WO2012133633A1 - Disposable lysine sensor - Google Patents

Disposable lysine sensor Download PDF

Info

Publication number
WO2012133633A1
WO2012133633A1 PCT/JP2012/058334 JP2012058334W WO2012133633A1 WO 2012133633 A1 WO2012133633 A1 WO 2012133633A1 JP 2012058334 W JP2012058334 W JP 2012058334W WO 2012133633 A1 WO2012133633 A1 WO 2012133633A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
disposable
oxidase
electrode
measurement electrode
Prior art date
Application number
PCT/JP2012/058334
Other languages
French (fr)
Japanese (ja)
Inventor
武司 上村
希 稲葉
加成恵 板岡
悦夫 篠原
Original Assignee
株式会社テクノメデイカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テクノメデイカ filed Critical 株式会社テクノメデイカ
Publication of WO2012133633A1 publication Critical patent/WO2012133633A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/906Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Definitions

  • the present invention relates to a disposable sensor for measuring lysine.
  • Lysine which is one of the essential amino acids, is an important amino acid that repairs body tissues and participates in the growth of the body. If it is deficient, it may cause growth disorders. As described above, lysine is the most important amino acid even though it is a very important amino acid. Lysine is not so much contained in vegetable protein, but is abundant in dairy products such as milk and cheese, and soy, meat, and fish. If it is not ingested, it will be deficient in the body, resulting in modern malnutrition. As mentioned above, lysine is an important item in diagnosing modern malnutrition, but malnutrition is usually diagnosed by examining the amount of albumin. There is no lysine measurement for the diagnosis.
  • a biosensor using a metal complex such as potassium ferricyanide or an organic compound as an electron acceptor has been proposed.
  • the substrate to be measured and the enzyme The substrate concentration is obtained from the oxidation current value by oxidizing the reduced form of the electron acceptor generated by the enzymatic reaction with the electrode at the electrode (see Patent Document 1).
  • the substrate concentration is obtained from the oxidation current value by oxidizing the reduced form of the electron acceptor generated by the enzymatic reaction with the electrode at the electrode (see Patent Document 1).
  • the inventors focused on the above-mentioned present situation, and conducted intensive research on a biosensor capable of measuring lysine, and found an optimal combination of lysine oxidase and electron acceptor for measuring lysine in a disposable sensor.
  • An object of the present invention is to provide a disposable sensor capable of measuring lysine.
  • a disposable lysine sensor forms an electrode system having at least a measurement electrode and a counter electrode on an electrically insulating substrate, and reacts with an enzyme, an electron acceptor and a sample solution.
  • a sensor that electrochemically detects a change in substance concentration with the electrode system and measures the substrate concentration of the sample solution, lysine oxidase and ferricyan ion that reacts with lysine using the lysine oxidase as a catalyst are held on the measurement electrode.
  • the reaction layer is formed.
  • the lysine oxidase can be composed of, for example, a mold-derived enzyme, specifically, an enzyme derived from a Trichoderma bacterium, and more specifically, an enzyme derived from Trichoderma viridae.
  • a second measurement electrode may be provided on the electrically insulating substrate, and a reaction layer not containing lysine oxidase holding ferricyanide that reacts with lysine using lysine oxidase as a catalyst may be formed on the second measurement electrode. Good.
  • a second measurement electrode is provided on the electrically insulating substrate, and a reaction layer holding a protein having no lysine oxidase activity and a ferricyan ion that reacts with lysine using lysine oxidase as a catalyst is formed on the second measurement electrode.
  • the protein having no lysine oxidase activity may be, for example, inactivated lysine oxidase.
  • the disposable lysine sensor forms an electrode system having at least a measurement electrode and a counter electrode on an electrically insulating substrate, and electrochemically changes a substance concentration during reaction of an enzyme, an electron acceptor and a sample solution.
  • a reaction layer holding lysine oxidase and ferricyanide that reacts with lysine using the lysine oxidase as a catalyst is formed on the measurement electrode. Therefore, lysine can be easily measured. This makes it possible to measure lysine even in diagnosis in general internal medicine and the like, so that more accurate diagnosis of malnutrition can be performed.
  • the inventors use an enzyme derived from mold as the lysine oxidase, specifically an enzyme derived from Trichoderma genus, more specifically an enzyme derived from Trichoderma viridae, and electron accepting. It was confirmed that favorable results were obtained by using ferricyan ion as a body. Further, by providing a second measurement electrode on the electrically insulating substrate, and forming a reaction layer not containing lysine oxidase holding ferricyan ion that reacts with lysine using lysine oxidase as a catalyst on the second measurement electrode.
  • a second measurement electrode is provided on the electrically insulating substrate, and a protein having no lysine oxidase activity (for example, inactivated lysine oxidase) and ferricia that reacts with lysine using lysine oxidase as a catalyst.
  • a protein having no lysine oxidase activity for example, inactivated lysine oxidase
  • ferricia that reacts with lysine using lysine oxidase as a catalyst.
  • FIG.3 (b), it is the graph which showed the lysine low concentration side.
  • 1 is a schematic development view of a disposable lysine sensor according to the present invention.
  • (A)-(e) is the schematic which shows the manufacturing method of a disposable lysine sensor.
  • (A) is a schematic top view of a disposable lysine sensor and a portable analyzer
  • (b) is a schematic top view which shows the state which mounted
  • FIG. 1 is a diagram showing a measurement principle in a disposable lysine sensor according to the present invention.
  • the disposable lysine sensor according to the present invention uses lysine oxidase and ferricyan ion as an electron acceptor. Then, lysine as a substrate contained in blood is oxidized by lysine oxidase, and by transferring electrons to ferricyan ion as an electron acceptor via lysine oxidase, ferricyan ion is reduced and ferrocyan ion And the concentration of lysine is measured based on the oxidation response current that flows when ferrocyanic ions are oxidized on the working electrode.
  • curve a shows the potential (V) and current density (A / cm 2) when 5 mM ferricyanide was deposited on the working electrode and a lysine solution having a concentration of 5 ⁇ mol / dL was added thereto. Showing the relationship.
  • curve b shows the potential when 5 mM ferricyanide is deposited on the working electrode, and a 5 ⁇ mol / dL lysine solution and 1 U / ml fungal lysine oxidase are added thereto.
  • the relationship between (V) and current density (A / cm 2) is shown.
  • a lysine oxidase a lysine oxidase derived from Trichoderma viridae (EC number: 1.4.3.14 sold by Sigma-Aldrich Japan Co., Ltd.), which is an enzyme derived from mold, was used. From the curves a and b, when the reaction proceeds, ferricyan ions are consumed in the vicinity of the electrode to generate ferrocyanide ions. By adding lysine oxidase to this, ferricyan ions function as a mediator of lysine oxidase, It can be confirmed that the current value on the oxidation side is increased because ferrocyanic ions are generated.
  • the redox peak derived from ferricyan ion could be confirmed in the lysine system as well as the glucose system. From this result, it was confirmed that the ferricyan ion functions as an electron acceptor of lysine oxidase.
  • Curves c and d show cyclic voltammograms by a reaction that does not depend on ferricyan ion (by hydrogen peroxide), respectively. From the curves c and d, it can be confirmed that hydrogen peroxide generated in this reaction does not greatly affect the current value on the oxidation side.
  • FIG. 3 (a) and FIG. 3 (b) show the results of experiments conducted to confirm what kind of current response is observed in the reaction system of lysine and lysine oxidase as the lysine concentration is increased.
  • the measurement conditions are as follows.
  • FIG. 3A shows a change in current value when lysine is sequentially added
  • FIG. 3B shows a current value according to a change in concentration due to the addition of lysine.
  • FIGS. 3A and 3B it was confirmed that the current value increased stepwise as the amount of lysine added was increased.
  • FIG. 4 is an enlarged graph of 150 nmol / ml or less assumed to be a practical concentration region in the test results shown in FIG.
  • the current value increased stepwise as the amount of lysine added was increased, so that a current response due to the reaction between lysine and lysine oxidase could be confirmed. Moreover, it has confirmed that the electric current value was correlated with the addition amount of lysine.
  • FIG. 5 is a schematic development view of a disposable lysine sensor according to the present invention
  • FIGS. 6A to 6E are schematic views showing a manufacturing method of a disposable lysine sensor.
  • Reference numeral 1 in the drawing denotes an insulating substrate.
  • substrate 1 After printing gold
  • the first measurement electrode 2 and the second measurement electrode 3 are formed at positions that are symmetrical with respect to the counter electrode 4.
  • a photoresist film 8 is formed so as to cover portions of the substrate 1 other than the electrode portions 2a, 3a, 4a and the terminal portions 2b, 3b, 4b of the first measurement electrode 2, the second measurement electrode 3, and the counter electrode 4.
  • a polymer solution in which lysine oxidase, a surfactant, and ferricyan ions are dissolved is applied and dried on the electrode 2a of the first measurement electrode 2, and the first reaction layer 6 is formed on the electrode 2a of the first measurement electrode 2.
  • the same amount of the polymer solution in which the same amount of the surfactant and ferricyan ion as the first reaction layer 6 is applied is dried.
  • a second reaction layer 7 is formed on 3a (FIG. 6C).
  • a spacer 9 provided with a notch 9a for forming a specimen channel 12 is disposed on the photoresist film 8 (FIG. 6D), and a cover having an air hole 10 formed thereon.
  • the disposable lysine sensor is completed by providing 11 (FIG. 6E).
  • a notch 9 a of the spacer 9 surrounds the electrode portions 2 a, 3 a, 4 a of the first measurement electrode 2, the second measurement electrode 3 and the counter electrode 4, and the air hole 10 of the cover 11, and is arranged on the substrate 1.
  • the end portion located on the opposite side of the terminal portions 2b, 3b, and 4b is opened to form the sample introduction port 13.
  • the spacer 9 has a thickness that forms a specimen flow path 12 having a height that causes the capillary action of the specimen between the photoresist film 8 and the cover 11, specifically, for example, about 0.3 mm. It is thickness.
  • the disposable lysine sensor configured as described above is used by being mounted on a portable analyzer, for example.
  • 7A is a schematic top view of a disposable lysine sensor and a portable analyzer
  • FIG. 7B is a schematic top view showing a state in which the disposable lysine sensor is mounted on the portable analyzer
  • FIG. 8 is a portable analyzer. It is a block diagram which shows roughly the internal process of an apparatus.
  • symbol A indicates a disposable lysine sensor
  • symbol B indicates a portable analyzer
  • symbol 21 indicates a housing of the portable analyzer
  • symbol 22 indicates a display provided on the upper surface of the housing 21
  • Reference numeral 23 denotes an operation switch provided on the upper surface of the housing 21
  • reference numeral 24 denotes a sensor insertion opening provided at one end of the housing 21
  • reference numeral 25 denotes an output terminal.
  • FIG. 8 is a block diagram schematically showing the internal processing of the portable analyzer.
  • Reference numerals 26, 27, and 28 denote terminals connected to the terminal portions 2b, 3b, and 4b of the disposable lysine sensor, and reference numeral 29 denotes A control device for calculating the amount of lysine based on input signals from the terminals 26, 27 and 28, reference numeral 30 denotes a storage device, reference numeral 22 denotes the display, and reference numeral 25 denotes the output terminal.
  • the user inserts the prepared disposable lysine sensor A into the insertion port 24 of the portable analyzer B.
  • the terminal portions 2b, 3b, 4b of the disposable lysine sensor A are connected to the terminals 26, 27, 28 provided inside the portable analyzer B.
  • the user stabs his / her finger with a needle or the like to cause bleeding, and the blood is brought into contact with the sample introduction port 13, the blood is sucked into the sample flow path 12 by capillary action, and the first measurement electrode 2. And move to the electrode portions 2 a and 3 a of the second measuring electrode 3, that is, the reaction layers 6 and 7.
  • the reaction layer 7 does not contain lysine oxidase, only the contaminants in the sample solution are detected at the second measurement electrode 3.
  • the detection results detected by the first measurement electrode 2, the second measurement electrode 3 and the counter electrode 4 of the disposable lysine sensor A are transmitted through the terminal portions 2b, 3b and 4b to the terminals 26, 27,
  • the amount of lysine is calculated by calculating the difference between the detection result in the reaction layer 6 (lysine and contaminants) and the detection result in the reaction layer 7 (contamination matter). And the calculation result is stored in the storage unit 30 and the calculation result is displayed on the display 22 as necessary.
  • the control device 29 is configured to be able to output data stored in the storage unit 30 from the output terminal 25 to an external device as necessary.
  • the control device 29 can also be configured to determine whether or not malnutrition is based on the measured amount of lysine and output the determination result.
  • ferricyan ion functions as an electron acceptor of lysine oxidase, and that the current value is correlated with the amount of lysine added in the reaction system of lysine and lysine oxidase. Therefore, as in the above-described example, a lysine oxidase, a surfactant, and ferricyan ion are provided on the first measurement electrode, and the lysine concentration is determined with a simple disposable sensor configured to guide the specimen to the first measurement electrode. There is an effect that it becomes possible to measure.
  • the second reaction layer 7 containing the same amount of surfactant and ferricyan ion as the first reaction layer 6 is formed on the electrode 3a of the second measurement electrode 3, the measurement is performed. At this time, the conditions of the first measurement electrode 2 and the second measurement electrode 3 are aligned, so that an accurate measurement result can be obtained.
  • the second reaction layer 7 containing the same amount of surfactant and electron acceptor as the first reaction layer 6 is provided on the electrode 3a of the second measurement electrode 3, but the second reaction The structure of the layer 7 is not limited to this example.
  • the same amount of surfactant, electron acceptor, and deactivation as the first reaction layer 6 are used. You may form by apply
  • the second measurement electrode 3 is provided on the substrate and the second reaction layer 7 is formed on the second measurement electrode 3, but the second measurement electrode 3 is not an essential component. It is not necessary to provide it.
  • the second measurement electrode 3 it is possible to obtain a measurement result that is not affected by contaminants even without providing a filter. Examples of contaminants that have a large influence on the measurement of lysine include L-ascorbic acid.
  • ascorbate oxidase is provided on the first measurement electrode 2 as a reagent for removing L-ascorbic acid. obtain.
  • lysine oxidase derived from Trichoderma viride (EC number: 1.4.3.14 sold by Sigma-Aldrich Japan Co., Ltd.) is used as the lysine oxidase.
  • any enzyme can be used as long as the ferricyan ion functions as an electron acceptor.
  • mold-derived lysine oxidase other than Trichoderma viridae may be used, and lysine oxidase other than mold-derived, specifically, for example, extracted from immune tissue coming out of fish skin It may be lysine oxidase or human lysine oxidase.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

[Problem] To provide a disposable sensor capable of measuring lysine. [Solution] The disposable lysine sensor relating to the present invention is a sensor for measuring the matrix concentration of a sample solution by forming an electrode system having at least a measuring electrode and a counter electrode on an electrically insulating substrate and using the electrode system to electrochemically detect changes in the substance concentration during reaction of an enzyme, electron receptor and sample solution, which is characterized by the formation, on the measuring electrode, of a reaction layer that supports lysine oxidase and ferricyan ions, which react with lysine in the presence of the lysine oxidase as a catalyst.

Description

使い捨てリジンセンサDisposable lysine sensor
 本発明は、リジンを測定するための使い捨てセンサに関する。 The present invention relates to a disposable sensor for measuring lysine.
 近年、食事を摂取しているにも係わらず栄養失調となる、所謂、現代型栄養失調になる患者が増加している。
 現代型栄養失調とは、一定量の食事を摂取しているにも係らず、食事内容の偏りから身体に必要な成分が欠乏することにより生じる栄養失調のことを言う。
 好きなものを自由に選んで食べることができる現代では、美食や偏食により本人に自覚症状がないまま現代型栄養失調になる患者も多い。
 身体に必要な成分は、多々あるが、筋肉、臓器、骨、皮膚、血液、ホルモン、酵素、免疫物質などをつくる役割を果たすたんぱく質は特に重要である。
 たんぱく質は、20種類のアミノ酸が結合してできている高分子で、人間のからだは約10万種類のたんぱく質で構成されている。前記アミノ酸のうちの、9種類は体内で合成することができないので、食物から摂取しなければならず、これら9種類のアミノ酸を必須アミノ酸という。
In recent years, an increasing number of patients become so-called modern malnutrition, which is malnourished despite taking a meal.
Modern malnutrition refers to malnutrition caused by a lack of ingredients necessary for the body due to a bias in the content of the meal, even though a certain amount of meal is ingested.
In the present age when you can choose and eat whatever you like, there are many patients who suffer from modern malnutrition without subjective symptoms due to gastronomy and unbalanced diets.
There are many components necessary for the body, but proteins that play a role in creating muscles, organs, bones, skin, blood, hormones, enzymes, immune substances, etc. are particularly important.
Proteins are macromolecules made by combining 20 amino acids, and the human body is composed of about 100,000 types of proteins. Of these amino acids, 9 types cannot be synthesized in the body, so they must be taken from food, and these 9 types of amino acids are called essential amino acids.
特開平10-197473公報JP-A-10-197473
 必須アミノ酸の一つであるリジンは、身体の組織を修復し、身体の成長に関与する重要なアミノ酸であり、これが欠乏すると成長障害等を起こすことがある。
 上記したようにリジンは、非常に重要なアミノ酸であるにも関わらず、必須アミノ酸の中で最も不足し易い。
 リジンは、植物性タンパク質にはあまり含まれてなく、牛乳やチーズ等の乳製品や、大豆、肉、魚などに豊富に含まれているため、間違ったダイエットや偏食等により、これらの食品を摂取しないと体内で不足してしまい、結果的に、現代型栄養失調につながる。
 上記したようにリジンは、現代型栄養失調を診断する上で重要な項目であるにも関わらず、栄養失調の診断は、アルブミン量を検査することにより行われることが一般的であり、栄養失調の診断のためにリジンの測定が行われることはない。
 従来から、酵素を電子受容体として使用する代わりに、フェリシアン化カリウム等の金属錯体や有機化合物を電子受容体として用いるバイオセンサは提案されており、この種のバイオセンサでは、測定すべき基質と酵素との間の酵素反応によって生じた電子受容体の還元体を電極で酸化することにより、その酸化電流値から基質濃度を求めているが(特許文献1参照)、この種のバイオセンサにおいても、リジンの測定を行うためのバイオセンサは存在していない。
 発明者等は、上記した現状に着目し、リジンを測定することができるバイオセンサについて鋭意研究を行い、使い捨てセンサにおいてリジンを測定するために最適なリジンオキシダーゼと電子受容体との組合せを見出した。
 本発明の目的は、リジンを測定することができる使い捨てセンサを提供することにある。
Lysine, which is one of the essential amino acids, is an important amino acid that repairs body tissues and participates in the growth of the body. If it is deficient, it may cause growth disorders.
As described above, lysine is the most important amino acid even though it is a very important amino acid.
Lysine is not so much contained in vegetable protein, but is abundant in dairy products such as milk and cheese, and soy, meat, and fish. If it is not ingested, it will be deficient in the body, resulting in modern malnutrition.
As mentioned above, lysine is an important item in diagnosing modern malnutrition, but malnutrition is usually diagnosed by examining the amount of albumin. There is no lysine measurement for the diagnosis.
Conventionally, instead of using an enzyme as an electron acceptor, a biosensor using a metal complex such as potassium ferricyanide or an organic compound as an electron acceptor has been proposed. In this type of biosensor, the substrate to be measured and the enzyme The substrate concentration is obtained from the oxidation current value by oxidizing the reduced form of the electron acceptor generated by the enzymatic reaction with the electrode at the electrode (see Patent Document 1). In this type of biosensor, There is no biosensor for measuring lysine.
The inventors focused on the above-mentioned present situation, and conducted intensive research on a biosensor capable of measuring lysine, and found an optimal combination of lysine oxidase and electron acceptor for measuring lysine in a disposable sensor. .
An object of the present invention is to provide a disposable sensor capable of measuring lysine.
 上記した目的を達成するために本発明に係る使い捨てリジンセンサは、電気絶縁性の基板上に少なくとも測定極と対極とを有する電極系を形成し、酵素、電子受容体及び試料液の反応時の物質濃度変化を電気化学的に前記電極系で検知し前記試料液の基質濃度を測定するセンサにおいて、前記測定極上に、リジンオキシダーゼ、及び前記リジンオキシダーゼを触媒としてリジンと反応するフェリシアンイオンを保持した反応層を形成したことを特徴とする。
 前記リジンオキシダーゼは、例えば、カビ由来の酵素から成り得、具体的には、トリコデルマ属の菌体由来の酵素であり、さらに具体的には、トリコデルマビリデ菌由来の酵素であり得る。
 また、前記電気絶縁性の基板上に第二測定極を設け、該第二測定極にリジンオキシダーゼを触媒としてリジンと反応するフェリシアンイオンを保持したリジンオキシダーゼを含まない反応層を形成してもよい。
 さらにまた、前記電気絶縁性の基板上に第二測定極を設け、該第二測定極にリジンオキシダーゼ活性のないタンパク質及びリジンオキシダーゼを触媒としてリジンと反応するフェリシアンイオンを保持した反応層を形成してもよい。この場合、前記リジンオキシダーゼ活性のないタンパク質は、例えば、失活させたリジンオキシダーゼであり得る。
In order to achieve the above object, a disposable lysine sensor according to the present invention forms an electrode system having at least a measurement electrode and a counter electrode on an electrically insulating substrate, and reacts with an enzyme, an electron acceptor and a sample solution. In a sensor that electrochemically detects a change in substance concentration with the electrode system and measures the substrate concentration of the sample solution, lysine oxidase and ferricyan ion that reacts with lysine using the lysine oxidase as a catalyst are held on the measurement electrode. The reaction layer is formed.
The lysine oxidase can be composed of, for example, a mold-derived enzyme, specifically, an enzyme derived from a Trichoderma bacterium, and more specifically, an enzyme derived from Trichoderma viridae.
Alternatively, a second measurement electrode may be provided on the electrically insulating substrate, and a reaction layer not containing lysine oxidase holding ferricyanide that reacts with lysine using lysine oxidase as a catalyst may be formed on the second measurement electrode. Good.
Furthermore, a second measurement electrode is provided on the electrically insulating substrate, and a reaction layer holding a protein having no lysine oxidase activity and a ferricyan ion that reacts with lysine using lysine oxidase as a catalyst is formed on the second measurement electrode. May be. In this case, the protein having no lysine oxidase activity may be, for example, inactivated lysine oxidase.
 本発明に係る使い捨てリジンセンサは、電気絶縁性の基板上に少なくとも測定極と対極とを有する電極系を形成し、酵素、電子受容体及び試料液の反応時の物質濃度変化を電気化学的に前記電極系で検知し前記試料液の基質濃度を測定するセンサにおいて、前記測定極上に、リジンオキシダーゼ、及び前記リジンオキシダーゼを触媒としてリジンと反応するフェリシアンイオンを保持した反応層を形成しているので、リジンを容易に測定することが可能になる。これにより、一般内科等における診断においても、リジンを測定することが可能になるので、より正確な栄養失調の診断を行うことが可能になる。
 発明者等は、前記リジンオキシダーゼとして、カビ由来の酵素、具体的には、トリコデルマ属の菌体由来の酵素、さらに具体的には、トリコデルマビリデ菌由来の酵素を使用し、かつ、電子受容体としてフェリシアンイオンを使用することにより、好適な結果が得られることを確認した。
 また、前記電気絶縁性の基板上に第二測定極を設け、該第二測定極にリジンオキシダーゼを触媒としてリジンと反応するフェリシアンイオンを保持したリジンオキシダーゼを含まない反応層を形成することにより、リジンオキシダーゼを含む第一測定極とリジンオキシダーゼを含まない第二測定極の測定結果に基づいてリジンの量を測定することが可能になるので、より正確な測定が可能になる。
 また、前記電気絶縁性の基板上に第二測定極を設け、該第二測定極にリジンオキシダーゼ活性のないタンパク質(例えば、失活させたリジンオキシダーゼ)及びリジンオキシダーゼを触媒としてリジンと反応するフェリシアンイオンを保持した反応層を形成することにより、第一測定極と第二測定極との条件をより近くすることができるので、さらに正確な測定が可能になる。
The disposable lysine sensor according to the present invention forms an electrode system having at least a measurement electrode and a counter electrode on an electrically insulating substrate, and electrochemically changes a substance concentration during reaction of an enzyme, an electron acceptor and a sample solution. In the sensor that detects the substrate concentration of the sample solution by detecting with the electrode system, a reaction layer holding lysine oxidase and ferricyanide that reacts with lysine using the lysine oxidase as a catalyst is formed on the measurement electrode. Therefore, lysine can be easily measured. This makes it possible to measure lysine even in diagnosis in general internal medicine and the like, so that more accurate diagnosis of malnutrition can be performed.
The inventors use an enzyme derived from mold as the lysine oxidase, specifically an enzyme derived from Trichoderma genus, more specifically an enzyme derived from Trichoderma viridae, and electron accepting. It was confirmed that favorable results were obtained by using ferricyan ion as a body.
Further, by providing a second measurement electrode on the electrically insulating substrate, and forming a reaction layer not containing lysine oxidase holding ferricyan ion that reacts with lysine using lysine oxidase as a catalyst on the second measurement electrode. Since the amount of lysine can be measured based on the measurement results of the first measurement electrode containing lysine oxidase and the second measurement electrode not containing lysine oxidase, more accurate measurement is possible.
In addition, a second measurement electrode is provided on the electrically insulating substrate, and a protein having no lysine oxidase activity (for example, inactivated lysine oxidase) and ferricia that reacts with lysine using lysine oxidase as a catalyst. By forming the reaction layer holding the ions, the conditions of the first measurement electrode and the second measurement electrode can be made closer, so that more accurate measurement is possible.
本発明に係る使い捨てリジンセンサにおける測定原理を示す図である。It is a figure which shows the measurement principle in the disposable lysine sensor which concerns on this invention. フェリシアンイオン及びカビ由来のリジンオキシダーゼを用いてサイクリックボルタンメトリー法により得たサイクリックボルタモグラムを示すグラフである。It is a graph which shows the cyclic voltammogram obtained by the cyclic voltammetry method using the lysine oxidase derived from ferricyan ion and mold. (a)はリジンを逐次添加していったときの電流値の変化を示すグラフであり、(b)はリジンを添加による濃度変化に従う電流値を示すグラフである。(A) is a graph which shows the change of the electric current value when adding lysine sequentially, (b) is a graph which shows the electric current value according to the density | concentration change by addition of lysine. 図3(b)において、リジン低濃度側を示したグラフである。In FIG.3 (b), it is the graph which showed the lysine low concentration side. 本発明に係る使い捨てリジンセンサの概略展開図である。1 is a schematic development view of a disposable lysine sensor according to the present invention. (a)~(e)は使い捨てリジンセンサの製造方法を示す概略図である。(A)-(e) is the schematic which shows the manufacturing method of a disposable lysine sensor. (a)は使い捨てリジンセンサ及び携帯型分析装置の概略上面図、(b)は使い捨てリジンセンサを携帯型分析装置に装着した状態を示す概略上面図である。(A) is a schematic top view of a disposable lysine sensor and a portable analyzer, (b) is a schematic top view which shows the state which mounted | wore the portable analyzer with the disposable lysine sensor. 携帯型分析装置の内部処理を概略的に示すブロック図である。It is a block diagram which shows roughly the internal process of a portable analyzer.
 以下、添付図面を参照して本発明に係る使い捨てリジンセンサの実施の形態について説明していく。 Hereinafter, embodiments of the disposable lysine sensor according to the present invention will be described with reference to the accompanying drawings.
 図1は、本発明に係る使い捨てリジンセンサにおける測定原理を示す図である。
 図面に示すように、本発明に係る使い捨てリジンセンサでは、リジンオキシダーゼと、電子受容体としてフェリシアンイオンとが用いられる。そして、血液中に含有される基質としてのリジンがリジンオキシダーゼによって酸化され、リジンオキシダーゼを介して電子受容体としてのフェリシアンイオンへ電子を移動することで、フェリシアンイオンが還元されてフェロシアンイオンを生成し、フェロシアンイオンを作用極上で酸化する際に流れる酸化応答電流に基づいてリジンの濃度を測定する。
FIG. 1 is a diagram showing a measurement principle in a disposable lysine sensor according to the present invention.
As shown in the drawings, the disposable lysine sensor according to the present invention uses lysine oxidase and ferricyan ion as an electron acceptor. Then, lysine as a substrate contained in blood is oxidized by lysine oxidase, and by transferring electrons to ferricyan ion as an electron acceptor via lysine oxidase, ferricyan ion is reduced and ferrocyan ion And the concentration of lysine is measured based on the oxidation response current that flows when ferrocyanic ions are oxidized on the working electrode.
 リジンの測定(図2)
 使用機器:
 ・ポテンショ・ガルバノ・スタット(HA-501)(北斗電工株式会社製)
 ・ファンクションジェネレーター(HB-104)(北斗電工株式会社製)
 測定条件:
 ・対極、作用極ともに白金線を使用
 ・リジンの濃度は5μmol/dL
 ・フェリシアンイオン濃度は5mM
 ・電位走査範囲-300~800mV
 ・走査速度 50 mV/s
 ・環境温度28℃
 図2において、曲線aは、作用極上に5mMの濃度のフェリシアンイオンを堆積し、そこに5μmol/dLの濃度のリジン溶液を添加した時の電位(V)及び電流密度(A/cm2)の関係を示している。
 図2において、曲線bは、作用極上に5mMの濃度のフェリシアンイオンを堆積し、そこに5μmol/dLの濃度のリジン溶液及び1U/mlの濃度のカビ由来のリジンオキシダーゼを添加した時の電位(V)及び電流密度(A/cm2)の関係を示している。ここで、リジンオキシダーゼとしてはカビ由来の酵素であるトリコデルマビリデ菌由来のリジンオキシダーゼ(シグマアルドリッチジャパン株式会社販売のEC番号:1.4.3.14)を用いた。
 曲線a及びbから、反応が進行すると、電極近傍でフェリシアンイオンが消費されフェロシアンイオンが生成され、これにリジンオキシダーゼを添加することで、フェリシアンイオンがリジンオキシダーゼのメディエーターとして機能し、さらにフェロシアンイオンが生成されるため酸化側の電流値が増大していることが確認できる。このようにグルコースの系と同様にリジンの系においてもフェリシアンイオンに由来する酸化還元ピークを確認することができた。この結果より、フェリシアンイオンがリジンオキシダーゼの電子受容体として機能していることが確認できた。
 また、曲線c及びdは、それぞれフェリシアンイオンによらない(過酸化水素による)反応によるサイクリックボルタモグラムを示している。曲線c及びdから、この反応において発生する過酸化水素は酸化側の電流値にあまり影響を与えないことが確認できる。
Measurement of lysine (Figure 2)
Used equipment:
・ Potentiot Galvano Stat (HA-501) (made by Hokuto Denko Corporation)
-Function generator (HB-104) (made by Hokuto Denko Corporation)
Measurement condition:
・ Platinum wire is used for both counter and working electrodes ・ Lysine concentration is 5μmol / dL
・ Felicyan ion concentration is 5mM
-Potential scanning range -300 to 800mV
Scanning speed 50 mV / s
Ambient temperature 28 ℃
In FIG. 2, curve a shows the potential (V) and current density (A / cm 2) when 5 mM ferricyanide was deposited on the working electrode and a lysine solution having a concentration of 5 μmol / dL was added thereto. Showing the relationship.
In FIG. 2, curve b shows the potential when 5 mM ferricyanide is deposited on the working electrode, and a 5 μmol / dL lysine solution and 1 U / ml fungal lysine oxidase are added thereto. The relationship between (V) and current density (A / cm 2) is shown. Here, as a lysine oxidase, a lysine oxidase derived from Trichoderma viridae (EC number: 1.4.3.14 sold by Sigma-Aldrich Japan Co., Ltd.), which is an enzyme derived from mold, was used.
From the curves a and b, when the reaction proceeds, ferricyan ions are consumed in the vicinity of the electrode to generate ferrocyanide ions. By adding lysine oxidase to this, ferricyan ions function as a mediator of lysine oxidase, It can be confirmed that the current value on the oxidation side is increased because ferrocyanic ions are generated. Thus, the redox peak derived from ferricyan ion could be confirmed in the lysine system as well as the glucose system. From this result, it was confirmed that the ferricyan ion functions as an electron acceptor of lysine oxidase.
Curves c and d show cyclic voltammograms by a reaction that does not depend on ferricyan ion (by hydrogen peroxide), respectively. From the curves c and d, it can be confirmed that hydrogen peroxide generated in this reaction does not greatly affect the current value on the oxidation side.
 次に、リジンとリジンオキシダーゼの反応系において、リジン濃度を高くするに従って、どのような電流応答がみられるか確認するため実験を行なった結果を図3(a)及び(b)に示す。
 測定条件は以下の通りである。
 使用機器:
 ・ポテンショ・ガルバノ・スタット(HA-501)(北斗電工株式会社製)
 ・ファンクションジェネレーター(HB-104)(北斗電工株式会社製)
 測定条件:
 ・対極に金板、作用極に金を蒸着した板を使用
 ・リジンオキシダーゼは22.4μl添加
 ・フェリシアンイオン濃度は5mM
 ・電位走査範囲550mV
 ・環境温度28℃
 作用極上に5mMの濃度のフェリシアンイオンを堆積し、そこに22.4μlのリジンオキシダーゼを添加すると共に、リジン溶液を表1のように添加した。ここで、リジンオキシダーゼとしてはカビ由来の酵素であるトリコデルマビリデ菌由来のリジンオキシダーゼ(シグマアルドリッチジャパン株式会社販売のEC番号:1.4.3.14)を用いた。
Figure JPOXMLDOC01-appb-T000001
 図3(a)はリジンを逐次添加していったときの電流値の変化を、図3(b)はリジンを添加による濃度変化に従う電流値を示している。
 図3(a)及び(b)に示すように、リジンの添加量を増やしていくに従って、階段状に電流値が増大することが確認できた。
 図4は、図3(b)に示す試験結果において、実用濃度領域と想定する150 nmol/ml以下を拡大したグラフである。
 図3及び図4の試験結果に示すように、リジンの添加量を増やしていくに従って、階段状に電流値が増大していくことから、リジンとリジンオキシダーゼの反応による電流応答が確認できた。また、電流値が、リジン添加量と相関していることが確認できた。
Next, FIG. 3 (a) and FIG. 3 (b) show the results of experiments conducted to confirm what kind of current response is observed in the reaction system of lysine and lysine oxidase as the lysine concentration is increased.
The measurement conditions are as follows.
Used equipment:
・ Potentiot Galvano Stat (HA-501) (made by Hokuto Denko Corporation)
-Function generator (HB-104) (made by Hokuto Denko Corporation)
Measurement condition:
・ Use a gold plate on the counter electrode and a gold-deposited plate on the working electrode ・ Add 22.4 μl of lysine oxidase ・ Ferician ion concentration is 5 mM
-Potential scanning range 550mV
Ambient temperature 28 ℃
On the working electrode, ferricyanide at a concentration of 5 mM was deposited, 22.4 μl of lysine oxidase was added thereto, and a lysine solution was added as shown in Table 1. Here, as a lysine oxidase, a lysine oxidase derived from Trichoderma viridae (EC number: 1.4.3.14 sold by Sigma-Aldrich Japan Co., Ltd.), which is an enzyme derived from mold, was used.
Figure JPOXMLDOC01-appb-T000001
FIG. 3A shows a change in current value when lysine is sequentially added, and FIG. 3B shows a current value according to a change in concentration due to the addition of lysine.
As shown in FIGS. 3A and 3B, it was confirmed that the current value increased stepwise as the amount of lysine added was increased.
FIG. 4 is an enlarged graph of 150 nmol / ml or less assumed to be a practical concentration region in the test results shown in FIG.
As shown in the test results of FIGS. 3 and 4, the current value increased stepwise as the amount of lysine added was increased, so that a current response due to the reaction between lysine and lysine oxidase could be confirmed. Moreover, it has confirmed that the electric current value was correlated with the addition amount of lysine.
 次に、上記した測定原理を適用した使い捨てリジンセンサの一実施例について説明していく。
 図5は本発明に係る使い捨てリジンセンサの概略展開図であり、図6(a)~(e)は使い捨リジンセンサの製造方法を示す概略図である。
 図中符号1は、絶縁性基板を示している。この基板1の上に、金を半導体印刷技術により印刷した後、加熱乾燥することにより第一測定極2、第二測定極3を形成し、また、銀/塩化銀を半導体印刷技術により印刷した後、加熱乾燥することにより対極4を形成する。前記第一測定極2と第二測定極3とは、対極4を中心として左右対称となる位置に形成されている。(図6(a))。
 次に、前記基板1の前記第一測定極2、第二測定極3及び対極4の電極部分2a,3a,4a及び端子部分2b,3b,4b以外の部分を覆うようにフォトレジスト膜8を設ける(図6(b))。
 その後、第一測定極2の電極2a上に、リジンオキシダーゼ、界面活性剤及びフェリシアンイオンを溶かしたポリマー溶液の塗布乾燥を行い、第一測定極2の電極2a上に第一反応層6を形成する。同時に、第二測定極3の電極3a上に、第一反応層6と同量の界面活性剤及びフェリシアンイオンを溶かした同量のポリマー溶液の塗布乾燥を行い、第二測定極3の電極3a上に第二反応層7を形成する(図6(c))。
 次いで、前記フォトレジスト膜8上に、検体流路12を形成する切り欠き9aが設けられたスペーサ9を配置し(図6(d))、さらにその上に、空気孔10が形成されたカバー11を設けることにより使い捨てリジンセンサは完成する(図6(e))。
 前記スペーサ9の切り欠き9aは、前記第一測定極2、第二測定極3及び対極4の電極部分2a,3a,4a及びカバー11の空気孔10を囲み、かつ、基板1に配置された状態で端子部2b、3b及び4bの反対側に位置する端部が開放して検体導入口13を形成するように形成されている。また、スペーサ9の厚みはフォトレジスト膜8とカバー11との間に、検体の毛管現象を生じさせる高さの検体流路12を形成する厚み、具体的には、例えば、0.3mm程度の厚みである。
 上記した構成により、使用者が検体導入口13から血液等の検体を導入すると、検体は毛管現象により検体流路12内で前記第一測定極2及び第二測定極3の電極部分2a及び3aまで進むことになる。
Next, an example of a disposable lysine sensor to which the above-described measurement principle is applied will be described.
FIG. 5 is a schematic development view of a disposable lysine sensor according to the present invention, and FIGS. 6A to 6E are schematic views showing a manufacturing method of a disposable lysine sensor.
Reference numeral 1 in the drawing denotes an insulating substrate. On this board | substrate 1, after printing gold | metal with a semiconductor printing technique, the 1st measurement pole 2 and the 2nd measurement pole 3 were formed by drying by heating, and silver / silver chloride was printed with the semiconductor printing technique. Thereafter, the counter electrode 4 is formed by heating and drying. The first measurement electrode 2 and the second measurement electrode 3 are formed at positions that are symmetrical with respect to the counter electrode 4. (FIG. 6A).
Next, a photoresist film 8 is formed so as to cover portions of the substrate 1 other than the electrode portions 2a, 3a, 4a and the terminal portions 2b, 3b, 4b of the first measurement electrode 2, the second measurement electrode 3, and the counter electrode 4. Provided (FIG. 6B).
Thereafter, a polymer solution in which lysine oxidase, a surfactant, and ferricyan ions are dissolved is applied and dried on the electrode 2a of the first measurement electrode 2, and the first reaction layer 6 is formed on the electrode 2a of the first measurement electrode 2. Form. At the same time, on the electrode 3a of the second measuring electrode 3, the same amount of the polymer solution in which the same amount of the surfactant and ferricyan ion as the first reaction layer 6 is applied is dried. A second reaction layer 7 is formed on 3a (FIG. 6C).
Next, a spacer 9 provided with a notch 9a for forming a specimen channel 12 is disposed on the photoresist film 8 (FIG. 6D), and a cover having an air hole 10 formed thereon. The disposable lysine sensor is completed by providing 11 (FIG. 6E).
A notch 9 a of the spacer 9 surrounds the electrode portions 2 a, 3 a, 4 a of the first measurement electrode 2, the second measurement electrode 3 and the counter electrode 4, and the air hole 10 of the cover 11, and is arranged on the substrate 1. In this state, the end portion located on the opposite side of the terminal portions 2b, 3b, and 4b is opened to form the sample introduction port 13. The spacer 9 has a thickness that forms a specimen flow path 12 having a height that causes the capillary action of the specimen between the photoresist film 8 and the cover 11, specifically, for example, about 0.3 mm. It is thickness.
With the configuration described above, when the user introduces a sample such as blood from the sample introduction port 13, the sample is subjected to capillary action in the sample channel 12, and the electrode portions 2 a and 3 a of the first measurement electrode 2 and the second measurement electrode 3. Will go on.
 上記したように構成された使い捨てリジンセンサは、例えば、携帯型分析装置に装着して使用される。
 図7(a)は使い捨てリジンセンサ及び携帯型分析装置の概略上面図、図7(b)は使い捨てリジンセンサを携帯型分析装置に装着した状態を示す概略上面図、図8は、携帯型分析装置の内部処理を概略的に示すブロック図である。
 図中、符号Aは使い捨てリジンセンサを、符号Bは携帯型分析装置を示しており、符号21は、携帯型分析装置のハウジングを、符号22はハウジング21の上面に設けられたディスプレイを、符号23はハウジング21の上面に設けられた操作スイッチを、符号24はハウジング21の一端に設けられたセンサ挿入口を、そして、符号25は出力端子を各々示している。
 図8は、携帯型分析装置の内部処理を概略的に示すブロック図であり、符号26,27,28は、各々使い捨てリジンセンサの端子部2b,3b,4bと接続する端子を、符号29は端子26,27,28からの入力信号に基づいてリジンの量を算出する制御装置を、符号30は記憶装置を、符号22は前記ディスプレイを、そして符号25は前記出力端子を各々示している。
The disposable lysine sensor configured as described above is used by being mounted on a portable analyzer, for example.
7A is a schematic top view of a disposable lysine sensor and a portable analyzer, FIG. 7B is a schematic top view showing a state in which the disposable lysine sensor is mounted on the portable analyzer, and FIG. 8 is a portable analyzer. It is a block diagram which shows roughly the internal process of an apparatus.
In the figure, symbol A indicates a disposable lysine sensor, symbol B indicates a portable analyzer, symbol 21 indicates a housing of the portable analyzer, symbol 22 indicates a display provided on the upper surface of the housing 21, Reference numeral 23 denotes an operation switch provided on the upper surface of the housing 21, reference numeral 24 denotes a sensor insertion opening provided at one end of the housing 21, and reference numeral 25 denotes an output terminal.
FIG. 8 is a block diagram schematically showing the internal processing of the portable analyzer. Reference numerals 26, 27, and 28 denote terminals connected to the terminal portions 2b, 3b, and 4b of the disposable lysine sensor, and reference numeral 29 denotes A control device for calculating the amount of lysine based on input signals from the terminals 26, 27 and 28, reference numeral 30 denotes a storage device, reference numeral 22 denotes the display, and reference numeral 25 denotes the output terminal.
 以下、上記したように構成された使い捨てリジンセンサの使用方法について簡単に説明していく。
 図7(b)に示すように、使用者は用意した使い捨てリジンセンサAを携帯型分析装置Bの挿入口24に差し込む。これにより、使い捨てリジンセンサAの端子部分2b,3b,4bが携帯型分析装置Bの内部に設けられた端子26,27,28に接続される。
 この状態で、使用者が針等で自分の指を刺して出血させ、その血液を検体導入口13に接触させると、血液が毛管現象によって検体流路12に吸い込まれ、前記第一測定極2及び第二測定極3の電極部分2a及び3a、即ち、反応層6及び7まで移動する。
 そして、第一測定極2においては、試料液中のリジン及び試料液中の夾雑物質が検出される。
 また、反応層7にはリジンオキシダーゼが含まれていないので、第二測定極3においては、試料液中の夾雑物質のみが検出される。
 使い捨てリジンセンサAの第一測定極2、第二測定極3及び対極4によって検出された検出結果は、各端子部分2b,3b,4bを介して、携帯型分析装置Bの端子26,27,28から制御装置29に送られ、該制御装置29において、反応層6における検出結果(リジン及び夾雑物質)と、反応層7における検出結果(夾雑物質)の差を計算することによって、リジンの量を演算し、その演算結果を記憶部30に記憶させると共に、必要に応じて、ディスプレイ22に演算結果を表示させる。また、制御装置29は、記憶部30に記憶させたデータを必要に応じて出力端子25から外部装置に出力することができるように構成されている。
 また、制御装置29は、測定したリジンの量に基づいて、栄養失調か否かを判定し、その判定結果を出力するようにも構成され得る。
Hereinafter, a method of using the disposable lysine sensor configured as described above will be briefly described.
As shown in FIG. 7B, the user inserts the prepared disposable lysine sensor A into the insertion port 24 of the portable analyzer B. Thus, the terminal portions 2b, 3b, 4b of the disposable lysine sensor A are connected to the terminals 26, 27, 28 provided inside the portable analyzer B.
In this state, when the user stabs his / her finger with a needle or the like to cause bleeding, and the blood is brought into contact with the sample introduction port 13, the blood is sucked into the sample flow path 12 by capillary action, and the first measurement electrode 2. And move to the electrode portions 2 a and 3 a of the second measuring electrode 3, that is, the reaction layers 6 and 7.
At the first measurement electrode 2, lysine in the sample solution and contaminants in the sample solution are detected.
Further, since the reaction layer 7 does not contain lysine oxidase, only the contaminants in the sample solution are detected at the second measurement electrode 3.
The detection results detected by the first measurement electrode 2, the second measurement electrode 3 and the counter electrode 4 of the disposable lysine sensor A are transmitted through the terminal portions 2b, 3b and 4b to the terminals 26, 27, The amount of lysine is calculated by calculating the difference between the detection result in the reaction layer 6 (lysine and contaminants) and the detection result in the reaction layer 7 (contamination matter). And the calculation result is stored in the storage unit 30 and the calculation result is displayed on the display 22 as necessary. The control device 29 is configured to be able to output data stored in the storage unit 30 from the output terminal 25 to an external device as necessary.
The control device 29 can also be configured to determine whether or not malnutrition is based on the measured amount of lysine and output the determination result.
 上述の通り、フェリシアンイオンがリジンオキシダーゼの電子受容体として機能することは確認できており、かつ、リジンとリジンオキシダーゼの反応系において電流値がリジン添加量と相関していることも確認できているので、上記した実施例のように第一測定極上にリジンオキシダーゼ、界面活性剤及びフェリシアンイオンを設け、この第一測定極上に検体を導くように構成した簡易な使い捨てセンサで、リジン濃度を測定することが可能になるという効果を奏する。 As described above, it has been confirmed that ferricyan ion functions as an electron acceptor of lysine oxidase, and that the current value is correlated with the amount of lysine added in the reaction system of lysine and lysine oxidase. Therefore, as in the above-described example, a lysine oxidase, a surfactant, and ferricyan ion are provided on the first measurement electrode, and the lysine concentration is determined with a simple disposable sensor configured to guide the specimen to the first measurement electrode. There is an effect that it becomes possible to measure.
 以上説明した実施例では、第二測定極3の電極3a上に、第一反応層6と同量の界面活性剤及びフェリシアンイオンを含有した第二反応層7を形成しているので、測定に際して、第一測定極2及び第二測定極3の条件が揃い、正確な測定結果を得られるという効果を奏する。 In the embodiment described above, since the second reaction layer 7 containing the same amount of surfactant and ferricyan ion as the first reaction layer 6 is formed on the electrode 3a of the second measurement electrode 3, the measurement is performed. At this time, the conditions of the first measurement electrode 2 and the second measurement electrode 3 are aligned, so that an accurate measurement result can be obtained.
 上記した実施例では、第二測定極3の電極3a上に、第一反応層6と同量の界面活性剤及び電子受容体を含有した第二反応層7を設けているが、第二反応層7の構成は本実施例に限定されることなく、たとえば、第一反応層6との条件をより揃えるために、第一反応層6と同量の界面活性剤、電子受容体及び失活させたリジンオキシダーゼを溶かしたポリマー溶液の塗布乾燥を行うことによって形成してもよい。 In the embodiment described above, the second reaction layer 7 containing the same amount of surfactant and electron acceptor as the first reaction layer 6 is provided on the electrode 3a of the second measurement electrode 3, but the second reaction The structure of the layer 7 is not limited to this example. For example, in order to make the conditions with the first reaction layer 6 more uniform, the same amount of surfactant, electron acceptor, and deactivation as the first reaction layer 6 are used. You may form by apply | coating and drying the polymer solution which dissolved the made lysine oxidase.
 さらに、上記した実施例では、基板上に第二測定極3を設け、第二測定極3上に第二反応層7を形成しているが、第二測定極3は必須の構成要件ではなく、設けなくてもよい。例えば、第一測定極2上に、検体に含まれている夾雑物質を消去し得る試薬を保持させることにより、検体に含まれている夾雑物質を除去することができるので、第二測定極3を設けなくても夾雑物質の影響を受けない測定結果を得ることが可能になる。リジンの測定への影響が大きい夾雑物質としては、例えば、L-アスコルビン酸が挙げられ、この場合、第一測定極2上にL-アスコルビン酸を除去するための試薬としてアスコルビン酸オキシダーゼが設けられ得る。 Furthermore, in the above-described embodiment, the second measurement electrode 3 is provided on the substrate and the second reaction layer 7 is formed on the second measurement electrode 3, but the second measurement electrode 3 is not an essential component. It is not necessary to provide it. For example, by holding a reagent capable of erasing the contaminant contained in the sample on the first measurement electrode 2, the contaminant contained in the sample can be removed, so the second measurement electrode 3 It is possible to obtain a measurement result that is not affected by contaminants even without providing a filter. Examples of contaminants that have a large influence on the measurement of lysine include L-ascorbic acid. In this case, ascorbate oxidase is provided on the first measurement electrode 2 as a reagent for removing L-ascorbic acid. obtain.
 上記した実施例では、リジンオキシダーゼとして、トリコデルマビリデ菌由来のリジンオキシダーゼ(シグマアルドリッチジャパン株式会社販売のEC番号:1.4.3.14)を用いているが、本発明に用いられるリジンオキシダーゼは上記した実施例に限定されることなく、フェリシアンイオンが電子受容体として機能する酵素であれば任意の酵素を使用することができる。
 具体的には、トリコデルマビリデ菌以外のカビ由来のリジンオキシダーゼであってもよく、また、カビ由来以外のリジンオキシダーゼ、具体的には、例えば、魚の皮膚から出ている免疫組織から抽出されるリジンオキシダーゼや人由来のリジンオキシダーゼであってもよい。
In the above-described examples, lysine oxidase derived from Trichoderma viride (EC number: 1.4.3.14 sold by Sigma-Aldrich Japan Co., Ltd.) is used as the lysine oxidase. Without being limited to the examples, any enzyme can be used as long as the ferricyan ion functions as an electron acceptor.
Specifically, mold-derived lysine oxidase other than Trichoderma viridae may be used, and lysine oxidase other than mold-derived, specifically, for example, extracted from immune tissue coming out of fish skin It may be lysine oxidase or human lysine oxidase.
 A 使い捨てリジンセンサ
 1 基板
 2 第一測定極
  2a 電極
  2b 端子部
 3 第二測定極
  3a 電極
  3b 端子部
 4 対極
  4a 電極
  4b 端子部
 6 第一反応層
 7 第二反応層
 8 フォトレジスト膜
 9 スペーサ
  9a 切り欠き
 10 空気孔
 11 カバー
 12 検体流路
 13 検体導入口

 B 携帯型分析装置
 21 ハウジング
 22 ディスプレイ
 23 操作スイッチ
 24 センサ挿入口
 25 出力端子
 26 端子
 27 端子
 28 端子
 29 制御装置
 30 記憶装置
A Disposable lysine sensor 1 Substrate 2 First measurement electrode 2a Electrode 2b Terminal part 3 Second measurement electrode 3a Electrode 3b Terminal part 4 Counter electrode 4a Electrode 4b Terminal part 6 First reaction layer 7 Second reaction layer 8 Photoresist film 9 Spacer 9a Notch 10 Air hole 11 Cover 12 Sample flow path 13 Sample inlet

B Portable analyzer 21 Housing 22 Display 23 Operation switch 24 Sensor insertion port 25 Output terminal 26 Terminal 27 Terminal 28 Terminal 29 Control device 30 Storage device

Claims (9)

  1.  電気絶縁性の基板上に少なくとも測定極と対極とを有する電極系を形成し、
     酵素、電子受容体及び試料液の反応時の物質濃度変化を電気化学的に前記電極系で検知し前記試料液の基質濃度を測定するセンサにおいて、
     前記測定極上に、リジンオキシダーゼ、及び前記リジンオキシダーゼを触媒としてリジンと反応するフェリシアンイオンを保持した反応層を形成した
     ことを特徴とする使い捨てリジンセンサ。
    Forming an electrode system having at least a measurement electrode and a counter electrode on an electrically insulating substrate;
    In a sensor for electrochemically detecting a change in substance concentration during reaction of an enzyme, an electron acceptor and a sample solution with the electrode system and measuring a substrate concentration of the sample solution,
    A disposable lysine sensor characterized in that a reaction layer holding lysine oxidase and ferricyan ion that reacts with lysine using the lysine oxidase as a catalyst is formed on the measurement electrode.
  2.  前記リジンオキシダーゼがカビ由来の酵素から成る
     ことを特徴とする請求項1に記載の使い捨てリジンセンサ。
    The disposable lysine sensor according to claim 1, wherein the lysine oxidase comprises an enzyme derived from mold.
  3.  前記リジンオキシダーゼが、トリコデルマ属の菌体由来の酵素である
     ことを特徴とする請求項2に記載の使い捨てリジンセンサ。
    The disposable lysine sensor according to claim 2, wherein the lysine oxidase is an enzyme derived from Trichoderma spp.
  4.  前記リジンオキシダーゼが、トリコデルマビリデ菌由来の酵素である
     ことを特徴とする請求項3に記載の使い捨てリジンセンサ。
    The disposable lysine sensor according to claim 3, wherein the lysine oxidase is an enzyme derived from Trichoderma viridae.
  5.  前記電気絶縁性の基板上に第二測定極を設け、該第二測定極にリジンオキシダーゼを触媒としてリジンと反応するフェリシアンイオンを保持したリジンオキシダーゼを含まない反応層を形成した
     ことを特徴とする請求項1~4の何れか一項に記載の使い捨てリジンセンサ。
    A second measurement electrode is provided on the electrically insulating substrate, and a reaction layer not containing lysine oxidase holding ferricyanide that reacts with lysine using lysine oxidase as a catalyst is formed on the second measurement electrode. The disposable lysine sensor according to any one of claims 1 to 4.
  6.  前記電気絶縁性の基板上に第二測定極を設け、該第二測定極にリジンオキシダーゼ活性のないタンパク質及びリジンオキシダーゼを触媒としてリジンと反応するフェリシアンイオンを保持した反応層を形成した
     ことを特徴とする請求項1~4の何れか一項に記載の使い捨てリジンセンサ。
    A second measurement electrode is provided on the electrically insulating substrate, and a reaction layer holding a protein having no lysine oxidase activity and ferricyan ion that reacts with lysine using lysine oxidase as a catalyst is formed on the second measurement electrode. The disposable lysine sensor according to any one of claims 1 to 4, characterized in that:
  7.  前記リジンオキシダーゼ活性のないタンパク質が失活させたリジンオキシダーゼである
     ことを特徴とする請求項6に記載の使い捨てリジンセンサ。
    The disposable lysine sensor according to claim 6, wherein the protein having no lysine oxidase activity is inactivated lysine oxidase.
  8.  前記測定極上に形成された反応層に試料液中の夾雑物質を除去する試薬を保持させた
     ことを特徴とする請求項1~4の何れか一項に記載の使い捨てリジンセンサ。
    The disposable lysine sensor according to any one of claims 1 to 4, wherein a reagent for removing contaminants in the sample liquid is held in the reaction layer formed on the measurement electrode.
  9.  前記夾雑物質がL-アスコルビン酸であり、夾雑物質を除去する試薬がアスコルビン酸オキシダーゼである
     ことを特徴とする請求項8に記載の使い捨てリジンセンサ。
    The disposable lysine sensor according to claim 8, wherein the contaminant is L-ascorbic acid, and the reagent for removing the contaminant is ascorbate oxidase.
PCT/JP2012/058334 2011-03-29 2012-03-29 Disposable lysine sensor WO2012133633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-071654 2011-03-29
JP2011071654 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012133633A1 true WO2012133633A1 (en) 2012-10-04

Family

ID=46931335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058334 WO2012133633A1 (en) 2011-03-29 2012-03-29 Disposable lysine sensor

Country Status (1)

Country Link
WO (1) WO2012133633A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009430A (en) * 2015-06-22 2017-01-12 株式会社村田製作所 Biosensor
CN114965640A (en) * 2022-05-23 2022-08-30 中国科学院亚热带农业生态研究所 Peptide aptamer-based lysine biosensor and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501627A (en) * 1999-06-02 2003-01-14 ノヴァ バイオメディカル コーポレイション Disposable sensor and manufacturing method
JP2007514931A (en) * 2003-10-31 2007-06-07 ライフスキャン・スコットランド・リミテッド Method for reducing the effects of direct and indirect interference currents in electrochemical test strips
JP2008209274A (en) * 2007-02-27 2008-09-11 Citizen Holdings Co Ltd Electrochemical sensor
JP2009171874A (en) * 2008-01-23 2009-08-06 Citizen Holdings Co Ltd Method for measuring saccharified protein concentration, and biosensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501627A (en) * 1999-06-02 2003-01-14 ノヴァ バイオメディカル コーポレイション Disposable sensor and manufacturing method
JP2007514931A (en) * 2003-10-31 2007-06-07 ライフスキャン・スコットランド・リミテッド Method for reducing the effects of direct and indirect interference currents in electrochemical test strips
JP2008209274A (en) * 2007-02-27 2008-09-11 Citizen Holdings Co Ltd Electrochemical sensor
JP2009171874A (en) * 2008-01-23 2009-08-06 Citizen Holdings Co Ltd Method for measuring saccharified protein concentration, and biosensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRANCESCO RICCI ET AL.: "Prussian Blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability", ANALYTICA CHIMICA ACTA, vol. 485, 26 May 2003 (2003-05-26), pages 111 - 120 *
HOLGER OLSCHEWSKI ET AL.: "Screen-printed enzyme sensors for L-lysine determination", ENZYME AND MICROBIAL TECHNOLOGY, vol. 26, no. 7, April 2000 (2000-04-01), pages 537 - 543 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009430A (en) * 2015-06-22 2017-01-12 株式会社村田製作所 Biosensor
CN114965640A (en) * 2022-05-23 2022-08-30 中国科学院亚热带农业生态研究所 Peptide aptamer-based lysine biosensor and preparation method thereof
CN114965640B (en) * 2022-05-23 2024-03-15 中国科学院亚热带农业生态研究所 Lysine biosensor based on peptide aptamer and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4876186B2 (en) Biological sample temperature measurement method, biological sample concentration measurement method, sensor chip, and biosensor system
TWI513978B (en) Test strip, detecting device and detection method
ES2592268T3 (en) Method for rapid electrochemical analysis
JP4814952B2 (en) Method for measuring hematocrit value of blood sample, method for measuring concentration of analyte in blood sample, sensor chip and sensor unit
US9938556B2 (en) Reagent composition for biosensor and biosensor having the same
WO2004061444A1 (en) Thin analyzing device
US20050056551A1 (en) Electrochemical detection of analytes
JP2011080990A (en) Multi-analyte test strip with inline working electrode and shared opposing counter/reference electrode
JP2009250806A (en) Biosensor system, sensor chip and measuring method of concentration of analyte in blood sample
WO2003106702A1 (en) Method of measuring glucose concentration and glucose sensor with the use of glucose dehydrogenase
TW201432257A (en) Test strip, detecting device and detection method
KR101357134B1 (en) Method for Measuring Analytes in Blood Samples Using Electrochemical Biosensor and a Portable Analyzer
US20020179441A1 (en) Biosensor and method of producing the same
JP2006275819A (en) Biosensor
WO2012133633A1 (en) Disposable lysine sensor
JP4913355B2 (en) Biosensor
JPWO2007123178A1 (en) Biosensor
KR100739865B1 (en) Bio-sensor
TW201120440A (en) Detection method, specimen and detector for redox substance involved in food.
JP2008233084A (en) Biosensor for disease diagnosis using electrode
US20230193343A1 (en) Apparatus and method for measuring salivary glucose levels
US10788441B2 (en) Measuring method of sensor using interdigitated array electrode, measuring apparatus and computer readable medium storing measuring program
JP2004184155A (en) Saliva sugar biosensor, and measuring method
CN102879448A (en) CD (Compact Disc) silver film enzyme-free glucose sensor and application thereof
TW201602574A (en) Test strip, detecting device and detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP