WO2012131947A1 - Image processing device and image display device - Google Patents

Image processing device and image display device Download PDF

Info

Publication number
WO2012131947A1
WO2012131947A1 PCT/JP2011/058073 JP2011058073W WO2012131947A1 WO 2012131947 A1 WO2012131947 A1 WO 2012131947A1 JP 2011058073 W JP2011058073 W JP 2011058073W WO 2012131947 A1 WO2012131947 A1 WO 2012131947A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
point
image
front image
Prior art date
Application number
PCT/JP2011/058073
Other languages
French (fr)
Japanese (ja)
Inventor
理 山崎
継介 伊藤
一茂 今井
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2013506951A priority Critical patent/JP5636493B2/en
Priority to PCT/JP2011/058073 priority patent/WO2012131947A1/en
Publication of WO2012131947A1 publication Critical patent/WO2012131947A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30256Lane; Road marking

Definitions

  • the present invention relates to an image processing apparatus that processes a front image in the traveling direction of a vehicle by analysis and processing, and an image display apparatus that displays a front image processed by the image processing apparatus.
  • Patent Document 1 For example, as described in Patent Document 1, a front image in the traveling direction of the vehicle is captured, white lines on both sides of the traveling lane displayed in the front image are recognized, and the shape of the white lines is approximated. The curvature of the traveling lane curve is calculated from the equation. And in this prior art, driving
  • the imaging direction of the camera is likely to deviate from the specified direction.
  • the shape of the white line in the front image differs due to an error in the imaging direction of the camera even for the same driving lane curve. Therefore, the above-described conventional technique can accurately calculate the curvature of the driving lane curve. It becomes difficult. For this reason, there has been a demand for a technique capable of displaying support that correctly corresponds to the curvature of the curve of the traveling lane only by analyzing the front image, even if there is a camera mounting error.
  • the problems to be solved by the present invention include the above-mentioned problems as an example.
  • the invention according to claim 1 is based on the analysis and processing of the image content in the front image with respect to the front image obtained by imaging the front in the traveling direction of the vehicle by the imaging means mounted on the vehicle.
  • An image processing apparatus that performs processing, wherein a traveling direction point detecting unit that detects a traveling direction point corresponding to a traveling direction along a traveling lane of the vehicle in the front image, and a point in time in the front image
  • Vehicle axis direction point detection means for detecting a vehicle axis direction point corresponding to the vehicle axis direction of the vehicle, and position deviation detection means for detecting a relative position deviation of the traveling direction point with respect to the vehicle axis direction point;
  • Forward image processing means for processing the front image in a display mode corresponding to the positional deviation.
  • the invention according to claim 9 is a display device that displays the front image processed by the image processing device according to claim 8, wherein the position deviation detected by the position deviation detecting means is displayed. And a superimposing display means for superimposing and displaying the stamp image of the display mode reflecting the above and the front image.
  • FIG. 1 is a perspective view illustrating a configuration example of a vehicle equipped with a driving support system according to an embodiment including an image processing device and an image display device of the present invention. It is a block diagram which shows the system configuration
  • FIG. 4 is a diagram illustrating a display example when a front image captured by the front camera in the posture state illustrated in FIG. 3 is displayed on a display.
  • FIG. 1 is a perspective view showing a configuration example of a vehicle equipped with the driving support system of the present embodiment including the image processing device and the image display device of the present invention.
  • the driving support system S is provided with a front camera 1 on the rear surface of the room mirror 101 on the ceiling inside the vehicle V.
  • the room mirror 101 is movable in the same mounting posture as a general one, and the front camera 1 can capture the front of the traveling direction of the vehicle V within the movable range of the posture. Fits in range.
  • the direction Dv of the vehicle axis passing through the center longitudinal direction of the vehicle is not excluded from the imaging range.
  • FIG. 2 is a block diagram illustrating a hardware configuration example of the driving support system S.
  • the driving support system S includes a front camera 1, an imaging unit 2, and a display 3.
  • the front camera 1 corresponds to an image pickup unit, and uses, for example, a CCD image pickup device or the like to pick up a front image in the traveling direction of the vehicle and outputs a corresponding signal to a CPU (described later) of the imaging unit 2.
  • the front camera 1 continuously captures the front image at short time intervals, thereby capturing the front image in the form of a moving image.
  • the display 3 corresponds to an image display device and a forward image display means, and is composed of, for example, an LCD panel and has a function of displaying a forward image based on an image signal input from a graphic controller (described later) of the imaging unit 2. .
  • the imaging unit 2 corresponds to an image processing apparatus, and includes a CPU 11, a storage device 12, a navigation device 13, a vehicle speed sensor 14, and a graphic controller 15.
  • the CPU 11 has a function of controlling the entire driving support system by performing various calculations according to the operation of a predetermined program, and exchanging information with other units and outputting various control instructions.
  • the storage device 12 includes a ROM 12a, a RAM 12b, and a storage medium 12c.
  • the ROM 12a is an information storage medium in which various processing programs and other necessary information are written in advance.
  • the RAM 12b is an information storage medium on which information necessary for executing the various programs is written and read.
  • the storage medium 12c is a non-volatile information storage medium such as a flash memory or a hard disk.
  • the navigation device 13 corresponds to navigation means, uses a GPS sensor (not shown in particular) to measure the current location of the vehicle, obtains current location information, and obtains a predetermined route based on map information stored in advance. It has a function for searching and route guidance.
  • the vehicle speed sensor 14 has a function of detecting the traveling speed of the own vehicle (in other words, a function of detecting traveling). Based on the detection signal of the vehicle speed sensor 14, the CPU 11 can identify whether the vehicle is in a running state or in a stopped state.
  • the graphic controller 15 has a function of acquiring image data from a video RAM (not shown) and the navigation device 13 under the control of the CPU 11 and displaying an image signal based on the image data on the display 2.
  • FIG. 3 is a diagram showing an example of a vehicle window scenery viewed from the cab and a display on the display 3 corresponding thereto.
  • the display 3 is arranged at the center position of the instrument panel 102, the right side in the figure corresponds to the driver's seat, and the steering wheel 103 is arranged in front thereof. .
  • the vehicle V is traveling in a substantially straight traveling lane, and the vehicle V is following the front vehicle Vf that is in front of the traveling direction.
  • the room mirror 101 is slightly inclined toward the driver.
  • the front camera 1 provided on the back side (traveling direction side) of the room mirror 101 captures a forward image including the straight traveling lane and the forward vehicle Vf.
  • the imaging range of the front camera 1 includes the vehicle axis direction Dv of the vehicle V without removing it.
  • the display 3 displays a front image captured by the front camera 1.
  • the traveling lane is curved.
  • a method and a display example of such support display will be sequentially described.
  • FIG. 4 shows a display example when the front image taken by the front camera 1 in the posture state shown in FIG. 3 is displayed on the display 3.
  • the center position of the display area of the display 3 that is, the intersection position of the center lines Lv and Ll in the vertical direction and the horizontal direction in the figure is separated from the vehicle axis direction Dv.
  • the front image loses left-right symmetry with respect to the center line L1, and even if the actual driving lane changes to a right curve and a left curve with the same curvature, the front image is reflected with different curvatures (illustrated). (Omitted).
  • the front vehicle Vf is positioned substantially on the extension in the vehicle axial direction Dv.
  • a lane vanishing point P1 corresponding to an infinitely far point of the traveling lane is also located on the extension of the vehicle axial direction Dv when the traveling lane is linear.
  • the point in the position corresponding to the extension of the vehicle axial direction Dv in the front image is hereinafter referred to as a vehicle axial direction point.
  • a white line applied to both sides of an actual traveling lane, a boundary line between a road surface and a curb, or an edge part of an asphalt road is displayed as a front image. And is recognized as two lane contour lines Lr forming the contour of the travel lane. Then, the intersection of the two lane outlines Lr on the extension line in the vehicle traveling direction is detected as the lane vanishing point P1 on the front image.
  • the two lane outlines Lr are also recognized in accordance with the direction and curvature of the curve on the front image.
  • the two lane contours Lr are recognized with priority given to the curvature on the near side of the vehicle V.
  • an extension line of the curve is calculated with an approximate expression based on the curvature on the near side, and the position of the intersection is detected as the lane vanishing point P1.
  • the average vanishing point P2 located at the average position of the lane vanishing points P1 is statistically It approaches on the extension of the vehicle axial direction Dv. That is, the average vanishing point P2 can be regarded as equivalent to the vehicle axial direction point described above.
  • a vehicle mark Mv as shown in FIG. 6 is superimposed on the front vehicle Vf closest to the vehicle V in the front image and displayed on the display 3.
  • the vehicle mark Mv is a geometric pattern configured so that its center position can be easily seen.
  • the vehicle mark Mv includes a traveling direction mark Md that can rotate with respect to the center position.
  • This advancing direction mark Md corresponds to a mark image, and in the example shown in the figure, it has a shape in which only the vicinity of each vertex is left out of each side of the equilateral triangle.
  • Such a vehicle mark Mv is superimposed on the forward vehicle Vf in a manner as shown in FIG.
  • the CPU 11 of the imaging unit 2 recognizes the image portion of the forward vehicle Vf in the forward image and is positioned at the center position thereof.
  • a vehicle center point P3 is detected.
  • This forward vehicle center point P3 on the forward image is located on the traveling direction side of the vehicle V along the traveling lane with respect to the vehicle axial direction point (average vanishing point P2 in this example).
  • the point corresponding to the traveling direction along the traveling lane of the vehicle V in the front image is hereinafter referred to as a traveling direction point.
  • the CPU 11 of the imaging unit 2 detects a relative position deviation vector X of the traveling direction point with respect to the vehicle axial direction point. That is, in this example, a relative position deviation vector of the forward vehicle center point P3 with respect to the average vanishing point P2 is detected.
  • the direction and magnitude of the left-right direction component of the position deviation vector X can be considered to substantially correspond to the curve direction and curvature of the travel lane.
  • a vehicle mark Mv including a traveling direction mark Md that is rotated in accordance with the direction and magnitude of the horizontal component of the position deviation vector X is generated, and this vehicle mark Mv is generated at the front vehicle center point P3. Overlay the position.
  • each traveling direction mark Md is superimposed and displayed.
  • the rotation angle of each traveling direction mark Md is proportional to the magnitude of the horizontal component of the position deviation vector X.
  • FIG. 8 shows a display example on the display 3 of the front image in which such a vehicle mark Mv is superimposed on the position of the front vehicle center point P3.
  • the driver can more clearly see the presence of the forward vehicle Vf by the vehicle mark Mv.
  • steering the steering wheel 103 in accordance with the rotation angle of the traveling direction mark Md included in the vehicle mark Mv, steering corresponding to the curve direction and curvature in the actual traveling lane can be performed.
  • FIG. 9 is a flowchart showing the control contents executed by the CPU 11 of the imaging unit 2 in order to realize the operation mode described above. This flow is called and started to be executed at an appropriate time interval, for example, while the front camera 1 is capturing a front image in the form of a moving image while the vehicle is running.
  • step S5 the front camera 1 captures a front image.
  • step S10 the process proceeds to step S10, and the two lane contours Lr in the current traveling lane are recognized in the front image captured in step S5.
  • the procedure of this step S10 corresponds to a vehicle outline recognition means.
  • step S15 the process proceeds to step S15, and the lane vanishing point P1 in the current traveling lane is detected based on the two lane contours Lr recognized in step S10.
  • the procedure of step S15 corresponds to lane vanishing point detection means.
  • step S20 where the lane vanishing point P1 detected in step S15 is additionally recorded so as to be accumulated in the storage medium 12c.
  • step S25 the process proceeds to step S25, and all lane vanishing points P1 recorded in the storage medium 12c are read out.
  • step S30 the process proceeds to step S30, and the average vanishing point P2 located at the average position of all the lane vanishing points P1 read in step S25 is detected.
  • the procedure of step S30 corresponds to vehicle axial direction point detection means and average vanishing point detection means.
  • step S35 the process proceeds to step S35, and the image portion of the front vehicle Vf closest to the vehicle V on the same traveling lane as the vehicle V is recognized in the front image captured in step S5.
  • the procedure of this step S35 corresponds to a forward vehicle recognition means.
  • step S40 the center point of the image portion of the forward vehicle Vf detected in step S35, that is, the forward vehicle center point P3 is detected.
  • the procedure of step S40 corresponds to the traveling direction point detecting unit.
  • step S45 the process proceeds to step S45, and the relative position deviation vector X of the front vehicle center point P3 detected in step S40 is detected with respect to the average vanishing point P2 detected in step S30.
  • the procedure of step S45 corresponds to a position deviation detecting means.
  • step S50 where the left / right direction component of the position deviation vector X detected in step S45 is detected, and the vehicle mark Mv obtained by rotating the traveling direction mark Md in accordance with the direction and magnitude of the left / right direction component is detected. Generate.
  • step S55 the front image is processed so that the vehicle mark Mv generated in step S50 is superimposed on the position of the front vehicle center point P3 detected in step S40.
  • the procedure of step S50 and the procedure of step S55 correspond to the forward image processing means.
  • the CPU 11 transmits necessary data and commands to the graphic controller 15, and the actual processing is performed by the graphic controller 15.
  • step S60 the process proceeds to step S60, and the front image processed in step S55 is displayed on the display 3.
  • the CPU 11 transmits a command to the graphic controller 15 and causes the graphic controller 15 to output image data of the processed front image to the display 3. Then, this flow ends.
  • steps S35 to S40 may be executed, then steps S10 to S30 may be executed, and the processing after step S45 may be executed.
  • the imaging unit 2 provided in the driving support system S of the above-described embodiment, the front image obtained by capturing the front in the traveling direction of the vehicle V by the front camera 1 (corresponding to the imaging unit) mounted on the vehicle V.
  • an imaging unit 2 (corresponding to an image processing device) that performs processing by analyzing and processing the image content in the front image, in the traveling direction along the traveling lane of the vehicle V in the front image.
  • Traveling direction point detecting means for detecting a corresponding traveling direction point; vehicle axis direction point detecting means for detecting a vehicle axial direction point corresponding to the vehicle axial direction Dv of the vehicle V at that time in the forward image; A position deviation detecting means for detecting a relative position deviation vector X (corresponding to a position deviation) of the traveling direction point with respect to the vehicle axis direction point; In a display mode corresponding to the torque X having a front image processing unit for processing the forward image.
  • the position of the traveling direction point in the front image can be regarded as an approximate index position of the planned direction in which the vehicle V travels, and the position of the vehicle axial direction point in the front image is Can be regarded as an approximate index position in the direction in which is currently facing.
  • the direction and magnitude of the relative position deviation vector X of the traveling direction point with respect to the vehicle axis direction point can be considered to substantially correspond to the curve direction and curvature of the traveling lane in which the vehicle V is traveling. . Therefore, by processing the front image in a display mode corresponding to the position deviation vector X, it is possible to reflect the support display that correctly corresponds to the curvature of the curve of the traveling lane.
  • This image processing can be performed only by analyzing and processing the image content of the front image without being affected by the deviation between the imaging direction Dc of the front camera 1 and the vehicle axial direction Dv. As a result, even if there is a slight camera mounting error, it is possible to display support that correctly corresponds to the curvature of the curve of the traveling lane only by analyzing the front image.
  • the imaging unit 2 included in the driving support system S further includes a forward vehicle recognition unit that recognizes an image portion of the forward vehicle Vf in the travel lane of the vehicle V in the forward image.
  • the traveling direction point detecting means detects the traveling direction point in the image portion of the preceding vehicle Vf.
  • the front image processing means further superimposes a traveling direction mark Md (corresponding to a seal image) in a display mode reflecting predetermined information. Then, the front image is processed.
  • the driver can also recognize information that is usually difficult to see in the front image.
  • the entire vehicle mark Mv including the traveling direction mark Md is superimposed on the position of the forward vehicle center point P3, that is, on the image portion of the forward vehicle Vf.
  • the presence of the forward vehicle Vf can be clearly seen by the vehicle mark Mv, and the information by the progress mark Md can be recognized together with little movement of the viewpoint.
  • the present invention is not limited to this.
  • the vehicle mark Mv is disassembled into a part Mv1 including the traveling direction mark Md and a part Mv2 not including the traveling direction mark Md. May be displayed.
  • a portion Mv2 that does not include the traveling direction mark Md is superimposed on the image portion of the forward vehicle Vf, and a portion Mv1 that includes the traveling direction mark Md is disposed and superimposed at a fixed position on the upper left of the front image.
  • the presence of the forward vehicle Vf can be clearly seen by the portion Mv2
  • the traveling direction mark Md included in the portion Mv1 can be clearly displayed at a fixed position away from the forward vehicle Vf.
  • the front image processing means reflects the position deviation as the predetermined information in the display mode of the traveling direction mark Md.
  • the display 3 in the driving support system S of the above embodiment includes a front image display means for displaying the front image on which the traveling direction mark Md is superimposed by the front image processing means.
  • the contour of the traveling lane is formed 2 on the left and right sides of the traveling lane of the vehicle V in the front image.
  • Lane outline recognizing means for recognizing the two lane outlines Lr
  • lane vanishing point detecting means for detecting an intersection of the two lane outlines Lr on the extension line in the traveling direction as a lane vanishing point P1
  • Average vanishing point detecting means for detecting an average vanishing point P2 located at an average position of each of the plurality of lane vanishing points P1 detected in the past by the lane vanishing point detecting means, and detecting the vehicle axial direction point
  • the means detects the average vanishing point P2 as the vehicle axial direction point.
  • the lane vanishing point P1 is detected by various traveling lanes, and the average vanishing point P2 at the average position thereof is detected as the vehicle axial direction point, but the present invention is not limited to this.
  • the navigation device 13 of the imaging unit 2 is used to detect that the vehicle V is traveling in a substantially straight traveling lane at that time, the lane disappearance detected in the front image captured by the front camera 1 is detected. You may detect the point P1 as a vehicle axial direction point.
  • the contour of the traveling lane is located on both the left and right sides of the traveling lane of the vehicle V.
  • Lane lane line recognizing means for recognizing the two lane line contours Lr forming the lane line, and a lane disappearance inspection for detecting, as a lane vanishing point P1, an intersection of the two lane line contours Lr on the extension line in the traveling direction.
  • the lane vanishing point detecting means detects the lane vanishing point P1 in a front image captured by the front camera 1 when the vehicle V has traveled in a substantially straight traveling lane in the past. Then, the vehicle axis direction point detection means may detect the lane vanishing point P1 as the vehicle axis direction point.
  • the navigation device capable of acquiring current position information and map information where the vehicle V is located at that time. 13 (corresponding to navigation means), and the lane vanishing point detection means detects that the vehicle V is traveling on the substantially straight traveling lane at that time by the navigation device 13. You may detect the said lane vanishing point P1 in the front image which the front camera 1 imaged.
  • the front vehicle center point P3 is applied to the traveling direction point and the average vanishing point P2 is applied to the vehicle axial direction point to detect the position deviation vector X.
  • the present invention is not limited to this. .
  • the lane vanishing point P1 is applied to the traveling direction point and the average vanishing point P2 is applied to the vehicle axial direction point to detect the position deviation vector X.
  • a support display that correctly corresponds to the curvature of the curve of the traveling lane can be reflected in the front image as in the above embodiment.
  • the contour of the traveling lane is defined on both the left and right sides of the traveling lane of the vehicle V.
  • Lane lane line recognizing means for recognizing the two lane line contours Lr to be formed, and lane vanishing point detection for detecting the intersection point of each of the two lane contour lines Lr on the extension line in the traveling direction as the lane vanishing point P1
  • the traveling direction point detecting unit may detect the lane vanishing point P1 as the traveling direction point.
  • the lane vanishing point P1 is applied to the traveling direction point, and the forward vehicle center point P3 is applied to the vehicle axial direction point. Even when X is detected, a support display that correctly corresponds to the curvature of the curve of the traveling lane can be reflected in the front image as in the above embodiment.
  • the average center point P4 located at the average position of the point P3 is also statistically close to the extension in the vehicle axial direction Dv. That is, the average center point P4 can be regarded as equivalent to the vehicle axial direction point described above.
  • the forward vehicle center point P3 is applied to the traveling direction point, and the average center point P4 is applied to the vehicle axial direction point to thereby obtain the position deviation vector X.
  • the support display that correctly corresponds to the curvature of the curve of the traveling lane can be reflected in the front image as in the above embodiment.
  • the lane vanishing point P1 is applied to the traveling direction point
  • the average center point P4 is applied to the vehicle axial direction point
  • the position deviation vector X Even when detected, the support display that correctly corresponds to the curvature of the curve of the traveling lane can be reflected in the front image as in the above embodiment.

Abstract

[Problem] To perform an assisting display correctly corresponding to the curvature of the curve of a traffic lane solely by analyzing a forward image, even if there is error in camera attachment. [Solution] In a forward image captured by a front camera (1), a progress direction point (P3) corresponding to the direction of progress along the traffic lane of a vehicle (V) and a vehicle-axis direction point (P2) corresponding to the direction of the vehicle axis of the vehicle at the point in time of the progress direction point are detected. The direction and magnitude of the left-right direction component of the relative position deviation vector (X) of the progress direction point (P3) with respect to the vehicle-axis direction point (P2) are considered to roughly correspond to the direction and curvature of the curve of the traffic lane in which the vehicle (V) is traveling. A progress direction mark (Md) is generated by means of the direction and angle of rotation corresponding to the direction and magnitude of the left-right direction component of the position deviation vector (X), and by superposing the mark on a forward vehicle in the forward image, it is possible to reflect an assisting display correctly corresponding to the curvature of the curve of a traffic lane.

Description

画像処理装置、及び画像表示装置Image processing apparatus and image display apparatus
 本発明は、車両の進行方向の前方画像を解析及び加工により処理する画像処理装置、及び当該画像処理装置により処理された前方画像を表示する画像表示装置に関する。 The present invention relates to an image processing apparatus that processes a front image in the traveling direction of a vehicle by analysis and processing, and an image display apparatus that displays a front image processed by the image processing apparatus.
 近年では、車両に搭載されたカメラで周囲の画像を撮像し、その撮像した画像を解析することで当該車両の周囲の状況を検出する技術が提案されている。 In recent years, a technique has been proposed in which a surrounding image is captured by a camera mounted on the vehicle, and the surrounding state of the vehicle is detected by analyzing the captured image.
 例えば、特許文献1に記載されているように、車両の走行方向の前方画像を撮像し、当該前方画像中に映し出されている走行車線の両側の白線を認識して、それら白線の形状の近似式から当該走行車線のカーブの曲率などを算出する。そしてこの従来技術では、走行車線のカーブの曲率に対応してステアリング装置に付加する操舵力を制御することで、現在の走行車線上での当該車両の走行を維持できるよう運転を支援する。 For example, as described in Patent Document 1, a front image in the traveling direction of the vehicle is captured, white lines on both sides of the traveling lane displayed in the front image are recognized, and the shape of the white lines is approximated. The curvature of the traveling lane curve is calculated from the equation. And in this prior art, driving | operation is supported so that driving | running | working of the said vehicle on the present driving lane can be maintained by controlling the steering force added to a steering device according to the curvature of the curve of a driving lane.
特開2008-305319号公報([0026]~[0030])JP 2008-305319 A ([0026] to [0030])
 例えばユーザー自身の手作業によって車両にカメラを取り付ける場合や、カメラの固定位置や姿勢が動く可能性がある場合には、当該カメラの撮像方向が規定の方向からズレやすくなる。この場合、同じ走行車線のカーブに対してもカメラの撮像方向の誤差によって前方画像中での白線の形状が異なってしまうため、上記従来技術では走行車線のカーブの曲率を正確に算出することが困難となる。そのため、カメラの取り付け誤差があっても、前方画像の解析だけで走行車線のカーブの曲率に正しく対応した支援表示を行える技術が要望されていた。 For example, when the camera is attached to the vehicle by the user's own work, or when the fixed position or posture of the camera may move, the imaging direction of the camera is likely to deviate from the specified direction. In this case, the shape of the white line in the front image differs due to an error in the imaging direction of the camera even for the same driving lane curve. Therefore, the above-described conventional technique can accurately calculate the curvature of the driving lane curve. It becomes difficult. For this reason, there has been a demand for a technique capable of displaying support that correctly corresponds to the curvature of the curve of the traveling lane only by analyzing the front image, even if there is a camera mounting error.
 本発明が解決しようとする課題には、上記した問題が一例として挙げられる。 The problems to be solved by the present invention include the above-mentioned problems as an example.
 上記課題を解決するために、請求項1記載の発明は、車両に搭載した撮像手段により当該車両の進行方向の前方を撮像した前方画像に対し、当該前方画像中の画像内容の解析と加工により処理を行う画像処理装置であって、前記前方画像中において、当該車両の走行車線に沿った進行方向に対応する進行方向点を検出する進行方向点検出手段と、前記前方画像中において、その時点の当該車両の車両軸方向に対応する車両軸方向点を検出する車両軸方向点検出手段と、前記車両軸方向点に対する前記進行方向点の相対的な位置偏差を検出する位置偏差検出手段と、前記位置偏差に対応した表示態様で前記前方画像を加工する前方画像加工手段と、を有する。 In order to solve the above problems, the invention according to claim 1 is based on the analysis and processing of the image content in the front image with respect to the front image obtained by imaging the front in the traveling direction of the vehicle by the imaging means mounted on the vehicle. An image processing apparatus that performs processing, wherein a traveling direction point detecting unit that detects a traveling direction point corresponding to a traveling direction along a traveling lane of the vehicle in the front image, and a point in time in the front image Vehicle axis direction point detection means for detecting a vehicle axis direction point corresponding to the vehicle axis direction of the vehicle, and position deviation detection means for detecting a relative position deviation of the traveling direction point with respect to the vehicle axis direction point; Forward image processing means for processing the front image in a display mode corresponding to the positional deviation.
 上記課題を解決するために、請求項9記載の発明は、請求項8記載の画像処理装置が処理した前記前方画像を表示する表示装置であって、前記位置偏差検出手段が検出した前記位置偏差を反映した表示態様の印画像と前記前方画像とを重畳表示する重畳表示手段、を有する。 In order to solve the above-mentioned problem, the invention according to claim 9 is a display device that displays the front image processed by the image processing device according to claim 8, wherein the position deviation detected by the position deviation detecting means is displayed. And a superimposing display means for superimposing and displaying the stamp image of the display mode reflecting the above and the front image.
本発明の画像処理装置及び画像表示装置を含む実施形態の運転支援システムを搭載した車両の構成例を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view illustrating a configuration example of a vehicle equipped with a driving support system according to an embodiment including an image processing device and an image display device of the present invention. 実施形態の運転支援システムのシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the driving assistance system of embodiment. 運転室から見た車窓風景及びこれに対応するディスプレイの表示の一例を示す図である。It is a figure which shows an example of the display of the vehicle window scenery seen from the cab, and the display corresponding to this. 図3に示した姿勢状態のフロントカメラが撮像した前方画像をディスプレイに表示した場合の表示例を表した図であるFIG. 4 is a diagram illustrating a display example when a front image captured by the front camera in the posture state illustrated in FIG. 3 is displayed on a display. 車線輪郭線、車線消失点、及び平均消失点を写し込んだ前方画像をディスプレイに表示した場合の表示例を表した図である。It is a figure showing the example of a display at the time of displaying a front picture which imprinted a lane outline, a lane vanishing point, and an average vanishing point on a display. 進行方向マークを含んだ車両マークの一例を表した図である。It is a figure showing an example of the vehicle mark containing the advancing direction mark. 位置偏差ベクトルとそれを反映させた車両マークの重畳表示例を表した図である。It is a figure showing the example of a superimposed display of a position deviation vector and a vehicle mark reflecting it. 車両マークを前方車両の画像部分に重畳した前方画像のディスプレイ上での表示例を表した図である。It is a figure showing the example of a display on the display of the front image which superimposed the vehicle mark on the image part of the front vehicle. イメージングユニットのCPUが実行する制御内容を表すフローチャートである。It is a flowchart showing the control content which CPU of an imaging unit performs. 進行方向マークを前方車両の画像部分以外に重畳した前方画像のディスプレイ上での表示例を表した図である。It is a figure showing the example of a display on the display of the front image which superimposed the advancing direction mark other than the image part of the front vehicle. 車線消失点を進行方向点に適用し、平均消失点を車両軸方向点に適用した場合の車両マークの重畳表示例を表した図である。It is a figure showing the example of a superposition display of a vehicle mark at the time of applying a lane vanishing point to an advancing direction point, and applying an average vanishing point to a vehicle axis direction point. 車線消失点を進行方向点に適用し、前方車両中心点を車両軸方向点に適用した場合の車両マークの重畳表示例を表した図である。It is a figure showing the example of a superimposed display of the vehicle mark at the time of applying a lane vanishing point to the advancing direction point, and applying a front vehicle center point to a vehicle axial direction point. 前方車両中心点、及び平均中心点を写し込んだ前方画像をディスプレイに表示した場合の表示例を表した図である。It is a figure showing the example of a display at the time of displaying the front image which copied the front vehicle center point and the average center point on a display. 前方車両中心点を進行方向点に適用し、平均中心点を車両軸方向点に適用した場合の車両マークの重畳表示例を表した図である。It is a figure showing the example of a superposition display of a vehicle mark at the time of applying a front vehicle center point to a direction point of movement, and applying an average center point to a vehicle axis direction point. 車線消失点を進行方向点に適用し、平均中心点を車両軸方向点に適用した場合の車両マークの重畳表示例を表した図である。It is a figure showing the superimposed display example of the vehicle mark at the time of applying a lane vanishing point to the advancing direction point, and applying an average center point to a vehicle axial direction point.
 以下、本発明の実施形態を図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の画像処理装置及び画像表示装置を含む本実施形態の運転支援システムを搭載した車両の構成例を示す斜視図である。この図1において、運転支援システムSは、車両Vの車内天井におけるルームミラー101の裏面にフロントカメラ1を設けている。なお、ルームミラー101は一般的なものと同等にその取り付け姿勢が可動となっており、その姿勢の可動範囲内では、フロントカメラ1の撮像方向は当該車両Vの進行方向の前方を撮像可能な範囲に収まる。また、このフロントカメラ1の撮像方向Dcの可動範囲内では、当該車両の中央前後方向を貫く車両軸の方向Dvを撮像範囲から外さない。 FIG. 1 is a perspective view showing a configuration example of a vehicle equipped with the driving support system of the present embodiment including the image processing device and the image display device of the present invention. In FIG. 1, the driving support system S is provided with a front camera 1 on the rear surface of the room mirror 101 on the ceiling inside the vehicle V. Note that the room mirror 101 is movable in the same mounting posture as a general one, and the front camera 1 can capture the front of the traveling direction of the vehicle V within the movable range of the posture. Fits in range. Further, within the movable range of the front camera 1 in the imaging direction Dc, the direction Dv of the vehicle axis passing through the center longitudinal direction of the vehicle is not excluded from the imaging range.
 図2は、運転支援システムSのハードウェア構成例を示すブロック図である。この図2において、運転支援システムSは、フロントカメラ1、イメージングユニット2、ディスプレイ3を有している。 FIG. 2 is a block diagram illustrating a hardware configuration example of the driving support system S. In FIG. 2, the driving support system S includes a front camera 1, an imaging unit 2, and a display 3.
 フロントカメラ1は撮像手段に相当し、例えばCCD撮像素子などを利用して、上述した当該車両の進行方向の前方画像を撮像し、対応する信号をイメージングユニット2のCPU(後述)へ出力する機能を有する。なお、本実施形態の例では、このフロントカメラ1が短い時間間隔で前方画像を撮像し続けることで、前方画像を動画の形態で撮像する。 The front camera 1 corresponds to an image pickup unit, and uses, for example, a CCD image pickup device or the like to pick up a front image in the traveling direction of the vehicle and outputs a corresponding signal to a CPU (described later) of the imaging unit 2. Have In the example of the present embodiment, the front camera 1 continuously captures the front image at short time intervals, thereby capturing the front image in the form of a moving image.
 ディスプレイ3は画像表示装置及び前方画像表示手段に相当し、例えばLCDパネルなどで構成されて、イメージングユニット2のグラフィックコントローラ(後述)から入力された画像信号に基づいて前方画像を表示する機能を有する。 The display 3 corresponds to an image display device and a forward image display means, and is composed of, for example, an LCD panel and has a function of displaying a forward image based on an image signal input from a graphic controller (described later) of the imaging unit 2. .
 イメージングユニット2は画像処理装置に相当し、CPU11、記憶装置12、ナビゲーション装置13、車速センサ14、グラフィックコントローラ15を有している。 The imaging unit 2 corresponds to an image processing apparatus, and includes a CPU 11, a storage device 12, a navigation device 13, a vehicle speed sensor 14, and a graphic controller 15.
 CPU11は、所定のプログラムの動作によって各種の演算を行うとともに、他の各部との間で情報の交換や各種の制御指示を出力することで、運転支援システム全体を制御する機能を有する。 The CPU 11 has a function of controlling the entire driving support system by performing various calculations according to the operation of a predetermined program, and exchanging information with other units and outputting various control instructions.
 記憶装置12は、ROM12a、RAM12b、及び記憶媒体12cを有する。ROM12aは、各種の処理プログラムやその他必要な情報が予め書き込まれた情報記憶媒体である。RAM12bは、上記各種のプログラムを実行する上で必要な情報の書き込み及び読み出しが行われる情報記憶媒体である。記憶媒体12cは、例えばフラッシュメモリ、ハードディスクなどの不揮発性の情報記憶媒体である。 The storage device 12 includes a ROM 12a, a RAM 12b, and a storage medium 12c. The ROM 12a is an information storage medium in which various processing programs and other necessary information are written in advance. The RAM 12b is an information storage medium on which information necessary for executing the various programs is written and read. The storage medium 12c is a non-volatile information storage medium such as a flash memory or a hard disk.
 ナビゲーション装置13はナビゲーション手段に相当し、GPSセンサ(特に図示せず)を利用して車両の現在地の測位を行い現在位置情報を取得するとともに、予め記憶している地図情報に基づいて所定の経路探索や経路誘導を行う機能を有する。 The navigation device 13 corresponds to navigation means, uses a GPS sensor (not shown in particular) to measure the current location of the vehicle, obtains current location information, and obtains a predetermined route based on map information stored in advance. It has a function for searching and route guidance.
 車速センサ14は、自車の走行速度を検出する機能(言い換えれば走行していることを検出する機能)を有する。CPU11は、この車速センサ14の検出信号に基づき、当該自動車が走行中の状態であるか、停止中の状態であるかを識別することができる。 The vehicle speed sensor 14 has a function of detecting the traveling speed of the own vehicle (in other words, a function of detecting traveling). Based on the detection signal of the vehicle speed sensor 14, the CPU 11 can identify whether the vehicle is in a running state or in a stopped state.
 グラフィックコントローラ15は、CPU11の制御によってビデオRAM(図示せず)及び上記ナビゲーション装置13などから画像データを取得し、この画像データに基づく画像信号を上記ディスプレイ2に表示させる機能を有する。 The graphic controller 15 has a function of acquiring image data from a video RAM (not shown) and the navigation device 13 under the control of the CPU 11 and displaying an image signal based on the image data on the display 2.
 図3は、運転室から見た車窓風景及びこれに対応するディスプレイ3の表示の一例を示す図である。この図3に示す例において、インストゥルメントパネル102の中央位置に上記ディスプレイ3が配置されており、また図中の右側が運転席に対応して、その前方にステアリングホィール103が配置されている。 FIG. 3 is a diagram showing an example of a vehicle window scenery viewed from the cab and a display on the display 3 corresponding thereto. In the example shown in FIG. 3, the display 3 is arranged at the center position of the instrument panel 102, the right side in the figure corresponds to the driver's seat, and the steering wheel 103 is arranged in front thereof. .
 図示する例では、当該車両Vはほぼ直線の走行車線を走行しており、その走行方向前方にいる前方車両Vfに追従している状態を示している。ルームミラー101は運転者へ向けて視線が少しだけ斜めに向いている。このルームミラー101の裏側(進行方向側)に備えられているフロントカメラ1は、上記直線の走行車線と前方車両Vfを含んだ前方画像を撮像している。このとき、上述したように、フロントカメラ1の撮像範囲は当該車両Vの車両軸方向Dvを外さずに含んでいる。そして、ディスプレイ3は、フロントカメラ1が撮像した前方画像を表示している。 In the illustrated example, the vehicle V is traveling in a substantially straight traveling lane, and the vehicle V is following the front vehicle Vf that is in front of the traveling direction. The room mirror 101 is slightly inclined toward the driver. The front camera 1 provided on the back side (traveling direction side) of the room mirror 101 captures a forward image including the straight traveling lane and the forward vehicle Vf. At this time, as described above, the imaging range of the front camera 1 includes the vehicle axis direction Dv of the vehicle V without removing it. The display 3 displays a front image captured by the front camera 1.
 ここで、上述したようにルームミラー101とともにフロントカメラ1の取り付け姿勢が可動であって、その撮像方向Dcが車両軸方向Dvと平行な配置関係にない場合には、走行車線がカーブしている際に前方画像の解析だけではそのカーブの曲率を正確に算出することが難しくなる。これは、ユーザーがフロントカメラ1を任意の位置に取り付けた場合や、手作業で取り付けた場合などにも生じうる。そこで本実施形態では、走行車線のカーブの曲率を正確に算出する代わりに、運転者の運転を支援できる程度でカーブの曲率に正しく対応した支援表示を当該前方画像に重畳させて表示する。以下、そのような支援表示の生成手法及び表示例を順次説明する。 Here, as described above, when the mounting posture of the front camera 1 is movable together with the rearview mirror 101, and the imaging direction Dc is not in an arrangement relationship parallel to the vehicle axial direction Dv, the traveling lane is curved. However, it is difficult to accurately calculate the curvature of the curve only by analyzing the front image. This can also occur when the user attaches the front camera 1 at an arbitrary position or when it is attached manually. Therefore, in this embodiment, instead of accurately calculating the curvature of the curve of the traveling lane, a support display that correctly corresponds to the curvature of the curve to the extent that it can support the driver's driving is superimposed and displayed on the front image. Hereinafter, a method and a display example of such support display will be sequentially described.
 まず、図4は、上記図3に示した姿勢状態のフロントカメラ1が撮像した前方画像をディスプレイ3に表示した場合の表示例を表している。この図4において、ディスプレイ3の表示領域の中心位置、つまり図中の縦方向、横方向それぞれの中心線Lv,Llの交点位置が、車両軸方向Dvから離れている。このため、前方画像は中心線Llに対する左右方向の対称性を損なっており、実際の走行車線が同じ曲率の右カーブと左カーブに変わっても、前方画像上ではそれぞれ異なる曲率で写り込む(図示省略)。 First, FIG. 4 shows a display example when the front image taken by the front camera 1 in the posture state shown in FIG. 3 is displayed on the display 3. In FIG. 4, the center position of the display area of the display 3, that is, the intersection position of the center lines Lv and Ll in the vertical direction and the horizontal direction in the figure is separated from the vehicle axis direction Dv. For this reason, the front image loses left-right symmetry with respect to the center line L1, and even if the actual driving lane changes to a right curve and a left curve with the same curvature, the front image is reflected with different curvatures (illustrated). (Omitted).
 これに対し、図示する例のように直線状の走行車線を走行している際に撮像した前方画像中においては、前方車両Vfがほぼ車両軸方向Dvの延長上に位置する。また、走行車線の無限遠方点に相当する車線消失点P1も、当該走行車線が直線状である場合には車両軸方向Dvの延長上に位置する。このように、前方画像中において車両軸方向Dvの延長上に対応する位置にある点を、以下において車両軸方向点という。 On the other hand, in the front image captured when the vehicle is traveling on a straight traveling lane as in the illustrated example, the front vehicle Vf is positioned substantially on the extension in the vehicle axial direction Dv. A lane vanishing point P1 corresponding to an infinitely far point of the traveling lane is also located on the extension of the vehicle axial direction Dv when the traveling lane is linear. Thus, the point in the position corresponding to the extension of the vehicle axial direction Dv in the front image is hereinafter referred to as a vehicle axial direction point.
 上記車線消失点P1を検出する手法としては、まず図示するように実際の走行車線の両側に塗布されている白線や、路面と縁石との境界線や、又はアスファルト道路の縁部などを前方画像の画像解析により検出し、当該走行車線の輪郭を形成する2本の車線輪郭線Lrとして認識する。そして、これら2本の車線輪郭線Lrの車両進行方向の延長線上の交点が、前方画像上における上記車線消失点P1として検出される。 As a method for detecting the lane vanishing point P1, first, as shown in the figure, a white line applied to both sides of an actual traveling lane, a boundary line between a road surface and a curb, or an edge part of an asphalt road is displayed as a front image. And is recognized as two lane contour lines Lr forming the contour of the travel lane. Then, the intersection of the two lane outlines Lr on the extension line in the vehicle traveling direction is detected as the lane vanishing point P1 on the front image.
 ここで例えば図5に示すように、走行車線がカーブ状である場合には、上記2本の車線輪郭線Lrも、前方画像上におけるそのカーブの方向と曲率に合わせて認識される。なお、特に図示しないが、このカーブの曲率が途中で変化する場合には、当該車両Vの手前側の曲率を優先して2本の車線輪郭線Lrが認識される。そして手前側の曲率に基づいた近似式でカーブの延長線を算出し、それらの交点位置が車線消失点P1として検出される。 Here, for example, as shown in FIG. 5, when the traveling lane is curved, the two lane outlines Lr are also recognized in accordance with the direction and curvature of the curve on the front image. Although not particularly illustrated, when the curvature of this curve changes midway, the two lane contours Lr are recognized with priority given to the curvature on the near side of the vehicle V. Then, an extension line of the curve is calculated with an approximate expression based on the curvature on the near side, and the position of the intersection is detected as the lane vanishing point P1.
 当該車両Vが多様な形状の走行車線を長く走行し、上記車線消失点P1を多数検出して記録した場合には、それら車線消失点P1の平均位置に位置する平均消失点P2は統計的に車両軸方向Dvの延長上に近接する。つまり、平均消失点P2は、上述した車両軸方向点と同等に見なせる。 When the vehicle V has traveled for a long time in various lanes and detected and recorded many lane vanishing points P1, the average vanishing point P2 located at the average position of the lane vanishing points P1 is statistically It approaches on the extension of the vehicle axial direction Dv. That is, the average vanishing point P2 can be regarded as equivalent to the vehicle axial direction point described above.
 また本実施形態では、前方画像中において当該車両Vに最も近い前方車両Vfに、図6に示すような車両マークMvを重畳させてディスプレイ3に表示する。図6において、車両マークMvはその中心位置が視認しやすいよう構成された幾何形状の模様である。また、この車両マークMvには、中心位置に対して回転可能な進行方向マークMdが含まれている。この進行方向マークMdは印画像に相当し、図示する例では、正三角形の各辺のうち各頂点部の近傍部分だけを残した形状となっている。 In this embodiment, a vehicle mark Mv as shown in FIG. 6 is superimposed on the front vehicle Vf closest to the vehicle V in the front image and displayed on the display 3. In FIG. 6, the vehicle mark Mv is a geometric pattern configured so that its center position can be easily seen. The vehicle mark Mv includes a traveling direction mark Md that can rotate with respect to the center position. This advancing direction mark Md corresponds to a mark image, and in the example shown in the figure, it has a shape in which only the vicinity of each vertex is left out of each side of the equilateral triangle.
 このような車両マークMvを、図7に示すような態様で前方車両Vfに重畳させる。例えば、図7(a)に示すように走行車線が左カーブである場合には、イメージングユニット2のCPU11が前方画像中における前方車両Vfの画像部分を認識して、その中心位置に位置する前方車両中心点P3を検出する。前方画像上におけるこの前方車両中心点P3は、上記車両軸方向点(この例の平均消失点P2)に対し、走行車線に沿った当該車両Vの進行方向の側に位置する。このように、前方画像中において当該車両Vの走行車線に沿った進行方向に対応する点を、以下において進行方向点という。 Such a vehicle mark Mv is superimposed on the forward vehicle Vf in a manner as shown in FIG. For example, as shown in FIG. 7A, when the traveling lane is a left curve, the CPU 11 of the imaging unit 2 recognizes the image portion of the forward vehicle Vf in the forward image and is positioned at the center position thereof. A vehicle center point P3 is detected. This forward vehicle center point P3 on the forward image is located on the traveling direction side of the vehicle V along the traveling lane with respect to the vehicle axial direction point (average vanishing point P2 in this example). In this way, the point corresponding to the traveling direction along the traveling lane of the vehicle V in the front image is hereinafter referred to as a traveling direction point.
 そして、イメージングユニット2のCPU11は、車両軸方向点に対する進行方向点の相対的な位置偏差ベクトルXを検出する。すなわちこの例では、上記平均消失点P2に対する前方車両中心点P3の相対的な位置偏差ベクトルを検出する。この位置偏差ベクトルXの左右方向成分の方向と大きさは、当該走行車線のカーブの方向と曲率にほぼ対応していると見なせる。本実施形態では、この位置偏差ベクトルXの左右方向成分の方向と大きさに対応して回転させた進行方向マークMdを含む車両マークMvを生成し、この車両マークMvを前方車両中心点P3の位置に重畳表示させる。 The CPU 11 of the imaging unit 2 detects a relative position deviation vector X of the traveling direction point with respect to the vehicle axial direction point. That is, in this example, a relative position deviation vector of the forward vehicle center point P3 with respect to the average vanishing point P2 is detected. The direction and magnitude of the left-right direction component of the position deviation vector X can be considered to substantially correspond to the curve direction and curvature of the travel lane. In the present embodiment, a vehicle mark Mv including a traveling direction mark Md that is rotated in accordance with the direction and magnitude of the horizontal component of the position deviation vector X is generated, and this vehicle mark Mv is generated at the front vehicle center point P3. Overlay the position.
 これにより、図7(a)に示す左カーブの場合には、進行方向マークMdを反時計方向に回転させた車両マークMvが重畳表示される。また、図7(b)に示す右カーブの場合には、進行方向マークMdを時計方向に回転させた車両マークMvが重畳表示される。なお、それぞれの進行方向マークMdの回転角度は、位置偏差ベクトルXの左右方向成分の大きさに比例する。 Thus, in the case of the left curve shown in FIG. 7A, the vehicle mark Mv obtained by rotating the traveling direction mark Md in the counterclockwise direction is superimposed and displayed. Further, in the case of the right curve shown in FIG. 7B, a vehicle mark Mv obtained by rotating the traveling direction mark Md in the clockwise direction is superimposed and displayed. The rotation angle of each traveling direction mark Md is proportional to the magnitude of the horizontal component of the position deviation vector X.
 図8は、このような車両マークMvを前方車両中心点P3の位置に重畳した前方画像のディスプレイ3上での表示例を表している。運転者は、車両マークMvにより前方車両Vfの存在をより明確に目視することができる。さらに、車両マークMvに含まれる進行方向マークMdの回転角度に合わせてステアリングホィール103を操舵することで、実際の走行車線におけるカーブの方向と曲率に対応した操舵が可能となる。 FIG. 8 shows a display example on the display 3 of the front image in which such a vehicle mark Mv is superimposed on the position of the front vehicle center point P3. The driver can more clearly see the presence of the forward vehicle Vf by the vehicle mark Mv. Further, by steering the steering wheel 103 in accordance with the rotation angle of the traveling direction mark Md included in the vehicle mark Mv, steering corresponding to the curve direction and curvature in the actual traveling lane can be performed.
 図9は、以上説明した動作態様を実現するために、イメージングユニット2のCPU11が実行する制御内容を表すフローチャートである。なお、このフローは、当該車両の走行中でフロントカメラ1が動画の形態で前方画像を撮像している間に、例えば適宜の時間間隔で呼び出されて実行を開始する。 FIG. 9 is a flowchart showing the control contents executed by the CPU 11 of the imaging unit 2 in order to realize the operation mode described above. This flow is called and started to be executed at an appropriate time interval, for example, while the front camera 1 is capturing a front image in the form of a moving image while the vehicle is running.
 図9において、まずステップS5において、フロントカメラ1で前方画像を撮像する。 In FIG. 9, first, in step S5, the front camera 1 captures a front image.
 次にステップS10へ移り、上記ステップS5で撮像した前方画像中において、現在の走行車線における2本の車線輪郭線Lrを認識する。なお、このステップS10の手順が、車両輪郭線認識手段に相当する。 Next, the process proceeds to step S10, and the two lane contours Lr in the current traveling lane are recognized in the front image captured in step S5. In addition, the procedure of this step S10 corresponds to a vehicle outline recognition means.
 次にステップS15へ移り、上記ステップS10で認識した2本の車線輪郭線Lrに基づいて、現在の走行車線における車線消失点P1を検出する。なお、このステップS15の手順が、車線消失点検出手段に相当する。 Next, the process proceeds to step S15, and the lane vanishing point P1 in the current traveling lane is detected based on the two lane contours Lr recognized in step S10. The procedure of step S15 corresponds to lane vanishing point detection means.
 次にステップS20へ移り、上記ステップS15で検出した車線消失点P1を記憶媒体12cに蓄積するよう追加記録する。 Next, the process proceeds to step S20, where the lane vanishing point P1 detected in step S15 is additionally recorded so as to be accumulated in the storage medium 12c.
 次にステップS25へ移り、記憶媒体12cに記録されている全ての車線消失点P1を読み出す。 Next, the process proceeds to step S25, and all lane vanishing points P1 recorded in the storage medium 12c are read out.
 次にステップS30へ移り、上記ステップS25で読み出した全ての車線消失点P1の平均位置に位置する平均消失点P2を検出する。なお、このステップS30の手順が、車両軸方向点検出手段及び平均消失点検出手段に相当する。 Next, the process proceeds to step S30, and the average vanishing point P2 located at the average position of all the lane vanishing points P1 read in step S25 is detected. Note that the procedure of step S30 corresponds to vehicle axial direction point detection means and average vanishing point detection means.
 次にステップS35へ移り、上記ステップS5で撮像した前方画像において、当該車両Vと同じ走行車線上で最も近い前方車両Vfの画像部分を認識する。なお、このステップS35の手順が、前方車両認識手段に相当する。 Next, the process proceeds to step S35, and the image portion of the front vehicle Vf closest to the vehicle V on the same traveling lane as the vehicle V is recognized in the front image captured in step S5. In addition, the procedure of this step S35 corresponds to a forward vehicle recognition means.
 次にステップS40へ移り、上記ステップS35で検出した前方車両Vfの画像部分の中心点、つまり前方車両中心点P3を検出する。なお、このステップS40の手順が、進行方向点検出手段に相当する。 Next, the process proceeds to step S40, and the center point of the image portion of the forward vehicle Vf detected in step S35, that is, the forward vehicle center point P3 is detected. The procedure of step S40 corresponds to the traveling direction point detecting unit.
 次にステップS45へ移り、上記ステップS30で検出した平均消失点P2に対する、上記ステップS40で検出した前方車両中心点P3の相対的な位置偏差ベクトルXを検出する。なお、このステップS45の手順が、位置偏差検出手段に相当する。 Next, the process proceeds to step S45, and the relative position deviation vector X of the front vehicle center point P3 detected in step S40 is detected with respect to the average vanishing point P2 detected in step S30. Note that the procedure of step S45 corresponds to a position deviation detecting means.
 次にステップS50へ移り、上記ステップS45で検出した位置偏差ベクトルXの左右方向成分を検出し、この左右方向成分の方向と大きさに対応して進行方向マークMdを回転させた車両マークMvを生成する。 Next, the process proceeds to step S50, where the left / right direction component of the position deviation vector X detected in step S45 is detected, and the vehicle mark Mv obtained by rotating the traveling direction mark Md in accordance with the direction and magnitude of the left / right direction component is detected. Generate.
 次にステップS55へ移り、上記ステップS50で生成した車両マークMvを、上記ステップS40で検出した前方車両中心点P3の位置に重畳させるよう前方画像を加工する。なお、上記ステップS50の手順とこのステップS55の手順が、前方画像加工手段に相当する。また、CPU11は必要なデータと指令をグラフィックコントローラ15に送信し、実際の加工処理はグラフィックコントローラ15が行う。 Next, the process proceeds to step S55, where the front image is processed so that the vehicle mark Mv generated in step S50 is superimposed on the position of the front vehicle center point P3 detected in step S40. Note that the procedure of step S50 and the procedure of step S55 correspond to the forward image processing means. Further, the CPU 11 transmits necessary data and commands to the graphic controller 15, and the actual processing is performed by the graphic controller 15.
 次にステップS60へ移り、上記ステップS55で加工した前方画像をディスプレイ3に表示させる。なお、CPU11はグラフィックコントローラ15に対して指令を送信し、グラフィックコントローラ15に加工済みの前方画像の画像データをディスプレイ3に出力させる。そして、このフローを終了する。 Next, the process proceeds to step S60, and the front image processed in step S55 is displayed on the display 3. The CPU 11 transmits a command to the graphic controller 15 and causes the graphic controller 15 to output image data of the processed front image to the display 3. Then, this flow ends.
 なお、ステップS5のあと、ステップS35~S40を実行してから、ステップS10~ステップS30を実行し、ステップS45以降の処理を実行してもよい。 It should be noted that after step S5, steps S35 to S40 may be executed, then steps S10 to S30 may be executed, and the processing after step S45 may be executed.
 以上説明したように、上記実施形態の運転支援システムSが備えるイメージングユニット2においては、車両Vに搭載したフロントカメラ1(撮像手段に相当)により当該車両Vの進行方向の前方を撮像した前方画像に対し、当該前方画像中の画像内容の解析と加工により処理を行うイメージングユニット2(画像処理装置に相当)であって、前記前方画像中において、当該車両Vの走行車線に沿った進行方向に対応する進行方向点を検出する進行方向点検出手段と、前記前方画像中において、その時点の当該車両Vの車両軸方向Dvに対応する車両軸方向点を検出する車両軸方向点検出手段と、前記車両軸方向点に対する前記進行方向点の相対的な位置偏差ベクトルX(位置偏差に相当)を検出する位置偏差検出手段と、前記位置偏差ベクトルXに対応した表示態様で前記前方画像を加工する前方画像加工手段と、を有する。 As described above, in the imaging unit 2 provided in the driving support system S of the above-described embodiment, the front image obtained by capturing the front in the traveling direction of the vehicle V by the front camera 1 (corresponding to the imaging unit) mounted on the vehicle V. On the other hand, an imaging unit 2 (corresponding to an image processing device) that performs processing by analyzing and processing the image content in the front image, in the traveling direction along the traveling lane of the vehicle V in the front image. Traveling direction point detecting means for detecting a corresponding traveling direction point; vehicle axis direction point detecting means for detecting a vehicle axial direction point corresponding to the vehicle axial direction Dv of the vehicle V at that time in the forward image; A position deviation detecting means for detecting a relative position deviation vector X (corresponding to a position deviation) of the traveling direction point with respect to the vehicle axis direction point; In a display mode corresponding to the torque X having a front image processing unit for processing the forward image.
 このようにすると、前方画像中における進行方向点の位置は、当該車両Vが進行する予定方向のおおよその指標位置と見なすことができ、前方画像中における車両軸方向点の位置は、当該車両Vがその時点で向いている方向のおおよその指標位置と見なすことができる。これにより、車両軸方向点に対する進行方向点の相対的な位置偏差ベクトルXの方向と大きさは、当該車両Vが走行している走行車線のカーブの方向と曲率にほぼ対応していると見なせる。従って、この位置偏差ベクトルXに対応した表示態様で前方画像を加工することで、走行車線のカーブの曲率に正しく対応した支援表示を反映させることができる。そしてこの画像処理は、フロントカメラ1の撮像方向Dcと車両軸方向Dvとの間の偏差の影響を受けずに、前方画像の画像内容の解析と加工だけで行える。この結果、カメラの取り付け誤差が多少あっても、前方画像の解析だけで走行車線のカーブの曲率に正しく対応した支援表示を行える。 In this way, the position of the traveling direction point in the front image can be regarded as an approximate index position of the planned direction in which the vehicle V travels, and the position of the vehicle axial direction point in the front image is Can be regarded as an approximate index position in the direction in which is currently facing. Thus, the direction and magnitude of the relative position deviation vector X of the traveling direction point with respect to the vehicle axis direction point can be considered to substantially correspond to the curve direction and curvature of the traveling lane in which the vehicle V is traveling. . Therefore, by processing the front image in a display mode corresponding to the position deviation vector X, it is possible to reflect the support display that correctly corresponds to the curvature of the curve of the traveling lane. This image processing can be performed only by analyzing and processing the image content of the front image without being affected by the deviation between the imaging direction Dc of the front camera 1 and the vehicle axial direction Dv. As a result, even if there is a slight camera mounting error, it is possible to display support that correctly corresponds to the curvature of the curve of the traveling lane only by analyzing the front image.
 また、運転支援システムSが備えるイメージングユニット2においては、上述した構成に加えてさらに、前記前方画像中において、当該車両Vの走行車線における前方車両Vfの画像部分を認識する前方車両認識手段を有し、前記進行方向点検出手段は、前記前方車両Vfの画像部分中に前記進行方向点を検出する。 In addition to the above-described configuration, the imaging unit 2 included in the driving support system S further includes a forward vehicle recognition unit that recognizes an image portion of the forward vehicle Vf in the travel lane of the vehicle V in the forward image. The traveling direction point detecting means detects the traveling direction point in the image portion of the preceding vehicle Vf.
 このようにすると、前方画像中において車両軸方向点に対し進行方向側に相対的に位置する前方車両Vfの位置を進行方向点として検出できるため、位置偏差ベクトルXをほぼ正しく検出することができる。 In this way, since the position of the forward vehicle Vf positioned relatively to the traveling direction side with respect to the vehicle axial direction point in the forward image can be detected as the traveling direction point, the position deviation vector X can be detected almost correctly. .
 また、運転支援システムSが備えるイメージングユニット2においては、上述した構成に加えてさらに、前記前方画像加工手段は、所定の情報を反映した表示態様の進行方向マークMd(印画像に相当)を重畳するよう前記前方画像を加工する。 Further, in the imaging unit 2 provided in the driving support system S, in addition to the above-described configuration, the front image processing means further superimposes a traveling direction mark Md (corresponding to a seal image) in a display mode reflecting predetermined information. Then, the front image is processed.
 このようにすると、運転者は、前方画像中において通常では目視しにくい情報も併せて認識できる。 In this way, the driver can also recognize information that is usually difficult to see in the front image.
 なお、上記図8の表示例では、進行方向マークMdを含む車両マークMv全体を前方車両中心点P3の位置、つまり前方車両Vfの画像部分上に重畳させていた。この場合には、車両マークMvにより前方車両Vfの存在をより明確に目視できるとともに、視点をほとんど動かすことなく進行マークMdによる情報も併せて認識できた。しかし、本発明はこれに限られず、例えば上記図8に対応する図10に示すように、進行方向マークMdを含む部分Mv1と、含まない部分Mv2とに車両マークMvを分解してそれぞれ異なる配置で表示させてもよい。図示する例では、進行方向マークMdを含まない部分Mv2を前方車両Vfの画像部分上に重畳させ、進行方向マークMdを含む部分Mv1を前方画像の左上の定位置に配置して重畳させている。この場合には、部分Mv2により前方車両Vfの存在をより明確に目視できるとともに、それとは別に部分Mv1に含まれる進行方向マークMdを前方車両Vfから離れた固定位置で明確に表示できる。 In the display example of FIG. 8 described above, the entire vehicle mark Mv including the traveling direction mark Md is superimposed on the position of the forward vehicle center point P3, that is, on the image portion of the forward vehicle Vf. In this case, the presence of the forward vehicle Vf can be clearly seen by the vehicle mark Mv, and the information by the progress mark Md can be recognized together with little movement of the viewpoint. However, the present invention is not limited to this. For example, as shown in FIG. 10 corresponding to FIG. 8, the vehicle mark Mv is disassembled into a part Mv1 including the traveling direction mark Md and a part Mv2 not including the traveling direction mark Md. May be displayed. In the illustrated example, a portion Mv2 that does not include the traveling direction mark Md is superimposed on the image portion of the forward vehicle Vf, and a portion Mv1 that includes the traveling direction mark Md is disposed and superimposed at a fixed position on the upper left of the front image. . In this case, the presence of the forward vehicle Vf can be clearly seen by the portion Mv2, and separately, the traveling direction mark Md included in the portion Mv1 can be clearly displayed at a fixed position away from the forward vehicle Vf.
 また、運転支援システムSが備えるイメージングユニット2においては、上述した構成に加えてさらに、前記前方画像加工手段は、前記所定の情報として前記位置偏差を前記進行方向マークMdの表示態様に反映させる。 In addition, in the imaging unit 2 provided in the driving support system S, in addition to the above-described configuration, the front image processing means reflects the position deviation as the predetermined information in the display mode of the traveling direction mark Md.
 このようにすると、進行方向マークMdの表示態様(上記実施形態の例では回転角度)に合わせてステアリングホィール103を操舵することで、実際の走行車線におけるカーブの方向と曲率に対応した操舵が可能となる。 In this way, steering corresponding to the direction and curvature of the curve in the actual driving lane is possible by steering the steering wheel 103 in accordance with the display mode of the traveling direction mark Md (the rotation angle in the above embodiment). It becomes.
 また、上記実施形態の運転支援システムSにおけるディスプレイ3においては、前記前方画像加工手段により前記進行方向マークMdが重畳された前記前方画像を表示する前方画像表示手段、を有する。 Further, the display 3 in the driving support system S of the above embodiment includes a front image display means for displaying the front image on which the traveling direction mark Md is superimposed by the front image processing means.
 このようにすると、運転者の運転を支援する進行方向マークMdを重畳した前方画像の表示を具現化できる。 In this way, it is possible to realize the display of the front image on which the traveling direction mark Md that supports the driving of the driver is superimposed.
 また、運転支援システムSが備えるイメージングユニット2においては、上述した構成に加えてさらに、前記前方画像中において、当該車両Vの走行車線の左右両側に位置して当該走行車線の輪郭を形成する2本の車線輪郭線Lrを認識する車線輪郭線認識手段と、前記2本の車線輪郭線Lrのそれぞれの前記進行方向の延長線上の交点を車線消失点P1として検出する車線消失点検出手段と、前記車線消失点検出手段が過去に検出した複数の前記車線消失点P1のそれぞれの平均位置に位置する平均消失点P2を検出する平均消失点検出手段と、を有し、前記車両軸方向点検出手段は、前記平均消失点P2を前記車両軸方向点として検出する。 Further, in the imaging unit 2 provided in the driving support system S, in addition to the above-described configuration, the contour of the traveling lane is formed 2 on the left and right sides of the traveling lane of the vehicle V in the front image. Lane outline recognizing means for recognizing the two lane outlines Lr, lane vanishing point detecting means for detecting an intersection of the two lane outlines Lr on the extension line in the traveling direction as a lane vanishing point P1, Average vanishing point detecting means for detecting an average vanishing point P2 located at an average position of each of the plurality of lane vanishing points P1 detected in the past by the lane vanishing point detecting means, and detecting the vehicle axial direction point The means detects the average vanishing point P2 as the vehicle axial direction point.
 このようにすると、前方画像中において車両軸方向Dvに対応する位置の平均消失点P2を車両軸方向点として検出できるため、位置偏差ベクトルXをほぼ正しく検出することができる。 In this way, since the average vanishing point P2 of the position corresponding to the vehicle axis direction Dv in the front image can be detected as the vehicle axis direction point, the position deviation vector X can be detected almost correctly.
 なお、上記実施形態では、車線消失点P1を多様な走行車線で検出して、それらの平均位置にある平均消失点P2を車両軸方向点として検出したが、本発明はこれに限られない。例えば、イメージングユニット2のナビゲーション装置13を利用して、当該車両Vがその時点で略直線状の走行車線を走行していると検知した際にフロントカメラ1が撮像した前方画像で検出した車線消失点P1を車両軸方向点として検出してもよい。 In the above embodiment, the lane vanishing point P1 is detected by various traveling lanes, and the average vanishing point P2 at the average position thereof is detected as the vehicle axial direction point, but the present invention is not limited to this. For example, when the navigation device 13 of the imaging unit 2 is used to detect that the vehicle V is traveling in a substantially straight traveling lane at that time, the lane disappearance detected in the front image captured by the front camera 1 is detected. You may detect the point P1 as a vehicle axial direction point.
 このようにして、運転支援システムSが備えるイメージングユニット2においては、上述した基本構成に加えてさらに、前記前方画像中において、当該車両Vの走行車線の左右両側に位置して当該走行車線の輪郭を形成する2本の車線輪郭線Lrを認識する車線輪郭線認識手段と、前記2本の車線輪郭線Lrのそれぞれの前記進行方向の延長線上の交点を車線消失点P1として検出する車線消失点検出手段と、を有し、前記車線消失点検出手段は、当該車両Vが過去に略直線状の走行車線を走行した際にフロントカメラ1が撮像した前方画像中で前記車線消失点P1を検出し、前記車両軸方向点検出手段は、前記車線消失点P1を前記車両軸方向点として検出してもよい。 In this way, in the imaging unit 2 provided in the driving support system S, in addition to the basic configuration described above, in the front image, the contour of the traveling lane is located on both the left and right sides of the traveling lane of the vehicle V. Lane lane line recognizing means for recognizing the two lane line contours Lr forming the lane line, and a lane disappearance inspection for detecting, as a lane vanishing point P1, an intersection of the two lane line contours Lr on the extension line in the traveling direction. The lane vanishing point detecting means detects the lane vanishing point P1 in a front image captured by the front camera 1 when the vehicle V has traveled in a substantially straight traveling lane in the past. Then, the vehicle axis direction point detection means may detect the lane vanishing point P1 as the vehicle axis direction point.
 このようにすると、車両軸方向Dvに近接する車線消失点P1だけを直接検出でき、そのまま車両軸方向点として容易に検出できる。 In this way, only the lane vanishing point P1 close to the vehicle axis direction Dv can be directly detected, and can be easily detected as it is as the vehicle axis direction point.
 またこのようにして、運転支援システムSが備えるイメージングユニット2においては、上述した構成に加えてさらに、その時点で当該車両Vが位置している現在位置情報と地図情報とを取得可能なナビゲーション装置13(ナビゲーション手段に相当)を有しており、前記車線消失点検出手段は、前記ナビゲーション装置13により当該車両Vがその時点で前記略直線状の走行車線を走行していると検知した際にフロントカメラ1が撮像した前方画像中で前記車線消失点P1を検出してもよい。 In addition, in this way, in the imaging unit 2 provided in the driving support system S, in addition to the above-described configuration, the navigation device capable of acquiring current position information and map information where the vehicle V is located at that time. 13 (corresponding to navigation means), and the lane vanishing point detection means detects that the vehicle V is traveling on the substantially straight traveling lane at that time by the navigation device 13. You may detect the said lane vanishing point P1 in the front image which the front camera 1 imaged.
 このようにすると、略直線状の走行車線を高い精度で検知し、対応する車線消失点P1を正確に検出できる。 In this way, a substantially straight traveling lane can be detected with high accuracy, and the corresponding lane vanishing point P1 can be accurately detected.
 なお、上記実施形態では、前方車両中心点P3を進行方向点に適用し、平均消失点P2を車両軸方向点に適用して位置偏差ベクトルXを検出したが、本発明はこれに限られない。例えば上記図7(a)に対応する図11に示すように、車線消失点P1を進行方向点に適用し、平均消失点P2を車両軸方向点に適用して位置偏差ベクトルXを検出した場合でも、上記実施形態と同等に走行車線のカーブの曲率に正しく対応した支援表示を前方画像に反映させることができる。 In the above embodiment, the front vehicle center point P3 is applied to the traveling direction point and the average vanishing point P2 is applied to the vehicle axial direction point to detect the position deviation vector X. However, the present invention is not limited to this. . For example, as shown in FIG. 11 corresponding to FIG. 7A, the lane vanishing point P1 is applied to the traveling direction point and the average vanishing point P2 is applied to the vehicle axial direction point to detect the position deviation vector X. However, a support display that correctly corresponds to the curvature of the curve of the traveling lane can be reflected in the front image as in the above embodiment.
 このようにして、運転支援システムSが備えるイメージングユニット2においては、上述した構成に加えてさらに、前記前方画像中において、当該車両Vの走行車線の左右両側に位置して当該走行車線の輪郭を形成する2本の車線輪郭線Lrを認識する車線輪郭線認識手段と、前記2本の車線輪郭線Lrのそれぞれの前記進行方向の延長線上の交点を車線消失点P1として検出する車線消失点検出手段と、を有し、前記進行方向点検出手段は、前記車線消失点P1を前記進行方向点として検出してもよい。 In this way, in the imaging unit 2 provided in the driving support system S, in addition to the above-described configuration, in the front image, the contour of the traveling lane is defined on both the left and right sides of the traveling lane of the vehicle V. Lane lane line recognizing means for recognizing the two lane line contours Lr to be formed, and lane vanishing point detection for detecting the intersection point of each of the two lane contour lines Lr on the extension line in the traveling direction as the lane vanishing point P1 And the traveling direction point detecting unit may detect the lane vanishing point P1 as the traveling direction point.
 このようにすると、前方車両が存在しない場合でも、前方画像中において車両軸方向点に対し進行方向側に相対的に位置する車線消失点P1の位置を進行方向点として検出できるため、位置偏差ベクトルXをほぼ正しく検出することができる。 In this way, even when there is no forward vehicle, the position of the lane vanishing point P1 positioned relatively to the traveling direction side with respect to the vehicle axial direction point in the forward image can be detected as the traveling direction point. X can be detected almost correctly.
 また同様にして、上記図7(a)に対応する図12に示すように、車線消失点P1を進行方向点に適用し、前方車両中心点P3を車両軸方向点に適用して位置偏差ベクトルXを検出した場合でも、上記実施形態と同等に走行車線のカーブの曲率に正しく対応した支援表示を前方画像に反映させることができる。 Similarly, as shown in FIG. 12 corresponding to FIG. 7A, the lane vanishing point P1 is applied to the traveling direction point, and the forward vehicle center point P3 is applied to the vehicle axial direction point. Even when X is detected, a support display that correctly corresponds to the curvature of the curve of the traveling lane can be reflected in the front image as in the above embodiment.
 また、上記図5に対応する図13に示すように、当該車両Vが多様な形状の走行車線を長く走行し、前方車両中心点P3を多数検出して記録した場合には、それら前方車両中心点P3の平均位置に位置する平均中心点P4もまた統計的に車両軸方向Dvの延長上に近接する。つまり、平均中心点P4は、上述した車両軸方向点と同等に見なせる。 In addition, as shown in FIG. 13 corresponding to FIG. 5 described above, when the vehicle V has traveled for a long time in various lanes and a large number of front vehicle center points P3 are detected and recorded, The average center point P4 located at the average position of the point P3 is also statistically close to the extension in the vehicle axial direction Dv. That is, the average center point P4 can be regarded as equivalent to the vehicle axial direction point described above.
 これにより、例えば上記図7(a)に対応する図14に示すように、前方車両中心点P3を進行方向点に適用し、平均中心点P4を車両軸方向点に適用して位置偏差ベクトルXを検出した場合でも、上記実施形態と同等に走行車線のカーブの曲率に正しく対応した支援表示を前方画像に反映させることができる。 Accordingly, for example, as shown in FIG. 14 corresponding to FIG. 7A, the forward vehicle center point P3 is applied to the traveling direction point, and the average center point P4 is applied to the vehicle axial direction point to thereby obtain the position deviation vector X. Even when detected, the support display that correctly corresponds to the curvature of the curve of the traveling lane can be reflected in the front image as in the above embodiment.
 また同様にして、上記図7(a)に対応する図15に示すように、車線消失点P1を進行方向点に適用し、平均中心点P4を車両軸方向点に適用して位置偏差ベクトルXを検出した場合でも、上記実施形態と同等に走行車線のカーブの曲率に正しく対応した支援表示を前方画像に反映させることができる。 Similarly, as shown in FIG. 15 corresponding to FIG. 7A, the lane vanishing point P1 is applied to the traveling direction point, the average center point P4 is applied to the vehicle axial direction point, and the position deviation vector X Even when detected, the support display that correctly corresponds to the curvature of the curve of the traveling lane can be reflected in the front image as in the above embodiment.
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above-described embodiments and modifications may be used in appropriate combination.
 1       フロントカメラ(撮像手段に相当)
 2       イメージングユニット(画像処理装置に相当)
 3       ディスプレイ(画像表示装置に相当)
 11      CPU
 13      ナビゲーション装置(ナビゲーション手段に相当)
 15      グラフィックコントローラ
 Dc      撮像方向
 Dv      車両軸方向
 Lr      車線輪郭線
 Mv      車両マーク
 Md      進行方向マーク(印画像に相当)
 P1      車線消失点
 P2      平均消失点
 P3      車両中心点
 P4      平均中心点
 S       運転支援システム
 V       車両
 Vf      前方車両
 X       位置偏差ベクトル(位置偏差に相当)
 
1 Front camera (equivalent to imaging means)
2 Imaging unit (equivalent to image processing device)
3 Display (equivalent to image display device)
11 CPU
13 Navigation device (equivalent to navigation means)
15 Graphic controller Dc Imaging direction Dv Vehicle axial direction Lr Lane outline Mv Vehicle mark Md Traveling direction mark (corresponding to a mark image)
P1 Lane vanishing point P2 Average vanishing point P3 Vehicle center point P4 Average center point S Driving support system V Vehicle Vf Front vehicle X Position deviation vector (corresponding to position deviation)

Claims (9)

  1.  車両に搭載した撮像手段により当該車両の進行方向の前方を撮像した前方画像に対し、当該前方画像中の画像内容の解析と加工により処理を行う画像処理装置であって、
     前記前方画像中において、当該車両の走行車線に沿った進行方向に対応する進行方向点を検出する進行方向点検出手段と、
     前記前方画像中において、その時点の当該車両の車両軸方向に対応する車両軸方向点を検出する車両軸方向点検出手段と、
     前記車両軸方向点に対する前記進行方向点の相対的な位置偏差を検出する位置偏差検出手段と、
     前記位置偏差に対応した表示態様で前記前方画像を加工する前方画像加工手段と、を有する
    ことを特徴とする画像処理装置。
    An image processing apparatus that performs processing by analyzing and processing image content in the front image with respect to a front image obtained by imaging the front in the traveling direction of the vehicle by an imaging unit mounted on the vehicle,
    A traveling direction point detecting means for detecting a traveling direction point corresponding to the traveling direction along the traveling lane of the vehicle in the front image;
    In the front image, vehicle axis direction point detection means for detecting a vehicle axis direction point corresponding to the vehicle axis direction of the vehicle at that time,
    Position deviation detecting means for detecting a relative position deviation of the traveling direction point with respect to the vehicle axis direction point;
    An image processing apparatus comprising: a front image processing unit that processes the front image in a display mode corresponding to the position deviation.
  2.  請求項1記載の画像処理装置において、
     前記前方画像中において、当該車両の走行車線の左右両側に位置して当該走行車線の輪郭を形成する2本の車線輪郭線を認識する車線輪郭線認識手段と、
     前記2本の車線輪郭線のそれぞれの前記進行方向の延長線上の交点を車線消失点として検出する車線消失点検出手段と、
     前記車線消失点検出手段が過去に検出した複数の前記車線消失点のそれぞれの平均位置に位置する平均消失点を検出する平均消失点検出手段と、を有し、
     前記車両軸方向点検出手段は、前記平均消失点を前記車両軸方向点として検出する
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 1.
    In the front image, lane contour recognition means for recognizing two lane contours that are located on both the left and right sides of the travel lane of the vehicle and form the contour of the travel lane;
    Lane vanishing point detection means for detecting an intersection point on the extension line of each of the two lane outlines as a lane vanishing point;
    Average vanishing point detecting means for detecting an average vanishing point located at an average position of each of the plurality of lane vanishing points detected in the past by the lane vanishing point detecting means,
    The image processing apparatus according to claim 1, wherein the vehicle axis direction point detecting means detects the average vanishing point as the vehicle axis direction point.
  3.  請求項1記載の画像処理装置において、
     前記前方画像中において、当該車両の走行車線の左右両側に位置して当該走行車線の輪郭を形成する2本の車線輪郭線を認識する車線輪郭線認識手段と、
     前記2本の車線輪郭線のそれぞれの前記進行方向の延長線上の交点を車線消失点として検出する車線消失点検出手段と、を有し、
     前記車線消失点検出手段は、当該車両が過去に略直線状の走行車線を走行した際に前記撮像手段が撮像した前方画像中で前記車線消失点を検出し、
     前記車両軸方向点検出手段は、前記車線消失点を前記車両軸方向点として検出する
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 1.
    In the front image, lane contour recognition means for recognizing two lane contours that are located on both the left and right sides of the travel lane of the vehicle and form the contour of the travel lane;
    Lane vanishing point detecting means for detecting an intersection point on the extension line in the traveling direction of each of the two lane contour lines as a lane vanishing point;
    The lane vanishing point detection means detects the lane vanishing point in a front image captured by the imaging means when the vehicle has traveled in a substantially straight traveling lane in the past,
    The vehicle axial direction point detecting means detects the lane vanishing point as the vehicle axial direction point.
  4.  請求項3記載の画像処理装置において、
     その時点で当該車両が位置している現在位置情報と地図情報とを取得可能なナビゲーション手段を有しており、
     前記車線消失点検出手段は、前記ナビゲーション手段により当該車両がその時点で前記略直線状の走行車線を走行していると検知した際に前記撮像手段が撮像した前方画像中で前記車線消失点を検出する
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 3.
    It has navigation means that can acquire current position information and map information where the vehicle is located at that time,
    The lane vanishing point detecting means detects the lane vanishing point in a front image captured by the imaging means when the navigation means detects that the vehicle is currently traveling in the substantially straight traveling lane. An image processing apparatus characterized by detecting.
  5.  請求項2又は4記載の画像処理装置において、
     前記前方画像中において、当該車両の走行車線における前方車両の画像部分を認識する前方車両認識手段を有し、
     前記進行方向点検出手段は、前記前方車両の画像部分中に前記進行方向点を検出する
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 2 or 4,
    In the front image, having a front vehicle recognition means for recognizing the image portion of the front vehicle in the traveling lane of the vehicle,
    The advancing direction point detecting means detects the advancing direction point in an image portion of the preceding vehicle.
  6.  請求項2又は4記載の画像処理装置において、
     前記前方画像中において、当該車両の走行車線の左右両側に位置して当該走行車線の輪郭を形成する2本の車線輪郭線を認識する車線輪郭線認識手段と、
     前記2本の車線輪郭線のそれぞれの前記進行方向の延長線上の交点を車線消失点として検出する車線消失点検出手段と、を有し、
     前記進行方向点検出手段は、前記車線消失点を前記進行方向点として検出する
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 2 or 4,
    In the front image, lane contour recognition means for recognizing two lane contours that are located on both the left and right sides of the travel lane of the vehicle and form the contour of the travel lane;
    Lane vanishing point detecting means for detecting an intersection point on the extension line in the traveling direction of each of the two lane contour lines as a lane vanishing point;
    The advancing direction point detecting means detects the lane vanishing point as the advancing direction point.
  7.  請求項5又は6記載の画像処理装置において、
     前記前方画像加工手段は、所定の情報を反映した表示態様の印画像を重畳するよう前記前方画像を加工する
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 5 or 6,
    The front image processing means processes the front image so as to superimpose a stamp image having a display mode reflecting predetermined information.
  8.  請求項7記載の画像処理装置において、
     前記前方画像加工手段は、前記所定の情報として前記位置偏差を前記印画像の表示態様に反映させる
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 7.
    The front image processing means reflects the positional deviation as the predetermined information in a display mode of the mark image.
  9.  請求項8記載の画像処理装置が処理した前記前方画像を表示する画像表示装置であって、
     前記前方画像加工手段により前記印画像が重畳された前記前方画像を表示する前方画像表示手段、を有する
    ことを特徴とする画像表示装置。
     
    An image display device that displays the front image processed by the image processing device according to claim 8,
    An image display apparatus comprising: a front image display unit that displays the front image on which the mark image is superimposed by the front image processing unit.
PCT/JP2011/058073 2011-03-30 2011-03-30 Image processing device and image display device WO2012131947A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013506951A JP5636493B2 (en) 2011-03-30 2011-03-30 Image processing apparatus and image display apparatus
PCT/JP2011/058073 WO2012131947A1 (en) 2011-03-30 2011-03-30 Image processing device and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058073 WO2012131947A1 (en) 2011-03-30 2011-03-30 Image processing device and image display device

Publications (1)

Publication Number Publication Date
WO2012131947A1 true WO2012131947A1 (en) 2012-10-04

Family

ID=46929771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058073 WO2012131947A1 (en) 2011-03-30 2011-03-30 Image processing device and image display device

Country Status (2)

Country Link
JP (1) JP5636493B2 (en)
WO (1) WO2012131947A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162212A (en) * 2015-03-02 2016-09-05 パイオニア株式会社 Imaging device, control method, program, and storage medium
JP2016159780A (en) * 2015-03-02 2016-09-05 パイオニア株式会社 Photographing device, control method, program, and storage medium
CN106682563A (en) * 2015-11-05 2017-05-17 腾讯科技(深圳)有限公司 Lane line detection self-adaptive adjusting method and device
CN107657607A (en) * 2017-09-21 2018-02-02 北京牡丹电子集团有限责任公司数字电视技术中心 A kind of method and system for testing trace location error
CN108515927A (en) * 2017-01-16 2018-09-11 王忠亮 The vehicle of mobile payment device with face recognition function is set
JP2020053083A (en) * 2019-12-06 2020-04-02 パイオニア株式会社 Imaging apparatus, control method, program and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102189299B1 (en) * 2019-09-11 2020-12-11 한국도로공사 Apparatus and Method for detecting traffic path based on license plate recognition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074645A (en) * 1998-08-27 2000-03-14 Yazaki Corp Device and method for monitoring periphery
JP2000242899A (en) * 1999-02-24 2000-09-08 Mitsubishi Electric Corp White line recognizing device
JP2002259995A (en) * 2001-03-06 2002-09-13 Nissan Motor Co Ltd Position detector
JP2004247979A (en) * 2003-02-14 2004-09-02 Hitachi Ltd On-vehicle camera apparatus
JP2005145402A (en) * 2003-11-20 2005-06-09 Mitsubishi Motors Corp Vehicular lane keep control device
JP2007264714A (en) * 2006-03-27 2007-10-11 Fuji Heavy Ind Ltd Lane recognition device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074645A (en) * 1998-08-27 2000-03-14 Yazaki Corp Device and method for monitoring periphery
JP2000242899A (en) * 1999-02-24 2000-09-08 Mitsubishi Electric Corp White line recognizing device
JP2002259995A (en) * 2001-03-06 2002-09-13 Nissan Motor Co Ltd Position detector
JP2004247979A (en) * 2003-02-14 2004-09-02 Hitachi Ltd On-vehicle camera apparatus
JP2005145402A (en) * 2003-11-20 2005-06-09 Mitsubishi Motors Corp Vehicular lane keep control device
JP2007264714A (en) * 2006-03-27 2007-10-11 Fuji Heavy Ind Ltd Lane recognition device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162212A (en) * 2015-03-02 2016-09-05 パイオニア株式会社 Imaging device, control method, program, and storage medium
JP2016159780A (en) * 2015-03-02 2016-09-05 パイオニア株式会社 Photographing device, control method, program, and storage medium
CN106682563A (en) * 2015-11-05 2017-05-17 腾讯科技(深圳)有限公司 Lane line detection self-adaptive adjusting method and device
CN106682563B (en) * 2015-11-05 2018-10-23 腾讯科技(深圳)有限公司 A kind of lane detection self-adapting regulation method and device
CN108515927A (en) * 2017-01-16 2018-09-11 王忠亮 The vehicle of mobile payment device with face recognition function is set
CN108515927B (en) * 2017-01-16 2020-12-01 杭州育锦科技有限公司 Vehicle provided with mobile payment device with face recognition function
CN107657607A (en) * 2017-09-21 2018-02-02 北京牡丹电子集团有限责任公司数字电视技术中心 A kind of method and system for testing trace location error
CN107657607B (en) * 2017-09-21 2020-01-03 北京牡丹电子集团有限责任公司数字电视技术中心 Method and system for testing and tracking position error
JP2020053083A (en) * 2019-12-06 2020-04-02 パイオニア株式会社 Imaging apparatus, control method, program and storage medium
JP2021193636A (en) * 2019-12-06 2021-12-23 パイオニア株式会社 Imaging device, control method, program, and storage media

Also Published As

Publication number Publication date
JP5636493B2 (en) 2014-12-03
JPWO2012131947A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5636493B2 (en) Image processing apparatus and image display apparatus
JP4940168B2 (en) Parking space recognition device
JP4342146B2 (en) Parking assistance device
JP4412380B2 (en) Driving support device, driving support method, and computer program
JP3575364B2 (en) Steering support device
JP4604703B2 (en) Parking assistance device
JP6216155B2 (en) Parking assistance device
JP4533936B2 (en) Image processing apparatus and vehicle detection apparatus including the same
JP2006298115A (en) Driving-support method and driving-support device
CN104854640A (en) Vehicle-side method and vehicle-side device for detecting and displaying parking spaces for a vehicle
JP2003063340A (en) Drive auxiliary device
JP4844323B2 (en) Parking assistance device and parking assistance method
JP2009017462A (en) Driving support system and vehicle
JP5446139B2 (en) Parking assistance device and parking assistance method
JP2009211624A (en) Driving support device, driving support method, and computer program
JP2007116377A (en) Parking assist method and parking assist apparatus
JP2009083680A (en) Parking assistance device and parking assistance method
JP2013196387A (en) Image processor and image processing method
JP4910787B2 (en) Parking assistance device and method, parking position setting device and method, recording medium, and program
JP6710647B2 (en) Parking assistance device
JP2008151507A (en) Apparatus and method for merge guidance
WO2011013813A1 (en) In-vehicle device and image processing program
JP2013052754A (en) Parking support device
JP6917330B2 (en) Parking support device
JP2012176656A (en) Parking support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013506951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862138

Country of ref document: EP

Kind code of ref document: A1