the glass frit (C), the solvent (D), and a metal other than silver and an organic compound other than the fatty acid of the fatty acid silver salt (B) A conductive composition for forming a solar cell current collecting electrode, comprising a metal compound (E) comprising a coordinate bond;
    The electrically conductive composition for solar cell current collection electrode formation whose mass ratio (B / E) of content of the said fatty-acid silver salt (B) and content of the said metal compound (E) is 1 or more.
  2.  前記金属化合物(E)が、前記脂肪酸銀塩(B)の脂肪酸とは異なる脂肪酸と銀以外の金属とのイオン結合からなる脂肪酸金属塩(E1)である、請求項1に記載の太陽電池集電電極形成用導電性組成物。 The solar cell collection according to claim 1, wherein the metal compound (E) is a fatty acid metal salt (E1) composed of an ionic bond between a fatty acid different from the fatty acid of the fatty acid silver salt (B) and a metal other than silver. A conductive composition for forming an electrode.
  3.  前記脂肪酸銀塩(B)が、カルボン酸銀塩であり、前記脂肪酸金属塩(E1)が、マグネシウム、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、スズおよび鉛からなる群から選択される少なくとも1種以上のカルボン酸金属塩である、請求項2に記載の太陽電池集電電極形成用導電性組成物。 The fatty acid silver salt (B) is a carboxylic acid silver salt, and the fatty acid metal salt (E1) is at least one selected from the group consisting of magnesium, nickel, copper, zinc, yttrium, zirconium, tin and lead. The conductive composition for forming a solar cell collector electrode according to claim 2, which is the above carboxylic acid metal salt.
  4.  前記カルボン酸金属塩が、2-エチルヘキサン酸、オクチル酸、ナフテン酸、ステアリン酸およびラウリン酸からなる群から選択される脂肪酸の金属塩である請求項3に記載の太陽電池集電電極形成用導電性組成物。 4. The solar cell collector electrode according to claim 3, wherein the carboxylic acid metal salt is a metal salt of a fatty acid selected from the group consisting of 2-ethylhexanoic acid, octylic acid, naphthenic acid, stearic acid, and lauric acid. Conductive composition.
  5.  前記金属化合物(E)が、アセチルアセトンと銀以外の金属との配位結合からなるアセチルアセトン金属錯体(E2)である、請求項1に記載の太陽電池集電電極形成用導電性組成物。 The conductive composition for forming a solar cell collector electrode according to claim 1, wherein the metal compound (E) is an acetylacetone metal complex (E2) comprising a coordinate bond between acetylacetone and a metal other than silver.
  6.  前記アセチルアセトン金属錯体(E2)が、インジウム、ニッケル、銅、チタン、亜鉛および錫からなる群より選択される金属種の錯体である請求項5に記載の太陽電池集電電極形成用導電性組成物。 The conductive composition for forming a solar cell collector electrode according to claim 5, wherein the acetylacetone metal complex (E2) is a complex of a metal species selected from the group consisting of indium, nickel, copper, titanium, zinc and tin. .
  7.  前記質量比(B/E)が、2以上である請求項1~6のいずれかに記載の太陽電池集電電極形成用導電性組成物。 The conductive composition for forming a solar cell collecting electrode according to any one of claims 1 to 6, wherein the mass ratio (B / E) is 2 or more.
  8.  前記脂肪酸銀塩(B)が、炭素数18以下の脂肪酸銀塩(B1)、カルボキシ銀塩基(-COOAg)と水酸基(-OH)とをそれぞれ1個以上有する脂肪酸銀塩(B2)、および、水酸基(-OH)を有さずにカルボキシ銀塩基(-COOAg)を2個以上有するポリカルボン酸銀塩(B3)からなる群より選択される脂肪酸銀塩である請求項1~7のいずれかに記載の太陽電池集電電極形成用導電性組成物。 The fatty acid silver salt (B) is a fatty acid silver salt (B1) having 18 or less carbon atoms, a fatty acid silver salt (B2) having at least one carboxy silver base (—COOAg) and a hydroxyl group (—OH), and The fatty acid silver salt selected from the group consisting of a polycarboxylic acid silver salt (B3) having at least two carboxy silver bases (-COOAg) without having a hydroxyl group (-OH). The electrically conductive composition for solar cell current collection electrode formation of description.
  9.  前記脂肪酸銀塩(B)の含有量が、前記導電性粒子(A)100質量部に対して1~30質量部である請求項1~8のいずれかに記載の太陽電池集電電極形成用導電性組成物。 The solar cell collecting electrode formation according to any one of claims 1 to 8, wherein the content of the fatty acid silver salt (B) is 1 to 30 parts by mass with respect to 100 parts by mass of the conductive particles (A). Conductive composition.
  10.  前記金属化合物(E)の含有量が、前記導電性粒子(A)100質量部に対して0.1~10質量部である請求項1~9のいずれかに記載の太陽電池集電電極形成用導電性組成物。 The solar cell current collecting electrode formation according to any one of claims 1 to 9, wherein a content of the metal compound (E) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the conductive particles (A). Conductive composition.
  11.  受光面側の表面電極、反射防止膜、半導体基板および裏面電極を具備し、少なくとも前記表面電極が、請求項1~10のいずれかに記載の太陽電池集電電極形成用導電性組成物を用いて形成される、太陽電池セル。 A conductive composition for forming a solar cell collecting electrode according to any one of claims 1 to 10, comprising a light receiving surface side surface electrode, an antireflection film, a semiconductor substrate and a back surface electrode, wherein at least the surface electrode is used. A solar battery cell formed.
  12.  インターコネクタを用いて請求項11に記載の太陽電池セルを直列に配線した太陽電池モジュール。 The solar cell module which wired the solar cell of Claim 11 in series using the interconnector.
PCT/JP2012/053000 2011-05-12 2012-02-09 Electroconductive composition for forming solar cell collector electrode, and solar cell WO2012153553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280002595.3A CN103081114B (en) 2011-05-12 2012-02-09 Solar cell collecting electrodes formation conductive composition and solar battery cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-107292 2011-05-12
JP2011107292A JP2012238754A (en) 2011-05-12 2011-05-12 Conductive composition for forming solar cell collector electrode and solar cell
JP2011-110646 2011-05-17
JP2011110646A JP2012243865A (en) 2011-05-17 2011-05-17 Conductive composition for forming solar cell collector electrode, and solar cell

Publications (1)

Publication Number Publication Date
WO2012153553A1 true WO2012153553A1 (en) 2012-11-15

Family

ID=47139039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053000 WO2012153553A1 (en) 2011-05-12 2012-02-09 Electroconductive composition for forming solar cell collector electrode, and solar cell

Country Status (3)

Country Link
CN (1) CN103081114B (en)
TW (1) TW201250710A (en)
WO (1) WO2012153553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540275B2 (en) 2014-01-17 2017-01-10 Namics Corporation Conductive paste and method for producing a semiconductor device using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103559938B (en) * 2013-09-22 2016-01-20 江苏瑞德新能源科技有限公司 A kind of doping type solar cell positive silver paste
CN103972308B (en) * 2014-04-30 2016-09-14 湖南红太阳光电科技有限公司 A kind of high adhesion force industrialization crystal silicon solar energy battery aluminium paste
CN114093552A (en) * 2021-10-29 2022-02-25 江苏正能电子科技有限公司 Front silver paste for perovskite and HJT laminated solar cell and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309352A (en) * 2002-04-16 2003-10-31 Fujikura Ltd Conductive adhesive and electronic component mounting structure using the same
WO2007125879A1 (en) * 2006-04-25 2007-11-08 Sharp Corporation Electroconductive paste for solar battery electrode
WO2010003619A1 (en) * 2008-07-10 2010-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metal-containing composition, process for producing electric contact structures on electronic components and also electronic component
JP2011035062A (en) * 2009-07-30 2011-02-17 Yokohama Rubber Co Ltd:The Solar cell base with conductive electrode

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186572A (en) * 1997-12-22 1999-07-09 Canon Inc Photoelectromotive force element module
KR100727434B1 (en) * 2005-03-04 2007-06-13 주식회사 잉크테크 Transparent silver inks and their methods for forming thin layers
JP4714633B2 (en) * 2006-04-25 2011-06-29 シャープ株式会社 Conductive paste for solar cell electrode
JP2008198595A (en) * 2007-01-16 2008-08-28 Mitsubishi Chemicals Corp Metal particulate ink paste and organic acid treated metal particulate
US8308993B2 (en) * 2008-01-30 2012-11-13 Basf Se Conductive inks
GB2457664A (en) * 2008-02-19 2009-08-26 Science Technology Res Partner Electrolyte composition for a dye sensitized solar cell
CN101359696B (en) * 2008-05-28 2011-09-21 华东理工大学 Conductive slurry for front electrode of solar battery having great printing performance
JP5320962B2 (en) * 2008-10-07 2013-10-23 横浜ゴム株式会社 Conductive composition, method for forming conductive film, and conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309352A (en) * 2002-04-16 2003-10-31 Fujikura Ltd Conductive adhesive and electronic component mounting structure using the same
WO2007125879A1 (en) * 2006-04-25 2007-11-08 Sharp Corporation Electroconductive paste for solar battery electrode
WO2010003619A1 (en) * 2008-07-10 2010-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metal-containing composition, process for producing electric contact structures on electronic components and also electronic component
JP2011035062A (en) * 2009-07-30 2011-02-17 Yokohama Rubber Co Ltd:The Solar cell base with conductive electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540275B2 (en) 2014-01-17 2017-01-10 Namics Corporation Conductive paste and method for producing a semiconductor device using the same

Also Published As

Publication number Publication date
CN103081114A (en) 2013-05-01
TW201250710A (en) 2012-12-16
CN103081114B (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP5853541B2 (en) Conductive composition for forming solar battery collecting electrode and solar battery cell
KR101859236B1 (en) Paste composition for electrodes, and solar cell
KR101908738B1 (en) Conductive thick film paste for solar cell contacts
EP2418656B1 (en) Aluminium paste and solar cell using the same
JP2013074165A (en) Conductive composition for forming solar cell collector electrode, solar cell, and solar cell module
US20150340115A1 (en) Coated conductive metallic particles
JP5338846B2 (en) Solar cell collecting electrode forming method, solar cell and solar cell module
WO2012153553A1 (en) Electroconductive composition for forming solar cell collector electrode, and solar cell
JP5630111B2 (en) Solar cell electrode paste and solar cell
JP5844091B2 (en) Conductive composition, solar battery cell and solar battery module
JP5327069B2 (en) Solar cell electrode paste and solar cell
JP2012248790A (en) Conductive composition for forming solar cell collector electrode, and solar cell
JP2012238754A (en) Conductive composition for forming solar cell collector electrode and solar cell
JP2012243865A (en) Conductive composition for forming solar cell collector electrode, and solar cell
JP2013073890A (en) Conductive composition, solar cell, and solar cell module
JP4743350B1 (en) Solar cell electrode paste and solar cell
CN112204676B (en) Conductive paste and solar cell
TWI447181B (en) Paste and solar cell for solar cell electrodes
JP2013214594A (en) Conductive composition for forming solar cell collector electrode, and solar cell and solar cell module using the same
WO2016193209A1 (en) Conductive paste and process for forming an electrode on a p-type emitter on an n-type base semiconductor substrate
TW201606796A (en) Electro-conductive paste with characteristic weight loss for high temperature application
KR101991976B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
TW201642285A (en) Electro-conductive pastes comprising a metal compound
JP2011035061A (en) Solar battery cell base with conductive electrode, and method of manufacturing the same
JP2012023081A (en) Paste for solar cell electrode and solar cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002595.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782163

Country of ref document: EP

Kind code of ref document: A1