WO2012124603A1 - Semiconductor substrate and organic el display device - Google Patents

Semiconductor substrate and organic el display device Download PDF

Info

Publication number
WO2012124603A1
WO2012124603A1 PCT/JP2012/055978 JP2012055978W WO2012124603A1 WO 2012124603 A1 WO2012124603 A1 WO 2012124603A1 JP 2012055978 W JP2012055978 W JP 2012055978W WO 2012124603 A1 WO2012124603 A1 WO 2012124603A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
light emitting
pixel circuit
pixel
boundary
Prior art date
Application number
PCT/JP2012/055978
Other languages
French (fr)
Japanese (ja)
Inventor
宣孝 岸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012124603A1 publication Critical patent/WO2012124603A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • the present invention relates to a semiconductor substrate that can be used in an organic EL display device that performs color display.
  • flat panel displays have been used in various products and fields, and further flat panel displays are required to have larger sizes, higher image quality, and lower power consumption.
  • an organic EL display device including an organic EL element using electroluminescence (hereinafter referred to as “EL”) of an organic material is an all-solid-state type, low voltage drive, and high-speed response.
  • EL organic EL display device
  • the organic EL display device has a configuration in which, for example, an organic EL element electrically connected to a TFT is provided on a substrate made of a glass substrate or the like provided with a TFT (thin film transistor).
  • organic EL elements including light emitting layers of red (R), green (G), and blue (B) are arranged and formed on a substrate as sub-pixels. Color images are displayed by selectively emitting light from these organic EL elements with a desired luminance using TFTs.
  • an organic EL display device it is necessary to form a light emitting layer made of an organic light emitting material that emits light of each color in a predetermined pattern for each organic EL element.
  • a vacuum deposition method for example, an ink jet method, a laser transfer method and the like are known.
  • a vacuum deposition method for example, in a low molecular organic EL display (OLED), a vacuum deposition method is often used.
  • a mask also referred to as a shadow mask in which openings of a predetermined pattern are formed is used, and the deposition surface of the substrate on which the mask is closely fixed is opposed to the deposition source.
  • the vapor deposition particles (film forming material) from the vapor deposition source are vapor-deposited on the surface to be vapor-deposited through the opening of the mask, thereby forming a thin film having a predetermined pattern.
  • Vapor deposition is performed for each color of the light emitting layer, and this is called “separate vapor deposition”.
  • Patent Document 1 and Patent Document 2 describe a method in which the mask is moved little by little with respect to the substrate and the light emitting layers of the respective colors are separately deposited.
  • a mask having the same size as the substrate is used, and the mask is fixed so as to cover the deposition surface of the substrate during vapor deposition.
  • FIG. 11 is a diagram for explaining a layout of components of a conventional sub-pixel.
  • the deposition surface 100 of the substrate is usually partitioned in a matrix by, for example, signal lines SL and scanning lines WS, and these partitioned areas become subpixels SG, respectively.
  • the subpixels SG are arranged so that subpixels SG of different emission colors are adjacent to each other in one direction (hereinafter referred to as a first direction) x of the vertical direction and the horizontal direction of the matrix.
  • a first direction subpixels SG of different emission colors are adjacent to each other in one direction (hereinafter referred to as a first direction) x of the vertical direction and the horizontal direction of the matrix.
  • the second direction sub-pixels of the same emission color are arranged so as to be adjacent to each other.
  • Each sub-pixel SG includes a light emitting unit 107 and a pixel circuit 106 that drives the light emitting unit 107 to perform a light emitting operation.
  • the pixel circuit 106 is gathered and arranged in one place (for example, one end side in the second direction y) in the subpixel SG. It is formed over the entire remaining area in the sub-pixel SG. That is, the interval between the light emitting units 107 in the first direction x (that is, the interval between adjacent light emitting units 107 of different emission colors) is about the width of the signal line SL or the like (see, for example, Patent Document 3).
  • the interval between the light emitting units 107 in the first direction x (that is, the interval between adjacent light emitting units 107 of different emission colors) is about the width of the signal line SL or the like. Therefore, under the above-described vapor deposition method in which high-accuracy patterning cannot be performed, there is a problem that adjacent light emitting portions 107 having different light emission colors overlap and color mixing is likely to occur.
  • the interval between the light emitting portions 107 in the first direction x may be widened.
  • this causes a problem that the area of the light emitting portion 107 is reduced (thus, the aperture ratio is reduced).
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a semiconductor substrate and an organic EL display device that can prevent color mixture of emission colors without reducing the aperture ratio. .
  • a semiconductor substrate of the present invention is a semiconductor substrate on which a plurality of subpixels arranged in the vertical and horizontal directions are formed, and the plurality of subpixels are arranged in the vertical direction and the horizontal direction of the arrangement.
  • the first direction which is one of the directions
  • sub-pixels having different emission colors are arranged adjacent to each other, and each of the sub-pixels emits the light-emitting unit that emits the emission color and emits the light-emitting unit.
  • a pixel circuit that is driven to operate, and the pixel circuit is disposed along a first boundary between the sub pixel including the pixel circuit and the adjacent sub pixel on one side in the first direction.
  • the light emitting unit is disposed between the pixel circuit in the sub pixel including the light emitting unit and the pixel circuit in the sub pixel adjacent to the other side in the first direction.
  • the sub-pixels (and thus the light-emitting portions) are arranged so that different light emission colors are adjacent to each other.
  • the pixel circuit of each sub-pixel is arranged along a first boundary between the sub-pixel including the sub-pixel and the adjacent sub-pixel on one side in the first direction.
  • the pixel circuit in the sub-pixel including the pixel circuit is disposed between the pixel circuit in the adjacent sub-pixel on the other side in the first direction. That is, the arrangement area of the pixel circuit is also used as a color mixture prevention region for preventing color mixture between adjacent light emitting parts of different light emission colors.
  • a pixel circuit is arranged between adjacent light emitting portions having different light emission colors, a sufficient interval between adjacent light emitting portions having different light emission colors can be ensured without reducing the area of the light emitting portion. Can do. Thereby, it is possible to prevent color mixing of the emission colors without reducing the aperture ratio.
  • the semiconductor substrate of the present invention is a semiconductor substrate on which a plurality of sub-pixels arranged in the vertical and horizontal directions are formed, and the plurality of sub-pixels are included in the vertical and horizontal directions of the arrangement.
  • one direction which is one direction, sub-pixels of different emission colors are arranged adjacent to each other, and each of the sub-pixels emits the emission color and emits light from the emission unit.
  • a pixel circuit to be driven and the pixel circuit is disposed along a first boundary between the sub-pixel including the pixel circuit and the sub-pixel adjacent to one side in the first direction, and the light emission
  • the unit is arranged between the pixel circuit in the sub-pixel including the pixel circuit and the pixel circuit in the sub-pixel adjacent to the other side in the first direction.
  • FIG. 3 is a plan view of a semiconductor substrate used in the organic EL display device according to the first embodiment when viewed from the opposite side of the support substrate.
  • 3 is a diagram illustrating a layout of components of each sub-pixel in Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a layout in the case where a pixel circuit includes two transistors and one capacitor in Embodiment 1.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 4 is an equivalent circuit diagram of a subpixel in the case of FIG. 3. It is a figure explaining the formation process of the light emitting layer of a semiconductor substrate.
  • FIG. 10 is a diagram illustrating a layout of components of each sub pixel in the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a layout in the case where a pixel circuit includes three transistors and one capacitor in Embodiment 2.
  • FIG. 9 is an equivalent circuit diagram of a subpixel in the case of FIG. 8.
  • FIG. 10 is a diagram for explaining a layout of components of each sub-pixel in Embodiment 3.
  • FIG. 10 is a diagram illustrating an example of a layout in the case where a pixel circuit includes three transistors and one capacitor in Embodiment 3. It is a figure explaining the layout of the component of the conventional subpixel.
  • FIG. 1 is a plan view of a semiconductor substrate used in the organic EL display device according to the present embodiment as viewed from the opposite side of the support substrate.
  • the organic EL display device 1 includes a semiconductor substrate 10.
  • the semiconductor substrate 10 includes a support substrate 20, a pixel array unit 30 including a plurality of sub-pixels SG arranged in a matrix (that is, vertically and horizontally) on one main surface of the support substrate 20, and a pixel array
  • the scanning line driving circuit 40 that scans each sub pixel SG of the unit 30 in units of rows, and the signal line driving circuit 50 that writes a video signal to each sub pixel SG selected by the scanning line driving circuit 40 are provided. .
  • the pixel array unit 30 includes a plurality of scanning lines WS arranged in a row, a plurality of signal lines SL arranged in a column, and sub areas arranged in each region partitioned by each scanning line WS and each signal line SL. It consists of pixels SG.
  • Each scanning line WS is connected to the scanning line driving circuit 40 and is sequentially selected by the scanning line driving circuit 40 to output a control signal from the scanning line driving circuit 40 to the sub-pixels SG in units of rows.
  • Each signal line SL is connected to the signal line drive circuit 50, and the video signal from the signal line drive circuit 50 is written to each subpixel SG selected by the scanning line drive circuit 40.
  • This organic EL display device 1 is a full-color active matrix type organic EL display device, and is provided on each of the matrix regions partitioned by the scanning lines WS and the signal lines SL on the support substrate 20, respectively.
  • Sub-pixels SGb, SGg, and SGr composed of organic EL elements of blue (B), green (G), and red (R) are disposed.
  • each region partitioned by each scanning line WS and each signal line SL is one subpixel SG, and B, G, and R light emitting regions are formed for each subpixel SGb, SGg, and SGr. .
  • the organic EL display device 1 is configured as a bottom emission type that emits light from the support substrate 20 side, but may be configured as a top emission type that emits light from the opposite side of the support substrate 20. Absent.
  • R”, “B”, and “G” described in the block of each sub-pixel SG in FIG. 1 mean that light is emitted in red, blue, and green, respectively.
  • each sub-pixel SG emits light differently in one direction (here, horizontal direction x: first direction) of the vertical direction (that is, the column direction) and the horizontal direction (that is, the row direction) of the array.
  • the color sub-pixels SG are arranged so as to be adjacent to each other, and the sub-pixels SG of the same emission color are arranged so as to be adjacent in the other direction (here, the vertical direction y: second direction).
  • one pixel G is composed of three subpixels SGr, SGb, and SGg, which are a red subpixel SGr, a green subpixel SGg, and a blue subpixel SGb.
  • FIG. 2 is a diagram for explaining the layout of components of the sub-pixel SG.
  • FIG. 3 is a diagram illustrating an example of a layout in a case where a pixel circuit that is a constituent element of the sub-pixel SG includes two transistors and one capacitor. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • each sub-pixel SG includes a light-emitting unit 3 that emits a light emission color assigned to the sub-pixel SG, and a pixel circuit 5 that drives the light-emitting unit 3 to emit light. ing.
  • the pixel circuit 5 of each subpixel SG is along a boundary (first boundary) 7 between the subpixel SG and the adjacent subpixel SG on one side in the horizontal direction x in which different emission colors are arranged (that is, It is arranged along the boundary 7 so as to be arranged on the boundary 7 or along the boundary 7 so as to be arranged in the vicinity of the boundary 7). Further, the pixel circuit 5 is arranged along the boundary 7 so as to extend from the vicinity of one end of the sub-pixel SG to the vicinity of the other end.
  • the pixel circuit 5 includes, for example, two transistors (switching transistor T1 and driving transistor T2) and one capacitor (holding capacitor) C as shown in FIG.
  • the transistors T1 and T2 are arranged in a line along the boundary 7.
  • the capacitors C are formed in a long shape along the boundary 7, and are arranged in a line together with the transistors T1 and T2.
  • the light emission efficiency is generally different depending on the light emission color. For example, green has high current efficiency and blue has low current efficiency.
  • the aspect ratio (ratio of the channel length L to the channel width W (W / L ratio)) of the driving transistor T2 that supplies current to the light emitting unit 3 of the green subpixel SGg is small, and the light emission of the blue subpixel SGb.
  • the aspect ratio of the driving transistor T2 that supplies current to the unit 3 must be increased.
  • the drive transistor T2 of the blue subpixel SGb whose channel width W is larger than the channel length (W> L) is preferably arranged so that the direction of the channel width W is substantially parallel to the direction of the boundary 7.
  • the channel length L direction is substantially parallel to the boundary 7 direction. It is desirable to be arranged in. Thereby, it is possible to provide a margin for the distance between the transistor T2 and the light emitting unit 3 adjacent thereto.
  • the present invention may be applied to all transistors (for example, T1 and T2) in the pixel circuit 5. That is, among the transistors T1 and T2, those having the channel length L larger than the channel width W are arranged such that the direction of the channel length L is substantially parallel to the direction of the boundary 7, while the channel width W is larger than the channel length L.
  • the larger channel width W may be arranged so that the direction of the channel width W is substantially parallel to the direction of the boundary 7.
  • the channel width W is larger than the channel length L in each of the transistors T1 and T2, and therefore the direction of the channel width W is arranged substantially parallel to the direction of the boundary 7.
  • the transistor T1 has a channel width W larger than the channel length L, and thus the direction of the channel width W is arranged substantially parallel to the direction of the boundary 7. Since the channel length L of the transistor T2 is larger than the channel width W, the direction of the channel length L is arranged substantially parallel to the boundary direction.
  • the light emitting unit 3 of each subpixel SG is disposed between the pixel circuit 5 in the subpixel SG and the pixel circuit 5 in the subpixel SG adjacent to the horizontal direction x in which different emission colors are arranged. Yes. In other words, the pixel circuit 5 is interposed between the light emitting units 3 having different emission colors adjacent to each other.
  • Cross-sectional structure of semiconductor substrate 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • the semiconductor substrate 10 has a transistor T ⁇ b> 2, a signal line SL, an interlayer film 13 (interlayer insulating film, planarization film), an edge cover 15 on a transparent and insulating support substrate 20 such as a glass substrate. Is formed. Although omitted in FIG. 4, the scanning line WS, the transistor T ⁇ b> 1, and the capacitor C are also formed on the support substrate 20.
  • each signal line SL and each scanning line WS are provided, and for each sub-pixel SG, a transistor T1 and a transistor T2 constituting the pixel circuit 5 are provided. And a capacitor C are provided.
  • the transistor T1, the transistor T2, and the capacitor C are disposed along the signal line SL in the vicinity of the signal line SL that defines the boundary 7. Since the configurations of the transistors T1 and T2 and the capacitor C are well known, illustration and description thereof are omitted.
  • the interlayer film 13 is laminated on the entire display region 35 of the support substrate 20 so as to cover the transistors T1 and T2, the capacitor C, the signal line SL, and the scanning line WS.
  • the first electrode 21 of the light emitting unit 3 is formed on the interlayer film 13.
  • the interlayer film 13 is provided with a contact hole 13a for electrically connecting the first electrode 21 to the transistor T2.
  • the transistor T2 is electrically connected to the light emitting unit 3 through the contact hole 13a.
  • the edge cover 15 prevents the first electrode 21 and the second electrode 26 described later from being short-circuited when the organic EL layer 60 becomes thin or the electric field concentration occurs at the pattern end of the first electrode 21. This is an insulating layer.
  • the edge cover 15 is formed on the interlayer film 13 so as to cover the pattern end of the first electrode 21. Note that the transistor T1, the transistor T2, and the capacitor C are disposed below the edge cover 15.
  • the edge cover 15 is provided with openings 15R, 15B, and 15G for each of the sub-pixels SGr, SGb, and SGg.
  • the openings 15R, 15B, and 15G of the edge cover 15 serve as light emitting regions of the sub-pixels SGr, SGb, and SGg (that is, regions in plan view of the light emitting unit 3).
  • the organic EL display device 1 is configured as a bottom emission type, for example, the first electrode 21 is formed as a transparent electrode, and the second electrode 26 is formed as a reflective electrode.
  • the pixel circuit 5 is disposed between the light emitting units 3, light from the organic EL (light emitting unit 3) hardly enters the pixel circuit 5, and malfunction can be prevented.
  • the organic EL display device 1 is configured as a top emission type, for example, the first electrode 21 is formed as a reflective electrode, and the second electrode 26 is formed as a transparent electrode.
  • the pixel circuit 5 is disposed between the light emitting units 3, that is, the pixel circuit 5 is not disposed under the light emitting unit 3.
  • the EL film thickness can be made uniform, and the current distribution can be made uniform.
  • the light emitting unit 3 is a light emitting element (here, an organic EL element) capable of high luminance light emission by low voltage direct current drive, and is configured by laminating the first electrode 21, the organic EL layer 60, and the second electrode 26 in this order. Has been.
  • the first electrode 21 is a layer having a function of injecting holes into the organic EL layer 60.
  • the first electrode 21 is connected to the transistor T2 through the contact hole 13a as described above.
  • a hole injection layer / hole transport layer 22 and a light emitting layer 23 (23R ⁇ 23B / 23G), the electron transport layer 24, and the electron injection layer 25 are formed in this order.
  • the stacking order is that in which the first electrode 21 is an anode and the second electrode 26 is a cathode, the first electrode 21 is a cathode, and the second electrode 26 is an anode.
  • the stacking order of 60 is reversed.
  • the hole injection layer is a layer having a function of increasing the efficiency of hole injection into the light emitting layers 23R, 23B, and 23G.
  • the hole transport layer is a layer having a function of improving the efficiency of transporting holes to the light emitting layers 23R, 23B, and 23G.
  • the hole injection / hole transport layer 22 is uniformly formed on the entire display region 35 of the support substrate 20 so as to cover the first electrode 21 and the edge cover 15.
  • the hole injection layer / hole transport layer 22 in which the hole injection layer and the hole transport layer are integrated is provided as the hole injection layer and the hole transport layer.
  • An example will be described.
  • the present embodiment is not limited to this.
  • the hole injection layer and the hole transport layer may be formed as independent layers.
  • the light emitting layers 23R, 23B, and 23G correspond to the sub-pixels SGr, SGb, and SGg, respectively, so as to cover the openings 15R, 15B, and 15G of the edge cover 15. Is formed.
  • the light emitting layers 23R, 23B, and 23G are layers having a function of emitting light by recombining holes injected from the first electrode 21 side with electrons injected from the second electrode 26 side. .
  • the light emitting layers 23R, 23B, and 23G are each formed of a material having high light emission efficiency, such as a low molecular fluorescent dye or a metal complex.
  • the electron transport layer 24 is a layer having a function of increasing the electron transport efficiency from the second electrode 26 to the light emitting layers 23R, 23B, and 23G.
  • the electron injection layer 25 is a layer having a function of increasing the electron injection efficiency from the second electrode 26 to the light emitting layers 23R, 23B, and 23G.
  • the electron transport layer 24 is supported on the light emitting layer 23R / 23B / 23G and the hole injection layer / hole transport layer 22 so as to cover the light emitting layer 23R / 23B / 23G and the hole injection layer / hole transport layer 22. It is uniformly formed over the entire display area 35 of the substrate 20. Further, the electron injection layer 25 is uniformly formed on the entire surface of the display region 35 of the support substrate 20 on the electron transport layer 24 so as to cover the electron transport layer 24.
  • the electron transport layer 24 and the electron injection layer 25 may be formed as independent layers as described above, or may be provided integrally with each other. That is, instead of the electron transport layer 24 and the electron injection layer 25, an electron transport layer / electron injection layer may be provided.
  • the second electrode 26 is a layer having a function of injecting electrons into the organic EL layer 60 composed of the organic layers (light emitting layers 23R, 23B, and 23G) as described above.
  • the second electrode 26 is uniformly formed on the electron injection layer 25 over the entire display region of the support substrate 20 so as to cover the electron injection layer 25.
  • organic layers other than the light emitting layers 23R, 23B, and 23G are not essential layers as the organic EL layer 60, and may be appropriately formed according to the required characteristics of the light emitting unit 3.
  • a carrier blocking layer can be added to the organic EL layer 60 as necessary. For example, by adding a hole blocking layer as a carrier blocking layer between the light emitting layers 23R, 23B, and 23G and the electron transport layer 24, the holes are prevented from passing through the electron transport layer 24, and the light emission efficiency is improved. can do.
  • first electrode / light emitting layer / second electrode (2) First electrode / hole transport layer / light emitting layer / electron transport layer / second electrode (3) First electrode / hole transport layer / light emitting layer / Hole blocking layer (carrier blocking layer) / electron transport layer / second electrode (4) first electrode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / second electrode (5 ) 1st electrode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / second electrode (6) 1st electrode / hole injection layer / hole transport layer / light emitting layer / positive Hole blocking layer / electron transport layer / second electrode (7) first electrode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / second electrode (8) 1st electrode
  • the configuration of the light emitting unit 3 is not limited to the above-described exemplary layer configuration, and a desired layer configuration can be adopted according to the required characteristics of the light emitting unit 3 as described above.
  • each subpixel SG is connected to the pixel circuit 5 in the subpixel SG (transistor T2 in FIG. 4) and the pixel circuit 5 in the subpixel SG adjacent to the direction x in which different emission colors are arranged. (Transistor T2 in FIG. 4).
  • FIG. 5 is an equivalent circuit diagram (FIG. 5) described later.
  • FIG. 5 is an equivalent circuit diagram of the pixel array unit 30 of the semiconductor substrate 10.
  • an equivalent circuit is shown only for one subpixel SG, but a similar equivalent circuit is established for all subpixels.
  • Each sub-pixel SG includes the light emitting unit 3 and the pixel circuit 5 as described above.
  • the pixel circuit includes two transistors T1 and T2 and one storage capacitor C.
  • the transistor T1 is, for example, an N channel type switching transistor configured by a thin film transistor.
  • the transistor T2 is, for example, a P-channel driving transistor configured by a thin film transistor.
  • the capacitor C is a storage capacitor configured by a thin film capacitor, for example.
  • the light emitting unit 3 is handled as a two-terminal element (diode) in this equivalent circuit.
  • the source / drain (between main electrodes) of the transistor T1 is connected between the signal line SL and the gate (control electrode) of the transistor T2.
  • the gate (control electrode) of the transistor T1 is connected to the scanning line WS.
  • the source (one main electrode) of the transistor T2 is connected to the power supply line Vcc, and the drain (the other main electrode) of the transistor T2 is connected to the anode (that is, the first electrode 21) of the light emitting unit 3.
  • the cathode of the light emitting unit 3 (that is, the second electrode 26) is grounded.
  • the capacitor C is connected between the power supply line Vcc and the gate of the transistor T1.
  • each subpixel SG is controlled as follows. That is, a control signal is supplied to each scanning line WS sequentially selected by the scanning line driving circuit 40, and an image is displayed on each signal line SL by the signal line driving circuit 50 in accordance with the selected scanning line WS. A signal is supplied.
  • the control signal supplied to the scanning line WS is applied to the gate of the transistor T1, so that the transistor T1 becomes conductive.
  • the video signal supplied to the signal line SL is written into the capacitor C through the transistor T1.
  • the drain current Ids is supplied to the light emitting unit 3 according to the video signal written in the capacitor C by the transistor T2.
  • the light emission part 3 light-emits with the brightness
  • FIG. 6 is a diagram illustrating a process for forming a light emitting layer of the semiconductor substrate 10.
  • the signal line SL and the scanning line WS are formed on the display area 35 of the support substrate 20 by a known method. Since each region partitioned by the signal line SL and the scanning line WS becomes the sub pixel SG, the signal line SL and the scanning line WS become the boundary of the sub pixel SG.
  • the transistors T1 and T2 and the capacitor C constituting the pixel circuit 5 are connected in the x direction in the region. It is formed along the boundary 7 on one side (for example, the left side in FIG. 3).
  • the signal line SL, the scanning line WS (not shown), the transistor T1 (not shown), the transistor T2, and the capacitor C An interlayer film 13 is formed so as to cover (not shown), and a first region is formed in a region to be the light emitting unit 3 (that is, a region other than the region in which the pixel circuit 5 is formed in the region to be the subpixel SG).
  • the electrode 21 and the edge cover 15 are formed, and the hole injection layer / hole transport layer 22 is formed over the entire display region 35 so as to cover them.
  • the light emitting layers 23R, 23B, and 23G of the respective colors are formed on the support substrate 20 on which the constituent members up to the hole injection layer / hole transport layer 22 are formed in this way by using the vapor deposition apparatus 105 of FIG. Form.
  • the vapor deposition apparatus 105 includes, for example, a shadow mask 102 having a slit-shaped opening 102a, a nozzle 103 having a nozzle opening 103a, and a vapor deposition source 104 connected to the nozzle 103, and these are integrated. It is configured.
  • the nozzle 103 is arranged with the nozzle opening 103a facing upward.
  • the shadow mask 102 is disposed above the nozzle 103. Due to this arrangement relationship, the vapor deposition particles (the material of the light emitting layer 23) ejected from the nozzle opening 103a are ejected upward through the slit-shaped opening 102a of the shadow mask 102.
  • the support substrate 20 is arranged with the display region 35 (that is, the surface on which the hole injection layer / hole transport layer 22 is formed) facing downward.
  • the support substrate 20 is arranged so that the extending direction (y direction) of the signal lines SL of the support substrate 20 and the extending direction of the opening 102a of the shadow mask 102 are substantially parallel.
  • the support substrate 20 is scanned in the extending direction (y direction) of the signal line SL and passed above the vapor deposition apparatus 105.
  • the light emitting layer 23 is formed on the display region 35 of the support substrate 20.
  • red vapor deposition particles are ejected from the nozzle 103. Then, using the shadow mask 102 having the opening 102a only in a predetermined region corresponding to the opening 15R (that is, the region where the red light emitting unit 3 is formed) of each red sub-pixel SGr, vapor deposition by the above scanning is performed. Do. Thereby, as shown in FIG. 4, the light emitting layer 23R is formed in the opening 15R in each red sub-pixel SGr.
  • the green light emitting layer 23G is formed in the opening 15G of each green subpixel SGg in the same manner as the red light emitting layer 23R.
  • the blue light emitting layer 23B is formed in the opening 15B of each blue subpixel SGb.
  • the light emitting layers 23R, 23B, and 23G of the respective colors are formed in the openings 15R, 15B, and 15G of the subpixels SGr, SGb, and SGg of the respective colors. That is, the light emitting layers 23R, 23B, and 23G of the sub-pixels SGr, SGb, and SGg include the pixel circuit 5 (the transistor T2 in FIG. 4) of the sub-pixel SG and the pixel circuit 5 ( In FIG. 4, it is arranged between the transistor T2).
  • the pixel circuit 5 is interposed between the light emitting layers 23R, 23B, and 23G of different colors, a sufficient interval is secured. Therefore, when the light emitting layers 23R, 23B, and 23G are formed, the positional relationship between the shadow mask 102 and the support substrate 20 is shifted, and the formation positions of the light emitting layers 23R, 23B, and 23G of the respective colors are different from each other. Even if the layers 23R, 23B, and 23G are shifted to the side, they are prevented from overlapping with the adjacent light emitting layers 23R, 23B, and 23G of different colors.
  • the electron transport layer 24, the electron injection layer 25, and the Two electrodes 26 are sequentially formed.
  • the scanning line driving circuit 40 and the signal line driving circuit 50 are formed by a known method. In this way, the semiconductor substrate 10 is manufactured.
  • each sub pixel SG (and thus each light emitting unit 3) is The different emission colors are arranged next to each other.
  • the pixel circuit 5 of each subpixel SG is disposed along a boundary 7 (first boundary) between the subpixel SG including the pixel circuit 5 and the adjacent subpixel SG on one side in the first direction x.
  • the light emitting unit 3 of each subpixel SG is disposed between the pixel circuit 5 in the subpixel SG including the subpixel SG and the pixel circuit 5 in the adjacent subpixel SG on the other side in the first direction x.
  • the arrangement area of the pixel circuit 5 is also used as a color mixture prevention region for preventing color mixture between the adjacent light emitting units 3 having different emission colors.
  • the pixel circuit 5 is disposed between the adjacent light emitting units 3 having different emission colors, the interval between the adjacent light emitting units 3 having different emission colors can be achieved without reducing the area of the light emitting unit 3. Can be secured sufficiently. Thereby, it is possible to prevent color mixing of the emission colors without reducing the aperture ratio.
  • each subpixel SG is formed in a straight line along the boundary 7 as shown in FIG. 2, but in this embodiment, each subpixel SG is shown in FIG.
  • the pixel circuit 5 ′ is formed in an L shape along the boundaries 7 and 8.
  • this embodiment will be described in detail based on FIG. 7 and FIG.
  • FIG. 7 is a plan view of the layout of components of each sub-pixel SG in this embodiment.
  • FIG. 8 is an enlarged plan view of one subpixel SG.
  • the pixel circuit 5 ′ of each sub-pixel SG is formed in an L shape along the boundaries 7 and 8. That is, the pixel circuit 5 ′ of each subpixel SG has a portion along the boundary 7 on the one side (first boundary) of the boundary 7 (first boundary) on both sides in the x direction of the subpixel SG, as in the first embodiment. 1 portion) 5a and a portion (second portion) 5b along one boundary 8 of the boundary 8 (second boundary) on both sides in the y direction of the subpixel SG.
  • the second portion 5b can also be said to be a portion extending in the x direction.
  • the second portions 5b of the sub-pixels SGr, SGg, and SGb are arranged on the same side in the y direction (lower side in FIG. 7), but it is not necessary to arrange them on the same side.
  • the second portion 5b of the sub pixel SGb may be disposed on the upper side in the y direction
  • the second portion 5b of each sub pixel SGg / SGr may be disposed on the lower side in the y direction.
  • boundary 7 is a boundary between the sub-pixels SG having different emission colors (that is, a boundary defined by the signal line SL).
  • boundary 8 is a boundary between the sub-pixels SG having the same emission color (that is, a boundary defined by the scanning line WS).
  • the pixel circuit 5 ′ of this embodiment includes, for example, as shown in FIG. 8, three transistors (switching transistor T3, driving transistor T4, light emission control transistor T5) and one capacitor (holding capacitor) C. And.
  • the transistors T3 to T5 are arranged in a line along the boundary 7.
  • the capacitor C includes a portion (first capacitor portion) Ca formed along the boundary 7 and a portion (second capacitor portion) Cb formed along the boundary 7 from the first capacitor portion Ca.
  • the first capacitor Ca is arranged in a row together with the transistors T3 to T5, and the first portion 5a of the pixel circuit 5 'is constituted by these components Ca, T3, T4, and T5.
  • the second capacitor portion Cb constitutes the second portion 5b of the pixel circuit 5 '.
  • FIG. 9 is an equivalent circuit diagram of each sub-pixel SG of this embodiment. As shown in FIG. 9, each sub-pixel SG of this embodiment includes the light emitting unit 3 and the pixel circuit 5 'as described above.
  • a control line E is added for each scanning line WS compared to the case of the first embodiment.
  • Each control line E is connected to the scanning line driving circuit 40, and is sequentially selected together with the corresponding scanning line WS by the scanning line driving circuit 40, and the control signal from the scanning line driving circuit 40 is sub-pixel-by-row. Output to SG.
  • Each of the transistors T3 to T5 is composed of, for example, an N-channel transistor.
  • the source (one main electrode) of the transistor T3 is connected to the signal line SL, and the drain (the other main electrode) of the transistor T3 is connected to the gate (control electrode) of the transistor T4.
  • the drain (one main electrode) of the transistor T5 is connected to the power supply line Vcc, and the source (the other main electrode) of the transistor T5 is connected to the drain (one main electrode) of the transistor T4.
  • the source (the other main electrode) of the transistor T4 is connected to the anode of the light emitting unit 3.
  • the cathode of the light emitting unit 3 is grounded, for example.
  • the capacitor C is connected between the gate and source of the transistor T4.
  • the gate of the transistor T3 is connected to the scanning line WS, and the gate of the transistor T5 is connected to the control line E.
  • each subpixel SG is controlled as follows. That is, a control signal is supplied to each scanning line WS and each control line E sequentially selected by the scanning line driving circuit 40, and at the same time, the signal line driving circuit 50 adjusts to the selected scanning line WS. A video signal is supplied to each signal line SL.
  • the control signal supplied to the control line E is applied to the gate of the transistor T5, so that the transistor T5 becomes conductive. Further, the control signal supplied to the scanning line WS is applied to the gate of the transistor T3, so that the transistor T3 becomes conductive. Thus, the video signal supplied to the signal line SL is written into the capacitor C through the transistor T3.
  • the source current Ids flows according to the video signal written in the capacitor C.
  • the current from the power supply line Vcc sequentially conducts the transistors T5 and T4, and the current Ids corresponding to the video signal written in the capacitor C is supplied to the light emitting unit 3.
  • the light emission part 3 light-emits with the brightness
  • the three transistors T3 to T5 are arranged in a line along the boundary 7.
  • the present invention is not limited to this.
  • all or part of the three transistors T3 to T5 are arranged. May be arranged along the boundary 8.
  • one capacitor C includes the first capacitor portion Ca along the boundary 7 and the second capacitor portion Cb along the boundary 8.
  • the capacitor along the boundary 7 and the boundary 8 Two capacitances may be provided, with a capacitance along
  • the first capacitor portion Ca of the capacitor C is disposed along the boundary 7 and the second capacitor portion Cb of the capacitor is disposed along the boundary 8.
  • the present invention is not limited to this. Instead, the entire capacitor C may be disposed along the boundary 8, and the entire capacitor C may be disposed along the boundary 7 as in the first embodiment.
  • the pixel circuit 5 ′ includes the first portion 5a along the boundary 7 (first boundary) and the second portion 5b extending from the first portion 5a in the x direction. Therefore, even when the first portion 5a alone cannot secure a sufficient placement area of the pixel circuit 5 ′, the second portion 5b makes it possible to secure a sufficient placement area of the pixel circuit 5 ′. .
  • the second portion 5b of the pixel circuit 5 ′ is disposed along the boundary 8 (second boundary), the second portion 5b does not divide the light emitting unit 3 of the subpixel SG including the second portion 5b. It is possible to secure an arrangement place of the second part.
  • the pixel circuit 5 ′ is formed in an L shape. That is, the second portion (that is, the portion extending in the x direction) 5 b of the pixel circuit 5 ′ is disposed on one end side in the y direction of the light emitting unit 3.
  • the second portion 5 b of the pixel circuit 5 ′′ divides the light emitting unit 3 in the y direction and is arranged therebetween.
  • FIG. 10 is a diagram for explaining the layout of the components of each sub-pixel SG in this embodiment.
  • FIG. 11 is a diagram for explaining an example of a layout in the case where the pixel circuit 5 ′′ according to the third embodiment includes three transistors and one capacitor.
  • the pixel circuit 5 ′′ of each subpixel SG includes a portion (first portion) 5a along the boundary 7 and a portion (second portion) 5b extending in the x direction.
  • the second portion 5b of the pixel circuit 5 ′′ is divided into two light emitting portions 3 of the same subpixel SG at appropriate locations in the y direction, and the light emitting portions 3a and 3b divided in two are divided. Are arranged along.
  • the second portions 5b of the sub-pixels SGr, SGg, and SGb are arranged at the same place in the y direction, but need not be arranged at the same place in the y direction.
  • the second portion 5b of the sub pixel SGb is disposed at a location above the intermediate position in the y direction
  • the second portion 5b of each sub pixel SGg / SGr is disposed at a location below the intermediate position in the y direction. May be.
  • the pixel circuit 5 ′′ of this embodiment includes, for example, as shown in FIG. 11, three transistors (switching transistor T3, drive transistor T4, light emission control transistor T5) and one capacitor (holding capacitor) C.
  • the transistors T3 to T5 are arranged in a line along the boundary 7.
  • the capacitor C includes a portion (first capacitor portion) Ca formed along the boundary 7 and a portion (second capacitor portion) Cb extending from the first capacitor portion Ca in the x direction.
  • the first capacitor Ca is arranged in one row together with the transistors T3 to T5. These components Ca, T3, T4, and T5 constitute the first portion 5a of the pixel circuit 5 ′′.
  • the light emitting portion 3 is divided into two at appropriate positions in the y direction, and the second capacitor portion Cb. Are arranged between the light-emitting portions 3a and 3b divided into two (that is, along the x direction).
  • the second capacitor portion Cb constitutes the second portion 5b of the pixel circuit 5 ′′. Yes.
  • each sub-pixel SG in this embodiment is the same as the equivalent circuit diagram of the sub-pixel SG in the second embodiment.
  • the pixel circuit 5 ′′ similarly to the second embodiment, the pixel circuit 5 ′′ includes the first portion 5a along the boundary 7 (first boundary) and the first portion 5a in the x direction. Since the second portion 5b extending in the (first direction) is provided, the arrangement area of the pixel circuit 5 ′′ can be sufficiently ensured.
  • the second portion 5b (Cb in FIG. 11) of the pixel circuit 5 ′′ divides the light emitting section 3 of the sub-pixel SG including the pixel circuit 5 ′′ in the y direction (second direction), and the divided light emitting sections 3a and 3b. Since they are arranged between the two, the wiring of the second portion 5b can be shortened.
  • the second portion 5b when the second portion 5b is arranged along the x direction without dividing the light emitting portion 3, the second portion 5b is placed on the end side in the y direction of the light emitting portion 3 as shown in FIG. Since it is necessary to arrange it, it is necessary to route the wiring of the second part 5b to the end of the light emitting unit 3 in the y direction. Therefore, the wiring of the second portion 5b becomes longer.
  • the light emission part 3 is divided
  • the said 2nd part 5b Wiring routing can be shortened.
  • the second portion 5b (Cb in FIG. 11) of the pixel circuit 5 ′′ is arranged between the divided light emitting portions 3a and 3b by dividing the light emitting portion 3 of the subpixel SG including the second portion 5b in the y direction. , The emission color of each sub-pixel SG adjacent along the y direction can be displayed smoothly.
  • the second portion 5b when the second portion 5b is arranged along the x direction without dividing the light emitting portion 3, the second portion 5b is placed on the end side in the y direction of the light emitting portion 3 as shown in FIG. In other words, it is necessary to arrange them (along the boundary 8 between each subpixel SG adjacent in the y direction).
  • the boundary 8 is further widened by the arrangement area of the second portion 5b in addition to the width of the scanning line WS, so that the emission color of each sub-pixel SG adjacent along the y direction cannot be displayed smoothly.
  • the light emitting unit 3 is divided in the y direction, and the second portion 5b is disposed between the divided light emitting units 3a and 3b, so that the boundary 8 has a y direction.
  • the interval between the light emitting portions 3 of the sub-pixels SG adjacent to each other can be set to about the width of the signal line SL. Further, the interval between the divided light emitting portions 3a and 3b is also about the width of the second portion 5b, and the light emission colors of the respective light emitting portions 3a and 3b are displayed smoothly. Therefore, the emission color of each subpixel SG adjacent along the y direction can be displayed smoothly.
  • the pixel circuit includes the first portion along the first boundary and the first portion extending from the first portion to the one side in the first direction. And a second part.
  • the pixel circuit includes the first portion along the first boundary and the second portion extending from the first portion to the one side in the first direction. Even when the circuit layout area cannot be sufficiently secured, the pixel circuit circuit layout area can be sufficiently secured by the presence of the second portion.
  • the second portion of the pixel circuit includes the sub-pixel including the pixel circuit and the second direction which is the other of the vertical direction and the horizontal direction. It is desirable to arrange the second sub-pixel along a second boundary between adjacent sub-pixels.
  • 2nd part of a pixel circuit is arrange
  • 2nd part of a pixel circuit Can secure the arrangement location of the second portion without dividing the light emitting portion of the sub-pixel including the same.
  • the second part of the pixel circuit is the other direction of the vertical direction and the horizontal direction of the light emitting unit of the sub-pixel including the pixel circuit. It is desirable to divide in the second direction and arrange between the divided light emitting units.
  • the second portion of the pixel circuit divides the light emitting portion of the sub-pixel including the second portion in the second direction, and is arranged between the divided light emitting portions.
  • (A) Pixel circuit The wiring of the second part can be shortened, and (b) the emission color of each sub-pixel adjacent in the second direction can be displayed smoothly.
  • the pixel circuit includes a capacitor disposed along the first boundary.
  • the capacitor arranged along the first boundary is provided, even when the capacitor is provided, the arrangement area of the pixel circuit is formed so as to cover the entire first boundary without increasing as much as possible. be able to.
  • the pixel circuit includes one or more transistors, and the one or more transistors are arranged along the first boundary.
  • the one or more transistors are arranged along the first boundary. Therefore, the arrangement area of the pixel circuit is formed so as to cover the entire first boundary without increasing as much as possible. Can do.
  • the pixel circuit includes a capacitor disposed in the second portion of the pixel circuit.
  • the semiconductor substrate according to the embodiment of the present invention at least a part of the transistors having a channel length larger than the channel width is the other of the vertical direction and the horizontal direction. It is desirable that the second direction, which is the direction, be arranged substantially in parallel.
  • At least a part of the transistors having a channel length larger than the channel width is disposed so that the channel length direction is substantially parallel to the second direction. It is possible to provide a margin for the distance from the light emitting unit.
  • the semiconductor substrate according to the embodiment of the present invention at least a part of the transistors whose channel width is larger than the channel length is the other of the vertical direction and the horizontal direction. It is desirable that the second direction, which is the direction, be arranged substantially parallel to the second direction.
  • At least a part of the transistors whose channel width is larger than the channel length is arranged so that the direction of the channel width is substantially parallel to the second direction. It is possible to provide a margin for the distance from the light emitting unit.
  • each of the sub-pixels is disposed in each region partitioned by a plurality of scanning lines arranged in rows and a plurality of signal lines arranged in columns.
  • the pixel circuits of the sub-pixels are preferably arranged inside the regions.
  • the organic EL display device according to the embodiment of the present invention is preferably an organic EL display device including the semiconductor substrate.
  • an organic EL display device having the effect of the semiconductor substrate can be provided.
  • the present invention can be suitably used for a semiconductor substrate of an organic EL display device, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

In this semiconductor substrate: a plurality of subpixels (SG) are arranged such that different emission colors are adjacent in the x direction; each subpixel (SG) comprises a light-emission unit (3) and a pixel circuit (5); the pixel circuits (5) are arranged along a boundary (7) between the subpixel (SG) comprising the pixel circuit and the adjacent subpixel (SG) on one side in the x direction; and the light-emission units (3) are arranged between the pixel circuit (5) inside the subpixel (SG) comprising the light-emission unit and the pixel circuit (5) inside the subpixel (SG) adjacent on the other side in the x direction.

Description

半導体基板および有機EL表示装置Semiconductor substrate and organic EL display device
 本発明は、カラー表示を行う有機EL表示装置に使用可能な半導体基板に関するものである。 The present invention relates to a semiconductor substrate that can be used in an organic EL display device that performs color display.
 近年、様々な商品や分野でフラットパネルディスプレイが活用されており、フラットパネルディスプレイのさらなる大型化、高画質化、低消費電力化が求められている。 In recent years, flat panel displays have been used in various products and fields, and further flat panel displays are required to have larger sizes, higher image quality, and lower power consumption.
 そのような状況下において、有機材料の電界発光(Electroluminescence;以下、「EL」と記す)を利用した有機EL素子を備えた有機EL表示装置は、全固体型で、低電圧駆動、高速応答性、自発光性、広視野角特性等の点で優れたフラットパネルディスプレイとして、高い注目を浴びている。 Under such circumstances, an organic EL display device including an organic EL element using electroluminescence (hereinafter referred to as “EL”) of an organic material is an all-solid-state type, low voltage drive, and high-speed response. As a flat panel display excellent in self-luminous property, wide viewing angle characteristics, etc., it has attracted a great deal of attention.
 有機EL表示装置は、例えば、TFT(薄膜トランジスタ)が設けられたガラス基板等からなる基板上に、TFTに電気的に接続された有機EL素子が設けられた構成を有している。 The organic EL display device has a configuration in which, for example, an organic EL element electrically connected to a TFT is provided on a substrate made of a glass substrate or the like provided with a TFT (thin film transistor).
 例えば、フルカラーの有機EL表示装置では、一般的に、赤(R)、緑(G)、青(B)の各色の発光層を備えた有機EL素子がサブ画素として基板上に配列形成され、TFTを用いて、これら有機EL素子を選択的に所望の輝度で発光させることによりカラー画像表示を行うようになっている。 For example, in a full-color organic EL display device, generally, organic EL elements including light emitting layers of red (R), green (G), and blue (B) are arranged and formed on a substrate as sub-pixels. Color images are displayed by selectively emitting light from these organic EL elements with a desired luminance using TFTs.
 したがって、有機EL表示装置を製造するためには、各色に発光する有機発光材料からなる発光層を有機EL素子毎に所定パターンで形成する必要がある。 Therefore, in order to manufacture an organic EL display device, it is necessary to form a light emitting layer made of an organic light emitting material that emits light of each color in a predetermined pattern for each organic EL element.
 このような発光層を所定パターンで形成する方法としては、例えば、真空蒸着法、インクジェット法、レーザ転写法などが知られている。そして、例えば、低分子型有機EL表示装置(OLED)では、真空蒸着法が用いられることが多い。 As a method for forming such a light emitting layer in a predetermined pattern, for example, a vacuum deposition method, an ink jet method, a laser transfer method and the like are known. For example, in a low molecular organic EL display (OLED), a vacuum deposition method is often used.
 真空蒸着法では、所定パターンの開口が形成されたマスク(シャドウマスクとも称される)が使用され、マスクが密着固定された基板の被蒸着面を蒸着源に対向させる。 In the vacuum deposition method, a mask (also referred to as a shadow mask) in which openings of a predetermined pattern are formed is used, and the deposition surface of the substrate on which the mask is closely fixed is opposed to the deposition source.
 そして、蒸着源からの蒸着粒子(成膜材料)を、マスクの開口を通して被蒸着面に蒸着させることにより、所定パターンの薄膜が形成される。蒸着は発光層の色毎に行われ、これを「塗り分け蒸着」という。 Then, the vapor deposition particles (film forming material) from the vapor deposition source are vapor-deposited on the surface to be vapor-deposited through the opening of the mask, thereby forming a thin film having a predetermined pattern. Vapor deposition is performed for each color of the light emitting layer, and this is called “separate vapor deposition”.
 特許文献1および特許文献2には、基板に対してマスクを少しずつ移動させて各色の発光層の塗り分け蒸着を行う方法が記載されている。 Patent Document 1 and Patent Document 2 describe a method in which the mask is moved little by little with respect to the substrate and the light emitting layers of the respective colors are separately deposited.
 このような従来の塗り分け蒸着法においては、基板と同等の大きさのマスクが使用され、蒸着時にはマスクは基板の被蒸着面を覆うように固定されるようになっている。 In such a conventional separate vapor deposition method, a mask having the same size as the substrate is used, and the mask is fixed so as to cover the deposition surface of the substrate during vapor deposition.
 したがって、従来の塗り分け蒸着法においては、基板が大きくなればそれに伴ってマスクも大型化する必要がある。 Therefore, in the conventional separate vapor deposition method, as the substrate becomes larger, it is necessary to enlarge the mask accordingly.
 しかしながら、マスクを大きくすると、マスクの自重撓みや伸びにより、基板とマスクとの間に隙間が生じ易くなるとともに、その隙間の大きさは、基板の被蒸着面の位置によってそれぞれ異なる。 However, when the mask is enlarged, a gap is easily generated between the substrate and the mask due to the self-weight deflection and elongation of the mask, and the size of the gap varies depending on the position of the deposition surface of the substrate.
 よって、従来の塗り分け蒸着法を用いた場合、高精度なパターニングを行うのが難しく、蒸着位置のズレや混色が発生してしまうという問題があった。 Therefore, when the conventional separate vapor deposition method is used, it is difficult to perform high-precision patterning, and there is a problem in that the position of vapor deposition and color mixing occur.
 図11を用いて、上記の混色の問題について詳説する。図11は、従来のサブ画素の構成要素のレイアウトを説明する図である。図11の様に、通常、基板の被蒸着面100は、例えば信号線SLおよび走査線WS等によりマトリクス状に区画されており、それら各区画領域がそれぞれサブ画素SGとなる。各サブ画素SGの配列は、マトリクスの縦方向および横方向のうちの一方の方向(以降、第1方向と呼ぶ)xには、異なる発光色のサブ画素SGが隣り合う様に配列され、他方の方向(以降、第2方向と呼ぶ)yには、同じ発光色のサブ画素が隣り合う様に配列される。 The above color mixing problem will be described in detail with reference to FIG. FIG. 11 is a diagram for explaining a layout of components of a conventional sub-pixel. As shown in FIG. 11, the deposition surface 100 of the substrate is usually partitioned in a matrix by, for example, signal lines SL and scanning lines WS, and these partitioned areas become subpixels SG, respectively. The subpixels SG are arranged so that subpixels SG of different emission colors are adjacent to each other in one direction (hereinafter referred to as a first direction) x of the vertical direction and the horizontal direction of the matrix. In this direction (hereinafter referred to as the second direction) y, sub-pixels of the same emission color are arranged so as to be adjacent to each other.
 各サブ画素SGには、発光部107と、その発光部107を発光動作するように駆動する画素回路106とが備えられている。従来のサブ画素SGでは、図11の様に、画素回路106は、サブ画素SG内の1カ所(例えば第2方向yの一端部側)に集められて配置されており、発光部107は、サブ画素SG内の残りの領域全体に形成されている。即ち、各発光部107の第1方向xの間隔(即ち、隣り合う、異なる発光色の発光部107の間隔)は、信号線SL等の幅程度である(例えば特許文献3参照)。 Each sub-pixel SG includes a light emitting unit 107 and a pixel circuit 106 that drives the light emitting unit 107 to perform a light emitting operation. In the conventional subpixel SG, as shown in FIG. 11, the pixel circuit 106 is gathered and arranged in one place (for example, one end side in the second direction y) in the subpixel SG. It is formed over the entire remaining area in the sub-pixel SG. That is, the interval between the light emitting units 107 in the first direction x (that is, the interval between adjacent light emitting units 107 of different emission colors) is about the width of the signal line SL or the like (see, for example, Patent Document 3).
日本国公開特許公報「特開平8-227276号公報(1996年9月3日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 8-227276 (published on September 3, 1996)” 日本国公開特許公報「特開2000-188179号公報(2000年7月4日公開)」Japanese Patent Publication “JP 2000-188179 A (published July 4, 2000)” 日本国公開特許公報「特開2008-39876号公報(2008年2月21日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-39876 (published on Feb. 21, 2008)”
 従来では、上述の様に、各発光部107の第1方向xの間隔(即ち、隣り合う、異なる発光色の発光部107の間隔)は、信号線SL等の幅程度である。そのため、上述の様な、高精度のパターニングが行えない蒸着法の下では、隣り合う、異なる発光色の発光部107が重なり合って混色が発生し易いという問題がある。 Conventionally, as described above, the interval between the light emitting units 107 in the first direction x (that is, the interval between adjacent light emitting units 107 of different emission colors) is about the width of the signal line SL or the like. Therefore, under the above-described vapor deposition method in which high-accuracy patterning cannot be performed, there is a problem that adjacent light emitting portions 107 having different light emission colors overlap and color mixing is likely to occur.
 この問題を解決するには、各発光部107の第1方向xの間隔を広げれば良いが、そうすると、発光部107の面積が小さくなる(従って開口率が低下する)という問題が生じる。 In order to solve this problem, the interval between the light emitting portions 107 in the first direction x may be widened. However, this causes a problem that the area of the light emitting portion 107 is reduced (thus, the aperture ratio is reduced).
 本発明は、上記の問題点に鑑みてなされたものであり、開口率を低下させること無く、発光色の混色を防止することができる半導体基板および有機EL表示装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a semiconductor substrate and an organic EL display device that can prevent color mixture of emission colors without reducing the aperture ratio. .
 上記の課題を解決するために、本発明の半導体基板は、縦横に配列された複数のサブ画素が形成された半導体基板であって、上記複数のサブ画素は、それらの配列の縦方向および横方向のうちの一方の方向である第1方向には、異なる発光色のサブ画素が隣り合う様に配列され、上記各サブ画素は、上記発光色を発光する発光部と、上記発光部を発光動作するように駆動する画素回路と、を備え、上記画素回路は、それを備える上記サブ画素と、上記第1方向の一方側の隣の上記サブ画素との間の第1境界に沿って配置され、上記発光部は、それを備える上記サブ画素内の上記画素回路と、上記第1方向の他方側の隣の上記サブ画素内の上記画素回路との間に配置されることを特徴としている。 In order to solve the above-described problems, a semiconductor substrate of the present invention is a semiconductor substrate on which a plurality of subpixels arranged in the vertical and horizontal directions are formed, and the plurality of subpixels are arranged in the vertical direction and the horizontal direction of the arrangement. In the first direction, which is one of the directions, sub-pixels having different emission colors are arranged adjacent to each other, and each of the sub-pixels emits the light-emitting unit that emits the emission color and emits the light-emitting unit. A pixel circuit that is driven to operate, and the pixel circuit is disposed along a first boundary between the sub pixel including the pixel circuit and the adjacent sub pixel on one side in the first direction. The light emitting unit is disposed between the pixel circuit in the sub pixel including the light emitting unit and the pixel circuit in the sub pixel adjacent to the other side in the first direction. .
 上記の構成によれば、第1方向に関して、各サブ画素(従って各発光部)は、異なる発光色が隣り合う様に配列されている。そして、各サブ画素の画素回路は、それを備えるサブ画素と、第1方向の一方側の隣のサブ画素との間の第1境界に沿って配置され、また、各サブ画素の発光部は、それを備えるサブ画素内の画素回路と、第1方向の他方側の隣のサブ画素内の画素回路との間に配置される。即ち、画素回路の配置面積が、隣り合う、異なる発光色の発光部の間の混色を防止するための混色防止領域として兼用されている。 According to the above configuration, in the first direction, the sub-pixels (and thus the light-emitting portions) are arranged so that different light emission colors are adjacent to each other. The pixel circuit of each sub-pixel is arranged along a first boundary between the sub-pixel including the sub-pixel and the adjacent sub-pixel on one side in the first direction. The pixel circuit in the sub-pixel including the pixel circuit is disposed between the pixel circuit in the adjacent sub-pixel on the other side in the first direction. That is, the arrangement area of the pixel circuit is also used as a color mixture prevention region for preventing color mixture between adjacent light emitting parts of different light emission colors.
 よって、隣り合う、異なる発光色の発光部の間には画素回路が配置されるので、発光部の面積を小さくすること無く、隣り合う、異なる発光色の発光部の間隔を十分に確保することができる。これにより、開口率を低下させること無く、発光色の混色を防止することができる。 Therefore, since a pixel circuit is arranged between adjacent light emitting portions having different light emission colors, a sufficient interval between adjacent light emitting portions having different light emission colors can be ensured without reducing the area of the light emitting portion. Can do. Thereby, it is possible to prevent color mixing of the emission colors without reducing the aperture ratio.
 本発明の半導体基板は、以上のように、縦横に配列された複数のサブ画素が形成された半導体基板であって、上記複数のサブ画素は、それらの配列の縦方向および横方向のうちの一方の方向である第1方向には、異なる発光色のサブ画素が隣り合う様に配列され、上記各サブ画素は、上記発光色を発光する発光部と、上記発光部を発光動作するように駆動する画素回路と、を備え、上記画素回路は、それを備える上記サブ画素と、上記第1方向の一方側の隣の上記サブ画素との間の第1境界に沿って配置され、上記発光部は、それを備える上記サブ画素内の上記画素回路と、上記第1方向の他方側の隣の上記サブ画素内の上記画素回路との間に配置されるものである。 As described above, the semiconductor substrate of the present invention is a semiconductor substrate on which a plurality of sub-pixels arranged in the vertical and horizontal directions are formed, and the plurality of sub-pixels are included in the vertical and horizontal directions of the arrangement. In one direction, which is one direction, sub-pixels of different emission colors are arranged adjacent to each other, and each of the sub-pixels emits the emission color and emits light from the emission unit. A pixel circuit to be driven, and the pixel circuit is disposed along a first boundary between the sub-pixel including the pixel circuit and the sub-pixel adjacent to one side in the first direction, and the light emission The unit is arranged between the pixel circuit in the sub-pixel including the pixel circuit and the pixel circuit in the sub-pixel adjacent to the other side in the first direction.
 それゆえに、開口率を低下させること無く、発光色の混色を防止することができる。 Therefore, it is possible to prevent color mixing of the emission colors without reducing the aperture ratio.
実施の形態1に係る有機EL表示装置に使用される半導体基板を支持基板の反対側から見た平面図である。FIG. 3 is a plan view of a semiconductor substrate used in the organic EL display device according to the first embodiment when viewed from the opposite side of the support substrate. 実施の形態1において各サブ画素の構成要素のレイアウトを説明する図である。3 is a diagram illustrating a layout of components of each sub-pixel in Embodiment 1. FIG. 実施の形態1において画素回路が2個のトランジスタと1個の容量とを備える場合のそれらのレイアウトの一例を説明する図である。3 is a diagram illustrating an example of a layout in the case where a pixel circuit includes two transistors and one capacitor in Embodiment 1. FIG. 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図3の場合のサブ画素の等価回路図である。FIG. 4 is an equivalent circuit diagram of a subpixel in the case of FIG. 3. 半導体基板の発光層の形成工程を説明する図である。It is a figure explaining the formation process of the light emitting layer of a semiconductor substrate. 実施の形態2において各サブ画素の構成要素のレイアウトを説明する図である。FIG. 10 is a diagram illustrating a layout of components of each sub pixel in the second embodiment. 実施の形態2において画素回路が3個のトランジスタと1個の容量とを備える場合のそれらのレイアウトの一例を説明する図である。FIG. 10 is a diagram illustrating an example of a layout in the case where a pixel circuit includes three transistors and one capacitor in Embodiment 2. 図8の場合のサブ画素の等価回路図である。FIG. 9 is an equivalent circuit diagram of a subpixel in the case of FIG. 8. 実施の形態3における各サブ画素の構成要素のレイアウトを説明する図である。FIG. 10 is a diagram for explaining a layout of components of each sub-pixel in Embodiment 3. 実施の形態3において画素回路が3個のトランジスタと1個の容量とを備える場合のそれらのレイアウトの一例を説明する図である。FIG. 10 is a diagram illustrating an example of a layout in the case where a pixel circuit includes three transistors and one capacitor in Embodiment 3. 従来のサブ画素の構成要素のレイアウトを説明する図である。It is a figure explaining the layout of the component of the conventional subpixel.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 〔実施の形態1〕
 本発明の実施の形態について、図1~図6に基づいて説明すれば、以下の通りである。
[Embodiment 1]
The embodiment of the present invention will be described with reference to FIGS. 1 to 6 as follows.
 図1は、本実施の形態に係る有機EL表示装置に使用される半導体基板を支持基板の反対側から見た平面図である。 FIG. 1 is a plan view of a semiconductor substrate used in the organic EL display device according to the present embodiment as viewed from the opposite side of the support substrate.
 この実施の形態に係る有機EL表示装置1は、半導体基板10を備えている。この半導体基板10は、支持基板20を有し、その支持基板20の一方の主面に、マトリクス状に(即ち縦横に)配置された複数のサブ画素SGからなる画素アレイ部30と、画素アレイ部30の各サブ画素SGを行単位で走査する走査線駆動回路40と、走査線駆動回路40によって選択された各サブ画素SGに対して映像信号を書き込む信号線駆動回路50とを備えている。 The organic EL display device 1 according to this embodiment includes a semiconductor substrate 10. The semiconductor substrate 10 includes a support substrate 20, a pixel array unit 30 including a plurality of sub-pixels SG arranged in a matrix (that is, vertically and horizontally) on one main surface of the support substrate 20, and a pixel array The scanning line driving circuit 40 that scans each sub pixel SG of the unit 30 in units of rows, and the signal line driving circuit 50 that writes a video signal to each sub pixel SG selected by the scanning line driving circuit 40 are provided. .
 画素アレイ部30は、行状に配列した複数の走査線WSと、列状に配列した複数の信号線SLと、各走査線WSおよび各信号線SLにより区画された各領域に配設されたサブ画素SGとで構成されている。 The pixel array unit 30 includes a plurality of scanning lines WS arranged in a row, a plurality of signal lines SL arranged in a column, and sub areas arranged in each region partitioned by each scanning line WS and each signal line SL. It consists of pixels SG.
 各走査線WSは、走査線駆動回路40に接続されており、走査線駆動回路40により順次選択されて、走査線駆動回路40からの制御信号を行単位でサブ画素SGに出力する。各信号線SLは、信号線駆動回路50に接続されており、走査線駆動回路40により選択された各サブ画素SGに、信号線駆動回路50からの映像信号を書き込む。 Each scanning line WS is connected to the scanning line driving circuit 40 and is sequentially selected by the scanning line driving circuit 40 to output a control signal from the scanning line driving circuit 40 to the sub-pixels SG in units of rows. Each signal line SL is connected to the signal line drive circuit 50, and the video signal from the signal line drive circuit 50 is written to each subpixel SG selected by the scanning line drive circuit 40.
 この有機EL表示装置1は、フルカラーのアクティブマトリクス型の有機EL表示装置であり、支持基板20上において、各走査線WSと各信号線SLとにより区画されたマトリクス状の各領域に、それぞれ、青(B)、緑(G)、赤(R)の各色の有機EL素子からなるサブ画素SGb・SGg・SGrが配設されている。即ち、各走査線WSと各信号線SLとにより区画された各領域が1つのサブ画素SGであり、各サブ画素SGb・SGg・SGr毎にB、G、Rの発光領域が形成されている。 This organic EL display device 1 is a full-color active matrix type organic EL display device, and is provided on each of the matrix regions partitioned by the scanning lines WS and the signal lines SL on the support substrate 20, respectively. Sub-pixels SGb, SGg, and SGr composed of organic EL elements of blue (B), green (G), and red (R) are disposed. In other words, each region partitioned by each scanning line WS and each signal line SL is one subpixel SG, and B, G, and R light emitting regions are formed for each subpixel SGb, SGg, and SGr. .
 なお、ここでは、有機EL表示装置1は、支持基板20側から光を放射するボトムエミッション型として構成されるが、支持基板20の反対側から光を放射するトップエミッション型として構成しても構わない。 Here, the organic EL display device 1 is configured as a bottom emission type that emits light from the support substrate 20 side, but may be configured as a top emission type that emits light from the opposite side of the support substrate 20. Absent.
 なお、図1中の各サブ画素SGのブロック内に記載された”R”、”B”、”G”はそれぞれ、赤、青、緑に発光することを意味している。 Note that “R”, “B”, and “G” described in the block of each sub-pixel SG in FIG. 1 mean that light is emitted in red, blue, and green, respectively.
 ここでは、各サブ画素SGは、それらの配列の縦方向(即ち列方向)および横方向(即ち行方向)のうちの一方の方向(ここでは横方向x:第1方向)には、異なる発光色のサブ画素SGが隣り合う様に配列されており、他方の方向(ここでは縦方向y:第2方向)には、同じ発光色のサブ画素SGが隣り合う様に配列されている。 Here, each sub-pixel SG emits light differently in one direction (here, horizontal direction x: first direction) of the vertical direction (that is, the column direction) and the horizontal direction (that is, the row direction) of the array. The color sub-pixels SG are arranged so as to be adjacent to each other, and the sub-pixels SG of the same emission color are arranged so as to be adjacent in the other direction (here, the vertical direction y: second direction).
 この有機EL表示装置1では、1つの画素Gは、赤色のサブ画素SGr、緑色のサブ画素SGg、青色のサブ画素SGbの3つのサブ画素SGr・SGb・SGgによって構成されている。 In this organic EL display device 1, one pixel G is composed of three subpixels SGr, SGb, and SGg, which are a red subpixel SGr, a green subpixel SGg, and a blue subpixel SGb.
 (サブ画素の構成)
 図2は、サブ画素SGの構成要素のレイアウトを説明する図である。図3は、サブ画素SGの構成要素である画素回路が2個のトランジスタと1個の容量とを備える場合のそれらのレイアウトの一例を説明する図である。図4は、図3のIV-IV断面図である。
(Sub-pixel configuration)
FIG. 2 is a diagram for explaining the layout of components of the sub-pixel SG. FIG. 3 is a diagram illustrating an example of a layout in a case where a pixel circuit that is a constituent element of the sub-pixel SG includes two transistors and one capacitor. 4 is a cross-sectional view taken along the line IV-IV in FIG.
 各サブ画素SGはそれぞれ、図2の様に、当該サブ画素SGに割り当てられた色の発光色を発光する発光部3と、発光部3を発光動作するように駆動する画素回路5とを備えている。 As shown in FIG. 2, each sub-pixel SG includes a light-emitting unit 3 that emits a light emission color assigned to the sub-pixel SG, and a pixel circuit 5 that drives the light-emitting unit 3 to emit light. ing.
 各サブ画素SGの画素回路5はそれぞれ、当該サブ画素SGと、異なる発光色が並ぶ横方向xの一方側の隣のサブ画素SGとの間の境界(第1境界)7に沿って(即ち境界7上に配置する様に境界7に沿って、または、境界7近傍に配置する様に境界7に沿って)配置されている。また、画素回路5は、境界7に沿ってサブ画素SGの一端付近から他端付近に至る様に配置されている。 The pixel circuit 5 of each subpixel SG is along a boundary (first boundary) 7 between the subpixel SG and the adjacent subpixel SG on one side in the horizontal direction x in which different emission colors are arranged (that is, It is arranged along the boundary 7 so as to be arranged on the boundary 7 or along the boundary 7 so as to be arranged in the vicinity of the boundary 7). Further, the pixel circuit 5 is arranged along the boundary 7 so as to extend from the vicinity of one end of the sub-pixel SG to the vicinity of the other end.
 具体的には、画素回路5は、図3の様に、例えば、2つのトランジスタ(スイッチングトランジスタT1および駆動トランジスタT2)と、1つの容量(保持容量)Cとを備えている。各トランジスタT1・T2は、境界7に沿って一列に配列されている。容量Cは、境界7に沿って長尺に形成され、各トランジスタT1・T2と共に1列に配置されている。 Specifically, the pixel circuit 5 includes, for example, two transistors (switching transistor T1 and driving transistor T2) and one capacitor (holding capacitor) C as shown in FIG. The transistors T1 and T2 are arranged in a line along the boundary 7. The capacitors C are formed in a long shape along the boundary 7, and are arranged in a line together with the transistors T1 and T2.
 なお、ここでは、画素回路5の構成例として、2つのトランジスタT1・T2と、1つの保持容量Cとを備える場合を例に挙げたが、この様に限定されるものではなく、例えば、トランジスタを1つまたは3つ以上備えた構成でもよく、容量を2つ以上または省略した構成でもよい。 Here, as an example of the configuration of the pixel circuit 5, a case in which two transistors T1 and T2 and one storage capacitor C are provided is described as an example. However, the present invention is not limited to this example. One or three or more may be provided, or two or more capacities may be provided or may be omitted.
 ところで、有機EL表示装置では、発光色により発光効率が異なるのが一般的である。例えば、緑色は電流効率が高く、青色は電流効率が低い。この場合、緑色のサブ画素SGgの発光部3に電流を供給する駆動トランジスタT2のアスペクト比(チャネル長Lのチャネル幅Wに対する比(W/L比))は小さく、青色のサブ画素SGbの発光部3に電流を供給する駆動トランジスタT2のアスペクト比は大きくしなければならない。 By the way, in an organic EL display device, the light emission efficiency is generally different depending on the light emission color. For example, green has high current efficiency and blue has low current efficiency. In this case, the aspect ratio (ratio of the channel length L to the channel width W (W / L ratio)) of the driving transistor T2 that supplies current to the light emitting unit 3 of the green subpixel SGg is small, and the light emission of the blue subpixel SGb. The aspect ratio of the driving transistor T2 that supplies current to the unit 3 must be increased.
 よって、アスペクト比に応じて、駆動トランジスタT2の配置の方向を変えることが望ましい。例えば、チャネル幅Wがチャネル長よりも大きい(W>Lである)青色のサブ画素SGbの駆動トランジスタT2は、チャネル幅Wの方向を境界7の方向と略平行に配置されることが望ましい。一方、チャネル幅Wがチャネル長Lよりも小さい(W<Lである)赤色のサブ画素SGrおよび緑色のサブ画素SGgの各駆動トランジスタT2は、チャネル長Lの方向が境界7の方向に略平行に配置されることが望ましい。これにより、当該トランジスタT2とその隣の発光部3との間隔に余裕を持たせることができる。 Therefore, it is desirable to change the direction of arrangement of the drive transistor T2 in accordance with the aspect ratio. For example, the drive transistor T2 of the blue subpixel SGb whose channel width W is larger than the channel length (W> L) is preferably arranged so that the direction of the channel width W is substantially parallel to the direction of the boundary 7. On the other hand, in each of the drive transistors T2 of the red subpixel SGr and the green subpixel SGg whose channel width W is smaller than the channel length L (W <L), the channel length L direction is substantially parallel to the boundary 7 direction. It is desirable to be arranged in. Thereby, it is possible to provide a margin for the distance between the transistor T2 and the light emitting unit 3 adjacent thereto.
 なお、上記の説明では、駆動トランジスタT2だけを対象としたが、画素回路5内の全てのトランジスタ(例えばT1・T2)に適用してもよい。即ち、各トランジスタT1・T2のうち、チャネル長Lがチャネル幅Wよりも大きいものは、チャネル長Lの方向が境界7の方向と略平行に配置され、一方、チャネル幅Wがチャネル長Lよりも大きいものは、チャネル幅Wの方向が境界7の方向と略平行に配置されてもよい。 In the above description, only the drive transistor T2 is targeted. However, the present invention may be applied to all transistors (for example, T1 and T2) in the pixel circuit 5. That is, among the transistors T1 and T2, those having the channel length L larger than the channel width W are arranged such that the direction of the channel length L is substantially parallel to the direction of the boundary 7, while the channel width W is larger than the channel length L. The larger channel width W may be arranged so that the direction of the channel width W is substantially parallel to the direction of the boundary 7.
 ここでは、青色のサブ画素SGbについては、各トランジスタT1・T2とも、チャネル幅Wがチャネル長Lよりも大きいので、チャネル幅Wの方向が境界7の方向と略平行に配置されている。他方、赤色および緑色の各サブ画素SGr・SGgについては、トランジスタT1は、チャネル幅Wがチャネル長Lよりも大きいので、チャネル幅Wの方向が境界7の方向と略平行に配置されるが、トランジスタT2は、チャネル長Lがチャネル幅Wよりも大きいので、チャネル長Lの方向が境界の方向と略平行に配置されている。 Here, for the blue sub-pixel SGb, the channel width W is larger than the channel length L in each of the transistors T1 and T2, and therefore the direction of the channel width W is arranged substantially parallel to the direction of the boundary 7. On the other hand, for each of the red and green subpixels SGr and SGg, the transistor T1 has a channel width W larger than the channel length L, and thus the direction of the channel width W is arranged substantially parallel to the direction of the boundary 7. Since the channel length L of the transistor T2 is larger than the channel width W, the direction of the channel length L is arranged substantially parallel to the boundary direction.
 また、各サブ画素SGの発光部3はそれぞれ、当該サブ画素SG内の画素回路5と、異なる発光色が並ぶ横方向xの隣のサブ画素SG内の画素回路5との間に配置されている。即ち、隣り合う、異なる発光色の発光部3の間には、画素回路5が介在している。 The light emitting unit 3 of each subpixel SG is disposed between the pixel circuit 5 in the subpixel SG and the pixel circuit 5 in the subpixel SG adjacent to the horizontal direction x in which different emission colors are arranged. Yes. In other words, the pixel circuit 5 is interposed between the light emitting units 3 having different emission colors adjacent to each other.
 (半導体基板の断面構造)
 図4は、図3のIV-IV断面図である。
(Cross-sectional structure of semiconductor substrate)
4 is a cross-sectional view taken along the line IV-IV in FIG.
 半導体基板10は、図4の断面では、ガラス基板等の透明で絶縁性を有する支持基板20上に、トランジスタT2、信号線SL、層間膜13(層間絶縁膜、平坦化膜)、エッジカバー15が形成されている。なお、図4では省略されているが、支持基板20上には、走査線WS、トランジスタT1、および、容量Cも形成されている。 In the cross section of FIG. 4, the semiconductor substrate 10 has a transistor T <b> 2, a signal line SL, an interlayer film 13 (interlayer insulating film, planarization film), an edge cover 15 on a transparent and insulating support substrate 20 such as a glass substrate. Is formed. Although omitted in FIG. 4, the scanning line WS, the transistor T <b> 1, and the capacitor C are also formed on the support substrate 20.
 支持基板20の表示領域35(図1参照)上には、各信号線SLおよび各走査線WSが設けられていると共に、各サブ画素SG毎に、画素回路5を構成するトランジスタT1、トランジスタT2および容量Cが設けられている。これらトランジスタT1、トランジスタT2および容量Cは、境界7を規定する信号線SLの近傍において信号線SLに沿って配置される。なお、トランジスタT1・T2および容量Cの構成は、周知なので図示並びに説明は省略する。 On the display area 35 (see FIG. 1) of the support substrate 20, each signal line SL and each scanning line WS are provided, and for each sub-pixel SG, a transistor T1 and a transistor T2 constituting the pixel circuit 5 are provided. And a capacitor C are provided. The transistor T1, the transistor T2, and the capacitor C are disposed along the signal line SL in the vicinity of the signal line SL that defines the boundary 7. Since the configurations of the transistors T1 and T2 and the capacitor C are well known, illustration and description thereof are omitted.
 層間膜13は、各トランジスタT1・T2、容量C、信号線SLおよび走査線WSを被覆する様に、支持基板20の表示領域35全面に積層されている。 The interlayer film 13 is laminated on the entire display region 35 of the support substrate 20 so as to cover the transistors T1 and T2, the capacitor C, the signal line SL, and the scanning line WS.
 層間膜13上には、発光部3の第1電極21が形成されている。 The first electrode 21 of the light emitting unit 3 is formed on the interlayer film 13.
 また、層間膜13には、第1電極21をトランジスタT2に電気的に接続するためのコンタクトホール13aが設けられている。これにより、トランジスタT2は、コンタクトホール13aを介して、発光部3に電気的に接続されている。 The interlayer film 13 is provided with a contact hole 13a for electrically connecting the first electrode 21 to the transistor T2. Thus, the transistor T2 is electrically connected to the light emitting unit 3 through the contact hole 13a.
 エッジカバー15は、第1電極21のパターン端部で有機EL層60が薄くなったり電界集中が起こったりすることで、第1電極21と後述の第2電極26とが短絡することを防止するための絶縁層である。エッジカバー15は、層間膜13上に、第1電極21のパターン端部を被覆する様に形成されている。なお、トランジスタT1、トランジスタT2および容量Cは、エッジカバー15の下方に配置している。 The edge cover 15 prevents the first electrode 21 and the second electrode 26 described later from being short-circuited when the organic EL layer 60 becomes thin or the electric field concentration occurs at the pattern end of the first electrode 21. This is an insulating layer. The edge cover 15 is formed on the interlayer film 13 so as to cover the pattern end of the first electrode 21. Note that the transistor T1, the transistor T2, and the capacitor C are disposed below the edge cover 15.
 エッジカバー15には、サブ画素SGr・SGb・SGg毎に開口部15R・15B・15Gが設けられている。このエッジカバー15の開口部15R・15B・15Gが、各サブ画素SGr・SGb・SGgの発光領域(即ち発光部3の平面視の領域)となる。 The edge cover 15 is provided with openings 15R, 15B, and 15G for each of the sub-pixels SGr, SGb, and SGg. The openings 15R, 15B, and 15G of the edge cover 15 serve as light emitting regions of the sub-pixels SGr, SGb, and SGg (that is, regions in plan view of the light emitting unit 3).
 なお、ここでは、有機EL表示装置1は、ボトムエミッション型に構成されるので、例えば、第1電極21は透明電極として形成され、第2電極26は反射電極として形成されている。この場合、本発明では画素回路5は各発光部3間に配置されるので、有機EL(発光部3)からの光が画素回路5に入り難く、誤動作を防止できる。 Here, since the organic EL display device 1 is configured as a bottom emission type, for example, the first electrode 21 is formed as a transparent electrode, and the second electrode 26 is formed as a reflective electrode. In this case, in the present invention, since the pixel circuit 5 is disposed between the light emitting units 3, light from the organic EL (light emitting unit 3) hardly enters the pixel circuit 5, and malfunction can be prevented.
 なお、有機EL表示装置1がトップエミッション型に構成される場合は、例えば、第1電極21が反射電極として形成され、第2電極26が透明電極として形成される。この場合、本発明では画素回路5は各発光部3間に配置されるので、即ち、発光部3の下に画素回路5が配置されないので、発光部3にトランジスタや配線による凹凸がなくなり、有機ELの膜厚が均一にでき、電流分布を一様にできる。 In addition, when the organic EL display device 1 is configured as a top emission type, for example, the first electrode 21 is formed as a reflective electrode, and the second electrode 26 is formed as a transparent electrode. In this case, in the present invention, the pixel circuit 5 is disposed between the light emitting units 3, that is, the pixel circuit 5 is not disposed under the light emitting unit 3. The EL film thickness can be made uniform, and the current distribution can be made uniform.
 次に、発光部3について説明する。 Next, the light emitting unit 3 will be described.
 発光部3は、低電圧直流駆動による高輝度発光が可能な発光素子(ここでは有機EL素子)であり、第1電極21、有機EL層60、第2電極26が、この順に積層されて構成されている。 The light emitting unit 3 is a light emitting element (here, an organic EL element) capable of high luminance light emission by low voltage direct current drive, and is configured by laminating the first electrode 21, the organic EL layer 60, and the second electrode 26 in this order. Has been.
 第1電極21は、有機EL層60に正孔を注入する機能を有する層である。第1電極21は、上記の様にコンタクトホール13aを介してトランジスタT2と接続されている。 The first electrode 21 is a layer having a function of injecting holes into the organic EL layer 60. The first electrode 21 is connected to the transistor T2 through the contact hole 13a as described above.
 第1電極21と第2電極26との間には、図4の様に、有機EL層60として、第1電極21側から、正孔注入層兼正孔輸送層22、発光層23(23R・23B・23G)、電子輸送層24、電子注入層25が、この順に形成された構成を有している。 Between the first electrode 21 and the second electrode 26, as shown in FIG. 4, as the organic EL layer 60, from the first electrode 21 side, a hole injection layer / hole transport layer 22 and a light emitting layer 23 (23R · 23B / 23G), the electron transport layer 24, and the electron injection layer 25 are formed in this order.
 なお、上記積層順は、第1電極21を陽極とし、第2電極26を陰極としたものであり、第1電極21を陰極とし、第2電極26を陽極とする場合には、有機EL層60の積層順は反転する。 Note that the stacking order is that in which the first electrode 21 is an anode and the second electrode 26 is a cathode, the first electrode 21 is a cathode, and the second electrode 26 is an anode. The stacking order of 60 is reversed.
 正孔注入層は、発光層23R・23B・23Gへの正孔注入効率を高める機能を有する層である。また、正孔輸送層は、発光層23R・23B・23Gへの正孔輸送効率を高める機能を有する層である。正孔注入層兼正孔輸送層22は、第1電極21およびエッジカバー15を覆うように、支持基板20の表示領域35全面に一様に形成されている。 The hole injection layer is a layer having a function of increasing the efficiency of hole injection into the light emitting layers 23R, 23B, and 23G. The hole transport layer is a layer having a function of improving the efficiency of transporting holes to the light emitting layers 23R, 23B, and 23G. The hole injection / hole transport layer 22 is uniformly formed on the entire display region 35 of the support substrate 20 so as to cover the first electrode 21 and the edge cover 15.
 なお、本実施の形態では、上記の様に、正孔注入層および正孔輸送層として、正孔注入層と正孔輸送層とが一体化された正孔注入層兼正孔輸送層22を設けた場合を例に挙げて説明する。しかしながら、本実施の形態はこれに限定されるものではない。正孔注入層と正孔輸送層とは互いに独立した層として形成されていてもよい。 In the present embodiment, as described above, the hole injection layer / hole transport layer 22 in which the hole injection layer and the hole transport layer are integrated is provided as the hole injection layer and the hole transport layer. An example will be described. However, the present embodiment is not limited to this. The hole injection layer and the hole transport layer may be formed as independent layers.
 正孔注入層兼正孔輸送層22上には、発光層23R・23B・23Gが、エッジカバー15の開口部15R・15B・15Gを覆うように、それぞれ、サブ画素SGr・SGb・SGgに対応して形成されている。 On the hole injection layer / hole transport layer 22, the light emitting layers 23R, 23B, and 23G correspond to the sub-pixels SGr, SGb, and SGg, respectively, so as to cover the openings 15R, 15B, and 15G of the edge cover 15. Is formed.
 発光層23R・23B・23Gは、第1電極21側から注入されたホール(正孔)と第2電極26側から注入された電子とを再結合させて光を出射する機能を有する層である。発光層23R・23B・23Gは、それぞれ、低分子蛍光色素、金属錯体等の、発光効率が高い材料で形成されている。 The light emitting layers 23R, 23B, and 23G are layers having a function of emitting light by recombining holes injected from the first electrode 21 side with electrons injected from the second electrode 26 side. . The light emitting layers 23R, 23B, and 23G are each formed of a material having high light emission efficiency, such as a low molecular fluorescent dye or a metal complex.
 電子輸送層24は、第2電極26から発光層23R・23B・23Gへの電子輸送効率を高める機能を有する層である。また、電子注入層25は、第2電極26から発光層23R・23B・23Gへの電子注入効率を高める機能を有する層である。 The electron transport layer 24 is a layer having a function of increasing the electron transport efficiency from the second electrode 26 to the light emitting layers 23R, 23B, and 23G. The electron injection layer 25 is a layer having a function of increasing the electron injection efficiency from the second electrode 26 to the light emitting layers 23R, 23B, and 23G.
 電子輸送層24は、発光層23R・23B・23Gおよび正孔注入層兼正孔輸送層22を覆うように、これら発光層23R・23B・23Gおよび正孔注入層兼正孔輸送層22上に、支持基板20の表示領域35全面に渡って一様に形成されている。また、電子注入層25は、電子輸送層24を覆うように、電子輸送層24上に、支持基板20の表示領域35全面に渡って一様に形成されている。 The electron transport layer 24 is supported on the light emitting layer 23R / 23B / 23G and the hole injection layer / hole transport layer 22 so as to cover the light emitting layer 23R / 23B / 23G and the hole injection layer / hole transport layer 22. It is uniformly formed over the entire display area 35 of the substrate 20. Further, the electron injection layer 25 is uniformly formed on the entire surface of the display region 35 of the support substrate 20 on the electron transport layer 24 so as to cover the electron transport layer 24.
 なお、電子輸送層24と電子注入層25とは、上記の様に互いに独立した層として形成されていてもよく、互いに一体化して設けられていてもよい。即ち、電子輸送層24および電子注入層25に代えて、電子輸送層兼電子注入層を備えていてもよい。 Note that the electron transport layer 24 and the electron injection layer 25 may be formed as independent layers as described above, or may be provided integrally with each other. That is, instead of the electron transport layer 24 and the electron injection layer 25, an electron transport layer / electron injection layer may be provided.
 第2電極26は、上記の様な有機層(発光層23R・23B・23G)で構成される有機EL層60に電子を注入する機能を有する層である。第2電極26は、電子注入層25を覆うように、電子注入層25上に、支持基板20における表示領域全面に渡って一様に形成されている。 The second electrode 26 is a layer having a function of injecting electrons into the organic EL layer 60 composed of the organic layers ( light emitting layers 23R, 23B, and 23G) as described above. The second electrode 26 is uniformly formed on the electron injection layer 25 over the entire display region of the support substrate 20 so as to cover the electron injection layer 25.
 なお、発光層23R・23B・23G以外の有機層は有機EL層60として必須の層ではなく、要求される発光部3の特性に応じて適宜形成すればよい。また、有機EL層60には、必要に応じて、キャリアブロッキング層を追加することもできる。例えば、発光層23R・23B・23Gと電子輸送層24との間にキャリアブロッキング層として正孔ブロッキング層を追加することで、正孔が電子輸送層24に抜けるのを阻止し、発光効率を向上することができる。 Note that organic layers other than the light emitting layers 23R, 23B, and 23G are not essential layers as the organic EL layer 60, and may be appropriately formed according to the required characteristics of the light emitting unit 3. In addition, a carrier blocking layer can be added to the organic EL layer 60 as necessary. For example, by adding a hole blocking layer as a carrier blocking layer between the light emitting layers 23R, 23B, and 23G and the electron transport layer 24, the holes are prevented from passing through the electron transport layer 24, and the light emission efficiency is improved. can do.
 発光部3の構成としては、例えば、下記(1)~(8)に示すような層構成を採用することができる。
(1)第1電極/発光層/第2電極
(2)第1電極/正孔輸送層/発光層/電子輸送層/第2電極
(3)第1電極/正孔輸送層/発光層/正孔ブロッキング層(キャリアブロッキング層)/電子輸送層/第2電極
(4)第1電極/正孔輸送層/発光層/正孔ブロッキング層/電子輸送層/電子注入層/第2電極
(5)第1電極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/第2電極
(6)第1電極/正孔注入層/正孔輸送層/発光層/正孔ブロッキング層/電子輸送層/第2電極
(7)第1電極/正孔注入層/正孔輸送層/発光層/正孔ブロッキング層/電子輸送層/電子注入層/第2電極
(8)第1電極/正孔注入層/正孔輸送層/電子ブロッキング層(キャリアブロッキング層)/発光層/正孔ブロッキング層/電子輸送層/電子注入層/第2電極
 なお、上記の様に、例えば正孔注入層と正孔輸送層とは、一体化されていてもよい。また、電子輸送層と電子注入層とは一体化されていてもよい。
As the configuration of the light emitting unit 3, for example, layer configurations as shown in the following (1) to (8) can be adopted.
(1) First electrode / light emitting layer / second electrode (2) First electrode / hole transport layer / light emitting layer / electron transport layer / second electrode (3) First electrode / hole transport layer / light emitting layer / Hole blocking layer (carrier blocking layer) / electron transport layer / second electrode (4) first electrode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / second electrode (5 ) 1st electrode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / second electrode (6) 1st electrode / hole injection layer / hole transport layer / light emitting layer / positive Hole blocking layer / electron transport layer / second electrode (7) first electrode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / second electrode (8) 1st electrode / hole injection layer / hole transport layer / electron blocking layer (carrier blocking layer) / light emitting layer / hole blocking layer / electron transport Layer / electron injection layer / second electrode Incidentally, as described above, for example, a hole injection layer and a hole transport layer, may be integrated. Further, the electron transport layer and the electron injection layer may be integrated.
 また、発光部3の構成は上記例示の層構成に限定されるものではなく、上記の様に、要求される発光部3の特性に応じて所望の層構成を採用することができる。 Further, the configuration of the light emitting unit 3 is not limited to the above-described exemplary layer configuration, and a desired layer configuration can be adopted according to the required characteristics of the light emitting unit 3 as described above.
 この様に、各サブ画素SGの発光部3は、当該サブ画素SG内の画素回路5(図4ではトランジスタT2)と、異なる発光色が並ぶ方向xの隣のサブ画素SG内の画素回路5(図4ではトランジスタT2)との間に配置されている。 In this manner, the light emitting unit 3 of each subpixel SG is connected to the pixel circuit 5 in the subpixel SG (transistor T2 in FIG. 4) and the pixel circuit 5 in the subpixel SG adjacent to the direction x in which different emission colors are arranged. (Transistor T2 in FIG. 4).
 なお、上記の説明では、図4の断面にはトランジスタT1および容量Cが現れないので、それら構成要素T1・Cの接続関係の説明は省略されたが、それら構成要素T1・Cの接続関係は、後述の等価回路図(図5)の通りである。 In the above description, since the transistor T1 and the capacitor C do not appear in the cross section of FIG. 4, the description of the connection relationship between the components T1 and C is omitted, but the connection relationship between the components T1 and C is as follows. FIG. 5 is an equivalent circuit diagram (FIG. 5) described later.
 (画素アレイ部の等価回路)
 図5は、半導体基板10の画素アレイ部30の等価回路図である。なお、図5では、作図便宜上、1つのサブ画素SGについてだけ等価回路が図示されているが、全てのサブ画素について同様の等価回路が成立する。
(Equivalent circuit of pixel array part)
FIG. 5 is an equivalent circuit diagram of the pixel array unit 30 of the semiconductor substrate 10. In FIG. 5, for convenience of drawing, an equivalent circuit is shown only for one subpixel SG, but a similar equivalent circuit is established for all subpixels.
 各サブ画素SGは、上述の通り、発光部3と画素回路5とを備えている。画素回路は、2個のトランジスタT1・T2と、1個の保持容量Cとを備えている。 Each sub-pixel SG includes the light emitting unit 3 and the pixel circuit 5 as described above. The pixel circuit includes two transistors T1 and T2 and one storage capacitor C.
 トランジスタT1は、例えばNチャネル型で薄膜トランジスタにより構成されたスイッチングトランジスタである。また、トランジスタT2は、例えばPチャネル型で薄膜トランジスタにより構成された駆動トランジスタである。また、容量Cは、例えば薄膜容量により構成された保持容量である。また、発光部3は、この等価回路では、2端子素子(ダイオード)として扱われている。 The transistor T1 is, for example, an N channel type switching transistor configured by a thin film transistor. The transistor T2 is, for example, a P-channel driving transistor configured by a thin film transistor. In addition, the capacitor C is a storage capacitor configured by a thin film capacitor, for example. The light emitting unit 3 is handled as a two-terminal element (diode) in this equivalent circuit.
 トランジスタT1のソース・ドレイン間(主電極間)は、信号線SLとトランジスタT2のゲート(制御電極)との間に接続されている。トランジスタT1のゲート(制御電極)は、走査線WSに接続されている。トランジスタT2のソース(一方の主電極)は、電源線Vccに接続されており、トランジスタT2のドレイン(他方の主電極)は、発光部3のアノード(即ち第1電極21)に接続されており、発光部3のカソード(即ち第2電極26)は接地されている。容量Cは、電源線VccとトランジスタT1のゲートとの間に接続されている。 The source / drain (between main electrodes) of the transistor T1 is connected between the signal line SL and the gate (control electrode) of the transistor T2. The gate (control electrode) of the transistor T1 is connected to the scanning line WS. The source (one main electrode) of the transistor T2 is connected to the power supply line Vcc, and the drain (the other main electrode) of the transistor T2 is connected to the anode (that is, the first electrode 21) of the light emitting unit 3. The cathode of the light emitting unit 3 (that is, the second electrode 26) is grounded. The capacitor C is connected between the power supply line Vcc and the gate of the transistor T1.
 この構成により、各サブ画素SGは、下記の様に発光動作が制御される。即ち、走査線駆動回路40により、順次選択された各走査線WSに制御信号が供給される共に、信号線駆動回路50により、上記の選択された走査線WSに合わせて各信号線SLに映像信号が供給される。 With this configuration, the light emission operation of each subpixel SG is controlled as follows. That is, a control signal is supplied to each scanning line WS sequentially selected by the scanning line driving circuit 40, and an image is displayed on each signal line SL by the signal line driving circuit 50 in accordance with the selected scanning line WS. A signal is supplied.
 そして、上記の選択された各サブ画素SGでは、トランジスタT1のゲートに、走査線WSに供給された上記の制御信号が印加されて、当該トランジスタT1が導通状態になる。これにより、当該トランジスタT1を介して、信号線SLに供給された上記の映像信号が容量Cに書き込まれる。そして、トランジスタT2により、容量Cに書き込まれた映像信号に応じてドレイン電流Idsが発光部3に供給される。これにより、発光部3は、映像信号に応じた輝度で発光する。この様にして、各サブ画素SGの発光動作が制御される。 In each of the selected subpixels SG, the control signal supplied to the scanning line WS is applied to the gate of the transistor T1, so that the transistor T1 becomes conductive. As a result, the video signal supplied to the signal line SL is written into the capacitor C through the transistor T1. Then, the drain current Ids is supplied to the light emitting unit 3 according to the video signal written in the capacitor C by the transistor T2. Thereby, the light emission part 3 light-emits with the brightness | luminance according to a video signal. In this way, the light emission operation of each sub-pixel SG is controlled.
 (半導体基板の製造方法)
 次に図6を用いて、半導体基板10の製造方法を説明する。図6は、半導体基板10の発光層の形成工程を説明する図である。
(Semiconductor substrate manufacturing method)
Next, the manufacturing method of the semiconductor substrate 10 is demonstrated using FIG. FIG. 6 is a diagram illustrating a process for forming a light emitting layer of the semiconductor substrate 10.
 先ず、既知の方法で、図1の様に、支持基板20の表示領域35上に、信号線SLおよび走査線WSを形成する。信号線SLおよび走査線WSにより区画された各領域がサブ画素SGとなるので、信号線SLおよび走査線WSがサブ画素SGの境界となる。 First, as shown in FIG. 1, the signal line SL and the scanning line WS are formed on the display area 35 of the support substrate 20 by a known method. Since each region partitioned by the signal line SL and the scanning line WS becomes the sub pixel SG, the signal line SL and the scanning line WS become the boundary of the sub pixel SG.
 そして、既知の方法で、図3の様に、信号線SLおよび走査線WSで区画された各領域において、画素回路5を構成する各トランジスタT1・T2および容量Cを、当該領域におけるx方向の一方側(例えば図3の左側)の境界7に沿って形成する。 Then, in a known method, as shown in FIG. 3, in each region partitioned by the signal line SL and the scanning line WS, the transistors T1 and T2 and the capacitor C constituting the pixel circuit 5 are connected in the x direction in the region. It is formed along the boundary 7 on one side (for example, the left side in FIG. 3).
 そして、既知の方法で、図4の様に、支持基板20の表示領域35上に、信号線SL、走査線WS(不図示)、トランジスタT1(不図示)、トランジスタT2、および、容量C(不図示)を被覆する様に層間膜13を形成し、且つ発光部3となる領域(即ち、サブ画素SGとなる上記領域内において画素回路5が形成された領域以外の領域)に、第1電極21およびエッジカバー15を形成し、それらを被覆する様に、表示領域35全体に正孔注入層兼正孔輸送層22を形成する。 Then, by a known method, as shown in FIG. 4, the signal line SL, the scanning line WS (not shown), the transistor T1 (not shown), the transistor T2, and the capacitor C ( An interlayer film 13 is formed so as to cover (not shown), and a first region is formed in a region to be the light emitting unit 3 (that is, a region other than the region in which the pixel circuit 5 is formed in the region to be the subpixel SG). The electrode 21 and the edge cover 15 are formed, and the hole injection layer / hole transport layer 22 is formed over the entire display region 35 so as to cover them.
 そして、この様に、正孔注入層兼正孔輸送層22までの各構成部材が形成された支持基板20に対し、図6の蒸着装置105を用いて、各色の発光層23R・23B・23Gを形成する。 Then, the light emitting layers 23R, 23B, and 23G of the respective colors are formed on the support substrate 20 on which the constituent members up to the hole injection layer / hole transport layer 22 are formed in this way by using the vapor deposition apparatus 105 of FIG. Form.
 先ず、蒸着装置105について説明する。蒸着装置105は、例えばスリット状の開口部102aを有するシャドウマスク102と、ノズル開口部103aを有するノズル103と、ノズル103に接続された蒸着源104とを備えており、これらが一体化されて構成されている。 First, the vapor deposition apparatus 105 will be described. The vapor deposition apparatus 105 includes, for example, a shadow mask 102 having a slit-shaped opening 102a, a nozzle 103 having a nozzle opening 103a, and a vapor deposition source 104 connected to the nozzle 103, and these are integrated. It is configured.
 この蒸着装置105では、ノズル103は、ノズル開口部103aを上方に向けて配置されている。また、シャドウマスク102は、ノズル103の上方に配置されている。この配置関係により、ノズル開口部103aから射出される蒸着粒子(発光層23の材料)は、シャドウマスク102のスリット状の開口部102aを介して上方に射出される。 In the vapor deposition apparatus 105, the nozzle 103 is arranged with the nozzle opening 103a facing upward. The shadow mask 102 is disposed above the nozzle 103. Due to this arrangement relationship, the vapor deposition particles (the material of the light emitting layer 23) ejected from the nozzle opening 103a are ejected upward through the slit-shaped opening 102a of the shadow mask 102.
 他方、支持基板20は、その表示領域35(即ち、正孔注入層兼正孔輸送層22が形成された面)側が下に向けられて配置される。また、支持基板20は、支持基板20の信号線SLの伸長方向(y方向)と、シャドウマスク102の開口部102aの伸長方向とが略平行になる様に配置される。 On the other hand, the support substrate 20 is arranged with the display region 35 (that is, the surface on which the hole injection layer / hole transport layer 22 is formed) facing downward. The support substrate 20 is arranged so that the extending direction (y direction) of the signal lines SL of the support substrate 20 and the extending direction of the opening 102a of the shadow mask 102 are substantially parallel.
 そして、この状態で、図6の様に、支持基板20を、信号線SLの伸長方向(y方向)に走査させて、蒸着装置105の上方を通過させる。これにより、支持基板20の表示領域35上に、発光層23が形成される。 In this state, as shown in FIG. 6, the support substrate 20 is scanned in the extending direction (y direction) of the signal line SL and passed above the vapor deposition apparatus 105. As a result, the light emitting layer 23 is formed on the display region 35 of the support substrate 20.
 より詳細には、赤色の発光層23Rを形成する場合は、ノズル103から赤色の蒸着粒子が射出される。そして、赤色の各サブ画素SGrの開口部15R(即ち赤色の発光部3が形成される領域)に対応する所定領域のみに開口部102aを有するシャドウマスク102を用いて、上記の走査による蒸着を行う。これにより、図4の様に、赤色の各サブ画素SGr内の開口部15Rに発光層23Rが形成される。 More specifically, when the red light emitting layer 23R is formed, red vapor deposition particles are ejected from the nozzle 103. Then, using the shadow mask 102 having the opening 102a only in a predetermined region corresponding to the opening 15R (that is, the region where the red light emitting unit 3 is formed) of each red sub-pixel SGr, vapor deposition by the above scanning is performed. Do. Thereby, as shown in FIG. 4, the light emitting layer 23R is formed in the opening 15R in each red sub-pixel SGr.
 緑色の発光層23Gおよび青色の発光層23Bを形成する場合も、赤色の発光層23Rの場合と同様にすることで、緑色の各サブ画素SGgの開口部15Gに緑色の発光層23Gが形成され、青色の各サブ画素SGbの開口部15Bに青色の発光層23Bが形成される。 When the green light emitting layer 23G and the blue light emitting layer 23B are formed, the green light emitting layer 23G is formed in the opening 15G of each green subpixel SGg in the same manner as the red light emitting layer 23R. The blue light emitting layer 23B is formed in the opening 15B of each blue subpixel SGb.
 この様にして、図4の様に、各色の発光層23R・23B・23Gがそれぞれ、各色のサブ画素SGr・SGb・SGgの開口部15R・15B・15Gに形成される。即ち、各サブ画素SGr・SGb・SGgの発光層23R・23B・23Gは、当該サブ画素SGの画素回路5(図4ではトランジスタT2)と、x方向の隣のサブ画素SGの画素回路5(図4ではトランジスタT2)との間に配置される。 Thus, as shown in FIG. 4, the light emitting layers 23R, 23B, and 23G of the respective colors are formed in the openings 15R, 15B, and 15G of the subpixels SGr, SGb, and SGg of the respective colors. That is, the light emitting layers 23R, 23B, and 23G of the sub-pixels SGr, SGb, and SGg include the pixel circuit 5 (the transistor T2 in FIG. 4) of the sub-pixel SG and the pixel circuit 5 ( In FIG. 4, it is arranged between the transistor T2).
 この様に、異なる色の発光層23R・23B・23Gの間には、画素回路5が介在するので、十分な間隔が確保されている。よって、発光層23R・23B・23Gの形成の際に、シャドウマスク102と支持基板20との配置関係がずれて、各色の発光層23R・23B・23Gの形成位置が、隣の異なる色の発光層23R・23B・23G側にずれても、隣の異なる色の発光層23R・23B・23Gと重なることが防止される。 Thus, since the pixel circuit 5 is interposed between the light emitting layers 23R, 23B, and 23G of different colors, a sufficient interval is secured. Therefore, when the light emitting layers 23R, 23B, and 23G are formed, the positional relationship between the shadow mask 102 and the support substrate 20 is shifted, and the formation positions of the light emitting layers 23R, 23B, and 23G of the respective colors are different from each other. Even if the layers 23R, 23B, and 23G are shifted to the side, they are prevented from overlapping with the adjacent light emitting layers 23R, 23B, and 23G of different colors.
 そして、既知の方法で、図4の様に、各発光層23R・23B・23Gを被覆する様に、支持基板20の表示領域35全体に、電子輸送層24、電子注入層25、および、第2電極26が順に形成される。そして、既知の方法により、走査線駆動回路40および信号線駆動回路50が形成される。この様にして、半導体基板10が製造される。 Then, as shown in FIG. 4, the electron transport layer 24, the electron injection layer 25, and the Two electrodes 26 are sequentially formed. Then, the scanning line driving circuit 40 and the signal line driving circuit 50 are formed by a known method. In this way, the semiconductor substrate 10 is manufactured.
 以上の様に、この実施の形態によれば、サブ画素SGの配列の縦方向および横方向のうちの一方の方向(第1方向)xに関して、各サブ画素SG(従って各発光部3)は、異なる発光色が隣り合う様に配列されている。そして、各サブ画素SGの画素回路5は、それを備えるサブ画素SGと、第1方向xの一方側の隣のサブ画素SGとの間の境界7(第1境界)に沿って配置され、また、各サブ画素SGの発光部3は、それを備えるサブ画素SG内の画素回路5と、第1方向xの他方側の隣のサブ画素SG内の画素回路5との間に配置される。即ち、画素回路5の配置面積が、隣り合う、異なる発光色の発光部3の間の混色を防止するための混色防止領域として兼用されている。 As described above, according to this embodiment, with respect to one direction (first direction) x of the vertical direction and the horizontal direction of the arrangement of the sub pixels SG, each sub pixel SG (and thus each light emitting unit 3) is The different emission colors are arranged next to each other. The pixel circuit 5 of each subpixel SG is disposed along a boundary 7 (first boundary) between the subpixel SG including the pixel circuit 5 and the adjacent subpixel SG on one side in the first direction x. Further, the light emitting unit 3 of each subpixel SG is disposed between the pixel circuit 5 in the subpixel SG including the subpixel SG and the pixel circuit 5 in the adjacent subpixel SG on the other side in the first direction x. . That is, the arrangement area of the pixel circuit 5 is also used as a color mixture prevention region for preventing color mixture between the adjacent light emitting units 3 having different emission colors.
 よって、隣り合う、異なる発光色の発光部3の間には画素回路5が配置されるので、発光部3の面積を小さくすること無く、隣り合う、異なる発光色の発光部3の間の間隔を十分に確保することができる。これにより、開口率を低下させること無く、発光色の混色を防止することができる。 Therefore, since the pixel circuit 5 is disposed between the adjacent light emitting units 3 having different emission colors, the interval between the adjacent light emitting units 3 having different emission colors can be achieved without reducing the area of the light emitting unit 3. Can be secured sufficiently. Thereby, it is possible to prevent color mixing of the emission colors without reducing the aperture ratio.
 〔実施の形態2〕
 実施の形態1では、図2の様に、各サブ画素SGの画素回路5は境界7に沿って直線状に形成されたが、この実施の形態では、図7の様に、各サブ画素SGの画素回路5’は境界7,8に沿ってL字状に形成される。以下、図7および図8に基づいて、この実施の形態について詳説する。
[Embodiment 2]
In the first embodiment, the pixel circuit 5 of each subpixel SG is formed in a straight line along the boundary 7 as shown in FIG. 2, but in this embodiment, each subpixel SG is shown in FIG. The pixel circuit 5 ′ is formed in an L shape along the boundaries 7 and 8. Hereinafter, this embodiment will be described in detail based on FIG. 7 and FIG.
 図7は、この実施の形態における各サブ画素SGの構成要素のレイアウトの平面図である。図8は、1つのサブ画素SGの拡大平面図である。 FIG. 7 is a plan view of the layout of components of each sub-pixel SG in this embodiment. FIG. 8 is an enlarged plan view of one subpixel SG.
 この実施の形態では、図7の様に、各サブ画素SGの画素回路5’は、境界7,8に沿ってL字状に形成される。即ち、各サブ画素SGの画素回路5’は、実施の形態1と同様に、当該サブ画素SGのx方向の両側の境界7(第1境界)の一方側の境界7に沿った部分(第1部分)5aと、当該サブ画素SGのy方向の両側の境界8(第2境界)のうち一方の境界8に沿った部分(第2部分)5bとを有している。なお、第2部分5bは、x方向に延びた部分とも言える。 In this embodiment, as shown in FIG. 7, the pixel circuit 5 ′ of each sub-pixel SG is formed in an L shape along the boundaries 7 and 8. That is, the pixel circuit 5 ′ of each subpixel SG has a portion along the boundary 7 on the one side (first boundary) of the boundary 7 (first boundary) on both sides in the x direction of the subpixel SG, as in the first embodiment. 1 portion) 5a and a portion (second portion) 5b along one boundary 8 of the boundary 8 (second boundary) on both sides in the y direction of the subpixel SG. The second portion 5b can also be said to be a portion extending in the x direction.
 なお、図7では、各サブ画素SGr・SGg・SGbの第2部分5bは、y方向の同じ側(図7では下側)に配置しているが、同じ側に配置される必要はない。例えば、サブ画素SGbの第2部分5bは、y方向の上側に配置され、各サブ画素SGg・SGrの第2部分5bは、y方向の下側に配置されてもよい。 In FIG. 7, the second portions 5b of the sub-pixels SGr, SGg, and SGb are arranged on the same side in the y direction (lower side in FIG. 7), but it is not necessary to arrange them on the same side. For example, the second portion 5b of the sub pixel SGb may be disposed on the upper side in the y direction, and the second portion 5b of each sub pixel SGg / SGr may be disposed on the lower side in the y direction.
 なお、境界7は、異なる発光色の各サブ画素SGの間の境界(即ち、信号線SLにより規定された境界)である。また、境界8は、同じ発光色の各サブ画素SGの間の境界(即ち、走査線WSにより規定された境界)である。 Note that the boundary 7 is a boundary between the sub-pixels SG having different emission colors (that is, a boundary defined by the signal line SL). The boundary 8 is a boundary between the sub-pixels SG having the same emission color (that is, a boundary defined by the scanning line WS).
 具体的には、この実施の形態の画素回路5’は、例えば図8の様に、3つのトランジスタ(スイッチングトランジスタT3、駆動トランジスタT4、発光制御トランジスタT5)と、1つの容量(保持容量)Cとを備えている。各トランジスタT3~T5は、境界7に沿って一列に配列されている。容量Cは、境界7に沿って形成された部分(第1容量部)Caと、第1容量部Caから境界7に沿った形成された部分(第2容量部)Cbとを備えている。第1容量部Caは、各トランジスタT3~T5と共に1列に配置されており、これらの構成要素Ca・T3・T4・T5により、画素回路5’の第1部分5aが構成されている。また、第2容量部Cbにより、画素回路5’の第2部分5bが構成されている。 Specifically, the pixel circuit 5 ′ of this embodiment includes, for example, as shown in FIG. 8, three transistors (switching transistor T3, driving transistor T4, light emission control transistor T5) and one capacitor (holding capacitor) C. And. The transistors T3 to T5 are arranged in a line along the boundary 7. The capacitor C includes a portion (first capacitor portion) Ca formed along the boundary 7 and a portion (second capacitor portion) Cb formed along the boundary 7 from the first capacitor portion Ca. The first capacitor Ca is arranged in a row together with the transistors T3 to T5, and the first portion 5a of the pixel circuit 5 'is constituted by these components Ca, T3, T4, and T5. The second capacitor portion Cb constitutes the second portion 5b of the pixel circuit 5 '.
 図9は、この実施の形態の各サブ画素SGの等価回路図である。図9の様に、この実施の形態の各サブ画素SGは、上述の通り、発光部3と画素回路5’とを備えている。画素回路5’は、3個のトランジスタT3~T5と、1個の容量(保持容量)Cとを備えている。 FIG. 9 is an equivalent circuit diagram of each sub-pixel SG of this embodiment. As shown in FIG. 9, each sub-pixel SG of this embodiment includes the light emitting unit 3 and the pixel circuit 5 'as described above. The pixel circuit 5 'includes three transistors T3 to T5 and one capacitor (holding capacitor) C.
 この実施の形態では、実施の形態1の場合と比べて、各走査線WS毎に制御線Eが追加されている。各制御線Eは、走査線駆動回路40に接続されており、走査線駆動回路40により、対応する走査線WSと共に順次選択されて、走査線駆動回路40からの制御信号を行単位でサブ画素SGに出力する。 In this embodiment, a control line E is added for each scanning line WS compared to the case of the first embodiment. Each control line E is connected to the scanning line driving circuit 40, and is sequentially selected together with the corresponding scanning line WS by the scanning line driving circuit 40, and the control signal from the scanning line driving circuit 40 is sub-pixel-by-row. Output to SG.
 各トランジスタT3~T5はそれぞれ、例えばNチャネル型トランジスタにより構成されている。トランジスタT3のソース(一方の主電極)は、信号線SLに接続され、トランジスタT3のドレイン(他方の主電極)は、トランジスタT4のゲート(制御電極)に接続される。トランジスタT5のドレイン(一方の主電極)は、電源線Vccに接続され、トランジスタT5のソース(他方の主電極)は、トランジスタT4のドレイン(一方の主電極)に接続される。トランジスタT4のソース(他方の主電極)は、発光部3のアノードに接続される。発光部3のカソードは、例えば接地される。容量Cは、トランジスタT4のゲート・ソース間に接続される。トランジスタT3のゲートは、走査線WSに接続され、トランジスタT5のゲートは、制御線Eに接続されている。 Each of the transistors T3 to T5 is composed of, for example, an N-channel transistor. The source (one main electrode) of the transistor T3 is connected to the signal line SL, and the drain (the other main electrode) of the transistor T3 is connected to the gate (control electrode) of the transistor T4. The drain (one main electrode) of the transistor T5 is connected to the power supply line Vcc, and the source (the other main electrode) of the transistor T5 is connected to the drain (one main electrode) of the transistor T4. The source (the other main electrode) of the transistor T4 is connected to the anode of the light emitting unit 3. The cathode of the light emitting unit 3 is grounded, for example. The capacitor C is connected between the gate and source of the transistor T4. The gate of the transistor T3 is connected to the scanning line WS, and the gate of the transistor T5 is connected to the control line E.
 この構成により、各サブ画素SGは、下記の様に発光動作が制御される。即ち、走査線駆動回路40により、順次選択された各走査線WSおよび各制御線Eにそれぞれ制御信号が供給される共に、信号線駆動回路50により、上記の選択された走査線WSに合わせて各信号線SLに映像信号が供給される。 With this configuration, the light emission operation of each subpixel SG is controlled as follows. That is, a control signal is supplied to each scanning line WS and each control line E sequentially selected by the scanning line driving circuit 40, and at the same time, the signal line driving circuit 50 adjusts to the selected scanning line WS. A video signal is supplied to each signal line SL.
 そして、上記の選択された各サブ画素SGでは、トランジスタT5のゲートに、制御線Eに供給された上記の制御信号が印加されて、当該トランジスタT5が導通状態になる。また、トランジスタT3のゲートに、走査線WSに供給された上記の制御信号が印加されて、当該トランジスタT3が導通状態になる。これにより、当該トランジスタT3を介して、信号線SLに供給された上記の映像信号が容量Cに書き込まれる。 In each of the selected subpixels SG, the control signal supplied to the control line E is applied to the gate of the transistor T5, so that the transistor T5 becomes conductive. Further, the control signal supplied to the scanning line WS is applied to the gate of the transistor T3, so that the transistor T3 becomes conductive. Thus, the video signal supplied to the signal line SL is written into the capacitor C through the transistor T3.
 そして、トランジスタT4において、容量Cに書き込まれた映像信号に応じてソース電流Idsが流れる。これにより、電源線Vccからの電流が順に各トランジスタT5・T4を導通し、容量Cに書き込まれた映像信号に応じた電流Idsが発光部3に供給される。これにより、発光部3は、映像信号に応じた輝度で発光する。この様にして、各サブ画素SGの発光動作が制御される。 In the transistor T4, the source current Ids flows according to the video signal written in the capacitor C. Thereby, the current from the power supply line Vcc sequentially conducts the transistors T5 and T4, and the current Ids corresponding to the video signal written in the capacitor C is supplied to the light emitting unit 3. Thereby, the light emission part 3 light-emits with the brightness | luminance according to a video signal. In this way, the light emission operation of each sub-pixel SG is controlled.
 なお、この実施の形態では、画素回路5’の構成例として、3つのトランジスタT3~T5と、1つの容量Cとを備える場合を例に挙げたが、この様に限定されるものではない。 In this embodiment, as an example of the configuration of the pixel circuit 5 ', a case in which three transistors T3 to T5 and one capacitor C are provided is described as an example. However, the configuration is not limited to this.
 また、この実施の形態では、3つのトランジスタT3~T5は境界7に沿って一列に配置されたが、この様に限定されるものではなく、例えば、3つのトランジスタT3~T5の全部または一部を境界8に沿って配置させてもよい。 In this embodiment, the three transistors T3 to T5 are arranged in a line along the boundary 7. However, the present invention is not limited to this. For example, all or part of the three transistors T3 to T5 are arranged. May be arranged along the boundary 8.
 また、この実施の形態では、1つの容量Cが、境界7に沿った第1容量部Caと境界8に沿った第2容量部Cbとを有するが、境界7に沿った容量と、境界8に沿った容量との2つの容量が設けられてもよい。 In this embodiment, one capacitor C includes the first capacitor portion Ca along the boundary 7 and the second capacitor portion Cb along the boundary 8. However, the capacitor along the boundary 7 and the boundary 8 Two capacitances may be provided, with a capacitance along
 また、この実施の形態では、容量Cの第1容量部Caを境界7に沿って配置し、容量の第2容量部Cbを境界8に沿って配置したが、その様に限定されるものではなく、容量Cの全部を境界8に沿って配置してもよく、実施の形態1と同様に、容量Cの全部を境界7に沿って配置してもよい。 In this embodiment, the first capacitor portion Ca of the capacitor C is disposed along the boundary 7 and the second capacitor portion Cb of the capacitor is disposed along the boundary 8. However, the present invention is not limited to this. Instead, the entire capacitor C may be disposed along the boundary 8, and the entire capacitor C may be disposed along the boundary 7 as in the first embodiment.
 以上の様に、この実施の形態によれば、画素回路5’は、境界7(第1境界)に沿った第1部分5aと、第1部分5aからx方向に延びた第2部分5bとを備えるので、第1部分5aだけでは画素回路5’の配置面積を十分に確保できない場合でも、第2部分5bが在ることで、画素回路5’の配置面積を十分に確保することができる。 As described above, according to this embodiment, the pixel circuit 5 ′ includes the first portion 5a along the boundary 7 (first boundary) and the second portion 5b extending from the first portion 5a in the x direction. Therefore, even when the first portion 5a alone cannot secure a sufficient placement area of the pixel circuit 5 ′, the second portion 5b makes it possible to secure a sufficient placement area of the pixel circuit 5 ′. .
 また、画素回路5’の第2部分5bは、境界8(第2境界)に沿って配置されるので、当該第2部分5bは、それを備えるサブ画素SGの発光部3を分割することなく、当該第2部分の配置場所を確保することができる。 In addition, since the second portion 5b of the pixel circuit 5 ′ is disposed along the boundary 8 (second boundary), the second portion 5b does not divide the light emitting unit 3 of the subpixel SG including the second portion 5b. It is possible to secure an arrangement place of the second part.
 〔実施の形態3〕
 実施の形態2では、図7の様に、画素回路5’は、L字状に形成された。即ち、画素回路5’の第2部分(即ちx方向に延びた部分)5bは、発光部3のy方向の一方の端部側に配置された。この実施の形態では、図10の様に、画素回路5”の第2部分5bは、発光部3をy方向に分割しその間に配置される。以下、図10および図11に基づいて、この実施の形態について詳説する。
[Embodiment 3]
In the second embodiment, as shown in FIG. 7, the pixel circuit 5 ′ is formed in an L shape. That is, the second portion (that is, the portion extending in the x direction) 5 b of the pixel circuit 5 ′ is disposed on one end side in the y direction of the light emitting unit 3. In this embodiment, as shown in FIG. 10, the second portion 5 b of the pixel circuit 5 ″ divides the light emitting unit 3 in the y direction and is arranged therebetween. Hereinafter, based on FIGS. The embodiment will be described in detail.
 図10は、この実施の形態における各サブ画素SGの構成要素のレイアウトを説明する図である。図11は、この実施の形態3における画素回路5”が3個のトランジスタと1個の容量とを備える場合のそれらのレイアウトの一例を説明する図である。 FIG. 10 is a diagram for explaining the layout of the components of each sub-pixel SG in this embodiment. FIG. 11 is a diagram for explaining an example of a layout in the case where the pixel circuit 5 ″ according to the third embodiment includes three transistors and one capacitor.
 この実施の形態では、図10の様に、各サブ画素SGの画素回路5”は、境界7に沿った部分(第1部分)5aと、x方向に延びた部分(第2部分)5bとを備えている。画素回路5”の第2部分5bは、それと同じサブ画素SGの発光部3をy方向の適宜箇所で2分割し、その2分割された各発光部3a・3bの間に沿って配置されている。 In this embodiment, as shown in FIG. 10, the pixel circuit 5 ″ of each subpixel SG includes a portion (first portion) 5a along the boundary 7 and a portion (second portion) 5b extending in the x direction. The second portion 5b of the pixel circuit 5 ″ is divided into two light emitting portions 3 of the same subpixel SG at appropriate locations in the y direction, and the light emitting portions 3a and 3b divided in two are divided. Are arranged along.
 なお、図10では、各サブ画素SGr・SGg・SGbの第2部分5bは、y方向の同じ箇所に配置されているが、y方向の同じ箇所に配置される必要はない。例えば、サブ画素SGbの第2部分5bは、y方向の中間位置より上側の箇所に配置され、各サブ画素SGg・SGrの第2部分5bは、y方向の中間位置より下側の箇所に配置されてもよい。 In FIG. 10, the second portions 5b of the sub-pixels SGr, SGg, and SGb are arranged at the same place in the y direction, but need not be arranged at the same place in the y direction. For example, the second portion 5b of the sub pixel SGb is disposed at a location above the intermediate position in the y direction, and the second portion 5b of each sub pixel SGg / SGr is disposed at a location below the intermediate position in the y direction. May be.
 具体的には、この実施の形態の画素回路5”は、例えば図11の様に、3つのトランジスタ(スイッチングトランジスタT3、駆動トランジスタT4、発光制御トランジスタT5)と、1つの容量(保持容量)Cとを備えている。各トランジスタT3~T5は、境界7に沿って一列に配列されている。 Specifically, the pixel circuit 5 ″ of this embodiment includes, for example, as shown in FIG. 11, three transistors (switching transistor T3, drive transistor T4, light emission control transistor T5) and one capacitor (holding capacitor) C. The transistors T3 to T5 are arranged in a line along the boundary 7.
 容量Cは、境界7に沿って形成された部分(第1容量部)Caと、第1容量部Caからx方向に延びた部分(第2容量部)Cbとを備えている。第1容量部Caは、各トランジスタT3~T5と共に1列に配置されている。これら構成要素Ca・T3・T4・T5により、画素回路5”の第1部分5aが構成されている。また、発光部3がy方向の適宜位置で2分割されており、第2容量部Cbは、2分割された各発光部3a・3bの間に沿って(即ちx方向に沿って)配置されている。この第2容量部Cbにより画素回路5”の第2部分5bが構成されている。 The capacitor C includes a portion (first capacitor portion) Ca formed along the boundary 7 and a portion (second capacitor portion) Cb extending from the first capacitor portion Ca in the x direction. The first capacitor Ca is arranged in one row together with the transistors T3 to T5. These components Ca, T3, T4, and T5 constitute the first portion 5a of the pixel circuit 5 ″. The light emitting portion 3 is divided into two at appropriate positions in the y direction, and the second capacitor portion Cb. Are arranged between the light-emitting portions 3a and 3b divided into two (that is, along the x direction). The second capacitor portion Cb constitutes the second portion 5b of the pixel circuit 5 ″. Yes.
 なお、この実施の形態の各サブ画素SGの等価回路図は、実施の形態2のサブ画素SGの等価回路図と同じである。 Note that the equivalent circuit diagram of each sub-pixel SG in this embodiment is the same as the equivalent circuit diagram of the sub-pixel SG in the second embodiment.
 また、この実施の形態では、画素回路5”の構成例として、3つのトランジスタT3~T5と、1つの容量Cとを備える場合を例に挙げたが、この様に限定されるものではない。 Further, in this embodiment, as an example of the configuration of the pixel circuit 5 ″, a case where three transistors T3 to T5 and one capacitor C are provided is described as an example, but the present invention is not limited to this.
 以上の様に、この実施の形態によれば、実施の形態2と同様に、画素回路5”は、境界7(第1境界)に沿った第1部分5aと、第1部分5aからx方向(第1方向)に延びた第2部分5bとを備えるので、画素回路5”の配置面積を十分に確保することができる。 As described above, according to this embodiment, similarly to the second embodiment, the pixel circuit 5 ″ includes the first portion 5a along the boundary 7 (first boundary) and the first portion 5a in the x direction. Since the second portion 5b extending in the (first direction) is provided, the arrangement area of the pixel circuit 5 ″ can be sufficiently ensured.
 また、画素回路5”の第2部分5b(図11ではCb)は、それを備えるサブ画素SGの発光部3をy方向(第2方向)に分割し、その分割した発光部3a・3bの間に配置されるので、当該第2部分5bの配線の引き回しを短くすることができる。 Further, the second portion 5b (Cb in FIG. 11) of the pixel circuit 5 ″ divides the light emitting section 3 of the sub-pixel SG including the pixel circuit 5 ″ in the y direction (second direction), and the divided light emitting sections 3a and 3b. Since they are arranged between the two, the wiring of the second portion 5b can be shortened.
 即ち、当該第2部分5bを、発光部3を分割しないでx方向に沿って配置する場合は、当該第2部分5bを、図7の様に、発光部3におけるy方向の端部側に配置させる必要があるので、当該第2部分5bの配線を発光部3のy方向の当該端部まで引き回す必要がある。よって、当該第2部分5bの配線の引き回しが長くなる。 That is, when the second portion 5b is arranged along the x direction without dividing the light emitting portion 3, the second portion 5b is placed on the end side in the y direction of the light emitting portion 3 as shown in FIG. Since it is necessary to arrange it, it is necessary to route the wiring of the second part 5b to the end of the light emitting unit 3 in the y direction. Therefore, the wiring of the second portion 5b becomes longer.
 そこで、この実施の形態3の様に、発光部3をy方向に分割しその分割した発光部3a・3bの間に沿って当該第2部分5bを配置することで、当該第2部分5bの配線の引き回しを短くすることができる。 Then, like this Embodiment 3, the light emission part 3 is divided | segmented into ay direction, and the said 2nd part 5b is arrange | positioned along between the divided | segmented light emission parts 3a * 3b, The said 2nd part 5b Wiring routing can be shortened.
 また、画素回路5”の第2部分5b(図11ではCb)は、それを備えるサブ画素SGの発光部3をy方向に分割しその分割した発光部3a・3bの間に配置されるので、y方向に沿って隣り合う各サブ画素SGの発光色を滑らかに表示させることができる。 Further, the second portion 5b (Cb in FIG. 11) of the pixel circuit 5 ″ is arranged between the divided light emitting portions 3a and 3b by dividing the light emitting portion 3 of the subpixel SG including the second portion 5b in the y direction. , The emission color of each sub-pixel SG adjacent along the y direction can be displayed smoothly.
 即ち、当該第2部分5bを、発光部3を分割しないでx方向に沿って配置する場合は、当該第2部分5bを、図7の様に、発光部3のy方向の端部側に(即ち、y方向に沿って隣り合う各サブ画素SGの間の境界8に沿って)配置させる必要がある。 That is, when the second portion 5b is arranged along the x direction without dividing the light emitting portion 3, the second portion 5b is placed on the end side in the y direction of the light emitting portion 3 as shown in FIG. In other words, it is necessary to arrange them (along the boundary 8 between each subpixel SG adjacent in the y direction).
 よって、境界8では、走査線WSの幅に加えて当該第2部分5bの配置面積の分、更に広くなるので、y方向に沿って隣り合う各サブ画素SGの発光色が滑らかに表示されなくなる。 Therefore, the boundary 8 is further widened by the arrangement area of the second portion 5b in addition to the width of the scanning line WS, so that the emission color of each sub-pixel SG adjacent along the y direction cannot be displayed smoothly. .
 そこで、この実施の形態3の様に、発光部3をy方向に分割しその分割した発光部3a・3bの間に沿って当該第2部分5bを配置することで、境界8では、y方向に沿って隣り合う各サブ画素SGの発光部3の間隔を信号線SLの幅程度にできる。また、分割された発光部3a・3bの間隔も、当該第2部分5bの幅程度であり、各発光部3a・3bの発光色は滑らかに表示される。よって、y方向に沿って隣り合う各サブ画素SGの発光色を滑らかに表示させることができる。 Therefore, as in the third embodiment, the light emitting unit 3 is divided in the y direction, and the second portion 5b is disposed between the divided light emitting units 3a and 3b, so that the boundary 8 has a y direction. The interval between the light emitting portions 3 of the sub-pixels SG adjacent to each other can be set to about the width of the signal line SL. Further, the interval between the divided light emitting portions 3a and 3b is also about the width of the second portion 5b, and the light emission colors of the respective light emitting portions 3a and 3b are displayed smoothly. Therefore, the emission color of each subpixel SG adjacent along the y direction can be displayed smoothly.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 以上のように、本発明の実施の形態に係る半導体基板は、上記画素回路は、上記第1境界に沿った第1部分と、上記第1部分から上記第1方向の上記一方側に延びた第2部分とを備えることが望ましい。 As described above, in the semiconductor substrate according to the embodiment of the present invention, the pixel circuit includes the first portion along the first boundary and the first portion extending from the first portion to the one side in the first direction. And a second part.
 上記の構成によれば、画素回路は、第1境界に沿った第1部分と、第1部分から第1方向の上記一方側に延びた第2部分とを備えるので、第1部分だけでは画素回路の配置面積を十分に確保できない場合でも、第2部分が在ることで、画素回路の配置面積を十分に確保することができる。 According to the above configuration, the pixel circuit includes the first portion along the first boundary and the second portion extending from the first portion to the one side in the first direction. Even when the circuit layout area cannot be sufficiently secured, the pixel circuit circuit layout area can be sufficiently secured by the presence of the second portion.
 また、本発明の実施の形態に係る半導体基板は、上記画素回路の上記第2部分は、それを備える上記サブ画素と上記縦方向および上記横方向のうちの他方の方向である第2方向の隣のサブ画素との間の第2境界に沿って配置されることが望ましい。 Further, in the semiconductor substrate according to the embodiment of the present invention, the second portion of the pixel circuit includes the sub-pixel including the pixel circuit and the second direction which is the other of the vertical direction and the horizontal direction. It is desirable to arrange the second sub-pixel along a second boundary between adjacent sub-pixels.
 上記の構成によれば、画素回路の第2部分は、それを備えるサブ画素と第2方向の隣のサブ画素との間の第2境界に沿って配置されるので、画素回路の第2部分は、それを備えるサブ画素の発光部を分割することなく、当該第2部分の配置場所を確保することができる。 According to said structure, since the 2nd part of a pixel circuit is arrange | positioned along the 2nd boundary between the sub pixel provided with it, and the sub pixel adjacent to a 2nd direction, 2nd part of a pixel circuit Can secure the arrangement location of the second portion without dividing the light emitting portion of the sub-pixel including the same.
 また、本発明の実施の形態に係る半導体基板は、上記画素回路の上記第2部分は、それを備える上記サブ画素の上記発光部を上記縦方向および上記横方向のうちの他方の方向である第2方向に分割し、その分割した各発光部の間に配置されることが望ましい。 In the semiconductor substrate according to the embodiment of the present invention, the second part of the pixel circuit is the other direction of the vertical direction and the horizontal direction of the light emitting unit of the sub-pixel including the pixel circuit. It is desirable to divide in the second direction and arrange between the divided light emitting units.
 上記の構成によれば、画素回路の第2部分は、それを備えるサブ画素の発光部を第2方向に分割し、その分割した各発光部の間に配置されるので、(a)画素回路の第2部分の配線の引き回しを短くすることができ、(b)更に第2方向に沿って隣り合う各サブ画素の発光色を滑らかに表示させることができる。 According to the above configuration, the second portion of the pixel circuit divides the light emitting portion of the sub-pixel including the second portion in the second direction, and is arranged between the divided light emitting portions. (A) Pixel circuit The wiring of the second part can be shortened, and (b) the emission color of each sub-pixel adjacent in the second direction can be displayed smoothly.
 また、本発明の実施の形態に係る半導体基板は、上記画素回路は、上記第1境界に沿って配置された容量を備えることが望ましい。 In addition, in the semiconductor substrate according to the embodiment of the present invention, it is preferable that the pixel circuit includes a capacitor disposed along the first boundary.
 上記の構成によれば、第1境界に沿って配置された容量を備えるので、容量を備える場合でも、画素回路の配置面積を、極力大きくせずに第1境界の全体に渡る様に形成することができる。 According to the above configuration, since the capacitor arranged along the first boundary is provided, even when the capacitor is provided, the arrangement area of the pixel circuit is formed so as to cover the entire first boundary without increasing as much as possible. be able to.
 また、本発明の実施の形態に係る半導体基板は、上記画素回路は、1つ以上のトランジスタを備え、上記1つ以上のトランジスタは、上記第1境界に沿って配置されることが望ましい。 In the semiconductor substrate according to the embodiment of the present invention, it is preferable that the pixel circuit includes one or more transistors, and the one or more transistors are arranged along the first boundary.
 上記の構成によれば、1つ以上のトランジスタは上記第1境界に沿って配置されるので、画素回路の配置面積を、極力大きくせずに上記第1境界の全体に渡る様に形成することができる。 According to the above configuration, the one or more transistors are arranged along the first boundary. Therefore, the arrangement area of the pixel circuit is formed so as to cover the entire first boundary without increasing as much as possible. Can do.
 また、本発明の実施の形態に係る半導体基板は、上記画素回路は、上記画素回路の上記第2部分に配置された容量を備えることが望ましい。 Further, in the semiconductor substrate according to the embodiment of the present invention, it is desirable that the pixel circuit includes a capacitor disposed in the second portion of the pixel circuit.
 上記の構成によれば、画素回路の第2部分に配置された容量を備えるので、その容量に関して、上記の効果を得ることができる。 According to the above configuration, since the capacitor disposed in the second portion of the pixel circuit is provided, the above-described effects can be obtained with respect to the capacitor.
 また、本発明の実施の形態に係る半導体基板は、チャネル長がチャネル幅よりも大きい上記トランジスタのうち、少なくとも一部は、上記チャネル長の方向が上記縦方向および上記横方向のうちの他方の方向である第2方向と略平行に配置されることが望ましい。 In the semiconductor substrate according to the embodiment of the present invention, at least a part of the transistors having a channel length larger than the channel width is the other of the vertical direction and the horizontal direction. It is desirable that the second direction, which is the direction, be arranged substantially in parallel.
 上記の構成によれば、チャネル長がチャネル幅よりも大きいトランジスタのうち、少なくとも一部は、チャネル長の方向が第2方向と略平行に配置されるので、当該少なくとも一部のトランジスタとその隣の発光部との間隔に余裕を持たせることができる。 According to the above configuration, at least a part of the transistors having a channel length larger than the channel width is disposed so that the channel length direction is substantially parallel to the second direction. It is possible to provide a margin for the distance from the light emitting unit.
 また、本発明の実施の形態に係る半導体基板は、チャネル幅がチャネル長よりも大きい上記トランジスタのうち、少なくとも一部は、上記チャネル幅の方向が上記縦方向および上記横方向のうちの他方の方向である第2方向と略平行に配置されることが望ましい。 In the semiconductor substrate according to the embodiment of the present invention, at least a part of the transistors whose channel width is larger than the channel length is the other of the vertical direction and the horizontal direction. It is desirable that the second direction, which is the direction, be arranged substantially parallel to the second direction.
 上記の構成によれば、チャネル幅がチャネル長よりも大きいトランジスタのうち、少なくとも一部は、チャネル幅の方向が第2方向と略平行に配置されるので、当該少なくとも一部のトランジスタとその隣の発光部との間隔に余裕を持たせることができる。 According to the above configuration, at least a part of the transistors whose channel width is larger than the channel length is arranged so that the direction of the channel width is substantially parallel to the second direction. It is possible to provide a margin for the distance from the light emitting unit.
 また、本発明の実施の形態に係る半導体基板は、上記各サブ画素は、行状に配列した複数の走査線と、列状に配列した複数の信号線とにより区画された各領域に配設され、上記各サブ画素の上記画素回路はそれぞれ、上記各領域の内側に配置されることが望ましい。 In the semiconductor substrate according to the embodiment of the present invention, each of the sub-pixels is disposed in each region partitioned by a plurality of scanning lines arranged in rows and a plurality of signal lines arranged in columns. The pixel circuits of the sub-pixels are preferably arranged inside the regions.
 この構成により、サブ画素の境界が走査線および信号線により規定され、各サブ画素の画素回路に走査線および信号線が含まれないことが明確になる。 This configuration makes it clear that the boundary of the sub-pixel is defined by the scanning line and the signal line, and the scanning line and the signal line are not included in the pixel circuit of each sub-pixel.
 また、本発明の実施の形態に係る有機EL表示装置は、上記の半導体基板を備えた有機EL表示装置であることが望ましい。 Further, the organic EL display device according to the embodiment of the present invention is preferably an organic EL display device including the semiconductor substrate.
 上記の構成によれば、上記の半導体基板の効果を有する有機EL表示装置を提供することができる。 According to the above configuration, an organic EL display device having the effect of the semiconductor substrate can be provided.
 本発明は、例えば、有機EL表示装置の半導体基板などに好適に用いることができる。 The present invention can be suitably used for a semiconductor substrate of an organic EL display device, for example.
 1 有機EL表示装置
 3 発光部
 3a・3b 分割された各発光部
 5・5’・5” 画素回路
 5a 第1部分
 5b 第2部分
 7 第1境界
 8 第2境界
 10 半導体基板
 20 支持基板
 30 画素アレイ部
 40 走査線駆動回路
 50 信号線駆動回路
 C 容量
 Ca 第1容量部
 Cb 第2容量部
 SG・SGr・SGb・SGg サブ画素
 E 制御線
 SL 信号線
 WS 走査線
 T1・T2・T3・T4・T5 トランジスタ
 x 第1方向
 y 第2方向
DESCRIPTION OF SYMBOLS 1 Organic electroluminescence display device 3 Light emission part 3a * 3b Each light emission part 5 * 5 '* 5 "Pixel circuit 5a 1st part 5b 2nd part 7 1st boundary 8 2nd boundary 10 Semiconductor substrate 20 Support substrate 30 Pixel Array part 40 Scan line drive circuit 50 Signal line drive circuit C Capacitance Ca First capacitor part Cb Second capacitor part SG / SGr / SGb / SGg Subpixel E Control line SL Signal line WS Scan line T1, T2, T3, T4, T5 transistor x first direction y second direction

Claims (11)

  1.  縦横に配列された複数のサブ画素が形成された半導体基板であって、
     上記複数のサブ画素は、それらの配列の縦方向および横方向のうちの一方の方向である第1方向に、異なる発光色のサブ画素が隣り合う様に配列され、
     上記各サブ画素は、
     上記発光色を発光する発光部と、
     上記発光部を発光動作するように駆動する画素回路と、
    を備え、
     上記画素回路は、それを備える上記サブ画素と、上記第1方向の一方側の隣の上記サブ画素との間の第1境界に沿って配置され、
     上記発光部は、それを備える上記サブ画素内の上記画素回路と、上記第1方向の他方側の隣の上記サブ画素内の上記画素回路との間に配置されることを特徴とする半導体基板。
    A semiconductor substrate on which a plurality of sub-pixels arranged vertically and horizontally are formed,
    The plurality of sub-pixels are arranged so that sub-pixels of different emission colors are adjacent to each other in a first direction which is one of a vertical direction and a horizontal direction of the arrangement,
    Each of the sub-pixels is
    A light emitting unit that emits the emission color;
    A pixel circuit for driving the light emitting unit to emit light;
    With
    The pixel circuit is disposed along a first boundary between the sub pixel including the pixel circuit and the sub pixel adjacent to one side in the first direction,
    The light emitting portion is disposed between the pixel circuit in the sub pixel including the light emitting portion and the pixel circuit in the sub pixel adjacent to the other side in the first direction. .
  2.  上記画素回路は、上記第1境界に沿った第1部分と、上記第1部分から上記第1方向の上記一方側に延びた第2部分とを備えることを特徴とする請求項1に記載の半導体基板。 2. The pixel circuit according to claim 1, comprising: a first portion along the first boundary; and a second portion extending from the first portion to the one side in the first direction. Semiconductor substrate.
  3.  上記第2部分は、それを備える上記サブ画素と上記縦方向および上記横方向のうちの他方の方向である第2方向の隣のサブ画素との間の第2境界に沿って配置されることを特徴とする請求項2に記載の半導体基板。 The second portion is disposed along a second boundary between the sub-pixel including the second portion and a sub-pixel adjacent to the second direction which is the other of the vertical direction and the horizontal direction. The semiconductor substrate according to claim 2.
  4.  上記第2部分は、それを備える上記サブ画素の上記発光部を上記縦方向および上記横方向のうちの他方の方向である第2方向に分割し、その分割した各発光部の間に配置されることを特徴とする請求項2に記載の半導体基板。 The second portion divides the light emitting portion of the sub-pixel including the second portion into a second direction which is the other of the vertical direction and the horizontal direction, and is arranged between the divided light emitting portions. The semiconductor substrate according to claim 2.
  5.  上記画素回路は、上記第1境界に沿って配置された容量を備えることを特徴とする請求項1~4の何れか1項に記載の半導体基板。 The semiconductor substrate according to any one of claims 1 to 4, wherein the pixel circuit includes a capacitor disposed along the first boundary.
  6.  上記画素回路は、1つ以上のトランジスタを備え、
     上記1つ以上のトランジスタは、上記第1境界に沿って配置されることを特徴とする請求項1~5の何れか1項に記載の半導体基板。
    The pixel circuit includes one or more transistors,
    The semiconductor substrate according to any one of claims 1 to 5, wherein the one or more transistors are arranged along the first boundary.
  7.  上記画素回路は、上記画素回路の上記第2部分に配置された容量を備えることを特徴とする請求項2~4の何れか1項に記載の半導体基板。 The semiconductor substrate according to any one of claims 2 to 4, wherein the pixel circuit includes a capacitor disposed in the second portion of the pixel circuit.
  8.  チャネル長がチャネル幅よりも大きい上記トランジスタのうち、少なくとも一部は、上記チャネル長の方向が上記縦方向および上記横方向のうちの他方の方向である第2方向と略平行に配置されることを特徴とする請求項6に記載の半導体基板。 At least a part of the transistors having a channel length larger than the channel width is disposed substantially parallel to a second direction in which the channel length direction is the other of the vertical direction and the horizontal direction. The semiconductor substrate according to claim 6.
  9.  チャネル幅がチャネル長よりも大きい上記トランジスタのうち、少なくとも一部は、上記チャネル幅の方向が上記縦方向および上記横方向のうちの他方の方向である第2方向と略平行に配置されることを特徴とする請求項6または8に記載の半導体基板。 Among the transistors having a channel width larger than the channel length, at least a part of the transistors is disposed substantially parallel to a second direction in which the channel width direction is the other of the vertical direction and the horizontal direction. The semiconductor substrate according to claim 6, wherein:
  10.  上記各サブ画素は、行状に配列した複数の走査線と、列状に配列した複数の信号線とにより区画された各領域に配設され、
     上記各サブ画素の上記画素回路はそれぞれ、上記各領域の内側に配置されることを特徴とする請求項1~9の何れか1項に記載の半導体基板。
    Each of the sub-pixels is disposed in each region partitioned by a plurality of scanning lines arranged in rows and a plurality of signal lines arranged in columns.
    The semiconductor substrate according to any one of claims 1 to 9, wherein the pixel circuit of each of the sub-pixels is disposed inside each of the regions.
  11.  請求項1~10の何れか1項に記載の半導体基板を備えた有機EL表示装置。 An organic EL display device comprising the semiconductor substrate according to any one of claims 1 to 10.
PCT/JP2012/055978 2011-03-15 2012-03-08 Semiconductor substrate and organic el display device WO2012124603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-057238 2011-03-15
JP2011057238 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124603A1 true WO2012124603A1 (en) 2012-09-20

Family

ID=46830676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055978 WO2012124603A1 (en) 2011-03-15 2012-03-08 Semiconductor substrate and organic el display device

Country Status (2)

Country Link
TW (1) TW201248845A (en)
WO (1) WO2012124603A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978749B1 (en) 2013-05-13 2019-05-16 삼성디스플레이 주식회사 Organic electroluminescent display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227771A (en) * 1998-12-01 2000-08-15 Sanyo Electric Co Ltd Color el display device
JP2002175029A (en) * 2000-09-29 2002-06-21 Sanyo Electric Co Ltd Semiconductor device and display device
JP2004264673A (en) * 2003-03-03 2004-09-24 Sanyo Electric Co Ltd Electroluminescence display device
JP2004264633A (en) * 2003-03-03 2004-09-24 Sanyo Electric Co Ltd Electroluminescence display
JP2005085737A (en) * 2003-09-11 2005-03-31 Seiko Epson Corp Self-light-emitting type display device and electronic equipment
JP2006235609A (en) * 2005-01-31 2006-09-07 Semiconductor Energy Lab Co Ltd Light-emitting device and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227771A (en) * 1998-12-01 2000-08-15 Sanyo Electric Co Ltd Color el display device
JP2002175029A (en) * 2000-09-29 2002-06-21 Sanyo Electric Co Ltd Semiconductor device and display device
JP2004264673A (en) * 2003-03-03 2004-09-24 Sanyo Electric Co Ltd Electroluminescence display device
JP2004264633A (en) * 2003-03-03 2004-09-24 Sanyo Electric Co Ltd Electroluminescence display
JP2005085737A (en) * 2003-09-11 2005-03-31 Seiko Epson Corp Self-light-emitting type display device and electronic equipment
JP2006235609A (en) * 2005-01-31 2006-09-07 Semiconductor Energy Lab Co Ltd Light-emitting device and electronic device

Also Published As

Publication number Publication date
TW201248845A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
US10777625B2 (en) Display device having a bank with a recess
US10686018B2 (en) Display device and manufacturing method thereof
JP5974372B2 (en) Organic EL display panel and organic EL display device
KR101193186B1 (en) Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
JP6056091B2 (en) Organic EL display panel and organic EL display device
KR102081317B1 (en) High Aperture Ratio Organic Light Emitting Diode Display Having Double Bank Structure
KR102000642B1 (en) Organic Light Emitting Diode Display Having High Luminescence
WO2013069234A1 (en) Organic el display panel and organic el display device
KR20090049515A (en) Organic light emitting diode display and method for manufacturing the same
KR20180057777A (en) Large Area Ultra High Density Flat Display Having High Aperture Ratio
US7256757B2 (en) Organic EL display panel
WO2016098317A1 (en) Display device
JP2009169070A (en) Color image display device, shadow mask and method of manufacturing color image display device using shadow mask
US10205113B2 (en) Organic electroluminescence device including an emissive layer including an assistant dopant layer and light-emitting dopant layer
WO2013069233A1 (en) Organic el display panel and organic el display device
JP2017120786A (en) Organic light emitting diode display device
WO2019064574A1 (en) Display device
JP2009111047A (en) Color image display device, shadow mask, and method of manufacturing color image display device using shadow mask
JP4703363B2 (en) Organic EL display device
WO2012124603A1 (en) Semiconductor substrate and organic el display device
JP4198916B2 (en) Image display device
KR102018750B1 (en) Organic light emitting display device
KR20150034047A (en) Organic Light Emitting Diode Display
CN110021238B (en) Display apparatus and image pickup apparatus
JP7203499B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP