WO2012132908A1 - Optical fiber, fiber laser, and method for manufacturing optical fiber - Google Patents

Optical fiber, fiber laser, and method for manufacturing optical fiber Download PDF

Info

Publication number
WO2012132908A1
WO2012132908A1 PCT/JP2012/056589 JP2012056589W WO2012132908A1 WO 2012132908 A1 WO2012132908 A1 WO 2012132908A1 JP 2012056589 W JP2012056589 W JP 2012056589W WO 2012132908 A1 WO2012132908 A1 WO 2012132908A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
clad
cladding
light
Prior art date
Application number
PCT/JP2012/056589
Other languages
French (fr)
Japanese (ja)
Inventor
靖 藤本
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2013507367A priority Critical patent/JP5930316B2/en
Publication of WO2012132908A1 publication Critical patent/WO2012132908A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre

Definitions

  • the present invention relates to an optical fiber, a fiber laser, and an optical fiber manufacturing method.
  • An optical fiber is used as an optical waveguide.
  • the optical fiber includes a core and a clad provided around the core.
  • the core has a circular shape and the cladding has a cylindrical shape in the cross section of the optical fiber.
  • a fiber laser including an optical fiber has advantages such as high output and miniaturization, and is used for laser processing.
  • an optical fiber having a double clad structure in which two clads are provided around a core is used (see, for example, Patent Document 1).
  • the core is typically circular, and the optical fiber emits a substantially circular light beam.
  • the light beam may be deformed into a shape other than a circular shape.
  • the shape of the light beam may be transformed into a line beam using a predetermined optical component. In this case, the light emitted from the optical fiber needs to be deformed using a predetermined optical component.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical fiber, a fiber laser, and an optical fiber manufacturing method suitable for emitting or entering a light beam having a desired shape.
  • An optical fiber according to the present invention is an optical fiber comprising a core, a first clad in contact with the core, and a second clad provided around the first clad, wherein the core is the first clad.
  • the first cladding has a higher refractive index than the second cladding, and the length along the first direction of the core in the cross section is the core. Different from the length along the second direction.
  • the first cladding has two regions separated from each other.
  • the core is in contact with the second cladding.
  • the core in cross section, has a substantially rectangular shape, and the first cladding has a semicircular shape.
  • each of the core and the first cladding is doped with a rare earth element.
  • the core is doped with neodymium or ytterbium.
  • light of a predetermined wavelength propagates in multimode for a length along the first direction of the core and propagates in single mode for a length along the second direction of the core. Is done.
  • the optical fiber of the present invention is an optical fiber including a core and a clad, and light of a predetermined wavelength is propagated in a multimode with respect to a length along the first direction of the core, and the core Is propagated in a single mode for a length along the second direction.
  • the length along the first direction of the core is different from the length along the second direction of the core.
  • the fiber laser according to the present invention is a fiber laser including a pumping light source and a resonator, and the resonator includes the above-described optical fiber, a rear mirror, and a front mirror.
  • the optical fiber manufacturing method of the present invention includes a step of preparing a core member having a core material and two first clad members each having a first clad material, and the core member being the two first clad members. Forming a molded body sandwiched between, a second cladding member having a second cladding material, the second cladding member having an opening provided therein, and the molded body as the second cladding member. Including a step of forming a preform by being inserted into the opening, and a step of removing a fiber from the preform.
  • the manufacturing method further includes a step of cutting the molded body so as to be aligned with the opening of the second clad member before the step of forming the preform.
  • the step of forming the molded body includes a step of polishing at least one of the core member and the two first clad members.
  • the optical fiber manufacturing method of the present invention includes a step of preparing a rod having a cross section different in length along the first direction from a length along the second direction, a step of forming a core around the rod, Forming a clad around the core.
  • an optical fiber suitable for emission or incidence of a light beam having a desired shape it is possible to provide an optical fiber suitable for emission or incidence of a light beam having a desired shape.
  • FIG. (A) is typical sectional drawing which shows embodiment of the optical fiber by this invention
  • (b) is a graph which shows the change of the refractive index in the optical fiber of this embodiment
  • (c) is this embodiment. It is a schematic diagram which shows the shape of the light beam radiate
  • (A) is typical sectional drawing of the optical fiber of the comparative example 1
  • (b) is a schematic diagram which shows the shape of the light beam radiate
  • FIG. (A) is a schematic diagram for demonstrating the deformation
  • (b) is the line of the light beam radiate
  • FIG. (A) is a schematic diagram for demonstrating the deformation
  • (A) is a schematic diagram for demonstrating the skew ray generate
  • (b) is typical sectional drawing of the optical fiber of the comparative example 2.
  • FIG. (A) is a schematic diagram for demonstrating the deformation
  • (b), (c) and (d) are optical fibers of the comparative example 1. It is a schematic diagram which shows the change of the light beam radiate
  • (A) is a schematic diagram for demonstrating the deformation
  • (b), (c) and (d) are the optical fibers of this embodiment. It is a schematic diagram which shows the change of the light beam radiate
  • (A) is a schematic diagram which shows the light beam radiate
  • (b) is a schematic diagram which shows the light beam radiate
  • (A)-(e) is a schematic diagram for demonstrating the manufacturing method of the optical fiber of this embodiment. It is a schematic diagram which shows the optical fiber of this embodiment.
  • FIG. 1A is a schematic cross-sectional view of the optical fiber 10 of the present embodiment.
  • the optical fiber 10 includes a core 12, a clad 14a, and a clad 14b.
  • the core 12 is in contact with the clad 14a, and the clad 14b is provided around the clad 14a.
  • the area of the clad 14 a is larger than that of the core 12 in the cross section of the optical fiber 10.
  • the clad 14b has a cylindrical shape.
  • the inner diameter of the clad 14b is about 100 to 350 ⁇ m
  • the outer diameter of the clad 14b is 125 to 400 ⁇ m.
  • the clad 14a has regions 14a1 and 14a2 separated from each other, and the regions 14a1 and 14a2 are both semicircular in cross section.
  • the core 12 is in contact with not only the clad 14a but also the clad 14b.
  • the length of the long side of the core 12 is equal to the inner diameter of the clad 14b.
  • the clad 14a may be referred to as a first clad, and the clad 14b may be referred to as a second clad.
  • the clad 14a is also called an intermediate clad, and the clad 14b is also called an outer clad.
  • a resin for example, polyamide resin. The resin can suppress breakage of the optical fiber 10 when the optical fiber 10 is bent.
  • FIG. 1B shows a change in refractive index in a cross section taken along the line 1b-1b ′ in FIG.
  • the core 12 exhibits a higher refractive index than the first cladding 14a
  • the first cladding 14a exhibits a higher refractive index than the second cladding 14b.
  • the cladding 14b is made of silica
  • the core 12 and the cladding 14a are made of silica doped with rare earth elements.
  • the core 12 and the cladding 14a are formed by firing a mixture of a rare earth element-fixed zeolite and a medium raw material (for example, a silica raw material). Specifically, a water-soluble rare earth element compound and a zeolite are heated in water and then treated with an ammonium chloride solution to form a rare earth element-fixed zeolite, which is mixed with a silica raw material and calcined. Thus, silica doped with rare earth elements is formed. Thereby, the core 12 and the clad 14a with a high rare earth element concentration can be formed. For example, the cladding 14a may not be doped with a rare earth element.
  • the light incident on the core 12 is almost totally reflected at the interface between the core 12 and the clad 14 a and travels through the core 12.
  • the light incident on the clad 14a is almost totally reflected at the interface between the clad 14a and the clad 14b, and passes through the interface between the core 12 and the clad 14a and travels into the core 12. Since the optical fiber 10 has the lowest refractive index of the outermost clad 14b, the light incident on the optical fiber 10 can be collected in the core 12, and the intensity of the light output from the core 12 can be increased. .
  • Such an optical fiber 10 is suitably used for an amplifier or a fiber laser.
  • the length along the direction of the core 12 in the cross section is larger than the length along the other direction.
  • FIG. 1A is a cross section cut perpendicularly to the direction in which the optical fiber 10 extends.
  • the length of the core 12 along the x direction is larger than the length along the y direction.
  • the cross section of the core 12 is a rectangular shape extending substantially linearly along the longitudinal direction, and the aspect ratio of the core 12 is in the range of 3 (3: 1) to 70 (70: 1).
  • the length of the long side (length along the x direction) of the core 12 is about 100 ⁇ m
  • the length of the short side (length along the y direction) is about 10 ⁇ m.
  • the length of the cross section of the core 12 is not constant, and varies depending on the direction.
  • the irradiation intensity of the light beam emitted from the optical fiber 10 is made substantially uniform, and the shape of the light beam emitted from the optical fiber 10 is changed.
  • the number of optical components for changing can be reduced.
  • the cross-sectional shape of the core 12 is substantially rectangular as shown in FIG. 1A, the line-shaped light is emitted from the optical fiber 10 as shown in FIG. A beam is emitted.
  • the light beam emitted from the optical fiber 10 may be expanded according to the required length of the line beam.
  • an optical system for forming a light beam having a desired shape can be simplified.
  • optical fiber 10 of this embodiment compared to the optical fiber of the comparative example.
  • optical fiber 70 of the comparative example 1 is demonstrated with reference to FIG.
  • FIG. 2A shows a schematic diagram of the optical fiber 70 of Comparative Example 1.
  • the optical fiber 70 includes a core 72, a clad 74a, and a clad 74b.
  • the clad 74a is provided around the core 72, and the clad 74b is provided around the clad 74a.
  • the core 72 has a higher refractive index than the clad 74a, and the clad 74a has a higher refractive index than the clad 74b.
  • the core 72 has a circular shape
  • the clads 74a and 74b have a cylindrical shape
  • the centers of the core 72 and the clads 74a and 74b are substantially equal.
  • the clad 74a is also called an inner clad
  • the clad 74b is also called an outer clad.
  • the optical fiber 70 emits a light beam having a circular cross section, as shown in FIG.
  • the optical fiber 10 of the present embodiment has a core 12 having a substantially rectangular cross section, and the light beam emitted from the optical fiber 10 is suitable for forming a line beam.
  • the light beam emitted from the optical fiber 70 of Comparative Example 1 is transformed into a line beam.
  • the light beam emitted from the optical fiber 70 is expanded by the magnifying lens F1 and then collected in a specific direction by the cylindrical lens F2, thereby forming a line beam.
  • the diameter of the core 72 of the optical fiber 70 is about 10 ⁇ m
  • the light beam is expanded to a diameter of 5 cm by the magnifying lens F1
  • a line beam having a length of 5 cm is formed by the cylindrical lens F2.
  • the light beam emitted from the optical fiber 10 of this embodiment is transformed into a line beam.
  • the core 12 of the optical fiber 10 is substantially rectangular, and the optical fiber 10 emits a substantially rectangular light beam.
  • the light beam emitted from the optical fiber 10 may be isotropically expanded by the magnifying lens F1 as necessary.
  • the magnifying lens F1 expands the minor axis and major axis of the light beam to about 0.5 cm and about 5 cm, respectively.
  • a line beam having a length of about 5 cm may be formed.
  • the light beam emitted from the optical fiber 10 may be deformed in a specific direction using a cylindrical lens, if necessary.
  • the core 12 can propagate light in both multimode and single mode. As shown in FIG. 1A, the length of the cross section of the core 12 varies depending on the direction. Therefore, the length of the core 12 and the length of the core 12 and the cladding are dependent on the wavelength of light propagating through the core 12.
  • the refractive index of 14a By appropriately setting the refractive index of 14a, light of a predetermined wavelength is propagated in multimode with respect to the length along the x direction of the core 12, and with respect to the length along the y direction of the core 12. Propagated in single mode. When light is propagated in a single mode, propagation loss can be suppressed.
  • the light propagating through the optical fiber 10 may be a pulse wave or a continuous wave.
  • a pulse wave propagates through the optical fiber 10
  • the optical fiber 10 is preferably not bent so much.
  • the optical fiber 10 is preferably used as part of a fiber laser.
  • the fiber laser 100 of this embodiment provided with the optical fiber 10 will be described with reference to FIGS. 1 and 4.
  • FIG. 4 shows a schematic diagram of the fiber laser 100 of the present embodiment.
  • the fiber laser 100 includes an excitation light source 110 and a resonator 120.
  • the resonator 120 includes the optical fiber 10, a rear mirror 122, and a front mirror 124.
  • the rear mirror 122 is disposed so as to face one end portion of the optical fiber 10
  • the front mirror 124 is disposed so as to face the other end portion of the optical fiber 10.
  • the core 12 is doped with neodymium (Nd) or ytterbium (Yb)
  • the cladding 14a is doped with lanthanum (La).
  • excitation light is emitted from the excitation light source 110 toward the resonator 120.
  • the excitation light that has passed through the rear mirror 122 is incident on the core 12 and the clad 14 a of the optical fiber 10.
  • the excitation light is absorbed by the core 12 and light having an oscillation wavelength of neodymium is generated in the core 12.
  • the light generated in the core 12 travels in a state where it is totally reflected at the interface between the core 12 and the clad 14 a and confined in the core 12.
  • the optical fiber 10 is sandwiched between a rear mirror 122 and a front mirror 124, resonance occurs in the resonator 120, and coherent light having an oscillation wavelength is emitted from the resonator 120.
  • the light emitted from the fiber laser 100 may be a pulse wave or a continuous wave.
  • the fiber laser 100 is suitably used as a processing laser.
  • the fiber laser 100 is suitably used for surface modification of a solar cell or an annealing process such as a flat panel display.
  • the excitation light is efficiently incident.
  • the intensity of light output from the optical fiber 10 also increases until the intensity of light from the excitation light source 110 increases to some extent.
  • the power density of light emitted from the optical fiber 10 (power density: unit W / cm 2 ) is substantially constant even if the intensity of light from the excitation light source 110 increases to some extent due to the influence of the nonlinear phenomenon. .
  • the cross-sectional area of the core 12 can be made relatively large, the power of the light beam output from the optical fiber 10 can be increased.
  • the optical fiber 70 having the circular core 72 when a single mode light beam is emitted at a relatively high power, the refractive index difference between the core 72 and the clad 74a is reduced by simply increasing the cross-sectional area of the core 72.
  • the size of the area is limited due to manufacturing limitations, high power cannot be realized.
  • the cross-sectional area of the core 12 since the cross-sectional area of the core 12 can be made relatively large, the power of the light beam output from the optical fiber 10 can be increased.
  • the maximum output of the fiber laser 100 including the optical fiber 10 includes the optical fiber 70. 10 times or more than a fiber laser.
  • the fiber laser 100 is suitably used for processing a large area.
  • the optical fiber 10 of this embodiment is compared with a fiber laser including the optical fiber 70 of Comparative Example 1.
  • the diameter of the core 74 of the optical fiber 70 of Comparative Example 1 is 25 ⁇ m.
  • the stimulated Raman amplification threshold is 3.14 kW and the stimulated Brillouin amplification threshold is 41 W.
  • a fiber laser including the optical fiber 70 of Comparative Example 1 has a light beam of about 1 kW. Is output.
  • the length of the long side of the core 12 is 100 ⁇ m, and the length of the short side is 10 ⁇ m.
  • the stimulated Raman amplification threshold is 628 kW
  • the stimulated Brillouin amplification threshold is 825 W.
  • a general margin is taken into consideration. Even in this case, it is possible to obtain an output of about 200 kW
  • the fiber laser 100 of the present embodiment it is possible to emit a light beam having a higher output than a general fiber laser.
  • the optical fiber 10 is preferably protected with a resin.
  • the fiber laser 100 since the optical fiber 10 has the clad 14b provided around the clad 14a, the seizure of the resin can be suppressed.
  • the clad 14b is used for light confinement. Moreover, since the leakage of light to the outside can be suppressed by the clad 14b, contact cooling with metal or the like can be suitably performed.
  • the clad 14b does not only confine light. As will be described later, since the clad 14b supports the core 12 when the optical fiber 10 is manufactured by drawing, the optical fiber 10 can be easily manufactured.
  • the length of the cross section of the core 12 varies depending on the direction. For this reason, light of a predetermined wavelength propagates in multimode with respect to the length along the x direction of the core 12 and propagates in single mode with respect to the length along the y direction of the core 12. In the case of the fiber laser 100, light having an oscillation wavelength propagates in both multimode and single mode. In FIG.
  • the length dx along the x direction of the core 12 is larger than 2.405 ⁇ / ( ⁇ (n1 2 ⁇ n2 2 )), and the length dy along the y direction of the core 12 is When less than 2.405 ⁇ / ( ⁇ (n1 2 ⁇ n2 2 )), the core 12 can propagate in multimode in the x direction and single mode in the y direction.
  • is the wavelength of light propagating through the core 12 in the air
  • n1 is the refractive index of the core 12
  • n2 is the refractive index of the clad 14a.
  • the oscillation wavelength is 1062 nm.
  • the refractive index of the core 12 is 1.452 and the refractive index of the clad 14a is 1.450
  • the light having a wavelength of 1062 nm has a length along the x direction of the core 12.
  • it propagates in multimode and propagates in single mode for the length of core 12 along the y direction.
  • excitation light source 110 the excitation light incident on the optical fiber 10 may be emitted from a plurality of excitation light sources 110 (for example, laser diodes).
  • skew rays may occur.
  • the fiber laser 100 including the optical fiber 10 of the present embodiment the occurrence of skew ray can be suppressed.
  • FIG. 5A shows skew rays generated in the optical fiber 70 of Comparative Example 1.
  • FIG. 5A shows skew rays generated in the optical fiber 70 of Comparative Example 1.
  • FIG. The excitation light incident on the clad 74a of the optical fiber 70 is almost totally reflected at the interface between the clad 74a and the clad 74b.
  • a certain component of the pumping light passes through the interface between the core 72 and the cladding 74a inside the cladding 74a and reaches the core 72, while another component of the pumping light is generated by the cladding 74a and the cladding 74b inside the cladding 74a. Even if total reflection is repeated at the interface, the light may be emitted from the optical fiber 70 without reaching the core 72 located at the center.
  • FIG. 5B shows a schematic diagram of the optical fiber 80 of Comparative Example 2.
  • the optical fiber 80 includes a core 82, a clad 84a, and a clad 84b.
  • the clad 84a is provided around the core 82, and the clad 84b is provided around the clad 84a.
  • the clad 84a and the clad 84b are also referred to as an inner clad and an outer clad, respectively.
  • the core 82 has a higher refractive index than the clad 84a, and the clad 84a has a higher refractive index than the clad 84b.
  • the core 82 has a circular shape and the clad 84b has a cylindrical shape.
  • the clad 84a has a partially cut shape of a cylindrical shape. Even in the optical fiber 80, the centers of the core 82 and the clads 84a and 84b are substantially equal.
  • the excitation light incident on the clad 84a of the optical fiber 80 is almost totally reflected at the interface between the clad 84a and the clad 84b.
  • a certain component of the excitation light reaches the core 82 through the interface between the core 82 and the clad 84a inside the clad 84a.
  • Another component of the excitation light is totally reflected at the interface between the notched portion of the clad 84a and the clad 84b inside the clad 84a and finally reaches the core 82 located at the center. For this reason, in the optical fiber 80, the occurrence of skew ray can be suppressed.
  • the light incident on the clad 84a is often incident on the core 72 when totally reflected at the interface between the clad 84a and the clad 84b a plurality of times, but the light incident on the clad 84a is often incident on the clad 84a. If the number of total reflections at the interface between the clad and the clad 84b is relatively small, the core 82 may not be incident. On the other hand, as shown in FIG. 1A, in the optical fiber 10, since the core 12 extends so as to be in contact with the clad 14b, the occurrence of skew ray can be effectively suppressed. .
  • the silica 12 is doped with a rare earth element to form the core 12 and the clad 14a having a higher refractive index than the clad 14b.
  • the present invention is not limited to this.
  • elements such as germanium (Ge), aluminum (Al), yttrium (Y), phosphorus (P), magnesium (Mg), calcium (Ca), strontium (Sr) or barium (Ba) are added to silica glass.
  • the core 12 and the clad 14a having a higher refractive index than the clad 14b may be formed.
  • the claddings 14a and 14b having a lower refractive index than the core 12 may be formed by doping with fluorine or boron.
  • the cladding 14a may not be doped with an impurity element.
  • Interference may occur when a single mode light beam emitted from a fiber laser including the optical fiber 70 of Comparative Example 1 is transformed into a line beam.
  • a line beam having a length of about 5 cm is formed.
  • FIG. 6A is a schematic diagram for explaining the deformation of the light beam emitted from the optical fiber 70 of Comparative Example 1 into a line beam. 6 (b), 6 (c) and 6 (d), the light beam L1 emitted from the optical fiber 70, the light beam L2 expanded by the magnifying lens F1, and the specific direction by the cylindrical lens F2 are shown. Each of the collected light beams L3 is shown in FIG.
  • the light beam emitted from the optical fiber 70 is expanded by the magnifying lens F1, and then collected in a specific direction by the cylindrical lens F2, thereby forming a line beam.
  • the diameter of the core 72 of the optical fiber 70 is about 10 ⁇ m
  • the light beam is expanded to a diameter of 5 cm by the magnifying lens F1
  • a line beam having a length of 5 cm is formed by the cylindrical lens F2.
  • FIG. 7A is a schematic diagram for explaining the deformation of the light beam emitted from the optical fiber 10 of the present embodiment into a line beam. 7B, 7C, and 7D, the light beam L1 emitted from the optical fiber 10, the light beam L2 expanded by the magnifying lens F1, and the specific direction by the cylindrical lens F2 are shown. Each of the collected light beams L3 is shown in FIG.
  • the light beam emitted from the optical fiber 10 is expanded by the magnifying lens F1, and then collected in a specific direction by the cylindrical lens F2, thereby forming a line beam.
  • the core 12 of the optical fiber 10 has a substantially rectangular shape, and a substantially rectangular light beam is emitted from the optical fiber 10. Thereafter, the light beam isotropically expanded to the length required for the line beam by the magnifying lens F1.
  • the short diameter and long diameter of the core 12 of the optical fiber 10 are about 10 ⁇ m and about 100 ⁇ m, respectively, and when the desired length of the line beam is 5 cm, the short diameter and long diameter of the light beam are respectively set by the magnifying lens F1. It is enlarged to about 0.5 cm and about 5 cm. Thereafter, the light beam is collected by the cylindrical lens F2 until the minor axis becomes about 10 ⁇ m.
  • the light beam emitted from the optical fiber 10 is deformed by the cylindrical lens F2 to form a line beam.
  • the light beam emitted from the optical fiber 10 is used as a line beam without passing through the cylindrical lens. Also good.
  • the light beam can be continuously irradiated over a wide region in a single mode.
  • the line beam is efficiently incident.
  • the advantage of the optical fiber 10 compared with the optical fiber 90 of the comparative example 3 is demonstrated.
  • the line beam is incident on the optical fiber 90 of Comparative Example 3.
  • the light source R1 emits a line beam having a length of about 100 ⁇ m toward the optical fiber 90.
  • the optical fiber 90 includes a core 92 having a diameter of 100 ⁇ m and a clad 94.
  • the light beam emitted from the light source R1 is deformed by the lens R2.
  • the core 92 of the optical fiber 90 has a circular shape, and the shape of the core 92 of the optical fiber 90 is significantly different from the shape of the light beam emitted from the light source R1, and the beam area becomes large. The brightness will be low.
  • the line beam is incident on the optical fiber 10 of the present embodiment.
  • the light source R1 emits a line beam having a length of about 100 ⁇ m toward the optical fiber 10.
  • the light source R1 is a semiconductor laser. Since the core 12 of the optical fiber 10 has a substantially rectangular shape, it is possible to suppress a reduction in light intensity when the light from the light source R1 enters the optical fiber 10.
  • the light beam from the light source R1 is incident on the optical fiber 10 through the lens R2, but the light beam from the light source R1 enters the optical fiber 10 without passing through an optical component such as the lens R2. It may be directly incident.
  • the long side of the core 12 is preferably larger than the emitter width of the light source R1. Since the optical fiber 10 has the clad 14a and the clad 14b, the optical fiber 10 is easily coupled with the light source R1 with high efficiency and high luminance.
  • a core member A including a material for forming the core 12 and first cladding members B1 and B2 including a material for forming the first cladding 14a are prepared.
  • the first cladding members B1 and B2 may be simply referred to as cladding members B1 and B2.
  • the materials and sizes of the clad members B1 and B2 are equal, but the materials and sizes of the clad members B1 and B2 may be different.
  • the width and length of the core member A are equal to the width and length of the cladding members B1 and B2, respectively, but they may be different.
  • the core member A is silica glass doped with rare earth elements.
  • the core member A is doped with neodymium (Nd).
  • the clad members B1 and B2 are silica glass doped with rare earth elements.
  • the cladding members B1 and B2 are doped with lanthanum (La).
  • the concentration of the rare earth element in the core member A is higher than the concentration of the rare earth element in the cladding members B1 and B2, and the refractive index of the core member A is higher than the refractive index of the cladding members B1 and B2.
  • the core 12 of the optical fiber 10 to be manufactured can be obtained by setting the refractive index of the core member A and the clad members B1 and B2 and the aspect ratio (width / thickness ratio) of the core member A in advance. It becomes possible to propagate light in both the mode and the single mode.
  • the core member A is doped with neodymium (Nd).
  • the weight percentage of neodymium is 1.25%.
  • the core member A is further doped with alumina (Al 2 O 3 ).
  • the thickness of the core member A is 3 mm, and the width and length of the core member A are 7 mm and 40 mm, respectively.
  • the clad members B1 and B2 are doped with lanthanum (La) and alumina (Al 2 O 3 ).
  • the weight% of La 2 O 3 and Al 2 O 3 is 0.8 wt% and 1.74 wt%, respectively.
  • the thickness of the clad members B1 and B2 is 3 mm, and the width and length of the clad members B1 and B2 are 7 mm and 40 mm, respectively.
  • the concentration of neodymium in the core member A is higher than the concentration of lanthanum in the clad members B1 and B2, and the ratio of Nd and Al in the core member A is substantially equal to the ratio of La and Al in the clad members B1 and B2.
  • the refractive index of the core member A is higher than that of the clad members B1 and B2.
  • the clad members B1 and B2 are bonded to both surfaces of the core member A, and the core member A and the clad members B1 and B2 are joined. Thereby, the molded body S in which the clad member B1, the core member A, and the clad member B2 are laminated is formed.
  • the core members A and B1 are joined by optical contact.
  • the core member A and the clad member B2 are joined in the same manner.
  • the core member A may be relatively thick until just before the clad member B2 is bonded to the core member A.
  • the core member A is bonded to the clad member B1 and then bonded to the clad member B2. It may be thinned by polishing. For example, after the core member A is joined to the clad member B1, the core member A is thinned from about 3 mm to about 0.5 mm and joined to the clad member B2.
  • the molded body S may be formed as described above.
  • the molded body S is cut to form the molded body S into a rod shape.
  • the diameter of the molded body S is about 5 mm
  • the thickness of the core member A is about 0.5 mm.
  • the rod-shaped molded body S is inserted into the opening of the second clad member C containing the material for forming the second clad 14b.
  • the molded body S ′ thus obtained is also called a preform C ′.
  • the inner diameter and the outer diameter of the second cladding member C are 5 mm and 9 mm, respectively.
  • the optical fiber 10 is taken out from the preform C '.
  • the preform C ' is inserted for drawing an optical fiber, and necked down by heating. Due to the neck-down, the preform C 'whose viscosity has been reduced by heating is pulled downward by its own weight and falls with a small diameter. Thereafter, the optical fiber is drawn in a heated state.
  • the delivery speed of the preform C ′ is 2.0 mm / min, and the take-up speed is 4.0 mm / min.
  • the optical fiber 10 can be manufactured as described above.
  • FIG. 10 shows the optical fiber 10 formed in this way.
  • the thickness of the core 12 is about 10 ⁇ m
  • the diameter of the clad 14 a is about 100 ⁇ m
  • the diameter of the clad 14 b is about 180 ⁇ m.
  • the refractive index of the core 12 is about 1.452 and the refractive index of the clad 14a is about 1.447 at 1062 nm, which is the oscillation wavelength of neodymium.
  • the refractive index of the cladding 14b is about 1.443.
  • the aperture ratio between the core 12 and the clad 14a is about 0.12
  • the aperture ratio between the clad 14a and the clad 14b is about 0.11. In general, the aperture ratio of an optical fiber that is commercially available is almost equal, and the optical fiber 10 can be used in a wide range.
  • FIG. 11 shows the spectrum of the fiber laser 100 of this embodiment including the optical fiber 10 shown in FIG.
  • the peak at a wavelength of 800 nm is due to the leakage light of excitation. Narrowing of the spectrum is confirmed at a wavelength of 1062 nm. It is inferred that laser oscillation was obtained by such narrowing of the spectrum.
  • FIG. 12 shows input / output characteristics of the fiber laser 100 of the present embodiment.
  • the oscillation threshold of the fiber laser 100 is 1.6W.
  • the fiber laser 100 exhibits a maximum output of 5.25 mW.
  • FIG. 13 shows input / output characteristics of another fiber laser 100 according to this embodiment.
  • the oscillation threshold of the fiber laser 100 is 480 mW.
  • the fiber laser 100 exhibits a maximum output of 75.1 mW.
  • FIG. 14 shows a beam profile of the fiber laser 100 of the present embodiment.
  • FIG. 14 shows a profile of amplified spontaneous emission (ASE) immediately before oscillation of the fiber laser 100.
  • ASE amplified spontaneous emission
  • the region having a high beam intensity is formed corresponding to the core 12 and is long in the x direction and short in the y direction. In this way, a substantially rectangular light beam is emitted from the fiber laser 100.
  • the manufacturing method of the optical fiber 10 is not limited to this.
  • the optical fiber 10 may be manufactured by an OVD (Outside Vapor Deposition) method.
  • the optical fiber 10 having the substantially rectangular core 12 may be manufactured by preparing a target rod in the OVD method.
  • a rod having a rectangular cross section is prepared.
  • a core is formed around the rod, a clad is formed around the core, and finally a part of the clad is cut.
  • the optical fiber 10 having a circular cross section can be manufactured.
  • the center of the core 12 in the cross section of the optical fiber 10 is substantially equal to the centers of the clads 14a and 14b, and the cross section of the optical fiber 10 is substantially point symmetric, but the present invention is not limited to this. Not.
  • the core 12 is disposed at a position different from the center of the clad 14b, and the cross section of the optical fiber 10 may not be point symmetric.
  • the center of the clad 14 b in the cross section of the optical fiber 10 may be located outside the core 12.
  • the core 12 is in contact with both the clad 14a and the clad 14b, but the present invention is not limited to this. As shown in FIG. 15, the core 12 is surrounded by the clad 14a, and the core 12 may not be in direct contact with the clad 14b.
  • the clad 14b is provided around the clad 14a.
  • the clad 14b may not be provided around the clad 14a.
  • Such an optical fiber 10 is suitably used as a waveguide.
  • the optical fiber 10 includes a core 12 and a clad 14.
  • the clad 14 has a higher refractive index than the core 12.
  • the minor axis and major axis of the core 12 are about 10 ⁇ m and about 100 ⁇ m, respectively.
  • the core 12 propagates light in both multimode and single mode.
  • the length dx along the x direction of the core 12 is larger than 2.405 ⁇ / ( ⁇ (n1 2 ⁇ n2 2 )), and the length dy along the y direction of the core 12 is 2.405 ⁇ / ( ⁇ Smaller than (n1 2 -n2 2 )), the core 12 can propagate in both multimode and single mode.
  • is the wavelength of light propagating through the core 12 in the air
  • n1 is the refractive index of the core 12
  • n2 is the refractive index of the cladding 14.
  • the oscillation wavelength is 1062 nm.
  • the refractive index of the core 12 is 1.452 and the refractive index of the cladding 14 is 1.450
  • the light having a wavelength of 1062 nm has a length along the x direction of the core 12.
  • it propagates in multimode and propagates in single mode for the length of core 12 along the y direction.
  • the optical fiber 10 shown in FIG. 16 is manufactured in the same manner as described above with reference to FIG. 9 except that the optical fiber 10 is formed without using the second cladding member. Or as above-mentioned, the optical fiber 10 may be produced by OVD method.
  • the edge part along the major axis direction of the core 12 is not enclosed by the clad
  • this invention is not limited to this.
  • the core 12 may be surrounded by a clad at the end along the minor axis direction of the core 12 and may be surrounded by another clad at the end along the major axis direction of the core 12.
  • FIG. 17 shows a schematic diagram of the optical fiber 10 of the present embodiment.
  • the typical sectional view of optical fiber 10 of this embodiment is shown.
  • the optical fiber 10 includes a core 12, a clad 14a, and a clad 14b.
  • the core 12 is in contact with the clad 14a, and the clad 14b is provided around the clad 14a.
  • the core 12 is surrounded by the clad 14 a at the end along the minor axis direction of the core 12, and is surrounded by the clad 14 b at the end along the major axis direction of the core 12.
  • it propagates in multimode with respect to the length along the major axis direction of the core 12, and propagates in single mode with respect to the length along the minor axis direction of the core 12.
  • the core 12 has a higher refractive index than the clads 14a and 14b, and the refractive index of the clad 14a is equal to that of the clad 14b.
  • the clads 14a and 14b are made of silica
  • the core 12 is made of silica doped with a rare earth element.
  • the optical fiber 10 also has a three-layer structure, and when the optical fiber 10 is manufactured by drawing, the cladding 14b supports the core 12, so that the optical fiber 10 can be easily manufactured.
  • the shape of the core 12 in the cross section is substantially rectangular, but the present invention is not limited to this.
  • the shape of the core 12 may be triangular, square, L-shaped or elliptical. Further, by effectively connecting optical components between the light beam emitted from the optical fiber 10 and the light beam actually used, a line beam having an arbitrary shape can be formed.
  • the optical fiber 10 may be provided with a plurality of cores 12.
  • FIG. 19 shows a schematic diagram of a fiber laser 100A of this embodiment including optical fibers 10a, 10b, 10c, and 10d.
  • the excitation light source is omitted.
  • the optical fiber 10b is provided with a plurality of cores 12, and light beams are incident on the optical fiber 10b from the plurality of optical fibers 10a.
  • the light beam from the optical fiber 10b provided with the plurality of cores 12 enters the optical fiber 10c.
  • the light beam from the optical fiber 10b is incident on the clad 14a of the optical fiber 10c, and the optical fiber 10c functions as a power combiner.
  • the core 12 of the optical fiber 10d is doped with rare earth elements such as neodymium (Nd) or ytterbium (Yb), and the optical fiber 10d performs amplification and laser oscillation based on the light from the optical fiber 10c.
  • a plurality of optical fibers 10 may be used for the fiber laser 100A.
  • optical fiber suitable for emission or incidence of a light beam having a desired shape.
  • the optical fiber of the present invention is preferably used for a high-power single mode fiber laser.

Abstract

This optical fiber (10) is provided with a core (12), a first clad (14a) in contact with the core (12), and a second clad (14b) provided around the first clad (12). The core (12) has a higher refractive index than the first clad (14a), and the first clad (14a) has a higher refractive index than the second clad (14b). In a cross-section, the length of the core (12) measured along a first direction is different from the length of the core measured along a second direction.

Description

光ファイバ、ファイバレーザおよび光ファイバの作製方法Optical fiber, fiber laser, and optical fiber manufacturing method
 本発明は光ファイバ、ファイバレーザおよび光ファイバの作製方法に関する。 The present invention relates to an optical fiber, a fiber laser, and an optical fiber manufacturing method.
 光ファイバは光の導波路として用いられる。光ファイバは、コア、および、コアの周囲に設けられたクラッドを備えている。典型的には、光ファイバの断面においてコアは円形状であり、クラッドは筒形状である。また、光ファイバを備えるファイバレーザは、高出力および小型化の可能といった利点を有しており、レーザ加工に用いられている。ファイバレーザには、コアの周囲に2つのクラッドを設けたダブルクラッド構造の光ファイバが用いられている(例えば、特許文献1参照)。 An optical fiber is used as an optical waveguide. The optical fiber includes a core and a clad provided around the core. Typically, the core has a circular shape and the cladding has a cylindrical shape in the cross section of the optical fiber. A fiber laser including an optical fiber has advantages such as high output and miniaturization, and is used for laser processing. For the fiber laser, an optical fiber having a double clad structure in which two clads are provided around a core is used (see, for example, Patent Document 1).
特開2007-134626号公報JP 2007-134626 A
 上述したように、コアは、典型的には円形状であり、光ファイバは、ほぼ円形状の光ビームを出射する。しかしながら、光ビームを利用する際に、光ビームを円形状以外の形状に変形することがある。例えば、光ビームのライン走査を行う場合、所定の光学部品を用いて光ビームの形状をラインビームに変形することがある。この場合、光ファイバから出射された光は、所定の光学部品を用いて変形することが必要となる。 As described above, the core is typically circular, and the optical fiber emits a substantially circular light beam. However, when the light beam is used, the light beam may be deformed into a shape other than a circular shape. For example, when performing line scanning of a light beam, the shape of the light beam may be transformed into a line beam using a predetermined optical component. In this case, the light emitted from the optical fiber needs to be deformed using a predetermined optical component.
 本発明は上記課題を鑑みてなされたものであり、その目的は、所望な形状の光ビームの出射または入射に適した光ファイバ、ファイバレーザおよび光ファイバの作製方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical fiber, a fiber laser, and an optical fiber manufacturing method suitable for emitting or entering a light beam having a desired shape.
 本発明による光ファイバは、コアと、前記コアと接触する第1クラッドと、前記第1クラッドの周囲に設けられた第2クラッドとを備える、光ファイバであって、前記コアは、前記第1クラッドよりも高い屈折率を有しており、前記第1クラッドは、前記第2クラッドよりも高い屈折率を有しており、断面において、前記コアの第1方向に沿った長さは前記コアの第2方向に沿った長さとは異なる。 An optical fiber according to the present invention is an optical fiber comprising a core, a first clad in contact with the core, and a second clad provided around the first clad, wherein the core is the first clad. The first cladding has a higher refractive index than the second cladding, and the length along the first direction of the core in the cross section is the core. Different from the length along the second direction.
 ある実施形態において、前記第1クラッドは互いに分離された2つの領域を有している。 In one embodiment, the first cladding has two regions separated from each other.
 ある実施形態において、前記コアは、前記第2クラッドと接触する。 In one embodiment, the core is in contact with the second cladding.
 ある実施形態では、断面において、前記コアはほぼ矩形状を有しており、前記第1クラッドは半円形状を有している。 In one embodiment, in cross section, the core has a substantially rectangular shape, and the first cladding has a semicircular shape.
 ある実施形態において、前記コアおよび前記第1クラッドのそれぞれに希土類元素がドープされている。 In one embodiment, each of the core and the first cladding is doped with a rare earth element.
 ある実施形態において、前記コアに、ネオジムまたはイッテルビウムがドープされている。 In one embodiment, the core is doped with neodymium or ytterbium.
 ある実施形態において、所定の波長の光は、前記コアの第1方向の沿った長さに対してマルチモードで伝搬され、前記コアの第2方向に沿った長さに対してシングルモードで伝搬される。 In one embodiment, light of a predetermined wavelength propagates in multimode for a length along the first direction of the core and propagates in single mode for a length along the second direction of the core. Is done.
 本発明の光ファイバは、コアと、クラッドとを備える、光ファイバであって、所定の波長の光は、前記コアの第1方向の沿った長さに対してマルチモードで伝搬され、前記コアの第2方向に沿った長さに対してシングルモードで伝搬される。 The optical fiber of the present invention is an optical fiber including a core and a clad, and light of a predetermined wavelength is propagated in a multimode with respect to a length along the first direction of the core, and the core Is propagated in a single mode for a length along the second direction.
 ある実施形態では、断面において、前記コアの第1方向に沿った長さは前記コアの第2方向に沿った長さとは異なる。 In one embodiment, in a cross section, the length along the first direction of the core is different from the length along the second direction of the core.
 本発明によるファイバレーザは、励起光源および共振器を備えるファイバレーザであって、前記共振器は、上記の光ファイバと、リアミラーと、フロントミラーとを有する。 The fiber laser according to the present invention is a fiber laser including a pumping light source and a resonator, and the resonator includes the above-described optical fiber, a rear mirror, and a front mirror.
 本発明の光ファイバの作製方法は、コア材料を有するコア部材と、それぞれが第1クラッド材料を有する2つの第1クラッド部材とを用意する工程と、前記コア部材を前記2つの第1クラッド部材で挟んだ成形体を形成する工程と、第2クラッド材料を有する第2クラッド部材であって、開口部の設けられた第2クラッド部材を用意する工程と、前記成形体を前記第2クラッド部材の前記開口部に挿入することによってプリフォームを形成する工程と、前記プリフォームからファイバを取り出す工程とを包含する。 The optical fiber manufacturing method of the present invention includes a step of preparing a core member having a core material and two first clad members each having a first clad material, and the core member being the two first clad members. Forming a molded body sandwiched between, a second cladding member having a second cladding material, the second cladding member having an opening provided therein, and the molded body as the second cladding member. Including a step of forming a preform by being inserted into the opening, and a step of removing a fiber from the preform.
 ある実施形態において、前記作製方法は、前記プリフォームを形成する工程の前に、前記第2クラッド部材の前記開口部と整合するように前記成形体を切削する工程をさらに包含する。 In one embodiment, the manufacturing method further includes a step of cutting the molded body so as to be aligned with the opening of the second clad member before the step of forming the preform.
 ある実施形態において、前記成形体を形成する工程は、前記コア部材および前記2つの第1クラッド部材の少なくとも一方を研磨する工程を含む。 In one embodiment, the step of forming the molded body includes a step of polishing at least one of the core member and the two first clad members.
 本発明の光ファイバの作製方法は、第1方向に沿った長さが第2方向に沿った長さと異なる断面を有するロッドを用意する工程と、前記ロッドの周囲にコアを形成する工程と、前記コアの周囲にクラッドを形成する工程とを包含する。 The optical fiber manufacturing method of the present invention includes a step of preparing a rod having a cross section different in length along the first direction from a length along the second direction, a step of forming a core around the rod, Forming a clad around the core.
 本発明によれば、所望な形状の光ビームの出射または入射に適した光ファイバを提供することができる。 According to the present invention, it is possible to provide an optical fiber suitable for emission or incidence of a light beam having a desired shape.
(a)は本発明による光ファイバの実施形態を示す模式的な断面図であり、(b)は本実施形態の光ファイバにおける屈折率の変化を示すグラフであり、(c)は本実施形態の光ファイバから出射される光ビームの形状を示す模式図である。(A) is typical sectional drawing which shows embodiment of the optical fiber by this invention, (b) is a graph which shows the change of the refractive index in the optical fiber of this embodiment, (c) is this embodiment. It is a schematic diagram which shows the shape of the light beam radiate | emitted from this optical fiber. (a)は比較例1の光ファイバの模式的な断面図であり、(b)は比較例1の光ファイバから出射される光ビームの形状を示す模式図である。(A) is typical sectional drawing of the optical fiber of the comparative example 1, (b) is a schematic diagram which shows the shape of the light beam radiate | emitted from the optical fiber of the comparative example 1. FIG. (a)は比較例1の光ファイバから出射された光ビームのラインビームへの変形を説明するための模式図であり、(b)は本実施形態の光ファイバから出射された光ビームのラインビームへの変形を説明するための模式図である。(A) is a schematic diagram for demonstrating the deformation | transformation to the line beam of the light beam radiate | emitted from the optical fiber of the comparative example 1, (b) is the line of the light beam radiate | emitted from the optical fiber of this embodiment. It is a schematic diagram for demonstrating the deformation | transformation to a beam. 本実施形態のファイバレーザの模式図である。It is a schematic diagram of the fiber laser of this embodiment. (a)は比較例1の光ファイバを備えたファイバレーザにおいて発生するスキューレイを説明するための模式図であり、(b)は比較例2の光ファイバの模式的な断面図である。(A) is a schematic diagram for demonstrating the skew ray generate | occur | produced in the fiber laser provided with the optical fiber of the comparative example 1, (b) is typical sectional drawing of the optical fiber of the comparative example 2. FIG. (a)は比較例1の光ファイバから出射された光ビームのラインビームへの変形を説明するための模式図であり、(b)、(c)および(d)は比較例1の光ファイバから出射された光ビームの変化を示す模式図である。(A) is a schematic diagram for demonstrating the deformation | transformation to the line beam of the light beam radiate | emitted from the optical fiber of the comparative example 1, (b), (c) and (d) are optical fibers of the comparative example 1. It is a schematic diagram which shows the change of the light beam radiate | emitted from. (a)は本実施形態の光ファイバから出射された光ビームのラインビームへの変形を説明するための模式図であり、(b)、(c)および(d)は本実施形態の光ファイバから出射された光ビームの変化を示す模式図である。(A) is a schematic diagram for demonstrating the deformation | transformation to the line beam of the light beam radiate | emitted from the optical fiber of this embodiment, (b), (c) and (d) are the optical fibers of this embodiment. It is a schematic diagram which shows the change of the light beam radiate | emitted from. (a)は比較例3の光ファイバに向けて出射された光ビームを示す模式図であり、(b)は本実施形態の光ファイバに向けて出射された光ビームを示す模式図である。(A) is a schematic diagram which shows the light beam radiate | emitted toward the optical fiber of the comparative example 3, (b) is a schematic diagram which shows the light beam radiate | emitted toward the optical fiber of this embodiment. (a)~(e)は本実施形態の光ファイバの作製方法を説明するための模式図である。(A)-(e) is a schematic diagram for demonstrating the manufacturing method of the optical fiber of this embodiment. 本実施形態の光ファイバを示す模式図である。It is a schematic diagram which shows the optical fiber of this embodiment. 本実施形態のファイバレーザにおけるレーザ発振スペクトルを示すグラフである。It is a graph which shows the laser oscillation spectrum in the fiber laser of this embodiment. 本実施形態のファイバレーザにおけるレーザ発振の入出力特性を示すグラフである。It is a graph which shows the input / output characteristic of the laser oscillation in the fiber laser of this embodiment. 本実施形態のファイバレーザにおけるレーザ発振の入出力特性を示すグラフである。It is a graph which shows the input / output characteristic of the laser oscillation in the fiber laser of this embodiment. 本実施形態のファイバレーザにおけるビームプロファイルを示す図である。It is a figure which shows the beam profile in the fiber laser of this embodiment. 本実施形態の光ファイバの模式的な断面図である。It is a typical sectional view of the optical fiber of this embodiment. 本実施形態の光ファイバの模式的な断面図である。It is a typical sectional view of the optical fiber of this embodiment. 本実施形態の光ファイバの模式図である。It is a schematic diagram of the optical fiber of this embodiment. 本実施形態の光ファイバの模式図である。It is a schematic diagram of the optical fiber of this embodiment. (a)および(b)は本実施形態のファイバレーザを示した模式図である。(A) And (b) is the schematic diagram which showed the fiber laser of this embodiment.
 以下、図面を参照して本発明による光ファイバおよび光ファイバの作製方法を説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, an optical fiber and an optical fiber manufacturing method according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.
 図1(a)に、本実施形態の光ファイバ10の模式的な断面図を示す。光ファイバ10は、コア12と、クラッド14aと、クラッド14bとを備えている。コア12はクラッド14aと接触しており、クラッド14bはクラッド14aの周囲に設けられている。典型的には、光ファイバ10の断面においてクラッド14aの面積はコア12よりも大きい。 FIG. 1A is a schematic cross-sectional view of the optical fiber 10 of the present embodiment. The optical fiber 10 includes a core 12, a clad 14a, and a clad 14b. The core 12 is in contact with the clad 14a, and the clad 14b is provided around the clad 14a. Typically, the area of the clad 14 a is larger than that of the core 12 in the cross section of the optical fiber 10.
 断面においてクラッド14bは筒形状である。例えば、クラッド14bの内径は約100~350μmであり、クラッド14bの外径は125~400μmである。ここでは、クラッド14aは、互いに分離された領域14a1、14a2を有しており、断面において領域14a1、14a2はいずれも半円形状である。コア12は、クラッド14aだけでなくクラッド14bとも接触している。コア12の長辺の長さはクラッド14bの内径と等しい。 In the cross section, the clad 14b has a cylindrical shape. For example, the inner diameter of the clad 14b is about 100 to 350 μm, and the outer diameter of the clad 14b is 125 to 400 μm. Here, the clad 14a has regions 14a1 and 14a2 separated from each other, and the regions 14a1 and 14a2 are both semicircular in cross section. The core 12 is in contact with not only the clad 14a but also the clad 14b. The length of the long side of the core 12 is equal to the inner diameter of the clad 14b.
 本明細書において、クラッド14aを第1クラッドと呼ぶことがあり、クラッド14bを第2クラッドと呼ぶことがある。また、クラッド14aは中間クラッドとも呼ばれ、クラッド14bはアウタークラッド(outer cladding)とも呼ばれる。なお、ここでは図示していないが、クラッド14bの周囲を樹脂(例えば、ポリアミド樹脂)でコーティングすることによって光ファイバ10を保護することが好ましい。樹脂により、光ファイバ10を曲げる際の光ファイバ10の破損を抑制することができる。 In this specification, the clad 14a may be referred to as a first clad, and the clad 14b may be referred to as a second clad. The clad 14a is also called an intermediate clad, and the clad 14b is also called an outer clad. Although not shown here, it is preferable to protect the optical fiber 10 by coating the periphery of the clad 14b with a resin (for example, polyamide resin). The resin can suppress breakage of the optical fiber 10 when the optical fiber 10 is bent.
 図1(b)に、図1(a)の1b-1b’線に沿った断面における屈折率の変化を示す。コア12は第1クラッド14aよりも高い屈折率を示し、第1クラッド14aは第2クラッド14bよりも高い屈折率を示す。例えば、クラッド14bはシリカから形成されており、コア12およびクラッド14aは希土類元素のドーピングされたシリカから形成されている。 FIG. 1B shows a change in refractive index in a cross section taken along the line 1b-1b ′ in FIG. The core 12 exhibits a higher refractive index than the first cladding 14a, and the first cladding 14a exhibits a higher refractive index than the second cladding 14b. For example, the cladding 14b is made of silica, and the core 12 and the cladding 14a are made of silica doped with rare earth elements.
 一例として、コア12およびクラッド14aは、希土類元素の固定されたゼオライトと媒質原料(例えば、シリカ原料)との混合物を焼成することによって形成される。詳細には、希土類元素の水溶性化合物とゼオライトを水中で加熱した後に、塩化アンモニウム溶液で処理することによって希土類元素の固定されたゼオライトが形成され、このゼオライトをシリカ原料と混合して焼成することにより、希土類元素のドーピングされたシリカが形成される。これにより、希土類元素濃度の高いコア12およびクラッド14aを形成することができる。なお、例えば、クラッド14aには希土類元素がドープされなくてもよい。 As an example, the core 12 and the cladding 14a are formed by firing a mixture of a rare earth element-fixed zeolite and a medium raw material (for example, a silica raw material). Specifically, a water-soluble rare earth element compound and a zeolite are heated in water and then treated with an ammonium chloride solution to form a rare earth element-fixed zeolite, which is mixed with a silica raw material and calcined. Thus, silica doped with rare earth elements is formed. Thereby, the core 12 and the clad 14a with a high rare earth element concentration can be formed. For example, the cladding 14a may not be doped with a rare earth element.
 コア12に入射された光は、コア12とクラッド14aとの界面でほぼ全反射されて、コア12内を進行する。また、クラッド14aに入射された光は、クラッド14aとクラッド14bとの界面でほぼ全反射される一方、コア12とクラッド14aとの界面を通過してコア12内に進行する。光ファイバ10では最も外側に位置するクラッド14bの屈折率が最も低いため、光ファイバ10に入射した光をコア12に集めることができ、コア12から出力される光の強度を増大させることができる。このような光ファイバ10は、増幅器またはファイバレーザに好適に用いられる。 The light incident on the core 12 is almost totally reflected at the interface between the core 12 and the clad 14 a and travels through the core 12. The light incident on the clad 14a is almost totally reflected at the interface between the clad 14a and the clad 14b, and passes through the interface between the core 12 and the clad 14a and travels into the core 12. Since the optical fiber 10 has the lowest refractive index of the outermost clad 14b, the light incident on the optical fiber 10 can be collected in the core 12, and the intensity of the light output from the core 12 can be increased. . Such an optical fiber 10 is suitably used for an amplifier or a fiber laser.
 本実施形態の光ファイバ10では、断面においてコア12のある方向に沿った長さは別の方向に沿った長さよりも大きい。例えば、コア12において直交する2つの方向に沿った長さは互いに異なる。図1(a)は、光ファイバ10の延びている方向に対して垂直に切断した断面であり、この断面においてコア12のx方向に沿った長さはy方向に沿った長さよりも大きい。ここでは、コア12の断面は長手方向に沿ってほぼ直線状に延びた矩形状であり、コア12のアスペクト比は3(3:1)以上70(70:1)以下の範囲内である。例えば、コア12の長辺の長さ(x方向に沿った長さ)は約100μm、短辺の長さ(y方向に沿った長さ)は約10μmである。 In the optical fiber 10 of the present embodiment, the length along the direction of the core 12 in the cross section is larger than the length along the other direction. For example, the lengths along two orthogonal directions in the core 12 are different from each other. FIG. 1A is a cross section cut perpendicularly to the direction in which the optical fiber 10 extends. In this cross section, the length of the core 12 along the x direction is larger than the length along the y direction. Here, the cross section of the core 12 is a rectangular shape extending substantially linearly along the longitudinal direction, and the aspect ratio of the core 12 is in the range of 3 (3: 1) to 70 (70: 1). For example, the length of the long side (length along the x direction) of the core 12 is about 100 μm, and the length of the short side (length along the y direction) is about 10 μm.
 光ファイバ10では、コア12の断面の長さが一定ではなく、方向に応じて異なる。コア12の断面形状を光ビームの使用用途に合わせて変形することにより、光ファイバ10から出射される光ビームの照射強度をほぼ均一にするとともに、光ファイバ10から出射される光ビームの形状を変更するための光学部品の数を低減させることができる。例えば、ラインビームを形成する場合、図1(a)に示したようにコア12の断面形状がほぼ矩形状であると、図1(c)に示すように、光ファイバ10からライン状の光ビームが出射される。なお、必要とされるラインビームの長さに応じて、光ファイバ10から出射された光ビームを拡大してもよい。光ファイバ10では、所望な形状の光ビームを形成するための光学系を簡略化することができる。 In the optical fiber 10, the length of the cross section of the core 12 is not constant, and varies depending on the direction. By changing the cross-sectional shape of the core 12 in accordance with the use application of the light beam, the irradiation intensity of the light beam emitted from the optical fiber 10 is made substantially uniform, and the shape of the light beam emitted from the optical fiber 10 is changed. The number of optical components for changing can be reduced. For example, in the case of forming a line beam, if the cross-sectional shape of the core 12 is substantially rectangular as shown in FIG. 1A, the line-shaped light is emitted from the optical fiber 10 as shown in FIG. A beam is emitted. Note that the light beam emitted from the optical fiber 10 may be expanded according to the required length of the line beam. In the optical fiber 10, an optical system for forming a light beam having a desired shape can be simplified.
 以下に、比較例の光ファイバと比較して本実施形態の光ファイバ10の利点を説明する。まず、図2を参照して比較例1の光ファイバ70を説明する。 Hereinafter, advantages of the optical fiber 10 of this embodiment compared to the optical fiber of the comparative example will be described. First, the optical fiber 70 of the comparative example 1 is demonstrated with reference to FIG.
 図2(a)に、比較例1の光ファイバ70の模式図を示す。光ファイバ70は、コア72と、クラッド74aと、クラッド74bとを備える。クラッド74aはコア72の周囲に設けられており、クラッド74bはクラッド74aの周囲に設けられている。コア72はクラッド74aよりも高い屈折率を示し、クラッド74aはクラッド74bよりも高い屈折率を示す。光ファイバ70の断面において、コア72は円形状であり、クラッド74a、74bは筒形状であり、コア72、クラッド74a、74bの中心はほぼ等しい。クラッド74aはインナークラッドとも呼ばれ、クラッド74bはアウタークラッドとも呼ばれる。光ファイバ70は、図2(b)に示すように、断面の円形状の光ビームを出射する。 FIG. 2A shows a schematic diagram of the optical fiber 70 of Comparative Example 1. FIG. The optical fiber 70 includes a core 72, a clad 74a, and a clad 74b. The clad 74a is provided around the core 72, and the clad 74b is provided around the clad 74a. The core 72 has a higher refractive index than the clad 74a, and the clad 74a has a higher refractive index than the clad 74b. In the cross section of the optical fiber 70, the core 72 has a circular shape, the clads 74a and 74b have a cylindrical shape, and the centers of the core 72 and the clads 74a and 74b are substantially equal. The clad 74a is also called an inner clad, and the clad 74b is also called an outer clad. The optical fiber 70 emits a light beam having a circular cross section, as shown in FIG.
 光ファイバ70から出射された光ビームからラインビームを形成する場合、光ファイバ70から出射される円形状の光ビームを、光学部材(ここでは、図示せず)を用いて変形することが必要となる。これに対して、本実施形態の光ファイバ10は、断面がほぼ矩形状のコア12を有しており、光ファイバ10から出射される光ビームはラインビームの形成に適している。 In the case of forming a line beam from the light beam emitted from the optical fiber 70, it is necessary to deform the circular light beam emitted from the optical fiber 70 using an optical member (not shown here). Become. In contrast, the optical fiber 10 of the present embodiment has a core 12 having a substantially rectangular cross section, and the light beam emitted from the optical fiber 10 is suitable for forming a line beam.
 図3(a)に示すように、比較例1の光ファイバ70から出射される光ビームはラインビームに変形される。光ファイバ70から出射された光ビームは、拡大レンズF1によって拡大された後で、シリンドリカルレンズF2によって特定の方向に集められ、ラインビームが形成される。例えば、光ファイバ70のコア72の直径は約10μmであり、拡大レンズF1によって光ビームは直径5cmに拡大された後、シリンドリカルレンズF2によって長さ5cmのラインビームが形成される。 As shown in FIG. 3A, the light beam emitted from the optical fiber 70 of Comparative Example 1 is transformed into a line beam. The light beam emitted from the optical fiber 70 is expanded by the magnifying lens F1 and then collected in a specific direction by the cylindrical lens F2, thereby forming a line beam. For example, the diameter of the core 72 of the optical fiber 70 is about 10 μm, the light beam is expanded to a diameter of 5 cm by the magnifying lens F1, and then a line beam having a length of 5 cm is formed by the cylindrical lens F2.
 図3(b)に示すように、本実施形態の光ファイバ10から出射される光ビームはラインビームに変形される。例えば、上述したように、光ファイバ10のコア12はほぼ矩形状であり、光ファイバ10ほぼ矩形状の光ビームを出射する。所望の長さのラインビームを形成する場合、必要に応じて光ファイバ10から出射された光ビームを拡大レンズF1によって等方的に拡大してもよい。例えば、光ファイバ10のコア12の短径および長径がそれぞれ約10μm、約100μmである場合、拡大レンズF1で光ビームの短径および長径をそれぞれ約0.5cm、約5cmまで拡大することによって長さ約5cmのラインビームを形成してもよい。また、ここでは図示していないが、光ファイバ10から出射された光ビームに対して、必要に応じて、シリンドリカルレンズを用いて光ビームを特定の方向に変形してもよい。 As shown in FIG. 3B, the light beam emitted from the optical fiber 10 of this embodiment is transformed into a line beam. For example, as described above, the core 12 of the optical fiber 10 is substantially rectangular, and the optical fiber 10 emits a substantially rectangular light beam. When forming a line beam having a desired length, the light beam emitted from the optical fiber 10 may be isotropically expanded by the magnifying lens F1 as necessary. For example, when the minor axis and major axis of the core 12 of the optical fiber 10 are about 10 μm and about 100 μm, respectively, the magnifying lens F1 expands the minor axis and major axis of the light beam to about 0.5 cm and about 5 cm, respectively. A line beam having a length of about 5 cm may be formed. Although not shown here, the light beam emitted from the optical fiber 10 may be deformed in a specific direction using a cylindrical lens, if necessary.
 コア12はマルチモードおよびシングルモードの両方で光を伝搬することができる。図1(a)に示したように、コア12の断面の長さは方向に応じて異なるため、コア12を伝搬する光の波長に応じて、コア12の長さ、ならびに、コア12およびクラッド14aの屈折率を適宜設定することにより、所定の波長の光は、コア12のx方向に沿った長さに対してマルチモードで伝搬され、コア12のy方向に沿った長さに対してシングルモードで伝搬される。シングルモードで光の伝搬が行われる場合、伝搬の損失を抑制できる。 The core 12 can propagate light in both multimode and single mode. As shown in FIG. 1A, the length of the cross section of the core 12 varies depending on the direction. Therefore, the length of the core 12 and the length of the core 12 and the cladding are dependent on the wavelength of light propagating through the core 12. By appropriately setting the refractive index of 14a, light of a predetermined wavelength is propagated in multimode with respect to the length along the x direction of the core 12, and with respect to the length along the y direction of the core 12. Propagated in single mode. When light is propagated in a single mode, propagation loss can be suppressed.
 なお、光ファイバ10を伝搬する光は、パルス波であっても、連続波であってもよい。ただし、パルス波が光ファイバ10を伝搬する場合、光がシングルモードで伝搬されると、パルス波の形状の変形を防ぐことができ、信号遅延を抑制できる。なお、シングルモードで光の伝搬が行われる場合、光ファイバ10はそれほど曲げないことが好ましい。 Note that the light propagating through the optical fiber 10 may be a pulse wave or a continuous wave. However, when a pulse wave propagates through the optical fiber 10, if the light propagates in a single mode, deformation of the shape of the pulse wave can be prevented and signal delay can be suppressed. In addition, when light propagation is performed in a single mode, the optical fiber 10 is preferably not bent so much.
 光ファイバ10は、ファイバレーザの一部として好適に用いられる。以下、図1および図4を参照して光ファイバ10を備えた本実施形態のファイバレーザ100を説明する。 The optical fiber 10 is preferably used as part of a fiber laser. Hereinafter, the fiber laser 100 of this embodiment provided with the optical fiber 10 will be described with reference to FIGS. 1 and 4.
 図4に、本実施形態のファイバレーザ100の模式図を示す。ファイバレーザ100は、励起光源110と、共振器120とを備えている。共振器120は、光ファイバ10と、リアミラー122と、フロントミラー124とを有している。リアミラー122は光ファイバ10の一方の端部と向かい合うように配置されており、フロントミラー124は光ファイバ10の他方の端部と向かい合うように配置されている。ここでは、図1(a)に示した光ファイバ10において、コア12にネオジム(Nd)またはイッテルビウム(Yb)がドープされており、クラッド14aにランタン(La)がドープされている。 FIG. 4 shows a schematic diagram of the fiber laser 100 of the present embodiment. The fiber laser 100 includes an excitation light source 110 and a resonator 120. The resonator 120 includes the optical fiber 10, a rear mirror 122, and a front mirror 124. The rear mirror 122 is disposed so as to face one end portion of the optical fiber 10, and the front mirror 124 is disposed so as to face the other end portion of the optical fiber 10. Here, in the optical fiber 10 shown in FIG. 1A, the core 12 is doped with neodymium (Nd) or ytterbium (Yb), and the cladding 14a is doped with lanthanum (La).
 ファイバレーザ100では、励起光源110から共振器120に向かって励起光が出射される。リアミラー122を通過した励起光は光ファイバ10のコア12およびクラッド14aに入射する。励起光はコア12において吸収されて、コア12においてネオジムの発振波長の光が発生する。コア12において発生した光は、コア12とクラッド14aとの界面でほぼ全反射してコア12内に閉じ込められた状態で進行する。光ファイバ10はリアミラー122およびフロントミラー124に挟まれており、共振器120において共振が発生し、発振波長のコヒーレントな光が共振器120から出射される。なお、ファイバレーザ100から出射される光は、パルス波であってもよく、連続波であってもよい。 In the fiber laser 100, excitation light is emitted from the excitation light source 110 toward the resonator 120. The excitation light that has passed through the rear mirror 122 is incident on the core 12 and the clad 14 a of the optical fiber 10. The excitation light is absorbed by the core 12 and light having an oscillation wavelength of neodymium is generated in the core 12. The light generated in the core 12 travels in a state where it is totally reflected at the interface between the core 12 and the clad 14 a and confined in the core 12. The optical fiber 10 is sandwiched between a rear mirror 122 and a front mirror 124, resonance occurs in the resonator 120, and coherent light having an oscillation wavelength is emitted from the resonator 120. The light emitted from the fiber laser 100 may be a pulse wave or a continuous wave.
 ファイバレーザ100は加工用レーザとして好適に用いられる。例えば、ファイバレーザ100は、太陽電池の表面改質、または、フラットパネルディスプレイなどのアニーリング処理に好適に用いられる。 The fiber laser 100 is suitably used as a processing laser. For example, the fiber laser 100 is suitably used for surface modification of a solar cell or an annealing process such as a flat panel display.
 ファイバレーザ100の光ファイバ10では、コア12とクラッド14bとの間にクラッド14aが設けられていることにより、励起光は効率的に入射される。なお、一般に、励起光源110からの光の強度がある程度増加するまで、光ファイバ10から出力される光の強度も増加する。しかしながら、非線形現象の影響により、励起光源110からの光の強度がある程度以上増加しても、光ファイバ10から出射される光のパワー密度(power density:単位 W/cm2)はほぼ一定となる。本実施形態の光ファイバ10ではコア12の断面積を比較的大きくできるため、光ファイバ10から出力される光ビームのパワーを増大させることができる。円形状のコア72を有する光ファイバ70では、シングルモードの光ビームを比較的高いパワーで出射する場合、コア72の断面積を単純に大きくすると、コア72およびクラッド74aの屈折率差を小さくすることが必要となるが、製造限界に起因して面積の大きさが限られるため、高パワーを実現できない。これに対して、本実施形態の光ファイバ10では、コア12の断面積を比較的大きくできるため、光ファイバ10から出力される光ビームのパワーを増大させることができる。例えば、光ファイバ10の断面におけるコア12の面積が光ファイバ70の断面におけるコア72の面積と比べて10倍以上の場合、光ファイバ10を備えたファイバレーザ100の最大出力は光ファイバ70を備えたファイバレーザよりも10倍以上にすることができる。このように、ファイバレーザ100の出力を向上できるため、ファイバレーザ100は、大面積の加工に好適に用いられる。 In the optical fiber 10 of the fiber laser 100, since the clad 14a is provided between the core 12 and the clad 14b, the excitation light is efficiently incident. In general, the intensity of light output from the optical fiber 10 also increases until the intensity of light from the excitation light source 110 increases to some extent. However, the power density of light emitted from the optical fiber 10 (power density: unit W / cm 2 ) is substantially constant even if the intensity of light from the excitation light source 110 increases to some extent due to the influence of the nonlinear phenomenon. . In the optical fiber 10 of the present embodiment, since the cross-sectional area of the core 12 can be made relatively large, the power of the light beam output from the optical fiber 10 can be increased. In the optical fiber 70 having the circular core 72, when a single mode light beam is emitted at a relatively high power, the refractive index difference between the core 72 and the clad 74a is reduced by simply increasing the cross-sectional area of the core 72. However, since the size of the area is limited due to manufacturing limitations, high power cannot be realized. On the other hand, in the optical fiber 10 of this embodiment, since the cross-sectional area of the core 12 can be made relatively large, the power of the light beam output from the optical fiber 10 can be increased. For example, when the area of the core 12 in the cross section of the optical fiber 10 is 10 times or more than the area of the core 72 in the cross section of the optical fiber 70, the maximum output of the fiber laser 100 including the optical fiber 10 includes the optical fiber 70. 10 times or more than a fiber laser. Thus, since the output of the fiber laser 100 can be improved, the fiber laser 100 is suitably used for processing a large area.
 ここで、本実施形態の光ファイバ10を比較例1の光ファイバ70を備えたファイバレーザと比較する。例えば、比較例1の光ファイバ70のコア74の径は25μmである。このファイバレーザにおける励起光の波長915nmの吸収係数が0.8dB/mであると、励起光を99%(-20dB)吸収するファイバ長は25m(=(20dB)/(0.8dB/m)である。この場合、誘導ラマン増幅閾値は3.14kWとなり、誘導ブリルアン増幅閾値は41Wとなる。なお、典型的には、比較例1の光ファイバ70を備えたファイバレーザは約1kWの光ビームを出力する。 Here, the optical fiber 10 of this embodiment is compared with a fiber laser including the optical fiber 70 of Comparative Example 1. For example, the diameter of the core 74 of the optical fiber 70 of Comparative Example 1 is 25 μm. When the absorption coefficient of the excitation light wavelength 915 nm in this fiber laser is 0.8 dB / m, the fiber length that absorbs 99% (−20 dB) of the excitation light is 25 m (= (20 dB) / (0.8 dB / m). In this case, the stimulated Raman amplification threshold is 3.14 kW and the stimulated Brillouin amplification threshold is 41 W. Typically, a fiber laser including the optical fiber 70 of Comparative Example 1 has a light beam of about 1 kW. Is output.
 これに対して、例えば、本実施形態のファイバ10では、コア12の長辺の長さは100μmであり、短辺の長さは10μmである。ゼオライトを利用してコア12を形成する場合、このファイバレーザ100における励起光の波長915nmの吸収係数は約100dB/mとなり、励起光を99%(-20dB)吸収するファイバ長は0.2m(=(20dB)/(100dB/m)である。この場合、誘導ラマン増幅閾値は628kWとなり、誘導ブリルアン増幅閾値は825Wとなる。このようなファイバレーザ100によれば、一般的なマージンを考慮しても約200kWの出力を得ることができる。このように、本実施形態のファイバレーザ100によれば、一般的なファイバレーザと比べて高出力の光ビームを出射することができる。 On the other hand, for example, in the fiber 10 of this embodiment, the length of the long side of the core 12 is 100 μm, and the length of the short side is 10 μm. When the core 12 is formed using zeolite, the absorption coefficient of the excitation light wavelength 915 nm in the fiber laser 100 is about 100 dB / m, and the fiber length for absorbing 99% (−20 dB) of the excitation light is 0.2 m ( = (20 dB) / (100 dB / m) In this case, the stimulated Raman amplification threshold is 628 kW, and the stimulated Brillouin amplification threshold is 825 W. According to such a fiber laser 100, a general margin is taken into consideration. Even in this case, it is possible to obtain an output of about 200 kW As described above, according to the fiber laser 100 of the present embodiment, it is possible to emit a light beam having a higher output than a general fiber laser.
 なお、ここでは図示していないが、上述したように、光ファイバ10は樹脂で保護されることが好ましい。ファイバレーザ100では光ファイバ10がクラッド14aの周囲に設けられたクラッド14bを有することにより、樹脂の焼き付きを抑制することができる。 Although not shown here, as described above, the optical fiber 10 is preferably protected with a resin. In the fiber laser 100, since the optical fiber 10 has the clad 14b provided around the clad 14a, the seizure of the resin can be suppressed.
 このように、クラッド14bは光の閉じ込めに利用される。また、クラッド14bにより、光の外部への漏れ出しを抑制できるため、金属等による接触冷却を好適に行うことができる。なお、クラッド14bは、光を閉じ込めるだけではない。クラッド14bは、後述するように、光ファイバ10を線引きで作製する際にコア12をサポートするため、光ファイバ10の作製を容易にすることができる。 Thus, the clad 14b is used for light confinement. Moreover, since the leakage of light to the outside can be suppressed by the clad 14b, contact cooling with metal or the like can be suitably performed. The clad 14b does not only confine light. As will be described later, since the clad 14b supports the core 12 when the optical fiber 10 is manufactured by drawing, the optical fiber 10 can be easily manufactured.
 上述したように、光ファイバ10では、コア12の断面の長さは方向に応じて異なる。このため、所定の波長の光は、コア12のx方向に沿った長さに対してマルチモードで伝搬し、コア12のy方向に沿った長さに対してシングルモードで伝搬する。ファイバレーザ100の場合、発振波長の光がマルチモードおよびシングルモードの両方で伝搬する。図1(a)において、コア12のx方向に沿った長さdxが2.405λ/(π√(n12-n22))よりも大きく、コア12のy方向に沿った長さdyが2.405λ/(π√(n12-n22))よりも小さい場合、コア12は、x方向にマルチモードおよびy方向にシングルモードで伝搬できる。ここで、λはコア12を伝搬する光の空気中の波長であり、n1はコア12の屈折率であり、n2はクラッド14aの屈折率である。 As described above, in the optical fiber 10, the length of the cross section of the core 12 varies depending on the direction. For this reason, light of a predetermined wavelength propagates in multimode with respect to the length along the x direction of the core 12 and propagates in single mode with respect to the length along the y direction of the core 12. In the case of the fiber laser 100, light having an oscillation wavelength propagates in both multimode and single mode. In FIG. 1A, the length dx along the x direction of the core 12 is larger than 2.405λ / (π√ (n1 2 −n2 2 )), and the length dy along the y direction of the core 12 is When less than 2.405λ / (π√ (n1 2 −n2 2 )), the core 12 can propagate in multimode in the x direction and single mode in the y direction. Here, λ is the wavelength of light propagating through the core 12 in the air, n1 is the refractive index of the core 12, and n2 is the refractive index of the clad 14a.
 例えば、コア12にネオジムがドープされている場合、発振波長は1062nmである。コア12の屈折率が1.452、クラッド14aの屈折率が1.450である場合、上記式の計算結果は、2.405λ/(π√(n12-n22))=10.7μmである。この計算結果が、コア12の異なる方向に沿った長さの間であれば、光は、コア12の一方向に沿った長さに対してマルチモードで伝搬され、コア12の他方向に沿った長さに対してシングルモードで伝搬される。例えば、コア12のx方向に沿った長さが100μmであり、コア12のy方向に沿った長さが10μmである場合、波長1062nmの光は、コア12のx方向に沿った長さに対してマルチモードで伝搬され、コア12のy方向に沿った長さに対してシングルモードで伝搬される。 For example, when the core 12 is doped with neodymium, the oscillation wavelength is 1062 nm. When the refractive index of the core 12 is 1.452 and the refractive index of the clad 14a is 1.450, the calculation result of the above formula is 2.405λ / (π√ (n1 2 −n2 2 )) = 10.7 μm. is there. If this calculation result is between the lengths along different directions of the core 12, the light is propagated in multimode with respect to the length along one direction of the core 12, and along the other direction of the core 12. Propagated in single mode for a given length. For example, when the length of the core 12 along the x direction is 100 μm and the length of the core 12 along the y direction is 10 μm, the light having a wavelength of 1062 nm has a length along the x direction of the core 12. On the other hand, it propagates in multimode and propagates in single mode for the length of core 12 along the y direction.
 なお、図4では、1つの励起光源110が示されているが、光ファイバ10に入射される励起光は複数の励起光源110(例えば、レーザダイオード)から出射されてもよい。 In addition, although one excitation light source 110 is shown in FIG. 4, the excitation light incident on the optical fiber 10 may be emitted from a plurality of excitation light sources 110 (for example, laser diodes).
 比較例1の光ファイバ70を用いてファイバレーザを作製する場合、スキューレイが発生することがある。これに対して、本実施形態の光ファイバ10を備えたファイバレーザ100では、スキューレイの発生を抑制できる。 When producing a fiber laser using the optical fiber 70 of Comparative Example 1, skew rays may occur. On the other hand, in the fiber laser 100 including the optical fiber 10 of the present embodiment, the occurrence of skew ray can be suppressed.
 図5(a)に、比較例1の光ファイバ70において発生するスキューレイを示す。光ファイバ70のクラッド74aに入射された励起光は、クラッド74aとクラッド74bとの界面でほぼ全反射する。励起光のある成分は、クラッド74aの内部においてコア72とクラッド74aとの界面を通過してコア72に到達するが、励起光の別の成分は、クラッド74aの内部においてクラッド74aとクラッド74bとの界面において全反射を繰り返しても中心に位置するコア72に到達せずに、光ファイバ70から出射されてしまうことがある。 FIG. 5A shows skew rays generated in the optical fiber 70 of Comparative Example 1. FIG. The excitation light incident on the clad 74a of the optical fiber 70 is almost totally reflected at the interface between the clad 74a and the clad 74b. A certain component of the pumping light passes through the interface between the core 72 and the cladding 74a inside the cladding 74a and reaches the core 72, while another component of the pumping light is generated by the cladding 74a and the cladding 74b inside the cladding 74a. Even if total reflection is repeated at the interface, the light may be emitted from the optical fiber 70 without reaching the core 72 located at the center.
 なお、近年、スキューレイを抑制するために、円の一部を切り欠いた形状の断面を有するクラッドを形成することも知られている。以下、図5(b)を参照して比較例2の光ファイバ80を説明する。 In recent years, it has also been known to form a clad having a cross-sectional shape in which a part of a circle is cut out in order to suppress skew rays. Hereinafter, the optical fiber 80 of Comparative Example 2 will be described with reference to FIG.
 図5(b)に、比較例2の光ファイバ80の模式図を示す。光ファイバ80は、コア82と、クラッド84aと、クラッド84bとを備えている。クラッド84aはコア82の周囲に設けられており、クラッド84bはクラッド84aの周囲に設けられている。クラッド84aおよびクラッド84bは、それぞれ、インナークラッドおよびアウタークラッドとも呼ばれる。 FIG. 5B shows a schematic diagram of the optical fiber 80 of Comparative Example 2. The optical fiber 80 includes a core 82, a clad 84a, and a clad 84b. The clad 84a is provided around the core 82, and the clad 84b is provided around the clad 84a. The clad 84a and the clad 84b are also referred to as an inner clad and an outer clad, respectively.
 コア82はクラッド84aよりも高い屈折率を示し、クラッド84aはクラッド84bよりも高い屈折率を示す。光ファイバ80の断面において、コア82は円形状であり、クラッド84bは筒形状である。クラッド84aは、筒形状の一部の切り欠かれた形状を有している。光ファイバ80でも、コア82、クラッド84a、84bの中心はほぼ等しい。 The core 82 has a higher refractive index than the clad 84a, and the clad 84a has a higher refractive index than the clad 84b. In the cross section of the optical fiber 80, the core 82 has a circular shape and the clad 84b has a cylindrical shape. The clad 84a has a partially cut shape of a cylindrical shape. Even in the optical fiber 80, the centers of the core 82 and the clads 84a and 84b are substantially equal.
 比較例2の光ファイバ80を備えたファイバレーザでは、光ファイバ80のクラッド84aに入射された励起光は、クラッド84aとクラッド84bとの界面でほぼ全反射する。励起光のある成分は、クラッド84aの内部においてコア82とクラッド84aとの界面を通過してコア82に到達する。励起光の別の成分は、クラッド84aの内部においてクラッド84aの切り欠かれた部分とクラッド84bとの界面において全反射して最終的に中心に位置するコア82に到達する。このため、光ファイバ80では、スキューレイの発生を抑制することができる。 In the fiber laser including the optical fiber 80 of Comparative Example 2, the excitation light incident on the clad 84a of the optical fiber 80 is almost totally reflected at the interface between the clad 84a and the clad 84b. A certain component of the excitation light reaches the core 82 through the interface between the core 82 and the clad 84a inside the clad 84a. Another component of the excitation light is totally reflected at the interface between the notched portion of the clad 84a and the clad 84b inside the clad 84a and finally reaches the core 82 located at the center. For this reason, in the optical fiber 80, the occurrence of skew ray can be suppressed.
 光ファイバ80において、クラッド84aに入射された光は、クラッド84aとクラッド84bとの界面において複数回全反射すると、コア72に入射することが多いが、クラッド84aに入射された光が、クラッド84aとクラッド84bとの界面において全反射する回数が比較的小さいと、コア82に入射しないことがある。これに対して、図1(a)に示したように、光ファイバ10では、コア12がクラッド14bと接触するように延びていることにより、スキューレイの発生を効果的に抑制することができる。 In the optical fiber 80, the light incident on the clad 84a is often incident on the core 72 when totally reflected at the interface between the clad 84a and the clad 84b a plurality of times, but the light incident on the clad 84a is often incident on the clad 84a. If the number of total reflections at the interface between the clad and the clad 84b is relatively small, the core 82 may not be incident. On the other hand, as shown in FIG. 1A, in the optical fiber 10, since the core 12 extends so as to be in contact with the clad 14b, the occurrence of skew ray can be effectively suppressed. .
 なお、上述した説明では、シリカガラスに、希土類元素をドープすることによって、クラッド14bよりも高い屈折率を有するコア12、クラッド14aを形成したが、本発明はこれに限定されない。同様に、シリカガラスに、ゲルマニウム(Ge)、アルミニウム(Al)、イットリウム(Y)、リン(P)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)またはバリウム(Ba)などの元素をドープすることによって、クラッド14bよりも高い屈折率を有するコア12、クラッド14aを形成してもよい。あるいは、フッ素またはホウ素をドープすることによって、コア12よりも低い屈折率を有するクラッド14a、14bを形成してもよい。また、例えば、クラッド14aには不純物元素がドープされなくてもよい。 In the above description, the silica 12 is doped with a rare earth element to form the core 12 and the clad 14a having a higher refractive index than the clad 14b. However, the present invention is not limited to this. Similarly, elements such as germanium (Ge), aluminum (Al), yttrium (Y), phosphorus (P), magnesium (Mg), calcium (Ca), strontium (Sr) or barium (Ba) are added to silica glass. By doping, the core 12 and the clad 14a having a higher refractive index than the clad 14b may be formed. Alternatively, the claddings 14a and 14b having a lower refractive index than the core 12 may be formed by doping with fluorine or boron. For example, the cladding 14a may not be doped with an impurity element.
 比較例1の光ファイバ70を備えるファイバレーザから出射されるシングルモードの光ビームをラインビームに変形する場合、干渉が生じることがある。以下に、図6および図7を参照して比較例1の光ファイバ70と比較して本実施形態の光ファイバ10の利点を説明する。ここでは、長さ約5cmのラインビームを形成する。 Interference may occur when a single mode light beam emitted from a fiber laser including the optical fiber 70 of Comparative Example 1 is transformed into a line beam. Below, with reference to FIG. 6 and FIG. 7, the advantage of the optical fiber 10 of this embodiment compared with the optical fiber 70 of the comparative example 1 is demonstrated. Here, a line beam having a length of about 5 cm is formed.
 図6(a)に、比較例1の光ファイバ70から出射された光ビームのラインビームへの変形を説明するための模式図を示す。図6(b)、図6(c)および図6(d)に、光ファイバ70から出射された光ビームL1、拡大レンズF1によって拡大された光ビームL2、および、シリンドリカルレンズF2によって特定の方向に集められた光ビームL3をそれぞれ示す。 FIG. 6A is a schematic diagram for explaining the deformation of the light beam emitted from the optical fiber 70 of Comparative Example 1 into a line beam. 6 (b), 6 (c) and 6 (d), the light beam L1 emitted from the optical fiber 70, the light beam L2 expanded by the magnifying lens F1, and the specific direction by the cylindrical lens F2 are shown. Each of the collected light beams L3 is shown in FIG.
 光ファイバ70から出射された光ビームは、拡大レンズF1によって拡大された後で、シリンドリカルレンズF2によって特定の方向に集められることによってラインビームが形成される。例えば、光ファイバ70のコア72の直径は約10μmであり、拡大レンズF1によって光ビームは直径5cmに拡大された後、シリンドリカルレンズF2によって長さ5cmのラインビームが形成される。 The light beam emitted from the optical fiber 70 is expanded by the magnifying lens F1, and then collected in a specific direction by the cylindrical lens F2, thereby forming a line beam. For example, the diameter of the core 72 of the optical fiber 70 is about 10 μm, the light beam is expanded to a diameter of 5 cm by the magnifying lens F1, and then a line beam having a length of 5 cm is formed by the cylindrical lens F2.
 図7(a)に、本実施形態の光ファイバ10から出射された光ビームのラインビームへの変形を説明するための模式図を示す。図7(b)、図7(c)および図7(d)に、光ファイバ10から出射された光ビームL1、拡大レンズF1によって拡大された光ビームL2、および、シリンドリカルレンズF2によって特定の方向に集められた光ビームL3をそれぞれ示す。 FIG. 7A is a schematic diagram for explaining the deformation of the light beam emitted from the optical fiber 10 of the present embodiment into a line beam. 7B, 7C, and 7D, the light beam L1 emitted from the optical fiber 10, the light beam L2 expanded by the magnifying lens F1, and the specific direction by the cylindrical lens F2 are shown. Each of the collected light beams L3 is shown in FIG.
 光ファイバ10から出射された光ビームは、拡大レンズF1によって拡大された後で、シリンドリカルレンズF2によって特定の方向に集められることによってラインビームが形成される。例えば、上述したように、光ファイバ10のコア12はほぼ矩形状であり、光ファイバ10からはほぼ矩形状の光ビームが出射される。その後、拡大レンズF1によって光ビームは長径がラインビームに必要となる長さまで等方的に拡大される。 The light beam emitted from the optical fiber 10 is expanded by the magnifying lens F1, and then collected in a specific direction by the cylindrical lens F2, thereby forming a line beam. For example, as described above, the core 12 of the optical fiber 10 has a substantially rectangular shape, and a substantially rectangular light beam is emitted from the optical fiber 10. Thereafter, the light beam isotropically expanded to the length required for the line beam by the magnifying lens F1.
 例えば、光ファイバ10のコア12の短径および長径はそれぞれ約10μm、約100μmであり、ラインビームの所望の長さが所5cmの場合、拡大レンズF1により、光ビームの短径および長径はそれぞれ約0.5cm、約5cmまで拡大される。その後、シリンドリカルレンズF2によって光ビームは、短径が約10μmになるまで集められる。 For example, the short diameter and long diameter of the core 12 of the optical fiber 10 are about 10 μm and about 100 μm, respectively, and when the desired length of the line beam is 5 cm, the short diameter and long diameter of the light beam are respectively set by the magnifying lens F1. It is enlarged to about 0.5 cm and about 5 cm. Thereafter, the light beam is collected by the cylindrical lens F2 until the minor axis becomes about 10 μm.
 光ファイバ70から出射された光ビームを変形することによって、図6(d)に示したようなライン形状の光ビームを得る場合、図6(c)に示した円形状の光ビームが中央に集まることになるため、干渉が発生することがある。これに対して、光ファイバ10から出射された光ビームを変形することによって、図7(d)に示したようなライン形状の光ビームを得る場合、x方向のみが拡大されることになるため、光の重なりが生じにくく、干渉は発生しにくい。 When the light beam emitted from the optical fiber 70 is deformed to obtain a line-shaped light beam as shown in FIG. 6D, the circular light beam shown in FIG. Interference may occur due to gathering. On the other hand, when the line-shaped light beam as shown in FIG. 7D is obtained by deforming the light beam emitted from the optical fiber 10, only the x direction is expanded. , Light overlap hardly occurs and interference hardly occurs.
 なお、ここでは、光ファイバ10から出射された光ビームはシリンドリカルレンズF2によって変形してラインビームを形成したが、光ファイバ10から出射された光ビームはシリンドリカルレンズを介することなくラインビームとして用いてもよい。また、光ファイバ10から出射された光ビームを相対的にx方向(コア12の長手方向)に沿って移動させることにより、光ビームをシングルモードで広い領域にわたって連続的に照射することができる。 Here, the light beam emitted from the optical fiber 10 is deformed by the cylindrical lens F2 to form a line beam. However, the light beam emitted from the optical fiber 10 is used as a line beam without passing through the cylindrical lens. Also good. Further, by moving the light beam emitted from the optical fiber 10 relatively along the x direction (longitudinal direction of the core 12), the light beam can be continuously irradiated over a wide region in a single mode.
 また、本実施形態の光ファイバ10では、ラインビームの入射が効率的に行われる。以下、図8を参照して、比較例3の光ファイバ90と比べた光ファイバ10の利点を説明する。 Moreover, in the optical fiber 10 of this embodiment, the line beam is efficiently incident. Hereinafter, with reference to FIG. 8, the advantage of the optical fiber 10 compared with the optical fiber 90 of the comparative example 3 is demonstrated.
 図8(a)に示すように、ラインビームが比較例3の光ファイバ90に入射される。光源R1は、光ファイバ90に向かって長さ約100μmのラインビームを出射する。光ファイバ90は、直径100μmのコア92と、クラッド94とを備えている。典型的には光源R1から出射された光ビームは、レンズR2によって変形される。しかしながら、光ファイバ90のコア92は円形状であり、光ファイバ90のコア92の形状は光源R1から出射された光ビームの形状と大きく異なり、ビーム面積が大きくなるため、光源R1と光ファイバ90の輝度は低くなってしまう。 As shown in FIG. 8A, the line beam is incident on the optical fiber 90 of Comparative Example 3. The light source R1 emits a line beam having a length of about 100 μm toward the optical fiber 90. The optical fiber 90 includes a core 92 having a diameter of 100 μm and a clad 94. Typically, the light beam emitted from the light source R1 is deformed by the lens R2. However, the core 92 of the optical fiber 90 has a circular shape, and the shape of the core 92 of the optical fiber 90 is significantly different from the shape of the light beam emitted from the light source R1, and the beam area becomes large. The brightness will be low.
 図8(b)に示すように、ラインビームが本実施形態の光ファイバ10に入射される。光源R1は、光ファイバ10に向かって長さ約100μmのラインビームを出射する。例えば、光源R1は半導体レーザである。光ファイバ10のコア12はほぼ矩形状であるため、光源R1からの光が光ファイバ10に入射される際の光の強度の低減を抑制することができる。なお、図8(b)では光源R1からの光ビームはレンズR2を介して光ファイバ10に入射されたが、光源R1からの光ビームはレンズR2などの光学部品を介することなく光ファイバ10に直接入射されてもよい。この場合、コア12の長辺は、光源R1のエミッタ幅よりも大きいことが好ましい。なお、光ファイバ10はクラッド14aおよびクラッド14bを有しているため、光ファイバ10は、光源R1と容易に高効率かつ高輝度で結合される。 As shown in FIG. 8B, the line beam is incident on the optical fiber 10 of the present embodiment. The light source R1 emits a line beam having a length of about 100 μm toward the optical fiber 10. For example, the light source R1 is a semiconductor laser. Since the core 12 of the optical fiber 10 has a substantially rectangular shape, it is possible to suppress a reduction in light intensity when the light from the light source R1 enters the optical fiber 10. In FIG. 8B, the light beam from the light source R1 is incident on the optical fiber 10 through the lens R2, but the light beam from the light source R1 enters the optical fiber 10 without passing through an optical component such as the lens R2. It may be directly incident. In this case, the long side of the core 12 is preferably larger than the emitter width of the light source R1. Since the optical fiber 10 has the clad 14a and the clad 14b, the optical fiber 10 is easily coupled with the light source R1 with high efficiency and high luminance.
 以下、図9を参照して光ファイバ10の作製方法を説明する。まず、図9(a)に示すように、コア12を形成する材料を含むコア部材A、および、第1クラッド14aを形成する材料を含む第1クラッド部材B1、B2を用意する。なお、以下の説明において、第1クラッド部材B1、B2を単にクラッド部材B1、B2と呼ぶことがある。ここでは、クラッド部材B1、B2の材料およびサイズは等しいが、クラッド部材B1、B2の材料およびサイズは異なってもよい。また、ここでは、コア部材Aの幅および長さは、それぞれ、クラッド部材B1、B2の幅および長さと等しいが、これらは、異なっていてもよい。 Hereinafter, a method of manufacturing the optical fiber 10 will be described with reference to FIG. First, as shown in FIG. 9A, a core member A including a material for forming the core 12 and first cladding members B1 and B2 including a material for forming the first cladding 14a are prepared. In the following description, the first cladding members B1 and B2 may be simply referred to as cladding members B1 and B2. Here, the materials and sizes of the clad members B1 and B2 are equal, but the materials and sizes of the clad members B1 and B2 may be different. Here, the width and length of the core member A are equal to the width and length of the cladding members B1 and B2, respectively, but they may be different.
 例えば、コア部材Aは、希土類元素をドープしたシリカガラスである。コア部材Aにはネオジム(Nd)がドープされている。クラッド部材B1、B2は、希土類元素をドープしたシリカガラスである。例えば、クラッド部材B1、B2にはランタン(La)がドープされている。例えば、コア部材Aにおける希土類元素の濃度はクラッド部材B1、B2における希土類元素の濃度よりも高く、コア部材Aの屈折率はクラッド部材B1、B2の屈折率よりも高い。なお、コア部材A、クラッド部材B1、B2の屈折率およびコア部材Aのアスペクト比(幅および厚さの比)を予め設定しておくことにより、作製される光ファイバ10のコア12は、マルチモードおよびシングルモードの両方で光の伝搬を行うことが可能となる。 For example, the core member A is silica glass doped with rare earth elements. The core member A is doped with neodymium (Nd). The clad members B1 and B2 are silica glass doped with rare earth elements. For example, the cladding members B1 and B2 are doped with lanthanum (La). For example, the concentration of the rare earth element in the core member A is higher than the concentration of the rare earth element in the cladding members B1 and B2, and the refractive index of the core member A is higher than the refractive index of the cladding members B1 and B2. In addition, the core 12 of the optical fiber 10 to be manufactured can be obtained by setting the refractive index of the core member A and the clad members B1 and B2 and the aspect ratio (width / thickness ratio) of the core member A in advance. It becomes possible to propagate light in both the mode and the single mode.
 例えば、コア部材Aには、ネオジム(Nd)がドープされている。ネオジムの重量%は1.25%である。コア部材Aには、さらに、アルミナ(Al23)もドープされている。コア部材Aの厚さは3mmであり、コア部材Aの幅および長さはそれぞれ、7mm、40mmである。 For example, the core member A is doped with neodymium (Nd). The weight percentage of neodymium is 1.25%. The core member A is further doped with alumina (Al 2 O 3 ). The thickness of the core member A is 3 mm, and the width and length of the core member A are 7 mm and 40 mm, respectively.
 クラッド部材B1、B2には、ランタン(La)およびアルミナ(Al23)がドープされている。La23およびAl23のそれぞれの重量%は0.8wt%、1.74wt%である。また、クラッド部材B1、B2の厚さは3mmであり、クラッド部材B1、B2の幅および長さは、それぞれ7mm、40mmである。ここでは、コア部材Aにおけるネオジムの濃度はクラッド部材B1、B2におけるランタンの濃度よりも高く、また、コア部材AにおけるNdとAlの比率はクラッド部材B1、B2におけるLaとAlの比率とほぼ等しく、コア部材Aの屈折率はクラッド部材B1、B2の屈折率よりも高い。 The clad members B1 and B2 are doped with lanthanum (La) and alumina (Al 2 O 3 ). The weight% of La 2 O 3 and Al 2 O 3 is 0.8 wt% and 1.74 wt%, respectively. The thickness of the clad members B1 and B2 is 3 mm, and the width and length of the clad members B1 and B2 are 7 mm and 40 mm, respectively. Here, the concentration of neodymium in the core member A is higher than the concentration of lanthanum in the clad members B1 and B2, and the ratio of Nd and Al in the core member A is substantially equal to the ratio of La and Al in the clad members B1 and B2. The refractive index of the core member A is higher than that of the clad members B1 and B2.
 次に、図9(b)に示すように、コア部材Aの両面にクラッド部材B1、B2を貼り合わせ、コア部材Aおよびクラッド部材B1、B2を接合する。これにより、クラッド部材B1、コア部材A、クラッド部材B2の積層された成形体Sが形成される。 Next, as shown in FIG. 9B, the clad members B1 and B2 are bonded to both surfaces of the core member A, and the core member A and the clad members B1 and B2 are joined. Thereby, the molded body S in which the clad member B1, the core member A, and the clad member B2 are laminated is formed.
 コア部材Aおよびクラッド部材B1を接合する前に、コア部材Aのうちのクラッド部材B1と接合する面、および、クラッド部材B1のうちのコア部材Aと接合する面の少なくとも一方を光学的に研磨することが好ましい。このような光学研磨処理により、コア部材A、B1はオプティカルコンタクトによって接合される。コア部材Aおよびクラッド部材B2の接合も同様に行われる。なお、コア部材Aにクラッド部材B2を貼り合わせる直前まで、コア部材Aは比較的厚くてもよく、コア部材Aは、クラッド部材B1に貼り合わせられた後、クラッド部材B2を貼り合わせられる前に、研磨によって薄くしてもよい。例えば、コア部材Aをクラッド部材B1と接合した後、コア部材Aを約3mmから約0.5mmまで薄くし、クラッド部材B2と接合する。以上のようにして成形体Sを形成してもよい。 Before joining the core member A and the clad member B1, at least one of the surface of the core member A that joins the clad member B1 and the surface of the clad member B1 that joins the core member A is optically polished. It is preferable to do. By such an optical polishing process, the core members A and B1 are joined by optical contact. The core member A and the clad member B2 are joined in the same manner. The core member A may be relatively thick until just before the clad member B2 is bonded to the core member A. The core member A is bonded to the clad member B1 and then bonded to the clad member B2. It may be thinned by polishing. For example, after the core member A is joined to the clad member B1, the core member A is thinned from about 3 mm to about 0.5 mm and joined to the clad member B2. The molded body S may be formed as described above.
 図9(c)に示すように、成形体Sを切削し、成形体Sをロッド形状に形成する。例えば、成形体Sの直径は約5mmであり、コア部材Aの厚さは約0.5mmである。 As shown in FIG. 9C, the molded body S is cut to form the molded body S into a rod shape. For example, the diameter of the molded body S is about 5 mm, and the thickness of the core member A is about 0.5 mm.
 図9(d)に示すように、第2クラッド14bを形成する材料を含む第2クラッド部材Cの開口部に、ロッド形状の成形体Sを挿入する。このようにして得られた成形体S’はプリフォームC’とも呼ばれる。例えば、第2クラッド部材Cの内径および外径はそれぞれ5mm、9mmである。 As shown in FIG. 9D, the rod-shaped molded body S is inserted into the opening of the second clad member C containing the material for forming the second clad 14b. The molded body S ′ thus obtained is also called a preform C ′. For example, the inner diameter and the outer diameter of the second cladding member C are 5 mm and 9 mm, respectively.
 その後、図9(e)に示すように、プリフォームC’から光ファイバ10を取り出す。例えば、プリフォームC’を光ファイバの線引き用に挿入し、加熱することによってネックダウンを行う。ネックダウンにより、加熱によって粘性の低下したプリフォームC’が自身の自重によって下方に引っ張られて、細い径で落下する。その後、加熱した状態で光ファイバの線引きが行われる。 Then, as shown in FIG. 9 (e), the optical fiber 10 is taken out from the preform C '. For example, the preform C 'is inserted for drawing an optical fiber, and necked down by heating. Due to the neck-down, the preform C 'whose viscosity has been reduced by heating is pulled downward by its own weight and falls with a small diameter. Thereafter, the optical fiber is drawn in a heated state.
 例えば、ネックダウンは2040℃で行われ、線引きは1910℃で行われる。例えば、プリフォームC’の送出速度は2.0mm/分であり、引取速度は4.0mm/分である。以上のようにして光ファイバ10を作製することができる。 For example, neck-down is performed at 2040 ° C. and drawing is performed at 1910 ° C. For example, the delivery speed of the preform C ′ is 2.0 mm / min, and the take-up speed is 4.0 mm / min. The optical fiber 10 can be manufactured as described above.
 図10に、このようにして形成された光ファイバ10を示す。コア12の厚さは約10μmであり、クラッド14aの直径は約100μmであり、クラッド14bの直径は約180μmである。例えば、ネオジムの発振波長である1062nmにおいてコア12の屈折率は約1.452、クラッド14aの屈折率は約1.447である。クラッド14bの屈折率は約1.443である。コア12とクラッド14aとの開口率は約0.12であり、クラッド14aとクラッド14bとの開口率は約0.11である。一般に市販されている光ファイバの開口率とほぼ等しく、光ファイバ10は、広い範囲で用いることができる。 FIG. 10 shows the optical fiber 10 formed in this way. The thickness of the core 12 is about 10 μm, the diameter of the clad 14 a is about 100 μm, and the diameter of the clad 14 b is about 180 μm. For example, the refractive index of the core 12 is about 1.452 and the refractive index of the clad 14a is about 1.447 at 1062 nm, which is the oscillation wavelength of neodymium. The refractive index of the cladding 14b is about 1.443. The aperture ratio between the core 12 and the clad 14a is about 0.12, and the aperture ratio between the clad 14a and the clad 14b is about 0.11. In general, the aperture ratio of an optical fiber that is commercially available is almost equal, and the optical fiber 10 can be used in a wide range.
 図11に、図10に示した光ファイバ10を備える本実施形態のファイバレーザ100のスペクトルを示す。図11において、波長800nmのピークは励起の漏れ光によるものである。波長1062nmにおいてスペクトルの狭帯域化が確認される。このようなスペクトルの狭帯域化により、レーザ発振が得られたと推察される。 FIG. 11 shows the spectrum of the fiber laser 100 of this embodiment including the optical fiber 10 shown in FIG. In FIG. 11, the peak at a wavelength of 800 nm is due to the leakage light of excitation. Narrowing of the spectrum is confirmed at a wavelength of 1062 nm. It is inferred that laser oscillation was obtained by such narrowing of the spectrum.
 図12に、本実施形態のファイバレーザ100の入出力特性を示す。ファイバレーザ100の発振閾値は1.6Wである。励起光源110の出力が1.84Wの場合、ファイバレーザ100は最大出力5.25mWを示す。発振スペクトルの狭帯域化、および、入出力特性に閾値が存在しており、レーザ発振が確認された。 FIG. 12 shows input / output characteristics of the fiber laser 100 of the present embodiment. The oscillation threshold of the fiber laser 100 is 1.6W. When the output of the excitation light source 110 is 1.84 W, the fiber laser 100 exhibits a maximum output of 5.25 mW. There was a threshold in the narrowing of the oscillation spectrum and the input / output characteristics, confirming laser oscillation.
 また、図13に、本実施形態の別のファイバレーザ100の入出力特性を示す。ファイバレーザ100の発振閾値は480mWである。励起光源110の出力が1657mWの場合、ファイバレーザ100は最大出力75.1mWを示す。発振スペクトルの狭帯域化、および、入出力特性に閾値が存在しており、レーザ発振が確認された。 FIG. 13 shows input / output characteristics of another fiber laser 100 according to this embodiment. The oscillation threshold of the fiber laser 100 is 480 mW. When the output of the excitation light source 110 is 1657 mW, the fiber laser 100 exhibits a maximum output of 75.1 mW. There was a threshold in the narrowing of the oscillation spectrum and the input / output characteristics, confirming laser oscillation.
 図14に、本実施形態のファイバレーザ100のビームプロファイルを示す。図14には、ファイバレーザ100の発振直前の自然放射増幅光(Amplified Spontaneous Emission:ASE)のプロファイルを示す。図14から理解されるように、ビーム強度の高い領域はコア12に対応して形成されており、x方向に長く、y方向に短い。このように、ファイバレーザ100からほぼ矩形状の光ビームが出射される。 FIG. 14 shows a beam profile of the fiber laser 100 of the present embodiment. FIG. 14 shows a profile of amplified spontaneous emission (ASE) immediately before oscillation of the fiber laser 100. As understood from FIG. 14, the region having a high beam intensity is formed corresponding to the core 12 and is long in the x direction and short in the y direction. In this way, a substantially rectangular light beam is emitted from the fiber laser 100.
 なお、図9を参照して、光ファイバ10の作製方法の一例を説明したが、光ファイバ10の作製方法はこれに限定されない。光ファイバ10は、OVD(Outside Vapor Deposition)法で作製してもよい。例えば、OVD法におけるターゲットロッドを用意することにより、ほぼ矩形状のコア12を有する光ファイバ10を作製してもよい。 In addition, although an example of the manufacturing method of the optical fiber 10 was demonstrated with reference to FIG. 9, the manufacturing method of the optical fiber 10 is not limited to this. The optical fiber 10 may be manufactured by an OVD (Outside Vapor Deposition) method. For example, the optical fiber 10 having the substantially rectangular core 12 may be manufactured by preparing a target rod in the OVD method.
 まず、断面において方向に応じて長さの異なるロッドを用意する。例えば、矩形状の断面を有するロッドを用意する。次に、ロッドの周囲にコアを形成し、コアの周囲にクラッドを形成し、最後に、クラッドの一部を切削する。このようにして円形状の断面を有する光ファイバ10を作製することができる。 First, prepare different length rods according to the direction in the cross section. For example, a rod having a rectangular cross section is prepared. Next, a core is formed around the rod, a clad is formed around the core, and finally a part of the clad is cut. In this way, the optical fiber 10 having a circular cross section can be manufactured.
 なお、上述した説明では、光ファイバ10の断面においてコア12の中心はクラッド14a、14bの中心とほぼ等しく、また、光ファイバ10の断面はほぼ点対称であったが、本発明はこれに限定されない。コア12はクラッド14bの中心とは異なる位置に配置され、光ファイバ10の断面は点対称でなくてもよい。例えば、光ファイバ10の断面におけるクラッド14bの中心は、コア12の外部に位置していてもよい。 In the above description, the center of the core 12 in the cross section of the optical fiber 10 is substantially equal to the centers of the clads 14a and 14b, and the cross section of the optical fiber 10 is substantially point symmetric, but the present invention is not limited to this. Not. The core 12 is disposed at a position different from the center of the clad 14b, and the cross section of the optical fiber 10 may not be point symmetric. For example, the center of the clad 14 b in the cross section of the optical fiber 10 may be located outside the core 12.
 また、上述した説明では、光ファイバ10においてコア12はクラッド14aおよびクラッド14bの両方と接触していたが、本発明はこれに限定されない。図15に示すように、コア12はクラッド14aに囲まれており、コア12はクラッド14bと直接接触しなくてもよい。 In the above description, in the optical fiber 10, the core 12 is in contact with both the clad 14a and the clad 14b, but the present invention is not limited to this. As shown in FIG. 15, the core 12 is surrounded by the clad 14a, and the core 12 may not be in direct contact with the clad 14b.
 また、上述した説明では、クラッド14aの周囲にクラッド14bが設けられていたが、本発明はこれに限定されない。クラッド14aの周囲にクラッド14bが設けられていなくてもよい。このような光ファイバ10は導波路として好適に用いられる。 In the above description, the clad 14b is provided around the clad 14a. However, the present invention is not limited to this. The clad 14b may not be provided around the clad 14a. Such an optical fiber 10 is suitably used as a waveguide.
 以下、図16を参照して光ファイバ10を説明する。光ファイバ10は、コア12と、クラッド14とを備える。クラッド14は、コア12よりも高い屈折率を有している。例えば、コア12の短径および長径はそれぞれ約10μm、約100μmである。 Hereinafter, the optical fiber 10 will be described with reference to FIG. The optical fiber 10 includes a core 12 and a clad 14. The clad 14 has a higher refractive index than the core 12. For example, the minor axis and major axis of the core 12 are about 10 μm and about 100 μm, respectively.
 この光ファイバ10において、コア12は、マルチモードおよびシングルモードの両方で光を伝搬する。コア12のx方向に沿った長さdxが2.405λ/(π√(n12-n22))よりも大きく、コア12のy方向に沿った長さdyが2.405λ/(π√(n12-n22))よりも小さい場合、コア12は、マルチモードおよびシングルモードの両方で伝搬できる。ここで、λはコア12を伝搬する光の空気中の波長であり、n1はコア12の屈折率であり、n2はクラッド14の屈折率である。 In the optical fiber 10, the core 12 propagates light in both multimode and single mode. The length dx along the x direction of the core 12 is larger than 2.405λ / (π√ (n1 2 −n2 2 )), and the length dy along the y direction of the core 12 is 2.405λ / (π√ Smaller than (n1 2 -n2 2 )), the core 12 can propagate in both multimode and single mode. Here, λ is the wavelength of light propagating through the core 12 in the air, n1 is the refractive index of the core 12, and n2 is the refractive index of the cladding 14.
 光ファイバ10において、例えば、コア12にネオジムがドープされている場合、発振波長は1062nmである。コア12の屈折率が1.452、クラッド14の屈折率が1.450である場合、上記式の計算結果は、2.405λ/(π√(n12-n22))=10.7μmである。この計算結果が、コア12の異なる方向に沿った長さの間であれば、光は、コア12の一方向に沿った長さに対してマルチモードで伝搬され、コア12の他方向に沿った長さに対してシングルモードで伝搬される。例えば、コア12のx方向に沿った長さが100μmであり、コア12のy方向に沿った長さが10μmである場合、波長1062nmの光は、コア12のx方向に沿った長さに対してマルチモードで伝搬され、コア12のy方向に沿った長さに対してシングルモードで伝搬される。 In the optical fiber 10, for example, when the core 12 is doped with neodymium, the oscillation wavelength is 1062 nm. When the refractive index of the core 12 is 1.452 and the refractive index of the cladding 14 is 1.450, the calculation result of the above formula is 2.405λ / (π√ (n1 2 −n2 2 )) = 10.7 μm. is there. If this calculation result is between the lengths along different directions of the core 12, the light is propagated in multimode with respect to the length along one direction of the core 12, and along the other direction of the core 12. Propagated in single mode for a given length. For example, when the length of the core 12 along the x direction is 100 μm and the length of the core 12 along the y direction is 10 μm, the light having a wavelength of 1062 nm has a length along the x direction of the core 12. On the other hand, it propagates in multimode and propagates in single mode for the length of core 12 along the y direction.
 なお、図16に示した光ファイバ10は、第2クラッド部材を用いることなく形成する点を除いて、図9を参照して上述した説明と同様に作製される。あるいは、上述したように、光ファイバ10は、OVD法で作製されてもよい。 The optical fiber 10 shown in FIG. 16 is manufactured in the same manner as described above with reference to FIG. 9 except that the optical fiber 10 is formed without using the second cladding member. Or as above-mentioned, the optical fiber 10 may be produced by OVD method.
 なお、図16に示した光ファイバ10では、コア12の長径方向に沿った端部はクラッド14に囲まれていないが、本発明はこれに限定されない。コア12は、コア12の短径方向に沿った端部をクラッドに囲まれるとともに、コア12の長径方向に沿った端部を別のクラッドに囲まれてもよい。 In addition, in the optical fiber 10 shown in FIG. 16, although the edge part along the major axis direction of the core 12 is not enclosed by the clad | crud 14, this invention is not limited to this. The core 12 may be surrounded by a clad at the end along the minor axis direction of the core 12 and may be surrounded by another clad at the end along the major axis direction of the core 12.
 図17に、本実施形態の光ファイバ10の模式図を示す。本実施形態の光ファイバ10の模式的な断面図を示す。光ファイバ10は、コア12と、クラッド14aと、クラッド14bとを備えている。コア12はクラッド14aと接触しており、クラッド14bはクラッド14aの周囲に設けられている。コア12は、コア12の短径方向に沿った端部をクラッド14aに囲まれるとともに、コア12の長径方向に沿った端部をクラッド14bに囲まれている。図17に示した光ファイバ10において、コア12の長径方向に沿った長さに対してマルチモードで伝搬され、コア12の短径方向に沿った長さに対してシングルモードで伝搬される。 FIG. 17 shows a schematic diagram of the optical fiber 10 of the present embodiment. The typical sectional view of optical fiber 10 of this embodiment is shown. The optical fiber 10 includes a core 12, a clad 14a, and a clad 14b. The core 12 is in contact with the clad 14a, and the clad 14b is provided around the clad 14a. The core 12 is surrounded by the clad 14 a at the end along the minor axis direction of the core 12, and is surrounded by the clad 14 b at the end along the major axis direction of the core 12. In the optical fiber 10 shown in FIG. 17, it propagates in multimode with respect to the length along the major axis direction of the core 12, and propagates in single mode with respect to the length along the minor axis direction of the core 12.
 コア12はクラッド14a、14bよりも高い屈折率を示し、クラッド14aの屈折率はクラッド14bと等しい。例えば、クラッド14a、14bはシリカから形成されており、コア12は希土類元素のドーピングされたシリカから形成されている。光ファイバ10も3層構造であり、この光ファイバ10を線引きで作製する場合には、クラッド14bがコア12をサポートするため、光ファイバ10の作製を容易にすることができる。 The core 12 has a higher refractive index than the clads 14a and 14b, and the refractive index of the clad 14a is equal to that of the clad 14b. For example, the clads 14a and 14b are made of silica, and the core 12 is made of silica doped with a rare earth element. The optical fiber 10 also has a three-layer structure, and when the optical fiber 10 is manufactured by drawing, the cladding 14b supports the core 12, so that the optical fiber 10 can be easily manufactured.
 また、上述した説明では、断面におけるコア12の形状はほぼ矩形状であったが、本発明はこれに限定されない。必要とされる光ビームの形状に応じて、コア12の形状は三角、四角、L字または楕円等の形状であってもよい。また、光ファイバ10から出射される光ビームと、実際に使用される光ビームとの間の光学部品を効果的に接続することにより、任意の形状のラインビームを形成することができる。 In the above description, the shape of the core 12 in the cross section is substantially rectangular, but the present invention is not limited to this. Depending on the required shape of the light beam, the shape of the core 12 may be triangular, square, L-shaped or elliptical. Further, by effectively connecting optical components between the light beam emitted from the optical fiber 10 and the light beam actually used, a line beam having an arbitrary shape can be formed.
 なお、上述した説明では、1つの光ファイバには1つのコアが設けられていたが、本発明はこれに限定されない。図18に示すように、光ファイバ10に複数のコア12が設けられてもよい。 In the above description, one core is provided for one optical fiber, but the present invention is not limited to this. As illustrated in FIG. 18, the optical fiber 10 may be provided with a plurality of cores 12.
 また、上述した、光ビームの入射または出射を行う光ファイバ10が互いに結合していてもよい。図19に、光ファイバ10a、10b、10c、10dを備える本実施形態のファイバレーザ100Aの模式図を示す。図19は、励起光源を省略して示している。図19(a)に示すように、光ファイバ10bには複数のコア12が設けられており、光ファイバ10bには複数の光ファイバ10aから光ビームが入射される。 Further, the above-described optical fibers 10 that perform incidence or emission of a light beam may be coupled to each other. FIG. 19 shows a schematic diagram of a fiber laser 100A of this embodiment including optical fibers 10a, 10b, 10c, and 10d. In FIG. 19, the excitation light source is omitted. As shown in FIG. 19A, the optical fiber 10b is provided with a plurality of cores 12, and light beams are incident on the optical fiber 10b from the plurality of optical fibers 10a.
 また、図19(b)に示すように、複数のコア12の設けられた光ファイバ10bからの光ビームは光ファイバ10cに入射される。具体的には、光ファイバ10bからの光ビームは光ファイバ10cのクラッド14aに入射され、光ファイバ10cはパワーコンバイナとして機能する。光ファイバ10dのコア12はネオジム(Nd)またはイッテルビウム(Yb)等の希土類元素がドープされており、光ファイバ10dは、光ファイバ10cからの光に基づいて、増幅およびレーザ発振を行う。以上のように、ファイバレーザ100Aに、複数の光ファイバ10が用いられてもよい。 Further, as shown in FIG. 19B, the light beam from the optical fiber 10b provided with the plurality of cores 12 enters the optical fiber 10c. Specifically, the light beam from the optical fiber 10b is incident on the clad 14a of the optical fiber 10c, and the optical fiber 10c functions as a power combiner. The core 12 of the optical fiber 10d is doped with rare earth elements such as neodymium (Nd) or ytterbium (Yb), and the optical fiber 10d performs amplification and laser oscillation based on the light from the optical fiber 10c. As described above, a plurality of optical fibers 10 may be used for the fiber laser 100A.
 本発明によれば、所望な形状の光ビームの出射または入射に適した光ファイバを提供することができる。また、本発明の光ファイバは、高出力のシングルモードファイバレーザに好適に用いられる。 According to the present invention, it is possible to provide an optical fiber suitable for emission or incidence of a light beam having a desired shape. The optical fiber of the present invention is preferably used for a high-power single mode fiber laser.
 10  光ファイバ
 12  コア
 14  クラッド
 14a 第1クラッド
 14b 第2クラッド
10 optical fiber 12 core 14 clad 14a first clad 14b second clad

Claims (14)

  1.  コアと、
     前記コアと接触する第1クラッドと、
     前記第1クラッドの周囲に設けられた第2クラッドと
    を備える、光ファイバであって、
     前記コアは、前記第1クラッドよりも高い屈折率を有しており、
     前記第1クラッドは、前記第2クラッドよりも高い屈折率を有しており、
     断面において、前記コアの第1方向に沿った長さは前記コアの第2方向に沿った長さとは異なる、光ファイバ。
    The core,
    A first cladding in contact with the core;
    An optical fiber comprising a second cladding provided around the first cladding,
    The core has a higher refractive index than the first cladding;
    The first cladding has a higher refractive index than the second cladding;
    In cross-section, the length of the core along the first direction is different from the length of the core along the second direction.
  2.  前記第1クラッドは互いに分離された2つの領域を有している、請求項1に記載の光ファイバ。 The optical fiber according to claim 1, wherein the first cladding has two regions separated from each other.
  3.  前記コアは、前記第2クラッドと接触する、請求項1または2に記載の光ファイバ。 The optical fiber according to claim 1 or 2, wherein the core is in contact with the second cladding.
  4.  断面において、前記コアはほぼ矩形状を有しており、前記第1クラッドは半円形状を有している、請求項1から3のいずれかに記載の光ファイバ。 The optical fiber according to any one of claims 1 to 3, wherein the core has a substantially rectangular shape in cross section, and the first cladding has a semicircular shape.
  5.  前記コアおよび前記第1クラッドのそれぞれに希土類元素がドープされている、請求項1から4のいずれかに記載の光ファイバ。 The optical fiber according to any one of claims 1 to 4, wherein each of the core and the first cladding is doped with a rare earth element.
  6.  前記コアに、ネオジムまたはイッテルビウムがドープされている、請求項1から5のいずれかに記載の光ファイバ。 The optical fiber according to any one of claims 1 to 5, wherein the core is doped with neodymium or ytterbium.
  7.  所定の波長の光は、前記コアの第1方向の沿った長さに対してマルチモードで伝搬され、前記コアの第2方向に沿った長さに対してシングルモードで伝搬される、請求項1から6のいずれかに記載の光ファイバ。 The light of a predetermined wavelength is propagated in a multimode for a length along the first direction of the core, and propagated in a single mode for a length along the second direction of the core. The optical fiber according to any one of 1 to 6.
  8.  コアと、
     クラッドと
    を備える、光ファイバであって、
     所定の波長の光は、前記コアの第1方向の沿った長さに対してマルチモードで伝搬され、前記コアの第2方向に沿った長さに対してシングルモードで伝搬される、光ファイバ。
    The core,
    An optical fiber comprising a cladding,
    An optical fiber in which light of a predetermined wavelength is propagated in a multimode with respect to a length along the first direction of the core and is propagated in a single mode with respect to a length along the second direction of the core. .
  9.  断面において、前記コアの第1方向に沿った長さは前記コアの第2方向に沿った長さとは異なる、請求項8に記載の光ファイバ。 9. The optical fiber according to claim 8, wherein, in a cross section, a length along the first direction of the core is different from a length along the second direction of the core.
  10.  励起光源および共振器を備えるファイバレーザであって、
     前記共振器は、請求項1から9のいずれかに記載の光ファイバと、リアミラーと、フロントミラーとを有する、ファイバレーザ。
    A fiber laser comprising an excitation light source and a resonator,
    The resonator includes a fiber laser including the optical fiber according to any one of claims 1 to 9, a rear mirror, and a front mirror.
  11.  コア材料を有するコア部材と、それぞれが第1クラッド材料を有する2つの第1クラッド部材とを用意する工程と、
     前記コア部材を前記2つの第1クラッド部材で挟んだ成形体を形成する工程と、
     第2クラッド材料を有する第2クラッド部材であって、開口部の設けられた第2クラッド部材を用意する工程と、
     前記成形体を前記第2クラッド部材の前記開口部に挿入することによってプリフォームを形成する工程と、
     前記プリフォームからファイバを取り出す工程と
    を包含する、光ファイバの作製方法。
    Providing a core member having a core material and two first cladding members each having a first cladding material;
    Forming a molded body in which the core member is sandwiched between the two first clad members;
    Preparing a second clad member having a second clad material, the second clad member having an opening;
    Forming a preform by inserting the molded body into the opening of the second cladding member;
    And a step of taking out the fiber from the preform.
  12.  前記プリフォームを形成する工程の前に、前記第2クラッド部材の前記開口部と整合するように前記成形体を切削する工程をさらに包含する、請求項11に記載の光ファイバの作製方法。 The method for producing an optical fiber according to claim 11, further comprising a step of cutting the molded body so as to be aligned with the opening of the second clad member before the step of forming the preform.
  13.  前記成形体を形成する工程は、前記コア部材および前記2つの第1クラッド部材の少なくとも一方を研磨する工程を含む、請求項11または12に記載の光ファイバの作製方法。 The method for producing an optical fiber according to claim 11 or 12, wherein the step of forming the molded body includes a step of polishing at least one of the core member and the two first clad members.
  14.  第1方向に沿った長さが第2方向に沿った長さと異なる断面を有するロッドを用意する工程と、
     前記ロッドの周囲にコアを形成する工程と、
     前記コアの周囲にクラッドを形成する工程と
    を包含する、光ファイバの作製方法。
    Preparing a rod having a cross section in which the length along the first direction is different from the length along the second direction;
    Forming a core around the rod;
    Forming a clad around the core.
PCT/JP2012/056589 2011-03-31 2012-03-14 Optical fiber, fiber laser, and method for manufacturing optical fiber WO2012132908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507367A JP5930316B2 (en) 2011-03-31 2012-03-14 Optical fiber, fiber laser, and optical fiber manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011077679 2011-03-31
JP2011-077679 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132908A1 true WO2012132908A1 (en) 2012-10-04

Family

ID=46930645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056589 WO2012132908A1 (en) 2011-03-31 2012-03-14 Optical fiber, fiber laser, and method for manufacturing optical fiber

Country Status (2)

Country Link
JP (1) JP5930316B2 (en)
WO (1) WO2012132908A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414744B2 (en) 2020-02-21 2024-01-16 トヨタ自動車株式会社 Amplifying fiber and laser beam emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627104A (en) * 1979-08-13 1981-03-16 Sumitomo Electric Ind Ltd Construction of optical fiber
JPH02157133A (en) * 1988-12-08 1990-06-15 Hitachi Cable Ltd Production of elliptic core type polarization plane maintaining optical fiber
JP2004529494A (en) * 2001-04-02 2004-09-24 ライトウェーブ エレクトロニクス コーポレイション Optical wavelength filter device having low refractive index cladding
JP2008158547A (en) * 2001-03-16 2008-07-10 Imra America Inc Polarization maintaining fiber, polarization maintaining fiber laser, passive mode-locking fiber laser, fiber amplifier and optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627104A (en) * 1979-08-13 1981-03-16 Sumitomo Electric Ind Ltd Construction of optical fiber
JPH02157133A (en) * 1988-12-08 1990-06-15 Hitachi Cable Ltd Production of elliptic core type polarization plane maintaining optical fiber
JP2008158547A (en) * 2001-03-16 2008-07-10 Imra America Inc Polarization maintaining fiber, polarization maintaining fiber laser, passive mode-locking fiber laser, fiber amplifier and optical fiber
JP2004529494A (en) * 2001-04-02 2004-09-24 ライトウェーブ エレクトロニクス コーポレイション Optical wavelength filter device having low refractive index cladding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414744B2 (en) 2020-02-21 2024-01-16 トヨタ自動車株式会社 Amplifying fiber and laser beam emitting device

Also Published As

Publication number Publication date
JPWO2012132908A1 (en) 2014-07-28
JP5930316B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
US10916908B2 (en) High-power, single-mode fiber sources
US10067289B2 (en) Single mode propagation in fibers and rods with large leakage channels
JP4443627B2 (en) Optical fiber laser
US20130336343A1 (en) Optical fiber, optical fiber laser and optical fiber amplifier, and method of manufacturing optical fiber
JP2009032910A (en) Optical fiber for optical fiber laser, method of manufacturing the same and optical fiber laser
KR20100048689A (en) Light coupler and fiber laser system
JP2008146015A (en) Large-mode-area, multimode, hybrid optical fiber and device using the same
JP2010129886A (en) Optical fiber for fiber laser, and fiber laser
US20090317041A1 (en) Photonic bandgap fiber
JP2007250951A (en) Double-clad fiber and fiber laser provided therewith
JP2007511100A (en) Clad pumped quasi-three-level fiber laser / amplifier
JP5440993B2 (en) High power neodymium fiber laser and amplifier
JP2009129989A (en) Optical fiber for fiber laser and manufacturing method therefor, and fiber laser
JP2009129987A (en) Optical fiber laser
JP5930316B2 (en) Optical fiber, fiber laser, and optical fiber manufacturing method
JP2014225584A (en) Fiber laser device
WO2004083921A1 (en) Optical fibre and method of launching pump power into a fibre, and a manufacturing method
JP7124210B2 (en) Active element-doped optical fiber, resonator, and fiber laser device
JP2006516810A (en) Side pump fiber laser
CN109407440B (en) Single-mode high-power amplification device based on large-mode-field optical fiber
WO2007077419A1 (en) Optical fibre with angled core
JP7317220B2 (en) Optical fiber and fiber laser equipment
JP4011175B2 (en) Optical fiber laser apparatus and laser processing apparatus
Limpert Ultra-large mode area fibers for high power lasers
JP2004078076A (en) Optical waveguide and laser amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763444

Country of ref document: EP

Kind code of ref document: A1