WO2012127770A1 - 発振周波数調整装置、発振周波数調整方法及び無線通信装置 - Google Patents

発振周波数調整装置、発振周波数調整方法及び無線通信装置 Download PDF

Info

Publication number
WO2012127770A1
WO2012127770A1 PCT/JP2012/000890 JP2012000890W WO2012127770A1 WO 2012127770 A1 WO2012127770 A1 WO 2012127770A1 JP 2012000890 W JP2012000890 W JP 2012000890W WO 2012127770 A1 WO2012127770 A1 WO 2012127770A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillation
circuit
injection
frequency
output signal
Prior art date
Application number
PCT/JP2012/000890
Other languages
English (en)
French (fr)
Inventor
佐藤 潤二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013505785A priority Critical patent/JP5844795B2/ja
Priority to US13/816,288 priority patent/US8975973B2/en
Publication of WO2012127770A1 publication Critical patent/WO2012127770A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B19/00Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B27/00Generation of oscillations providing a plurality of outputs of the same frequency but differing in phase, other than merely two anti-phase outputs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/24Automatic control of frequency or phase; Synchronisation using a reference signal directly applied to the generator

Definitions

  • the present invention relates to an oscillation frequency adjusting device, an oscillation frequency adjusting method, and a wireless communication device that adjust an oscillation frequency of an oscillation circuit used in a wireless communication device in a high frequency band.
  • the MMIC (monolithic microwave integrated circuit) of the RF (radio frequency) circuit in the wireless communication apparatus using the millimeter wave frequency band is being promoted.
  • the RF circuit in the wireless communication device is required to reduce power consumption. For this reason, it is said that the adoption of the direct conversion method is effective.
  • a general direct conversion system requires an oscillation circuit that outputs the same frequency as the carrier frequency and a PLL (Phase Locked Loop) synthesizer for stabilizing the oscillation frequency.
  • a PLL Phase Locked Loop synthesizer
  • an oscillation circuit that outputs the same frequency as the carrier frequency and the PLL can be realized relatively easily (see, for example, Patent Document 1).
  • FIG. 8 is a schematic configuration diagram of a conventional PLL synthesizer disclosed in Patent Document 1.
  • the PLL synthesizer shown in FIG. 8 includes a reference oscillator 201, a phase comparator 203, a charge pump 204, a loop filter 205, a voltage controlled oscillator (VCO) 206, and a frequency divider 207 that divides the frequency of the voltage controlled oscillator 206. It is.
  • a reference signal output from the reference oscillator 201 is input to the phase comparator 203.
  • the phase comparator 203 compares the oscillation frequency of the voltage controlled oscillator 206 with the frequency component divided by 1 / M by the frequency divider 207, and drives the charge pump 204 according to the phase difference.
  • the output signal of the charge pump 204 is smoothed by the loop filter 205 and applied to the voltage controlled oscillator as the control voltage of the voltage controlled oscillator 206.
  • the output voltage of the loop filter 205 becomes high, so that the oscillation frequency of the voltage controlled oscillator 206 becomes high and the phase becomes high. It can be advanced and matched with the phase of the reference signal.
  • an oscillation circuit that outputs a frequency in the millimeter-wave frequency band (for example, 60 GHz) is manufactured by a CMOS process, a frequency that divides a 60 GHz signal due to one or more fluctuations in process, ambient temperature, or power supply voltage.
  • the frequency divider circuit is difficult to manufacture. For this reason, it is difficult to use a conventional PLL synthesizer for an oscillation circuit that outputs a frequency in a millimeter-wave frequency band (for example, 60 GHz).
  • an oscillation circuit configured to include an injection-locked oscillation circuit and a PLL that can operate in a frequency band sufficiently lower than the millimeter-wave frequency band has been proposed.
  • This oscillation circuit outputs a frequency in the millimeter-wave frequency band by injection-locking a low-frequency high-order harmonic signal to the injection-locked oscillation circuit and the PLL.
  • refer nonpatent literature 1 For example, refer nonpatent literature 1).
  • FIG. 9 is an explanatory diagram showing the internal configuration of the conventional oscillation circuit 109 described in Non-Patent Document 1.
  • the conventional oscillation circuit 109 includes a PLL synthesizer 101 and an injection locked oscillation circuit 107.
  • a PLL synthesizer 101 includes an oscillation circuit 102, a frequency dividing circuit 103, a phase frequency comparator (PFD: phase frequency detector) 104, a charge pump (CP) 105, and a low-pass filter (LPF: low pass filter). 106.
  • PFD phase frequency comparator
  • CP charge pump
  • LPF low pass filter
  • the oscillation circuit 102 oscillates at 1 / M of a desired frequency using the control voltage input from the low-pass filter 106.
  • the frequency dividing circuit 103 divides the output signal of the oscillation circuit 102 by N.
  • the phase frequency comparator 104 compares the phase and frequency of the signal divided by N by the frequency divider 103 and the reference signal.
  • the charge pump 105 converts the comparison result of the phase frequency comparator 104 into a voltage and outputs it to the low-pass filter 106.
  • the low-pass filter 106 smoothes the voltage output from the charge pump 105.
  • the output of the low-pass filter 106 becomes the control voltage of the oscillation circuit 102, and the PLL synthesizer 101 operates at 1 / M of the desired frequency.
  • the injection-locked oscillation circuit 107 is injection-locked by an M-order harmonic signal having an oscillation frequency output from the PLL synthesizer 101, oscillates at a desired frequency, and outputs a signal having a desired frequency.
  • the PLL synthesizer 101 when the desired frequency is 60 GHz and the oscillation frequency of the PLL synthesizer 101 is 1/4 of the desired frequency, the PLL synthesizer 101 operates at about 15 GHz, and the injection-locked oscillation circuit 107 is synchronized by the fourth harmonic signal. To do. Thereby, the oscillation circuit 109 can output a signal of 60 GHz. Further, since the frequency dividing circuit 103 only needs to divide the frequency component of 15 GHz, the stable PLL synthesizer 101 can be provided.
  • the oscillation frequency output from the injection-locked oscillation circuit 107 varies depending on one or more of the process, ambient temperature, or power supply voltage in the injection-locked oscillation circuit 107 of Non-Patent Document 1 described above.
  • the output signal of the injection-locked oscillation circuit 107 is output. Need to be monitored.
  • the oscillation circuit 109 described in Non-Patent Document 1 described above does not have a function of monitoring the output signal of the injection locked oscillation circuit 107. For this reason, when the oscillation circuit 109 is incorporated in a wireless communication device, it is difficult to determine whether a signal having a desired frequency in transmission / reception is properly output.
  • the present invention has been made in view of the above-described conventional circumstances, and controls the synchronization between a voltage-controlled oscillation circuit and an injection-locked oscillation circuit and outputs a signal having a desired frequency
  • An object of the present invention is to provide an oscillation frequency adjusting method and a wireless communication apparatus.
  • the present invention is an oscillation frequency adjusting device as described above, wherein a voltage controlled oscillation circuit that oscillates at an oscillation frequency according to a control voltage, and a first injection that oscillates at an oscillation frequency according to an output signal from the voltage controlled oscillation circuit.
  • the first injection locked oscillation circuit and the second injection locked oscillation circuit are synchronized at a frequency that is an integral multiple of the oscillation frequency of the voltage controlled oscillation circuit.
  • the present invention is the above-described oscillation frequency adjusting method, wherein the step of oscillating at an oscillation frequency according to a control voltage and the oscillation frequency in synchronization with a higher harmonic of the oscillation frequency according to the control voltage Oscillating at a high first oscillation frequency, oscillating at a second oscillation frequency higher than the oscillation frequency in synchronization with a higher harmonic of the oscillation frequency according to the control voltage, and outputting the first oscillation frequency
  • a step of frequency conversion based on a signal and an output signal of the second oscillation frequency, and synchronization of the output signal of the first oscillation frequency and the output signal of the second oscillation frequency according to the output signal of the frequency conversion Determining the state, wherein the first oscillation frequency and the second oscillation frequency are integer multiples of the oscillation frequency according to the control voltage.
  • the present invention provides a transmission for frequency conversion based on the above-described oscillation frequency adjusting device, the first output signal from the first injection-locked oscillation circuit of the oscillation frequency adjusting device, and the baseband signal for transmission.
  • the present invention it is possible to control the synchronization between the voltage-controlled oscillation circuit and the injection-locked oscillation circuit and output a signal having a desired frequency.
  • FIG. Explanatory drawing which shows the internal structure of the oscillation frequency adjusting device which concerns on Embodiment 1.
  • FIG. Explanatory drawing which shows an example of the oscillation frequency characteristic with respect to the control voltage applied to each injection locking type oscillation circuit of an oscillation frequency adjusting device
  • Explanatory drawing which shows an example of the amplitude characteristic of the output signal of the mixer circuit of an oscillation frequency adjusting device
  • (a) When synchronized (b) When asynchronous Schematic configuration diagram of a wireless communication device including an oscillation frequency adjusting device Explanatory drawing which shows an example which monitors the output signal of the mixer circuit of an oscillation frequency adjusting device
  • FIG. Explanatory drawing which shows the internal structure of the oscillation frequency adjusting device which concerns on Embodiment 3.
  • FIG. Schematic configuration diagram of a conventional PLL synthesizer Explanatory diagram showing the internal configuration of a conventional oscillation circuit
  • the process (step) of the oscillation frequency adjusting device can be expressed as an oscillation frequency adjusting method.
  • the present invention can be expressed as a wireless communication device incorporating an oscillation frequency adjusting device as shown in FIG.
  • FIG. 1 is an explanatory diagram showing an internal configuration of the oscillation frequency adjusting apparatus 1 according to the first embodiment.
  • the oscillation frequency adjusting device 1 includes a voltage controlled oscillation circuit 2, injection locked oscillation circuits 3 and 4, a mixer circuit 5, a synchronization determination unit 6, and AD converters 15 and 16.
  • the injection locked oscillation circuit 3 has a control terminal 7 for adjusting the oscillation frequency of the injection locked oscillation circuit 3.
  • the injection locked oscillation circuit 4 has a control terminal 8 for adjusting the oscillation frequency of the injection locked oscillation circuit 4.
  • the output signal of the injection locked oscillation circuit 3 is referred to as a first output signal
  • the output signal of the injection locked oscillation circuit 4 is referred to as a second output signal.
  • the voltage controlled oscillation circuit 2 oscillates at a frequency near the oscillation frequency f 0 based on the control voltage, and outputs an output signal generated by the oscillation near the oscillation frequency f 0 to the injection locked oscillation circuits 3 and 4, respectively.
  • Formula (1) is established between the oscillation frequency f 0 and the oscillation frequency f 1 band of the injection locked oscillation circuits 3 and 4.
  • the voltage controlled oscillation circuit 2 can be configured as the oscillation circuit 102 of the PLL synthesizer 101 shown in FIG. 8, for example.
  • the oscillation frequency adjusting device 1 includes the PLL synthesizer 101 of FIG.
  • the voltage controlled oscillation circuit 2 corresponds to the oscillation circuit 102 in FIG. Therefore, the voltage controlled oscillation circuit 2 oscillates in the vicinity of the oscillation frequency f 0 based on the control voltage from the low-pass filter not shown in FIG.
  • Injection-locked oscillator circuit 3 is synchronized with the injection of the N-th harmonic of the signal of the oscillation frequency in the output signal from the voltage controlled oscillation circuit 2 (input), stably at a frequency in the vicinity of the oscillation frequency f 1 by the synchronization Oscillates.
  • the injection locked oscillation circuit 3 outputs an output signal generated by oscillation near the oscillation frequency f 1 to the mixer circuit 5 as a first output signal. As will be described later, the first output signal is also output to the transmission mixer 9.
  • Injection-locked oscillator circuit 4 is synchronized with the injection of the N-th harmonic of the signal of the oscillation frequency in the output signal from the voltage controlled oscillation circuit 2 (input), stably at a frequency in the vicinity of the oscillation frequency f 1 by the synchronization Oscillates.
  • the injection-locked oscillation circuit 3 outputs an output signal resulting from oscillation near the oscillation frequency f 1 to the mixer circuit 5 as a second output signal. As will be described later, the second output signal is also output to the reception mixer 10.
  • each oscillation frequency is slightly different depending on the arrangement position in the CMOS process. Furthermore, since each injection locked oscillation circuit 3 and 4 oscillates in free run, the oscillation phase of each injection locked oscillation circuit 3 and 4 is also different.
  • Equation (2) when the frequency component of the first output signal y 1 is ⁇ 1 , the phase is ⁇ 1 , and the amplitude is a 1 , Equation (2) is established. Similarly, when the frequency component of the second output signal y 2 is ⁇ 2 , the phase is ⁇ 2 , and the amplitude is a 2 , Equation (3) is established.
  • the oscillation frequency of the voltage-controlled oscillation circuit 2 varies depending on variations in process, ambient temperature, or power supply voltage.
  • the injection locking oscillation circuit 3 is provided with a control terminal 7, and the injection locking oscillation circuit 4 is provided with a control terminal 8. Therefore, by controlling the control voltage Vt applied to the control terminals 7 and 8, the oscillation frequency of the injection locked oscillation circuits 3 and 4 can be adjusted.
  • Figure 2 is an explanatory diagram showing an example of an oscillation frequency characteristic with respect to the control voltage V t to be applied to each injection-locked oscillator circuits 3 and 4 of the oscillation frequency adjustment device 1.
  • the oscillation frequency of the injection locked oscillation circuits 3 and 4 is the voltage controlled oscillation circuit 2. synchronization with oscillation N times the oscillation frequency f 0 (N th harmonic) of.
  • the injection locked oscillation circuits 3 and 4 are not synchronized with the oscillation frequency f 0 of the voltage controlled oscillation circuit 2 and are free. Oscillates at the run frequency.
  • the mixer circuit 5 receives the output signals (first output signal y 1 and second output signal y 2 ) from the injection locking oscillation circuits 3 and 4.
  • the mixer circuit 5 outputs a difference signal between the first output signal and the second output signal based on each input output signal.
  • the mixer circuit 5 performs down-conversion using the first output signal y 1 and the second output signal y 2 expressed by the equations (2) and (3), thereby obtaining the equation (4). and it outputs a difference signal y 3 shown.
  • Equation (4) cos (( ⁇ 1 + ⁇ 2 ) t + ⁇ 1 + ⁇ 2 ) represents a sum component of the respective frequencies of the first output signal y 1 and the second output signal y 2 , and the injection-locked oscillation circuit 3 is about twice the frequency components of the desired oscillation frequency f 1 of the fourth output signal.
  • the desired oscillation frequency f 1 is, for example, a millimeter wave frequency (60 GHz). Therefore, the signal power of the output signal of cos (( ⁇ 1 + ⁇ 2 ) t + ⁇ 1 + ⁇ 2 ) is negligible compared to the signal power of the output signal of cos (( ⁇ 1 ⁇ 2 ) t + ⁇ 1 ⁇ 2 ). Can be considered small enough.
  • Equation (4) cos (( ⁇ 1 ⁇ 2 ) t + ⁇ 1 ⁇ 2 ) indicates a component of the difference between the frequencies of the first output signal y 1 and the second output signal y 2 , and is injection-locked oscillation This is a lower-order frequency component than the desired oscillation frequency f 1 in the output signals of the circuits 3 and 4.
  • the synchronization determination unit 6 synchronizes the injection locked oscillation circuits 3 and 4 with the output signal of the voltage controlled oscillation circuit 2 based on the difference signal y 3 of the injection locked oscillation circuits 3 and 4 output from the mixer circuit 5. It is determined whether or not.
  • FIG. 3 is an explanatory diagram showing an example of the amplitude characteristic of the output signal of the mixer circuit 5 of the oscillation frequency adjusting device 1.
  • FIG. 4A is an explanatory diagram showing an example of amplitude characteristics during synchronization.
  • FIG. 4B is an explanatory diagram showing an example of amplitude characteristics when asynchronous.
  • the synchronization determination section 6 if the difference signal y 3 is a DC containing no frequency components (direct current) component of the signal (see FIG. 3 (a)), the injection-locked oscillator circuits 3 and 4 a voltage controlled It is determined that it is synchronized with the output signal of the type oscillation circuit 2.
  • the synchronization determination unit 6 outputs to the AD converters 15 and 16 a voltage control signal corresponding to a determination result indicating whether or not the injection locking oscillation circuits 3 and 4 are synchronized with the output signal of the voltage control oscillation circuit 2. To do.
  • the voltage control signal according to the determination result of the synchronization determination unit 6 is, for example, the injection locked oscillation circuit 3 when the injection locked oscillation circuits 3 and 4 are not synchronized with the output signal of the voltage controlled oscillation circuit 2.
  • 4 is a control signal for increasing or decreasing the control voltage.
  • the voltage control signal corresponding to the determination result of the synchronization determination unit 6 is, for example, the injection locked oscillation circuit 3 when the injection locked oscillation circuits 3 and 4 are synchronized with the output signal of the voltage controlled oscillation circuit 2.
  • 4 is a control signal for maintaining the control voltage at the current control voltage.
  • the output signal (difference signal y 3 ) of the mixer circuit 5 is a DC component that does not include a frequency component, as shown in FIG.
  • the synchronization determination unit 6 synchronizes the injection locking oscillation circuits 3 and 4 with the output signal of the voltage controlled oscillation circuit 2. Judge that it is not.
  • the output signal (difference signal y 3 ) of the mixer circuit 5 is a signal corresponding to the frequency component difference ( ⁇ 1 ⁇ 2 ) t, as shown in FIG.
  • FIG. 4 is a schematic configuration diagram of the wireless communication device 100 including the oscillation frequency adjusting device 1.
  • the two injection-locked oscillation circuits 3 and 4 are synchronized with the output signal of the voltage-controlled oscillation circuit 2 in a state where free-run oscillation is performed (a state other than between the control voltages V 1 and V 2 in FIG. 2). Not done.
  • the oscillation frequencies in the output signals of the injection locked oscillation circuits 3 and 4 are not greatly deviated, and the oscillation frequencies are considered to be close to each other.
  • the AD converter 15 receives the voltage control signal output from the synchronization determination unit 6.
  • the AD converter 15 generates a control voltage to be applied to the control terminal 7 of the injection locked oscillation circuit 3 based on the input voltage control signal.
  • the AD converter 15 applies the generated control voltage to the control terminal 7 of the injection locked oscillation circuit 3.
  • the AD converter 16 receives the voltage control signal output from the synchronization determination unit 6.
  • the AD converter 16 generates a control voltage to be applied to the control terminal 8 of the injection locked oscillation circuit 4 based on the input voltage control signal.
  • the AD converter 16 applies the generated control voltage to the control terminal 8 of the injection locked oscillation circuit 4.
  • the AD converter 15 sets the current control voltage V t of the injection locked oscillation circuit 3 to a predetermined amount.
  • the increased or decreased control voltage is applied to the control terminal 7.
  • the AD converter 16 determines the current control voltage V t of the injection locked oscillation circuit 4. A control voltage whose amount has been increased or decreased is applied to the control terminal 8.
  • the predetermined amount when the AD converters 15 and 16 increase or decrease the control voltage is the same.
  • the initial value of the control voltage V t is set in advance to the minimum control voltage, and the AD converters 15 and 16 are based on the voltage control signal according to the determination result of the synchronization determination unit 6.
  • the control voltage to the control terminals 7 and 8 is gradually increased.
  • the initial value of the control voltage V t is set in advance to the maximum control voltage, and the AD converters 15 and 16 are based on the voltage control signal according to the determination result of the synchronization determination unit 6.
  • the control voltage to the control terminals 7 and 8 is gradually decreased.
  • the injection locked oscillation circuits 3 and 4 When the control voltage V t applied to the control terminals 7 and 8 is in the range of the control voltages V 1 to V 2 shown in FIG. 2, the injection locked oscillation circuits 3 and 4 output the output of the voltage controlled oscillation circuit 2. Synchronize with the signal.
  • the oscillation frequency adjusting device 1 automatically calibrates the voltage applied to the injection locked oscillation circuits 3 and 4 when the injection locked oscillation circuits 3 and 4 are not synchronized with the output signal of the voltage controlled oscillation circuit 2. Auto calibration). According to the oscillation frequency adjusting device 1, synchronization between the injection locking oscillation circuits 3 and 4 and the output signal of the voltage control oscillation circuit 2 can be realized by auto-calibration.
  • the oscillation frequency adjusting device 1 since the synchronization between the injection-locked oscillation circuits 3 and 4 and the output signal of the voltage-controlled oscillation circuit 2 can be automatically calibrated, a shipping inspection is not required, and the millimeter wave is inexpensive.
  • a band oscillator can be configured.
  • the oscillation frequency adjusting device 1 can always supply a local signal having a stable frequency component to the transmission mixer 9 and the reception mixer 10 as a local signal oscillator.
  • the synchronization state of the injection locking type oscillation circuit can be determined by a simple method, and the local oscillation using the injection locking type oscillation circuit even in an ultrahigh frequency band such as a millimeter wave frequency. A signal can be generated. Therefore, the wireless communication device 100 (see FIG. 4) including the oscillation frequency adjusting device 1 can stably perform wireless communication with high reliability.
  • the synchronization determination unit 6 synchronizes the injection-locked oscillation circuits 3 and 4 with the voltage-controlled oscillation circuit 2 depending on whether or not the output signal of the mixer circuit 5 includes a frequency component. It was determined whether or not.
  • the synchronization determination section 6 the outputted DC component of the difference signal y 3 by the mixer circuit 5 integrates a predetermined period. Certain period, a time corresponding to 1/2 period or one period of the difference signal y 3.
  • the synchronization determination unit 6 determines that the injection locked oscillation circuits 3 and 4 are synchronized with the output signal of the voltage controlled oscillation circuit 2 when the integrated value in a certain period exceeds a predetermined threshold value. The synchronization determination unit 6 determines that the injection locked oscillation circuits 3 and 4 are not synchronized with the output signal of the voltage controlled oscillation circuit 2 when the integrated value in a certain period does not exceed a predetermined threshold value.
  • FIG. 5 is an explanatory diagram showing an example of monitoring the output signal of the mixer circuit 5 of the oscillation frequency adjusting device 1.
  • the oscillation frequency adjusting device 1 includes a high-pass filter 11 and a detector 12 between the mixer circuit 5 and the synchronization determination unit 6.
  • the output signal (difference signal y 3 ) of the mixer circuit 5 has its DC component removed by the detector 12 after the DC component of the difference signal y 3 has been removed by the high-pass filter 11. The signal power of the difference signal is detected.
  • the synchronization determination unit 6 determines that the injection locked oscillation circuits 3 and 4 are not synchronized with the output signal of the voltage controlled oscillation circuit 2.
  • the synchronization determination unit 6 determines that the injection locked oscillation circuits 3 and 4 are synchronized with the output signal of the voltage controlled oscillation circuit 2.
  • the output signals of the injection locked oscillation circuits 3 and 4 are directly input to the mixer circuit 5.
  • a buffer amplifier may be further provided between each of the injection locked oscillation circuits 3 and 4 and the mixer circuit 5.
  • the synchronization determination unit 6 increases the absolute value of the signal power of the output signal (difference signal) of the mixer circuit 5, so that the injection locked oscillation circuits 3 and 4 are synchronized with the output signal of the voltage controlled oscillation circuit 2. It can be determined with high accuracy whether or not it is.
  • a buffer amplifier may be further provided between the mixer circuit 5 and the synchronization determination unit 6.
  • the synchronization determination unit 6 is synchronized with the output signal of the voltage-controlled oscillation circuit 2. Whether or not can be determined with high accuracy.
  • the AD converters 15 and 16 are connected to the injection locked oscillation circuits 3 and 4, but the voltage control signal input to the AD converters 15 and 16 and the output control voltage are the same. It is. Therefore, for example, the single AD converter 15 may be provided without providing the two AD converters 15 and 16, and the output of the AD converter 15 may be branched into two and input to the control terminals 7 and 8. Thereby, the AD converter 15 can be made into one, and the circuit of the oscillation frequency adjusting device 1 can be reduced in size and power consumption can be reduced.
  • FIG. 6 is an explanatory diagram showing an internal configuration of the oscillation frequency adjusting device 1a according to the second embodiment.
  • the oscillation frequency adjusting device 1a includes a voltage-controlled oscillation circuit 2, injection-locked oscillation circuits 3 and 4, a mixer circuit 5, a synchronization determination unit 6, AD converters 15 and 16, and switches 21 and 22. It is the composition which includes.
  • the switch 21 switches conduction between the injection-locked oscillation circuit 3 and the mixer circuit 5 or between the injection-locked oscillation circuit 3 and the transmission mixer 9.
  • the switching of the switch 21 can be controlled according to, for example, a control voltage V sw output by the AD converter 15 or a switch control unit (not shown).
  • V sw control voltage
  • the switch 21 is controlled in accordance with the control voltage V sw output by the AD converter 15.
  • the switch 21 is connected to the injection-locked oscillation circuit 3 and the mixer according to the control voltage V sw output by the AD converter 15. Conduction between the circuit 5 and the circuit 5 is established.
  • the switch 21 is connected to the injection-locked oscillation circuit 3 according to, for example, the control voltage Vsw output by the AD converter 15. Conduction between the transmission mixer 9 is established.
  • the injection locked oscillation circuit 3 is synchronized with the output signal of the voltage controlled oscillation circuit 2, the output signal of the injection locked oscillation circuit 3 is input to the transmission mixer 9 instead of the mixer circuit 5.
  • the switch 22 switches conduction between the injection locked oscillation circuit 4 and the mixer circuit 5 or between the injection locked oscillation circuit 4 and the reception mixer 10.
  • the switching of the switch 22 can be controlled in accordance with, for example, a control voltage V sw output by the AD converter 16 or a switch control unit (not shown).
  • V sw control voltage
  • the switch 22 is controlled in accordance with the control voltage V sw output from the AD converter 16.
  • the switch 22 is connected to the injection locked oscillation circuit 4 and the mixer according to the control voltage V sw output by the AD converter 16. Conduction between the circuit 5 and the circuit 5 is established.
  • the switch 22 is connected to the injection locked oscillation circuit 4 according to, for example, the control voltage V sw output by the AD converter 16. Conduction with the receiving mixer 10 is established.
  • the injection locked oscillation circuit 4 is synchronized with the output signal of the voltage controlled oscillation circuit 2, the output signal of the injection locked oscillation circuit 4 is input to the reception mixer 10 instead of the mixer circuit 5.
  • the wireless communication device 200 including the oscillation frequency adjusting device 1a does not start communication until it is determined that the injection locking oscillation circuits 3 and 4 are synchronized with the output signal of the voltage controlled oscillation circuit 2.
  • the switches 21 and 22 are configured to input the output signals of the injection locked oscillation circuits 3 and 4 to the mixer circuit 5 in accordance with the control voltage V sw.
  • the mixer circuit 5 are electrically connected.
  • the injection locked oscillation circuits 3 and 4 are synchronized with the output signal of the voltage controlled oscillation circuit 2 by the auto-calibration described in the first embodiment under the initial state of the switches 21 and 22. Suppose that it was determined that it was done.
  • the switch 21 conducts between the injection locked oscillation circuit 3 and the transmission mixer 9 in accordance with the control voltage V sw applied by the AD converter 15. As a result, the output signal of the injection locked oscillation circuit 3 can be input to the transmission mixer 9.
  • the switch 22 conducts between the injection locked oscillation circuit 4 and the reception mixer 10 in accordance with the control voltage V sw applied by the AD converter 16. As a result, the output signal of the injection locked oscillation circuit 4 can be input to the reception mixer 10.
  • the switches 21 and 22 are provided at the outputs of the injection locked oscillation circuits 3 and 4. Therefore, the wireless communication device 200 including the oscillation frequency adjusting device 1a inputs the output signals of the injection locked oscillation circuits 3 and 4 to the mixer circuit 5 before the start of communication (before the end of auto calibration). , Switches 21 and 22 are controlled.
  • the radio communication apparatus 200 including the oscillation frequency adjustment apparatus 1a is connected to the switch 21, in order to input the output signals of the injection locked oscillation circuits 3 and 4 to the transmission mixer 9 and the reception mixer 10, respectively. 22 is controlled.
  • the oscillation frequency adjusting device 1a can increase the output signal of the mixer circuit 5 because all the output signals of the injection locking oscillation circuits 3 and 4 are all input to the mixer circuit 5 before the start of communication. A highly accurate determination by the determination unit 6 can be realized.
  • wireless communication apparatus 200 containing the oscillation frequency adjustment apparatus 1a can communicate with high quality.
  • the output signals of the injection locked oscillation circuits 3 and 4 are directly input to the mixer circuit 5.
  • a buffer amplifier may be further provided between each of the injection locked oscillation circuits 3 and 4 and the mixer circuit 5.
  • the synchronization determination unit 6 increases the absolute value of the signal power of the output signal (difference signal) of the mixer circuit 5, so that the injection locked oscillation circuits 3 and 4 are synchronized with the output signal of the voltage controlled oscillation circuit 2. It can be determined with high accuracy whether or not it is.
  • a buffer amplifier may be further provided between the mixer circuit 5 and the synchronization determination unit 6.
  • the synchronization determination unit 6 is synchronized with the output signal of the voltage-controlled oscillation circuit 2. Whether or not can be determined with high accuracy.
  • FIG. 7 is an explanatory diagram showing an internal configuration of the oscillation frequency adjusting device 1b according to the third embodiment.
  • the oscillation frequency adjusting device 1b includes a voltage-controlled oscillation circuit 2, injection-locked oscillation circuits 3 and 4, a mixer circuit 5, a synchronization determination unit 6, AD converters 15 and 16, switches 21 and 22, The intermediate frequency mixer circuits 13 and 14 are included.
  • the output signals of the injection locked oscillation circuits 3 and 4 are input to the intermediate frequency mixer circuits 13 and 14 via the switches 21 and 22, respectively.
  • the intermediate frequency mixer circuit 13 outputs the output signal of the injection locked oscillation circuit 3 and the output of the voltage controlled oscillation circuit 2 when the injection locked oscillation circuit 3 and the mixer circuit 5 are electrically connected by the switch 21. Input the signal.
  • the intermediate frequency mixer circuit 13 down-converts the input output signal of the voltage-controlled oscillation circuit 2 and the output signal of the injection-locked oscillation circuit 3 to control the output signal of the injection-locked oscillation circuit 3 and the voltage control. A difference signal from the output signal of the type oscillation circuit 2 is output to the mixer circuit 5.
  • the intermediate frequency mixer circuit 14 outputs the output signal of the injection locked oscillation circuit 4 and the output of the voltage controlled oscillation circuit 2 when the injection locked oscillation circuit 4 and the mixer circuit 5 are electrically connected by the switch 22. Input the signal.
  • the intermediate frequency mixer circuit 14 down-converts the input output signal of the voltage-controlled oscillation circuit 2 and the output signal of the injection-locked oscillation circuit 4 and controls the output signal of the injection-locked oscillation circuit 4 and the voltage control. A difference signal from the output signal of the type oscillation circuit 2 is output to the mixer circuit 5.
  • the mixer circuit 5 inputs the differential signal output from the intermediate frequency mixer circuits 13 and 14.
  • the frequency of the difference signal is a frequency obtained by subtracting the oscillation frequency f 0 in the output signal of the voltage controlled oscillation circuit 2 from the oscillation frequency in the output signal of the injection locking oscillation circuits 3 and 4.
  • the mixer circuit 5 can perform the frequency conversion shown in Formula (4) by using a frequency lower than the oscillation frequency of the injection locked oscillation circuits 3 and 4.
  • the transistor that specifically constitutes the mixer circuit 5 can be used in a situation where the operation capability of the transistor is higher, and the output signal of the mixer circuit 5 can be increased.
  • the oscillation frequency adjusting device 1b by inputting the output signals of the injection locking oscillation circuits 3 and 4 to the mixer circuit 5, the mixer circuit 5 operates stably without using a buffer amplifier, for example.
  • the output level of the mixer circuit 5 can be increased, and the synchronization determination unit 6 can stably determine the synchronization.
  • the present invention can be applied to an oscillation frequency adjusting device, an oscillation frequency adjusting method, and a wireless communication device that control the synchronization between a voltage-controlled oscillation circuit and an injection-locked oscillation circuit and output a signal having a desired frequency.
  • the present invention configures a PLL synthesizer with a frequency lower than a desired carrier frequency, and synchronizes the injection locking type oscillation circuit with a signal that is an integral multiple of the low frequency, so that an ultrahigh frequency such as a millimeter wave band is obtained. It is effective as a circuit for generating a local signal (local signal) in the band.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

 電圧制御型発振回路2は、制御電圧に応じた発振周波数によって発振する。注入同期型発振回路3,4は、電圧制御型発振回路2からの出力信号に応じた発振周波数によって発振する。ミキサ回路5は、注入同期型発振回路3,4の各出力信号を基に周波数変換する。同期判定部6は、ミキサ回路5の出力信号に応じて、注入同期型発振回路3,4の同期状態を判定する。注入同期型発振回路3,4は、電圧制御型発振回路2の発振周波数の整数倍の周波数によって同期する。

Description

発振周波数調整装置、発振周波数調整方法及び無線通信装置
 本発明は、高周波数帯域において無線通信装置に用いられる発振回路の発振周波数を調整する発振周波数調整装置、発振周波数調整方法及び無線通信装置に関する。
 ミリ波の周波数帯域を用いた無線通信装置におけるRF(radio frequency)回路のMMIC(monolithic microwave integrated circuit)化が進められている。ミリ波の周波数帯域を用いた無線通信装置を商品化するためには、無線通信装置におけるRF回路は消費電力の低減が要求される。このため、ダイレクトコンバージョン方式の採用が有効であると言われている。
 一般的なダイレクトコンバージョン方式では、キャリア周波数と同じ周波数を出力する発振回路と、発振周波数を安定させるためのPLL(Phase Locked Loop)シンセサイザとが必要となる。マイクロ波の周波数帯域(~数GHz)では、キャリア周波数と同じ周波数を出力する発振回路とPLLとを比較的容易に実現できる(例えば、特許文献1参照)。
 図8は、特許文献1の従来のPLLシンセサイザの概略構成図である。図8に示すPLLシンセサイザは、基準発振器201、位相比較器203、チャージポンプ204、ループフィルタ205、電圧制御発振器(VCO)206、電圧制御発振器206の周波数を分周する分周器207を含む構成である。
 図8に示すPLLシンセサイザの動作を説明する。基準発振器201から出力される基準信号は位相比較器203に入力される。位相比較器203は、電圧制御発振器206の発振周波数を分周器207にて1/Mに分周された周波数成分との比較を行い、その位相差に応じて、チャージポンプ204を駆動する。チャージポンプ204の出力信号はループフィルタ205により平滑化され、電圧制御発振器206の制御電圧として電圧制御発振器に印加される。
 基準信号に対して分周器207の出力信号の位相が遅れている場合又は周波数が低い場合には、ループフィルタ205の出力電圧が高くなるため、電圧制御発振器206の発振周波数が高くなり位相が進み、基準信号の位相と一致させることができる。
 しかしながら、ミリ波の周波数帯域(例えば60GHz)の周波数を出力する発振回路をCMOSプロセスによって製造する場合、プロセス、周囲温度又は電源電圧のうち1つ以上の変動により、60GHzの信号を分周する周波数分周回路は、製造することが困難となる。このため、ミリ波の周波数帯域(例えば60GHz)の周波数を出力する発振回路に、従来のPLLシンセサイザを用いることが困難となる。
 例えば、ミリ波の周波数帯域より十分低い周波数帯域において動作可能な注入同期型発振回路及びPLLを含む構成の発振回路が提案されている。この発振回路は、注入同期型発振回路及びPLLに低い周波数の高次高調波の信号を注入同期することで、ミリ波の周波数帯域の周波数を出力する。(たとえば、非特許文献1参照)。
 図9は、非特許文献1に記載された従来の発振回路109の内部構成を示す説明図である。図9に示す様に、従来の発振回路109は、PLLシンセサイザ101及び注入同期型発振回路107を含む構成である。
 PLLシンセサイザ101は、発振回路102、周波数分周回路103、位相周波数比較器(PFD:phase frequency detector)104、チャージポンプ(CP:charge pump)105、及び低域通過フィルタ(LPF:low pass filter)106を有する。
 従来の発振回路109の動作を説明する。
 発振回路102は、低域通過フィルタ106から入力される制御電圧を用いて、所望の周波数の1/Mによって発振する。周波数分周回路103は、発振回路102の出力信号をN分周する。位相周波数比較器104は、周波数分周回路103によりN分周された信号と基準信号との位相及び周波数を比較する。
 チャージポンプ105は、位相周波数比較器104の比較結果を電圧に変換して低域通過フィルタ106に出力する。低域通過フィルタ106は、チャージポンプ105から出力された電圧を平滑化する。低域通過フィルタ106の出力が発振回路102の制御電圧となり、PLLシンセサイザ101は、所望の周波数の1/Mによって動作する。
 注入同期型発振回路107は、PLLシンセサイザ101から出力される発振周波数のM次高調波信号によって注入同期され、所望の周波数の周波数によって発振し、所望の周波数の信号を出力する。
 例えば、所望の周波数が60GHz、PLLシンセサイザ101の発振周波数が所望周波数の1/4である場合に、PLLシンセサイザ101は15GHz程度において動作し、4次高調波信号によって注入同期型発振回路107が同期する。これにより、発振回路109は、60GHzの信号を出力できる。また、周波数分周回路103は、15GHzの周波数成分を分周すれば良いため、安定したPLLシンセサイザ101を提供できる。
米国特許出願公開第2009/0206894号明細書
Shoichi Hara., et al.,‘60 GHz Injection Locked Frequency Quadrupler with Quadrature Outputs in 65nm CMOS Process’, Asia Pacific Microwave Conference, pp.2268-2271, Dec. 2009
 しかしながら、上述した非特許文献1の注入同期型発振回路107におけるプロセス、周囲温度又は電源電圧のうち1つ以上の変動によって、注入同期型発振回路107から出力される発振周波数は変動する。
 更に、PLLシンセサイザ101の高次高調波信号の注入同期によって、注入同期型発振回路107が所望の周波数の信号を出力しているかどうかを確認するためには、注入同期型発振回路107の出力信号をモニタする必要がある。
 ところが、上述した非特許文献1に示す発振回路109には、注入同期型発振回路107の出力信号をモニタする機能を有しない。このため、発振回路109を無線通信装置に組み込んだ場合に、送受信における所望の周波数の信号が適正に出力されているかどうかを判定することが困難であった。
 本発明は、上述した従来の事情に鑑みてなされたものであって、電圧制御型発振回路と注入同期型発振回路との同期を制御し、所望の周波数の信号を出力する発振周波数調整装置、発振周波数調整方法及び無線通信装置を提供することを目的とする。
 本発明は、上述した発振周波数調整装置であって、制御電圧に応じた発振周波数において発振する電圧制御発振回路と、前記電圧制御発振回路からの出力信号に応じた発振周波数において発振する第1注入同期型発振回路と、前記電圧制御発振回路からの出力信号に応じた発振周波数において発振する第2注入同期型発振回路と、前記第1注入同期型発振回路の出力信号と前記第2注入同期型発振回路の出力信号とを用いて周波数変換するミキサ回路と、前記ミキサ回路の出力信号に応じて、前記第1注入同期型発振回路及び第2注入同期型発振回路の同期状態を判定する同期判定部と、を備え、前記第1注入同期型発振回路及び前記第2注入同期型発振回路は、前記電圧制御発振回路の発振周波数の整数倍の周波数において同期する。
 また、本発明は、上述した発振周波数調整方法であって、制御電圧に応じた発振周波数において発振するステップと、前記制御電圧に応じた発振周波数の高次高調波に同期して前記発振周波数より高い第1発振周波数において発振するステップと、前記制御電圧に応じた発振周波数の高次高調波に同期して前記発振周波数より高い第2発振周波数において発振するステップと、前記第1発振周波数の出力信号と前記第2発振周波数の出力信号とを基に周波数変換するステップと、前記周波数変換の出力信号に応じて、前記第1発振周波数の出力信号と前記第2発振周波数の出力信号との同期状態を判定するステップと、を備え、前記第1発振周波数及び前記第2発振周波数は、前記制御電圧に応じた発振周波数の整数倍である。
 更に、本発明は、上述した発振周波数調整装置と、前記発振周波数調整装置の前記第1注入同期型発振回路からの第1出力信号と、送信用のベースバンド信号とを基に周波数変換する送信ミキサ回路と、前記発振周波数調整装置の前記第2注入同期型発振回路からの第2出力信号と、高周波受信信号とを基に周波数変換する受信ミキサ回路とを備える。
 本発明によれば、電圧制御型発振回路と注入同期型発振回路との同期を制御し、所望の周波数の信号を出力できる。
実施の形態1に係る発振周波数調整装置の内部構成を示す説明図 発振周波数調整装置の各注入同期型発振回路に印加する制御電圧に対する発振周波数特性の一例を示す説明図 発振周波数調整装置のミキサ回路の出力信号の振幅特性の一例を示す説明図、(a)同期時、(b)非同期時 発振周波数調整装置を含む無線通信装置の概略構成図 発振周波数調整装置のミキサ回路の出力信号をモニタする一例を示す説明図 実施の形態2に係る発振周波数調整装置の内部構成を示す説明図 実施の形態3に係る発振周波数調整装置の内部構成を示す説明図 従来のPLLシンセサイザの概略構成図 従来の発振回路の内部構成を示す説明図
 以下、本発明に係る発振周波数調整装置の実施の形態について、図面を参照して説明する。また、本発明は、発振周波数調整装置の処理(ステップ)を発振周波数調整方法として表現できる。更に、本発明は、後述の図4に示す様に、発振周波数調整装置を組み込んだ無線通信装置として表現できる。
(実施の形態1)
 図1は、実施の形態1に係る発振周波数調整装置1の内部構成を示す説明図である。図1に示す様に、発振周波数調整装置1は、電圧制御型発振回路2、注入同期型発振回路3,4、ミキサ回路5、同期判定部6、ADコンバータ15,16を含む構成である。
 注入同期型発振回路3は、注入同期型発振回路3の発振周波数を調整するための制御端子7を有する。注入同期型発振回路4は、注入同期型発振回路4の発振周波数を調整するための制御端子8を有する。
 以下、注入同期型発振回路3の出力信号を第1出力信号と記載し、注入同期型発振回路4の出力信号を第2出力信号と記載する。
 発振周波数調整装置1の動作を説明する。
 電圧制御型発振回路2は、制御電圧を基に発振周波数f付近の周波数において発振し、発振周波数f付近の発振による出力信号を注入同期型発振回路3,4にそれぞれ出力する。発振周波数fと、注入同期型発振回路3,4の発振周波数f帯との間には、数式(1)が成立する。
 電圧制御型発振回路2は、例えば図8に示すPLLシンセサイザ101の発振回路102として構成可能である。図1には図示されていないが、発振周波数調整装置1には、図8のPLLシンセサイザ101が含まれている。電圧制御型発振回路2は、図8の発振回路102に相当する。従って、電圧制御型発振回路2は、図1に示していない低域通過フィルタからの制御電圧を基に、発振周波数f付近において発振する。
Figure JPOXMLDOC01-appb-M000001
 注入同期型発振回路3は、電圧制御型発振回路2からの出力信号における発振周波数のN次高調波の信号の注入(入力)に同期し、同期によって発振周波数f付近の周波数において安定的に発振する。注入同期型発振回路3は、発振周波数f付近の発振による出力信号を第1出力信号として、ミキサ回路5に出力する。なお、後述する様に、第1出力信号は、送信ミキサ9にも出力される。
 注入同期型発振回路4は、電圧制御型発振回路2からの出力信号における発振周波数のN次高調波の信号の注入(入力)に同期し、同期によって発振周波数f付近の周波数において安定的に発振する。注入同期型発振回路3は、発振周波数f付近の発振による出力信号を第2出力信号として、ミキサ回路5に出力する。なお、後述する様に、第2出力信号は、受信ミキサ10にも出力される。
 注入同期型発振回路3,4において、CMOSプロセスではプロセス変動が存在するため、注入同期型発振回路3,4が同じ発振器でも、CMOSプロセスにおける配置位置によって各発振周波数は微妙に異なる。更に、各注入同期型発振回路3,4がフリーランにおいて発振しているため、各注入同期型発振回路3,4の発振位相も異なる。
 従って、第1出力信号yの周波数成分をω、位相をθ、振幅をaとすると、数式(2)が成立する。同様に、第2出力信号yの周波数成分をω、位相をθ、振幅をaとすると、数式(3)が成立する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 CMOSプロセスを用いて発振回路を製造する場合、プロセス、周囲温度又は電源電圧の変動によって、電圧制御型発振回路2の発振周波数は変動する。
 注入同期型発振回路3,4の発振周波数を調整するために、注入同期型発振回路3には制御端子7、注入同期型発振回路4には制御端子8がそれぞれ設けられている。従って、制御端子7,8に与える制御電圧Vtを制御することによって、注入同期型発振回路3,4の発振周波数を調整できる。
 図2は、発振周波数調整装置1の各注入同期型発振回路3,4に印加する制御電圧Vに対する発振周波数特性の一例を示す説明図である。
 図2に示す様に、注入同期型発振回路3,4の制御電圧VがVからVの間であれば、注入同期型発振回路3,4の発振周波数は電圧制御型発振回路2の発振周波数fのN倍(N次高調波)に同期して発振する。
 注入同期型発振回路3,4の制御電圧VがVからVの間でない場合、注入同期型発振回路3,4は電圧制御型発振回路2の発振周波数fに同期せず、フリーラン周波数において発振する。
 ミキサ回路5は、注入同期型発振回路3,4からの各出力信号(第1出力信号y,第2出力信号y)を入力する。ミキサ回路5は、入力された各出力信号を基に、第1出力信号と第2出力信号との差分信号を出力する。
 具体的には、ミキサ回路5は、数式(2)及び(3)により示された第1出力信号yと第2出力信号yとを用いてダウンコンバートすることによって、数式(4)に示す差分信号yを出力する。
Figure JPOXMLDOC01-appb-M000004
 数式(4)において、cos((ω+ω)t+θ+θ)は、第1出力信号y,第2出力信号yの各周波数の和の成分を示し、注入同期型発振回路3,4の出力信号における所望の発振周波数fの約2倍の周波数成分である。
 なお、所望の発振周波数fは、例えばミリ波の周波数(60GHz)である。従って、cos((ω+ω)t+θ+θ)の出力信号の信号電力は、cos((ω-ω)t+θ-θ)の出力信号の信号電力に比べて無視できる程に十分に小さいと考えることができる。
 数式(4)において、cos((ω-ω)t+θ-θ)は、第1出力信号y,第2出力信号yの各周波数の差の成分を示し、注入同期型発振回路3,4の出力信号における所望の発振周波数fに比べて低次の周波数成分である。
 同期判定部6は、ミキサ回路5により出力された注入同期型発振回路3,4の差分信号yを基に、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期しているか否かを判定する。
 図3は、発振周波数調整装置1のミキサ回路5の出力信号の振幅特性の一例を示す説明図である。同図(a)は、同期時の振幅特性の一例を示す説明図である。同図(b)は、非同期時の振幅特性の一例を示す説明図である。
 具体的に、同期判定部6は、差分信号yが周波数成分を含まないDC(直流)成分の信号(図3(a)参照)である場合、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期していると判定する。
 同期判定部6は、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期しているか否かを示す判定結果に応じた電圧制御信号を、ADコンバータ15,16に出力する。
 同期判定部6の判定結果に応じた電圧制御信号は、例えば、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期していない場合には、注入同期型発振回路3,4への制御電圧を上げる又は下げる旨の制御信号である。
 同期判定部6の判定結果に応じた電圧制御信号は、例えば、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期している場合には、注入同期型発振回路3,4への制御電圧を現在の制御電圧に維持する旨の制御信号である。
 注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期している場合には、周波数ω=ω、位相θ=θとなり、数式(4)のcos((ω-ω)t+θ-θ)はcos(0)=1となる。ミキサ回路5の出力信号(差分信号y)は、図3(a)に示す様に、周波数成分を含まないDC成分となる。
 また、同期判定部6は、差分信号yが周波数成分を含む信号(図3(b)参照)である場合、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期していないと判定する。
 注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期していない場合は、周波数ω=ω、位相θ=θとならない。ミキサ回路5の出力信号(差分信号y)は、図3(b)に示す様に、周波数成分の差分(ω-ω)tに相当する信号となる。
 ここで、注入同期型発振回路3,4は、プロセスの変動の影響を受けるが、実際には図4に示す様に、それぞれ送信ミキサ9,受信ミキサ10へのローカル信号源として用いられる。このため、2つの注入同期型発振回路3,4はCMOS上において大きく離れて配置されることはない。図4は、発振周波数調整装置1を含む無線通信装置100の概略構成図である。
 従って、2つの注入同期型発振回路3,4は、フリーラン発振している状態(図2の制御電圧V~Vの間以外の状態)では電圧制御型発振回路2の出力信号に同期していない。しかし、各注入同期型発振回路3,4の出力信号における発振周波数は大きくずれておらず、各発振周波数は近い状態にあると考えられる。
 ADコンバータ15は、同期判定部6により出力された電圧制御信号を入力する。ADコンバータ15は、入力された電圧制御信号を基に、注入同期型発振回路3の制御端子7に印加するための制御電圧を発生する。ADコンバータ15は、発生された制御電圧を、注入同期型発振回路3の制御端子7に印加する。
 ADコンバータ16は、同期判定部6により出力された電圧制御信号を入力する。ADコンバータ16は、入力された電圧制御信号を基に、注入同期型発振回路4の制御端子8に印加するための制御電圧を発生する。ADコンバータ16は、発生された制御電圧を、注入同期型発振回路4の制御端子8に印加する。
 注入同期型発振回路3の制御端子7と、注入同期型発振回路4の制御端子8とにそれぞれ同じ制御電圧Vを印加することによって、注入同期型発振回路3,4の出力信号における発振周波数はほぼ同じになる。実際には、各発振周波数は異なる。
 即ち、ADコンバータ15は、注入同期型発振回路3が電圧制御型発振回路2の出力信号に同期していないと判定された場合、注入同期型発振回路3の現在の制御電圧Vを所定量増加又は減少した制御電圧を、制御端子7に印加する。
 同様に、ADコンバータ16は、注入同期型発振回路4が電圧制御型発振回路2の出力信号に同期していないと判定された場合、注入同期型発振回路4の現在の制御電圧Vを所定量増加又は減少した制御電圧を、制御端子8に印加する。
 なお、ADコンバータ15,16が制御電圧を増加又は減少する場合の所定量は同一である。
 制御電圧の増加方法として、例えば、制御電圧Vの初期値を最小の制御電圧に予め設定しておき、ADコンバータ15,16は、同期判定部6の判定結果に応じた電圧制御信号を基に、制御端子7,8への制御電圧を序々に増加する。
 制御電圧の減少方法として、例えば、制御電圧Vの初期値を最大の制御電圧に予め設定しておき、ADコンバータ15,16は、同期判定部6の判定結果に応じた電圧制御信号を基に、制御端子7,8への制御電圧を序々に減少する。
 制御端子7,8に印加された制御電圧Vが図2に示した制御電圧V~Vの範囲である場合、注入同期型発振回路3,4は、電圧制御型発振回路2の出力信号に同期する。
 従って、発振周波数調整装置1は、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期していない場合に、注入同期型発振回路3,4の印加電圧を自動較正(オートキャリブレーション)する。発振周波数調整装置1によれば、オートキャリブレーションにより、注入同期型発振回路3,4と電圧制御型発振回路2の出力信号との同期を実現できる。
 なお、発振周波数調整装置1によれば、注入同期型発振回路3,4と電圧制御型発振回路2の出力信号との同期をオートキャリブレーションできるため、出荷検査も不要であり、安価にミリ波帯の発振器を構成できる。
 これにより、発振周波数調整装置1は、ローカル信号の発振器として、常に安定した周波数成分のローカル信号を送信ミキサ9,受信ミキサ10に供給できる。
 更に、発振周波数調整装置1によれば、簡易な方法によって注入同期型発振回路の同期状況を判定でき、ミリ波の周波数の様な超高周波数帯域においても注入同期型発振回路を用いた局部発振信号を生成できる。よって、発振周波数調整装置1を含む無線通信装置100(図4参照)は、安定的に信頼性の高い無線通信ができる。
 なお、実施の形態1では、同期判定部6は、ミキサ回路5の出力信号が周波数成分を含むか否かに応じて、注入同期型発振回路3,4と電圧制御型発振回路2とが同期しているか否かを判定した。
 同期判定部6の判定方法として、次に示す方法でも良い。例えば、同期判定部6は、ミキサ回路5により出力された差分信号yのDC成分を、一定期間積算する。一定期間は、差分信号yの1/2周期又は1周期に相当する時間とする。
 同期判定部6は、一定期間における積算値が所定の閾値を超えると、注入同期型発振回路3,4は電圧制御型発振回路2の出力信号に同期していると判定する。同期判定部6は、一定期間における積算値が所定の閾値を超えない場合、注入同期型発振回路3,4は電圧制御型発振回路2の出力信号に同期していないと判定する。
 また、同期判定部6の他の判定方法を、図5を参照して説明する。図5は、発振周波数調整装置1のミキサ回路5の出力信号をモニタする一例を示す説明図である。図5において、発振周波数調整装置1は、ミキサ回路5と同期判定部6との間に、高域通過フィルタ11及び検波器12を有する。
 図5に示す様に、ミキサ回路5の出力信号(差分信号y)は、高域通過フィルタ11によって差分信号yのDC成分が除去された後、検波器12によってDC成分が除去された差分信号の信号電力が検出される。
 検波器12の出力として差分信号が検出された場合、同期判定部6は、注入同期型発振回路3,4は電圧制御型発振回路2の出力信号に同期していないと判定する。
 検波器12の出力として差分信号が検出されなかった場合、同期判定部6は、注入同期型発振回路3,4は電圧制御型発振回路2の出力信号に同期していると判定する。
 また、実施の形態1では、注入同期型発振回路3,4の出力信号が直接、ミキサ回路5に入力されている。注入同期型発振回路3,4とミキサ回路5との間に、それぞれバッファアンプが更に設けられても良い。これにより、同期判定部6は、ミキサ回路5の出力信号(差分信号)の信号電力の絶対値が大きくなるため、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期しているか否かを高精度に判定できる。
 また、ミキサ回路5と同期判定部6との間に、更にバッファアンプが設けられても良い。これにより、同期判定部6は、ミキサ回路5の出力信号の信号電力がバッファアンプにより増幅されるため、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期しているか否かを高精度に判定できる。
 また、実施の形態1では、注入同期型発振回路3,4にADコンバータ15,16を接続する構成としたが、ADコンバータ15,16に入力される電圧制御信号及び出力される制御電圧は同じである。従って、例えば2つのADコンバータ15,16を設けず、単一のADコンバータ15を設け、ADコンバータ15の出力を2分岐して制御端子7,8に入力しても良い。これにより、ADコンバータ15は1つにでき、発振周波数調整装置1の回路の小型化及び低消費電力化を図ることができる。
(実施の形態2)
 図6は、実施の形態2に係る発振周波数調整装置1aの内部構成を示す説明図である。図6に示す様に、発振周波数調整装置1aは、電圧制御型発振回路2、注入同期型発振回路3,4、ミキサ回路5、同期判定部6、ADコンバータ15,16及びスイッチ21,22を含む構成である。
 スイッチ21は、注入同期型発振回路3とミキサ回路5との間、又は、注入同期型発振回路3と送信ミキサ9との間の導通を切り換える。スイッチ21の切り換えは、例えばADコンバータ15又は不図示のスイッチ制御部により出力された制御電圧Vswに応じて制御可能である。以下、スイッチ21は、ADコンバータ15により出力された制御電圧Vswに応じて制御されるとする。
 スイッチ21は、注入同期型発振回路3が電圧制御型発振回路2の出力信号と同期していない場合、ADコンバータ15により出力された制御電圧Vswに応じて、注入同期型発振回路3とミキサ回路5との間を導通する。
 スイッチ21は、注入同期型発振回路3が電圧制御型発振回路2の出力信号と同期している間、例えばADコンバータ15により出力された制御電圧Vswに応じて、注入同期型発振回路3と送信ミキサ9との間を導通する。
 これにより、注入同期型発振回路3が電圧制御型発振回路2の出力信号と同期している間、注入同期型発振回路3の出力信号がミキサ回路5ではなく送信ミキサ9に入力される。
 スイッチ22は、注入同期型発振回路4とミキサ回路5との間、又は、注入同期型発振回路4と受信ミキサ10との間の導通を切り換える。スイッチ22の切り換えは、例えばADコンバータ16又は不図示のスイッチ制御部により出力された制御電圧Vswに応じて制御可能である。以下、以下、スイッチ22は、ADコンバータ16により出力された制御電圧Vswに応じて制御されるとする。
 スイッチ22は、注入同期型発振回路4が電圧制御型発振回路2の出力信号と同期していない場合、ADコンバータ16により出力された制御電圧Vswに応じて、注入同期型発振回路4とミキサ回路5との間を導通する。
 スイッチ22は、注入同期型発振回路4が電圧制御型発振回路2の出力信号と同期している間、例えばADコンバータ16により出力された制御電圧Vswに応じて、注入同期型発振回路4と受信ミキサ10との間を導通する。
 これにより、注入同期型発振回路4が電圧制御型発振回路2の出力信号と同期している間、注入同期型発振回路4の出力信号がミキサ回路5ではなく受信ミキサ10に入力される。
 発振周波数調整装置1aの動作を説明する。
 実施の形態1において説明した動作と同一の動作の説明は省略する。ここでは、実施の形態1と異なる動作を説明する。
 発振周波数調整装置1aを含む無線通信装置200は、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期していると判定されるまで、通信を開始しない。
 スイッチ21,22は、初期状態(通信開始前)では、制御電圧Vswに従って、注入同期型発振回路3,4の出力信号をミキサ回路5に入力するために、注入同期型発振回路3,4とミキサ回路5との間を導通している。
 発振周波数調整装置1aは、スイッチ21,22の初期状態の下において、実施の形態1に記載したオートキャリブレーションにより、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期されたと判定したとする。
 この後、スイッチ21は、ADコンバータ15により印加された制御電圧Vswに応じて、注入同期型発振回路3と送信ミキサ9との間を導通する。これにより、注入同期型発振回路3の出力信号が送信ミキサ9に入力可能となる。
 同様に、スイッチ22は、ADコンバータ16により印加された制御電圧Vswに応じて、注入同期型発振回路4と受信ミキサ10との間を導通する。これにより、注入同期型発振回路4の出力信号が受信ミキサ10に入力可能となる。
 以上説明した様に、実施の形態2では、注入同期型発振回路3,4の出力にスイッチ21,22が設けられている。よって、発振周波数調整装置1aを含む無線通信装置200は、通信開始前(オートキャリブレーション終了前)には、注入同期型発振回路3,4の各出力信号を、ミキサ回路5に入力するために、スイッチ21,22を制御する。
 オートキャリブレーションの終了後、発振周波数調整装置1aを含む無線通信装置200は、注入同期型発振回路3,4の各出力信号を、送信ミキサ9,受信ミキサ10に入力するために、スイッチ21,22を制御する。
 即ち、発振周波数調整装置1aは、通信開始前には注入同期型発振回路3,4の各出力信号がすべてミキサ回路5に入力されるため、ミキサ回路5の出力信号を大きくでき、結果として同期判定部6による高精度な判定を実現できる。
 また、オートキャリブレーション終了前まで、即ち、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期するまで、注入同期型発振回路3,4の出力信号が送信ミキサ9,受信ミキサ10に入力されない。注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期して初めて、注入同期型発振回路3,4の衆力信号が送信ミキサ9、受信ミキサ10に入力される。これにより、発振周波数調整装置1aを含む無線通信装置200は、高品質に通信できる。
 また、実施の形態2では、注入同期型発振回路3,4の出力信号が直接、ミキサ回路5に入力されている。注入同期型発振回路3,4とミキサ回路5との間に、それぞれバッファアンプが更に設けられても良い。これにより、同期判定部6は、ミキサ回路5の出力信号(差分信号)の信号電力の絶対値が大きくなるため、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期しているか否かを高精度に判定できる。
 また、ミキサ回路5と同期判定部6との間に、更にバッファアンプが設けられても良い。これにより、同期判定部6は、ミキサ回路5の出力信号の信号電力がバッファアンプにより増幅されるため、注入同期型発振回路3,4が電圧制御型発振回路2の出力信号に同期しているか否かを高精度に判定できる。
(実施の形態3)
 図7は、実施の形態3に係る発振周波数調整装置1bの内部構成を示す説明図である。図7に示す様に、発振周波数調整装置1bは、電圧制御型発振回路2、注入同期型発振回路3,4、ミキサ回路5、同期判定部6、ADコンバータ15,16、スイッチ21,22、及び中間周波数用ミキサ回路13,14を含む構成である。
 実施の形態1において説明した動作と同一の動作の説明は省略する。ここでは、実施の形態1と異なる動作を説明する。
 図7に示す様に、注入同期型発振回路3,4の出力信号は、それぞれスイッチ21,22を介して、中間周波数用ミキサ回路13,14に入力される。
 中間周波数用ミキサ回路13は、スイッチ21によって注入同期型発振回路3とミキサ回路5との間が導通している場合の注入同期型発振回路3の出力信号と、電圧制御型発振回路2の出力信号とを入力する。
 中間周波数用ミキサ回路13は、入力された電圧制御型発振回路2の出力信号と注入同期型発振回路3の出力信号とを基にダウンコンバートし、注入同期型発振回路3の出力信号と電圧制御型発振回路2の出力信号との差分信号をミキサ回路5に出力する。
 中間周波数用ミキサ回路14は、スイッチ22によって注入同期型発振回路4とミキサ回路5との間が導通している場合の注入同期型発振回路4の出力信号と、電圧制御型発振回路2の出力信号とを入力する。
 中間周波数用ミキサ回路14は、入力された電圧制御型発振回路2の出力信号と注入同期型発振回路4の出力信号とを基にダウンコンバートし、注入同期型発振回路4の出力信号と電圧制御型発振回路2の出力信号との差分信号をミキサ回路5に出力する。
 ミキサ回路5は、中間周波数用ミキサ回路13,14から出力された差分信号を入力する。差分信号の周波数は、注入同期型発振回路3,4の出力信号における発振周波数から電圧制御型発振回路2の出力信号における発振周波数fを減算した周波数である。
 ミキサ回路5は、注入同期型発振回路3,4の発振周波数より低い周波数を用いて、数式(4)に示した周波数変換が出来る。これにより、ミキサ回路5を具体的に構成するトランジスタの動作能力がより高い状況において使用でき、ミキサ回路5の出力信号を大きくできる。発振周波数調整装置1bにおいて、注入同期型発振回路3、4の出力信号をミキサ回路5に入力することによって、ミキサ回路5は、例えば、バッファアンプを用いることなく、安定的に動作する。
 以上のように、発振周波数調整装置1bによれば、ミキサ回路5の出力レベルを大きくでき、安定的に同期判定部6によって同期判定ができる。
 以上、図面を参照しながら各種の実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 なお、本出願は、2011年3月24日出願の日本特許出願(特願2011-066286)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、電圧制御型発振回路と注入同期型発振回路との同期を制御し、所望の周波数の信号を出力する発振周波数調整装置、発振周波数調整方法及び無線通信装置に適用可能である。
 また、本発明は、所望のキャリア周波数より低い周波数によってPLLシンセサイザを構成し、低い周波数の整数倍の信号を用いて注入同期型発振回路を同期させることによって、ミリ波帯のような超高周波数帯におけるローカル信号(局部信号)を生成するための回路として有効である。
1 発振周波数調整装置
2 電圧制御型発振回路
3、4 注入同期型発振回路
5 ミキサ回路
6 同期判定部
7、8 制御端子
9 送信ミキサ
10 受信ミキサ
13、14 中間周波数用ミキサ回路
15、16 ADコンバータ
21、22 スイッチ

Claims (10)

  1.  制御電圧に応じた発振周波数によって発振する電圧制御発振回路と、
     前記電圧制御発振回路からの出力信号に応じた発振周波数によって発振する第1注入同期型発振回路と、
     前記電圧制御発振回路からの出力信号に応じた発振周波数によって発振する第2注入同期型発振回路と、
     前記第1注入同期型発振回路の出力信号と前記第2注入同期型発振回路の出力信号とを基に周波数変換するミキサ回路と、
     前記ミキサ回路の出力信号に応じて、前記第1注入同期型発振回路及び第2注入同期型発振回路の同期状態を判定する同期判定部と、を備え、
     前記第1注入同期型発振回路及び前記第2注入同期型発振回路は、前記電圧制御発振回路の発振周波数の整数倍の周波数によって同期する発振周波数調整装置。
  2.  請求項1に記載の発振周波数調整装置であって、
     前記同期判定部は、前記ミキサ回路の出力信号が周波数成分を含むか否かに応じて、前記第1注入同期型発振回路及び第2注入同期型発振回路の各同期状態を判定する発振周波数調整装置。
  3.  請求項1又は2に記載の発振周波数調整装置であって、
     前記同期判定部は、前記ミキサ回路の一定期間における出力信号を積算し、前記出力信号の積算値が所定の閾値を超えているか否かに応じて、前記第1注入同期型発振回路及び前記第2注入同期型発振回路の各同期状態を判定する発振周波数調整装置。
  4.  請求項1又は2に記載の発振周波数調整装置であって、
     前記ミキサ回路の出力信号のうち高域成分を通過する高域通過フィルタと、
     前記高域通過フィルタを通過した信号を検波する検波器と、を更に備え、
     前記同期判定部は、前記検波された前記ミキサ回路の出力信号が所定の閾値を超えているか否かに応じて、前記第1注入同期型発振回路及び前記第2注入同期型発振回路の各同期状態を判定する発振周波数調整装置。
  5.  請求項1~4のうちいずれか一項に記載の発振周波数調整装置であって、
     前記同期判定部の判定結果を基に、前記第1注入同期型発振回路の制御電圧を出力する第1AD変換部と、
     前記同期判定部の判定結果を基に、前記第2注入同期型発振回路の制御電圧を出力する第2AD変換部と、を更に備え、
     前記第1注入同期型発振回路及び前記第2注入同期型発振回路は、発振周波数を調整するための各制御端子を有し、
     前記第1AD変換部及び前記第2AD変換部は、前記同期判定部の判定結果を基に同期していない場合、前記電圧制御発振回路に同期するまで前記各制御端子に与える制御電圧を同時に調整する発振周波数調整装置。
  6.  請求項1~5のうちいずれか一項に記載の発振周波数調整装置であって、
     前記第1注入同期型発信回路と前記ミキサ回路との間に配置された第1増幅器と、
     前記第2注入同期型発振回路と前記ミキサ回路との間に配置された第2増幅器と、を更に備える発振周波数調整装置。
  7.  請求項5又は6に記載の発振周波数調整装置であって、
     前記第1注入同期型発振回路の出力段に配置された第1スイッチと、
     前記第2注入同期型発振回路の出力段に配置された第2スイッチと、を備え、
     前記第1AD変換部及び前記第2AD変換部は、前記第1注入同期型発振回路及び前記第2注入同期型発振回路が、前記電圧制御発振回路に同期するまで、前記発振周波数調整装置の外部に前記第1注入同期型発振回路及び前記第2注入同期型発振回路の各信号を供給しない発振周波数調整装置。
  8.  請求項7に記載の発振周波数調整装置であって、
     前記第1注入同期型発振回路の出力信号と前記電圧制御発振回路の出力信号とを基に周波数変換して、前記ミキサ回路に出力する第1中間周波数用ミキサ回路と、
     前記第2注入同期型発振回路の出力信号と前記電圧制御発振回路の出力信号とを基に周波数変換して、前記ミキサ回路に出力する第2中間周波数用ミキサ回路と、を備える発振周波数調整装置。
  9.  制御電圧に応じた発振周波数によって発振するステップと、
     前記制御電圧に応じた発振周波数の高次高調波に同期して前記発振周波数より高い第1発振周波数によって発振するステップと、
     前記制御電圧に応じた発振周波数の高次高調波に同期して前記発振周波数より高い第2発振周波数によって発振するステップと、
     前記第1発振周波数の出力信号と前記第2発振周波数の出力信号とを基に周波数変換するステップと、
     前記周波数変換の出力信号に応じて、前記第1発振周波数の出力信号と前記第2発振周波数の出力信号との同期状態を判定するステップと、を備え、
     前記第1発振周波数及び前記第2発振周波数は、前記制御電圧に応じた発振周波数の整数倍である発振周波数調整方法。
  10.  請求項1~8のうちいずれか一項に記載の発振周波数調整装置と、
     前記発振周波数調整装置の前記第1注入同期型発振回路からの第1出力信号と、送信用のベースバンド信号とを基に周波数変換する送信ミキサ回路と、
     前記発振周波数調整装置の前記第2注入同期型発振回路からの第2出力信号と、高周波受信信号とを基に周波数変換する受信ミキサ回路と、を備える無線通信装置。
PCT/JP2012/000890 2011-03-24 2012-02-09 発振周波数調整装置、発振周波数調整方法及び無線通信装置 WO2012127770A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013505785A JP5844795B2 (ja) 2011-03-24 2012-02-09 発振周波数調整装置、発振周波数調整方法及び無線通信装置
US13/816,288 US8975973B2 (en) 2011-03-24 2012-02-09 Oscillation frequency adjusting apparatus, oscillation frequency adjusting method, and wireless communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011066286 2011-03-24
JP2011-066286 2011-03-24

Publications (1)

Publication Number Publication Date
WO2012127770A1 true WO2012127770A1 (ja) 2012-09-27

Family

ID=46878954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000890 WO2012127770A1 (ja) 2011-03-24 2012-02-09 発振周波数調整装置、発振周波数調整方法及び無線通信装置

Country Status (3)

Country Link
US (1) US8975973B2 (ja)
JP (1) JP5844795B2 (ja)
WO (1) WO2012127770A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314519A (zh) * 2018-09-14 2019-02-05 深圳市汇顶科技股份有限公司 计算机可读存储介质、快速启动时钟系统及其控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9325491B2 (en) * 2014-04-15 2016-04-26 Triquint Semiconductor, Inc. Clock generation circuit with dual phase-locked loops
US9419634B1 (en) * 2015-06-26 2016-08-16 Stmicroelectronics Sa Low-noise multiple phase oscillator
US10594336B2 (en) * 2015-10-07 2020-03-17 University College Dublin Injection locked time mode analog to digital converter
FR3057658A1 (fr) * 2016-10-18 2018-04-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Interface de capteur pour environnements hostiles
US10862423B2 (en) 2018-01-25 2020-12-08 University College Dublin Multi-stage sub-THz frequency generator incorporating injection locking
TWI669913B (zh) * 2019-03-15 2019-08-21 昇雷科技股份有限公司 頻率轉換式自我注入鎖定雷達
TWI723824B (zh) * 2020-03-30 2021-04-01 國立高雄科技大學 無線鎖頻迴路之生理感測雷達
TWI741875B (zh) * 2020-11-12 2021-10-01 國立中山大學 頻率位移式自我注入鎖定雷達

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225114A (ja) * 1988-07-14 1990-01-26 Nippon Telegr & Teleph Corp <Ntt> 注入同期発振回路
JPH11125669A (ja) * 1997-10-23 1999-05-11 Stanley Electric Co Ltd パルスレーダ送受信機
JP2005536095A (ja) * 2002-08-12 2005-11-24 イーエヌキュー セミコンダクター インコーポレイティド 直接ディジタルチューニングを使用する電圧制御発振器の注入ロックのための方法と装置
JP2006094333A (ja) * 2004-09-27 2006-04-06 Mitsubishi Electric Corp 2周波発振器およびレーダ装置
JP2010273283A (ja) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp 送受信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6937107B2 (en) * 2003-06-30 2005-08-30 Intel Corporation Device and method of quadrature oscillation
US7557664B1 (en) * 2005-10-31 2009-07-07 University Of Rochester Injection-locked frequency divider
EP2162982A4 (en) * 2007-06-20 2012-06-20 Ericsson Telefon Ab L M OSCILLATOR ARRANGEMENT
JP2009010543A (ja) * 2007-06-27 2009-01-15 Renesas Technology Corp ベースバンド処理装置およびそれを使用した無線システム
US20090206894A1 (en) 2008-02-17 2009-08-20 Zerog Wireless, Inc. Phase-Locked Loop with Adaptive Performance
TWI380604B (en) * 2009-05-05 2012-12-21 Univ Nat Sun Yat Sen Rf sensing circuit with a voltage-controlled oscillator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225114A (ja) * 1988-07-14 1990-01-26 Nippon Telegr & Teleph Corp <Ntt> 注入同期発振回路
JPH11125669A (ja) * 1997-10-23 1999-05-11 Stanley Electric Co Ltd パルスレーダ送受信機
JP2005536095A (ja) * 2002-08-12 2005-11-24 イーエヌキュー セミコンダクター インコーポレイティド 直接ディジタルチューニングを使用する電圧制御発振器の注入ロックのための方法と装置
JP2006094333A (ja) * 2004-09-27 2006-04-06 Mitsubishi Electric Corp 2周波発振器およびレーダ装置
JP2010273283A (ja) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp 送受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAIKI ASADA: "60 GHz CMOS Integrated Direct- Conversion Transmitter", PROCEEDINGS OF THE 2011 IEICE GENERAL CONFERENCE, ELECTRONICS 2, 28 February 2011 (2011-02-28), pages 84 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314519A (zh) * 2018-09-14 2019-02-05 深圳市汇顶科技股份有限公司 计算机可读存储介质、快速启动时钟系统及其控制方法

Also Published As

Publication number Publication date
US20130141143A1 (en) 2013-06-06
US8975973B2 (en) 2015-03-10
JPWO2012127770A1 (ja) 2014-07-24
JP5844795B2 (ja) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5844795B2 (ja) 発振周波数調整装置、発振周波数調整方法及び無線通信装置
US7869769B2 (en) Method and apparatus for reconfigurable frequency generation
US20090072911A1 (en) Signal generating apparatus and method thereof
US11082051B2 (en) Apparatus and methods for timing offset compensation in frequency synthesizers
WO2012120795A1 (ja) Pll回路、キャリブレーション方法及び無線通信端末
US9191056B2 (en) PLL circuit, calibration method, and wireless communication apparatus
WO2014171086A1 (ja) Pll回路、キャリブレーション方法及び無線通信装置
US8698568B2 (en) Automatic self-calibrated oscillation method and apparatus using the same
US8816777B2 (en) Microwave synthesizer
US8258878B2 (en) Phase locked loop and method thereof
JP2010081247A (ja) 周波数シンセサイザ及び無線送信装置
US20170264333A1 (en) Semiconductor integrated circuit device and wireless communication apparatus
US8638141B1 (en) Phase-locked loop
TWI478501B (zh) 收發裝置、其壓控震盪裝置與其控制方法
US8125255B2 (en) PLL circuit
JP2012244586A (ja) 高周波発振源
JP2012075000A (ja) 位相同期回路及び無線機
JP2010141519A (ja) 位相同期回路、および通信装置
JP6615406B2 (ja) Iq信号源
US11088697B2 (en) PLL circuit
JP2015015572A (ja) 発振回路、発振装置および発振方法
JP2013058904A (ja) 位相同期回路及びテレビジョン信号受信回路
JP2015099970A (ja) 注入同期発振器
JP2010233078A (ja) Pll回路
WO2012008197A1 (ja) 送受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505785

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13816288

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12759993

Country of ref document: EP

Kind code of ref document: A1