WO2012144511A1 - Biodegradable aliphatic polyester particles, and process for producing same - Google Patents

Biodegradable aliphatic polyester particles, and process for producing same Download PDF

Info

Publication number
WO2012144511A1
WO2012144511A1 PCT/JP2012/060423 JP2012060423W WO2012144511A1 WO 2012144511 A1 WO2012144511 A1 WO 2012144511A1 JP 2012060423 W JP2012060423 W JP 2012060423W WO 2012144511 A1 WO2012144511 A1 WO 2012144511A1
Authority
WO
WIPO (PCT)
Prior art keywords
aliphatic polyester
particles
biodegradable aliphatic
pga
molecular weight
Prior art date
Application number
PCT/JP2012/060423
Other languages
French (fr)
Japanese (ja)
Inventor
三枝孝拓
山▲崎▼昌博
阿部俊輔
来原なな子
佐藤浩幸
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2012144511A1 publication Critical patent/WO2012144511A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to biodegradable aliphatic polyester particles having an excellent anti-blocking effect and a method for producing the same.
  • aliphatic polyesters such as polyglycolic acid and polylactic acid are decomposed by microorganisms or enzymes existing in nature such as soil and sea, they are attracting attention as biodegradable polymer materials with a low environmental impact. Since these biodegradable aliphatic polyesters have biodegradable absorbability, they are also used as medical polymer materials such as surgical sutures and artificial skin.
  • polylactic acid (hereinafter sometimes referred to as “PLA”) composed of lactic acid repeating units
  • polyglycolic acid composed of glycolic acid repeating units
  • lactone polyesters such as poly- ⁇ -caprolactone, polyhydroxybutyrate polyesters, and copolymers thereof, such as copolymers comprising glycolic acid repeating units and lactic acid repeating units.
  • PLA can be obtained by using L-lactic acid as a raw material at low cost by fermentation from corn, straw, etc.
  • the resulting poly L-lactic acid (hereinafter sometimes referred to as “PLLA”) has characteristics such as high rigidity and good transparency.
  • PLAs such as PLLA have been pointed out as problems such as a slow crystallization rate and the need for post-treatment steps such as stretching.
  • PGA has excellent degradability, mechanical strength such as heat resistance and tensile strength, and gas barrier properties particularly when used as a film or sheet. Therefore, PGA is expected to be used as agricultural materials, various packaging (container) materials and medical polymer materials, and is being developed for use alone or in combination with other resin materials.
  • the methods of manufacturing products from biodegradable aliphatic polyester include extrusion molding, injection molding, compression molding, injection compression molding, transfer molding, cast molding, stampable molding, blow molding, stretched film molding, inflation film molding, and lamination.
  • Melt molding and other molding methods such as molding, calendar molding, foam molding, RIM molding, FRP molding, powder molding or paste molding are employed.
  • Pellets of biodegradable aliphatic polyester such as PGA used as a molding raw material for melt molding are, for example, melt-extruded biodegradable aliphatic polyester such as PGA in a strand form using a twin-screw extruder to a predetermined size.
  • the average particle diameter obtained by cutting is of the order of several mm.
  • the powder of the biodegradable aliphatic polyester resin used as a molding raw material for powder molding or paste molding biodegradable aliphatic polyester resin particles prepared in a predetermined size and shape according to the application are used.
  • biodegradable aliphatic polyesters such as PLA and PGA
  • raw materials in fields such as paints, coating agents, inks, toners, agricultural chemicals, pharmaceuticals, cosmetics, mining, well drilling, etc.
  • Biodegradable aliphatic polyester particles useful as additives and the like are desired.
  • the biodegradable aliphatic polyester particles applied to these fields are smaller than the biodegradable aliphatic polyester pellets described above, and are relatively small having a particle size and particle size distribution suitable for the purpose. Particles are required.
  • the biodegradable aliphatic polyester particles are required to be excellent in handleability and storage stability.
  • the biodegradable aliphatic polyester used as a raw material resin for producing the biodegradable aliphatic polyester pellets by melt extrusion is a biodegradable aliphatic polyester recovered after the polymerization reaction, such as flakes. Used in the form of particles of desired shape and size.
  • Particles with a small particle size have poor handleability, increase hygroscopicity, increase surface area, increase the influence of decomposition rate, and have excellent characteristics of biodegradable aliphatic polyester. There was a risk of lowering. Furthermore, there was no risk of unexpected troubles occurring in the drying process or molding process.
  • Patent Document 1 discloses a polylactic acid resin powder in which a chip or block made of a PLA resin is cooled to a low temperature of ⁇ 50 to ⁇ 180 ° C., impact pulverized and classified. A manufacturing method is disclosed.
  • Patent Document 1 discloses a polylactic acid resin powder in which a chip or block made of a PLA resin is cooled to a low temperature of ⁇ 50 to ⁇ 180 ° C., impact pulverized and classified. A manufacturing method is disclosed.
  • Patent Document 2 an organic solvent solution of a biodegradable aliphatic polyester and aromatic hydrocarbons are mixed at a temperature of less than 60 ° C., and the precipitated solid matter is solidified.
  • a method for producing a liquid-degradable, powdered polyester having liquid degradability is disclosed.
  • PLA having a weight average molecular weight (hereinafter sometimes referred to as “Mw”) of 145,000, Mw of 10,000,000.
  • Polybutylene succinate, and a copolymer of PLA and polybutylene succinate having an Mw of 172,000 are used as raw materials.
  • Patent Document 3 PLA and a solvent (a mixture of dimethyl adipate, dimethyl glutarate, and dimethyl succinate (DBE (registered trademark), manufactured by DuPont) ), A PLA particle having an average primary particle size of 250 nm or less obtained at a dissolution temperature of 140 ° C. and a cooling temperature of ⁇ 35 ° C., or, as Production Example 4, PGA and a solvent (bis (2-methoxyethyl) PGA particles having an average primary particle size of 150 nm or less obtained by using a) ether) at a dissolution temperature of 150 ° C. and a cooling temperature of ⁇ 35 ° C. are disclosed.
  • DBE registered trademark
  • biodegradable aliphatic polyester particles such as PLA and PGA can be used in products for the above-mentioned applications after obtaining particles having an average particle size, particle size distribution and shape suitable for the application.
  • the biodegradable aliphatic polyester particles sometimes aggregated (blocked) while being stored or transported in the state of particles.
  • a load is applied to the biodegradable aliphatic polyester particles in a temperature environment near the glass transition temperature of the resin, blocking is likely to occur.
  • the particles may be exposed to temperatures of 40 ° C. or higher for a long period of time. It was sought after.
  • blocking occurs, the handleability of the particles deteriorates, and the average particle diameter, particle size distribution and shape of the controlled particles are lost, and the desired characteristics may not be exhibited.
  • biodegradable aliphatic polyester particles may be hydrolyzed during storage in the presence of moisture, and may be thermally decomposed during melt molding, resulting in a decrease in molecular weight, and a decrease in strength and other mechanical properties. Therefore, further improvement has been demanded.
  • the problem of the present invention is that the anti-blocking effect is high, and the anti-blocking effect persists even after long-term storage, and further the molecular weight reduction due to hydrolysis does not occur if desired, and biodegradable aliphatic polyester particles, and It is in providing the manufacturing method.
  • the present inventors have continued to analyze the phenomenon that blocking of biodegradable aliphatic polyester particles occurs, and in particular, biodegradable fat obtained by the so-called impact pulverization method.
  • the group polyester particles were found to have a softened surface and a large proportion of non-crystalline parts due to the shearing force during pulverization.
  • the inventors have found that the above problems can be solved by controlling the water content of the biodegradable aliphatic polyester particles so as to be at least a predetermined amount, thereby completing the present invention.
  • the weight average molecular weight is 50,000 or more;
  • the average particle diameter is 5 to 500 ⁇ m; and
  • the water content is 900 ppm or more.
  • Biodegradable aliphatic polyester particles are provided.
  • the following biodegradable aliphatic polyester particles (1) to (3) are provided as embodiments.
  • (D) the compression fracture strength of the cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold is 1,500 gf / cm 2 or less.
  • Said biodegradable aliphatic polyester particles are provided.
  • (3) The biodegradable aliphatic polyester particles described above, wherein the biodegradable aliphatic polyester contained in the biodegradable aliphatic polyester particles is PGA, PLA, or a mixture thereof.
  • the biodegradable aliphatic polyester particle production method described above wherein the particulate biodegradable aliphatic polyester is pulverized at a temperature lower than the glass transition temperature (Tg) of the biodegradable aliphatic polyester.
  • Tg glass transition temperature
  • the particulate form is a general term for various shapes usually possessed by the biodegradable aliphatic polyester such as powder, flakes, particles or pellets.
  • the biodegradable aliphatic polyester particles have (A) a weight average molecular weight of 50,000 or more; (B) an average particle diameter of 5 to 500 ⁇ m; and (C) a water content of 900 ppm or more;
  • (D) the compression fracture strength of the cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold is 1,500 gf / cm 2.
  • the retention of the weight average molecular weight after 50 days at a temperature of 40 ° C. is 65% or more, so that the anti-blocking effect is high, and the anti-blocking effect is maintained even after long-term storage.
  • biodegradable aliphatic polyester particles such as PGA particles and PLA particles that are sustained and do not cause a decrease in molecular weight due to hydrolysis if desired.
  • the biodegradable aliphatic polyester particles are obtained by pulverizing the particulate biodegradable aliphatic polyester at a temperature not higher than the glass transition temperature (Tg) of the biodegradable aliphatic polyester.
  • Tg glass transition temperature
  • Biodegradable aliphatic polyester contained in the biodegradable aliphatic polyester particles of the present invention includes glycolic acid and glycolic acid containing glycolide (GL), which is a bimolecular cyclic ester of glycolic acid.
  • GL glycolide
  • Lactic acid and lactate containing lactide which is a bimolecular cyclic ester of lactic acid, ethylene oxalate (ie, 1,4-dioxane-2,3-dione), lactones (eg, ⁇ -propiolactone, ⁇ - Butyrolactone, pivalolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -valerolactone, ⁇ -caprolactone, etc.), carbonates (eg, trimethylene carbonate), ethers (eg, 1,3-dioxane), Cyclic monomers such as ether esters (eg, dioxanone); 3- Hydroxycarboxylic acids such as droxypropanoic acid, 4-hydroxybutanoic acid and 6-hydroxycaproic acid or alkyl esters thereof; aliphatic diols such as ethylene glycol and 1,4-butanediol; and succinic acid and a
  • the biodegradable aliphatic polyester which has 70 mass% or more of the glycolic acid or lactic acid repeating unit represented by these is preferable.
  • PGA that is, a homopolymer of glycolic acid, or a copolymer having a glycolic acid repeating unit of 70% by mass or more; repeating poly L-lactic acid, poly D-lactic acid, L-lactic acid, or D-lactic acid PLA, such as a copolymer having 70% by mass or more of a unit, or a mixture thereof; more preferably, a mixture of PGA and PLA.
  • PGA or PLA from the viewpoints of decomposability, heat resistance and mechanical strength.
  • biodegradable aliphatic polyesters can be synthesized, for example, by dehydration polycondensation of ⁇ -hydroxycarboxylic acids such as glycolic acid and lactic acid known per se.
  • a method of synthesizing a bimolecular cyclic ester of ⁇ -hydroxycarboxylic acid and subjecting the cyclic ester to ring-opening polymerization is employed.
  • PLA is obtained by ring-opening polymerization of lactide, which is a bimolecular cyclic ester of lactic acid.
  • PGA is obtained by ring-opening polymerization of glycolide, which is a bimolecular cyclic ester of glycolic acid.
  • PLA can be synthesized by the above-described method, and commercially available products include, for example, “Lacia” (registered trademark) series (such as Lacia H-100, H-280, H-400, H-440) ( “Ingeo” (registered trademark) (manufactured by Natureworks), such as 3001D, 3051D, 4032D, 4042D, 6201D, 6251D, 7000D, and 7032D, Ecoplastic U'z S-09, S-12 "Ecoplastic U'z series” (manufactured by Toyota Motor Corporation), "Viro Indiana (registered trademark)” (manufactured by Toyobo Co., Ltd.), etc. From the viewpoint of sex, it is preferably selected.
  • biodegradable aliphatic polyester will be further described mainly using PGA as an example, but PLA and other biodegradable aliphatic polyesters can also take a form for carrying out the invention according to PGA. .
  • PGA Polyglycolic acid
  • PGA particularly preferably used as a raw material for the biodegradable aliphatic polyester particles of the present invention is a glycolic acid composed only of a glycolic acid repeating unit represented by the formula: (—O—CH 2 —C (O) —).
  • a homopolymer including a ring-opened polymer of glycolide (GL), which is a bimolecular cyclic ester of glycolic acid
  • a PGA copolymer containing 50% by mass or more of the glycolic acid repeating unit is included.
  • Examples of comonomers that give a PGA copolymer together with glycolic acid monomers such as glycolide include ethylene oxalate (ie, 1,4-dioxane-2,3-dione), lactides, lactones, carbonates, ethers.
  • the glycolic acid repeating unit in the PGA used as the raw material of the PGA particles of the present invention is 50% by mass or more, preferably 70% by mass or more, more preferably 85% by mass or more, still more preferably 95% by mass or more, particularly preferably. Is a PGA homopolymer of 98% by weight or more, most preferably 99% by weight or more. If the proportion of glycolic acid repeating units is too small, the strength and degradability expected for PGA will be poor.
  • the repeating unit other than the glycolic acid repeating unit is 50% by mass or less, preferably 30% by mass or less, more preferably 15% by mass or less, still more preferably 5% by mass or less, and particularly preferably 2% by mass or less. Most preferably, it is used in a proportion of 1% by mass or less, and may not contain any repeating unit other than the glycolic acid repeating unit.
  • the PGA used as a raw material for the PGA particles of the present invention is obtained by polymerizing 50 to 100% by mass of glycolide and 50 to 0% by mass of the above-mentioned other comonomer in order to efficiently produce a desired high molecular weight polymer.
  • PGA is preferred.
  • the other comonomer may be a cyclic monomer between two molecules, or may be a mixture of both instead of a cyclic monomer.
  • a cyclic monomer is used. preferable.
  • PGA obtained by ring-opening polymerization of 50 to 100% by mass of glycolide and 50 to 0% by mass of other cyclic monomers will be described in detail.
  • glycolide that forms PGA by ring-opening polymerization is a bimolecular cyclic ester of glycolic acid, which is a kind of hydroxycarboxylic acid.
  • the manufacturing method of glycolide is not specifically limited, Generally, it can obtain by thermally depolymerizing a glycolic acid oligomer.
  • a depolymerization method for glycolic acid oligomers for example, a melt depolymerization method, a solid phase depolymerization method, a solution depolymerization method, etc. can be adopted, and glycolide obtained as a cyclic condensate of chloroacetate should also be used. Can do.
  • glycolide containing glycolic acid can be used up to 20% by mass of the glycolide amount.
  • the PGA used as a raw material for the PGA particles of the present invention may be formed by ring-opening polymerization of only glycolide, but may also be formed by simultaneously ring-opening polymerization using another cyclic monomer as a copolymerization component. Good.
  • the proportion of glycolide is 50% by mass or more, preferably 70% by mass or more, more preferably 85% by mass or more, still more preferably 95% by mass or more, and particularly preferably 98% by mass. % Or more, and most preferably 99% by mass or more of a substantially PGA homopolymer.
  • hydroxycarboxylic acids include L-lactic acid, D-lactic acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ - Hydroxyvaleric acid, ⁇ -hydroxycaproic acid, ⁇ -hydroxyisocaproic acid, ⁇ -hydroxyheptanoic acid, ⁇ -hydroxyoctanoic acid, ⁇ -hydroxydecanoic acid, ⁇ -hydroxymyristic acid, ⁇ -hydroxystearic acid, and these Examples include alkyl-substituted products.
  • Another particularly preferable cyclic monomer is lactide, which is a bimolecular cyclic ester of lactic acid, and may be any of L-form, D-form, racemate, and a mixture thereof.
  • the other cyclic monomer is 50% by mass or less, preferably 30% by mass or less, more preferably 15% by mass or less, still more preferably 5% by mass or less, particularly preferably 2% by mass or less, and most preferably 1% by mass. Used in the following proportions.
  • the melting point of PGA (copolymer) is lowered to lower the processing temperature, and the crystallization speed is controlled to improve extrusion processability and stretch processability. You can do it.
  • the use ratio of these cyclic monomers is too large, the crystallinity of the formed PGA (copolymer) is impaired, and heat resistance, gas barrier properties, mechanical strength, and the like are lowered.
  • PGA is formed from glycolide 100 mass%
  • another cyclic monomer is 0 mass%, and this PGA is also included in the scope of the present invention.
  • the ring-opening polymerization or ring-opening copolymerization of glycolide (hereinafter sometimes collectively referred to as “ring-opening (co) polymerization”) is preferably carried out in the presence of a small amount of a catalyst.
  • the catalyst is not particularly limited.
  • a tin-based compound such as tin halide (for example, tin dichloride, tin tetrachloride) and organic carboxylate (for example, tin octoate such as tin 2-ethylhexanoate).
  • Titanium compounds such as alkoxy titanates; aluminum compounds such as alkoxy aluminum; zirconium compounds such as zirconium acetylacetone; antimony compounds such as antimony halide and antimony oxide;
  • the amount of the catalyst used is preferably about 1 to 1,000 ppm, more preferably about 3 to 300 ppm in terms of mass ratio with respect to the cyclic ester.
  • Glycolide ring-opening (co) polymerization uses higher alcohols such as lauryl alcohol, other alcohols, and water and other protic compounds as molecular weight regulators in order to control the physical properties such as molecular weight and melt viscosity of PGA. can do.
  • Glycolide usually contains trace amounts of water and hydroxycarboxylic acid compounds composed of glycolic acid and linear glycolic acid oligomers as impurities, and these compounds also act on the polymerization reaction. Therefore, the concentration of these impurities is quantified as a molar concentration by, for example, neutralizing titration of the amount of carboxylic acid in these compounds, and alcohols and water are added as protic compounds according to the target molecular weight, etc.
  • the molecular weight and the like of the produced PGA can be adjusted by controlling the molar concentration of the protic compound with respect to glycolide.
  • the ring-opening (co) polymerization of glycolide may be bulk polymerization or solution polymerization, but in many cases, bulk polymerization is employed.
  • bulk polymerization equipment for bulk polymerization, such as an extruder type, a vertical type with paddle blades, a vertical type with helical ribbon blades, a horizontal type such as an extruder type and a kneader type, an ampoule type, a plate type and a tubular type.
  • the device can be selected as appropriate.
  • various reaction tanks can be used for solution polymerization.
  • the polymerization temperature can be appropriately set according to the purpose within a range from 120 ° C. to 300 ° C. which is a substantial polymerization start temperature.
  • the polymerization temperature is preferably 130 to 270 ° C., more preferably 140 to 260 ° C., and particularly preferably 150 to 250 ° C. If the polymerization temperature is too low, the molecular weight distribution of the produced PGA tends to be wide. If the polymerization temperature is too high, the produced PGA is susceptible to thermal decomposition.
  • the polymerization time is in the range of 3 minutes to 50 hours, preferably 5 minutes to 30 hours. If the polymerization time is too short, the polymerization does not proceed sufficiently and a predetermined molecular weight cannot be realized. If the polymerization time is too long, the produced PGA tends to be colored.
  • solid phase polymerization may be further performed if desired.
  • the solid phase polymerization means an operation of performing heat treatment while maintaining a solid state by heating at a temperature lower than the melting point (Tm) of PGA described later.
  • Tm melting point
  • the solid phase polymerization is preferably performed for 1 to 100 hours, more preferably 2 to 50 hours, particularly preferably 3 to 30 hours.
  • PGA in a solid state is melt-kneaded within the temperature range of the melting point (Tm) or higher, preferably the melting point (Tm) + 38 ° C. or more, more preferably the melting point (Tm) + 38 ° C. to the melting point (Tm) + 100 ° C.
  • the crystallinity may be controlled by giving a thermal history by the process.
  • PGA As raw materials for producing the PGA particles of the present invention, in addition to PGA, other aliphatic polyesters, polyglycols such as polyethylene glycol and polypropylene glycol, modified polyvinyl alcohol, polyurethane, Other resins such as polyamides such as poly-L-lysine, plasticizers, antioxidants, heat stabilizers, end-capping agents, UV absorbers, lubricants, mold release agents, waxes, colorants, crystallization promotion Additives that are usually blended such as an agent, a hydrogen ion concentration regulator, and fillers such as reinforcing fibers can be blended as necessary.
  • additives such as an agent, a hydrogen ion concentration regulator, and fillers such as reinforcing fibers can be blended as necessary.
  • the compounding amount of these additives and the like is usually 30 parts by mass or less, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and 5 parts by mass or less or 1 part by mass or less with respect to 100 parts by mass of PGA.
  • the amount may be fine.
  • a carboxyl group end-capping agent it is preferable to add a carboxyl group end-capping agent to PGA because the long-term storage stability of PGA particles is improved. That is, by adding a carboxyl group terminal blocking agent, the hydrolysis resistance of the PGA particles is improved, and the molecular weight reduction during storage can be further suppressed.
  • a carboxyl group terminal blocker a compound having a carboxyl group terminal blocker and known as a water resistance improver for aliphatic polyesters can be used.
  • carboxyl group end-capping agents include carbodiimide compounds such as N, N-2,6-diisopropylphenylcarbodiimide; 2,2′-m-phenylenebis (2-oxazoline), 2,2′-p-phenylene Oxazoline compounds such as bis (2-oxazoline), 2-phenyl-2-oxazoline and styrene / isopropenyl-2-oxazoline; oxazine compounds such as 2-methoxy-5,6-dihydro-4H-1,3-oxazine; And epoxy compounds such as N-glycidylphthalimide, cyclohexene oxide, and tris (2,3-epoxypropyl) isocyanurate.
  • carbodiimide compounds such as N, N-2,6-diisopropylphenylcarbodiimide
  • carboxyl group end-capping agents are preferred, and any of aromatic, alicyclic, and aliphatic carbodiimide compounds are used, but aromatic carbodiimide compounds are particularly preferred, and particularly high purity. Gives water resistance improvement effect.
  • the carboxyl group end-capping agent is usually used in a proportion of 0.01 to 5 parts by mass, preferably 0.05 to 3 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of PGA.
  • Thermal stabilizers include cyclic neopentanetetrayl bis (2,6-di-tert-butyl-4-methylphenyl) phosphite, cyclic neopentanetetrayl bis (2,4-di-tert-butylphenyl) ) Phosphite having a pentaerythritol skeleton structure such as phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite; mono- or di-stearyl acid phosphate or a mixture thereof, preferably having 8 to 8 carbon atoms Phosphoric acid alkyl ester or phosphorous acid alkyl ester having 24 alkyl groups; carbonate carbonate such as calcium carbonate and strontium carbonate; bis [2- (2-hydroxybenzo
  • the heat stabilizer is usually 3 parts by mass or less, preferably 0.001 to 1 part by mass, more preferably 0.005 to 0.5 part by mass, and particularly preferably 0.01 to 0. It is used at a ratio of 1 part by mass (100 to 1,000 ppm).
  • biodegradable Aliphatic Polyester Particles are particles mainly composed of biodegradable aliphatic polyester, preferably PGA particles, PLA particles, or mixed particles of PGA and PLA. is there.
  • PGA particles will be described as examples of biodegradable aliphatic polyester particles.
  • PLA particles, mixed particles of PGA and PLA, or other biodegradable aliphatic polyester particles are also referred to as PGA particles. The form for carrying out the invention can be taken accordingly.
  • the PGA particles which are the biodegradable aliphatic polyester particles of the present invention have (A) a weight average molecular weight of 50,000 or more; (B) an average particle diameter of 5 to 500 ⁇ m; and (C) a water content of 900 ppm or more.
  • the weight average molecular weight (Mw) of the PGA contained in the PGA particles of the present invention is 50,000 or more, usually within the range of 5 to 1.5 million, more preferably 6 to 1.3 million, and still more preferably 7 A value in the range of ⁇ 1.1 million, particularly preferably in the range of 100,000 to 1,000,000 is selected.
  • the weight average molecular weight (Mw) of PGA is determined by a gel permeation chromatography (GPC) apparatus. Specifically, a PGA sample is dissolved in hexafluoroisopropanol (HFIP) in which sodium trifluoroacetate is dissolved at a predetermined concentration, and then filtered through a membrane filter to obtain a sample solution. The weight average molecular weight (Mw) is calculated from the result of measuring the molecular weight after injection into the apparatus.
  • HFIP hexafluoroisopropanol
  • the weight average molecular weight (Mw) of the PLA contained in the PLA particles of the present invention is preferably in the range of 5 to 1,200,000, more preferably 6 to 1,000,000, and even more preferably in the range of 7 to 800,000.
  • the melting point (Tm) of PGA contained in the PGA particles of the present invention is usually 197 to 245 ° C., and the weight average molecular weight (Mw), molecular weight distribution, and types of copolymer components And it can adjust with a content rate etc.
  • the melting point (Tm) of PGA is preferably 200 to 240 ° C., more preferably 205 to 235 ° C., and particularly preferably 210 to 230 ° C.
  • the melting point (Tm) of the homopolymer of PGA is usually about 220 ° C. If the melting point (Tm) is too low, the heat resistance and strength may be insufficient.
  • the melting point (Tm) of PGA is determined in a nitrogen atmosphere using a differential scanning calorimeter (DSC). Specifically, the sample PGA corresponds to a temperature from room temperature to 280 ° C. [crystal melting point (Tm) +55 to 60 ° C.] at a rate of temperature increase of 20 ° C./min in a nitrogen atmosphere using DSC. ] Is the temperature of the endothermic peak accompanying crystal melting, which is detected during the temperature rising process. When a plurality of absorption peaks are observed, the peak having the largest endothermic peak area is defined as the melting point (Tm).
  • DSC differential scanning calorimeter
  • the melting point (Tm) of PLA contained in the PLA particles of the present invention is preferably in the range of 145 to 185 ° C., more preferably 150 to 182 ° C., and further preferably 155 to 180 ° C.
  • the glass transition temperature (Tg) of PGA contained in the PGA particles of the present invention is usually 25 to 60 ° C., preferably 30 to 50 ° C., more preferably 35 to 45 ° C.
  • the glass transition temperature (Tg) of PGA can be adjusted by the weight average molecular weight (Mw), the molecular weight distribution, the type and content ratio of the copolymerization component, and the like.
  • the glass transition temperature (Tg) of PGA is determined in a nitrogen atmosphere using a differential scanning calorimeter (DSC), similarly to the measurement of the melting point (Tm). Specifically, the sample PGA is heated to about 280 ° C.
  • the transition temperature from the glass state to the rubber state is An intermediate point of the end temperature is defined as a glass transition temperature (Tg) (hereinafter sometimes referred to as “intermediate point glass transition temperature”). If the glass transition temperature (Tg) is too low, the surface of the PGA particles may be excessively softened and particle blocking may easily occur. If the glass transition temperature (Tg) is too high, workability may deteriorate in powder molding or the like.
  • the glass transition temperature (Tg) of PLA contained in the PLA particles of the present invention is preferably in the range of 45 to 75 ° C., more preferably 50 to 70 ° C., and still more preferably 55 to 65 ° C.
  • the average particle size of the biodegradable aliphatic polyester particles such as PGA particles or PLA particles of the present invention is 5 to 500 ⁇ m as the average particle size (50% D).
  • the average particle size (50% D) of the biodegradable aliphatic polyester particles is the cumulative weight from the small particle size side using the particle size distribution of the particles measured and determined using a laser diffraction particle size distribution analyzer. Means a value represented by a particle size of 50%.
  • the average particle size (50% D) of the biodegradable aliphatic polyester particles of the present invention is preferably in the range of 7 to 450 ⁇ m, more preferably 10 to 400 ⁇ m, still more preferably 20 to 300 ⁇ m, and particularly preferably 30 to 200 ⁇ m. is there. If the average particle size (50% D) is too small, the handling property, storage property or storage property of the particles may not be good. If the average particle size (50% D) is too large, it may be difficult to use in the intended application. For example, if the average particle size is too large, the dispersibility in water will deteriorate, making it difficult to use in the paint, coating and toner fields.
  • the average particle size (50% D) is in the range of 5 to 500 ⁇ m, the flowability of the biodegradable aliphatic polyester particles is good, the particles are easy to handle, preserve and store, and the product In the molding and use of biodegradable aliphatic polyester particles, particles having a desired particle size can be obtained very easily.
  • the biodegradable aliphatic polyester particles such as PGA particles or PLA particles of the present invention have a water content of 900 ppm or more.
  • the water content of the biodegradable aliphatic polyester particles of the present invention is measured using a Karl Fischer moisture meter with a vaporizer (CA-100 (vaporizer: VA-100) manufactured by Mitsubishi Chemical Corporation). Specifically, when the biodegradable aliphatic polyester particles are PGA particles, the sample particles of 2 g of PGA particles are placed in a vaporizer heated to 220 ° C. (melting point of PGA particles) in advance and vaporized.
  • the vaporized water is introduced into the Karl Fischer liquid, so that the electric conductivity is +0.
  • the end point was the time when the voltage dropped to 1 mV.
  • the water content of the biodegradable aliphatic polyester particles such as PGA particles is preferably 900 ppm or more, more preferably 1,500 ppm or more, still more preferably 2,000 ppm or more, and particularly preferably 3,000 ppm or more.
  • the water content of the biodegradable aliphatic polyester particles such as PGA particles is less than 900 ppm, blocking tends to occur and the handleability may be inferior.
  • the biodegradable aliphatic polyester particles such as PGA particles or PLA particles of the present invention are compressed in a cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold.
  • the breaking strength is 1,500 gf / cm 2 or less, the biodegradable aliphatic polyester particles are less likely to be blocked even during storage or transportation in the summer or containers that may be exposed to high temperatures, Moreover, even if particle blocking occurs once, the blocking state can be eliminated very easily.
  • Compression breaking strength of cylindrical tablets is preferably 1,000 gf / cm 2 or less, more preferably 600 gf / cm 2 or less, more preferably 400 gf / cm 2 or less, particularly preferably 200 gf / cm 2 or less in the range, Most preferably, it is 100 gf / cm 2 or less.
  • the lower limit of the compressive fracture strength of the cylindrical tablet is not particularly limited, but is usually 10 gf / cm 2 , often 20 gf / cm 2 , and in some cases, about 30 gf / cm 2 may be used.
  • the compressive fracture strength of the cylindrical tablet was determined by compressing the cylindrical tablet in a vertical direction at a speed of 1 mm / min using a tensile compression tester (STA-1150) manufactured by ORIENTEC, and breaking the tablet.
  • a cylindrical tablet for measuring the compressive fracture strength of a cylindrical tablet of biodegradable aliphatic polyester particles is loaded with a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in the cylindrical mold. It is a columnar tablet molded. Specifically, 1 g of biodegradable aliphatic polyester particles is placed in a stainless steel cylindrical mold (inner diameter 11.3 mm (inner cross-sectional area 1 cm 2 )), and a cylindrical weight (outer diameter) is formed from the top of the particles. 11.3 mm, weight 100 g) and a constant load (100 gf / cm 2 ) is applied to the particles in a constant temperature bath (relative humidity 10-30%) set at a temperature of 40 ° C. is prepared by molding by settling while continuing over time load, the upper area of 1 cm 2, the lower area of 1 cm 2, a cylindrical tablet height 1.5 cm.
  • the biodegradable aliphatic polyester particles of the present invention are excellent in anti-blocking effect and excellent in long-term storage stability. Specifically, the weight average molecular weight retention after 50 days at a temperature of 40 ° C. (hereinafter sometimes simply referred to as “molecular weight retention after 50 days”), that is, the biodegradable aliphatic polyester.
  • the molecular weight retention after the elapse of 50 days is more preferably 70% or more, further preferably 75% or more, particularly preferably 80% or more, and most preferably 90% or more.
  • the molecular weight retention after 50 days is 80% or more, even when the biodegradable aliphatic polyester particles are stored for 1 year or more, blocking does not occur and hydrolysis does not occur.
  • the molecular weight retention after the lapse of 50 days is a particle sample measured after sealing a predetermined amount of the particle sample in an aluminum bag and storing it in an environment set at 40 ° C., for example, in an oven for 50 days, that is, after 50 days.
  • the weight average molecular weight (molecular weight after the lapse of 50 days) and the initial molecular weight, that is, the weight average molecular weight of the particle sample before storage are calculated using the following formula 1.
  • Biodegradable aliphatic polyester particles such as PGA particles or PLA particles of the present invention have (A) a weight average molecular weight of 50,000 or more; (B) an average particle diameter of 5 And (C) a moisture content of 900 ppm or more, preferably (D) a circle formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold.
  • the columnar tablet has a compressive fracture strength of 1,500 gf / cm 2 or less; and / or (E) a weight average molecular weight retention after 50 days at a temperature of 40 ° C. of 65% or more can be obtained.
  • the manufacturing method is not particularly limited.
  • the biodegradable aliphatic polyester particles of the present invention are usually washed from a biodegradable aliphatic polyester such as PGA having a shape such as powder or flakes collected after the polymerization reaction, and if necessary, The obtained particulate biodegradable aliphatic polyester may be used as a starting material.
  • a pellet-shaped biodegradable aliphatic polyester obtained by blending various additives as necessary with the particulate biodegradable aliphatic polyester and melt extrusion molding may be used as a starting material. .
  • the biodegradable aliphatic polyester particles such as the PGA particles of the present invention are various shapes such as powders, flakes, particles or pellets (as described above, these shapes are collectively referred to simply as It can be obtained by pulverizing (impact pulverizing) the biodegradable aliphatic polyester of “particulate”) with mechanical impact, and in particular, freeze-pulverizing, and classifying as necessary. Can be obtained.
  • the biodegradable aliphatic polyester particles of the present invention can be obtained by making a biodegradable aliphatic polyester such as PGA into a solution or dispersion of an organic solvent, and then coagulating or precipitating. According to classification, it can be obtained.
  • the biodegradable aliphatic polyester particles of the present invention are preferably produced by pulverization, more preferably produced by impact pulverization. More preferably, the biodegradable aliphatic polyester particles of the present invention can be produced by grinding at a temperature not higher than the glass transition temperature (Tg) of the biodegradable aliphatic polyester.
  • the pulverization temperature is more preferably ⁇ 60 ° C. or more and glass transition temperature (Tg) ⁇ 5 ° C. or less, more preferably ⁇ 55 ° C. or more and glass transition temperature (Tg) ⁇ 10 ° C. or less, particularly preferably ⁇ 40 ° C. or more.
  • Biodegradable aliphatic polyester particles having a particle diameter that is, (B) average particle diameter (50% D) of 5 to 500 ⁇ m can be obtained.
  • the pulverized particles are preferably classified into particles having a predetermined size as described above.
  • an apparatus for performing impact pulverization, particularly freeze pulverization an apparatus having both a cooling unit and a pulverizing unit, more preferably a particle size adjusting unit, using a cryogenic refrigerant such as liquid nitrogen is preferable, and a jet mill, a blade mill, a pin mill, or the like is used.
  • a pin mill that can obtain particles having a desired particle size and shape by adjusting the clearance and rotation speed of two disk pins that rotate at high speed.
  • the time for pulverization by the impact pulverization method varies depending on the treatment temperature at which impact pulverization is performed, but is usually 10 seconds to 20 minutes, preferably 30 seconds to 15 minutes, more preferably 1 to 10 minutes, and particularly preferably 1 minute 30. The range may be from 5 seconds to 5 minutes.
  • the biodegradable aliphatic polyester particles such as the PGA particles of the present invention have (C) a water content of 900 ppm or more.
  • the biodegradable aliphatic polyester particles obtained by performing or not performing the pulverization treatment such as impact pulverization is less than 900 ppm
  • the biodegradable aliphatic polyester particles are used in a constant humidity environment.
  • humidity control treatment to humidify so that the amount of water becomes 900 ppm or more, or direct injection of water and mixing the particles Humidity control can be performed.
  • the moisture content may be further increased by performing the above-described humidity conditioning treatment.
  • the moisture content is adjusted to a desired value by allowing the biodegradable aliphatic polyester particles to stand in a low temperature drying atmosphere for a predetermined time or to flow.
  • a low temperature drying atmosphere an atmosphere having a dew point of ⁇ 50 ° C. (saturated water vapor pressure 0.0381 g / m 3 ) to a dew point of ⁇ 70 ° C.
  • saturated water vapor pressure 0.00277 g / m 3 can be adopted. It is preferable to perform humidity conditioning in an atmosphere with a dew point of ⁇ 60 ° C. (saturated water vapor pressure of 0.0109 g / m 3 ).
  • the humidity control treatment is not performed and the present invention is performed.
  • Biodegradable aliphatic polyester particles are obtained.
  • the measuring method of the physical property or characteristic of the biodegradable aliphatic polyester particle in an Example and a comparative example is as follows.
  • Weight average molecular weight (Mw) The weight average molecular weight (Mw) of the biodegradable aliphatic polyester particles was adjusted to 10 ml by dissolving 10 mg of the particle sample in hexafluoroisopropanol (HFIP) in which sodium trifluoroacetate was dissolved at a concentration of 5 mM. A sample solution was obtained by filtration through a membrane filter, 10 ⁇ l of this sample solution was injected into a GPC apparatus, and the molecular weight was measured under the following measurement conditions.
  • HFIP hexafluoroisopropanol
  • Glass transition temperature (Tg) A 10 mg sample was heated to about 280 ° C. using a differential scanning calorimeter (DSC; TC-15 manufactured by METTLER TOLEDO), held at this temperature for 2 minutes, and then rapidly (about 100 ° C./min with liquid nitrogen). The transition region from the glassy state to the rubbery state when the amorphous sample obtained by cooling to) is reheated from a room temperature atmosphere to a temperature close to 100 ° C. at a heating rate of 20 ° C./min in a nitrogen atmosphere. The glass transition temperature (Tg) was defined as the midpoint glass transition temperature corresponding to.
  • DSC differential scanning calorimeter
  • the average particle size of the biodegradable aliphatic polyester particles is obtained by dispersing the particle sample in water containing a surfactant (“SN Dispersant 7347-c diluted solution” manufactured by San Nopco Co., Ltd.). From the particle size distribution determined using a laser diffraction particle size distribution analyzer (Salada-3000S manufactured by Shimadzu Corporation), the particle size at which the cumulative weight from the small particle size side becomes 50% is calculated as the average particle size (50% D).
  • SN Dispersant 7347-c diluted solution manufactured by San Nopco Co., Ltd.
  • the water content of the biodegradable aliphatic polyester particles was measured using a Karl Fischer moisture meter with a vaporizer (CA-100 (vaporizer: VA-100) manufactured by Mitsubishi Chemical Corporation). Specifically, 2 g of sample particles of biodegradable aliphatic polyester particles are placed in a vaporizer heated in advance by setting the melting point of the biodegradable polyester particles, and 250 ml / min from the vaporizer to the Karl Fischer moisture meter. After flowing dry nitrogen gas and introducing the sample into the vaporizer, the time when the electrical conductivity decreased to +0.1 mV from the background by introducing the vaporized water into the Karl Fischer liquid was used as the end point.
  • CA-100 vaporizer: VA-100
  • the compressive fracture strength of the cylindrical tablet of biodegradable aliphatic polyester particles was determined by using a tensile compression tester (STA-1150) manufactured by Orientec Co., Ltd., and the cylindrical tablet prepared from the particle sample at a speed of 1 mm / min.
  • the maximum point load (average value of N 3) required for compressing in the vertical direction and breaking the tablet was determined.
  • 1 g of the particle sample is placed in a stainless steel cylindrical mold (inner diameter 11.3 mm (inner cross-sectional area 1 cm 2 )), and a cylindrical weight (outer diameter 11.3 mm, weight 100 g), and a constant load (100 gf / cm 2 ) is applied to the particles, in a constant temperature bath (relative humidity 20%) set at a temperature of 40 ° C. It was prepared by forming into a cylindrical tablet having an upper area of 1 cm 2 , a lower area of 1 cm 2 and a height of 1.5 cm.
  • Persistence of blocking resistance of the particle sample was determined by weighing and enclosing 15 g of the particle sample taken out after storage for 50 days in a polyethylene bag with a chuck of 70 mm under the chuck, 50 mm bag width and 0.04 mm thickness. In a constant temperature bath at 4 ° C., a weight of 4 kg was put and a load was applied for 1 day. Then, a particle sample was taken out from the polyethylene bag with a chuck and poured onto the upper surface of a sieve having an opening of 850 ⁇ m. The state when shaken was evaluated as “blocking property after 50 days” according to the following criteria. A: The sample remaining on the sieve mesh is less than 20% by mass. B: 20 to 70% by mass of the sample remaining on the sieve mesh. C: The sample remaining on the mesh of the sieve exceeds 70% by mass.
  • Example 1 PGA flakes (Mw: 210,000, Tg: 45 ° C., Tm: 221 ° C.) with 100 parts by mass of N, N-2,6-diisopropylphenylcarbodiimide (DIPC manufactured by Kawaguchi Chemical Co., Ltd.) as a carboxyl group terminal blocker Melting and kneading while adding 0.3 part by mass and 0.02 part by mass of a substantially equimolar mixture of mono and distearyl acid phosphates (ADEKA ADEKA STAB AX-71 manufactured by ADEKA Corporation) as a heat stabilizer to a twin screw extruder Thus, a PGA pellet was produced.
  • DIPC N-2,6-diisopropylphenylcarbodiimide
  • Table 1 shows the test results of blocking property after 50 days and storage properties (molecular weight retention (%) after 50 days).
  • Example 2 PGA particles were obtained in the same manner as in Example 1 except that the pulverization temperature in impact pulverization was changed to -25 ° C. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the obtained PGA particles.
  • Example 3 PGA particles were obtained in the same manner as in Example 1 except that the pulverization temperature in impact pulverization was changed to 5 ° C.
  • Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the obtained PGA particles.
  • Example 4 After about 3 mL of water was jetted onto the PGA particles obtained in Example 3, the mixture was thoroughly stirred and mixed to obtain PGA particles that were conditioned so as to increase the amount of water in the particles.
  • Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the conditioned PGA particles.
  • Example 5 After about 8 mL of water was jetted onto the PGA particles obtained in Example 3, the mixture was thoroughly stirred and mixed to obtain PGA particles that were conditioned so as to increase the amount of water in the particles.
  • Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the conditioned PGA particles.
  • Example 6 PGA particles were obtained in the same manner as in Example 3 except that PGA flakes (Mw: 210,000, Tg: 45 ° C., Tm: 221 ° C.) were used instead of the PGA pellets.
  • Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the obtained PGA particles.
  • Example 7 In place of the PGA pellets, PLA pellets (Nature Works 7000D, Mw: 215,000, Tg: 60 ° C., Tm: 165 ° C.) were used in the same manner as in Example 2 except that PLA pellets were used. Particles were obtained. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the obtained PLA particles.
  • Example 1 The PGA particles obtained in Example 3 were allowed to stand in an atmosphere having a dew point of ⁇ 60 ° C. for 6 hours to obtain PGA particles that were conditioned so as to reduce the water content in the particles.
  • Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the conditioned PGA particles.
  • Example 2 The PGA particles obtained in Example 3 were allowed to stand in an atmosphere having a dew point of ⁇ 60 ° C. for 3 hours to obtain PGA particles that were conditioned so as to reduce the water content in the particles.
  • Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the conditioned PGA particles.
  • the initial molecular weight (weight average molecular weight (Mw)) obtained by impact pulverization at a temperature in the range of ⁇ 50 to 5 ° C. is 19.4 to 214,000
  • the average particle diameter (D 50 ) is
  • the PGA particles or PLA particles of Examples 1 to 7 having 75 to 152 ⁇ m and a water content of 949 to 6,458 ppm have an A rating of blocking properties after 50 days, and have a high blocking resistance.
  • the retention of the weight average molecular weight after 50 days at a temperature of 40 ° C. was 73.3 to 99.9%, and it was found that the particles had excellent long-term storage properties.
  • the compression fracture strength of the cylindrical tablet is 41 to 1,419 gf / cm 2 , and PGA particles or PLA particles are difficult to block, and even if particle blocking once occurs, the blocking state is extremely easy. It was found that can be solved.
  • the PGA particles of Comparative Examples 1 and 2 having a moisture content of 40 ppm or 268 ppm have a blocking property after 50 days of C or B evaluation, and it is found that the durability of the blocking resistance is low, It was found that the compression fracture strength of the cylindrical tablet was 1,900 gf / cm 2 or 1,745 gf / cm 2 , and the blocking state of the PGA particles was not easily eliminated.
  • the weight average molecular weight is 50,000 or more;
  • the average particle size is 5 to 500 ⁇ m; and
  • the water content is 900 ppm or more;
  • the compression fracture strength of a cylindrical tablet molded by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a mold is 1,500 gf / cm 2 or less; and / or (E) at a temperature of 40 ° C.
  • biodegradable aliphatic polyester particles having a weight average molecular weight retention rate of 65% or more after the lapse of 50 days having a weight average molecular weight retention rate of 65% or more after the lapse of 50 days, the antiblocking effect is high, and the antiblocking effect continues even after long-term storage, Furthermore, since biodegradable aliphatic polyester particles that do not cause a decrease in molecular weight due to hydrolysis are provided as desired, the applicability of the biodegradable aliphatic polyester particles is increased. High availability.
  • the biodegradable aliphatic polyester particles are obtained by pulverizing the particulate biodegradable aliphatic polyester at a temperature not higher than the glass transition temperature (Tg) of the biodegradable aliphatic polyester. Since it can be manufactured easily, the industrial applicability is high.
  • Tg glass transition temperature

Abstract

Biodegradable aliphatic polyester particles, preferably polyglycolic acid or polylactic acid particles, which have (A) a weight average molecular weight of 50,000 or more, (B) an average particle diameter of 5-500 μm, and (C) a water content of 900 ppm or more, and which preferably also have (D) compressive breaking strength of 1,500 gf/cm2 or less when molded into a cylindrical tablet by applying a load of 100 gf/cm2 at 40ºC for 24 hours in a cylindrical mold and/or (E) a weight average molecular weight retention rate of 65% or more after elapsing 50 days at 40ºC; and a process for producing the biodegradable aliphatic polyester particles, which is characterized by comprising grinding a particulate biodegradable aliphatic polyester at a temperature equal to or lower than the glass transition temperature (Tg) of the biodegradable aliphatic polyester.

Description

生分解性脂肪族ポリエステル粒子、及びその製造方法Biodegradable aliphatic polyester particles and method for producing the same
 本発明は、ブロッキング防止効果に優れた生分解性脂肪族ポリエステル粒子、及びその製造方法に関する。 The present invention relates to biodegradable aliphatic polyester particles having an excellent anti-blocking effect and a method for producing the same.
 ポリグリコール酸やポリ乳酸等の脂肪族ポリエステルは、土壌や海中などの自然界に存在する微生物または酵素により分解されるため、環境に対する負荷が小さい生分解性高分子材料として注目されている。これら生分解性の脂肪族ポリエステルは、生体内分解吸収性を有しているため、手術用縫合糸や人工皮膚などの医療用高分子材料としても利用されている。 Since aliphatic polyesters such as polyglycolic acid and polylactic acid are decomposed by microorganisms or enzymes existing in nature such as soil and sea, they are attracting attention as biodegradable polymer materials with a low environmental impact. Since these biodegradable aliphatic polyesters have biodegradable absorbability, they are also used as medical polymer materials such as surgical sutures and artificial skin.
 生分解性脂肪族ポリエステルとしては、乳酸繰り返し単位からなるポリ乳酸(以下、「PLA」ということがある。)、グリコール酸繰り返し単位からなるポリグリコール酸(以下、「PGA」ということがある。)、ポリε-カプロラクトンのようなラクトン系ポリエステル、ポリヒドロキシブチレート系ポリエステル、及び、これらの共重合体、例えば、グリコール酸繰り返し単位と乳酸繰り返し単位からなる共重合体などが知られている。 As the biodegradable aliphatic polyester, polylactic acid (hereinafter sometimes referred to as “PLA”) composed of lactic acid repeating units, and polyglycolic acid composed of glycolic acid repeating units (hereinafter sometimes referred to as “PGA”). Also known are lactone polyesters such as poly-ε-caprolactone, polyhydroxybutyrate polyesters, and copolymers thereof, such as copolymers comprising glycolic acid repeating units and lactic acid repeating units.
 生分解性脂肪族ポリエステルの中でも、PLAは、原料となるL-乳酸が、トウモロコシ、芋等から、発酵法により安価で得られること、自然農作物由来なので総二酸化炭素排出量が少ないこと、また得られたポリL-乳酸(以下「PLLA」ということがある)の性能として剛性が強く透明性がよいなどの特徴がある。しかし、PLLA等のPLAは、結晶化速度が遅く、延伸などの後処理工程が必要である等の課題が指摘されている。 Among biodegradable aliphatic polyesters, PLA can be obtained by using L-lactic acid as a raw material at low cost by fermentation from corn, straw, etc. The resulting poly L-lactic acid (hereinafter sometimes referred to as “PLLA”) has characteristics such as high rigidity and good transparency. However, PLAs such as PLLA have been pointed out as problems such as a slow crystallization rate and the need for post-treatment steps such as stretching.
 また、生分解性脂肪族ポリエステルの中でも、PGAは、分解性が大きいことに加えて、耐熱性、引張強度等の機械的強度、及び、特にフィルムまたはシートとしたときのガスバリア性も優れる。そのため、PGAは、農業資材、各種包装(容器)材料や医療用高分子材料としての利用が期待され、単独で、または他の樹脂材料などと複合化して用途展開が図られている。 In addition, among biodegradable aliphatic polyesters, PGA has excellent degradability, mechanical strength such as heat resistance and tensile strength, and gas barrier properties particularly when used as a film or sheet. Therefore, PGA is expected to be used as agricultural materials, various packaging (container) materials and medical polymer materials, and is being developed for use alone or in combination with other resin materials.
 生分解性脂肪族ポリエステルから製品を製造する方法としては、押出成形、射出成形、圧縮成形、射出圧縮成形、トランスファ成形、注型成形、スタンパブル成形、ブロー成形、延伸フィルム成形、インフレーションフィルム成形、積層成形、カレンダー成形、発泡成形、RIM成形、FRP成形、粉末成形またはペースト成形など、溶融成形その他の成形方法が採用されている。溶融成形の成形原料として使用されるPGA等の生分解性脂肪族ポリエステルのペレットは、例えば、二軸押出機を用いてPGA等の生分解性脂肪族ポリエステルをストランド状に溶融押出し、所定サイズに切断して得られる平均粒子径が数mm程度の大きさのものである。粉末成形またはペースト成形の成形原料として使用される生分解性脂肪族ポリエステル樹脂の粉末としては、用途に応じて所定の大きさと形状に調製された生分解性脂肪族ポリエステル樹脂粒子が用いられる。 The methods of manufacturing products from biodegradable aliphatic polyester include extrusion molding, injection molding, compression molding, injection compression molding, transfer molding, cast molding, stampable molding, blow molding, stretched film molding, inflation film molding, and lamination. Melt molding and other molding methods such as molding, calendar molding, foam molding, RIM molding, FRP molding, powder molding or paste molding are employed. Pellets of biodegradable aliphatic polyester such as PGA used as a molding raw material for melt molding are, for example, melt-extruded biodegradable aliphatic polyester such as PGA in a strand form using a twin-screw extruder to a predetermined size. The average particle diameter obtained by cutting is of the order of several mm. As the powder of the biodegradable aliphatic polyester resin used as a molding raw material for powder molding or paste molding, biodegradable aliphatic polyester resin particles prepared in a predetermined size and shape according to the application are used.
 他方、PLAやPGA等の生分解性脂肪族ポリエステルの分解性、強度などに着目して、塗料、コーティング剤、インキ、トナー、農薬、医薬、化粧品、採鉱、坑井掘削などの分野における原料または添加剤などとして有用な生分解性脂肪族ポリエステル粒子が望まれている。これらの分野に適用する生分解性脂肪族ポリエステル粒子としては、先に述べた生分解性脂肪族ポリエステルのペレットより微小サイズであって、目的に合致した粒子径や粒径分布を有する比較的小さい粒子が求められる。加えて、生分解性脂肪族ポリエステル粒子としては、取り扱い性及び保存性に優れていることが求められている。 On the other hand, focusing on the degradability, strength, etc. of biodegradable aliphatic polyesters such as PLA and PGA, raw materials in fields such as paints, coating agents, inks, toners, agricultural chemicals, pharmaceuticals, cosmetics, mining, well drilling, etc. Biodegradable aliphatic polyester particles useful as additives and the like are desired. The biodegradable aliphatic polyester particles applied to these fields are smaller than the biodegradable aliphatic polyester pellets described above, and are relatively small having a particle size and particle size distribution suitable for the purpose. Particles are required. In addition, the biodegradable aliphatic polyester particles are required to be excellent in handleability and storage stability.
 また、前記生分解性脂肪族ポリエステルのペレットを溶融押出によって製造するための原料樹脂となる生分解性脂肪族ポリエステルは、重合反応後に回収された、例えばフレーク状などの生分解性脂肪族ポリエステルを所望形状及び大きさの粒子に調製した形態で使用されている。 In addition, the biodegradable aliphatic polyester used as a raw material resin for producing the biodegradable aliphatic polyester pellets by melt extrusion is a biodegradable aliphatic polyester recovered after the polymerization reaction, such as flakes. Used in the form of particles of desired shape and size.
 粒子径が小さい粒子は、取り扱い性が不良となるとともに、吸湿性が大きくなり、表面積が大きくなることもあって、分解速度の影響が大きくなり、また生分解性脂肪族ポリエステルの優れた特性が低下してしまうおそれがあった。さらに、乾燥工程や成形加工において予期しないトラブルが生じるおそれが皆無ではなかった。 Particles with a small particle size have poor handleability, increase hygroscopicity, increase surface area, increase the influence of decomposition rate, and have excellent characteristics of biodegradable aliphatic polyester. There was a risk of lowering. Furthermore, there was no risk of unexpected troubles occurring in the drying process or molding process.
 PLAやPGA等の生分解性脂肪族ポリエステルの樹脂粒子の製造方法は、種々提案されている。 Various methods for producing resin particles of biodegradable aliphatic polyester such as PLA and PGA have been proposed.
 生分解性脂肪族ポリエステル粒子の製造方法としては、一般に、溶融固化物の切断または粉砕による粒子の製造方法や、溶液または分散液からの析出による粒子の製造方法が知られている。特開2001-288273号公報(特許文献1)には、PLA系樹脂からなるチップまたは塊状物を、-50~-180℃の低温に冷却して、衝撃粉砕し分級するポリ乳酸系樹脂粉末の製法が開示されている。特開平11-35693号公報(特許文献2)には、生分解性脂肪族ポリエステルの有機溶媒溶液と芳香族炭化水素類とを、60℃未満の温度で混合し、析出する固体状物を固液分離する、生分解性を有する粉状ポリエステルの製造方法が開示されており、実施例において、重量平均分子量(以下「Mw」ということがある。)14.5万のPLA、Mw10.0万のポリブチレンサクシネート、及びMw17.2万のPLAとポリブチレンサクシネートの共重合体が原料に用いられている。特開2006-45542号公報(特許文献3)には、製造例3として、PLAと、溶媒(アジピン酸ジメチル、グルタル酸ジメチル、コハク酸ジメチルの混合物(DBE(登録商標)、デュポン株式会社製))を用いて、溶解温度を140℃、冷却温度を-35℃として得た平均1次粒子径が250nm以下のPLA粒子、または、製造例4として、PGAと、溶媒(ビス(2-メトキシエチル)エーテル)を用いて、溶解温度を150℃、冷却温度を-35℃として得た平均1次粒子径が150nm以下のPGA粒子が開示されている。 As a method for producing biodegradable aliphatic polyester particles, there are generally known a method for producing particles by cutting or pulverizing a melt-solidified product, and a method for producing particles by precipitation from a solution or dispersion. Japanese Patent Laid-Open No. 2001-288273 (Patent Document 1) discloses a polylactic acid resin powder in which a chip or block made of a PLA resin is cooled to a low temperature of −50 to −180 ° C., impact pulverized and classified. A manufacturing method is disclosed. In Japanese Patent Laid-Open No. 11-35693 (Patent Document 2), an organic solvent solution of a biodegradable aliphatic polyester and aromatic hydrocarbons are mixed at a temperature of less than 60 ° C., and the precipitated solid matter is solidified. A method for producing a liquid-degradable, powdered polyester having liquid degradability is disclosed. In Examples, PLA having a weight average molecular weight (hereinafter sometimes referred to as “Mw”) of 145,000, Mw of 10,000,000. Polybutylene succinate, and a copolymer of PLA and polybutylene succinate having an Mw of 172,000 are used as raw materials. In JP 2006-45542 A (Patent Document 3), as Production Example 3, PLA and a solvent (a mixture of dimethyl adipate, dimethyl glutarate, and dimethyl succinate (DBE (registered trademark), manufactured by DuPont) ), A PLA particle having an average primary particle size of 250 nm or less obtained at a dissolution temperature of 140 ° C. and a cooling temperature of −35 ° C., or, as Production Example 4, PGA and a solvent (bis (2-methoxyethyl) PGA particles having an average primary particle size of 150 nm or less obtained by using a) ether) at a dissolution temperature of 150 ° C. and a cooling temperature of −35 ° C. are disclosed.
 しかし、PLAやPGA等の生分解性脂肪族ポリエステル粒子は、用途に適する平均粒子径や粒径分布及び形状をもつ粒子を得ても、その後、前記のような用途の製品に該粒子を使用するまで、粒子の状態で保管や輸送を行っている間に、生分解性脂肪族ポリエステル粒子が凝集(ブロッキング)することがあった。特に、生分解性脂肪族ポリエステル粒子に対して、樹脂のガラス転移温度付近以上の温度環境下で荷重が加わると、ブロッキングが生じやすい。例えば、夏場やコンテナでの粒子の保管や輸送では、粒子が40℃以上の温度に長期間曝されることがあるので、ブロッキング防止効果が高く、かつ、ブロッキング防止効果を長期間持続させる対策が求められていた。ブロッキングが生じると、粒子の取り扱い性が悪化するとともに、制御された粒子の平均粒子径、粒径分布及び形状等が失われ、所期の特性を発揮することができなくなることがある。 However, biodegradable aliphatic polyester particles such as PLA and PGA can be used in products for the above-mentioned applications after obtaining particles having an average particle size, particle size distribution and shape suitable for the application. Until then, the biodegradable aliphatic polyester particles sometimes aggregated (blocked) while being stored or transported in the state of particles. In particular, when a load is applied to the biodegradable aliphatic polyester particles in a temperature environment near the glass transition temperature of the resin, blocking is likely to occur. For example, in the storage and transportation of particles in summer or in containers, the particles may be exposed to temperatures of 40 ° C. or higher for a long period of time. It was sought after. When blocking occurs, the handleability of the particles deteriorates, and the average particle diameter, particle size distribution and shape of the controlled particles are lost, and the desired characteristics may not be exhibited.
 そのため、保管方法を変更(低温保管、平積み等)する対策が採られてきたが、保管方法の変更は製造コストアップにつながるという課題が残っており、一層の改善が求められていた。また、生分解性脂肪族ポリエステル粒子は、水分の存在で、保存中に加水分解が生じ、また溶融成形時には熱分解が生じて分子量が低下し、強度その他の機械的特性が低下することがあるので、一層の改善が求められていた。 Therefore, measures to change the storage method (low temperature storage, flat stacking, etc.) have been taken, but there remains a problem that changing the storage method leads to an increase in manufacturing cost, and further improvement has been demanded. In addition, biodegradable aliphatic polyester particles may be hydrolyzed during storage in the presence of moisture, and may be thermally decomposed during melt molding, resulting in a decrease in molecular weight, and a decrease in strength and other mechanical properties. Therefore, further improvement has been demanded.
特開2001-288273号公報JP 2001-288273 A 特開平11-35693号公報JP 11-35693 A 特開2006-45542号公報JP 2006-45542 A
 本発明の課題は、ブロッキング防止効果が高く、かつ、長期保管してもブロッキング防止効果が持続し、更に所望により加水分解による分子量低下が生ずることがない、生分解性脂肪族ポリエステル粒子、及び、その製造方法を提供することにある。 The problem of the present invention is that the anti-blocking effect is high, and the anti-blocking effect persists even after long-term storage, and further the molecular weight reduction due to hydrolysis does not occur if desired, and biodegradable aliphatic polyester particles, and It is in providing the manufacturing method.
 本発明者らは、上記の課題を解決するために、生分解性脂肪族ポリエステル粒子のブロッキングが発生する現象の解析を鋭意続けるなかで、特に、いわゆる衝撃粉砕法によって得られた生分解性脂肪族ポリエステル粒子は、粉砕時のせん断力によって、表面が溶融軟化し非結晶部の割合が大きくなっていることを見いだした。粒子特性とブロッキングとの関係について、更に検討を進めた結果、驚くべきことに、加水分解や熱分解等による分子量低下が生ずることの懸念から、従来、可能な限り減少させることが求められてきた生分解性脂肪族ポリエステル粒子の水分量を、所定量以上存在するよう制御すること等により、上記課題が解決できることを見いだし、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors have continued to analyze the phenomenon that blocking of biodegradable aliphatic polyester particles occurs, and in particular, biodegradable fat obtained by the so-called impact pulverization method. The group polyester particles were found to have a softened surface and a large proportion of non-crystalline parts due to the shearing force during pulverization. As a result of further investigations on the relationship between particle characteristics and blocking, it has been surprisingly required to reduce the molecular weight as much as possible due to concerns that the molecular weight may decrease due to hydrolysis or thermal decomposition. The inventors have found that the above problems can be solved by controlling the water content of the biodegradable aliphatic polyester particles so as to be at least a predetermined amount, thereby completing the present invention.
 すなわち、本発明によれば、(A)重量平均分子量が、5万以上;(B)平均粒子径が、5~500μm;及び(C)水分量が、900ppm以上;であることを特徴とする生分解性脂肪族ポリエステル粒子が提供される。 That is, according to the present invention, (A) the weight average molecular weight is 50,000 or more; (B) the average particle diameter is 5 to 500 μm; and (C) the water content is 900 ppm or more. Biodegradable aliphatic polyester particles are provided.
 また、本発明によれば、実施の態様として、以下(1)~(3)の生分解性脂肪族ポリエステル粒子が提供される。
(1)更に、(D)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの圧縮破壊強度が、1,500gf/cm以下である前記の生分解性脂肪族ポリエステル粒子。
(2)更に、(E)温度40℃で50日間経過後の重量平均分子量の保持率が、65%以上である前記の生分解性脂肪族ポリエステル粒子。
(3)生分解性脂肪族ポリエステル粒子に含有される生分解性脂肪族ポリエステルが、PGA、PLA、またはそれらの混合物である前記の生分解性脂肪族ポリエステル粒子。
In addition, according to the present invention, the following biodegradable aliphatic polyester particles (1) to (3) are provided as embodiments.
(1) Further, (D) the compression fracture strength of the cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold is 1,500 gf / cm 2 or less. Said biodegradable aliphatic polyester particles.
(2) Further, (E) The biodegradable aliphatic polyester particles as described above, wherein the weight average molecular weight retention after 50 days at a temperature of 40 ° C. is 65% or more.
(3) The biodegradable aliphatic polyester particles described above, wherein the biodegradable aliphatic polyester contained in the biodegradable aliphatic polyester particles is PGA, PLA, or a mixture thereof.
 さらに、本発明によれば、生分解性脂肪族ポリエステルのガラス転移温度(Tg)以下の温度で、粒子状の生分解性脂肪族ポリエステルを粉砕する前記の生分解性脂肪族ポリエステル粒子の製造方法が提供される。なお、粒子状とは、粉末状、フレーク状、粒子状またはペレット状等の生分解性脂肪族ポリエステルが通常有する諸形状を総称するものである。 Furthermore, according to the present invention, the biodegradable aliphatic polyester particle production method described above, wherein the particulate biodegradable aliphatic polyester is pulverized at a temperature lower than the glass transition temperature (Tg) of the biodegradable aliphatic polyester. Is provided. The particulate form is a general term for various shapes usually possessed by the biodegradable aliphatic polyester such as powder, flakes, particles or pellets.
 本発明によれば、生分解性脂肪族ポリエステル粒子が、(A)重量平均分子量が、5万以上;(B)平均粒子径が、5~500μm;及び(C)水分量が、900ppm以上;であり、好ましくは、更に、(D)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの圧縮破壊強度が、1,500gf/cm以下;及び/または(E)温度40℃で50日間経過後の重量平均分子量の保持率が、65%以上であることによって、ブロッキング防止効果が高く、かつ、長期保管してもブロッキング防止効果が持続し、更に所望により加水分解による分子量低下が生ずることがない、PGA粒子やPLA粒子等の生分解性脂肪族ポリエステル粒子が提供されるという効果が奏される。 According to the present invention, the biodegradable aliphatic polyester particles have (A) a weight average molecular weight of 50,000 or more; (B) an average particle diameter of 5 to 500 μm; and (C) a water content of 900 ppm or more; Preferably, (D) the compression fracture strength of the cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold is 1,500 gf / cm 2. And / or (E) The retention of the weight average molecular weight after 50 days at a temperature of 40 ° C. is 65% or more, so that the anti-blocking effect is high, and the anti-blocking effect is maintained even after long-term storage. There is an effect of providing biodegradable aliphatic polyester particles such as PGA particles and PLA particles that are sustained and do not cause a decrease in molecular weight due to hydrolysis if desired.
 また、本発明によれば、生分解性脂肪族ポリエステルのガラス転移温度(Tg)以下の温度で、粒子状の生分解性脂肪族ポリエステルを粉砕することによって、前記の生分解性脂肪族ポリエステル粒子を容易に得ることができるという効果が奏される。 According to the present invention, the biodegradable aliphatic polyester particles are obtained by pulverizing the particulate biodegradable aliphatic polyester at a temperature not higher than the glass transition temperature (Tg) of the biodegradable aliphatic polyester. The effect that it can obtain easily is show | played.
1.生分解性脂肪族ポリエステル
 本発明の生分解性脂肪族ポリエステル粒子に含有される生分解性脂肪族ポリエステルとしては、グリコール酸及びグリコール酸の2分子間環状エステルであるグリコリド(GL)を含むグリコール酸類、乳酸及び乳酸の2分子間環状エステルであるラクチドを含む乳酸類、シュウ酸エチレン(すなわち、1,4-ジオキサン-2,3-ジオン)、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等)、カーボネート類(例えばトリメチレンカーボネート等)、エーテル類(例えば1,3-ジオキサン等)、エーテルエステル類(例えばジオキサノン等)などの環状モノマー;3-ヒドロキシプロパン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4-ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族カルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;等の脂肪族エステルモノマー類の単独重合体、または共重合体が含まれる。なかでも、式:(-O-CH(R)-C(O)-)[Rは、水素原子またはメチル基である。]で表されるグリコール酸または乳酸繰り返し単位を70質量%以上有する生分解性脂肪族ポリエステルが好ましい。具体的には、PGA、すなわちグリコール酸の単独重合体、若しくは、グリコール酸繰り返し単位を70質量%以上有する共重合体;ポリL-乳酸、ポリD-乳酸、L-乳酸若しくはD-乳酸の繰り返し単位を70質量%以上有する共重合体、またはこれらの混合物等のPLA;更には、PGAとPLAとの混合物が好ましい。特に好ましいのは、分解性、耐熱性、機械的強度の観点から、PGAまたはPLAである。
1. Biodegradable aliphatic polyester The biodegradable aliphatic polyester contained in the biodegradable aliphatic polyester particles of the present invention includes glycolic acid and glycolic acid containing glycolide (GL), which is a bimolecular cyclic ester of glycolic acid. Lactic acid and lactate containing lactide which is a bimolecular cyclic ester of lactic acid, ethylene oxalate (ie, 1,4-dioxane-2,3-dione), lactones (eg, β-propiolactone, β- Butyrolactone, pivalolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolactone, ε-caprolactone, etc.), carbonates (eg, trimethylene carbonate), ethers (eg, 1,3-dioxane), Cyclic monomers such as ether esters (eg, dioxanone); 3- Hydroxycarboxylic acids such as droxypropanoic acid, 4-hydroxybutanoic acid and 6-hydroxycaproic acid or alkyl esters thereof; aliphatic diols such as ethylene glycol and 1,4-butanediol; and succinic acid and adipic acid Examples include substantially equimolar mixtures with aliphatic carboxylic acids or alkyl esters thereof; homopolymers or copolymers of aliphatic ester monomers such as: Among them, the formula: (—O—CH (R) —C (O) —) [R is a hydrogen atom or a methyl group. ] The biodegradable aliphatic polyester which has 70 mass% or more of the glycolic acid or lactic acid repeating unit represented by these is preferable. Specifically, PGA, that is, a homopolymer of glycolic acid, or a copolymer having a glycolic acid repeating unit of 70% by mass or more; repeating poly L-lactic acid, poly D-lactic acid, L-lactic acid, or D-lactic acid PLA, such as a copolymer having 70% by mass or more of a unit, or a mixture thereof; more preferably, a mixture of PGA and PLA. Particularly preferred is PGA or PLA from the viewpoints of decomposability, heat resistance and mechanical strength.
 これらの生分解性脂肪族ポリエステルは、例えば、それ自体公知のグリコール酸や乳酸などのα-ヒドロキシカルボン酸の脱水重縮合により合成することができる。また、高分子量の生分解性脂肪族ポリエステルを効率よく合成するには、一般に、α-ヒドロキシカルボン酸の二分子間環状エステルを合成し、該環状エステルを開環重合する方法が採用されている。例えば、乳酸の二分子間環状エステルであるラクチドを開環重合すると、PLAが得られる。グリコール酸の二分子間環状エステルであるグリコリドを開環重合すると、PGAが得られる。 These biodegradable aliphatic polyesters can be synthesized, for example, by dehydration polycondensation of α-hydroxycarboxylic acids such as glycolic acid and lactic acid known per se. In order to efficiently synthesize a high molecular weight biodegradable aliphatic polyester, generally, a method of synthesizing a bimolecular cyclic ester of α-hydroxycarboxylic acid and subjecting the cyclic ester to ring-opening polymerization is employed. . For example, PLA is obtained by ring-opening polymerization of lactide, which is a bimolecular cyclic ester of lactic acid. PGA is obtained by ring-opening polymerization of glycolide, which is a bimolecular cyclic ester of glycolic acid.
 PLAは、上記方法により合成することができるものであり、市販の製品としては、例えば、レイシアH-100、H-280、H-400、H-440等の「レイシア」(登録商標)シリーズ(三井化学株式会社製)、3001D、3051D、4032D、4042D、6201D、6251D、7000D、7032D等の「Ingeo」(登録商標)(ネイチャーワークス社製)、エコプラスチックU’z S-09、S-12、S-17等の「エコプラスチックU’zシリーズ」(トヨタ自動車株式会社製)、「バイロエコール(登録商標)」(東洋紡績株式会社製)などが、強度と可撓性の両立、及び耐熱性の観点から、好ましく選択される。 PLA can be synthesized by the above-described method, and commercially available products include, for example, “Lacia” (registered trademark) series (such as Lacia H-100, H-280, H-400, H-440) ( "Ingeo" (registered trademark) (manufactured by Natureworks), such as 3001D, 3051D, 4032D, 4042D, 6201D, 6251D, 7000D, and 7032D, Ecoplastic U'z S-09, S-12 "Ecoplastic U'z series" (manufactured by Toyota Motor Corporation), "Viro Ecole (registered trademark)" (manufactured by Toyobo Co., Ltd.), etc. From the viewpoint of sex, it is preferably selected.
 以下、生分解性脂肪族ポリエステルとして、主にPGAを例にとって、更に説明するが、PLAその他の生分解性脂肪族ポリエステルについても、PGAに準じて発明を実施するための形態をとることができる。 Hereinafter, the biodegradable aliphatic polyester will be further described mainly using PGA as an example, but PLA and other biodegradable aliphatic polyesters can also take a form for carrying out the invention according to PGA. .
〔ポリグリコール酸(PGA)〕
 本発明の生分解性脂肪族ポリエステル粒子の原料として、特に好ましく用いられるPGAは、式:(-O-CH-C(O)-)で表されるグリコール酸繰り返し単位のみからなるグリコール酸のホモポリマー(グリコール酸の2分子間環状エステルであるグリコリド(GL)の開環重合物を含む)に加えて、上記グリコール酸繰り返し単位を50質量%以上含むPGA共重合体を含むものである。
[Polyglycolic acid (PGA)]
PGA particularly preferably used as a raw material for the biodegradable aliphatic polyester particles of the present invention is a glycolic acid composed only of a glycolic acid repeating unit represented by the formula: (—O—CH 2 —C (O) —). In addition to a homopolymer (including a ring-opened polymer of glycolide (GL), which is a bimolecular cyclic ester of glycolic acid), a PGA copolymer containing 50% by mass or more of the glycolic acid repeating unit is included.
 上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるコモノマーとしては、例えば、シュウ酸エチレン(即ち、1,4-ジオキサン-2,3-ジオン)、ラクチド類、ラクトン類、カーボネート類、エーテル類、エーテルエステル類、アミド類などの環状モノマー;乳酸、3-ヒドロキシプロパン酸、3-ヒドロキシブタン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4-ブタンジオール等の脂肪族ジオール類と、こはく酸、アジピン酸等の脂肪族ジカルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物;またはこれらの2種以上を挙げることができる。これらコモノマーは、その重合体を、上記グリコリド等のグリコール酸モノマーとともに、PGA共重合体を与えるための出発原料として用いることもできる。 Examples of comonomers that give a PGA copolymer together with glycolic acid monomers such as glycolide include ethylene oxalate (ie, 1,4-dioxane-2,3-dione), lactides, lactones, carbonates, ethers. Monomers, ether esters, amides, etc .; carboxylic acids such as lactic acid, 3-hydroxypropanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, 6-hydroxycaproic acid or alkyl esters thereof; ethylene glycol , Substantially equimolar mixtures of aliphatic diols such as 1,4-butanediol and aliphatic dicarboxylic acids such as succinic acid and adipic acid or alkyl esters thereof; or two or more of these Can do. These comonomers can be used as a starting material for giving a PGA copolymer together with the glycolic acid monomer such as glycolide.
 本発明のPGA粒子の原料となるPGA中の上記グリコール酸繰り返し単位は50質量%以上であり、好ましくは70質量%以上、より好ましくは85質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上であり、最も好ましくは99質量%以上である実質的にPGAホモポリマーである。グリコール酸繰り返し単位の割合が小さ過ぎると、PGAに期待される強度や分解性が乏しくなる。グリコール酸繰り返し単位以外の繰り返し単位は、50質量%以下であり、好ましくは30質量%以下、より好ましくは15質量%以下、更に好ましくは5質量%以下、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下の割合で用いられ、グリコール酸繰り返し単位以外の繰り返し単位を含まないものでもよい。 The glycolic acid repeating unit in the PGA used as the raw material of the PGA particles of the present invention is 50% by mass or more, preferably 70% by mass or more, more preferably 85% by mass or more, still more preferably 95% by mass or more, particularly preferably. Is a PGA homopolymer of 98% by weight or more, most preferably 99% by weight or more. If the proportion of glycolic acid repeating units is too small, the strength and degradability expected for PGA will be poor. The repeating unit other than the glycolic acid repeating unit is 50% by mass or less, preferably 30% by mass or less, more preferably 15% by mass or less, still more preferably 5% by mass or less, and particularly preferably 2% by mass or less. Most preferably, it is used in a proportion of 1% by mass or less, and may not contain any repeating unit other than the glycolic acid repeating unit.
 本発明のPGA粒子の原料となるPGAとしては、所望の高分子量ポリマーを効率的に製造するために、グリコリド50~100質量%及び上記した他のコモノマー50~0質量%を重合して得られるPGAが好ましい。他のコモノマーとしては、2分子間の環状モノマーであってもよいし、環状モノマーでなく両者の混合物であってもよいが、本発明が目的とするPGA粒子とするためには、環状モノマーが好ましい。以下、グリコリド50~100質量%及び他の環状モノマー50~0質量%を開環重合して得られるPGAについて詳述する。 The PGA used as a raw material for the PGA particles of the present invention is obtained by polymerizing 50 to 100% by mass of glycolide and 50 to 0% by mass of the above-mentioned other comonomer in order to efficiently produce a desired high molecular weight polymer. PGA is preferred. The other comonomer may be a cyclic monomer between two molecules, or may be a mixture of both instead of a cyclic monomer. In order to obtain PGA particles intended by the present invention, a cyclic monomer is used. preferable. Hereinafter, PGA obtained by ring-opening polymerization of 50 to 100% by mass of glycolide and 50 to 0% by mass of other cyclic monomers will be described in detail.
〔グリコリド〕
 開環重合によってPGAを形成するグリコリドは、ヒドロキシカルボン酸の1種であるグリコール酸の2分子間環状エステルである。グリコリドの製造方法は、特に限定されないが、一般的には、グリコール酸オリゴマーを熱解重合することにより得ることができる。グリコール酸オリゴマーの解重合法として、例えば、溶融解重合法、固相解重合法、溶液解重合法などを採用することができ、また、クロロ酢酸塩の環状縮合物として得られるグリコリドも用いることができる。なお、所望により、グリコリドとしては、グリコリド量の20質量%を限度として、グリコール酸を含有するものを使用することができる。
[Glycolide]
Glycolide that forms PGA by ring-opening polymerization is a bimolecular cyclic ester of glycolic acid, which is a kind of hydroxycarboxylic acid. Although the manufacturing method of glycolide is not specifically limited, Generally, it can obtain by thermally depolymerizing a glycolic acid oligomer. As a depolymerization method for glycolic acid oligomers, for example, a melt depolymerization method, a solid phase depolymerization method, a solution depolymerization method, etc. can be adopted, and glycolide obtained as a cyclic condensate of chloroacetate should also be used. Can do. If desired, glycolide containing glycolic acid can be used up to 20% by mass of the glycolide amount.
 本発明のPGA粒子の原料となるPGAは、グリコリドのみを開環重合させて形成してもよいが、他の環状モノマーを共重合成分として同時に開環重合させて共重合体を形成してもよい。共重合体を形成する場合には、グリコリドの割合は、50質量%以上であり、好ましくは70質量%以上、より好ましくは85質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上であり、最も好ましくは99質量%以上である実質的にPGAホモポリマーである。 The PGA used as a raw material for the PGA particles of the present invention may be formed by ring-opening polymerization of only glycolide, but may also be formed by simultaneously ring-opening polymerization using another cyclic monomer as a copolymerization component. Good. In the case of forming a copolymer, the proportion of glycolide is 50% by mass or more, preferably 70% by mass or more, more preferably 85% by mass or more, still more preferably 95% by mass or more, and particularly preferably 98% by mass. % Or more, and most preferably 99% by mass or more of a substantially PGA homopolymer.
〔他の環状モノマー〕
 グリコリドとの共重合成分として使用することができる他の環状モノマーとしては、ラクチドなど他のヒドロキシカルボン酸の2分子間環状エステルの外、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等)、トリメチレンカーボネート、1,3-ジオキサンなどの環状モノマーを使用することができる。好ましい他の環状モノマーは、他のヒドロキシカルボン酸の2分子間環状エステルであり、ヒドロキシカルボン酸としては、例えば、L-乳酸、D-乳酸、α-ヒドロキシ酪酸、α-ヒドロキシイソ酪酸、α-ヒドロキシ吉草酸、α-ヒドロキシカプロン酸、α-ヒドロキシイソカプロン酸、α-ヒドロキシヘプタン酸、α-ヒドロキシオクタン酸、α-ヒドロキシデカン酸、α-ヒドロキシミリスチン酸、α-ヒドロキシステアリン酸、及びこれらのアルキル置換体などを挙げることができる。特に好ましい他の環状モノマーは、乳酸の2分子間環状エステルであるラクチドであり、L体、D体、ラセミ体、これらの混合物のいずれであってもよい。
[Other cyclic monomers]
Other cyclic monomers that can be used as a copolymerization component with glycolide include lactones (for example, β-propiolactone, β-butyrolactone, in addition to bicyclic esters of other hydroxycarboxylic acids such as lactide). Cyclic monomers such as pivalolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolactone, ε-caprolactone, trimethylene carbonate, 1,3-dioxane and the like can be used. Other preferable cyclic monomers are bimolecular cyclic esters of other hydroxycarboxylic acids. Examples of hydroxycarboxylic acids include L-lactic acid, D-lactic acid, α-hydroxybutyric acid, α-hydroxyisobutyric acid, α- Hydroxyvaleric acid, α-hydroxycaproic acid, α-hydroxyisocaproic acid, α-hydroxyheptanoic acid, α-hydroxyoctanoic acid, α-hydroxydecanoic acid, α-hydroxymyristic acid, α-hydroxystearic acid, and these Examples include alkyl-substituted products. Another particularly preferable cyclic monomer is lactide, which is a bimolecular cyclic ester of lactic acid, and may be any of L-form, D-form, racemate, and a mixture thereof.
 他の環状モノマーは、50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下、更に好ましくは5質量%以下、特に好ましくは2質量%以下であり、最も好ましくは1質量%以下の割合で用いられる。グリコリドと他の環状モノマーとを開環共重合することにより、PGA(共重合体)の融点を低下させて加工温度を下げたり、結晶化速度を制御して押出加工性や延伸加工性を改善したりすることができる。しかし、これらの環状モノマーの使用割合が大きすぎると、形成されるPGA(共重合体)の結晶性が損なわれ、耐熱性、ガスバリア性、機械的強度などが低下する。なお、PGAが、グリコリド100質量%から形成される場合は、他の環状モノマーは0質量%であり、このPGAも本発明の範囲に含まれる。 The other cyclic monomer is 50% by mass or less, preferably 30% by mass or less, more preferably 15% by mass or less, still more preferably 5% by mass or less, particularly preferably 2% by mass or less, and most preferably 1% by mass. Used in the following proportions. By ring-opening copolymerization of glycolide and other cyclic monomers, the melting point of PGA (copolymer) is lowered to lower the processing temperature, and the crystallization speed is controlled to improve extrusion processability and stretch processability. You can do it. However, when the use ratio of these cyclic monomers is too large, the crystallinity of the formed PGA (copolymer) is impaired, and heat resistance, gas barrier properties, mechanical strength, and the like are lowered. In addition, when PGA is formed from glycolide 100 mass%, another cyclic monomer is 0 mass%, and this PGA is also included in the scope of the present invention.
〔開環重合反応〕
 グリコリドの開環重合または開環共重合(以下、総称して、「開環(共)重合」ということがある。)は、好ましくは、少量の触媒の存在下に行われる。触媒は、特に限定されないが、例えば、ハロゲン化錫(例えば、二塩化錫、四塩化錫など)や有機カルボン酸錫(例えば、2-エチルヘキサン酸錫などのオクタン酸錫)などの錫系化合物;アルコキシチタネートなどのチタン系化合物;アルコキシアルミニウムなどのアルミニウム系化合物;ジルコニウムアセチルアセトンなどのジルコニウム系化合物;ハロゲン化アンチモン、酸化アンチモンなどのアンチモン系化合物;などがある。触媒の使用量は、環状エステルに対して、質量比で、好ましくは1~1,000ppm、より好ましくは3~300ppm程度である。
(Ring-opening polymerization reaction)
The ring-opening polymerization or ring-opening copolymerization of glycolide (hereinafter sometimes collectively referred to as “ring-opening (co) polymerization”) is preferably carried out in the presence of a small amount of a catalyst. The catalyst is not particularly limited. For example, a tin-based compound such as tin halide (for example, tin dichloride, tin tetrachloride) and organic carboxylate (for example, tin octoate such as tin 2-ethylhexanoate). Titanium compounds such as alkoxy titanates; aluminum compounds such as alkoxy aluminum; zirconium compounds such as zirconium acetylacetone; antimony compounds such as antimony halide and antimony oxide; The amount of the catalyst used is preferably about 1 to 1,000 ppm, more preferably about 3 to 300 ppm in terms of mass ratio with respect to the cyclic ester.
 グリコリドの開環(共)重合は、生成するPGAの分子量や溶融粘度等の物性を制御するために、ラウリルアルコール等の高級アルコールその他のアルコール類や水などのプロトン性化合物を分子量調節剤として使用することができる。グリコリドには通常、微量の水分と、グリコール酸及び直鎖状のグリコール酸オリゴマーからなるヒドロキシカルボン酸化合物類が不純物として含まれていることがあり、これらの化合物も重合反応に作用する。そのため、これらの不純物の濃度を、例えばこれらの化合物中のカルボン酸量を中和滴定などによりモル濃度として定量し、また目的の分子量等に応じプロトン性化合物としてアルコール類や水を添加し、全プロトン性化合物のモル濃度をグリコリドに対して制御することにより生成PGAの分子量等を調整することができる。また、物性改良のために、グリセリンなどの多価アルコールを添加してもよい。 Glycolide ring-opening (co) polymerization uses higher alcohols such as lauryl alcohol, other alcohols, and water and other protic compounds as molecular weight regulators in order to control the physical properties such as molecular weight and melt viscosity of PGA. can do. Glycolide usually contains trace amounts of water and hydroxycarboxylic acid compounds composed of glycolic acid and linear glycolic acid oligomers as impurities, and these compounds also act on the polymerization reaction. Therefore, the concentration of these impurities is quantified as a molar concentration by, for example, neutralizing titration of the amount of carboxylic acid in these compounds, and alcohols and water are added as protic compounds according to the target molecular weight, etc. The molecular weight and the like of the produced PGA can be adjusted by controlling the molar concentration of the protic compound with respect to glycolide. Moreover, you may add polyhydric alcohols, such as glycerol, for a physical property improvement.
 グリコリドの開環(共)重合は、塊状重合でも、溶液重合でもよいが、多くの場合、塊状重合が採用される。塊状重合の重合装置としては、押出機型、パドル翼を持った縦型、ヘリカルリボン翼を持った縦型、押出機型やニーダー型の横型、アンプル型、板状型、管状型など様々な装置の中から、適宜選択することができる。また、溶液重合には、各種反応槽を用いることができる。 The ring-opening (co) polymerization of glycolide may be bulk polymerization or solution polymerization, but in many cases, bulk polymerization is employed. There are various types of polymerization equipment for bulk polymerization, such as an extruder type, a vertical type with paddle blades, a vertical type with helical ribbon blades, a horizontal type such as an extruder type and a kneader type, an ampoule type, a plate type and a tubular type. The device can be selected as appropriate. Moreover, various reaction tanks can be used for solution polymerization.
 重合温度は、実質的な重合開始温度である120℃から300℃までの範囲内で目的に応じて適宜設定することができる。重合温度は、好ましくは130~270℃、より好ましくは140~260℃、特に好ましくは150~250℃である。重合温度が低すぎると、生成したPGAの分子量分布が広くなりやすい。重合温度が高すぎると、生成したPGAが熱分解を受けやすくなる。重合時間は、3分間~50時間、好ましくは5分間~30時間の範囲内である。重合時間が短すぎると重合が充分に進行し難く、所定の分子量を実現することができない。重合時間が長すぎると生成したPGAが着色しやすくなる。 The polymerization temperature can be appropriately set according to the purpose within a range from 120 ° C. to 300 ° C. which is a substantial polymerization start temperature. The polymerization temperature is preferably 130 to 270 ° C., more preferably 140 to 260 ° C., and particularly preferably 150 to 250 ° C. If the polymerization temperature is too low, the molecular weight distribution of the produced PGA tends to be wide. If the polymerization temperature is too high, the produced PGA is susceptible to thermal decomposition. The polymerization time is in the range of 3 minutes to 50 hours, preferably 5 minutes to 30 hours. If the polymerization time is too short, the polymerization does not proceed sufficiently and a predetermined molecular weight cannot be realized. If the polymerization time is too long, the produced PGA tends to be colored.
 生成したPGAを固体状態とした後、所望により、更に固相重合を行ってもよい。固相重合とは、後述するPGAの融点(Tm)未満の温度で加熱することにより、固体状態を維持したままで熱処理する操作を意味する。この固相重合により、未反応モノマー、オリゴマーなどの低分子量成分が揮発・除去される。固相重合は、好ましくは1~100時間、より好ましくは2~50時間、特に好ましくは3~30時間で行われる。 After making the produced PGA into a solid state, solid phase polymerization may be further performed if desired. The solid phase polymerization means an operation of performing heat treatment while maintaining a solid state by heating at a temperature lower than the melting point (Tm) of PGA described later. By this solid phase polymerization, low molecular weight components such as unreacted monomers and oligomers are volatilized and removed. The solid phase polymerization is preferably performed for 1 to 100 hours, more preferably 2 to 50 hours, particularly preferably 3 to 30 hours.
 また、固体状態のPGAを、その融点(Tm)以上、好ましくは融点(Tm)+38℃以上、より好ましくは融点(Tm)+38℃から融点(Tm)+100℃までの温度範囲内で溶融混練する工程により熱履歴を与えることによって、結晶性を制御してもよい。 Further, PGA in a solid state is melt-kneaded within the temperature range of the melting point (Tm) or higher, preferably the melting point (Tm) + 38 ° C. or more, more preferably the melting point (Tm) + 38 ° C. to the melting point (Tm) + 100 ° C. The crystallinity may be controlled by giving a thermal history by the process.
 本発明のPGA粒子を製造する原料として、PGAに加えて、本発明の目的に反しない限度において、他の脂肪族ポリエステル類、ポリエチレングリコール、ポリプロピレングリコールなどのポリグリコール類、変性ポリビニルアルコール、ポリウレタン、ポリL-リジンなどのポリアミド類などの他の樹脂や、可塑剤、酸化防止剤、熱安定剤、末端封止剤、紫外線吸収剤、滑剤、離型剤、ワックス類、着色剤、結晶化促進剤、水素イオン濃度調節剤、補強繊維等の充填材などの通常配合される添加剤を必要に応じて配合することができる。これら添加剤等の配合量は、PGA100質量部に対して、通常30質量部以下、好ましくは20質量部以下、より好ましくは10質量部以下であり、5質量部以下または1質量部以下の配合量でよい場合もある。 As raw materials for producing the PGA particles of the present invention, in addition to PGA, other aliphatic polyesters, polyglycols such as polyethylene glycol and polypropylene glycol, modified polyvinyl alcohol, polyurethane, Other resins such as polyamides such as poly-L-lysine, plasticizers, antioxidants, heat stabilizers, end-capping agents, UV absorbers, lubricants, mold release agents, waxes, colorants, crystallization promotion Additives that are usually blended such as an agent, a hydrogen ion concentration regulator, and fillers such as reinforcing fibers can be blended as necessary. The compounding amount of these additives and the like is usually 30 parts by mass or less, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and 5 parts by mass or less or 1 part by mass or less with respect to 100 parts by mass of PGA. The amount may be fine.
 特に、PGAに、カルボキシル基末端封止剤を配合すると、PGA粒子の長期保存性が向上するので好ましい。すなわち、カルボキシル基末端封止剤を配合することにより、PGA粒子の耐加水分解性が改善され、保存中の分子量低下を一層抑制することができる。カルボキシル基末端封止剤としては、カルボキシル基末端封止作用を有し、脂肪族ポリエステルの耐水性向上剤として知られている化合物を用いることができる。カルボキシル基末端封止剤としては、例えば、N,N-2,6-ジイソプロピルフェニルカルボジイミド等のカルボジイミド化合物;2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2-フェニル-2-オキサゾリン、スチレン・イソプロペニル-2-オキサゾリン等のオキサゾリン化合物;2-メトキシ-5,6-ジヒドロ-4H-1,3-オキサジン等のオキサジン化合物;N-グリシジルフタルイミド、シクロへキセンオキシド、トリス(2,3-エポキシプロピル)イソシアヌレート等のエポキシ化合物;などが挙げられる。これらのカルボキシル基末端封止剤の中でも、カルボジイミド化合物が好ましく、芳香族、脂環族、及び脂肪族のいずれのカルボジイミド化合物も用いられるが、とりわけ芳香族カルボジイミド化合物が好ましく、特に純度の高いものが耐水性改善効果を与える。カルボキシル基末端封止剤は、PGA100質量部に対して、通常0.01~5質量部、好ましくは0.05~3質量部、より好ましくは0.1~1質量部の割合で用いられる。 In particular, it is preferable to add a carboxyl group end-capping agent to PGA because the long-term storage stability of PGA particles is improved. That is, by adding a carboxyl group terminal blocking agent, the hydrolysis resistance of the PGA particles is improved, and the molecular weight reduction during storage can be further suppressed. As a carboxyl group terminal blocker, a compound having a carboxyl group terminal blocker and known as a water resistance improver for aliphatic polyesters can be used. Examples of carboxyl group end-capping agents include carbodiimide compounds such as N, N-2,6-diisopropylphenylcarbodiimide; 2,2′-m-phenylenebis (2-oxazoline), 2,2′-p-phenylene Oxazoline compounds such as bis (2-oxazoline), 2-phenyl-2-oxazoline and styrene / isopropenyl-2-oxazoline; oxazine compounds such as 2-methoxy-5,6-dihydro-4H-1,3-oxazine; And epoxy compounds such as N-glycidylphthalimide, cyclohexene oxide, and tris (2,3-epoxypropyl) isocyanurate. Among these carboxyl group end-capping agents, carbodiimide compounds are preferred, and any of aromatic, alicyclic, and aliphatic carbodiimide compounds are used, but aromatic carbodiimide compounds are particularly preferred, and particularly high purity. Gives water resistance improvement effect. The carboxyl group end-capping agent is usually used in a proportion of 0.01 to 5 parts by mass, preferably 0.05 to 3 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of PGA.
 また、PGAに熱安定剤を配合すると、PGA粒子の長期保存性が更に向上するので、より好ましい。熱安定剤としては、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト等のペンタエリスリトール骨格構造を有するリン酸エステル;モノ-またはジ-ステアリルアシッドホスフェートあるいはこれらの混合物等の、炭素数が好ましくは8~24のアルキル基を有するリン酸アルキルエステルまたは亜リン酸アルキルエステル;炭酸カルシウム、炭酸ストロンチウム等の炭酸金属塩;一般に重合触媒不活性剤として知られる、ビス[2-(2-ヒドロキシベンゾイル)ヒドラジン]ドデカン酸、N,N′-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジンなどの-CONHNHCO-単位を有するヒドラジン系化合物;3-(N-サリチロイル)アミノ-1,2,4-トリアゾール等のトリアゾール系化合物;トリアジン系化合物;などが挙げられる。熱安定剤は、PGA100質量部に対して、通常3質量部以下、好ましくは0.001~1質量部、より好ましくは0.005~0.5質量部、特に好ましくは0.01~0.1質量部(100~1,000ppm)の割合で用いられる。 Further, it is more preferable to add a heat stabilizer to PGA, since the long-term storage stability of PGA particles is further improved. Thermal stabilizers include cyclic neopentanetetrayl bis (2,6-di-tert-butyl-4-methylphenyl) phosphite, cyclic neopentanetetrayl bis (2,4-di-tert-butylphenyl) ) Phosphite having a pentaerythritol skeleton structure such as phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite; mono- or di-stearyl acid phosphate or a mixture thereof, preferably having 8 to 8 carbon atoms Phosphoric acid alkyl ester or phosphorous acid alkyl ester having 24 alkyl groups; carbonate carbonate such as calcium carbonate and strontium carbonate; bis [2- (2-hydroxybenzoyl) hydrazine] generally known as a polymerization catalyst deactivator Dodecanoic acid, N, N ' Hydrazine compounds having a -CONHNHCO- unit such as bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine; 3- (N-salicyloyl) amino-1,2,4- And triazole compounds such as triazole; triazine compounds; and the like. The heat stabilizer is usually 3 parts by mass or less, preferably 0.001 to 1 part by mass, more preferably 0.005 to 0.5 part by mass, and particularly preferably 0.01 to 0. It is used at a ratio of 1 part by mass (100 to 1,000 ppm).
2.生分解性脂肪族ポリエステル粒子
 本発明の生分解性脂肪族ポリエステル粒子は、生分解性脂肪族ポリエステルを主成分とする粒子であり、好ましくはPGA粒子、PLA粒子またはPGAとPLAとの混合粒子である。以下、生分解性脂肪族ポリエステル粒子として、PGA粒子を例にとって、更に説明するが、PLA粒子、PGAとPLAとの混合粒子、またはその他の生分解性脂肪族ポリエステルの粒子についても、PGA粒子に準じて発明を実施するための形態をとることができる。
2. Biodegradable Aliphatic Polyester Particles The biodegradable aliphatic polyester particles of the present invention are particles mainly composed of biodegradable aliphatic polyester, preferably PGA particles, PLA particles, or mixed particles of PGA and PLA. is there. Hereinafter, PGA particles will be described as examples of biodegradable aliphatic polyester particles. However, PLA particles, mixed particles of PGA and PLA, or other biodegradable aliphatic polyester particles are also referred to as PGA particles. The form for carrying out the invention can be taken accordingly.
 本発明の生分解性脂肪族ポリエステル粒子であるPGA粒子は、(A)重量平均分子量が、5万以上;(B)平均粒子径が、5~500μm;及び(C)水分量が、900ppm以上;であることを特徴とする粒子である。 The PGA particles which are the biodegradable aliphatic polyester particles of the present invention have (A) a weight average molecular weight of 50,000 or more; (B) an average particle diameter of 5 to 500 μm; and (C) a water content of 900 ppm or more. A particle characterized by the following:
〔重量平均分子量(Mw)〕
 本発明のPGA粒子に含まれるPGAの重量平均分子量(Mw)は、5万以上であり、通常5~150万の範囲内にあるものが好ましく、より好ましくは6~130万、更に好ましくは7~110万、特に好ましくは10~100万の範囲内にあるものを選択する。PGAの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)装置によって求めたものである。具体的には、PGA試料を、トリフルオロ酢酸ナトリウムを所定の濃度で溶解させたヘキサフルオロイソプロパノール(HFIP)に溶解させた後、メンブレンフィルターでろ過して試料溶液を得て、この試料溶液をGPC装置に注入して分子量を測定した結果から、重量平均分子量(Mw)を算出する。
[Weight average molecular weight (Mw)]
The weight average molecular weight (Mw) of the PGA contained in the PGA particles of the present invention is 50,000 or more, usually within the range of 5 to 1.5 million, more preferably 6 to 1.3 million, and still more preferably 7 A value in the range of ˜1.1 million, particularly preferably in the range of 100,000 to 1,000,000 is selected. The weight average molecular weight (Mw) of PGA is determined by a gel permeation chromatography (GPC) apparatus. Specifically, a PGA sample is dissolved in hexafluoroisopropanol (HFIP) in which sodium trifluoroacetate is dissolved at a predetermined concentration, and then filtered through a membrane filter to obtain a sample solution. The weight average molecular weight (Mw) is calculated from the result of measuring the molecular weight after injection into the apparatus.
 また、本発明のPLA粒子に含まれるPLAの重量平均分子量(Mw)は、好ましくは5~120万、より好ましくは6~100万、更に好ましくは7~80万の範囲である。 In addition, the weight average molecular weight (Mw) of the PLA contained in the PLA particles of the present invention is preferably in the range of 5 to 1,200,000, more preferably 6 to 1,000,000, and even more preferably in the range of 7 to 800,000.
〔融点(Tm)〕
 本発明のPGA粒子に含まれるPGAの融点(Tm、以下「結晶融点」ということもある。)は、通常197~245℃であり、重量平均分子量(Mw)、分子量分布、共重合成分の種類及び含有割合等によって調整することができる。PGAの融点(Tm)は、好ましくは200~240℃、より好ましくは205~235℃、特に好ましくは210~230℃である。PGAの単独重合体の融点(Tm)は、通常220℃程度である。融点(Tm)が低すぎると、耐熱性や強度が不十分であったりする。融点(Tm)が高すぎると、加工性が不足したり、粒子の形成を十分制御することができず、得られるPGA粒子の粒子径が所望の範囲のものとならなかったりすることがある。PGAの融点(Tm)は、示差走査熱量計(DSC)を用いて、窒素雰囲気中で求めたものである。具体的には、試料PGAを、DSCを用いて、窒素雰囲気中、20℃/分の昇温速度で、室温から280℃[結晶融点(Tm)+55~60℃程度の温度に相当。]まで加熱する昇温過程で検出される、結晶溶融に伴う吸熱ピークの温度を意味する。該吸収ピークが複数みられる場合には、吸熱ピーク面積が最も大きいピークを融点(Tm)とする。
[Melting point (Tm)]
The melting point (Tm, hereinafter sometimes referred to as “crystalline melting point”) of PGA contained in the PGA particles of the present invention is usually 197 to 245 ° C., and the weight average molecular weight (Mw), molecular weight distribution, and types of copolymer components And it can adjust with a content rate etc. The melting point (Tm) of PGA is preferably 200 to 240 ° C., more preferably 205 to 235 ° C., and particularly preferably 210 to 230 ° C. The melting point (Tm) of the homopolymer of PGA is usually about 220 ° C. If the melting point (Tm) is too low, the heat resistance and strength may be insufficient. If the melting point (Tm) is too high, processability may be insufficient, particle formation may not be sufficiently controlled, and the resulting PGA particle size may not be in a desired range. The melting point (Tm) of PGA is determined in a nitrogen atmosphere using a differential scanning calorimeter (DSC). Specifically, the sample PGA corresponds to a temperature from room temperature to 280 ° C. [crystal melting point (Tm) +55 to 60 ° C.] at a rate of temperature increase of 20 ° C./min in a nitrogen atmosphere using DSC. ] Is the temperature of the endothermic peak accompanying crystal melting, which is detected during the temperature rising process. When a plurality of absorption peaks are observed, the peak having the largest endothermic peak area is defined as the melting point (Tm).
 また、本発明のPLA粒子に含まれるPLAの融点(Tm)は、好ましくは145~185℃、より好ましくは150~182℃、更に好ましくは155~180℃の範囲である。 Also, the melting point (Tm) of PLA contained in the PLA particles of the present invention is preferably in the range of 145 to 185 ° C., more preferably 150 to 182 ° C., and further preferably 155 to 180 ° C.
〔ガラス転移温度(Tg)〕
 本発明のPGA粒子に含まれるPGAのガラス転移温度(Tg)は、通例25~60℃であり、好ましくは30~50℃、より好ましくは35~45℃である。PGAのガラス転移温度(Tg)は、重量平均分子量(Mw)、分子量分布、共重合成分の種類及び含有割合等によって調整することができる。PGAのガラス転移温度(Tg)は、融点(Tm)の測定と同様に、示差走査熱量計(DSC)を用いて、窒素雰囲気中で求めたものである。具体的には、試料PGAを、約280℃(結晶融点(Tm)+50℃付近)まで加熱し、この温度で2分間保持した後、液体窒素により急速(約100℃/分)に冷却して得られた非晶試料を、DSCを用いて、窒素雰囲気中、室温付近から20℃/分の昇温速度で100℃まで再加熱するときの、ガラス状態からゴム状態への転移の開始温度と終了温度の中間点をガラス転移温度(Tg)(以下、「中間点ガラス転移温度」ということがある。)とする。ガラス転移温度(Tg)が低すぎると、PGA粒子表面が過度に軟化し、粒子のブロッキングが起きやすくなることがある。ガラス転移温度(Tg)が高すぎると、粉末成形等において加工性が悪くなることがある。
[Glass transition temperature (Tg)]
The glass transition temperature (Tg) of PGA contained in the PGA particles of the present invention is usually 25 to 60 ° C., preferably 30 to 50 ° C., more preferably 35 to 45 ° C. The glass transition temperature (Tg) of PGA can be adjusted by the weight average molecular weight (Mw), the molecular weight distribution, the type and content ratio of the copolymerization component, and the like. The glass transition temperature (Tg) of PGA is determined in a nitrogen atmosphere using a differential scanning calorimeter (DSC), similarly to the measurement of the melting point (Tm). Specifically, the sample PGA is heated to about 280 ° C. (crystalline melting point (Tm) + around 50 ° C.), held at this temperature for 2 minutes, and then rapidly cooled with liquid nitrogen (about 100 ° C./min). When the obtained amorphous sample is reheated from near room temperature to 100 ° C. at a temperature increase rate of 20 ° C./min in a nitrogen atmosphere using DSC, the transition temperature from the glass state to the rubber state is An intermediate point of the end temperature is defined as a glass transition temperature (Tg) (hereinafter sometimes referred to as “intermediate point glass transition temperature”). If the glass transition temperature (Tg) is too low, the surface of the PGA particles may be excessively softened and particle blocking may easily occur. If the glass transition temperature (Tg) is too high, workability may deteriorate in powder molding or the like.
 また、本発明のPLA粒子に含まれるPLAのガラス転移温度(Tg)は、好ましくは45~75℃、より好ましくは50~70℃、更に好ましくは55~65℃の範囲内である。 The glass transition temperature (Tg) of PLA contained in the PLA particles of the present invention is preferably in the range of 45 to 75 ° C., more preferably 50 to 70 ° C., and still more preferably 55 to 65 ° C.
〔平均粒子径(50%D)〕
 本発明のPGA粒子またはPLA粒子等の生分解性脂肪族ポリエステル粒子の平均粒子径は、平均粒子径(50%D)として、5~500μmである。生分解性脂肪族ポリエステル粒子の平均粒子径(50%D)は、レーザー回折式粒度分布測定装置を使用して測定し求めた粒子の粒径分布を用いて、小粒子径側からの累積重量が50%となる粒子径で表される値を意味する。
[Average particle size (50% D)]
The average particle size of the biodegradable aliphatic polyester particles such as PGA particles or PLA particles of the present invention is 5 to 500 μm as the average particle size (50% D). The average particle size (50% D) of the biodegradable aliphatic polyester particles is the cumulative weight from the small particle size side using the particle size distribution of the particles measured and determined using a laser diffraction particle size distribution analyzer. Means a value represented by a particle size of 50%.
 本発明の生分解性脂肪族ポリエステル粒子の平均粒子径(50%D)は、好ましくは7~450μm、より好ましくは10~400μm、更に好ましくは20~300μm、特に好ましくは30~200μmの範囲である。平均粒子径(50%D)が小さすぎると、粒子の取り扱い性、保存性または保管性が良好でないことがある。平均粒子径(50%D)が大きすぎると、着目している用途での使用が難しくなることがある。例えば、平均粒子径が大きすぎると、水中での分散性が悪くなり、塗料、コーティング、トナー分野において、使用が難しくなる。平均粒子径(50%D)が5~500μmの範囲内にあることにより、生分解性脂肪族ポリエステル粒子の流動性がよく、粒子の取り扱い性、保存性及び保管性が良好であるとともに、製品の成形や生分解性脂肪族ポリエステル粒子の使用に当たって、求められる所望の粒子径の粒子を極めて容易に得ることができる。 The average particle size (50% D) of the biodegradable aliphatic polyester particles of the present invention is preferably in the range of 7 to 450 μm, more preferably 10 to 400 μm, still more preferably 20 to 300 μm, and particularly preferably 30 to 200 μm. is there. If the average particle size (50% D) is too small, the handling property, storage property or storage property of the particles may not be good. If the average particle size (50% D) is too large, it may be difficult to use in the intended application. For example, if the average particle size is too large, the dispersibility in water will deteriorate, making it difficult to use in the paint, coating and toner fields. When the average particle size (50% D) is in the range of 5 to 500 μm, the flowability of the biodegradable aliphatic polyester particles is good, the particles are easy to handle, preserve and store, and the product In the molding and use of biodegradable aliphatic polyester particles, particles having a desired particle size can be obtained very easily.
〔水分量〕
 本発明のPGA粒子またはPLA粒子等の生分解性脂肪族ポリエステル粒子は、水分量が、900ppm以上のものである。本発明の生分解性脂肪族ポリエステル粒子の水分量は、気化装置付カールフィッシャー水分計(三菱化学株式会社製CA-100(気化装置:VA-100))を用いて測定したものである。具体的には、生分解性脂肪族ポリエステル粒子がPGA粒子である場合、あらかじめ220℃(PGA粒子の融点)の温度に設定し加熱した気化装置に、2gのPGA粒子の試料粒子を入れ、気化装置からカールフィッシャー水分測定器に250ml/分で乾燥窒素ガスを流し、試料を気化装置に導入した後、気化した水分がカールフィッシャー液に導入されることにより、電気伝導度がバックグラウンドより+0.1mVまで下がってきた時点を終点とした。
〔amount of water〕
The biodegradable aliphatic polyester particles such as PGA particles or PLA particles of the present invention have a water content of 900 ppm or more. The water content of the biodegradable aliphatic polyester particles of the present invention is measured using a Karl Fischer moisture meter with a vaporizer (CA-100 (vaporizer: VA-100) manufactured by Mitsubishi Chemical Corporation). Specifically, when the biodegradable aliphatic polyester particles are PGA particles, the sample particles of 2 g of PGA particles are placed in a vaporizer heated to 220 ° C. (melting point of PGA particles) in advance and vaporized. After flowing dry nitrogen gas from the apparatus to the Karl Fischer moisture meter at 250 ml / min and introducing the sample into the vaporizer, the vaporized water is introduced into the Karl Fischer liquid, so that the electric conductivity is +0. The end point was the time when the voltage dropped to 1 mV.
 PGA粒子等の生分解性脂肪族ポリエステル粒子の水分量は、好ましくは900ppm以上、より好ましくは1,500ppm以上、更に好ましくは2,000ppm以上、特に好ましくは3,000ppm以上である。PGA粒子等の生分解性脂肪族ポリエステル粒子の水分量が900ppm未満であると、ブロッキングが生じやすくなり、取り扱い性に劣ることがある。PGA粒子等の生分解性脂肪族ポリエステル粒子の水分量の上限は特にないが、生分解性脂肪族ポリエステル粒子の形状の保持や、予期しない加水分解の発生防止の観点から、通常10,000ppm以下とすることが好ましく、多くの場合9,000ppm以下であり、7,000ppm以下とすることがより好ましいこともある。 The water content of the biodegradable aliphatic polyester particles such as PGA particles is preferably 900 ppm or more, more preferably 1,500 ppm or more, still more preferably 2,000 ppm or more, and particularly preferably 3,000 ppm or more. When the water content of the biodegradable aliphatic polyester particles such as PGA particles is less than 900 ppm, blocking tends to occur and the handleability may be inferior. There is no particular upper limit on the water content of the biodegradable aliphatic polyester particles such as PGA particles, but usually 10,000 ppm or less from the viewpoint of maintaining the shape of the biodegradable aliphatic polyester particles and preventing the occurrence of unexpected hydrolysis. In many cases, it is 9,000 ppm or less, and more preferably 7,000 ppm or less.
〔円柱状タブレットの圧縮破壊強度〕
 さらに、本発明のPGA粒子またはPLA粒子等の生分解性脂肪族ポリエステル粒子は、円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの圧縮破壊強度が1,500gf/cm以下のものであることによって、高温に曝されることがある夏場やコンテナによる保管や輸送に際しても、該生分解性脂肪族ポリエステル粒子が、一層ブロッキングしにくく、また、一旦は粒子のブロッキングが生じても、極めて容易にブロッキング状態を解消することができるものとなる。これに対して、該円柱状タブレットの圧縮破壊強度が1,500gf/cmを超える生分解性脂肪族ポリエステル粒子では、ブロッキングした生分解性脂肪族ポリエステル粒子のブロッキング状態を解消することが困難であり、使用用途に求められる粒子径の生分解性脂肪族ポリエステル粒子を容易に得ることができない。円柱状タブレットの圧縮破壊強度は、好ましくは1,000gf/cm以下、より好ましくは600gf/cm以下、更に好ましくは400gf/cm以下、特に好ましくは200gf/cm以下の範囲であり、最も好ましくは100gf/cm以下である。該円柱状タブレットの圧縮破壊強度の下限値は、特に限定されないが、通常10gf/cm、多くの場合20gf/cmであり、場合によっては30gf/cm程度でも差し支えない。
[Compressive fracture strength of cylindrical tablets]
Furthermore, the biodegradable aliphatic polyester particles such as PGA particles or PLA particles of the present invention are compressed in a cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold. When the breaking strength is 1,500 gf / cm 2 or less, the biodegradable aliphatic polyester particles are less likely to be blocked even during storage or transportation in the summer or containers that may be exposed to high temperatures, Moreover, even if particle blocking occurs once, the blocking state can be eliminated very easily. On the other hand, in the biodegradable aliphatic polyester particles having a compression fracture strength of the cylindrical tablet exceeding 1,500 gf / cm 2 , it is difficult to eliminate the blocked state of the blocked biodegradable aliphatic polyester particles. In addition, biodegradable aliphatic polyester particles having a particle size required for the intended use cannot be easily obtained. Compression breaking strength of cylindrical tablets is preferably 1,000 gf / cm 2 or less, more preferably 600 gf / cm 2 or less, more preferably 400 gf / cm 2 or less, particularly preferably 200 gf / cm 2 or less in the range, Most preferably, it is 100 gf / cm 2 or less. The lower limit of the compressive fracture strength of the cylindrical tablet is not particularly limited, but is usually 10 gf / cm 2 , often 20 gf / cm 2 , and in some cases, about 30 gf / cm 2 may be used.
 前記の円柱状タブレットの圧縮破壊強度は、ORIENTEC社製の引張圧縮試験機(STA-1150)を用いて、速度1mm/分にて円柱状タブレットを垂直方向に圧縮し、該タブレットを破壊するに要した最大点荷重(N=3の平均値)を求め、該圧縮破壊強度とするものである。 The compressive fracture strength of the cylindrical tablet was determined by compressing the cylindrical tablet in a vertical direction at a speed of 1 mm / min using a tensile compression tester (STA-1150) manufactured by ORIENTEC, and breaking the tablet. The required maximum point load (average value of N = 3) is obtained and used as the compressive fracture strength.
 生分解性脂肪族ポリエステル粒子の円柱状タブレットの圧縮破壊強度の測定を行うための円柱状タブレットは、該粒子に、円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットである。具体的には、生分解性脂肪族ポリエステル粒子を、ステンレス製の円筒状金型(内径11.3mm(内断面積1cm))内に1g入れ、該粒子の上部から円柱状重り(外径11.3mm、重さ100g)を挿入して、該粒子に一定荷重(100gf/cm)をかけた状態で、温度40℃に設定した恒温槽(相対湿度10~30%程度)内で24時間荷重をかけ続けながら静置することによって成形して調製される、上面積1cm、下面積1cm、高さ1.5cmの円柱状タブレットである。 A cylindrical tablet for measuring the compressive fracture strength of a cylindrical tablet of biodegradable aliphatic polyester particles is loaded with a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in the cylindrical mold. It is a columnar tablet molded. Specifically, 1 g of biodegradable aliphatic polyester particles is placed in a stainless steel cylindrical mold (inner diameter 11.3 mm (inner cross-sectional area 1 cm 2 )), and a cylindrical weight (outer diameter) is formed from the top of the particles. 11.3 mm, weight 100 g) and a constant load (100 gf / cm 2 ) is applied to the particles in a constant temperature bath (relative humidity 10-30%) set at a temperature of 40 ° C. is prepared by molding by settling while continuing over time load, the upper area of 1 cm 2, the lower area of 1 cm 2, a cylindrical tablet height 1.5 cm.
〔温度40℃で50日間経過後の重量平均分子量の保持率〕
 本発明の生分解性脂肪族ポリエステル粒子は、ブロッキング防止効果に優れるとともに、長期保存性にも優れたものとすることができる。具体的には、温度40℃で50日間経過後の重量平均分子量の保持率(以下、単に「50日間経過後の分子量保持率」ということがある。)、すなわち、該生分解性脂肪族ポリエステル粒子を、アルミニウム袋に密封して、温度40℃の環境下に50日間保管した、50日間経過後の重量平均分子量の保持率が、65%以上である該生分解性脂肪族ポリエステル粒子であることが好ましい。該50日間経過後の分子量保持率は、より好ましくは70%以上、更に好ましくは75%以上、特に好ましくは80%以上、最も好ましくは90%以上である。中でも、50日間経過後の分子量保持率が80%以上であると、生分解性脂肪族ポリエステル粒子を1年間以上保存を行っても、ブロッキングが生じることなく、また加水分解が生じることがない。
[Retention ratio of weight average molecular weight after 50 days at a temperature of 40 ° C.]
The biodegradable aliphatic polyester particles of the present invention are excellent in anti-blocking effect and excellent in long-term storage stability. Specifically, the weight average molecular weight retention after 50 days at a temperature of 40 ° C. (hereinafter sometimes simply referred to as “molecular weight retention after 50 days”), that is, the biodegradable aliphatic polyester The biodegradable aliphatic polyester particles, wherein the particles are sealed in an aluminum bag and stored in an environment at a temperature of 40 ° C. for 50 days, and the retention of the weight average molecular weight after 50 days is 65% or more. It is preferable. The molecular weight retention after the elapse of 50 days is more preferably 70% or more, further preferably 75% or more, particularly preferably 80% or more, and most preferably 90% or more. In particular, when the molecular weight retention after 50 days is 80% or more, even when the biodegradable aliphatic polyester particles are stored for 1 year or more, blocking does not occur and hydrolysis does not occur.
 50日間経過後の分子量保持率は、所定量の粒子試料をアルミニウム袋に密封して、40℃に設定した環境、例えば、オーブン中に50日間保管した後、すなわち50日間経過後に測定した粒子試料の重量平均分子量(50日間経過後の分子量)と、初期分子量、すなわち、保管前の粒子試料の重量平均分子量とから、以下の式1を用いて算出されるものである。
式1:  50日間経過後の分子量保持率(%)=(50日間経過後の分子量)/(初期分子量)×100
The molecular weight retention after the lapse of 50 days is a particle sample measured after sealing a predetermined amount of the particle sample in an aluminum bag and storing it in an environment set at 40 ° C., for example, in an oven for 50 days, that is, after 50 days. The weight average molecular weight (molecular weight after the lapse of 50 days) and the initial molecular weight, that is, the weight average molecular weight of the particle sample before storage are calculated using the following formula 1.
Formula 1: Molecular weight retention after 50 days (%) = (Molecular weight after 50 days) / (Initial molecular weight) × 100
3.生分解性脂肪族ポリエステル粒子の製造方法
 本発明のPGA粒子またはPLA粒子等の生分解性脂肪族ポリエステル粒子は、(A)重量平均分子量が、5万以上;(B)平均粒子径が、5~500μm;及び(C)水分量が、900ppm以上;であり、好ましくは、更に、(D)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの圧縮破壊強度が、1,500gf/cm以下;及び/または(E)温度40℃で50日間経過後の重量平均分子量の保持率が、65%以上であるものを得ることができる限り、その製造方法は特に限定されない。
3. Method for Producing Biodegradable Aliphatic Polyester Particles Biodegradable aliphatic polyester particles such as PGA particles or PLA particles of the present invention have (A) a weight average molecular weight of 50,000 or more; (B) an average particle diameter of 5 And (C) a moisture content of 900 ppm or more, preferably (D) a circle formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold. The columnar tablet has a compressive fracture strength of 1,500 gf / cm 2 or less; and / or (E) a weight average molecular weight retention after 50 days at a temperature of 40 ° C. of 65% or more can be obtained. As long as the manufacturing method is not particularly limited.
 本発明の生分解性脂肪族ポリエステル粒子は、通常、重合反応後に回収される粉末状またはフレーク状等の形状を有するPGA等の生分解性脂肪族ポリエステルから、好ましくは洗浄を行い、必要に応じて分級して、得られた粒子状の生分解性脂肪族ポリエステルを出発原料としてもよい。また、該粒子状の生分解性脂肪族ポリエステルに、必要に応じて種々の添加剤を配合して溶融押出成形することによって得られたペレット状の生分解性脂肪族ポリエステルを出発原料としてもよい。 The biodegradable aliphatic polyester particles of the present invention are usually washed from a biodegradable aliphatic polyester such as PGA having a shape such as powder or flakes collected after the polymerization reaction, and if necessary, The obtained particulate biodegradable aliphatic polyester may be used as a starting material. In addition, a pellet-shaped biodegradable aliphatic polyester obtained by blending various additives as necessary with the particulate biodegradable aliphatic polyester and melt extrusion molding may be used as a starting material. .
〔粉砕処理〕
 本発明のPGA粒子等の生分解性脂肪族ポリエステル粒子は、これらの粉末状、フレーク状、粒子状またはペレット状等の諸形状(既に述べたように、これらの諸形状を総称して、単に「粒子状」という。)の生分解性脂肪族ポリエステルに対して、機械的衝撃を加えて粉砕(衝撃粉砕)し、特に凍結粉砕して得ることができ、その際、必要に応じて分級して得ることができる。また、本発明の生分解性脂肪族ポリエステル粒子は、PGA等の生分解性脂肪族ポリエステルを有機溶剤の溶液または分散液とした後、凝固または析出させて得ることができ、その際、必要に応じて分級して得ることができる。
[Crushing treatment]
The biodegradable aliphatic polyester particles such as the PGA particles of the present invention are various shapes such as powders, flakes, particles or pellets (as described above, these shapes are collectively referred to simply as It can be obtained by pulverizing (impact pulverizing) the biodegradable aliphatic polyester of “particulate”) with mechanical impact, and in particular, freeze-pulverizing, and classifying as necessary. Can be obtained. The biodegradable aliphatic polyester particles of the present invention can be obtained by making a biodegradable aliphatic polyester such as PGA into a solution or dispersion of an organic solvent, and then coagulating or precipitating. According to classification, it can be obtained.
 ブロッキング防止効果の高さや製造効率及び製造費用などの観点から、本発明の生分解性脂肪族ポリエステル粒子は、粉砕することによって製造することが好ましく、衝撃粉砕することによって製造することがより好ましい。更に好ましくは、生分解性脂肪族ポリエステルのガラス転移温度(Tg)以下の温度で粉砕を行って、本発明の生分解性脂肪族ポリエステル粒子を製造することができる。粉砕の温度は、より好ましくは-60℃以上ガラス転移温度(Tg)-5℃以下、更に好ましくは-55℃以上ガラス転移温度(Tg)-10℃以下、特に好ましくは-40℃以上ガラス転移温度(Tg)-20℃以下、最も好ましくは-30℃以上ガラス転移温度(Tg)-30℃以下の範囲であり、具体的には、例えば、-55℃~35℃、好ましくは-45℃~20℃、より好ましくは-30℃~15℃のような温度範囲を選択することができる。この温度範囲でPGA等の生分解性脂肪族ポリエステルの原料粒子を粉砕、特に衝撃粉砕することにより、粉砕時の発熱が抑制され、粒子表面や粒子内部の熱的変性を生じることなく、所望の粒子径、すなわち、(B)平均粒子径(50%D)が5~500μmの生分解性脂肪族ポリエステル粒子を得ることができる。粉砕後の粒子は、前記のように所定範囲の大きさのものに分級することが好適である。 From the viewpoint of high antiblocking effect, production efficiency and production cost, the biodegradable aliphatic polyester particles of the present invention are preferably produced by pulverization, more preferably produced by impact pulverization. More preferably, the biodegradable aliphatic polyester particles of the present invention can be produced by grinding at a temperature not higher than the glass transition temperature (Tg) of the biodegradable aliphatic polyester. The pulverization temperature is more preferably −60 ° C. or more and glass transition temperature (Tg) −5 ° C. or less, more preferably −55 ° C. or more and glass transition temperature (Tg) −10 ° C. or less, particularly preferably −40 ° C. or more. Temperature (Tg) −20 ° C. or less, most preferably −30 ° C. or more and glass transition temperature (Tg) −30 ° C. or less. Specifically, for example, −55 ° C. to 35 ° C., preferably −45 ° C. A temperature range such as -20 ° C, more preferably -30 ° C-15 ° C can be selected. By pulverizing the raw material particles of biodegradable aliphatic polyester such as PGA in this temperature range, particularly by impact pulverization, heat generation during pulverization is suppressed, and thermal denaturation of the particle surface or inside the particle is not caused and desired Biodegradable aliphatic polyester particles having a particle diameter, that is, (B) average particle diameter (50% D) of 5 to 500 μm can be obtained. The pulverized particles are preferably classified into particles having a predetermined size as described above.
 衝撃粉砕、特に凍結粉砕を行う装置としては、液体窒素等の超低温冷媒による冷却部と粉砕部、更に好ましくは粒度調整部とを兼ね備えた装置が好ましく、ジェットミル、ブレードミル、ピンミル等を用いることができるが、高速回転する2枚のディスクピンのクリアランス及び回転速度の調節により所望の粒度や形状を有する粒子が得られるピンミルを使用することが好ましい。衝撃粉砕法により粉砕を行う時間は、衝撃粉砕を行う処理温度によっても異なるが、通例10秒間~20分間、好ましくは30秒間~15分間、より好ましくは1~10分間、特に好ましくは1分30秒間~5分間の範囲とすればよい。 As an apparatus for performing impact pulverization, particularly freeze pulverization, an apparatus having both a cooling unit and a pulverizing unit, more preferably a particle size adjusting unit, using a cryogenic refrigerant such as liquid nitrogen is preferable, and a jet mill, a blade mill, a pin mill, or the like is used. However, it is preferable to use a pin mill that can obtain particles having a desired particle size and shape by adjusting the clearance and rotation speed of two disk pins that rotate at high speed. The time for pulverization by the impact pulverization method varies depending on the treatment temperature at which impact pulverization is performed, but is usually 10 seconds to 20 minutes, preferably 30 seconds to 15 minutes, more preferably 1 to 10 minutes, and particularly preferably 1 minute 30. The range may be from 5 seconds to 5 minutes.
〔調湿処理〕
 本発明のPGA粒子等の生分解性脂肪族ポリエステル粒子は、(C)水分量が、900ppm以上である。前記した衝撃粉砕等の粉砕処理を行い、または行うことなく得られた生分解性脂肪族ポリエステル粒子の水分量が900ppm未満であるときは、該生分解性脂肪族ポリエステル粒子を、一定の湿度環境下、例えば、恒温恒湿槽内に所定時間、静置したり、流動させたりして、水分量が900ppm以上となるように加湿する調湿処理や、直接水分を噴射し粒子を混合して調湿処理を行うことができる。また、水分量が900ppm以上であるPGA粒子等の生分解性脂肪族ポリエステル粒子を、より好ましい水分量に調整するために、更に前述の調湿処理を行って水分量を増加させてもよい。
[Humidity control]
The biodegradable aliphatic polyester particles such as the PGA particles of the present invention have (C) a water content of 900 ppm or more. When the water content of the biodegradable aliphatic polyester particles obtained by performing or not performing the pulverization treatment such as impact pulverization is less than 900 ppm, the biodegradable aliphatic polyester particles are used in a constant humidity environment. Below, for example, in a constant temperature and humidity chamber for a predetermined time, or by allowing it to flow, humidity control treatment to humidify so that the amount of water becomes 900 ppm or more, or direct injection of water and mixing the particles Humidity control can be performed. Further, in order to adjust the biodegradable aliphatic polyester particles such as PGA particles having a water content of 900 ppm or more to a more preferable water content, the moisture content may be further increased by performing the above-described humidity conditioning treatment.
 先に述べたように、PGA粒子等の生分解性脂肪族ポリエステル粒子の水分量の上限は特にないが、生分解性脂肪族ポリエステル粒子の形状の保持や、予期しない加水分解の発生防止の観点から、該水分量を減少させたいときは、該生分解性脂肪族ポリエステル粒子を、低温乾燥雰囲気に所定時間、静置したり、流動させたりして、水分量を所望の値に調整することができる。低温乾燥雰囲気としては、露点-50℃雰囲気(飽和水蒸気圧0.0381g/m)~露点-70℃雰囲気(飽和水蒸気圧0.00277g/m)を採用することができ、多くの場合、露点-60℃雰囲気(飽和水蒸気圧0.0109g/m)において調湿処理することが好ましい。 As described above, there is no particular upper limit on the amount of water in the biodegradable aliphatic polyester particles such as PGA particles, but from the viewpoint of maintaining the shape of the biodegradable aliphatic polyester particles and preventing the occurrence of unexpected hydrolysis. Therefore, when it is desired to reduce the moisture content, the moisture content is adjusted to a desired value by allowing the biodegradable aliphatic polyester particles to stand in a low temperature drying atmosphere for a predetermined time or to flow. Can do. As the low temperature drying atmosphere, an atmosphere having a dew point of −50 ° C. (saturated water vapor pressure 0.0381 g / m 3 ) to a dew point of −70 ° C. (saturated water vapor pressure 0.00277 g / m 3 ) can be adopted. It is preferable to perform humidity conditioning in an atmosphere with a dew point of −60 ° C. (saturated water vapor pressure of 0.0109 g / m 3 ).
 なお、前記した衝撃粉砕等の粉砕処理を行い、または行うことなく得られた生分解性脂肪族ポリエステル粒子の水分量が、900ppm以上である場合は、調湿処理を行うことなく、本発明の生分解性脂肪族ポリエステル粒子が得られていることとなる。 In addition, when the water content of the biodegradable aliphatic polyester particles obtained without performing the pulverization treatment such as impact pulverization described above is 900 ppm or more, the humidity control treatment is not performed and the present invention is performed. Biodegradable aliphatic polyester particles are obtained.
 以下に実施例及び比較例を示して本発明を更に説明するが、本発明は、本実施例に限定されるものではない。実施例及び比較例における生分解性脂肪族ポリエステル粒子の物性または特性の測定方法は、以下のとおりである。 Hereinafter, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited to these examples. The measuring method of the physical property or characteristic of the biodegradable aliphatic polyester particle in an Example and a comparative example is as follows.
〔重量平均分子量(Mw)〕
 生分解性脂肪族ポリエステル粒子の重量平均分子量(Mw)は、該粒子試料10mgを、トリフルオロ酢酸ナトリウムを5mMの濃度で溶解させたヘキサフルオロイソプロパノール(HFIP)に、溶解させて10mlとした後、メンブレンフィルターでろ過して試料溶液を得て、この試料溶液10μlをGPC装置に注入して、下記の測定条件で分子量を測定することによって求めた。
[Weight average molecular weight (Mw)]
The weight average molecular weight (Mw) of the biodegradable aliphatic polyester particles was adjusted to 10 ml by dissolving 10 mg of the particle sample in hexafluoroisopropanol (HFIP) in which sodium trifluoroacetate was dissolved at a concentration of 5 mM. A sample solution was obtained by filtration through a membrane filter, 10 μl of this sample solution was injected into a GPC apparatus, and the molecular weight was measured under the following measurement conditions.
<GPC測定条件>
装置:昭和電工株式会社製GPC104
カラム:昭和電工株式会社製HFIP-806M 2本(直列接続)+プレカラム:HFIP-LG 1本
カラム温度:40℃
溶離液:トリフルオロ酢酸ナトリウムを5mMの濃度で溶解させたHFIP溶液
検出器:示差屈折率計
分子量校正:分子量の異なる標準分子量のポリメタクリル酸メチル5種(Polymer laboratories Ltd.製)を用いて作成した分子量の検量線データを使用
<GPC measurement conditions>
Apparatus: Showa Denko GPC104
Column: Showa Denko HFIP-806M 2 (in series connection) + Precolumn: HFIP-LG 1 Column temperature: 40 ° C.
Eluent: HFIP solution in which sodium trifluoroacetate is dissolved at a concentration of 5 mM Detector: Differential refractometer Molecular weight calibration: Prepared using 5 types of polymethyl methacrylate (manufactured by Polymer laboratories Ltd.) with different molecular weights Using the calibration curve data of the measured molecular weight
〔融点(Tm)〕
 試料10mgを、示差走査熱量計(DSC;メトラー・トレド社製TC-15)を使用して、窒素雰囲気中、20℃/分の昇温速度で、室温雰囲気から結晶融点(Tm+50℃付近)の温度まで加熱するときに現れる吸熱ピークから、結晶融点(Tm)を測定した。結晶融点が複数みられる場合には、吸熱ピーク面積の最も大きいピークを結晶融点(Tm)とした。
[Melting point (Tm)]
Using a differential scanning calorimeter (DSC; TC-15 manufactured by METTLER TOLEDO), 10 mg of a sample was heated from a room temperature atmosphere to a crystalline melting point (around Tm + 50 ° C.) in a nitrogen atmosphere at a heating rate of 20 ° C./min. The crystal melting point (Tm) was measured from the endothermic peak that appears when heating to temperature. When a plurality of crystal melting points were observed, the peak with the largest endothermic peak area was defined as the crystal melting point (Tm).
〔ガラス転移温度(Tg)〕
試料10mgを、示差走査熱量計(DSC;メトラー・トレド社製TC-15)を用いて、約280℃まで加熱し、この温度で2分間保持した後、液体窒素により急速(約100℃/分)に冷却して得られる非晶試料を、窒素雰囲気中、20℃/分の昇温速度で、室温雰囲気から100℃付近の温度まで再加熱するときの、ガラス状態からゴム状態への転移領域に相当する中間点ガラス転移温度をガラス転移温度(Tg)とした。
[Glass transition temperature (Tg)]
A 10 mg sample was heated to about 280 ° C. using a differential scanning calorimeter (DSC; TC-15 manufactured by METTLER TOLEDO), held at this temperature for 2 minutes, and then rapidly (about 100 ° C./min with liquid nitrogen). The transition region from the glassy state to the rubbery state when the amorphous sample obtained by cooling to) is reheated from a room temperature atmosphere to a temperature close to 100 ° C. at a heating rate of 20 ° C./min in a nitrogen atmosphere. The glass transition temperature (Tg) was defined as the midpoint glass transition temperature corresponding to.
〔平均粒子径(50%D)〕
 生分解性脂肪族ポリエステル粒子の平均粒子径は、前記粒子試料を、界面活性剤(サンノプコ株式会社製「SNディスパーサント7347-c希釈溶液」)を含有する水に分散させた粒子分散液について、レーザー回折式粒度分布測定装置(株式会社島津製作所製SALADA-3000S)を使用して求めた粒子径分布から、小粒子径側からの累積重量が50%となる粒子径を平均粒子径(50%D)として求めた。
[Average particle size (50% D)]
The average particle size of the biodegradable aliphatic polyester particles is obtained by dispersing the particle sample in water containing a surfactant (“SN Dispersant 7347-c diluted solution” manufactured by San Nopco Co., Ltd.). From the particle size distribution determined using a laser diffraction particle size distribution analyzer (Salada-3000S manufactured by Shimadzu Corporation), the particle size at which the cumulative weight from the small particle size side becomes 50% is calculated as the average particle size (50% D).
〔水分量〕
 生分解性脂肪族ポリエステル粒子の水分量は、気化装置付カールフィッシャー水分計(三菱化学株式会社製CA-100(気化装置:VA-100))を用いて測定した。具体的には、あらかじめ生分解性ポリエステル粒子の融点に設定し加熱した気化装置に、2gの生分解性脂肪族ポリエステル粒子の試料粒子を入れ、気化装置からカールフィッシャー水分測定器に250ml/分で乾燥窒素ガスを流し、試料を気化装置に導入した後、気化された水分がカールフィッシャー液に導入されることにより、電気伝導度がバックグラウンドより+0.1mVまで下がってきた時点を終点とした。
〔amount of water〕
The water content of the biodegradable aliphatic polyester particles was measured using a Karl Fischer moisture meter with a vaporizer (CA-100 (vaporizer: VA-100) manufactured by Mitsubishi Chemical Corporation). Specifically, 2 g of sample particles of biodegradable aliphatic polyester particles are placed in a vaporizer heated in advance by setting the melting point of the biodegradable polyester particles, and 250 ml / min from the vaporizer to the Karl Fischer moisture meter. After flowing dry nitrogen gas and introducing the sample into the vaporizer, the time when the electrical conductivity decreased to +0.1 mV from the background by introducing the vaporized water into the Karl Fischer liquid was used as the end point.
〔円柱状タブレットの圧縮破壊強度〕
 生分解性脂肪族ポリエステル粒子の円柱状タブレットの圧縮破壊強度は、オリエンテック社製引張圧縮試験機(STA-1150)を用いて、前記粒子試料から調製した円柱状タブレットを速度1mm/分にて垂直方向に圧縮し、該タブレットを破壊するに要した最大点荷重(N=3の平均値)を求めた。
[Compressive fracture strength of cylindrical tablets]
The compressive fracture strength of the cylindrical tablet of biodegradable aliphatic polyester particles was determined by using a tensile compression tester (STA-1150) manufactured by Orientec Co., Ltd., and the cylindrical tablet prepared from the particle sample at a speed of 1 mm / min. The maximum point load (average value of N = 3) required for compressing in the vertical direction and breaking the tablet was determined.
 円柱状タブレットは、前記粒子試料を、ステンレス製の円筒金型(内径11.3mm(内断面積1cm))内に1g入れ、該粒子の上部から円柱状重り(外径11.3mm、重さ100g)を挿入して、該粒子に一定荷重(100gf/cm)をかけた状態で、温度40℃に設定した恒温槽(相対湿度20%)内で、24時間荷重をかけ続けながら静置することによって、上面積1cm、下面積1cm、高さ1.5cmの円柱状タブレットに成形して調製した。 In the cylindrical tablet, 1 g of the particle sample is placed in a stainless steel cylindrical mold (inner diameter 11.3 mm (inner cross-sectional area 1 cm 2 )), and a cylindrical weight (outer diameter 11.3 mm, weight 100 g), and a constant load (100 gf / cm 2 ) is applied to the particles, in a constant temperature bath (relative humidity 20%) set at a temperature of 40 ° C. It was prepared by forming into a cylindrical tablet having an upper area of 1 cm 2 , a lower area of 1 cm 2 and a height of 1.5 cm.
〔保管性(温度40℃で50日間経過後の重量平均分子量の保持率(%))〕
 生分解性脂肪族ポリエステル粒子の保管性は、前記粒子試料1kgをアルミニウム袋に密封して、40℃に設定したオーブンに50日間保管し、該50日間経過後に粒子試料の重量平均分子量(50日間経過後の分子量)の測定を行い、保管前の該粒子試料の重量平均分子量(初期分子量)とから、前記の式1を用いて算出した50日間経過後の分子量保持率(%)により評価した。50日間経過後の分子量保持率(%)が65%以上であれば、保管性が高いと評価できる。
式1:  50日間経過後の分子量保持率(%)=(50日間経過後の分子量)/(初期分子量)×100
[Storability (weight average molecular weight retention after 50 days at 40 ° C. (%))]
The storage stability of the biodegradable aliphatic polyester particles is as follows: 1 kg of the particle sample is sealed in an aluminum bag and stored in an oven set at 40 ° C. for 50 days, and after 50 days, the weight average molecular weight of the particle sample (50 days). (Molecular weight after lapse of time) was measured, and evaluated from the molecular weight retention rate (%) after the lapse of 50 days calculated using the above formula 1 from the weight average molecular weight (initial molecular weight) of the particle sample before storage. . If the molecular weight retention rate (%) after 50 days is 65% or more, it can be evaluated that the storability is high.
Formula 1: Molecular weight retention after 50 days (%) = (Molecular weight after 50 days) / (Initial molecular weight) × 100
〔耐ブロッキング性の持続性〕
 粒子試料の耐ブロッキング性の持続性は、チャック下70mm、袋幅50mm、厚み0.04mmのチャック付きポリエチレン袋に、前記の50日間保管した後に取り出した粒子試料15gを秤量して封入し、40℃の恒温槽中で、4kgの重りを乗せて荷重をかけ1日間経過した後、チャック付きポリエチレン袋から粒子試料を取り出して、目開き850μmの篩の上面に注ぎ乗せ、該篩を1分間手で振るったときの状態を、以下の基準により、「50日間経過後のブロッキング性」として評価した。
A: 篩の網目上に残った試料が20質量%未満。
B: 篩の網目上に残った試料が20~70質量%。
C: 篩の網目上に残った試料が70質量%を超える。
[Persistence of blocking resistance]
Persistence of blocking resistance of the particle sample was determined by weighing and enclosing 15 g of the particle sample taken out after storage for 50 days in a polyethylene bag with a chuck of 70 mm under the chuck, 50 mm bag width and 0.04 mm thickness. In a constant temperature bath at 4 ° C., a weight of 4 kg was put and a load was applied for 1 day. Then, a particle sample was taken out from the polyethylene bag with a chuck and poured onto the upper surface of a sieve having an opening of 850 μm. The state when shaken was evaluated as “blocking property after 50 days” according to the following criteria.
A: The sample remaining on the sieve mesh is less than 20% by mass.
B: 20 to 70% by mass of the sample remaining on the sieve mesh.
C: The sample remaining on the mesh of the sieve exceeds 70% by mass.
〔実施例1〕
 PGAフレーク(Mw:21万、Tg:45℃、Tm:221℃)100質量部に、カルボキシル基末端封止剤としてN,N―2、6-ジイソプロピルフェニルカルボジイミド(川口化学工業株式会社製DIPC)0.3質量部、及び、熱安定剤としてモノ及びジステアリルアシッドホスフェートのほぼ等モル混合物(株式会社ADEKA製アデカスタブAX-71)0.02質量部を、2軸押出機に添加しながら溶融混練して、PGAペレットを作製した。作製したPGAペレット約20kgを、液体窒素に浸漬して冷却後、粉砕時に液体窒素冷却が可能なピンミル(槇野産業株式会社製の「超微粉ピンミル:コントラプレックスシリーズ」)を用いて、液体窒素で冷却しながら、粉砕温度-50℃、周速187m/秒の条件で2分間粉砕(衝撃粉砕)して、PGA粒子を得た。得られたPGA粒子の初期分子量、平均粒子径(50%D、以下、単に「粒子径」という。)、水分量、円柱状タブレットの圧縮破壊強度(以下、単に「圧縮破壊強度」という。)、50日間経過後のブロッキング性、及び保管性(50日間経過後の分子量保持率(%))の試験結果を表1に示す。
[Example 1]
PGA flakes (Mw: 210,000, Tg: 45 ° C., Tm: 221 ° C.) with 100 parts by mass of N, N-2,6-diisopropylphenylcarbodiimide (DIPC manufactured by Kawaguchi Chemical Co., Ltd.) as a carboxyl group terminal blocker Melting and kneading while adding 0.3 part by mass and 0.02 part by mass of a substantially equimolar mixture of mono and distearyl acid phosphates (ADEKA ADEKA STAB AX-71 manufactured by ADEKA Corporation) as a heat stabilizer to a twin screw extruder Thus, a PGA pellet was produced. About 20 kg of the produced PGA pellets are immersed in liquid nitrogen, cooled, and then cooled with liquid nitrogen using a pin mill that can be cooled with liquid nitrogen at the time of pulverization (“Ultra Fine Pin Mill: Contraplex Series” manufactured by Hadano Sangyo Co., Ltd.) While cooling, the mixture was pulverized (impact pulverization) for 2 minutes under the conditions of a pulverization temperature of −50 ° C. and a peripheral speed of 187 m / sec to obtain PGA particles. The initial molecular weight, average particle diameter (50% D, hereinafter simply referred to as “particle diameter”), moisture content, and compression fracture strength of the cylindrical tablet (hereinafter simply referred to as “compression fracture strength”) of the obtained PGA particles. Table 1 shows the test results of blocking property after 50 days and storage properties (molecular weight retention (%) after 50 days).
〔実施例2〕
 衝撃粉砕における粉砕温度を-25℃に変更したこと以外は、実施例1と同様にして、PGA粒子を得た。得られたPGA粒子の初期分子量、粒子径、水分量、圧縮破壊強度、50日間経過後のブロッキング性、及び保管性の試験結果を表1に示す。
[Example 2]
PGA particles were obtained in the same manner as in Example 1 except that the pulverization temperature in impact pulverization was changed to -25 ° C. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the obtained PGA particles.
〔実施例3〕
 衝撃粉砕における粉砕温度を5℃に変更したこと以外は、実施例1と同様にして、PGA粒子を得た。得られたPGA粒子の初期分子量、粒子径、水分量、圧縮破壊強度、50日間経過後のブロッキング性、及び保管性の試験結果を表1に示す。
Example 3
PGA particles were obtained in the same manner as in Example 1 except that the pulverization temperature in impact pulverization was changed to 5 ° C. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the obtained PGA particles.
〔実施例4〕
 実施例3で得られたPGA粒子に水を約3mL噴射した後、よく攪拌混合し、該粒子中の水分量を増加させるように調湿したPGA粒子を得た。該調湿したPGA粒子の初期分子量、粒子径、水分量、圧縮破壊強度、50日間経過後のブロッキング性、及び保管性の試験結果を表1に示す。
Example 4
After about 3 mL of water was jetted onto the PGA particles obtained in Example 3, the mixture was thoroughly stirred and mixed to obtain PGA particles that were conditioned so as to increase the amount of water in the particles. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the conditioned PGA particles.
〔実施例5〕
 実施例3で得られたPGA粒子に水を約8mL噴射した後、よく攪拌混合し、該粒子中の水分量を増加させるように調湿したPGA粒子を得た。該調湿したPGA粒子の初期分子量、粒子径、水分量、圧縮破壊強度、50日間経過後のブロッキング性、及び保管性の試験結果を表1に示す。
Example 5
After about 8 mL of water was jetted onto the PGA particles obtained in Example 3, the mixture was thoroughly stirred and mixed to obtain PGA particles that were conditioned so as to increase the amount of water in the particles. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the conditioned PGA particles.
〔実施例6〕
 前記PGAペレットに代えて、PGAフレーク(Mw:21万、Tg:45℃、Tm:221℃)を使用したことを除いて、実施例3と同様にして、PGA粒子を得た。得られたPGA粒子の初期分子量、粒子径、水分量、圧縮破壊強度、50日間経過後のブロッキング性、及び保管性の試験結果を表1に示す。
Example 6
PGA particles were obtained in the same manner as in Example 3 except that PGA flakes (Mw: 210,000, Tg: 45 ° C., Tm: 221 ° C.) were used instead of the PGA pellets. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the obtained PGA particles.
〔実施例7〕
 前記PGAペレットに代えて、PLAペレット(Nature Works社製7000D、Mw:21.5万、Tg:60℃、Tm:165℃)を使用したことを除いて、実施例2と同様にして、PLA粒子を得た。得られたPLA粒子の初期分子量、粒子径、水分量、圧縮破壊強度、50日間経過後のブロッキング性、及び保管性の試験結果を表1に示す。
Example 7
In place of the PGA pellets, PLA pellets (Nature Works 7000D, Mw: 215,000, Tg: 60 ° C., Tm: 165 ° C.) were used in the same manner as in Example 2 except that PLA pellets were used. Particles were obtained. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the obtained PLA particles.
〔比較例1〕
 実施例3で得られたPGA粒子を、露点が-60℃である雰囲気下に6時間静置して、該粒子中の水分量を減少させるように調湿したPGA粒子を得た。該調湿したPGA粒子の初期分子量、粒子径、水分量、圧縮破壊強度、50日間経過後のブロッキング性、及び保管性の試験結果を表1に示す。
[Comparative Example 1]
The PGA particles obtained in Example 3 were allowed to stand in an atmosphere having a dew point of −60 ° C. for 6 hours to obtain PGA particles that were conditioned so as to reduce the water content in the particles. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the conditioned PGA particles.
〔比較例2〕
 実施例3で得られたPGA粒子を、露点が-60℃である雰囲気下に3時間静置して、該粒子中の水分量を減少させるように調湿したPGA粒子を得た。該調湿したPGA粒子の初期分子量、粒子径、水分量、圧縮破壊強度、50日間経過後のブロッキング性、及び保管性の試験結果を表1に示す。
[Comparative Example 2]
The PGA particles obtained in Example 3 were allowed to stand in an atmosphere having a dew point of −60 ° C. for 3 hours to obtain PGA particles that were conditioned so as to reduce the water content in the particles. Table 1 shows the test results of the initial molecular weight, particle diameter, water content, compressive fracture strength, blocking property after 50 days, and storage property of the conditioned PGA particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、-50~5℃の範囲の温度で衝撃粉砕を行って得た、初期分子量(重量平均分子量(Mw))が19.4~21.4万、平均粒子径(D50)が75~152μm、かつ、水分量が949~6,458ppmである実施例1~7のPGA粒子またはPLA粒子は、50日間経過後のブロッキング性がA評価で、耐ブロッキング性の持続性が高く、また、温度40℃で50日間経過後の重量平均分子量の保持率が73.3~99.9%であり粒子の長期保管性に優れていることが分かった。さらに、円柱状タブレットの圧縮破壊強度が、41~1,419gf/cmであって、PGA粒子またはPLA粒子がブロッキングしにくく、また、一旦は粒子のブロッキングが生じても、極めて容易にブロッキング状態を解消することができることが分かった。 From Table 1, the initial molecular weight (weight average molecular weight (Mw)) obtained by impact pulverization at a temperature in the range of −50 to 5 ° C. is 19.4 to 214,000, and the average particle diameter (D 50 ) is The PGA particles or PLA particles of Examples 1 to 7 having 75 to 152 μm and a water content of 949 to 6,458 ppm have an A rating of blocking properties after 50 days, and have a high blocking resistance. Further, the retention of the weight average molecular weight after 50 days at a temperature of 40 ° C. was 73.3 to 99.9%, and it was found that the particles had excellent long-term storage properties. Furthermore, the compression fracture strength of the cylindrical tablet is 41 to 1,419 gf / cm 2 , and PGA particles or PLA particles are difficult to block, and even if particle blocking once occurs, the blocking state is extremely easy. It was found that can be solved.
 これに対し、水分量が40ppmまたは268ppmである比較例1及び2のPGA粒子は、50日間経過後のブロッキング性がCまたはB評価で、耐ブロッキング性の持続性が低いことが分かり、また、円柱状タブレットの圧縮破壊強度が1,900gf/cmまたは1,745gf/cmであり、PGA粒子のブロッキング状態が容易に解消しないものであることが分かった。 In contrast, the PGA particles of Comparative Examples 1 and 2 having a moisture content of 40 ppm or 268 ppm have a blocking property after 50 days of C or B evaluation, and it is found that the durability of the blocking resistance is low, It was found that the compression fracture strength of the cylindrical tablet was 1,900 gf / cm 2 or 1,745 gf / cm 2 , and the blocking state of the PGA particles was not easily eliminated.
 本発明によれば、(A)重量平均分子量が、5万以上;(B)平均粒子径が、5~500μm;及び(C)水分量が、900ppm以上;好ましくは、更に、(D)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの圧縮破壊強度が、1,500gf/cm以下;及び/または(E)温度40℃で50日間経過後の重量平均分子量の保持率が、65%以上である生分解性脂肪族ポリエステル粒子であることによって、ブロッキング防止効果が高く、かつ、長期保管してもブロッキング防止効果が持続し、更に所望により加水分解による分子量低下が生ずることがない生分解性脂肪族ポリエステル粒子が提供されるので、該生分解性脂肪族ポリエステル粒子の利用可能性が高まり、産業上の利用可能性が高い。 According to the present invention, (A) the weight average molecular weight is 50,000 or more; (B) the average particle size is 5 to 500 μm; and (C) the water content is 900 ppm or more; The compression fracture strength of a cylindrical tablet molded by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a mold is 1,500 gf / cm 2 or less; and / or (E) at a temperature of 40 ° C. By the biodegradable aliphatic polyester particles having a weight average molecular weight retention rate of 65% or more after the lapse of 50 days, the antiblocking effect is high, and the antiblocking effect continues even after long-term storage, Furthermore, since biodegradable aliphatic polyester particles that do not cause a decrease in molecular weight due to hydrolysis are provided as desired, the applicability of the biodegradable aliphatic polyester particles is increased. High availability.
 また、本発明によれば、生分解性脂肪族ポリエステルのガラス転移温度(Tg)以下の温度で、粒子状の生分解性脂肪族ポリエステルを粉砕することによって前記の生分解性脂肪族ポリエステル粒子を容易に製造することができるので、産業上の利用可能性が高い。 According to the present invention, the biodegradable aliphatic polyester particles are obtained by pulverizing the particulate biodegradable aliphatic polyester at a temperature not higher than the glass transition temperature (Tg) of the biodegradable aliphatic polyester. Since it can be manufactured easily, the industrial applicability is high.

Claims (5)

  1.  (A)重量平均分子量が、5万以上;
    (B)平均粒子径が、5~500μm;及び
    (C)水分量が、900ppm以上;
    であることを特徴とする生分解性脂肪族ポリエステル粒子。
    (A) The weight average molecular weight is 50,000 or more;
    (B) the average particle size is 5 to 500 μm; and (C) the water content is 900 ppm or more;
    Biodegradable aliphatic polyester particles, characterized in that
  2.  更に、(D)円筒金型内で、温度40℃で100gf/cmの荷重を24時間負荷して成形した円柱状タブレットの圧縮破壊強度が、1,500gf/cm以下である請求項1に記載の生分解性脂肪族ポリエステル粒子。 Furthermore, (D) the compression fracture strength of a cylindrical tablet formed by applying a load of 100 gf / cm 2 at a temperature of 40 ° C. for 24 hours in a cylindrical mold is 1,500 gf / cm 2 or less. The biodegradable aliphatic polyester particles described in 1.
  3.  更に、(E)温度40℃で50日間経過後の重量平均分子量の保持率が、65%以上である請求項1に記載の生分解性脂肪族ポリエステル粒子。 Furthermore, (E) The biodegradable aliphatic polyester particles according to claim 1, wherein the weight average molecular weight retention after 50 days at a temperature of 40 ° C is 65% or more.
  4.  前記生分解性脂肪族ポリエステル粒子に含有される生分解性脂肪族ポリエステルが、ポリグリコール酸、ポリ乳酸、またはそれらの混合物である請求項1に記載の生分解性脂肪族ポリエステル粒子。 The biodegradable aliphatic polyester particles according to claim 1, wherein the biodegradable aliphatic polyester contained in the biodegradable aliphatic polyester particles is polyglycolic acid, polylactic acid, or a mixture thereof.
  5.  生分解性脂肪族ポリエステルのガラス転移温度(Tg)以下の温度で、粒子状の生分解性脂肪族ポリエステルを粉砕することを特徴とする請求項1乃至4のいずれか1項に記載の生分解性脂肪族ポリエステル粒子の製造方法。 The biodegradation according to any one of claims 1 to 4, wherein the particulate biodegradable aliphatic polyester is pulverized at a temperature equal to or lower than the glass transition temperature (Tg) of the biodegradable aliphatic polyester. Of producing aliphatic polyester particles.
PCT/JP2012/060423 2011-04-22 2012-04-18 Biodegradable aliphatic polyester particles, and process for producing same WO2012144511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095827 2011-04-22
JP2011-095827 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144511A1 true WO2012144511A1 (en) 2012-10-26

Family

ID=47041617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060423 WO2012144511A1 (en) 2011-04-22 2012-04-18 Biodegradable aliphatic polyester particles, and process for producing same

Country Status (1)

Country Link
WO (1) WO2012144511A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109347A1 (en) * 2013-01-11 2014-07-17 株式会社クレハ Poly-l-lactic acid solidified and extrusion-molded article, method for producing same, and use applications of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504227A (en) * 1992-10-02 1995-05-11 カーギル, インコーポレイテッド Melt stable lactide polymer film and its manufacturing method
JP2002293905A (en) * 2001-03-29 2002-10-09 Asahi Kasei Corp Method for producing glycolic acid copolymer
WO2009034942A1 (en) * 2007-09-12 2009-03-19 Kureha Corporation Low-melt-viscosity polyglycolic acid, process for producing the same, and use of the low-melt-viscosity polyglycolic acid
JP2010511070A (en) * 2006-11-28 2010-04-08 ピュラック バイオケム ビー.ブイ. Stable lactide particles
WO2010106722A1 (en) * 2009-03-17 2010-09-23 株式会社クレハ Method for producing polyglycolic acid having lowered melt viscosity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504227A (en) * 1992-10-02 1995-05-11 カーギル, インコーポレイテッド Melt stable lactide polymer film and its manufacturing method
JP2002293905A (en) * 2001-03-29 2002-10-09 Asahi Kasei Corp Method for producing glycolic acid copolymer
JP2010511070A (en) * 2006-11-28 2010-04-08 ピュラック バイオケム ビー.ブイ. Stable lactide particles
WO2009034942A1 (en) * 2007-09-12 2009-03-19 Kureha Corporation Low-melt-viscosity polyglycolic acid, process for producing the same, and use of the low-melt-viscosity polyglycolic acid
WO2010106722A1 (en) * 2009-03-17 2010-09-23 株式会社クレハ Method for producing polyglycolic acid having lowered melt viscosity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109347A1 (en) * 2013-01-11 2014-07-17 株式会社クレハ Poly-l-lactic acid solidified and extrusion-molded article, method for producing same, and use applications of same
JPWO2014109347A1 (en) * 2013-01-11 2017-01-19 株式会社クレハ Poly-L-lactic acid solidified extruded product, production method thereof and application thereof
US10072476B2 (en) 2013-01-11 2018-09-11 Kureha Corporation Poly-L-lactic acid solid-state extrusion molded article, method for producing the same, and use applications of the same

Similar Documents

Publication Publication Date Title
JP5763402B2 (en) Biodegradable aliphatic polyester particles and method for producing the same
WO2012121294A1 (en) Polyglycolic acid resin particulate composition for boring, and method for producing same
JP4231781B2 (en) Polyglycolic acid and method for producing the same
EP1970399B1 (en) Process for producing polyglycolic acid resin composition
JP5224815B2 (en) Polyglycolic acid resin granular composition and method for producing the same
JP5291461B2 (en) Aliphatic polyester composition and method for producing the same
WO2014057969A1 (en) Polyglycolic acid resin composition, and method for producing same
EP2116575A1 (en) Method for producing polylactic acid
CN102015250A (en) Poly(hydroxyalkanoic acid) and thermoformed articles
WO2012121296A1 (en) Biodegradable aliphatic polyester resin particulate composition and method for producing same
WO2013162002A1 (en) Polyester resin composition and molded article of same
WO2012029448A1 (en) Granular aliphatic polyester particles and process for manufacturing same
JP2008063456A (en) Method for producing polylactic acid
WO2007043547A1 (en) Polylactic acid composition
WO2012133037A1 (en) Biodegradable aliphatic polyester particles and method for producing same
WO2012144511A1 (en) Biodegradable aliphatic polyester particles, and process for producing same
JP2007284595A (en) Aliphatic polyester film
WO2012133039A1 (en) Biodegradable aliphatic polyester particles, and method for producing same
WO2010134205A1 (en) Polylactic acid resin compositions and manufacturing method therefor
JP6578669B2 (en) Aliphatic polyester resin composition and polymer molding
WO2014171011A1 (en) Method for purifying aliphatic polyester and aliphatic polyester purified with said method
JP4326828B2 (en) Composition of glycolic acid copolymer
JP2012139835A (en) Aliphatic polyhydroxycarboxylic acid pellet and method for manufacturing the same
JPH09176460A (en) Aliphatic polyester composition and its production
JP2008120873A (en) Method for producing polylactic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP