WO2012141300A1 - Circular dichroism measuring device for living body, circular dichroism measuring method for living body, noninvasive blood sugar level measuring device and noninvasive blood sugar level measuring method - Google Patents

Circular dichroism measuring device for living body, circular dichroism measuring method for living body, noninvasive blood sugar level measuring device and noninvasive blood sugar level measuring method Download PDF

Info

Publication number
WO2012141300A1
WO2012141300A1 PCT/JP2012/060156 JP2012060156W WO2012141300A1 WO 2012141300 A1 WO2012141300 A1 WO 2012141300A1 JP 2012060156 W JP2012060156 W JP 2012060156W WO 2012141300 A1 WO2012141300 A1 WO 2012141300A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pmf
living body
circular dichroism
measuring
Prior art date
Application number
PCT/JP2012/060156
Other languages
French (fr)
Japanese (ja)
Inventor
博 梶岡
Original Assignee
株式会社グローバルファイバオプティックス
塩野義製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グローバルファイバオプティックス, 塩野義製薬株式会社 filed Critical 株式会社グローバルファイバオプティックス
Priority to JP2013509984A priority Critical patent/JPWO2012141300A1/en
Publication of WO2012141300A1 publication Critical patent/WO2012141300A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14558Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters by polarisation

Definitions

  • the present invention relates to a living body circular dichroism measuring device and method and a living body non-invasive blood sugar level measuring device and method, for example, capable of measuring the concentration of carbohydrates in a living body and applied to a human finger, ear or skin.
  • the present invention relates to a low-cost non-invasive blood glucose level measuring apparatus and method that can measure the glucose concentration of a subject with high measurement accuracy without irradiating laser light, measuring the transmitted light or reflected light, and collecting blood.
  • a conventional blood sugar level measuring method measures glucose in blood collected by a needle by a chemical reaction.
  • the blood collection method has problems such as pain, needle processing, and the cost of one measurement. From such a background, a method for optically measuring the glucose concentration in blood without depending on blood collection has been studied, and development of a measuring device has been attempted.
  • a first known method for measuring carbohydrates is to irradiate a part of a living body such as a finger with infrared laser light, as described in Patent Document 1, so that scattered light or transmission from the living body. It is intended to measure light contained in blood and subcutaneous interstitial fluid by measuring light.
  • This method utilizes the fact that scattered light decreases in proportion to the glucose concentration.
  • this method has a problem that the light intensity of scattered light depends on temperature, moisture of the skin, an oil component, etc., and is not widely used.
  • the second measurement method propagates a polarization component orthogonal to glucose and measures its birefringence in an open loop.
  • this method has a large error when a sample having a blood glucose level of about 0.1 g / dL, which is a blood glucose level of a healthy person, is measured with a sample (glucose) having a length of about 10 mm. In particular, it cannot be measured in a living body having a very large light scattering loss.
  • the third measurement method is a method of measuring with a birefringence measuring device described in Patent Document 3.
  • a nonreciprocal optical system is provided in the ring optical path of the interferometer, and the sample is placed inside thereof to measure the optical rotation of the sample.
  • a blood glucose level of 0.1 g / dL which is a healthy subject's blood glucose level, can be measured with sufficient accuracy using a specimen having a thickness of about 10 mm.
  • a blood glucose level of 0.1 g / dL which is a healthy subject's blood glucose level
  • the fourth measurement method is a method of measuring the circular dichroism of the specimen with the spatial optical system described in Patent Document 4.
  • the specimen is a light scatterer such as a living body
  • the transmitted light from the living body cannot be efficiently collected on the light receiver. That is, a so-called non-invasive blood sugar level measuring device that measures the glucose concentration of a living body without collecting blood has not been put to practical use.
  • the present invention has been made in view of the above problems, and the object of the present invention is to reduce the blood glucose level of humans, which had conventionally had to be collected for blood glucose measurement for the treatment or prevention of diabetes.
  • a novel biological circular dichroism measuring device, biological dichroic measuring method, non-invasive blood sugar level measuring device, and non-invasive blood sugar level measuring method that can be estimated non-invasively and with high accuracy by a simple method There is to do.
  • the present inventor can estimate human blood glucose level with high accuracy in a non-invasive manner, or with high accuracy circular dichroism related to optical rotation of polarized light based on human glucose.
  • Inexpensive means that can be measured were studied extensively.
  • we have improved the circular dichroism measurement technology which was previously thought to be unusable due to insufficient measurement accuracy for non-invasive estimation of human blood glucose levels. We found that we can make an estimate.
  • the feature of the technology that can obtain measurement information that can be used for estimating the blood glucose level of the living body according to the present invention made to solve the above-mentioned problems with a simple operation at low cost and with high accuracy is mainly:
  • the wavelength of the light source or the polarization-maintaining optical fiber for excitation (hereinafter also referred to as “PMF”) is changed in synchronization with the pulse of the living body, and the polarization of the output of the PMF is synchronized with the pulse.
  • the method of irradiating the living body through the PMF so that the left and right circularly polarized light changes periodically is employed.
  • the emission wavelength from the light source is in a region where the circular dichroism of the specimen is maximized, and Linearly polarized laser light that changes continuously or discretely in synchronism with an external trigger is incident on a polarization-maintaining optical fiber (PMF) with the polarization direction limited, and the output light from the PMF is in its polarization state Irradiates a living body as signal light so that left circularly polarized light and right circularly polarized light change periodically, receives the transmitted light and / or reflected light with a light receiver, and measures the wavelength characteristics of the received light intensity.
  • PMF polarization-maintaining optical fiber
  • a second embodiment (hereinafter referred to as embodiment 2) according to the present invention developed from embodiment 1 is the azimuth of the polarized light in the method for measuring circular dichroism of a living body described in embodiment 1.
  • the azimuth of 45 degrees with respect to the intrinsic polarization axis of the polarization-maintaining optical fiber (PMF) the length of the PMF is L (mm), and the amount of change in wavelength of the light source that changes with time T (seconds) is ⁇ (Nm), when the light source wavelength is ⁇ (nm) and the beat length of the PMF is B (mm), the wavelength of the light source is such that the period of the polarization state of the light emitted from the PMF is synchronized with the pulse.
  • a method for measuring circular dichroism of a living body comprising a step of measuring a change rate ⁇ / T (nm / second) as calculated by the following equation (4).
  • a third exemplary embodiment of the present invention (hereinafter referred to as exemplary embodiment 3) made to solve the above-described problem is that the wavelength of the light source is from the light source in the region where the circular dichroism of the specimen is maximum. And narrowing the spectrum of the light with a grating, linearly polarizing it with a polarizer, limiting the direction of polarization and entering the polarization-maintaining optical fiber (PMF), and continuously or discretely in synchronization with an external trigger.
  • PMF polarization-maintaining optical fiber
  • a biological circle comprising: a step of receiving light by a light receiver through a single-mode optical fiber, a multi-mode optical fiber or a multi-mode optical fiber bundle; and a measuring step of measuring a relationship between the received light intensity and the length of the optical fiber It is a dichroism measurement method.
  • a fourth embodiment of the present invention (hereinafter referred to as “embodiment example 4”) developed by expanding the embodiment example 3 is the narrow-spectrum narrowing in the biological circular dichroism measurement method described in the embodiment example 3.
  • the beat length of the PMF is B and the pulse rate / second is
  • N (p) is set
  • the temporal change rate ⁇ L / T (mm / second) of the optical fiber length of the telescopic device attached to the PMF is changed as calculated by the following equation (7) and measured.
  • a fifth embodiment according to the present invention (hereinafter referred to as a fifth embodiment) developed by developing the first to fourth embodiments is a circular dichroism measurement of a living body according to any one of the first to fourth embodiments.
  • the laser light emitted from the light source is set to a value at which the light emitted from the PMF becomes a linearly polarized state having a 45-degree azimuth, and the change in optical power received by the light receiver is synchronized with the pulse.
  • a method of measuring circular dichroism of a living body, wherein the incident position on the living body is adjusted.
  • a sixth embodiment according to the present invention (hereinafter referred to as a sixth embodiment) developed by developing the first to fifth embodiments is a circular dichroism measurement of a living body according to any one of the first to fifth embodiments.
  • the method includes the step of measuring the wavelength characteristic of the received light intensity by receiving the transmitted light or reflected light directly or through a multimode optical fiber or a multimode optical fiber bundle with a light receiver. This is a method for measuring circular dichroism of a living body.
  • the seventh embodiment (hereinafter referred to as embodiment 7) is the circular dichroism measurement of a living body according to any of embodiments 1 to 6.
  • the larger and smaller losses of left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are respectively ⁇ (M) and ⁇ ( m), the wavelength characteristic of the optical power received by the light receiver is measured under two conditions: when the blood vessel is dilated and when synchronized with C (M) and when synchronized with C (m).
  • a circular dichroism measurement method for a living body comprising a step of measuring an amount proportional to ( ⁇ (M) ⁇ (m)) by calculation.
  • the eighth embodiment of the present invention (hereinafter referred to as embodiment 8) made by developing embodiments 1 to 7 is the circular dichroism measurement of a living body according to any of embodiments 1 to 7.
  • the method when the emitted light of the PMF is coupled to a living body with a lens, the method includes a step of setting the emitting end of the PMF closer to the lens than the focal point of the lens. It is.
  • the ninth embodiment (hereinafter referred to as embodiment 9) according to the present invention developed by expanding embodiments 1 to 8 is the circular dichroism measurement of a living body according to any of embodiments 1 to 8.
  • the outgoing light of the PMF is coupled to a living body with a lens
  • the outgoing end of the PMF is subjected to TEC (core expanded processing, ie, thermally diffused expanded core) processing
  • the core diameter is 2 times the core diameter of the original PMF. It is a method for measuring circular dichroism of a living body, characterized in that it is enlarged more than twice.
  • a tenth embodiment of the present invention (hereinafter referred to as a tenth embodiment) made by developing the first to ninth embodiments is a circular dichroism measurement of a living body according to any one of the first to ninth embodiments.
  • the PMF is an elliptical jacket type fiber whose core is pure quartz and whose cladding is fluorine-doped, and is a biological circular dichroism measuring method characterized in that
  • An eleventh embodiment according to the present invention (hereinafter referred to as “embodiment 11”) obtained by developing Embodiments 1 to 10 is the circular dichroism measurement of a living body according to any one of Embodiments 1 to 10.
  • the larger and smaller losses of left and right circularly polarized light measured for the subject are defined as C (M) and C (m), respectively, and the attenuation of C (M) and C (m) is defined as
  • ⁇ (M) and ⁇ (m) are set, respectively, when the blood vessel is dilated, it is received by the light receiver in the case of two conditions of synchronizing with C (M) and synchronizing with C (m).
  • a non-invasive blood glucose level comprising a step of measuring a wavelength characteristic of the optical power and estimating a blood glucose level of the subject from an amount proportional to ( ⁇ (M) ⁇ (m)) by calculation This is a measurement method.
  • a twelfth embodiment (hereinafter referred to as a morphological example 12) according to the present invention, which was developed by developing the morphological example 11, was measured with respect to the subject in the non-invasive blood sugar level measuring method according to the eleventh example.
  • a non-invasive blood sugar level measuring method comprising a step of estimating a blood sugar level of the subject from an amount proportional to - ⁇ (m)).
  • the emission wavelength from the light source is in a region where the circular dichroism of the specimen is maximized, and Means for injecting linearly polarized laser light, which changes continuously or discretely in synchronization with an external trigger, into a polarization-maintaining optical fiber (PMF) by limiting the direction of polarization; and output light from the PMF Means for irradiating a living body as signal light so that left circularly polarized light and right circularly polarized light periodically change, means for receiving the transmitted light and / or reflected light with a light receiver, and It is a biological circular dichroism measuring apparatus characterized by having a means for measuring wavelength characteristics.
  • PMF polarization-maintaining optical fiber
  • a fourteenth embodiment (hereinafter referred to as a fourteenth embodiment) according to the present invention developed by developing the thirteenth embodiment is the azimuth of the polarization in the biological circular dichroism measuring device according to the thirteenth embodiment.
  • the azimuth of 45 degrees with respect to the intrinsic polarization axis of the polarization-maintaining optical fiber (PMF) the length of the PMF is L (mm), and the amount of change in wavelength of the light source that changes with time T (seconds) is ⁇ (Nm), when the light source wavelength is ⁇ (nm) and the beat length of the PMF is B (mm), the wavelength of the light source is such that the period of the polarization state of the light emitted from the PMF is synchronized with the pulse.
  • An apparatus for measuring circular dichroism of a living body comprising a step of measuring a change rate ⁇ / T (nm / second) as calculated by the following equation (4).
  • ⁇ / T N (p) ⁇ B / 2L (4)
  • the fifteenth embodiment according to the present invention made to solve the above-described problems is obtained from a light source whose wavelength of the light source is in a region where the circular dichroism of the specimen is maximum.
  • the transmitted light of the living body and / or the reflected light from the living body, or the core was subjected to TEC (core expanded processing, ie, Thermally Expanded Core) processing Biological circle 2 characterized by having means for
  • a sixteenth embodiment (hereinafter referred to as a sixteenth embodiment) according to the present invention developed by developing the fifteenth embodiment is the narrow-spectrum in the biological circular dichroism measuring device according to the fifteenth embodiment.
  • the beat length of the PMF is B and the pulse rate / second is
  • N (p) is set, the temporal change rate ⁇ L / T (mm / second) of the optical fiber length of the telescopic device attached to the PMF is changed as calculated by the following equation (7) and measured.
  • the seventeenth embodiment of the present invention (hereinafter referred to as the seventeenth embodiment) developed by developing the thirteenth to thirteenth embodiments is a circular dichroism measurement of a living body according to any one of the thirteenth to thirteenth embodiments.
  • the laser beam emitted from the light source is set to a value at which the emitted light from the PMF becomes a linearly polarized state with a 45 degree azimuth, and the change in the optical power received by the light receiver is synchronized with the pulse.
  • An apparatus for measuring circular dichroism of a living body having means for adjusting an incident position on the living body.
  • An eighteenth embodiment according to the present invention (hereinafter referred to as embodiment 18) developed by developing embodiments 13 to 17 is a circular dichroism measurement of a living body according to any of embodiments 13 to 17.
  • the transmitted light or the reflected light is received by a light receiver directly or via a multimode optical fiber or a multimode optical fiber bundle in which the core is subjected to a TEC (core diffused expanded core) process.
  • An apparatus for measuring circular dichroism of a living body having means for measuring wavelength characteristics of received light intensity.
  • the nineteenth embodiment according to the present invention developed from the thirteenth to thirteenth embodiments is a circular dichroism measurement of a living body according to any one of the thirteenth to thirteenth embodiments.
  • the larger and smaller losses of left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are respectively ⁇ (M) and ⁇ ( m), the wavelength characteristic of the optical power received by the light receiver is measured under two conditions: when the blood vessel is dilated and when synchronized with C (M) and when synchronized with C (m).
  • the biological dichroism measuring device for a living body is characterized in that an amount proportional to ( ⁇ (M) ⁇ (m)) is obtained by calculation.
  • a twentieth embodiment (hereinafter referred to as a morphological example 20) according to the present invention developed by developing the morphological examples 13 to 19 is the circular dichroism measurement of a living body according to any of the morphological examples 13 to 19.
  • the both end emitting ends of the PMF are located closer to the lens than the focal point of the lens. .
  • a twenty-first embodiment according to the present invention developed from the thirteenth to thirteenth embodiments is a circular dichroism measurement of a living body according to any one of the thirteenth to thirteenth embodiments.
  • TEC core expanded processing, ie, thermally diffused expanded core
  • the core diameter is twice the core diameter of the original PMF.
  • a twenty-second embodiment according to the present invention developed from the thirteenth to thirteenth embodiments is a circular dichroism measurement of a living body according to any one of the thirteenth to thirteenth embodiments.
  • the PMF is an elliptical jacket type fiber whose core is pure quartz and whose cladding is fluorine-doped.
  • a twenty-third embodiment (referred to as a twenty-third embodiment) according to the present invention developed by developing the thirteenth to thirteenth embodiments includes the biological circular dichroism measuring device according to any one of the thirteenth to thirteenth embodiments.
  • a Peltier element and / or a temperature detection part as a temperature control element is incorporated into a part that sandwiches the measurement position for circular dichroism measurement or a part that contacts the measurement position.
  • a non-invasive blood sugar level measuring device comprising means for controlling the temperature of a measurement site and / or measuring the temperature.
  • a twenty-fourth embodiment (hereinafter referred to as a twenty-fourth embodiment) according to the present invention developed by developing the twenty-third embodiment was measured with respect to the subject in the non-invasive blood sugar level measuring device described in the twenty-third embodiment.
  • the larger and smaller losses of left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are ⁇ (M) and ⁇ (m), respectively.
  • the calculation is performed.
  • a non-invasive blood sugar level measuring apparatus comprising means for estimating the blood sugar level of the subject from an amount proportional to ( ⁇ (M) ⁇ (m)).
  • a twenty-fifth embodiment (hereinafter referred to as a twenty-fifth embodiment) according to the present invention developed by developing the twenty-third or twenty-fourth embodiment is a non-invasive blood sugar level measuring apparatus according to the twenty-third or twenty-fourth embodiment.
  • the larger and smaller loss of left and right circularly polarized light measured for the subject is defined as C (M) and C (m), respectively, and the attenuation of C (M) and C (m) is ⁇ ( M) and ⁇ (m), the optical power received by the light receiver when the blood vessel is dilated is synchronized with C (M) and when synchronized with C (m).
  • a correlation table between an amount proportional to ( ⁇ (M) ⁇ (m)) and a blood glucose level measured in advance by the subject's existing blood sampling method is created by calculation. From the amount proportional to the measured ( ⁇ (M) ⁇ (m)) Is a non-invasive blood sugar level apparatus characterized by comprising means for estimating the sugar level.
  • the blood glucose concentration related to the blood glucose level can be measured without blood collection.
  • FIG. 1 is a basic configuration diagram of a biological circular dichroism measuring device according to an embodiment of the present invention.
  • FIG. It is a block diagram of the biological circular dichroism measuring apparatus in the other embodiment according to the present invention. It is a block diagram of the biological circular dichroism measuring apparatus in the further another example of embodiment which concerns on this invention.
  • It is a conceptual diagram of the wavelength characteristic of the light receiver output in the embodiment according to the present invention. It is a conceptual diagram of the relationship between the wavelength characteristic of the light receiver output and the pulse signal in the embodiment according to the present invention. It is another conceptual diagram of the relationship between the wavelength characteristic of the light receiver output and the pulse signal in the embodiment according to the present invention.
  • the present inventor has proposed the use of circular dichroism measurement for measuring glucose. However, it seemed difficult to use the circular dichroism measurement for measuring glucose and was given up. Accordingly, the fundamental principle of circular dichroism measurement has been reviewed and various studies have been made. As a result, the present invention has been achieved.
  • an embodiment of an invention according to the present invention will be described in detail with reference to experimental results leading to the present invention. In addition, the following description may be demonstrated only with wording, without necessarily using a figure.
  • FIG. 1 is a basic configuration diagram of a living body circular dichroism measuring apparatus according to an embodiment of the present invention.
  • the light source 1 is a tunable light source or a coherent light source whose wavelength can be discretely changed to two or more wavelengths.
  • the coherent light source includes a light source whose spectral width is limited by a grating or the like for diffused light from a laser or a broadband light source.
  • the light source 1 includes a condenser lens for an optical fiber.
  • Linearly polarized laser light as signal light emitted from the light source 1 is incident at an angle of 45 degrees with respect to the intrinsic polarization axis of the PMF 2, collimated by the lens 3 disposed at the emission end, and incident on a living body 4 such as a finger. Is done.
  • the core diameter was 2.5 ⁇ m.
  • a preform designed for a cladding diameter of 125 ⁇ m for the 800 nm band was drawn with an outer diameter of 30 ⁇ m.
  • the laser light propagated through the living body 4 is received by the light receiver 7, converted into an electrical signal, and guided to the signal processing unit 8.
  • Reference numeral 9 denotes a pulse sensor.
  • a signal from the pulse sensor 9 is sent to a signal processing unit (microcomputer) 8, and the signal is also transmitted to the light source drive control unit 10 of the light source drive control device, so that the wavelength of the light source is swept. Controlled.
  • a signal processing unit microcomputer
  • the light source drive control unit 10 of the light source drive control device so that the wavelength of the light source is swept. Controlled.
  • As the light receiver an electronically cooled APD (avalanche photodiode) covering the light source wavelength is used, but a photomultiplier tube can also be used.
  • the refractive index difference between the core and the clad or the numerical aperture NA is designed so that the PMF 2 becomes a single mode in the light source wavelength region.
  • the NA of PMF2 is desirably 0.05 or less. By doing so, the insertion loss can be reduced and the measurement accuracy can be increased.
  • Non-Patent Document 2 when polarized light is transmitted through a living body, the thickness of the living body where the polarized light is stored is about 1.2 mm. In addition, it was experimentally confirmed that it is effective to make the beam diameter as small as possible and to keep the incident angle small in order to reduce the light scattering loss in the living body. If light is received by a light receiver having a large light receiving diameter without considering the incident angle to the living body, a large optical power can be received, but the polarization component is lost.
  • FIG. 2 is a basic configuration diagram for explaining a biological circular dichroism measuring apparatus according to another embodiment of the present invention.
  • the output light of the biological body 4 in FIG. 1 is collected via the multimode optical fiber bundle 5.
  • the optical lens 6 leads to the light receiver 7.
  • FIG. 3 is a basic configuration diagram for explaining a biological circular dichroism measuring apparatus according to still another embodiment of the present invention.
  • a multi-mode optical fiber bundle 5 is arranged around the signal light irradiation PMF 2 to perform irradiation. It is a figure which shows the structure which received the reflected light from the biological body 4 irradiated with the light from PMF2, condensed the emitted light of the multimode optical fiber bundle 5 with the lens 6, and guide
  • FIG. FIG. 2 is the same as FIG. 1 in principle.
  • As the bundle optical fiber a 7-core silica-based multimode optical fiber having a core / clad diameter of 200/220 ⁇ m was used.
  • a method for changing the wavelength of the light source in the vicinity of 182 nm, which is the circular dichroism peak of glucose, will be described. That is, the wavelength of the light source was changed via a grating from a deuterium lamp or a laser-excited broadband light source commercialized by Energetic in 2010. The light transmitted through the grating was linearly polarized by a lotion prism, and incident at 45 degrees with respect to the intrinsic polarization axis of PMF2 by a lens. In this way, the wavelength characteristics of the output polarization state of the PMF 2 were measured in advance.
  • FIG. 4 is a conceptual diagram of the wavelength characteristic of the light receiver output in the embodiment of the invention according to the present invention.
  • the vertical axis represents the receiver output
  • the horizontal axis represents the wavelength of the light source.
  • the optical power of the light receiver shows a maximum value P (M) at the wavelength ⁇ 1 and an intermediate value P (0) at the wavelength ⁇ 2, as shown in FIG.
  • the minimum value P (m) is shown at ⁇ 3, and thereafter, the intermediate value P (0), the maximum value P (M), the intermediate value P (0), and the minimum value P (m) are sequentially shown as the wavelength changes. Change. As described above, the period is approximately 0.064 nm. In FIG.
  • reference numerals 11-1 and 11-2 are points where the receiver output is a maximum value P (M) when right (or left) circularly polarized light is incident on the graph, and reference numeral 12 is left (or right) circularly polarized light incident.
  • P (M) maximum value
  • reference numeral 12 is left (or right) circularly polarized light incident.
  • the light receiver output has a minimum value P (m)
  • reference numerals 13-1 and 13-2 indicate points at which the light receiver output has an intermediate value P (0) when linearly polarized light is incident.
  • the wavelength of the left circularly polarized light is shifted by 0.032 nm from the output wavelength of the linearly polarized light, but the wavelength change width is extremely small compared to 182 nm, so the loss of the left circularly polarized light is almost the same at the wavelength near 182 nm that becomes the left circularly polarized light. It can be assumed that they are equal. Similarly, it can be assumed that the loss of right-handed circularly polarized light is substantially equal at a wavelength near 182 nm that is right-handed circularly polarized light.
  • 5 and 6 are conceptual diagrams for explaining the relationship between the wavelength characteristic of the light receiver output and the pulse signal in the embodiment of the present invention.
  • the upper graph is the wavelength characteristic graph of the receiver output, where the vertical axis represents the receiver output and the horizontal axis represents the wavelength of the light source, and the lower graph represents the pulse signal intensity and the horizontal axis. It is a graph of the pulse signal which expressed the axis with respect to time.
  • the receiver output has a maximum value (position 11-1) P (M) at the wavelength ⁇ 1, and an intermediate value (reference 13-1) at the wavelength ⁇ 2.
  • the change is such that the maximum value (position of reference numeral 11-2) P (M) is reached at the wavelength ⁇ 3.
  • the pulse 14 is generated at the time when the wavelength is ⁇ 1 in the upper graph, and the next pulse 14 is generated at the time when the wavelength is ⁇ 5.
  • the receiver output has a maximum value (position of reference numeral 11-1) P ′ (M) at the wavelength ⁇ 1, and an intermediate value (reference numeral 13 ⁇ at the wavelength ⁇ 2).
  • the maximum value (position of reference numeral 11-2) P ′ (M) is changed at the wavelength ⁇ 3.
  • the pulse 14 is generated at the time when the wavelength is ⁇ 3 in the upper graph, and the next pulse 14 is generated at the time when the wavelength is ⁇ 6.
  • Pulse measurement can be appropriately performed at a site where the pulse of a living body can be detected. However, when the pulse is measured near the measurement site of the light receiver output, the pulse signal measurement time is used as it is for sweep synchronization of the light source wavelength. However, if the pulse signal measurement part is performed at a part far from the receiver output measurement part, the pulse signal generation time at the pulse signal measurement part and the pulse generation time at the receiver output measurement part are shifted. If there is, the measurement accuracy is measured by measuring the deviation amount in advance, correcting the actual pulse generation time to the pulse generation time at the measurement site of the receiver output, and performing sweep synchronization of the light source wavelength. Can be increased.
  • C (M) and C (m) the larger and smaller losses when passing through the left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are expressed as ⁇ ( M) and ⁇ (m).
  • reference numerals 11-1 and 11-2 in FIGS. 4, 5, and 6 correspond to C (m)
  • reference numerals 12, 12-1, and 12-2 correspond to C (M).
  • the polarization period and pulse of the PMF output as shown in FIGS. Can be synchronized.
  • the receiver output is measured.
  • the graph of FIG. 5 can be obtained.
  • the light source wavelength on the horizontal axis is swept so as to change the polarization of the PMF so that the wavelength ⁇ 3 corresponds to the first pulse 14 and the wavelength ⁇ 6 corresponds to the next pulse 14.
  • the graph of FIG. 6 can be obtained.
  • C (m) when the blood vessel expands, it corresponds to C (m), and when the blood vessel contracts, it corresponds to C (M).
  • C (M) when the blood vessel expands, it corresponds to C (M), and when the blood vessel contracts, it corresponds to C (m).
  • the wavelength of the light source is a wavelength that does not affect the difference in attenuation due to the circular dichroism of the living body, that is, reference numeral 13-1 ( ⁇ 2) in FIGS.
  • the wavelength of 13-2 ( ⁇ 4) is set, and the position of the output end of the PMF 2 is finely adjusted in the plane perpendicular to the beam (X and Y directions), and the folds of the base of the living body, here, the thumb and the index finger
  • the signal light beam is incident on the blood vessel of the part and transmitted. That is, the position of the output end of the PMF 2 is determined at a position where the output of the light receiver changes in synchronization with the pulse.
  • the transmission loss due to the signal light corresponding to P (M) in FIG. corresponds to ⁇ (M) D (m).
  • the transmission loss due to transmission of the signal light corresponding to P ′ (M) in FIG. 6 through the blood vessel is ⁇ (m) D (m)
  • the signal light corresponding to P ′ (m) is transmitted through the blood vessel.
  • the transmission loss due to corresponds to ⁇ (M) D (M).
  • (D (M) ⁇ D (m)) is a difference in the inner diameter of the blood vessel at the time of dilatation and contraction of the blood vessel, so there are individual differences, but it is constant for the same subject.
  • ( ⁇ (M) ⁇ (m)) is circular dichroism. Accordingly, the circular dichroism and the blood vessel contraction when the blood vessel is expanded in two cases, when the sweep is started from the wavelength ⁇ 1 in synchronization with the pulse (FIG. 5) and when the sweep is started from the wavelength ⁇ 3 (FIG. 6). By measuring the circular dichroism at this time, an amount proportional to the circular dichroism near the wavelength of 182 nm can be measured.
  • the reflective biological circular dichroism measuring device of FIG. 3 as another embodiment according to the present invention is configured to detect reflected light from a biological body as described above.
  • left and right circularly polarized light are reversed by transmission and reflection, so that they are generally canceled out so that circular dichroism cannot be observed.
  • the scattering in the living body is not uniform, circular dichroism can be observed although it is slight.
  • the reflection type biological circular dichroism measuring device only needs to irradiate the skin with laser light, the sensor can be easily mounted and used.
  • the result of repeating measurement by determining the measurement site of the subject using the biological circular dichroism measuring apparatus of the present embodiment as described above and the blood glucose level by the conventional blood sampling method are compared, and the circle 2 A non-invasive blood glucose level using the measurement method according to the embodiment of the present invention by creating a calibration table based on the comparison between the measurement value obtained by the color measuring device and the blood glucose level measured by the conventional blood sampling method A measuring device was realized.
  • a non-invasive blood sugar level measurement system was constructed, and the blood sugar level of the living body could be estimated.
  • FIG. 7 is a basic configuration diagram of a biological circular dichroism measuring apparatus according to an embodiment of the present invention.
  • the light source 101 is a broadband light source covering the vicinity of 182 nm where the circular dichroism of glucose peaks.
  • a deuterium lamp or a light-excited incoherent light source for example, there is a laser-excited broadband light source that was commercialized by Energygetq in 2010.
  • the diffused light emitted from the broadband light source 101 is collimated by the lens 102-1 and connected to the PMF 107 via the grating 103 and the polarizer 104 and the lens 102-2 via the polarization plane preserving coupler 105 and the 45-degree splicing 106.
  • a broadband light source such as a mercury lamp may be used as a light source, and a predetermined wavelength component may be cut out by a spectroscope and incident on the PMF.
  • the output light of the PMF 107 is irradiated to the living body 108 as the specimen by the lens 102-3, and the output from the specimen 108 is condensed on the light receiver 110-1 through the lens 102-104 and the light receiving optical fiber 109.
  • the electrical output from the light receiver 110-1 is input to a signal processing circuit (microcomputer) 111.
  • a pulse detection device 112 is attached to the specimen 108, and an electrical output from the pulse detection device 112 is input to the signal processing circuit 111.
  • the electrical signal tapped by the coupler 105 and detected by the light receiver 110-2 is input to the signal processing circuit 111.
  • the signal processing circuit 111 drives the optical fiber telescopic device 113 attached to the PMF 107 by a signal synchronized with the pulse.
  • Reference numeral 123 denotes an optical fiber expansion / contraction control signal issued from the optical fiber expansion / contraction device 113.
  • a lotion prism was used as the polarizer 104.
  • the core diameter was 2.5 ⁇ m.
  • the transmission loss near 182 nm was 20,000 dB / km, that is, 20 dB / m.
  • an optical fiber having a length of 20 cm was wound around a telescopic device 113 made of cylindrical PZT. A grating with a resolution of about 0.02 nm was used.
  • the light receiver an electronically cooled APD (avalanche photodiode) covering the light source wavelength is used, but a photomultiplier tube can also be used.
  • the polarizer can be an optical fiber type.
  • FIG. 8 is a block diagram of a living body circular dichroism measuring apparatus without a light receiving fiber as another embodiment according to the present invention.
  • FIG. 9 is a configuration diagram of a biological circular dichroism measuring apparatus using an optical fiber bundle as another embodiment according to the present invention.
  • the light emitted from the specimen 108 is detected directly by the light receiver 110-1 without using the light receiving fiber 109 of FIG. 7 (FIG. 8) and when detected using the optical fiber bundle 114 (FIG. 8). 9), and basically the same principle as that of FIG.
  • the same type of PMF as the excitation fiber 107 is used for the light receiving fiber 109.
  • FIG. 10 is a configuration diagram of a reflection type example of a biological circular dichroism measuring apparatus as still another embodiment according to the present invention.
  • the diffused light emitted from the light source 101 is collimated by the lens 102-1 on the input side of the living body 108, and the polarization plane preserving coupler 105 is obtained by the lens 102-2 via the grating 103 and the polarizer 104.
  • the optical fiber expansion / contraction device 113 connected to the PMF 107 via the 45-degree splicing 106 and attached to the PMF 107 is driven by a signal synchronized with the pulse by the signal processing circuit 111, and the polarization state of the output light of the PMF 107 is as described later.
  • the right circularly polarized light and the left circularly polarized light are periodically repeated, and the output light of the PMF 107 is irradiated to the living body 108 as the specimen through the lens 102-3, and is tapped by the coupler 105 and detected by the light receiver 110-2.
  • the inputted electric signal is input to the signal processing circuit 111 as in the case of FIG.
  • the reflected light from the living body 108 is collected on the light receiver 110-1 through the optical fiber bundle 114 and the lens 102-4, and the electrical output is input to the signal processing circuit 111.
  • FIG. 11 is experimental data of the insertion loss of the opposed optical fiber collimator that sandwiches the living body as back data of the present invention.
  • the output light of the optical fiber 107 is collected by the lens 102-3 and received by the lens 102-4 through the living body. This is an experimental value of the relationship between the total insertion loss and the distance between the lenses 102-3 and 102-4 when the optical fiber 109 receives light.
  • the wavelength used in the experiment was 1064 nm for reference.
  • Reference numeral 116 is data when a multimode fiber having a core diameter of 50 ⁇ m is used.
  • Reference numeral 117 denotes data of measurement results showing the relationship between the insertion loss (vertical axis, unit dB) and the inter-lens distance (horizontal axis, unit mm) in the case of a low NA ( ⁇ 0.075) double clad PMF.
  • the transmitting and receiving fibers are of the same type.
  • the insertion loss was smaller when the tip of the optical fiber deviated from the focus of the lens, that is, when it was defocused.
  • the light scattered in the living body is incident on the light receiving fiber at an angle.
  • the defocusing in advance has a smaller beam angle dependency of the coupling loss to the light receiving fiber.
  • the beam diameter in the living body is reduced, and the influence of scattering of the living body is reduced.
  • FIG. 11 shows that the smaller the NA of the fiber, the smaller the insertion loss, and even when the distance between the lenses is increased, the loss is small.
  • so-called TEC Thermally diffused Expanded Core
  • TEC Thermally diffused Expanded Core
  • a PMF of NA to 0.05 for a wavelength of 180 nm was used.
  • NA of 0.07 or less is preferable, and NA of 0.05 or less is particularly preferable.
  • PMF having a core NA of 0.1 or more if the TEC processing is performed, the core at the tip is enlarged and the NA is reduced at the same time, so that the present embodiment can be applied.
  • the core diameter of the single-mode fiber having a wavelength of 180 nm is smaller than that of the infrared single-mode fiber, light from the light source can be efficiently coupled by TEC processing both ends of the polarization-preserving fiber. . By making the core diameter of the TEC treatment more than twice the core diameter of the original optical fiber, a great effect is exhibited.
  • the accuracy of the embodiment is sufficiently practical with the configuration of the present embodiment even if the end face of the optical fiber is arranged at the focal position of the lens.
  • Such a configuration is also included in the present invention.
  • 12 and 13 are conceptual diagrams for explaining the relationship between the light receiver output, the incident-side polarization plane preserving optical fiber length to the specimen 108, and the pulse signal as an embodiment according to the present invention.
  • the vertical axis represents the output of the light receiver
  • the horizontal axis represents the length of the polarization-maintaining optical fiber on the incident side with respect to the specimen 108
  • the vertical axis in the figure shown below represents the pulse signal intensity
  • the horizontal axis represents the pulse signal light. This is the position (timing) corresponding to the fiber length.
  • reference numerals 118-1 and 118-2 are points at which the light receiver output has a minimum value P (m) when the right (or left) circularly polarized light is incident on the graph, and reference numerals 119-1 and 119.
  • -2 is a point where the light receiver output at the left (or right) circularly polarized light is at the maximum value P (M)
  • reference numerals 120-1 and 120-2 are the light receiver outputs at the linearly polarized light incident at the intermediate value P ( Point 0) is shown.
  • the optical receiver output becomes the minimum value P (m) at the optical fiber length L1 (position 118-1).
  • the optical fiber length L3 becomes the minimum value P (m) (position of reference numeral 118-2), and becomes the median value P (0) between the optical fiber lengths L3 and L4 (position of reference numeral 120-2).
  • the change is such that the maximum value P (M) is reached at the length L4 (the position indicated by reference numeral 119-1).
  • the pulse 121 is generated at the time when the optical fiber length is L1 in the upper graph, and the next pulse 121 is generated at the time when the optical fiber length is L3.
  • the pulse 121 occurs at the time when the optical fiber length is L2 in the upper graph, and the next pulse 121 occurs at the time when the optical fiber length is L4.
  • the pulse rate N (p) per second is measured and the expansion / contraction rate of the optical fiber is set to be given by the equation (7), the polarization period of the output of the PMF and the period shown in FIGS.
  • the pulse can be synchronized.
  • C (M) when the blood vessel expands, it corresponds to C (M), and when the blood vessel contracts, it corresponds to C (m).
  • C (m) when the blood vessel expands, it corresponds to C (m), and when the blood vessel contracts, it corresponds to C (M).
  • the length of the PMF is the optical fiber length that does not affect the difference in attenuation due to the circular dichroism of the living body, that is, 120-1 in FIGS.
  • it is set to 120-2, and the position of the output end of the PMF 107 is finely adjusted in a plane (X and Y directions) orthogonal to the beam, and the beam is applied to the blood vessel of the living body, here, the fold of the base of the thumb and index finger. It was made to permeate. That is, the position of the output end of the PMF 107 was determined at a position where the output of the light receiver changes in synchronization with the pulse.
  • the transmission loss due to the signal light corresponding to P (m) passing through the blood vessel in (m) D (m) corresponds to ⁇ (M) D (M).
  • transmission loss due to transmission of signal light corresponding to P (M) in FIG. 13 through the blood vessel is ⁇ (m) D (M), and transmission due to transmission of signal light corresponding to P (m) through the blood vessel.
  • the loss corresponds to ⁇ (M) D (m).
  • (D (M) ⁇ D (m)) is a difference in the inner diameter of the blood vessel when the blood vessel is expanded and contracted, so there is an individual difference, but it is constant in the same subject.
  • ( ⁇ (M) ⁇ (m)) is circular dichroism. Accordingly, when the optical fiber length starts to sweep from L1 in synchronization with the pulse (FIG. 12) and when the optical fiber length starts to sweep from L2 (FIG. 13), the circle when the blood vessel expands is shown. By measuring the dichroism and the circular dichroism when the blood vessel contracts, an amount proportional to the circular dichroism near the wavelength of 182 nm can be measured.
  • FIG. 10 is a configuration diagram of a reflection type example of the biological circular dichroism measuring apparatus as an embodiment of the invention according to the present invention, and is configured to detect reflected light from the biological body.
  • the left and right circularly polarized light are generally reversed by transmission and reflection, they are generally canceled out and the circular dichroism cannot be observed.
  • the scattering in the living body is not uniform, the circular dichroism can be observed slightly. Since the reflection type biological circular dichroism measuring device only needs to irradiate the skin with laser light, the sensor can be easily mounted and used.
  • the optical system on the side of light incident on the living body 108 in the embodiment shown in FIGS. 7 to 10 is provided with a spatial light path corresponding to the focal length of the lens between the optical fiber 107 and the lens 102-3 as in the prior art.
  • the optical fiber 107 is disposed at a position closer to the lens than the focal position of the lens 102-3.
  • the spatial optical path between the lens and the living body 108 is not essential, and by making the optical system defined as an all-optical fiber type, for example, by closely contacting the end of the incident optical system with the fold of the finger, the circle 2 The chromaticity measurement accuracy can be greatly increased.
  • the all-optical fiber type absorption measurement optical system of the present embodiment is configured so that the light receiving side is also an optical fiber, and the specimen 108 is sandwiched in the optical path, so that the measurement accuracy is achieved. And usability can be improved.
  • a refractive index matching agent was applied to the skin or a refractive index matching sheet was applied, the biological transmission loss was improved by about 3 dB.
  • the beat length of the PMF 107 used in the embodiment is 0.35 mm at a wavelength of 182 nm. Accordingly, when propagating 500 mm, the optical path difference in the orthogonal polarization mode is ⁇ 0.26 mm at (500 / 0.35) ⁇ 182 nm. Therefore, the coherence length of the light source needs to be sufficiently longer than 0.26 mm in order to ensure the degree of polarization at the emission end of the PM 107. When the coherence length of the light source is 0.26 mm, the wavelength width of the light source is about 0.12 nm. Therefore, in the embodiment of the present invention, the resolution of the grating 103 is set to 0.02 nm with a sufficient margin.
  • the polarization plane preserving optical fiber length is changed in synchronization with the pulse so that the polarization state of the output light of the PMF that irradiates the living body with the signal light changes periodically in the left and right circular polarization state.
  • the blood glucose level is determined by comparing the circular dichroism when the blood sample is removed while strongly suppressing the specimen portion of the living body and the circular dichroism when the blood flow is present while suppressing the blood flow gently.
  • an external signal as an electrical and / or mechanical trigger signal is given to the specimen and used as a trigger signal instead of the pulse for measurement.
  • the blood glucose level could be estimated.
  • the optical system is devised, the wavelength of the light source is selected, that is, the wavelength in the region where the circular dichroism of the specimen is maximized, the use of the pulse, etc.
  • the wavelength of the light source is selected, that is, the wavelength in the region where the circular dichroism of the specimen is maximized, the use of the pulse, etc.
  • the blood glucose level can be estimated non-invasively by referring to the calibration table based on the measurement result of the present embodiment.
  • the temperature detection component is incorporated into a component that sandwiches the measurement position for circular dichroism measurement or contacts the measurement position in the optical path of the signal light, thereby improving the reliability of the measurement result.
  • the temperature detection circuit or the temperature display means may be provided on a part that sandwiches the measurement position or contacts the measurement position for the circular dichroism measurement, or may be provided on the apparatus main body.
  • a Peltier element as a temperature control element is incorporated in a component that sandwiches a measurement position for circular dichroism measurement or contacts the measurement position in the optical path of the signal light, By controlling the temperature of the specimen, the reliability of the measurement result can be increased.
  • conventionally used temperature control means can be widely used.
  • the temperature control circuit or the temperature control means may be provided on a part that sandwiches the measurement position or contacts the measurement position for the circular dichroism measurement, or may be provided on the apparatus main body.
  • the blood glucose concentration related to the blood sugar level can be measured without blood collection.
  • the following five effects can be expected. That is, first, it is freed from the annoyance and pain associated with blood collection with a needle. Secondly, the disposal of the blood collection needle is unnecessary and it is hygienic. Thirdly, since a reagent that reacts with glucose used at the time of blood collection is unnecessary, a running cost of, for example, 100,000 yen or more per year is unnecessary in Japan, which is economical.
  • blood glucose level monitoring blood glucose level measurement
  • blood glucose level measurement blood glucose level measurement
  • the biological circular dichroism measuring device and the non-invasive blood sugar level measuring device of the present embodiment are used in a general household, the cost required for the treatment can be greatly reduced. It can also reduce the number of diabetic patients that are increasing.
  • the biological circular dichroism measuring device and the non-invasive blood sugar level measuring device of the present embodiment are used in general households, the number of diabetic patients that are increasing worldwide can be reduced. Costs required for treatment can be greatly reduced.
  • the present invention is also used for high-accuracy measurement of collected blood, and has a great effect in terms of measurement efficiency and cost as compared with conventional chemical methods.
  • blood glucose level can be measured in a non-invasive manner, which has been considered impossible to realize.
  • diabetic patients are freed from the pain and annoyance of blood sampling several times a day.
  • non-invasive blood sugar level measuring apparatus and / or method of the present invention for preventive maintenance of diabetes, it is possible to significantly reduce the number of diabetic patients that are currently increasing worldwide, and to treat it. Subject costs and public costs can be significantly reduced.
  • the non-invasive blood sugar level measuring apparatus and measuring method according to the present invention can be widely used as medical equipment, health equipment, etc., and the present invention can greatly contribute to the development of medical equipment, health equipment fields including nursing care. It can be done.
  • Pulse sensor 10 Light source drive controller 11-1, 11-2: Right (left) Receiver output maximum value for circularly polarized light input 12, 12-1, 12-2: Left (right) receiver output minimum value for circularly polarized light input 13-1, 13-2: Linearly polarized light input Light receiver output intermediate values 14, 121, 122: Pulse signal 101: Fixed wavelength light source 103: Grating 104: Polarizing plate 105: Fiber coupler 106: Splicing 45 degrees 109: Optical fiber for light reception 112: Pulse detection circuit 113: Optical fiber expansion / contraction Control unit 115: Data for PM980 116: Data for multimode fiber 117: Data for low NA double clad 118-1,1 8-2: high loss

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Emergency Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The objective of the present invention is to provide a novel measuring device and measuring method for estimating, easily, noninvasively and with high precision, blood sugar level of a person where conventionally blood had to be drawn to measure the blood sugar level, for treatment or prevention of diabetes. To achieve this objective, a method was adopted in which a wavelength of a variable wavelength laser light or a length of an excitation polarization maintaining optical fiber (PMF) is changed in synchronization with the pulse, a left and right circularly polarized light state of an output light thereof is made to change periodically, and the light is entered into the living body via the PMF.

Description

生体の円2色性測定装置および生体の円2色性測定方法ならびに無侵襲血糖値測定装置および無侵襲血糖値測定方法Biological circular dichroism measuring device, biological circular dichroism measuring method, noninvasive blood sugar level measuring device, and noninvasive blood sugar level measuring method
 本発明は、生体の円2色性測定装置および方法ならびに生体の無侵襲血糖値測定装置および方法に関し、例えば、生体の糖質の濃度を測定することができ、人の指や耳や皮膚にレーザ光を照射しその透過光または反射光を測定して、採血することなしに、被検体のグルコース濃度を高い測定精度で測定できる低価格の無侵襲血糖値測定装置および方法に関するものである。 The present invention relates to a living body circular dichroism measuring device and method and a living body non-invasive blood sugar level measuring device and method, for example, capable of measuring the concentration of carbohydrates in a living body and applied to a human finger, ear or skin. The present invention relates to a low-cost non-invasive blood glucose level measuring apparatus and method that can measure the glucose concentration of a subject with high measurement accuracy without irradiating laser light, measuring the transmitted light or reflected light, and collecting blood.
 現在、世界にはおよそ2億人、日本国内では2,000万人の糖尿病患者あるいはその予備軍がいると言われている。従来の血糖値測定方法は針によって採血された血液中のグルコースを化学反応で測定するものである。しかし、採血方法には痛みや、針の処理、1回の測定のコストなどの問題がある。このような背景から採血に頼らず血液中のグルコース濃度を光学的に測定する方法が研究され、測定装置の開発が試みられている。 Currently, it is said that there are about 200 million people in the world and 20 million people with diabetes or their reserves in Japan. A conventional blood sugar level measuring method measures glucose in blood collected by a needle by a chemical reaction. However, the blood collection method has problems such as pain, needle processing, and the cost of one measurement. From such a background, a method for optically measuring the glucose concentration in blood without depending on blood collection has been studied, and development of a measuring device has been attempted.
 これまで知られている糖質の測定の第1の方法は、特許文献1に記載があるような、指などの生体の一部に赤外レーザ光を照射し、生体からの散乱光や透過光を分光し、血液や皮下間質液に含まれるグルコースを測定しようとするものである。この方法ではグルコース濃度に比例して散乱光が低減することを利用している。しかし、この方法は散乱光の光強度が温度や皮膚の水分や油成分などに依存するという問題があり、広く普及していないのが実情である。 A first known method for measuring carbohydrates is to irradiate a part of a living body such as a finger with infrared laser light, as described in Patent Document 1, so that scattered light or transmission from the living body. It is intended to measure light contained in blood and subcutaneous interstitial fluid by measuring light. This method utilizes the fact that scattered light decreases in proportion to the glucose concentration. However, this method has a problem that the light intensity of scattered light depends on temperature, moisture of the skin, an oil component, etc., and is not widely used.
 第2の測定方法は、非特許文献1および特許文献2などに記載されているように、グルコースに直交する偏光成分を伝搬させてその複屈折率をオープンループで計測するものである。しかし、この方法では健常者の血糖値レベルである0.1g/dL程度の血糖値レベルの検体を、長さが10mm程度の検体(グルコース)で測定すると誤差が大きい。特に光の散乱損失が非常に大きな生体では測定できない。 The second measurement method, as described in Non-Patent Document 1 and Patent Document 2, etc., propagates a polarization component orthogonal to glucose and measures its birefringence in an open loop. However, this method has a large error when a sample having a blood glucose level of about 0.1 g / dL, which is a blood glucose level of a healthy person, is measured with a sample (glucose) having a length of about 10 mm. In particular, it cannot be measured in a living body having a very large light scattering loss.
 第3の測定方法は、特許文献3に記載されている複屈折率測定装置で測定する方法である。この方法は干渉計のリング光路内に非相反光学系を設け、検体をその内部に配置して検体の旋光度を計測するものである。この方法では厚さ10mm程度の検体で健常者の血糖値レベルである0.1g/dLの血糖値レベルを十分な精度で測定できるが、検体の厚さが1mm以下の微量な血液や太さ0.1mmの血管などの生体の無侵襲計測では十分な測定精度が得られていない。 The third measurement method is a method of measuring with a birefringence measuring device described in Patent Document 3. In this method, a nonreciprocal optical system is provided in the ring optical path of the interferometer, and the sample is placed inside thereof to measure the optical rotation of the sample. In this method, a blood glucose level of 0.1 g / dL, which is a healthy subject's blood glucose level, can be measured with sufficient accuracy using a specimen having a thickness of about 10 mm. In non-invasive measurement of a living body such as a 0.1 mm blood vessel, sufficient measurement accuracy is not obtained.
 第4の測定方法は、特許文献4に記載されている空間光学系で検体の円2色性を測定する方法である。この方法では検体が生体のような光散乱体の場合には生体透過光を効率よく受光器に集光できない。すなわち、現在までに採血をしないで生体のグルコース濃度を測定するいわゆる無侵襲の血糖値測定装置は実用化されていない。 The fourth measurement method is a method of measuring the circular dichroism of the specimen with the spatial optical system described in Patent Document 4. In this method, when the specimen is a light scatterer such as a living body, the transmitted light from the living body cannot be efficiently collected on the light receiver. That is, a so-called non-invasive blood sugar level measuring device that measures the glucose concentration of a living body without collecting blood has not been put to practical use.
 その理由は生体にレーザ光を入射したときに生じる散乱が非常に大きいため、検出される受光パワーが非常に小さく、生体内や表面に含まれる水や油の影響や、わずかな体温変化などによるノイズに埋もれて検体のグルコース濃度を高い精度で測定できなかったことにあった。 The reason is that the scattering generated when laser light is incident on the living body is so large that the detected light receiving power is very small, due to the effects of water and oil contained in the living body and on the surface, and slight changes in body temperature. It was because it was buried in noise and the glucose concentration of the specimen could not be measured with high accuracy.
 これまで採血した血液や生体のグルコース濃度を高精度に測定できる光学的な測定装置の開発が種々試みられてきたが、採血した血液や生体のグルコース濃度を高精度で測定することは極めて難しく、果物や野菜などの糖度測定には用いることができるものの、採血した血液や生体のグルコース濃度の測定に使える測定装置はまだ実用化されておらず、採血した血液や生体のグルコース濃度の測定は試薬を用いた手法に頼らざるを得ないのが現状である。グルコース濃度の測定のために毎回採血することは特に糖尿病患者には大変な苦痛を伴うものであり、無侵襲でグルコース濃度の測定ができる測定装置の開発が切望されていた。 Various attempts have been made to develop optical measuring devices that can measure the glucose concentration of blood or living blood collected with high accuracy, but it is extremely difficult to measure the glucose concentration of blood or living blood collected with high accuracy. Although it can be used to measure the sugar content of fruits, vegetables, etc., a measuring device that can be used to measure the glucose concentration of collected blood and living organisms has not yet been put into practical use. The current situation is that we have to rely on the technique using. Collecting blood every time for measuring the glucose concentration is very painful especially for diabetic patients, and the development of a measuring device that can measure the glucose concentration non-invasively is eagerly desired.
特開2004-313554号公報JP 2004-313554 A 特開2007-093289号公報JP 2007-093289 A 特開2005-274380号公報JP 2005-274380 A 国際公開第2007/029652号International Publication No. 2007/029652
 本発明は前記課題に鑑みてなされたもので、本発明の目的は、従来は糖尿病の治療や予防のためには採血して血糖値を測定しなければならなかったヒトの血糖値を、安価で、簡単な方法で、無侵襲で高精度に推定できる新規の生体の円2色性測定装置および生体の円2色性測定方法ならびに無侵襲血糖値測定装置および無侵襲血糖値測定方法を提供することにある。 The present invention has been made in view of the above problems, and the object of the present invention is to reduce the blood glucose level of humans, which had conventionally had to be collected for blood glucose measurement for the treatment or prevention of diabetes. A novel biological circular dichroism measuring device, biological dichroic measuring method, non-invasive blood sugar level measuring device, and non-invasive blood sugar level measuring method that can be estimated non-invasively and with high accuracy by a simple method There is to do.
 前記課題を解決するために、本願発明者は、無侵襲でヒトの血糖値を高精度に推定することができるあるいはヒトのグルコースに基づく偏光の旋光性に関係する円二色性を高精度に測定することができる安価な手段を広く検討した。その結果、従来はヒトの血糖値の無侵襲での推定には測定精度が不足で到底使えないと考えられていた円二色性測定技術を改善して、十分な精度でヒトの血糖値の推定をすることができることを見出した。 In order to solve the above-mentioned problems, the present inventor can estimate human blood glucose level with high accuracy in a non-invasive manner, or with high accuracy circular dichroism related to optical rotation of polarized light based on human glucose. Inexpensive means that can be measured were studied extensively. As a result, we have improved the circular dichroism measurement technology, which was previously thought to be unusable due to insufficient measurement accuracy for non-invasive estimation of human blood glucose levels. We found that we can make an estimate.
 前記課題を解決するためになされた本発明に係る生体の血糖値の推定に用いることができる測定情報を、簡単な操作で、安価に、高精度に得ることができる技術の特徴は、主として、その測定方法に、生体の脈拍に同期して光源波長あるいは励振用の偏波面保存光ファイバ(以下、「PMF」ともいう)の長さを変化させ、PMFの出力の偏光が脈拍に同期して左右円偏光が周期的に変化するようにPMFを介して生体に照射する方法を採用したことにある。以下、本発明の実施の形態例を具体的に説明する。 The feature of the technology that can obtain measurement information that can be used for estimating the blood glucose level of the living body according to the present invention made to solve the above-mentioned problems with a simple operation at low cost and with high accuracy is mainly: In the measurement method, the wavelength of the light source or the polarization-maintaining optical fiber for excitation (hereinafter also referred to as “PMF”) is changed in synchronization with the pulse of the living body, and the polarization of the output of the PMF is synchronized with the pulse. The method of irradiating the living body through the PMF so that the left and right circularly polarized light changes periodically is employed. Hereinafter, embodiments of the present invention will be specifically described.
 前記課題を解決するためになされた本発明に係る第1の実施の形態例(以下、形態例1という)は、光源からの出射波長が検体の円2色性が最大となる領域にありかつ外部トリガに同期して連続的にまたは離散的に変化する直線偏光のレーザ光を偏光の方位を限定して偏波面保存光ファイバ(PMF)に入射し、前記PMFからの出力光をその偏光状態が左円偏光と右円偏光が周期的に変化するようにして信号光として生体に照射し、その透過光及び/または反射光を受光器で受光し、その受光強度の波長特性を測定する測定工程を有することを特徴とする生体の円2色性測定方法である。 In a first embodiment according to the present invention (hereinafter referred to as a first embodiment) made to solve the above problems, the emission wavelength from the light source is in a region where the circular dichroism of the specimen is maximized, and Linearly polarized laser light that changes continuously or discretely in synchronism with an external trigger is incident on a polarization-maintaining optical fiber (PMF) with the polarization direction limited, and the output light from the PMF is in its polarization state Irradiates a living body as signal light so that left circularly polarized light and right circularly polarized light change periodically, receives the transmitted light and / or reflected light with a light receiver, and measures the wavelength characteristics of the received light intensity. It is a biological dichroism measuring method of a living body characterized by having a process.
 形態例1を展開してなされた本発明に係る第2の実施の形態例(以下、形態例2という)は、形態例1に記載の生体の円2色性測定方法において、前記偏光の方位を前記偏波面保存光ファイバ(PMF)の固有偏光軸に対し45度の方位とし、前記PMFの長さをL(mm),時間T(秒)で変化する前記光源の波長の変化量をΛ(nm)、光源波長をλ(nm)、前記PMFのビート長をB(mm)としたときに、前記PMFからの出射光の偏光状態の周期が脈拍に同期するように、前記光源の波長変化率Λ/T(nm/秒)を下記の(4)式で計算されるように変化させて測定する工程を有することを特徴とする生体の円2色性測定方法である。
(数1)
     Λ/T=N(p)λB/2L・・・(4)
A second embodiment (hereinafter referred to as embodiment 2) according to the present invention developed from embodiment 1 is the azimuth of the polarized light in the method for measuring circular dichroism of a living body described in embodiment 1. Is the azimuth of 45 degrees with respect to the intrinsic polarization axis of the polarization-maintaining optical fiber (PMF), the length of the PMF is L (mm), and the amount of change in wavelength of the light source that changes with time T (seconds) is Λ (Nm), when the light source wavelength is λ (nm) and the beat length of the PMF is B (mm), the wavelength of the light source is such that the period of the polarization state of the light emitted from the PMF is synchronized with the pulse. A method for measuring circular dichroism of a living body, comprising a step of measuring a change rate Λ / T (nm / second) as calculated by the following equation (4).
(Equation 1)
Λ / T = N (p) λB / 2L (4)
 前記課題を解決するためになされた本発明の係る第3の実施の形態例(以下、形態例3という)は、光源の波長が検体の円2色性が最大となる領域にある前記光源からの光をグレーティングによって狭スペクトル化し偏光子で直線偏光化し、偏光の方位を限定して偏波面保存光ファイバ(PMF)に入射する工程と、外部トリガに同期して連続的にまたは離散的に前記PMFの長さを伸縮し前記PMFからの出力光の偏光状態が左円偏光と右円偏光が周期的に変化するようにする工程と、前記PMFからの出力光を検体としての生体に照射する工程と、その生体の透過光または生体からの反射光を、直接またはコアをTEC(コア拡大加工すなわちThermally diffused Expanded Core)処理をされたシングルモード光ファイバあるいは多モード光ファイバあるいは多モード光ファイババンドルを介して受光器で受光する工程と、その受光強度の光ファイバ長との関係を測定する測定工程を有することを特徴とする生体の円2色性測定方法である。 A third exemplary embodiment of the present invention (hereinafter referred to as exemplary embodiment 3) made to solve the above-described problem is that the wavelength of the light source is from the light source in the region where the circular dichroism of the specimen is maximum. And narrowing the spectrum of the light with a grating, linearly polarizing it with a polarizer, limiting the direction of polarization and entering the polarization-maintaining optical fiber (PMF), and continuously or discretely in synchronization with an external trigger. Expanding and contracting the length of the PMF so that the polarization state of the output light from the PMF periodically changes between left circularly polarized light and right circularly polarized light; and irradiating the living body as a specimen with the output light from the PMF The process and the transmitted light of the living body or the reflected light from the living body are directly or the core is subjected to a TEC (core expanded processed expanded core) treatment. A biological circle, comprising: a step of receiving light by a light receiver through a single-mode optical fiber, a multi-mode optical fiber or a multi-mode optical fiber bundle; and a measuring step of measuring a relationship between the received light intensity and the length of the optical fiber It is a dichroism measurement method.
 形態例3を展開してなされた本発明に係る第4の実施の形態例(以下、形態例4という)は、形態例3に記載の生体の円2色性測定方法において、前記狭スペクトル化および直線偏光化されたレーザ光を前記PMFの固有偏光軸に対し45度の方位で入射させ、その出力光を生体に照射する光学システムにおいて、前記PMFのビート長をB,脈拍数/秒をN(p)とするとき、前記PMFに装着した伸縮装置の光ファイバ長の時間的変化率ΔL/T(mm/秒)を下記の(7)式で計算されるように変化させて測定する工程を有することを特徴とする生体の円2色性測定方法である。
〔数2〕
   ΔL/T=N(p)B・・・・・(7)
A fourth embodiment of the present invention (hereinafter referred to as “embodiment example 4”) developed by expanding the embodiment example 3 is the narrow-spectrum narrowing in the biological circular dichroism measurement method described in the embodiment example 3. In an optical system in which linearly polarized laser light is incident at an angle of 45 degrees with respect to the intrinsic polarization axis of the PMF and the living body is irradiated with the output light, the beat length of the PMF is B and the pulse rate / second is When N (p) is set, the temporal change rate ΔL / T (mm / second) of the optical fiber length of the telescopic device attached to the PMF is changed as calculated by the following equation (7) and measured. It is a biological dichroism measuring method of a living body characterized by having a process.
[Equation 2]
ΔL / T = N (p) B (7)
 形態例1~4を展開してなされた本発明に係る第5の実施の形態例(以下、形態例5という)は、形態例1~4のいずれかに記載の生体の円2色性測定方法において、光源からの出射レーザ光を前記PMFの出射光が45度方位の直線偏光状態になる値に設定し前記受光器で受光される光パワーの変化が脈拍に同期するように前記PMFの生体への入射位置を調整するようにすることを特徴とする生体の円2色性測定方法である。 A fifth embodiment according to the present invention (hereinafter referred to as a fifth embodiment) developed by developing the first to fourth embodiments is a circular dichroism measurement of a living body according to any one of the first to fourth embodiments. In the method, the laser light emitted from the light source is set to a value at which the light emitted from the PMF becomes a linearly polarized state having a 45-degree azimuth, and the change in optical power received by the light receiver is synchronized with the pulse. A method of measuring circular dichroism of a living body, wherein the incident position on the living body is adjusted.
 形態例1~5を展開してなされた本発明に係る第6の実施の形態例(以下、形態例6という)は、形態例1~5のいずれかに記載の生体の円2色性測定方法において、前記透過光または反射光を、直接または多モード光ファイバあるいは多モード光ファイババンドルを介して受光器で受光し、その受光強度の波長特性を測定する測定工程を有することを特徴とする生体の円2色性測定方法である。 A sixth embodiment according to the present invention (hereinafter referred to as a sixth embodiment) developed by developing the first to fifth embodiments is a circular dichroism measurement of a living body according to any one of the first to fifth embodiments. The method includes the step of measuring the wavelength characteristic of the received light intensity by receiving the transmitted light or reflected light directly or through a multimode optical fiber or a multimode optical fiber bundle with a light receiver. This is a method for measuring circular dichroism of a living body.
 形態例1~6を展開してなされた本発明に係る第7の実施の形態例(以下、形態例7という)は、形態例1~6のいずれかに記載の生体の円2色性測定方法において、左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量を測定する工程を有することを特徴とする生体の円2色性測定方法である。 The seventh embodiment (hereinafter referred to as embodiment 7) according to the present invention developed by developing embodiments 1 to 6 is the circular dichroism measurement of a living body according to any of embodiments 1 to 6. In the method, the larger and smaller losses of left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are respectively α (M) and α ( m), the wavelength characteristic of the optical power received by the light receiver is measured under two conditions: when the blood vessel is dilated and when synchronized with C (M) and when synchronized with C (m). And a circular dichroism measurement method for a living body, comprising a step of measuring an amount proportional to (α (M) −α (m)) by calculation.
 形態例1~7を展開してなされた本発明に係る第8の実施の形態例(以下、形態例8という)は、形態例1~7のいずれかに記載の生体の円2色性測定方法において、前記PMFの出射光を生体へレンズで結合する場合、前記PMFの出射端が前記レンズの焦点よりレンズ寄りの位置にする工程を有することを特徴とする生体の円2色性測定方法である。 The eighth embodiment of the present invention (hereinafter referred to as embodiment 8) made by developing embodiments 1 to 7 is the circular dichroism measurement of a living body according to any of embodiments 1 to 7. In the method, when the emitted light of the PMF is coupled to a living body with a lens, the method includes a step of setting the emitting end of the PMF closer to the lens than the focal point of the lens. It is.
 形態例1~8を展開してなされた本発明に係る第9の実施の形態例(以下、形態例9という)は、形態例1~8のいずれかに記載の生体の円2色性測定方法において、前記PMFの出射光を生体へレンズで結合する場合、前記PMFの出射端がTEC(コア拡大加工すなわちThermally diffused Expanded Core)処理をされ、コア径が元の前記PMFのコア径の2倍以上に拡大されていることを特徴とする生体の円2色性測定方法である。 The ninth embodiment (hereinafter referred to as embodiment 9) according to the present invention developed by expanding embodiments 1 to 8 is the circular dichroism measurement of a living body according to any of embodiments 1 to 8. In the method, when the outgoing light of the PMF is coupled to a living body with a lens, the outgoing end of the PMF is subjected to TEC (core expanded processing, ie, thermally diffused expanded core) processing, and the core diameter is 2 times the core diameter of the original PMF. It is a method for measuring circular dichroism of a living body, characterized in that it is enlarged more than twice.
 形態例1~9を展開してなされた本発明に係る第10の実施の形態例(以下、形態例10という)は、形態例1~9のいずれかに記載の生体の円2色性測定方法において、前記PMFがコアが純粋石英、クラッドがフッ素ドープの楕円ジャケット型ファイバであることを特徴とする生体の円2色性測定方法である。 A tenth embodiment of the present invention (hereinafter referred to as a tenth embodiment) made by developing the first to ninth embodiments is a circular dichroism measurement of a living body according to any one of the first to ninth embodiments. In the method, the PMF is an elliptical jacket type fiber whose core is pure quartz and whose cladding is fluorine-doped, and is a biological circular dichroism measuring method characterized in that
 形態例1~10を展開してなされた本発明に係る第11の実施の形態例(以下、形態例11という)は、形態例1~10のいずれかに記載の生体の円2色性測定方法を用いて、被検者に関して測定した左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量から前記被検者の血糖値を推定する工程を有することを特徴とする無侵襲血糖値測定方法である。 An eleventh embodiment according to the present invention (hereinafter referred to as “embodiment 11”) obtained by developing Embodiments 1 to 10 is the circular dichroism measurement of a living body according to any one of Embodiments 1 to 10. Using the method, the larger and smaller losses of left and right circularly polarized light measured for the subject are defined as C (M) and C (m), respectively, and the attenuation of C (M) and C (m) is defined as When α (M) and α (m) are set, respectively, when the blood vessel is dilated, it is received by the light receiver in the case of two conditions of synchronizing with C (M) and synchronizing with C (m). A non-invasive blood glucose level comprising a step of measuring a wavelength characteristic of the optical power and estimating a blood glucose level of the subject from an amount proportional to (α (M) −α (m)) by calculation This is a measurement method.
 形態例11を展開してなされた本発明に係る第12の実施の形態例(以下、形態例12という)は、形態例11に記載の無侵襲血糖値測定方法において、被検者に関して測定した(α(M)-α(m))に比例した量と前記被検者の予め既存の採血方法によって測定された血糖値との相関テーブルを作成しておき、測定された(α(M)-α(m))に比例した量から前記被検者の血糖値を推定する工程を有することを特徴とする無侵襲血糖値測定方法である。 A twelfth embodiment (hereinafter referred to as a morphological example 12) according to the present invention, which was developed by developing the morphological example 11, was measured with respect to the subject in the non-invasive blood sugar level measuring method according to the eleventh example. A correlation table between an amount proportional to (α (M) −α (m)) and a blood glucose level measured in advance by the subject's existing blood sampling method was prepared and measured (α (M) A non-invasive blood sugar level measuring method comprising a step of estimating a blood sugar level of the subject from an amount proportional to -α (m)).
 前記課題を解決するためになされた本発明に係る第13の実施の形態例(以下、形態例13という)は、光源からの出射波長が検体の円2色性が最大となる領域にありかつ外部トリガに同期して連続的にまたは離散的に変化する直線偏光のレーザ光を偏光の方位を限定して偏波面保存光ファイバ(PMF)に入射する手段と、前記PMFからの出力光をその偏光状態が左円偏光と右円偏光が周期的に変化するようにして信号光として生体に照射する手段と、その透過光及び/または反射光を受光器で受光する手段と、その受光強度の波長特性を測定する手段とを有することを特徴とする生体の円2色性測定装置である。 In a thirteenth embodiment according to the present invention (hereinafter referred to as a thirteenth embodiment) made to solve the above-mentioned problem, the emission wavelength from the light source is in a region where the circular dichroism of the specimen is maximized, and Means for injecting linearly polarized laser light, which changes continuously or discretely in synchronization with an external trigger, into a polarization-maintaining optical fiber (PMF) by limiting the direction of polarization; and output light from the PMF Means for irradiating a living body as signal light so that left circularly polarized light and right circularly polarized light periodically change, means for receiving the transmitted light and / or reflected light with a light receiver, and It is a biological circular dichroism measuring apparatus characterized by having a means for measuring wavelength characteristics.
 形態例13を展開してなされた本発明に係る第14の実施の形態例(以下、形態例14という)は、形態例13に記載の生体の円2色性測定装置において、前記偏光の方位を前記偏波面保存光ファイバ(PMF)の固有偏光軸に対し45度の方位とし、前記PMFの長さをL(mm),時間T(秒)で変化する前記光源の波長の変化量をΛ(nm)、光源波長をλ(nm)、前記PMFのビート長をB(mm)としたときに、前記PMFからの出射光の偏光状態の周期が脈拍に同期するように、前記光源の波長変化率Λ/T(nm/秒)を下記の(4)式で計算されるように変化させて測定する工程を有することを特徴とする生体の円2色性測定装置である。
〔数3〕
     Λ/T=N(p)λB/2L・・・(4)
A fourteenth embodiment (hereinafter referred to as a fourteenth embodiment) according to the present invention developed by developing the thirteenth embodiment is the azimuth of the polarization in the biological circular dichroism measuring device according to the thirteenth embodiment. Is the azimuth of 45 degrees with respect to the intrinsic polarization axis of the polarization-maintaining optical fiber (PMF), the length of the PMF is L (mm), and the amount of change in wavelength of the light source that changes with time T (seconds) is Λ (Nm), when the light source wavelength is λ (nm) and the beat length of the PMF is B (mm), the wavelength of the light source is such that the period of the polarization state of the light emitted from the PMF is synchronized with the pulse. An apparatus for measuring circular dichroism of a living body, comprising a step of measuring a change rate Λ / T (nm / second) as calculated by the following equation (4).
[Equation 3]
Λ / T = N (p) λB / 2L (4)
 前記課題を解決するためになされた本発明に係る第15の実施の形態例(以下、形態例15という)は、光源の波長が検体の円2色性が最大となる領域にある光源からの光をグレーティングによって狭スペクトル化し偏光子で直線偏光化し偏光の方位を限定して偏波面保存光ファイバ(PMF)に入射する手段と、外部トリガに同期して連続的にまたは離散的に前記PMFの長さを伸縮し前記PMFからの出力光の偏光状態が左円偏光と右円偏光が周期的に変化するようにする手段と、前記PMFからの出力光を検体としての生体に照射する手段と、その生体の透過光及び/または生体からの反射光を、直接またはコアをTEC(コア拡大加工すなわちThermally diffused Expanded Core)処理をされたシングルモード光ファイバあるいは多モード光ファイバあるいは多モード光ファイババンドルを介して受光器で受光する手段と、その受光強度の光ファイバ長との関係を測定する手段を有することを特徴とする生体の円2色性測定装置である。 The fifteenth embodiment according to the present invention (hereinafter referred to as embodiment 15) made to solve the above-described problems is obtained from a light source whose wavelength of the light source is in a region where the circular dichroism of the specimen is maximum. Means for narrowing the spectrum of light by a grating, linearly polarizing it by a polarizer, limiting the direction of polarization and entering the polarization-maintaining optical fiber (PMF), and continuously or discretely in synchronism with an external trigger Means for expanding and contracting the length so that the polarization state of the output light from the PMF periodically changes between left circularly polarized light and right circularly polarized light; and means for irradiating the living body as the specimen with the output light from the PMF; , The transmitted light of the living body and / or the reflected light from the living body, or the core was subjected to TEC (core expanded processing, ie, Thermally Expanded Core) processing Biological circle 2 characterized by having means for receiving light by a light receiver via a single-mode optical fiber, a multi-mode optical fiber or a multi-mode optical fiber bundle, and a means for measuring the relationship between the received light intensity and the length of the optical fiber This is a color measuring device.
 形態例15を展開してなされた本発明に係る第16の実施の形態例(以下、形態例16という)は、形態例15に記載の生体の円2色性測定装置において、前記狭スペクトル化および直線偏光化されたレーザ光を前記PMFの固有偏光軸に対し45度の方位で入射させ、その出力光を生体に照射する光学システムにおいて、前記PMFのビート長をB,脈拍数/秒をN(p)とするとき、前記PMFに装着した伸縮装置の光ファイバ長の時間的変化率ΔL/T(mm/秒)を下記の(7)式で計算されるように変化させて測定することを特徴とする生体の円2色性測定装置である。
〔数4〕
   ΔL/T=N(p)B・・・・・(7)
A sixteenth embodiment (hereinafter referred to as a sixteenth embodiment) according to the present invention developed by developing the fifteenth embodiment is the narrow-spectrum in the biological circular dichroism measuring device according to the fifteenth embodiment. In an optical system in which linearly polarized laser light is incident at an angle of 45 degrees with respect to the intrinsic polarization axis of the PMF and the living body is irradiated with the output light, the beat length of the PMF is B and the pulse rate / second is When N (p) is set, the temporal change rate ΔL / T (mm / second) of the optical fiber length of the telescopic device attached to the PMF is changed as calculated by the following equation (7) and measured. This is a living body circular dichroism measuring device.
[Equation 4]
ΔL / T = N (p) B (7)
 形態例13~16を展開してなされた本発明に係る第17の実施の形態例(以下、形態例17という)は、形態例13~16のいずれかに記載の生体の円2色性測定装置において、光源からの出射レーザ光を前記PMFの出射光が45度方位の直線偏光状態になる値に設定し前記受光器で受光される光パワーの変化が脈拍に同期するように前記PMFの生体への入射位置を調整する手段を有することを特徴とする生体の円2色性測定装置である。 The seventeenth embodiment of the present invention (hereinafter referred to as the seventeenth embodiment) developed by developing the thirteenth to thirteenth embodiments is a circular dichroism measurement of a living body according to any one of the thirteenth to thirteenth embodiments. In the apparatus, the laser beam emitted from the light source is set to a value at which the emitted light from the PMF becomes a linearly polarized state with a 45 degree azimuth, and the change in the optical power received by the light receiver is synchronized with the pulse. An apparatus for measuring circular dichroism of a living body having means for adjusting an incident position on the living body.
 形態例13~17を展開してなされた本発明に係る第18の実施の形態例(以下、形態例18という)は、形態例13~17のいずれかに記載の生体の円2色性測定装置において、前記透過光または反射光を、直接またはコアをTEC(コア拡大加工すなわちThermally diffused Expanded Core)処理をされた多モード光ファイバあるいは多モード光ファイババンドルを介して受光器で受光し、その受光強度の波長特性を測定する手段を有することを特徴とする生体の円2色性測定装置である。 An eighteenth embodiment according to the present invention (hereinafter referred to as embodiment 18) developed by developing embodiments 13 to 17 is a circular dichroism measurement of a living body according to any of embodiments 13 to 17. In the apparatus, the transmitted light or the reflected light is received by a light receiver directly or via a multimode optical fiber or a multimode optical fiber bundle in which the core is subjected to a TEC (core diffused expanded core) process. An apparatus for measuring circular dichroism of a living body having means for measuring wavelength characteristics of received light intensity.
 形態例13~18を展開してなされた本発明に係る第19の実施の形態例(以下、形態例19という)は、形態例13~18のいずれかに記載の生体の円2色性測定装置において、左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量を求めることを特徴とする生体の円2色性測定装置である。 The nineteenth embodiment according to the present invention developed from the thirteenth to thirteenth embodiments (hereinafter referred to as the thirteenth embodiment) is a circular dichroism measurement of a living body according to any one of the thirteenth to thirteenth embodiments. In the apparatus, the larger and smaller losses of left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are respectively α (M) and α ( m), the wavelength characteristic of the optical power received by the light receiver is measured under two conditions: when the blood vessel is dilated and when synchronized with C (M) and when synchronized with C (m). The biological dichroism measuring device for a living body is characterized in that an amount proportional to (α (M) −α (m)) is obtained by calculation.
 形態例13~19を展開してなされた本発明に係る第20の実施の形態例(以下、形態例20という)は、形態例13~19のいずれかに記載の生体の円2色性測定装置において、前記PMFの出射光を生体へレンズで結合する場合、前記PMFの両端射端が前記レンズの焦点よりレンズ寄りの位置にあることを特徴とする生体の円2色性測定装置である。 A twentieth embodiment (hereinafter referred to as a morphological example 20) according to the present invention developed by developing the morphological examples 13 to 19 is the circular dichroism measurement of a living body according to any of the morphological examples 13 to 19. In the apparatus, when the emitted light of the PMF is coupled to a living body with a lens, the both end emitting ends of the PMF are located closer to the lens than the focal point of the lens. .
 形態例13~20を展開してなされた本発明に係る第21の実施の形態例(以下、形態例21という)は、形態例13~20のいずれかに記載の生体の円2色性測定装置において、前記PMFの出射光を生体へレンズで結合する場合、前記PMFの両端がTEC(コア拡大加工すなわちThermally diffused Expanded Core)処理をされ、コア径が元の前記PMFのコア径の2倍以上に拡大されていることを特徴とする生体の円2色性測定装置である。 A twenty-first embodiment according to the present invention developed from the thirteenth to thirteenth embodiments (hereinafter referred to as a thirteenth embodiment) is a circular dichroism measurement of a living body according to any one of the thirteenth to thirteenth embodiments. In the apparatus, when the light emitted from the PMF is coupled to a living body with a lens, both ends of the PMF are subjected to TEC (core expanded processing, ie, thermally diffused expanded core) processing, and the core diameter is twice the core diameter of the original PMF. This is a biological circular dichroism measuring device that is enlarged as described above.
 形態例13~21を展開してなされた本発明に係る第22の実施の形態例(以下、形態例22という)は、形態例13~21のいずれかに記載の生体の円2色性測定装置において、前記PMFがコアが純粋石英、クラッドがフッ素ドープの楕円ジャケット型ファイバであることを特徴とする生体の円2色性測定装置である。 A twenty-second embodiment according to the present invention developed from the thirteenth to thirteenth embodiments (hereinafter referred to as a thirty-second embodiment) is a circular dichroism measurement of a living body according to any one of the thirteenth to thirteenth embodiments. In the apparatus, the PMF is an elliptical jacket type fiber whose core is pure quartz and whose cladding is fluorine-doped.
 形態例13~22を展開してなされた本発明に係る第23の実施の形態例(形態例23という)は、形態例13~22のいずれかに記載の生体の円2色性測定装置を用いて、信号光の光路で、円2色性測定のために被測定位置を挟む部品あるいは被測定位置に当接する部品に、温度制御素子としてのペルチエ素子及び/または温度検出部品を組み込んで前記測定部位の温度を制御する及び/または温度を測定する手段を有することを特徴とする無侵襲血糖値測定装置である。 A twenty-third embodiment (referred to as a twenty-third embodiment) according to the present invention developed by developing the thirteenth to thirteenth embodiments includes the biological circular dichroism measuring device according to any one of the thirteenth to thirteenth embodiments. In the optical path of the signal light, a Peltier element and / or a temperature detection part as a temperature control element is incorporated into a part that sandwiches the measurement position for circular dichroism measurement or a part that contacts the measurement position. A non-invasive blood sugar level measuring device comprising means for controlling the temperature of a measurement site and / or measuring the temperature.
 形態例23を展開してなされた本発明に係る第24の実施の形態例(以下、形態例24という)は、形態例23に記載の無侵襲血糖値測定装置において、被検者に関して測定した左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量から前記被検者の血糖値を推定する手段を有することを特徴とする無侵襲血糖値測定装置である。 A twenty-fourth embodiment (hereinafter referred to as a twenty-fourth embodiment) according to the present invention developed by developing the twenty-third embodiment was measured with respect to the subject in the non-invasive blood sugar level measuring device described in the twenty-third embodiment. The larger and smaller losses of left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are α (M) and α (m), respectively. When measuring the wavelength characteristics of the optical power received by the light receiver for the two conditions of when the blood vessel is dilated and synchronized with C (M) and when synchronized with C (m), the calculation is performed. A non-invasive blood sugar level measuring apparatus comprising means for estimating the blood sugar level of the subject from an amount proportional to (α (M) −α (m)).
 形態例23または形態例24を展開してなされた本発明に係る第25の実施の形態例(以下、形態例25という)は、形態例23または形態例24に記載の無侵襲血糖値測定装置において、被検者に関して測定した左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量と前記被検者の予め既存の採血方法によって測定された血糖値との相関テーブルを作成しておき、測定された(α(M)-α(m))に比例した量から前記被検者の血糖値を推定する手段を有することを特徴とする無侵襲血糖値装置である。 A twenty-fifth embodiment (hereinafter referred to as a twenty-fifth embodiment) according to the present invention developed by developing the twenty-third or twenty-fourth embodiment is a non-invasive blood sugar level measuring apparatus according to the twenty-third or twenty-fourth embodiment. , The larger and smaller loss of left and right circularly polarized light measured for the subject is defined as C (M) and C (m), respectively, and the attenuation of C (M) and C (m) is α ( M) and α (m), the optical power received by the light receiver when the blood vessel is dilated is synchronized with C (M) and when synchronized with C (m). A correlation table between an amount proportional to (α (M) −α (m)) and a blood glucose level measured in advance by the subject's existing blood sampling method is created by calculation. From the amount proportional to the measured (α (M) −α (m)) Is a non-invasive blood sugar level apparatus characterized by comprising means for estimating the sugar level.
 本発明の生体の円2色性測定装置および方法、無侵襲血糖値測定装置および方法によれば、採血しないで血糖値に関係した血中のグルコース濃度を測定できる。 According to the biological circular dichroism measuring device and method and the non-invasive blood sugar level measuring device and method of the present invention, the blood glucose concentration related to the blood glucose level can be measured without blood collection.
本発明に係る一実施の形態例における生体の円2色性測定装置の基本構成図である。1 is a basic configuration diagram of a biological circular dichroism measuring device according to an embodiment of the present invention. FIG. 本発明に係る他の実施の形態例における生体の円2色性測定装置の構成図である。It is a block diagram of the biological circular dichroism measuring apparatus in the other embodiment according to the present invention. 本発明に係るさらに他の実施の形態例における生体の円2色性測定装置の構成図である。It is a block diagram of the biological circular dichroism measuring apparatus in the further another example of embodiment which concerns on this invention. 本発明に係る実施の形態例における受光器出力の波長特性の概念図である。It is a conceptual diagram of the wavelength characteristic of the light receiver output in the embodiment according to the present invention. 本発明に係る実施の形態例における受光器出力の波長特性と脈拍信号との関係の概念図である。It is a conceptual diagram of the relationship between the wavelength characteristic of the light receiver output and the pulse signal in the embodiment according to the present invention. 本発明に係る実施の形態例における受光器出力の波長特性と脈拍信号との関係の他の概念図である。It is another conceptual diagram of the relationship between the wavelength characteristic of the light receiver output and the pulse signal in the embodiment according to the present invention. 本発明に係る実施の形態例としての生体の円2色性測定装置の基本構成図である。It is a basic lineblock diagram of a living body circular dichroism measuring device as an example of an embodiment concerning the present invention.
本発明に係る他の実施の形態例としての受光ファイバのない生体の円2色性測定装置の構成図である。It is a block diagram of the circular dichroism measuring device of the living body without the light receiving fiber as another embodiment according to the present invention. 本発明に係る他の実施の形態例としての光ファイババンドルを用いた場合の生体の円2色性測定装置の構成図である。It is a block diagram of the biological circular dichroism measuring apparatus at the time of using the optical fiber bundle as another example of embodiment which concerns on this invention. 本発明に係る実施の形態例としての生体の円2色性測定装置の反射型の例の構成図である。It is a block diagram of the example of a reflection type of the biological circular dichroism measuring device as an embodiment according to the present invention. 本発明のバックデータとなる生体を挟む対向光ファイバコリメータの挿入損失の実験データである。It is experimental data of the insertion loss of the opposing optical fiber collimator which pinches | interposes the biological body used as the back data of this invention. 本発明に係る実施の形態例としての受光器出力と入射側偏波面保存光ファイバ長および脈拍信号との関係を説明する概念図である。It is a conceptual diagram explaining the relationship between the light receiver output as an example of embodiment according to the present invention, the incident side polarization plane preserving optical fiber length, and the pulse signal. 本発明に係る実施の形態例としての受光器出力と入射側偏波面保存光ファイバ長および脈拍信号との関係を説明する他の概念図である。It is another conceptual diagram explaining the relationship between the light receiver output as an embodiment according to the present invention, the incident-side polarization plane preserving optical fiber length, and the pulse signal.
 以下、図面を参照して本発明に係る一発明の実施の形態例について説明する。なお、以下の説明に用いる各図は本発明の実施の形態例を理解できる程度に各構成成分の寸法、形状、配置関係などを概略的に示してある。そして以下の説明の都合上、部分的に拡大率を変えて図示する場合もあり、本発明の実施の形態例の説明に用いる図は、必ずしも実施例などの実物や記述と相似形でない場合もある。また、各図において、同様な構成成分については同一の番号を付して示し、重複する説明を省略することもある。また、以下の説明では、本発明の実施の形態例の生体の円2色性測定装置、生体の円2色性測定方法、無侵襲血糖値測定装置、無侵襲血糖値測定方法に関して説明の重複部分が多い。したがって、説明の重複を避けるため、誤解を生じないようにしつつ、特に言及せずに、いずれか1つについての説明で他の説明を兼ねる場合がある。 Hereinafter, an embodiment of an invention according to the present invention will be described with reference to the drawings. The drawings used in the following description schematically show the dimensions, shapes, arrangement relationships, and the like of each component so that the embodiment of the present invention can be understood. For the convenience of the following explanation, there may be cases where the enlargement ratio is partially changed for illustration, and the drawings used for explanation of the embodiment of the present invention may not necessarily be similar to the actual thing or description such as the embodiment. is there. Moreover, in each figure, about the same component, it attaches and shows the same number, and the overlapping description may be abbreviate | omitted. Further, in the following description, overlapping descriptions of the biological circular dichroism measuring device, the biological circular dichroism measuring method, the non-invasive blood sugar level measuring device, and the non-invasive blood sugar level measuring method according to the embodiment of the present invention. There are many parts. Therefore, in order to avoid duplication of explanation, there is a case where any one of the explanations is combined with another explanation without particularly mentioning it while avoiding misunderstanding.
 本発明者はグルコースの測定に円2色性測定の利用を提案してきた。しかし、グルコースの測定に円2色性測定を用いることは困難であると思われ、あきらめられていた。そこで、円2色性測定の根本原理を見直し、種々検討した結果、本発明を成すに至った。以下、本発明を成すに至った実験結果を引用して、本発明に係る一発明の実施の形態例を詳細に説明する。なお、以下の説明は、必ずしも図を用いずに、文言だけで説明する場合もある。 The present inventor has proposed the use of circular dichroism measurement for measuring glucose. However, it seemed difficult to use the circular dichroism measurement for measuring glucose and was given up. Accordingly, the fundamental principle of circular dichroism measurement has been reviewed and various studies have been made. As a result, the present invention has been achieved. Hereinafter, an embodiment of an invention according to the present invention will be described in detail with reference to experimental results leading to the present invention. In addition, the following description may be demonstrated only with wording, without necessarily using a figure.
 図1は本発明に係る一発明の実施の形態例における生体の円2色性測定装置の基本構成図である。光源1は波長可変光源または波長が2つ以上の波長に離散的に変えられるコヒーレントな光源である。コヒーレントな光源とはレーザあるいはブロードバンド光源からの拡散光をグレーティングなどでスペクトル幅を制限した光源などを含む。光源1には光ファイバへの集光レンズを含む。 FIG. 1 is a basic configuration diagram of a living body circular dichroism measuring apparatus according to an embodiment of the present invention. The light source 1 is a tunable light source or a coherent light source whose wavelength can be discretely changed to two or more wavelengths. The coherent light source includes a light source whose spectral width is limited by a grating or the like for diffused light from a laser or a broadband light source. The light source 1 includes a condenser lens for an optical fiber.
 光源1から出射された信号光としての直線偏光レーザ光はPMF2の固有偏光軸に対して45度の方位に入射され、その出射端に配置したレンズ3でコリメートされ、指などの生体4に入射される。PMF2はNA=0.05、クラッド径30μm、コーティング外径150μmのシリカコアのフッ素ドープクラッドの楕円ジャケットタイプを用いた。コア径は2.5μmであった。本ファイバは800nm帯用のクラッド径125μm用に設計されたプリフォームを外径を30μmで線引きした。生体4を伝搬したレーザ光は受光器7で受光され、電気信号に変換され、信号処理部8に導かれる。符号9は脈拍センサーで、脈拍センサー9からの信号は信号処理部(マイクロコンピュータ)8に送られ、その信号が光源駆動制御装置の光源駆動制御部10にも伝えられ、光源の波長のスイープがコントロールされる。受光器には光源波長をカバーする電子冷却型のAPD(avalanche photodiode)を用いたが光電子増倍管も使える。 Linearly polarized laser light as signal light emitted from the light source 1 is incident at an angle of 45 degrees with respect to the intrinsic polarization axis of the PMF 2, collimated by the lens 3 disposed at the emission end, and incident on a living body 4 such as a finger. Is done. As the PMF2, an elliptical jacket type of a silica core fluorine-doped clad having NA = 0.05, a clad diameter of 30 μm, and a coating outer diameter of 150 μm was used. The core diameter was 2.5 μm. In this fiber, a preform designed for a cladding diameter of 125 μm for the 800 nm band was drawn with an outer diameter of 30 μm. The laser light propagated through the living body 4 is received by the light receiver 7, converted into an electrical signal, and guided to the signal processing unit 8. Reference numeral 9 denotes a pulse sensor. A signal from the pulse sensor 9 is sent to a signal processing unit (microcomputer) 8, and the signal is also transmitted to the light source drive control unit 10 of the light source drive control device, so that the wavelength of the light source is swept. Controlled. As the light receiver, an electronically cooled APD (avalanche photodiode) covering the light source wavelength is used, but a photomultiplier tube can also be used.
 ここでPMF2は光源波長域でシングルモードとなるようにコアとクラッドとの屈折率差、あるいは開口数NAが設計されている。実験の結果、NAを小さくし、そして、PMF2の出力端をコリメート状態からずらしてレンズ3の焦点ではなくレンズ側にデフォーカスした場合に生体4の透過光を効率的に受光器に導くことができた。このような点においてPMF2のNAは0.05以下が望ましい。このようにすることにより、挿入損失を小さくして測定精度を上げることができる。 Here, the refractive index difference between the core and the clad or the numerical aperture NA is designed so that the PMF 2 becomes a single mode in the light source wavelength region. As a result of experiment, when the NA of the PMF 2 is reduced and the output end of the PMF 2 is shifted from the collimated state and defocused to the lens side instead of the focal point of the lens 3, the transmitted light of the living body 4 can be efficiently guided to the light receiver. did it. In this respect, the NA of PMF2 is desirably 0.05 or less. By doing so, the insertion loss can be reduced and the measurement accuracy can be increased.
 非特許文献2に示されるように、偏光が生体を透過する場合に偏光が保存される生体厚は1.2mm程度である。それに加え、生体内の光の散乱損失を小さくするには、できるだけビーム径を小さくし、入射角度を小さく抑えることが効果的であることを実験的に確認した。生体への入射角度を考慮せず受光径の大きな受光器で受光すれば大きな光パワーを受光できるが、偏光成分が失われてしまう。 As shown in Non-Patent Document 2, when polarized light is transmitted through a living body, the thickness of the living body where the polarized light is stored is about 1.2 mm. In addition, it was experimentally confirmed that it is effective to make the beam diameter as small as possible and to keep the incident angle small in order to reduce the light scattering loss in the living body. If light is received by a light receiver having a large light receiving diameter without considering the incident angle to the living body, a large optical power can be received, but the polarization component is lost.
 図2は本発明に係る他の実施の形態例における生体の円2色性測定装置を説明する基本構成図であり、図1における生体4の出力光を多モード光ファイババンドル5を介して集光レンズ6で受光器7に導く構造にした例である。図3は本発明のさらに他の実施の形態例における生体の円2色性測定装置を説明する基本構成図で、信号光照射用PMF2の周辺に多モード光ファイババンドル5を配置し、照射用PMF2からの光を照射された生体4からの反射光を受光し、多モード光ファイババンドル5の出射光をレンズ6で集光して受光器7に導くようにした構成を示す図である。図2は原理的には図1と同じである。バンドル光ファイバはコア/クラッドの各直径が200/220μmの石英系多モード光ファイバ7芯を用いた。 FIG. 2 is a basic configuration diagram for explaining a biological circular dichroism measuring apparatus according to another embodiment of the present invention. The output light of the biological body 4 in FIG. 1 is collected via the multimode optical fiber bundle 5. In this example, the optical lens 6 leads to the light receiver 7. FIG. 3 is a basic configuration diagram for explaining a biological circular dichroism measuring apparatus according to still another embodiment of the present invention. A multi-mode optical fiber bundle 5 is arranged around the signal light irradiation PMF 2 to perform irradiation. It is a figure which shows the structure which received the reflected light from the biological body 4 irradiated with the light from PMF2, condensed the emitted light of the multimode optical fiber bundle 5 with the lens 6, and guide | induced to the light receiver 7. FIG. FIG. 2 is the same as FIG. 1 in principle. As the bundle optical fiber, a 7-core silica-based multimode optical fiber having a core / clad diameter of 200/220 μm was used.
 図1~図3において、光源1の波長λをスキャンさせるとPMF2のビート長Bと長さLで決まる周期で波長λの近傍でその出射光の偏光状態が右円偏光と左円偏光を繰り返す。その周期をΔλとすると、Δλは次式で与えられる。
〔数5〕
       Δλ=λB/2L・・・・・・・・・・・(1)
また時間T(秒)で光源波長をΛだけ変化させると偏光状態変化の周波数fは次式となる。
〔数6〕
       f=Λ/(ΔλT)・・・・・・・・・・(2)
(1)式を代入すると
〔数7〕
       f=2ΛL/(λBT)・・・・・・・・(3)
となる。
脈拍の周波数をN(p)とし、f=N(p)となる場合には光源の波長変化率は次式となる。
〔数8〕 
       Λ/T=N(p)λB/2L・・・・・・(4)
ここで波長λ=182nm、B=0.35mm、L=0.5mとすると、(1)式のΔλはおよそ0.064nmとなる。また(4)式は次式となる。
〔数9〕
      Λ/T=0.064N(p)(nm)・・・・・(5)
1 to 3, when the wavelength λ of the light source 1 is scanned, the polarization state of the emitted light repeats right circular polarization and left circular polarization in the vicinity of the wavelength λ with a period determined by the beat length B and the length L of the PMF 2. . If the period is Δλ, Δλ is given by the following equation.
[Equation 5]
Δλ = λB / 2L (1)
Further, when the light source wavelength is changed by Λ at time T (seconds), the polarization state change frequency f is expressed by the following equation.
[Equation 6]
f = Λ / (ΔλT) (2)
Substituting equation (1) [Equation 7]
f = 2ΛL / (λBT) (3)
It becomes.
When the pulse frequency is N (p) and f = N (p), the wavelength change rate of the light source is given by the following equation.
[Equation 8]
Λ / T = N (p) λB / 2L (4)
Here, if the wavelength λ = 182 nm, B = 0.35 mm, and L = 0.5 m, Δλ in the equation (1) is approximately 0.064 nm. Further, the expression (4) becomes the following expression.
[Equation 9]
Λ / T = 0.064N (p) (nm) (5)
 光源の波長をグルコースの円2色性のピークである182nm近傍で変化させる方法について説明する。すなわち重水素ランプや2010年にEnergetiq社によって商品化されたレーザ励起ブロードバンド光源からグレーティングを介して光源波長を変化させた。グレーティングを透過した光はローションプリズムで直線偏光化し、レンズでPMF2の固有偏光軸に対して45度で入射した。このようにして該PMF2の出力偏光状態の波長特性を予め測定した。 A method for changing the wavelength of the light source in the vicinity of 182 nm, which is the circular dichroism peak of glucose, will be described. That is, the wavelength of the light source was changed via a grating from a deuterium lamp or a laser-excited broadband light source commercialized by Energetic in 2010. The light transmitted through the grating was linearly polarized by a lotion prism, and incident at 45 degrees with respect to the intrinsic polarization axis of PMF2 by a lens. In this way, the wavelength characteristics of the output polarization state of the PMF 2 were measured in advance.
 図4は本発明に係る一発明の実施の形態例における受光器出力の波長特性の概念図である。縦軸は受光器出力、横軸は光源の波長である。光源の波長を182nm近傍で変化させると、受光器の光パワーは、図4に示すように、波長λ1において極大値P(M)を示し、波長λ2において中間値P(0)を示し、波長λ3において極小値P(m)を示し、以降波長の変化に伴って中間値P(0)、極大値P(M)、中間値P(0)、極小値P(m)を順次示すように変化する。周期は前述したようにおよそ0.064nmとなる。図4で符号11-1、11-2はグラフ上で右(又は左)円偏光入射の場合の受光器出力が極大値P(M)の点、符号12は左(又は右)円偏光入射の場合の受光器出力が極小値P(m)の点、符号13-1、13-2は直線偏光入射の場合の受光器出力が中間値P(0)の点を示す。ここで左右円偏光となる波長は直線偏光の出力波長から0.032nmずれているが182nmに比べて波長変化幅が極めて小さいので左円偏光の損失は左円偏光となる182nm近傍の波長においてほぼ等しいと仮定できる。同様に右円偏光の損失は右円偏光となる182nm近傍の波長においてほぼ等しいと仮定できる。 FIG. 4 is a conceptual diagram of the wavelength characteristic of the light receiver output in the embodiment of the invention according to the present invention. The vertical axis represents the receiver output, and the horizontal axis represents the wavelength of the light source. When the wavelength of the light source is changed in the vicinity of 182 nm, the optical power of the light receiver shows a maximum value P (M) at the wavelength λ1 and an intermediate value P (0) at the wavelength λ2, as shown in FIG. The minimum value P (m) is shown at λ3, and thereafter, the intermediate value P (0), the maximum value P (M), the intermediate value P (0), and the minimum value P (m) are sequentially shown as the wavelength changes. Change. As described above, the period is approximately 0.064 nm. In FIG. 4, reference numerals 11-1 and 11-2 are points where the receiver output is a maximum value P (M) when right (or left) circularly polarized light is incident on the graph, and reference numeral 12 is left (or right) circularly polarized light incident. In this case, the light receiver output has a minimum value P (m), and reference numerals 13-1 and 13-2 indicate points at which the light receiver output has an intermediate value P (0) when linearly polarized light is incident. Here, the wavelength of the left circularly polarized light is shifted by 0.032 nm from the output wavelength of the linearly polarized light, but the wavelength change width is extremely small compared to 182 nm, so the loss of the left circularly polarized light is almost the same at the wavelength near 182 nm that becomes the left circularly polarized light. It can be assumed that they are equal. Similarly, it can be assumed that the loss of right-handed circularly polarized light is substantially equal at a wavelength near 182 nm that is right-handed circularly polarized light.
 図5及び図6は本発明の実施の形態例における受光器出力の波長特性と脈拍信号との関係を説明する概念図である。図5と図6で、それぞれ上のグラフは縦軸を受光器出力、横軸を光源の波長にとって表した受光器出力の波長特性グラフで、下のグラフは縦軸を脈拍信号の強度、横軸を時間にとって表した脈拍信号のグラフである。 5 and 6 are conceptual diagrams for explaining the relationship between the wavelength characteristic of the light receiver output and the pulse signal in the embodiment of the present invention. 5 and 6, the upper graph is the wavelength characteristic graph of the receiver output, where the vertical axis represents the receiver output and the horizontal axis represents the wavelength of the light source, and the lower graph represents the pulse signal intensity and the horizontal axis. It is a graph of the pulse signal which expressed the axis with respect to time.
 図5の上のグラフ即ち受光器出力の波長特性グラフでは、受光器出力が波長λ1で極大値(符号11-1の位置)P(M)になり、波長λ2において中間値(符号13-1の位置)P(0)になり、波長λ3において極小値(符号12-1の位置)P(m)になり、波長λ4において中間値(符号13-2の位置)P(0)になり、波長λ3において極大値(符号11-2の位置)P(M)になるというような変化をする。そして、図5の下のグラフでは、上のグラフで波長がλ1の時の時刻に脈拍14が生じており、波長がλ5の時の時刻に次の脈拍14が生じている。 In the upper graph of FIG. 5, that is, the wavelength characteristic graph of the receiver output, the receiver output has a maximum value (position 11-1) P (M) at the wavelength λ1, and an intermediate value (reference 13-1) at the wavelength λ2. Position) P (0), a minimum value (position 12-1) P (m) at wavelength λ3, and an intermediate value (position 13-2) P (0) at wavelength λ4. The change is such that the maximum value (position of reference numeral 11-2) P (M) is reached at the wavelength λ3. In the lower graph of FIG. 5, the pulse 14 is generated at the time when the wavelength is λ1 in the upper graph, and the next pulse 14 is generated at the time when the wavelength is λ5.
 図6の上のグラフ即ち受光器出力の波長特性グラフでは、受光器出力が波長λ1で極大値(符号11-1の位置)P’(M)になり、波長λ2において中間値(符号13-1の位置)P’(0)になり、波長λ3において極小値(符号12-1の位置)P’(m)になり、波長λ4において中間値(符号13-2の位置)P’(0)になり、波長λ3において極大値(符号11-2の位置)P’(M)になるというような変化をする。そして、図6の下のグラフでは、上のグラフで波長がλ3の時の時刻に脈拍14が生じており、波長がλ6の時の時刻に次の脈拍14が生じている。 In the upper graph of FIG. 6, that is, the wavelength characteristic graph of the receiver output, the receiver output has a maximum value (position of reference numeral 11-1) P ′ (M) at the wavelength λ1, and an intermediate value (reference numeral 13− at the wavelength λ2). 1) P ′ (0), a minimum value (position 12-1) P ′ (m) at the wavelength λ3, and an intermediate value (position 13-2) P ′ (0) at the wavelength λ4. And the maximum value (position of reference numeral 11-2) P ′ (M) is changed at the wavelength λ3. In the lower graph of FIG. 6, the pulse 14 is generated at the time when the wavelength is λ3 in the upper graph, and the next pulse 14 is generated at the time when the wavelength is λ6.
 脈拍の測定は生体の脈拍を検出可能な部位で適宜行うことができるが、前記脈拍を受光器出力の測定部位に近いところで行った場合は、脈拍信号測定時刻をそのまま光源波長の掃引同期に用いることができるが、もし脈拍信号測定部位が受光器出力の測定部位から遠い部位で行った場合で、脈拍信号測定部位での脈拍信号発生時刻と受光器出力の測定部位での脈拍発生時刻にずれがある場合には、そのずれ量をあらかじめ測定しておき、実際に測定した脈拍発生時刻を受光器出力の測定部位での脈拍発生時刻に補正して光源波長の掃引同期を行うことにより測定精度を高めることができる。 Pulse measurement can be appropriately performed at a site where the pulse of a living body can be detected. However, when the pulse is measured near the measurement site of the light receiver output, the pulse signal measurement time is used as it is for sweep synchronization of the light source wavelength. However, if the pulse signal measurement part is performed at a part far from the receiver output measurement part, the pulse signal generation time at the pulse signal measurement part and the pulse generation time at the receiver output measurement part are shifted. If there is, the measurement accuracy is measured by measuring the deviation amount in advance, correcting the actual pulse generation time to the pulse generation time at the measurement site of the receiver output, and performing sweep synchronization of the light source wavelength. Can be increased.
 ここで左右円偏光の生体を透過するときの損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とする。このように定義すると図4、図5、図6の符号11-1、11-2はC(m)に、符号12、12-1、12-2はC(M)に対応する。 Here, the larger and smaller losses when passing through the left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are expressed as α ( M) and α (m). When defined in this way, reference numerals 11-1 and 11-2 in FIGS. 4, 5, and 6 correspond to C (m), and reference numerals 12, 12-1, and 12-2 correspond to C (M).
 ここで毎秒の脈拍数N(p)を測定し、(5)式で与えられる光源の波長変化率に設定すれば、図5,図6のように前記PMFの出力の偏光の周期と脈拍とを同期させることができる。図5で、はじめの脈拍14に波長λ1が、その次の脈拍14に波長λ5が対応するように前記PMFの偏光を変化させるように横軸の光源波長を掃引して受光器出力を測定すると図5のグラフを得ることができる。同様に、図6で、はじめの脈拍14に波長λ3が、その次の脈拍14に波長λ6が対応するように前記PMFの偏光を変化させるように横軸の光源波長を掃引して受光器出力を測定すると図6のグラフを得ることができる。図5では血管が拡張したときがC(m)に、血管が収縮したときがC(M)に対応している。図6では図5と逆に血管が拡張したときがC(M)に、血管が収縮したときがC(m)に対応している。 Here, if the pulse rate N (p) per second is measured and set to the wavelength change rate of the light source given by equation (5), the polarization period and pulse of the PMF output as shown in FIGS. Can be synchronized. In FIG. 5, when the light source wavelength on the horizontal axis is swept so as to change the polarization of the PMF so that the wavelength λ1 corresponds to the first pulse 14 and the wavelength λ5 corresponds to the next pulse 14, the receiver output is measured. The graph of FIG. 5 can be obtained. Similarly, in FIG. 6, the light source wavelength on the horizontal axis is swept so as to change the polarization of the PMF so that the wavelength λ 3 corresponds to the first pulse 14 and the wavelength λ 6 corresponds to the next pulse 14. Is measured, the graph of FIG. 6 can be obtained. In FIG. 5, when the blood vessel expands, it corresponds to C (m), and when the blood vessel contracts, it corresponds to C (M). In FIG. 6, contrary to FIG. 5, when the blood vessel expands, it corresponds to C (M), and when the blood vessel contracts, it corresponds to C (m).
 図5、図6のようなデータをとるために、光源の波長を生体の円2色性による減衰量の差に影響が出ない波長、即ち図5、図6の符号13-1(λ2)あるいは13-2(λ4)の波長に設定して、前記PMF2の出力端の位置をビームと直交する平面内(X,Y方向)において微調整し、生体、ここでは親指と人差し指の付け根のひだ部の血管に信号光ビームを入射させ透過させるようにした。即ち受光器の出力が脈拍に同期して変化する位置に前記PMF2の出力端の位置を決めた。 In order to obtain data as shown in FIGS. 5 and 6, the wavelength of the light source is a wavelength that does not affect the difference in attenuation due to the circular dichroism of the living body, that is, reference numeral 13-1 (λ2) in FIGS. Alternatively, the wavelength of 13-2 (λ4) is set, and the position of the output end of the PMF 2 is finely adjusted in the plane perpendicular to the beam (X and Y directions), and the folds of the base of the living body, here, the thumb and the index finger The signal light beam is incident on the blood vessel of the part and transmitted. That is, the position of the output end of the PMF 2 is determined at a position where the output of the light receiver changes in synchronization with the pulse.
 ここで血管が拡張したときと収縮したときの内径をそれぞれD(M),D(m)とすると、図5のP(M)に対応する信号光が血管を透過することによる透過損失はα(m)D(M)に、P(m)に対応する信号光が血管を透過することによる透過損失はα(M)D(m)に対応する。また図6のP’(M)に対応する信号光が血管を透過することによる透過損失はα(m)D(m)に、P’(m)に対応する信号光が血管を透過することによる透過損失はα(M)D(M)に対応する。P(M)とP’(m)の差はD(M)(α(M)-α(m))に比例する。同様に、P’(M)とP(m)の差はD(m)(α(M)-α(m))に比例する。これらの差をとって、(α(M)-α(m))(D(M)-D(m))に比例するデータが測定できる。 Here, when the inner diameters when the blood vessel is expanded and contracted are D (M) and D (m), respectively, the transmission loss due to the signal light corresponding to P (M) in FIG. The transmission loss due to the signal light corresponding to P (m) passing through the blood vessel in (m) D (M) corresponds to α (M) D (m). Further, the transmission loss due to transmission of the signal light corresponding to P ′ (M) in FIG. 6 through the blood vessel is α (m) D (m), and the signal light corresponding to P ′ (m) is transmitted through the blood vessel. The transmission loss due to corresponds to α (M) D (M). The difference between P (M) and P ′ (m) is proportional to D (M) (α (M) −α (m)). Similarly, the difference between P ′ (M) and P (m) is proportional to D (m) (α (M) −α (m)). Taking these differences, data proportional to (α (M) −α (m)) (D (M) −D (m)) can be measured.
 ここで、(D(M)-D(m))は血管の拡張時と収縮時の血管の内径の差であるので個人差があるが、同一被験者では一定である。また、(α(M)-α(m))は円2色性である。従って脈拍に同期して波長λ1から掃引を開始する場合(図5)と波長λ3から掃引を開始する場合(図6)の2つの場合で血管が拡張した時の円2色性と血管が収縮した時の円2色性を測定することによって波長182nm近傍における円2色性に比例した量を測定できる。 Here, (D (M) −D (m)) is a difference in the inner diameter of the blood vessel at the time of dilatation and contraction of the blood vessel, so there are individual differences, but it is constant for the same subject. Further, (α (M) −α (m)) is circular dichroism. Accordingly, the circular dichroism and the blood vessel contraction when the blood vessel is expanded in two cases, when the sweep is started from the wavelength λ1 in synchronization with the pulse (FIG. 5) and when the sweep is started from the wavelength λ3 (FIG. 6). By measuring the circular dichroism at this time, an amount proportional to the circular dichroism near the wavelength of 182 nm can be measured.
 ここで、生体に左右円偏光を入射する方法には偏波面保存ファイバ2の出力側に波長板を置いてそれを回転させる方法もあるが、この方法では入射光の角度が微妙に変化するため左右円偏光の生体の減衰量の微小な差の検出の誤差になる。この点本発明では入射光ファイバの先端の光学系は固定にしてある。 Here, there is a method in which left and right circularly polarized light is incident on a living body, and there is a method in which a wave plate is placed on the output side of the polarization preserving fiber 2 and rotated. However, in this method, the angle of incident light slightly changes. This becomes an error in detecting a minute difference in the attenuation amount of left and right circularly polarized light. In this regard, in the present invention, the optical system at the tip of the incident optical fiber is fixed.
 本発明に係る他の実施の形態例としての図3の反射型の生体の円2色性測定装置は、前記の如く生体からの反射光を検出する構成になっている。一般に左右円偏光は透過と反射で逆転するので、一般的には相殺されて円2色性の観測はできないとされている。しかし生体での散乱が一様ではないため、わずかではあるが円2色性が観測できる。反射型の生体の円2色性測定装置は皮膚などにレーザ光を当てるだけでよいのでセンサーの実装が簡単で使い方も簡単になる。 The reflective biological circular dichroism measuring device of FIG. 3 as another embodiment according to the present invention is configured to detect reflected light from a biological body as described above. In general, left and right circularly polarized light are reversed by transmission and reflection, so that they are generally canceled out so that circular dichroism cannot be observed. However, since the scattering in the living body is not uniform, circular dichroism can be observed although it is slight. Since the reflection type biological circular dichroism measuring device only needs to irradiate the skin with laser light, the sensor can be easily mounted and used.
  前記のごとき本実施の形態例の生体の円2色性測定装置を用いて被験者の測定部位を決めて測定を繰り返した結果と、従来の採血方式による血糖値とを対比して、前記円2色性測定装置による測定値と従来の採血方式による血糖値の測定値との対比に基づく検量テーブルを作成して、本発明に係る発明の実施の形態例の測定方法を用いた無侵襲血糖値測定装置を実現できた。そして前記円2色性測定方法を用いて、無侵襲血糖値測定システムを構成し、生体の血糖値を推定することができた。 The result of repeating measurement by determining the measurement site of the subject using the biological circular dichroism measuring apparatus of the present embodiment as described above and the blood glucose level by the conventional blood sampling method are compared, and the circle 2 A non-invasive blood glucose level using the measurement method according to the embodiment of the present invention by creating a calibration table based on the comparison between the measurement value obtained by the color measuring device and the blood glucose level measured by the conventional blood sampling method A measuring device was realized. Using the circular dichroism measurement method, a non-invasive blood sugar level measurement system was constructed, and the blood sugar level of the living body could be estimated.
 図7は本発明に係る一発明の実施の形態例における生体の円2色性測定装置の基本構成図である。光源101はグルコースの円2色性がピークとなる182nm近傍をカバーする広帯域光源である。重水素ランプあるいは光励起型インコヒーレントな光源である。たとえば2010年にEnergetiq社によって商品化されたレーザ励起ブロードバンド光源がある。前記ブロードバンド光源101から発せられた拡散光をレンズ102-1でコリメートし、グレーティング103、偏光子104を介しレンズ102-2で偏波面保存型カプラ105、45度スプライシング106を介してPMF107に接続する。なお、光源に水銀ランプなどのブロードバンド光源を用い分光器で所定の波長成分を切り出してPMFに入射してもよい。 FIG. 7 is a basic configuration diagram of a biological circular dichroism measuring apparatus according to an embodiment of the present invention. The light source 101 is a broadband light source covering the vicinity of 182 nm where the circular dichroism of glucose peaks. A deuterium lamp or a light-excited incoherent light source. For example, there is a laser-excited broadband light source that was commercialized by Energygetq in 2010. The diffused light emitted from the broadband light source 101 is collimated by the lens 102-1 and connected to the PMF 107 via the grating 103 and the polarizer 104 and the lens 102-2 via the polarization plane preserving coupler 105 and the 45-degree splicing 106. . Note that a broadband light source such as a mercury lamp may be used as a light source, and a predetermined wavelength component may be cut out by a spectroscope and incident on the PMF.
 前記PMF107の出力光は、レンズ102-3によって検体としての生体108に照射され、検体108からの出力は、レンズ102-104と受光用光ファイバ109を介して受光器110-1に集光され、受光器110-1からの電気出力が信号処理回路(マイクロコンピュータ)111に入力される。検体108には脈拍検知装置112が装着され、脈拍検知装置112よりの電気出力が信号処理回路111に入力される。また前記カプラ105によってタップされ、受光器110-2で検出された電気信号は、信号処理回路111に入力される。信号処理回路111で脈拍に同期した信号によって前記PMF107に装着した光ファイバ伸縮装置113を駆動する。符号123は光ファイバ伸縮装置113から発せられる光ファイバ伸縮制御信号である。以上が本発明に係る実施の形態例としての円2色性測定方法に必要な光学システムである。 The output light of the PMF 107 is irradiated to the living body 108 as the specimen by the lens 102-3, and the output from the specimen 108 is condensed on the light receiver 110-1 through the lens 102-104 and the light receiving optical fiber 109. The electrical output from the light receiver 110-1 is input to a signal processing circuit (microcomputer) 111. A pulse detection device 112 is attached to the specimen 108, and an electrical output from the pulse detection device 112 is input to the signal processing circuit 111. The electrical signal tapped by the coupler 105 and detected by the light receiver 110-2 is input to the signal processing circuit 111. The signal processing circuit 111 drives the optical fiber telescopic device 113 attached to the PMF 107 by a signal synchronized with the pulse. Reference numeral 123 denotes an optical fiber expansion / contraction control signal issued from the optical fiber expansion / contraction device 113. The above is the optical system necessary for the circular dichroism measurement method as an embodiment of the present invention.
 ここで偏光子104はローションプリズムを用いた。PMFはNA=0.05、クラッド径30μm、コーティング外径150μmのシリカコアのフッ素ドープクラッドの楕円ジャケットタイプを用いた。コア径は2.5μmであった。182nm近傍の伝送損失は20,000dB/km、すなわち20dB/mであった。実験には光ファイバの長さ20cmの部分をシリンダー状のPZTからなる伸縮装置113に巻きつけたものを用いた。グレーティングは分解能として約0.02nmのものを用いた。受光器には光源波長をカバーする電子冷却型のAPD(avalanche photodiode)を用いたが光電子増倍管も使用することができる。また、偏光子を光ファイバ型にすることができる。このようにすることにより装置の一層の小型化が可能になり、低価格化をさらに進めることができる。 Here, a lotion prism was used as the polarizer 104. As the PMF, an elliptical jacket type of a silica core fluorine-doped clad having NA = 0.05, a clad diameter of 30 μm, and a coating outer diameter of 150 μm was used. The core diameter was 2.5 μm. The transmission loss near 182 nm was 20,000 dB / km, that is, 20 dB / m. In the experiment, an optical fiber having a length of 20 cm was wound around a telescopic device 113 made of cylindrical PZT. A grating with a resolution of about 0.02 nm was used. For the light receiver, an electronically cooled APD (avalanche photodiode) covering the light source wavelength is used, but a photomultiplier tube can also be used. In addition, the polarizer can be an optical fiber type. By doing so, the apparatus can be further miniaturized and the cost can be further reduced.
 図8は本発明に係る他の実施の形態例としての受光ファイバのない生体の円2色性測定装置の構成図である。図9は本発明に係る他の実施の形態例としての光ファイババンドルを用いた場合の生体の円2色性測定装置の構成図である。これらの装置構成は検体108の出射光を図7の受光用ファイバ109を使わずに、それぞれ直接受光器110-1で検出する場合(図8)と光ファイババンドル114を用いて検出する場合(図9)の例であり、基本的には図7の例と原理は同じである。図7の場合には受光用ファイバ109に励振用ファイバ107と同種のPMFを用いたが、この場合は生体内の多重散乱光を避けて、比較的近軸光線を受光でき、血管に照準を合わせやすいというメリットがある。バンドル光ファイバの場合は、コア/クラッドの各直径が200/220μmの石英系多モード光ファイバ7芯を用いた。 FIG. 8 is a block diagram of a living body circular dichroism measuring apparatus without a light receiving fiber as another embodiment according to the present invention. FIG. 9 is a configuration diagram of a biological circular dichroism measuring apparatus using an optical fiber bundle as another embodiment according to the present invention. In these apparatus configurations, the light emitted from the specimen 108 is detected directly by the light receiver 110-1 without using the light receiving fiber 109 of FIG. 7 (FIG. 8) and when detected using the optical fiber bundle 114 (FIG. 8). 9), and basically the same principle as that of FIG. In the case of FIG. 7, the same type of PMF as the excitation fiber 107 is used for the light receiving fiber 109. In this case, however, it is possible to receive relatively paraxial light rays while avoiding multiple scattered light in the living body, and aim the blood vessel. There is a merit that it is easy to match. In the case of a bundle optical fiber, a 7-core silica-based multimode optical fiber having a core / clad diameter of 200/220 μm was used.
 図10は本発明に係るさらに他の実施の形態例としての生体の円2色性測定装置の反射型の例の構成図である。図10の例では、生体108の入力側で、光源101から発せられた拡散光をレンズ102-1でコリメートし、グレーティング103、偏光子104を介しレンズ102-2で偏波面保存型カプラ105、45度スプライシング106を介してPMF107に接続し、信号処理回路111で脈拍に同期した信号によってPMF107に装着した光ファイバ伸縮装置113を駆動して、PMF107の出力光の偏光状態が、後述するように、右円偏光と左円偏光を周期的に繰り返すようにし、PMF107の出力光をレンズ102-3を介して検体としての生体108に照射すること、カプラ105によってタップされ受光器110-2で検出された電気信号を前記信号処理回路111に入力すること等は図7の場合と同様である。生体108の入力側では、生体108からの反射光が光ファイババンドル114とレンズ102-4を介して受光器110-1に集光され、その電気出力が信号処理回路111に入力される。 FIG. 10 is a configuration diagram of a reflection type example of a biological circular dichroism measuring apparatus as still another embodiment according to the present invention. In the example of FIG. 10, the diffused light emitted from the light source 101 is collimated by the lens 102-1 on the input side of the living body 108, and the polarization plane preserving coupler 105 is obtained by the lens 102-2 via the grating 103 and the polarizer 104. The optical fiber expansion / contraction device 113 connected to the PMF 107 via the 45-degree splicing 106 and attached to the PMF 107 is driven by a signal synchronized with the pulse by the signal processing circuit 111, and the polarization state of the output light of the PMF 107 is as described later. The right circularly polarized light and the left circularly polarized light are periodically repeated, and the output light of the PMF 107 is irradiated to the living body 108 as the specimen through the lens 102-3, and is tapped by the coupler 105 and detected by the light receiver 110-2. The inputted electric signal is input to the signal processing circuit 111 as in the case of FIG. On the input side of the living body 108, the reflected light from the living body 108 is collected on the light receiver 110-1 through the optical fiber bundle 114 and the lens 102-4, and the electrical output is input to the signal processing circuit 111.
 図11は、本発明のバックデータとなる生体を挟む対向光ファイバコリメータの挿入損失の実験データで、光ファイバ107の出力光をレンズ102-3で集光し、生体を通してレンズ102-4で受光用光ファイバ109で受光する場合のトータルの挿入損失とレンズ102-3、102-4の距離の関係の実験値である。実験に用いた波長は参考として1064nmを用いた。図11において、符号115はNufern製PM980、コア径8μm、NA=0.14の偏波面保存(PM)光ファイバを用いた場合のデータ、符号116はコア径50μmの多モードファイバの場合のデータ、符号117は低NA(~0.075)ダブルクラッドPMFの場合の挿入損失(縦軸、単位dB)とレンズ間距離(横軸、単位mm)の関係を示す測定結果のデータである。 FIG. 11 is experimental data of the insertion loss of the opposed optical fiber collimator that sandwiches the living body as back data of the present invention. The output light of the optical fiber 107 is collected by the lens 102-3 and received by the lens 102-4 through the living body. This is an experimental value of the relationship between the total insertion loss and the distance between the lenses 102-3 and 102-4 when the optical fiber 109 receives light. The wavelength used in the experiment was 1064 nm for reference. In FIG. 11, reference numeral 115 is data when using a PM980 manufactured by Nufern, a core diameter of 8 μm, and a polarization-preserving (PM) optical fiber with NA = 0.14. Reference numeral 116 is data when a multimode fiber having a core diameter of 50 μm is used. Reference numeral 117 denotes data of measurement results showing the relationship between the insertion loss (vertical axis, unit dB) and the inter-lens distance (horizontal axis, unit mm) in the case of a low NA (˜0.075) double clad PMF.
 ここでは送受光ファイバは同種とした。実験ではいずれの場合にも光ファイバの先端がレンズの焦点からはずれた場合、すなわちデフォーカスした方が挿入損失が小さかった。生体内で散乱した光は角度をもって受光ファイバに入射するがこの場合予めデフォーカスした方が受光ファイバへの結合損失のビーム角度依存性が小さいためと考えられる。また、デフォーカスすれば生体内のビーム径が小さくなり生体の散乱の影響が小さくなるためである。 Here, the transmitting and receiving fibers are of the same type. In all experiments, the insertion loss was smaller when the tip of the optical fiber deviated from the focus of the lens, that is, when it was defocused. The light scattered in the living body is incident on the light receiving fiber at an angle. In this case, it is considered that the defocusing in advance has a smaller beam angle dependency of the coupling loss to the light receiving fiber. Moreover, if defocusing is performed, the beam diameter in the living body is reduced, and the influence of scattering of the living body is reduced.
 図11によれば、ファイバのNAが小さいほど挿入損失がケタ違いに小さく、レンズ間の距離を大きくした場合でも損失はケタ違いに小さいことがわかった。なお、コアを加熱して約3倍に拡大したいわゆるTEC(Thermally diffused Expanded Core)はダブルクラッドPMF117のコア径が30μmのファイバとほぼ同等の特性であった。 FIG. 11 shows that the smaller the NA of the fiber, the smaller the insertion loss, and even when the distance between the lenses is increased, the loss is small. In addition, so-called TEC (Thermally diffused Expanded Core), which was expanded about 3 times by heating the core, had almost the same characteristics as a fiber having a core diameter of double clad PMF117 of 30 μm.
 このデータを基に、本発明に係る実施の形態例では波長180nm用のNA~0.05のPMFを用いた。本発明者が本実施の形態例に用いるPMFのNAを詳細に調べた結果、0.07以下のNAが好ましく、0.05以下のNAが特に好ましいことがわかった。コアのNAが0.1以上のPMFでもTEC加工すれば先端部のコアが拡大されると同時にNAが減少するので、本実施の形態例に適用できる。 Based on this data, in the embodiment according to the present invention, a PMF of NA to 0.05 for a wavelength of 180 nm was used. As a result of detailed examination of the NA of the PMF used by this inventor by the present inventor, it was found that NA of 0.07 or less is preferable, and NA of 0.05 or less is particularly preferable. Even with PMF having a core NA of 0.1 or more, if the TEC processing is performed, the core at the tip is enlarged and the NA is reduced at the same time, so that the present embodiment can be applied.
 なお、波長180nm帯のシングルモードファイバのコア径が赤外用のシングルモードファイバより小さいので、前記偏波面保存ファイバの両端をTEC加工することにより、光源からの光を効率的に結合することができる。
 前記TEC処理のコア径は元の光ファイバのコア径の2倍以上にすることにより、大きな効果を発揮する。
Since the core diameter of the single-mode fiber having a wavelength of 180 nm is smaller than that of the infrared single-mode fiber, light from the light source can be efficiently coupled by TEC processing both ends of the polarization-preserving fiber. .
By making the core diameter of the TEC treatment more than twice the core diameter of the original optical fiber, a great effect is exhibited.
 なお、計測システムの受光S/N比に余裕がある場合には、光りファイバの端面をレンズの焦点位置に配置しても、その他の部分は本実施の形態例の構成で十分実用的な精度で測定することができ、このような構成も本発明に含まれるものである。 If there is a margin in the light-receiving S / N ratio of the measurement system, the accuracy of the embodiment is sufficiently practical with the configuration of the present embodiment even if the end face of the optical fiber is arranged at the focal position of the lens. Such a configuration is also included in the present invention.
 また、光ファイバの端面あるいはその近傍にレンズを光ファイバと一体に固定した構成にすることにより、測定のバラツキが少なく、使い勝手がよく、小型で安価な本実施の形態例装置を実現することができる。 In addition, by adopting a configuration in which the lens is integrally fixed with the optical fiber at or near the end face of the optical fiber, it is possible to realize a small and inexpensive example apparatus of the present embodiment with little variation in measurement. it can.
 図7~図9において、前記PMF107の長さを変化させるとPMF107のビート長Bで決まる周期でその出射光の偏光状態が右円偏光と左円偏光を繰り返す。前記PMF107の長さを時間T(秒)で長さΔLだけ変化させると、偏光状態変化の周波数fは次(6)式となる。
〔数10〕
     f=ΔL/BT ・・・・・・・・・・(6)
ここでこの周期を脈拍N(p)/秒と等しくなるようにするためには長さの時間変化を次式で決まる量に制御すればよい。
7 to 9, when the length of the PMF 107 is changed, the polarization state of the emitted light repeats right circular polarization and left circular polarization at a cycle determined by the beat length B of the PMF 107. When the length of the PMF 107 is changed by the length ΔL at time T (seconds), the polarization state change frequency f is expressed by the following equation (6).
[Equation 10]
f = ΔL / BT (6)
Here, in order to make this cycle equal to the pulse N (p) / second, the time change of the length may be controlled to an amount determined by the following equation.
〔数11〕
     ΔL/T=BN(p) ・・・・・・・(7)
B=0.35mm、N(p)=1とすると前記PMF107の長さの変化率は0.35mm/秒となる。
実験では長さ200mmの長さのPMFを用いたので毎秒0.175%のレートで伸縮させればよいことになる。
[Equation 11]
ΔL / T = BN (p) (7)
When B = 0.35 mm and N (p) = 1, the rate of change of the length of the PMF 107 is 0.35 mm / second.
In the experiment, a PMF with a length of 200 mm was used, so that it was sufficient to expand and contract at a rate of 0.175% per second.
 図12および図13は本発明に係る実施の形態例としての受光器出力と検体108への入射側偏波面保存光ファイバ長および脈拍信号との関係を説明する概念図である。図12および図13における縦軸は受光器出力、横軸は検体108への入射側偏波面保存光ファイバ長であり、下部に示す図の縦軸は脈拍信号強度、横軸は脈拍信号の光ファイバ長に対応する位置(タイミング)である。光源の波長を182nm近傍に固定して前記PMF107の長さを変化させると、受光器の光パワーは図12、図13のように変化する。周期は前述したようにおよそ0.35mmとなる。すなわち図12、図13でL3-L1=0.35mm、L4-L2=0.35mmである。 12 and 13 are conceptual diagrams for explaining the relationship between the light receiver output, the incident-side polarization plane preserving optical fiber length to the specimen 108, and the pulse signal as an embodiment according to the present invention. 12 and 13, the vertical axis represents the output of the light receiver, the horizontal axis represents the length of the polarization-maintaining optical fiber on the incident side with respect to the specimen 108, the vertical axis in the figure shown below represents the pulse signal intensity, and the horizontal axis represents the pulse signal light. This is the position (timing) corresponding to the fiber length. When the wavelength of the light source is fixed to around 182 nm and the length of the PMF 107 is changed, the optical power of the light receiver changes as shown in FIGS. As described above, the period is about 0.35 mm. That is, L3-L1 = 0.35 mm and L4-L2 = 0.35 mm in FIGS.
 図12、図13において、符号118-1、118-2は、グラフ上で右(または左)円偏光入射の場合の受光器出力が極小値P(m)の点、符号119-1、119-2は左(または右)円偏光入射の場合の受光器出力が極大値P(M)の点、符号120-1、120-2は直線偏光入射の場合の受光器出力が中間値P(0)の点を示す。 12 and 13, reference numerals 118-1 and 118-2 are points at which the light receiver output has a minimum value P (m) when the right (or left) circularly polarized light is incident on the graph, and reference numerals 119-1 and 119. -2 is a point where the light receiver output at the left (or right) circularly polarized light is at the maximum value P (M), and reference numerals 120-1 and 120-2 are the light receiver outputs at the linearly polarized light incident at the intermediate value P ( Point 0) is shown.
 図12、図13における上部のグラフ、即ち受光器出力のグラフにおいて、光ファイバ長を変化させると、受光器出力が光ファイバ長L1で極小値P(m)になり(符号118-1の位置)、光ファイバ長L1とL2の中間で中間値P(0)になり(符号120-1の位置)、光ファイバ長L2で極大値P(M)になり(符号119-1の位置)、光ファイバ長L3において極小値P(m)になり(符号118-2の位置)、光ファイバ長L3とL4の中間で中央値P(0)になり(符号120-2の位置)、光ファイバ長L4で極大値P(M)になる(符号119-1の位置)というような変化をする。そして、図12の下部のグラフでは、上のグラフで光ファイバ長がL1の時の時刻に脈拍121が生じており、光ファイバ長がL3の時の時刻に次の脈拍121が生じている。図13の下のグラフでは、上のグラフで光ファイバ長がL2の時の時刻に脈拍121が生じており、光ファイバ長がL4の時の時刻に次の脈拍121が生じている。 In the upper graphs in FIGS. 12 and 13, that is, the optical receiver output graph, when the optical fiber length is changed, the optical receiver output becomes the minimum value P (m) at the optical fiber length L1 (position 118-1). ), An intermediate value P (0) between the optical fiber lengths L1 and L2 (position 120-1), and a maximum value P (M) at the optical fiber length L2 (position 119-1). The optical fiber length L3 becomes the minimum value P (m) (position of reference numeral 118-2), and becomes the median value P (0) between the optical fiber lengths L3 and L4 (position of reference numeral 120-2). The change is such that the maximum value P (M) is reached at the length L4 (the position indicated by reference numeral 119-1). In the lower graph of FIG. 12, the pulse 121 is generated at the time when the optical fiber length is L1 in the upper graph, and the next pulse 121 is generated at the time when the optical fiber length is L3. In the lower graph of FIG. 13, the pulse 121 occurs at the time when the optical fiber length is L2 in the upper graph, and the next pulse 121 occurs at the time when the optical fiber length is L4.
 図12および図13で左右円偏光の血管を透過するときの損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とする。このように定義すると図12、図13の符号118-1、118-2はC(M)に、119-1、119-2はC(m)に対応する。 In FIG. 12 and FIG. 13, the larger and smaller losses when passing through the left and right circularly polarized blood vessels are defined as C (M) and C (m), respectively, and attenuation amounts of C (M) and C (m) are defined. Are α (M) and α (m), respectively. When defined in this way, reference numerals 118-1 and 118-2 in FIGS. 12 and 13 correspond to C (M), and 119-1 and 119-2 correspond to C (m).
 ここで毎秒の脈拍数N(p)を測定し、光ファイバの伸縮率を(7)式で与えられるように設定すれば、図12、図13のように前記PMFの出力の偏光の周期と脈拍とを同期させることができる。図12では血管が拡張したときがC(M)に、血管が収縮したときがC(m)に対応している。図13では図12と逆に血管が拡張したときがC(m)に、血管が収縮したときがC(M)に対応している。 Here, if the pulse rate N (p) per second is measured and the expansion / contraction rate of the optical fiber is set to be given by the equation (7), the polarization period of the output of the PMF and the period shown in FIGS. The pulse can be synchronized. In FIG. 12, when the blood vessel expands, it corresponds to C (M), and when the blood vessel contracts, it corresponds to C (m). In FIG. 13, in contrast to FIG. 12, when the blood vessel expands, it corresponds to C (m), and when the blood vessel contracts, it corresponds to C (M).
 図12、図13のようなデータをとるためには前記PMFの長さを生体の円2色性による減衰量の差に影響が出ない光ファイバ長、すなわち図12、図13の120-1あるいは120-2に設定して前記PMF107の出力端の位置をビームと直交する平面内(X,Y方向)に微調整し、生体、ここでは親指と人差し指の付け根のひだ部、の血管にビームを透過させるようにした。すなわち受光器の出力が脈拍に同期して変化する位置に前記PMF107の出力端の位置を決めた。 In order to obtain data as shown in FIGS. 12 and 13, the length of the PMF is the optical fiber length that does not affect the difference in attenuation due to the circular dichroism of the living body, that is, 120-1 in FIGS. Alternatively, it is set to 120-2, and the position of the output end of the PMF 107 is finely adjusted in a plane (X and Y directions) orthogonal to the beam, and the beam is applied to the blood vessel of the living body, here, the fold of the base of the thumb and index finger. It was made to permeate. That is, the position of the output end of the PMF 107 was determined at a position where the output of the light receiver changes in synchronization with the pulse.
 ここで血管が拡張したときと収縮したときの内径をそれぞれD(M),D(m)とすると、図12のP(M)に対応する信号光が血管を透過することによる透過損失はα(m)D(m)に、P(m)に対応する信号光が血管を透過することによる透過損失はα(M)D(M)に対応する。 Here, when the inner diameters when the blood vessel is expanded and contracted are D (M) and D (m), respectively, the transmission loss due to the transmission of the signal light corresponding to P (M) in FIG. The transmission loss due to the signal light corresponding to P (m) passing through the blood vessel in (m) D (m) corresponds to α (M) D (M).
 また図13のP(M)に対応する信号光が血管を透過することによる透過損失はα(m)D(M)に、P(m)に対応する信号光が血管を透過することによる透過損失はα(M)D(m)に対応する。 Further, transmission loss due to transmission of signal light corresponding to P (M) in FIG. 13 through the blood vessel is α (m) D (M), and transmission due to transmission of signal light corresponding to P (m) through the blood vessel. The loss corresponds to α (M) D (m).
 図12のP(M)と図13のP(m)の差は、D(m)(α(M)-α(m))に比例する。同様に、図13のP(M)と図12のP(m)の差は、D(M)(α(M)-α(m))に比例する。これらの差をとって、(α(M)-α(m))(D(M)-D(m))に比例するデータが測定できる。 The difference between P (M) in FIG. 12 and P (m) in FIG. 13 is proportional to D (m) (α (M) −α (m)). Similarly, the difference between P (M) in FIG. 13 and P (m) in FIG. 12 is proportional to D (M) (α (M) −α (m)). Taking these differences, data proportional to (α (M) −α (m)) (D (M) −D (m)) can be measured.
 ここで、(D(M)-D(m))は、血管の拡張時と収縮時の血管の内径の差であるので個人差があるが、同一被験者では一定である。また、(α(M)-α(m))は円2色性である。従って、脈拍に同期して光ファイバ長がL1から掃引を開始する場合(図12)と光ファイバ長がL2から掃引を開始する場合(図13)の2つの場合で血管が拡張した時の円2色性と血管が収縮した時の円2色性を測定することによって波長182nm近傍における円2色性に比例した量を測定できる。 Here, (D (M) −D (m)) is a difference in the inner diameter of the blood vessel when the blood vessel is expanded and contracted, so there is an individual difference, but it is constant in the same subject. Further, (α (M) −α (m)) is circular dichroism. Accordingly, when the optical fiber length starts to sweep from L1 in synchronization with the pulse (FIG. 12) and when the optical fiber length starts to sweep from L2 (FIG. 13), the circle when the blood vessel expands is shown. By measuring the dichroism and the circular dichroism when the blood vessel contracts, an amount proportional to the circular dichroism near the wavelength of 182 nm can be measured.
 なお、図10は本発明に係る発明の実施の形態例としての生体の円2色性測定装置の反射型の例の構成図で、生体からの反射光を検出する構成になっている。前記のように、一般に左右円偏光は透過と反射で逆転するので一般的には相殺されて円2色性の観測はできないとされている。しかし、本実施例の場合にも、生体での散乱が一様ではないためわずかではあるが円2色性が観測できる。反射型の生体の円2色性測定装置は皮膚などにレーザ光を当てるだけでよいのでセンサーの実装が簡単で使い方も簡単になる。 FIG. 10 is a configuration diagram of a reflection type example of the biological circular dichroism measuring apparatus as an embodiment of the invention according to the present invention, and is configured to detect reflected light from the biological body. As described above, since the left and right circularly polarized light are generally reversed by transmission and reflection, they are generally canceled out and the circular dichroism cannot be observed. However, even in the case of the present embodiment, since the scattering in the living body is not uniform, the circular dichroism can be observed slightly. Since the reflection type biological circular dichroism measuring device only needs to irradiate the skin with laser light, the sensor can be easily mounted and used.
 図7~図10の実施の形態例の生体108への入射光側の光学系は、従来のような、光ファイバ107とレンズ102-3の間にレンズの焦点距離だけの空間光路を設けレンズと生体108の間にも空間光路を設ける光学系の思想とは異なり、光ファイバ107をレンズ102-3の焦点位置よりもレンズに近い位置に配置する。 The optical system on the side of light incident on the living body 108 in the embodiment shown in FIGS. 7 to 10 is provided with a spatial light path corresponding to the focal length of the lens between the optical fiber 107 and the lens 102-3 as in the prior art. Unlike the idea of an optical system in which a spatial light path is also provided between the living body 108 and the living body 108, the optical fiber 107 is disposed at a position closer to the lens than the focal position of the lens 102-3.
 さらに、レンズと生体108との間の空間光路も必須とせず、例えば入射光学系の端部を指のひだ部に密着させるなど、全光ファイバ型と定義する光学系にすることによって、円2色性測定精度を大幅に高めることができる。 Furthermore, the spatial optical path between the lens and the living body 108 is not essential, and by making the optical system defined as an all-optical fiber type, for example, by closely contacting the end of the incident optical system with the fold of the finger, the circle 2 The chromaticity measurement accuracy can be greatly increased.
 さらに、図7、8、9,10の例のように、本実施の形態例の全光ファイバ型吸光計測光学系を受光側も光ファイバにし、光路において検体108を挟持する構成にし、測定精度の向上と使い勝手の向上を図ることができる。
 なお、皮膚に屈折率整合剤を塗布したり屈折率整合シートを貼ったりすると生体透過損失が約3dB改善された。
Further, as in the examples of FIGS. 7, 8, 9, and 10, the all-optical fiber type absorption measurement optical system of the present embodiment is configured so that the light receiving side is also an optical fiber, and the specimen 108 is sandwiched in the optical path, so that the measurement accuracy is achieved. And usability can be improved.
In addition, when a refractive index matching agent was applied to the skin or a refractive index matching sheet was applied, the biological transmission loss was improved by about 3 dB.
 次に、図7~図10に示すグレーティング103の分解能の必要条件について説明する。実施の形態例で使用したPMF107のビート長は、波長182nmにて0.35mmである。従って500mm伝搬すると直交偏波モードの光路差は(500/0.35)x182nmで~0.26mmとなる。従ってPM107の出射端で偏光度を確保するために光源のコヒーレンス長を0.26mmより十分長くする必要がある。光源のコヒーレンス長が0.26mmとなる場合の光源の波長幅は約0.12nmである。従って本発明の実施例では十分な余裕を見てグレーティング103の分解能を0.02nmとした。 Next, the necessary conditions for the resolution of the grating 103 shown in FIGS. 7 to 10 will be described. The beat length of the PMF 107 used in the embodiment is 0.35 mm at a wavelength of 182 nm. Accordingly, when propagating 500 mm, the optical path difference in the orthogonal polarization mode is ˜0.26 mm at (500 / 0.35) × 182 nm. Therefore, the coherence length of the light source needs to be sufficiently longer than 0.26 mm in order to ensure the degree of polarization at the emission end of the PM 107. When the coherence length of the light source is 0.26 mm, the wavelength width of the light source is about 0.12 nm. Therefore, in the embodiment of the present invention, the resolution of the grating 103 is set to 0.02 nm with a sufficient margin.
 本実施の形態例では、生体に信号光を照射するPMFの出力光の偏光状態を左右円偏光状態が周期的に変化するように偏波面保存光ファイバ長を脈拍に同期して変化させたが、他の実施の形態例では、生体の検体部を強く抑えて血流を除去した場合の円2色性と緩く抑えて血流を存在させた場合の円2色性との比較によって血糖値を推定することができた。さらに、他の実施の形態例では、前記脈拍に同期させる代わりに、検体に電気的および/あるいは機械的トリガ信号としての外部信号を与え、脈拍の代わりにトリガ信号として測定に用いて、同様に血糖値を推定することができた。 In the present embodiment, the polarization plane preserving optical fiber length is changed in synchronization with the pulse so that the polarization state of the output light of the PMF that irradiates the living body with the signal light changes periodically in the left and right circular polarization state. In another embodiment, the blood glucose level is determined by comparing the circular dichroism when the blood sample is removed while strongly suppressing the specimen portion of the living body and the circular dichroism when the blood flow is present while suppressing the blood flow gently. Could be estimated. Furthermore, in another embodiment, instead of synchronizing with the pulse, an external signal as an electrical and / or mechanical trigger signal is given to the specimen and used as a trigger signal instead of the pulse for measurement. The blood glucose level could be estimated.
 従来、円2色性の測定技術についてはすでに知られていたが、円2色性の測定技術を用いてヒトの血糖値を推定できるとは全く予想されていなかった。しかし、前記の如く、本実施の形態例によれば、光学系の工夫、光源の波長の選択すなわち検体の円2色性が最大となる領域にある波長を用いること、脈拍の利用など多くの改善の結果、ヒトの血糖値を十分推定可能な高い精度でのグルコースの測定を実現することができた。 Conventionally, a circular dichroism measurement technique has already been known, but it has never been expected that a human blood glucose level can be estimated using a circular dichroism measurement technique. However, as described above, according to the present embodiment, the optical system is devised, the wavelength of the light source is selected, that is, the wavelength in the region where the circular dichroism of the specimen is maximized, the use of the pulse, etc. As a result of the improvement, it was possible to realize glucose measurement with high accuracy capable of sufficiently estimating human blood glucose levels.
 本実施の形態例の生体の円2色性測定装置を用いて被検者の測定部位を決めて測定を繰り返した結果と従来の採血方式による血糖値の測定値の比較を繰り返した結果から検量テーブルを作成することにより、本実施の形態例の測定結果を基に検量テーブルを参照することにより、無侵襲に血糖値を推定できる。 Calibration based on the result of repeating the measurement by determining the measurement site of the subject using the circular dichroism measuring device of the living body of the present embodiment and the result of repeating the measurement of the blood glucose level by the conventional blood sampling method By creating the table, the blood glucose level can be estimated non-invasively by referring to the calibration table based on the measurement result of the present embodiment.
 即ち、本発明に係る実施の形態例としての生体の円2色性測定例を用いて生体の無侵襲血糖値測定装置および無侵襲血糖値測定方法を構成することができることは以上の説明からも明らかなことである。 That is, from the above description, it is possible to configure a living body non-invasive blood sugar level measuring device and a non-invasive blood sugar level measuring method using a living body circular dichroism measurement example as an embodiment of the present invention. Obviously.
 本実施の形態例で、信号光の光路で、円2色性測定のために被測定位置を挟む、あるいは被測定位置に当接する部品に温度検出部品を組み込んで、測定結果の信頼性を高めることができる。温度検出回路あるいは温度表示手段は、前記円2色性測定のために被測定位置を挟む、あるいは被測定位置に当接する部品に設けても良く、装置本体に設けても良い。 In this embodiment, the temperature detection component is incorporated into a component that sandwiches the measurement position for circular dichroism measurement or contacts the measurement position in the optical path of the signal light, thereby improving the reliability of the measurement result. be able to. The temperature detection circuit or the temperature display means may be provided on a part that sandwiches the measurement position or contacts the measurement position for the circular dichroism measurement, or may be provided on the apparatus main body.
 また、本実施の形態例で、信号光の光路で、円2色性測定のために被測定位置を挟む、あるいは被測定位置に当接する部品に、温度制御素子としてのペルチエ素子を組み込んで、検体の温度を制御することにより、測定結果の信頼性を高めることができる。この場合、温度制御手段は従来用いられている手段を広く用いることができる。温度制御回路あるいは温度制御手段は、前記円2色性測定のために被測定位置を挟む、あるいは被測定位置に当接する部品に設けても良く、装置本体に設けても良い。 Further, in the present embodiment, a Peltier element as a temperature control element is incorporated in a component that sandwiches a measurement position for circular dichroism measurement or contacts the measurement position in the optical path of the signal light, By controlling the temperature of the specimen, the reliability of the measurement result can be increased. In this case, conventionally used temperature control means can be widely used. The temperature control circuit or the temperature control means may be provided on a part that sandwiches the measurement position or contacts the measurement position for the circular dichroism measurement, or may be provided on the apparatus main body.
 以上、いくつかの例をあげて本実施の形態例を説明したが、本発明は以上の例に狭く限定されるものでなく、本発明の前記技術思想に則って多くのバリエーションを可能とするものである。 Although the present embodiment has been described with some examples, the present invention is not limited to the above examples, and many variations are possible according to the technical idea of the present invention. Is.
 以上説明した様に本実施の形態例の生体の円2色性測定装置および方法、無侵襲血糖値測定装置および方法によれば、採血しないで血糖値に関係した血中のグルコース濃度を測定できる。 As described above, according to the living body circular dichroism measuring device and method and the non-invasive blood sugar level measuring device and method of the present embodiment, the blood glucose concentration related to the blood sugar level can be measured without blood collection. .
 以上の説明した本実施の形態例によれば、例えば以下の5つの効果が期待できる。即ち、第1に、針による採血に伴う煩わしさや苦痛から開放される。第2に、採血針の廃棄処理が不要であり、衛生的である。第3に、採血の時に使用していたグルコースと反応する試薬が不要なので我が国で言えば例えば年間10万円以上のランニングコストが不要になることから、経済的である。 According to the embodiment described above, for example, the following five effects can be expected. That is, first, it is freed from the annoyance and pain associated with blood collection with a needle. Secondly, the disposal of the blood collection needle is unnecessary and it is hygienic. Thirdly, since a reagent that reacts with glucose used at the time of blood collection is unnecessary, a running cost of, for example, 100,000 yen or more per year is unnecessary in Japan, which is economical.
 第4に、なによりも測定が容易であり、ランニングコストを廉価に抑えることができることから、血糖値モニター(血糖値測定)が1日何回でもできるので、糖尿病患者、その予備軍、健常者の健康管理などにも使いやすいものが提供できる。第5に、治療費国の負担する医療費も大幅に低減できることなど、大きな効果を発揮することができる。そして、本実施の形態例の生体の円2色性測定装置および無侵襲血糖値測定装置が一般家庭で使用されれば、その治療に必要な費用を大幅に低減でき、また、現在世界的に増加している糖尿病患者数を減らすこともできる。 Fourth, since it is easy to measure and the running cost can be kept low, blood glucose level monitoring (blood glucose level measurement) can be performed as many times a day as possible. It can provide easy-to-use items for health management. Fifth, it is possible to exert significant effects such as the medical expenses borne by the medical treatment country can be significantly reduced. Then, if the biological circular dichroism measuring device and the non-invasive blood sugar level measuring device of the present embodiment are used in a general household, the cost required for the treatment can be greatly reduced. It can also reduce the number of diabetic patients that are increasing.
 特に、本実施の形態例の生体の円2色性測定装置および無侵襲血糖値測定装置が一般家庭で使用されれば、現在世界的に増加している糖尿病患者数を減らすことができ、その治療に必要な費用を大幅に低減できる。なお、本発明は採血した血液の高精度な測定にも用いて従来の化学的方法と比べて測定効率やコストの面で多大な効果を奏するものである。 In particular, if the biological circular dichroism measuring device and the non-invasive blood sugar level measuring device of the present embodiment are used in general households, the number of diabetic patients that are increasing worldwide can be reduced. Costs required for treatment can be greatly reduced. The present invention is also used for high-accuracy measurement of collected blood, and has a great effect in terms of measurement efficiency and cost as compared with conventional chemical methods.
 以上説明したように、本発明によって、これまで実現は無理と見なされてきた無侵襲での血糖値の測定が可能になる。その結果、糖尿病患者は1日に数回の採血の苦痛・煩わしさから解放されることになる。 As described above, according to the present invention, blood glucose level can be measured in a non-invasive manner, which has been considered impossible to realize. As a result, diabetic patients are freed from the pain and annoyance of blood sampling several times a day.
 また、本発明の無侵襲血糖値測定装置及び/または方法を糖尿病の予防保全的に活用することにより、現在世界的に増加している糖尿病患者数を大幅に減らすことができ、その治療に要する被験者の費用と公的費用を大幅に低減することができる。 In addition, by utilizing the non-invasive blood sugar level measuring apparatus and / or method of the present invention for preventive maintenance of diabetes, it is possible to significantly reduce the number of diabetic patients that are currently increasing worldwide, and to treat it. Subject costs and public costs can be significantly reduced.
 本発明による無侵襲での血糖値測定装置、測定方法は、医療機器、健康機器などとして広く用いることができ、本発明は介護を含め医療機器、健康機器分野などの発展に大きく寄与することができるものである。 The non-invasive blood sugar level measuring apparatus and measuring method according to the present invention can be widely used as medical equipment, health equipment, etc., and the present invention can greatly contribute to the development of medical equipment, health equipment fields including nursing care. It can be done.
 1:波長可変光源
 2,107:偏波面保存光ファイバ(PMF)
 3,6,102-1,102-2,102-3,102-4:レンズ
 4,108:検体(生体)
 5,114:多モード光ファイババンドル
 7,110-1,110-2:受光器
 8,111:信号処理回路
 9:脈拍センサー
 10:光源駆動制御部
 11-1,11-2:右(左)円偏光入射の場合の受光器出力極大値
 12,12-1,12-2:左(右)円偏光入射の場合の受光器出力極小値
 13-1,13-2:直線偏光入射の場合の受光器出力中間値
 14,121,122:脈拍信号
 101:波長固定光源
 103:グレーティング
 104:偏光板
 105:ファイバカプラ
 106:45度スプライシング
 109:受光用光ファイバ
 112:脈拍検出回路
 113:光ファイバ伸縮制御部
 115:PM980の場合のデータ
 116:多モードファイバの場合のデータ
 117:低NAダブルクラッドの場合のデータ
 118-1,118-2:高損失円偏光の場合のデータ
 119-1,119-2:低損失円偏光の場合のデータ
 120-1,120-2:直線偏光の場合の出力
 123:光ファイバ伸縮信号
1: Tunable light source 2,107: Polarization plane maintaining optical fiber (PMF)
3, 6, 102-1, 102-2, 102-3, 102-4: Lens 4, 108: Sample (living body)
5, 114: Multimode optical fiber bundle 7, 110-1, 110-2: Light receiver 8, 111: Signal processing circuit 9: Pulse sensor 10: Light source drive controller 11-1, 11-2: Right (left) Receiver output maximum value for circularly polarized light input 12, 12-1, 12-2: Left (right) receiver output minimum value for circularly polarized light input 13-1, 13-2: Linearly polarized light input Light receiver output intermediate values 14, 121, 122: Pulse signal 101: Fixed wavelength light source 103: Grating 104: Polarizing plate 105: Fiber coupler 106: Splicing 45 degrees 109: Optical fiber for light reception 112: Pulse detection circuit 113: Optical fiber expansion / contraction Control unit 115: Data for PM980 116: Data for multimode fiber 117: Data for low NA double clad 118-1,1 8-2: high loss circle data in the case of the polarization 119-1 and 119-2: the data in the case of low-loss circular polarization 120-1, 120-2: output for the linear polarization 123: optical fiber stretch signal

Claims (25)

  1.  光源からの出射波長が検体の円2色性が最大となる領域にありかつ外部トリガに同期して連続的にまたは離散的に変化する直線偏光のレーザ光を偏光の方位を限定して偏波面保存光ファイバ(PMF)に入射し、前記偏波面保存光ファイバ(PMF)からの出力光をその偏光状態が左円偏光と右円偏光が周期的に変化するようにして信号光として生体に照射し、その透過光及び/または反射光を受光器で受光し、その受光強度の波長特性を測定する測定工程を有することを特徴とする生体の円2色性測定方法。 The polarization plane of the linearly polarized laser light whose emission wavelength from the light source is in a region where the circular dichroism of the specimen is maximized and which changes continuously or discretely in synchronization with an external trigger is limited to the direction of polarization. The incident light enters the storage optical fiber (PMF), and the output light from the polarization plane storage optical fiber (PMF) is irradiated to the living body as signal light so that the polarization state periodically changes between left circular polarization and right circular polarization. And measuring the wavelength characteristic of the received light intensity by receiving the transmitted light and / or reflected light with a light receiver, and measuring the circular dichroism of a living body.
  2.  請求項1に記載の生体の円2色性測定方法において、
     前記偏光の方位を前記偏波面保存光ファイバ(PMF)の固有偏光軸に対し45度の方位とし、前記PMFの長さをL(mm),時間T(秒)で変化する前記光源の波長の変化量をΛ(nm)、光源波長をλ(nm)、前記PMFのビート長をB(mm)としたときに、前記PMFからの出射光の偏光状態の周期が脈拍に同期するように、前記光源の波長変化率Λ/T(nm/秒)を下記の(4)式で計算されるように変化させて測定する工程を有することを特徴とする生体の円2色性測定方法。
    (数12)
         Λ/T=N(p)λB/2L・・・(4)
    The method for measuring circular dichroism of a living body according to claim 1,
    The direction of the polarization is set to 45 degrees with respect to the intrinsic polarization axis of the polarization-maintaining optical fiber (PMF), the length of the PMF is L (mm), and the wavelength of the light source is changed with time T (seconds). When the change amount is Λ (nm), the light source wavelength is λ (nm), and the beat length of the PMF is B (mm), the period of the polarization state of the light emitted from the PMF is synchronized with the pulse. A method for measuring circular dichroism of a living body, comprising a step of changing the wavelength change rate Λ / T (nm / second) of the light source so as to be calculated by the following equation (4).
    (Equation 12)
    Λ / T = N (p) λB / 2L (4)
  3.  光源の波長が検体の円2色性が最大となる領域にある前記光源からの光をグレーティングによって狭スペクトル化し偏光子で直線偏光化し偏光の方位を限定して偏波面保存光ファイバ(PMF)に入射する工程と、外部トリガに同期して連続的にまたは離散的に前記PMFの長さを伸縮し前記PMFからの出力光の偏光状態が左円偏光と右円偏光が周期的に変化するようにする工程と、前記PMFからの出力光を検体としての生体に照射する工程と、その生体の透過光または生体からの反射光を、直接またはコアをTEC(Thermally diffused Expanded Core)処理をされたシングルモード光ファイバあるいは多モード光ファイバあるいは多モード光ファイババンドルを介して受光器で受光する工程と、その受光強度の光ファイバ長との関係を測定する測定工程を有することを特徴とする生体の円2色性測定方法。 The light from the light source whose wavelength is in the region where the circular dichroism of the specimen is maximum is narrowed by a grating, linearly polarized by a polarizer, and the direction of polarization is limited to a polarization-maintaining optical fiber (PMF). Increasing the length of the PMF continuously or discretely in synchronization with an incident step and an external trigger so that the polarization state of the output light from the PMF periodically changes between left circularly polarized light and right circularly polarized light A step of irradiating a living body as a specimen with the output light from the PMF, a transmitted light of the living body or a reflected light from the living body, or a TEC (Thermally Diffused Expanded Core) treatment directly or on the core Receiving light with a light receiver via a single mode optical fiber or a multimode optical fiber or a multimode optical fiber bundle; Circular dichroism measuring method of biological characterized by having a step of measuring the relationship between the optical fiber length of the light-receiving intensity of.
  4.  請求項3に記載の生体の円2色性測定方法において、
     前記狭スペクトル化および直線偏光化されたレーザ光を前記PMFの固有偏光軸に対し45度の方位で入射させ、その出力光を生体に照射する光学システムにおいて、
     前記PMFのビート長をB,脈拍数/秒をN(p)とするとき、前記PMFに装着した伸縮装置の光ファイバ長の時間的変化率ΔL/T(mm/秒)を下記の(7)式で計算されるように変化させて測定する工程を有することを特徴とする生体の円2色性測定方法。
    〔数13〕
       ΔL/T=N(p)B・・・・・(7)
    The biological circular dichroism measurement method according to claim 3,
    In the optical system in which the narrow spectrum and linearly polarized laser light is incident at an orientation of 45 degrees with respect to the intrinsic polarization axis of the PMF, and the living body is irradiated with the output light.
    When the beat length of the PMF is B and the pulse rate / second is N (p), the temporal change rate ΔL / T (mm / second) of the optical fiber length of the telescopic device attached to the PMF is expressed by the following (7 The method of measuring circular dichroism of a living body, comprising a step of changing the measurement so as to be calculated by the formula.
    [Equation 13]
    ΔL / T = N (p) B (7)
  5.  請求項1~4のいずれかに記載の生体の円2色性測定方法において、
     光源からの出射レーザ光を前記PMFの出射光が45度方位の直線偏光状態になる値に設定し前記受光器で受光される光パワーの変化が脈拍に同期するように前記PMFの生体への入射位置を調整するようにすることを特徴とする生体の円2色性測定方法。
    The method for measuring circular dichroism of a living body according to any one of claims 1 to 4,
    The laser light emitted from the light source is set to a value at which the light emitted from the PMF becomes a linearly polarized state with a 45-degree azimuth, and the change in optical power received by the light receiver is synchronized with the pulse so that the PMF is applied to the living body. A method for measuring circular dichroism of a living body, wherein the incident position is adjusted.
  6.  請求項1~5のいずれかに記載の生体の円2色性測定方法において、
     前記透過光または反射光を、直接または多モード光ファイバあるいは多モード光ファイババンドルを介して受光器で受光し、その受光強度の波長特性を測定する測定工程を有することを特徴とする生体の円2色性測定方法。
    The biological dichroism measurement method for a living body according to any one of claims 1 to 5,
    A biological circle comprising a measuring step of receiving the transmitted light or reflected light directly or via a multimode optical fiber or a multimode optical fiber bundle with a light receiver and measuring the wavelength characteristic of the received light intensity. Dichroism measurement method.
  7.  請求項1~6のいずれかに記載の生体の円2色性測定方法において、
     左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量を測定する工程を有することを特徴とする生体の円2色性測定方法。
    The biological circular dichroism measurement method according to any one of claims 1 to 6,
    The larger and smaller losses of left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are α (M) and α (m), respectively. When measuring the wavelength characteristics of the optical power received by the light receiver for the two conditions of when the blood vessel is dilated and synchronized with C (M) and when synchronized with C (m), the calculation is performed. And measuring the amount proportional to (α (M) −α (m)) by the method for measuring circular dichroism of a living body.
  8.  請求項1~7のいずれかに記載の生体の円2色性測定方法において、
     前記PMFの出射光を生体へレンズで結合する場合、前記PMFの出射端が前記レンズの焦点よりレンズ寄りの位置にする工程を有することを特徴とする生体の円2色性測定方法。
    The biological circular dichroism measuring method according to any one of claims 1 to 7,
    A method for measuring a circular dichroism of a living body, comprising the step of setting the emitting end of the PMF closer to the lens than the focal point of the lens when the emitted light of the PMF is coupled to the living body with a lens.
  9.  請求項1~8のいずれかに記載の生体の円2色性測定方法において、
     前記PMFの両端がTEC(Thermally diffused Expanded Core)処理をされ、コア径が元の前記PMFのコア径の2倍以上に拡大されていることを特徴とする生体の円2色性測定方法。
    The biological circular dichroism measurement method according to any one of claims 1 to 8,
    A method for measuring circular dichroism of a living body, wherein both ends of the PMF are subjected to TEC (Thermally Diffused Expanded Core) processing, and the core diameter is expanded to more than twice the core diameter of the original PMF.
  10.  請求項1~9のいずれかに記載の生体の円2色性測定方法において、
     前記PMFはコアが純粋石英、クラッドがフッ素ドープの楕円ジャケット型ファイバであることを特徴とする生体の円2色性測定方法。
    The biological circular dichroism measuring method according to any one of claims 1 to 9,
    The method of measuring circular dichroism of a living body, wherein the PMF is an elliptical jacket type fiber having a pure quartz core and a fluorine-doped cladding.
  11.  請求項1~10のいずれかに記載の生体の円2色性測定方法を用いて、
     被検者に関して測定した左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量から前記被検者の血糖値を推定する工程を有することを特徴とする無侵襲血糖値測定方法。
    Using the biological circular dichroism measurement method according to any one of claims 1 to 10,
    The larger and smaller losses of left and right circularly polarized light measured for the subject are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are respectively α (M). , Α (m), the wavelength of the optical power received by the light receiver in the case of two conditions when the blood vessel is dilated is synchronized with C (M) and when synchronized with C (m) A non-invasive blood sugar level measuring method comprising a step of measuring a characteristic and estimating a blood sugar level of the subject from an amount proportional to (α (M) −α (m)) by calculation.
  12.  請求項11に記載の無侵襲血糖値測定方法において、被検者に関して測定した(α(M)-α(m))に比例した量と前記被検者の予め既存の採血方法によって測定された血糖値との相関テーブルを作成しておき、測定された(α(M)-α(m))に比例した量から前記被検者の血糖値を推定する工程を有することを特徴とする無侵襲血糖値測定方法。 12. The non-invasive blood sugar level measuring method according to claim 11, wherein an amount proportional to (α (M) −α (m)) measured for the subject and the subject's pre-existing blood sampling method are used. A step of preparing a correlation table with blood glucose level and estimating the blood glucose level of the subject from an amount proportional to the measured (α (M) −α (m)) is provided. Invasive blood glucose level measurement method.
  13.  光源からの出射波長が検体の円2色性が最大となる領域にありかつ外部トリガに同期して連続的にまたは離散的に変化する直線偏光のレーザ光を偏光の方位を限定して偏波面保存光ファイバ(PMF)に入射する手段と、前記PMFからの出力光をその偏光状態が左円偏光と右円偏光が周期的に変化するようにして信号光として生体に照射する手段と、その透過光及び/または反射光を受光器で受光する手段と、その受光強度の波長特性を測定する手段とを有することを特徴とする生体の円2色性測定装置。 The polarization plane of the linearly polarized laser light whose emission wavelength from the light source is in a region where the circular dichroism of the specimen is maximized and which changes continuously or discretely in synchronization with an external trigger is limited to the direction of polarization. Means for injecting into a storage optical fiber (PMF), means for irradiating the living body as signal light so that the polarization state of the output light from the PMF periodically changes between left circular polarization and right circular polarization, and An apparatus for measuring circular dichroism of a living body, comprising: means for receiving transmitted light and / or reflected light with a light receiver; and means for measuring a wavelength characteristic of the received light intensity.
  14.  請求項13に記載の生体の円2色性測定装置において、
     前記偏光の方位を前記偏波面保存光ファイバ(PMF)の固有偏光軸に対し45度の方位とし、前記PMFの長さをL(mm),時間T(秒)で変化する前記光源の波長の変化量をΛ(nm)、光源波長をλ(nm)、前記PMFのビート長をB(mm)としたときに、前記PMFからの出射光の偏光状態の周期が脈拍に同期するように、前記光源の波長変化率Λ/T(nm/秒)を下記の(4)式で計算されるように変化させて測定する手段を有することを特徴とする生体の円2色性測定装置。
    〔数14〕
         Λ/T=N(p)λB/2L・・・(4)
    The biological circular dichroism measuring device according to claim 13,
    The direction of the polarization is set to 45 degrees with respect to the intrinsic polarization axis of the polarization-maintaining optical fiber (PMF), the length of the PMF is L (mm), and the wavelength of the light source is changed with time T (seconds). When the change amount is Λ (nm), the light source wavelength is λ (nm), and the beat length of the PMF is B (mm), the period of the polarization state of the light emitted from the PMF is synchronized with the pulse. An apparatus for measuring circular dichroism of a living body, characterized by comprising means for changing the wavelength change rate Λ / T (nm / second) of the light source as calculated by the following equation (4).
    [Formula 14]
    Λ / T = N (p) λB / 2L (4)
  15.  光源の波長が検体の円2色性が最大となる領域にある光源からの光をグレーティングによって狭スペクトル化し偏光子で直線偏光化し偏光の方位を限定して偏波面保存光ファイバ(PMF)に入射する手段と、外部トリガに同期して連続的にまたは離散的に前記PMFの長さを伸縮し前記PMFからの出力光の偏光状態が左円偏光と右円偏光が周期的に変化するようにする手段と、前記PMFからの出力光を検体としての生体に照射する手段と、その生体の透過光及び/または生体からの反射光を、直接またはコアをTEC(Thermally diffused Expanded Core)処理をされたシングルモード光ファイバあるいは多モード光ファイバあるいは多モード光ファイババンドルを介して受光器で受光する手段と、その受光強度の光ファイバ長との関係を測定する手段を有することを特徴とする生体の円2色性測定装置。 Light from the light source in the region where the wavelength of the light source has the maximum circular dichroism of the specimen is narrowed by a grating, linearly polarized by a polarizer, and the direction of polarization is limited and incident on a polarization-maintaining optical fiber (PMF). And the length of the PMF is expanded or contracted continuously or discretely in synchronization with an external trigger so that the polarization state of the output light from the PMF periodically changes between left circularly polarized light and right circularly polarized light. Means for irradiating the living body as the specimen with the output light from the PMF, the transmitted light of the living body and / or the reflected light from the living body, or the core is subjected to a TEC (Thermally Diffused Expanded Core) process. Means for receiving light by a light receiver through a single mode optical fiber, a multimode optical fiber or a multimode optical fiber bundle; Circular dichroism measuring apparatus of the living body, characterized in that it comprises means for measuring the relationship between the optical fiber length of the received light intensity.
  16.  請求項15に記載の生体の円2色性測定装置において、
     前記狭スペクトル化および直線偏光化されたレーザ光を前記PMFの固有偏光軸に対し45度の方位で入射させ、その出力光を生体に照射する光学システムにおいて、
     前記PMFのビート長をB,脈拍数/秒をN(p)とするとき、前記PMFに装着した伸縮装置の光ファイバ長の時間的変化率ΔL/T(mm/秒)を下記の(7)式で計算されるように変化させて測定することを特徴とする生体の円2色性測定装置。
    〔数15〕
       ΔL/T=N(p)B・・・・・(7)
    The biological circular dichroism measuring device according to claim 15,
    In the optical system in which the narrow spectrum and linearly polarized laser light is incident at an orientation of 45 degrees with respect to the intrinsic polarization axis of the PMF, and the living body is irradiated with the output light.
    When the beat length of the PMF is B and the pulse rate / second is N (p), the temporal change rate ΔL / T (mm / second) of the optical fiber length of the telescopic device attached to the PMF is expressed by the following (7 ) An apparatus for measuring circular dichroism of a living body, wherein the measurement is performed by changing the calculation so as to be calculated by the equation (1).
    [Equation 15]
    ΔL / T = N (p) B (7)
  17.  請求項13~16のいずれかに記載の生体の円2色性測定装置において、
     光源からの出射レーザ光を前記PMFの出射光が45度方位の直線偏光状態になる値に設定し前記受光器で受光される光パワーの変化が脈拍に同期するように前記PMFの生体への入射位置を調整する手段を有することを特徴とする生体の円2色性測定装置。
    The biological circular dichroism measuring device according to any one of claims 13 to 16,
    The laser light emitted from the light source is set to a value at which the light emitted from the PMF becomes a linearly polarized state with a 45-degree azimuth, and the change in optical power received by the light receiver is synchronized with the pulse so that the PMF is applied to the living body. An apparatus for measuring a circular dichroism of a living body, comprising means for adjusting an incident position.
  18.  請求項13~17のいずれかに記載の生体の円2色性測定装置において、
     前記透過光または反射光を、直接またはコアをTEC(コア拡大加工すなわちThermally diffused Expanded Core)処理をされた多モード光ファイバあるいは多モード光ファイババンドルを介して受光器で受光し、その受光強度の波長特性を測定する手段を有することを特徴とする生体の円2色性測定装置。
    The biological circular dichroism measuring device according to any one of claims 13 to 17,
    The transmitted light or reflected light is received by a light receiver directly or via a multi-mode optical fiber or multi-mode optical fiber bundle whose core is subjected to TEC (core diffused expanded core) processing. An apparatus for measuring circular dichroism of a living body comprising means for measuring wavelength characteristics.
  19.  請求項13~18のいずれかに記載の生体の円2色性測定装置において、
     左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量を求めることを特徴とする生体の円2色性測定装置。
    The biological circular dichroism measuring device according to any one of claims 13 to 18,
    The larger and smaller losses of left and right circularly polarized light are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are α (M) and α (m), respectively. When measuring the wavelength characteristics of the optical power received by the light receiver for the two conditions of when the blood vessel is dilated and synchronized with C (M) and when synchronized with C (m), the calculation is performed. An apparatus for measuring circular dichroism of a living body, characterized in that an amount proportional to (α (M) −α (m)) is obtained by:
  20.  請求項13~19のいずれかに記載の生体の円2色性測定装置において、
     前記PMFの出射光を生体へレンズで結合する場合、前記PMFの出射端が前記レンズの焦点よりレンズ寄りの位置にあることを特徴とする生体の円2色性測定装置。
    The biological circular dichroism measuring device according to any one of claims 13 to 19,
    An apparatus for measuring circular dichroism of a living body, wherein when the emitted light of the PMF is coupled to a living body with a lens, the emitting end of the PMF is located closer to the lens than the focal point of the lens.
  21.  請求項13~20のいずれかに記載の生体の円2色性測定装置において、
     前記PMFの出射光を生体へレンズで結合する場合、前記PMFの両端がTEC(Thermally diffused Expanded Core)処理をされ、コア径が元の前記PMFのコア径の2倍以上に拡大されていることを特徴とする生体の円2色性測定装置。
    The biological circular dichroism measuring device according to any one of claims 13 to 20,
    When the emitted light of the PMF is coupled to a living body with a lens, both ends of the PMF are subjected to TEC (Thermally Diffused Expanded Core) processing, and the core diameter is expanded to more than twice the core diameter of the original PMF. An apparatus for measuring circular dichroism of a living body, characterized by:
  22.  請求項13~21のいずれかに記載の生体の円2色性測定装置において、
     前記PMFはコアが純粋石英、クラッドがフッ素ドープの楕円ジャケット型ファイバであることを特徴とする生体の円2色性測定装置。
    The biological circular dichroism measuring device according to any one of claims 13 to 21,
    An apparatus for measuring circular dichroism of a living body, wherein the PMF is an elliptical jacket type fiber having a pure quartz core and a fluorine-doped cladding.
  23.  請求項13~22のいずれかに記載の生体の円2色性測定装置を用いて、
     信号光の光路で、円2色性測定のために被測定位置を挟む部品あるいは被測定位置に当接する部品に、温度制御素子としてのペルチエ素子及び/または温度検出部品を組み込んで前記測定部位の温度を制御する及び/または温度を測定する手段を有することを特徴とする無侵襲血糖値測定装置。
    Using the biological circular dichroism measuring device according to any one of claims 13 to 22,
    In the optical path of the signal light, a Peltier element and / or a temperature detection part as a temperature control element is incorporated into a part that sandwiches the measurement position for circular dichroism measurement or a part that contacts the measurement position. A non-invasive blood sugar level measuring apparatus comprising means for controlling temperature and / or measuring temperature.
  24.  請求項23に記載の無侵襲血糖値測定装置において、
     被検者に関して測定した左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量から前記被検者の血糖値を推定する手段を有することを特徴とする無侵襲血糖値測定装置。
    The non-invasive blood sugar level measuring apparatus according to claim 23,
    The larger and smaller losses of left and right circularly polarized light measured for the subject are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are respectively α (M). , Α (m), the wavelength of the optical power received by the light receiver when the blood vessel is dilated is synchronized with C (M) and when synchronized with C (m). A non-invasive blood sugar level measuring apparatus comprising means for measuring a characteristic and estimating a blood sugar level of the subject from an amount proportional to (α (M) −α (m)) by calculation.
  25.  請求項23または請求項24に記載の無侵襲血糖値測定装置において、
     被検者に関して測定した左右円偏光の損失の大きい方と小さい方をそれぞれC(M),C(m)と定義し、C(M),C(m)の減衰量をそれぞれα(M),α(m)とするとき、血管が拡張したときがC(M)に同期する場合とC(m)に同期する場合の2つの条件の場合について前記受光器で受光される光パワーの波長特性を測定し、演算によって(α(M)-α(m))に比例した量と前記被検者の予め既存の採血方法によって測定された血糖値との相関テーブルを作成しておき、測定された(α(M)-α(m))に比例した量から前記被検者の血糖値を推定する手段を有することを特徴とする無侵襲血糖値測定装置。
    The non-invasive blood sugar level measuring apparatus according to claim 23 or claim 24,
    The larger and smaller losses of left and right circularly polarized light measured for the subject are defined as C (M) and C (m), respectively, and the attenuation amounts of C (M) and C (m) are respectively α (M). , Α (m), the wavelength of the optical power received by the light receiver in the case of two conditions when the blood vessel is dilated is synchronized with C (M) and when synchronized with C (m) Measure the characteristics, create a correlation table between the amount proportional to (α (M) -α (m)) and the blood glucose level measured by the subject's existing blood sampling method in advance by measurement A non-invasive blood sugar level measuring apparatus comprising means for estimating a blood sugar level of the subject from an amount proportional to (α (M) −α (m)).
PCT/JP2012/060156 2011-04-15 2012-04-13 Circular dichroism measuring device for living body, circular dichroism measuring method for living body, noninvasive blood sugar level measuring device and noninvasive blood sugar level measuring method WO2012141300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013509984A JPWO2012141300A1 (en) 2011-04-15 2012-04-13 Biological circular dichroism measuring device, biological circular dichroism measuring method, noninvasive blood sugar level measuring device, and noninvasive blood sugar level measuring method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-091239 2011-04-15
JP2011091239 2011-04-15
JP2011138102 2011-06-22
JP2011-138102 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012141300A1 true WO2012141300A1 (en) 2012-10-18

Family

ID=47009458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060156 WO2012141300A1 (en) 2011-04-15 2012-04-13 Circular dichroism measuring device for living body, circular dichroism measuring method for living body, noninvasive blood sugar level measuring device and noninvasive blood sugar level measuring method

Country Status (2)

Country Link
JP (1) JPWO2012141300A1 (en)
WO (1) WO2012141300A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033514A1 (en) * 1996-03-13 1997-09-18 Hitachi, Ltd. Method and apparatus for circular dichromatic analysis
WO2007029652A1 (en) * 2005-09-06 2007-03-15 National University Corporation Gunma University Blood-sugar measuring apparatus and method
JP2011087876A (en) * 2009-10-21 2011-05-06 Global Fiber Optics:Kk Method and apparatus for measuring optical rotation characteristic of living body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033514A1 (en) * 1996-03-13 1997-09-18 Hitachi, Ltd. Method and apparatus for circular dichromatic analysis
WO2007029652A1 (en) * 2005-09-06 2007-03-15 National University Corporation Gunma University Blood-sugar measuring apparatus and method
JP2011087876A (en) * 2009-10-21 2011-05-06 Global Fiber Optics:Kk Method and apparatus for measuring optical rotation characteristic of living body

Also Published As

Publication number Publication date
JPWO2012141300A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
Keiser et al. Review of diverse optical fibers used in biomedical research and clinical practice
US20220265148A1 (en) Photoacoustic remote sensing (pars)
US8498681B2 (en) Cross-sectional mapping of spectral absorbance features
JP5734310B2 (en) Non-invasive in-vivo measurement apparatus and measurement method by Raman spectroscopy
CN111742211A (en) Optical probe using multimode optical waveguide and proximal processing
US20070055117A1 (en) Low coherence interferometry utilizing phase
US20050254057A1 (en) Low coherence interferometry utilizing phase
WO2005114094A1 (en) Method and system of low coherence interferometry for analyzing biological samples
US20080043244A1 (en) Optical tomography system
JP2000037355A (en) Method for measuring glucose concentration and apparatus therefor
JP2006526790A (en) Measurement of optical heterogeneity and other properties in materials using light propagation modes
WO2006045013A2 (en) Integrated disease diagnosis and treatment system
US20080252900A1 (en) Optical tomography system
EP0626819A4 (en) Non-invasive blood glucose measurement.
JP2007083028A (en) Noninvasive inspecting apparatus
CN102176854B (en) Rotary optical probe
US8922760B2 (en) Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
Chen et al. Dual-modality optical coherence tomography and frequency-domain fluorescence lifetime imaging microscope system for intravascular imaging
WO2012141300A1 (en) Circular dichroism measuring device for living body, circular dichroism measuring method for living body, noninvasive blood sugar level measuring device and noninvasive blood sugar level measuring method
JP2012112907A (en) Optical rotation component analyzer, method for analyzing optical rotation component, and measuring apparatus of temperature characteristic and wavelength characteristic of optical rotation
JP2012112909A (en) Polarimetry device, optical-rotation measuring method, and multi-pass counter polarization converting optical system
JP2003254901A (en) Reflection type blood sugar measuring instrument using low coherent light interferometer
KR101746352B1 (en) Non-invasive blood glucose measuring device and method using OTDR and OFDR
US20150190080A1 (en) Needle-mounted linear-array oxygen sensor
JP2011087876A (en) Method and apparatus for measuring optical rotation characteristic of living body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013509984

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12771714

Country of ref document: EP

Kind code of ref document: A1