WO2012148252A2 - Metformin-based ionic co-crystals - Google Patents

Metformin-based ionic co-crystals Download PDF

Info

Publication number
WO2012148252A2
WO2012148252A2 PCT/MX2012/000043 MX2012000043W WO2012148252A2 WO 2012148252 A2 WO2012148252 A2 WO 2012148252A2 MX 2012000043 W MX2012000043 W MX 2012000043W WO 2012148252 A2 WO2012148252 A2 WO 2012148252A2
Authority
WO
WIPO (PCT)
Prior art keywords
metformin
accordance
tablets
pioglitazonate
glimepiridate
Prior art date
Application number
PCT/MX2012/000043
Other languages
Spanish (es)
French (fr)
Other versions
WO2012148252A3 (en
Inventor
José Manuel Francisco LARA OCHOA
Original Assignee
Instituto De Investigación En Química Aplicada, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto De Investigación En Química Aplicada, S.A. De C.V. filed Critical Instituto De Investigación En Química Aplicada, S.A. De C.V.
Publication of WO2012148252A2 publication Critical patent/WO2012148252A2/en
Publication of WO2012148252A3 publication Critical patent/WO2012148252A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/20Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylguanidines
    • C07C279/24Y being a hetero atom
    • C07C279/26X and Y being nitrogen atoms, i.e. biguanides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/272-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with substituted hydrocarbon radicals directly attached to the ring nitrogen atom

Definitions

  • the active ingredient N, N dimethyldiguanide is an unstable compound, so it is not suitable for the preparation of pharmaceutical compositions making it necessary to deliver the compound as a salt.
  • two new compounds have been developed, based on metformin, which show important advantages over existing salts, which have been proposed to control blood glucose of diabetic patients.
  • the solid form of the new compounds obtained corresponds to ionic co-crystals, stabilized by ionic attractions and hydrogen type bridge interactions.
  • N, N dimethyldiguanide is a potent antidiabetic agent used as a first level treatment in the treatment of patients with type II diabetes.
  • Metformin works by reducing gluconeogenesis and reducing glucose absorption at the level of the gastrointestinal (TG) tract.
  • TG gastrointestinal
  • This active ingredient also increases insulin sensitivity, which is manifested by increasing peripheral glucose utilization. This effect may be due to the fact that metformin improves the binding of insulin to its cellular receptor, which is explained by the increase in activity induced in the dessertceptor tyrosine kinase and the consequent increase in the number and activity of GLUT4 carriers.
  • Metformin oxidizes very quickly by exposure to air, especially if the air contains some moisture, which makes it difficult to make pharmaceutical forms, such as tablets or capsules.
  • the hydrochloride salt Currently the commercially used medicine to control blood glucose in diabetic patients is the hydrochloride salt. Notwithstanding both, metformin base and its hydrochloride salt, have low intestinal absorption in the colon and in the lower TG.
  • the gastrointestinal adverse effects associated with metformin hydrochloride therapy caused by the acid generated by salt ionization, often cause gastric disorders due to its prolonged use, all of these are inconveniences that can invalidate its use and have led to great number of studies and inventions having proposed new metformin salts, currently being an active field of development and innovation.
  • metformin salts include US Patent 3, 174, 901 which discloses phosphate, sulfate, hydrobromide and salicylate salts; US Patent 4,835, 184 which refers to the p-chlorophenoxyacetate salt of metformin; FR 2320735 and FR 2037002 patents which disclose the salt of metformin pamoate; US Patent 3,957,853 describing the acetylsalicylate salt of metformin; patents DE 2357864 and DE 1967138 that disclose the salt of nicotinic acid with metformin and the patent JO 64008237 that discloses salts of hydroxy acids, including salts of hydroxyl acids.
  • metformin was bound to sulfonylurea 1 - [4- [2- (3-ethyl-4- methyl-2-oxo-3-pyrrolin-1-carboxamido) ethyl] -phenylsulfonyl] -3- (4-methylcyclohexyl ) urea or 3- ethyl-2,5-dihydro-4-methyl-N- [2- [4 - [[[[[(trans-4-methylcyclohexyl) amino] carbonyl] -amino] sulfonyl] phenyl] ethyl] - 2-oxo-1 H-pyrrole-1-carboxamide, generically called glimepiride.
  • metformin is bound to thiazolidinedione 5- [[4- [2- (5-ethyl-2-pyridinyl) ethoxy] benzyl] -2, 4-thiazolidinedione, or 5- [p- [2- ( ethyl-2-pyridyl) ethoxy] benzyl] -2,4-thiazolidinedione generically called pioglitazone.
  • FIGURE 1 SYNTHETIC DIAGRAM FOR THE REACTION OF METFORMIN AND GLIMEPIRIDE.
  • FIGURE 2 SYNTHETIC DIAGRAM FOR THE REACTION OF METFORMIN AND PIOGLITAZONE.
  • FIGURE 3 TF-INFRARED SPECTERS FOR A) METFORMIN, B) GLIMEPIRIDE, C) METFORMIN GLIMEPIRIDATE. THE ABSORPTION SIGNS FOR C) CORRESPOND TO THE EXPECTED STRUCTURE OF THE INVENTED COMPOUND REPRESENTED IN THE DIAGRAM OF FIGURE 1.
  • FIGURE 4 A) NUCLEAR MAGNETIC RESONANCE (NMR) SPECTRUMS OF HYDROGEN AND B) NMR SPECTERS OF C-13, OF THE NEW METFORMIN GLIMEPIRIDATE COMPOUND. THE ALLOCATION OF THE DISPLACEMENTS CORRESPONDS WITH THE EXPECTED STRUCTURE, WHICH IS REPRESENTED IN THE DIAGRAM OF FIGURE 1.
  • FIGURE 5 MASS SPECTERS FOR METHFORMINE GLIMEPIRIDATE (PM 619.79) OBTAINED BY TECHNIQUES A) FAB " AND B) FAB + , WHERE IT CAN BE APPRECIATED THAT THE MOLECULAR ION OF THE CATION (FAB + ) IS FOUND AT 130 (M + 1) / Z, AND WHERE THE MOLECULAR ION OF THE ANION (FAB) IS IN 489 (M-1) / Z.
  • FIGURE 6 ENDOTHERMES DETERMINED BY DIFFERENTIAL SWEEPING CALORIMETRY (CBD) FOR A) METFORMIN (START POINT OF THE FUSION 1 17.08 ° C), B) GLIMEPIRIDE (START POINT OF THE FUSION 208.65 ° C), AND C) METHYLMORMIRIDATE GLIMEPIRIDATE (START POINT OF THE FUSION 95.49 ° C).
  • FIGURE 7 COMPARISON OF THE NMR SPECTRUM OF CARBON POWDER-13 FOR A) METFORMIN, B) GLIMEPIRIDE AND C) METFORMIN GLIMEPIRIDATE.
  • FIGURE 8 COMPARISON OF THE X-RAY DIFRACTION SPECTRUM FOR A) METFORMIN, B) GLIMEPIRIDE AND C) METFORMIN GLIMEPIRIDATE, WHICH INDICATES THAT A NEW COMPOUND HAS BEEN FORMED DIFFERENTLY FROM RAW MATERIALS.
  • FIGURE 9. MONOCRISTAL X-RAY DIFFACTION OF THE NEW METFORMIN GLIMEPIRIDATE COMPOUND.
  • FIGURE 10 ORTEP DRAWING OF THE MONOCRISTAL X-RAY DIFFACTION OF THE NEW METFORMIN GLIMEPIRIDATE COMPOSITE REPRESENTED IN ELIPSOIDS.
  • FIGURE 1 TF-IR SPECTERS FOR A) METFORMINE, B) PIOGLITAZONA, C) METFORMIN PIOGLITAZONATE. THE ABSORPTION SIGNS FOR C) CORRESPOND TO THE EXPECTED STRUCTURE OF THE NEW COMPOUND.
  • FIGURE 12 A) PROTON NMR AND B) 3 C NMR OF METFORMIN PIOGLITAZONATE. THE ALLOCATION OF THE DISPLACEMENTS CORRESPONDS WITH THE EXPECTED STRUCTURE.
  • FIGURE 13 MASS SPECTROS FOR METFORMIN PIOGLITAZONATE (PM 485.62) OBTAINED BY TECHNIQUES A) FAB " AND B) FAB + , WHERE IT CAN BE APPRECIATED THAT THE MOLECULAR ION OF THE CATION (FAB + ) IS FOUND AT 130 (M + 1) / Z, AND WHERE THE MOLECULAR ION OF THE ANION (FAB) IS IN 355 (M-1) / Z.
  • FIGURE 14 ENDOTHERMES DETERMINED BY CBD FOR A) METFORMIN (START POINT OF THE FUSION 1 17.08 ° C), B) PIOGLITAZONE (START POINT OF THE FUSION 180.33 ° C), and C) METFORMINE PIOGLITAZONATE (START POINT OF THE FUSION 183.53 ° C).
  • FIGURE 15 COMPARISON OF THE 13 C NMR SPECTRUM OF POWDER FOR A) METFORMIN, B) PIOGLITAZONE AND C) METFORMINE PIOGLITAZONATE, WHOSE DIFFERENCES INDICATE THAT C) CORRESPONDS WITH A DIFFERENT COMPOUND TO PRECURSORS.
  • FIGURE 16 COMPARISON OF THE X-RAY DIFRACTION SPECTRUM FOR A) METFORMIN, B) PIOGLITAZONE AND C) METFORMIN PIOGLITAZONATE, WHICH INDICATES THAT A NEW COMPOUND DIFFERENTLY RAWED FROM THE RAW MATERIALS.
  • FIGURE 17 MONOCRISTAL X-RAY DIFFACTION OF THE NEW METFORMIN PIOGLITAZONATE COMPOUND
  • FIGURE 18 UNIT CELL ORTEP SIGN OF THE MONOCRISTAL X-RAY DIFRACTION OF THE NEW METOFORMINE PIOGLITAZONATE COMPOSITE REPRESENTED IN ELIPSOIDS.
  • FIGURE 19 INTRINSECA DISSOLUTION SPEED OF THE NEW METROFORMINE GLIMEPIRIDATE COMPOUND IN WATER USING TABLETS WITH DIFFERENT COMPRESSION FORCE.
  • THE GLIMEPIRIDE PRECURSOR IS PRACTICALLY INSOLUBLE IN WATER.
  • FIGURE 20 INTRINSECA DISSOLUTION SPEED OF METFORMINE PIOGLITAZONATE, COMPARED TO THE PIOGLITAZONA CHLORIDE HYDROCHERED SALT.
  • IN THE MIDDLE ACID 0.1 N THE PIOGLITAZONA CHLORIDEHYDRATE SALT IS 20 TIMES MORE SOLUBLE THAN THE NEW COMPOUND
  • FIGURE 21 FAR MACOC I ETI CAS IN HEALTHY VOLUNTEERS OF COMMERCIAL TABLETS OF IMMEDIATE RELEASE WITH 850 MG OF METHFORMINE CHLORIDEHYDRATE (GLUCOPHAGE, MARK OF MERCK) AND OF COMMERCIAL TABLETS OF CONTROLLED LIBERATION (DABEX XR, MARK OF LABORATORY MERCK.
  • DABEX XR MARK OF LABORATORY MERCK.
  • IN THE FIGURE IT CAN BE OBSERVED THAT FOR THE FIRST 6 HOURS THERE IS MUCH MORE ABSORPTION OF METFORMIN FROM THE IMMEDIATE RELEASE TABLETS AND THAT AFTER THAT TIME BOTH TYPES OF TABLETS MAINTAIN BIODISPONIBILITIES.
  • FIGURE 22 DISSOLUTION PROFILE OF A CONTROLLED RELEASE NUCLEUS, WITH 500 MG OF METFORMIN CLOHYDRATE DEVELOPED IN THE PRESENT INVENTION, COMPARED TO THE DISSOLUTION PROFILES OF PREDIAL PLUS TABLETS (REGISTERED TRADEMARK OF SILANEX LABORATORIES) REGISTERED MARK OF MERCK LABORATORIES).
  • FIGURE 23 DISSOLUTION PROFILE OF A CONTROLLED RELEASE NUCLEUS WITH 500 MG OF METHFORMINE CHLORHYDRATE DEVELOPED IN THE PRESENT INVENTION.
  • THE NUCLEUS DISSOLUTION PROFILE IS COMPARED TO THAT OF GLIMETAL LEX COMMERCIAL TABLETS (TRADEMARK OF SILANES LABORATORY) AND DABEX XR (MERCK LABORATORY TRADEMARK).
  • FIGURE 24 PHARMACOCINETICS IN HEALTHY VOLUNTEERS OF A NUCLEO WITH 850 MG OF METHFORMINE CHLORHYDRATE, MANUFACTURED ACCORDING TO THE PROCEDURE INDICATED IN EXAMPLES 3,4 AND 5, AND IN WHICH IT CAN BE OBSERVED THAT THE NEW FORMULATION ALLOWS THE RELEASE OF THE MEDICATION LESS 12 HOURS, WHAT REPRESENTS 4 HOURS MORE THAN THOSE ACHIEVED BY COMMERCIAL DRUGS AVAILABLE IN THE MARKET.
  • FIGURE 25 DISSOLUTION PROFILE OF THE IMMEDIATE RELEASE COVERING CONTAINING THE NEW METHFORMINE GLIMEPIRIDATE SALT (IN AN AMOUNT EQUIVALENT TO 2 MG OF GLIMEPIRIDE), AND WHICH COVERED TO A CONTROLLED RELEASE CORE AS IS AND DESCRIBED IN FIGURES 22 AND 23 THIS PROFILE IS COMPARED TO THE DISSOLVING PROFILES OF THE COATING OF PROLONGED LIBERATION TABLETS, GLIMETAL LEX WITH 2 MG AND GLIMETAL LEX WITH 4 MG (REGISTERED TRADEMARKS OF SILAN LABORATORIES), AND WHERE IT CAN BE APPRECIATED THAT OUR PERFORMANCE DISSOLUTION
  • FIGURE 26 DISSOLUTION PROFILE OF THE IMMEDIATE RELEASE COVERING CONTAINING THE NEW METFORMIN PIOGLITAZONATE SALT (IN AN AMOUNT EQUIVALENT TO 15 MG OF PIOGLITAZONE) AND COVERING A CONTROLLED RELEASE NUCLEUS AS DESCRIBED IN FIG. 22 AND 23.
  • THIS PROFILE IS COMPARED TO THE DISPOSAL PROFILES OF COMMERCIAL TABLETS OF THE ZACTOS MEDICINAL PRODUCT CONTAINING PIOGLITAZONA CHLORIDE HYDROGATE (REGISTERED TRADEMARK OF ELI LILLY) AND WHERE IT CAN BE OBSERVED THAT THE SALT OF THE PRESENT INVENTION MAKES A SIMILAR TO BE DISSOLVED.
  • the purpose of the present invention is to develop two new metformin compounds, without the obvious disadvantages of existing commercial salts.
  • one of the new compounds was synthesized from metformin and glimepiride precursors.
  • Spectroscopic and other physicochemical evidence on the structure of this new compound are shown in Figures 3 through 10.
  • Figure 9 shows the monocrystalline X-ray diffraction of the new metformin glymepiridate molecule and where It can be seen that the existence of ionic interactions and hydrogen bonds simultaneously stabilize the crystal.
  • An interesting aspect of this Figure 9 is that nitrogen on glimepiride, which transfers its acid proton to the base Metformin interacts directly with a neutral molecule of water through a hydrogen bond.
  • the second compound whose synthetic scheme is shown in Figure 2 has as precursors metformin and pioglitazone, the latter component being an important member of the thiazolidinediones family and also used as a first level treatment for patients with type 2 diabetes.
  • Spectroscopic and physicochemical evidence of the structure of this new compound is shown in Figures 1 to 18.
  • Figure 17 shows the structure obtained by monocrystalline X-ray diffraction for this new compound. From this Figure 17 it can be seen that the molecule is stabilized by a combination of ionic attractions and hydrogen bridge interactions, the latter with carbonyl adjacent to the thiazolidinedionic ring nitrogen, which supports the charge of the acid proton transferred to metformin.
  • a first strategy to increase the absorption of an active substance is to increase the rate of intrinsic dissolution and solubility, physicochemical characteristics that are essential for drugs to spread to the surface of the membrane, where they can be absorbed As the solubility increases, the concentration of a compound in solution in the membrane surface increases reaching better absorption (EH L. Kerns and D, Drug-Like Properties:.. Structure Design Concepts and Methods, Ed 1, Elsevier, 2008, page 9). This phenomenon can be explained by analyzing the cellular properties of the upper and lower TG, which are different.
  • the polar characteristics of the active ingredients must be taken into account since, for example, polar molecules are easily dissolved in the upper Gl tract where a large surface for drug absorption exists, but not in the lower TG .
  • the microvello present in the superior TG is lacking.
  • the presence of the microvello greatly increases the surface for the absorption of the active substance; for example, in the upper TG there is a surface 480 times the surface of the colon.
  • the form and place of absorption is important in deciding the polarity of the active substance and the characteristics of the pharmaceutical preparation.
  • the individual epithelial cells form a cell barrier along the small and large intestines, which are separated from each other by water channels between the tight joints of the cells.
  • Transport through the epithelium occurs through a path transcellular and a paracellular path (using either of them or both paths simultaneously).
  • the transcellular path for transport involves movement of the compound through the wall and body of the epithelial cell by passive diffusion or by carrier-mediated transport.
  • the paracellular path involves the movement of molecules through tight joints between individual cells. Paracellular transport is less specific but has a much greater total capacity because it takes place throughout the TG. However, tight joints vary along the TG, with the duodenum in the upper TG being more permeable than the jejunum and more permeable than the ileum; while the colon in the lower Gl tract is the least permeable (Knauf, H. et al., Klin. Weinschr. 60 (19), 1 191-1200 (1982).
  • glimepiride is in itself practically insoluble in water (0.19 mg / 25 mL), but when bound to metformin its solubility increases to 0.3 mg / mL which can improve its bioavailability.
  • the new metformin glimepiridate compound shows a higher intrinsic dissolution rate than commercially available glimepiride (Figure 19), a property that is usually associated with a faster therapeutic response.
  • this property is highly relevant, since the response time for the control of glucose peaks or sudden hyperglycemias caused by ingestion of food or metabolic imbalances is so crucial, that it can be the cause of life or death. in patients with advanced diabetes.
  • the second metformin pioglitazonate compound also shows a higher intrinsic dissolution rate (Figure 20) and better water solubility (1.33 X 10 ⁇ 3 mg / mL) than pioglitazone, which is "practically insoluble” in water ( see Index Merck, 40 a Edition). Then it is expected that, as in the case of the previous compound, metformin pioglitazonate also shows a faster response to blood glucose imbalances and that, given its greater solubility, a greater absorption in the upper TG is achieved. Current therapy with metformin has proven to be less than optimal, since it is associated with a high incidence of gastrointestinal side effects.
  • the active substance is commonly administered at high doses (as oral tablets) two or three times a day to achieve an effective treatment that lowers glucose.
  • the side effects associated with these metformin levels are the occurrence of gastrointestinal reactions such as diarrhea, nausea, vomiting, abdominal inflammation, flatulence and anorexia. These reactions occur with approximately 30% of patients when compared to subjects treated with placebo, particularly at the initiation of metformin administration (US patent 6451808).
  • the reactions are dose related and the method of controlling these reactions includes reducing the dose and gradually escalating the dose or taking the medication along with food.
  • dehydration and pre-renal azotemia can occur and many subjects undergoing metformin therapy are forced to discontinue the use of the drug (US Patent 6,451, 808).
  • each component releases ions hydrochloride causing strong gastrointestinal effects. So, in our case, having active ingredients with reduced side effects is undoubtedly a collateral benefit of the nature of our compounds.
  • a common medical practice when blood glucose regulation is no longer possible with the use of a single active substance, is to prescribe the simultaneous use of two medications.
  • the medical strategy is to add an additional medication, such that by a complementary mechanism the regulation of blood glucose of the diabetic patient can be achieved.
  • a frequent prescription is to prescribe the commercial salt metformin a) at the same time as a sulfonylurea such as glimepiride or the commercial salt metformin together with a commercial thiazolidinedione, such as pioglitazone hydrochloride.
  • a single active ingredient will act against diabetes through two complementary mechanisms.
  • metformin On the one hand there is the mechanism of action of metformin, which as mentioned above consists in its ability to prevent the desensitization of human pancreatic islets, which is usually induced by hyperglycemia. As a result of this action, both fasting glucose is decreased and after eating food, HbA-i c levels and lipid profile are decreased. Metformin increases the sensitivity of both liver and peripheral tissue (primary muscle) to insulin. It does not increase lactate production beyond what other biguanides do, such as fenformin and so lactic acidosis associated with metformin use is rare (reported incidence of 0.03 / 1000 patient-years of exposure). Metformin reduces glucose levels by decreasing liver glucose output by inhibiting gluconeogenesis and glycogenolysis.
  • sulfonylurea glimepiride primarily increases insulin secretion. This action is initiated by binding to and closing an ATP-sensitive pancreatic channel to K + ⁇ cells. When closing decreases the entry of K + leading to membrane depolarization and activation of a voltage dependent Ca 2+ channel. The resulting increase in Ca 2+ flow in ⁇ cells activates a cytoskeleton system that causes insulin translocation to the cell surface and its expulsion by exocytosis (US Patent 6,693094).
  • the first history of the simultaneous use of the glimepiride and metformin components in a fixed relationship are the reports of G. Charpentier using two different medications (see for example G. Charpentier, Improved Glycaemic Control by Addition of Glimepiride to metformin Monotherapy in Type 2 Diabetic Patients , Diabetic Medicine 18, 828-834 (2001)).
  • G. Charpentier Improved Glycaemic Control by Addition of Glimepiride to metformin Monotherapy in Type 2 Diabetic Patients , Diabetic Medicine 18, 828-834 (2001)).
  • metformin and glimepiride has additional advantages over other combinations, such as metformin and glibenclamide, since scientific reports have shown that the first combination does not induce hypoglycemia that can trigger an irreversible decompensation in diabetic patients (M. Gonzalez-Ortiz et al. Diabetics and its Complications, 23, 376-379, (2009)).
  • the first pharmaceutical laboratory to offer in a single tablet the combination (physical mixture) of metformin hydrochloride and glimepiride was the Mexican laboratory Silanes, who patented the combination and owns EP 1482919 patents in Europe, MX 248,617 in Mexico and 10 / 502,403 in the United States.
  • the patents were granted because it was demonstrated with clinical studies that this combination triggered a synergistic effect, with important advantages compared to the separate use of both active ingredients.
  • a new active ingredient is developed further with the added properties of showing a better solubility and a faster intrinsic dissolution rate than commercial salts, properties that may have a favorable impact on the bioavailability and efficacy of the drug (Edgard H. Kems & Li Di, Drug-like properties, concepts, structure, design and methods. From ADME to Toxicity Optimization, Academia Press / Elsevier, 2008).
  • insulin resistance blocker This counterion acts by increasing insulin sensitivity, which is why it is called insulin resistance blocker (WO 9857634).
  • This unblocker acts by normalizing the damaged function of the insulin receptor and normalizing the uneven distribution of glucose transporters in cells, systems associated with glucometabolism.
  • insulin resistance is unlocked by improving glucose tolerance and decreasing plasma concentrations of neutral lipids and free fatty acids (EP patent 17641 10 A1).
  • pioglitazone decreases hyperglycemia, hyperinsulinemia and hypertriglyceridemia, which are characteristic metabolic alterations of insulin resistance states similar to that observed in type II diabetes.
  • pioglitazone provides a particular beneficial effect on glycemic control with no observed side effects. Therefore, such a combination is particularly useful for the treatment of type II diabetes mellitus and associated conditions (WO 9857634).
  • the importance of the physical mixture of pioglitazone with metformin is highlighted in an international patent of the Takeda company of Japan (US Patent 5,952, 356). However, this combination does not show a synergistic effect as observed in the case of the combination of metformin with glimepiride.
  • the importance of the combination is that for patients who do not respond to the use of only one of the medications (monotherapy), the combination allows adequate regulation of blood glucose.
  • the new compounds of the present invention must show the combined effect of each of the components.
  • a second strategy to increase the absorption in the TG of the new compounds may be by adjustment or development of the appropriate pharmaceutical composition (eg immediate release tablets, controlled release, etc.) that optimizes bioavailability.
  • Metformin is an active substance with poor absorption in the colon (Marathe, P. et al., Br. J. Clin. Pharmacol., 50, 325-332 (2000)). Consequently, the commercial salt, metformin hydrochloride, has an intrinsic poor permeability and poor absorption in the lower TG or colon, leading to the absorption being almost exclusively in the upper part of the TG.
  • FIG. 21 A pharmacokinetic curve of commercially released metformin hydrochloride of 850 mg is shown in Figure 21.
  • Glucophage brand of Merck laboratories; data partially taken from US Patent 6,866, 866 of March 15, 2005. These data were determined in 12 healthy volunteers, and where it can be seen that effectively the absorption time of metformin is around 6 hours, which corresponds to the estimated residence time in the superior TG referred to above (US patent application 2005/0158374 A1).
  • Figure 21 also shows a bioavailability curve of metformin hydrochloride, from a 850 mg commercial extended-release tablet (Dabex XR, brand of Merck laboratories), determined in healthy volunteers.
  • Dabex XR commercial extended-release tablet
  • the usual doses of glimepiride are between 2 mg and 4 mg every 24 hours and the usual doses of pioglitazone are between 15 mg and 30 mg.
  • the stoichiometric proportion of metformin with the glimepiride or pioglitazone counterions in the new salts is 1: 1, indicating that the required doses of metformin are much higher than the doses of glutamine or pioglitazone.
  • suitable pharmaceutical compositions were formulated to provide adequate doses of both components, designing a controlled release core or matrix with the usual dose of metformin hydrochloride (eg 500 mg) and an immediate release layer or coating containing the new active substance (where appropriate, the amount of metformin contained in the new active ingredients can be subtracted from this nucleus to adjust exactly to 500 mg the total amount of metformin in the caplet).
  • metformin hydrochloride eg 500 mg
  • an immediate release layer or coating containing the new active substance where appropriate, the amount of metformin contained in the new active ingredients can be subtracted from this nucleus to adjust exactly to 500 mg the total amount of metformin in the caplet.
  • the nucleus or matrix must contain 499,474 mg of metformin hydrochloride, which is coated with a layer of metformin glimepiridate containing an amount equivalent to 2 milligrams of glimepiride (see Table 2, in example 3, below).
  • metformin pioglitazonate compound the tablet core should contain 494,565 mg of metformin hydrochloride coated with an immediate release layer containing metformin pioglitazonate in an amount equivalent to 15 mg of pioglitazone (see Table 3, in Example 4, then).
  • the dissolution profile of a central core of metformin hydrochloride is shown in Figures 23 and 24, compared to the dissolution profiles of commercially available extended-release tablets.
  • Figure 23 it is compared with Dabex XR (brand of Merck Inc.) and Predial Plus (brand of Silanes laboratories).
  • Figure 24 it is compared with the commercial drug Glimetal-Lex (Silanes laboratory brand) which is constituted by a central core of metformin hydrochloride coated by a layer containing glimepiride in two doses 2 mg or 4 mg.
  • the Dabex XR profile is maintained as a reference.
  • the dissolution behavior of our core is very similar to that of commercial salts.
  • Figure 25 shows the dissolution profile of the immediate-release coating containing the new metformin glimepiridate ionic cochstal, in a concentration equivalent to 2 mg of glimepiride.
  • This coating is the layer on the central core of controlled release of metformin chlorhydride.
  • the profile is compared (see Fig. 25) with commercial tablets of Glimetal Lex (brand of Silanes laboratories) containing the doses of 2 mg and 4 mg of glimepiride. It can be seen that our ionic co-crystal dissolves faster and in greater quantities than that of the reference compounds.
  • Figure 26 shows the dissolution profile of the immediate release coating of the layer containing the new metformin pioglitazonate ionic co-crystal, in an amount equivalent to 1.5 mg of pioglitazone The profile is compared with commercial tablets of the drug Zactos (brand of Eli Lilly, Inc.).
  • Metformin base (23.16 g, 179 mmol) was dissolved in 82 ml of ethanol in an erlenmeyer flask. To this flask were added 80 g (163 mmol) of glimepiride in portions. The suspension was heated between 50 ° C and 55 ° C and stirred until the solids were completely dissolved. To this solution was added 1.4 L of ethyl acetate and the solution was stirred for 6 hours, producing a new suspension. This suspension was filtered and the powder was washed with 60 ml of ethyl acetate and dried under vacuum at 60 ° C. Raw metformin, 81 g, was obtained as a white powder with a very low density. The corresponding performance of this process was 79%.
  • the crude material was crystallized according to the following procedure: 81 g of crude metformin glimepiridate were dissolved in 60 ml of ethanol (96%) in a 3 L erlenmeyer flask. This suspension was heated to 70 ° C and stirred until the solids were completely dissolved. Then, 1.9 L of ethyl acetate were added slowly and the resulting solution was stirred for 16 hours, producing a white suspension. This suspension was filtered and the powder was washed with 100 ml of ethyl acetate and dried under vacuum at 60 ° C. The yield of this compound was 78% (60.8 g).
  • Figure 3 shows the spectrum of TF-infrared compared to that of the precursors metformin and glimepiride.
  • the absorption bands observed correspond to that of the expected structure (See Figure 1), being the most characteristic, on the metformin cation those located at 3381 cm ' , 3254 cm “1 , 3168 cm “ 1 corresponding to the "stretching" of the NH of the different amines and on the glimepiridate anion the absorption bands in 1703 cm “1 and 1655 cm “ 1 of the carbonyls and the band in 1275 cm “1 are assigned to the sulfonamide also of the glimepiridate.
  • Figure 4 shows the respective spectra of nuclear magnetic resonance (NMR) of H + and C 3 , whose displacements could be assigned to the expected structure.
  • Figure 5 shows the mass spectra obtained by the techniques FAB + and FAB " , and in which it can be observed that the molecular ion of FAB + is at 130 m / z, which corresponds to (M + 1) of the metformin cation and that the molecular ion of FAB ' is at 489 m / z, which corresponds to (M-1) of the glimepiridate anion, results that confirm the assigned structure to.
  • Figure 6 shows the endotherms determined by differential scanning calorimetry for A) metformin (melting start at 1 7.08 ° C), B) glimepiride (melting start at 208.65 ° C) and C) metformin glymepiridate (melting start at 95.49 ° C), very low value and which was identified by thermogravimetric analysis (TG / DTA) which corresponds to the loss of a water molecule.
  • TG / DTA thermogravimetric analysis
  • Figure 7 compares the 13 C NMR spectrum of powders of the new compound with that of the precursors and where it can be seen that the spectrum of the co-crystal is clearly different from that of the raw materials, indicating that it is a new structure, different to that of raw materials or to a physical mixture.
  • Figure 8 the X-ray diffraction pattern of powders of the synthesized compound is compared with that of the precursors and where it can be seen that the spectrum is clearly different, indicating that it is a molecular structure different from that of the raw materials or of a physical mixture.
  • Figure 9 shows the structure of the new compound obtained by monocrystalline X-ray diffraction and which shows that the structure is stabilized by ionic attractions and hydrogen bond interactions and where a neutral water molecule participates in the stabilization of the molecule.
  • Figure 10 shows the unit cell of the ionic cocristal in ellipsoidal representation and Table 1 shows the crystalline data and structural parameters obtained in the monocrystalline X-ray diffraction. All these data corroborate that the expected structure of this new salt corresponds to that shown in Figure 1 and that the solid form of the new compound corresponds to the metformin glymepiridate ionic co-crystal.
  • a 500 ml round bottom flask was loaded with 64 ml of ethanol and cooled to -1 00 C under nitrogen atmosphere. Then, 1 6 g (296 mmol) of sodium methoxide (97% purity) was poured into the bottle and 46.6 g (281 mmol) of metformin hydrochloride were added and the resulting suspension was stirred 40 minutes. During this time the flask was allowed to reach room temperature. The resulting suspension was filtered and washed with 30 ml of methanol. The solid filtrate, solid chloride, was separated.
  • the methanolic solution was transferred to a 2L erlenmeyer flask, to which 80 g (224 mmol) of pioglitazone was added slowly, over a period of 1 hour, forming a viscous solution difficult to stir. To this, 1 06 ⁇ L of methanol was added dropwise, stirring the solution for 1-5 minutes. 600 ml of isopropanol was added to the resulting suspension. Then, the solution was cooled to 0 o C and left with stirring an additional 1 hour before it was filtered and the product washed with 50 ml of isopropanol.
  • the white powder obtained was dried at 60 ° C for two hours and once dry it was weighed to obtain 89.6 g, which means 76% yield of crude product.
  • the 89.6 g of crude product were dissolved in ethanol and left under reflux for 1 5 minutes, where 1.78 L of isopropanol were poured and cooled to 0 o C. Once small crystals are observed the suspension is left at rest for crystallization for 1.5 hours. Filter and the product is washed with 1 50 ml of isopropanol. It is dried under vacuum at 60 ° C for 2 hours and 68 g of a white powder are obtained which yields 76%. The total reaction yield is 62%.
  • Figure 1 1 shows the infrared TF-spectrum for the new compound, compared to that of metformin and pioglitazone precursors.
  • the spectrum for the synthesized compound shows characteristic absorption bands for NH in the region between 3440 cm " and 3353 crrT 1 , which would correspond to the amines of the metformin cation and the amine of the thiazolidinedinone ring of the pioglitazonate anion and the carbonyl of the ring amides thiazolidinedinone in 1691 cm “1 and 1675 cm " 1 absorption bands corresponding to the structure shown in Figure 2.
  • Figure 12 shows the NMR spectra of H + and C 3 and whose displacements could be assigned to the expected structure.
  • Figure 14 the endotherms determined by differential scanning calorimetry are compared for A) metformin (melting start at 1 17.8 ° C), B) pioglitazone (melting start at 180.33 ° C) and C) and metformin pioglitazonate (start melting at 183.53 ° C), which confirms that a new compound other than raw materials was obtained.
  • Figure 1 5 compares the spectrum of 13 C NMR of powders of the compound synthesized with that of the precursors and where it can be seen that they are very different indicating that the new compound is a new structure, different from that of the raw materials or a physical mixture.
  • Figure 16 the X-ray powder diffraction pattern of the new compound is compared with that of the precursors, showing that the spectrum is clearly different, indicating that it is a different molecular structure from that of raw materials or a mixture physical.
  • Figure 17 shows the structure of the new molecule obtained by the monocrystalline X-ray diffraction technique, which shows that the structure of the molecule is stabilized by ionic attractions and interacting by strong hydrogen bonds of the order of 7 kcal / mol. These energies were determined by quantum chemical calculations using the Spartan Package (Wavefunction, Inc. Irvine, CA. 92612, USA). In this case the structure is not stabilized by a neutral molecule, as in the case of water from the previous structure.
  • ionic co-crystals These types of molecules stabilized by ionic attractions and hydrogen bridge type interactions are called ionic co-crystals (Kin-Shan Huang et al., J. Mater. Chem. 7 (5), 713-720 (1997). 18 shows the unit cell of the new co-crystal obtained by monocrystalline X-ray diffraction, in ellipsoidal representation, Table 1 shows the crystalline data and structural parameters obtained in the monocrystalline X-ray diffraction technique.
  • the tablet formulation was designed with a controlled release core or matrix with the required dose of metformin hydrochloride and with an immediate release coating layer, containing the new active ingredient in an amount equivalent to the required dose of glimepiride. .
  • the formulation of tablets, FORMULA 1, is described in Figure 28, consisting of a 500 mg controlled release core of metformin hydrochloride and an immediate release coating containing the new active substance metformin glimepiridate, in an amount equivalent to 2 mg of glimepiride
  • the amount of metformin contained in the new active ingredients can be subtracted from the amount contained in the extended release core or matrix, to adjust exactly to 500 mg the total amount of metformin in the tablet.
  • the usual dose does not require a degree of accuracy of this nature, since it ranges from 500 mg to 3 grams, the dose being modified, depending on the patient's response to the medication).
  • the dispersion consists of about 27 polyvinyl acetate, 2.7% povidone and 0.3% sodium laurel sulfate
  • Example 4 Formulation of Tablets Based on the New Metformin Pioglitazonate Salt
  • the prescribed doses of metformin when used as a monopharmaceutical are between 500 mg and 3 grams, but in a combined dose it is usually recommended that you start with the minimum dose of metformin. However, this also depends on how advanced the disease is and the patient's response to treatment.
  • the usual doses of pioglitazone are between 15 mg and 30 mg per day, in a combined regimen, but when pioglitazone is used as a single medication it is possible to use up to 45 mg every 24 hours.
  • the tablet formulation consists of a controlled release core or matrix with the usual doses of metformin hydrochloride between 500 mg and 3 grams and with an immediate release coating containing 15 mg or 30 mg of pioglitazone.
  • Figure 29 describes the formulation of tablets, FORMULA 2, consisting of a controlled-release core of 500 mg of metformin hydrochloride and an immediate-release coating, containing the new active substance metformin pioglitazonate, in an amount equivalent to 15 Pioglitazone mg
  • the dispersion consists of about 27% polyvinyl acetate, 2.7% povidone and 0.3% sodium laurel sulfate
  • the wet granulate is taken out of the high cut mixer and placed in a fluidized bed dryer with an inlet air temperature of 70 ° C to 90 ° C for 30 minutes or until the moisture of the granulated mixture is between 0.7% to 2.5%.
  • the dried granules are milled with a Quadro Cornil mill, with a screen equivalent to a 20 mesh.
  • the hydroxypropyl methylcellulose 2208 and the colloidal silicon dioxide are mixed with the granulate of metformin hydrochloride for 10 minutes, after which the stearate lubricant of Magnesium is added and mixed with the rest of the powders for 5 minutes.
  • the core of the tablets are sealed-coated with the dispersion of Kollicoat SR 30D which is diluted with purified water and sprinkled on the tablet core using a "drum" coating under the following conditions: inlet air temperature 58 ° C at 65 ° C, outlet air temperature 40 ° C to 45 ° C, product temperature 38 ° C to 42 ° C, atomization pressure from 28 ° C to 30 lb / in 2 and spray speed from 4 to 5 grams / minute
  • a dispersion of opadry II was diluted with purified water and sprinkled on the tablet core using a coating “bass drum” under the following conditions: inlet air temperature 58 ° C to 65 ° C, outlet air temperature 40 ° C to 45 ° C, product temperature 38 ° C to 42 ° C, atomization pressure from 28 ° C to 30 lb / in 2 and spray speed of 4 to 5 grams / minute.
  • the tablet is coated with the sealing dispersion to reach a total of 1 1.5 mg / tablet.
  • d) Immediate Release Coating Containing the New Active Principle In a dispersion of Opadry II in purified water, either of the two new active principles is poured.
  • the compound to be used is metformin glimepiridate, Opadry II is blue and if it is metformin pioglitazonate, Opadry II is pink.
  • the dispersion is stirred for 10 minutes at 600 rpm until the dispersion appears homogeneous. An excess of 1.0% of the active compound is considered lost during the sprinkling step, so it is compensated.
  • the conditions used for this step are the same operating conditions used for the previous spraying operations. Given the high solubility of the active ingredients, it is not necessary to use a surfactant compound to favor water solubility.
  • an aqueous solution of polyethylene glycol 6000 is used to polish the tablets. This solution is sprayed on the tablet, under the same operating conditions used in the previous spray operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Diabetes (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to two novel metformin-based compounds obtained using the antidiabetic agent glimepiride as a contra-ion in one case and using the antidiabetic agent pioglitazone as a contra-ion in the other case. The resulting spectroscopy, as well as an evaluation of the physicochemical properties thereof, indicate that, in the solid state, both compounds correspond to ionic co-crystals attracted by ionic forces and interactions of the hydrogen bond type. The physicochemical properties of the ionic co-crystals have been shown to have better intrinsic dissolution rates and improved solubilities in relation to those of the precursor contra-ions; properties that can impact favourably on the bioavailability of the novel active principles. Said improved novel active principles are formulated in oral solid pharmaceutical compositions such as tablets or caplets that have advantages over existing commercial tablets. Consequently, tablets containing these novel active principles provide an improved treatment for controlling blood glucose levels in patients with type II diabetes.

Description

COCRISTALES IONICOS CON BASE EN METFORMINA  IONIC COCRYSTALS BASED ON METFORMIN
CAMPO DE LA INVENCION FIELD OF THE INVENTION
El principio activo N,N dimetildiguanida es un compuesto inestable, por lo que no es adecuado para la elaboración de composiciones farmacéuticas haciendo necesario suministrar el compuesto en forma de sal. En la presente invención se han desarrollado dos nuevos compuestos, con base en metformina, que muestran ventajas importantes sobre las sales existentes, que se han propuesto para controlar la glucosa en sangre de pacientes diabéticos. La forma sólida de los nuevos compuestos obtenidos corresponde con cocristales iónicos, estabilizados por atracciones iónicas e interacciones de tipo de puente de hidrogeno The active ingredient N, N dimethyldiguanide is an unstable compound, so it is not suitable for the preparation of pharmaceutical compositions making it necessary to deliver the compound as a salt. In the present invention, two new compounds have been developed, based on metformin, which show important advantages over existing salts, which have been proposed to control blood glucose of diabetic patients. The solid form of the new compounds obtained corresponds to ionic co-crystals, stabilized by ionic attractions and hydrogen type bridge interactions.
ANTECEDENTES DE LA INVENCIÓN  BACKGROUND OF THE INVENTION
La N,N dimetildiguanida, genéricamente llamada metformina, es un agente antidiabético potente usado como un tratamiento de primer nivel en el tratamiento de pacientes con diabetes tipo II. La metformina actúa reduciendo la gluconeogénesis y reduciendo la absorción de glucosa a nivel del tracto gastrointestinal (TG). Este principio activo, también incrementa la sensitividad a insulina, lo cual se manifiesta al aumentar la utilización periférica de glucosa. Este efecto puede deberse al hecho que metformina mejora el enlace de insulina a su receptor celular, lo cual se explica por el incremento de actividad inducida en el postreceptor tirosina cinasa y el consecuente incremento en el número y actividad de los acarreadores GLUT4. N, N dimethyldiguanide, generically called metformin, is a potent antidiabetic agent used as a first level treatment in the treatment of patients with type II diabetes. Metformin works by reducing gluconeogenesis and reducing glucose absorption at the level of the gastrointestinal (TG) tract. This active ingredient also increases insulin sensitivity, which is manifested by increasing peripheral glucose utilization. This effect may be due to the fact that metformin improves the binding of insulin to its cellular receptor, which is explained by the increase in activity induced in the dessertceptor tyrosine kinase and the consequent increase in the number and activity of GLUT4 carriers.
La metformina se oxida muy rápidamente por exposición al aire, especialmente si el aire contiene alguna humedad, lo cual lo hace difícil para elaborar formas farmacéuticas, tales como tabletas o cápsulas. Actualmente el medicamento comercialmente usado para controlar la glucosa en sangre de pacientes diabéticos es la sal de clorhidrato. No obstante ambos, la metformina base y su sal de clorhidrato, tienen baja absorción intestinal en el colon y en el TG inferior. Además, los efectos adversos gastrointestinales asociados con la terapia de clorhidrato de metformina, ocasionados por el ácido generado por ionización de la sal, a menudo causa desordenes gástricos por su uso prolongado, todos estos son inconvenientes que pueden invalidar su uso y han motivado un gran número de estudios e invenciones habiéndose propuesto nuevas sales de metformina, siendo actualmente un campo activo de desarrollo e innovación. Metformin oxidizes very quickly by exposure to air, especially if the air contains some moisture, which makes it difficult to make pharmaceutical forms, such as tablets or capsules. Currently the commercially used medicine to control blood glucose in diabetic patients is the hydrochloride salt. Notwithstanding both, metformin base and its hydrochloride salt, have low intestinal absorption in the colon and in the lower TG. In addition, the gastrointestinal adverse effects associated with metformin hydrochloride therapy, caused by the acid generated by salt ionization, often cause gastric disorders due to its prolonged use, all of these are inconveniences that can invalidate its use and have led to great number of studies and inventions having proposed new metformin salts, currently being an active field of development and innovation.
Entre las sales que se han propuesto en la literatura, se tiene a la patente Belga BE 568513 la cual devela sales ácidas de metformina, incluyendo al clohidrato de metformina; la solicitud de patente WO 03/068209 A1 que devela sales con ácidos lipofílicos, tales como laurato y palmitato; la solicitud de patente US 2005/0158374, que describe el uso de metformina asociado con ácidos grasos lo cual, se argumenta, muestra una absorción mejorada en el TG inferior. En esta solicitud de patente la metformina está asociada con ácidos grasos, tales como laurato, succinato, caprato, oleato o palmitato, complejos que fueron creados para incrementar la asociación en el TG inferior, lo cual facilita una mayor absorción a lo largo de todo el TG. Among the salts that have been proposed in the literature, there is Belgian patent BE 568513 which discloses acid salts of metformin, including metformin hydrochloride; WO 03/068209 A1 patent application disclosing salts with lipophilic acids, such as laurate and palmitate; US patent application 2005/0158374, which describes the use of metformin associated with fatty acids which, it is argued, shows an improved absorption in the lower TG. In this patent application metformin is associated with fatty acids, such as laurate, succinate, caprate, oleate or palmitate, complexes that were created to increase the association in the lower TG, which facilitates greater absorption throughout the entire TG.
Otro documento que es pertinente para el estado del arte en esta área es la patente europea EP 1039890 de Bristol-Myers Squibb, el cual concierne a varias sales de ácidos dicarboxílicos con metformina, solas o en combinación con otros agentes antidiabéticos como la gliburida. La patente protege las sales de fumarato, succinato, y maleato. Otros documentos concernientes a sales de metformina incluyen la patente US 3, 174, 901 la cual devela sales de fosfato, de sulfato, hidrobromuro y salicilato; la patente US 4,835, 184 la cual refiere a la sal p- clorofenoxiacetato de metformina; las patentes FR 2320735 y FR 2037002 las cuales develan la sal de pamoato de metformina; la patente US 3,957,853 que describe la sal acetilsalicilato de metformina; las patentes DE 2357864 y DE 1967138 que develan la sal de ácido nicotínico con metformina y la patente JO 64008237 que devela sales de hidroxiácidos, incluyendo sales de ácidos hidroxil- alifaticos dicarboxilicos, tales como los ácidos mesotartarico, tartárico, mesoxalico y maleatos oxidados. Puede observarse que todas estas patentes conciernen con sales de metformina con ácidos orgánicos. Varias patentes adicionales y otros estudios sobre sales de metformina pueden encontrarse en la literatura y en las bases de datos de patentes. Recientemente fue sometida la solicitud internacional WO 20099144527 (A1) denominada A New Metformin Glycinate Salt for Blood Glucose Control, concerniente con la nueva sal: glicinato de metformina. Another document that is relevant to the state of the art in this area is the European patent EP 1039890 of Bristol-Myers Squibb, which concerns several salts of dicarboxylic acids with metformin, alone or in combination with other antidiabetic agents such as glyburide. The patent protects the salts of fumarate, succinate, and maleate. Other documents concerning metformin salts include US Patent 3, 174, 901 which discloses phosphate, sulfate, hydrobromide and salicylate salts; US Patent 4,835, 184 which refers to the p-chlorophenoxyacetate salt of metformin; FR 2320735 and FR 2037002 patents which disclose the salt of metformin pamoate; US Patent 3,957,853 describing the acetylsalicylate salt of metformin; patents DE 2357864 and DE 1967138 that disclose the salt of nicotinic acid with metformin and the patent JO 64008237 that discloses salts of hydroxy acids, including salts of hydroxyl acids. dicarboxylic aliphatics, such as mesotartaric, tartaric, mesoxalic and oxidized maleates. It can be seen that all these patents concern metformin salts with organic acids. Several additional patents and other studies on metformin salts can be found in the literature and in the patent databases. Recently, the international application WO 20099144527 (A1) called A New Metformin Glycinate Salt for Blood Glucose Control, concerning the new salt: metformin glycinate was submitted.
En la presente invención dos nuevos compuestos basados en metformina fueron sintetizados. En uno, metformina fue unida a la sulfonilurea 1 -[4-[2-(3-etil-4- metil-2-oxo-3-pirrolin-1-carboxamido)etil]-fenilsulfonil]-3-(4-metilciclohexil)urea o 3- etil-2,5-dihidro-4-metil-N-[2-[4-[[[[(trans-4-metilciclohexil)amino]carbonil]- amino]sulfonil]fenil]etil]-2-oxo-1 H-pirrol-1-carboxamida, genéricamente llamada glimepirida. En el otro compuesto la metformina esta unida a la tiazolidinediona 5- [[4-[2-(5-etil-2-piridinil) etoxi] benzil]-2, 4-tiazolidinediona, o 5-[p-[2-(etil-2- piridil)etoxi]benzil]-2,4- tiazolidinediona genéricamente llamada pioglitazona. In the present invention two new metformin-based compounds were synthesized. In one, metformin was bound to sulfonylurea 1 - [4- [2- (3-ethyl-4- methyl-2-oxo-3-pyrrolin-1-carboxamido) ethyl] -phenylsulfonyl] -3- (4-methylcyclohexyl ) urea or 3- ethyl-2,5-dihydro-4-methyl-N- [2- [4 - [[[[(trans-4-methylcyclohexyl) amino] carbonyl] -amino] sulfonyl] phenyl] ethyl] - 2-oxo-1 H-pyrrole-1-carboxamide, generically called glimepiride. In the other compound metformin is bound to thiazolidinedione 5- [[4- [2- (5-ethyl-2-pyridinyl) ethoxy] benzyl] -2, 4-thiazolidinedione, or 5- [p- [2- ( ethyl-2-pyridyl) ethoxy] benzyl] -2,4-thiazolidinedione generically called pioglitazone.
Estos dos nuevos compuestos fueron diseñados y sintetizados y sus velocidades de disolución intrínsecas y solubilidades fueron determinadas. Las propiedades fisicoquímicas mostraron que estas nuevas sales se disuelven más rápido y fueron más solubles en agua que los precursores comercialmente disponibles. Además, una composición farmacéutica consistente en tabletas de liberación controlada fue formulada y desarrollada. Estos nuevos compuestos ofrecen mejores alternativas para el tratamiento de la diabetes mellitus tipo II al realizar una elevada absorción y disminuir efectos adversos inconfortables que están asociados con la terapia de clorhidrato de metformina. These two new compounds were designed and synthesized and their intrinsic dissolution rates and solubilities were determined. The physicochemical properties showed that these new salts dissolve faster and were more soluble in water than commercially available precursors. In addition, a pharmaceutical composition consisting of controlled release tablets was formulated and developed. These new compounds offer better alternatives for the treatment of type II diabetes mellitus by performing high absorption and lessening uncomfortable adverse effects that are associated with metformin hydrochloride therapy.
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Los aspectos precedentes y muchas de las ventajas relacionadas con esta invención serán más fácilmente apreciadas, si las mismas llegan a ser mejor 12 000043 The preceding aspects and many of the advantages related to this invention will be more readily appreciated, if they become better. 12 000043
4 4
entendidas por referencia a las siguientes descripciones detalladas, cuando son tomadas en conjunción con las figuras acompañantes. understood by reference to the following detailed descriptions, when taken in conjunction with the accompanying figures.
FIGURE 1. DIAGRAMA SINTETICO PARA LA REACCION DE METFORMINA Y GLIMEPIRIDA. FIGURE 1. SYNTHETIC DIAGRAM FOR THE REACTION OF METFORMIN AND GLIMEPIRIDE.
FIGURA 2. DIAGRAMA SINTETICO PARA LA REACCION DE METFORMINA Y PIOGLITAZONA.  FIGURE 2. SYNTHETIC DIAGRAM FOR THE REACTION OF METFORMIN AND PIOGLITAZONE.
FIGURA 3. ESPECTROS DE TF-INFARROJO PARA A) METFORMINA, B) GLIMEPIRIDA, C) GLIMEPIRIDATO DE METFORMINA. LAS SEÑALES DE ABSORCIÓN PARA C) CORRESPONDEN CON LA ESTRUCTURA ESPERADA DEL COMPUESTO INVENTADO QUE ESTA REPRESENTADO EN EL DIAGRAMA DE LA FIGURA 1.  FIGURE 3. TF-INFRARED SPECTERS FOR A) METFORMIN, B) GLIMEPIRIDE, C) METFORMIN GLIMEPIRIDATE. THE ABSORPTION SIGNS FOR C) CORRESPOND TO THE EXPECTED STRUCTURE OF THE INVENTED COMPOUND REPRESENTED IN THE DIAGRAM OF FIGURE 1.
FIGURA 4. A) ESPECTROS DE RESONANCIA MAGNÉTICA NUCLEAR (RMN) DE HIDROGENO Y B) ESPECTROS DE RMN DE C-13, DEL NUEVO COMPUESTO GLIMEPIRIDATO DE METFORMINA. LA ASIGNACION DE LOS DESPLAZAMIENTOS CORRESPONDE CON LA ESTRUCTURA ESPERADA, QUE ESTÁ REPRESENTADA EN EL DIAGRAMA DE LA FIGURA 1. FIGURE 4. A) NUCLEAR MAGNETIC RESONANCE (NMR) SPECTRUMS OF HYDROGEN AND B) NMR SPECTERS OF C-13, OF THE NEW METFORMIN GLIMEPIRIDATE COMPOUND. THE ALLOCATION OF THE DISPLACEMENTS CORRESPONDS WITH THE EXPECTED STRUCTURE, WHICH IS REPRESENTED IN THE DIAGRAM OF FIGURE 1.
FIGURA 5. ESPECTROS DE MASAS PARA GLIMEPIRIDATO DE METFORMINA (PM 619.79) OBTENIDOS POR LAS TECNICAS A) FAB" Y B) FAB+, EN DONDE PUEDE APRECIARSE QUE EL ION MOLECULAR DEL CATION (FAB+) SE ENCUENTRA EN 130 (M +1 )/Z, Y EN DONDE EL ION MOLECULAR DEL ANION (FAB ) SE ENCUENTRA EN 489 (M-1)/Z. FIGURE 5. MASS SPECTERS FOR METHFORMINE GLIMEPIRIDATE (PM 619.79) OBTAINED BY TECHNIQUES A) FAB " AND B) FAB + , WHERE IT CAN BE APPRECIATED THAT THE MOLECULAR ION OF THE CATION (FAB + ) IS FOUND AT 130 (M + 1) / Z, AND WHERE THE MOLECULAR ION OF THE ANION (FAB) IS IN 489 (M-1) / Z.
FIGURA 6. ENDOTERMAS DETERMINADAS POR CALORIMETRIA DIFERENCIAL DE BARRIDO (CDB) PARA A) METFORMINA (PUNTO DE INICIO DE LA FUSION 1 17.08° C), B) GLIMEPIRIDA (PUNTO DE INICIO DE LA FUSION 208.65° C), Y C) GLIMEPIRIDATO DE METFORMINA (PUNTO DE INICIO DE LA FUSION 95.49° C).  FIGURE 6. ENDOTHERMES DETERMINED BY DIFFERENTIAL SWEEPING CALORIMETRY (CBD) FOR A) METFORMIN (START POINT OF THE FUSION 1 17.08 ° C), B) GLIMEPIRIDE (START POINT OF THE FUSION 208.65 ° C), AND C) METHYLMORMIRIDATE GLIMEPIRIDATE (START POINT OF THE FUSION 95.49 ° C).
FIGURA 7. COMPARACION DEL ESPECTRO DE RMN DE POLVOS DE CARBONO-13 PARA A) METFORMINA, B) GLIMEPIRIDA Y C) GLIMEPIRIDATO DE METFORMINA. ESTE ULTIMO ESPECTRO INDICA QUE EFECTIVAMENTE SE HA FORMADO UN NUEVO COMPUESTO DISTINTO A LOS COMPUESTOS PRECURSORES.  FIGURE 7. COMPARISON OF THE NMR SPECTRUM OF CARBON POWDER-13 FOR A) METFORMIN, B) GLIMEPIRIDE AND C) METFORMIN GLIMEPIRIDATE. THIS LAST SPECTRUM INDICATES THAT EFFECTIVELY A NEW COMPOUND DIFFERENT FROM PRECURSOR COMPOUNDS.
FIGURA 8. COMPARACION DEL ESPECTRO DE DIFRACCION DE RAYOS X DE POLVOS PARA A) METFORMINA, B) GLIMEPIRIDA Y C) GLIMEPIRIDATO DE METFORMINA, QUE INDICA QUE EFECTIVAMENTE SE HA FORMADO UN NUEVO COMPUESTO DIFERENTE A LAS MATERIAS PRIMAS. FIGURA 9. DIFRACCION DE RAYOS-X DE MONOCRISTAL DEL NUEVO COMPUESTO GLIMEPIRIDATO DE METFORMINA. FIGURE 8. COMPARISON OF THE X-RAY DIFRACTION SPECTRUM FOR A) METFORMIN, B) GLIMEPIRIDE AND C) METFORMIN GLIMEPIRIDATE, WHICH INDICATES THAT A NEW COMPOUND HAS BEEN FORMED DIFFERENTLY FROM RAW MATERIALS. FIGURE 9. MONOCRISTAL X-RAY DIFFACTION OF THE NEW METFORMIN GLIMEPIRIDATE COMPOUND.
FIGURA 10. TRAZO ORTEP DE LA DIFRACCION DE RAYOS-X DE MONOCRISTAL DEL NUEVO COMPUESTO GLIMEPIRIDATO DE METFORMINA REPRESENTADO EN ELIPSOIDES.  FIGURE 10. ORTEP DRAWING OF THE MONOCRISTAL X-RAY DIFFACTION OF THE NEW METFORMIN GLIMEPIRIDATE COMPOSITE REPRESENTED IN ELIPSOIDS.
FIGURA 1 1 . ESPECTROS DE TF-IR PARA A) METFORMINA, B) PIOGLITAZONA, C) PIOGLITAZONATO DE METFORMINA. LAS SEÑALES DE ABSORCIÓN PARA C) CORRESPONDEN CON LA ESTRUCTURA ESPERADA DEL NUEVO COMPUESTO.  FIGURE 1 1. TF-IR SPECTERS FOR A) METFORMINE, B) PIOGLITAZONA, C) METFORMIN PIOGLITAZONATE. THE ABSORPTION SIGNS FOR C) CORRESPOND TO THE EXPECTED STRUCTURE OF THE NEW COMPOUND.
FIGURA 12. A) RMN DE PROTÓN Y B) RMN DE 3C DE PIOGLITAZONATO DE METFORMINA. LA ASIGNACION DE LOS DESPLAZAMIENTOS CORRESPONDE CON LA ESTRUCTURA ESPERADA. FIGURE 12. A) PROTON NMR AND B) 3 C NMR OF METFORMIN PIOGLITAZONATE. THE ALLOCATION OF THE DISPLACEMENTS CORRESPONDS WITH THE EXPECTED STRUCTURE.
FIGURA 13. ESPECTROS DE MASAS PARA PIOGLITAZONATO DE METFORMINA (PM 485.62) OBTENIDOS POR LAS TECNICAS A) FAB" Y B) FAB+, EN DONDE PUEDE APRECIARSE QUE EL ION MOLECULAR DEL CATION (FAB+) SE ENCUENTRA EN 130 (M +1 )/Z, Y EN DONDE EL ION MOLECULAR DEL ANION (FAB ) SE ENCUENTRA EN 355 (M-1 )/Z. FIGURE 13. MASS SPECTROS FOR METFORMIN PIOGLITAZONATE (PM 485.62) OBTAINED BY TECHNIQUES A) FAB " AND B) FAB + , WHERE IT CAN BE APPRECIATED THAT THE MOLECULAR ION OF THE CATION (FAB + ) IS FOUND AT 130 (M + 1) / Z, AND WHERE THE MOLECULAR ION OF THE ANION (FAB) IS IN 355 (M-1) / Z.
FIGURA 14. ENDOTERMAS DETERMINADAS POR CDB PARA A) METFORMINA (PUNTO DE INICIO DE LA FUSION 1 17.08° C), B) PIOGLITAZONA (PUNTO DE INICIO DE LA FUSION 180.33° C), Y C) PIOGLITAZONATO DE METFORMINA (PUNTO DE INICIO DE LA FUSION 183.53° C).  FIGURE 14. ENDOTHERMES DETERMINED BY CBD FOR A) METFORMIN (START POINT OF THE FUSION 1 17.08 ° C), B) PIOGLITAZONE (START POINT OF THE FUSION 180.33 ° C), and C) METFORMINE PIOGLITAZONATE (START POINT OF THE FUSION 183.53 ° C).
FIGURA 15. COMPARACION DEL ESPECTRO DE RMN DE 13C DE POLVOS PARA A) METFORMINA, B) PIOGLITAZONA Y C) PIOGLITAZONATO DE METFORMINA, CUYAS DIFERENCIAS INDICAN QUE C) CORRESPONDE CON UN COMPUESTO DISTINTO A LOS PRECURSORES. FIGURE 15. COMPARISON OF THE 13 C NMR SPECTRUM OF POWDER FOR A) METFORMIN, B) PIOGLITAZONE AND C) METFORMINE PIOGLITAZONATE, WHOSE DIFFERENCES INDICATE THAT C) CORRESPONDS WITH A DIFFERENT COMPOUND TO PRECURSORS.
FIGURA 16. COMPARACION DEL ESPECTRO DE DIFRACCION DE RAYOS X DE POLVOS PARA A) METFORMINA, B) PIOGLITAZONA Y C) PIOGLITAZONATO DE METFORMINA, QUE INDICA QUE EFECTIVAMENTE SE HA FORMADO UN NUEVO COMPUESTO DIFERENTE A LAS MATERIAS PRIMAS.  FIGURE 16. COMPARISON OF THE X-RAY DIFRACTION SPECTRUM FOR A) METFORMIN, B) PIOGLITAZONE AND C) METFORMIN PIOGLITAZONATE, WHICH INDICATES THAT A NEW COMPOUND DIFFERENTLY RAWED FROM THE RAW MATERIALS.
FIGURA 17. DIFRACCION DE RAYOS-X DE MONOCRISTAL DEL NUEVO COMPUESTO PIOGLITAZONATO DE METFORMINA FIGURE 17. MONOCRISTAL X-RAY DIFFACTION OF THE NEW METFORMIN PIOGLITAZONATE COMPOUND
FIGURA 18. TRAZO ORTEP DE CELDA UNITARIA DE LA DIFRACCION DE RAYOS-X DE MONOCRISTAL DEL NUEVO COMPUESTO PIOGLITAZONATO DE METFORMINA REPRESENTADA EN ELIPSOIDES. FIGURA 19. VELOCIDAD DE DISOLUCIÓN INTRINSECA DEL NUEVO COMPUESTO GLIMEPIRIDATO DE METFORMINA EN AGUA USANDO TABLETAS CON DIFERENTES FUERZA DE COMPRESION. EL PRECURSOR GLIMEPIRIDA ES PRACTICAMENTE INSOLUBLE EN AGUA. FIGURE 18. UNIT CELL ORTEP SIGN OF THE MONOCRISTAL X-RAY DIFRACTION OF THE NEW METOFORMINE PIOGLITAZONATE COMPOSITE REPRESENTED IN ELIPSOIDS. FIGURE 19. INTRINSECA DISSOLUTION SPEED OF THE NEW METROFORMINE GLIMEPIRIDATE COMPOUND IN WATER USING TABLETS WITH DIFFERENT COMPRESSION FORCE. THE GLIMEPIRIDE PRECURSOR IS PRACTICALLY INSOLUBLE IN WATER.
FIGURA 20. VELOCIDAD DE DISOLUCION INTRINSECA DE PIOGLITAZONATO DE METFORMINA, COMPARADO CON LA SAL COMERCIAL CLORHIDRATO DE PIOGLITAZONA. DE ESTOS DATOS SE APRECIA QUE EN AGUA LA NUEVA SAL TIENE UNA MAYOR VELOCIDAD DE DISOLUCION INTRINSECA QUE LA SAL COMERCIAL, LA CUAL ES PRACTICAMENTE INSOLUBLE EN AGUA. EN MEDIO ACIDO 0.1 N LA SAL CLORHIDRATO DE PIOGLITAZONA ES 20 VECES MAS SOLUBLE QUE EL NUEVO COMPUESTOFIGURE 20. INTRINSECA DISSOLUTION SPEED OF METFORMINE PIOGLITAZONATE, COMPARED TO THE PIOGLITAZONA CHLORIDE HYDROCHERED SALT. OF THESE DATA IT IS APPRECIATED THAT IN NEW WATER THE NEW SALT HAS A GREATER SPEED OF DISSOLUTION INSTRUMENTS THAT COMMERCIAL SALT, WHICH IS PRACTICALLY INSOLUBLE IN WATER. IN THE MIDDLE ACID 0.1 N THE PIOGLITAZONA CHLORIDEHYDRATE SALT IS 20 TIMES MORE SOLUBLE THAN THE NEW COMPOUND
FIGURA 21 FAR MACOC I ETI CAS EN VOLUNTARIOS SANOS DE TABLETAS COMERCIALES DE LIBERACION INMEDIATA CON 850 MG DE CLORHIDRATO DE METFORMINA (GLUCOPHAGE, MARCA DE MERCK) Y DE TABLETAS COMERCIALES DE LIBERACION CONTROLADA (DABEX XR, MARCA DE LABORATORIO MERCK). EN LA FIGURA PUEDE OBSERVARSE QUE DURANTE LAS PRIMERAS 6 HORAS HAY MUCHA MAS ABSORCION DE METFORMINA DE LAS TABLETAS DE LIBERACIÓN INMEDIATA Y QUE DESPUES DE ESE TIEMPO AMBOS TIPOS DE TABLETAS MANTIENEN BIODISPONIBILIDADES SEMEJANTES. FIGURE 21 FAR MACOC I ETI CAS IN HEALTHY VOLUNTEERS OF COMMERCIAL TABLETS OF IMMEDIATE RELEASE WITH 850 MG OF METHFORMINE CHLORIDEHYDRATE (GLUCOPHAGE, MARK OF MERCK) AND OF COMMERCIAL TABLETS OF CONTROLLED LIBERATION (DABEX XR, MARK OF LABORATORY MERCK. IN THE FIGURE IT CAN BE OBSERVED THAT FOR THE FIRST 6 HOURS THERE IS MUCH MORE ABSORPTION OF METFORMIN FROM THE IMMEDIATE RELEASE TABLETS AND THAT AFTER THAT TIME BOTH TYPES OF TABLETS MAINTAIN BIODISPONIBILITIES.
FIGURA 22. PERFIL DE DISOLUCION DE UN NUCLEO DE LIBERACION CONTROLADA, CON 500 MG DE CLOHIDRATO DE METFORMINA DESARROLLADA EN LA PRESENTE INVENCION, COMPARADO CON LOS PERFILES DE DISOLUCION DE TABLETAS COMERCIALES DE PREDIAL PLUS (MARCA REGISTRADA DE LABORATORIOS SILANES) Y DE DABEX XR (MARCA REGISTRADA DE LABORATORIOS MERCK).  FIGURE 22. DISSOLUTION PROFILE OF A CONTROLLED RELEASE NUCLEUS, WITH 500 MG OF METFORMIN CLOHYDRATE DEVELOPED IN THE PRESENT INVENTION, COMPARED TO THE DISSOLUTION PROFILES OF PREDIAL PLUS TABLETS (REGISTERED TRADEMARK OF SILANEX LABORATORIES) REGISTERED MARK OF MERCK LABORATORIES).
FIGURA 23. PERFIL DE DISOLUCION DE UN NUCLEO DE LIBERACION CONTROLADA CON 500 MG DE CLORHIDRATO DE METFORMINA DESARROLLADO EN LA PRESENTE INVENCION. ESTE NUCLEO FUE RECUBIERTO CON UNA CAPA DE LA NUEVA SAL GLIMEPIRIDATO DE METFORMINA. EL PERFIL DE DISOLUCION DEL NUCLEO ES COMPARADO CON EL DE TABLETAS COMERCIALES DE GLIMETAL LEX (MARCA REGISTRADA DE LABORATORIO SILANES) Y DABEX XR (MARCA REGISTRADA DE LABORATORIOS MERCK).  FIGURE 23. DISSOLUTION PROFILE OF A CONTROLLED RELEASE NUCLEUS WITH 500 MG OF METHFORMINE CHLORHYDRATE DEVELOPED IN THE PRESENT INVENTION. THIS NUCLEO WAS COVERED WITH A LAYER OF THE NEW METFORMIN GLIMEPIRIDATE SALT. THE NUCLEUS DISSOLUTION PROFILE IS COMPARED TO THAT OF GLIMETAL LEX COMMERCIAL TABLETS (TRADEMARK OF SILANES LABORATORY) AND DABEX XR (MERCK LABORATORY TRADEMARK).
FIGURA 24. FARMACOCINETICA EN VOLUNTARIOS SANOS DE UN NUCLEO CON 850 MG DE CLORHIDRATO DE METFORMINA, FABRICADO DE ACUERDO AL PROCEDIMIENTO INDICADO EN LOS EJEMPLOS 3,4 Y 5, Y EN LA QUE PUEDE OBSERVARSE QUE LA NUEVA FORMULACION PERMITE LA LIBERACION DEL MEDICAMENTO DURANTE AL MENOS 12 HORAS, LO QUE REPRESENTA 4 HORAS MAS QUE LAS LOGRADAS POR LOS MEDICAMENTOS COMERCIALMENTE DISPONIBLES EN EL MERCADO. FIGURE 24. PHARMACOCINETICS IN HEALTHY VOLUNTEERS OF A NUCLEO WITH 850 MG OF METHFORMINE CHLORHYDRATE, MANUFACTURED ACCORDING TO THE PROCEDURE INDICATED IN EXAMPLES 3,4 AND 5, AND IN WHICH IT CAN BE OBSERVED THAT THE NEW FORMULATION ALLOWS THE RELEASE OF THE MEDICATION LESS 12 HOURS, WHAT REPRESENTS 4 HOURS MORE THAN THOSE ACHIEVED BY COMMERCIAL DRUGS AVAILABLE IN THE MARKET.
FIGURA 25. PERFIL DE DISOLUCION DEL RECUBRIMIENTO DE LIBERACION INMEDIATA CONTENIENDO LA NUEVA SAL GLIMEPIRIDATO DE METFORMINA (EN UNA CANTIDAD EQUIVALENTE A 2 MG DE GLIMEPIRIDA), Y QUE RECUBRE A UN NUCLEO DE LIBERACION CONTROLADA TAL Y COMO SE DESCRIBE EN LAS FIGURAS 22 Y 23. ESTE PERFIL SE COMPARA CON LOS PERFILES DE DISOLUCIÓN DEL RECUBRIMIENTO DE TABLETAS COMERCIALES DE LIBERACION PROLONGADA, GLIMETAL LEX CON 2 MG Y GLIMETAL LEX CON 4 MG (MARCAS REGISTRADAS DE LABORATORIOS SILANES), Y EN DONDE PUEDE APRECIARSE QUE NUESTRA SAL MUESTRA UN MEJOR PERFIL DE DISOLUCION FIGURE 25. DISSOLUTION PROFILE OF THE IMMEDIATE RELEASE COVERING CONTAINING THE NEW METHFORMINE GLIMEPIRIDATE SALT (IN AN AMOUNT EQUIVALENT TO 2 MG OF GLIMEPIRIDE), AND WHICH COVERED TO A CONTROLLED RELEASE CORE AS IS AND DESCRIBED IN FIGURES 22 AND 23 THIS PROFILE IS COMPARED TO THE DISSOLVING PROFILES OF THE COATING OF PROLONGED LIBERATION TABLETS, GLIMETAL LEX WITH 2 MG AND GLIMETAL LEX WITH 4 MG (REGISTERED TRADEMARKS OF SILAN LABORATORIES), AND WHERE IT CAN BE APPRECIATED THAT OUR PERFORMANCE DISSOLUTION
FIGURA 26. PERFIL DE DISOLUCION DEL RECUBRIMIENTO DE LIBERACION INMEDIATA CONTENIENDO LA NUEVA SAL PIOGLITAZONATO DE METFORMINA (EN UNA CANTIDAD EQUIVALENTE A 15 MG DE PIOGLITAZONA) Y QUE RECUBRE A UN NUCLEO DE LIBERACION CONTROLADA TAL Y COMO SE DESCRIBE EN LAS FIGURAS 22 Y 23. ESTE PERFIL SE COMPARA CON LOS PERFILES DE DISOLUCION DE TABLETAS COMERCIALES DEL MEDICAMENTO ZACTOS CONTENIENDO CLORHIDRATO DE PIOGLITAZONA (MARCA REGISTRADA DE ELI LILLY) Y DONDE PUEDE OBSERVARSE QUE LA SAL DE LA PRESENTE INVENCION PRODUCE UN SIMILAR PERFIL DE DISOLUCION QUE PUEDE SER OPTIMIZADO. FIGURE 26. DISSOLUTION PROFILE OF THE IMMEDIATE RELEASE COVERING CONTAINING THE NEW METFORMIN PIOGLITAZONATE SALT (IN AN AMOUNT EQUIVALENT TO 15 MG OF PIOGLITAZONE) AND COVERING A CONTROLLED RELEASE NUCLEUS AS DESCRIBED IN FIG. 22 AND 23. THIS PROFILE IS COMPARED TO THE DISPOSAL PROFILES OF COMMERCIAL TABLETS OF THE ZACTOS MEDICINAL PRODUCT CONTAINING PIOGLITAZONA CHLORIDE HYDROGATE (REGISTERED TRADEMARK OF ELI LILLY) AND WHERE IT CAN BE OBSERVED THAT THE SALT OF THE PRESENT INVENTION MAKES A SIMILAR TO BE DISSOLVED.
DESCRIPCION DE LA INVENCION DESCRIPTION OF THE INVENTION
El propósito de la presente invención es desarrollar dos nuevos compuestos de metformina, sin las manifiestas desventajas de las sales comerciales existentes. Conforme al esquema sintético mostrado en la Figura 1 , uno de los nuevos compuestos fue sintetizado a partir de los precursores metformina y glimepirida. Las evidencias espectroscópicas y otras evidencias fisicoquímicas sobre la estructura de este nuevo compuesto se muestran en las Figuras de la 3 a la 10. Particularmente, la Figura 9 muestra la difracción de Rayos-X de monocristal de la nueva molécula glimepiridato de metformina y en donde puede apreciarse que la existencia de interacciones iónicas y de puentes de hidrogeno estabilizan simultáneamente al cristal. Un aspecto interesante de esta Figura 9 es que el nitrógeno sobre la glimepirida, el cual transfiere su protón acido a la base metformina interactúa directamente con una molécula neutra de agua mediante un enlace de hidrogeno. Cálculos químico cuánticos usando el paquete Spartan 9 (Wavefunction Inc., Irvine, CA. 92612, USA) muestran que la carga negativa sobre el nitrógeno está parcialmente deslocalizada hacia el carbonilo y el sulfonilo adyacentes, lo cual incrementa la acidez del protón y facilita la transferencia a la base orgánica (metformina). Además, esta deslocalización de la carga favorece que estos grupos puedan establecer interacciones de enlaces de hidrógeno con el propio catión metformina y con otras moléculas de agua en un medio sólido. De la misma manera, el enlace de hidrogeno intramolecular formado por la metformina con su propia amina facilita que se puedan establecer interacciones de puente de hidrogeno con átomos de la glimepirida y con otros átomos vecinos de la misma metformina. Este tipo de sistemas, que involucran simultáneamente interacciones iónicas e interacciones de enlaces de hidrogeno se conocen en la literatura como cocristales iónicos (Kin-Shan Huang, et al. , J. Mater. Chem. 7(5), 713-720 (1977)). Otras referencias en la literatura concernientes a las condiciones para la formación de cocristales pueden encontrarse en Crystal Growth and Design, 9, 1344-1352 (2009), 2881 -2889 (2009) y 10, 1435-1442 (2010). The purpose of the present invention is to develop two new metformin compounds, without the obvious disadvantages of existing commercial salts. According to the synthetic scheme shown in Figure 1, one of the new compounds was synthesized from metformin and glimepiride precursors. Spectroscopic and other physicochemical evidence on the structure of this new compound are shown in Figures 3 through 10. Particularly, Figure 9 shows the monocrystalline X-ray diffraction of the new metformin glymepiridate molecule and where It can be seen that the existence of ionic interactions and hydrogen bonds simultaneously stabilize the crystal. An interesting aspect of this Figure 9 is that nitrogen on glimepiride, which transfers its acid proton to the base Metformin interacts directly with a neutral molecule of water through a hydrogen bond. Quantum chemical calculations using the Spartan 9 package (Wavefunction Inc., Irvine, CA. 92612, USA) show that the negative charge on nitrogen is partially delocalized to adjacent carbonyl and sulfonyl, which increases the acidity of the proton and facilitates the transfer to the organic base (metformin). In addition, this delocalisation of the charge favors that these groups can establish hydrogen bond interactions with the metformin cation itself and with other water molecules in a solid medium. In the same way, the intramolecular hydrogen bond formed by metformin with its own amine makes it possible to establish hydrogen bridge interactions with atoms of glimepiride and other neighboring atoms of the same metformin. Such systems, which simultaneously involve ionic interactions and hydrogen bond interactions are known in the literature as ionic co-crystals (Kin-Shan Huang, et al., J. Mater. Chem. 7 (5), 713-720 (1977 )). Other references in the literature concerning the conditions for the formation of co-crystals can be found in Crystal Growth and Design, 9, 1344-1352 (2009), 2881-2899 (2009) and 10, 1435-1442 (2010).
El segundo compuesto, cuyo esquema sintético es mostrado en la Figura 2 tiene como precursores metformina y pioglitazona, este ultimo componente siendo un miembro importante de la familia de las tiazolidinedionas y también usado como un tratamiento de primer nivel para pacientes con diabetes tipo 2. La evidencia espectroscópica y fisicoquímica de la estructura de este nuevo compuesto se muestra en las Figuras 1 1 a la 18. Particularmente, la Figura 17 muestra la estructura obtenida por difracción de Rayos-X de monocristal para este nuevo compuesto. De esta Figura 17 puede apreciarse que la molécula es estabilizada por una combinación de atracciones iónicas e interacciones de puentes de hidrogeno, estos últimos con los carbonilos adyacentes al nitrógeno del anillo tiazolidinediónico, el cual soporta la carga del protón acido transferido a la metformina. Al través de cálculos químico cuánticos usando el paquete Spartan 9 (Wavefunction, Inc., Irvine, CA. 92612, USA), puede apreciarse que la carga sobre el nitrógeno se deslocaliza hacia los α-carbonilos, favoreciendo la formación de puentes de hidrógeno con moléculas de metformina vecinas. Además, como en la estructura del compuesto previamente descrito, la carga positiva sobre la amina de la metformina es parcialmente neutralizada por enlaces de hidrogeno intramoleculares establecidos con aminas vecinas (ver Figura 17). Entonces, como en el caso del previo cocristal iónico, la atracción entre las moléculas es adicionalmente estabilizada por enlaces de hidrógeno permitiendo la formación de un cocristal iónico (Kin-Shan Huang, et al., J. Mater. Chem. 7(5), 713-720 (1997)). The second compound, whose synthetic scheme is shown in Figure 2, has as precursors metformin and pioglitazone, the latter component being an important member of the thiazolidinediones family and also used as a first level treatment for patients with type 2 diabetes. Spectroscopic and physicochemical evidence of the structure of this new compound is shown in Figures 1 to 18. Particularly, Figure 17 shows the structure obtained by monocrystalline X-ray diffraction for this new compound. From this Figure 17 it can be seen that the molecule is stabilized by a combination of ionic attractions and hydrogen bridge interactions, the latter with carbonyl adjacent to the thiazolidinedionic ring nitrogen, which supports the charge of the acid proton transferred to metformin. Through quantum chemical calculations using the Spartan 9 package (Wavefunction, Inc., Irvine, CA. 92612, USA), it can be seen that the charge on nitrogen it delocals towards α-carbonyls, favoring the formation of hydrogen bonds with neighboring metformin molecules. In addition, as in the structure of the previously described compound, the positive charge on the metformin amine is partially neutralized by intramolecular hydrogen bonds established with neighboring amines (see Figure 17). Then, as in the case of the previous ionic co-crystal, the attraction between the molecules is further stabilized by hydrogen bonds allowing the formation of an ionic co-crystal (Kin-Shan Huang, et al., J. Mater. Chem. 7 (5) , 713-720 (1997)).
En el diseño de nuevos medicamentos, una primera estrategia para incrementar la absorción de un principio activo es incrementar la velocidad de disolución intrínseca y la solubilidad, características fisicoquímicas que son esenciales para que las drogas se difundan a la superficie de la membrana, en donde pueden ser absorbidas. Conforme la solubilidad se incrementa, la concentración de un compuesto en solución en la superficie de la membrana se incrementa alcanzando una mejor absorción (E. H. Kerns y L. D, Drug-Like Properties: Concepts Structure Design and Methods, 1a. Ed., Elsevier, 2008, pagina 9). Este fenómeno puede explicarse al analizar las propiedades celulares del TG superior e inferior, que son diferentes. Además, las características polares de los ingredientes activos deben ser tomadas en cuenta dado que, por ejemplo, las moléculas polares son fácilmente disueltas en el tracto Gl superior en donde una gran superficie para la absorción de la droga existe, pero no en el TG inferior. En el TG inferior o colón se carece del microvello presente en el TG superior. La presencia del microvello incrementa en gran medida la superficie para la absorción del principio activo; por ejemplo, en el TG superior se tiene una superficie 480 veces la superficie del colón. Entonces, la forma y el lugar de la absorción es importante para decidir la polaridad del principio activo y las características de la preparación farmacéutica. Las células epiteliales individuales forman una barrera celular a lo largo del intestino delgado y el grueso, las cuales están separadas entre si por canales de agua entre los empalmes apretados de las células. El transporte a través del epitelio ocurre mediante un camino transcelular y un camino paracelular (utilizándose cualquiera de ellos o ambos caminos simultáneamente). El camino transcelular para el transporte involucra el movimiento del compuesto al través de la pared y el cuerpo de la célula epitelial por difusión pasiva o por transporte mediado por acarreador. El camino paracelular involucra el movimiento de las moléculas al través de los empalmes apretados entre células individuales. El transporte paracelular es menos especifico pero tiene una mucho mayor capacidad total porque tiene lugar a través de todo lo largo del TG. Sin embargo, las empalmes apretados varían a lo largo del TG, con el duodeno en el TG superior siendo más permeable que el yeyuno y este más permeable que el íleo; mientras que el colon en el tracto Gl inferior es el menos permeable (Knauf, H. et al., Klin. Wochenschr. 60 (19), 1 191 - 1200 (1982). Entonces, considerando que el tiempo de residencia típico de un medicamento en el TG superior es de alrededor de cuatro a seis horas, después de la ingestión oral, medicamentos que tienen una absorción pobre en el colon solo tienen este tiempo para ser absorbido. En este caso, cualquier medicamento no absorbido durante este tiempo será expulsado del cuerpo. In the design of new drugs, a first strategy to increase the absorption of an active substance is to increase the rate of intrinsic dissolution and solubility, physicochemical characteristics that are essential for drugs to spread to the surface of the membrane, where they can be absorbed As the solubility increases, the concentration of a compound in solution in the membrane surface increases reaching better absorption (EH L. Kerns and D, Drug-Like Properties:.. Structure Design Concepts and Methods, Ed 1, Elsevier, 2008, page 9). This phenomenon can be explained by analyzing the cellular properties of the upper and lower TG, which are different. In addition, the polar characteristics of the active ingredients must be taken into account since, for example, polar molecules are easily dissolved in the upper Gl tract where a large surface for drug absorption exists, but not in the lower TG . In the inferior TG or colon, the microvello present in the superior TG is lacking. The presence of the microvello greatly increases the surface for the absorption of the active substance; for example, in the upper TG there is a surface 480 times the surface of the colon. Then, the form and place of absorption is important in deciding the polarity of the active substance and the characteristics of the pharmaceutical preparation. The individual epithelial cells form a cell barrier along the small and large intestines, which are separated from each other by water channels between the tight joints of the cells. Transport through the epithelium occurs through a path transcellular and a paracellular path (using either of them or both paths simultaneously). The transcellular path for transport involves movement of the compound through the wall and body of the epithelial cell by passive diffusion or by carrier-mediated transport. The paracellular path involves the movement of molecules through tight joints between individual cells. Paracellular transport is less specific but has a much greater total capacity because it takes place throughout the TG. However, tight joints vary along the TG, with the duodenum in the upper TG being more permeable than the jejunum and more permeable than the ileum; while the colon in the lower Gl tract is the least permeable (Knauf, H. et al., Klin. Wochenschr. 60 (19), 1 191-1200 (1982). Then, considering that the typical residence time of a medication in the upper TG is about four to six hours, after oral ingestion, medications that have poor absorption in the colon only have this time to be absorbed.In this case, any medication not absorbed during this time will be expelled. of the body.
Concerniente a los desarrollos de la presente invención, la glimepirida es por si misma prácticamente insoluble en agua (0.19 mg/25 mL), pero cuando está enlazada a metformina se incrementa su solubilidad hasta 0.3 mg/mL lo cual puede mejorar su biodisponibilidad. Además, el nuevo compuesto glimepiridato de metformina muestra una mayor velocidad de disolución intrínseca que la glimepirida comercialmente disponible (Figura 19), propiedad que usualmente está asociada a una respuesta terapéutica más rápida. En el caso de la diabetes, esta propiedad es altamente relevante, dado que el tiempo de respuesta para el control de picos de glucosa o hiperglucemias repentinas originadas por ingestión de alimentos o desbalances metabólicos es tan crucial, que puede ser la causa de vida o muerte en pacientes con diabetes avanzada. El segundo compuesto pioglitazonato de metformina también muestra una mayor velocidad de disolución intrínseca (Figura 20) y una mejor solubilidad en agua (1 .33 X 10~3 mg/mL) que la pioglitazona, la cual es "prácticamente insoluble" en agua (ver Index Merck, 40a Edición). Entonces es esperable, que como en el caso del anterior compuesto, también el pioglitazonato de metformina muestre una respuesta más rápida a desbalances de la glucosa sanguínea y que también, dada su mayor solubilidad, se alcance una mayor absorción en el TG superior. La terapia actual con metformina ha probado ser menos que óptima, ya que esta asociada con una alta incidencia de efectos laterales gastrointestinales. Además, el principio activo es comúnmente administrado a altas dosis (como tabletas orales) dos o tres veces al día para alcanzar un tratamiento efectivo que disminuya la glucosa. Los efectos laterales asociados con estos niveles de metformina son la ocurrencia de reacciones gastrointestinales tales como diarrea, nauseas, vomito, inflamación abdominal, flatulencia y anorexia. Estas reacciones ocurren con aproximadamente 30 % los pacientes cuando es comparado con sujetos tratados con placebo, particularmente en la iniciación de la administración de metformina (patente US 6451808). Además, las reacciones son relacionadas a la dosis y el método para controlar estas reacciones incluye reducir la dosis e ir escalando la dosis gradualmente o tomando el medicamento junto con los alimentos. Sin embargo, en casos severos deshidratación y azotemia pre-renal puede ocurrir y muchos sujetos sufriendo la terapia de metformina se ven forzados a descontinuar el uso del medicamento (patente US 6,451 ,808). Basados en las propiedades fisicoquímicas mejoradas de los nuevos compuestos sintetizados en la presente invención es esperada una biodisponibilidad mayor permitiendo reducir la dosis, lo cual decrecerá los efectos gástricos adversos. Además, considerando que la ionización de los componentes de nuestros nuevos compuestos no produce el ión clorhidrato, generado por la disolución de las sales comerciales de metformina, esto será de gran ayuda para evitar los trastornos gástricos. En el caso de glimepiridato de metformina el contraión disociado glimepiridato es un ácido débil y en el caso de pioglitazonato de metformina el ión liberado es el ácido débil pioglitazonato. Aun mas, en las combinaciones comerciales conteniendo por ejemplo las sales clorhidrato de pioglitazona y clorhidrato de metformina (mezclas físicas), cada componente libera iones clorhidrato provocando fuertes efectos gastrointestinales. Entonces, en nuestro caso el disponer de principios activos con efectos laterales reducidos es sin duda un beneficio colateral de la naturaleza de nuestros compuestos. Concerning the developments of the present invention, glimepiride is in itself practically insoluble in water (0.19 mg / 25 mL), but when bound to metformin its solubility increases to 0.3 mg / mL which can improve its bioavailability. In addition, the new metformin glimepiridate compound shows a higher intrinsic dissolution rate than commercially available glimepiride (Figure 19), a property that is usually associated with a faster therapeutic response. In the case of diabetes, this property is highly relevant, since the response time for the control of glucose peaks or sudden hyperglycemias caused by ingestion of food or metabolic imbalances is so crucial, that it can be the cause of life or death. in patients with advanced diabetes. The second metformin pioglitazonate compound also shows a higher intrinsic dissolution rate (Figure 20) and better water solubility (1.33 X 10 ~ 3 mg / mL) than pioglitazone, which is "practically insoluble" in water ( see Index Merck, 40 a Edition). Then it is expected that, as in the case of the previous compound, metformin pioglitazonate also shows a faster response to blood glucose imbalances and that, given its greater solubility, a greater absorption in the upper TG is achieved. Current therapy with metformin has proven to be less than optimal, since it is associated with a high incidence of gastrointestinal side effects. In addition, the active substance is commonly administered at high doses (as oral tablets) two or three times a day to achieve an effective treatment that lowers glucose. The side effects associated with these metformin levels are the occurrence of gastrointestinal reactions such as diarrhea, nausea, vomiting, abdominal inflammation, flatulence and anorexia. These reactions occur with approximately 30% of patients when compared to subjects treated with placebo, particularly at the initiation of metformin administration (US patent 6451808). In addition, the reactions are dose related and the method of controlling these reactions includes reducing the dose and gradually escalating the dose or taking the medication along with food. However, in severe cases dehydration and pre-renal azotemia can occur and many subjects undergoing metformin therapy are forced to discontinue the use of the drug (US Patent 6,451, 808). Based on the improved physicochemical properties of the new compounds synthesized in the present invention, greater bioavailability is expected allowing the dose to be reduced, which will decrease the adverse gastric effects. In addition, considering that the ionization of the components of our new compounds does not produce the hydrochloride ion, generated by the dissolution of commercial salts of metformin, this will be of great help to avoid gastric disorders. In the case of metformin glimepiridate, the dissociated counter-glymepiridate is a weak acid and in the case of metformin pioglitazonate, the ion released is the weak acid pioglitazonate. Furthermore, in commercial combinations containing, for example, the salts of pioglitazone hydrochloride and metformin hydrochloride (physical mixtures), each component releases ions hydrochloride causing strong gastrointestinal effects. So, in our case, having active ingredients with reduced side effects is undoubtedly a collateral benefit of the nature of our compounds.
Una práctica médica común, cuando la regulación de la glucosa en sangre ya no es posible con el uso de un solo principio activo, es prescribir el uso simultáneo de dos medicamentos. En general, la estrategia médica es sumar un medicamento adicional, tal que por un mecanismo complementario se pueda alcanzar la regulación de la glucosa en sangre del paciente diabético. Una prescripción frecuente consiste en recetar la sal comercial metformina a) mismo tiempo que una sulfonilurea tal como glimepirida o bien la sal comercial metformina junto con una tiazolidinediona comercial, como es el clorhidrato de pioglitazona. En nuestro caso, es esperable que un solo principio activo actúe en contra de la diabetes al través de dos mecanismos complementarios. Por un lado se tiene el mecanismo de acción de la metformina, que como fue mencionado anteriormente consiste en su habilidad para prevenir la insensibilización de las isletas pancreáticas humanas, lo cual es usualmente inducida por hiperglicemias. Como resultado de esta acción se disminuyen ambas, la glucosa en ayunas y después de ingerir alimentos se disminuyen los niveles de HbA-ic y el perfil de lípidos. La metformina incrementa la sensitividad de ambos tejido hepático y periférico (músculo primario) a la insulina. No incrementa la producción de lactato mas allá de lo que hacen otras biguanidas, tal como fenformina y entonces la acidosis láctica asociada con el uso de metformina es rara (incidencia reportada de 0.03/1000 pacientes-años de exposición). La metformina reduce los niveles de glucosa al disminuir la salida de glucosa hepática por la inhibición de gluconeogénesis y glicogenólisis. A un menor grado este medicamento incrementa la acción de la insulina en tejidos periféricos y reduce la absorción de glucosa en intestino. Por otro lado, la sulfonilurea glimepirida incrementa primariamente la secreción de insulina. Esta acción es iniciada por enlazarse a y cerrar un canal pancreático ATP-sensible a K+ de células β. Al cerrar disminuye la entrada de K+ llevando a despolarización de la membrana y activación de un canal de Ca2+ dependiente del voltaje. El resultante incremento de flujo de Ca2+ en las células β activa un sistema de citoesqueleto que causa translocación de insulina a la superficie de la célula y su expulsión por exocitosis (patente US 6,693094). Estos dos mecanismos complementarios son puestos en funcionamiento simultáneamente por los componentes del nuevo compuesto reportado en la presente invención 1-[4-[2-(3-etil-4-metil-2-oxo-3-pirroline-1- carboxamido)etil]-fenilsulfonil]-3-(4-metilciclohexil)ureato de N,N-dimetildiguanida o 3-etil-2,5-dihidro-4-metil-N-[2-[4-[[[[(trans-4-metilciclohexil)amino]carbonil]- amino]sulfonil]fenil]etil]-2-oxo-1 H-pirrol-1-carboxamidato de N,N-dimetildiguanida o nombre genérico glimepiridato de metformina y que fue uno de los propósitos de la presente invención. A common medical practice, when blood glucose regulation is no longer possible with the use of a single active substance, is to prescribe the simultaneous use of two medications. In general, the medical strategy is to add an additional medication, such that by a complementary mechanism the regulation of blood glucose of the diabetic patient can be achieved. A frequent prescription is to prescribe the commercial salt metformin a) at the same time as a sulfonylurea such as glimepiride or the commercial salt metformin together with a commercial thiazolidinedione, such as pioglitazone hydrochloride. In our case, it is expected that a single active ingredient will act against diabetes through two complementary mechanisms. On the one hand there is the mechanism of action of metformin, which as mentioned above consists in its ability to prevent the desensitization of human pancreatic islets, which is usually induced by hyperglycemia. As a result of this action, both fasting glucose is decreased and after eating food, HbA-i c levels and lipid profile are decreased. Metformin increases the sensitivity of both liver and peripheral tissue (primary muscle) to insulin. It does not increase lactate production beyond what other biguanides do, such as fenformin and so lactic acidosis associated with metformin use is rare (reported incidence of 0.03 / 1000 patient-years of exposure). Metformin reduces glucose levels by decreasing liver glucose output by inhibiting gluconeogenesis and glycogenolysis. To a lesser degree this medication increases the action of insulin in peripheral tissues and reduces the absorption of glucose in the intestine. On the other hand, sulfonylurea glimepiride primarily increases insulin secretion. This action is initiated by binding to and closing an ATP-sensitive pancreatic channel to K + β cells. When closing decreases the entry of K + leading to membrane depolarization and activation of a voltage dependent Ca 2+ channel. The resulting increase in Ca 2+ flow in β cells activates a cytoskeleton system that causes insulin translocation to the cell surface and its expulsion by exocytosis (US Patent 6,693094). These two complementary mechanisms are simultaneously operated by the components of the new compound reported in the present invention 1- [4- [2- (3-ethyl-4-methyl-2-oxo-3-pyrroline-1- carboxamido) ethyl ] - N, N-dimethyldiguanide or 3-ethyl-2,5-dihydro-4-methyl-N- [2- [4 - [[[[(trans-4] -phenylsulfonyl] -3- (4-methylcyclohexyl) ureate -methylcyclohexyl) amino] carbonyl] - amino] sulfonyl] phenyl] ethyl] -2-oxo-1 H -pyrrol-1-carboxamidate of N, N-dimethyldiguanide or generic name metformin glymepiridate and which was one of the purposes of the present invention
Los primeros antecedentes del uso simultáneo de los componentes glimepirida y metformina en una relación fija son los reportes de G. Charpentier usando dos diferentes medicamentos (ver por ejemplo G. Charpentier, Improved Glycaemic Control by Addition of Glimepiride to metformin Monotherapy in Type 2 Diabetic Patients, Diabetic Medicine 18, 828-834 (2001)). El uso combinado de metformina y glimepirida tiene ventajas adicionales sobre otras combinaciones, tales como metformina y glibenclamida, ya que reportes científicos han mostrado que la primera combinación no induce hipoglucemias que pueden desencadenar una descompensación irreversible en pacientes diabéticos (M. Gonzalez-Ortiz et al. Diabetics and its Complications, 23, 376-379, (2009)). El primer laboratorio farmacéutico en ofrecer en una sola tableta la combinación (mezcla física) de clorhidrato de metformina y glimepirida fue el laboratorio mexicano Silanes, quien patentó la combinación y es propietario de las patentes EP 1482919 en Europa, MX 248,617 en México y 10/502,403 en Estados Unidos. Las patentes fueron concedidas porque se demostró con estudios clínicos que esta combinación desencadenaba un efecto sinérgico, con ventajas importantes en comparación con el uso separado de ambos principios activos. Ahora, con la presente invención se va mas adelante desarrollando un nuevo principio activo con las propiedades añadidas de mostrar una mejor solubilidad y una mas rápida velocidad de disolución intrínseca que las sales comerciales, propiedades que pueden tener una favorable repercusión en la biodisponibilidad y la eficacia del medicamento (Edgard H. Kems & Li Di, Drug-like properties, concepts, structure, design and methods. From ADME to Toxicity Optimization, Academia Press/ Elsevier, 2008). The first history of the simultaneous use of the glimepiride and metformin components in a fixed relationship are the reports of G. Charpentier using two different medications (see for example G. Charpentier, Improved Glycaemic Control by Addition of Glimepiride to metformin Monotherapy in Type 2 Diabetic Patients , Diabetic Medicine 18, 828-834 (2001)). The combined use of metformin and glimepiride has additional advantages over other combinations, such as metformin and glibenclamide, since scientific reports have shown that the first combination does not induce hypoglycemia that can trigger an irreversible decompensation in diabetic patients (M. Gonzalez-Ortiz et al. Diabetics and its Complications, 23, 376-379, (2009)). The first pharmaceutical laboratory to offer in a single tablet the combination (physical mixture) of metformin hydrochloride and glimepiride was the Mexican laboratory Silanes, who patented the combination and owns EP 1482919 patents in Europe, MX 248,617 in Mexico and 10 / 502,403 in the United States. The patents were granted because it was demonstrated with clinical studies that this combination triggered a synergistic effect, with important advantages compared to the separate use of both active ingredients. Now, with the present invention, a new active ingredient is developed further with the added properties of showing a better solubility and a faster intrinsic dissolution rate than commercial salts, properties that may have a favorable impact on the bioavailability and efficacy of the drug (Edgard H. Kems & Li Di, Drug-like properties, concepts, structure, design and methods. From ADME to Toxicity Optimization, Academia Press / Elsevier, 2008).
El segundo compuesto inventado 5-[[4-[2-(5-etill-2-piridinil) etoxi] benzil]- 2,4-tiazolidinedionato de Ν,Ν-dimetildiguanida o 5-[p-[2-(etil-2-piridil)etoxi]benzil]- 2,4- tiazolidinedionato de Ν,Ν-dimetildiguanida, genéricamente llamado pioglitazonato de metformina tiene también la ventaja que siendo un monofármaco, puede actuar a través de dos mecanismos simultáneos. Primero al través del mecanismo de metformina, ya previamente descrito y segundo, al través del mecanismo propio de la pioglitazona. Este contraión actúa incrementando la sensitividad a insulina, por lo que se le denomina desbloqueador de la resistencia a la insulina (patente WO 9857634). Este desbloqueador actúa normalizando la función dañada del receptor de insulina y de normalizar la distribución desigual de los transportadores de glucosa en las células, sistemas asociados con el glucometabolismo. Como resultado, la resistencia a la insulina es desbloqueada mejorando la tolerancia a la glucosa y disminuyendo las concentraciones en plasma de lípidos neutros y ácidos grasos libres (patente EP 17641 10 A1 ). En modelos animales, con diabetes tipo II, la pioglitazona disminuye la hiperglucemia, la hiperinsulinemia y la hipertrigliceridemia, las cuales son alteraciones metabólicas características de estados de resistencia a la insulina similar a la observada en diabetes tipo II. Se ha reportado que en combinación con metformina, la pioglitazona provee un particular efecto benéfico sobre el control glicémico con ningún efecto secundario observado. Por eso mismo, tal combinación es particularmente útil para el tratamiento de la diabetes mellitus tipo II y condiciones asociadas (patente WO 9857634). La importancia de la mezcla física de pioglitazona con metformina es resaltada en una patente internacional de la compañía Takeda de Japón (patente US 5,952, 356). Sin embargo, esta combinación no muestra un efecto sinérgico como se observa en el caso de la combinación de metformina con glimepirida. No obstante, tal y como fue antes descrito, la importancia de la combinación es que para pacientes que no responden al uso de solo uno de los medicamentos (monoterapia), la combinación permite una regulación adecuada de la glucosa en sangre. Los nuevos compuestos de la presente invención deben mostrar el efecto combinado de cada uno de los componentes. The second compound invented 5 - [[4- [2- (5-ethill-2-pyridinyl) ethoxy] benzyl] -2,4-thiazolidinedionate of Ν, Ν-dimethyldiguanide or 5- [p- [2- (ethyl- 2-Pyridyl) ethoxy] benzyl] -2,4-thiazolidinedioneate, Ν-dimethyldiguanide, generically called metformin pioglitazonate also has the advantage that being a monopharmaceutical, it can act through two simultaneous mechanisms. First through the mechanism of metformin, previously described and second, through the mechanism of pioglitazone itself. This counterion acts by increasing insulin sensitivity, which is why it is called insulin resistance blocker (WO 9857634). This unblocker acts by normalizing the damaged function of the insulin receptor and normalizing the uneven distribution of glucose transporters in cells, systems associated with glucometabolism. As a result, insulin resistance is unlocked by improving glucose tolerance and decreasing plasma concentrations of neutral lipids and free fatty acids (EP patent 17641 10 A1). In animal models, with type II diabetes, pioglitazone decreases hyperglycemia, hyperinsulinemia and hypertriglyceridemia, which are characteristic metabolic alterations of insulin resistance states similar to that observed in type II diabetes. It has been reported that in combination with metformin, pioglitazone provides a particular beneficial effect on glycemic control with no observed side effects. Therefore, such a combination is particularly useful for the treatment of type II diabetes mellitus and associated conditions (WO 9857634). The importance of the physical mixture of pioglitazone with metformin is highlighted in an international patent of the Takeda company of Japan (US Patent 5,952, 356). However, this combination does not show a synergistic effect as observed in the case of the combination of metformin with glimepiride. However, as described above, the importance of the combination is that for patients who do not respond to the use of only one of the medications (monotherapy), the combination allows adequate regulation of blood glucose. The new compounds of the present invention must show the combined effect of each of the components.
En el diseño de nuevos medicamentos, una segunda estrategia para incrementar la absorción en el TG de los nuevos compuestos puede ser por ajuste o desarrollo de la apropiada composición farmacéutica (por ejemplo tabletas de liberación inmediata, liberación controlada, etc.) que optimice la biodisponibilidad del medicamento. La metformina es un principio activo con una pobre absorción en colon (Marathe, P. y col., Br. J. Clin. Pharmacol., 50, 325-332 (2000)). En consecuencia la sal comercial, clorhidrato de metformina, tiene una intrínseca permeabilidad pobre y poca absorción en el TG inferior o colon, llevando a que la absorción sea casi exclusivamente en la parte superior del TG. En consecuencia fue conveniente para nuestros compuestos diseñar una rápida desintegración del nuevo medicamento sólido oral, para tomar ventaja de las velocidades de disolución y solubilidades mejoradas de los principios activos inventados, para ser absorbidos en el TG superior. Esta composición farmacéutica debe facilitar una mayor absorción del principio activo durante las cuatro a seis horas que residirá en el TG superior (patente WO 03/068209 A1). Esta estrategia, sumada a la estrategia previamente descrita de mejorar la polaridad del principio activo, debe permitir que una mayor cantidad de glimepiridato de metformina o de piogiitazonato de metformina sea completamente disuelta en el TG superior y se alcance una mayor absorción (E.H. Kerns y L. Di, drug-like Properties: Concepts, Structure, Design and Methods, 1a Ed. Elsevier, 2008). In the design of new drugs, a second strategy to increase the absorption in the TG of the new compounds may be by adjustment or development of the appropriate pharmaceutical composition (eg immediate release tablets, controlled release, etc.) that optimizes bioavailability. of the medication Metformin is an active substance with poor absorption in the colon (Marathe, P. et al., Br. J. Clin. Pharmacol., 50, 325-332 (2000)). Consequently, the commercial salt, metformin hydrochloride, has an intrinsic poor permeability and poor absorption in the lower TG or colon, leading to the absorption being almost exclusively in the upper part of the TG. Consequently, it was convenient for our compounds to design a rapid disintegration of the new oral solid medicine, to take advantage of the dissolution rates and improved solubilities of the invented active ingredients, to be absorbed in the upper TG. This pharmaceutical composition should facilitate a greater absorption of the active ingredient during the four to six hours that it will reside in the upper TG (WO 03/068209 A1). This strategy, in addition to the previously described strategy of improving the polarity of the active substance, should allow a greater amount of metformin glimepiridate or metformin piogiitazonate to be completely dissolved in the upper TG and greater absorption (EH Kerns and L . Di, drug-like Properties: Concepts, Structure, Design and Methods, Ed Elsevier 1, 2008)..
En la Figura 21 se muestra una curva farmacocinética de clorhidrato de metformina de capletas de 850 mg, de liberación inmediata comerciales (Glucophage, marca de laboratorios Merck; datos parcialmente tomados de la patente US 6,866, 866 de Marzo 15, 2005). Estos datos fueron determinados en 12 voluntarios sanos, y en donde se puede apreciar que efectivamente el tiempo de absorción de metformina es de alrededor de 6 horas, el cual corresponde con el tiempo estimado de residencia en el TG superior antes referido (solicitud de patente US 2005/0158374 A1 ). En la Figura 21 también se muestra una curva de biodisponibilidad de clorhidrato de metformina, de una tableta comercial de 850 mg de liberación prolongada (Dabex XR, marca de laboratorios Merck), determinada en voluntarios sanos. Con esta tableta de liberación prolongada se aprecia que los niveles plasmáticos de 500 ng/ml de metformina son alcanzados aproximadamente 30 minutos después que los alcanzados con la capleta de liberación inmediata. La concentración de 1400 ng/ml es alcanzada por la capleta de liberación controlada alrededor de 2 horas después que la alcanzada con la capleta de liberación inmediata y la concentración de 1450 ng/ml es alcanzada con la capleta de liberación controlada alrededor de 3 horas después que con la capleta de liberación inmediata. Esta concentración de 1450 ng/ml es la Cmax de la capleta de liberación controlada. Esto es, la Cmax de la capleta de liberación controlada es alrededor de 750 ng/ml menor que la alcanzada por la capleta de liberación inmediata. También puede apreciarse que el área bajo la curva es aproximadamente 30 % menor que de la capleta de liberación inmediata. En conclusión, esto significa que con las capletas de liberación controlada menores cantidades de principio activo son absorbidas que con las capletas de liberación inmediata. Después de las 6 horas, una vez que el granulado de las capletas están fuera del TG superior, la metformina liberada solo es metabolizada y/o expulsada del cuerpo sin ningún beneficio para el paciente.. En consecuencia, probablemente todas las formulaciones de liberación prolongada de clorhidrato de metformina, tal y como se mostró para Dabex XR, no provean un beneficio real a los pacientes, en comparación con el de capletas de liberación inmediata, que suministran mas principio activo, para ser absorbido durante las seis horas que permanecen los granulados desintegrándose en el tracto Gl superior (ver Figura 22). Las dosis de metformina son comúnmente entre 500 mg y 850 mg (aunque en muchos casos se prescribe hasta 3 gramos). Las dosis usuales de glimepirida están entre 2 mg y 4 mg cada 24 horas y las dosis usuales de pioglitazona están entre 15 mg y 30 mg. La proporción estequiometrica de la metformina con los contraiones glimepirida o pioglitazona en las nuevas sales es 1 :1 , lo que indica que las dosis requeridas de metformina son muy superiores que las dosis de glutamina o pioglitazona. Debido a esto se formularon composiciones farmacéuticas adecuadas para proveer las dosis adecuadas de ambos componentes, diseñando un núcleo o matriz de liberación controlada con la dosis usual de clorhidrato de metformina (por ejemplo 500 mg) y una capa o recubrimiento de liberación inmediata conteniendo el nuevo principio activo (en su caso, la cantidad de metformina contenida en los nuevos principios activos se puede restar a este núcleo para ajustar exactamente a 500 mg la cantidad total de metformina en la capleta). En el caso del nuevo cocristal iónico glimepiridato de metformina, el núcleo o matriz debe contener 499.474 mg de clorhidrato de metformina, el cual está recubierto con una capa de glimepiridato de metformina conteniendo una cantidad equivalente a 2 miligramos de glimepirida (ver la Tabla 2, en el ejemplo 3, a continuación). Para el compuesto pioglitazonato de metformina el núcleo de la tableta debe contener 494.565 mg de clorhidrato de metformina recubierto con una capa de liberación inmediata conteniendo pioglitazonato de metformina en una cantidad equivalente a 15 mg de pioglitazona (ver la Tabla 3, en el Ejemplo 4, a continuación). A pharmacokinetic curve of commercially released metformin hydrochloride of 850 mg is shown in Figure 21. (Glucophage, brand of Merck laboratories; data partially taken from US Patent 6,866, 866 of March 15, 2005). These data were determined in 12 healthy volunteers, and where it can be seen that effectively the absorption time of metformin is around 6 hours, which corresponds to the estimated residence time in the superior TG referred to above (US patent application 2005/0158374 A1). Figure 21 also shows a bioavailability curve of metformin hydrochloride, from a 850 mg commercial extended-release tablet (Dabex XR, brand of Merck laboratories), determined in healthy volunteers. With this prolonged-release tablet it is appreciated that plasma levels of 500 ng / ml metformin are reached approximately 30 minutes after those reached with the immediate-release caplet. The concentration of 1400 ng / ml is reached by the controlled release caplet about 2 hours after that reached with the immediate release caplet and the concentration of 1450 ng / ml is reached with the controlled release caplet about 3 hours later than with the capleta of immediate release. This concentration of 1450 ng / ml is the C max of the controlled release caplet. That is, the C max of the controlled release caplet is about 750 ng / ml lower than that achieved by the immediate release caplet. It can also be seen that the area under the curve is approximately 30% smaller than the immediate release caplet. In conclusion, this means that with the controlled release caplets smaller amounts of active substance are absorbed than with the immediate release caplets. After 6 hours, once the granules of the caplets are outside the upper TG, the released metformin is only metabolized and / or expelled from the body without any benefit to the patient. Consequently, probably all extended-release formulations of metformin hydrochloride, as shown for Dabex XR, does not provide a real benefit to patients, compared to that of immediate release caplets, which provide more active substance, to be absorbed during the six hours that the granules remain disintegrating in the upper Gl tract (see Figure 22). Metformin doses are commonly between 500 mg and 850 mg (although in many cases it is prescribed up to 3 grams). The usual doses of glimepiride are between 2 mg and 4 mg every 24 hours and the usual doses of pioglitazone are between 15 mg and 30 mg. The stoichiometric proportion of metformin with the glimepiride or pioglitazone counterions in the new salts is 1: 1, indicating that the required doses of metformin are much higher than the doses of glutamine or pioglitazone. Because of this, suitable pharmaceutical compositions were formulated to provide adequate doses of both components, designing a controlled release core or matrix with the usual dose of metformin hydrochloride (eg 500 mg) and an immediate release layer or coating containing the new active substance (where appropriate, the amount of metformin contained in the new active ingredients can be subtracted from this nucleus to adjust exactly to 500 mg the total amount of metformin in the caplet). In the case of the new metformin glymepiridate ionic co-crystal, the nucleus or matrix must contain 499,474 mg of metformin hydrochloride, which is coated with a layer of metformin glimepiridate containing an amount equivalent to 2 milligrams of glimepiride (see Table 2, in example 3, below). For the metformin pioglitazonate compound the tablet core should contain 494,565 mg of metformin hydrochloride coated with an immediate release layer containing metformin pioglitazonate in an amount equivalent to 15 mg of pioglitazone (see Table 3, in Example 4, then).
Un estudio farmacocinético fue realizado del núcleo de liberación prolongada desarrollado en la presente invención (ejemplos 3,4 and 5), conteniendo 850 mg de clorhidrato de metformina, en una simple dosis en 15 voluntarios sanos. Este núcleo fue recubierto con una capa inerte de acetato de polivinilo SR 30D y Opadry II (ver ejemplos 3,4 and 5). Los resultados promedio obtenidos cuando los voluntarios sanos fueron sujetos a condiciones de no tomar alimento se muestran en la Figura 24. La Cmax promedio (+/- DE, n = 15) fue de 1 770 ng/mL y el área bajo la curva fue 1 7450 ng-hrs/m L. De estos datos se concluye que con la formulación desarrollada en la presente invención se logran concentraciones plasmáticas de metformina que se mantienen en concentraciones superiores a 750 ng/mL por un periodo de cerca de 12, lo cual es 4 hrs mas que con Dabex XR (marca de Merck, Inc.), el cual fue el medicamento de referencia). A pharmacokinetic study was carried out of the extended-release core developed in the present invention (examples 3,4 and 5), containing 850 mg of metformin hydrochloride, in a single dose in 15 healthy volunteers. This core was coated with an inert layer of polyvinyl acetate SR 30D and Opadry II (see examples 3,4 and 5). The average results obtained when healthy volunteers were subject to conditions of not eating food are shown in Figure 24. The average Cmax (+/- SD, n = 15) was 1,770 ng / mL and the area under the curve was 1 7450 ng-hrs / m L. From these data it is concluded that with the formulation developed in the present invention plasma concentrations of metformin are achieved that are maintained at concentrations greater than 750 ng / mL for a period of about 12, which is 4 hours more than with Dabex XR (brand of Merck, Inc.), which was the reference medicine).
En las Figuras 23 y 24 se muestra el perfil de disolución de un núcleo central de clorhidrato de metformina, en comparación con los perfiles de disolución de tabletas de liberación prolongada comercialmente disponibles. En la Figura 23 se compara con Dabex XR (marca de Merck Inc.) y Predial Plus (marca de laboratorios Silanes) . En la Figura 24 se compara con el medicamento comercial Glimetal-Lex (marca de laboratorios Silanes) que está constituido por un núcleo central de clorhidrato de metformina recubierto por una capa conten iendo glimepirida en dos dosis 2 mg o 4 mg . Además se mantiene como referencia el perfil de Dabex XR. El comportamiento de la disolución de nuestro núcleo es m uy similar al de las sales comerciales. The dissolution profile of a central core of metformin hydrochloride is shown in Figures 23 and 24, compared to the dissolution profiles of commercially available extended-release tablets. In Figure 23 it is compared with Dabex XR (brand of Merck Inc.) and Predial Plus (brand of Silanes laboratories). In Figure 24 it is compared with the commercial drug Glimetal-Lex (Silanes laboratory brand) which is constituted by a central core of metformin hydrochloride coated by a layer containing glimepiride in two doses 2 mg or 4 mg. In addition, the Dabex XR profile is maintained as a reference. The dissolution behavior of our core is very similar to that of commercial salts.
En la Figura 25 se muestra el perfil de disolución del recubrimiento de liberación inmediata conteniendo el nuevo cochstal iónico glimepiridato de metformina, en una concentración equivalente a 2 mg de glimepirida. Este recubrimiento es la capa sobre el núcleo central de liberación controlada de clorhid rato de metformina. El perfil es comparado (ver Fig ura 25) con tabletas comerciales de Glimetal Lex (marca de laboratorios Silanes) conteniendo las dosis de 2 mg y 4 mg de glimepirida. Puede observarse que nuestro cocristal iónico se disuelve mas rápido y en mayores cantidades que la de los compuestos de referencia. Figure 25 shows the dissolution profile of the immediate-release coating containing the new metformin glimepiridate ionic cochstal, in a concentration equivalent to 2 mg of glimepiride. This coating is the layer on the central core of controlled release of metformin chlorhydride. The profile is compared (see Fig. 25) with commercial tablets of Glimetal Lex (brand of Silanes laboratories) containing the doses of 2 mg and 4 mg of glimepiride. It can be seen that our ionic co-crystal dissolves faster and in greater quantities than that of the reference compounds.
En la Figura 26 se muestra el perfil de disolución del recubrimiento de liberación inmediata de la capa que contiene al nuevo cocristal iónico pioglitazonato de metformina, en una cantidad equivalente a 1 5 mg de pioglitazona. El perfil es comparado con tabletas comerciales del medicamento Zactos (marca de Eli Lilly, Inc.). Figure 26 shows the dissolution profile of the immediate release coating of the layer containing the new metformin pioglitazonate ionic co-crystal, in an amount equivalent to 1.5 mg of pioglitazone The profile is compared with commercial tablets of the drug Zactos (brand of Eli Lilly, Inc.).
A continuación se describe el proceso sintético de cada uno de los compuestos inventados, esquematizados en las Figuras 1 y 2. Además se provee la formulación y las técnicas de fabricación del núcleo o matriz de las capletas de liberación controlada, así como las de los recubrimientos de liberación inmediata conteniendo los nuevos cocristales iónicos The synthetic process of each of the invented compounds, outlined in Figures 1 and 2, is described below. In addition, the formulation and manufacturing techniques of the core or matrix of the controlled-release caplets, as well as those of the coatings, are provided immediate release containing the new ionic co-crystals
EJEMPLOS EXAMPLES
Ejemplo 1. Proceso de Síntesis para la fabricación de la Nueva Sal Glimepiridato de Metformina. Example 1. Synthesis Process for the manufacture of the New Metformin Glimepiridate Salt.
En un matraz de fondo redondo de 500 mi se agregan 64 mi de etanol y se enfrian a -100 C bajo atmósfera de nitrógeno. Entonces, 16 g (296 mmoles) de metóxido de sodio (97 % de pureza) se vierten en el frasco y 46.6 g (281 mmoles) de clorhidrato de metformina se añaden. La suspensión resultante se agita durante 40 minutos y se deja que el matraz alcance la temperatura del cuarto. La suspensión resultante se filtra y se lava con 30 mi de metano!. El filtrado sólido, cloruro de sólido, se separa y la solución metanólica se concentra por evaporación en vacío cristalizando un sólido blanco, el cual corresponde con la metformina base cruda. In a 500 ml round bottom flask 64 ml of ethanol are added and cooled to -100 C under nitrogen atmosphere. Then, 16 g (296 mmol) of sodium methoxide (97% purity) are poured into the bottle and 46.6 g (281 mmol) of metformin hydrochloride are added. The resulting suspension is stirred for 40 minutes and the flask is allowed to reach room temperature. The resulting suspension is filtered and washed with 30 ml of methane! The solid filtrate, solid chloride, is separated and the methanolic solution is concentrated by evaporation in vacuo crystallizing a white solid, which corresponds to the crude base metformin.
La metformina base (23.16 g, 179 mmoles) fue disuelta en 82 mi de etanol en un matraz erlenmeyer. A este matraz se le agregaron en porciones 80 g ( 163 mmoles) de glimepirida. La suspensión fue calentada entre 50° C y 55° C y agitada hasta que los sólidos fueron completamente disueltos. A esta solución se le agregó 1 .4 L de acetato de etilo y la solución se agitó durante 6 horas, produciendo una nueva suspensión. Esta suspensión se filtró y el polvo se lavó con 60 mi de acetato de etilo y se secó bajo vacío a 60° C. El glimepiridato de metformina crudo, 81 g, fue obtenido como un polvo blanco con una densidad muy baja. El correspondiente rendimiento de este proceso fue 79 %. Metformin base (23.16 g, 179 mmol) was dissolved in 82 ml of ethanol in an erlenmeyer flask. To this flask were added 80 g (163 mmol) of glimepiride in portions. The suspension was heated between 50 ° C and 55 ° C and stirred until the solids were completely dissolved. To this solution was added 1.4 L of ethyl acetate and the solution was stirred for 6 hours, producing a new suspension. This suspension was filtered and the powder was washed with 60 ml of ethyl acetate and dried under vacuum at 60 ° C. Raw metformin, 81 g, was obtained as a white powder with a very low density. The corresponding performance of this process was 79%.
El material crudo fue cristalizado conforme al siguiente procedimiento: 81 g de glimepiridato de metformina crudo se disolvieron en 60 mi de etanol (96%) en un matraz erlenmeyer de 3 L. Esta suspensión se calentó a 70° C y se agitó hasta que los sólidos fueron completamente disueltos. Entonces, 1 .9 L de acetato de etilo fueron añadidos lentamente y la solución resultante se agitó durante 16 horas, produciendo una suspensión blanca. Esta suspensión se filtró y el polvo se lavó con 100 mi de acetato de etilo y se secó bajo vacío a 60° C. El rendimiento de este compuesto fue de 78 % (60.8 g). The crude material was crystallized according to the following procedure: 81 g of crude metformin glimepiridate were dissolved in 60 ml of ethanol (96%) in a 3 L erlenmeyer flask. This suspension was heated to 70 ° C and stirred until the solids were completely dissolved. Then, 1.9 L of ethyl acetate were added slowly and the resulting solution was stirred for 16 hours, producing a white suspension. This suspension was filtered and the powder was washed with 100 ml of ethyl acetate and dried under vacuum at 60 ° C. The yield of this compound was 78% (60.8 g).
El producto obtenido fue analizado por diferentes técnicas. La Figura 3 muestra el espectro de TF-infrarrojo comparado con el de los precursores metformina y glimepirida. Las bandas de absorción observadas corresponden con el de la estructura esperada (Ver Figura 1 ) siendo las más características, sobre el catión metformina las localizadas en 3381 cm'1 , 3254 cm"1 , 3168 cm"1 correspondientes al "estretching" del N-H de las diferentes aminas y sobre el anión glimepiridato las bandas de absorción en 1703 cm"1 y 1655 cm"1 de los carbonilos y la banda en 1275 cm"1 se asigna a la sulfonamida también del glimepiridato. La Figura 4 muestra los respectivos espectros de resonancia magnética nuclear (RMN) de H+ y C 3, cuyos desplazamientos se pudieron asignar a la estructura esperada. La Figura 5 muestra los espectros de masas obtenidas por las técnicas FAB+ y FAB", y en las que puede observarse que el ión molecular del FAB+ está en 130 m/z, que corresponde con (M+1 ) del catión metformina y que el ión molecular del FAB' está en 489 m/z, que corresponde con (M-1 ) del anión glimepiridato, resultados que confirman la estructura asignada. La Figura 6 muestra las endotermas determinadas por calorimetría diferencial de barrido para A) metformina (inicio de fusión en 1 7.08° C), B) glimepirida (inicio de fusión en 208.65° C) y C) glimepiridato de metformina (inicio de fusión en 95.49° C), valor muy bajo y que fue identificado por análisis termogravimétrico (TG/DTA) que corresponde con la pérdida de una molécula de agua. El que solo se tenga una endoterma, con inicio del punto de fusión ("onset") en 95.49° C, se puede explicar considerando que una vez liberada el agua de cristalización, la cual es esencial para mantener la estructura cristalina, el cristal pierde estabilidad y es posible que entonces adopte una forma amorfa, que carece de punto de fusión y que por ende no genera endotermas o bien, puede ser posible que una vez que el agua es liberada el cocristal iónico asistido por puentes de hidrogeno se transforme en una sal común. Esto coincidiría con los resultados obtenidos por DSC/DTA donde, después de la pérdida de agua alrededor de 96° C, otra pérdida de masa es vista a 139.9° C después de la cual una descomposición ocurre a 250° C. Esta descomposición también puede observarse en el DSC donde una exoterma aparece alrededor de 140° C. Esta descomposición podría atribuirse a cualquiera, ya sea a la forma amorfa supuesta o a la sal común. Por fusión de una muestra de este cocristal en un aparato de Fisher-Jones fue observado que se pierde agua alrededor de 97° C, lo cual se manifiesta por una licuefacción de la muestra y en el rango de temperatura de 145° C a 250° C es observado un cambio de color de café pálido a marrón. The product obtained was analyzed by different techniques. Figure 3 shows the spectrum of TF-infrared compared to that of the precursors metformin and glimepiride. The absorption bands observed correspond to that of the expected structure (See Figure 1), being the most characteristic, on the metformin cation those located at 3381 cm ' , 3254 cm "1 , 3168 cm " 1 corresponding to the "stretching" of the NH of the different amines and on the glimepiridate anion the absorption bands in 1703 cm "1 and 1655 cm " 1 of the carbonyls and the band in 1275 cm "1 are assigned to the sulfonamide also of the glimepiridate. Figure 4 shows the respective spectra of nuclear magnetic resonance (NMR) of H + and C 3 , whose displacements could be assigned to the expected structure. Figure 5 shows the mass spectra obtained by the techniques FAB + and FAB " , and in which it can be observed that the molecular ion of FAB + is at 130 m / z, which corresponds to (M + 1) of the metformin cation and that the molecular ion of FAB ' is at 489 m / z, which corresponds to (M-1) of the glimepiridate anion, results that confirm the assigned structure to. Figure 6 shows the endotherms determined by differential scanning calorimetry for A) metformin (melting start at 1 7.08 ° C), B) glimepiride (melting start at 208.65 ° C) and C) metformin glymepiridate (melting start at 95.49 ° C), very low value and which was identified by thermogravimetric analysis (TG / DTA) which corresponds to the loss of a water molecule. The fact that there is only one endotherm, with onset of the melting point ("onset") at 95.49 ° C, can be explained considering that once the crystallization water is released, which is essential to maintain the crystalline structure, the crystal loses stability and it is possible that then it adopts an amorphous form, which lacks a melting point and that therefore does not generate endotherms or, it may be possible that once the water is released, the ionic co-crystal assisted by hydrogen bonds is transformed into a common salt This would coincide with the results obtained by DSC / DTA where, after the loss of water around 96 ° C, another mass loss is seen at 139.9 ° C after which a decomposition occurs at 250 ° C. This decomposition can also observed in the DSC where an exotherm appears around 140 ° C. This decomposition could be attributed to anyone, either to the assumed amorphous form or to common salt. By melting a sample of this co-crystal in a Fisher-Jones apparatus it was observed that water is lost around 97 ° C, which is manifested by a liquefaction of the sample and in the temperature range of 145 ° C to 250 ° C a color change from pale brown to brown is observed.
En la Figura 7 se compara el espectro de RMN de C13 de polvos del nuevo compuesto con el de los precursores y en donde puede apreciarse que el espectro del cocristal es claramente diferente al de las materias primas, indicando que es una nueva estructura, diferente a la de las materias primas o al de una mezcla física. En la Figura 8 el patrón de difracción de Rayos-X de polvos del compuesto sintetizado es comparado con el de los precursores y en donde puede apreciarse que el espectro es claramente diferente, indicando que es una estructura molecular diferente al de las materias primas o al de una mezcla física. La Figura 9 muestra la estructura del nuevo compuesto obtenido por difracción de rayos-X de monocristal y el cual muestra que la estructura es estabilizada por atracciones iónicas e interacciones de enlaces de hidrogeno y en donde una molécula de agua neutra participa en la estabilización de la molécula. Este tipo de compuestos son denominados en la literatura cocristales iónicos (Kin-Shan Huang y col. J. Mater. Chem. 7(5), 713-720 (1997)). En la Figura 10 se muestra la celda unitaria del cocristal iónico en representación ellipsoidal y en la Tabla 1 se muestra los datos cristalinos y parámetros estructurales obtenidos en la difracción de rayos X de monocristal. Todos estos datos corroboran que la estructura esperada de esta nueva sal corresponde con la mostrada en la Figura 1 y que la forma sólida del nuevo compuesto corresponde con el cocristal iónico glimepiridato de metformina. Figure 7 compares the 13 C NMR spectrum of powders of the new compound with that of the precursors and where it can be seen that the spectrum of the co-crystal is clearly different from that of the raw materials, indicating that it is a new structure, different to that of raw materials or to a physical mixture. In Figure 8 the X-ray diffraction pattern of powders of the synthesized compound is compared with that of the precursors and where it can be seen that the spectrum is clearly different, indicating that it is a molecular structure different from that of the raw materials or of a physical mixture. Figure 9 shows the structure of the new compound obtained by monocrystalline X-ray diffraction and which shows that the structure is stabilized by ionic attractions and hydrogen bond interactions and where a neutral water molecule participates in the stabilization of the molecule. These types of compounds are referred to in the ionic co-crystals literature (Kin-Shan Huang et al. J. Mater. Chem. 7 (5), 713-720 (1997)). Figure 10 shows the unit cell of the ionic cocristal in ellipsoidal representation and Table 1 shows the crystalline data and structural parameters obtained in the monocrystalline X-ray diffraction. All these data corroborate that the expected structure of this new salt corresponds to that shown in Figure 1 and that the solid form of the new compound corresponds to the metformin glymepiridate ionic co-crystal.
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000024_0001
Figure imgf000025_0001
Ejemplo 2 Proceso de Síntesis para la Fabricación de la Nueva Sal Pioglitazonato de Metformina. Example 2 Synthesis Process for the Manufacture of the New Metformin Pioglitazonate Salt.
Un matraz de fondo redondo de 500 mi fue cargado con 64 mi de etanol y enfriado a -1 00 C bajo atmósfera de nitrógeno. Entonces, 1 6 g (296 mmoles) de metóxido de sodio (97 % de pureza) fue vertido en el frasco y 46.6 g (281 mmoles) de clorhid rato de metformina fueron añad idos y la suspensión resultante fue agitada 40 minutos. Durante este tiempo se dejó que el matraz alcanza ra la temperatura del cuarto. La suspensión resultante fue filtrada y lavada con 30 mi de metanol. El filtrado sólido, cloruro de sólido, fue separado. La solución metanólica fue transferida a un matraz erlenmeyer de 2 L, a la cual se le agregó 80 g (224 mmoles) de pioglitazona lentamente, durante un periodo de 1 hora, formándose una solución viscosa difícil de agitar. A esta se le agregó 1 06 m L de metanol a gotas agitando la solución durante 1 5 minutos. A la suspensión resultante se le añad ieron 600 m i de isopropanol. Entonces, la solución fue enfriada a 0o C y dejada con agitación 1 hora adicional antes de que fuera filtrada y el producto lavado con 50 mi de isopropanol. El polvo blanco obtenido fue secado a 60° C por dos horas y una vez seco fue pesado obteniéndose 89.6 g que significan 76 % de rendimiento de producto crudo. Los 89.6 g de producto crudo fueron disueltos en etanol y dejados bajo reflujo durante 1 5 minutos, donde 1 .78 L de isopropanol fueron vertidos y enfriados a 0o C. Una vez que se observan pequeños cristales la suspensión se deja en descanso para cristalización durante 1 .5 horas. Se filtra y el producto se lava con 1 50 mi de isopropanol. Se seca bajo vacío a 60° C durante 2 horas y se obtienen 68 g de un polvo blanco el cual rinde 76 %. El rendimiento total de la reacción es 62 %. A 500 ml round bottom flask was loaded with 64 ml of ethanol and cooled to -1 00 C under nitrogen atmosphere. Then, 1 6 g (296 mmol) of sodium methoxide (97% purity) was poured into the bottle and 46.6 g (281 mmol) of metformin hydrochloride were added and the resulting suspension was stirred 40 minutes. During this time the flask was allowed to reach room temperature. The resulting suspension was filtered and washed with 30 ml of methanol. The solid filtrate, solid chloride, was separated. The methanolic solution was transferred to a 2L erlenmeyer flask, to which 80 g (224 mmol) of pioglitazone was added slowly, over a period of 1 hour, forming a viscous solution difficult to stir. To this, 1 06 μL of methanol was added dropwise, stirring the solution for 1-5 minutes. 600 ml of isopropanol was added to the resulting suspension. Then, the solution was cooled to 0 o C and left with stirring an additional 1 hour before it was filtered and the product washed with 50 ml of isopropanol. The white powder obtained was dried at 60 ° C for two hours and once dry it was weighed to obtain 89.6 g, which means 76% yield of crude product. The 89.6 g of crude product were dissolved in ethanol and left under reflux for 1 5 minutes, where 1.78 L of isopropanol were poured and cooled to 0 o C. Once small crystals are observed the suspension is left at rest for crystallization for 1.5 hours. Filter and the product is washed with 1 50 ml of isopropanol. It is dried under vacuum at 60 ° C for 2 hours and 68 g of a white powder are obtained which yields 76%. The total reaction yield is 62%.
El producto obtenido fue analizado por diferentes técnicas espectroscópicas y fisicoquímicas. La Figura 1 1 muestra el espectro de TF- infrarrojo para el nuevo compuesto, comparado con el de los precursores metformina y pioglitazona. El espectro para el compuesto sintetizado muestra bandas de absorción características para NH en la región entre 3440 cm" y 3353 crrT1 , que corresponderían con las aminas del catión metformina y a la amina del anillo thiazolidinedíona del anión pioglitazonato y los carbonilos de las amidas del anillo thiazolidinedíona en 1691 cm"1 y 1675 cm"1 bandas de absorción que corresponden con la estructura mostrada en la Figura 2. La Figura 12 muestra los espectros de RMN de H+ y C 3 y cuyos desplazamientos se pudieron asignar a la estructura esperada. The product obtained was analyzed by different spectroscopic and physicochemical techniques. Figure 1 1 shows the infrared TF-spectrum for the new compound, compared to that of metformin and pioglitazone precursors. The spectrum for the synthesized compound shows characteristic absorption bands for NH in the region between 3440 cm " and 3353 crrT 1 , which would correspond to the amines of the metformin cation and the amine of the thiazolidinedinone ring of the pioglitazonate anion and the carbonyl of the ring amides thiazolidinedinone in 1691 cm "1 and 1675 cm " 1 absorption bands corresponding to the structure shown in Figure 2. Figure 12 shows the NMR spectra of H + and C 3 and whose displacements could be assigned to the expected structure.
La Figura 1 3 muestra el espectro de masas para pioglitazonato de metformina (PM = 485.62) obtenido por las técnicas de FAB+ y FAB". De estos espectros puede apreciarse que el ¡ón molecular obtenido por FAB+ está en 130 m/z, lo que corresponde con el catión (M+1 ) metformina y puede observarse que el ¡ón molecular obtenido por FAB" corresponde con el anión (M-1 ) pioglitazonato. En la Figura 14 las endotermas determinadas por calorimetría diferencial de barrido se comparan para A) metformina (inicio de fusión a 1 17.8° C), B) pioglitazona (inicio de fusión a 180.33° C) y C) y pioglitazonato de metformina (inicio de fusión a 183.53° C), lo cual confirma que un nuevo compuesto diferente a las materias primas fue obtenido. En la Figura 1 5 se compara el espectro de RMN de C13 de polvos del compuesto sintetizado con el de los precursores y de donde puede apreciarse que son muy diferentes indicando que el nuevo compuesto es una nueva estructura, diferente a la de las materias primas o una mezcla física. En la Figura 16 el patrón de difracción de rayos-X de polvos del nuevo compuesto se compara con el de los precursores apreciándose que el espectro es claramente distinto, indicando que se trata de una estructura molecular diferente a la de las materias primas o a una mezcla física. En la Figura 17 se muestra la estructura de la nueva molécula obtenida por la técnica de difracción de rayos-X de monocristal, la cual muestra que la estructura de la molécula es estabilizada por atracciones iónicas e interaccionando por fuertes puentes de hidrogeno del orden de 7 kcal/mol. Estas energías fueron determinadas por cálculos químico cuánticos usando el Paquete Spartan (Wavefunction, Inc. Irvine, CA. 92612, USA). En este caso la estructura no está estabilizada por una molécula neutra, como el caso del agua de la estructura anterior. Este tipo de moléculas estabilizadas por atracciones iónicas e interacciones de tipo de puente de hidrogeno son denominadas cocristales iónicos (Kin-Shan Huang y col., J. Mater. Chem. 7(5), 713-720 (1997). En la Figura 18 se muestra la celda unitaria del nuevo cocristal obtenida por difracción de Rayos-X de monocristal, en representación elipsoidal. En la Tabla 1 se muestra los datos cristalinos y parámetros estructurales obtenidos en la técnica de difracción de rayos X de monocristal Figure 1 3 shows the mass spectrum for metformin pioglitazonate (PM = 485.62) obtained by the FAB + and FAB techniques. " From these spectra it can be seen that the molecular ion obtained by FAB + is at 130 m / z, which corresponds to the cation (M + 1) metformin and it can be seen that the molecular ion obtained by FAB " corresponds to the anion (M-1) pioglitazonate. In Figure 14 the endotherms determined by differential scanning calorimetry are compared for A) metformin (melting start at 1 17.8 ° C), B) pioglitazone (melting start at 180.33 ° C) and C) and metformin pioglitazonate (start melting at 183.53 ° C), which confirms that a new compound other than raw materials was obtained. Figure 1 5 compares the spectrum of 13 C NMR of powders of the compound synthesized with that of the precursors and where it can be seen that they are very different indicating that the new compound is a new structure, different from that of the raw materials or a physical mixture. In Figure 16, the X-ray powder diffraction pattern of the new compound is compared with that of the precursors, showing that the spectrum is clearly different, indicating that it is a different molecular structure from that of raw materials or a mixture physical. Figure 17 shows the structure of the new molecule obtained by the monocrystalline X-ray diffraction technique, which shows that the structure of the molecule is stabilized by ionic attractions and interacting by strong hydrogen bonds of the order of 7 kcal / mol. These energies were determined by quantum chemical calculations using the Spartan Package (Wavefunction, Inc. Irvine, CA. 92612, USA). In this case the structure is not stabilized by a neutral molecule, as in the case of water from the previous structure. These types of molecules stabilized by ionic attractions and hydrogen bridge type interactions are called ionic co-crystals (Kin-Shan Huang et al., J. Mater. Chem. 7 (5), 713-720 (1997). 18 shows the unit cell of the new co-crystal obtained by monocrystalline X-ray diffraction, in ellipsoidal representation, Table 1 shows the crystalline data and structural parameters obtained in the monocrystalline X-ray diffraction technique.
Todos estos datos corroboran que la estructura esperada de esta nueva sal corresponde con la mostrada en la Figura 2 y que en la forma sólida el nuevo compuesto corresponde con el cocristal iónico pioglitazonato de metformina. All these data corroborate that the expected structure of this new salt corresponds to that shown in Figure 2 and that in the solid form the new compound corresponds to the ionic co-crystalline metformin pioglitazonate.
Ejemplo 3 Formulación de Tabletas Basadas en la Nueva Sal Glimepiridato de Metformina Example 3 Formulation of Tablets Based on the New Metformin Glimepiridate Salt
Debido a que la proporción estequiométrica de la metformina y la glimepirida en el nuevo cocristal es 1 : 1 , la cantidad de metformina en la nueva molécula es insuficiente para las dosis requeridas, las cuales son usualmente entre 500 mg y 3 gramos cada 24 horas. Entonces, la formulación de las tabletas se diseño con un núcleo o matriz de liberación controlada con la dosis requerida de clorhidrato de metformina y con una capa de recubrimiento de liberación inmediata, conteniendo el nuevo principio activo en una cantidad equivalente a la dosis requerida de glimepirida. Because the stoichiometric ratio of metformin and glimepiride in the new cocristal is 1: 1, the amount of metformin in the new The molecule is insufficient for the required doses, which are usually between 500 mg and 3 grams every 24 hours. Then, the tablet formulation was designed with a controlled release core or matrix with the required dose of metformin hydrochloride and with an immediate release coating layer, containing the new active ingredient in an amount equivalent to the required dose of glimepiride. .
En la Figura 28 se describe la formulación de tabletas, FORMULA 1 , constituida por un núcleo de liberación controlada de 500 mg de clorhidrato de metformina y un recubrimiento de liberación inmediata conteniendo el nuevo principio activo glimepiridato de metformina, en una cantidad equivalente a 2 mg de glimepirida. Siendo riguroso, la cantidad de metformina contenida en los nuevos principios activos se puede restar a la cantidad contenida en el núcleo o matriz de liberación prolongada, para ajustar exactamente a 500 mg la cantidad total de metformina en la tableta. Sin embargo, la dosis usual no requiere un grado de exactitud de tal índole, ya que va desde 500 mg hasta 3 gramos dosis que se va modificando, dependiendo de la respuesta del paciente al medicamento). The formulation of tablets, FORMULA 1, is described in Figure 28, consisting of a 500 mg controlled release core of metformin hydrochloride and an immediate release coating containing the new active substance metformin glimepiridate, in an amount equivalent to 2 mg of glimepiride Being rigorous, the amount of metformin contained in the new active ingredients can be subtracted from the amount contained in the extended release core or matrix, to adjust exactly to 500 mg the total amount of metformin in the tablet. However, the usual dose does not require a degree of accuracy of this nature, since it ranges from 500 mg to 3 grams, the dose being modified, depending on the patient's response to the medication).
Tabla 2. FORMULACION 1 . Tabletas Constituidas por un Núcleo de Liberación Controlada, con 500 mg de Clorhidrato deTable 2. FORMULATION 1. Tablets Consisting of a Controlled Release Core, with 500 mg of Hydrochloride
Metformina y un Recubrimiento de Liberación Inmediata Conteniendo Glimepiridato de Mteformina, en una Cantidad Equivalente a 2 mg de Glimepirida. PESO/ Metformin and an Immediate Release Coating Containing Mimeformin Glimepiridate, in an Amount Equivalent to 2 mg of Glimepiride. WEIGHT/
FORMULA 1 : COMPONENTES UNIDADES  FORMULA 1: COMPONENTS UNITS
(mg)  (mg)
a) Núcleo de Clorhidrato de Metformina 500.00  a) Metformin Hydrochloride Core 500.00
Celulosa Microcristalina PH 301 30.00  Microcrystalline Cellulose PH 301 30.00
Kollicoat SR 30 D1 140.00 Kollicoat SR 30 D 1 140.00
30 % Dispersión 42.00  30% Dispersion 42.00
Hidroxipropilmetilcelulosa 268.50  Hydroxypropyl methylcellulose 268.50
Dioxido de Silicio Coloidal 3.00  Colloidal Silicon Dioxide 3.00
Estearato de Magnesio 6.50  Magnesium Stearate 6.50
PESO SUBTOTAL 850.00  SUBTOTAL WEIGHT 850.00
b) Recubrimiento del Núcleo  b) Core Coating
Kollicoat SR 30 D1 15.00 Kollicoat SR 30 D 1 15.00
30 % Dispersión 4.50  30% Scatter 4.50
Agua Purificada 80.50  Purified Water 80.50
c) Recubrimiento con Clorhidrato 2.80  c) Coating with Hydrochloride 2.80
de Metformina2 of Metformin 2
Opadry Azul 85F99160 41 .00  Opadry Blue 85F99160 41 .00
Agua Purificada 443.00  Purified Water 443.00
Polietilenglicol 6000 4.70  Polyethylene Glycol 6000 4.70
Agua Purificada 54.00  Purified Water 54.00
PESO TOTAL 910.00 TOTAL WEIGHT 910.00
Kolliccoat SR 30 D. La dispersión consiste en alrededor de 27 de acetato de polivinilo, 2.7 % de povidona y 0.3 % de laurel sulfato de sodio  Kolliccoat SR 30 D. The dispersion consists of about 27 polyvinyl acetate, 2.7% povidone and 0.3% sodium laurel sulfate
Se toma en cuenta 10 % de exceso de glimepirida y 0.1 1 % de clorhidrato de metformina  10% excess glimepiride and 0.1 1% metformin hydrochloride are taken into account
Ejemplo 4. Formulación de Tabletas Basadas en la Nueva Sal Pioglitazonato de Metformina Como se describió en el ejemplo anterior, las dosis prescritas de metformina cuando se usa como monofármaco están entre 500 mg y 3 gramos, pero en una dosis combinada usualmente es recomendado que se empiece con la dosis mínima de metformina. No obstante, esto también depende de que tan avanzado esté la enfermedad y la respuesta del paciente al tratamiento. Las dosis usuales de pioglitazona son entre 15 mg y 30 mg por día, en un régimen combinado, pero cuando pioglitazona es usada como un solo medicamento es posible usar hasta 45 mg cada 24 horas. Example 4. Formulation of Tablets Based on the New Metformin Pioglitazonate Salt As described in the previous example, the prescribed doses of metformin when used as a monopharmaceutical are between 500 mg and 3 grams, but in a combined dose it is usually recommended that you start with the minimum dose of metformin. However, this also depends on how advanced the disease is and the patient's response to treatment. The usual doses of pioglitazone are between 15 mg and 30 mg per day, in a combined regimen, but when pioglitazone is used as a single medication it is possible to use up to 45 mg every 24 hours.
Debido a que en la nueva sal la proporción estequiométrica de metformina y pioglitazona es 1 : 1 , la cantidad de metformina es insuficiente para las dosis requeridas. Entonces la formulación de tabletas consiste de un núcleo o matriz de liberación controlada con las dosis usuales de clorhidrato de metformina entre 500 mg y 3 gramos y con un recubrimiento de liberación inmediata conteniendo 15 mg o 30 mg de pioglitazona. Because in the new salt the stoichiometric ratio of metformin and pioglitazone is 1: 1, the amount of metformin is insufficient for the required doses. Then the tablet formulation consists of a controlled release core or matrix with the usual doses of metformin hydrochloride between 500 mg and 3 grams and with an immediate release coating containing 15 mg or 30 mg of pioglitazone.
En la Figura 29 se describe la formulación de tabletas, FORMULA 2, constituida por un núcleo de libración controlada de 500 mg de clorhidrato de metformina y un recubrimiento de liberación inmediata, conteniendo el nuevo principio activo pioglitazonato de metformina, en una cantidad equivalente a 15 mg de pioglitazona. Figure 29 describes the formulation of tablets, FORMULA 2, consisting of a controlled-release core of 500 mg of metformin hydrochloride and an immediate-release coating, containing the new active substance metformin pioglitazonate, in an amount equivalent to 15 Pioglitazone mg
Tabla 3. FORMULA 2, Tabletas Constituidas por un Núcleo de Table 3. FORMULA 2, Tablets Consisting of a Core of
Liberación Controlada con 500 mg de Clorhidrato de Metformina y un Recubrimiento de Liberación Inmediata Conteniendo  Controlled Release with 500 mg Metformin Hydrochloride and an Immediate Release Coating Containing
Pioglitazonato de Metformina, en una Cantidad Equivalente a 1 5 mg de Pioglitazona. PESO/Metformin pioglitazonate, in an amount equivalent to 1.5 mg of Pioglitazone. WEIGHT/
FORMULA 2: COMPONENTES UNIDADES FORMULA 2: UNIT COMPONENTS
(mg) a) Núcleo de Clorhidrato de Metformina 500.00  (mg) a) Metformin Hydrochloride Core 500.00
Celulosa Microcristalina PH 301 30.00  Microcrystalline Cellulose PH 301 30.00
Kollicoat SR 30 D1 140.00 Kollicoat SR 30 D 1 140.00
30 % Dispersión 42.00  30% Dispersion 42.00
Hidroxipropilmetilcelulosa 268.50 Hydroxypropyl methylcellulose 268.50
Dioxido de Silicio Coloidal 3.00 Colloidal Silicon Dioxide 3.00
Estearato de Magnesio 6.50  Magnesium Stearate 6.50
PESO SUBTOTAL 850.00 b) Recubrimiento del Núcleo  SUBTOTAL WEIGHT 850.00 b) Core Coating
Kollicoat SR 30 D1 15.00 Kollicoat SR 30 D 1 15.00
30 % Dispersión 4.50  30% Scatter 4.50
Agua Purificada 35.00  Purified Water 35.00
Opadry Rosado II 85F 14399 7.00  Opadry Pink II 85F 14399 7.00
Agua Purificada 80.50  Purified Water 80.50
c) Recubrimiento con Pioglitazonato 22.50  c) Coating with Pioglitazonate 22.50
de Metformina2 of Metformin 2
Opadry Rosado II 85F 14399 43.50  Opadry Pink II 85F 14399 43.50
Agua Purificada 443.00 Purified Water 443.00
Polietilenglicol 6000 2.50 Polyethylene Glycol 6000 2.50
Agua Purificada 22.50  Purified Water 22.50
PESO TOTAL 930.00  TOTAL WEIGHT 930.00
1KolliccoatSR 30 D. La dispersión consiste en alrededor de 27 % de acetato de polivinilo, 2.7 % de povidona y 0.3 % de laurel sulfato de sodio 1 KolliccoatSR 30 D. The dispersion consists of about 27% polyvinyl acetate, 2.7% povidone and 0.3% sodium laurel sulfate
2Se toma en cuenta 10 % de exceso de glimepirida y 0.1 1 % de clorhidrato de metformina Ejemplo 5. Método de Fabricación de la Matriz de Liberación Controlada del Recubrimiento de Liberación Inmediata conteniendo las Nuevas Sales a) Proceso de Granulación para Formar el Núcleo de Liberación Controlada de las Tabletas. 2 10% excess glimepiride and 0.1 1% metformin hydrochloride are taken into account Example 5. Manufacturing Method of the Controlled Release Matrix of the Immediate Release Coating containing the New Salts a) Granulation Process to Form the Controlled Release Core of the Tablets.
Primero, todos los materiales son pasados por una malla para hacer una mezcla homogénea y adecuada. Posteriormente clorhidrato de metformina es mezclado con celulosa microcrista!ina PH 301 y pasados a través de una malla 20. Entonces, esta mezcla se introduce en un mezclador de "alto corte" para ser homogeneizada durante 2 minutos a 300 revoluciones/minuto (rpm) en el mezclador y 1000 rpm en las cuchillas. La mezcla es granulada en una manera continua por aspersar la dispersión vinculante conteniendo Kollicoat SR 30D a una velocidad de aspersión de 24 gramos/minuto. Después de esta operación el granulado húmedo es sacado del mezclador de alto corte y colocado en un secador de lecho fluidizado con una temperatura de aire de entrada de 70° C a 90° C por 30 minutos o hasta que la humedad de la mezcla granulada esté entre 0.7% a 2.5%. Los granulados secos son molidos con un molino Quadro Cornil, con una pantalla equivalente a una malla 20. La hidroxipropilmetilcelulosa 2208 y el dióxido de silicio coloidal son mezclados con el granulado de clorhidrato de metformina durante 10 minutos, después de lo cual el lubricante estearato de magnesio es añadido y mezclado con el resto de los polvos durante 5 minutos. b) Proceso de Compresión del Granulado Para Formación de la Matriz o Núcleo de la Tableta  First, all materials are passed through a mesh to make a homogeneous and suitable mixture. Subsequently metformin hydrochloride is mixed with microcrystalline cellulose! Ina PH 301 and passed through a 20 mesh. Then, this mixture is introduced into a "high cut" mixer to be homogenized for 2 minutes at 300 revolutions / minute (rpm) in the mixer and 1000 rpm in the blades. The mixture is granulated in a continuous manner by spraying the binding dispersion containing Kollicoat SR 30D at a spray rate of 24 grams / minute. After this operation the wet granulate is taken out of the high cut mixer and placed in a fluidized bed dryer with an inlet air temperature of 70 ° C to 90 ° C for 30 minutes or until the moisture of the granulated mixture is between 0.7% to 2.5%. The dried granules are milled with a Quadro Cornil mill, with a screen equivalent to a 20 mesh. The hydroxypropyl methylcellulose 2208 and the colloidal silicon dioxide are mixed with the granulate of metformin hydrochloride for 10 minutes, after which the stearate lubricant of Magnesium is added and mixed with the rest of the powders for 5 minutes. b) Compression Process of the Granulate For Formation of the Matrix or Tablet Core
El proceso de compresión fue realizado usando una tableteadota rotativa con velocidad variable usando punzones cóncavos. La velocidad de alimentación y la velocidad del rotor fueron ajustadas para obtener un peso apropiado para la tableta o capleta. c) Recubrimiento para Dividir el Núcleo de Liberación Controlada del Recubrimiento Exterior que contiene en Nuevo Principio Activo. Sello-recubrimiento 1 The compression process was performed using a rotary tabletead with variable speed using concave punches. The feed rate and rotor speed were adjusted to obtain an appropriate weight for the tablet or caplet. c) Coating to Divide the Controlled Release Core of the Exterior Coating contained in the New Active Principle. Seal-coating 1
El núcleo de las tabletas son selladas-recubiertas con la dispersión de Kollicoat SR 30D que es diluida con agua purificada y aspersada sobre el núcleo de la tableta usando un "bombo" de recubrimiento bajo las siguientes condiciones: temperatura de aire de entrada 58° C a 65° C, temperatura del aire de salida 40° C a 45° C, temperatura del producto 38° C a 42° C, presión de atomización de 28° C a 30 lb/pulg2 y velocidad de aspersión de 4 a 5 gramos/minuto The core of the tablets are sealed-coated with the dispersion of Kollicoat SR 30D which is diluted with purified water and sprinkled on the tablet core using a "drum" coating under the following conditions: inlet air temperature 58 ° C at 65 ° C, outlet air temperature 40 ° C to 45 ° C, product temperature 38 ° C to 42 ° C, atomization pressure from 28 ° C to 30 lb / in 2 and spray speed from 4 to 5 grams / minute
Sello-recubrimiento 2 Seal-coating 2
Una dispersión de opadry I I fue diluida con ag ua purificada y aspersada sobre el núcleo de la tableta usando u n "bombo" de recubrimiento bajo las siguientes condiciones: temperatura de aire de entrada 58° C a 65° C, temperatura del aire de salida 40° C a 45° C , temperatura del producto 38° C a 42° C , presión de atomización de 28° C a 30 lb/pulg2 y velocidad de aspersión de 4 a 5 gramos/minuto. La tableta es recubterta con la dispersión de sellado hasta alcanzar un total de 1 1 .5 mg/tableta. d) Recubrimiento de Liberación Inmediata Conteniendo el Nuevo Principio Activo En una dispersión de Opadry I I en agua purificada es vertido cualquiera de los dos nuevos principios activos. Si el compuesto a ser usado es el glimepiridato de metformina el Opadry II es azul y si es pioglitazonato de metformina el Opadry II es rosado La dispersión es agitada durante 1 0 minutos a 600 rpm hasta que la dispersión parece homogénea . U n exceso de 1 0 % del compuesto activo se considera perdido d urante el paso de aspersión , por lo que se compensa . Las condiciones usadas para este paso son las mismas cond iciones de operación usadas para las previas operaciones de aspersión. Dada la alta solubilidad de los principios activos no es necesario usar un compuesto tensoactivo para favorecer la solubilidad en agua. En el último paso una solución acuosa de polietilenglicol 6000 es usada para abrillantar las tabletas. Esta solución se aspersa sobre la tableta, bajo las mismas condiciones de operación usadas en las operaciones de aspersión anteriores. A dispersion of opadry II was diluted with purified water and sprinkled on the tablet core using a coating “bass drum” under the following conditions: inlet air temperature 58 ° C to 65 ° C, outlet air temperature 40 ° C to 45 ° C, product temperature 38 ° C to 42 ° C, atomization pressure from 28 ° C to 30 lb / in 2 and spray speed of 4 to 5 grams / minute. The tablet is coated with the sealing dispersion to reach a total of 1 1.5 mg / tablet. d) Immediate Release Coating Containing the New Active Principle In a dispersion of Opadry II in purified water, either of the two new active principles is poured. If the compound to be used is metformin glimepiridate, Opadry II is blue and if it is metformin pioglitazonate, Opadry II is pink. The dispersion is stirred for 10 minutes at 600 rpm until the dispersion appears homogeneous. An excess of 1.0% of the active compound is considered lost during the sprinkling step, so it is compensated. The conditions used for this step are the same operating conditions used for the previous spraying operations. Given the high solubility of the active ingredients, it is not necessary to use a surfactant compound to favor water solubility. In the last step an aqueous solution of polyethylene glycol 6000 is used to polish the tablets. This solution is sprayed on the tablet, under the same operating conditions used in the previous spray operations.

Claims

REIVINDICACIONES Habiendo descrito la presente invención se considera que esta cumple el requerimiento de ser una innovación, para la cual nosotros reivindicamos lo siguiente. CLAIMS Having described the present invention it is considered that it meets the requirement of being an innovation, for which we claim the following.
1. El nuevo compuesto químico 1-[4-[2-(3-etil-4-metil-2-oxo-3-pirrolin-1- carboxamido)etil] -fenilsulfonil]-3-(4-metilciclohexil)ureato de N,N-dimetildiguanida o 3-etil-2,5-dihidro-4-metil-N-[2-[4-[[[[(trans-4-metilciclohexil)amino]carbonil]- amino]sulfonil]fenil]etil]-2-oxo-1 H-pirrol-1-carboxamidato de Ν,Ν-dimetildiguanida y el cual genéricamente puede ser nombrado glimepiridato de metformina. 1. The new chemical compound 1- [4- [2- (3-ethyl-4-methyl-2-oxo-3-pyrrolin-1- carboxamido) ethyl] -phenylsulfonyl] -3- (4-methylcyclohexyl) ureate N, N-dimethyldiguanide or 3-ethyl-2,5-dihydro-4-methyl-N- [2- [4 - [[[[(trans-4-methylcyclohexyl) amino] carbonyl] -amino] sulfonyl] phenyl] ethyl] -2-oxo-1 H-pyrrol-1-carboxamidate of Ν, Ν-dimethyldiguanide and which can generically be named metformin glymepiridate.
2. - En conformidad con la cláusula I, el compuesto glimepiridato de metformina, caracterizado por las siguientes propiedades fisicoquímicas: a) Un espectro de TF-ínfrarrojo con bandas de absorciones características en 3381 cm"1, 3254 cm"1, 3168 cm"1; en 1703 cm"1¡ en 1655 cm"1 y en 1275 cm~1. b) Un espectro de resonancia magnética nuclear de H+, con desplazamientos en partes por millón localizadas en 0.81-0.83 con doblete; en 0.96- 0,99 con triplete; en 1.59-1.61 con doblete; en 1.86-1.89 con doblete; en 2.01 con singulete; en 2.18-2.19 con cuadrup!ete; en 2.49-2.51 con multiplete; en 2.80-2.87 con triplete; en 2.92 con singulete; con singulete de banda ancha en 3.15; en 3.32 con singulete; en 3.46 con cuadruplete; en 4.17 con singulete; con singulete de banda ancha en 6.80; en 7.17-7.19 con doblete; en 7.61-7.63 doblete. c) Un espectro de resonancia magnética nuclear de C 3 con desplazamientos en partes por millón localizadas en 171.77; 159.06; 158.55; 151.9, 151.57; 145.62; 131.88; 126.28; 51.82; 37.30; 12.66; 12.75; 15.93, 22.19; 40.53; 31.54; 32.21; 33.87; 35.03. d) Un espectro de masas obtenido por la técnica FAB" con un ión molecular en 489 m/z, y un espectro de masas obtenido por la técnica FAB+ con un ión molecular obtenido en 130 m/z. e) Un termograma obtenido por calorimetría diferencial de barrido, con una endoterma cuyo inicio de fusión se localiza en 95.49 0 C f) Un espectro de resonancia magnética nuclear de 3C de polvos con desplazamientos en ppm en 172, 160, 152, 145, 140, 132.5, 130, 127.5, 53, 50, 42.5, 37, 33, 30, 22, 17, 15, 12. g) Un patrón de difracción de rayos X de polvos con principales señales en grados (2Θ) en 8.5, 10.2, 1 3.3, 1 5.9 y 16.2, 21 .8, 22.6, 25. h) . Una estructura obtenida por difracción de rayos X de monocristal, en conformidad con los datos cristalográficos y parámetros estructurales mas relevantes siguientes, sistema cristalino monoclínico, grupo espacial P 21/c, dimensiones de la celda unitaria: a = 30.964 A°, b = 8.9179 A°, c = 1 1 .883 A°; α = 90.00°, β = 98.851 °, γ = 90.00°, Volumen 3,242.2 A3, Z = 4 i) Solubilidad en medio acuoso de 0.3 mg/mL 2. - In accordance with clause I, the metformin glimepiridate compound, characterized by the following physicochemical properties: a) An infrared TF spectrum with characteristic absorption bands at 3381 cm "1 , 3254 cm " 1 , 3168 cm "1; in 1703 cm "1 ¡in 1655 cm " 1 and in 1275 cm ~ 1. B) A nuclear magnetic resonance spectrum of H + , with displacements in parts per million located at 0.81-0.83 with doublet; at 0.96-0 , 99 with triplet; in 1.59-1.61 with doublet; in 1.86-1.89 with doublet; in 2.01 with singlet; in 2.18-2.19 with quadruple!; In 2.49-2.51 with multiplet; in 2.80-2.87 with triplet; in 2.92 with singlet; with broadband singlet in 3.15; in 3.32 with singlet; in 3.46 with quadruplet; in 4.17 with singlet; with broadband singlet in 6.80; in 7.17-7.19 with doublet; in 7.61-7.63 doublet. c) A spectrum C 3 nuclear magnetic resonance imaging with displacements in parts per million located at 171.77; 159.06; 158.55; 151.9, 15 1.57; 145.62; 131.88; 126.28; 51.82; 37.30; 12.66; 12.75; 15.93, 22.19; 40.53; 31.54; 32.21; 33.87; 35.03. d) A mass spectrum obtained by the FAB technique " with a molecular ion at 489 m / z, and a mass spectrum obtained by the FAB + technique with a molecular ion obtained at 130 m / z. e) A thermogram obtained by differential scanning calorimetry, with an endotherm whose fusion start is located at 95.49 0 C f) A 3 C nuclear magnetic resonance spectrum of powders with displacements in ppm at 172, 160, 152, 145, 140, 132.5, 130, 127.5, 53, 50, 42.5, 37, 33, 30, 22, 17, 15, 12. g) An X-ray powder diffraction pattern with major signals in degrees (2Θ) in 8.5, 10.2, 1 3.3, 1 5.9 and 16.2, 21 .8, 22.6, 25. h) A structure obtained by monocrystalline X-ray diffraction, in accordance with the following most relevant crystallographic data and structural parameters, monoclinic crystalline system, spatial group P 21 / c, unit cell dimensions: a = 30.964 A °, b = 8.9179 A °, c = 1 1.883 A °; α = 90.00 °, β = 98.851 °, γ = 90.00 ° , Volume 3,242.2 A 3 , Z = 4 i) Solubility in aqueous medium of 0.3 mg / mL
3. El nuevo compuesto químico 5-[[4-[2-(5-etill-2-piridinil) etoxi] benzil]-2,4- tiazolidinedionato de Ν, Ν-dimetildiguanida o 5-[p-[2-(etil-2-piridil)etoxi]benzil]-2,4- tiazolidinedionato de Ν,Ν-dimetildiguanida, y el cual genéricamente puede ser nombrado pioglitazonato de metformina 3. The new chemical compound 5 - [[4- [2- (5-ethill-2-pyridinyl) ethoxy] benzyl] -2,4-thiazolidinedionate of Ν, Ν-dimethyldiguanide or 5- [p- [2- ( Ethyl-2-pyridyl) ethoxy] benzyl] -2,4-thiazolidinedionate, Ν-dimethyldiguanide, and which can generically be named metformin pioglitazonate
4. En conformidad con la cláusula 3, el compuesto pioglitazonato de metformina, caracterizado por las siguientes propiedades fisicoquímicas: a) Un espectro de TF-infrarrojo con bandas de absorción características en 3120 cm"1, 3353 cm'1, 3440 cm" , 2960 cm"1 , 2929 cm'1, 2871 cm"1 , 1691 cm"1, 1675 cm" 4. In accordance with clause 3, the metformin pioglitazonate compound, characterized by the following physicochemical properties: a) A spectrum of TF-infrared with characteristic absorption bands at 3120 cm "1 , 3353 cm '1 , 3440 cm " , 2960 cm "1 , 2929 cm ' 1 , 2871 cm " 1 , 1691 cm "1 , 1675 cm "
1 b) Un espectro de Resonancia Magnética Nuclear de H+ con desplazamientos en partes por millón localizadas en 1 .16-1.19 con un triplete; en 2.49-2.51 multiplete; en 2.56-2.63 multiplete; en 2.92 con singulete; en 3.10-3.13 con triplete; en 3.30- 3.35 con doble doblete, en 4.09-4.12 con doble doblete, en 4.26-4.29 triplete; en 6.66-6.69 con señal ancha; en 6.79-6.81 multiplete; en 7.07-7.09 doblete; en 7.27- 7.29 doblete; en 7.56-7.62 doble doblete; en 8.364-8.368 doblete. c) Un espectro de Resonancia Magnética Nuclear de 13C con desplazamientos en partes por millón localizadas en 190.48; 181 .57; 136.53, 159.09, 131 .91 ; 135.58, 148.44, 129.68, 122.91 ; 58.76; 24.87, 36.73, 37.30, 66.59; 15.28; 158.41 , y en 156.81 . d) Un espectro de masas por la técnica FAB" con un ión molecular en 355 m/z y un espectro de masas por la técnica FAB+ con un ión molecular en 130 m/z. e) Un termograma obtenido por calorimetría diferencial de barrido con una endoterma cuyo inicio de fusión se localiza en 183.53 0 C. f) Un espectro de Resonancia Magnética Nuclear de 13C de polvos, con desplazamientos principales en partes por millón localizadas 195, 160, 150, varios desplazamientos en el intervalo entre 135 y 1 10, entre 70 y 52.5, y dos desplazamientos alrededor de 40 y otro en 25. g) Un patrón de difracción de rayos X de polvos con principales señales en partes por millón localizadas en grados (2Θ) en 14, 17.5, 18.2, 19, 19.8, 20.8, 21.9, 22.7, 23.7 h) Una estructura obtenida por difracción de rayos X de monocristal, en conformidad con los datos cristalográficos y parámetros estructurales mas relevantes siguientes, sistema cristalino triclínico, grupo espacial P-1 , dimensiones de la celda unitaria: a = 5.4973 A°, b = 10.634 A°, c = 22.152 A°; = 97.521 °, β = 96.248 ° γ = 96.160°, Volumen 1.266.5A3, Z = 2 i) una solubilidad en medio acuoso de 13.3 mg/ml. 1 b) A spectrum of H + Nuclear Magnetic Resonance with displacements in parts per million located in 1 .16-1.19 with a triplet; in 2.49-2.51 multiplet; in 2.56-2.63 multiplet; in 2.92 with singlet; in 3.10-3.13 with triplet; in 3.30-3.35 with double doublet, in 4.09-4.12 with double doublet, in 4.26-4.29 triplet; in 6.66-6.69 with wide signal; in 6.79-6.81 multiplet; in 7.07-7.09 double; in 7.27-29 double; in 7.56-7.62 double double; at 8,364-8,368 double. c) A spectrum of Nuclear Magnetic Resonance of 13 C with displacements in parts per million located in 190.48; 181 .57; 136.53, 159.09, 131 .91; 135.58, 148.44, 129.68, 122.91; 58.76; 24.87, 36.73, 37.30, 66.59; 15.28; 158.41, and in 156.81. d) A mass spectrum by the FAB technique " with a molecular ion at 355 m / z and a mass spectrum by the FAB + technique with a molecular ion at 130 m / z. e) A thermogram obtained by differential scanning calorimetry with an endotherm whose onset of fusion is located at 183.53 0 C. f) A spectrum of 13 C Nuclear Magnetic Resonance, with major displacements in parts per million located 195, 160, 150, several displacements in the range between 135 and 1 10, between 70 and 52.5, and two displacements around 40 and another in 25. g) An X-ray powder diffraction pattern with major signals in parts per million located in degrees (2Θ) in 14, 17.5, 18.2, 19 , 19.8, 20.8, 21.9, 22.7, 23.7 h) A structure obtained by monocrystalline X-ray diffraction, in accordance with the following most relevant crystallographic data and structural parameters, triclinic crystalline system, spatial group P-1, unit cell dimensions: a = 5.4973 A °, b = 10.634 A °, c = 22.152 A °; = 97,521 °, β = 96,248 ° γ = 96,160 °, Volume 1,266.5A 3 , Z = 2 i) a solubility in aqueous medium of 13.3 mg / ml.
5. En conformidad con la cláusula 1 , un proceso para la fabricación de glimepiridato de metformina que se caracteriza por disolver metformina base en etanol y agregar la glimepirida. La suspensión se calienta entre 50° y 55° C, y se agita hasta total disolución. Se agrega entonces acetato de etilo y la mezcla se agita, hasta que se produce una suspensión homogénea. Esta suspensión se filtra y el polvo se lava con acetato de etilo y se seca con vacío. Se recupera un polvo blanco, que corresponde con glimepiridato de metformina cruda. Este crudo se disuelve en etanol y la suspensión se calienta y se agita hasta total disolución. Entonces, se agrega acetato de etilo lentamente y la mezcla se agita para obtener una suspensión blanca. Esta suspensión se filtra y el polvo se lava con acetato de etilo y se seca con vacío. Los cristales recobrados corresponden con el cocristal iónico glimepiridato de metformina. 5. In accordance with clause 1, a process for the manufacture of metformin glimepiridate that is characterized by dissolving metformin base in ethanol and adding glimepiride. The suspension is heated between 50 ° and 55 ° C, and stirred until completely dissolved. Ethyl acetate is then added and the mixture is stirred, until a homogeneous suspension is produced. This suspension is filtered and the powder is washed with ethyl acetate and dried under vacuum. A white powder is recovered, which corresponds to crude metformin glimepiridate. This crude is dissolved in ethanol and the suspension is heated and stirred until completely dissolved. Then, ethyl acetate is added slowly and the mixture is stirred to obtain a white suspension. This suspension is filtered and the powder is washed with ethyl acetate and dried under vacuum. The recovered crystals correspond to the metformin glimepiridate ionic cocristal.
6. En conformidad con la cláusula 3, un proceso para la fabricación de pioglitazonato de metformina que se caracteriza por disolver metformina base en metanol y añadir pioglitazona en porciones. Se forma una solución muy viscosa difícil de agitar. Se agrega a gotas más metanol y la suspensión se agita. Se añade entonces isopropanol y la solución se enfría mientras se está agitando, se filtra y el producto separado se lava con isopropanol. El polvo blanco obtenido corresponde con pioglitazonato de metformina crudo. Este crudo se disuelve en etanol y se deja bajo reflujo. La solución obtenida se enfría y se mezcla con isopropanol. Una vez que se observan pequeños cristales se deja cristalizar la suspensión y después de una noche se filtran los cristales obtenidos, los cuales se lavan con isopropanol. Los cristales obtenidos se secan bajo vacío y se obtiene el cocristal iónico pioglitazonato de metformina. 6. In accordance with clause 3, a process for the manufacture of metformin pioglitazonate that is characterized by dissolving metformin base in methanol and adding pioglitazone in portions. A very viscous solution difficult to stir is formed. More methanol is added dropwise and the suspension is stirred. Isopropanol is then added and the solution is cooled while stirring, filtered and the separated product is washed with isopropanol. The white powder obtained corresponds to crude metformin pioglitazonate. This crude is dissolved in ethanol and left under reflux. The solution obtained is cooled and mixed with isopropanol. Once small crystals are observed, the suspension is allowed to crystallize and after one night the obtained crystals are filtered, which they are washed with isopropanol. The crystals obtained are dried under vacuum and the ionic cocristal metformin pioglitazonate is obtained.
7. En conformidad con las cláusulas 1 y 2, la composición farmacéutica de un sólido oral, tal como tabletas o capletas constituidas por una combinación de clorhidrato de metformina con la cantidad apropiada de glimepiridato de metformina. 7. In accordance with clauses 1 and 2, the pharmaceutical composition of an oral solid, such as tablets or caplets consisting of a combination of metformin hydrochloride with the appropriate amount of metformin glimepiridate.
8. En conformidad con las cláusulas 1 y 2, la composición farmacéutica de un sólido oral, tal como tabletas o capletas constituidas por una matriz o núcleo de clorhidrato de metformina de liberación controlada, recubiertas con una capa de liberación inmediata conteniendo el nuevo cocristal iónico glimepiridato de metformina. 8. In accordance with clauses 1 and 2, the pharmaceutical composition of an oral solid, such as tablets or caplets consisting of a matrix or core of controlled release metformin hydrochloride, coated with an immediate release layer containing the new ionic co-crystal metformin glimepiridate.
9. En conformidad con las clausulas 7 y 8, la cantidad de glimepiridato de metformina en las tabletas o capletas, preferentemente debe estar en el intervalo de 0.5 mg a 10 mg y la cantidad de clorhidrato de metformina en el intervalo de 125 mg a 2 gr. 9. In accordance with clauses 7 and 8, the amount of metformin glimepiridate in tablets or caplets should preferably be in the range of 0.5 mg to 10 mg and the amount of metformin hydrochloride in the range of 125 mg to 2 gr.
10. En conformidad con las cláusulas 3 y 4, una composición farmacéutica de un sólido oral, tal como tabletas o capletas constituidas por una combinación de clorhidrato de metformina con la cantidad apropiada de pioglitazonato de metformina. 10. In accordance with clauses 3 and 4, a pharmaceutical composition of an oral solid, such as tablets or caplets consisting of a combination of metformin hydrochloride with the appropriate amount of metformin pioglitazonate.
1 1 . En conformidad con las cláusulas 3 y 4, una composición farmacéutica de un sólido oral, tal como tabletas o capletas constituidas por una matriz o núcleo de clorhidrato de metformina de liberación controlada, recubiertas con una capa de liberación inmediata conteniendo el nuevo cocristal iónico pioglitazonato de metformina. eleven . In accordance with clauses 3 and 4, a pharmaceutical composition of an oral solid, such as tablets or caplets consisting of a matrix or core of controlled release metformin hydrochloride, coated with an immediate release layer containing the new ionic co-crystal pioglitazonate metformin
1 2. En conformidad con las clausulas 1 0 y 1 1 la cantidad de pioglitazonato de metformina en las tabletas o capletas debe estar en el intervalo de 2.5 mg a 50 mg y la cantidad de clorhid rato de metformina en el intervalo de 1 25 mg a 2 gr. 1 2. In accordance with clauses 1 0 and 1 1 the amount of metformin pioglitazonate in the tablets or caplets should be in the range of 2.5 mg to 50 mg and the amount of metformin hydrochloride in the range of 1 25 mg to 2 gr.
1 3. En conformidad con las clausulas 1 y 3, una composición farmacéutica de un sólido oral tal como tabletas o capletas constituidas por una combinación de glimepiridato de metformina con pioglitazonato de metformina. 1 3. In accordance with clauses 1 and 3, a pharmaceutical composition of an oral solid such as tablets or caplets consisting of a combination of metformin glimepiridate with metformin pioglitazonate.
14. En conformidad con la clausula 1 3, la cantidad de glimepiridato de metformina preferentemente debe estar en el intervalo de 0.5 mg a 10 mg y la cantidad de pioglitazonato de metformina preferentemente en el intervalo de 2.5 mg a 50 mg . 14. In accordance with clause 1 3, the amount of metformin glimepiridate should preferably be in the range of 0.5 mg to 10 mg and the amount of metformin pioglitazonate preferably in the range of 2.5 mg to 50 mg.
1 5. En conformidad con las cláusulas 7 y 8, el uso de la composición farmacéutica en forma de tabletas o en capletas para el tratamiento de la enfermedad de diabetes mellitus en mamíferos. 1 5. In accordance with clauses 7 and 8, the use of the pharmaceutical composition in the form of tablets or in caplets for the treatment of diabetes mellitus disease in mammals.
16. En conformidad con las cláusulas 9 y 1 0, el uso de la composición farmacéutica en forma de tabletas o capletas para el tratamiento de la enfermedad de diabetes mellitus en mamíferos. 16. In accordance with clauses 9 and 1 0, the use of the pharmaceutical composition in the form of tablets or caplets for the treatment of diabetes mellitus disease in mammals.
17. En conformidad con la clausula 1 3 y 14, el uso de la composición farmacéutica en forma de tabletas o capletas para el tratamiento de la enfermedad de diabetes mellitus en mamíferos. 17. In accordance with clause 1 3 and 14, the use of the pharmaceutical composition in the form of tablets or caplets for the treatment of diabetes mellitus disease in mammals.
PCT/MX2012/000043 2011-04-29 2012-04-20 Metformin-based ionic co-crystals WO2012148252A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2011004549A MX339374B (en) 2011-04-29 2011-04-29 Metformin-based ionic co-crystals.
MXMX/A/2011/004549 2011-04-29

Publications (2)

Publication Number Publication Date
WO2012148252A2 true WO2012148252A2 (en) 2012-11-01
WO2012148252A3 WO2012148252A3 (en) 2012-12-20

Family

ID=47072969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2012/000043 WO2012148252A2 (en) 2011-04-29 2012-04-20 Metformin-based ionic co-crystals

Country Status (2)

Country Link
MX (1) MX339374B (en)
WO (1) WO2012148252A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171343B1 (en) 2012-09-11 2015-10-27 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9233204B2 (en) 2014-01-31 2016-01-12 Aseko, Inc. Insulin management
US20160229796A1 (en) * 2013-09-22 2016-08-11 Jiva Pharma, Inc. Metformin salts to treat type2 diabetes
US9486580B2 (en) 2014-01-31 2016-11-08 Aseko, Inc. Insulin management
US9886556B2 (en) 2015-08-20 2018-02-06 Aseko, Inc. Diabetes management therapy advisor
US9892234B2 (en) 2014-10-27 2018-02-13 Aseko, Inc. Subcutaneous outpatient management
US9897565B1 (en) 2012-09-11 2018-02-20 Aseko, Inc. System and method for optimizing insulin dosages for diabetic subjects
CN108299271A (en) * 2018-01-29 2018-07-20 重庆医科大学 A kind of adduct and its preparation and use
CN110234317A (en) * 2016-09-30 2019-09-13 纳什制药公司 With the double action for treating obesity relevant to nonalcoholic fatty liver disease (NASH) and hypertriglyceridemia according to Rabat melbine salt
CN110357871A (en) * 2019-07-03 2019-10-22 天津大学 Melbine-Pioglitazone salt and its preparation method and application
CN110804017A (en) * 2019-10-31 2020-02-18 天津大学 Salt forming of sulfonylurea compound and metformin, preparation method and application
US11081226B2 (en) 2014-10-27 2021-08-03 Aseko, Inc. Method and controller for administering recommended insulin dosages to a patient

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20231437A1 (en) 2020-09-02 2023-09-14 Laboratorios Silanes S A De C V COMBINATION MEDICINE FOR THE CONTROL AND MANAGEMENT OF TYPE 2 DIABETES MELLITUS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061643A1 (en) * 2002-01-25 2003-07-31 Laboratorios Silanes, S.A. De C.V. Pharmaceutical composition that is used to control blood glucose in patients with type 2 diabetes
WO2007073136A1 (en) * 2005-12-20 2007-06-28 World-Trade Import-Export, Wtie, Ag. Pharmaceutical compositions containing derivative substances of thiazolidinediones combined with a biguanide for use in type 2 diabetes mellitus
US20070264331A1 (en) * 2005-09-08 2007-11-15 Laboratorios Silanes, S.A De C.V. Stable pharmaceutical composition of immediate-release glimepiride and extended-release metformin
CN101531657A (en) * 2009-04-23 2009-09-16 重庆医科大学 Dimethyldiguanide of the thiazolidinedione pharmaceutical, preparation method and use thereof
WO2011128782A2 (en) * 2010-04-13 2011-10-20 Jorge Luis Rosado Compositions and methods for treating type ii diabetes and related disorders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061643A1 (en) * 2002-01-25 2003-07-31 Laboratorios Silanes, S.A. De C.V. Pharmaceutical composition that is used to control blood glucose in patients with type 2 diabetes
US20070264331A1 (en) * 2005-09-08 2007-11-15 Laboratorios Silanes, S.A De C.V. Stable pharmaceutical composition of immediate-release glimepiride and extended-release metformin
WO2007073136A1 (en) * 2005-12-20 2007-06-28 World-Trade Import-Export, Wtie, Ag. Pharmaceutical compositions containing derivative substances of thiazolidinediones combined with a biguanide for use in type 2 diabetes mellitus
CN101531657A (en) * 2009-04-23 2009-09-16 重庆医科大学 Dimethyldiguanide of the thiazolidinedione pharmaceutical, preparation method and use thereof
WO2011128782A2 (en) * 2010-04-13 2011-10-20 Jorge Luis Rosado Compositions and methods for treating type ii diabetes and related disorders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent Publications Ltd., London, GB; AN 2009-P02744 & CN 101 531 657 A (CHONGQUING MEDICAL UNIV.) 16 September 2009 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10410740B2 (en) 2012-09-11 2019-09-10 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US11733196B2 (en) 2012-09-11 2023-08-22 Aseko, Inc. System and method for optimizing insulin dosages for diabetic subjects
US9483619B2 (en) 2012-09-11 2016-11-01 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US11131643B2 (en) 2012-09-11 2021-09-28 Aseko, Inc. Method and system for optimizing insulin dosages for diabetic subjects
US10629294B2 (en) 2012-09-11 2020-04-21 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9897565B1 (en) 2012-09-11 2018-02-20 Aseko, Inc. System and method for optimizing insulin dosages for diabetic subjects
US10102922B2 (en) 2012-09-11 2018-10-16 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9773096B2 (en) 2012-09-11 2017-09-26 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9811638B2 (en) 2012-09-11 2017-11-07 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9965596B2 (en) 2012-09-11 2018-05-08 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9171343B1 (en) 2012-09-11 2015-10-27 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US20160229796A1 (en) * 2013-09-22 2016-08-11 Jiva Pharma, Inc. Metformin salts to treat type2 diabetes
US9815777B2 (en) * 2013-09-22 2017-11-14 Jiva Pharma, Inc. Metformin salts to treat Type2 diabetes
US9892235B2 (en) 2014-01-31 2018-02-13 Aseko, Inc. Insulin management
US10811133B2 (en) 2014-01-31 2020-10-20 Aseko, Inc. System for administering insulin boluses to a patient
US11490837B2 (en) 2014-01-31 2022-11-08 Aseko, Inc. Insulin management
US11857314B2 (en) 2014-01-31 2024-01-02 Aseko, Inc. Insulin management
US9965595B2 (en) 2014-01-31 2018-05-08 Aseko, Inc. Insulin management
US11804300B2 (en) 2014-01-31 2023-10-31 Aseko, Inc. Insulin management
US9710611B2 (en) 2014-01-31 2017-07-18 Aseko, Inc. Insulin management
US11468987B2 (en) 2014-01-31 2022-10-11 Aseko, Inc. Insulin management
US10255992B2 (en) 2014-01-31 2019-04-09 Aseko, Inc. Insulin management
US9898585B2 (en) 2014-01-31 2018-02-20 Aseko, Inc. Method and system for insulin management
US11311213B2 (en) 2014-01-31 2022-04-26 Aseko, Inc. Insulin management
US9604002B2 (en) 2014-01-31 2017-03-28 Aseko, Inc. Insulin management
US11783945B2 (en) 2014-01-31 2023-10-10 Aseko, Inc. Method and system for insulin infusion rate management
US11783946B2 (en) 2014-01-31 2023-10-10 Aseko, Inc. Method and system for insulin bolus management
US10453568B2 (en) 2014-01-31 2019-10-22 Aseko, Inc. Method for managing administration of insulin
US10535426B2 (en) 2014-01-31 2020-01-14 Aseko, Inc. Insulin management
US9233204B2 (en) 2014-01-31 2016-01-12 Aseko, Inc. Insulin management
US11158424B2 (en) 2014-01-31 2021-10-26 Aseko, Inc. Insulin management
US9504789B2 (en) 2014-01-31 2016-11-29 Aseko, Inc. Insulin management
US11621074B2 (en) 2014-01-31 2023-04-04 Aseko, Inc. Insulin management
US11081233B2 (en) 2014-01-31 2021-08-03 Aseko, Inc. Insulin management
US9486580B2 (en) 2014-01-31 2016-11-08 Aseko, Inc. Insulin management
US11081226B2 (en) 2014-10-27 2021-08-03 Aseko, Inc. Method and controller for administering recommended insulin dosages to a patient
US11694785B2 (en) 2014-10-27 2023-07-04 Aseko, Inc. Method and dosing controller for subcutaneous outpatient management
US10403397B2 (en) 2014-10-27 2019-09-03 Aseko, Inc. Subcutaneous outpatient management
US10128002B2 (en) 2014-10-27 2018-11-13 Aseko, Inc. Subcutaneous outpatient management
US9892234B2 (en) 2014-10-27 2018-02-13 Aseko, Inc. Subcutaneous outpatient management
US11678800B2 (en) 2014-10-27 2023-06-20 Aseko, Inc. Subcutaneous outpatient management
US10380328B2 (en) 2015-08-20 2019-08-13 Aseko, Inc. Diabetes management therapy advisor
US11574742B2 (en) 2015-08-20 2023-02-07 Aseko, Inc. Diabetes management therapy advisor
US9886556B2 (en) 2015-08-20 2018-02-06 Aseko, Inc. Diabetes management therapy advisor
US20200023067A1 (en) * 2016-09-30 2020-01-23 Nashpharm Dual-action elafibranor metformin salt for treating obesity associated with non-alcoholic steatohepatitis (nash) and hypertriglyceridaemia
CN110234317A (en) * 2016-09-30 2019-09-13 纳什制药公司 With the double action for treating obesity relevant to nonalcoholic fatty liver disease (NASH) and hypertriglyceridemia according to Rabat melbine salt
CN108299271A (en) * 2018-01-29 2018-07-20 重庆医科大学 A kind of adduct and its preparation and use
CN110357871A (en) * 2019-07-03 2019-10-22 天津大学 Melbine-Pioglitazone salt and its preparation method and application
CN110804017A (en) * 2019-10-31 2020-02-18 天津大学 Salt forming of sulfonylurea compound and metformin, preparation method and application

Also Published As

Publication number Publication date
WO2012148252A3 (en) 2012-12-20
MX339374B (en) 2016-05-13
MX2011004549A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2012148252A2 (en) Metformin-based ionic co-crystals
ES2374963T3 (en) SALES OF OPENING AGENTS OF THE ATP DEPENDENT CHANNEL OF ATP AND USES OF THE SAME.
KR100926417B1 (en) ?,??dimethyl Imidodicarbonimidic diamide acetate, method for producing the same and pharmaceutical compositions comprising the same
ES2616606T3 (en) Pharmaceutical composition, pharmaceutical dosage form, procedure for its preparation, methods for its treatment and its uses
ES2860676T3 (en) Salts or cocrystals of 3- (3-dimethylamino-1-ethyl-2-methyl-propyl) -phenol
ES2641889T3 (en) Diclofenac formulations and methods of use
CN110054624B (en) Berberine hydrochloride and caffeic acid eutectic compound, preparation method, composition and application thereof
US20090062264A1 (en) Salts of potassium atp channel openers and uses thereof
JP6154878B2 (en) Tablet composition containing atazanavir
US20120238554A1 (en) Salts of potassium atp channel openers and uses thereof
US9765043B2 (en) Salts of potassium ATP channel openers and uses thereof
JP2010530889A (en) Tablet composition containing atazanavir
JP5452843B2 (en) Nocturnal oral insulin treatment
JP2010530892A (en) Tablet composition containing atazanavir
EA032085B1 (en) Use of metformin in combination with a glucokinase activator and compositions comprising metformin and a glucokinase activator
ES2204918T3 (en) PROCEDURE FOR THE PREPARATION OF AN ORAL SOLID DOSAGE FORM CONTAINING DICLOFENAC.
JPS60139620A (en) Therapy for hypertension and antihypertensive and diuretic compound and composition
EP1622899B1 (en) Pioglitazone sulfate, pharmaceutical compositions and their use
US4089957A (en) Therapeutic compositions against recurrent thrombosis
ES2297166T3 (en) STABLE SALTS OF O-ACETILSALICILIC ACID WITH BASIC AMINO ACIDS II.
JP2010530890A (en) Tablet composition containing atazanavir
WO2018185669A1 (en) Effervescent compositions comprising saxagliptin or salt thereof
CN111072755B (en) Lipeptide complex, pharmaceutical composition thereof, preparation method and application thereof
ES2297525T3 (en) PHARMACEUTICAL COMPOSITIONS BASED ON IDAZOXAN SALT OR ONE OF ITS POLIFORMS.
ES2794917T3 (en) Crystalline form II of anagrelide hydrochloride monohydrate

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12775945

Country of ref document: EP

Kind code of ref document: A2