WO2012140847A1 - Transmitter apparatus, receiver apparatus, signal generating method and quality estimating method - Google Patents

Transmitter apparatus, receiver apparatus, signal generating method and quality estimating method Download PDF

Info

Publication number
WO2012140847A1
WO2012140847A1 PCT/JP2012/002302 JP2012002302W WO2012140847A1 WO 2012140847 A1 WO2012140847 A1 WO 2012140847A1 JP 2012002302 W JP2012002302 W JP 2012002302W WO 2012140847 A1 WO2012140847 A1 WO 2012140847A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
orthogonal sequence
cluster
cyclic shift
antenna port
Prior art date
Application number
PCT/JP2012/002302
Other languages
French (fr)
Japanese (ja)
Inventor
岩井 敬
西尾 昭彦
佳彦 小川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012140847A1 publication Critical patent/WO2012140847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a transmission device, a reception device, a signal generation method, and a quality estimation method that perform discontinuous band allocation.
  • LTE-Advanced uplink which is an extension of 3GPP LTE (3rd Generation Partnership Project Project Long Term Evolution)
  • two technologies are being studied to improve scheduling gain through flexible frequency resource allocation.
  • Transmission and MU-MIMO Multiple User -Multiple Input Multiple Output.
  • discontinuous band transmission In LTE, in order to reduce CM (Cubic Metric) and PAPR (Peak to Average Power Ratio), only continuous band transmission that allocates data signals of each terminal to continuous frequency bands is used.
  • CM Cubic Metric
  • PAPR Peak to Average Power Ratio
  • non-continuous band transmission in addition to continuous band transmission (for example, see Non-Patent Document 1).
  • the maximum number of clusters (lumps of continuous bands) in discontinuous band transmission is 2.
  • Discontinuous band transmission is a method in which data signals and reference signals are allocated and transmitted in discontinuous frequency bands distributed over a wide band.
  • a data signal and a reference signal are allocated to continuous frequency bands.
  • the data signal and the reference signal can be assigned to discrete frequency bands (here, two clusters). Therefore, in the non-continuous band transmission, the degree of freedom of frequency resource allocation of the data signal and reference signal of each terminal is improved with respect to the continuous band transmission, so that a larger frequency scheduling gain can be obtained.
  • the number of clusters at the time of non-continuous band transmission is two will be described as an example assuming LTE-Advanced.
  • MU-MIMO is a technique in which a plurality of terminals perform MIMO communication with a base station, and can improve the frequency utilization efficiency of the system and improve the system throughput performance.
  • transmission side transmission side
  • base station reception side
  • DM-RS DeModulation-Reference Signal
  • MIMO is a technique that includes a plurality of antennas on the transmission side and the reception side, respectively, and enables simultaneous spatial multiplexing transmission of different signal sequences at the same frequency.
  • a cyclic shift (CS) sequence that is an orthogonal sequence is used as the DM-RS.
  • the cyclic shift sequence is generated, for example, by cyclically shifting a ZC (Zadoff-Chu) sequence that is a code sequence by a cyclic shift amount (CS amount) in the time domain.
  • the cyclic shift sequence of ⁇ 6 shown in FIG.
  • the cyclic shift amount ( ⁇ ) is determined by the base station and notified from the base station to the terminal using the downlink channel.
  • the downlink channel is, for example, PDCCH (Physical Downlink Control Channel: PDCCH).
  • a cyclic shift sequence having the same transmission band is a complete orthogonal sequence, and no inter-sequence interference occurs.
  • perfect orthogonality cannot be maintained, and some inter-sequence interference occurs.
  • cyclic shift sequences with different transmission bands are not orthogonal sequences, and large inter-sequence interference occurs.
  • LTE-Advanced it has been agreed to use an OCC (Orthogonal Cover Code) sequence in addition to the cyclic shift sequence adopted by LTE as DM-RS (for example, see Non-Patent Document 2).
  • OCC Orthogonal Cover Code
  • DM-RS Downlink Reference Signal
  • FIG. 3 shows an application example of the OCC series.
  • one subframe for example, 1 msec
  • slot # 1 and slot # 2 is composed of two slots (slot # 1 and slot # 2), and each slot has seven symbols (here, LB (LongLBlock) and CP). (Cyclic Prefix)).
  • LB LongLBlock
  • CP Cyclic Prefix
  • DM-RS is transmitted using the center symbol (LB # 4) of each slot of one subframe.
  • OCC # 1 [ 1 [1]
  • the sequence length of the OCC sequence is two that can be realized by the subframe configuration in LTE-Advanced.
  • the number of OCC sequences that can be generated is two (OCC # 1 and OCC # 2).
  • the OCC sequence number used by the terminal for generating the DM-RS is uniquely associated with the cyclic shift amount information included in the control information notified in the downlink channel and notified from the base station to the terminal. (See, for example, Non-Patent Document 2).
  • FIG. 4 is a table showing a correspondence relationship between the cyclic shift amount information used in LTE-Advanced and the OCC sequence.
  • the table shown in FIG. 4 may be referred to as a “used sequence identification table” for the terminal to identify the OCC sequence number based on the cyclic shift amount information.
  • Cyclic Shift Field indicates cyclic shift amount information
  • CS value indicates a cyclic shift amount (unit: [symbol length / 12 (ms)])
  • OCC indicates an OCC sequence.
  • represents an antenna port number of the terminal. Note that, in the LTE-Advanced uplink, SU-MIMO (Single-User-Multiple-Input-Multiple-Output) in which one terminal transmits data signals from a plurality of antenna ports at the same time and the same frequency and spatially multiplexes the data signals is used. Supported.
  • the transmission bandwidths of a plurality of streams (transmission signals transmitted from each antenna port) transmitted by one terminal are the same. Therefore, in SU-MIMO, the orthogonality of DM-RS in each stream can be maintained by making the cyclic shift amounts of DM-RS transmitted in each stream different from each other.
  • the base station can notify each terminal of the transmission bandwidth. Therefore, when the transmission bandwidth differs between terminals performing MU-MIMO, as described above, orthogonality in DM-RS cannot be maintained even if the cyclic shift amount of the terminal is varied. For this reason, it is necessary to make the DM-RS orthogonal by changing the OCC sequence number between terminals performing MU-MIMO.
  • the use sequence identification table shown in FIG. 4 is used for both continuous band transmission and non-continuous band transmission. That is, at the time of non-continuous band transmission, the OCC sequence number used for the DM-RS of each cluster transmitted from the terminal is the same.
  • 3GPP TR36.212 v10.0.0 (2010-12), "3GPP TSG RAN E-UTRA Multiplexing and channel coding (Release 10)" 3GPP TR36.211 v10.0.0 (2010-12), “3GPP TSG RAN E-UTRA Physical channels and modulation (Release 10)”
  • the OCC sequence numbers used for DM-RSs in each cluster transmitted by one terminal during non-continuous band transmission are the same, and MU-MIMO can be performed without DM-RSs being orthogonal between terminals. Bands that disappear can occur.
  • each terminal performs discontinuous band transmission using two clusters. Also, in FIG. 5, each terminal determines an OCC sequence used for DM-RS in each cluster (that is, the same OCC sequence in all clusters), for example, according to the use sequence identification table shown in FIG. For example, in FIG. 5, terminal # 1 uses OCC # 2, terminal # 2 uses OCC # 1, and terminal # 3 uses OCC # 1.
  • the frequency bands of the cluster # 1 of the terminal # 1 and the cluster # 1 of the terminal # 2 partially overlap.
  • DM-RSs are orthogonal. The same applies to the cluster # 2 of the terminal # 1 and the cluster # 1 of the terminal # 3 shown in FIG.
  • the cluster # 2 of the terminal # 2 and the cluster # 2 of the terminal # 3 shown in FIG. 5 partially overlap in frequency bands and have the same OCC sequence (OCC # 1) used in both. For this reason, cluster # 2 of terminal # 2 and cluster # 2 of terminal # 3 are not orthogonal (non-orthogonal), and inter-sequence interference occurs.
  • OCC # 1 OCC sequence
  • cluster # 2 of terminal # 2 and cluster # 2 of terminal # 3 are not orthogonal (non-orthogonal), and inter-sequence interference occurs.
  • the base station schedules frequency resources with priority given to a band with good channel quality of each terminal. I can't. That is, there is a problem that the effect of improving the system performance by MU-MIMO is limited.
  • a method of newly adding a signaling bit (notification information) for notifying an OCC sequence number at the time of non-continuous band transmission as control information notified by a downlink channel is conceivable.
  • the base station can notify the terminal of the OCC sequence number for each cluster.
  • the OCC sequence multiplied by the DM-RS of one of the two clusters (here, cluster # 1) is the cyclic shift amount information (3 bits) notified to the terminal by the base station as described above. (For example, refer to FIG. 4).
  • the OCC sequence to be multiplied by the DM-RS of the other cluster (here, cluster # 2) is notified by the signaling bit.
  • the signaling bit to be added is 1 bit.
  • the OCC sequence used in cluster # 2 is the same OCC sequence as the OCC sequence used in cluster # 1 when the signaling bit is “0”, and is the cluster # 1 when the signaling bit is “1”.
  • the OCC sequence is different from the OCC sequence used.
  • the terminal # 1 shown in FIG. 6 is notified of the OCC # 2 by the cyclic shift amount information to the cluster # 1. Further, terminal 0 is notified of “0” by a signaling bit (1 bit). Therefore, the terminal # 1 uses the OCC # 2 in the cluster # 1 and uses the same OCC # 2 as the cluster # 1 in the cluster # 2. The same applies to terminal # 2 shown in FIG.
  • the terminal # 3 shown in FIG. 6 is notified of the OCC # 1 by the cyclic shift amount information to the cluster # 1. Also, the terminal # 3 is notified of “1” by a signaling bit (1 bit). Therefore, terminal # 3 uses OCC # 1 in cluster # 1, and uses (reverse) OCC # 2 different from cluster # 1 in cluster # 2.
  • the base station can freely set the OCC sequence (OCC sequence number) for each cluster, the degree of freedom of frequency scheduling in MU-MIMO without being restricted by MU-MIMO (see, for example, FIG. 5). Can improve system throughput performance.
  • OCC sequence OCC sequence number
  • An object of the present invention is to provide a transmission device, a reception device, a signal generation method, and a quality estimation method that allow a base station to set an OCC sequence used in a terminal for each cluster without increasing the number of signaling bits. It is.
  • the transmission apparatus includes, according to a sequence determination rule, any one of a plurality of cyclic shift sequences that can be separated from each other by different cyclic shift amounts, and any one of a plurality of orthogonal sequences that are orthogonal to each other.
  • the cluster includes a first cluster and a second cluster, and the sequence determination rule includes a first orthogonal sequence used in each antenna port in the first cluster, and each antenna port in the second cluster.
  • the configuration is the same.
  • a receiving apparatus includes any one of a plurality of cyclic shift sequences arranged in each of a plurality of clusters and separable from each other by different cyclic shift amounts, and a plurality of orthogonal sequences orthogonal to each other.
  • Channel quality is estimated using reception means for receiving a signal including a reference signal generated based on any one of them, a cyclic shift sequence and an orthogonal sequence determined according to a sequence determination rule, and the reference signal And a plurality of clusters including a first cluster and a second cluster, and the sequence determination rule includes a first orthogonal sequence used at each antenna port in the first cluster, and , Including a plurality of pattern candidates of a sequence composed of a second orthogonal sequence used at each antenna port in the second cluster, Among the pattern candidates, in some pattern candidates, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other. A configuration is employed in which one orthogonal sequence and the second orthogonal sequence are the same.
  • a signal generation method includes a plurality of orthogonal shift sequences that are transmitted from at least one antenna port and that can be separated from each other by different cyclic shift amounts, and a plurality of orthogonal sequences that are orthogonal to each other.
  • a cyclic shift sequence and an orthogonal sequence are determined, and the sequence determination rule includes a first orthogonal sequence used at each antenna port in the first cluster and a second orthogonal sequence used at each antenna port in the second cluster.
  • a plurality of pattern candidates of a sequence consisting of orthogonal sequences, and some pattern candidates among the plurality of pattern candidates The first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and the pattern candidates other than the partial pattern candidates include the first orthogonal sequence and the second orthogonal sequence for the same antenna port. To be identical.
  • a quality estimation method includes a plurality of orthogonal shift sequences orthogonal to each other and any one of a plurality of cyclic shift sequences that are received by at least one antenna port and can be separated from each other by different cyclic shift amounts.
  • the plurality of clusters include a first cluster and a second cluster, and the sequence determination rule is a first orthogonality used at each antenna port in the first cluster.
  • the first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and in the pattern candidates other than the some pattern candidates, the same antenna is used.
  • the first orthogonal sequence and the second orthogonal sequence for a port are the same.
  • the base station can set the OCC sequence used by the terminal for each cluster without increasing the number of signaling bits.
  • the figure which shows the mode of continuous band allocation and non-continuous band allocation The figure which shows an example of a cyclic shift series
  • the figure which shows an example of the OCC series The figure which shows the correspondence of cyclic shift amount information, cyclic shift amount, and OCC series
  • the block diagram which shows the main structures of the base station which concerns on one embodiment of this invention The block diagram which shows the main structures of the terminal which concerns on one embodiment of this invention.
  • the block diagram which shows the structure of the base station which concerns on one embodiment of this invention The block diagram which shows the structure of the terminal which concerns on one embodiment of this invention
  • the figure which shows the corresponding relationship of cyclic shift amount information, cyclic shift amount, and an OCC series which concerns on one embodiment of this invention (setting example 1)
  • the figure which shows a mode that an OCC series is set for every cluster which concerns on one embodiment of this invention.
  • the figure which shows the correspondence of the cyclic shift amount information which concerns on one embodiment of this invention, a cyclic shift amount, and an OCC series (setting example 2)
  • the figure which shows the correspondence of the cyclic shift amount information which concerns on one embodiment of this invention, a cyclic shift amount, and an OCC series (setting example 3)
  • the figure which shows the correspondence of the cyclic shift amount information which concerns on one embodiment of this invention, a cyclic shift amount, and an OCC series (setting example 4)
  • the figure which shows the subject which concerns on the example 4 of a setting of one embodiment of this invention The block diagram which shows the structure of the other base station of this invention
  • the block diagram which shows the structure of the other terminal of this invention The figure which shows a mode that an OCC series is set for every other cluster of this invention.
  • the figure which shows a mode that an OCC series is set for every other cluster of this invention.
  • the transmission device is a terminal device
  • the reception device is a base station device.
  • FIG. 7 shows the main components of base station 100 according to the present embodiment.
  • the base station 100 shown in FIG. 7 includes any one of a plurality of cyclic shift sequences (CS sequences) separable from each other by different cyclic shift amounts, and any one of a plurality of orthogonal sequences (OCC sequences) orthogonal to each other.
  • the channel quality is estimated using the reference signal (DM-RS) generated based on the above.
  • receiving section 105 receives a signal including DM-RS, which is arranged in each of a plurality of clusters and transmitted from a terminal apparatus.
  • the estimation unit 112 estimates the channel quality using the cyclic shift sequence and OCC sequence determined according to the used sequence specification table (sequence determination rule) and the received DM-RS.
  • FIG. 8 shows main components of terminal 200 according to the present embodiment.
  • Terminal 200 shown in FIG. 8 is generated based on any one of a plurality of cyclic shift sequences that can be separated from each other by different cyclic shift amounts and any one of a plurality of orthogonal sequences (OCC sequences) orthogonal to each other.
  • DM-RS to be transmitted from at least one antenna port.
  • generating section 213 generates a DM-RS using a cyclic shift sequence and an orthogonal sequence determined according to a used sequence identification table (sequence determination rule).
  • the transmission unit 212 transmits a transmission signal including DM-RS arranged in each of the plurality of clusters.
  • the plurality of clusters include two clusters (cluster # 1 and cluster # 2), and the use sequence identification table (sequence determination rule) includes the first orthogonal sequence used in each antenna port in cluster # 1.
  • the use sequence identification table includes the first orthogonal sequence used in each antenna port in cluster # 1.
  • the second orthogonal sequence is different from each other, and in the pattern candidates other than some pattern candidates, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are the same.
  • FIG. 9 is a block diagram showing a configuration of base station 100 according to the present embodiment.
  • control information encoding section 101 controls frequency resource allocation information for each terminal 200, MCS (ModulationModCoding Scheme), transmission power, and transmission weight for each antenna port.
  • Control information including weight control information and the like is input from the scheduling unit 113.
  • control information including cyclic shift amount information constituting a DM-RS to be transmitted by each terminal 200 is input from the DM-RS information determination unit 114 to the control information encoding unit 101.
  • the control information encoding unit 101 encodes the control information and outputs the encoded control information to the modulation unit 102.
  • the modulation unit 102 modulates the control information input from the control information encoding unit 101 and outputs the modulated signal to the transmission unit 103.
  • the transmission unit 103 performs transmission processing such as D / A (Digital-to-Analog) conversion, up-conversion, amplification, and the like on the signal input from the modulation unit 102, and transmits the signal subjected to the transmission processing to one or more antennas
  • the data is transmitted from the ports 104-1 and 104-2 to each terminal 200.
  • the receiving units 105-1 and 105-2 and the reception processing units 106-1 and 106-2 are provided corresponding to the antenna ports 104-1 and 104-2.
  • Receiving sections 105-1 and 105-2 receive signals from terminals 200 received via antenna ports 104-1 and 104-2, such as down-conversion and A / D (Analog to Digital) conversion. Processing is performed, and the signal subjected to the reception processing is output to each of the separation units 107 of the reception processing units 106-1 and 106-2.
  • the reception processing units 106-1 and 106-2 employ a configuration including a separation unit 107, DFT (Discrete Fourier Transform) units 108 and 110, and demapping units 109 and 111, respectively.
  • DFT Discrete Fourier Transform
  • the separating unit 107 separates the signal input from the receiving unit 105 into a DM-RS and a data signal. Separation section 107 then outputs the DM-RS to DFT section 108 and outputs the data signal to DFT section 110.
  • the DFT unit 108 performs DFT processing on the DM-RS input from the separation unit 107, and converts the signal from the time domain to the frequency domain. Then, the DFT unit 108 outputs the DM-RS converted into the frequency domain to the demapping unit 109.
  • the demapping unit 109 extracts a part of the DM-RS corresponding to the transmission band of the terminal 200 (desired terminal) to receive from the frequency domain DM-RS input from the DFT unit 108, and extracts the extracted DM-RS. Is output to the estimation unit 112.
  • the DFT unit 110 performs DFT processing on the data signal input from the separation unit 107, and converts the data signal from the time domain to the frequency domain. Then, the DFT unit 110 outputs the data signal converted into the frequency domain to the demapping unit 111.
  • Demapping section 111 extracts a data signal corresponding to the transmission band of terminal 200 (desired terminal) to receive from the frequency domain data signal input from DFT section 110, and MIMO-separates the extracted data signal Output to the unit 115.
  • the estimation unit 112 receives information (cyclic shift sequence and OCC sequence) input from a DM-RS information determination unit 114, which will be described later, and each demapping unit 109 of the reception processing units 106-1 and 106-2.
  • Channel quality (frequency response of the channel) and reception quality are estimated using DM-RS (sometimes referred to as “reception DM-RS”).
  • estimation section 112 calculates a DM-RS replica signal transmitted by the desired terminal based on the cyclic shift sequence and OCC sequence determined by DM-RS information determination section 114. Then, the estimation unit 112 estimates the channel quality and reception quality of the desired terminal by performing a correlation operation between the received DM-RS and the generated replica signal. Then, estimation section 112 outputs an estimated value of channel quality (channel frequency response) used for demodulation of the data signal to MIMO demultiplexing section 115 and outputs an estimation value of reception quality used for scheduling to scheduling section 113.
  • DM-RS sometimes referred to as “reception DM-RS”.
  • the scheduling unit 113 determines the transmission band (frequency resource), transmission power, and transmission weight of each antenna port of the transmission signal transmitted by each terminal 200 according to the reception quality estimation value input from the estimation unit 112. Then, scheduling section 113 outputs control information including the determined information to control information encoding section 101. In addition, scheduling section 113 outputs information including the number of transmission antenna ports of each terminal 200 and the transmission band of each terminal 200 to DM-RS information determination section 114.
  • DM-RS information determination section 114 circulates for DM-RS used in each antenna port of each terminal 200 based on the number of transmission antenna ports of each terminal 200 and the transmission band of each terminal 200 input from scheduling section 113.
  • a shift sequence and an OCC sequence are determined.
  • the cyclic shift sequences are sequences that can be separated from each other by different cyclic shift amounts.
  • the OCC sequences are sequences orthogonal to each other.
  • the DM-RS information determination unit 114 previously stores a table (hereinafter referred to as a used sequence identification table) in which cyclic shift amount information is associated with each sequence number (cyclic shift sequence number and OCC sequence number). Hold.
  • the use sequence identification table is shared between the base station 100 and each terminal 200.
  • the DM-RS information determination unit 114 refers to the use sequence identification table using the number of antenna ports and the transmission band (for example, the number of clusters) set for each terminal 200, and sets each antenna port of each terminal 200.
  • the cyclic shift sequence and OCC sequence for DM-RS used in the above are selected. That is, DM-RS information determination section 114 determines cyclic shift sequences and OCC sequences used for DM-RSs arranged in each of a plurality of clusters set in terminal 200.
  • DM-RS information determining section 114 performs cyclic shift sequence between terminals 200 with overlapping transmission bands (that is, between terminals 200 to which MU-MIMO is applied) in order to reduce inter-sequence interference of DM-RS.
  • the numbers or OCC sequence numbers need to be different from each other.
  • DM-RS information determination section 114 outputs cyclic shift amount information associated with the cyclic shift sequence number and OCC sequence number used by each terminal 200 to control information encoding section 101.
  • the cyclic shift sequence number and the OCC sequence number constituting the DM-RS to be transmitted from each antenna port by terminal 200 are used sequence base table shared between base station 100 and terminal 200, base station 100 Is indirectly notified by the cyclic shift amount information notified from the terminal 200 to the terminal 200. Details of the use sequence identification table will be described later.
  • MIMO separation section 115 uses the estimated frequency response value of the channel input from estimation section 112 to convert the data signals input from demapping sections 111 of reception processing sections 106-1 and 106-2, respectively, into the frequency domain. Equalize and multiply by a predetermined weight. As a result, the data signal is separated into data signals (transmission signals transmitted from the respective antenna ports) of each stream. Then, MIMO separation section 115 outputs the data signal of each separated stream to each IFFT (Inverse Fast Fourier Transform) section 117 of data processing sections 116-1 and 116-2.
  • IFFT Inverse Fast Fourier Transform
  • the data processing units 116-1 and 116-2 are provided corresponding to the number of streams transmitted from the terminal 200, and have a configuration including an IFFT unit 117, a demodulation unit 118, and a decoding unit 119, respectively.
  • the IFFT unit 117 performs IFFT processing on the data signal input from the MIMO separation unit 115 and outputs the data signal after IFFT processing to the demodulation unit 118.
  • Demodulation section 118 performs demodulation processing on the data signal input from IFFT section 117 and outputs the demodulated data signal to decoding section 119.
  • Decoding section 119 performs a decoding process on the data signal input from demodulation section 118 and outputs the data signal as received data from terminal 200.
  • FIG. 10 is a block diagram showing a configuration of terminal 200 according to the present embodiment.
  • receiving section 202 performs down-conversion, A / D conversion, etc., on the signal from base station 100 (FIG. 9) received via at least one antenna port 201-1 and 201-2.
  • the reception process is performed, and the signal subjected to the reception process is output to the demodulation unit 203.
  • the received signal includes frequency resource allocation information for terminal 200, MCS of transmission data, transmission power, weight control information for each antenna port, and control information including cyclic shift amount information.
  • the demodulation unit 203 performs equalization processing and demodulation processing on the reception signal input from the reception unit 202, and outputs the reception signal subjected to these processing to the decoding unit.
  • the control information decoding unit 204 performs a decoding process on the received signal input from the demodulation unit 203, and extracts control information from the signal after the decoding process.
  • Control information decoding section 204 outputs cyclic shift amount information to DM-RS information determination section 205, outputs MCS of transmission data to modulation section 208, outputs resource allocation information to mapping section 209, and sends it to each antenna port. Is output to the transmission weight multiplier 211.
  • the DM-RS information determination unit 205 holds a use sequence identification table shared between the base station 100 and the terminal 200. DM-RS information determination section 205 performs cyclic shift for generating DM-RS to be transmitted by terminal 200 at each antenna port according to the cyclic shift amount information input from control information decoding section 204 and the use sequence identification table. A sequence number and an OCC sequence number are determined. DM-RS information determination section 205 outputs the determined cyclic shift sequence number and OCC sequence number to DM-RS generation section 206.
  • DM-RS generating section 206 generates a DM-RS using the cyclic shift sequence number and OCC sequence number used at each antenna port, which are input from DM-RS information determining section 205, and multiplexes DM-RS 210 Output to. Specifically, DM-RS generating section 206 spreads the cyclic shift sequence corresponding to the cyclic shift amount set by DM-RS information determining section 205 with the OCC sequence set by DM-RS information determining section 205. Then, the spread signal is generated as DM-RS.
  • the generation unit 213 may be configured by combining the configurations of the DM-RS information determination unit 205 and the DM-RS generation unit 206. That is, the generation unit 213 generates a DM-RS composed of a cyclic shift sequence and an OCC sequence in accordance with a use sequence identification table (sequence determination rule).
  • the data processing units 207-1 and 207-2 are provided corresponding to the antenna ports 201-1 and 201-2, and have a configuration including a modulation unit 208, a mapping unit 209, and a multiplexing unit 210, respectively.
  • the modulation unit 208 performs encoding processing and modulation processing on transmission data based on the MCS input from the control information decoding unit 204, and outputs the modulated data signal to the mapping unit 209.
  • the mapping unit 209 maps the data signal input from the modulation unit 208 to a cluster that is a predetermined frequency resource based on the frequency resource allocation information input from the control information decoding unit 204 and outputs the data signal to the multiplexing unit 210.
  • the multiplexing unit 210 time-multiplexes the data signal input from the mapping unit 209 and the DM-RS input from the DM-RS generation unit 206, and outputs the multiplexed signal to the transmission weight multiplication unit 211.
  • the arrangement unit 214 may be configured by combining the configurations of the mapping unit 209 and the multiplexing unit 210. That is, arrangement section 214 (arrangement section 214 corresponding to the antenna port used for transmission), based on the frequency resource allocation information, distributes transmission signals including data signals and DM-RS to a plurality of clusters that are frequency resources. Place each one.
  • transmission weight multiplication section 211 multiplies each multiplexed signal input from each multiplexing section 210 of data processing sections 207-1 and 207-2 by a transmission weight. Then, the multiplexed signals after multiplication are output to transmission sections 212-1 and 212-2, respectively.
  • the transmission units 212-1 and 212-2 are provided corresponding to the antenna ports 201-1 and 201-2.
  • Each transmission unit 212 performs transmission processing such as D / A conversion, up-conversion, and amplification on the multiplexed signal input from the transmission weight multiplication unit 211, and transmits the signal subjected to the transmission processing to the antenna ports 201-1 and 201. -2 to base station 100.
  • the DM-RS is transmitted from at least one antenna port 201-1 and 201-2 to the base station 100.
  • the base station 100 and the terminal 200 are based on a use sequence identification table (for example, see FIG. 4) used in LTE.
  • the cyclic shift sequence number and OCC sequence number used as DM-RS are specified.
  • the frequency resource allocation information for terminal 200 indicates discontinuous band transmission (number of clusters: 2, for example, cluster # 1 and cluster # 2)
  • base station 100 and terminal 200 use sequences for discontinuous band transmission.
  • the cyclic shift sequence number and the OCC sequence number used as DM-RSs transmitted respectively in cluster # 1 and cluster # 2 are identified. Note that the cyclic shift sequence used as the DM-RS transmitted in each cluster during discontinuous band transmission is common (identical) between the clusters.
  • the terminal 200 is notified of cyclic shift amount information (Cyclic Shift Field) defined by 8 types (3 bits) of “9, 10”.
  • terminal 200 identifies the cyclic shift sequence and the OCC sequence for each cluster according to the usage sequence identification table and the cyclic shift amount information notified from base station 100.
  • the cyclic shift sequence number and the OCC sequence number constituting the DM-RS in each cluster to be transmitted from each antenna port by terminal 200 are indirectly notified by the cyclic shift amount information notified from base station 100. Is done.
  • the OCC sequence of cluster # 2 is different from the OCC sequence obtained by inverting the OCC sequence of cluster # 1 (that is, the OCC sequence of cluster # 1).
  • OCC series is partially included. That is, among the eight types of pattern candidates indicated in the cyclic shift amount information (Cyclic Shift Field), some of the pattern candidates have different OCC sequences for cluster # 1 and OCC sequences for cluster # 2 for the same antenna port. . That is, within the pattern candidate, when the OCC sequence of cluster # 1 at a certain antenna port is OCC # 1, the OCC sequence of cluster # 2 is cluster # 2, and the OCC sequence of cluster # 1 is OCC # 2. In this case, the OCC sequence of cluster # 2 is cluster # 1.
  • the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 are the same for the same antenna port in other pattern candidates other than the part of the patterns described above.
  • Cyclic Shift Field is cyclic shift information (3 bits).
  • CS value indicates the cyclic shift amount used for the antenna port number ⁇
  • OCC (Cluster # 1) indicates the OCC sequence used for the cluster # 1 of the antenna port number ⁇
  • OCC (Cluster # 2) Indicates an OCC sequence used in cluster # 2 of antenna port number ⁇ .
  • FIG. 11 shows an example of a use sequence identification table (sequence determination rule) at the time of discontinuous band transmission in setting example 1.
  • the OCC sequence and cluster # 2 used in cluster # 1 for the same antenna port are used.
  • the OCC sequences used are different from each other, and in other cyclic shift amount information, the OCC sequences used in cluster # 1 and the OCC sequences used in cluster # 2 for the same antenna port are the same.
  • the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 at each antenna port is [OCC # 1, OCC # 1], [OCC # 1]. , OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2]. That is, the use sequence identification table shown in FIG. 11 includes all combinations (combinations of four patterns) that can be taken using OCC # 1 and OCC # 2.
  • the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 includes a combination of two patterns [OCC # 1, OCC # 1] and [OCC # 2, OCC # 2].
  • the number of OCC sequences that can be set in each cluster by one terminal 200 can be increased while maintaining the same number of signaling bits (3 bits) as in the prior art. .
  • the prior art (FIGS. 5 and 6) and the setting example 1 (FIG. 12) are compared.
  • base station 100 notifies cyclic shift amount information (3 bits) to terminals 1 to 3 (terminal 200) as in the conventional case.
  • Each of the terminals 1 to 3 specifies the OCC sequences of the cluster # 1 and the cluster # 2 according to the cyclic shift amount information notified from the base station 100 and the use sequence specifying table shown in FIG.
  • the base station 100 can set an OCC sequence for each cluster for each of the terminals 1 to 3.
  • the number of signaling bits for notifying the OCC sequence is 3 bits as in FIG. Therefore, in setting example 1, it is possible to perform MU-MIMO in the same manner as in FIG. 6 using the same signaling amount as in FIG.
  • base station 100 uses the use sequence identification table shown in FIG. 11, thereby freeing frequency scheduling in MU-MIMO without adding a new signaling bit to the prior art.
  • the degree can be improved.
  • system throughput performance can be improved.
  • a cyclic shift sequence it is known that the orthogonality increases as the interval of the cyclic shift amount increases.
  • the OCC sequences in the cyclic shift amount information having adjacent cyclic shift amounts are different between cluster # 1 and cluster # 2. .
  • the degree of freedom of frequency scheduling in MU-MIMO is improved. be able to.
  • FIG. 13 shows an example of a used sequence identification table (sequence determination rule) at the time of discontinuous band transmission in setting example 2.
  • the use sequence identification table shown in FIG. 13 As in setting example 1 (FIG. 11), among the 8 types of cyclic shift amount information (that is, 8 types of pattern candidates), some of the cyclic shift amount information uses the same antenna.
  • the OCC sequence used in cluster # 1 for the port and the OCC sequence used in cluster # 2 are different from each other, and in other cyclic shift amount information, the OCC sequence and cluster # used in cluster # 1 for the same antenna port are used.
  • the OCC sequence used in 2 is the same.
  • the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 at each antenna port is [OCC # 1] as in setting example 1 (FIG. 11).
  • OCC # 1] As in setting example 1 (FIG. 11).
  • OCC # 1] As in setting example 1 (FIG. 11).
  • OCC # 1] [OCC # 1, OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2].
  • the use sequence identification table shown in FIG. 13 includes all combinations (combinations of four patterns) that can be taken using OCC # 1 and OCC # 2.
  • the base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO without adding a signaling bit to the prior art. .
  • a scheduling gain by MU-MIMO can be obtained, system throughput performance can be improved.
  • the OCC sequence of cluster # 2 is the same as the OCC sequence of cluster # 1, and OCC # 1 ( [1 1]).
  • the OCC sequence of cluster # 2 is inverted from the OCC sequence of cluster # 1 and becomes OCC # 2 ([1 ⁇ 1]) at all antenna ports.
  • the OCC sequences used in cluster # 1 are the same in all antenna ports, and the types of the OCC sequences are the same.
  • the shift amount information (pattern candidates) on the one hand, the OCC sequence used in cluster # 1 for the same antenna port and the OCC sequence used in cluster # 2 are different from each other, and on the other hand, the cluster # for the same antenna port.
  • the OCC sequence used in 1 and the OCC sequence used in cluster # 2 are the same.
  • the OCC sequences are not orthogonal.
  • transmission bands of signals transmitted from all antenna ports are set to be the same. Therefore, in one terminal 200, DM-RS orthogonalization using a cyclic shift sequence can be realized even if DM-RS orthogonalization using an OCC sequence cannot be realized by using the same OCC sequence between antenna ports.
  • the base station 100 uses the use sequence identification table shown in FIG. 13 to provide the maximum number of OCC sequences for cluster # 1 and cluster # 2 for a plurality of terminals 200 transmitting at 3 antenna ports or more.
  • a combination of 4 patterns can be set. That is, base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO for terminal 200 that transmits with three or more antenna ports.
  • the base station 100 can set four different combinations of OCC sequences for the terminal 200 that transmits with two antenna ports or less. That is, base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO for terminal 200 that transmits at two antenna ports or less. This improves system throughput performance.
  • FIG. 14 shows an example of a used sequence identification table (sequence determination rule) at the time of discontinuous band transmission in setting example 3.
  • some cyclic shift amount information uses the same antenna.
  • the OCC sequence used in cluster # 1 for the port and the OCC sequence used in cluster # 2 are different from each other, and in other cyclic shift amount information, the OCC sequence and cluster # used in cluster # 1 for the same antenna port are used.
  • the OCC sequence used in 2 is the same.
  • the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 at each antenna port is [OCC # 1] as in setting example 1 (FIG. 11).
  • OCC # 1] As in setting example 1 (FIG. 11).
  • OCC # 1] As in setting example 1 (FIG. 11).
  • OCC # 1] [OCC # 1, OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2].
  • the use sequence identification table shown in FIG. 14 includes all combinations (combinations of four patterns) that can be taken using OCC # 1 and OCC # 2.
  • the base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO without adding a signaling bit to the prior art. .
  • a scheduling gain by MU-MIMO can be obtained, system throughput performance can be improved.
  • the OCC sequence of cluster # 2 is the same as the OCC sequence of cluster # 1, whereas “111”. Then, the OCC sequence of cluster # 2 is inverted from the OCC sequence of cluster # 1.
  • the same OCC is used in the cluster # 1 and the cluster # 2 in the four types of cyclic shift amount information among the eight types of cyclic shift amount information (pattern candidates). Sequences are associated with each other, and the remaining half of the four types of cyclic shift amount information are associated with different OCC sequences in cluster # 1 and cluster # 2.
  • the base station 100 uses the use sequence identification table shown in FIG. 14 to provide four different OCC patterns for a plurality of terminals 200 transmitting at three antenna ports or more.
  • FIG. 15 shows an example of a used sequence identification table (sequence determination rule) at the time of discontinuous band transmission in setting example 4.
  • some cyclic shift amount information uses the same antenna.
  • the OCC sequence used in cluster # 1 for the port and the OCC sequence used in cluster # 2 are different from each other, and in other cyclic shift amount information, the OCC sequence and cluster # used in cluster # 1 for the same antenna port are used.
  • the OCC sequence used in 2 is the same.
  • the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 at each antenna port is [OCC # 1] as in setting example 1 (FIG. 11).
  • OCC # 1] As in setting example 1 (FIG. 11).
  • OCC # 1] As in setting example 1 (FIG. 11).
  • OCC # 1] [OCC # 1, OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2].
  • the use sequence identification table shown in FIG. 15 includes all combinations (combinations of 4 patterns) that can be taken by OCC # 1 and OCC # 2.
  • the base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO without adding a signaling bit to the prior art. .
  • a scheduling gain by MU-MIMO can be obtained, system throughput performance can be improved.
  • a pair of cyclic shift amount information (pattern candidates) having the same combination of cyclic shift amounts used at the time of two-antenna port transmission is “010” in addition to “000” and “001”. And '111' pairs, 011 'and' 110 'pairs, and 100' and '101' pairs.
  • the OCC sequence used in cluster # 1 and the OCC sequence used in cluster # 2 for the same antenna port are different from each other, and other than the above part pairs
  • the OCC sequence used in cluster # 1 and the OCC sequence used in cluster # 2 for the same antenna port are the same.
  • cyclic shift amount information for the same cyclic shift amount used when transmitting two antenna ports is notified to different terminals.
  • FIG. 16 it is assumed that cyclic shift amount information “011” is notified to terminal # 1, and cyclic shift amount information “110” is notified to terminal # 2.
  • # 2 is set, and OCC # 1 is set to cluster # 2.
  • FIG. 16 shows that the terminal # 1 and the terminal # 2 are orthogonal to each other because the OCC sequences are different for the cluster # 1, and MU-MIMO can be applied.
  • the orthogonal relationship does not hold, and MU-MIMO cannot be applied.
  • setting example 3 (FIG. 14)
  • a band to which MU-MIMO cannot be applied is generated. For this reason, there is a problem that the degree of freedom of frequency scheduling in MU-MIMO is reduced, and the scheduling gain by MU-MIMO is limited.
  • each terminal 200 receives the cluster # 1 and the cluster # 1.
  • Different OCC sequences can be used in both of # 2. Therefore, in setting example 4, compared with setting example 3 (FIG. 14), the degree of freedom of frequency scheduling in MU-MIMO can be further improved, and the scheduling gain by MU-MIMO can be improved.
  • # 1, OCC # 1], [OCC # 1, OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2] are determined to be equally two each. It becomes possible. Therefore, as in setting example 3, base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO for terminal 200 transmitting at two antenna ports or less than setting example 2 (FIG. 13). This improves system throughput performance.
  • the base station 100 uses the use sequence identification table shown in FIG. 14 to provide four different OCC patterns for a plurality of terminals 200 transmitting at three antenna ports or more.
  • pattern candidates representing combinations of OCC sequences of cluster # 1 and cluster # 2 in the used sequence identification table shared by base station 100 and terminal 200 are described.
  • some pattern candidates have different OCC sequences between clusters, and pattern candidates other than the above-mentioned some pattern candidates have the same OCC sequences between clusters.
  • the base station 100 can use all possible patterns as OCC sequence patterns that can be set in the cluster # 1 and the cluster # 2. Thereby, the base station 100 can set the OCC sequence used in DM-RS for the terminal 200 for each cluster. Therefore, base station 100 can set different OCC sequences for a plurality of terminals 200 even in the same transmission band, and can improve the degree of freedom of scheduling in MU-MIMO.
  • the base station 100 does not add a signaling bit for notifying the OCC sequence for DM-RS to the terminal 200 as compared with the conventional case (see, for example, FIG. 4). You can be notified.
  • the base station can set the OCC sequence used by the terminal for each cluster without increasing the number of signaling bits.
  • “one cyclic shift” is selected from two pieces of cyclic shift amount information (pattern candidates) in which the patterns of the OCC sequences used in the plurality of antenna ports of cluster # 1 are the same.
  • the OCC sequences for the same antenna port are different from each other in the cluster # 1 and the cluster # 2
  • the other cyclic shift amount information the OCC sequences for the same antenna port in the cluster # 1 and the cluster # 2. The case where they are the same has been described.
  • which of the two pieces of cyclic shift amount information is the “one cyclic shift amount information” and which is the other cyclic shift amount information is determined based on setting example 4. May be.
  • cyclic shift amount information included in a part of a pair of pattern candidates among combinations of two cyclic shift sequences respectively used in each antenna port when two antenna ports are used.
  • the OCC sequences for the same antenna port are different between the cluster # 1 and the cluster # 2, and the" other cyclic shift amount information "included in a pair other than the part of the pair described above, the cluster # 1 and the cluster # 2
  • the OCC sequences for the same antenna port may be the same. For example, in FIG. 4 (corresponding to the OCC sequence of cluster # 1 at the time of non-continuous band transmission), attention is paid to cyclic shift amount information '000', '001', '010', and '111'.
  • the pattern of the OCC sequence used by the plurality of antenna ports of cluster # 1 is the same between “000” and “111” and between “001” and “010”. Become. Of these, between two “000” and “001”, and between “010” and “111”, two cyclic shift sequences respectively used in each antenna port when two antenna ports are used. The combination is the same. Here, “000” and “001” are called “pair A”, and “010” and “111” are called “pair B”.
  • the cyclic shift amount information included in “pair A” is Cluster # 1 and cluster # 2 have different OCC sequences for the same antenna port, and in the cyclic shift amount information included in “pair B”, cluster # 1 and cluster # 2 have the same OCC sequence for the same antenna port. You may make it become. That is, between “000” and “111”, different OCC sequences are set in cluster # 1 and cluster # 2 in “000” included in “pair A”, and “111” included in “pair B”. In ', the same OCC sequence is set in cluster # 1 and cluster # 2.
  • the use sequence identification table used in the base station 100 and the terminal 200 is the same as in setting example 4 (FIG. 15). As a result, the base station 100 and the terminal 200 using the use sequence identification table can obtain the same effects as those of the setting example 4.
  • the usage sequence identification table described in the present embodiment (for example, FIG. 11, FIG. 13, FIG. 15, and FIG. 15) is used as the usage sequence identification table used at the time of non-continuous band transmission, or the same as in the prior art.
  • the use sequence identification table (for example, FIG. 4, that is, when the same OCC sequence is used in cluster # 1 and cluster # 2) may be switched for each terminal.
  • the case where the use sequence specifying table (FIG. 4) similar to the prior art is used is “pattern 1”, and the case where the use sequence specifying table shown in FIGS.
  • the base station may notify each terminal of “Pattern 1” or “Pattern 2” explicitly in advance by HigherHighlayer signaling.
  • the base station assigns “Pattern 1” and “Pattern 2” to each terminal. May be notified.
  • FIGS. 17 and 18, block diagrams showing configurations of the base station 300 and the terminal 400 in this case are shown in FIGS. 17 and 18, respectively. 17 and 18, the same components as those in the above-described embodiment (FIGS. 9 and 10) are denoted by the same reference numerals, and description thereof is omitted.
  • the terminal information setting unit 301 sets which of the “pattern 1” and “pattern 2” the terminal 400 scheduled by the base station 300 uses.
  • Terminal information setting section 301 outputs the set information (terminal information) to DM-RS information determination section 302.
  • the terminal information setting unit 301 for example, in the plurality of terminals 400 scheduled by the base station 300, the terminal 400 using “pattern 1” and the terminal 400 using “pattern 2” have an equal ratio. Each pattern may be set. At this time, the terminal information setting unit 301 may set each pattern in each terminal 400 at random.
  • the DM-RS information determination unit 302 generates a use sequence identification table used at the time of non-continuous band transmission of each terminal 400 based on the terminal information (“pattern 1” or “pattern 2”) input from the terminal information setting unit 301. to decide. Then, DM-RS information determination section 302 selects the cyclic shift amount and the OCC sequence number constituting DM-RS using the determined used sequence identification table in the same manner as in the above embodiment. DM-RS information determination section 302 then outputs the cyclic shift amount information associated with the selected cyclic shift amount and OCC sequence number to control information encoding section 101.
  • terminal information setting section 401 uses DM-RS to indicate terminal information indicating whether terminal 400 scheduled by base station 300 uses “pattern 1” or “pattern 2”.
  • the information is output to the information determination unit 402.
  • whether the terminal 400 uses “Pattern 1” or “Pattern 2” may be notified explicitly from the base station 300 to the terminal 400, and notified to the Implicit using a terminal ID (fixed ID) or the like. May be.
  • the DM-RS information determination unit 402 determines the used sequence identification table used at the time of non-continuous band transmission based on the terminal information (“pattern 1” or “pattern 2”) input from the terminal information setting unit 401. Then, DM-RS information determination section 402 determines the cyclic shift amount and the OCC sequence number constituting the DM-RS using the determined used sequence identification table in the same manner as in the above embodiment. Then, DM-RS information determination section 402 outputs the determined cyclic shift amount and cyclic shift amount information associated with the OCC sequence number to DM-RS generation section 206.
  • the base station 300 varies the used sequence identification table at the time of discontinuous band transmission between the terminals 400 to be scheduled.
  • “pattern 1” is used for terminals 400 (terminals # 1 and # 2) with odd terminal IDs
  • “pattern 2” is used for terminals 400 (terminal # 3) with even terminal IDs.
  • base station 300 is a terminal in which a pattern capable of orthogonalizing DM-RSs is set. Therefore, a plurality of terminals 400 may be scheduled so that terminals having similar reception qualities are MU-MIMO multiplexed. As a result, the frequency scheduling gain can be improved without increasing the signaling bits as in the above embodiment.
  • the base station has set the “pattern 1” or “pattern 2” for the terminal other than the cyclic shift amount information included in the control information notified in the downlink channel
  • Other parameters may be used for notification.
  • the other parameter may be, for example, a cluster bandwidth, a cluster bandwidth position, or the like.
  • a cluster bandwidth the number of RB (Resource Block) or the number of RBG (RB Group)
  • “pattern 1” is associated with the cluster bandwidth (the number of RBGs). ) May be associated with an odd number and “pattern 2”.
  • “pattern # 1” is associated with the case where the leading RBG number of the cluster band position is an even number
  • “pattern # 2” is associated with the case where the leading RBG number of the cluster band position is an odd number. Also good.
  • the DM-RS information determination unit 114 (FIG. 9) of the base station 100 performs frequency resource allocation information (that is, the cluster bandwidth or the cluster bandwidth position) of each terminal 200 input from the scheduling unit 113. Based on the above, it is determined whether the terminal 200 scheduled by the base station 100 uses “Pattern 1” or “Pattern 2”. Then, the DM-RS information determination unit 114 selects the cyclic shift amount and the OCC sequence number constituting the DM-RS using the determined used sequence identification table in the same manner as in the above embodiment.
  • the DM-RS information determination unit 205 (FIG. 10) of the terminal 200 is based on the frequency resource allocation information (that is, the cluster bandwidth or the cluster band position) input from the control information decoding unit 204. 200 determines whether to use “Pattern 1” or “Pattern 2”. Then, DM-RS information determination section 205 determines the cyclic shift amount and OCC sequence number that constitute DM-RS, using the determined used sequence identification table, in the same manner as in the above embodiment.
  • the cyclic shift amount information and the start position (RB. Start position (RB) of cluster # 1) of the frequency resource for transmitting the uplink signal are the response signal (ACK / NACK signal) from the terminal 200 to the downlink data signal.
  • ACK / NACK signal the response signal from the terminal 200 to the downlink data signal.
  • PHICH resource a transmission resource of a control channel
  • a desired cyclic shift amount may not be set in order to prevent a PHICH resource collision.
  • a desired OCC sequence number is not set in terminal 200, and a transmission band to which MU-MIMO cannot be applied occurs.
  • the OCC sequences of the cluster # 1 and the cluster # 2 are associated with parameters different from the cyclic shift amount information, a desired OCC sequence number cannot be set due to restrictions on the cyclic shift amount information. Can be reduced.
  • the existing parameter is also used as a parameter for determining the used sequence identification table, the number of signaling bits does not increase.
  • the parameter for determining the used sequence identification table is not limited to the frequency resource allocation information, and may be other information as long as it is a parameter notified from the base station to the terminal together with the cyclic shift amount information.
  • the base station 100 and the terminal 200 hold the use sequence identification table for non-continuous band transmission.
  • the base station 100 and the terminal 200 are not limited to holding the used sequence identification table for non-continuous band transmission.
  • the base station 100 and the terminal 200 refer to the conventional table (see FIG. 4).
  • the OCC sequence of cluster # 2 may be calculated according to the correspondence relationship with the sequence) and the sequence determination rules described in setting examples 1 to 4. Thereby, the base station 100 and the terminal 200 can set the OCC of the cluster # 2 without holding a table for determining the OCC of the cluster # 2.
  • the use sequence identification table used at the time of non-continuous band transmission may be different for each cell.
  • inter-sequence interference of reference signals (pilot signals) can be randomized (averaged) between cells.
  • the sequence constituting the DM-RS is not limited to the OCC sequence, and may be an orthogonal sequence or a highly orthogonal sequence.
  • a Walsh sequence may be used.
  • control information notified in the downlink channel may be referred to as DCI (Downlink Control Information) or UL Grant.
  • DCI Downlink Control Information
  • UL Grant UL Grant
  • the antenna port in the above embodiment refers to a logical antenna composed of one or a plurality of physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • 3GPP LTE it is not defined how many physical antennas an antenna port is composed of, but is defined as a minimum unit by which a base station can transmit different reference signals (Reference signals).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the radio communication apparatus and radio communication method according to the present invention can be applied to a mobile communication system such as LTE-Advanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

Provided is a transmitter apparatus that allows a base station to set, for each of a plurality of clusters, OCC sequences, which are to be used at terminals, without increasing the number of signaling bits. A DM-RS information determining unit (205) determines, according to a sequence determination rule, a cyclic shift sequence and an orthogonal sequence that are to be used for DM-RS to be allocated in each of the plurality of clusters. A DM-RS generating unit (206) generates the DM-RS by use of the cyclic shift sequence and orthogonal sequence determined by the DM-RS information determining unit (205). The sequence determination rule includes a plurality of sequence pattern candidates each comprising a first orthogonal sequence to be used at the antenna ports in a cluster (#1) and a second orthogonal sequence to be used at the antenna ports in a cluster (#2). In some of the plurality of pattern candidates, the first and second orthogonal sequences for the same antenna port are different from each other, while in the others of the plurality of pattern candidates, the first and second orthogonal sequences for the same antenna port are the same.

Description

送信装置、受信装置、信号生成方法及び品質推定方法Transmitting apparatus, receiving apparatus, signal generation method, and quality estimation method
 本発明は、非連続帯域割当を行う送信装置、受信装置、信号生成方法及び品質推定方法に関する。 The present invention relates to a transmission device, a reception device, a signal generation method, and a quality estimation method that perform discontinuous band allocation.
 3GPP LTE(3rd Generation Partnership Project Long Term Evolution)の発展形であるLTE-Advancedの上り回線では、柔軟な周波数リソース割当によってスケジューリングゲインを改善するために、2つの技術が検討されており、非連続帯域送信とMU-MIMO(Multiple User - Multiple Input Multiple Output)である。 In LTE-Advanced uplink, which is an extension of 3GPP LTE (3rd Generation Partnership Project Project Long Term Evolution), two technologies are being studied to improve scheduling gain through flexible frequency resource allocation. Transmission and MU-MIMO (Multiple User -Multiple Input Multiple Output).
 まず、非連続帯域送信について説明する。LTEでは、CM(Cubic Metric)及びPAPR(Peak to Average Power Ratio)を低減するため、各端末のデータ信号を連続する周波数帯域に割り当てる連続帯域送信のみが用いられていた。これに対して、LTE-Advancedの上り回線では、システムスループット性能を改善するために、連続帯域送信に加えて、非連続帯域送信を用いることが検討されている(例えば、非特許文献1参照)。例えば、LTE-Advancedでは、非連続帯域送信におけるクラスタ(連続帯域の塊)の最大数を2とすることが検討されている。 First, discontinuous band transmission will be described. In LTE, in order to reduce CM (Cubic Metric) and PAPR (Peak to Average Power Ratio), only continuous band transmission that allocates data signals of each terminal to continuous frequency bands is used. On the other hand, in the LTE-Advanced uplink, in order to improve the system throughput performance, it is considered to use non-continuous band transmission in addition to continuous band transmission (for example, see Non-Patent Document 1). . For example, in LTE-Advanced, it is considered that the maximum number of clusters (lumps of continuous bands) in discontinuous band transmission is 2.
 非連続帯域送信は、広い帯域に分散された非連続な周波数帯域にデータ信号及び参照信号を割り当てて送信する方法である。図1に示すように、連続帯域送信では、データ信号及び参照信号を、連続した周波数帯域に割り当てる。これに対して、非連続帯域送信では、データ信号及び参照信号を、離散した周波数帯域(ここでは2クラスタ)に割り当てることができる。よって、非連続帯域送信では、連続帯域送信に対して、各端末のデータ信号及び参照信号の周波数リソース割当の自由度が向上するため、より大きな周波数スケジューリングゲインを得ることができる。以下、LTE-Advancedを想定した一例として、非連続帯域送信時のクラスタ数が2個の場合について説明する。 Discontinuous band transmission is a method in which data signals and reference signals are allocated and transmitted in discontinuous frequency bands distributed over a wide band. As shown in FIG. 1, in continuous band transmission, a data signal and a reference signal are allocated to continuous frequency bands. On the other hand, in non-continuous band transmission, the data signal and the reference signal can be assigned to discrete frequency bands (here, two clusters). Therefore, in the non-continuous band transmission, the degree of freedom of frequency resource allocation of the data signal and reference signal of each terminal is improved with respect to the continuous band transmission, so that a larger frequency scheduling gain can be obtained. Hereinafter, a case where the number of clusters at the time of non-continuous band transmission is two will be described as an example assuming LTE-Advanced.
 次に、MU-MIMOについて説明する。MU-MIMOは、複数の端末が基地局とMIMO通信を行う技術であり、システムの周波数利用効率を向上させ、システムスループット性能を向上させることができる。MU-MIMOでは、例えば、各端末(送信側)の送信データは、基地局(受信側)で分離される。このため、各端末のDM-RS(DeModulation - Reference Signal)を直交化させる必要がある。なお、MIMOは、送信側及び受信側にそれぞれ複数のアンテナを備え、同一周波数で異なる信号系列の同時空間多重化伝送を可能とする技術である。 Next, MU-MIMO will be described. MU-MIMO is a technique in which a plurality of terminals perform MIMO communication with a base station, and can improve the frequency utilization efficiency of the system and improve the system throughput performance. In MU-MIMO, for example, transmission data of each terminal (transmission side) is separated at a base station (reception side). For this reason, it is necessary to orthogonalize DM-RS (DeModulation-Reference Signal) of each terminal. MIMO is a technique that includes a plurality of antennas on the transmission side and the reception side, respectively, and enables simultaneous spatial multiplexing transmission of different signal sequences at the same frequency.
 LTEでは、DM-RSとして、直交系列である巡回シフト(Cyclic Shift:CS)系列が用いられる。巡回シフト系列は、例えば、符号系列であるZC(Zadoff-Chu)系列に対して時間領域で巡回シフト量(CS量)分だけ巡回シフトさせることで生成される。図2は、ZC系列長(N)=12、巡回シフト量(Δ)=0及び6の場合の巡回シフト系列を示す。図2に示すΔ=0の巡回シフト系列は、a(0)~a(11)の順に構成される。これに対して、図2に示すΔ=6の巡回シフト系列は、Δ=0の巡回シフト系列が6サンプル分だけ巡回シフトされた系列であって、a(6)~a(11)、a(0)~a(5)の順に構成される。巡回シフト量(Δ)は、基地局によって決定され、基地局から端末へ下りチャネルを用いて通知される。当該下りチャネルは、例えば、PDCCH(Physical Downlink Control Channel:PDCCH)がある。 In LTE, a cyclic shift (CS) sequence that is an orthogonal sequence is used as the DM-RS. The cyclic shift sequence is generated, for example, by cyclically shifting a ZC (Zadoff-Chu) sequence that is a code sequence by a cyclic shift amount (CS amount) in the time domain. FIG. 2 shows a cyclic shift sequence when ZC sequence length (N) = 12, and cyclic shift amount (Δ) = 0 and 6. The cyclic shift sequence of Δ = 0 shown in FIG. 2 is configured in the order of a (0) to a (11). On the other hand, the cyclic shift sequence of Δ = 6 shown in FIG. 2 is a sequence obtained by cyclically shifting the cyclic shift sequence of Δ = 0 by 6 samples, and a (6) to a (11), a (0) to a (5) are configured in this order. The cyclic shift amount (Δ) is determined by the base station and notified from the base station to the terminal using the downlink channel. The downlink channel is, for example, PDCCH (Physical Downlink Control Channel: PDCCH).
 ここで、伝搬路変動の無い理想的な環境では、同一の送信帯域を有する巡回シフト系列は完全な直交系列となり、系列間干渉は発生しない。一方、伝搬路変動の有る実環境では、同一の送信帯域を有する巡回シフト系列であっても、完全な直交性を維持できず、多少の系列間干渉が発生する。また、送信帯域の異なる巡回シフト系列は、直交系列とならず、大きな系列間干渉が発生する。 Here, in an ideal environment with no propagation path fluctuation, a cyclic shift sequence having the same transmission band is a complete orthogonal sequence, and no inter-sequence interference occurs. On the other hand, in a real environment with propagation path fluctuations, even if cyclic shift sequences having the same transmission band are used, perfect orthogonality cannot be maintained, and some inter-sequence interference occurs. Also, cyclic shift sequences with different transmission bands are not orthogonal sequences, and large inter-sequence interference occurs.
 そこで、LTE-Advancedでは、DM-RSとして、LTEで採択された巡回シフト系列に加え、OCC(Orthogonal Cover Code)系列を併用することが合意された(例えば、非特許文献2参照)。LTE-Advancedでは、巡回シフト系列とOCC系列とを併用することにより、送信帯域が同一の場合には伝搬路変動の有る実環境においても系列間干渉を軽減することができる。また、OCC系列は、送信帯域が異なる場合にも直交系列となる。よって、異なる送信帯域の端末の信号をMU-MIMO多重させることが可能となる。これにより、周波数スケジューリングの自由度が向上し、システムスループット性能が改善される。 Therefore, in LTE-Advanced, it has been agreed to use an OCC (Orthogonal Cover Code) sequence in addition to the cyclic shift sequence adopted by LTE as DM-RS (for example, see Non-Patent Document 2). In LTE-Advanced, by using a cyclic shift sequence and an OCC sequence together, inter-sequence interference can be reduced even in a real environment where there is a propagation path variation when the transmission band is the same. Further, the OCC sequence is an orthogonal sequence even when transmission bands are different. Therefore, it is possible to MU-MIMO multiplex signals of terminals in different transmission bands. Thereby, the freedom degree of frequency scheduling improves and system throughput performance is improved.
 図3は、OCC系列の適用例を示す。図3に示すように、1サブフレーム(例えば、1msec)は、2つのスロット(スロット#1及びスロット#2)で構成され、各スロットは7個のシンボル(ここではLB(Long Block)及びCP(Cyclic Prefix))で構成される。図3に示すように、DM-RSは、1サブフレームの各スロットの中央シンボル(LB#4)を用いて送信される。 FIG. 3 shows an application example of the OCC series. As shown in FIG. 3, one subframe (for example, 1 msec) is composed of two slots (slot # 1 and slot # 2), and each slot has seven symbols (here, LB (LongLBlock) and CP). (Cyclic Prefix)). As shown in FIG. 3, DM-RS is transmitted using the center symbol (LB # 4) of each slot of one subframe.
 図3では、1サブフレームを構成するスロット#1及びスロット#2の各DM-RS(巡回シフト系列)に対して、OCC系列番号#1のOCC系列(以下、OCC#1と表す)=[1 1]、又は、OCC系列番号#2のOCC系列(以下、OCC#2と表す)=[1 -1]が乗算される。すなわち、図3において、OCC#1を用いる場合には従来同様の巡回シフト系列がDM-RSとして用いられる。一方、OCC#2を用いる場合には、スロット#1で従来同様の巡回シフト系列がDM-RSとして用いられ、スロット#2で位相を反転(180度回転)させた巡回シフト系列がDM-RSとして用いられる。なお、以下では、OCC系列の系列長が、LTE-Advancedにおけるサブフレーム構成で実現できる長さである2個の場合について説明する。この場合、生成可能なOCC系列数は2個(OCC#1及びOCC#2)である。 In FIG. 3, for each DM-RS (cyclic shift sequence) of slot # 1 and slot # 2 constituting one subframe, an OCC sequence of OCC sequence number # 1 (hereinafter referred to as OCC # 1) = [ 1 [1], or OCC sequence number # 2 (hereinafter referred to as OCC # 2) = [1−1]. That is, in FIG. 3, when OCC # 1 is used, a cyclic shift sequence similar to the conventional one is used as DM-RS. On the other hand, when OCC # 2 is used, a cyclic shift sequence similar to the conventional one is used as DM-RS in slot # 1, and a cyclic shift sequence whose phase is inverted (rotated 180 degrees) in slot # 2 is DM-RS. Used as In the following, a case where the sequence length of the OCC sequence is two that can be realized by the subframe configuration in LTE-Advanced will be described. In this case, the number of OCC sequences that can be generated is two (OCC # 1 and OCC # 2).
 LTE-Advancedでは、端末がDM-RSの生成のために用いるOCC系列番号は、下りチャネルで通知される制御情報に含まれる巡回シフト量情報に一意に対応付けられて、基地局から端末へ通知されることが合意されている(例えば、非特許文献2参照)。 In LTE-Advanced, the OCC sequence number used by the terminal for generating the DM-RS is uniquely associated with the cyclic shift amount information included in the control information notified in the downlink channel and notified from the base station to the terminal. (See, for example, Non-Patent Document 2).
 図4は、LTE-Advancedで用いられる巡回シフト量情報とOCC系列との対応関係を表すテーブルである。以下、図4に示すテーブルを、端末が巡回シフト量情報に基づいてOCC系列番号を特定するための「使用系列特定テーブル」と呼ぶことがある。 FIG. 4 is a table showing a correspondence relationship between the cyclic shift amount information used in LTE-Advanced and the OCC sequence. Hereinafter, the table shown in FIG. 4 may be referred to as a “used sequence identification table” for the terminal to identify the OCC sequence number based on the cyclic shift amount information.
 図4において、「Cyclic Shift Field」は巡回シフト量情報を示し、「CS value」は巡回シフト量(単位:[シンボル長/12(ms)])を示し、「OCC」はOCC系列を示す。また、λは端末のアンテナポート(antenna port)番号を示す。なお、LTE-Advancedの上り回線では、1つの端末が同一時刻かつ同一周波数に複数のアンテナポートからデータ信号を送信し、データ信号を空間多重するSU-MIMO(Single User - Multiple Input Multiple Output)がサポートされる。 In FIG. 4, “Cyclic Shift Field” indicates cyclic shift amount information, “CS value” indicates a cyclic shift amount (unit: [symbol length / 12 (ms)]), and “OCC” indicates an OCC sequence. Further, λ represents an antenna port number of the terminal. Note that, in the LTE-Advanced uplink, SU-MIMO (Single-User-Multiple-Input-Multiple-Output) in which one terminal transmits data signals from a plurality of antenna ports at the same time and the same frequency and spatially multiplexes the data signals is used. Supported.
 基地局から端末へ通知される巡回シフト量情報(Cyclic Shift Field)は、λ=0のアンテナポートで用いられる巡回シフト量に対応し、「0,2,3,4,6,8,9,10」の8種類(3bit)で定義された情報である。これらは、「0,2,3,4,6,8,9,10」×シンボル長/12(ms)の巡回シフト量に相当する。また、図4に示す[1 1]はOCC#1であり、[1 -1]はOCC#2である。OCC系列、及び、他のアンテナポート(λ=1~3)で用いられる巡回シフト量についても、図4に示す対応関係に基づいて、巡回シフト量情報(Cyclic Shift Field)に一意に対応付けられて通知される。 The cyclic shift amount information (Cyclic Shift Field) notified from the base station to the terminal corresponds to the cyclic shift amount used in the antenna port of λ = 0, and “0, 2, 3, 4, 6, 8, 9, This is information defined by 8 types (3 bits) of “10”. These correspond to a cyclic shift amount of “0, 2, 3, 4, 6, 8, 9, 10” × symbol length / 12 (ms). Also, [1 1] shown in FIG. 4 is OCC # 1, and [1-1] is OCC # 2. The cyclic shift amounts used in the OCC sequence and other antenna ports (λ = 1 to 3) are also uniquely associated with the cyclic shift amount information (Cyclic Shift Field) based on the correspondence shown in FIG. Be notified.
 SU-MIMOでは、周波数リソース割当の制御情報量を軽減するために、1端末が送信する複数のストリーム(各アンテナポートから送信される送信信号)の送信帯域幅は同一となる。よって、SU-MIMOでは、各ストリーム内で送信されるDM-RSの巡回シフト量を互いに異ならせることで、各ストリーム内のDM-RSの直交性を維持することができる。 In SU-MIMO, in order to reduce the amount of control information for frequency resource allocation, the transmission bandwidths of a plurality of streams (transmission signals transmitted from each antenna port) transmitted by one terminal are the same. Therefore, in SU-MIMO, the orthogonality of DM-RS in each stream can be maintained by making the cyclic shift amounts of DM-RS transmitted in each stream different from each other.
 一方、MU-MIMOでは、基地局は各端末に対して送信帯域幅をそれぞれ通知できる。よって、MU-MIMOを行う端末間で送信帯域幅が異なる場合には、上述したように、端末の巡回シフト量を異ならせてもDM-RSにおける直交性を維持することができない。このため、MU-MIMOを行う端末間では、OCC系列番号を異ならせてDM-RSを直交化させる必要がある。 On the other hand, in MU-MIMO, the base station can notify each terminal of the transmission bandwidth. Therefore, when the transmission bandwidth differs between terminals performing MU-MIMO, as described above, orthogonality in DM-RS cannot be maintained even if the cyclic shift amount of the terminal is varied. For this reason, it is necessary to make the DM-RS orthogonal by changing the OCC sequence number between terminals performing MU-MIMO.
 また、図4に示す使用系列特定テーブルは、連続帯域送信及び非連続帯域送信のいずれにおいても用いられる。つまり、非連続帯域送信時には、端末から送信される各クラスタのDM-RSに用いられるOCC系列番号は同一となる。 Also, the use sequence identification table shown in FIG. 4 is used for both continuous band transmission and non-continuous band transmission. That is, at the time of non-continuous band transmission, the OCC sequence number used for the DM-RS of each cluster transmitted from the terminal is the same.
 上記従来技術では、非連続帯域送信時に1つの端末が送信する各クラスタ内のDM-RSに用いられるOCC系列番号が同一となり、端末間でDM-RSが直交せずに、MU-MIMOを行えなくなる帯域が生じ得る。 In the above prior art, the OCC sequence numbers used for DM-RSs in each cluster transmitted by one terminal during non-continuous band transmission are the same, and MU-MIMO can be performed without DM-RSs being orthogonal between terminals. Bands that disappear can occur.
 例えば、図5を用いて、3つの端末#1~#3がMU-MIMOを行う場合について説明する。図5では、各端末は、2つのクラスタを用いた非連続帯域送信を行う。また、図5では、各端末は、例えば図4に示す使用系列特定テーブルに従って、各クラスタ内のDM-RSに用いるOCC系列(つまり、全クラスタで同一OCC系列)を決定する。例えば、図5において、端末#1はOCC#2を使用し、端末#2はOCC#1を使用し、端末#3はOCC#1を使用する。 For example, a case where three terminals # 1 to # 3 perform MU-MIMO will be described with reference to FIG. In FIG. 5, each terminal performs discontinuous band transmission using two clusters. Also, in FIG. 5, each terminal determines an OCC sequence used for DM-RS in each cluster (that is, the same OCC sequence in all clusters), for example, according to the use sequence identification table shown in FIG. For example, in FIG. 5, terminal # 1 uses OCC # 2, terminal # 2 uses OCC # 1, and terminal # 3 uses OCC # 1.
 図5に示すように、端末#1のクラスタ#1と端末#2のクラスタ#1とは周波数帯域が一部重なる。しかし、図5に示すように、端末#1と端末#2とでは使用するOCC系列が互いに異なるので、DM-RSは直交する。図5に示す端末#1のクラスタ#2と端末#3のクラスタ#1との間についても同様である。 As shown in FIG. 5, the frequency bands of the cluster # 1 of the terminal # 1 and the cluster # 1 of the terminal # 2 partially overlap. However, as shown in FIG. 5, since the OCC sequences used by terminal # 1 and terminal # 2 are different from each other, DM-RSs are orthogonal. The same applies to the cluster # 2 of the terminal # 1 and the cluster # 1 of the terminal # 3 shown in FIG.
 一方、図5に示す端末#2のクラスタ#2と端末#3のクラスタ#2とは、周波数帯域が一部重なり、かつ、双方で使用されるOCC系列(OCC#1)が同一である。このため、端末#2のクラスタ#2と端末#3のクラスタ#2とは直交せず(非直交となり)、系列間干渉が発生してしまう。このように、MU-MIMOを行えない帯域(DM-RS間で直交化できない帯域)が発生するため、基地局は、各端末の伝搬路品質の良好な帯域を優先して周波数リソースをスケジューリングすることができない。すなわち、MU-MIMOによるシステム性能の改善効果が制限されてしまうという課題がある。 On the other hand, the cluster # 2 of the terminal # 2 and the cluster # 2 of the terminal # 3 shown in FIG. 5 partially overlap in frequency bands and have the same OCC sequence (OCC # 1) used in both. For this reason, cluster # 2 of terminal # 2 and cluster # 2 of terminal # 3 are not orthogonal (non-orthogonal), and inter-sequence interference occurs. As described above, since a band where MU-MIMO cannot be performed (band that cannot be orthogonalized between DM-RSs) occurs, the base station schedules frequency resources with priority given to a band with good channel quality of each terminal. I can't. That is, there is a problem that the effect of improving the system performance by MU-MIMO is limited.
 上記課題を解決する方法として、非連続帯域送信時のOCC系列番号を通知するためのシグナリングビット(通知情報)を下りチャネルで通知される制御情報として新たに追加する方法が考えられる。これにより、基地局は、端末に対して、OCC系列番号をクラスタ毎に通知することができる。例えば、2つのクラスタのうち、一方のクラスタ(ここではクラスタ#1とする)のDM-RSに乗算されるOCC系列は、上述したように基地局が端末へ通知した巡回シフト量情報(3ビット。例えば図4参照)との対応付けにより暗示的に通知される。また、他方のクラスタ(ここではクラスタ#2とする)のDM-RSに乗算されるOCC系列は上記シグナリングビットで通知される。よって、最大2クラスタの非連続帯域送信が行われる場合には、追加すべきシグナリングビットは1ビットとなる。例えば、クラスタ#2で用いるOCC系列は、シグナリングビットが‘0’の場合にはクラスタ#1で用いられるOCC系列と同一のOCC系列とし、シグナリングビットが‘1’の場合にはクラスタ#1で用いられるOCC系列と異なるOCC系列とする。 As a method of solving the above problem, a method of newly adding a signaling bit (notification information) for notifying an OCC sequence number at the time of non-continuous band transmission as control information notified by a downlink channel is conceivable. Thereby, the base station can notify the terminal of the OCC sequence number for each cluster. For example, the OCC sequence multiplied by the DM-RS of one of the two clusters (here, cluster # 1) is the cyclic shift amount information (3 bits) notified to the terminal by the base station as described above. (For example, refer to FIG. 4). The OCC sequence to be multiplied by the DM-RS of the other cluster (here, cluster # 2) is notified by the signaling bit. Therefore, when discontinuous band transmission of a maximum of 2 clusters is performed, the signaling bit to be added is 1 bit. For example, the OCC sequence used in cluster # 2 is the same OCC sequence as the OCC sequence used in cluster # 1 when the signaling bit is “0”, and is the cluster # 1 when the signaling bit is “1”. The OCC sequence is different from the OCC sequence used.
 例えば、図6に示す端末#1には、クラスタ#1に対して、巡回シフト量情報によってOCC#2が通知されている。また、端末#1には、シグナリングビット(1bit)により‘0’が通知されている。そこで、端末#1は、クラスタ#1ではOCC#2を使用し、クラスタ#2ではクラスタ#1と同一のOCC#2を使用する。図6に示す端末#2についても同様である。一方、図6に示す端末#3には、クラスタ#1に対して、巡回シフト量情報によってOCC#1が通知されている。また、端末#3には、シグナリングビット(1bit)により‘1’が通知されている。そこで、端末#3は、クラスタ#1ではOCC#1を使用し、クラスタ#2ではクラスタ#1と異なる(逆の)OCC#2を使用する。 For example, the terminal # 1 shown in FIG. 6 is notified of the OCC # 2 by the cyclic shift amount information to the cluster # 1. Further, terminal 0 is notified of “0” by a signaling bit (1 bit). Therefore, the terminal # 1 uses the OCC # 2 in the cluster # 1 and uses the same OCC # 2 as the cluster # 1 in the cluster # 2. The same applies to terminal # 2 shown in FIG. On the other hand, the terminal # 3 shown in FIG. 6 is notified of the OCC # 1 by the cyclic shift amount information to the cluster # 1. Also, the terminal # 3 is notified of “1” by a signaling bit (1 bit). Therefore, terminal # 3 uses OCC # 1 in cluster # 1, and uses (reverse) OCC # 2 different from cluster # 1 in cluster # 2.
 このように、基地局は、クラスタ毎にOCC系列(OCC系列番号)を自由に設定できるので、MU-MIMOの制限(例えば図5参照)を受けずに、MU-MIMOにおける周波数スケジューリングの自由度を向上させ、システムスループット性能を改善できる。 In this way, since the base station can freely set the OCC sequence (OCC sequence number) for each cluster, the degree of freedom of frequency scheduling in MU-MIMO without being restricted by MU-MIMO (see, for example, FIG. 5). Can improve system throughput performance.
 しかしながら、OCC系列を通知するためのシグナリングビットを新たに追加するのでは、端末に設定されるクラスタ数が増えるほど、シグナリングビット数が増加してしまうという課題がある。また、上述したように、最大クラスタ数が2個の場合にはシグナリングビット数は1ビットである。しかし、シグナリングには、PDCCH(物理レイヤの制御チャネル)が用いられるため、情報量が1ビット増加するだけでも、制御チャネルのカバレッジが縮小してしまったり、端末において新たなペイロードサイズ(payload size)を受信するための回路追加が必要となったりする。 However, when a signaling bit for notifying the OCC sequence is newly added, there is a problem that the number of signaling bits increases as the number of clusters set in the terminal increases. Further, as described above, when the maximum number of clusters is 2, the number of signaling bits is 1 bit. However, since PDCCH (physical layer control channel) is used for signaling, the coverage of the control channel may be reduced even if the information amount is increased by only 1 bit, or a new payload size (payload size) at the terminal. It may be necessary to add a circuit for receiving the signal.
 本発明の目的は、シグナリングビット数を増加させることなく、基地局が、端末で用いるOCC系列をクラスタ毎に設定することができる送信装置、受信装置、信号生成方法及び品質推定方法を提供することである。 An object of the present invention is to provide a transmission device, a reception device, a signal generation method, and a quality estimation method that allow a base station to set an OCC sequence used in a terminal for each cluster without increasing the number of signaling bits. It is.
 本発明の一態様に係る送信装置は、系列決定ルールに従って、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列のいずれか1つと、互いに直交する複数の直交系列のいずれか1つとに基づいて参照信号を生成する生成手段と、複数のクラスタのそれぞれに配置された、前記参照信号を含んだ送信信号を、少なくとも1つのアンテナポートから送信する送信手段と、を具備し、前記複数のクラスタは、第1のクラスタ及び第2のクラスタを含み、前記系列決定ルールは、前記第1のクラスタにおいて各アンテナポートで使用される第1直交系列と、前記第2のクラスタにおいて各アンテナポートで使用される第2直交系列とから成る系列の複数のパターン候補を含み、前記複数のパターン候補のうち、一部のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のパターン候補以外のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である構成を採る。 The transmission apparatus according to one aspect of the present invention includes, according to a sequence determination rule, any one of a plurality of cyclic shift sequences that can be separated from each other by different cyclic shift amounts, and any one of a plurality of orthogonal sequences that are orthogonal to each other. Generating means for generating a reference signal based on the transmission means, and transmitting means arranged in each of a plurality of clusters for transmitting a transmission signal including the reference signal from at least one antenna port. The cluster includes a first cluster and a second cluster, and the sequence determination rule includes a first orthogonal sequence used in each antenna port in the first cluster, and each antenna port in the second cluster. A plurality of pattern candidates of a sequence composed of the second orthogonal sequence used, and some of the plurality of pattern candidates In complement, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and the pattern candidates other than the partial pattern candidates are the first orthogonal sequence and the second orthogonal sequence for the same antenna port. The configuration is the same.
 本発明の一態様に係る受信装置は、複数のクラスタのそれぞれに配置された、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列のいずれか1つと、互いに直交する複数の直交系列のいずれか1つとに基づいて生成された参照信号を含む信号を受信する受信手段と、系列決定ルールに従って決定される巡回シフト系列及び直交系列と、前記参照信号とを用いて、チャネル品質を推定する推定手段と、を具備し、前記複数のクラスタは、第1のクラスタ及び第2のクラスタを含み、前記系列決定ルールは、前記第1のクラスタにおいて各アンテナポートで使用される第1直交系列と、前記第2のクラスタにおいて各アンテナポートで使用される第2直交系列とから成る系列の複数のパターン候補を含み、前記複数のパターン候補のうち、一部のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のパターン候補以外のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である構成を採る。 A receiving apparatus according to one embodiment of the present invention includes any one of a plurality of cyclic shift sequences arranged in each of a plurality of clusters and separable from each other by different cyclic shift amounts, and a plurality of orthogonal sequences orthogonal to each other. Channel quality is estimated using reception means for receiving a signal including a reference signal generated based on any one of them, a cyclic shift sequence and an orthogonal sequence determined according to a sequence determination rule, and the reference signal And a plurality of clusters including a first cluster and a second cluster, and the sequence determination rule includes a first orthogonal sequence used at each antenna port in the first cluster, and , Including a plurality of pattern candidates of a sequence composed of a second orthogonal sequence used at each antenna port in the second cluster, Among the pattern candidates, in some pattern candidates, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other. A configuration is employed in which one orthogonal sequence and the second orthogonal sequence are the same.
 本発明の一態様に係る信号生成方法は、少なくとも1つのアンテナポートから送信される、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列のいずれか1つと、互いに直交する複数の直交系列のいずれか1つとに基づいて参照信号を生成する信号生成方法であって、系列決定ルールに従って、第1のクラスタ及び第2のクラスタを含む複数のクラスタのそれぞれに配置される前記参照信号に用いる巡回シフト系列及び直交系列を決定し、前記系列決定ルールは、前記第1のクラスタにおいて各アンテナポートで使用される第1直交系列と、前記第2のクラスタにおいて各アンテナポートで使用される第2直交系列とから成る系列の複数のパターン候補を含み、前記複数のパターン候補のうち、一部のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のパターン候補以外のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一であるようにした。 A signal generation method according to an aspect of the present invention includes a plurality of orthogonal shift sequences that are transmitted from at least one antenna port and that can be separated from each other by different cyclic shift amounts, and a plurality of orthogonal sequences that are orthogonal to each other. A signal generation method for generating a reference signal based on any one of the above, and used for the reference signal arranged in each of a plurality of clusters including a first cluster and a second cluster according to a sequence determination rule A cyclic shift sequence and an orthogonal sequence are determined, and the sequence determination rule includes a first orthogonal sequence used at each antenna port in the first cluster and a second orthogonal sequence used at each antenna port in the second cluster. A plurality of pattern candidates of a sequence consisting of orthogonal sequences, and some pattern candidates among the plurality of pattern candidates The first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and the pattern candidates other than the partial pattern candidates include the first orthogonal sequence and the second orthogonal sequence for the same antenna port. To be identical.
 本発明の一態様に係る品質推定方法は、少なくとも1つのアンテナポートで受信される、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列のいずれか1つと、互いに直交する複数の直交系列のいずれか1つとに基づいて生成された参照信号を用いてチャネル品質を推定する品質推定方法であって、系列決定ルールに従って決定された巡回シフト系列及び直交系列と、受信された前記参照信号とを用いて、チャネル品質を推定し、前記複数のクラスタは、第1のクラスタ及び第2のクラスタを含み、前記系列決定ルールは、前記第1のクラスタにおいて各アンテナポートで使用される第1直交系列と、前記第2のクラスタにおいて各アンテナポートで使用される第2直交系列とから成る系列の複数のパターン候補を含み、前記複数のパターン候補のうち、一部のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のパターン候補以外のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一であるようにした。 A quality estimation method according to an aspect of the present invention includes a plurality of orthogonal shift sequences orthogonal to each other and any one of a plurality of cyclic shift sequences that are received by at least one antenna port and can be separated from each other by different cyclic shift amounts. A quality estimation method for estimating channel quality using a reference signal generated based on any one of the above, a cyclic shift sequence and an orthogonal sequence determined according to a sequence determination rule, and the received reference signal And the plurality of clusters include a first cluster and a second cluster, and the sequence determination rule is a first orthogonality used at each antenna port in the first cluster. Including a plurality of pattern candidates of a sequence consisting of a sequence and a second orthogonal sequence used at each antenna port in the second cluster. Among the plurality of pattern candidates, in some pattern candidates, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and in the pattern candidates other than the some pattern candidates, the same antenna is used. The first orthogonal sequence and the second orthogonal sequence for a port are the same.
 本発明によれば、シグナリングビット数を増加させることなく、基地局が、端末で用いるOCC系列をクラスタ毎に設定することができる。 According to the present invention, the base station can set the OCC sequence used by the terminal for each cluster without increasing the number of signaling bits.
連続帯域割当及び非連続帯域割当の様子を示す図The figure which shows the mode of continuous band allocation and non-continuous band allocation 巡回シフト系列の一例を示す図The figure which shows an example of a cyclic shift series OCC系列の一例を示す図The figure which shows an example of the OCC series 巡回シフト量情報と巡回シフト量とOCC系列との対応関係を示す図The figure which shows the correspondence of cyclic shift amount information, cyclic shift amount, and OCC series MU-MIMOを適用する端末間のクラスタで非直交となる帯域が発生する様子を示す図The figure which shows a mode that the band which becomes non-orthogonal generate | occur | produces in the cluster between the terminals which apply MU-MIMO. シグナリングビットを用いてクラスタ毎にOCC系列を通知する様子を示す図The figure which shows a mode that an OCC series is notified for every cluster using a signaling bit. 本発明の一実施の形態に係る基地局の主要構成を示すブロック図The block diagram which shows the main structures of the base station which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末の主要構成を示すブロック図The block diagram which shows the main structures of the terminal which concerns on one embodiment of this invention 本発明の一実施の形態に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on one embodiment of this invention 本発明の一実施の形態に係る巡回シフト量情報と巡回シフト量とOCC系列との対応関係を示す図(設定例1)The figure which shows the corresponding relationship of cyclic shift amount information, cyclic shift amount, and an OCC series which concerns on one embodiment of this invention (setting example 1) 本発明の一実施の形態に係るクラスタ毎にOCC系列を設定する様子を示す図The figure which shows a mode that an OCC series is set for every cluster which concerns on one embodiment of this invention. 本発明の一実施の形態に係る巡回シフト量情報と巡回シフト量とOCC系列との対応関係を示す図(設定例2)The figure which shows the correspondence of the cyclic shift amount information which concerns on one embodiment of this invention, a cyclic shift amount, and an OCC series (setting example 2) 本発明の一実施の形態に係る巡回シフト量情報と巡回シフト量とOCC系列との対応関係を示す図(設定例3)The figure which shows the correspondence of the cyclic shift amount information which concerns on one embodiment of this invention, a cyclic shift amount, and an OCC series (setting example 3) 本発明の一実施の形態に係る巡回シフト量情報と巡回シフト量とOCC系列との対応関係を示す図(設定例4)The figure which shows the correspondence of the cyclic shift amount information which concerns on one embodiment of this invention, a cyclic shift amount, and an OCC series (setting example 4) 本発明の一実施の形態の設定例4に係る課題を示す図The figure which shows the subject which concerns on the example 4 of a setting of one embodiment of this invention 本発明のその他の基地局の構成を示すブロック図The block diagram which shows the structure of the other base station of this invention 本発明のその他の端末の構成を示すブロック図The block diagram which shows the structure of the other terminal of this invention 本発明のその他のクラスタ毎にOCC系列を設定する様子を示す図The figure which shows a mode that an OCC series is set for every other cluster of this invention. 本発明のその他のクラスタ毎にOCC系列を設定する様子を示す図The figure which shows a mode that an OCC series is set for every other cluster of this invention.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。ただし、実施の形態において、同一機能を有する構成には、同一符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, in the embodiment, components having the same function are denoted by the same reference numerals, and redundant description is omitted.
 なお、以下の説明では、一例として、本発明の各実施の形態に係る送信装置を端末装置とし、受信装置を基地局装置とする。 In the following description, as an example, the transmission device according to each embodiment of the present invention is a terminal device, and the reception device is a base station device.
 (実施の形態1)
 図7は、本実施の形態に係る基地局100の主要構成部を示す。図7に示す基地局100は、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列(CS系列)のいずれか1つと、互いに直交する複数の直交系列(OCC系列)のいずれか1つとに基づいて生成された参照信号(DM-RS)を用いてチャネル品質を推定する。図7に示す基地局100において、受信部105は、複数のクラスタのそれぞれに配置させて端末装置から送信される、DM-RSを含む信号を受信する。推定部112は、使用系列特定テーブル(系列決定ルール)に従って決定される巡回シフト系列及びOCC系列と、受信されたDM-RSとを用いて、チャネル品質を推定する。
(Embodiment 1)
FIG. 7 shows the main components of base station 100 according to the present embodiment. The base station 100 shown in FIG. 7 includes any one of a plurality of cyclic shift sequences (CS sequences) separable from each other by different cyclic shift amounts, and any one of a plurality of orthogonal sequences (OCC sequences) orthogonal to each other. The channel quality is estimated using the reference signal (DM-RS) generated based on the above. In base station 100 shown in FIG. 7, receiving section 105 receives a signal including DM-RS, which is arranged in each of a plurality of clusters and transmitted from a terminal apparatus. The estimation unit 112 estimates the channel quality using the cyclic shift sequence and OCC sequence determined according to the used sequence specification table (sequence determination rule) and the received DM-RS.
 図8は、本実施の形態に係る端末200の主要構成部を示す。図8に示す端末200は、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列のいずれか1つと、互いに直交する複数の直交系列(OCC系列)のいずれか1つとに基づいて生成されるDM-RSを、少なくとも1つのアンテナポートから送信する。図8に示す端末200において、生成部213は、使用系列特定テーブル(系列決定ルール)に従って決定された巡回シフト系列及び直交系列を用いて、DM-RSを生成する。送信部212は、複数のクラスタのそれぞれに配置させた、DM-RSを含む送信信号を送信する。 FIG. 8 shows main components of terminal 200 according to the present embodiment. Terminal 200 shown in FIG. 8 is generated based on any one of a plurality of cyclic shift sequences that can be separated from each other by different cyclic shift amounts and any one of a plurality of orthogonal sequences (OCC sequences) orthogonal to each other. DM-RS to be transmitted from at least one antenna port. In terminal 200 shown in FIG. 8, generating section 213 generates a DM-RS using a cyclic shift sequence and an orthogonal sequence determined according to a used sequence identification table (sequence determination rule). The transmission unit 212 transmits a transmission signal including DM-RS arranged in each of the plurality of clusters.
 ただし、上記複数のクラスタは、2つのクラスタ(クラスタ#1及びクラスタ#2)を含み、使用系列特定テーブル(系列決定ルール)は、クラスタ#1において各アンテナポートで使用される第1直交系列と、クラスタ#2において各アンテナポートで使用される第2直交系列とから成る系列のパターン候補を複数含み、複数のパターン候補のうち、一部のパターン候補では、同一アンテナポートに対する第1直交系列と第2直交系列とが互いに異なり、一部のパターン候補以外のパターン候補では、同一アンテナポートに対する第1直交系列と第2直交系列とが同一である。 However, the plurality of clusters include two clusters (cluster # 1 and cluster # 2), and the use sequence identification table (sequence determination rule) includes the first orthogonal sequence used in each antenna port in cluster # 1. , Including a plurality of pattern candidates of a sequence composed of the second orthogonal sequence used in each antenna port in cluster # 2, and some of the pattern candidates include a first orthogonal sequence for the same antenna port, The second orthogonal sequence is different from each other, and in the pattern candidates other than some pattern candidates, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are the same.
 [基地局100の構成]
 図9は、本実施の形態に係る基地局100の構成を示すブロック図である。
[Configuration of Base Station 100]
FIG. 9 is a block diagram showing a configuration of base station 100 according to the present embodiment.
 図9に示す基地局100において、制御情報符号化部101には、各端末200に対する周波数リソース割当情報、MCS(Modulation Coding Scheme)、送信電力、及び、各アンテナポートの送信ウェイトを制御するためのウェイト制御情報等を含む制御情報が、スケジューリング部113から入力される。また、制御情報符号化部101には、各端末200が送信すべきDM-RSを構成する巡回シフト量情報等を含む制御情報がDM-RS情報決定部114から入力される。制御情報符号化部101は、これらの制御情報を符号化し、符号化後の制御情報を変調部102に出力する。 In base station 100 shown in FIG. 9, control information encoding section 101 controls frequency resource allocation information for each terminal 200, MCS (ModulationModCoding Scheme), transmission power, and transmission weight for each antenna port. Control information including weight control information and the like is input from the scheduling unit 113. In addition, control information including cyclic shift amount information constituting a DM-RS to be transmitted by each terminal 200 is input from the DM-RS information determination unit 114 to the control information encoding unit 101. The control information encoding unit 101 encodes the control information and outputs the encoded control information to the modulation unit 102.
 変調部102は、制御情報符号化部101から入力される制御情報を変調し、変調後の信号を送信部103に出力する。 The modulation unit 102 modulates the control information input from the control information encoding unit 101 and outputs the modulated signal to the transmission unit 103.
 送信部103は、変調部102から入力される信号に対して、D/A(Digital to Analog)変換、アップコンバート、増幅等の送信処理を施し、送信処理を施した信号を1つ以上のアンテナポート104-1、104-2から各端末200へ送信する。 The transmission unit 103 performs transmission processing such as D / A (Digital-to-Analog) conversion, up-conversion, amplification, and the like on the signal input from the modulation unit 102, and transmits the signal subjected to the transmission processing to one or more antennas The data is transmitted from the ports 104-1 and 104-2 to each terminal 200.
 受信部105-1、105-2、及び、受信処理部106-1、106-2は、アンテナポート104-1、104-2に対応して備えられる。 The receiving units 105-1 and 105-2 and the reception processing units 106-1 and 106-2 are provided corresponding to the antenna ports 104-1 and 104-2.
 受信部105-1、105-2は、アンテナポート104-1、104-2を介して受信した各端末200からの信号に対して、ダウンコンバート、A/D(Analog to Digital)変換等の受信処理を施し、受信処理を施した信号を受信処理部106-1、106-2の各分離部107にそれぞれ出力する。 Receiving sections 105-1 and 105-2 receive signals from terminals 200 received via antenna ports 104-1 and 104-2, such as down-conversion and A / D (Analog to Digital) conversion. Processing is performed, and the signal subjected to the reception processing is output to each of the separation units 107 of the reception processing units 106-1 and 106-2.
 受信処理部106-1、106-2は、それぞれ、分離部107、DFT(Discrete Fourier Transform)部108、110、及び、デマッピング部109、111を含む構成を採る。 The reception processing units 106-1 and 106-2 employ a configuration including a separation unit 107, DFT (Discrete Fourier Transform) units 108 and 110, and demapping units 109 and 111, respectively.
 分離部107は、受信部105から入力される信号をDM-RSとデータ信号とに分離する。そして、分離部107は、DM-RSをDFT部108に出力し、データ信号をDFT部110に出力する。 The separating unit 107 separates the signal input from the receiving unit 105 into a DM-RS and a data signal. Separation section 107 then outputs the DM-RS to DFT section 108 and outputs the data signal to DFT section 110.
 DFT部108は、分離部107から入力されるDM-RSに対してDFT処理を施し、時間領域から周波数領域の信号に変換する。そして、DFT部108は、周波数領域に変換したDM-RSをデマッピング部109に出力する。 The DFT unit 108 performs DFT processing on the DM-RS input from the separation unit 107, and converts the signal from the time domain to the frequency domain. Then, the DFT unit 108 outputs the DM-RS converted into the frequency domain to the demapping unit 109.
 デマッピング部109は、DFT部108から入力される周波数領域のDM-RSから、受信処理する端末200(所望端末)の送信帯域に対応した部分のDM-RSを抽出し、抽出したDM-RSを推定部112に出力する。 The demapping unit 109 extracts a part of the DM-RS corresponding to the transmission band of the terminal 200 (desired terminal) to receive from the frequency domain DM-RS input from the DFT unit 108, and extracts the extracted DM-RS. Is output to the estimation unit 112.
 一方、DFT部110は、分離部107から入力されるデータ信号に対してDFT処理を施し、時間領域から周波数領域の信号に変換する。そして、DFT部110は、周波数領域に変換したデータ信号をデマッピング部111に出力する。 On the other hand, the DFT unit 110 performs DFT processing on the data signal input from the separation unit 107, and converts the data signal from the time domain to the frequency domain. Then, the DFT unit 110 outputs the data signal converted into the frequency domain to the demapping unit 111.
 デマッピング部111は、DFT部110から入力される周波数領域のデータ信号から、受信処理する端末200(所望端末)の送信帯域に対応した部分のデータ信号を抽出し、抽出したデータ信号をMIMO分離部115に出力する。 Demapping section 111 extracts a data signal corresponding to the transmission band of terminal 200 (desired terminal) to receive from the frequency domain data signal input from DFT section 110, and MIMO-separates the extracted data signal Output to the unit 115.
 推定部112は、後述するDM-RS情報決定部114から入力される情報(巡回シフト系列及びOCC系列)と、受信処理部106-1、106-2の各デマッピング部109からそれぞれ入力されるDM-RS(「受信DM-RS」と呼ぶこともある)とを用いて、チャネル品質(チャネルの周波数応答)及び受信品質を推定する。具体的には、推定部112は、DM-RS情報決定部114で決定された巡回シフト系列及びOCC系列に基づいて、所望端末が送信したDM-RSのレプリカ信号を算出する。そして、推定部112は、受信DM-RSと、生成したレプリカ信号との相関演算を行うことで、所望端末のチャネル品質及び受信品質を推定する。そして、推定部112は、データ信号の復調に用いるチャネル品質(チャネルの周波数応答)の推定値をMIMO分離部115に出力し、スケジューリングに用いる受信品質の推定値をスケジューリング部113に出力する。 The estimation unit 112 receives information (cyclic shift sequence and OCC sequence) input from a DM-RS information determination unit 114, which will be described later, and each demapping unit 109 of the reception processing units 106-1 and 106-2. Channel quality (frequency response of the channel) and reception quality are estimated using DM-RS (sometimes referred to as “reception DM-RS”). Specifically, estimation section 112 calculates a DM-RS replica signal transmitted by the desired terminal based on the cyclic shift sequence and OCC sequence determined by DM-RS information determination section 114. Then, the estimation unit 112 estimates the channel quality and reception quality of the desired terminal by performing a correlation operation between the received DM-RS and the generated replica signal. Then, estimation section 112 outputs an estimated value of channel quality (channel frequency response) used for demodulation of the data signal to MIMO demultiplexing section 115 and outputs an estimation value of reception quality used for scheduling to scheduling section 113.
 スケジューリング部113は、推定部112から入力される受信品質の推定値に従って、各端末200が送信する送信信号の送信帯域(周波数リソース)、送信電力、各アンテナポートの送信ウェイトを決定する。そして、スケジューリング部113は、決定した情報を含む制御情報を、制御情報符号化部101に出力する。また、スケジューリング部113は、各端末200の送信アンテナポート数、及び、各端末200の送信帯域を含む情報をDM-RS情報決定部114に出力する。 The scheduling unit 113 determines the transmission band (frequency resource), transmission power, and transmission weight of each antenna port of the transmission signal transmitted by each terminal 200 according to the reception quality estimation value input from the estimation unit 112. Then, scheduling section 113 outputs control information including the determined information to control information encoding section 101. In addition, scheduling section 113 outputs information including the number of transmission antenna ports of each terminal 200 and the transmission band of each terminal 200 to DM-RS information determination section 114.
 DM-RS情報決定部114は、スケジューリング部113から入力される各端末200の送信アンテナポート数及び各端末200の送信帯域に基づいて、各端末200の各アンテナポートで用いるDM-RS用の巡回シフト系列とOCC系列とを決定する。ここで、巡回シフト系列は、互いに異なる巡回シフト量により互いに分離可能な系列である。また、OCC系列は互いに直交する系列である。例えば、DM-RS情報決定部114は、巡回シフト量情報と、各系列番号(巡回シフト系列番号及びOCC系列番号)と、が対応付けられたテーブル(以下、使用系列特定テーブルと呼ぶ)を予め保持する。使用系列特定テーブルは、基地局100と各端末200との間で共有される。そして、DM-RS情報決定部114は、各端末200に設定されたアンテナポート数及び送信帯域(例えば、クラスタ数)を用いて、使用系列特定テーブルを参照して、各端末200の各アンテナポートで用いるDM-RS用の巡回シフト系列及びOCC系列を選択する。つまり、DM-RS情報決定部114は、端末200に設定された複数のクラスタのそれぞれに配置されるDM-RSに用いられる、巡回シフト系列及びOCC系列を決定する。ここで、DM-RS情報決定部114は、送信帯域が重なる端末200間(つまり、MU-MIMOを適用する端末200間)では、DM-RSの系列間干渉を低減するために、巡回シフト系列番号又はOCC系列番号を互いに異ならせる必要がある。DM-RS情報決定部114は、各端末200が用いる巡回シフト系列番号とOCC系列番号とに対応付けられた巡回シフト量情報を制御情報符号化部101に出力する。 DM-RS information determination section 114 circulates for DM-RS used in each antenna port of each terminal 200 based on the number of transmission antenna ports of each terminal 200 and the transmission band of each terminal 200 input from scheduling section 113. A shift sequence and an OCC sequence are determined. Here, the cyclic shift sequences are sequences that can be separated from each other by different cyclic shift amounts. The OCC sequences are sequences orthogonal to each other. For example, the DM-RS information determination unit 114 previously stores a table (hereinafter referred to as a used sequence identification table) in which cyclic shift amount information is associated with each sequence number (cyclic shift sequence number and OCC sequence number). Hold. The use sequence identification table is shared between the base station 100 and each terminal 200. Then, the DM-RS information determination unit 114 refers to the use sequence identification table using the number of antenna ports and the transmission band (for example, the number of clusters) set for each terminal 200, and sets each antenna port of each terminal 200. The cyclic shift sequence and OCC sequence for DM-RS used in the above are selected. That is, DM-RS information determination section 114 determines cyclic shift sequences and OCC sequences used for DM-RSs arranged in each of a plurality of clusters set in terminal 200. Here, DM-RS information determining section 114 performs cyclic shift sequence between terminals 200 with overlapping transmission bands (that is, between terminals 200 to which MU-MIMO is applied) in order to reduce inter-sequence interference of DM-RS. The numbers or OCC sequence numbers need to be different from each other. DM-RS information determination section 114 outputs cyclic shift amount information associated with the cyclic shift sequence number and OCC sequence number used by each terminal 200 to control information encoding section 101.
 すなわち、端末200が各アンテナポートで送信すべきDM-RSを構成する巡回シフト系列番号及びOCC系列番号は、基地局100と端末200との間で共有される使用系列特定テーブルと、基地局100から端末200へ通知される巡回シフト量情報とによって間接的に通知される。なお、使用系列特定テーブルの詳細については後述する。 That is, the cyclic shift sequence number and the OCC sequence number constituting the DM-RS to be transmitted from each antenna port by terminal 200 are used sequence base table shared between base station 100 and terminal 200, base station 100 Is indirectly notified by the cyclic shift amount information notified from the terminal 200 to the terminal 200. Details of the use sequence identification table will be described later.
 MIMO分離部115は、推定部112から入力されるチャネルの周波数応答の推定値を用いて、受信処理部106-1、106-2の各デマッピング部111からそれぞれ入力されるデータ信号を周波数領域等化し、所定のウェイトを乗算する。これにより、データ信号が各ストリームのデータ信号(各アンテナポートから送信される送信信号)に分離される。そして、MIMO分離部115は、分離後の各ストリームのデータ信号をデータ処理部116-1、116-2の各IFFT(Inverse Fast Fourier Transform)部117に出力する。 MIMO separation section 115 uses the estimated frequency response value of the channel input from estimation section 112 to convert the data signals input from demapping sections 111 of reception processing sections 106-1 and 106-2, respectively, into the frequency domain. Equalize and multiply by a predetermined weight. As a result, the data signal is separated into data signals (transmission signals transmitted from the respective antenna ports) of each stream. Then, MIMO separation section 115 outputs the data signal of each separated stream to each IFFT (Inverse Fast Fourier Transform) section 117 of data processing sections 116-1 and 116-2.
 データ処理部116-1、116-2は、端末200から送信されるストリーム数に対応して備えられ、それぞれ、IFFT部117、復調部118、復号部119を含む構成を採る。 The data processing units 116-1 and 116-2 are provided corresponding to the number of streams transmitted from the terminal 200, and have a configuration including an IFFT unit 117, a demodulation unit 118, and a decoding unit 119, respectively.
 IFFT部117は、MIMO分離部115から入力されるデータ信号に対してIFFT処理を施し、IFFT処理後のデータ信号を復調部118に出力する。 The IFFT unit 117 performs IFFT processing on the data signal input from the MIMO separation unit 115 and outputs the data signal after IFFT processing to the demodulation unit 118.
 復調部118は、IFFT部117から入力されるデータ信号に対して復調処理を施し、復調後のデータ信号を復号部119に出力する。 Demodulation section 118 performs demodulation processing on the data signal input from IFFT section 117 and outputs the demodulated data signal to decoding section 119.
 復号部119は、復調部118から入力されるデータ信号に対して復号処理を施し、端末200からの受信データとして出力する。 Decoding section 119 performs a decoding process on the data signal input from demodulation section 118 and outputs the data signal as received data from terminal 200.
 [端末200の構成]
 図10は、本実施の形態に係る端末200の構成を示すブロック図である。
[Configuration of terminal 200]
FIG. 10 is a block diagram showing a configuration of terminal 200 according to the present embodiment.
 図10に示す端末200において、受信部202は、少なくとも1つのアンテナポート201-1、201-2を介して受信した基地局100(図9)からの信号にダウンコンバート、A/D変換等の受信処理を施し、受信処理を施した信号を復調部203に出力する。なお、受信信号には、端末200に対する周波数リソース割当情報、送信データのMCS、送信電力、各アンテナポートのウェイト制御情報、及び、巡回シフト量情報を含む制御情報が含まれる。 In terminal 200 shown in FIG. 10, receiving section 202 performs down-conversion, A / D conversion, etc., on the signal from base station 100 (FIG. 9) received via at least one antenna port 201-1 and 201-2. The reception process is performed, and the signal subjected to the reception process is output to the demodulation unit 203. The received signal includes frequency resource allocation information for terminal 200, MCS of transmission data, transmission power, weight control information for each antenna port, and control information including cyclic shift amount information.
 復調部203は、受信部202から入力される受信信号に対して、等化処理及び復調処理を施し、これらの処理を施した受信信号を復号部に出力する。 The demodulation unit 203 performs equalization processing and demodulation processing on the reception signal input from the reception unit 202, and outputs the reception signal subjected to these processing to the decoding unit.
 制御情報復号部204は、復調部203から入力される受信信号に対して復号処理を施し、復号処理後の信号から制御情報を抽出する。制御情報復号部204は、巡回シフト量情報をDM-RS情報決定部205に出力し、送信データのMCSを変調部208に出力し、リソース割当情報をマッピング部209に出力し、各アンテナポートへのウェイト制御情報を送信ウェイト乗算部211に出力する。 The control information decoding unit 204 performs a decoding process on the received signal input from the demodulation unit 203, and extracts control information from the signal after the decoding process. Control information decoding section 204 outputs cyclic shift amount information to DM-RS information determination section 205, outputs MCS of transmission data to modulation section 208, outputs resource allocation information to mapping section 209, and sends it to each antenna port. Is output to the transmission weight multiplier 211.
 DM-RS情報決定部205は、基地局100と端末200と間で共有する使用系列特定テーブルを保持する。DM-RS情報決定部205は、制御情報復号部204から入力される巡回シフト量情報と、使用系列特定テーブルとに従って、端末200が各アンテナポートで送信するDM-RSを生成するための巡回シフト系列番号及びOCC系列番号を決定する。DM-RS情報決定部205は、決定した巡回シフト系列番号及びOCC系列番号をDM-RS生成部206に出力する。 The DM-RS information determination unit 205 holds a use sequence identification table shared between the base station 100 and the terminal 200. DM-RS information determination section 205 performs cyclic shift for generating DM-RS to be transmitted by terminal 200 at each antenna port according to the cyclic shift amount information input from control information decoding section 204 and the use sequence identification table. A sequence number and an OCC sequence number are determined. DM-RS information determination section 205 outputs the determined cyclic shift sequence number and OCC sequence number to DM-RS generation section 206.
 DM-RS生成部206は、DM-RS情報決定部205から入力される、各アンテナポートで用いる巡回シフト系列番号及びOCC系列番号を用いてDM-RSを生成し、DM-RSを多重部210に出力する。具体的には、DM-RS生成部206は、DM-RS情報決定部205により設定された巡回シフト量に応じた巡回シフト系列を、DM-RS情報決定部205により設定されたOCC系列で拡散し、拡散後の信号をDM-RSとして生成する。 DM-RS generating section 206 generates a DM-RS using the cyclic shift sequence number and OCC sequence number used at each antenna port, which are input from DM-RS information determining section 205, and multiplexes DM-RS 210 Output to. Specifically, DM-RS generating section 206 spreads the cyclic shift sequence corresponding to the cyclic shift amount set by DM-RS information determining section 205 with the OCC sequence set by DM-RS information determining section 205. Then, the spread signal is generated as DM-RS.
 なお、図10に示すように、DM-RS情報決定部205およびDM-RS生成部206の構成を合わせて、生成部213を構成するようにしてもよい。すなわち、生成部213は、使用系列特定テーブル(系列決定ルール)に従って、巡回シフト系列とOCC系列とによって構成されるDM-RSを生成する。 Note that, as shown in FIG. 10, the generation unit 213 may be configured by combining the configurations of the DM-RS information determination unit 205 and the DM-RS generation unit 206. That is, the generation unit 213 generates a DM-RS composed of a cyclic shift sequence and an OCC sequence in accordance with a use sequence identification table (sequence determination rule).
 データ処理部207-1、207-2は、アンテナポート201-1、201-2に対応して備えられ、それぞれ、変調部208、マッピング部209、多重部210を含む構成を採る。 The data processing units 207-1 and 207-2 are provided corresponding to the antenna ports 201-1 and 201-2, and have a configuration including a modulation unit 208, a mapping unit 209, and a multiplexing unit 210, respectively.
 変調部208は、制御情報復号部204から入力されるMCSに基づいて、送信データに対して、符号化処理及び変調処理を施し、変調後のデータ信号をマッピング部209に出力する。 The modulation unit 208 performs encoding processing and modulation processing on transmission data based on the MCS input from the control information decoding unit 204, and outputs the modulated data signal to the mapping unit 209.
 マッピング部209は、制御情報復号部204から入力される周波数リソース割当情報に基づいて、変調部208から入力されるデータ信号を所定の周波数リソースであるクラスタにマッピングし、多重部210に出力する。 The mapping unit 209 maps the data signal input from the modulation unit 208 to a cluster that is a predetermined frequency resource based on the frequency resource allocation information input from the control information decoding unit 204 and outputs the data signal to the multiplexing unit 210.
 多重部210は、マッピング部209から入力されるデータ信号とDM-RS生成部206から入力されるDM-RSとを時間多重し、多重信号を送信ウェイト乗算部211に出力する。 The multiplexing unit 210 time-multiplexes the data signal input from the mapping unit 209 and the DM-RS input from the DM-RS generation unit 206, and outputs the multiplexed signal to the transmission weight multiplication unit 211.
 なお、図10に示すように、マッピング部209および多重部210の構成を合わせて、配置部214を構成するようにしてもよい。すなわち、配置部214(送信に使用されるアンテナポートに対応する配置部214)は、周波数リソース割当情報に基づいて、データ信号及びDM-RSを含む送信信号を、周波数リソースである複数のクラスタにそれぞれ配置する。 As shown in FIG. 10, the arrangement unit 214 may be configured by combining the configurations of the mapping unit 209 and the multiplexing unit 210. That is, arrangement section 214 (arrangement section 214 corresponding to the antenna port used for transmission), based on the frequency resource allocation information, distributes transmission signals including data signals and DM-RS to a plurality of clusters that are frequency resources. Place each one.
 送信ウェイト乗算部211は、制御情報復号部204から入力される送信ウェイト情報に基づいて、データ処理部207-1、207-2の各多重部210から入力される各多重信号に送信ウェイトを乗算し、乗算後の多重信号を送信部212-1、212-2にそれぞれ出力する。 Based on transmission weight information input from control information decoding section 204, transmission weight multiplication section 211 multiplies each multiplexed signal input from each multiplexing section 210 of data processing sections 207-1 and 207-2 by a transmission weight. Then, the multiplexed signals after multiplication are output to transmission sections 212-1 and 212-2, respectively.
 送信部212-1、212-2は、アンテナポート201-1、201-2に対応して備えられる。各送信部212は、送信ウェイト乗算部211から入力される多重信号に対してD/A変換、アップコンバート、増幅等の送信処理を施し、送信処理を施した信号をアンテナポート201-1、201-2から基地局100へ送信する。これにより、DM-RSは、少なくとも1つのアンテナポート201-1、201-2から基地局100へ送信される。 The transmission units 212-1 and 212-2 are provided corresponding to the antenna ports 201-1 and 201-2. Each transmission unit 212 performs transmission processing such as D / A conversion, up-conversion, and amplification on the multiplexed signal input from the transmission weight multiplication unit 211, and transmits the signal subjected to the transmission processing to the antenna ports 201-1 and 201. -2 to base station 100. Thereby, the DM-RS is transmitted from at least one antenna port 201-1 and 201-2 to the base station 100.
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200の動作について説明する。
[Operations of base station 100 and terminal 200]
The operations of base station 100 and terminal 200 having the above configuration will be described.
 以下の説明では、LTE-Advancedを想定して、非連続帯域送信時におけるクラスタ数が2個の場合について説明する。 In the following description, assuming that LTE-Advanced is assumed, the case where the number of clusters during discontinuous band transmission is two will be described.
 また、端末200で使用可能なアンテナポート数を最大4個(アンテナポート番号λ=0~3)とし、端末200は、4個のアンテナポートのうち少なくとも1つを用いてDM-RSを基地局100へ送信する。 Also, the maximum number of antenna ports that can be used in terminal 200 is four (antenna port number λ = 0 to 3), and terminal 200 uses at least one of the four antenna ports to transmit DM-RS to the base station. To 100.
 また、以下の説明では、ZC系列長(N)を12とし、巡回シフト量(Δ)=「0,2,3,4,6,8,9,10」の8種類とする。また、OCC系列の系列長を2とし、OCC#1=[1 1]とし、OCC#2=[1 -1]とする。 In the following description, the ZC sequence length (N) is 12 and the cyclic shift amount (Δ) = 8 types of “0, 2, 3, 4, 6, 8, 9, 10”. The OCC sequence length is 2, OCC # 1 = [1 1], and OCC # 2 = [1−1].
 また、基地局100及び端末200は、端末200に対する周波数リソース割当情報が連続帯域送信(クラスタ数:1個)を示す場合、LTEで用いられる使用系列特定テーブル(例えば図4参照)に基づいて、DM-RSとして使用する巡回シフト系列番号とOCC系列番号とを特定する。 In addition, when the frequency resource allocation information for the terminal 200 indicates continuous band transmission (number of clusters: 1), the base station 100 and the terminal 200 are based on a use sequence identification table (for example, see FIG. 4) used in LTE. The cyclic shift sequence number and OCC sequence number used as DM-RS are specified.
 一方、基地局100及び端末200は、端末200に対する周波数リソース割当情報が非連続帯域送信(クラスタ数:2個。例えばクラスタ#1とクラスタ#2)を示す場合、非連続帯域送信時の使用系列特定テーブルに基づいて、クラスタ#1及びクラスタ#2でそれぞれ送信されるDM-RSとして使用する巡回シフト系列番号とOCC系列番号とを特定する。なお、非連続帯域送信時において、各クラスタで送信されるDM-RSとして使用される巡回シフト系列は、クラスタ間で共通(同一)とする。 On the other hand, when the frequency resource allocation information for terminal 200 indicates discontinuous band transmission (number of clusters: 2, for example, cluster # 1 and cluster # 2), base station 100 and terminal 200 use sequences for discontinuous band transmission. Based on the identification table, the cyclic shift sequence number and the OCC sequence number used as DM-RSs transmitted respectively in cluster # 1 and cluster # 2 are identified. Note that the cyclic shift sequence used as the DM-RS transmitted in each cluster during discontinuous band transmission is common (identical) between the clusters.
 また、連続帯域送信時及び非連続帯域送信時のそれぞれで用いる使用系列特定テーブルは、巡回シフト系列(巡回シフト量)と、OCC系列(OCC系列番号)とから成る系列のパターン候補を複数含む(ここでは8種類)。より詳細には、非連続帯域送信時に用いる使用系列特定テーブルは、巡回シフト系列と、クラスタ#1において各アンテナポート(λ=0~3)で使用されるOCC系列と、クラスタ#2において各アンテナポート(λ=0~3)で使用されるOCC系列と、からなる系列のパターン候補を複数含む。巡回シフト量情報とこれらの複数の系列のパターン候補とは1対1で対応付けられる。 In addition, the used sequence identification table used in each of continuous band transmission and non-continuous band transmission includes a plurality of pattern pattern candidates including a cyclic shift sequence (cyclic shift amount) and an OCC sequence (OCC sequence number) ( 8 types here). More specifically, the used sequence identification table used for non-continuous band transmission includes a cyclic shift sequence, an OCC sequence used in each antenna port (λ = 0 to 3) in cluster # 1, and each antenna in cluster # 2. It includes a plurality of pattern candidates for sequences consisting of OCC sequences used at ports (λ = 0 to 3). The cyclic shift amount information and the pattern candidates of the plurality of sequences are associated on a one-to-one basis.
 そして、基地局100は、連続帯域送信時及び非連続帯域送信時の双方において、λ=0のアンテナポートで用いられる巡回シフト量に対応して「0,2,3,4,6,8,9,10」の8種類(3bit)で定義された巡回シフト量情報(Cyclic Shift Field)を端末200へ通知する。 Then, the base station 100 corresponds to “0, 2, 3, 4, 6, 8,” corresponding to the cyclic shift amount used in the antenna port of λ = 0 in both continuous band transmission and non-continuous band transmission. The terminal 200 is notified of cyclic shift amount information (Cyclic Shift Field) defined by 8 types (3 bits) of “9, 10”.
 一方、端末200は、使用系列特定テーブル、及び、基地局100から通知される巡回シフト量情報に従って、巡回シフト系列、及び、クラスタ毎のOCC系列を特定する。このように、端末200が各アンテナポートで送信すべき各クラスタ内のDM-RSを構成する巡回シフト系列番号及びOCC系列番号は、基地局100から通知される巡回シフト量情報によって間接的に通知される。 On the other hand, terminal 200 identifies the cyclic shift sequence and the OCC sequence for each cluster according to the usage sequence identification table and the cyclic shift amount information notified from base station 100. Thus, the cyclic shift sequence number and the OCC sequence number constituting the DM-RS in each cluster to be transmitted from each antenna port by terminal 200 are indirectly notified by the cyclic shift amount information notified from base station 100. Is done.
 本実施の形態では、非連続帯域送信時に使用される使用系列特定テーブルにおいて、クラスタ#1のOCC系列は、連続帯域送信時(図4参照)と同一のOCC系列とする。すなわち、巡回シフト量情報(Cyclic Shift Field)と、各アンテナポート(λ=0~3)で送信されるクラスタ#1のOCC系列との対応関係は、連続帯域送信時(図4参照)と同一となる。 In this embodiment, in the use sequence identification table used at the time of non-continuous band transmission, the OCC sequence of cluster # 1 is the same OCC sequence as at the time of continuous band transmission (see FIG. 4). That is, the correspondence between the cyclic shift amount information (Cyclic Shift Field) and the OCC sequence of cluster # 1 transmitted from each antenna port (λ = 0 to 3) is the same as that during continuous band transmission (see FIG. 4). It becomes.
 これに対して、非連続帯域送信時に使用される使用系列特定テーブルにおいて、クラスタ#2のOCC系列は、クラスタ#1のOCC系列を反転させたOCC系列(つまり、クラスタ#1のOCC系列と異なるOCC系列)が一部含まれる。すなわち、巡回シフト量情報(Cyclic Shift Field)に示される8種類のパターン候補のうち、一部のパターン候補では同一アンテナポートに対する、クラスタ#1のOCC系列とクラスタ#2のOCC系列とは互いに異なる。つまり、当該パターン候補内では、或るアンテナポートでのクラスタ#1のOCC系列がOCC#1の場合にはクラスタ#2のOCC系列はクラスタ#2となり、クラスタ#1のOCC系列がOCC#2の場合にはクラスタ#2のOCC系列はクラスタ#1となる。一方、上記一部のパターン以外の他のパターン候補では同一アンテナポートに対する、クラスタ#1のOCC系列とクラスタ#2のOCC系列とは同一である。 On the other hand, in the use sequence identification table used at the time of non-continuous band transmission, the OCC sequence of cluster # 2 is different from the OCC sequence obtained by inverting the OCC sequence of cluster # 1 (that is, the OCC sequence of cluster # 1). (OCC series) is partially included. That is, among the eight types of pattern candidates indicated in the cyclic shift amount information (Cyclic Shift Field), some of the pattern candidates have different OCC sequences for cluster # 1 and OCC sequences for cluster # 2 for the same antenna port. . That is, within the pattern candidate, when the OCC sequence of cluster # 1 at a certain antenna port is OCC # 1, the OCC sequence of cluster # 2 is cluster # 2, and the OCC sequence of cluster # 1 is OCC # 2. In this case, the OCC sequence of cluster # 2 is cluster # 1. On the other hand, the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 are the same for the same antenna port in other pattern candidates other than the part of the patterns described above.
 以下、非連続帯域送信時における使用系列特定テーブルの設定例1~4について説明する。 Hereinafter, setting examples 1 to 4 of the use sequence identification table at the time of non-continuous band transmission will be described.
 なお、上述したように、各設定例における非連続帯域送信時の使用系列特定テーブル(後述する図11、図13、図14、図15)において、「Cyclic Shift Field」は巡回シフト情報(3bit)を示し、「CS value」はアンテナポート番号λで用いる巡回シフト量を示し、「OCC (Cluster #1)」はアンテナポート番号λのクラスタ#1で用いるOCC系列を示し、「OCC (Cluster #2)」はアンテナポート番号λのクラスタ#2で用いるOCC系列を示す。 Note that, as described above, in the use sequence identification table (FIGS. 11, 13, 14, and 15 described later) in the discontinuous band transmission in each setting example, “Cyclic Shift Field” is cyclic shift information (3 bits). “CS value” indicates the cyclic shift amount used for the antenna port number λ, “OCC (Cluster # 1)” indicates the OCC sequence used for the cluster # 1 of the antenna port number λ, and “OCC (Cluster # 2) ")" Indicates an OCC sequence used in cluster # 2 of antenna port number λ.
 また、各設定例における非連続帯域送信時の使用系列特定テーブル(後述する図11、図13、図14、図15)において、「Cyclic Shift Field」と「CS value」と「OCC (Cluster #1)」との対応関係は、図4に示す「Cyclic Shift Field」と「CS value」と「OCC (Cluster #1)」との対応関係(連続帯域送信時の使用系列特定テーブル)と同一である。 In addition, in the use sequence specification table (FIGS. 11, 13, 14, and 15 described later) at the time of non-continuous band transmission in each setting example, “CycliccShift Field”, “CS value”, “OCC (Cluster # 1 ) ”Is the same as the correspondence relationship (Cyclic Shift Field”, “CS value”, and “OCC (Cluster # 1)” shown in FIG. 4 (used sequence identification table during continuous band transmission). .
 <設定例1(図11)>
 図11は、設定例1における非連続帯域送信時の使用系列特定テーブル(系列決定ルール)の一例を示す。
<Setting example 1 (FIG. 11)>
FIG. 11 shows an example of a use sequence identification table (sequence determination rule) at the time of discontinuous band transmission in setting example 1.
 図11に示す8種類の巡回シフト量情報(つまり、8種類のパターン候補)のうち、一部の巡回シフト量情報では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは互いに異なり、他の巡回シフト量情報では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは同一となる。 Among the eight types of cyclic shift amount information shown in FIG. 11 (that is, eight types of pattern candidates), in some cyclic shift amount information, the OCC sequence and cluster # 2 used in cluster # 1 for the same antenna port are used. The OCC sequences used are different from each other, and in other cyclic shift amount information, the OCC sequences used in cluster # 1 and the OCC sequences used in cluster # 2 for the same antenna port are the same.
 例えば、図11に示す巡回シフト情報=‘000’では、クラスタ#1で使用されるOCC系列は、λ=0~3の順に、[OCC#1,OCC#1,OCC#2,OCC#2]となり、クラスタ#2で使用されるOCC系列は、λ=0~3の順に、[OCC#1,OCC#1,OCC#2,OCC#2]となる。すなわち、巡回シフト情報=‘000’では、クラスタ#1とクラスタ#2との間において各アンテナポートで使用されるOCC系列のパターンは同一である。図11に示す巡回シフト情報=‘001’でも同様である。 For example, in the cyclic shift information = '000' shown in FIG. 11, the OCC sequences used in cluster # 1 are [OCC # 1, OCC # 1, OCC # 2, OCC # 2 in the order of λ = 0-3. The OCC sequences used in cluster # 2 are [OCC # 1, OCC # 1, OCC # 2, OCC # 2] in the order of λ = 0 to 3. That is, in cyclic shift information = '000', the OCC sequence pattern used in each antenna port is the same between cluster # 1 and cluster # 2. The same applies to cyclic shift information = “001” shown in FIG.
 これに対して、例えば、図11に示す巡回シフト情報=‘010’では、クラスタ#1で使用されるOCC系列は、λ=0~3の順に、[OCC#2,OCC#2,OCC#1,OCC#1]となり、クラスタ#2で使用されるOCC系列は、λ=0~3の順に、[OCC#1,OCC#1,OCC#2,OCC#2]となる。すなわち、巡回シフト情報=‘010’では、クラスタ#1とクラスタ#2との間において各アンテナポートで使用されるOCC系列のパターンは反転する。図11に示す巡回シフト情報=‘011’~‘111’でも同様である。 On the other hand, for example, in the cyclic shift information = '010' shown in FIG. 11, the OCC sequences used in the cluster # 1 are [OCC # 2, OCC # 2, OCC #] in order of λ = 0-3. 1, OCC # 1], and the OCC sequences used in cluster # 2 are [OCC # 1, OCC # 1, OCC # 2, OCC # 2] in the order of λ = 0 to 3. That is, when cyclic shift information = '010', the OCC sequence pattern used in each antenna port is inverted between cluster # 1 and cluster # 2. The same applies to cyclic shift information = “011” to “111” shown in FIG.
 これにより、図11に示す使用系列特定テーブルでは、各アンテナポートにおける、クラスタ#1のOCC系列とクラスタ#2のOCC系列との組み合わせは、[OCC#1,OCC#1]、[OCC#1,OCC#2]、[OCC#2,OCC#1]、[OCC#2,OCC#2]を含む。つまり、図11に示す使用系列特定テーブルでは、OCC#1及びOCC#2を用いて採り得る全ての組み合わせ(4パターンの組み合わせ)を含む。 Accordingly, in the use sequence identification table shown in FIG. 11, the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 at each antenna port is [OCC # 1, OCC # 1], [OCC # 1]. , OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2]. That is, the use sequence identification table shown in FIG. 11 includes all combinations (combinations of four patterns) that can be taken using OCC # 1 and OCC # 2.
 従来技術と設定例1とを比較すると、上述したように、従来技術では、非連続帯域送信時には、クラスタ#1とクラスタ#2とで同一のOCC系列が用いられる。よって、クラスタ#1のOCC系列とクラスタ#2のOCC系列との組み合わせは、[OCC#1,OCC#1]、[OCC#2,OCC#2]の2パターンの組み合わせを含む。これに対して、設定例1(図11)では、従来技術と同数のシグナリングビット数(3bit)を維持しつつ、1つの端末200で各クラスタに設定可能なOCC系列のパターンを増やすことができる。 When comparing the prior art with the setting example 1, as described above, in the prior art, the same OCC sequence is used in the cluster # 1 and the cluster # 2 in the discontinuous band transmission. Therefore, the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 includes a combination of two patterns [OCC # 1, OCC # 1] and [OCC # 2, OCC # 2]. On the other hand, in setting example 1 (FIG. 11), the number of OCC sequences that can be set in each cluster by one terminal 200 can be increased while maintaining the same number of signaling bits (3 bits) as in the prior art. .
 例えば、従来技術(図5及び図6)と、設定例1(図12)とを比較する。図12に示すように、基地局100は、各端末1~3(端末200)に対して、従来と同様、巡回シフト量情報(3bit)を通知する。各端末1~3は、基地局100から通知された巡回シフト量情報及び図11に示す使用系列特定テーブルに従って、クラスタ#1及びクラスタ#2のOCC系列を特定する。これにより、図12では、図6と同様に、基地局100は、各端末1~3に対して、クラスタ毎にOCC系列を設定することができる。また、図12では、OCC系列を通知するためのシグナリングビット数は、図5と同様、3ビットである。よって、設定例1では、図5と同様のシグナリング量を用いて、図6と同様にしてMU-MIMOを行うことが可能となる。 For example, the prior art (FIGS. 5 and 6) and the setting example 1 (FIG. 12) are compared. As shown in FIG. 12, base station 100 notifies cyclic shift amount information (3 bits) to terminals 1 to 3 (terminal 200) as in the conventional case. Each of the terminals 1 to 3 specifies the OCC sequences of the cluster # 1 and the cluster # 2 according to the cyclic shift amount information notified from the base station 100 and the use sequence specifying table shown in FIG. Accordingly, in FIG. 12, as in FIG. 6, the base station 100 can set an OCC sequence for each cluster for each of the terminals 1 to 3. In FIG. 12, the number of signaling bits for notifying the OCC sequence is 3 bits as in FIG. Therefore, in setting example 1, it is possible to perform MU-MIMO in the same manner as in FIG. 6 using the same signaling amount as in FIG.
 このように、設定例1では、基地局100は、図11に示す使用系列特定テーブルを用いることで、従来技術に対して新たにシグナリングビットを追加することなく、MU-MIMOにおける周波数スケジューリングの自由度を向上させることができる。つまり、MU-MIMOによるスケジューリングゲインが得られるので、システムスループット性能を改善できる。 In this way, in setting example 1, base station 100 uses the use sequence identification table shown in FIG. 11, thereby freeing frequency scheduling in MU-MIMO without adding a new signaling bit to the prior art. The degree can be improved. In other words, since a scheduling gain by MU-MIMO can be obtained, system throughput performance can be improved.
 ここで、図11に示す巡回シフト情報=‘010’~‘100’に着目する。図11に示すように、例えば、アンテナポート番号λ=0では、巡回シフト情報=‘010’に対応する巡回シフト量は3であり、‘011’に対応する巡回シフト量は4であり、‘100’に対応する巡回シフト量は2である。すなわち、巡回シフト情報=‘010’~‘100’に対応する巡回シフト量は、隣接する値(2,3,4)となる。 Here, pay attention to cyclic shift information = '010' to '100' shown in FIG. As shown in FIG. 11, for example, in antenna port number λ = 0, the cyclic shift amount corresponding to cyclic shift information = “010” is 3, the cyclic shift amount corresponding to “011” is 4, The cyclic shift amount corresponding to 100 ′ is two. That is, the cyclic shift amount corresponding to cyclic shift information = “010” to “100” is an adjacent value (2, 3, 4).
 巡回シフト系列において、巡回シフト量の間隔が離れているほど、直交性が高くなることが知られている。例えば、系列長12のZC系列を用いる場合、巡回シフト量(Δ)が6サンプルだけ離れた巡回シフト系列同士(例えば、Δ=0と6、Δ=2と8等)は、系列間干渉が小さい。一方、巡回シフト量(Δ)が隣接する巡回シフト系列同士(例えば、Δ=2と3、Δ=9と10等)は、系列間干渉が大きい。そのため、連続帯域送信時の使用系列特定テーブル(図4)では、アンテナポート番号λ=0,1において、隣接する巡回シフト系列同士には異なるOCC系列を割り当てることで系列間干渉の低減を図っている。 In a cyclic shift sequence, it is known that the orthogonality increases as the interval of the cyclic shift amount increases. For example, when using a ZC sequence having a sequence length of 12, the cyclic shift amounts (Δ) separated by 6 samples (for example, Δ = 0 and 6, Δ = 2 and 8, etc.) have inter-sequence interference. small. On the other hand, the cyclic shift sequences having adjacent cyclic shift amounts (Δ) (for example, Δ = 2 and 3, Δ = 9 and 10, etc.) have large inter-sequence interference. Therefore, in the use sequence identification table (FIG. 4) at the time of continuous band transmission, inter-sequence interference is reduced by assigning different OCC sequences to adjacent cyclic shift sequences at the antenna port number λ = 0, 1. Yes.
 これに対して、図11では、隣接する巡回シフト量を有する巡回シフト量情報(巡回シフト系列での系列間干渉が大きいパターン候補同士)におけるOCC系列は、クラスタ#1とクラスタ#2とで異なる。これにより、非連続帯域送信時においても、アンテナポート番号λ=0,1において、クラスタ#1とクラスタ#2ともに隣接する巡回シフト量を用いる端末200間には異なるOCC系列が割り当てられるため系列間干渉を抑えることができる。さらに、アンテナポート番号λ=0,1において、OCC#1及びOCC#2を用いて採り得る全ての組み合わせ(4パターンの組み合わせ)を含めることで、MU-MIMOにおける周波数スケジューリングの自由度を向上させることができる。 On the other hand, in FIG. 11, the OCC sequences in the cyclic shift amount information having adjacent cyclic shift amounts (pattern candidates having large inter-sequence interference in the cyclic shift sequences) are different between cluster # 1 and cluster # 2. . As a result, even during non-consecutive band transmission, different OCC sequences are allocated between terminals 200 using cyclic shift amounts adjacent to both cluster # 1 and cluster # 2 at the antenna port number λ = 0, 1, and therefore between sequences. Interference can be suppressed. Furthermore, by including all combinations (combinations of 4 patterns) that can be taken using OCC # 1 and OCC # 2 at antenna port numbers λ = 0, 1, the degree of freedom of frequency scheduling in MU-MIMO is improved. be able to.
 なお、図11に示す巡回シフト情報=‘011’~‘111’についても、巡回シフト情報=‘010’~‘100’と同様のことが言える。 Note that the same applies to cyclic shift information = “010” to “100” for cyclic shift information = “011” to “111” shown in FIG.
 <設定例2(図13)>
 図13は、設定例2における非連続帯域送信時の使用系列特定テーブル(系列決定ルール)の一例を示す。
<Setting example 2 (FIG. 13)>
FIG. 13 shows an example of a used sequence identification table (sequence determination rule) at the time of discontinuous band transmission in setting example 2.
 図13に示す使用系列特定テーブルでは、設定例1(図11)と同様、8種類の巡回シフト量情報(つまり、8種類のパターン候補)のうち、一部の巡回シフト量情報では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは互いに異なり、他の巡回シフト量情報では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは同一となる。 In the use sequence identification table shown in FIG. 13, as in setting example 1 (FIG. 11), among the 8 types of cyclic shift amount information (that is, 8 types of pattern candidates), some of the cyclic shift amount information uses the same antenna. The OCC sequence used in cluster # 1 for the port and the OCC sequence used in cluster # 2 are different from each other, and in other cyclic shift amount information, the OCC sequence and cluster # used in cluster # 1 for the same antenna port are used. The OCC sequence used in 2 is the same.
 これにより、図13に示す使用系列特定テーブルでは、設定例1(図11)と同様、各アンテナポートにおける、クラスタ#1のOCC系列とクラスタ#2のOCC系列との組み合わせは、[OCC#1,OCC#1]、[OCC#1,OCC#2]、[OCC#2,OCC#1]、[OCC#2,OCC#2]を含む。つまり、図13に示す使用系列特定テーブルでは、OCC#1及びOCC#2を用いて採り得る全ての組み合わせ(4パターンの組み合わせ)を含む。 As a result, in the use sequence identification table shown in FIG. 13, the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 at each antenna port is [OCC # 1] as in setting example 1 (FIG. 11). , OCC # 1], [OCC # 1, OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2]. That is, the use sequence identification table shown in FIG. 13 includes all combinations (combinations of four patterns) that can be taken using OCC # 1 and OCC # 2.
 よって、図13に示す使用系列特定テーブルを用いることで、基地局100は、従来技術に対して新たにシグナリングビットを追加することなく、MU-MIMOにおける周波数スケジューリングの自由度を向上させることができる。つまり、MU-MIMOによるスケジューリングゲインが得られるので、システムスループット性能を改善できる。 Therefore, by using the use sequence identification table shown in FIG. 13, the base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO without adding a signaling bit to the prior art. . In other words, since a scheduling gain by MU-MIMO can be obtained, system throughput performance can be improved.
 ここで、図13に示す巡回シフト情報=‘011’及び‘100’に着目する。図13に示すように、巡回シフト情報=‘011’及び‘100’の双方とも、クラスタ#1のOCC系列(つまり、連続帯域送信時のOCC系列)は、全てのアンテナポートでOCC#1([1 1])となる。 Here, attention is paid to the cyclic shift information = “011” and “100” shown in FIG. As shown in FIG. 13, both the cyclic shift information = “011” and “100” have the OCC sequence of cluster # 1 (that is, the OCC sequence at the time of continuous band transmission) in all antenna ports. [1 1]).
 図13に示す巡回シフト情報=‘011’及び‘100’のうち、‘011’では、クラスタ#2のOCC系列は、クラスタ#1のOCC系列と同一となり、全てのアンテナポートでOCC#1([1 1])となる。これに対して、‘100’では、クラスタ#2のOCC系列は、クラスタ#1のOCC系列と反転して、全てのアンテナポートでOCC#2([1 -1])となる。 Among the cyclic shift information = “011” and “100” shown in FIG. 13, in “011”, the OCC sequence of cluster # 2 is the same as the OCC sequence of cluster # 1, and OCC # 1 ( [1 1]). On the other hand, in '100', the OCC sequence of cluster # 2 is inverted from the OCC sequence of cluster # 1 and becomes OCC # 2 ([1−1]) at all antenna ports.
 図13に示す巡回シフト量情報=‘101’及び‘110’の組み合わせについても同様である。 The same applies to the combination of cyclic shift amount information = “101” and “110” shown in FIG.
 つまり、図13に示す8種類の巡回シフト量情報(パターン候補)において、クラスタ#1で使用されるOCC系列が全てのアンテナポートで同一となり、かつ当該OCC系列の種類が同一である2つの巡回シフト量情報(パターン候補)のうち、一方では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは互いに異なり、他方では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは同一となる。 That is, in the eight types of cyclic shift amount information (pattern candidates) shown in FIG. 13, the OCC sequences used in cluster # 1 are the same in all antenna ports, and the types of the OCC sequences are the same. Among the shift amount information (pattern candidates), on the one hand, the OCC sequence used in cluster # 1 for the same antenna port and the OCC sequence used in cluster # 2 are different from each other, and on the other hand, the cluster # for the same antenna port. The OCC sequence used in 1 and the OCC sequence used in cluster # 2 are the same.
 これにより、図13に示す使用系列特定テーブルでは、全てのアンテナポートで同一のOCC系列が対応付けられた4種類の巡回シフト量情報(‘011’~‘110’)において、OCC#1及びOCC#2を用いて採り得る全ての組み合わせ(4パターンの組み合わせ)が含まれる。 Accordingly, in the use sequence identification table shown in FIG. 13, in the four types of cyclic shift amount information ('011' to '110') in which the same OCC sequence is associated with all antenna ports, OCC # 1 and OCC # 1 All combinations that can be taken using # 2 (4 pattern combinations) are included.
 基地局100は、全てのアンテナポートで同一のOCC系列が対応付けられた巡回シフト量情報=‘011’~‘110’を、アンテナポート数が3個以上に設定された端末200に対して通知する可能性が高い。これは、仮に、アンテナポート数が3個以上に設定された他の端末200に対して、各アンテナポートで異なるOCC系列が対応付けられた巡回シフト量情報が通知されているとする。この場合、或る端末200は、OCC#1又はOCC#2のいずれを用いても当該他の端末200から送信されるクラスタと送信帯域が重複する帯域では、DM-RSを直交化させることができなくなり得るためである。なお、1つの端末200内の異なるアンテナポート間で同一のOCC系列を用いる場合も、OCC系列が直交しない。ただし、1つの端末200内では、全てのアンテナポートから送信される信号の送信帯域は同一に設定される。よって、1つの端末200内では、アンテナポート間で同一OCC系列を用いることでOCC系列によるDM-RSの直交化を実現できなくても、巡回シフト系列によるDM-RSの直交化を実現できる。 The base station 100 notifies the cyclic shift amount information = '011' to '110' in which the same OCC sequence is associated with all antenna ports to the terminal 200 in which the number of antenna ports is set to 3 or more. There is a high possibility of doing. It is assumed that cyclic shift amount information in which different OCC sequences are associated with each antenna port is notified to another terminal 200 in which the number of antenna ports is set to 3 or more. In this case, a certain terminal 200 can orthogonalize DM-RSs in a band where the transmission band overlaps with a cluster transmitted from the other terminal 200 regardless of whether OCC # 1 or OCC # 2 is used. This is because it can be impossible. Even when the same OCC sequence is used between different antenna ports in one terminal 200, the OCC sequences are not orthogonal. However, in one terminal 200, transmission bands of signals transmitted from all antenna ports are set to be the same. Therefore, in one terminal 200, DM-RS orthogonalization using a cyclic shift sequence can be realized even if DM-RS orthogonalization using an OCC sequence cannot be realized by using the same OCC sequence between antenna ports.
 よって、基地局100は、図13に示す使用系列特定テーブルを用いることで、3アンテナポート以上で送信する複数の端末200に対して、クラスタ#1及びクラスタ#2の各OCC系列として、最大である4パターンの組み合わせを設定することができる。つまり、基地局100は、3アンテナポート以上で送信する端末200に対するMU-MIMOにおける周波数スケジューリングの自由度を向上させることができる。 Therefore, the base station 100 uses the use sequence identification table shown in FIG. 13 to provide the maximum number of OCC sequences for cluster # 1 and cluster # 2 for a plurality of terminals 200 transmitting at 3 antenna ports or more. A combination of 4 patterns can be set. That is, base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO for terminal 200 that transmits with three or more antenna ports.
 同様に、基地局100は、2アンテナポート以下で送信する端末200に対しても、4パターンの異なるOCC系列の組み合わせを設定することができる。つまり、基地局100は、2アンテナポート以下で送信する端末200に対するMU-MIMOにおける周波数スケジューリングの自由度を向上させることができる。これにより、システムスループット性能が改善される。 Similarly, the base station 100 can set four different combinations of OCC sequences for the terminal 200 that transmits with two antenna ports or less. That is, base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO for terminal 200 that transmits at two antenna ports or less. This improves system throughput performance.
 <設定例3(図14)>
 図14は、設定例3における非連続帯域送信時の使用系列特定テーブル(系列決定ルール)の一例を示す。
<Setting example 3 (FIG. 14)>
FIG. 14 shows an example of a used sequence identification table (sequence determination rule) at the time of discontinuous band transmission in setting example 3.
 図14に示す使用系列特定テーブルでは、設定例1(図11)と同様、8種類の巡回シフト量情報(つまり、8種類のパターン候補)のうち、一部の巡回シフト量情報では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは互いに異なり、他の巡回シフト量情報では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは同一となる。 In the use sequence identification table shown in FIG. 14, as in setting example 1 (FIG. 11), among the 8 types of cyclic shift amount information (that is, 8 types of pattern candidates), some cyclic shift amount information uses the same antenna. The OCC sequence used in cluster # 1 for the port and the OCC sequence used in cluster # 2 are different from each other, and in other cyclic shift amount information, the OCC sequence and cluster # used in cluster # 1 for the same antenna port are used. The OCC sequence used in 2 is the same.
 これにより、図14に示す使用系列特定テーブルでは、設定例1(図11)と同様、各アンテナポートにおける、クラスタ#1のOCC系列とクラスタ#2のOCC系列との組み合わせは、[OCC#1,OCC#1]、[OCC#1,OCC#2]、[OCC#2,OCC#1]、[OCC#2,OCC#2]を含む。つまり、図14に示す使用系列特定テーブルでは、OCC#1及びOCC#2を用いて採り得る全ての組み合わせ(4パターンの組み合わせ)を含む。 As a result, in the use sequence identification table shown in FIG. 14, the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 at each antenna port is [OCC # 1] as in setting example 1 (FIG. 11). , OCC # 1], [OCC # 1, OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2]. That is, the use sequence identification table shown in FIG. 14 includes all combinations (combinations of four patterns) that can be taken using OCC # 1 and OCC # 2.
 よって、図14に示す使用系列特定テーブルを用いることで、基地局100は、従来技術に対して新たにシグナリングビットを追加することなく、MU-MIMOにおける周波数スケジューリングの自由度を向上させることができる。つまり、MU-MIMOによるスケジューリングゲインが得られるので、システムスループット性能を改善できる。 Therefore, by using the used sequence identification table shown in FIG. 14, the base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO without adding a signaling bit to the prior art. . In other words, since a scheduling gain by MU-MIMO can be obtained, system throughput performance can be improved.
 ここで、図14に示す巡回シフト情報=‘000’及び‘111’に着目する。図14に示すように、巡回シフト情報=‘000’及び‘111’の双方とも、クラスタ#1のOCC系列は、アンテナポート番号λ=0~3の順に、[OCC#1,OCC#1,OCC#2,OCC#2)となる。すなわち、図14に示す巡回シフト情報=‘000’と‘111’とでは、クラスタ#1のOCC系列のパターンは同一である。 Here, pay attention to cyclic shift information = '000' and '111' shown in FIG. As shown in FIG. 14, for both cyclic shift information = '000' and '111', the OCC sequences of cluster # 1 are in the order of antenna port numbers λ = 0 to 3 in the order of [OCC # 1, OCC # 1, OCC # 2, OCC # 2). That is, in the cyclic shift information = “000” and “111” shown in FIG. 14, the OCC sequence pattern of cluster # 1 is the same.
 一方、図14に示す巡回シフト情報=‘000’及び‘111’のうち、‘000’では、クラスタ#2のOCC系列は、クラスタ#1のOCC系列と同一であるのに対し、‘111’では、クラスタ#2のOCC系列は、クラスタ#1のOCC系列と反転している。 On the other hand, among the cyclic shift information = “000” and “111” shown in FIG. 14, in “000”, the OCC sequence of cluster # 2 is the same as the OCC sequence of cluster # 1, whereas “111”. Then, the OCC sequence of cluster # 2 is inverted from the OCC sequence of cluster # 1.
 図14に示す巡回シフト量情報=‘001’と‘010’との組み合わせ、‘011’と‘100’との組み合わせ、及び、‘101’と‘110’との組み合わせについても同様である。 The same applies to the cyclic shift amount information = the combination of “001” and “010”, the combination of “011” and “100”, and the combination of “101” and “110” shown in FIG.
 つまり、図14に示す8種類の巡回シフト量情報(パターン候補)において、クラスタ#1の4つのアンテナポート(λ=0~3)で使用されるOCC系列のパターンが同一となる2つの巡回シフト量情報(パターン候補。例えば‘000’及び‘111’)のうち、一方では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは互いに異なり、他方では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは同一となる。 That is, in the eight types of cyclic shift amount information (pattern candidates) shown in FIG. 14, two cyclic shifts in which the OCC sequence patterns used in the four antenna ports (λ = 0 to 3) of cluster # 1 are the same. Among the quantity information (pattern candidates, eg, “000” and “111”), on the one hand, the OCC sequence used in cluster # 1 and the OCC sequence used in cluster # 2 for the same antenna port are different from each other. Then, the OCC sequence used in cluster # 1 and the OCC sequence used in cluster # 2 for the same antenna port are the same.
 これにより、図14に示す使用系列特定テーブルでは、8種類の巡回シフト量情報(パターン候補)のうち、半分の4種類の巡回シフト量情報には、クラスタ#1とクラスタ#2とで同一OCC系列が対応付けられ、残りの半分の4種類の巡回シフト量情報には、クラスタ#1とクラスタ#2とで異なるOCC系列が対応付けられている。 Accordingly, in the use sequence identification table shown in FIG. 14, the same OCC is used in the cluster # 1 and the cluster # 2 in the four types of cyclic shift amount information among the eight types of cyclic shift amount information (pattern candidates). Sequences are associated with each other, and the remaining half of the four types of cyclic shift amount information are associated with different OCC sequences in cluster # 1 and cluster # 2.
 これにより、基地局100は、図14に示す使用系列特定テーブルを用いることで、例えば、2アンテナポート以下(λ=0,1)で送信する端末200に対して、[OCC#1,OCC#1]、[OCC#1,OCC#2]、[OCC#2,OCC#1]、[OCC#2,OCC#2]の組み合わせをそれぞれ均等に2個ずつ決定することが可能となる。よって、基地局100は、2アンテナポート以下で送信する端末200に対するMU-MIMOにおける周波数スケジューリングの自由度を、設定例2(図13)よりも向上させることができる。これにより、システムスループット性能が改善される。 As a result, the base station 100 uses the usage sequence identification table shown in FIG. 14, for example, [OCC # 1, OCC #] to the terminal 200 that transmits at 2 antenna ports or less (λ = 0, 1). 1], [OCC # 1, OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2] can be determined equally two each. Therefore, base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO for terminal 200 that transmits at two antenna ports or less, compared to setting example 2 (FIG. 13). This improves system throughput performance.
 また、設定例2(図13)と同様、基地局100は、図14に示す使用系列特定テーブルを用いることで、3アンテナポート以上で送信する複数の端末200に対して、4パターンの異なるOCC系列の組み合わせ(巡回シフト量情報=‘011’~‘110’)を設定することができる。つまり、基地局100は、3アンテナポート以上で送信する端末200に対するMU-MIMOにおける周波数スケジューリングの自由度も向上させることができる。 Similarly to setting example 2 (FIG. 13), the base station 100 uses the use sequence identification table shown in FIG. 14 to provide four different OCC patterns for a plurality of terminals 200 transmitting at three antenna ports or more. A combination of sequences (cyclic shift amount information = “011” to “110”) can be set. That is, base station 100 can also improve the degree of freedom of frequency scheduling in MU-MIMO for terminal 200 that transmits with three or more antenna ports.
 <設定例4(図15)>
 図15は、設定例4における非連続帯域送信時の使用系列特定テーブル(系列決定ルール)の一例を示す。
<Setting example 4 (FIG. 15)>
FIG. 15 shows an example of a used sequence identification table (sequence determination rule) at the time of discontinuous band transmission in setting example 4.
 図15に示す使用系列特定テーブルでは、設定例1(図11)と同様、8種類の巡回シフト量情報(つまり、8種類のパターン候補)のうち、一部の巡回シフト量情報では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは互いに異なり、他の巡回シフト量情報では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは同一となる。 In the use sequence identification table shown in FIG. 15, as in setting example 1 (FIG. 11), among the 8 types of cyclic shift amount information (that is, 8 types of pattern candidates), some cyclic shift amount information uses the same antenna. The OCC sequence used in cluster # 1 for the port and the OCC sequence used in cluster # 2 are different from each other, and in other cyclic shift amount information, the OCC sequence and cluster # used in cluster # 1 for the same antenna port are used. The OCC sequence used in 2 is the same.
 これにより、図15に示す使用系列特定テーブルでは、設定例1(図11)と同様、各アンテナポートにおける、クラスタ#1のOCC系列とクラスタ#2のOCC系列との組み合わせは、[OCC#1,OCC#1]、[OCC#1,OCC#2]、[OCC#2,OCC#1]、[OCC#2,OCC#2]を含む。つまり、図15に示す使用系列特定テーブルでは、OCC#1及びOCC#2で採り得る全ての組み合わせ(4パターンの組み合わせ)を含む。 As a result, in the use sequence identification table shown in FIG. 15, the combination of the OCC sequence of cluster # 1 and the OCC sequence of cluster # 2 at each antenna port is [OCC # 1] as in setting example 1 (FIG. 11). , OCC # 1], [OCC # 1, OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2]. That is, the use sequence identification table shown in FIG. 15 includes all combinations (combinations of 4 patterns) that can be taken by OCC # 1 and OCC # 2.
 よって、図15に示す使用系列特定テーブルを用いることで、基地局100は、従来技術に対して新たにシグナリングビットを追加することなく、MU-MIMOにおける周波数スケジューリングの自由度を向上させることができる。つまり、MU-MIMOによるスケジューリングゲインが得られるので、システムスループット性能を改善できる。 Therefore, by using the used sequence identification table shown in FIG. 15, the base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO without adding a signaling bit to the prior art. . In other words, since a scheduling gain by MU-MIMO can be obtained, system throughput performance can be improved.
 ここで、図15に示す巡回シフト情報=‘000’及び‘001’に着目する。図15に示すように、巡回シフト情報=‘000’及び‘001’では、2アンテナポート送信時(λ=0,1)に各アンテナポートでそれぞれ用いられる2つの巡回シフト量(CS value)は、それぞれ、[0,6]及び[6,0]となる。すなわち、巡回シフト情報=‘000’及び‘001’では、2アンテナポート送信時に用いる巡回シフト量の組み合わせ(0及び6)は同一となる。 Here, pay attention to cyclic shift information = '000' and '001' shown in FIG. As shown in FIG. 15, when cyclic shift information = '000' and '001', two cyclic shift amounts (CS (value) respectively used in each antenna port at the time of transmission of two antenna ports (λ = 0, 1) are [0, 6] and [6, 0], respectively. That is, when cyclic shift information = '000' and '001', the combination of cyclic shift amounts (0 and 6) used at the time of 2-antenna port transmission is the same.
 図15に示す使用系列特定テーブルでは、2アンテナポート送信時に用いる巡回シフト量の組み合わせが同一となる巡回シフト量情報(パターン候補)のペアは、‘000’及び‘001’の他に、010’及び‘111’のペア、011’及び‘110’のペア、100’及び‘101’のペアがある。 In the use sequence identification table shown in FIG. 15, a pair of cyclic shift amount information (pattern candidates) having the same combination of cyclic shift amounts used at the time of two-antenna port transmission is “010” in addition to “000” and “001”. And '111' pairs, 011 'and' 110 'pairs, and 100' and '101' pairs.
 次いで、上記4つの巡回シフト量情報のペアに着目する。まず、図15において、上記4つのペアのうち、‘000’及び‘001’のペアと、100’及び‘101’のペアに着目すると、クラスタ#1とクラスタ#2とでOCC系列が異なる(反転している)。これに対して、図15において、上記4つのペアのうち、010’及び‘111’のペアと、011’及び‘110’のペアとに着目すると、クラスタ#1とクラスタ#2とでOCC系列は同一となる。 Next, attention is focused on the above four pairs of cyclic shift information. First, in FIG. 15, focusing on the “000” and “001” pairs and the “100” and “101” pairs among the above four pairs, the OCC sequences are different between cluster # 1 and cluster # 2 ( Is reversed). On the other hand, in FIG. 15, focusing on the 010 'and' 111 'pairs and the 011' and '110' pairs among the above four pairs, the OCC sequences in cluster # 1 and cluster # 2 Are the same.
 つまり、図15に示す使用系列特定テーブルでは、2つのアンテナポート使用時に各アンテナポートでそれぞれ用いられる2つの巡回シフト系列の組み合わせが同一となる巡回シフト量情報(パターン候補)のペアのうち、一部のペアに含まれる巡回シフト量情報(パターン候補)では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは互いに異なり、上記一部のペア以外のペアに含まれる巡回シフト量情報(パターン候補)では、同一アンテナポートに対するクラスタ#1で使用されるOCC系列とクラスタ#2で使用されるOCC系列とは同一となる。 That is, in the use sequence identification table shown in FIG. 15, one of the pairs of cyclic shift amount information (pattern candidates) in which the combination of two cyclic shift sequences used in each antenna port is the same when two antenna ports are used. In the cyclic shift amount information (pattern candidates) included in a pair of parts, the OCC sequence used in cluster # 1 and the OCC sequence used in cluster # 2 for the same antenna port are different from each other, and other than the above part pairs In the cyclic shift amount information (pattern candidates) included in the pair, the OCC sequence used in cluster # 1 and the OCC sequence used in cluster # 2 for the same antenna port are the same.
 つまり、図15に示す使用系列特定テーブルでは、上記ペア単位で、クラスタ#1とクラスタ#2とに異なるOCC系列が設定されるか、同一OCC系列が設定されるかが定められている。また、図15に示すように、8種類の巡回シフト量情報(パターン候補)のうち、半分の4種類の巡回シフト量情報には、クラスタ#1とクラスタ#2とで同一OCC系列が対応付けられ、残りの半分の4種類の巡回シフト量情報には、クラスタ#1とクラスタ#2とで異なるOCC系列が対応付けられている。 That is, in the use sequence identification table shown in FIG. 15, it is determined for each pair described above whether different OCC sequences are set for cluster # 1 and cluster # 2 or the same OCC sequence is set. Further, as shown in FIG. 15, among the eight types of cyclic shift amount information (pattern candidates), half of the four types of cyclic shift amount information are associated with the same OCC sequence in cluster # 1 and cluster # 2. The remaining half of the four types of cyclic shift amount information is associated with different OCC sequences in cluster # 1 and cluster # 2.
 ここで、例えば、設定例3(図14)において、異なる端末に対して、2アンテナポート送信時に用いる巡回シフト量が同一となる巡回シフト量情報がそれぞれ通知された場合について説明する。例えば、図16に示すように、端末#1に対して巡回シフト量情報‘011’が通知され、端末#2に対して巡回シフト量情報‘110’が通知されるとする。この場合、図16に示すように、端末#1では、各アンテナポート(λ=0,1)の各クラスタに巡回シフト量4,10(CS#4,10)が設定され、クラスタ#1にOCC#1が設定され、クラスタ#2にOCC#1が設定される。また、図16に示すように、端末#2では、各アンテナポート(λ=0,1)の各クラスタに巡回シフト量10,4(CS#10,4)が設定され、クラスタ#1にOCC#2が設定され、クラスタ#2にOCC#1が設定される。 Here, for example, a case will be described where, in setting example 3 (FIG. 14), cyclic shift amount information for the same cyclic shift amount used when transmitting two antenna ports is notified to different terminals. For example, as shown in FIG. 16, it is assumed that cyclic shift amount information “011” is notified to terminal # 1, and cyclic shift amount information “110” is notified to terminal # 2. In this case, as shown in FIG. 16, in terminal # 1, cyclic shift amount 4, 10 (CS # 4, 10) is set in each cluster of each antenna port (λ = 0, 1), and cluster # 1 has OCC # 1 is set, and OCC # 1 is set to cluster # 2. As shown in FIG. 16, in terminal # 2, cyclic shift amounts 10, 4 (CS # 10, 4) are set in each cluster of each antenna port (λ = 0, 1), and OCC is assigned to cluster # 1. # 2 is set, and OCC # 1 is set to cluster # 2.
 図16に示す端末#1と端末#2との間では、クラスタ#1についてはOCC系列が互いに異なるので直交関係が成り立ち、MU-MIMOを適用することができる。一方、図16に示すクラスタ#2についてはOCC系列及び巡回シフト量の双方とも同一となるので直交関係が成り立たず、MU-MIMOを適用することができない。このように、設定例3(図14)では、各端末200に対する巡回シフト量の設定によっては、MU-MIMOを適用できない帯域が発生する。このため、MU-MIMOにおける周波数スケジューリングの自由度が低下し、MU-MIMOによるスケジューリングゲインが制限されるという課題がある。 FIG. 16 shows that the terminal # 1 and the terminal # 2 are orthogonal to each other because the OCC sequences are different for the cluster # 1, and MU-MIMO can be applied. On the other hand, since both the OCC sequence and the cyclic shift amount are the same for cluster # 2 shown in FIG. 16, the orthogonal relationship does not hold, and MU-MIMO cannot be applied. As described above, in setting example 3 (FIG. 14), depending on the setting of the cyclic shift amount for each terminal 200, a band to which MU-MIMO cannot be applied is generated. For this reason, there is a problem that the degree of freedom of frequency scheduling in MU-MIMO is reduced, and the scheduling gain by MU-MIMO is limited.
 これに対して、図15に示す使用系列特定テーブルにおけるクラスタ#1のOCC系列(つまり、従来の使用系列特定テーブルのOCC系列(図4))に着目する。図15(又は図4)に示すように、2アンテナポート送信時に用いる巡回シフト量が同一となる巡回シフト量情報(同一ペア内の巡回シフト量情報)の間では、クラスタ#1のOCC系列は互いに異なる。例えば、巡回シフト量情報=‘000’(巡回シフト量=0,6)では、アンテナポート番号λ=0~3の順に[OCC#1,OCC#1,OCC#2,OCC#2]となる。これに対して、巡回シフト量情報=‘001’(巡回シフト量=6,0)では、アンテナポート番号λ=0~3の順に[OCC#2,OCC#2,OCC#1,OCC#1]となる。 On the other hand, attention is focused on the OCC sequence of cluster # 1 in the usage sequence identification table shown in FIG. 15 (that is, the OCC sequence of the conventional usage sequence identification table (FIG. 4)). As shown in FIG. 15 (or FIG. 4), the OCC sequence of cluster # 1 is between cyclic shift amount information (cyclic shift amount information in the same pair) in which the cyclic shift amount used at the time of two antenna port transmission is the same. Different from each other. For example, when cyclic shift amount information = “000” (cyclic shift amount = 0, 6), antenna port numbers λ = 0 to 3 are [OCC # 1, OCC # 1, OCC # 2, OCC # 2] in this order. . On the other hand, when the cyclic shift amount information = '001' (cyclic shift amount = 6, 0), the antenna port numbers λ = 0 to 3 in the order [OCC # 2, OCC # 2, OCC # 1, OCC # 1. ].
 よって、上述したように、2アンテナポート送信時に用いる巡回シフト量となる巡回シフト情報のペア単位で、クラスタ#1とクラスタ#2とに異なるOCC系列が設定されるか、同一OCC系列が設定されるかが定められることで、同一ペア内の2つの巡回シフト量情報の間では、クラスタ#2でもOCC系列は互いに異なるようになる。 Therefore, as described above, different OCC sequences are set for cluster # 1 and cluster # 2 or the same OCC sequence is set for each pair of cyclic shift information, which is the amount of cyclic shift used when transmitting two antenna ports. Thus, the OCC sequences are different from each other even in the cluster # 2 between the two pieces of cyclic shift amount information in the same pair.
 これにより、設定例4では、異なる端末200に対して、2アンテナポート送信時に用いる巡回シフト量が同一となる巡回シフト量情報がそれぞれ通知された場合でも、各端末200は、クラスタ#1及びクラスタ#2の双方において、異なるOCC系列を用いることができる。よって、設定例4では、設定例3(図14)と比較して、MU-MIMOにおける周波数スケジューリングの自由度をより向上させることができ、MU-MIMOによるスケジューリングゲインを改善できる。 As a result, in setting example 4, even when the cyclic shift amount information for the same cyclic shift amount used at the time of two-antenna port transmission is notified to different terminals 200, each terminal 200 receives the cluster # 1 and the cluster # 1. Different OCC sequences can be used in both of # 2. Therefore, in setting example 4, compared with setting example 3 (FIG. 14), the degree of freedom of frequency scheduling in MU-MIMO can be further improved, and the scheduling gain by MU-MIMO can be improved.
 また、基地局100は、設定例3と同様、図15に示す使用系列特定テーブルを用いることで、例えば、2アンテナポート以下(λ=0,1)で送信する端末200に対して、[OCC#1,OCC#1]、[OCC#1,OCC#2]、[OCC#2,OCC#1]、[OCC#2,OCC#2]の組み合わせをそれぞれ均等に2個ずつ決定することが可能となる。よって、基地局100は、設定例3と同様、2アンテナポート以下で送信する端末200に対するMU-MIMOにおける周波数スケジューリングの自由度を、設定例2(図13)よりも向上させることができる。これにより、システムスループット性能が改善される。 Similarly to setting example 3, the base station 100 uses the usage sequence identification table shown in FIG. 15 to, for example, transmit [OCC] to the terminal 200 that transmits at 2 antenna ports or less (λ = 0, 1). # 1, OCC # 1], [OCC # 1, OCC # 2], [OCC # 2, OCC # 1], and [OCC # 2, OCC # 2] are determined to be equally two each. It becomes possible. Therefore, as in setting example 3, base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO for terminal 200 transmitting at two antenna ports or less than setting example 2 (FIG. 13). This improves system throughput performance.
 また、設定例2(図13)と同様、基地局100は、図14に示す使用系列特定テーブルを用いることで、3アンテナポート以上で送信する複数の端末200に対して、4パターンの異なるOCC系列の組み合わせ(巡回シフト量情報=‘011’~‘110’)を設定することができる。つまり、基地局100は、3アンテナポート以上で送信する端末200に対するMU-MIMOにおける周波数スケジューリングの自由度を向上させることができる。 Similarly to setting example 2 (FIG. 13), the base station 100 uses the use sequence identification table shown in FIG. 14 to provide four different OCC patterns for a plurality of terminals 200 transmitting at three antenna ports or more. A combination of sequences (cyclic shift amount information = “011” to “110”) can be set. That is, base station 100 can improve the degree of freedom of frequency scheduling in MU-MIMO for terminal 200 that transmits with three or more antenna ports.
 以上、非連続帯域送信時における使用系列特定テーブルの設定例1~4について説明した。 In the foregoing, the setting examples 1 to 4 of the use sequence identification table at the time of non-continuous band transmission have been described.
 このようにして、本実施の形態では、基地局100と端末200とで共有する使用系列特定テーブルにおいて、クラスタ#1及びクラスタ#2のOCC系列の組み合わせを表すパターン候補(巡回シフト量情報)のうち、一部のパターン候補では、クラスタ間でOCC系列を異ならせ、上記一部のパターン候補以外のパターン候補では、クラスタ間でOCC系列を同一とする。 Thus, in the present embodiment, pattern candidates (cyclic shift amount information) representing combinations of OCC sequences of cluster # 1 and cluster # 2 in the used sequence identification table shared by base station 100 and terminal 200 are described. Among them, some pattern candidates have different OCC sequences between clusters, and pattern candidates other than the above-mentioned some pattern candidates have the same OCC sequences between clusters.
 こうすることで、基地局100は、クラスタ#1及びクラスタ#2に設定できるOCC系列のパターンとして、採り得る全てのパターンを用いることができる。これにより、基地局100は、端末200に対してDM-RSで使用されるOCC系列をクラスタ毎に設定することができる。よって、基地局100は、同一送信帯域においても複数の端末200に対して異なるOCC系列を設定することができ、MU-MIMOにおけるスケジューリングの自由度を向上させることができる。 By doing so, the base station 100 can use all possible patterns as OCC sequence patterns that can be set in the cluster # 1 and the cluster # 2. Thereby, the base station 100 can set the OCC sequence used in DM-RS for the terminal 200 for each cluster. Therefore, base station 100 can set different OCC sequences for a plurality of terminals 200 even in the same transmission band, and can improve the degree of freedom of scheduling in MU-MIMO.
 また、基地局100は、従来(例えば図4参照)と比較して、DM-RS用のOCC系列を通知するためのシグナリングビットを新たに追加することなく、クラスタ毎のOCC系列を端末200に通知することができる。 In addition, the base station 100 does not add a signaling bit for notifying the OCC sequence for DM-RS to the terminal 200 as compared with the conventional case (see, for example, FIG. 4). You can be notified.
 よって、本実施の形態によれば、シグナリングビット数を増加させることなく、基地局が、端末で用いるOCC系列をクラスタ毎に設定することができる。 Therefore, according to the present embodiment, the base station can set the OCC sequence used by the terminal for each cluster without increasing the number of signaling bits.
 なお、上記実施の形態において設定例3では、クラスタ#1の複数のアンテナポートで使用されるOCC系列のパターンが同一となる2つの巡回シフト量情報(パターン候補)のうち、「一方の巡回シフト量情報」では、クラスタ#1とクラスタ#2とで同一アンテナポートに対するOCC系列が互いに異なり、「他方の巡回シフト量情報」では、クラスタ#1とクラスタ#2とで同一アンテナポートに対するOCC系列が同一となる場合について説明した。これに対して、2つの巡回シフト量情報のうち、いずれを上記「一方の巡回シフト量情報」とし、いずれを上記「他方の巡回シフト量情報」とするかは、設定例4に基づいて決定されてもよい。具体的には、2つのアンテナポート使用時に各アンテナポートでそれぞれ用いられる2つの巡回シフト系列の組み合わせが同一となるパターン候補のペアのうち、一部のペアに含まれる「一方の巡回シフト量情報」では、クラスタ#1とクラスタ#2とで同一アンテナポートに対するOCC系列が互いに異なり、上記一部のペア以外のペアに含まれる「他方の巡回シフト量情報」では、クラスタ#1とクラスタ#2とで同一アンテナポートに対するOCC系列が同一となってもよい。例えば、図4(非連続帯域送信時のクラスタ#1のOCC系列に相当)において、巡回シフト量情報‘000’、‘001’、‘010’、‘111’に着目する。これらのうち、‘000’と‘111’との間、及び、‘001’と‘010’との間で、それぞれ、クラスタ#1の複数のアンテナポートで使用されるOCC系列のパターンが同一となる。また、これらのうち、‘000’と‘001’との間、及び、‘010’と‘111’との間で、2つのアンテナポート使用時に各アンテナポートでそれぞれ用いられる2つの巡回シフト系列の組み合わせが同一となる。ここで、‘000’及び‘001’を「ペアA」と呼び、‘010’及び‘111’を「ペアB」と呼ぶ。そこで、ここでは、クラスタ#1の複数のアンテナポートで使用されるOCC系列のパターンが同一となる2つの巡回シフト量情報(パターン候補)のうち、「ペアA」に含まれる巡回シフト量情報では、クラスタ#1とクラスタ#2とで同一アンテナポートに対するOCC系列が互いに異なり、「ペアB」に含まれる巡回シフト量情報では、クラスタ#1とクラスタ#2とで同一アンテナポートに対するOCC系列が同一となるようにしてもよい。すなわち、‘000’と‘111’との間では、「ペアA」に含まれる‘000’ではクラスタ#1とクラスタ#2とで異なるOCC系列が設定され、「ペアB」に含まれる‘111’ではクラスタ#1とクラスタ#2とで同一OCC系列が設定される。‘010’と‘111’との間でも同様である。また、巡回シフト量情報‘011’、‘100’、‘101’、‘110’でも同様である。この結果、基地局100及び端末200で使用する使用系列特定テーブルは、設定例4(図15)と同様となる。これにより、当該使用系列特定テーブルを用いる基地局100及び端末200では、設定例4と同様の効果を得ることができる。 In setting example 3 in the above-described embodiment, “one cyclic shift” is selected from two pieces of cyclic shift amount information (pattern candidates) in which the patterns of the OCC sequences used in the plurality of antenna ports of cluster # 1 are the same. In the “quantity information”, the OCC sequences for the same antenna port are different from each other in the cluster # 1 and the cluster # 2, and in the “other cyclic shift amount information”, the OCC sequences for the same antenna port in the cluster # 1 and the cluster # 2. The case where they are the same has been described. On the other hand, which of the two pieces of cyclic shift amount information is the “one cyclic shift amount information” and which is the other cyclic shift amount information is determined based on setting example 4. May be. Specifically, “one cyclic shift amount information included in a part of a pair of pattern candidates among combinations of two cyclic shift sequences respectively used in each antenna port when two antenna ports are used. ", The OCC sequences for the same antenna port are different between the cluster # 1 and the cluster # 2, and the" other cyclic shift amount information "included in a pair other than the part of the pair described above, the cluster # 1 and the cluster # 2 The OCC sequences for the same antenna port may be the same. For example, in FIG. 4 (corresponding to the OCC sequence of cluster # 1 at the time of non-continuous band transmission), attention is paid to cyclic shift amount information '000', '001', '010', and '111'. Among these, the pattern of the OCC sequence used by the plurality of antenna ports of cluster # 1 is the same between “000” and “111” and between “001” and “010”. Become. Of these, between two “000” and “001”, and between “010” and “111”, two cyclic shift sequences respectively used in each antenna port when two antenna ports are used. The combination is the same. Here, “000” and “001” are called “pair A”, and “010” and “111” are called “pair B”. Therefore, here, among the two pieces of cyclic shift amount information (pattern candidates) in which the patterns of the OCC sequences used in the plurality of antenna ports of cluster # 1 are the same, the cyclic shift amount information included in “pair A” is Cluster # 1 and cluster # 2 have different OCC sequences for the same antenna port, and in the cyclic shift amount information included in “pair B”, cluster # 1 and cluster # 2 have the same OCC sequence for the same antenna port. You may make it become. That is, between “000” and “111”, different OCC sequences are set in cluster # 1 and cluster # 2 in “000” included in “pair A”, and “111” included in “pair B”. In ', the same OCC sequence is set in cluster # 1 and cluster # 2. The same applies between ‘010’ and ‘111’. The same applies to cyclic shift amount information “011”, “100”, “101”, and “110”. As a result, the use sequence identification table used in the base station 100 and the terminal 200 is the same as in setting example 4 (FIG. 15). As a result, the base station 100 and the terminal 200 using the use sequence identification table can obtain the same effects as those of the setting example 4.
 また、上記実施の形態では、非連続帯域送信時に、例えば、図11、図13、図14、図15に示す使用系列特定テーブルを用いる場合について説明した。しかし、非連続帯域送信時に用いる使用系列特定テーブルとして、本実施の形態で説明した使用系列特定テーブル(例えば、図11、図13、図14、図15)を使用するか、従来技術と同様の使用系列特定テーブル(例えば、図4。つまり、クラスタ#1とクラスタ#2とで同一OCC系列を使う場合)を使用するかを、端末毎に切り替えてもよい。例えば、従来技術と同様の使用系列特定テーブル(図4)を用いる場合を「パターン1」とし、図11、図13、図14、図15に示す使用系列特定テーブルを用いる場合を「パターン2」とする。この場合、基地局は、Higher layer signalingにより各端末に対して「パターン1」又は「パターン2」を予めExplicitに通知してもよい。又は、各端末の端末ID(奇数及び偶数)と「パターン1」及び「パターン2」とをそれぞれ対応付けることで、基地局は、各端末に対して、「パターン1」及び「パターン2」をImplicitに通知してもよい。 In the above embodiment, the case where the use sequence specifying tables shown in FIGS. 11, 13, 14, and 15 are used at the time of non-continuous band transmission has been described. However, the usage sequence identification table described in the present embodiment (for example, FIG. 11, FIG. 13, FIG. 15, and FIG. 15) is used as the usage sequence identification table used at the time of non-continuous band transmission, or the same as in the prior art. Whether to use the use sequence identification table (for example, FIG. 4, that is, when the same OCC sequence is used in cluster # 1 and cluster # 2) may be switched for each terminal. For example, the case where the use sequence specifying table (FIG. 4) similar to the prior art is used is “pattern 1”, and the case where the use sequence specifying table shown in FIGS. 11, 13, 14, and 15 is used is “pattern 2”. And In this case, the base station may notify each terminal of “Pattern 1” or “Pattern 2” explicitly in advance by HigherHighlayer signaling. Alternatively, by associating the terminal IDs (odd and even) of each terminal with “Pattern 1” and “Pattern 2”, the base station assigns “Pattern 1” and “Pattern 2” to each terminal. May be notified.
 例えば、この場合の基地局300及び端末400の構成を示すブロック図を図17及び図18にそれぞれ示す。なお、図17及び図18において、上記実施の形態(図9及び図10)と同じ構成要素については同じ符号を用い、説明を省略する。 For example, block diagrams showing configurations of the base station 300 and the terminal 400 in this case are shown in FIGS. 17 and 18, respectively. 17 and 18, the same components as those in the above-described embodiment (FIGS. 9 and 10) are denoted by the same reference numerals, and description thereof is omitted.
 図17に示す基地局300において、端末情報設定部301は、基地局300がスケジューリングする端末400が上記「パターン1」及び「パターン2」のいずれを用いるかを設定する。端末情報設定部301は、設定した情報(端末情報)をDM-RS情報決定部302に出力する。なお、端末情報設定部301は、例えば、基地局300がスケジューリングする複数の端末400において、「パターン1」を用いる端末400と「パターン2」を用いる端末400とが均等な割合になるように、各パターンを設定してもよい。この際、端末情報設定部301は、各パターンをランダムに各端末400に設定してもよい。 In the base station 300 shown in FIG. 17, the terminal information setting unit 301 sets which of the “pattern 1” and “pattern 2” the terminal 400 scheduled by the base station 300 uses. Terminal information setting section 301 outputs the set information (terminal information) to DM-RS information determination section 302. Note that the terminal information setting unit 301, for example, in the plurality of terminals 400 scheduled by the base station 300, the terminal 400 using “pattern 1” and the terminal 400 using “pattern 2” have an equal ratio. Each pattern may be set. At this time, the terminal information setting unit 301 may set each pattern in each terminal 400 at random.
 DM-RS情報決定部302は、端末情報設定部301から入力される端末情報(「パターン1」又は「パターン2」)に基づいて、各端末400の非連続帯域送信時に用いる使用系列特定テーブルを判断する。そして、DM-RS情報決定部302は、判断した使用系列特定テーブルを用いて、上記実施の形態と同様にして、DM-RSを構成する巡回シフト量とOCC系列番号とを選択する。そして、DM-RS情報決定部302は、選択した巡回シフト量及びOCC系列番号に対応付けられた巡回シフト量情報を、制御情報符号化部101に出力する。 The DM-RS information determination unit 302 generates a use sequence identification table used at the time of non-continuous band transmission of each terminal 400 based on the terminal information (“pattern 1” or “pattern 2”) input from the terminal information setting unit 301. to decide. Then, DM-RS information determination section 302 selects the cyclic shift amount and the OCC sequence number constituting DM-RS using the determined used sequence identification table in the same manner as in the above embodiment. DM-RS information determination section 302 then outputs the cyclic shift amount information associated with the selected cyclic shift amount and OCC sequence number to control information encoding section 101.
 一方、図18に示す端末400において、端末情報設定部401は、基地局300によってスケジューリングされた端末400が「パターン1」及び「パターン2」のいずれを用いるかを示す端末情報を、DM-RS情報決定部402に出力する。上述したように、端末400が「パターン1」及び「パターン2」のいずれを用いるかは、基地局300から端末400へExplicitに通知されてもよく、端末ID(固定ID)等でImplicitに通知されてもよい。 On the other hand, in terminal 400 shown in FIG. 18, terminal information setting section 401 uses DM-RS to indicate terminal information indicating whether terminal 400 scheduled by base station 300 uses “pattern 1” or “pattern 2”. The information is output to the information determination unit 402. As described above, whether the terminal 400 uses “Pattern 1” or “Pattern 2” may be notified explicitly from the base station 300 to the terminal 400, and notified to the Implicit using a terminal ID (fixed ID) or the like. May be.
 DM-RS情報決定部402は、端末情報設定部401から入力される端末情報(「パターン1」又は「パターン2」)に基づいて、非連続帯域送信時に用いる使用系列特定テーブルを判断する。そして、DM-RS情報決定部402は、判断した使用系列特定テーブルを用いて、上記実施の形態と同様にして、DM-RSを構成する巡回シフト量とOCC系列番号とを決定する。そして、DM-RS情報決定部402は、決定した巡回シフト量及びOCC系列番号に対応付けられた巡回シフト量情報を、DM-RS生成部206に出力する。 The DM-RS information determination unit 402 determines the used sequence identification table used at the time of non-continuous band transmission based on the terminal information (“pattern 1” or “pattern 2”) input from the terminal information setting unit 401. Then, DM-RS information determination section 402 determines the cyclic shift amount and the OCC sequence number constituting the DM-RS using the determined used sequence identification table in the same manner as in the above embodiment. Then, DM-RS information determination section 402 outputs the determined cyclic shift amount and cyclic shift amount information associated with the OCC sequence number to DM-RS generation section 206.
 このように、基地局300は、スケジューリングする端末400間で非連続帯域送信時の使用系列特定テーブルを異ならせる。例えば、図19では、端末IDが奇数の端末400(端末#1、#2)には「パターン1」が用いられ、端末IDが偶数の端末400(端末#3)には「パターン2」が用いられる。例えば、基地局300がカバーするセル内に端末400が多く存在する環境(スケジューリングする端末候補が多く存在する環境)では、基地局300は、DM-RSが直交化できるパターンが設定された端末であって、受信品質が近い端末をMU-MIMO多重させるように、複数の端末400をスケジューリングすればよい。これにより、上記実施の形態と同様、シグナリングビットを増加させることなく、周波数スケジューリングゲインが改善できる。 In this way, the base station 300 varies the used sequence identification table at the time of discontinuous band transmission between the terminals 400 to be scheduled. For example, in FIG. 19, “pattern 1” is used for terminals 400 (terminals # 1 and # 2) with odd terminal IDs, and “pattern 2” is used for terminals 400 (terminal # 3) with even terminal IDs. Used. For example, in an environment where there are many terminals 400 in a cell covered by base station 300 (an environment where there are many terminal candidates to be scheduled), base station 300 is a terminal in which a pattern capable of orthogonalizing DM-RSs is set. Therefore, a plurality of terminals 400 may be scheduled so that terminals having similar reception qualities are MU-MIMO multiplexed. As a result, the frequency scheduling gain can be improved without increasing the signaling bits as in the above embodiment.
 また、上記実施の形態において、基地局が、端末に対して上記「パターン1」及び「パターン2」のいずれを設定したかを、下りチャネルで通知される制御情報に含まれる巡回シフト量情報以外の他のパラメータで通知してもよい。他のパラメータは、例えば、クラスタの帯域幅、クラスタの帯域位置等でもよい。例えば、図20に示すように、クラスタの帯域幅(RB(Resource Block)数。又はRBG(RB Group)数)が偶数の場合と「パターン1」とを対応付け、クラスタの帯域幅(RBG数)が奇数の場合と「パターン2」とを対応付けてもよい。なお、RBは、LTEにおける周波数リソースの割当単位であり、1RB=180kHzである。又は、クラスタの帯域位置の先頭のRBG番号が偶数の場合と「パターン#1」とを対応付け、クラスタの帯域位置の先頭のRBG番号が奇数の場合と「パターン#2」とを対応付けてもよい。 Also, in the above embodiment, whether the base station has set the “pattern 1” or “pattern 2” for the terminal other than the cyclic shift amount information included in the control information notified in the downlink channel Other parameters may be used for notification. The other parameter may be, for example, a cluster bandwidth, a cluster bandwidth position, or the like. For example, as shown in FIG. 20, when the cluster bandwidth (the number of RB (Resource Block) or the number of RBG (RB Group)) is an even number, “pattern 1” is associated with the cluster bandwidth (the number of RBGs). ) May be associated with an odd number and “pattern 2”. Note that RB is an allocation unit of frequency resources in LTE, and 1 RB = 180 kHz. Alternatively, “pattern # 1” is associated with the case where the leading RBG number of the cluster band position is an even number, and “pattern # 2” is associated with the case where the leading RBG number of the cluster band position is an odd number. Also good.
 より具体的には、基地局100のDM-RS情報決定部114(図9)は、スケジューリング部113から入力される各端末200の周波数リソース割当情報(つまり、クラスタの帯域幅又はクラスタの帯域位置等)に基づいて、基地局100がスケジューリングする端末200が上記「パターン1」及び「パターン2」のいずれを用いるかを判断する。そして、DM-RS情報決定部114は、判断した使用系列特定テーブルを用いて、上記実施の形態と同様にして、DM-RSを構成する巡回シフト量とOCC系列番号とを選択する。 More specifically, the DM-RS information determination unit 114 (FIG. 9) of the base station 100 performs frequency resource allocation information (that is, the cluster bandwidth or the cluster bandwidth position) of each terminal 200 input from the scheduling unit 113. Based on the above, it is determined whether the terminal 200 scheduled by the base station 100 uses “Pattern 1” or “Pattern 2”. Then, the DM-RS information determination unit 114 selects the cyclic shift amount and the OCC sequence number constituting the DM-RS using the determined used sequence identification table in the same manner as in the above embodiment.
 一方、端末200のDM-RS情報決定部205(図10)は、制御情報復号部204から入力される周波数リソース割当情報(つまり、クラスタの帯域幅又はクラスタの帯域位置等)に基づいて、端末200が上記「パターン1」及び「パターン2」のいずれを用いるかを判断する。そして、DM-RS情報決定部205は、判断した使用系列特定テーブルを用いて、上記実施の形態と同様にして、DM-RSを構成する巡回シフト量とOCC系列番号とを決定する。 On the other hand, the DM-RS information determination unit 205 (FIG. 10) of the terminal 200 is based on the frequency resource allocation information (that is, the cluster bandwidth or the cluster band position) input from the control information decoding unit 204. 200 determines whether to use “Pattern 1” or “Pattern 2”. Then, DM-RS information determination section 205 determines the cyclic shift amount and OCC sequence number that constitute DM-RS, using the determined used sequence identification table, in the same manner as in the above embodiment.
 ここで、巡回シフト量情報と、上り信号を送信する周波数リソースの開始位置(RB。クラスタ#1の開始位置(RB))とは、端末200が下りデータ信号に対する応答信号(ACK/NACK信号)を送信する制御チャネル(PHICH:Physical HARQ Indicator Channel)の送信リソース(PHICHリソース)に一意に対応付けられている。このため、MU-MIMOが適用される端末200間の送信帯域位置によっては、PHICHリソースの衝突を防ぐために、所望の巡回シフト量が設定できないことが生じ得る。このため、所望のOCC系列番号が端末200に設定されず、MU-MIMOを適用できない送信帯域が生じてしまう。 Here, the cyclic shift amount information and the start position (RB. Start position (RB) of cluster # 1) of the frequency resource for transmitting the uplink signal are the response signal (ACK / NACK signal) from the terminal 200 to the downlink data signal. Is uniquely associated with a transmission resource (PHICH resource) of a control channel (PHICH: Physical HARQ Indicator Channel). For this reason, depending on the transmission band position between terminals 200 to which MU-MIMO is applied, a desired cyclic shift amount may not be set in order to prevent a PHICH resource collision. For this reason, a desired OCC sequence number is not set in terminal 200, and a transmission band to which MU-MIMO cannot be applied occurs.
 これに対して、ここでは、巡回シフト量情報とは異なるパラメータによって、クラスタ#1及びクラスタ#2のOCC系列を対応付けるので、上記巡回シフト量情報に対する制限によって所望のOCC系列番号が設定できなくなる状況を低減することができる。また、ここでは、既存のパラメータを、使用系列特定テーブルを決定するためのパラメータとしても用いるため、シグナリングビット数は増加しない。 On the other hand, here, since the OCC sequences of the cluster # 1 and the cluster # 2 are associated with parameters different from the cyclic shift amount information, a desired OCC sequence number cannot be set due to restrictions on the cyclic shift amount information. Can be reduced. Here, since the existing parameter is also used as a parameter for determining the used sequence identification table, the number of signaling bits does not increase.
 なお、使用系列特定テーブルを決定するためのパラメータは、周波数リソース割当情報に限らず、巡回シフト量情報とともに基地局から端末へ通知されるパラメータであれば、他の情報でもよい。 Note that the parameter for determining the used sequence identification table is not limited to the frequency resource allocation information, and may be other information as long as it is a parameter notified from the base station to the terminal together with the cyclic shift amount information.
 また、上記実施の形態では、基地局100及び端末200が非連続帯域送信時用の使用系列特定テーブルを保持する場合について説明した。しかし、基地局100及び端末200は、非連続帯域送信時用の使用系列特定テーブルを保持する場合に限らず、例えば、従来のテーブル(図4参照。つまり、巡回シフト量とクラスタ#1のOCC系列との対応関係)と、設定例1~4で説明した系列決定ルールとに従ってクラスタ#2のOCC系列を算出してもよい。これにより、基地局100及び端末200は、クラスタ#2のOCCを決定するためのテーブルを保持することなく、クラスタ#2のOCCを設定することができる。 In the above embodiment, the case where the base station 100 and the terminal 200 hold the use sequence identification table for non-continuous band transmission has been described. However, the base station 100 and the terminal 200 are not limited to holding the used sequence identification table for non-continuous band transmission. For example, the base station 100 and the terminal 200 refer to the conventional table (see FIG. 4). The OCC sequence of cluster # 2 may be calculated according to the correspondence relationship with the sequence) and the sequence determination rules described in setting examples 1 to 4. Thereby, the base station 100 and the terminal 200 can set the OCC of the cluster # 2 without holding a table for determining the OCC of the cluster # 2.
 また、上記実施の形態において、非連続帯域送信時に用いる使用系列特定テーブルは、セル毎に異なってもよい。これにより、セル間で参照信号(パイロット信号)の系列間干渉をランダマイズ化(平均化)することができる。 Further, in the above embodiment, the use sequence identification table used at the time of non-continuous band transmission may be different for each cell. As a result, inter-sequence interference of reference signals (pilot signals) can be randomized (averaged) between cells.
 また、上記実施の形態では、DM-RSを構成する系列として、CS系列に加え、OCC系列を用いる場合について説明した。しかし、DM-RSを構成する系列は、OCC系列に限らず、直交系列又は直交性の高い系列であればよい。例えば、Walsh系列を用いてもよい。 In the above embodiment, the case where an OCC sequence is used in addition to a CS sequence as a sequence constituting a DM-RS has been described. However, the sequence constituting the DM-RS is not limited to the OCC sequence, and may be an orthogonal sequence or a highly orthogonal sequence. For example, a Walsh sequence may be used.
 また、上記実施の形態において、下りチャネルで通知される制御情報は、DCI(Downlink Control Information)又はUL Grantと呼ばれることもある。 In the above embodiment, the control information notified in the downlink channel may be referred to as DCI (Downlink Control Information) or UL Grant.
 また、上記実施の形態におけるアンテナポートとは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。 In addition, the antenna port in the above embodiment refers to a logical antenna composed of one or a plurality of physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。 For example, in 3GPP LTE, it is not defined how many physical antennas an antenna port is composed of, but is defined as a minimum unit by which a base station can transmit different reference signals (Reference signals).
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。 Also, the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
 また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。 Further, although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software in cooperation with hardware.
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2011年4月15日出願の特願2011-091086の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosures of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2011-091086 filed on April 15, 2011 are incorporated herein by reference.
 本発明にかかる無線通信装置及び無線通信方法は、例えば、LTE-Advancedなどの移動通信システムに適用できる。 The radio communication apparatus and radio communication method according to the present invention can be applied to a mobile communication system such as LTE-Advanced.
 100,300 基地局
 101 制御情報符号化部
 102,208 変調部
 103,212 送信部
 104,201 アンテナポート
 105,202 受信部
 106 受信処理部
 107 分離部
 108,110 DFT部
 109,111 デマッピング部
 112 推定部
 113 スケジューリング部
 114,205,302,402 DM-RS情報決定部
 115 MIMO分離部
 116,207 データ処理部
 117 IFFT部
 118,203 復調部
 119 復号部
 200,400 端末
 204 制御情報復号部
 206 DM-RS生成部
 209 マッピング部
 210 多重部
 211 送信ウェイト乗算部
 213 生成部
 214 配置部
100, 300 Base station 101 Control information encoding unit 102, 208 Modulation unit 103, 212 Transmission unit 104, 201 Antenna port 105, 202 Reception unit 106 Reception processing unit 107 Separation unit 108, 110 DFT unit 109, 111 Demapping unit 112 Estimating unit 113 Scheduling unit 114, 205, 302, 402 DM-RS information determining unit 115 MIMO separating unit 116, 207 Data processing unit 117 IFFT unit 118, 203 Demodulating unit 119 Decoding unit 200, 400 Terminal 204 Control information decoding unit 206 DM RS generation unit 209 mapping unit 210 multiplexing unit 211 transmission weight multiplication unit 213 generation unit 214 arrangement unit

Claims (12)

  1.  系列決定ルールに従って、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列のいずれか1つと、互いに直交する複数の直交系列のいずれか1つとに基づいて参照信号を生成する生成手段と、
     複数のクラスタのそれぞれに配置された、前記参照信号を含んだ送信信号を、少なくとも1つのアンテナポートから送信する送信手段と、
     を具備し、
     前記複数のクラスタは、第1のクラスタ及び第2のクラスタを含み、
     前記系列決定ルールは、前記第1のクラスタにおいて各アンテナポートで使用される第1直交系列と、前記第2のクラスタにおいて各アンテナポートで使用される第2直交系列とから成る系列の複数のパターン候補を含み、
     前記複数のパターン候補のうち、一部のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のパターン候補以外のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である、
     送信装置。
    Generating means for generating a reference signal based on any one of a plurality of cyclic shift sequences separable from each other by different cyclic shift amounts according to a sequence determination rule and any one of a plurality of orthogonal sequences orthogonal to each other;
    Transmitting means arranged in each of a plurality of clusters, for transmitting a transmission signal including the reference signal from at least one antenna port;
    Comprising
    The plurality of clusters includes a first cluster and a second cluster;
    The sequence determination rule includes a plurality of patterns of a sequence including a first orthogonal sequence used at each antenna port in the first cluster and a second orthogonal sequence used at each antenna port in the second cluster. Including candidates,
    Among the plurality of pattern candidates, in some pattern candidates, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and in pattern candidates other than the some pattern candidates, the same antenna port The first orthogonal sequence and the second orthogonal sequence for
    Transmitter device.
  2.  前記複数のパターン候補は、それぞれ、巡回シフト系列と前記第1直交系列と前記第2直交系列とから成り、
     2つのアンテナポート使用時に、各アンテナポートでそれぞれ用いられる2つの巡回シフト系列の組み合わせが同一となるパターン候補のペアのうち、一部のペアに含まれるパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のペア以外のペアに含まれるパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である、
     請求項1記載の送信装置。
    Each of the plurality of pattern candidates includes a cyclic shift sequence, the first orthogonal sequence, and the second orthogonal sequence,
    Among the pattern candidate pairs in which the combination of two cyclic shift sequences used in each antenna port is the same when two antenna ports are used, the pattern candidates included in some of the pairs are the first for the same antenna port. The orthogonal sequence and the second orthogonal sequence are different from each other, and in the pattern candidates included in pairs other than the partial pair, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are the same.
    The transmission device according to claim 1.
  3.  前記系列決定ルールでは、
     前記複数のパターン候補において、複数のアンテナポートで使用される前記第1直交系列のパターンが同一となる2つのパターン候補のうち、一方のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、他方のパターン候補では、前記第1直交系列と、前記第2直交系列とが同一である、
     請求項1記載の送信装置。
    In the series determination rule,
    In the plurality of pattern candidates, one of the two pattern candidates in which the pattern of the first orthogonal sequence used in the plurality of antenna ports is the same, in one pattern candidate, the first orthogonal sequence for the same antenna port and the The second orthogonal sequence is different from each other, and in the other pattern candidate, the first orthogonal sequence and the second orthogonal sequence are the same.
    The transmission device according to claim 1.
  4.  前記複数のパターン候補では、それぞれ、巡回シフト系列と前記第1直交系列と前記第2直交系列とから成り、
     2つのアンテナポート使用時に、各アンテナポートでそれぞれ用いられる2つの巡回シフト系列の組み合わせが同一となるパターン候補のペアのうち、一部のペアに含まれる前記一方のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のペア以外のペアに含まれる前記他方のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である、
     請求項3記載の送信装置。
    Each of the plurality of pattern candidates includes a cyclic shift sequence, the first orthogonal sequence, and the second orthogonal sequence,
    When using two antenna ports, the one pattern candidate included in a part of the pair of pattern candidates in which the combination of two cyclic shift sequences respectively used in each antenna port is the same is used for the same antenna port. The first orthogonal sequence and the second orthogonal sequence are different from each other, and in the other pattern candidate included in a pair other than the partial pair, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are Are the same,
    The transmission device according to claim 3.
  5.  前記系列決定ルールでは、
     前記複数のパターン候補において、前記第1直交系列が全てのアンテナポートで同一となるパターン候補であって、前記第1直交系列の種類が同一である2つのパターン候補のうち、一方のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、他方のパターン候補では、前記第1直交系列と、前記第2直交系列とが同一である、
     請求項1記載の送信装置。
    In the series determination rule,
    Among the plurality of pattern candidates, the first orthogonal sequence is a pattern candidate that is the same for all antenna ports, and one of the two pattern candidates that has the same type of the first orthogonal sequence The first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and in the other pattern candidate, the first orthogonal sequence and the second orthogonal sequence are the same.
    The transmission device according to claim 1.
  6.  複数のクラスタのそれぞれに配置された、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列のいずれか1つと、互いに直交する複数の直交系列のいずれか1つとに基づいて生成された参照信号を含む信号を受信する受信手段と、
     系列決定ルールに従って決定される巡回シフト系列及び直交系列と、前記参照信号とを用いて、チャネル品質を推定する推定手段と、
     を具備し、
     前記複数のクラスタは、第1のクラスタ及び第2のクラスタを含み、
     前記系列決定ルールは、前記第1のクラスタにおいて各アンテナポートで使用される第1直交系列と、前記第2のクラスタにおいて各アンテナポートで使用される第2直交系列とから成る系列の複数のパターン候補を含み、
     前記複数のパターン候補のうち、一部のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のパターン候補以外のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である、
     受信装置。
    A reference generated based on any one of a plurality of cyclic shift sequences arranged in each of a plurality of clusters and separable from each other by different cyclic shift amounts, and any one of a plurality of orthogonal sequences orthogonal to each other Receiving means for receiving a signal including a signal;
    Estimation means for estimating channel quality using a cyclic shift sequence and an orthogonal sequence determined according to a sequence determination rule, and the reference signal;
    Comprising
    The plurality of clusters includes a first cluster and a second cluster;
    The sequence determination rule includes a plurality of patterns of a sequence including a first orthogonal sequence used at each antenna port in the first cluster and a second orthogonal sequence used at each antenna port in the second cluster. Including candidates,
    Among the plurality of pattern candidates, in some pattern candidates, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and in pattern candidates other than the some pattern candidates, the same antenna port The first orthogonal sequence and the second orthogonal sequence for
    Receiver device.
  7.  前記複数のパターン候補は、それぞれ、巡回シフト系列と前記第1直交系列と前記第2直交系列とから成り、
     2つのアンテナポート使用時に、各アンテナポートでそれぞれ用いられる2つの巡回シフト系列の組み合わせが同一となるパターン候補のペアのうち、一部のペアに含まれるパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のペア以外のペアに含まれるパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である、
     請求項6記載の受信装置。
    Each of the plurality of pattern candidates includes a cyclic shift sequence, the first orthogonal sequence, and the second orthogonal sequence,
    Among the pattern candidate pairs in which the combination of two cyclic shift sequences used in each antenna port is the same when two antenna ports are used, the pattern candidates included in some of the pairs are the first for the same antenna port. The orthogonal sequence and the second orthogonal sequence are different from each other, and in the pattern candidates included in pairs other than the partial pair, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are the same.
    The receiving device according to claim 6.
  8.  前記系列決定ルールでは、
     前記複数のパターン候補において、複数のアンテナポートで使用される前記第1直交系列のパターンが同一となる2つのパターン候補のうち、一方のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、他方のパターン候補では、前記第1直交系列と、前記第2直交系列とが同一である、
     請求項6記載の受信装置。
    In the series determination rule,
    In the plurality of pattern candidates, one of the two pattern candidates in which the pattern of the first orthogonal sequence used in the plurality of antenna ports is the same, in one pattern candidate, the first orthogonal sequence for the same antenna port and the The second orthogonal sequence is different from each other, and in the other pattern candidate, the first orthogonal sequence and the second orthogonal sequence are the same.
    The receiving device according to claim 6.
  9.  前記複数のパターン候補では、それぞれ、巡回シフト系列と前記第1直交系列と前記第2直交系列とから成り、
     2つのアンテナポート使用時に、各アンテナポートでそれぞれ用いられる2つの巡回シフト系列の組み合わせが同一となるパターン候補のペアのうち、一部のペアに含まれる前記一方のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のペア以外のペアに含まれる前記他方のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である、
     請求項8記載の受信装置。
    Each of the plurality of pattern candidates includes a cyclic shift sequence, the first orthogonal sequence, and the second orthogonal sequence,
    When using two antenna ports, the one pattern candidate included in a part of the pair of pattern candidates in which the combination of two cyclic shift sequences respectively used in each antenna port is the same is used for the same antenna port. The first orthogonal sequence and the second orthogonal sequence are different from each other, and in the other pattern candidate included in a pair other than the partial pair, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are Are the same,
    The receiving device according to claim 8.
  10.  前記系列決定ルールでは、
     前記複数のパターン候補において、前記第1直交系列が全てのアンテナポートで同一となるパターン候補であって、前記第1直交系列の種類が同一である2つのパターン候補のうち、一方のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、他方のパターン候補では、前記第1直交系列と、前記第2直交系列とが同一である、
     請求項6記載の受信装置。
    In the series determination rule,
    Among the plurality of pattern candidates, the first orthogonal sequence is a pattern candidate that is the same for all antenna ports, and one of the two pattern candidates that has the same type of the first orthogonal sequence The first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and in the other pattern candidate, the first orthogonal sequence and the second orthogonal sequence are the same.
    The receiving device according to claim 6.
  11.  少なくとも1つのアンテナポートから送信される、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列のいずれか1つと、互いに直交する複数の直交系列のいずれか1つとに基づいて参照信号を生成する信号生成方法であって、
     系列決定ルールに従って、第1のクラスタ及び第2のクラスタを含む複数のクラスタのそれぞれに配置される前記参照信号に用いる巡回シフト系列及び直交系列を決定し、
     前記系列決定ルールは、前記第1のクラスタにおいて各アンテナポートで使用される第1直交系列と、前記第2のクラスタにおいて各アンテナポートで使用される第2直交系列とから成る系列の複数のパターン候補を含み、
     前記複数のパターン候補のうち、一部のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のパターン候補以外のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である、
     信号生成方法。
    A reference signal is generated based on any one of a plurality of cyclic shift sequences that are transmitted from at least one antenna port and can be separated from each other by different cyclic shift amounts, and any one of a plurality of orthogonal sequences orthogonal to each other A signal generation method for
    In accordance with a sequence determination rule, determine a cyclic shift sequence and an orthogonal sequence used for the reference signal arranged in each of a plurality of clusters including the first cluster and the second cluster,
    The sequence determination rule includes a plurality of patterns of a sequence including a first orthogonal sequence used at each antenna port in the first cluster and a second orthogonal sequence used at each antenna port in the second cluster. Including candidates,
    Among the plurality of pattern candidates, in some pattern candidates, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and in pattern candidates other than the some pattern candidates, the same antenna port The first orthogonal sequence and the second orthogonal sequence for
    Signal generation method.
  12.  少なくとも1つのアンテナポートで受信される、互いに異なる巡回シフト量により互いに分離可能な複数の巡回シフト系列のいずれか1つと、互いに直交する複数の直交系列のいずれか1つとに基づいて生成された参照信号を用いてチャネル品質を推定する品質推定方法であって、
     系列決定ルールに従って決定された巡回シフト系列及び直交系列と、受信された前記参照信号とを用いて、チャネル品質を推定し、
     前記複数のクラスタは、第1のクラスタ及び第2のクラスタを含み、
     前記系列決定ルールは、前記第1のクラスタにおいて各アンテナポートで使用される第1直交系列と、前記第2のクラスタにおいて各アンテナポートで使用される第2直交系列とから成る系列の複数のパターン候補を含み、
     前記複数のパターン候補のうち、一部のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが互いに異なり、前記一部のパターン候補以外のパターン候補では、同一アンテナポートに対する前記第1直交系列と前記第2直交系列とが同一である、
     品質推定方法。
    Reference generated based on any one of a plurality of cyclic shift sequences that can be separated from each other by different cyclic shift amounts and received by at least one antenna port, and any one of a plurality of orthogonal sequences orthogonal to each other A quality estimation method for estimating channel quality using a signal,
    Using the cyclic shift sequence and the orthogonal sequence determined according to the sequence determination rule and the received reference signal, estimate the channel quality,
    The plurality of clusters includes a first cluster and a second cluster;
    The sequence determination rule includes a plurality of patterns of a sequence including a first orthogonal sequence used at each antenna port in the first cluster and a second orthogonal sequence used at each antenna port in the second cluster. Including candidates,
    Among the plurality of pattern candidates, in some pattern candidates, the first orthogonal sequence and the second orthogonal sequence for the same antenna port are different from each other, and in pattern candidates other than the some pattern candidates, the same antenna port The first orthogonal sequence and the second orthogonal sequence for
    Quality estimation method.
PCT/JP2012/002302 2011-04-15 2012-04-02 Transmitter apparatus, receiver apparatus, signal generating method and quality estimating method WO2012140847A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011091086 2011-04-15
JP2011-091086 2011-04-15

Publications (1)

Publication Number Publication Date
WO2012140847A1 true WO2012140847A1 (en) 2012-10-18

Family

ID=47009042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002302 WO2012140847A1 (en) 2011-04-15 2012-04-02 Transmitter apparatus, receiver apparatus, signal generating method and quality estimating method

Country Status (1)

Country Link
WO (1) WO2012140847A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192599A1 (en) * 2015-05-29 2016-12-08 Huawei Technologies Co., Ltd. Systems and methods for partial collision multiple access
JP2017529741A (en) * 2014-08-01 2017-10-05 エルジー エレクトロニクス インコーポレイティド Method for transmitting and identifying pilot sequences in a wireless communication system
US10917167B2 (en) 2015-05-29 2021-02-09 Huawei Technologies Co., Ltd. MC-CDMA with low peak-to-average power ratio multi-carrier waveform

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding", 3GPP TS 36.212 V10.0.0, 3GPP, December 2010 (2010-12-01), pages 50 - 52 *
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation", 3GPP TS 36.211 V10.0.0, December 2010 (2010-12-01), pages 31 - 33 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529741A (en) * 2014-08-01 2017-10-05 エルジー エレクトロニクス インコーポレイティド Method for transmitting and identifying pilot sequences in a wireless communication system
WO2016192599A1 (en) * 2015-05-29 2016-12-08 Huawei Technologies Co., Ltd. Systems and methods for partial collision multiple access
US10158458B2 (en) 2015-05-29 2018-12-18 Huawei Technologies Co., Ltd. Systems and methods for partial collision multiple access
US10715285B2 (en) 2015-05-29 2020-07-14 Huawei Technologies Co., Ltd. Systems and methods for partial collision multiple access
US10917167B2 (en) 2015-05-29 2021-02-09 Huawei Technologies Co., Ltd. MC-CDMA with low peak-to-average power ratio multi-carrier waveform

Similar Documents

Publication Publication Date Title
US11431429B2 (en) Terminal station apparatus, base station apparatus, transmission method and control method
CA2768349C (en) Method and apparatus for transmitting reference signal in wireless communication system including relay station
KR101766489B1 (en) Communication device and communication method
WO2012147273A1 (en) Transmission device, receiving device, transmission method, and receiving method
US9094065B2 (en) Transmission device and transmission method
WO2012140847A1 (en) Transmitter apparatus, receiver apparatus, signal generating method and quality estimating method
WO2011052192A1 (en) Wireless communication terminal device, wireless communication base station device, and sequence number determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP