WO2012133279A1 - Optical system - Google Patents

Optical system Download PDF

Info

Publication number
WO2012133279A1
WO2012133279A1 PCT/JP2012/057710 JP2012057710W WO2012133279A1 WO 2012133279 A1 WO2012133279 A1 WO 2012133279A1 JP 2012057710 W JP2012057710 W JP 2012057710W WO 2012133279 A1 WO2012133279 A1 WO 2012133279A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensor
optical system
angle
display panel
optical
Prior art date
Application number
PCT/JP2012/057710
Other languages
French (fr)
Japanese (ja)
Inventor
倫大 河合
健太郎 今村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012133279A1 publication Critical patent/WO2012133279A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup

Definitions

  • the present invention relates to an optical system capable of forming an image of a projection object in a space.
  • Patent Documents 1 to 3 an optical system that forms an image of a projection object in a space using a reflective imaging element has been proposed (for example, Patent Documents 1 to 3).
  • the optical system has a reflective imaging element and a projection, and an image displayed in space (hereinafter referred to as “aerial image”) is in a plane-symmetric position with the reflective imaging element as a symmetry plane.
  • the image of the projection object is formed.
  • This optical system uses specular reflection of a reflective imaging element, and in principle, the ratio of the size of the image of the projection object and the image projected in space is 1: 1.
  • the reflective imaging element includes an optical element that includes a hole penetrating in the thickness direction of a flat substrate and includes two mirror elements perpendicular to the inner wall of each hole (for example, see Patent Document 1). 4), or a plurality of transparent cylindrical bodies projecting in the thickness direction of the substrate and having an optical element composed of two mirror surface elements orthogonal to the inner wall surface of each cylindrical body. (For example, see FIG. 7 of Patent Document 1).
  • Patent Document 1 has tens of thousands to hundreds of thousands of square holes each having a side of about 50 ⁇ m to 200 ⁇ m formed on a substrate having a thickness of 50 ⁇ m to 200 ⁇ m.
  • the inner surface is mirror-coated by electroforming, nanoprinting or sputtering.
  • Patent Document 3 discloses an optical system in which an infrared camera is arranged on the side where the projection object of the reflective imaging element is arranged to detect that a human hand touches the aerial image. .
  • Patent Documents 1 to 3 For the purpose of reference, the entire disclosure of Patent Documents 1 to 3 is incorporated herein by reference.
  • JP 2008-158114 A International Publication No. 2009/136578 International Publication No. 2008/123500
  • Patent Document 3 does not disclose a quantitative relationship between the installation position of the infrared camera and the projection object and the detection accuracy, the optimal arrangement position of the infrared camera is unknown.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a reflective imaging element that can accurately detect contact with an aerial image by optimizing the installation positions of an optical sensor and a projection object. It is to provide an optical system having a child.
  • An optical system includes a reflective imaging element having a display panel, two mirror elements that contribute to imaging, and a mirror element facing either of the two mirror elements, and the reflective imaging element At least one photosensor disposed on the display panel side, wherein the at least one photosensor is disposed to face the display panel, and a width of each of the two specular elements is a, When the height of each of the two specular elements is b, the angle ⁇ 1 formed by the optical axis of the at least one photosensor and the normal direction of the reflective imaging element satisfies the equation (1). , The image displayed on the display surface of the display panel is imaged at a plane-symmetrical position with the reflective imaging element as a symmetry plane.
  • the installation angle of the display panel is equal to the angle ⁇ 1.
  • the angle ⁇ 1 satisfies 30 ° ⁇ 1 ⁇ 70 °.
  • the at least one photosensor includes a first photosensor and a second photosensor, and when viewed from the normal direction of the reflective imaging element, the second photosensor is a first photosensor.
  • the axis As the axis of symmetry, it is arranged in a line-symmetrical position with the first photosensor, and when the counterclockwise direction is the positive direction and the clockwise direction is the negative direction, the light of the first axis and the first photosensor.
  • the angle ⁇ satisfies 0 ° ⁇ ⁇ 65 °
  • the first One axis is parallel to a bisected line that bisects the angle formed by the two specular elements.
  • the display panel and the at least one photosensor are connected to an arrangement control module that controls the arrangement of the display panel and the at least one photosensor.
  • the light emitted from the at least one photosensor is infrared or visible light.
  • the at least one photosensor includes a plurality of photosensors.
  • the optical system includes an optical sensor module in which the plurality of optical sensors are arranged in an array.
  • each of the plurality of optical sensors independently detects contact with each of a plurality of aerial images formed to overlap in a normal direction of the reflective imaging element.
  • an optical system having a reflective imaging element that can accurately detect contact with an aerial image is provided.
  • FIG. 6 is a diagram illustrating a modification example of the optical system 100.
  • FIG. 6 is a diagram illustrating another embodiment of the optical system 100. 2 is a schematic plan view of the optical sensor module 120.
  • FIG. 1A is a schematic diagram of the optical system 100
  • FIG. 1B is a schematic plan view of the reflective imaging element 10.
  • the optical system 100 shown in FIG. 1A includes a display panel 30, a reflective imaging element 10, and at least one photosensor 40 disposed on the display panel 30 side of the reflective imaging element 10. At least one photosensor 40 is arranged to face the display surface of the display panel 30.
  • the optical system 100 forms an image displayed on the display surface of the display panel 30 at a plane-symmetric position with the reflective imaging element 10 as a symmetry plane, and an aerial image 50 is obtained. Further, the optical sensor 40 can detect that, for example, a human hand F touches the aerial image 50.
  • the light emitted from the optical sensor 40 is preferably infrared or visible light. In the case of the optical sensor 40 using visible light, the observer can easily recognize the position of the light emitted from the optical sensor 40.
  • the optical sensor 40 is less susceptible to the influence of surrounding visible light (for example, light from a fluorescent lamp), so that the optical sensor 40 is less likely to malfunction.
  • a TOF (Time-Of-Flight) type infrared sensor is used as the optical sensor 40.
  • the reflective imaging element 10 includes a flat substrate 12, a plurality of through holes 22 that penetrate in the thickness direction of the substrate 12, and inner walls of the plurality of through holes 22. It has two mirror surface elements 14a and 15a orthogonal to each other.
  • the plurality of through holes 22 are each rectangular (for example, square).
  • the two specular elements 14a and 15a are specular elements that contribute to imaging. Furthermore, it has the mirror surface elements 14b and 15b facing either of the two mirror surface elements 14a and 15a. When there is one optical sensor 40, only one of the mirror elements 14b and 15b may be formed.
  • the specular elements 14b and 15b are specular elements that receive light (for example, infrared rays) from the optical sensor 40.
  • FIG. 1 (c) and 1 (d) are schematic enlarged views of the region X of the reflective imaging element 10 shown in FIG. 1 (b).
  • the light 60 from the display panel 30 is incident on the two mirror elements 14a and 15a and reflected (metal reflection or total reflection), thereby condensing in the air.
  • the specular elements 14a, 14b, 15a and 15b each have a width a and a height b.
  • the width a is preferably 50 ⁇ m or more and 1500 ⁇ m or less (for example, 209 ⁇ m)
  • the height b is preferably 150 ⁇ m or more and 4500 ⁇ m or less (for example, 160 ⁇ m).
  • Patent Application 1 In the international publication 2011/136214 (hereinafter referred to as Patent Application 1), the present applicant examined the installation position of the display panel from which an aerial image with high visibility is obtained. For reference, the entire disclosure of Patent Application 1 is incorporated herein by reference. In patent application 1, it was found that the installation angle ⁇ 2 of the display panel 30 preferably satisfies the formula (2).
  • the angle ⁇ 1 formed by the optical axis of at least one photosensor 40 and the normal direction L of the reflective imaging element 10 also preferably satisfies the formula (2).
  • the optical sensor 40 when the optical sensor 40 is arranged, it is possible to accurately detect contact with an aerial image.
  • the optical system 100 allows the optical sensor 40 and the display panel 30 to be arranged so that the optical sensor 40 and the display panel 30 do not interfere with each other, and the optical sensor 40 and the display panel 30 are connected in a reflective manner.
  • the image element 10 can be arranged so as to be hidden from the observer. Furthermore, since the positional relationship among the display panel 30, the optical sensor 40, and the reflective imaging element 10 is constant, an optimal positional relationship is easily provided.
  • FIG. 2 is a diagram for explaining the positional relationship of the optical sensors 40 when viewed from the normal direction of the reflective imaging element 10.
  • the second photosensor 40b when viewed from the normal direction of the reflective imaging element 10, the second photosensor 40b is line-symmetric with the first photosensor 40a with the first axis 71 as the axis of symmetry. Placed in position.
  • the first axis 71 is parallel to a bisector that bisects the angle formed by the two specular elements 14a and 15a (see the dotted line 70 in FIG. 1C).
  • the first photosensor 40a and the second photosensor 40b are arranged so that the center P of the display area of the display panel 30 and the first axis 71 overlap. It is preferable to arrange.
  • the center of the aerial image 50 and the center P of the display area of the display panel 30 overlap.
  • the light 80 emitted from the optical sensor 40 enters, for example, the mirror element 14b facing the mirror element 14a that contributes to image formation, and is reflected by the mirror element 14b. Enters the mirror surface element 14a, and the light reflected by the mirror surface element 14a travels toward the aerial image.
  • the inventor made an angle formed by the first axis 71 and the optical axis of the first optical sensor (for example, a TOF type infrared sensor) 40a, where counterclockwise is a positive direction and clockwise is a negative direction.
  • the relationship between the angle ⁇ and the sensor intensity Is was simulated when the angle between the first axis 71 and the optical axis of the second optical sensor (for example, the TOF infrared sensor) 40b was ⁇ .
  • FIG.2 (c) is a graph which shows the result which the inventor simulated.
  • the sensor intensity Is is preferably greater than 0% (0 ° ⁇ ⁇ 65 °) and the sensor intensity Is is considered from the utilization efficiency of light from the photosensor. 50% or more (35 ° ⁇ ⁇ ⁇ 55 °) is more preferable.
  • the simulation results show that the angle ⁇ does not depend on the angle ⁇ 1.
  • Two or more optical sensors 40 can be used, and it may be detected that the aerial image 50 is touched by time division.
  • the reflected light intensity is too strong. Therefore, in the case of the TOF type infrared sensor, it is preferable to use the reflected light intensity within an angle ⁇ range detectable by the sensor.
  • the reflected light intensity decreases in proportion to the square of the distance.
  • the optical system 100 can be modified to an optical system incorporating a module 91 (hereinafter referred to as an “arrangement control module”) that controls the relative arrangement relationship between the display panel 30 and the optical sensor 40.
  • the optical system having the arrangement control module 91 facilitates optimal arrangement of the display panel 30 and the optical sensor 40.
  • the optical sensors 40a to 40d that independently detect that the aerial images 50a and 50b are touched can be installed without interfering with each other.
  • the angle ⁇ 1 and the angle ⁇ 2 corresponding to the angle ⁇ of each of the optical sensors 40a to 40d are preferably independently 0 ° ⁇ 1, ⁇ 2 ⁇ 65 °, and 35 ° ⁇ ⁇ 1, ⁇ 2 ⁇ 55. More preferably.
  • the axis 71 in FIG. 5 corresponds to the axis 71 shown in FIG.
  • each of the optical sensors 40a to 40d is preferably connected to the corresponding arrangement control modules 91a and 91b.
  • an optical sensor module 120 in which a plurality of optical sensors 40 are arranged in an array may be used.
  • the detection accuracy of contact with an aerial image is further increased.
  • the present invention provides an optical system having a reflective imaging element that can accurately detect contact with an aerial image.
  • the present invention can be widely applied to an optical system having a reflective imaging element capable of forming an image of a projection object in space and a display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

An optical system (100) according to the present invention comprises a display panel (30), a reflection-type imaging element (10), and at least one light sensor (40) arranged on the display panel (30) side of the reflection-type imaging element (10). The at least one light sensor (40) is arranged so as to have a predetermined relationship, and an image displayed on the display surface of the display panel (30) is formed at a plane-symmetric position where the reflection-type imaging element (10) constitutes the plane of symmetry.

Description

光学システムOptical system
 本発明は、空間に被投影物の像を結像させることができる光学システムに関する。 The present invention relates to an optical system capable of forming an image of a projection object in a space.
 最近、反射型結像素子を用いて空間に被投影物を結像させる光学システムが提案されている(例えば、特許文献1~3)。光学システムは反射型結像素子と被投影物とを有し、空間に表示される像(以下、「空中映像」という。)は、反射型結像素子を対称面とする面対称な位置に、被投影物の像が結像したものである。この光学システムは、反射型結像素子の鏡面反射を利用しており、原理上、被投影物の像と空間に映し出される像との大きさの比は、1:1である。 Recently, an optical system that forms an image of a projection object in a space using a reflective imaging element has been proposed (for example, Patent Documents 1 to 3). The optical system has a reflective imaging element and a projection, and an image displayed in space (hereinafter referred to as “aerial image”) is in a plane-symmetric position with the reflective imaging element as a symmetry plane. The image of the projection object is formed. This optical system uses specular reflection of a reflective imaging element, and in principle, the ratio of the size of the image of the projection object and the image projected in space is 1: 1.
 反射型結像素子として、平板状の基板の厚さ方向に貫通させた穴を備え、各穴の内壁に直交する2つの鏡面要素から構成される光学素子を有するもの(例えば、特許文献1の図4参照)、あるいは基板の厚さ方向に突出させた複数の透明な筒状体を備え、各筒状体の内壁面に直交する2つの鏡面要素から構成される光学素子を有するものが開示されている(例えば、特許文献1の図7参照)。 The reflective imaging element includes an optical element that includes a hole penetrating in the thickness direction of a flat substrate and includes two mirror elements perpendicular to the inner wall of each hole (for example, see Patent Document 1). 4), or a plurality of transparent cylindrical bodies projecting in the thickness direction of the substrate and having an optical element composed of two mirror surface elements orthogonal to the inner wall surface of each cylindrical body. (For example, see FIG. 7 of Patent Document 1).
 特許文献1に開示されている反射型結像素子は、厚さが50μm~200μmの基板に、一辺が約50μm~200μmの正方形の穴が数万から数十万個形成されており、各穴の内面には、電鋳法、ナノプリント法やスパッタ法によって鏡面コーティングが施されている。また、特許文献3には、反射型結像素子の被投影物が配置されている側に赤外線カメラを配置し、空中映像に人の手が接触したことを検知できる光学システムが開示されている。 The reflective imaging element disclosed in Patent Document 1 has tens of thousands to hundreds of thousands of square holes each having a side of about 50 μm to 200 μm formed on a substrate having a thickness of 50 μm to 200 μm. The inner surface is mirror-coated by electroforming, nanoprinting or sputtering. Further, Patent Document 3 discloses an optical system in which an infrared camera is arranged on the side where the projection object of the reflective imaging element is arranged to detect that a human hand touches the aerial image. .
 参考のために、特許文献1から3の開示内容の全てを本明細書に援用する。 For the purpose of reference, the entire disclosure of Patent Documents 1 to 3 is incorporated herein by reference.
特開2008-158114号公報JP 2008-158114 A 国際公開第2009/136578号International Publication No. 2009/136578 国際公開第2008/123500号International Publication No. 2008/123500
 しかしながら、特許文献3には、赤外線カメラおよび被投影物の設置位置と検知精度との定量的な関係が開示されていないので、赤外線カメラの最適な配置位置が不明である。 However, since Patent Document 3 does not disclose a quantitative relationship between the installation position of the infrared camera and the projection object and the detection accuracy, the optimal arrangement position of the infrared camera is unknown.
 本発明は、上記問題に鑑みてなされたものであり、その目的は、光センサーおよび被投影物の設置位置を好適化することにより、空中映像への接触を精度よく検知できる、反射型結像素子を有する光学システムを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a reflective imaging element that can accurately detect contact with an aerial image by optimizing the installation positions of an optical sensor and a projection object. It is to provide an optical system having a child.
 本発明による光学システムは、表示パネルと、結像に寄与する2つの鏡面要素と、前記2つの鏡面要素のいずれかと対向する鏡面要素とを有する反射型結像素子と、前記反射型結像素子の前記表示パネル側に配置された少なくとも1つの光センサーとを有し、前記少なくとも1つの光センサーは、前記表示パネルと向かい合うように配置され、前記2つの鏡面要素のそれぞれの幅をaとし、前記2つの鏡面要素のそれぞれの高さをbとした場合、前記少なくとも1つの光センサーの光軸と、前記反射型結像素子の法線方向とのなす角度θ1は、式(1)を満たし、
Figure JPOXMLDOC01-appb-M000002
前記表示パネルの表示面に表示される映像を、前記反射型結像素子を対称面とする面対称な位置に結像する。
An optical system according to the present invention includes a reflective imaging element having a display panel, two mirror elements that contribute to imaging, and a mirror element facing either of the two mirror elements, and the reflective imaging element At least one photosensor disposed on the display panel side, wherein the at least one photosensor is disposed to face the display panel, and a width of each of the two specular elements is a, When the height of each of the two specular elements is b, the angle θ1 formed by the optical axis of the at least one photosensor and the normal direction of the reflective imaging element satisfies the equation (1). ,
Figure JPOXMLDOC01-appb-M000002
The image displayed on the display surface of the display panel is imaged at a plane-symmetrical position with the reflective imaging element as a symmetry plane.
 ある実施形態において、前記表示パネルの設置角度は、前記角度θ1と等しい。 In one embodiment, the installation angle of the display panel is equal to the angle θ1.
 ある実施形態において、前記角度θ1は、30°<θ1<70°を満たす。 In one embodiment, the angle θ1 satisfies 30 ° <θ1 <70 °.
 ある実施形態において、前記少なくとも1つの光センサーは、第1光センサーと第2光センサーとを含み、前記反射型結像素子の法線方向から見たとき、前記第2光センサーは、第1軸を対称軸として、前記第1光センサーと線対称な位置に配置され、反時計回りを正の方向、時計回りを負の方向としたとき、前記第1軸と前記第1光センサーの光軸とのなす角度をφとし、前記第1軸と前記第2光センサーの光軸とのなす角度を-φとしたとき、前記角度φは、0°<φ≦65°を満たし、前記第1軸は、前記2つの鏡面要素がなす角度を2等分する2等分直線と平行である。 In one embodiment, the at least one photosensor includes a first photosensor and a second photosensor, and when viewed from the normal direction of the reflective imaging element, the second photosensor is a first photosensor. With the axis as the axis of symmetry, it is arranged in a line-symmetrical position with the first photosensor, and when the counterclockwise direction is the positive direction and the clockwise direction is the negative direction, the light of the first axis and the first photosensor When the angle formed by the axis is φ and the angle formed by the first axis and the optical axis of the second photosensor is −φ, the angle φ satisfies 0 ° <φ ≦ 65 °, and the first One axis is parallel to a bisected line that bisects the angle formed by the two specular elements.
 ある実施形態において、前記表示パネルと前記少なくとも1つの光センサーは、前記表示パネルおよび前記少なくとも1つの光センサーの配置を制御する配置制御モジュールと接続されている。 In one embodiment, the display panel and the at least one photosensor are connected to an arrangement control module that controls the arrangement of the display panel and the at least one photosensor.
 ある実施形態において、前記少なくとも1つの光センサーから発せられる光は、赤外線または可視光である。 In one embodiment, the light emitted from the at least one photosensor is infrared or visible light.
 ある実施形態において、前記少なくとも1つの光センサーは、複数の光センサーを含む。 In one embodiment, the at least one photosensor includes a plurality of photosensors.
 ある実施形態において、上述の光学システムは、前記複数の光センサーがアレイ状に配置された光センサーモジュールを有する。 In one embodiment, the optical system includes an optical sensor module in which the plurality of optical sensors are arranged in an array.
 ある実施形態において、前記複数の光センサーのそれぞれは、前記反射型結像素子の法線方向に重畳するように結像された複数の空中映像のそれぞれへの接触を独立に検知する。 In one embodiment, each of the plurality of optical sensors independently detects contact with each of a plurality of aerial images formed to overlap in a normal direction of the reflective imaging element.
 本発明によると、空中映像への接触を精度よく検知できる、反射型結像素子を有する光学システムが提供される。 According to the present invention, an optical system having a reflective imaging element that can accurately detect contact with an aerial image is provided.
(a)は、本発明による実施形態における光学システム100の模式的な断面図であり、(b)は、反射型結像素子10の平面図であり、(c)および(d)は、領域Xを拡大した図である。(A) is a schematic sectional view of the optical system 100 in the embodiment according to the present invention, (b) is a plan view of the reflective imaging element 10, and (c) and (d) are regions. It is the figure which expanded X. (a)は、光センサー40の配置を説明する図であり、(b)は、光センサー40から発せられる光80の反射経路を説明する図であり、(c)は、角度φとセンサー強度Isとの関係を説明するグラフである。(A) is a figure explaining arrangement | positioning of the optical sensor 40, (b) is a figure explaining the reflection path | route of the light 80 emitted from the optical sensor 40, (c) is angle φ and sensor intensity | strength. It is a graph explaining the relationship with Is. 反射物からの距離と反射光強度との関係を示すグラフである。It is a graph which shows the relationship between the distance from a reflector, and reflected light intensity. 光学システム100の改変例を説明する図である。FIG. 6 is a diagram illustrating a modification example of the optical system 100. 光学システム100の他の実施形態を説明する図である。FIG. 6 is a diagram illustrating another embodiment of the optical system 100. 光センサーモジュール120の模式的な平面図である。2 is a schematic plan view of the optical sensor module 120. FIG.
 以下、図面を参照して本発明の実施形態を説明するが、本発明は例示する実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the illustrated embodiments.
 図1を参照して、本発明による実施形態における光学システム100を説明する。図1(a)は、光学システム100の模式的な図であり、図1(b)は、反射型結像素子10の模式的な平面図である。 An optical system 100 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1A is a schematic diagram of the optical system 100, and FIG. 1B is a schematic plan view of the reflective imaging element 10.
 図1(a)に示す光学システム100は、表示パネル30と、反射型結像素子10と、反射型結像素子10の表示パネル30側に配置された少なくとも1つの光センサー40とを有する。少なくとも1つの光センサー40は、表示パネル30の表示面と向かい合うように配置されている。光学システム100は、表示パネル30の表示面に表示される映像を、反射型結像素子10を対称面とする面対称な位置に結像し、空中映像50が得られる。また、光センサー40は、空中映像50に例えば人の手Fが触れたことを感知できる。光センサー40から発せられる光は、赤外線または可視光が好ましい。可視光を利用した光センサー40の場合、観察者が光センサー40から発せられる光の位置を認識しやすい。赤外線を利用した光センサーの場合、光センサー40が周りの可視光(例えば、蛍光灯からの光)の影響を受けにくくなるので光センサー40が誤作動しにくくなる。光センサー40として、例えばTOF(Time Of Flight)方式の赤外線センサーが用いられる。 The optical system 100 shown in FIG. 1A includes a display panel 30, a reflective imaging element 10, and at least one photosensor 40 disposed on the display panel 30 side of the reflective imaging element 10. At least one photosensor 40 is arranged to face the display surface of the display panel 30. The optical system 100 forms an image displayed on the display surface of the display panel 30 at a plane-symmetric position with the reflective imaging element 10 as a symmetry plane, and an aerial image 50 is obtained. Further, the optical sensor 40 can detect that, for example, a human hand F touches the aerial image 50. The light emitted from the optical sensor 40 is preferably infrared or visible light. In the case of the optical sensor 40 using visible light, the observer can easily recognize the position of the light emitted from the optical sensor 40. In the case of an optical sensor using infrared rays, the optical sensor 40 is less susceptible to the influence of surrounding visible light (for example, light from a fluorescent lamp), so that the optical sensor 40 is less likely to malfunction. As the optical sensor 40, for example, a TOF (Time-Of-Flight) type infrared sensor is used.
 図1(b)に示すように、反射型結像素子10は、平板状の基板12と、基板12の厚さ方向に貫通された複数の貫通孔22と、複数の貫通孔22の内壁に直交する2つの鏡面要素14aおよび15aを有する。複数の貫通孔22は、それぞれ矩形(例えば、正方形)である。2つの鏡面要素14aおよび15aは、結像に寄与する鏡面要素である。さらに、2つの鏡面要素14aおよび15aのいずれかと対向する鏡面要素14bおよび15bを有する。光センサー40が1つの場合、鏡面要素14bおよび15bは、いずれか1つだけ形成すればよい。鏡面要素14bおよび15bは、光センサー40からの光(例えば、赤外線)を受ける鏡面要素である。 As shown in FIG. 1B, the reflective imaging element 10 includes a flat substrate 12, a plurality of through holes 22 that penetrate in the thickness direction of the substrate 12, and inner walls of the plurality of through holes 22. It has two mirror surface elements 14a and 15a orthogonal to each other. The plurality of through holes 22 are each rectangular (for example, square). The two specular elements 14a and 15a are specular elements that contribute to imaging. Furthermore, it has the mirror surface elements 14b and 15b facing either of the two mirror surface elements 14a and 15a. When there is one optical sensor 40, only one of the mirror elements 14b and 15b may be formed. The specular elements 14b and 15b are specular elements that receive light (for example, infrared rays) from the optical sensor 40.
 図1(c)および図1(d)は、図1(b)に示した反射型結像素子10の領域Xの模式的な拡大図である。図1(c)および図1(d)に示すように、表示パネル30からの光60が2つの鏡面要素14aおよび15aに入射され反射(金属反射または全反射)されることにより、空中に結像する。鏡面要素14a、14b、15aおよび15bは、それぞれ幅aと高さbとを有する。例えば、幅aは、50μm以上1500μm以下が好ましく(例えば209μm)、高さbは、150μm以上4500μm以下(例えば160μm)が好ましい。 1 (c) and 1 (d) are schematic enlarged views of the region X of the reflective imaging element 10 shown in FIG. 1 (b). As shown in FIG. 1C and FIG. 1D, the light 60 from the display panel 30 is incident on the two mirror elements 14a and 15a and reflected (metal reflection or total reflection), thereby condensing in the air. Image. The specular elements 14a, 14b, 15a and 15b each have a width a and a height b. For example, the width a is preferably 50 μm or more and 1500 μm or less (for example, 209 μm), and the height b is preferably 150 μm or more and 4500 μm or less (for example, 160 μm).
 再び図1(a)を参照する。 Referring to FIG. 1 (a) again.
 本出願人は、国際公開2011/136214号(以下、特許出願1という)において、視認性の高い空中映像が得られる表示パネルの設置位置について検討した。参考までに、特許出願1の開示内容の全てを本願明細書に援用する。特許出願1において、表示パネル30の設置角度θ2は式(2)を満たすことが好ましいことを見出した。
Figure JPOXMLDOC01-appb-M000003
In the international publication 2011/136214 (hereinafter referred to as Patent Application 1), the present applicant examined the installation position of the display panel from which an aerial image with high visibility is obtained. For reference, the entire disclosure of Patent Application 1 is incorporated herein by reference. In patent application 1, it was found that the installation angle θ2 of the display panel 30 preferably satisfies the formula (2).
Figure JPOXMLDOC01-appb-M000003
 表示パネル30の設置角度θ2が式(2)を満たすように表示パネル30を設置すると、視認性の高い空中映像50が得られる。また、角度θ2は、特に、30°<θ2<70°を満たすと、より視認性の高い空中映像50が得られる。 When the display panel 30 is installed so that the installation angle θ2 of the display panel 30 satisfies the expression (2), an aerial image 50 with high visibility is obtained. In addition, when the angle θ2 satisfies 30 ° <θ2 <70 °, an aerial image 50 with higher visibility can be obtained.
 本発明者は、少なくとも1つの光センサー40の光軸と、反射型結像素子10の法線方向Lとのなす角度θ1も、式(2)を満たすことが好ましいことを見出した。 The inventor has found that the angle θ1 formed by the optical axis of at least one photosensor 40 and the normal direction L of the reflective imaging element 10 also preferably satisfies the formula (2).
 このように、光センサー40を配置すると、空中映像への接触を精度よく検知できる。角度θ1も、角度θ2と同様に、30°<θ1<70°を満たすことがより好ましく、さらに、θ1=θ2を満足することがより好ましい。 Thus, when the optical sensor 40 is arranged, it is possible to accurately detect contact with an aerial image. Similarly to the angle θ2, the angle θ1 also preferably satisfies 30 ° <θ1 <70 °, and more preferably satisfies θ1 = θ2.
 光学システム100により、光センサー40と表示パネル30とが互いに干渉し合うことのないように、光センサー40と表示パネル30とを配置でき、かつ、光センサー40と表示パネル30とが反射型結像素子10によって観察者から隠されるように配置できる。さらに、表示パネル30と光センサー40と反射型結像素子10との配置関係が一定なので、容易に最適な配置関係が提供される。 The optical system 100 allows the optical sensor 40 and the display panel 30 to be arranged so that the optical sensor 40 and the display panel 30 do not interfere with each other, and the optical sensor 40 and the display panel 30 are connected in a reflective manner. The image element 10 can be arranged so as to be hidden from the observer. Furthermore, since the positional relationship among the display panel 30, the optical sensor 40, and the reflective imaging element 10 is constant, an optimal positional relationship is easily provided.
 次に、光センサー40を2台配置した場合における、光センサー40の配置について図2を参照しながら説明する。図2は、反射型結像素子10の法線方向から見たときにおける、光センサー40の配置関係を説明する図である。 Next, the arrangement of the optical sensors 40 when two optical sensors 40 are arranged will be described with reference to FIG. FIG. 2 is a diagram for explaining the positional relationship of the optical sensors 40 when viewed from the normal direction of the reflective imaging element 10.
 図2(a)に示すように、反射型結像素子10の法線方向から見たとき、第2光センサー40bは、第1軸71を対称軸として、第1光センサー40aと線対称な位置に配置されている。第1軸71は、2つの鏡面要素14aおよび15aがなす角度を2等分する2等分直線と平行である(図1(c)の点線70を参照)。さらに、反射型結像素子10の法線方向から見たとき、表示パネル30の表示領域の中心Pと第1軸71とが重なるように、第1光センサー40aと第2光センサー40bとを配置することが好ましい。なお、反射型結像素子10の法線方向から見たとき、空中映像50の中心と表示パネル30の表示領域の中心Pとは重なっている。 As shown in FIG. 2A, when viewed from the normal direction of the reflective imaging element 10, the second photosensor 40b is line-symmetric with the first photosensor 40a with the first axis 71 as the axis of symmetry. Placed in position. The first axis 71 is parallel to a bisector that bisects the angle formed by the two specular elements 14a and 15a (see the dotted line 70 in FIG. 1C). Further, when viewed from the normal direction of the reflective imaging element 10, the first photosensor 40a and the second photosensor 40b are arranged so that the center P of the display area of the display panel 30 and the first axis 71 overlap. It is preferable to arrange. When viewed from the normal direction of the reflective imaging element 10, the center of the aerial image 50 and the center P of the display area of the display panel 30 overlap.
 図2(b)に示すように、光センサー40から発せられた光80は、例えば、結像に寄与する鏡面要素14aと対向する鏡面要素14bに入射し、鏡面要素14bで反射された光80は鏡面要素14aに入射し、鏡面要素14aで反射された光が空中映像へ向かう。 As shown in FIG. 2B, the light 80 emitted from the optical sensor 40 enters, for example, the mirror element 14b facing the mirror element 14a that contributes to image formation, and is reflected by the mirror element 14b. Enters the mirror surface element 14a, and the light reflected by the mirror surface element 14a travels toward the aerial image.
 また、発明者は、反時計回りを正の方向、時計回りを負の方向としたとき、第1軸71と第1光センサー(例えば、TOF方式の赤外線センサー)40aの光軸とのなす角度をφとし、第1軸71と第2光センサー(例えば、TOF方式の赤外線センサー)40bの光軸とのなす角度を-φとした場合における、角度φとセンサー強度Isとの関係をシミュレーションした。センサー強度Isとは、光センサー40の光の強度が最大となる光の強度をImaxとし、各角度φでのセンサーの光の強度をIφとしたとき、IφをImaxで割った値に100をかけたものである(Is=Iφ/Imax×100(%))。 Further, the inventor made an angle formed by the first axis 71 and the optical axis of the first optical sensor (for example, a TOF type infrared sensor) 40a, where counterclockwise is a positive direction and clockwise is a negative direction. Was simulated, and the relationship between the angle φ and the sensor intensity Is was simulated when the angle between the first axis 71 and the optical axis of the second optical sensor (for example, the TOF infrared sensor) 40b was −φ. . The sensor intensity Is refers to the value obtained by dividing Iφ by Imax, where Imax is the light intensity at which the light intensity of the light sensor 40 is maximum, and Iφ is the light intensity of the sensor at each angle φ. (Is = Iφ / Imax × 100 (%)).
 発明者は、2つの鏡面要素14aおよび15aのそれぞれの幅aおよび高さbが、a=209μm、b=160μmであり、θ1=61.6°を満たす場合における、角度φとセンサー強度Isとの関係をシミュレーションした。図2(c)は、発明者がシミュレーションした結果を示すグラフである。 The inventor determines that the angle φ and the sensor strength Is when the width a and the height b of the two mirror surface elements 14a and 15a are a = 209 μm and b = 160 μm and θ1 = 61.6 ° are satisfied. The relationship was simulated. FIG.2 (c) is a graph which shows the result which the inventor simulated.
 図2(c)からわかるように、角度φ=45°のときセンサー強度Is(=Imax)は100%である。角度φは、使用する光センサーの種類にもよるが、光センサーからの光の利用効率から考えれば、センサー強度Isが0%超(0°<φ≦65°)が好ましく、センサー強度Isが50%以上(35°≦φ≦55°)がより好ましい。さらに、シミュレーションの結果から、角度φは、角度θ1に依存しないことがわかった。 As can be seen from FIG. 2C, the sensor intensity Is (= Imax) is 100% when the angle φ = 45 °. Although the angle φ depends on the type of photosensor used, the sensor intensity Is is preferably greater than 0% (0 ° <φ ≦ 65 °) and the sensor intensity Is is considered from the utilization efficiency of light from the photosensor. 50% or more (35 ° ≦ φ ≦ 55 °) is more preferable. Furthermore, the simulation results show that the angle φ does not depend on the angle θ1.
 光センサー40は、2台以上用いることができ、また、時分割により空中映像50に接触したことを検知してもよい。 Two or more optical sensors 40 can be used, and it may be detected that the aerial image 50 is touched by time division.
 光センサー40として例えばTOF方式の赤外線センサーを用いる場合、反射光強度が強すぎるとセンサーが飽和してしまう(センサーとして機能しない)。従って、TOF方式の赤外線センサーの場合は、反射光強度がセンサーの検知可能な角度φ範囲内で使用することが好ましい。 For example, when a TOF type infrared sensor is used as the optical sensor 40, the sensor is saturated (does not function as a sensor) if the reflected light intensity is too strong. Therefore, in the case of the TOF type infrared sensor, it is preferable to use the reflected light intensity within an angle φ range detectable by the sensor.
 一方、光センサー40として例えばアナログ測距センサーを用いる場合、図3に示すように、反射光強度は、距離の2乗に比例して小さくなる。アナログ測距センサーの場合は、できるだけ反射光強度が大きい角度φ範囲内で使用することが好ましい。 On the other hand, when an analog distance measuring sensor is used as the optical sensor 40, for example, as shown in FIG. 3, the reflected light intensity decreases in proportion to the square of the distance. In the case of an analog distance measuring sensor, it is preferable to use the sensor within an angle φ range where reflected light intensity is as high as possible.
 図4に示すように、光学システム100は表示パネル30と光センサー40との相対的な配置関係を制御するモジュール(以下、「配置制御モジュール」という)91を組み込んだ光学システムに改変し得る。このように配置制御モジュール91を有する光学システムは、表示パネル30と光センサー40とを最適に配置させやすくなる。 As shown in FIG. 4, the optical system 100 can be modified to an optical system incorporating a module 91 (hereinafter referred to as an “arrangement control module”) that controls the relative arrangement relationship between the display panel 30 and the optical sensor 40. Thus, the optical system having the arrangement control module 91 facilitates optimal arrangement of the display panel 30 and the optical sensor 40.
 さらに、図5に示すように、光学システム100を採用すると、例えば複数の空中映像50aおよび50bを反射型結像素子10の法線方向(図1(a)の法線方向L参照)に重畳するように結像させたとき、各空中映像50aおよび50bに接触したことをそれぞれ独立に検知する光センサー40a~40dを互いに干渉することなく設置できる。このとき、それぞれの光センサー40a~40dの上記角度φに対応する角度φ1および角度φ2は、それぞれ独立に0°<φ1、φ2≦65°であることが好ましく、35°≦φ1、φ2≦55°であることがより好ましい。なお、図5中の軸71は、図2(a)に示した軸71に対応する。さらに、上述したように、各光センサー40a~40dは、それぞれ対応する配置制御モジュール91aおよび91bと接続することが好ましい。 Furthermore, as shown in FIG. 5, when the optical system 100 is employed, for example, a plurality of aerial images 50a and 50b are superimposed on the normal direction of the reflective imaging element 10 (see the normal direction L in FIG. 1A). Thus, the optical sensors 40a to 40d that independently detect that the aerial images 50a and 50b are touched can be installed without interfering with each other. At this time, the angle φ1 and the angle φ2 corresponding to the angle φ of each of the optical sensors 40a to 40d are preferably independently 0 ° <φ1, φ2 ≦ 65 °, and 35 ° ≦ φ1, φ2 ≦ 55. More preferably. Note that the axis 71 in FIG. 5 corresponds to the axis 71 shown in FIG. Furthermore, as described above, each of the optical sensors 40a to 40d is preferably connected to the corresponding arrangement control modules 91a and 91b.
 さらに、図6に示すように、光学システム100において、複数の光センサー40がアレイ状に配置された光センサーモジュール120を用いてもよい。複数の光センサー40がアレイ状に配置された光センサーモジュール120を用いると、空中映像への接触の検知精度がより高まる。 Furthermore, as shown in FIG. 6, in the optical system 100, an optical sensor module 120 in which a plurality of optical sensors 40 are arranged in an array may be used. When the optical sensor module 120 in which a plurality of optical sensors 40 are arranged in an array is used, the detection accuracy of contact with an aerial image is further increased.
 以上、本発明により、空中映像への接触を精度よく検知できる、反射型結像素子を有する光学システムが提供される。 As described above, the present invention provides an optical system having a reflective imaging element that can accurately detect contact with an aerial image.
 本発明は、空間に被投影物の像を結像させることができる反射型結像素子と、表示パネルとを有する光学システムに、広く適用することができる。 The present invention can be widely applied to an optical system having a reflective imaging element capable of forming an image of a projection object in space and a display panel.
 10   反射型結像素子
 14a、15a   結像に寄与する鏡面要素
 14b、15b   鏡面要素
 30   表示パネル
 22   貫通孔
 40   光センサー
 50   空中映像
 60   結像に寄与する光
 70   軸
 100   光学システム
 F   指
 L   方向
 X   領域
 θ1、θ2   角度
DESCRIPTION OF SYMBOLS 10 Reflective imaging element 14a, 15a Mirror surface element 14b, 15b which contributes to image formation Mirror surface element 30 Display panel 22 Through-hole 40 Optical sensor 50 Aerial image 60 Light which contributes to image formation 70 Axis 100 Optical system F Finger L direction X Region θ1, θ2 Angle

Claims (9)

  1.  表示パネルと、
     結像に寄与する2つの鏡面要素と、前記2つの鏡面要素のいずれかと対向する鏡面要素とを有する反射型結像素子と、
     前記反射型結像素子の前記表示パネル側に配置された少なくとも1つの光センサーとを有し、
     前記少なくとも1つの光センサーは、前記表示パネルと向かい合うように配置され、
     前記2つの鏡面要素のそれぞれの幅をaとし、前記2つの鏡面要素のそれぞれの高さをbとした場合、
     前記少なくとも1つの光センサーの光軸と、前記反射型結像素子の法線方向とのなす角度θ1は、式(1)を満たし、
    Figure JPOXMLDOC01-appb-M000001
     前記表示パネルの表示面に表示される映像を、前記反射型結像素子を対称面とする面対称な位置に結像する、光学システム。
    A display panel;
    A reflective imaging element having two mirror elements that contribute to imaging, and a mirror element facing either of the two mirror elements;
    At least one photosensor disposed on the display panel side of the reflective imaging element;
    The at least one light sensor is disposed to face the display panel;
    When the width of each of the two specular elements is a and the height of each of the two specular elements is b,
    An angle θ1 formed by the optical axis of the at least one photosensor and the normal direction of the reflective imaging element satisfies the formula (1),
    Figure JPOXMLDOC01-appb-M000001
    An optical system for imaging an image displayed on a display surface of the display panel at a plane-symmetrical position with the reflective imaging element as a symmetry plane.
  2.  前記表示パネルの設置角度は、前記角度θ1と等しい、請求項1に記載の光学システム。 The optical system according to claim 1, wherein an installation angle of the display panel is equal to the angle θ1.
  3.  前記角度θ1は、30°<θ1<70°を満たす、請求項1または2に記載の光学システム。 The optical system according to claim 1 or 2, wherein the angle θ1 satisfies 30 ° <θ1 <70 °.
  4.  前記少なくとも1つの光センサーは、第1光センサーと第2光センサーとを含み、
     前記反射型結像素子の法線方向から見たとき、前記第2光センサーは、第1軸を対称軸として、前記第1光センサーと線対称な位置に配置され、反時計回りを正の方向、時計回りを負の方向としたとき、前記第1軸と前記第1光センサーの光軸とのなす角度をφとし、前記第1軸と前記第2光センサーの光軸とのなす角度を-φとしたとき、前記角度φは、0°<φ≦65°を満たし、
     前記第1軸は、前記2つの鏡面要素がなす角度を2等分する2等分直線と平行である、請求項1から3のいずれかに記載の光学システム。
    The at least one photosensor includes a first photosensor and a second photosensor;
    When viewed from the normal direction of the reflective imaging element, the second photosensor is disposed at a position symmetrical with the first photosensor with the first axis as the symmetry axis, and the counterclockwise direction is positive. When the direction and the clockwise direction are negative directions, the angle between the first axis and the optical axis of the first photosensor is φ, and the angle between the first axis and the optical axis of the second photosensor Is −φ, the angle φ satisfies 0 ° <φ ≦ 65 °,
    4. The optical system according to claim 1, wherein the first axis is parallel to a bisector that bisects an angle formed by the two mirror elements. 5.
  5.  前記表示パネルと前記少なくとも1つの光センサーは、前記表示パネルおよび前記少なくとも1つの光センサーの配置を制御する配置制御モジュールと接続されている、請求項1から4のいずれかに記載の光学システム。 5. The optical system according to claim 1, wherein the display panel and the at least one photosensor are connected to an arrangement control module that controls the arrangement of the display panel and the at least one photosensor.
  6.  前記少なくとも1つの光センサーから発せられる光は、赤外線または可視光である、請求項1から5のいずれかに記載の光学システム。 The optical system according to any one of claims 1 to 5, wherein the light emitted from the at least one optical sensor is infrared or visible light.
  7.  前記少なくとも1つの光センサーは、複数の光センサーを含む、請求項1から6のいずれかに記載の光学システム。 The optical system according to any one of claims 1 to 6, wherein the at least one optical sensor includes a plurality of optical sensors.
  8.  前記複数の光センサーがアレイ状に配置された光センサーモジュールを有する、請求項7に記載の光学システム。 The optical system according to claim 7, comprising an optical sensor module in which the plurality of optical sensors are arranged in an array.
  9.  前記複数の光センサーのそれぞれは、前記反射型結像素子の法線方向に重畳するように結像された複数の空中映像のそれぞれへの接触を独立に検知する、請求項7または8に記載の光学システム。 9. Each of the plurality of photosensors independently detects contact with each of a plurality of aerial images formed so as to overlap in a normal direction of the reflective imaging element. Optical system.
PCT/JP2012/057710 2011-03-30 2012-03-26 Optical system WO2012133279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011075639 2011-03-30
JP2011-075639 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133279A1 true WO2012133279A1 (en) 2012-10-04

Family

ID=46930997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057710 WO2012133279A1 (en) 2011-03-30 2012-03-26 Optical system

Country Status (1)

Country Link
WO (1) WO2012133279A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127822A (en) * 2012-12-26 2014-07-07 Funai Electric Co Ltd Image display device
JP2015060296A (en) * 2013-09-17 2015-03-30 船井電機株式会社 Spatial coordinate specification device
JP2016103028A (en) * 2015-12-21 2016-06-02 増田 麻言 Scanning projector and handheld projection device
WO2023136106A1 (en) * 2022-01-13 2023-07-20 凸版印刷株式会社 Aerial display apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013215A1 (en) * 2005-07-25 2007-02-01 Pioneer Corporation Image display device
WO2008123500A1 (en) * 2007-03-30 2008-10-16 National Institute Of Information And Communications Technology Mid-air video interaction device and its program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013215A1 (en) * 2005-07-25 2007-02-01 Pioneer Corporation Image display device
WO2008123500A1 (en) * 2007-03-30 2008-10-16 National Institute Of Information And Communications Technology Mid-air video interaction device and its program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI FURUKAWA ET AL.: "Kuchu Eizo o Tsukatta Tegaki Interface", HUMAN INTERFACE SYMPOSIUM RONBUNSHU, no. 1502, 2010, pages 255 - 258 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127822A (en) * 2012-12-26 2014-07-07 Funai Electric Co Ltd Image display device
JP2015060296A (en) * 2013-09-17 2015-03-30 船井電機株式会社 Spatial coordinate specification device
JP2016103028A (en) * 2015-12-21 2016-06-02 増田 麻言 Scanning projector and handheld projection device
WO2023136106A1 (en) * 2022-01-13 2023-07-20 凸版印刷株式会社 Aerial display apparatus

Similar Documents

Publication Publication Date Title
WO2012133279A1 (en) Optical system
US20120081788A1 (en) Display device
TWI502212B (en) Optical apparatus, light sensitive device with micro-lens and manufacturing method thereof
JP5725774B2 (en) Coordinate input device and coordinate input method
US20120320322A1 (en) Reflective image forming element and optical system
KR20140016390A (en) Displays and information input devices
US9951935B2 (en) Display device
JP2011065620A (en) Optical touch device, method of detecting location of light shielding object and linear light source module
US11402285B2 (en) Force sensor and device provided with force sensor
KR20150112805A (en) Spatial image display apparatus
JP2012173029A (en) Optical position detection apparatus and display system with input function
CN103324358A (en) Optical Touch System
WO2013035553A1 (en) User interface display device
TWI545335B (en) Optical apparatus and light sensitive device with micro-lens
JP5754266B2 (en) Indicator member, optical position detection device, and display system with input function
JP2023511570A (en) Time-of-flight TOF sensor module and electronic device
US8890851B2 (en) Optical position detection device and display system with input function
CN101903819B (en) Optoelectronic device, and image recording apparatus
JP6323056B2 (en) Photoelectric sensor
CN110159941B (en) Light source module with uniform projected light intensity
JP2012201346A (en) Illumination device
US11099429B2 (en) Surface light source device and display device
US20150277133A1 (en) Spatial image display apparatus
AU2013297884B2 (en) Mask
JP5742398B2 (en) Optical position detection device and display system with input function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP